
112

96 SOEFWARE ARCHITECTURE DESIGN

integration‘ c_oVde;for 2N-g1"interfaces:=
« b)tVerti?ca?tArchitecture’ E E

Figure 4.20. System extension using the four architecture patterns.

SAP 1009 (Part 2 of 3)

“2 CBM of U.S. Patent No. 8,037,158

sahmed
Typewritten Text

CSHEA
Text Box
SAP 1009 (Part 2 of 3)
CBM of U.S. Patent No. 8,037,158

113

SOFTWARE ARCHITECTURE PATTERNS 97

r”1teg§{atI‘o_Rn céde for 2 to_2N+A-L1 interfaces .—.‘R?V At?) 711,
’ A V(d)T_Hybtid Architébturej V A A ' ‘

Figure 4.20. continued.

113

114

98

SOFFWARE ARCHITECTURE DESIGN

create the system. The second scenario is a systemextension. In each case,
a sixth application is added to the system. The new application obeys the
same architecture pattern conventions. The third scenario is an applica-
tion replacement. A new application is integrated in place of the one in the
original architecture. In the fourth scenario, the two systems are merged to
create a common interoperable system with twice as many applications.

In the analysis, the development cost is incurred for all ofthe integration
code needed to implement the architecture-level interfaces. This includes
both client and server codes for a particular application-to—application con-
nection. If architecture standards allow the reuse of integration code, then
this is reflected as a cost savings.

Figure 4.20 shows the results of the analysis for an arbitrary size sys-
tem, Where N is the number of applications. This model shows that the
custom architecture requires high costs for initial system development and
all forms of system modification. The vertical architecture provides no real
cost benefits for initial development and system extension. It saves about
half the cost of component replacement, and it is cost neutral to system

, jintefgrate thesystem... multiplies the ,co,:f_and com‘ I
afzthe implemented system- I L E ‘ , ‘E

N Nut:/1beriof.Ap licatirfinsifi »*"lnte‘grated:

Figure 4.21. Comparison of architecture patterns.

114

115

SOFTWARE ARCHITECTURE PATTERNS 99

Figure 4.22. Example of cost savings N = 7

merger. This indicates that the vertical standards provide for intersystem
interoperability (a capability also shared by the horizontal and hybrid archi-
tectures). The horizontal architecture provides the most ease of extensibility.
The cost of system extension is constant regardless of the size of the system.
As We stated earlier, the horizontal architecture provides many benefits, but
it is not practical to assume that a community of developers Will be strictly
limited to common horizontal interfaces. The hybrid architecture includes a

range of costs between the horizontal and vertical architecture examples.
System extension is likely to cost at the 2N + 1 level of the custom archi-

tecture in three out of four cases. The key lesson is that architectural benefits

are very sensitive to the Way that the system is designed and extended. Po-

tential benefits are significant, but they are likely to be jeopardized by sub-
sequent system extensions which are not conformant to the architectural

vision and detailed tradeoffs made by the architect.

Figure 4.22 shows the relative cost savings with respect to the custom
architecture when N = 7, a typical system size. The hybrid can provide the
cost benefits of the horizontal architecture with the specialized functional-

115

116

100

SOFTWARE ARCHITECTURE DESIGN

ity benefits of the vertical architecture. Average cost savings for the hybrid

architecture are substantial for development and all forms of system mod-

ification. In summary, the hybrid architecture is our recommended basic
pattern for software architectures.

Advanced Architecture Pattern: Separation of Facilities

An advanced architecture strategy involves the separation of facilities. The

Internet services have successfully demonstrated this approach. The Inter-

net facilities are partitioned between the front-end tools (the user facilities)

and the back-end information sources (the application facilities). The infor-

mation sources are strictly back-end servers that can be shared by multiple
clients. The user facilities are strictly front-end applications that serve one

user. Some client applications can access multiple types of servers. The user
has a choice of front-end styles for viewing data.

The Internet communication standards are defined in terms of lower-

level communication layers, typically at the Internet Protocol (IP) level.

Compared to CORBA, the IP level requires a substantial amount of client

and server software in support of each interface. CORBA may have future

impact on the Internet because it enables the rapid creation of many new
services and customized interfaces.

The Internet provides an important example of how to structure an ar-

chitecture in a distributed environment (see figure 4.23 on page 101). Shared

data and services should be migrated toward the back-end application facil-

ities. Customized user functionality should reside in separate user interface

applications. Shared functions and data do not belong in the user facilities,
and user interaction should not be associated with the shared services.

Beyond the Internet, there are many other reasons why architectures

should be partitioned in this manner. In general, architectures should min-

imize the software investment in the user facilities and migrate as much

functionality and data as possible to shared application facilities (see figure

4.24 on page 102). In the following paragraphs we make some of the key
arguments why this strategy is necessary.

Shared services such as data repositories and search engines often re-

quire special processing resources. Repositories may have massive storage

requirements and need high-speed disk interfaces. Computation~intensive

services may need special processors to provide adequate response-time per-

formance. For a shared service involving many users, it is usually cost effec-

tive to provide specialized processors, buses, and storage systems, tailored to

the needs of these services. The cost of special hardware can be distributed
among many users.

Most user interface facilities are platform-specific. Applications do not

port easily between platforms unless some form of cross-platform develop-

ment environment is being used. To take advantage of the best capabili-

116

117

SOFTWARE ARCHITECTURE PATTERNS 101

Figure 4.23. Partitioning of Internet.

ties of each platform, it is necessary to write the user interface code in a

platform-dependent manner. Platform dependence will continue to be an is-
sue with user interface software because the industry desktop market will

continue to become increasingly fragmented. Emerging technologies such
as COSE/CDE, OLE/COM, OpenDoc, OPENSTEP, Fresco, and Taligent are

environments that will drive the need for partitioned software.

Architects should minimize software investments in platform-dependent

software. This can be done by migrating as much functionality as possible

to shared application facilities. Dependent software is expensive to port

between platforms; the quantity ofthis type ofsoftware should be minimized.

Any vendor-dependent software also is in danger of premature obsolescence
and high operation and maintenance costs.

Simplifying the role of user facilities allows the creation of more cus-

tomized user interfaces. It is very difficult or impossible to create a common

user interface that is readily accepted by all user groups. The groupware
software market is well aware of this issue. The failure of many group

117

118

102

SOFTWARE ARCHITECTURE DESIGN

y Facilities‘

Figure 4.24. Separation of user facilities from shared application facilities.

scheduling tools is an example of how user interfaces are closely tied to

individual user preferences and group culture. By simplifying the role of
user facilities, more customized user interfaces can be created to meet the

needs of special—interest users’ groups. Simplified user interface facilities

require less code and are less expensive and faster to build and specialize.

They also adapt to end-user needs and changing requirements.

The emerging market of user-interface rapid prototyping tools will en-

able dramatic reductions in the cost of user-interface development. Many of

these tools will interface directly with CORBA. Independent software ven-

dors such as Bluestone, Integrated Computer Solutions, Oberon, Netlinks,
and others are developing or already have CORBA products on the market.

It may soon be possible to implement a complete customized user interface
Within hours. This interface might provide all of the desired CORBA invoca-

tions Without substantial development. As platforms and user needs change,
new user interfaces can be created just as easily.

118

119

SOFTWARE ARCHITECTURE PATTERNS 103

Some application domains may require an additional category of sepa-

rated facilities. Workflow represents the organization’s business process. An

automated workflow supports the business process across multiple software

packages. Workflow software can perform functions such as data transfer of

results, automatic manipulation of data using multiple packages, and user
notification.

In general, shared application facilities should be completely indepen-

dent of workflow. The shared application facilities should be among the

most stable subsystems in the architecture and should support flexibly

many modes of utilization eliminating any hard-coded workflow from the

access protocols. In some environments, workflow is naturally merged with
the user-interface facilities. In others, the user interface facilities need to

be workflow independent. This is often the case where there are multiple

workflows in an organization that share common applications. Workflow

can provide useful animation to a set of passive user facilities and shared

application facilities. It is a good example of "why good functionality through

architecture—level APIs must be provided. A workflow process may need

to control virtually any type of function that a software package provides.

Workfiow can be highly volatile, as an organization adapts to meet changing

business needs. For this reason it is probably prudent to separate work-

flow in the architecture in order to localize the changes needed as workflow

changes. '

Other Architecture Patterns

There are a variety of other widely used architectural paradigms. In the fol-

lowing sections, we identify these paradigms and establish their relationship

to the design of software architectures.

Ad Hoc Architecture Ad hoc architectures are created whenever a system

is integrated directly at the implementation level. These architectures con-

tain a spontaneous mixture of communication levels and mechanisms; they
are architectures without a vision. By choosing the most expedient ways

to create interoperability, an ad hoc architecture can show some immediate

interoperability benefits, but these benefits are short-lived and usually very

dependent on particular software versions and the particular programmers

who create the integration solution. These systems are very brittle; they sel-

dom can adapt to any changes to the system, such as new software versions,

new network configurations, porting to new platforms, and so forth. During

the life cycle of such a system, programmers usually move on to new respon-

sibilities, and new programmers find ad hoc systems impossible to maintain
and extend.

For some organizations, such as small independent software vendors

with a very stable programmer workforce, an ad hoc architecture may be

119

120

’ 104

SOFTWARE ARCHITECTURE DESIGN

reasonable, particularly if the product is undergoing frequent revisions that

impact architecture-level issues. For most other organizations, ad hoc archi-

tectures are practical only for small-scale prototypes, such as user-interface
mockups. ‘

Software architecture designs should be initiated as early as possible
in prototypes that are likely to migrate into operational systems. The pro-

cess of creating a good architecture for a system is very closely related to

prototyping experiences and should proceed in parallel. A key goal of any

operational system prototype should be the creation of a robust software

architecture that can adapt to the changing requirements of the users. Ad

hoc architectures do not meet these needs, except in very special organiza-
tions.

Methodology-boundArchitectures Systems designed with rigorous soft-

ware methodology can employ many architectural principles, such as com-

ponent isolation and well-defined software boundaries. Occasionally, after

we explain architectural principles to groups, someone responds: “We have

all that, but we still cannot create a successful system.” Obviously these

projects are missing some ingredients.

The missing ingredients are more cultural than technical. Methodology-

bound projects have a skewed value system, in which priorities in the

methodology override the priorities of good architecture. For example, a

commonplace methodology-driven question is: “Is that feature really object

oriented?” This question may be very appropriate at an object-oriented pro-
gramming level, but it has minimal relevance to software architecture. An

architecture must use a wide range of concepts well beyond the scope ofa sin-

gle methodology. [Shaw, 93] The architecture must provide a stable solution

over a decade-long system life cycle, well after the demise of today’s popular

methodologies. Other methodology-driven priorities include the mandatory

creation of large quantities of design documentation that may be of little

or no use to the developers and maintainers of the system. As the system

evolves, the design documentation rapidly becomes obsolete.

In computing, we have seen many methodology trends come and go. Cur-

rently there are more than two dozen documented object-oriented method-

ologies. [Hutt, 94] The persistent trend is to move on to new methodology
concepts.

To design good architectures, organizations must recognize that popular

methodologies are transient. In fact, methodologies involve some of the most

dynamic, rapidly evolving ideas in computing technology. The methodology
business is also one of the most fragmented in the computing industry. There

is little or no hope of standardization of methodologies; hence, there is no

movement toward stability. Methodology practices will change dramatically -
over the course of a system life cycle. Good software architectures must

provide much more stability than the methodologies that may be employed
to create them.

120

121

SOFTWARE ARCHITECTURE PATTERNS 105

There is probably no way to fix a methodology-bound architecture

without fundamental cultural changes that allow software architects to de-

sign and implement their Vision without the encumbrances of methodology-

driven project culture.

Object-Oriented Architecture Object orientation includes as one of its

basic principles the modeling of natural real-World objects in the software

system. This notion has roots in the semantic database modeling work of

Dennis McLeod at the University of Southern California, where the comput-

ing object does not only represent the real-World object, “it is the object.”

An important question for software architects is whether to include ab-

stractions of domain objects at the system level. We have already said that

it is not acceptable to publish unabstracted object models at the system

level. Without abstractions, the architecture cannot manage system com-

plexity effectively. There are two important considerations: (1) the stability

of the domain models compared to the system life cycle and (2) whether

hard-coding the domain models into the architecture provides significant

system-level benefits.

Even in highly domain-dependent applications, such as simulation, the

architect has a choice of whether to hard-code the domain objects into the

core of the software architecture or to separate the domain-dependent hier-

archies from the domain-independent hierarchies. For example, a domain-

independent architecture can incorporate domain information in object

method parameters as opposed to hard-coded attributes and API—level spec-
ifications.

Client-Server Architecture Client-server is the precursor technology to

distributed objects. Client-server technology is associated with remote pro-

cedure calls such as ONC and DCE, whereas distributed objects are as-

sociated with CORBA, which is the predominant industry standard for

distributed objects. Distributed objects are peer to peer, whereas client-
server is a constrained architecture with well-defined client and server sub-

system roles.

Client-server technology contains some very useful concepts for the

system architecture (as opposed to the software architecture), which in-

cludes hardware selection and physical allocation decisions. Client-server

can be viewed as the antithesis to the migration of functionality from the

mainframes to the desktop. In client-server, the focus is on creating high-

performance centralized processing services. The centralized services run

on high-performance systems with tightly integrated mass storage facili-

ties. The capital resources are focused in the centralized server facilities

and minimized on the desktop. When fully migrated to client-server, the

desktops should be commodity terminals, such as personal computers or X
Terminals. This model works because the cost of the centralized resources

are shared among many users; sufficient savings usually can be obtained

121

122

106

SOFTWARE ARCHITECTURE DESIGN

from the reduced costs of the commodity desktop systems. When properly

configured, the client-server systems deliver better performance at lower

cost than either mainframe-based systems or PC-LAN systems.

Client-server is not concerned with interoperability. Each application

functions as a vertically integrated “stovepipe” system, self~contained and

providing all levels to the user from user interface to back-end mass storage.

In most client-sever systems, interoperability between applications is limited

to desktop cut and paste—that is, exchange of text and bitmaps, not objects.

The second problem with client-server technology is that it is often

vendor- and product-dependent. Since client-server products are vertically
integrated, often there is no user-defined software architecture. We have

heard people claim that “our architecture is <<place your favorite product
here>>.” In that case, the system is vulnerable to the commercial decisions

of a single supplier, and there is a lack of control of the timing of product
upgrades and associated maintenance costs. Users are forced to follow the

vendor’s lead or risk obsolescence. Many organizations have regretted this
loss of control.

Most client-server vendors include API access to their products, so that

they can be incorporated readily into user-defined software architectures.

Techniques presented herein can be used with these products to create soft-

ware architectures that provide vendor independence through component
isolation. If a client-server product does not provide this level of API access,

consider excluding it from the system. Lack ofAPI access indicates the prod-
uct has a closed, vendor-controlled architecture that could become a serious

liability over the system life cycle. Even when an API is available, it should

be mapped to your own IDL interface that you control.

Message-oriented Architecture Message-Oriented Middleware (MOM)

is designed to provide message model capabilities in a distributed environ-

ment. The networking world experience has shown that messaging can be

quite beneficial. Message systems provide fault tolerance. Messages can be

queued, routed, or stored until a system is available for reception. The sys-
tem, therefore, does not have a single point of failure. Currently MOM can

be based on the RPC model, on message queueing, or on models that attempt
to utilize the best aspects of both. The main benefit of this architecture is

its support of both the synchronous mode of communication as well as the

asynchronous mode. However, it currently is immature. Thus, developers

today face multiple nonstandard APIs and questions as to how MOM will in-

teroperate with other architectures. MOM may require more code to utilize.

COMMENTS

The design of highly effective software architectures involves a great deal of

intuitive judgment and experimentation. Rigorous methodologies that are

executed mechanically can impede this creative process. The ability to create

122

123

COMMENTS _ 107

simplifying abstractions is a key innate talent of the software architect. Few

individuals practicing in the software industry have this ability—perhaps

as few as one in five software designers. [Coplien, 94] The next major trend

in computing methodology, “design patterns” in part resulted from recogni-

tion of this fact. The Design Pattern practitioners are focused on project-

centric solutions. Their concepts are synergistic with ours, in that we both

are interested in techniques for creating better software architectures. Our

approach goes beyond a project-centric focus to include the creation of stan-
dard reusable architectures that can fill important standards gaps and ad-

dress interoperability needs for communities of developers. We have found

that many recognized authorities minimize the importance of standards.

In our opinion, without organizational interface standards there is mini-

mal reusability and no leverageable technology progress from generation to

generation of software systems.

A common misconception in object-oriented systems development in-

volves the difference between object-oriented programming and architecture-

based systems integration. Many developers have practiced integration by

providing system—level exposure to their object classes and methods. This
practice is problematic because it multiplies the complexity of the archi-

tecture by the complexity of the internal object models of each subsystem.

When a typical program comprising 100 classes and 1,000 methods is inte-

grated with ten other similar programs, a system complexity of 1,000 classes

and 10,000 methods results. These methods would be used sparsely across

program boundaries in a manner that is highly dependent on specific ap-

plications. In effect, the architecture becomes highly brittle because all the
subsystems become intimately interdependent upon each other’s detailed

object schemas.

There is an interesting analogy here between software architecture and

pop psychology. The discovery and definition of healthy boundaries is one
of the fundamental principles of Gestalt psychology, the scientific basis for

much of today’s pop psychology movement. Highly interdependent, brittle

software systems are analogous to codependent personalities. In both cases,
there is a poor definition of boundaries between independent entities. This

lack of good boundary definition leads to dysfunctional behavior. In comput-

ing, this behavior is exhibited by the fact that 50 percent of software cost

is attributed to system discovery (where the programmer is trying to find

out how the system works). In addition, so-called codependent systems lack

adaptability. The systems are unable to grow to address new requirements

and challenges without great expense. Difficulty in debugging and defect

correction is another important result of poorly defined system boundaries.

Object-oriented programming and architecture-based systems integra-

tion are quite different practices with very different goals. The software
architecture’s role is to help control complexity and manage change in the

system. Ideally, the software architecture provides a system—level abstrac-
tion that needs to contain only enough detail to provide the required sys-

123

124

108 SOFFWARE ARCHITECTURE DESIGN

tem-level interoperability. Generally designers err on the side of too much

complexity with insufficient abstraction. The most important and difficult

decisions are not what details to put into the software architecture but what

details to leave out [Brinch Hansen, 76].

The Rule of Three Iterations is another important analogy for the ar-

chitecture process. This analogy was explained to the author by Professor

Brinch Hansen at USC; it contains some important truths. Generally, three

iterations of system implementation are needed to create a mature software

architecture. We can illustrate this analogy with some well-known automo-

bile models. The first prototype resembles a Ford Pinto. It is a fairly minimal

design with some obvious Weaknesses. The second prototype resembles a

GM Cadillac. Success with the first prototype often leads developers to try

to build an overly ambitious system. This system dramatically fails to meet

expectations. The third prototype resembles a Volkswagon Beetle. Due to

lessons learned, it is a simple, elegant design that provides the desired func-

tionality, but with a very economical implementation. It is hoped that the

third prototype becomes the operational system, because it can be developed

and maintained at a very reasonable cost.

Using this analogy as a guideline, the architecture process should con-

tinually evolve the design towards a Beetle-like system, altogether avoiding

the overly ambitious Cadillac-like system. The Beetle-like system carries

many benefits:

Cost effective in declining budget times
More versatile

More adaptable

More migratable
More efficient

124

125

Security

With the advent ofopen systems and networking We have seen accompanying

social by—products, such as viruses, ’I‘rojan horses, unauthorized accesses,

and damage by disgruntled employees. Security is an essential capability

needed by the public and private sectors, in government, finance, medicine,

and general business. These industries need to protect information from

unauthorized access and modification, to protect privacy, to guard trade

secrets, and to protect data.

Extensive research has been performed on computer security, such as

secure operating systems and secure databases. In the past, not many im~

plementations were commercially available, particularly in the challenging

multilevel-security (MLS) arena. MLS security enables the interoperation

of systems operating at different levels and supports multiple levels on the

same system. While the number of available products and technologies that

address this area is increasing, these implementations are not prevalent.

MLS is still a difficult issue; without it users may not attain all of the desired

benefits that distributed object management can provide while answering

all of their security needs.

Because computer security historically has been viewed as a small spe-

cialty market, the commercial success of security technologies has been

disappointing. Available security technologies are limited to specialized ver-

sions of platforms and products. These specialized versions are typically

generations behind the state of the art in terms of cost, features, perfor-

mance, robustness, and usability. In order for security to be effective it must V

be ubiquitous, but security is unlikely to achieve pervasive support if sup-

pliers do not bundle it with mainstream platforms. One necessary change

109

125

126

110

SECURITY

is a fundamental recognition by suppliers that virtually all end users need

security, not just selected narrow markets.

Some end users believe that the only available course of action is to

wait until MLS security is commercially available-—they ignore security or
opt for physical isolation. We believe that this sort of argument should not

be accepted anymore. Security must be taken into consideration, especially
during system architecture design. Even though security may not be avail-

able in some of the newer emerging technologies, architects should plan on
integrating and phasing it in.

Architects and developers sometimes View security as too difficult and

defer it rather than build it into the architecture from the start. Often they

believe that security complicates a system, imposes restrictive policies and

procedures, and may impact performance. Mainframes and PCs had colo-

cated disk packs or hard drives that were physically secure. Local area

networks, remote access, and global internetworking have made security

a complex challenge. Distributed systems introduce new problems, such as

applications that run across several systems. When we add object-oriented

technology to the equation, we find that conventional security mechanisms

and architectures are woefully insufficient. The CORBA architecture at-

tempts to provide transparent object location and activation, while the secu-

rity policy may require a client to know it is communicating with a trusted
object.

Security has many diverse aspects, examples of which include physical

security, personnel security, information security, prevention of electromag-

netic emanations and their interception, operations security, computer se-

curity, and network security (software and hardware). In this chapter we

concentrate on the technology related issues.

We look further into advanced security issues that arise when using

an object request broker (ORB) in a distributed system. We review several

important security standards and research projects that apply to multiple

levels of security architecture. In addition, in Chapter 7 we present the

security support as implemented in the DISCUS framework.

The Need for Security

A common misconception is that only governments are interested in secu-

rity. Often software vendors or systems integrators argue that they are not

concerned with security because they target the commercial World. Inter-

estingly, while their requirements are somewhat different, security needs in

the commercial world are just as prevalent as in the government.

Governments are interested mainly in protecting information (often mil-

itary) from enemies. As such, they are interested both in preventing unau-

thorized disclosure and in maintaining data integrity. Limits are imposed on

who can access information for updating and modification and also on who

126

127

SECURITY 111

can access the information for reading. The private sector is driven mainly

by business decisions and their cost effectiveness. In the banking industry,

protecting someone’s account balance total from being read is not as im-

portant as protecting it from being modified. The private sector is therefore

more interested in protecting information from being changed (i.e., restrict-

ing write access). Sometimes, although not as often as in the government or

military, companies are interested in restricting any access to information,

especially trade secrets from competitors [Chalmers, 90].

Nowadays, the needs ofthe government and the private sector seem to be

converging. Viruses, Trojan horses, worms, and wide use of the Internet have

raised the user community’s awareness for security, possibly with varied

emphasis. For example, the military may be concerned with data integrity

in the case of data that affects nuclear weapons launches. The private sector

also is concerned with the integrity of the data and wishes to protect it from
unauthorized modification. This takes the form of well-formed transactions

and separation of duties in the workplace. Separation of duties provides

security, for example, by requiring several signatures in order to validate

some operation (e.g., purchase order, release of funds, etc.). Similarly, in the

military it may require several people to authorize a nuclear launch.

Security Issues

At some level both camps are interested in authentication, auditing, moni-

toring, and of course good performance. Because of these requirements, care

must be taken when designing a security system. Here are a few things to

consider, especially when introducing security into a distributed, heteroge-
neous environment [Fairthorne, 94—a1so known as the OMG Security White

Paper]:

0 The security model must be independent from specific security algo-

rithms. It must enable access to and selection of, the algorithms and

support more than one security policy. This is important because dif-
ferent platforms and domains may have different security policies. (See

section titled Security Policies on page 114.) Governments also may regu-

late some of the mechanisms (e.g., cryptographic algorithms), therefore,

different installations of a system may need to use different algorithms.
The model also should be extensible.

0 The model must support small systems and very large distributed sys-

tems. This means that the mechanisms must support control and access

of few users or whole groups of users. Different security policies between
domains must be dealt With.

0 The security policy enforced by the system must not be bypassed in

any way. Different levels of trust have been defined by government and
international criteria documents (see section titled Survey of Related

127

128

112

SECURITY

Standards on page 115). For example, if a system is being built for users

who use the Trusted Computer System Evaluation Criteria (TCSEC) (see

Section titled TCSEC on page 115) policies, the security model should

stand an evaluation at the appropriate level of trust defined in that set
of criteria.

The White Paper notes that if an object is not responsible itself for a

particular security policy, that it should be portable to a system that may

be controlled under a different security policy. If an object is responsible

for part of a policy, portability may depend on the compatibility ofpolicies

between different systems. In reality, portability of an object (even if it

does not participate in any security policy) also depends on how it is

implemented. An object may contain code that would introduce loopholes

if it were run on a system supporting some security policies.

The system must support object interoperability with other objects that

may reside in different domains, that are implemented by different Ven-

dors and/or using different ORBs, and that may or may not contain

security.

Because of the wide range of security needs between different types of

organizations (both Within the commercial world and government), and
the cost associated with various options, the system should be flexible to

allow for a variety of choices and configurations.

Simplicity is the key to the introduction of any system. In order for

users and developers to use security, it should be simple for developers

to implement it, for users to use it, and for administrators to manage it.

Often the introduction of security can have a performance impact, ei-

ther positive or negative. Some TCSEC evaluations have actually shown

that when source code review is part of an evaluation, the improved

bug detection and methods of computing actually may yield increased

performance.

BASIC SECURITY TERMINOLOGY

Security provides access to the information system for authorized users and

is supposed to prevent unauthorized use of the system, its resources, data, or

operation. The important objective of data protection is supported by various

security services, functions, and mechanisms. To understand these better we
define some of the most commonly used terms:

Data Confidentiality

Data confidentiality is concerned with the disclosure and protection of data.
Information (the data itself or the information about it) is not made avail-

able or disclosed to users (people or processes) that are not authorized to
access it.

128

129

BASIC SECURITY TERMINOLOGY 113

Data Integrity

Data integrity is concerned with the protection of the data itself from unau-
thorized modification. When resident in the file system or memory, or sent via

communication lines, data must be protected from unauthorized alteration
or destruction.

Identification and Authentication

The user ID identifies the particular user. In the authentication process,

rights are granted to users. The authentication validates to the system that
the user is indeed who he or she claims to be.

In a distributed system, identification and authentication may be re-

quired to be repeated many times. It is complicated by applications acting
on behalf of other applications and the user.

Access Control

Access control is designed to allow controlled access to information resources.
It also means that the resource should not be used in an “unauthorized man-

ner.” Discretionary Access Control (DAC) is judgment—based and depends on

users granting access to objects. Often it is implemented by using Access
Control Lists (ACLS). These lists of authorized users may be set up by a

system administrator, for example, for system resources, or by individual

users to limit (or provide) access to their own resources and files. Mandatory
Access Control (MAC) is another form of access control. It enforces rules re-

garding which subjects may access which objects. MAC often is implemented
using labels [EOSC, 92].

Auditing

Auditing is the process ofdata collection ofsignificant security-related events
to ensure that the security policy and procedures are being complied

with. Data is collected in the form of system records and user activities and

available for review in order to detect security breaches and unauthorized
use.

Communication Security

Communication security is concerned mainly with data protection during

transmissions. Data integrity and confidentiality may need to be enforced,

and protection may need to be provided against the capture and replaying
of data and messages.

129

130

1.14 SECURITY

Security Administration

Security administration has two aspects. One is concerned with access con-

trol over adminstrative operations. The other relates to the system policy

configuration and maintenance.

Non-Repudiation

Non—repudiation ensures that an action originator cannot deny that it per-

formed the action. For example, a message originator cannot deny that it

sent the message and the recipients of the information also cannot deny that

they received it. Digital signatures or public key encryption mechanisms are

useful for implementing non-repudiation [Shaffer, 94].

Assurance

Assurance represents the level of trust that an element of the security ar-

chitecture (software or hardware), a service, or the whole system enforces

the security policy and performs its function as expected. Assurance can

be gained via NSA evaluations and certification, and via testing (such as

penetration testing, modelling, and simulation) [Shaffer, 94].

SECURITY POLICIES

A security policy comprises a set of rules and practices designed to counter

some threat. Security policies allow different organizations to impose secu-

rity in a manner that is consistent with each organization’s mission and
goals. Authorization, or identity-based policies, filter access to resources de-

pending on the user’s identity and need to know. A rule-based policy may

use object labeling to determine the sensitivity of information. Often organi-

zations that truly requirea very secure environment simply impose a policy

within their systems and disconnect themselves from the rest of the net-

worked world. Such isolation may provide the required security; however, it

obviously detracts from open and distributed systems. History tells us that
isolation limits advancement.

Different security policies between different organizations introduce new

challenges and complicates distributed environments. Guards or gateways

may be needed to translate between different security policies. Furthermore,

some systems may be required to support more than one policy.

Dealing with security in the architecture requires very careful farming

and mining (see Chapter 4). One could design a distributed architecture

that is technically sound and enables distributed communication between

various applications and objects. It may be discovered later that a certain

security policy prevents key information from travelling from one segment

of the network or system to another.

130

131

SURVEY OF RELATED STANDARDS 115

SURVEY OF RELATED STANDARDS

In this section we briefly survey some of the well-known standards and some

of the important initiatives under way that may shape security criteria for

the next several years. These are some of the key standards and technology

that We feel are important, or could play a role, in systems integration using

distributed objects.

ISO 7498-2 Security Architecture

TCSEC

This standard defines the general security-related architecture elements

that can be used to provide secure communication between open systems

[ISO, 92].

The document defines the standard security services: Authentication,

Access Control, Data confidentiality, Data integrity, and Non-repudiation.

Security services are invoked at the proper ISO layers and in proper com-

binations to support certain policies and user requirements. The document

also defines security mechanisms that are used to implement the basic ser-

vices. These include encipherment, which is the cryptographic transforma-

tion of data to produce cyphertext; digital signature mechanisms, which are

appended data that provide data integrity; access control that may involve
using security labels; traffic padding, to protect against traffic analysis; rout-

ing control, to allow use of specific physically secure parts of the network;
and notarization, which is the use of a third party for authorization.

The standard also defines “pervasive security mechanisms” that are de-

fined as the Trusted functionality to establish effectiveness of other security

mechanisms. As part of the Trusted Computing Base (TCB), these compo-

nents are expected to be trustworthy. The document also defines security

labels, event detection, audit trail, and security recovery.

The standard presents a view of the placement of different types of

security as they relate to the ISO 7 layer model. It should be noted that

layer 7, the application layer (which is also the layer of CORBA application
integration), presents all security services.

In 1985 the Department of Defense (DoD) published the Trusted Computer

System Evaluation Criteria, also known as the Orange Book [DoD, 85]. The
document defines a secure computer system and identifies six requirements

that a Trusted Computing Base must satisfy in order to be considered a

secure system. According to the TCSEC, a secure system is one that, through
the use of security features, controls access to information such that only

properly authorized individuals, or processes operating on their behalf, can
have access to this information.

131

132

116

SECURITY

The TCSEC defines six requirements that a “secure” system must satisfy.

Four deal with what the system must provide in order to control access to

the information it manages; two deal with how assurances can be obtained

so that the first four requirements may be accomplished.

0 Security policy. The system must enforce an explicit, well-defined policy.

Given subjects and objects, there must be a set of rules that the system
can use to determine whether a given user can have access to a specific

object.

o Marking. Objects must be marked with sensitivity levels (classification).

0 Identification. The system must require individuals to identify them-
selves. It must control access to information based on this user id.

0 Accountability. The system must collect audit information and protect
it, so that actions can be traced back to users.

0 Assurance. This includes hardware and software mechanisms that can

be evaluated independently to provide assurance that the system is en-

forcing the preceding four steps.

0 Continuous protection. Hardware and software mechanisms must be

protected against unauthorized changes.

Divisions and Classes TCSEC defines a set of standards for computing

systems having different levels of security requirements. Security criteria is
divided into four categories, A, B, C, and D. Category A represents systems

with the most comprehensive security Each division may be subdivided into

classes with numeric suffixes; higher numbers represent a higher level of

security. For example, B level represents higher security than C level, and

B3 represents a higher level of security than B1. Most vendors today have

systems with at least a C level of certification.

The Orange Book is considered somewhat outdated. It relates mainly

to mainframe operating systems and is too inflexible for nonmilitary uses.

TCSEC-based systems do not necessarily interoperate [Shafi'er, 94].

Other Criteria Initiatives

The Trusted Network Interpretation of the Trusted Computer System Eval-
uation Criteria (TNI) was created because of the difficulties in extending

the TCSEC as a criteria for networks. The TNI covers network partition-

ing into components of different ratings to support components that perform
functions requiring varied degrees of assurance. Each distributed part of the

network trusted computing base (NTCB) can have a separate set of objects,

subjects, and security policy [EOSC, 92].
The European Community (EC) has published its own evaluation criteria

known as the Information Technology Security Evaluation Criteria (ITSEC).

132

133

SURVEY OF RELATED TECHNOLOGIES 117

Canada also has its own Canadian Trusted Computer l5roduct Evaluation
A Criteria (CTCPEC). These two standards and the Orange Book need to ad-

dressbroader functionality and assurance.

The Common Criteria (CC) is a multinational effort that began in 1993.

Its main objectives are to develop open and flexible frameworks for defining

new requirements for Information Technology security; to gain international

recognition for evaluation results and through modernization of the process

to reduce cost; to modernize security criteria to address open distributed

systems and integrated computer and communications security; and to pro-

tect previous investment in security products while reducing trade barriers.

While We expect that in the long term there will be international standards

and a revision made to the Orange Book, currently the CC is still in develop-
ment and somewhat immature. Products with new function and assurance

combinations are still several years away.

SURVEY OF RELATED TECHNOLOGIES

Much research has been performed in the areas of security architectures. In

this section we investigate some of the more relevant technologies that may

be used in distributed systems and in conjunction with object management

technology. There are other technologies that are potentially relevant, but

are beyond the scope of this book.

Kerberos

Kerberos is a distributed authentication service developed at the Massachu-

setts Institute of Technology (MIT). It is a symmetric security system where

a client and server share a key for encrypting and decrypting data [IETF, 93;

Malamud, 92].

Kerberos simply delivers credentials, which are made of a “ticket” that

contains information authenticating a user to the server and a session key

required to use the ticket in the authentication transaction. Kerberos does

not impose any rules on how tickets are used by clients and servers. In a

normal exchange, a client requests access or “credentials” to a specific server
from an Authentication Server. The Authentication Server has access to a

database of client and server keys. The server sends a packet back to the

client encrypted with the client’s key that includes a ticket for the requested
server and a session key. The client then sends the information to the server

encrypted in the server key.

Tickets may be temporary and clients may need to request new tickets
intermittently. The ticket is the authenticator and is encrypted by the server

key so that the client can use it but not modify it. Once authentication is

complete, the client and server may not require further authentication, or

133

134

118 SECURITY

they may continue to encrypt further communication. More keys, called

subsession keys, also may be exchanged.

While kerberos can be used between organizations, it does not scale

well to large networks [Malamud, 92; Shaffer, 94]. This is especially true

in the case when some organizations use kerberos and others use other
authentication mechanisms.

Trusted Computing

{Dusted Computing Base In order for a system to function as a Multi-

Level Secure (MLS) system using sensitivity labels, it must have a Trusted

Computing Base [Fellows, 88]. The TCB components must be dependable in

the sense that they cannot be modified by unauthorized users or processes,

and they always must function correctly in performing their security-related
task.

A distributed TCB must perform all of the functions that a normal TCB

does, but verification is much more difficult. A TCB on a domain that encom-

passes many systems faces a number of problems. These problems may be

straightforward (although not necessarily simple), such as different policies

across different domains, and they also can be more subtle. For example,

timing across components can cause inconsistencies in the security contexts

and their states. This can result in states that are not ordered, especially if

components are replicated across the system to provide fault tolerance.

As part of TCBs in systems that use TCSEC level B2 criteria or higher,

a trusted path must exist to ensure to users and programs that they are

indeed communicating with the TCB.

If a system requires complete security at each level of the ISO model

(seven layers), Trusted Protocols are needed at each level. Often security is

added to existing standard protocols rather than new protocols being created.

As such, it is likely that security will have to be added also to the Object

Management layer to guarantee end-to-end security between applications.

Distributed TCB It is possible to provide a Trusted Computing Base in

distributed environments by using a distributed hierarchical TCB [Fellows,
88]. Such a TCB makes use of other TCBs. If each local TCB enforces its

policy, the distributed TCB is ensured that its policy is enforced. This sort of

structure, though, can be complicated by various state transitions.

The consistency of states and security contexts is very important to

maintaining secure systems. Even if a part of the system is down or not

available, security and data must not be compromised; rather services should

be denied. The states must be synchronized intermittently between the local

and distributed system TCB. Marshalling of data, as is often done with the

ORB, can cause replication of data. It is necessary to have vertical security

between layers and horizontal security between different ORBs.

134

135

SURVEY OF RELATED TECHNOLOGIES 119

Compartmented Mode Workstation In 1985 the Defense Intelligence

Agency (DIA) started the CMW (Compartmented Mode Workstation) pro-

gram to define the security requirements for workstations that handle com-

partmented mode information. A compartment is a designation applied to a

type of sensitive information. It indicates the special handling procedure to

be used for the information and the general class of people who may have

access to the information. In 1991 the CMW requirements were defined in

the CMW Evaluation Criteria using the TCSEC baseline with the addition

of deltas [CMW, 91]. Several vendors were contracted to produce commercial

off-the-shelf workstations based on the CMW requirements, which include

TCSEC B1-level features plus some B2- and B3-level features; they are re-
ferred to as a B1+ system.

By definition, CMWS restrict information sharing, flow, and exchange

between processes, users, the file system, other systems, and a combination

of these. To support these requirements, the window system must be able to

display security labels and the window manager must control information
flow between windows. A Trusted X server had to be developed to provide

secure communication between X window components. The Trusted X server

labels windows and other X objects as well as user input. The Window man-

ager is part of the TCB and intercepts certain events, such as cut-and-paste,
between Windows. If the user attempts to move information between vvin-

dows with different security labels, the window manager might prompt the

user to downgrade the classification of the information, if the user is appro-

priately authorized to do so.
This sort of small granularity event interception can cause a large per-

formance overhead, especially in distributed object—oriented environments.

It is clear that security in the ORB environment can get complicated quickly

if, as in the Trusted X system, each object access, embedding, and linking
may have to be checked.

Trusted Mach B3 The developers of the trusted Mach operating system

have found that using object—oriented techniques in secure systems assisted
in meeting the assurance and security policy defined by the TCSEC [Gupta,
93]. The designers found that using an object—oriented language, such as
C++, with the TMach kernel allowed them to implement a multilevel se-

cure operating system utilizing the client-server model. The kernel provides
process security using task IDs and isolation and intertask communica-
tions utilizing messages. The use of an object-oriented language in general

provides for modularity, inheritance, and the exchange of messages. Other
benefits are abstraction and data hiding. The data hiding can be provided

through restricted interfaces, such as the public and private access in C++.

CORBA-compliant Security in Synergy Realizing that existing security
models and architectures will not meet the needs of distributed systems, the

135

136

120

SECURITY

National Security Agency (NSA) embarked on a research project called Syn-

ergy to develop a portable, microkernel-based security architecture [Say-

djari, 93]. Synergy plans to provide flexible support for multiple security

policies, including commercial and government policies.

Synergy is an ongoing prototyping effort, and some changes to the infor-

mation presented here are expected. Its architecture is planned to support

networked MLS systems that use trusted gateways to access untrusted ma-

chines. The gateways label the data. At present, Synergy is concentrating on

a homogeneous environment. In Synergy, separate servers exist for auditing,

authentication, cryptography, and security. The servers are accessed via the

microkernel, which provides a common machine-independent interface. The
microkernel is based on the Mach 3.0 microkernel from Carnegie-Mellon

University [Saydjari, 93].

0 Security server. Provides access control. Policy decisions and enforcement

are separate. This server controls access control only; the microkernel

and other servers perform the enforcement.

0 Audit server. Provides a centralized auditing facility that can receive

messages from all parts of the system.

0 Cryptographic server. Available to applications, this subsystem can pro-
vide access to various mechanisms and algorithms.

0 Network server. Uses the X-kernel protocol and provides secure multi-

level communication across unprotected networks.

0 Authentication server. Provides user authentication and system authen-
tication.

0 0/S server. Currently built on BSD 4.3 UNIX. It should be able to support

other operating systems in the future.

In Synergy, UNIX processes are single-threaded microkernel tasks.

Memory objects that correspond to address space segments are mapped into

the task’s address space. All memory objects have security attributes, and it

is up to the microkernel to enforce the security policy.
An example ofhow the microkernel does this is when an application uses

the fork system callto fork a process. The child inherits the parent data and

labels. If the child changes the label, the microkernel checks all memory

buffers and resources and may prevent access to certain parent information.
The microkernel uses emulators that look like standard system calls or

file system calls, but performs certain additional security checks. Files are

mapped onto memory objects. Memory objects have security attributes. Pipes
and sockets are mapped to microkernel ports and therefore also can be

checked using the microkernel mechanisms.

At the networking level, only multiple single-level connections are

supported. This is because multilevel connections will require changes to
networking protocols. The MLS local area network (LAN) assumes that con-

136

137

Figure 5.1.

GSS-API

SURVEY OF RELATED TECHNOLOGIES 121

3

Synergy architecture.

nections are connection-oriented and performs access control only at con-

nection establishment. This part of the system was developed as a proof of

concept and does not support Connectionless data [Saydjari, 93].
X-kernel is a network protocol from the University of Arizona to sup—

port secure communications and is used in the workstation to provide net-
work support. It supports decomposition of complex networking protocols

into “microprotocols” allowing more flexibility and building blocks to build

other protocols. The breakdown provides the same functionality but easier

insertion of security mechanisms at each level.
The authentication server makes use of the Generic Security Service

Application Program Interface (GSS-API), as do the Crypto and security
servers.

The Generic Security Service Application Programming Interface is intended
to provide generic security services independent of the underlying mecha-

137

138

122

SECURITY

nisms or technologies [McMahon, 93]. The user of the GSS-API may be an

application, or simply another protocol. In either case, the communications

between entities needs to be protected. The user may be interested in au-

thentication, data integrity, and confidentiality. The user receives a token

from its local GSS-API and exchanges it with a peer application or protocol,

which in turn passes it to its local GSS-API. A security context is estab-

lished by the GSS-API between the two peers where secret-key or public-key

cryptographic systems can be used.
The GSS-API uses structures called Credentials that allow peers to es-

tablish security contexts. Data elements called tokens also are transferred
between GSS-API callers. Context-level tokens, for example, are used to es-

tablish and manage contexts. Per-message tokens are exchanged with an

established context to provide security for data messages. Contexts are es-

tablished using credentials, and there can be more than one context between
peers.

The security mechanism type is the underlying mechanism the GSS-API
uses for encrypting and decrypting that both peers support. Naming also is

provided to allow for the handling of the security context as opaque octets.

Channel binding allows for the binding of contexts to specific communication
channels.

Here is an example of a typical GSS-API session [Wray, 93].

1. An application or process acquires credentials so that it can prove its

identity to other processes. The application must not reveal the name of
the user who is executing it.

2. Using the credentials, two applications can establish a joint security

context. Usually the application that initiates the communication must
be authenticated to the receiver; however, authentication also may be

requested from the receiver to the initiator. An important feature of
the GSS-API is that it allows delegation of rights to a peer and the

ability to apply security services, such as confidentiality and integrity,

on per-message basis. The receiver may then create more contexts on
the initiator’s behalf, using credentials similar to those of the initiating

application. Some GSS-API calls use an opaque data structure called a
token. The token must be passed from the caller to the peer, who must

pass it to its local GSS-API to be decoded and extracted.
3. Some services may be invoked on a per-message basis to provide data

confidentiality and integrity. The peer application may verify the data it

receives, or “unseal” it.
4. At the end of the communication, the context is deleted.

The GSS-API has been very well received by many standards organiza-

tions [McMahon, 93; Wray, 93]. A list of the various organizations that have

adopted the GSS-API standard follows.

138

139

SECURITY IN THE CORBA ENVIRONMENT 123

0 Internet Engineering Task Force Request for Comments (IETF-RFC) for
base GSS-API.

0 X/Open and POSIX investigating adoption of GSS-API.

0 OSF DCE 1.1 to include GSS-API for non-RPC applications to access
DCE services.

0 ISO SC21WG6 Upper Layer Security Rapporteur’s group based on input
derived from GSS-API.

I European Computer Manufacturers Association Technical Committee,

ECMA TC36/TG9 “Security in Open/Systems” group to develop standard

to support GSS-API.

0 SESAME project proposes extensions to GSS-API.

The proposed extensions for the GSS-API may be very important to the

ORB environment because they have to do with the delegation of control. In

the ORB environment, servers also may act as clients for other applications.

For example, a map query tool may be activated on behalfof a word processor

to query map databases for data. It is essential that the query map tool,

Working on behalf of the originating application and user, relays the correct

credentials to the map servers to ensure that the user does not gain access

to data he or she is not supposed to receive.

The base GSS-API does not fully support an access control security ser-

vice, and the controls on delegation are not fully specified. For example, it

is not possible to support selective delegation. The extensions define mecha-
nisms that allow for the control of who can use credentials for access control

or for delegation [McMahon, 93].

SECURITY IN THE CORBA ENVIRONMENT

The requirements for security in the CORBA environment applies to objects
in addition to users. Instead of controlling only user access, we must now

ensure that object access also is controlled. At the same time, we must rec-

ognize that the ORB developers and OMG wish to limit the effect of security
on the ORB software. Complexity can be detrimental to any standard. Sim-

plicity, in the form ofimplementation hiding, minimal TCB implementation,
and fewer requirements on clients and object implementations, are key to a

successful security architecture in the CORBA environment.

Here is an example of how security may be used in the CORBA environ-
ment [Fairthorne, 94].

1. User logs on and is authenticated on the local system.

2. The user then activates a client application that attempts to invoke an

object.
0 The user’s credentials are made available to the client.

0 The client calls an object.

139

140

124 SECURITY

The client and object need to establish mutual trust.

The client and object may select to have data integrity turned on.

The client and object establish a security context.

The user must be verified for the requested method execution.

The method invocation may be audited.

The object is activated.

3. The object implementation may perform its own access control against
the user’s credentials.

4. If the object implementation calls another object on behalf of the client
and user, it may need to use its own credentials, or the user’s credentials,

through delegation.

000000

Security will be required at almost every level of the CORBA specifica-

tion. For example, object creation may depend on a user’s credentials and

security level. Object services also will be affected. The trader service, for ex-

Figure 5.2. OMG white paper security architecture.

140

141

SECURITY IN THE CORBA ENVIRONMENT 125

ample, may have to return to callers only information that they are allowed
to “see” or access.

The GSS-API may fit the CORBA architecture very well because it pro-

vides some of the features that are required by an object-oriented system

and desirable simplicity. The security mechanism used in the GSS-API may
be hidden from clients. Neither the client nor the server needs to understand

the security token or the mechanism in order to use it.

The placement ofthe calls to the security interface still needs to be deter-

mined by OMG; no doubt there will be various implementation suggestions

in the responses to the request for proposals (RFPs).

The architecture provides a wide range of implementations on the server

skeleton side. Access control can be performed by the ORB itself, by the

Object Adapter (OA), by the object itself, or by a combination of these. Both

access control and auditing should be performed by the ORB and/or OA,

especially if support is required for objects that are not aware of security.

This way, security can be supported across all objects, not just the ones

that have implemented security themselves [Fairthorne, '94]. This is also

important in isolating Trojan horse objects that can otherwise masquerade
and connect to an unsecure ORB or 0A.

In order to complete the secure architecture, the ORB and Object imple-
mentations should run under a secure operating system. Such a system is

a key to providing a complete secure environment with file system security,

auditing, and access control.

The ORB, the operating system, some communication channels, the Ob-

ject Adapter, and secure mechanisms (e.g., GSS-API) may be part of the
trusted computing base (TCB). The TCB also may include object services

that are called by these components as Well as object services that perform

other security functions on behalf of other objects and clients.

The OMG White Paper identifies four possible levels of interfaces needed

for the various security functions.

0 Application level. Security parameters could be added to the Interface
Definition Language (IDL) specifications to allow for the selection of

security algorithms, quality of service, and so on.

0 Security aware but mechanism independent. This is intended to be a
GSS-API—like interface that the ORB can use to set up and manage

security context using various security mechanisms.

0 Security services. This interface is specific to each security mechanism
and service that the software can use. It should be hidden by the security
context.

0 Security service provider. This interface should be standardized if pos-
sible because it is used to support the visible portion of the interfaces

just discussed. It is used to select different mechanisms and services.
This interface probably will not be standardized in response to the first

security RFP [Fairthorne, 94].

141

142

126

SECURITY

The ORB introduces many complex issues. Security used to be much

simpler, because we dealt only with single desktop machines or isolated

mainframes. Local area networks complicated the issue, but the problem was

still contained to a room, floor, building, or company. The access the Internet

provides and the myriad of hardware and software protocols brought on

spies, Internet worms, viruses, password cracking, and back-doors. Access

to machines is easier, and holes in some communication protocols enabled

security breaches and break—ins. Even today, in order to create a secure
UNIX environment while still connected to the Internet, certain features

must be turned off (for example tftp without -s) and other well-known bugs

must be patched.

The ORB environment only adds to the complexity of the problem. In a

distributed environment no longer can we simply isolate a workstation or a

process. Processes may run on various machines, and a process may divide

its tasks among machines. CORBA security requirements must ensure that

all standard security requirements, such as auditing and authorization, are

maintained and that users and objects" cannot modify or have access to parts

that they are not supposed to.

COIVEMENTS

Security entails many interesting and controversial issues. We would like for

ubiquitous security services to become available and commercially success-
ful within our lifetimes. A fundamental problem, not unique to security, is
the lack of common infrastructure and common service access mechanisms

that characterize computing technology. Without commonality on these lev-

els, security solutions are unlikely to be very effective. End-user pursuit of

a fragmented set of low-level distributed computing technologies, such as

Open Network Computing (ONC), Tooltalk, and Distributed Computing En-
vironment (DCE) is just exacerbating the problem. Further fragmentation

of the available distributed computing market can delay the availability of

commercially successful computer security technologies indefinitely. We be-

lieve that many ofthe technical barriers are artificial and can be overcome by

market convergence on a common infrastructure, as represented by CORBA.

For example, a relatively new, immature distributed object technology, such

as the Common Object Model (COM), could readily evolve toward support of

OMG IDL. This logical move would unify the distributed object market for

suppliers and consumers, thus enabling globally applicable security tech-
nologies to emerge.

Many key security issues are unresolved by existing standards and avail-

able technology. We enumerate some of these key issues in the list that fol-

lows. Some issues are unique to distributed objects. Others are common to

both distributed objects and legacy environments. In either case, architects

142

143

COMMENTS 127

and developers need to plan how to resolve these issues early in the software

architecture process. Retrofit of security capabilities involves pervasive, ex-

pensive, and risky software modifications.

Security is also a very sensitive and politically charged topic for many

individuals and organizations. With this caveat, here are some of the key

issues (in our humble opinion): *

Heterogeneity. Heterogeneity of software and hardware will be pervasive

in distributed object environments. In virtually all environments, there

will be multiple kinds of ORBs, operating systems, integration tech-

niques, and application packages. There are potential security issues at

every boundary between these types of components. For example, con-

sider the security implications of CORBA 2.0 interoperability. Security

is an important issue at ORB-to-ORB interfaces and at other levels of

the system.

Public metadata. The CORBA Interface Repository and Object Trader

Service make their data generally available to application software.

These services may be revealing information that should be restricted

by security. This is an example of general issues involving trade-offs

between interoperability and security.

Transparent activation. CORBA’s ability to activate objects transpar-

ently leads to a new form of the Trojan horse scenario. Because the

ORB can activate objects automatically, it might be tricked into trans-

parently activating a Trojan horse object instead of the intended object.

Due to CORBA’s inherent transparency, this event may be difficult to de-

tect. Since CORBA has not standardized the Implementation Repository,

controlling this problem across multiple ORBs will be difficult.

Security and embedded objects. Object references that are embedded

in application data may lead to some interesting security issues. For

example, what if there is an embedded reference to an object that should
be hidden from a user? In general, how would these types of object
references be detected and controlled?

Delegation ofcredentials. Many CORBA-based application architectures

will utilize multiple levels of nested invocation (such as when a client

calls an implementation that calls another implementation and so forth).
How and when should security credentials be delegated, and how are

servers that can work on behalf of many users handled? Since it is not

realistic to delegate credentials to untrusted software, delegation has

important architectural implications. On one extreme it is possible that

the application architecture eliminates nested invocations; this would be
a severe architectural restriction. On the other extreme is the possibility

that the TCB expands to encompass more ofthe system, such as all object
services, all common facilities, and some application software; this has

significant cost and schedule risk implications.

143

144

128

SECURITY

0 Security retrofitting. Migration to a secure environment probably Will

involve substantial modifications to software. Applications that utilize

secure facilities also require modification to support security interface

protocols. In our opinion, security retrofitting is difficult if possible; se-

curity should be designed into the system from inception. Commitments

to secure capabilities must be made early in the architecture process to

avoid the substantial risks and costs of retrofitting. Architects should

plan for evolution of the system and the security facilities as commercial

technology and standards evolve.

144

145

THE PRACTICE
OF SYSTEMS

INTEGRATION

145

146

146

147

Framework

Examples
Frameworks represent reusable architectures, and there are many exam-

ples available to study. In the following sections, we examine some widely

used commercial frameworks, including: Microsoft’s Object Linking and Em-

bedding (OLE), the X Consortium’s Fresco, and CI Labs’ OpenDoc. We also

describe an important historical framework project, the Autonomous Land

Vehicle, which shows the complexity of heterogeneous computing prior to
CORBA.

At the time of this writing, the commercial frameworks were in initial

releases, but they were being actively used by programmers. Whereas OLE

represents a de facto standard from a dominant industry vendor, Fresco and

OpenDoc represent future voluntary industry standards from an influen-

tial nonprofit consortium. All three frameworks address the area of in-place

graphical embedding, a complex interaction between software components.

OLE is defined through language-specific bindings to C++ and will support

CORBA interoperability through alliance products (from DEC and Candle

Corp.) and potential future Object Management Group (OMG) standards.

Fresco was designed from the start to be a CORBA—compliant facility. At the

time of writing, Fresco was in the X11R6 adoption process at the X Consor-

tium. Both Fresco and OpenDoc were proposed for the Common Facilities

RFP1 Compound Document specification. OpenDoc is a CORBA—compliant

compound document facility from CI Labs, a consortium whose members

include Apple, Novell, IBM, SunSoft, and others.

131

147

148

132

FRESCO

FRAMEWORK EXAMPLES

Fresco is a user interface framework that supports graphics, widgets, and

embedded applications [Linton, 94]. It is CORBA compliant, in the sense

that all application program interfaces (APIs). are specified in OMG Inter-

face Definition Language (IDL). The reference implementation for Fresco

is written in C++ and uses a library-based object request broker (ORB).

OMG IDL enables Fresco to support multiple languages (current and future

bindings of OMG IDL) as well as straightforward transition of software to

distributed computing.

Fresco adds many new capabilities to the X Consortium’s X-Windows

technologies. Its new technologies include a standard object model, dis-

tributed objects, multithreading, resolution independence, and graphical

embedding. These technologies are explained in more detail later.

Fresco’s standard object model is the OMG’s object model. Fresco’s

CORBA compliance is based on its use of standard OMG IDL to define all

APIs for the framework. This enables the distribution of functionality across

a network; however, it also allows the use ofFresco functions within the same

address space that is the default implementation. In a CORBA-based envi-

ronment, the applications software is identical regardless of distribution.

Most ORB products support local and remote processing, including clients

and server objects in the same address space. Fresco’s is implemented using

a library ORB (same address space), so that the ORB overhead is compara-
ble to function calls. The use of OMG IDL enables the later distribution of

client and service functionality.

Fresco provides an OMG IDL-enabled C++ programming environment

by providing a reference compiler for IDL to C++ called Ix. To demonstrate

how OMG IDL can enhance the utilization of C++, Fresco provides a facility

for specifying object encapsulations free from implementation. Using C++

alone to specify encapsulations often involves the subtle incorporation of im-

plementation dependencies. For example, C++ constructor functions imply

a local implementation of object creation; an object factory (local or dis-

tributed) is the appropriate facility to create location transparent objects, as V

specified in the COSS Life Cycle service. Fresco also eliminates the multiple

redefinitions of operation prototypes typically required when programming
with C++ virtual functions.

Multithreading (MT) is a capability in operating systems for supporting

multiple concurrent processes within a single program. Fresco supports both

MT and non-MT operating systems. Many current windowing libraries are

not compatible with MT (so-called MT unsafe code); the programmer needs

to stop all concurrent threads before entering MT unsafe code. MT safety

is also a significant issue in the integration of legacy software of all types.

Since Fresco is an MT safe library, it can be used with MT programs without

modification. Fresco uses multithreading optionally, if it is available on the

platform operating system. Using multithreading, Fresco can respond flex-

148

149

FRESCO 133

ibly to windows events while a separate thread concurrently performs the
screen refresh.

Fresco’s graphics model provides resolution independence. The primary

change is an abstraction of device-dependent pixel-based coordinates. Fresco

uses floating point coordinates exclusively (except if the programmer insists

on access to pixel coordinates). This enables the support of multiple screens

and output devices from the same application software. Thus the applica-
tion software is effectively independent of output device. This feature has

substantial portability benefits and also is useful for groupware applica-

tions that support heterogeneous displays. Fresco supports both 2X3 and
4X4 transformation matrices so that the framework can be used for both

2-D and 3-D applications. This is in contrast to many current graphics stan-

dards (i.e., the Graphics Kernel System [GKS] and the Portable Hierarchical

Image Graphics System[PHIGS]), which are decidedly either 2-D or 3-D and

require the programmer to learn two separate specifications.

In this section, embedding means combining multiple component objects

into a container object to form a compound document. On the screen, most

systems with embedding restrict the embedded object to a 2-D rectangular

area, and the area is assumed to be opaque. Fresco’s graphical embedding

extends the concept by allowing objects to be arbitrary shapes (including

shapes with holes); the objects may be graphically transformed (such as ro-

tated, translated, and zoomed); and they can be visually transparent. These

advanced capabilities enable many new uses of embedding, such as advanced

user environments, 3-D visual simulations, and virtual reality.

The Fresco framework comprises about 40 OMG IDL interface defini-

tions. These 4O object interfaces, an encapsulation of 150 underlying Fresco

implementation classes, form a very flat hierarchy with most interfaces in-

heriting from a few common base classes.

The Fresco framework has four key object types: Viewer, Glyph, Style,

and Inset. Viewer objects provide a user interface to data. They control input

handling, focus management, menus, and color palettes. Glyph objects are

graphical objects. Glyphs also control geometry management and screen up-
dates. The style objects provide resource attributes, which can be modified at

rimtime. Inset objects store the data that is displayed by other objects. Con-

ceptually, the Fresco framework is not unlike the well-known Model-View-
Controller (MVC) framework from Smalltalk [Goldberg, 83]. Inset plays the

role of the MVC Model, and the Fresco Viewer and Glyph play the roles of

MVC View and Controller with a different partitioning of responsibilities.

Fresco supports more flexible and extensible relationships between multiple

instances of each object type than found in MVC.

The following program provides some OMG IDL specifications from the

Fresco sample release in May 1994, including the interfaces for Glyph and

Viewer. At the time of writing, sufficient documentation to describe these
interfaces in detail was not available; however, the sample programs in the

149

150

134

FRAMEWORK EXAMPLES

release do provide several examples of how these interfaces are used. We
look forward to the X Consortium and OMG standardization of Fresco and

subsequent commercialization as X11R6 becomes the dominant release of X
Windows.

interface Glyph : Frescoobject {
struct Requirement {

boolean defined;
Coord natural, maximum, minimum;

Alignment alignment; };

struct Requisition {
Requirement x, y, z;

boolean preserve_aspect; };
struct Allocationlnfo {

Region allocation;
Transformobj transform;

Damageobj damage;
};

typedef sequence<AllocationInfo> AllocationInfoList;
attribute StyleObj style;

Transformobj transform();

[void request(out Glyph::Requisition r);
void extension(

in Glyph::AllocateInfo a, in Region r);
void shape(in Region r);

void traverse(in GlyphTraversal t);
void draw(in GlyphTraversal t);
attribute Glyph body;

Glyphoffset append(in Glyph g);
Glyphoffset prepend(in Glyph g);
Tag add_parent(in Glyphoffset parent_offset);
void remove_parent(in Tag add_tag);
void visit_children(in Glyphvisitor v);
void visit_children_reversed(in Glyphvisitor v);

void visit_parents(in Glyphvisitor v);
// screen update

void allocations(out Glyph :AllocationInfoList a);
void need redraw();

void need_redraw_region(in Region r);
void need_resize();

interface Viewer: Glyph {
Viewer parent_viewer();
Viewer next_viewer();

Viewer prev_viewer();
void insert_next_viewer(in Viewer v);

void insert_prev_viewer(in Viewer V);

150

151

OBJECT LINKING AND EMBEDDING (OLE2) 135

void insert_first_viewer(in Viewer V);
void insert_last_viewer(in Viewer v);

void link_next(in Viewer v):

void link_prev(in Viewer v);
void remove();
void insertion(in Viewer v);

void removal(in Viewer v);

Focus request_focus(

in Viewer v, in boolean temporary);
boolean receive_focus(

in Viewer v, in boolean primary):

void lose_focus(in boolean temporary);
boolean first_focus():

boolean last_focus();

boolean next_focus();

boolean prev_focus();

boolean handle(in GlyphTraversal t, in Event e);
void close();

};

OBJECT LINKING AND EMBEDDING (OLE2)

Object Linking and Embedding, Version2 (OLE2), is an object-based frame-

work for desktop application interoperability. It is one of the two founda-
tional APIS (VVIN32 is the other) that are supported by Microsoft Windows

3.1, Windows NT, and future systems from Microsoft, such as Windows 95

and Cairo. Current Windows 3.1 supports the legacy DOS and Windows
APIs as well as OLE2 and WIN32 APIs. Windows 95 is a transitional step

in Microsoft’s strategy to migrate the software vendors and platform base
toward Cairo, which is a follow-on to Windows NT.

A key feature of the OLE2 framework is its support for application em-

bedding. This provides seamless application integration at the user inter-

face. Similar to Fresco, OLE2 supports application embedding, although in

Microsoft’s terminology it is called in-place activation. In-place activation al-

lows a container application to display component objects from multiple ap-

plications. When the user selects a component object, the container’s menus
change to allow the user to edit the object using the component application’s
operations. In practice, Microsoft has found intuitive user acceptance for
this form of interoperability.

Microsoft is supporting OLE2 on Windows, Windows NT, and Apple
Macintosh platforms, which are the target platforms for the Microsoft Of-

fice products. Since OLE2 has many implementation restrictions that limit
it to a single machine, distributed extensions will support only a subset
of the OLE2 framework. In particular, the DEC/Microsoft Common Object

Model will distribute only persistence, monikers (naming), and data trans-

151

152

136 FRAMEWORK EXAMPLES

fers, but not compound documents. The Common Object Model is a future

distributed version of the nondistributed OLE2 Component Object Model, to
be discussed.

Technical Description of OLE2

OLE2 is a complex collection of related technologies. It is organized so that

developers can implement application support for OLE2 incrementally. Fig-

ure 6.1 provides an overview of the technologies of OLE2. The communi-

cation infrastructure of OLE2 is the Component Object Model. It defines

the basic interface mechanisms for invoking OLE2 objects. Compound files

is an object persistence facility that replace normal file-based storage with

a more sophisticated facility for storing the data from multiple applica-

tions Within a single file. This is a key enabler of object embedding, the

capability to store multiple objects within a container object. Embedding

supports OLE2’s in—place activation, which is the capability to edit objects

Compound
Documents

Figure 6.1. OLE/COM technology overview. Reproduced by permission of Microsoft Press. All

rights reserved.

152

153

OBJECT LINKING AND EMBEDDING (OLE2) 137

Figure 6.2. Component object model. Reproduced by permission of Microsoft Press. All rights
reserved.

Within a container object without creating a separate application window.

Uniform data transfer is an upgrade to the Windows clipboard facility that

adds OLE2 data objects to the clipboard. OLE2 drag and drop is a finer-

grain extension of Windows file-based drag and drop. In OLE2, subsets of

documents may be dragged and dropped between similarly enabled OLE2

applications. Whereas OLE2 embedding results in a separate copy of the
source data, OLE2 linking supports the display of common data in multiple

documents with updates. The moniker facility provides a naming capability.

The implementation of monikers is server-specific; names make sense only

to the application that creates them. Monikers also support linking using

file pathnames. OLE2 .Automation is the capability to control applications

electronically through a dispatch function that is similar to a nondistributed

version of CORBA’s Dynamic Invocation Interface (DII).

OLE2 Component Objects are invoked through function tables. Object

invocations are equivalent to calls to dynamically linked libraries (DLLS).

Each function table contains three or more function pointers, since all ob-

153

154

138

FRAMEWORK EXAMPLES

jects must support three base functions from the interface IUnknown. OLE2

predefines more than 60 interfaces, each containing a number ofAPIs. User-

defined interfaces are possible but require the user to implement custom

marshalling code, a process that is not documented comprehensively. For

most practical purposes, OLE2 is intended to be used with the predefined

interfaces provided by Microsoft.

Each component object implements one or more OLE2 interfaces. A

client application with an interface pointer can request other interfaces

through the function Querylnterface, which is present in all interfaces. An

object can grant or deny access to its interfaces based on its response to

Querylnterface. The notion of having an object identifier as a complete ref-

erence to an object is purposefully not supported in OLE2. This enables

OLE2 objects to grant access to their component interfaces selectively.

Uniform Data Transfer (UDT) replaces several data interchange mech-

anisms present in DOS and Windows, such as file drag and drop, dynamic

data interchange (DDE), and OLE Version 1. UDT reuses the existing Win-

dows clipboard with a new protocol based upon OLE2 Data Objects. Data

Objects support the interface IDataObject, which provides a new facility for

transfer of formatted data. Data objects may be transferred through the

clipboard or through OLE2 drag and drop.

The OLE2 clipboard framework operates as follows (Figure 6.3). The

source for the data creates a data object and posts its IDataObject inter-

face pointer to the clipboard using the DLL function OleSetClipboard. The

data source can post several alternative data formats to the clipboard to in-

crease the probability of transferring a common format between the source

and consumer. Once the data object is on the Windows clipboard, its imple-

mentation is provided by the OLE2 DLL and delegated back to the original

object. The consumer can obtain the DLL’s Data Object interface pointer

using the function OleGetClipboard; then the consumer can retrieve data

using Data Object functions such as EnumFormatEtc (to obtain a list of

potential formats), QueryData (to determine if request for a specific format
would succeed), and GetData (to retrieve the data) [Microsoft, 94a].

Secondary storage mechanisms in OLE2 are defined as a specification

called structured storage. OLE2 provides an implementation of this speci-

fication called compound files. Compound files enable the storage and par-

titioning of complex data from multiple embedded objects into a common

file. Compound files replace the need for ad hoc approaches such as multi-

ple separate files or complex storage schemes. An example of a compound
file is shown in Figure 6.4 on page 140. Compound files are created and

managed by OLE2 container objects. Container objects allocate storage in

the compound file for embedded objects that perform their own input/output

functions using OLE2 persistence APIs. When an embedded object is acti-

vated, it is passed a pointer to its compound file storage. Compound files

comprises 9 interfaces with more than 70 API functions to support these

capabilities [Microsoft, 94a].

154

155

OBJECT LINKING AND EMBEDDING (OLE2) 139

ID :: '
ct::GetData,élaobje°i ‘em

Figure 6.3. Clipboard framework. Reproduced by permission of Microsoft Press. All rights reserved.

Comparison of OLE/COM and CORBA

In this section, We compare and contrast the features ofOLE/Common Object

Model with CORBA. OLE/COM is the next generation of OLE2 with some

distributed capabilities for persistence, naming, and data transfer. In this

discussion, we refer to OLE2 as needed, because it represents the currently

available technology. Our perspective is in terms of a software architect

evaluating the two mechanisms as the basis for an end-user system.

Object-oriented system developers must choose between OLE/COM and

the Object Management Group’s CORBA. This choice is an important one,

‘because these two mechanisms comprise the future technology direction of

the volume platform vendor and the balance of the computing industry,

represented by the 500+ members of OMG.

Both OLE/COM and CORBA provide general capabilities for application

integration. CORBA is a general-purpose communications infrastructure for

object-oriented software. It is an industry standard supported by multiple

platform Vendors and independent software vendors. OLE/COM provides an

155

156

140

FRAMEWORK EXAMPLES

:4!

Figure 6.4. Structured storage. Reproduced by permission of Microsoft Press. All rights reserved.

object-based software infrastructure, but it is better known for its compound
document framework.

This discussion examines the relative trade—offs between OLE/COM and

CORBA. Suppose we are reengineering an end—user application system, a

commonplace activity in today’s computing environment. The end—user sys-
tem includes a combination of custom software and commercial off-the-shelf

software. A mixture of computing platforms is present, since no one type of

computer meets all needs. The goal of the reengineering activity is to provide

data sharing and interchange between all units of the organization to foster

increased productivity and flexible redefinition of end—user roles. The result-

ing system should be adaptable to new requirements during its life cycle and
should minimize costs for development, operations, and maintenance.

For the system developer, some key criteria defining the choice between
the OLE/COM and CORBA include: (1) the generality of the mechanism

and its adaptability to the integration problem; (2) the mechanism’s support

for extensibility; (3) the cost implications of each mechanism; and the (4)

stability of the mechanism’s technology over the system life cycle.

156

157

OBJECT LINKING AND EMBEDDING (OLE2) 141

Generality of OLE/COM vs. CORBA A first consideration in the compar-
ison of CORBA and OLE/COM is the generality of the mechanism and its

adaptability to the software integration problem. Some key factors include

support for distributed processing, multiple platforms, and integration with
other communication mechanisms.

Distributed Processing Distributed processing is a key requirement for to-

day’s increasingly networked systems. A challenging activity for program-

mers, distributed processing is costly due to its inherent difficulty. When

software is communicating across a distributed system, there are many pos-

sibilities for errors, failures, and unpredictable events. The distributed soft-

ware must be configured correctly, in the appropriate running state, and

issues such as the machine—level data representation between the machines
and the network must be resolved for software to execute as desired. CORBA

is a distributed processing standard defined to simplify these issues for the

programmer. It automatically handles data conversions, server activation,
and reliable handling of errors. The major object request broker products

all support these distributed processing advantages through the CORBA
standard.

In contrast, current OLE2 technology does not support distributed com-

puting. The current OLE2 product and supporting frameworks are designed
for single-user, single-machine applications. Distributed computing in the
OLE/COM environment will be supported by a new mechanism based on

proprietary extensions to Open Software Foundation Distributed Comput-
ing Environment (OSF DCE).

Heterogeneous Platforms Integration across multiple operating system

platforms is a key requirement in many end—user environments. A mixture
of different platforms is an unavoidable fact of life in most organizations,

because many jobs require the specialized functions of several computing

systems. The ability to interchange data between different platforms would
offer a significant productivity boost in these environments.

Current CORBA ORB products support software integration across mul-

tiple platforms. Using today’s ORB products, each product bridges multiple
platforms, providing a consistent set of application software interfaces on
any platform. In the future, CORBA products will be bundled with many
platforms, and these ORBs will interoperate with other CORBA implemen-
tations. The developer will have the choice of using a single ORB across

multiple platforms or multiple interoperating ORBs. Some products, such
as DEC ObjectBroker, IBM System Object Model (SOM), and IONA’s Orbix,
are targeting the current and future multiplatform markets. While prod-
ucts such as Hewlett-Packard ORB+ and SunSoft DOE are focused on a

single platform, these vendors have recruited allies to provide mutual ORB
interoperability solutions.

157

158

142

FRAMEWORK EXAMPLES

OLE2 offers platforms for Windows and Macintosh. The Windows plat-

form is supported more because it is described in the published OLE2

documentation [Brockschmidt, 94; Microsoft, 94a; Microsoft, 94b]. Coin-

cidentally, these are the platforms where Microsoft’s Office products are

deployed. DEC’s alliance agreement with Microsoft for the OLE2/CORBA

Common Object Model gives DEC the charter to cover other platforms, and

other vendors are planning to supply CORBA products for this niche. Avail-
able OLE2 technologies do not address multiplatform interoperability since

it does not support distributed communication between Windows and Mac-

intosh. OLE2 is not a multiplatform technology, but it may migrate that

direction through third-party CORBA support, such as through OpenDoc.

Multiple Communication Mechanisms Integration with multiple communi-

cation mechanisms is an important capability to support software integra-

tion. Because so many mechanisms (sockets, Open Network Computing

[ONC], DCE, TOOLTALK, etc.) are available, any given assortment of legacy

and commercial software will utilize a variety of them. A key role of object-
oriented software architecture is to encapsulate the differences between

these mechanisms and provide a consistent system integration solution.

The technology chosen to resolve these issues must offer support for encap-

sulation that hides underlying implementation differences.

The CORBA specification is explicitly defined to be independent of un-

derlying communication mechanism. Any given communication mechanism

can be encapsulated behind an OMG IDL application program interface, and

this encapsulation is devoid of implementation detail. ORB developers and

CORBA users frequently apply this concept, encapsulating many levels of
communication mechanisms behind OMG IDL APIs.

OLE/COM does not have any explicit support for the integration of mul-

tiple communication mechanisms. Its underlying communications mecha-

nisms are provided by Microsoft and are not suitable for replacement by

developers or multiple suppliers.

Example Object Identification in CORBA and OLE/ COM Object identi-

fication is one of the fundamental concepts in object orientation. CORBA

provides a unique object identifier for each object instance. Its object iden-

tifiers (OIDs) are opaque to the programmers. CORBA makes issues such

as differences in location, language, and operating systems transparent to

clients. The object identification mechanism is supported by the COSS nam-

ing service, and the trader object service that provides white pages and

yellow pages directory services.

OLE/COM does not have a comparable concept of object identity. OLE/

COM discourages the notion that anyone can have a pointer to an entire

object [Brockschmidt, 94]. Instead clients can have transient pointers to par-

ticular interfaces of an object. OLE/COM also has an object naming facility

158

159

OBJECT LINKING AND EMBEDDING (OLE2) 143

called a moniker. File monikers store absolute and relative file pathnames to

provide two ways to find a file. The absolute pathname is tried first; then the

relative pathname is sometimes successful if an entire directory structure

has moved. This is an incremental improvement upon OLE1, which lost its
file links whenever files were renamed and moved. Item monikers are used

by an object to define its own namespace. OLE2’s lack of object identifiers

is an impediment to distributed processing, in which location—dependent
names do not translate across machine boundaries.

Extensibility of OLE/COM vs. CORBA Developers of object—oriented

software architectures require mechanisms that support user-defined ob-

jects. The extensibility of the mechanisms to support new standards and

alternative implementations of predefined specifications is also important

for the tailoring of the mechanism to meet application needs. CORBA and

OLE/COM differ dramatically With respect to these criteria.

User—Defined Interfaces Support for user-defined interfaces is fundamental

to the implementation of application software architectures. User-defined in-

terfaces are also essential to object orientation, which is based on a concept of

domain objects that represent real-world entities or concepts. User definition

of these objects is an essential requirement, since these domain-specific ob-

jects cannot be encapsulated adequately with Vendor-predefined data types

and interfaces. Features to be supported in the user definitions include all

details of object encapsulations. For example, encapsulations should include

declarations of object types, specifications of method signatures, definitions

of parameter data types, declarations of attributes, and relationships be-
tween object types.

CORBA supports user-defined interfaces through the OMG’s Interface

Definition Language. OMG IDL is a comprehensive specification language

supporting all the just-mentioned features of object encapsulations. OMG

IDL interfaces are independent of programming language, so that one spec-

ification applies to multiple language bindings. OMG IDL specifications can
be compiled into language-specific header files and stub functions. These

files support static compile—time checked-method invocations in a form that

is natural to the programming language. Dynamic binding to objects is im-

plemented by the ORB mechanisms, and there exists a dynamic invocation

interface to support runtime—constructed invocations. Early ORB products
(1991~1992 timeframe) were based entirely on the DII Without support for

static invocation stubs. In practice, the OMG IDL—generated static stubs

are a much preferable interface approach. Static stubs allow a seamless

programming language interface to objects, which supports encapsulation

through compile time parameter checking, efficiency, and ease of use.

OLE2 supports user-defined interfaces through two approaches. Users
can Write their own marshalling code to support new OLE2 interfaces [Brock-

159

160

144

FRAMEWORK EXAMPLES

schmidt, 94]. Writing marshalling code is analogous to rewriting the inter-

nals of an object request broker; this process is not comprehensively docu-
mented for OLE2 [Microsoft, 94a].

The second approach is supported through OLE2’s interface IDispatch
[Microsoft, 94b]. The IDispatch interface is similar to CORBA’s DII as uti-

lized in early CORBA products. The user defines an object’s interface in

the Object Description Language. ODL is compiled into a type library de-

scription for use at runtime. In order to send the message, user code must

assemble a dynamic parameter structure using OLE2 APIs and call the

IDispatch function invoke. A parameter structure is returned from the in-

vocation With any exception information. IDispatch is the central interface

of OLE2’s automation facilities, in which OLE2 provides mechanisms for

multiapplication controls.

In the future, COM will support user-defined interfaces through a propri-

etary extension to OSF DCE’s interface definition language, called Microsoft

IDL. This mechanism supports language—level and binary-level APIS that

are unique to Microsoft’s OLE/COM implementation.

Extensibility ofPredefined Services In addition to the user-defined objects,

any predefined interfaces must be adaptable to the needs of applications.

For example, an event notification facility should be general purpose enough

support application events in addition to the predefined events provided by
the vendors.

CORBA-related standards for predefined services includes the Common

Object Services Specifications (COSS) and the Common Facilities Specifi-

cations. The COSS services are fundamental object service specifications

that are intended to be globally applicable solutions that can be specialized

for particular domains. COSS and the Common Facilities Specifications are

the consensus standards of the multivendor supported industry, and many

adopted specifications are already available. For example, the COSS event

notification service is a generic reusable event service that provides a com-

prehensive selection of event supplier and consumer integration approaches

[OMG, 94b]. The ORB vendors will supply the implementations of COSS
services, and the users can readily reimplement the services to tailor the

implementation behavior for their own purposes. The OMG standards do

not predefine the domain content of these services, so users can define them
as needed.

In its 60+ interfaces and nearly 400 APIs, OLE2’s service definitions

are specialized to particular OLE2 framework needs, such as uniform data

transfer or structured storage. These framework interfaces support spe-

cific forms of interoperability that are predetermined by OLE2. It is clear

from their design that the interfaces are not intended to be global solutions

that are tailorable to application requirements. For example, the interface

IAdviceSink provides the OLE event notification service. lAdviceSink is a

160

161

OBJECT LINKING AND EMBEDDING (OLE2) 145

special—purpose interface for OLE2 container objects to receive notifications

of specific types of events [Microsoft, 94a]. It has method definitions, includ-

ing OnDataChange, OnViewChange, OnRename, OnSave, and OnClose. The

method signatures predefine the specific change indicated in the event, such

as a change to a new clipboard data format in method OnDataChange. These

particular events would not support arbitrary uses of an event service; the

OLE2 service would not be extensible to support application-specific needs.

Cost Implications of0LE/COM vs. CORBA OLE/COM and CORBA are

new technologies that may have substantial impacts on end-user systems;

it is important to examine the potential impacts of these technologies on life

cycle cost. Some key cost factors include: savings from use of commercial off-

the—shelf products, costs related to the complexity of the mechanisms, sup-

port for reuse, and support for portability. The portability issue can impact

cost when a system must be deployed and maintained on multiple platforms.

An important related issue is the need for multiple system builds to support

different configurations, programming languages, memory models, and so
forth.

Commercial Off-the-Shelf vs. Custom A key argument for adopting tech-

nologies like OLE/COM is the potential for no—cost integration with shrink-

wrap commercial applications. Life cycle experiences indicate that cost

advantages of using commercial applications are not always clear. It is well

known that operations and maintenance consumes 70 percent of life cycle
costs. Hidden maintenance costs are associated with the lack of control end

_users experience when choosing off-the-shelfover custom software. Commer-

cial vendors control the features in the product; they also control when new

versions are released and the APIs that any end-user software may depend

on for interoperability. VVhen many off-the-shelf products are involved, rein-

tegration of upgraded software is a continual maintenance activity. In some

cases, maintenance agreements and licenses can lapse, such that repurchas-

ing the software becomes necessary. Reintegration costs can be substantial

when a product upgrade oftwo or more versions is required after repurchase.

The potential for shrinkwrap off-the—shelf integration through CORBA

can be supported in several ways: directly through OMG standards, indi-

rectly through gateways, and directly through end user—sponsored specifi-
cations.

Future CORBA-based standards based on technologies such as OpenDoc

can provide direct shrinkwrap integration. Because OpenDoc is defined and

controlled by multiple vendors, suppliers and consumers View these speci-

fications as a much lower risk than a single-vendor, competitor-controlled

technology like OLE/COM.

Integration with non-CORBA mechanisms (OLE2, ToolTalk, etc.) can be

supported through gateways to end-user software architectures. In this ap-

161

162

146

FRAMEWORK EXAMPLES

proach, no-cost shrinkwrap integration is supported through the gateway,

and the software architecture isolates the application code from direct de-

pendence on the external mechanism. If the external mechanism changes,

operating and maintenance costs are limited to the gateway code. Multiple

external mechanisms (OLE2 and OpenDoc) could be supported through this

approach. As complete industry convergence is unlikely at the level of com-

pound document architectures, this is likely to be an important approach.

The third approach for CORBA/commercial off—the-shelf integration us-

ing CORBA is through end user—spo'nsored standards. End users pursuing

system development frequently produce quality interface specifications. In

many cases, these specifications are years ahead ofcomparable standards ac-

tivities in the commercial market. Through coordination with others, groups

of end users can form new markets by adopting common specifications. In-

volving vendors in an open specification process is also effective in achieving

commercial buy-in. Sufficient market development can prepare a standard

for formal adoption by standards groups.

Figure 6.5. Gateway integration of software architecture and OLE2.

162

163

OBJECT LINKING AND EMBEDDlNG (OLE2) 147

Complexity ofMechanism An important cost factor involves the integration

of custom software with OLE/COM and CORBA. The complexity of the APIs,
the documentation, and the available training are indicators of how costly
each mechanism Will be to learn and utilize.

OLE2 is one of the most complex technologies ever to be released by
Microsoft [Brockschmidt, 94]. Brockschmidt, author of Inside OLE2, char-

acterizes OLE2 as being significantly more complex than the Windows op-
erating system [Brockschmidt, 94]. The documentation for OLE2 consists

of the Inside OLE2 developer’s guide (925 pages), the API Reference (650

pages), and the OLE Automation Reference (400 pages) [Brockschmidt, 94;

Microsoft, 94a; Microsoft, 94b]. Even at 925 pages, Inside OLE2 does not

cover significant parts of OLE2, such as OLE Automation. To use OLE2, a

detailed understanding of the operating system’s API (WIN32) is also re-

quired [Brockschmidt, 94]. Developer’s experiences indicate that OLE2 re-

quires a very steep learning curve. There are some development tools, such

as visual basic, which simplify OLE2 integration.

bstraction Layer

Figure 6.5. (continued)

163

164

148

FRAMEWORK EXAMPLES

In contrast, the ' CORBA specification is defined in 178 pages. Most

CORBA products provide their complete documentation in another 200 to

300 pages. Training is widely available; virtually every CORBA vendor has

a one-week hands—on training course, and at least four independent train-

ing companies offer general training on CORBA. With appropriate training,

user experiences are very positive: CORBA is easy to learn and apply. Quite

a few independent software vendors, including Bluestone, Forte Systems,

Tivoli, Oberon, and Netlinks, have released CORBA-based products.

One interesting aspect of CORBA is that the system developer can con-

trol the complexity of the APIs in the application system. Using OMG IDL,

developers can define an application-specific software architecture. The ar-

chitecture can be tailored for the appropriate integration cost. OMG IDL is

a good tool for defining software architectures and delivering the resulting

APIS to large software projects that involve multiple development organiza-

tions. This concept has been applied with success in the DISCUS Framework.

(See Chapter 7.)

Support for Reuse Reusability of code and of design is an important source

of cost savings. Inheritance is the principal object—oriented mechanism for

code reuse and design specialization.

CORBA directly provides inheritance through subtyping in OMG IDL.

This is inheritance at the interface level only, which enables design reuse.

A number of CORBA products (IBM SOM and others) are also supporting

implementation inheritance, which is a direct form of code reuse. With im-

plementation inheritance, it is easy to reuse existing objects, redefine parts

of objects, and specialize their behaviors. IBM SOM uses this in an effective

way to provide a reusable replication framework to support development of

group applications. (See Appendix.)

OMG IDL also has significant potential for design reuse. It is a speci-

fication language that is devoid of implementation information and can be

applied to multiple programming languages, operating systems, and distri-

bution schemes. Some have called it a standard for defining other standards,

because it is a general-purpose notation that provides multiple implementa-

tion bindings from a single specification. OMG IDL allows the architecture

to be product independent.

OLE/COM does not support inheritance but another related construct

called delegation. In delegation, to reuse code, the programmer provides
method implementation that contains a call to the reused code supplied by

another object. This is a less controlled form of reuse than that provided by

object-oriented systems. It is really programmer-supported reuse, instead

of support for reuse by OLE/COM. Microsoft believes that there is minimal

need for inheritance in its third-party software market.

Portability and Multiple Builds Portability is an important cost issue be-

cause many applications need to support multiple target platforms, such as

164

165

OBJECT LINKING AND El\/IBEDDING (OLE2) 149

different variations of UNIX, DOS/Windows, Macintosh, and other operat-
ing systems. A related issue is the need for multiple builds of software to

support interoperability with other languages, memory models, and other
factors.

One of the key advantages of CORBA is that the APIs are consistent be-

tween all platforms. When standardized, the OMG IDL language bindings

are consistent for that language across all platforms. In general, CORBA will

not be a cause of platform dependency; other factors such as the operating

system APIs and windowing system APIs are potential sources of portabil-

ity problems. These are addressed through other standards, such as POSIX

and MOTIF, with significant success. CORBA eliminates the need for mul-

tiple software builds when client and server are implemented in different

languages. Products such as IBM SOM also isolate clients and servers from

differences in memory models and other implementation factors.

OLE2 is best supported on Windows platforms. It is available, but not

as well documented, on the Macintosh. Third-party vendors (such as DEC)

will support a subset of distributed COM functionality on other platforms.

The OLE2 APIS as supplied by Microsoft are a significant source of platform

dependency now and in the future. Since OLE2 defines explicit bindings to

Microsoft C++, OLE2 is also language dependent and will require significant

developer effort to provide alternative language bindings and code reuse

between languages.

Stability of OLE2 vs. CORBA End—user system life cycles involving cus-

tom software development typically range from 10 to 15 years. This range

defines the practical life span of a technology. Commercial software technol-

ogy works on a more compressed timeline; new products and major upgrades
are introduced to the market at siX- to 12-month intervals. The commercial

viability of a major technology can be as short as one to three years before a

new wave of innovation changes the market. In order to remain competitive,

commercial vendors must begin development well in advance of the cur-

rent state of the art. In markets undergoing revolutionary changes (such as

CORBA and OLE/COM), marketing staff must recruit an enthusiastic group

of early adopters to ensure independent software vendor and end—user sup-

port. The marketing staff must also educate independent vendors and users

in the mainstream market about the revolutionary benefits of the new tech-

nologies, lobbying mainstream organizations to align their strategic plans

to adopt their technologies as they are delivered to market in productized
form.

OLE/COM is an excellent example of this process in action. There is

an increasing number of OLE2-compliant commercial software due to the

80%+ desktop market share controlled by Microsoft. Microsoft is preparing

its market for a revolutionary shift to new operating system technology,

through the transition platform of Windows 95 and then to Cairo. Microsoft

is a major independent software vendor in its own right and has used its

165

166

150

FRAMEWORK EXAMPLES

internal products as the early adopter group to support OLE2 with the

Microsoft Office products. Through conferences Microsoft has been working
to educate external developers about the new technology. It also has issued

press releases and worked with magazines and other publications to reach
the mainstream market with its message.

Given that competing technologies, such as OpenDoc, Taligent, and

Fresco, are being released to the market with technology advantages over

OLE2, Microsoft must advance its strategy to a new generation of technol-

ogy within the next two years. A key problem for developers is that rapid

innovation causes API obsolescence. An end—user system that adopts OLE2

with a 10- to 15-year life cycle would be assuming an extreme risk. If as is

likely, Microsoft upgrades or replaces this API in two years, there will be

significant operating and management costs to pay in end—user systems in

order to continue to keep pace with Microsoft’s rate of innovations. Upgrad-

ing all independent vendors’ software may be necessary as well. Microsoft is

attempting to provide transition support with backward compatibility from
Windows 3.1 to Windows 95.

An important factor that moderates the pace of commercial innovation

and technology obsolescence is standardization. Standards are a widely used

marketing strategy; the cost of most standards activities is an investment

provided by for-profit companies. Standards reduce risk for both suppliers

and consumers and bestow credibility and acceptance on new technologies.
Standards allow common infrastructure to be established that vendors and

end users can leverage to support more platforms and more functionality.

Formal standards creation through national and international bodies takes

at least four years. Voluntary industry groups (such as OMG) can establish

major standards much faster.

Once standards are established, the standard extends the life cycle via-

bility of a technology (Figure 6.6). In the case of layered technologies (such

as networking), standards can extend the viability of a technology indefi-

nitely. The OMG has established a hierarchy of technologies that are lay-

ered upwardly in its Object Management Architecture [OMG, 93]. In the

OMG model, the Object Services are layered on CORBA, and the Common
Facilities are built on the Object Services.

Due to its multivendor support, standards basis, and layered architec-

ture, CORBA has all the indications of being a technology with a long life

cycle. Its life cycle continues to extend as other standards bodies increasingly
utilize CORBA as the basis for standards (such as the International Stan-

dards Organization’s Open Distributed Processing, X/Consortium, X/Open,
etc.).

THE OPENDOC FRAMEWORK

OpenDoc is a framework supporting innovations for the end user (compound

documents) and the developer (component software). OpenDoc is a multiven-

dor technology destined for standards support. For the user and developer,

166

167

THE OPENDOC FRAMEWORK 151

End-User

Figure 6.6. Standards and technology cycles vs. system life cycles.

OpenDoc offers some fundamental innovations in technology, representing

the next generation of the end-user desktop and the application development

environment. We begin our examination of OpenDoc by explaining the user

interface model and how it differs from previous technologies.

OpenDoc User Interface

Today’s application-based desktops force end users to Work in restricted

modes. Each application has a unique data format and a unique set of com-

mands for manipulating that format. The command set is restrictive in terms

of manipulating external data formats. In order to manipulate information

in another format, the end user must move to another application, with sim-

ilar restrictions. Most end-user document products involve more than one

form of data. If data is combined through a clipboard data exchange, then

data fidelity or the ability to edit the data may be lost. If data is combined

through linking, applications still have to be switched to manipulate linked
data. Linking is very brittle in today’s desktop technologies such as OLE2.

167

168

152

FRAMEWORK EXAMPLES

End users spend a great deal of time and energy coping with the constraints

of the application-centered desktop model.

For application suppliers, the trend has been to create very large mono-

lithic applications with increasingly complex sets of controls. Since each

application must be fully independent and do as much as possible, sup-

pliers are competing with each other to create the largest, most complex

monolithic applications. Suppliers have the difficult problem of maintaining

these complex applications on multiple platforms (which are also evolving).

This increasing complexity is having an adverse impact on the end user, who

typically uses less than 15 percent of an application’s functionality and must

keep upgrading training and hardware to accommodate these trends.

With the latest step in monolithic application integration, OLE2, end

users become even more constrained because they lose their ability to trans-

port documents between machines. OLE2 documents are heavily dependent

on the local set of applications and the local pathnames of applications and

data objects. In OLE2, large monolithic applications are present; they still

require large memory resources and time delays for activation. The primary
innovation in OLE2 is that the container application can present the user in-

terface of another large monolithic application. OLE2 has not fundamentally

changed the desktop paradigm; rather it presents it in a slightly different
way.

OpenDoc changes the end-user interface fundamentally, from focusing

on applications to focusing on the end-user’s document products. OpenDoc

refocuses the desktop on the end user’s document products and completely

eliminates the notion of monolithic applications. Documents are contain-

ers that can contain any types of content (Figure 6.7). The container itself

is content neutral, and global functions, such as Undo, are transparently

coordinated among the parts.

Each type of content can be manipulated by associated software called

a part. Parts have sample documents called stationery. To insert a new type

of content, the end user drags the stationery into a document. The user can

drag and drop content between documents, creating a new copy or a linked
copy under user control.

OpenDoc containers support a standard pair of menus: Document and

Edit (Figure 6.8). The Document menu replaces the traditional File menu.

Because OpenDoc eliminates the concept of separate applications, there is

no quit command; documents are opened and closed instead of applications

being launched and quitted. The Drafts command supports a version control

capability built in to OpenDoc. Users can create multiple drafts of a docu-
ment, which can be retrieved and edited later. The Mail command indicates

that all OpenDoc documents will be mail-enabled. A parts bin is available,

similar to the scrapbook, which contains reference objects.
The Edit menu is similar to conventional Edit menus (Figure 6.8). The

Undo command applies globally across all parts within the document. This

168

169

THE OPENDOC FRAMEWORK 153

fl Document Edit Font Size Style

W Text Document

This is a compound text OPWDOC Sl1PP01‘t5 documem
document, It has an drafts, as a built-in feature.
embedded drawing ' _ , V _ OpenDoc also supports
part, which contains interchangeable data
editable graphics. formats within its
opehpoe supports storage scheme, called
the embedding of Bento. Bento is an easy
any type of content to use storage technology
within other pane which supports cross platform
supported part Shapes can document interchange. It uses the
be arbitrary poiygons. same interchange strategy made

popular by Mac and PC clipboards.

illllll

Figure 6.7. OpenDoc user interface.

is a powerful capability for undoing actions, regardless of the responsible
part editor. The Cut, Copy, and Paste commands manipulate the clipboard.
The end user may utilize drag-and-drop operations to perform these func-
tions. The Paste As command supports active linking. The View as Window
command allows any part to be instantiated within a separate window. This
is convenient for some end-user editing operations.

OpenDoc documents are stored in interchange formats, similar to to-
day’s PC clipboards. Stored formats are platform independent and identi-
fied with registered format descriptors. This allows documents to be easily
relocated, viewed, and edited by alternative software, depending on the plat-

form. OpenDoc links, implemented through CORBA objects, can be trans-
lated across machine boundaries in a distributed network. These features

allow compound document relocation, an important capability not found in
other technologies, such as OLE2.

OpenDoc will be fully interoperable with OLE2. OpenDoc parts can be
embedded in OLE2 documents, and OLE2 components can be embedded

169

170

154 FRAMEWORK EXAMPLES

New

Open
Open Document...
insert...
Close

Save

Save a Copy...
Revert to Saved

Cut

Copy
Paste

_ 7 Paste As..
. Clear

Select All
Drafts...

Get Part info
Preferences...
View as Window

Add Mailer

Expand Mailer
Contract MailerPage Setup...

Print

Show Parts Bin

Figure 6.8. OpenDoc menus.

in OpenDoc containers. OpenDoc offers a simpler Way to integrate OLE2
capabilities than direct OLE2 integration. It also offers other advantages,
such as a more flexible embedding model and distributed support through
CORBA.

Parts also have part viewers, which suppliers generally give away. Part
editors and part viewers are much smaller and simpler than today’s mono-

lithic applications. Parts can provide specialized functionality without hav-
ing to provide a complete stand—alone application around it. Suppliers can
focus their resources on part editors that manipulate specialized content,

instead of competing with all other monolithic applications that replicate a

great deal of each other’s functionality.

OpenDoc Technology and CI Labs

OpenDoc is a technology administrated by a nonprofit consortium, the Com-
ponent Integration Labs (CI Labs). Sponsor members of the CI Labs include
Apple, Borland, IBM, Lotus, Novell, Oracle, Sun, Ta1igent,WordPerfect, and

170

171

THE OPENDOC FRAMEWORK 155

Xerox. Several sponsors have made substantial corporate commitments: Ap-
ple contributed foundation technologies; IBM contributed CORBA imple-
mentation; and Novell is developing the Microsoft Windows implementation

and the OLE2 interoperability solution to OpenDoc. Other sponsors are com-

mitted to providing OpenDoc integrated with their products and available

for development on their platforms.

Cl Labs ensures that the OpenDoc technology is vendor independent.

It maintains the OpenDoc source code, disseminates development kits, and

documentation. It also pursues testing, registry, and standards activities.

One of CI Labs’ key roles is OpenDoc parts testing, called the validation

service. For a fee, CI Labs will validate that a supplier or end user’s OpenDoc

part is compliant with the OpenDoc specifications. Compliance will assure

cross—platform portability. Cl Labs will maintain a hardware suite of all the

available OpenDoc platforms and special versions ofthe OpenDoc implemen-

tation to assure independence from underlying platform implementations.

CI Labs maintains a registry of OpenDoc usage conventions that will

assure interoperability between parts implementations. One ofthe registries

is a list of categories of OpenDoc content types. Example categories may

include text, tables, and graphics. These categories organize the registry for

other registered items, such as storage data formats and predefined scripting

events. System software can use content types to associate locally available
parts editors with parts data. Registered data formats will be transportable

across platforms and viewable/editable by a wide range of software.

Cl Labs coordinates OpenDoc standards activities. CI Labs and OMG

are developing a standard compound document framework based on Open-
Doc. The adopted specification will be a language— and platform-independent

compound document standard that enjoys strong international support.

Technologies underlying OpenDoc include the System Object Model,
Bento, and the Open Scripting Architecture (OSA). These technologies are
licensed to CI Labs for redistribution.

SOM is a CORBA—compliant object request broker. It is available across

a widening range of PC, UNIX, and mainframe platforms. Originally devel-
oped for the PC-class OS/2 operating system, it supports the low-overhead
efficiency needed for PC desktops. SOM enables transparent use of multiple

programming languages with OpenDoc (initially C, C++, and SmallTalk).
With additional CORBA language mappings, virtually any language can be

integrated to OpenDoc transparently. SOM interoperability with other re-
quest brokers will allow OpenDoc to operate transparently across a network,
supporting functions such as distributed linking (Mosaic-like hypermedia),
remote part editors, and multiuser collaboration. SOM and OpenDoc will be

integral elements of Copeland, Apple’s next-generation operating system.
Bento is a compound document storage specification. It is a very flexible

and simple technology that supports storage of any content type and is
platform and media independent. Bento handlers, which perform the low-

171

172

156

FRAMEWORK EXAMPLES

level storage manipulation, can implement device specific buffering, packing,

and encryption. The device handlers are transparent to the part editor code.

The OSA supports interpart communication in OpenDoc. OSA will en-

able groups of OpenDoc parts to work together in documents. For example,

a group of parts may want to choreograph an animated display of infor-

mation in a document. OSA combines a high-level messaging facility with

a common scripting language and a common event format. OSA supports

the consolidation and abstraction of events by the operating system, called

semantic events. For example, instead of reporting a low-level mouse action

(MouseUp, pixe1X, pixelY), OpenDoc’s semantic events might report: (“Copy”

Command, Cell D10, “July 94 Report” Spreadsheet).

OSA supports three forms of interoperability with scripts. Scriptable

parts are those that can receive commands via OSA scripts and events.

Recordable parts are ones that can create reusable scripts by recording end-

user actions. Tinkerable parts are parts whose behavior can be modified

through the attachment ofscripts by external applications. CI Labs envisions

a large third-party market for script-authoring packages and intelligent

agents that can create and execute multiapplication scripts.

The OpenDoc Architecture

Using the OpenDoc architecture, the developer is involved in creating the

grand illusion of direct manipulation. To the end user, it appears as if the

mouse is hard-wired to the on-screen sprite, and the user can drag and drop

desktop objects as if manipulating real-world objects. Behind the scenes,

direct manipulation is implemented entirely using software. OpenDoc and

the operating system implement the lower-level details of the grand illu-

sion. OpenDoc presents a much-simplified abstract programming interface

for the application-level software developer. Its developers can create new

direct manipulation applications with less software than previous technolo-

gies required. OpenDoc has made it easier for developers to implement the

compound document model, where the granularity of direct manipulation is
at the embedded part level instead ofthe file level. In addition, OpenDoc soft-

ware is a portable cross platform, is interoperable with multiple languages,

will automatically support OLE2, and supports distributed processing. The

potential advantages for the developer and end user are substantial.

OpenDoc is a sophisticated compound document architecture, compris-

ing several dozen object types. Most of this complexity is transparent to

the developer. Almost all of these object types are already implemented by

OpenDoc. Fortunately, OpenDoc part developers are concerned only with

the implementation of one object: their own part. Simple parts might in-

teract with a handful of OpenDoc objects. Complex parts might interact

with a dozen or so other OpenDoc objects. It’s all a matter of how much of

OpenDoc functionality a part supports. Functionality can start out simple

172

173

THE OPENDOC FRAMEWORK 157

Figure 6.9. OpenDoc object relationships.

and grow incrementally with the part. Initially, storage, controls, and dis-
play are the most basic functions. More advanced capabilities include the
clipboard, linking, and drag and drop. Advanced capabilities include embed-
ding and scripting. Implementation of object embedding Within a part is an
advanced function that not every part Will support.

OpenDoc provides support for creating a comprehensive template for
the part software, through a point—and-click application called PartMaker.
PartMaker creates a complete set of source files, header files, and makefiles.
These files support default OpenDoc functionality, and the templates contain
the entry points for every potential capability of an OpenDoc part.

One of the key objects in the OpenDoc architecture is the Session object.
There is one session object for each OpenDoc document. Parts use the session
object to locate other OpenDoc objects. For example, a part needs to interact
with other OpenDoc objects that manage desktop resources and provide
other OpenDoc functionality. The Session object implements messages such

173

174

158

FRAMEWORK EXAMPLES

as GetC1ipboard and GetLinkManager to retrieve the object reference of the

requested object.

The primary presentation objects in OpenDoc are Frames and Facets,

which support printing and display. A Frame is an area of a document allo-

cated to a part. A Facet corresponds to any displayable area in the frame.

Conceptually, we can think of a Facet as a lens through which the user can

View a Frame. Facets are created by OpenDoc automatically when a frame

becomes viewable. The part is notified of these events through various call-

back entry points. Parts may have more than one frame; there also can be
more than one facet per frame.

The presentation objects work together in the OpenDoc framework to

simplify the drawing model of the part software. Frames and Facets have

associated shape objects that define their geometric extents. Shape objects

are used to constrain the frame shape of the document, the clipped shape of

the displayable facet, and the shapes of objects embedded in the part. When

the part’s draw method is called, the part can draw to the allocated frame

Figure 6.10. OpenDoc windowing objects.

174

175

THE OPENDOC FRAMEWORK 159

Figure 6.11. OpenDoc clipping.

shape, and the displayable clip shape can be applied transparently. The part
can then invoke the draw method on embedded parts to redraw contained
areas. Transform objects are used to indicate the location of a frame or facet
Within a containing part and the amount scrolled for scrollable parts.

Events are a key feature of OpenDoc available for use by developers. An
OpenDoc part receives events through a HandleEvent method invoked by
the Dispatcher object. Events identify the Frame, Facet, and se1f—descriptive
event information, such as the event type, time, location, and option keys.
The Dispatcher object filters platform-dependent events, so that parts per-
ceive that events are handled in a platform-independent manner.

OpenDoc has a set of event focuses (i.e., keyboard, mouse) that must be
allocated by parts in order to receive events. Ownership of event foci deter-
mines the distribution of an event. The Arbitrator object manages the allo-
cation of foci. Some examples of event foci include the keyboard, the mouse,
and the menus. For example, a part may obtain the keyboard focus from the
Arbitrator and then receive subsequent keyboard events. Parts generally

175

176

160

FRAMEWORK EXAMPLES

request a complete set of foci when they are activated. OpenDoc provides a

complete protocol for focus acquisition, preemption, and relinquishment.

Parts that obtain menu focus may modify the menubar to refiect part-

specific commands. This straightforward procedure includes adding new
menus and commands to the base menubar. The new menu structure can be

assembled offscreen and displayed immediately after obtaining menu focus.

To make the menu commands localized (for internationalization), the menu

command titles should be retrieved from stored resource files. The part de-

veloper also is responsible for enabling and disabling menu items. A part

is notified to adjust the menus just prior to menu selection by the OpenDoc

WindoWState object.

Storage units are the basis for persistence and data interchange in Open-

Doc. Every part uses a storage unit to save and retrieve its persistent state.

The same storage APIs are the basis for all forms of OpenDoc data inter-

change, including the clipboard, drag and drop, and linking.

Font Size Style Q
Part Specific Menu

¢ Document Edit

a document: the "current part"
N

OpenDoc supports document
drafts, as a built-in feature.

OpenDoc also supports
interchangeable data

formats within its

storage scheme, called
Bento. Bento is an easy

any type of content I to use storage technology
within other palm which supports cross platform
Supported part shapes can document interchange. It uses the

roof 1, 1,1 1 _ same interchange strategy made
part) e at I raw Po ygons popular by Mac and PC clipboards.

This is a compound text
document. It has an
embedded drawing
part, which contains
editable graphics.
OpenDoc supports
the embedding of

iililiil ‘

embedded par!

Figure 6.12. OpenDoc user interface parts, containers, and menus.

176

177

THE OPENDOC FRAMEWORK 1 61

OpenDoc storage units are based on the Bento storage specification.

Technically, Bento provides a simple API and storage structure that re-

places conventional file input/output. Bento containers are a sequence of

named properties. Each property can have multiple named representations.
The data representations are byte sequences. In order to store structured

data or pointers, the part must convert the data to a byte sequence before

writing to the storage unit. This data structure flattening operation is called

externalization. Conversely, the part must internalize the data to reconsti-

tute the information when initialized from the stored state. OpenDoc calls

the part’s Externalize and InitPartFromStorage methods to request these
actions.

Bento containers typically are implemented as files. Each container can

store a complex compound document, comprising data from multiple part

editors. This replaces the need for multiple files, created by separate appli-
cations.

OpenDoc parts typically store information in multiple exchange formats,

similar to a clipboard. The part can store its highest-fidelity data format,

followed by one or more common exchange formats. This feature of Open-

Doc greatly increases portability of documents; other compound document

technologies (i.e., OLE2) have limited ability to move documents between
machines.

OpenDoc parts must keep track of lists of several important items, in-

cluding the frames it supports, the objects it embeds, and active links with

other parts. These lists should be stored in the object’s persistent state so

that they can be retrieved upon activation. A reusable collection class for

iterating through these lists is useful for managing this process.

The OpenDoc Clipboard is an object created by the Session object. The

Clipboard is used to interchange data, as on PC desktops. Before the Clip-
board is accessed, it must be locked for exclusive access. The data on the

Clipboard is in an OpenDoc Storage Unit. Parts can monitor changes to the

Clipboard through the retrieval of a Clipboard version key.
The Clipboard supports data interchange in multiple fidelities. This is

the same strategy used by current PC and Macintosh clipboards. The parts
write their highest-fidelity native format, followed by other interchange

formats. For example, a Word processor part might write native format,

Apple-styled text (a popular interchange format), plain text, and a link spec-
ification. This last piece of information would support active linking if the

end user creates a link while pasting the information. Link objects also use

Storage Units to transfer information.

The final use of Storage Units is in support of Drag and Drop. Drag and
Drop is one of the most complex protocols for desktop objects. OpenDoc has
abstracted the process to its essentials. The following is a brief synopsis of a
typical Drag and Drop operation.

177

178

162

FRAMEWORK EXAMPLES

Tb initiate a drag within a part, the part receives a mouse event and must

determine if it refers to a specific selected object (i.e., a drag is initiating);
otherwise the mouse event is indicating some other operation. The part can

then write to data to the DragAndDrop object’s Storage Unit. The part then

calls the StartDrag method of the DragAndDrop object. The balance of the

Drag and Drop protocol involves the recipient of the Drag and Drop.

If a part is the recipient of a Drag & Drop (indicated by an OpenDoc

call to the parts DragEnter method), then the part can determine if the

appropriate format resides in the DragAndDrop object’s Storage Unit. If so,

the part can highlight itself (indicating potential acceptance); otherwise it

can ignore the drag operation. The part can receive one or more DragWithin

method calls during this process. The part receives a call to its Drop method

if the user releases the mouse button; then the part reads the data, as if

reading the C1ipboard’s Storage Unit.

Embedding is the most complex aspect of OpenDoc programming. Em-

bedding is the ability of a part to contain other parts. OLE2 uses a single-
layer embedding model with nonoverlapping rectangular frames. An OLE2

application implements either a container or an embedded component, but
not both. OpenDoc embedding capabilities are much more flexible. Embed-

ded shapes can be arbitrary polygons; embedded objects can overlap. Objects
can embed within other objects to any level of nesting.

This complexity is hidden from the part developer who does not support
embedding of other parts. The container object must deal with the unusual

shapes of embedded objects and these other issues. When an individual part
supports embedding, it must also contend with these issues.

AUTONOMOUS LAND VEHICLE

An interesting example of a framework-based development occurred on an

Advanced Research Projects Agency (ARPA) project called the Autonomous
Land Vehicle (ALV). The research was conducted at the Martin Marietta

Corporation (MMC) from 1985 through 1989. The design of the architecture

predated CORBA but utilized many of the architectural principles presented

in this book. Follow-on projects to ALV are being actively pursued at MMC
and at many universities and contractors.

The ALV technical challenge was to develop a rapid prototyping testbed

for intelligent mobile robotics research. The testbed supported the rapid

integration of technologies from four research fields: image understanding,

artificial intelligence route planning, sensors, and experimental parallel pro-

cessors. These technologies were supplied by external research groups at uni-

versities and contractor organizations, evolving their research prototypes in
parallel.

To prove the testbed capabilities and provide a general integration frame-

work, MMC first developed and demonstrated its own set of algorithms. The

178

179

AUTONOMOUS LAND VEHICLE 163

first experiment included continuous-motion road following. This demon-

stration was beyond the state of the art of What had ever been done in

the research community; each run of the vehicle over its track included

processing of over 700 video images. Prior to this experiment, the image

understanding research "community had focused on a small number of test

images and had not demonstrated continuous-motion robotics. By process-

ing so large an image set, ALV fundamentally changed the nature of the

research problems.

Early ALV experiments focused on this continuous-motion road follow-

ing. Later experiments demonstrated increases in road following speed using

ARPA’s advanced parallel processors. Other advanced experiments shows

obstable avoidance with continuous motion and off-road cross-country navi-

gation. _

A key function of the testbed was the hosting of external research soft-

ware. Each research group had a particular focus, such as the vision or

route-planning aspects of the mobile robotics problem. It also had particular

hardware and operating system dependencies; some ran on VAX/VMS, on

VICOM VDP, on Sun workstations, on Symbolics, on ARPA/CMU/GE Warp

Machines, and so on. The ALV testbed supports a highly heterogeneous

environment, including, in addition to the preceding machines, Multibus I

chassis, VME chassis, the ARPA/BBN Butterfly Machine, and potentially

any other commercial or research platform. In addition, programming lan-

guage support requirements ranged from assembly languages, to Pascal,

FORTRAN, Lisp, and C. ALV needed to support all these heterogeneous

requirements in a distributed laboratory, where different parts of the pro-

cessing could occur potentially on any of the platforms. The ALV laboratory
was distributed between the onboard processors and the laboratory facility,

a conventional computer room environment. The vehicle and computer room

were interconnected through a private FCC-licensed radio and TV station,

which provided two-Way digital data transfer and video transmission back
to the laboratory.

ALV would be a challenging system to implement today; in the mid-

1980s it required an extraordinary architectural vision and discipline to

create a system flexible enough to cover all of these platforms, languages,

and distribution options.

The ALV solution was to create a flexible integration framework that

provided a consistent access mechanism for communication between dis-

tributed processes, called Real-Net. For the application programmers, Real-

Net included a simple messaging API that provided transparency oflocation,

platform, and language. Individual components of the ALV software could be

replaced and/or relocated without impacting other elements of the system.

Real-Net was implemented primarily over an Ethernet LAN connection,

with Real-Net software communicating at the UDP level. Because of the

mobile distributed environment, the Ethernet protocols also ran over the

179

180

164

FRAMEWORK EXAMPLES

digital radio link. Real-Net supported other hardware connections, such as

real-time direct memory access (DMA) transfers between VME chassis. The

choice of networking hardware and protocols was made transparent to the

application software.

Application software communicated through a simple set of send—and-

receive APIs. It provided the application-level parameters and abstract des-

tinations. The parameter formats and network addresses of the messages

were stored in tables that were initialized at system boot time. The details of

the network addresses were hidden from the application programmers. This

allowed the processes to be replaced and migrated without changing appli-

cation software. The Real-Net architecture provided native language and

operating system APIS on each of the heterogeneous platforms. Part of the

system was implemented in the native languages of the platforms involved.

The commonality occurred at the network packet level, which could be mar-

shalled and unmarshalled according to the platform and language-specific

requirements.

With today’s CORBA-based technology, ORB vendors provide a great

deal of the Real-Net functionality as specified by OMG standards. CORBA

provides transparent heterogeneous processing that is location, platform,

and language independent. CORBA actually provides more flexibility, in

that it binds processes at runtime and can establish new process allocations

and relationships dynamically. Flexibility in the CORBA standard allows

different kinds ofunderlying ORB implementations, including real-time and

non—real-time products.

COMMENTS

There is certainly no way to guarantee CORBA’s continuing viability. Devel-

opers can approach CORBA in two alternative ways, and their choice will

greatly influence the magnitude of the opportunity cost. The two approaches

are: (1) use CORBA in a product-dependent manner for its ORB-dependent

benefits, or (2) use CORBA in a technology-independent manner to define
better software architectures.

If CORBA is used in a way that is heavily dependent on product-specific

extensions to the standard, then CORBA failure will have a catastrophic

impact. Some dramatic examples of this type of mistake became evident

when HyperDesk withdrew its non-compliant ORB product from the market.

A similar error might be made if an application system were developed to be

highly dependent on OLE2, DCE RPC, or ToolTalk, since these technologies
also might have short life spans.

Migration to CORBA should be approached with technology indepen-

dence in mind. A primary goal of the migration should be the creation of an
effective software architecture. The software architecture (specified in OMG

IDL) should be designed to provide functionality in a cost-effective manner.

180

181

COMMENTS 165

This can be achieved by selectively hiding, exposing, and abstracting the

complexities of the subsystems. The software architecture should isolate the

subsystems from each other and provide overall product independence so

that subsystems can be replaced readily. It should support system extensi-

bility by providing sufficient metadata and symmetry of representation to

allow the addition of new subsystems without the need to modify existing

subsystems. All of these features should be captured in the system’s OMG

IDL specifications. If one ORB product fails, the system can be ported to an-

other ORB with minimum impact. If no ORBS are available, the OMG IDL
APIs can be layered on top of an alternative mechanism, such as Remote

Procedure Call (RPC). If this technoIogy—independent approach is taken, the

opportunity cost of using CORBA will be a net benefit, regardless of the
success or failure of the CORBA standard.

181

182

182

183

In-Depth Example:
The DISCUS

Framework
The Data Interchange and Synergistic Collateral Usage Study (DISCUS) de-

veloped the U.S. government’s first CORBA-based application system. DIS-

CUS -has been recognized by technologists and the media as one of the best

examples of the benefits of distributed object technology. For example, it

was a finalist in the Computerworld Object Application Awards. DISCUS

has been presented and demonstrated at more than a dozen national con-

ferences. For software architects and developers, DISCUS is an important

case study, demonstrating many successful strategies for systems integra-

tion using CORBA.

The DISCUS framework (without the demonstration system) was the

primary technology product of the project. The framework comprises less

than 150 lines of Object Management Group Interface Definition Language

specifications (OMG IDL). For such a small amount of specification, it has

been shown to yield some interesting and important results. The two key re-
sults include substantial interoperability benefits and low integration cost.

The interoperability provided by DISCUS includes universal data inter-

change, data format conversions, universal data source access, and script-

able application control. This is achievable with a very minimal amount of

integration code, averaging about 500 lines for each application. Compared

to traditional integration projects, this represents more than an order of

magnitude reduction in integration cost and complexity. Some of this gain

was due to CORBA, but most ofthe benefits are due to good software architec-

ture design coupled with a strong architectural vision shared by developers

and program managers. CORBA and the OMG played a key role in DISCUS

by clarifying the importance of good software architecture and the need for
interface standards.

167

183

184

168

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

The DISCUS framework is unique in its simplicity. Only four operations

form the core set for understanding the framework. DISCUS can be consid-

ered as the software analogy of Reduced Instruction Set Computer (RISC)

microprocessor architectures. The DISCUS framework is simple and there-

fore easy for developers and organizations to learn and to use. Simplicity

also reduces the integration complexity; less specification results in fewer

application program interfaces (APIS) and less integration code.

DISCUS represents an architecture design point that balances integra-

tion cost and provides modest levels of generality and functionality. This

design point might not be appropriate for all applications, but it seems to

be a very good one for government software integration; we believe that

it is applicable to the needs of many end-user organizations. The DISCUS

framework presented here can be used readily by commercial and end-user

organizations for integration projects.

In the following sections, we define the concepts, operations, and key ser-

vices comprising DISCUS. The section on Framework Concepts presents the

basic concepts of the architectural vision. Sections titled Application Objects,

Data and Table Objects, and Factory Objects define the basic classes of the

framework, their operations, and key design rationale. Framework Services

describes some of the fundamental services supporting conversions, inter-

change, and metadata. Section, DISCUS Implementation covers important

implmentation approaches. The last section, DISCUS Issues and Futures,

describes the key issues and futures for the DISCUS framework.

FRAMEWORK CONCEPTS

DISCUS’s architectural vision is to provide interoperability using a small

set of common interfaces defined in OMG IDL. In general, interoperability

is guaranteed if all subsystems in an integrated system share common inter-

face and operations, as in a hybrid architecture. (See section titled “Software

Architecture”) DISCUS is the minimal set of such operations that can be

supported by different types of applications. The system is then extensi-

ble because new applications can be added (plugged in) without requiring
changes to existing software.

Today custom interfaces are required to integrate most subsystems. Each

subsystem usually requires a separate interface to each other subsystem.

This is called the n X n order interface solution (Figure 7.1).

If a single IDL interface is defined across the applications, the client can

communicate with both implementations using a single set of operations

(Figure 7.2).

The common interface solution allows more clients and object imple-

mentations to be added and to communicate with all existing and future

applications (Figure 7.8). CORBA also supports the application-specific in-

terfaces that may be published. Using OMG IDL subtyping, it is possible

to define the application-specific interfaces as specializations of the common
interfaces.

184

185

FRAMEWORK CONCEPTS 169

Figure 7.1. Client communicating with two object implementations with different IDL interfaces.

In order to facilitate interoperability between applications and between

applications and data sources, the framework defines a set of operations
for data interchange, query, data conversion, object Wrapping, and encap-
sulation. The framework is made up of only the interfaces and a factory

object; it does not define the implementation of the applications or the op-
erations themselves. Different types of software applications can use these

general-purpose operations. The operators can be defined as object-oriented
specializations of a general application class. An application class can extend
on the interfaces for communication with other members of the same class

(e.g., Geographic Information System [GIS] mapping applications and data
sources). However, the framework provides the minimal set of common oper-

ations that allow for interoperation with other types of applications without
custom interface programming. In addition to the OMG IDL and factory,
we also have implemented a set of framework services, such as the trader
service and a conversion service. The infrastructure requires an underlying

communication facility, such as a CORBA-compliant commercial object re-

185

186

170

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Figure 7.2. Client communicating with two object implementations with same framework IDL inter-
face.

quest broker. Alternatively, it is possible to utilize an RPC mechanism as the

underlying facility. However, if an RPC or other mechanism is used, there is

a corresponding sacrifice in implementation flexibility and added coding.

At the highest level, the DISCUS framework comprises both application

and data objects. The application objects are encapsulations of legacy ap-

plications, commercial applications, or new software. The data objects are

generic containers for transfer ofinformation. All of the applications, regard-

less of type, are encapsulated consistently with a common set of operations

and consistent conventions for metadata. Communication between applica-

tions is in terms of the core framework operations that are used to transfer

information encapsulated in data objects.

Four core framework operations provide the key benefits: interoperabil-

ity, simplicity, ease of use, flexibility, and extensiblity. These operations are:

186

187

FRAMEWORK CONCEPTS 171

Convert

Exchange

Query
Execute

These four operations provide the functionality of a Whole host of com-

plex specifications, from standards and proprietary sources. DISCUS is an

application architecture that abstracts the interoperability solution to a very

simple form. DISCUS is easy to learn and inexpensive to utilize due to its

simplicity.

Extending from this simple core are a Variety of design and implemen-

tation elements that complete the framework. Some of the key elements

include table objects, factory objects, trader service, and object implementa-

tion metadata (described in the subsequent sections). The table objects are

Figure 7.3. More clients and object implementations can be added without modification to existing
software.

187

188

172

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

generic containers for tabular data. A tabular representation is very useful

for interchanging metadata, query results, and other information. The fac-

tory objects manage the creation, copying, and deletion of data objects and

table objects. The trader service manages systemwide metadata, including

the location and basic capabilities of all services. The object implementation

metadata comprises a more detailed form of object implementation-specific

metadata, such as the object implementation’s information schema.

APPLICATION OBJECTS

The Core Framework Operations

DISCUS supports interfaces for basic interoperability through the use of the

four core operations. The forms of interoperability supported include data

interchange, access to data sources, and access to application functions.

Data Interchange DISCUS supports interchange ofmost types ofdata used

in a Wide range of application domains. For example, the data can be im-

ages, maps, bitmaps, graphics, text, binary, and so forth. DISCUS provides

a general-purpose data interchange facility, as opposed to a specialized fa-

cility. A specialized facility might optimize the interchange of a specific data

type, such as a video stream, and could become a compatible extension.

Access to Data Sources DISCUS supports the retrieval of data from most

kinds of information sources. The sources can reside on virtually any plat-

form or be in the form of any database type, such as object oriented, re-

lational, and flat files. DISCUS supports a general-purpose access to data

sources, as opposed to a specialized or optimized access. By making data
source access consistent, DISCUS simplifies the client programming for ac-

cess to a Wide range of data sources.

Access to Applications Functions DISCUS provides the ability to reuse the

functionality of existing applications. Sequences of operations may be auto-
mated via scripts and may involve multiple independent application objects.

DISCUS applies this form of application automation consistently across all

kinds of applications using data objects to transfer arguments and results.

DISCUS is a Working example of an application architecture constructed

using CORBA. CORBA’s flexibility can be used effectively with DISCUS to

build highly interoperable systems. The DISCUS framework provides neces-

sary structure to assure interoperability while providing sufficient flexibility

to support the functionality needs for a wide range of application domains.

DISCUS purposely avoids addressing issues that are the subject ofnear-
term standards from the OMG. Issues such as linking and embedding were

delegated to the standards activities. DISCUS allows for the transitioning

188

189

APPLICATION OBJECTS 173

to and leveraging of these technologies when they become available. The
framework is flexible enough, though, to provide for similar capabilities now
via other means.

DISCUS provides a fundamental level of guaranteed software interoper-

ability. It is designed to be a reusable open architecture that does not define

new standards but instead allows for use and leveraging of existing and

future information systems standards. The framework defines two generic

classes of objects: application objects and data objects.

Application objects include any type of applications, such as desktop ap-

plications, back-end servers, legacy subsystems, commercial software pack-

ages, and the like. Interoperability is guaranteed when these application

objects implement the four basic DISCUS operations.

Data objects are used as containers for data interchange and results

passing. Data objects can contain virtually any type of information. As sim-

plicity for developers was a key goal of DISCUS, values are stored and re-

trieved using string-valued names with the simple set() and get() operations.

The DISCUS factory controls the life cycle of data objects, their creation and

destruction. The factory design is implementation dependent. The data ob-

jects may be passed between application objects, or the object references only

may be passed and used as pointers to a data object stored possibly within a

factory application object using a database.

Convert Operation The convert operation is a general—purpose facility

to convert data between various formats. The data formats may be imagery

formats, document formats, spreadsheet formats, and others. The client pro-

vides the data with the current format and specifies the desired format. The

implementation returns the data in the desired format, or an exception ifthe
conversion failed. The generality of the operation enables each application

(or vendor) to provide its own conversion(s). The trader service’s metadata

table for the convert operation allows each client to search for the availabil-

ity of certain conversions and conversions may be added dynamically at any
time. The client, or a smart conversion broker, may search the table for a
series of conversions from format A to B. If no direct conversion is available,

the conversion may be performed in multiple steps, from A to C and from C
to B.

Exchange Operation The exchange operation provides a simple general-

purpose data interchange capability. Basic interoperability can be achieved

if each application, at a minimum, implements the exchange operation. Ap-

plications can use the exchange operation to interchange data objects of any

type and specify the type of exchange using a small number of enumerated

options. The exchange may be used to transmit or receive data or to sig-

nal a request to open a front-end application on a data object. Clients also
may use the exchange to request object implementation metadata. (See the

189

190

174

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

section titled “The Trader Service and Metadata Objects” on page 206). The

object implementation metadata is a DISCUS data object that contains in-

formation regarding the object implementation data models and schema as

well as operations and sample scripts that it may perform. Using DISCUS

convenience functions, the client is able to utilize scripts without depending

directly on the scripting language used by the object implementation.

Query Operation The query operation should be used to retrieve data
when the desired data is not known ahead of time. The query server creates

a new data object as the result of a query-driven search. A client may access

an arbitrary data source using the query operation. It passes a script for

the query server to perform, and the server returns a new data object if

the query is successful, or an exception if it is not successful. The script is

self-describing because a tag is attached identifying the query language (i.e.,

SQL89 Level 2). The script may be dynamically created, or it can be a prede-

fined script retrieved with the server metadata. The server metadata object

allows dynamic description of data sources, data types, and schemas. These

facilities in combination can support almost any type of query accessing al-

most any kind of data source. New data sources and their query languages

canbe registered with the trader service to announce their availability. Each
data source should be able to return a server metadata object in response to

an exchange operation.

Execute Operation The execute operation is an automation facility that

combines the features of the exchange and query operations for encapsula-

tion ofapplications, such as legacy systems. The operation allows the passing

of a script and a sequence of data objects to be operated upon. The object

implementation modifies the data objects or creates new ones and can return

a sequence of output data objects.

The following example best describes the possible use of the execute

operation. Let’s consider a legacy application that takes only command-line

arguments and options and that can read two image files, register them
(perform algorithmic operations that overlay the images and rotates them if

necessary), and produce the output as a single new image file. The execute

operation can be used to pass the commands in the script and the images

within two image objects. The object implementation then can create the two

image files from the display representations found within the data objects

and execute the registration program using the script and file pathnames.

Upon successful completion of the execution, the object implementation can

create a new image object and encapsulate the resulting file into its display

representation. The execute operation then returns to the client a sequence

containing the single newly created data object.

The execute operation provides a structured way to access applications

and utilities through scripts. It should be contrasted with the CORBA-

190

191

APPLICATION OBJECTS 175

defined Dynamic Invocation Interface (DH), which provides dynamic access
to applications via their available interface in the interface repository.

OMG [DL Specifications for Application Objects

All of the DISCUS objects inherit from an abstract class CommonObject.
Its role is a mix-in class—-—a class that promulgates common definitions.

CommonObject’s operations include open, close, and destroy.
All objects in the DISCUS framework implement the operations open,

close, and destroy. The open operation is used to establish a client—to-object
implementation session. Open allows the object implementation to set up
any necessary resources. The close operation terminates a client—to-object
implementation session. The destroy operation indicates that the object im-
plementation should remove all associated resources for the session with
that client.

Figure 7.4. DISCUS class hierarchy.

191

192

176

|N—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

// 0 -- ——o

// | -— interface Commonobject -— l
// | |
// | Abstract Class defining Common exceptions and |

I// | operations
// o -- --o

interface CommonObject {

//common exceptions

exception ALREADY_OPEN DS_exception_body;
exception NOT_OPEN DS_exception_body;

// Delete all associated resources

void destroy()
context (DS_context_attributes);

// Establish Client to Object implementation Object Session

void open()
raises(ALREADY_OPEN)

context (DS_context_attributes);

// Terminate Client to Object implementation Object Session
void close()

raises(NOT_OPEN)

context (DS_context_attributes);

}; /* end interface CommonObjectl*/

The concrete interfaces of the DISCUS framework are contained in mod-

ule DS, which comprises the Factory interface, the Data Object interface, the

Table Object interface, and the Application Object interface. Each interface

inherits from the common object. Polymorphism allows each open, close, and

destroy to be implemented as appropriate to the particular interface.

module DS {

interface Commonobject {

}; /* end interface Commonobject */

interface ap:DS::CommonObject {

}; /* end interface ap */

interface dt:DS::CommonObject {

}; /* end interface dt */

192

193

//
//
//
//
//
//

APPUCATION OBJECTS 177

interface ft:DS: :ap {

l;_ /* end interface ft */

interface tb:DS::CommonObject {

}; /* end interface tb */

}; /* end module DS */

The OMG IDL C mapping for the ft interface open is:

DS__ft_open();

Each interface represents a CLASS. Class application has a 0-to-N re-

lationship with CLASS data object. Each application may reference zero or

more data objects. Data objects, in turn, may reference zero or more ta-

ble objects. The factory is a specialized application and inherits from the

application class. It manages the life cycle of data and table objects.

The DISCUS operations are methods that should be implemented by

each and all object implementations. Even if a specific operation is

not supported, the method must return an ex_DS_ap.UNSUPPORTED-

EXTENSIONS exception. The application object inherits the DS_ap_open(),

DS_ap_c1ose(), and DS_ap_destroy() from the Common object.

0 -- --o

[-— interface ap -- 1
I I
| The DISCUS application Object. All DISCUS application 1
l interfaces inherit from this. J
o -- -—o

interface ap: DS::CommonObject {

// DATA EXCHANGE OPERA"ION

// This service should be supported by all applications.
enum Operation { GETDATA,

PU“DATA.
OPENFRONTEND,

GE'METADATA };

exception lNVALID_EXCHANGE__TYPE DS__exception_body;

Operation exchangetype,
inout dt dataobject)
raises (NOT_OPEN, INVALID_EXCHANGE_TYPE)
context (DS_context_attributes);

void exchange (in

193

194

178

lN—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

// FORMAT CONVERSION OPERATION

// Convert data from one format to another

exception INPUT_FORMAT_UNKNONN DS_exception_body;
exception OUTPUT_FORMAT_UNKNOwN DS_exception_body;
void convert (

in string format, // desired data format representation
in string propertyname, // property containing input data
inout dt data object) // object containing formatted data
raises (NOT_OPEN, INPUT_FORMAT_UNKNOwN,

OUTPUT_FORMAT_UNKNONN)
context (DS_context_attributes);

// QUERY/RETRIEVAL OPERATION

// Retrieve data from an application object based on some query
struct Script {

string language; // query or script language
string statements; }; // query or script statements

exception UNSUPPORTED_LANGUAGE
DS_exception_body;

exception SCRIPT_SYNTAX DS_exception_body;
exception UNSUPPORTED_QUERY DS_exception_body;
exception UNKNOwN_OPERAND DS_exception_body:
exception INCOMPLETE_OUERY DS_exception_body;
void query (

in Script query,
out dt responsedataobject)
raises (NOT~OPEN, UNKNOwN_OPERAND.

UNSUPPORTED_QUERY.
INCOMPLETE_OUERY,
UNSUPPORTED_LANGUAGE,
SCRIPT_SYNTAX)

context (DS_context_attributes);

// EXECUTE OPERATION

// This operation should be supported by all scriptable applications
// and processing services, i.e. any service not appropriate for
// Convert() and Query(). The processing is controlled with a
// script.

// Example "script"s:
// "sh", "csh", "perl", "AML", "CSL", "Tcl"

typedef sequence<dt> SeqObject;
void execute (

in Script commandlist,
in Seqobject inputdataobjects,

out SeqObject outputdataobjects)

194

195

APPLICATION OBJECTS 179

raises (NOT_OPEN, UNSUPPORTED_LANGUAGE,
SCRiPT_SYNTAX, UNKNOwN_OPERAND)

context (DS_context_attributes);

}; /* end -interface ap */

Open The application open operation should be called prior to the invoca-

tion of any other operation. The call establishes a connection With a partic-

ular object implementation and may be used by server implementations to

set up any required resources.

The open is the first operation in which an object implementation re-
ceives the client’s CORBA invocation context. The context may play a very

important role in how communication and resources are set up for the rest of
the session. In the context, the client may provide some information regard-

ing the user’s Window system preference, communication-line capabilities,

security information, and so on. Object implementations also may need to

Figure 7.5. Application class definition.

195

196

180

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

retain certain client information if they are capable of supporting several
clients at the same time.

Close and Destroy The application close operation is intended to signal
to the object implementation that a session or logical set of operations have

been completed. In some cases object implementations may choose to release

certain resources at this point. The application destroy operation destroys

all resources associated with a particular connection to an object implemen-

tation and signals the ORB that the connection with the particular object

implementation should be terminated. The destroy should be called only

after a DS_ap_close has been called. In other cases, Where object implemen-

tations have some knowledge or understanding of the type of clients that

they serve, resources may be released only using the destroy operation. The

combination of close and destroy allows a client to signal the session status

and give object implementations more flexibility to manage their resources.

Otherwise, object implementations may have to wait until a time-out has oc-

curred prior to releasing the resources. Use of time-outs to release resources

can lead to problems, such as the unexpected invalidation of a bound object
handle.

Exchange The exchange operation is provided to allow for the interchange

of data objects when the data is known ahead of time, for example, as the
result of a user selection.

In order to guarantee data interchange interoperability, the Exchange

operation is the simplest and most restrictive of all the framework opera-

tions. By convention, all applications should provide client and object imple-

mentation support for the exchange() operation. An enumerated parameter

defines the type of the interchange. The data object exchange can be from

the client to object implementation only, from the object implementation to

the client only, or from the client to object implementation and back. One

of the enumerated types also supports the exchange of object implementa-

tion metadata information. This area should be supported to guarantee that

clients can “discover” new object implementation capabilities dynamically
and communicate with them.

The following example shows a typical invocation sequence using the
eXchange() operation.

A client opens the framework factory.

A client creates a data object of a particular type.

A client opens the data object.

A client sets the values of a data object as needed.

A client closes the data object.

A client opens a connection to an object implementation using open
operation.

196

197

Figure 7.6.

APPLlCATlON OBJECTS 181

Exchange scenario.

0 A client invokes an operation (exchange, convert, query, or execute).
0 Ifthe operation carries a data object reference, the object implementation

may open the data object, get and set properties, and then close or destroy
the data object.

0 A client checks the returned exception status.

0 Upon success, the client gets returned values from the same or new data
object.

0 The data object may be destroyed or stored persistently.
0 The client can close and destroy the connection to the object implemen-

tation.

While CORBA clients and object implementations can use the OMG IDL
repository to “discover” new services and learn about their interfaces, the
object implementation metadata exchange provides much more detail as to
the type of data that clients can exchange with the object implementation

197

198

182 lN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

and what data the object implementation currently has in its databases.

The object implementation also can return sample scripts that clients can
execute to retrieve this data.

The following types of exchanges are legal.

0 DS_ap_GETDATA This exchange type may be used, for example, to ask

a clipboard for a data object found in its paste buffer.

0 DS_ap_GETMETADATA This exchange type may be used, for exam-

ple, by a client to find out about object implementation metadata. A

client may ask the trader service for metadata consisting of the trader

database schema. A map front—end may ask the map object implementa-

tion for metadata describing the map products and overlays it may have
available.

0 DS_ap_PUTDATA This exchange type may be used, for example, to

send a front-end application an existing object for editing.

Figure 7.7. GET_DATA and GETMETADATA exchange.

198

199

Figure 7.8.

APPLICATION OBJECTS 133

PUTDATA exchange.

DS_ap_OPENFRONTEND This exchange type may be used, for exam-
ple, to send an initial object to a front-end application. When activating
a map front-end to retrieve a map object, the initial exchange With the
front-end may be a simple object that may have the requested map Width
and height but none of the other map properties (Which the client may
not know about yet).

in Operation exchangetype,
inout dt dataobject)
raises (NOT_OPEN,

INVALID_EXCHANGE_TYPE)
context (DS_conte><t_attributes);

void exchange (

Query The query operation is provided to allow for the retrieval of data ob-
jects When no information is available ahead of time as to the type of objects
or their properties. The query string can be made in any script language

199

200

184 |N—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

This Is
output lrom
objacn

Figure 7.9. OPENFRONTEND exchange.

and may be created by the application or retrieved from the trader or object
implementation as metadata. In the last two cases, the client application
need not understand the object implementation’s script language in order to
perform the query. (See the section titled “User Interface Functions” on page
220 for more details).

The Query operation provides a common interface to data sources (Fig-
ure 7.10). A dynamic query string parameter is tagged With the identity of
the query language. The object implementation returns the results in a data

object, which may contain a table object for tabular results. By convention,
data source object implementations should provide a query() implementation
to return data objects and an eXchange() implementation to return metadata
objects.

void query (

in Script query,
out dt responsedataobject)
raises (NOT_OPEN, UNKNOwN_OPERAND,

200

201

APPLICATION OBJECTS 185

‘ UNSUPPORTED_QUERY, INCOMPLETLQUERY,
UNSUPPORTED_LANGUAGE, SCRIPT_SYNTAX)

context (DS_conte><t_attm'butes)

Convert The most prevalent problem in integration is related to data for-

mats. Issues include proprietary formats, incompatible formats, different

versions of the same format, and loss of data during conversions. The prob-

lem DISCUS addressed was simplified due to the ORB ability to convert

data at lower levels. For example, integrators no longer have to worry about

reverse-byte ordering between different operating and hardware systems.

The convert operation is provided to allow for the conversion between

various data formats. The operation is independent from the type of data, so

that conversion servers can convert between image formats, map formats,

document formats, spreadsheet formats, and so on. Object implementations

may choose to implement their own conversion methods (where a Vendor

supports multiple conversions to its own native format), or they may choose

Figure 7.10. Query operation.

201

202

186

|N—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Figure 7.11. Convert operation.

to provide conversions via a conversion server that can convert between
several formats.

By convention, if an application introduces a new data format, then it

must provide a convert() service that allows other applications to convert the
data to a commonplace format. The new service is registered with the trader
to advertise its existence. All DISCUS applications should make use of the

convert operation because of the large number of alternative and competing
standards/nonstandard data formats available today. Usually each applica-

tion has some notion of its “preferred” formats. Upon accessing a data object

and a property, applications can check if the format of that property is not
the one they expect. In these cases, the convert operation could be invoked

automatically. Users may experience an additional slight delay; however,

they are no longer required to use import or export menu options, or limited
to the set of conversion filters offered by the particular application.

Upon return, if the convert is successful, the data object reference points
to the same object with the modified property.

202

203

APPLICATION OBJECTS 187

void convert (

in string format, // desired data format representation

in string propertyname, // propery containing input data
inout dt dataobject) // object containing formatted data
raises (NOT_OPEN, INPUT_FORMAT_UNKNOwN,

0UTPUT_FORMAT_UNKNOwN)
context (DS_context_attributes);

Execute The execute operation provides a way for applications to commu-

nicate with other applications via some scripted language. The operation

allows the specification of statements for operation as well as a list of input

data objects to be operated upon. The operation may return one or more

data objects as a result of the script. The execute operation may be used,

for example, to send two input image objects to a registration algorithm and

receive the output single image object as the output data object.

By convention, an object implementations script language should pro-

vide access to functionality, by including operations accessible from legacy

RB / Framewogr

Figure 7.12. Execute operation.

203

204

188

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

API’s and any user interfaces. Object implementation metadata can contain

some canned scripts. The execute operation can be used to produce combina-

tions of other operations, such as the exchange and query. However, because

excess flexibility often results in less interoperability, Execute should be

used when the simpler and more direct exchange and query cannot support

the desired functionality.

void execute (in Script commandlist,

in Seqobject inputdataobjects,
out SeqObject outputdataobjects)
raises (NOT_OPEN, UNSUPPORTED_LANGUAGE.

SCRIPT_SYNTAX, UNKNOwN_OPERAND)

context (DS_conte><t_attributes);

DATA AND TABLE OBJECTS

Data Objects

The data object class private attributes are sets of name-value pairs. We

picked this approach in order to provide a simple conceptual approach to

data objects and a simple implementation for developers. The name-value

pairs are nothing more that a flat single list of CORBA Type “any”. The

data object is therefore nothing more complex than a CORBA NVList, and a

factory can be as simple as relating NVLists to opaque data object references.

Because of this approach, we were able to define a rather simple method

of set/get operations to store or retrieve properties. Using CORBA Types,

however, allows each property to be as complex as required. Even though

the property list is fiat, a property may be a sequence of structures that can

contain an integer, an array, and other sequence members.

Data objects are simple containers for related data. A data object is a

collection of named values; new named properties can be created, and the

property may be a value of any type (passed as CORBA type “any”).

For interoperability, DISCUS defines additional conventions. The frame-

work defines an enumerated set of types of data objects, such as TEXT,

IMAGE, GIS, and so on. When a data object is created (create_dat()), an

enumerated type parameter identifies its type and the factory initializes the

appropriate name-value fields. An object hierarchy is defined for the data

object name-values. This hierarchy is separate from the DISCUS framework

IDL, so that this list can be extended without changing any API’s. The root

class of the name-value hierarchy is a set of name-values shared by all data

objects (the Common object). Specialized application classes, such as GIS,

share common name-values as defined by the hierarchy (Figure 7.13).

By convention, each application supports all of the named-Values defined

in the hierarchy for its application class. Applications may add additional

name-values, which other applications can disregard.

204

205

DATA AND TABLE OBJECTS

Figure 7.13. Data object class definition.

189

The protocol for creating and accessing data objects includes the follow-
ingsequencesofoperafions

create_dat()

open()
set()....

// optionai add() to
// optionai deiete()

ciose()

//

//
//

share with other
or execute()

these perform an

destroy()

//
//

//

create the data object

open the data object
one or more sets

create new named vaiues

to eiimihate named vaTues

// ciose the data object

applications using exchahge(), cohvert(), query(),

impiicit ciose ,OR

205

206

190 IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Figure 7.14. A data object is made of Name-Value pairs of properties.

A typical sequence of operations for an existing data object may be:

open() // open the data object
get().... // one or more gets

// optional usage of add(), delete(), or set()

close() // close the data object

// optionally: share with other applications , OR

destroy()

Data objects are accessible to clients and object implementations only

via an opaque object reference. Once the data object is created, it must be

opened in order for an application to have access to its properties. When a

206

207

OMG IDL SPECIFICATIONS FOR DATA OBJECTS 191

Figure 7.15. Data object hierarchy.

data object is exchanged between applications, the sending application no
longer has access to the data object properties. The application cannot access

the properties when the data object is destroyed or closed.

OMG IDL SPECIFICATIONS FOR DATA OBJECTS

The data object interface inherits from the common object. It defines ex-

ceptions to indicate that the object was not found, that the object already
exists, that a property was not found, or that a 'IypeCode was not found.
Data objects property lists can contain any CORBA types, including user-
defined types. Properties can contain other data object references, thereby
embedding data objects within data objects.

// DATA OBJECT INTERFACE

interface dt: DS::CommonObject I

207

208

192 IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Hgme7J6. Dmaomemscancommnoflmrdmaomeds

readoniy attribute string objectType;
//Structure useful for storing data object
//formatted vaiues.

struct FormattedDataRep{
string format;

any value;

properties

//Add a property to a data object
exception ALREADY_EXISTS DS_exception_body;
void add (in string newpropertyname)

raises (NOT_OPEN, ALREADY_EXISTS D
context (DS_context_attributes);

//Deiete a property from a data object
exception NOT_FOUND DS_exception_body;
void deiete (in string newpropertyname)

208

with

209

OMG IDL SPECIFICATIONS FOR DATA OBJECTS 193

raises (NOT_OPEN, NOT_FOUND)

context (DS_context_attributes);

//Retrieve the names and types of a data object

typedef sequence<string> NameList;
typedef sequence<TypeCode> TypeList:

void describe (out unsigned long numberofproperties,
out NameList names,

out TypeList types)
raises (NOT_OPEN)
context (DS_context_attributes);

//Set the value of a data object property
exception TYPE_NOT_FOUND DS_exception_body;
exception PROPERTY_NOT_FOUND DS_exception_body;

void set (in string propertyname,
in any value I
raises (NOT_OPEN, NOT_FOUND,
PROPERTY_NOT_FOUND)
context (DS_context_attributes);

//Get the value of a data object property

void get (in string propertyname,
out any value)
raises (NOT_OPEN, NOT_FOUND.
PROPERTY_NOT_FOUND)
context (DS_context_attributes);

}; /* end interface dt */

Open The data object interface open is inherited from the common object.

The reference of the object to be opened is the reference of the data object

created by the factory. If the data object exists and is accessible by the

application, the operation returns successfully.

Only one application object may have the data object open at any time.

Close The interaction between the open, close, and destroy is very im-

portant. The close indicates that the application no longer requires access

to the data object. A data object must be closed before it can be shared
with another application through framework operations such as eXchange(),

convert(), query(), and exchange(); otherwise an exception is returned. The

section titled “Managing Data and Table Objects” on page 205 discusses how

the factory affects this interaction.

Destroy The data object must be opened by the application in order to de-

stroy it. Once the data object is destroyed, the reference and data associated

209

210

194

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

with the object is removed. In the linked-in implementation of the frame-

work factory, the reference count is not maintained because copies of data

objects are exchanged. Data object maintenance is completely implementa-

tion dependent and can be as complex as needed. The factory or the object

database can keep count of references so that when linking is available, all

applications that point to the object can be notified, or the destroy will be
denied until the reference count is zero.

Set The set allows the modification of a property of a data object. In order

to simplify memory management, the set is destructive and copies all data.

It is the responsibility ofthe factory or data object implementation to remove

existing data, and it is the responsibility of the application to remove its copy
of the data.

void set (in string propertyname,
in any value)
raises (NOT_0PEN, NOT_FOUND,
PROPERTY_NOT_FOUND)
context (DS_conte><t_attributes);

The set accepts a property in the form of a CORBA type “any” so that

it is self-describing. For example, for a type “any” of type “string”, the value

would point to a string. For a type “any” of type “integer”, the value would

point to an integer. For a sequence, the sequence TypeCode within the “any”
describes the elements of the sequence and its length.

Get The get operation retrieves the data and type associated with a partic-

ular property. A copy ofthe data is given so that there is complete separation
of the data object and application data. The application is responsible for re-

moving any data it receives. The get operation implementation could be

dependent on context variables that can signal whether a copy of a pointer

should be passed in the case of very large data (or file pathnames). T

void get (in string propertyname,

out any value) ‘
raises (NOT__OPEN, NOT_FOUND,
PROPERTY_NOT_FOUND)
context (DS_conte><t_attributes);

Add The add operation allows for the dynamic addition of data object prop-

erties of any type. While this feature is very powerful, its use should be lim-

ited. Applications should expect other applications to recognize only agreed

upon properties for a given type of data object. It is possible to describe the
contents of a data object dynamically. (See the section titled “Describe” on

page 195.) However, code to interpret previously unknown properties may be

210

211

OMG IDL SPECIFICATIONS FOR DATA OBJECTS 195

complex. To avoid the complexity, DISCUS application code should be writ-

ten to manipulate known properties of known types. Each application type

has a set of specific properties (for text objects, map objects, etc.), and there

is a hierarchy of properties defining the more generic common properties.

The addition of new properties is a framework capability that can be

used for extensibility.

void add (in string newpropertyname)
raises (NOT_OPEN, ALREADY_EXISTS)
context (DS_conte><t_attributes);

Delete The delete operation allows for the elimination of a property from

a data object. The property must have been added using the Add operation.

An exception may be returned if the property is standard for the type of data

object.

void delete (in string newpropertyname)
raises (NOT_OPEN, NOT_FOUND J
context (DS_context_attributes);

Describe The describe operation allows an application to get a description

ofthe metadata that comprises a data object. The operation returns the num-

ber of properties, a sequence of strings that contain the property names, and

a sequence of TypeCodes that describe each property type. The information

may be used to interpret the data automatically, or to display the contents

of the data object to a user within some graphical-user interface (GUI) and

allow the user to peruse the information or to act on it (for example, display

the image contained in a Display_Rep property using some imaging display
tool).

void describe (out unsigned long numberofproperties,
out NameList names,

out TypeList types)
raises (NOT_OPEN)

context (_DS_context_attributes);

Data Object Properties

Data object properties predate the OMG standards process for properties.

Data object properties serve a different purpose than the properties defined

by the OMG Properties Object Service.

The DISCUS framework supports a set of predefined properties. The

framework is designed to be flexible and extensible, and we expect that

the list of object properties will evolve over time and comprise industry,

government, and de facto standards.

211

212

196 |N—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

The DISCUS framework defines a stravvman set of data object property

lists, including the basic object, the text object, the spatial object, the image

object, the Mapping object, and the metadata object.

These categories relate the data object type to the application type:

OBJ (Common)
IMAGE

GIS

SERVER_l\/IETADATA

TEXT

Future extensions:

EMAIL Textual e-mail, attachments, active mail

DOCUMENT Editable text with other datatype inserts

PAINT Editable raster bitmap

OBJ_GRAPHIC Editable object-oriented graphics viewgraphs
SPREADSHEET Small-scale editable tabular data

DATABASE Large-scale data—relational, browsers, etc.

VISUALIZATION 3-D data, scientific, CAD/CAM, sensor simulation
HYPERMEDIA Linked document collections

MULTIMEDIA Incorporating real-time media: audio, video

Table Objects

Table objects are simple containers for tabular data. By convention, a table

object is referenced by exactly one data object. The table object stores a

matrix of values, passed as CORBA type “any”. In practice, most tables will

have consistent types for each column. Table objects should never be passed

as data objects to other applications.

The protocol for creating and accessing table objects includes the follow-

ing sequences of operations‘:

create_tab() // create a table object given a list of names

// and types, cells are empty
open() // open the table object
set().... // one or more times

// insert table's object reference in a data object using data object

// set operation

// share with other applications using exchange(). convert(), query(),
// or execute() .

// these perform an implicit close, OR

destroy/() // destroys the table object and cells

212

213

OMG IDL SPECIFICATIONS FOR DATA OBJECTS 197

Figure 7.17. Table object class definition.

A typical sequence of operations for an existing table object follows.

// get table object reference using data object get operation

opeh() // open the table object
get().... // one or more times

// optional usage of set()
// optionally share with other applications through a data object, OR

destroy() // destroys the table object and cells

Table objects are meant to be a part of data objects and not used as
stand—alone objects. They are embedded Within data objects using the ob-
ject reference TypeCode. When a data object containing a table object is
destroyed, the table objects it points to should also be destroyed.

Table objects rows and columns can contain any data. This structure
makes table objects especially useful to exchange information about appli-

213

214

198

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Figure 7.18. A Table object is made of row-column cells and is part of a data object.

cations, not only spreadsheet-type data. For example, tables can be used to
describe the schema of a database.

interface tb: DS::Conmon0bject {

exception COLUMN_OJ

exception ROw_0UT_O

typedef sequence<s

typedef sequence<Ty

// Retrieve the co

void describe (ou,
out
out
ou:

T_O F_RANGE DS_e><cepti on_body;

F_RANGE DS_exception_body;

ring> CoiList;

peCode> TypeList;

umn names and typecodes of the specified tabie
unsigned Tong numberofrows,
unsigned iong numberofcois,
CoiList coiumnnames,

TypeList types)

214

215

};

OMG IDL SPECIFICATIONS FOR DATA OBJECTS 199

raises (NOT_0PEN)
context (DS_context_attributes);

//Set a value in the table

void set (in unsigned long row,
in unsigned long column,
in any value)
raises (NOT_OPEN, ROW_OUT_OF_RANGE, COLUMN_OUT_0F_RANGE)
context (DS_conte><t_attributes);

//Get a value in the table

void get (in unsigned long row,
in unsigned long column,
out any value)
raises (NOT_OPEN, ROw_OUT_OF_RANGE, COLUMN_OUT_0F_RANGE)
context (DS_context_attributes);

/* end interface tb */

Like the data object, the table object inherits from the common object

and also can set some exceptions. In addition to the common exceptions

that we may expect to find, such as ALREADYEXISTS or NOT_FOUND,

there is also OUT_OF_RANGE. This is used to signal that an application is

attempting to access ‘a data cell that is out of the bounds of the table.

Open The open operation allows an application to open a table object. The

table object must be opened before it can be accessed. In order to obtain the

table object reference, the application first must perform a DS_dt_get() on

the data object property of type object reference that contains the reference

of the table object. Once the reference is retrieved, the application can open

the table object.

Only one application object may have the table object open at one time.

If an application attempts to open an already open object, it will receive the
ex_DS_tbALREADY_OPEN exception.

Close The close operation signals that the access to the table object is

complete. A table object must be closed before it can be shared with another

application through framework operations such as exchange(), conVert(),

query(), and exchange(); otherwise an exception is returned.

Destroy The destroy operation removes all resources and the reference

associated with the table object. All data associated with the table object

cells is ‘removed. The destruction is shallow, meaning that references to

other objects are removed, but the objects themselves are not destroyed.

215

216

200

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Set The set operation allows an application to set a particular cell of a

table by specifying the row and column index. The set is destructive and the

table must have been created previously using the factory create operation.

The value used to set the cell is of type “any” and must be primed with a

TypeCode and value. Because of the use of the type “any”, the table can

contain simple or very complex data.

The set operation is destructive, the factory should remove automatically

data that may already exist in the cell (or allocate the space for new sets).

Applications are responsible for removing their own copy of the data.

void set (in unsigned long row,
in unsigned long column,

in any value)
raises (NOT_OPEN, ROW_0UT_OF_RANGE,
COLUMN_0UT__OF_RANGE)
context (DS_context_attributes 1;

Get The get operation retrieves a copy of the data of a particular cell. The

value that is returned is oftype “any” and contains the ’lypeCode and value of

the cell. The application is responsible for removing the memory associated

with the copy of the data it receives. Applications can look at the column

type or the “any” .type member to determine how the “any” value member

should be interpreted.

void get (in unsigned long row,
in unsigned long column,
out any value)

raises (NOT_OPEN, ROw_OUT_OF_RANGE.
COLUMN_OUT_OF_RANGE)

context (DS_context_attributes);

Describe The describe operation allows an application to receive informa-
tion that describes the table. The information that is returned is the number

of rows and columns of the table, the column names, and their respective

types. The application can use the information to access the table dynami-

cally, and/or to communicate with a user using a GUI (as appropriate).

void describe (out unsigned long numberofrows,
out unsigned long numberofcols.
out ColList columnnames,

out TypeList types)
raises (NOT_0PEN)
context (DS_context_attributes);

216

217

FACTORY OBJECT 201

FACTORY OBJECT

Factory Concept

The DISCUS factory is an implementation of the life-cycle service factory
concept. The factory is opened and closed by applications to gain access to

services that create, destroy, and manage data and table objects. The private

attributes of the class include the lists of references of managed data and

table objects. The common operations that the class supports are those to

open, close, and destroy the factory object. Four additional operations are

provided to create and copy data and table objects. The factory inherits from

the application class and therefore can support the four standard framework

operations. These operations could be left unimplemented, but they can

provide valuable functionality. For example, a client may want to use the

query operation on the factory to receive a list or status of some data objects.

The factory also can provide useful conversions.

Figure 7.19. Factory ciass definition.

217

218

202

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

Figure 7.20. Linked-in framework and factory implementation.

The factory can be implemented in various Ways.

One Way is to have a separate factory object server. The data objects

can be external to applications and contained Within the factory. Therefore,

communications between applications and data objects occurs via the ORB.

Another approach is with the factory as a linked-in library. A third possibility
is to have each data object implemented as a server. With this approach, a

mechanism must be provided to notify the factory that a data object has been

destroyed. The linked-in approach has some drawbacks, such as the need to

provide data object services to applications across the ORB (other than the

application With the linked-in factory). An early DISCUS implementation

used a set of collaborating linked-in factories, which could migrate data

objects.

The linked-in factory approach provides performance advantages for

the local application. Separate factory objects, although suffering from more

ORB calls, are scalable and flexible. If performance or resource management

becomes an issue, it is possible to create factory objects for each system or
even for each user in order to distribute the lead.

218

219

FACTORY OBJECT 203

Figure 7.21. Separate factory object.

OMG IDL Specifications for Factory Objects

The OMG Common Object Services Specifications defines the concept of a
factory implementation to create and manage objects [OMG, 94a]. A client
using the factory receives only the object reference back from the factory;
however, the factory itselfhas knowledge ofthe object internals and performs
operations, such as initialization.

// o ——— ——o
—— interface ft --

*D1SCUS data objects (dt:CommonObject)
*DlSCUS table objects (tb:Common0bject)

// o --- "0
interface ft: DS::ap {

// I I
// I I
// I The DISCUS factory Object. This factory creates: I
// I I
// I I

219

220

204

};

IN-DEPTH EXAMPLE: THE DISCUS FRAMEWORK

// Create a DS::dt DISCUS data object
void create_dat (

in string type,
out dt dataobjecthandle)

context (DS_context_attributes);

// Create a DS::tb DISCUS tabie object

typedef sequence<string> CoTList;

typedef sequence<TypeCode> TypeList;
void create_tab (

in long maxrows, // maximum number of rows

in long maxcols, // maximum number of columns
in CoTList coiumnnames, // metadata

in TypeList types, // types of coiumns
out tb handle)

context (DS_context_attributes);

// Make a shaliow copy of a DS::dt DISCUS data object
void copy_dat (

in dt dataobject, // DISCUS data object to Copy
out dt dataOb_iectCopy)// The new data object
context (DS_context_attributes);

// Make a shallow copy of a DS::tb DISCUS table object
void copy_tab (

in tb tabTeObject, // Table Object to Copy
out tb tabTeCopy)// The new table object
context (DS_context_attributes);

/* end interface ft */

Open The factory inherits the open operation from the application class.

There can be more than one factory object. DISCUS data objects are extensi-

ble, so that the factory can support additional data object properties without

having to change. If other factories are introduced, it should be possible to

provide a simple gateway or conversion service to convert from one factory’s
data objects to another’s.

The DISCUS framework factory can be called in C.

status DS_ft_open(factory, &Ev, &Ctx);

The open creates the required resources to allow clients and object im-

plementations to create, manage, destroy, and access data and table objects.

The call initializes the internal object tables and framework resources.

In the future the factory could be used to initialize various frameworks, or
many factories may be available.

220

221

FACTORYOBJECT 205

The framework implementation minimizes how much CORBA the pro-

grammers must know and performs standard context and object imple-

mentation registration calls Whenever possible. tions move (1 a simple in-

terface to the technology. Nothing prevents, however, developers from using

any standard CORBA calls to interface with the ORB directly.

Close The factory close is also inherited from the application class. The

object reference has to be the same one as an associated open factory object.

After a close, the application cannot access any of the existing data objects. ,

Prior to terminating execution, the clients and object implementations

should close the factory in order to release some of the framework resources.

The close signals a termination of the current session.

status = DS_ft_close (factory,
&Ev,

&Ctx);

Destroy The factory destroy also is inherited from the application class.

The object reference has to be the same one as an associated open factory

object. The destroy signals the factory to remove all resources (e.g., cache

storage) and data/table objects associated with the current session that an

application has with the factory object. Unless specifically destroyed, objects
that are stored persistently are not removed and are still accessible by the

application. Depending on the implementation, this may mean that the ap-

plication has the data object, or only the reference of the object, which may

be stored persistently by some database.

Managing Data and Table Objects

The factory class defines four operations for the creation and copying of data

and table objects. Due to the OMG IDL inheritance, each of the data and

table interfaces has its own open, close, and destroy so that these operations

are handled by the data and table objects themselves. The factory simply

returns an opaque reference to these objects; the application can use this
reference for any further access.

The create_dat operation allows an application to ask the factory to cre-

ate a data object with a particular set of properties. The factory returns to

the application a reference for the newly created data object, and the prop-
erties are initialized. See Section Data and Table Objects for a description

of data objects.

void create_dat (

in string type,
out dt dataobjecthandle J
context (DS_conte><t_attributes);

221

222

206

lN—DEPTH EXAMPLE: THE DISCUS FRAMEWORK

The creation of ‘a table object is similar to that of a data object; however,

instead of a predefined list of name-Value properties, the table is created

dynamically as a matrix of rows and columns. The operation accepts as input

a count of the rows and columns, a list of the column names as a sequence of

strings, and a list of the column types as a sequence of CORBA ’I_‘ypeCodes.

The factory returns to the application a reference of the newly created table

object. The table object may then be populated using table object operations

or inserted into a data object.

typedef sequence<string> ColList;
typedef sequence<TypeCode> TypeList;
void create_tab (

in long maxrows, // maximum number of rows
in long maxcols, // maximum number of columns
in ColList columnnames, // metadata

in TypeList types, // types of columns
out tb handle)

context (DS_context_attributes);

The copy data object and copy table object operations create new objects

that contain the same data. Applications can use these operations to create

their own copy of objects. The new objects have new references; however,

they contain the same data. This means that if a data object had a reference

pointing to another data object, the new data object contains the same ref-

erence pointing to the second data object. The copy is therefore “shallow.”

Referenced objects are not copied themselves. Applications also can read or

write data objects to a persistent store using convenience functions. (See the

section titled “Convenience Functions” on page 220.)

void copy_dat (
in dt data0bject, // DISCUS data object to Copy
out dt dataObjectCopy)// The new data object
context (DS_conte><t_attributes);

// Make a shallow copy of a DS::tb DISCUS table object
void copy_tab (

in tb tableobject, // Table Object to Copy
out tb tablefjopy)// The new table object
context (DS_conte><t_attributes);

FRAMEWORK SERVICES

The Trader Service and Metadata Objects

The trader service and metadata objects enable clients dynamically to dis-
cover new applications and get information about services. These facilities

complement the metadata in the interface repository and the Common Ob-

ject Services Specifications (COSS) Naming Service.

222

