
1

Thomas J. Mowbray 0 Ron Zahavi 

 
Systéms Integration Using

Distributed Objects

SAP 1009 (Part 1 of 3)

CBM ofU.S. Patent No. 8,037,158

sahmed
Typewritten Text

CSHEA
Text Box
SAP 1009 (Part 1 of 3)
CBM of U.S. Patent No. 8,037,158

sahmed
Typewritten Text



2

 

The Essential CORBA:  
  

 

Systems Integration
 Using Distributed Objects



3

 

The Essential CORBA:

Systems Integration

Using Distributed Objects 
Thomas J. Mowbray, PhD

Ron Zahavi

John Wiley & Sons, Inc.

New York - Chichester - Brisbane ° Toronto ~ Singapore -



4

 

Publisher: Katherine Schowalter

Editor: Robert Elliott

Managing Editor: Micheline Frederick

Text Design & Composition: Integre Technical Publishing Co., Inc.

Figures 6.1- 6.4 are reprinted courtesy of Microsoft Press from Inside OLE2 by Kraig
Brockschmidt, © 1994, Microsoft Press, Redmond, WA.

Figure 9.1 appears courtesy of IEEE. IEEE Micro, Vol. 13, No. 6 Camp Development:

The Art ofBuilding a Market Through Standards by Chris Halliwell, 1993.

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc. is aware of a claim,

the product names appear in initial capital or all capital letters. Readers, however,

should contact the appropriate companies for more complete information regarding
trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional service.

If legal advice or other expert assistance is required, the services of a competent
professional person should be sought. ’

Reproduction or translation of any part of this work beyond that permitted by section

107 or 108 of the 1976 United States Copyright Act without the permission of the

copyright owner is unlawful. Requests for permission or further information should
be addressed to the Permissions Department, John Wiley & Sons, Inc.

ISBN 0-471-10611-9

Printed in the United States of America

109876



5

 

This book is dedicated to our

lovely Wives and lifelong friends:

Susan Zahavi and Kate Mowbray, C.P.A.

Let us raise a standard to which the honest and brave will repair.

—George Washington



6

 



7

 

Preface

Both of us have had a number of systems integration experiences before we

started working together on a project called DISCUS (Data Interchange and

Synergistic Collateral Usage Study) at The MITRE Corporation. We had the

good fortune of working for a program management team that gave us the

freedom to draw on our past experiences and develop a well thought out

"approach to a challenging problem: general application interoperability.

These ideas were based on the need for a carefully designed,_ well-
documented software architecture, one that was designed with simplicity,

extensibility, and cost implications in mind. We discovered through talking

to our colleagues that these ideas, which seemed obvious to us, were not part

oftheir training or backgrounds. In fact, these approaches are not adequately

covered in the literature and not generally understood, even by experienced

computer scientists. To transfer this knowledge, we put together this book,

including a full coverage of the required background material, design ap-

proach, and implementation techniques.

Our approach builds on the standards foundations created by the Object

Management Group (OMG). Our technical goals and the OMG goals are very

much in sync. The OMG has made truly remarkable progress in generating

vii



8

viii

 

PREFACE

quality standards and cultivating acceptance for its standards across indus-

try, standards groups, and consortia. We want to see this vision realized even

faster; hence, this book transfers our knowledge and approach for successful

systems integration.

T.J.M.

R.Z.

McLean, Virginia

January 1995



9

 

Acknowledgments T

 
Although this book was written on our own time, we must thank our project

management for their visionary support, in particular: Webster Anderson,

Dwight Brown, Steve Brown, Tim Daniel, Jeff Fleisher, Dolly Greenwood,
Diane Haberstich, Gene Jarboe, Geoff Lipsey, John Polger, John Robusto,
and Bill Ruh.

We sincerely appreciate the help and contributions provided by our

friends and colleagues, including: Howard Cohen, Donna Cornwell, Jonathan

Doughty, Ray Emami, Julie Gravalesse, ’I‘om Herron, Michael Josephs, Mel-

ony Katz, Paul Klinker, Dr. Fred Kuhl, Raphael Malveau, Emanuel Mamatas, John
Marsh, Diane Mularz, Chibuike Nwaeze, Craig Prall, Bill Quigley, Andy Reho, Jeff

Rogers, Hank Seebeck, Lisa Strader, Shel Sutton, John Tisaranni, Doug
Vandermade, Sheryl Veazy-Rudy, and Kendall White.

The Object Management Group has been essential to the publication

of this work, thanks to Cheryl Bissonnette, Bill Hoffman, Kelly Kassa, Jon

Siegel, John Slitz, Dr. Richard Soley, Geoff Speare, Chris Stone, and Lydia
Thomas. -

Special thanks to Steve Black, Mark Bramhall, David Chappell, Reg-

gie Counts, Joe Croghan, John Eaton, Norman Eko, Alan Ewald, Charlie

Green, Jim Green, Jed Harris, Jack Hassall, Ellis Horowitz, Andrew Hutt,

Ole Jacobsen, Neil Jacobson, I-Iuet Landry, Eric Leach, John Leary, Marie

Lenzi, Jacob Levy, Geoff Lewis, Denise Lynch, Cliff Mauton, Todd Pelfrey,

ix



10

 

ACKNOWLEDGMENTS

Marty Polluconi, Michael Powell, Richard Probst, Yllona Richardson, Bob

' Rockwell, Mark Roy, Mark Ryland, John Rymer, Dave Seres, Cathy Sloan,
Craig Thompson, Fred Waskhewicz, Andrew Watson, Dave Zenie, and all

the others who helped us in our quest for understanding. These people gave

us inspiration, motivation, and important ideas. ' -

Finally, We wish to thank our Wives and families for their patience, love,

and unconditional support While writing this book.

10



11

Con

 

tents

 
Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Prob1emDefinition 1

CORBA—The Basis for a Solution . . . . . . . . . . . . . . . . 2

Systems Integration Using CORBA—The Opportunity . . 2

A Framework for Change . . . . . . . . . . . . . . . . . . . . . . 2

Synopsis of the Book . . . . . . . . . . . . . . . . . . . . . . . . . 3

PART I THE PRINCIPLES OF SYSTEMS INTEGRATION

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Issues in Computing: Technology, Market,

and Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Stovepipe Systems . . . . . . . . . . . . . . . . . . . . . . . . . 9

Proprietary Lock—In . . . . . . . . . . . . . . . . . . . . . . . . 11

Inconsistencies between Design and Implementation . 13
Standards Issues . . . . . . . . . . . . . . . . . . . . . . . . . 16

Lack of Tools for Creating Effective Abstractions . . . . 17

Lack of Security Facilities . . . . . . . . . . . . . . . . . . . 18

Heterogeneous Systems Integration . . . . . . . . . . . . . . . 18

Vision for Systems Integration . . . . . . . . . . . . . . . . 19

xi

11



12

xii

 

CONTENTS

The Role of CORBA . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‘23

Standards Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Standards Background . . . . . . . . . . . . . . . . . . . . . . . . 26
Benefits of Standardization . . . . . . . . . . . . . . . . . . . . . 28

Selecting a Standards Strategy . . . . . . . . . . . . . . . . . . 29
Standards Reference Models and Profiles . . . . . . . . . 31

Implementing a Standards Strategy . . . . . . . . . . . . . . . 32
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

An Introduction to CORBA . . . . . . . . . . . . . . . . . . . . 35

Object Management Architecture . . . . . . . . . . . . . . . . 36

Object Request Broker . . . . . . . . . . . . . . f . . . . . . . . . 37

Interface Definition Language . . . . . . . . . . . . . . . . . 37

Implementing OMG IDL Specifications . . . . . . . . . . 40

Dynamic Invocation Interface . . . . . . . . . . . . . . . . . 42

ObjectAdapters . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CORBA Acceptance . . . . . . . . . . . . . . . . . . . . . . . . 44

Product Availability . . . . . . . . . . . . . . . . . . . . . . . 44

Underlying CORBA . . . . . . . . . . . . . . . . . . . . . . . 45
CORBA 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Object Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Object Naming Service . . . . . . . . . . . . . . . . . . . . . 48

Object Event Service . . . . . . . . . . . . . . . . . . . . . . . 50

Object Relationship Service . . . . . . . . . . . . . . . . . . 51
Common Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Software Architecture Design . . . . . . . . . . . . . . . . . . 55

Establishing Architectural Vision . . . . . . . . . . . . . . . . 57
Role of CORBA in Software Architecture . . . . . . . . . . . 57

Architecture Process Compared to Methodology . . . . . . . 61

Integration Capability Maturity Model . . . . . . . . . . . . . 61

Software Architecture Design Process . . . . . . . . . . . . ., 64

The Mining Process . . . . . . . . . . . . . . . . . . . . . . . . 66

The Farming Process . . . . . . . . . . . . . . . . . . . . . . . 69

Composing and Refinement . . . . . . . . . . . . . . . . . . 70

Prototyping and Lessons Learned . . . . .' . L . . . . . . . 71

12



13

 

CONTENTS xiii

Interface Design Trade—ofi"s Using OMG IDL . . . . . . . . . 72

Software Achitecture Design Principles . . . . . . . . . . . . 75

Abstraction/Simplicity . . . . . . . . .» . . . . . . . . . . . . 76

Interoperability versus Extensibility . . . . . . . . . . . . 77

Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Component Isolation . . . . . . . . . . . . . . . . . . . . . . . 83
Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Separation ofHierarchies . .. . . . . . . . . . . . . . . . . . 86
Software Architecture Patterns . . . . . . . . . . . . . . . . I . 86

Basic Architecture Patterns . . . . . . . . . . . . . . . . . . 87

Advanced Architecture Pattern: Separation

ofFacilities . . . . . . . . . . . ._ . . . . . . . . . . . . . . . . .100
Other Architecture Patterns . . . . . . . . . . . . . . . . . . 103

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

The Need for Security . . . . . . . . . . . . . . . . . . . . . . 110

Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Basic Security Terminology . . . . . . . . . . . . . . . . . . . . . 112

Data Confidentiality . . . . . . . . . . . . . . . . . . . . . . . 112

Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . : . .113

Identification and Authentication . . . . . . . . . . . . . . 113
Access Control . .‘ . . . . . . . . . . . . . . . . . . . . . . . . .113

Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Communication Security . . . . . . . . . . . . . . . . . . . .113

Security Administration . . . . . . . . . . . . . . . . . . . . 114

Non-Repudiation . . . . . . . . . . . . . . . . . . . . . . . . .114
Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Security Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Survey of Related Standards . . . . . . . . . . . . . . . . . . . . 115

ISO 7498-2 Security Architecture . . . . . . . . . . . . . . 115
TCSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Other Criteria Initiatives . . . . . . . . . . . . . . . . . . . . 116

Survey of Related Technologies . . . . . . . . . . . . . . . . . . 117
Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Trusted Computing . . . . . . . . . .' . . . . . . . . . . . .118
GSS-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Security in the CORBA Environment . . . . . . . . . . . . . . 128
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

13



14

xiv

 

CONTENTS

6

PART II THE PRACTICE OF SYSTEMS INTEGRATION

Framework Examples . . . . . . . . . . . . . . . . . . . . . . . . 131

Fresco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Object Linking and Embedding (OLE2) . . . . . . . . . . . . 135

Technical Description of OLE2 . . . . . . . . . . . . . . . . 136

Comparison of OLE/ COM and CORBA . . . . . . . . . . 139

The OpenDoc Framework . . . . . . . ._ . . . . . . . . . . . . . .150

OpenDoc User Interface . . . . . . . . . . . . . . . . . . . . .151

OpenDoc Technology and CI Labs . . . . . . . . . . . . . . 154

The OpenDoc Architecture . . . . . . . . . . . . . . . . . . . 156
Autonomous Land Vehicle . . . . . . . . . . . . . . .' . . . . . . 162

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

In-Depth Example: The DISCUS Framework . . . . . 167

Framework Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 168

Application Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 172

The Core Framework Operations . . . . . . . . . . . . . . . 172

OMG IDL Specifications for Application Objects . . . . 175

« Data and Table Objects . . . . . . . . . . . . . . . . . . . . . . . 188

Data Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . .188

OMG IDL Specifications for Data Objects . . . . . . . . . . . 191

Data Object Properties . . . . . . . . . . . . . . . . . . . . . . 195

Table Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . i 196

Factory Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Factory Concept . . . . . . . . . . . . . . . . . . . . . . . . . .201

OMG IDL Specifications for Factory Objects . . . . . . . 203

Managing Data and Table Objects . . . . . . . . . . . . . .205
Framework Services . . . . . . . . . . . . . . . . . . . . . . . . . 206

The Trader Service and Metadata Objects . . . . . . . . .206
Conversion Service . . . . . . . . . . . . . . . . . . . . . . . .208

Public Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Object Gateway . . . . . . . . . . . . . . . . . . . . . . . . . .211

DISCUS Implementation . . . . . . . . . . . . . . . . . . . . . .212

Clients and Object Implementations . . . . . . . . . . . .212

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

CORBA Compliance . . . . . . . . . . . . . . . . . . . . . . .214

Asynchronous Support . . . . . . . . . . . . . . . . . . . . . .215
Convenience Functions . . . . . . . . . . . . . . . . . . . . .220

14



15

 

CONTENTS xv

DISCUS Issues and Futures . . . . . . . . . . . . . . . . . . . .225

Specializations of the Framework . . . . . . . . . . . . . .225

Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Security . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . .227
DISCUS Futures . . . . . . . . . . . . . . . . . . . . . . . . .228

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Object Wrapper Techniques . . . . . . . . . . . . . . . . . . . 231

Integrating Legacy Systems . . . . . . . . . . . . . . . . . . . .232

Types of Wrapping . . . . . . . . . . . . . . . . . . . . . . . . 232

Wrapping Examples . . . . . . . . . . . . I. . . . . . . . . . . . . .238

Wrapping with Remote Procedure Calls . . . . . . . . . .241

Wrapping with Files . . . . . . . . . . . . . . . . . . . . . . .244

Wrapping with Sockets . . . . . . . . . . . . . . . V . . . . . .246

Wrapping with a C API . . . . . . . . . . . . . . . . . . . . .249

Integration with Common Lisp . . . . . . . . . . . . . . . .252

Integration with Smalltalk . . . . . . . . . . . . . . . . . . .253

Wrapping with Scripts . . . . . . . . . . . . . . . . . . . . . . 253

Wrapping with Events . . . . . . . . . . . . . . . . . . «. . . .254

Wrapping with Shared Memory . . . . . . . . . . . . . . . 254

Wrapping with Dynamic Queries . . . . . . . . . . . . . . .258

Wrapping with IPC . . . . . . . . . . . . . . . . . . . . . . . .259

Wrapping with Macros . . . . . . . . . . . . . . . . . . . . . 259

Wrapping with Header Files . . . . . . . . . . . . . . . . . .261

Implementation Trade-Offs for Object Wrapping . . . . . .262
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Systems Integration Guidance . . . . . . . . . . . . . . . . . 269

The Importance of Software Architecture . . . . . . . . . . .269

Architecture Relation to Cost . . .7 . . . . . . . . _ . . . . . .271
CORBA Relation to Architecture . . . . . . . . . . . . . . . 271

CORBA Reengineering Process . . . . . . . . . . . . . . . . 271
Market and Standards-Based Decisions . . . . . . . . . . . .272

Making Objective Decisions . . . . . . . . . . . . . . . . . . 272

Standards and Technology Cycle . . . . . . . . . . . . . . .272

Leading Edge Awareness . . . . . . . . . . . . . . . . . . . . 274
Mainstream Awareness . . . . . . . . . . . . . . . . . . . . .276

Impacting the Standards Process . . . . . . . . . . . . . .276

15



16

xvi CONTENTS

Product Independence . . . . . . . . . . . . . . . . . . . . . . . .278

How to Depend on the Standard . . . . . . . . . . . . . . .278

Using OMG IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Quality Software Architecture . . . . . . . . . . . . . . . . . . .279

Key Architecture Qualities: Stability
and Cost Minimization . . . . . . . . . . . . . . . . . . . . .280

Iterative Design . . . . . . . . . . . . . . . . . . . . . . . .281

Systems Integration Priorities . . . . . . . . . . . . . . . . . . . 281

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Appendix: ORB Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

SunSoft Distributed Objects Everywhere (DOE) . . . . . .287

Static Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . .288

Fine-Grain Objects . . . . .’ . . . . . . . . . . . . . . . . . . .289
Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291

Object Services . . . . . . . . . . . . . . . . . . . . . . . . . . .292

Digital Equipment ObjectBroker . . . . . . . . . . . . . . . . . 293

Experience with DEC ObjectBroker . . . . . . . . . . . . . 293

IONA Technologies’ Orbix . . . . . . . . . . . . . . . . . . . . . .295

IBM System Object Model (SOM) . . . . . . . . . . . . . . . . 296

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

16



17

 

Executive Summary

 
In this book, we introduce the theory and practice of systems integration us-

ing standard object technology, Common Object Request Broker Architecture

(CORBA). The purpose of systems integration is to provide interoperability
between software components and to provide for system adaptability as the

system evolves. This book goes beyond the basics of systems integration and
CORBA to show readers how to maximize the benefits of these technologies

and practices throughout the system life cycle.

PROBLEM DEFINITION

Today’s software systems comprise islands of automation. Each software

component performs some limited range ofuseful functions, but components

T do not interoperate effectively. The integration that exists is insufficient and
does not evolve gracefully with the component technologies. The scale of this

problem ranges from the the user’s desktop, to interuser, interdepartment,
and interorganizational levels. Key consequences ofpoor systems integration
include:

0 Stovepipe systems. These systems are poorly integrated systems that

have ad hoc or proprietary integration solutions. Poorly integrated sys-

tems have high maintenance costs, resist adaptation to changing user

requirements, and cannot evolve with commercial technology.

0 Organizational productivity impacts. Poor integration leads to substan-

tial organizational inefficiencies, such as redundant data entry, mul-

tistep data conversion, and ad hoc file transfers. These processes are

1

17,



18

 

2 EXECUTIVE SUMMARY

costly, time consuming, and error prone. Poor systems integration re-

quires users to be knowledgeable about multiple disparate applications.

Users trained on one system cannot transfer skills to other systems.

CORBA — THE BASIS FOR A SOLUTION

CORBA is an industry standard technology infrastructure for systems inte-

gration. Some of its key benefits include:

1. CORBA simplifies distributed computing and application integration. It

is easier to use than other distributed computing and integration mech-

anisms; therefore, it saves time and reduces software costs. CORBA also

provides many useful new flexibilities compared to other mechanisms.

2. CORBA is object oriented. This means that architects and developers

can improve their software structure, make their software more flexi-

ble, reuse software, seamlessly integrate legacy software, and develop

new capabilities rapidly. CORBA provides a uniform layer encapsulating

other forms of distributed computing and integration mechanisms.

3. CORBA is a stable technology supported by a growing coalition of com-

mercial software vendors. CORBA is a standard from the world’s largest

software consortium, the Object Management Group (OMG), and sup-

ported by X/Open, the Open Software Foundation (OSF), the Common

Open Software Environment (COSE), CI Labs, X/Consortium, and oth-
ers. The core elements of CORBA have been stable since 1991. With

CORBA, OMG has reengineered the standards process to allow suppli-

ers and end users to create new standards for interoperability efficiently.

SYSTEMS INTEGRATION USING CORBA — THE OPPORTUNITY

CORBA is an enabling technology. Bad systems integration practices can

lead to stovepipe systems regardless of whether CORBA is used. This book

is a guide on how to follow good architecture principles that utilize CORBA
for maximum benefits.

Key benefits of our approach to CORBA-based systems integration in-

clude: faster system delivery, enhanced software reuse, increased system

adaptability, reduced maintenance costs, focused research activities, en-

hanced system interoperability, enterprise systems integration, andother
benefits.

A FRAMEWORK FOR CHANGE

In Chapter 4 we define an integration capability model, which enables orga-
nizations to assess their current systems integration practices. This model

allows organizations to discover the substantial benefits of improved sys-

18



19

 

SYNOPSIS OF THE BOOK 3

tems integration compared to current practices. The integration capability

model includes the following levels:

Level 6. Standard Architectures
Level 5. Frameworks

Level 4. Distributed Objects (CORBA)

Level 3. Mature Remote Procedure Calls (OSF DCE)
Level 2. Miscellaneous Mechanisms

Level 1. Commercial Off-the-Shelf Solutions

The capabilities range from organizations that do no value-added inte-

gration (level 1) to organizations that drive industry standards (level 6). Most

organizations today practice systems integration at levels 2 and 3. When an

organization first adopts CORBA, it begins at level 4. Substantial benefits

result from level 5 practices, and technology leadership is demonstrated at

level 6. This book teaches readers how to perform systems integration in

order to achieve level 5 and 6 benefits. The capability model is described in

detail in Chapter

SYNOPSIS OF THE BOOK

Chapter 1, “Introduction,” introduces the paradigm shift that motivates the

increasing role of systems integration. It provides a detailed introduction to

systems integration problems including commercial technology integration,

legacy systems integration, and other key issues. It establishes a vision for

the organizational use of good systems integration practices and CORBA.

Chapter 2, “Standards Strategy,” defines what standards mean and how

they are used effectively. It provides guidance for understanding and ex-

ploiting available standards and shows how an organization can leverage

the work of government organizations and standards groups to define a

comprehensive standards strategy.

Chapter 3, “An Introduction to CORBA,” provides essential tutorial in-
formation about OMG standards: CORBA, OMG’s Interface Definition Lan-

‘ guage (OMG IDL), CORBAservices (Common Object Service Specifications),
and CORBAfacilities (OMG Common Facilities).

Chapter 4, “Software Architecture Design,” includes the foundational

theories of systems integration. It describes the integration capability model

and defines architecture and framework concepts. It establishes an inte-

grated software architecture design process and defines details of how to

use OMG IDL for controlling design trade-offs. It also compares the archi-

tectural patterns that support the theory and shows the quantitative impact
of each architectural approach.

Chapter 5, “Security,” discusses one of the most challenging aspects of

systems integration. This chapter surveys key security technologies that

19



20

 

EXECUTIVE SUMMARY

contribute to an overall security solution and establishes a vision for how

they will interact in future systems constructed with OMG standards.

Chapter 6, “Framework Examples,” describes Microsoft Object Linking

and Embedding (OLE), OpenDoc, and X11R6 Fresco. These are some of

the key commercial software architectures that will impact future systems

integration. .

Chapter 7, “ln—Depth Example: The DISCUS Framework,” discusses

DISCUS, one of the most mature CORBA~based application architectures.

It is presented here as a detailed example of systems integration practices.

DISCUS incorporates many useful design examples, techniques, and lessons

that can be transferred to new system designs and implementations.

Chapter 8, “Object Wrapper Techniques,” discusses object wrapping, the

core competency in systems integration for developers. This chapter is an

essential tutorial about wrapping techniques for architects and developers.

The chapter gives examples of object wrapping for the most commonly oc-
curring integration challenges.

Chapter 9, “Systems Integration Guidance,” summarizes the whole book

in terms of six key guidelines.

Appendix, “ORB Products,” contains product overviews of some of the

major CORBA Object Request Brokers: Digital Equipment Corporation’s

ObjectBroker, SunSoft’s DOE, IONA’s Orbix, and IBM’s System Object Model
(SOM).

20



21

 

THE PRINCIPLES
OF SYSTEMS

INTEGRATION 

21



22

 



23

 

Introduction

 
In this introductory chapter, we identify the key issues that motivate this

book. In particular, we wish to heighten the contradictions in current sys-

tems integration practice. In this Way, We can summarize all of the key

technical and related nontechnical issues. In the balance of the book, we

Will explain Object Management Group (OMG) standards and other key

concepts needed for successful systems integration. OMG’s core standard,

the Common Object Request Broker Architecture (CORBA), provides many

technical benefits. We provide added value by addressing howto use the
OMG standards effectively in systems integration. This chapter focuses on

systems integration issues prior to the adoption of CORBA and prior to the

application of the techniques presented in this book.

While most of the book focuses on the technical issues, this chapter will

i identify some of the factors outside the technical realm that influence sys-
tems integration. For example, software architectures often mirror our or-

ganizational structures, and systems integration success is dependent upon

organizational support for the architects and developers.

Not long ago, a stand-alone program comprising a command-line inter-

face and a few specialized functions Was sufficient for a successful software

application. Since then, end users’ expectations have changed dramatically;

the scope of requirements also has changed. Today it is expected that soft-

ware systems will have graphical user interfaces; software systems will

incorporate complex data types such as imagery, graphics, and multimedia;

and software systems will have integrated database capabilities. Hetero-

geneous computing environments are a reality in most organizations where

differences between platforms reinforce the need for rnultivendor integration
solutions.

23



24

8

 

INTRODUCTION

Systems integration requirements will become even more challenging in

the near future. For example, universal data interchange between applica-

tions will be expected; applications will need to support computer-assisted

human collaboration, and these capabilities will be needed in mobile dis-

tributed environments, supported on a wide range of platforms and net-

works. Standards support will be a key software product discriminator for

end users; however these standards might not guarantee interoperability.
For most organizations, it is not feasible to build systems of this scope

using custom software. As a result, the practice of building systems has

changed from custom programming to systems integration from preexisting

components. Custom applications have a role in meeting highly specialized
needs, such as organization-specific user interfaces. As the diversity and

capabilities of commercial software increase, the need for custom software

decreases. For complex functions, it is usually more cost effective to reuse

existing software than to create custom software. The majority of software

in future systems will be preexisting, obtained from commercial vendors and

other sources. Systems integration has a role in providing interapplication

interoperability and system customization beyond the off-the-shelf capabil-

ities; design and development of this custom software is a key focus of this
book.

The growing supply of preexisting software is displacing the need for

custom software. Preexisting software sources include in-house software,

commercial software, public domain software, freeware, and shareware. In-

house software can include legacy systems software, prototype software, and

software designed for in-house reuse, such as class libraries. Commercial

software is available directly from suppliers, retail outlets, industry confer-

ences, and other advertising events and media. Public domain software is

freely available software that is not copyrighted and can be used without

restrictions. Freeware is similar, except that it carries a copyright notice.
Shareware is software that is available for a nominal fee and also carries a

copyright. Copyright can restrict the reselling of freeware and shareware,

but the copyrights generally allow the usage of the software in end-user sys-
tems. Public domain, freeware, and shareware can be obtained from users’

groups, from vendors, and from public networks (including the Internet and

commercial computer networks).

The practice of systems integration can range from informal ad hoc

programming to formal structured methodologies. In many organizations

these practices coexist: the formal practices creating the documentation and

the informal practices creating the working system.

The difficulties of integrating preexisting components create a need for

highly creative programmers. Many successful programmers are masters of

scrounging software components and integrating components in ingenious

Ways. These skills are essential to virtually every software engineering ac-

tivity; ad hoc integration is expedient and leads to demonstrable results.

24



25

 

ISSUES IN COMPUTING 9

Often these integration solutions are brilliant, but these achievements are

seldom sustainable. Ad hoc integration usually produces undocumented brit-

tle systems that are expensive to maintain and costly to upgrade. When staff

turnover occurs, organizations find themselves with cryptic code that is ex-

tremely difficult to understand. This code is practically unmodifiable and

at some stage must be thrown away, possibly: to be replaced by another

programmer’s undocumented code.

Formal design methodologies generally are not supportive of preexist-
' ing software integration. Methodologies typically address subsystem level

issues that are relevant to the design of a single custom application. In

addition, change to requirements during the system life cycle are a major

system cost driver, perhaps involving up to 50 percent of all software costs

[Horowitz, 93]. Most methodologies do not address the issues of integrating

independently designed components and maintaining systems through long

life cycles entailing requirements changes and multiple system extensions.

In this book, we offer some alternatives to the shortcomings of ad hoc

integration and formal methodologies. We show how to leverage practi-

cal systems integration skills into the creation of documented, extensible,

standards-based systems. This book offers a new way to think about sys-

tems integration and a new way to package the integration solution. Much

of the ad hoc integration code will still reside in the resulting system, but

it will be incorporated in a way that enables the reuse of integration so-

lutions as well as the component software. We believe that our approach

enables the development of robust software architectures that support en-

hanced reusability and extensibility. These software architectures contain

an appropriate balance between the need for formal documentation and the

realities of programming with preexisting components.

In this chapter we introduce the key issues of computing technology and

systems integration. Then we overview the key concepts in our software

architecture design and integration approach.

ISSUES IN COMPUTING: TECHNOLOGY, MARKET, AND ORGANIZATIONS

The following are some important factors in computing that tend to exacer-

bate systems integration challenges. These issues are challenging to resolve

because they combine business, human, and technological factors. Each sys-

tems integration organization should be aware of these issues and possible

approaches for mitigating the consequences.

Stovepipe Systems

A stovepipe system is a set" of legacy applications that resists adaptation to
user and organizational needs. To the user, stovepipe systems appear to be

25



26

10

 

INTRODUCTION

unfriendly legacy applications that lack interoperability. These deficiencies

become obvious when compared with inexpensive PC software. Stovepipe

systems are brittle; they do not tolerate change. In contrast, computing tech-

nology and facilities are changing rapidly. As systems change and age toward

obsolescence, users experience an increase in bugs and system failures.

Some key characteristics of stovepipe systems include:

0 Monolithic, vertically integrated applications

Closed system: custom proprietary solution
0 No discernible software architecture

—system structure poorly understood by developers and maintainers

- Lack of provision for reuse and extension

Slow development and deployment

0 Expensive maintenance and evolution

Stovepipe systems are the source of many problems for end users, de-

velopers, maintainers, and management. Even though the problems are ob-

vious, the solutions are not obvious, even to computer industry experts. We

have consulted with many senior technologists and experts in the computer

industry who believe that there are no effective solutions and that even the

best next-generation systems of today will be the stovepipe systems of the
future.

We believe that there are two fundamental causes of stovepipe systems:

1. The way that systems are acquired.
2. Lack of architectural focus.

New systems are typically acquired in a manner that facilitates the cre-

ation ofa stovepipe system. Many acquisitions are driven by external system

requirements, such as the user interface functionality. Most requirements

documents are snapshots of user needs. Changing requirements are the ma-
jor cost drivers in software development and maintenance. [Horowitz, 93]

Acquisitions typically involve organizational relationships that maxi-

mize the negative characteristics of stovepipe systems. For example, an

inventory system for a parts supply department might be acquired from the
outside contractor who submitted the lowest bid. The contractor’s interest

may be to deliver a minimal cost system that meets the requirements. To

cut costs, the system may contain various ad hoc integration solutions and

the presence of these may benefit the contractor with more work later, as

the customer’s requirements change. The parts supply department, focused
on its own internal needs, may acquire the system without much considera-

tion of how the new system will interoperate with the rest of the enterprise.

Later, it may be discovered that integration with the parts consumer’s sys-

tems is highly desirable, but difficult to achieve. In this example, the new

26



27

 

ISSUES IN COMPUTING 11

inventory system becomes a stovepipe system primarily because of the way

it is acquired.

The other fundamental cause of stovepipe systems involves a lack of

architectural focus. Throughout this book, we present the principles and

practices of how to use CORBA with a strong architectural focus in order

to overcome the deficiencies of stovepipe systems. Architectural focus can

be derailed in many ways. Inadequate training and experience is the most

significant problem. Few university curricula include software architecture

training. Architecture-level design is not widely practiced and taught by

computer industry experts.

Individuals and organizations can easily lose their architectural focus

to external influences, such as marketing information from commercial soft-

ware vendors. Due to their substantial marketing expenditures, commercial

vendors are the dominant sources of information for users and developers.

Not all, but some marketing information is biased, and much of the informa-
tion contradicts information from other vendors. These contradictions are

the source of much confusion for users and developers. Architectural focus

is strictly a user/developer concern that vendors may address in product-

ix specific ways.

Proprietary Lock-In

A widely accepted practice of commercial vendors and systems integrators is

to build proprietary integration solutions among software components that

they develop and sell. Virtually all office automation packages are integrated

in this manner. We call this practice proprietary lock-in. Proprietary lock-

in can be the result of a specific marketing strategy. More likely, it is the

natural result of an isolated system design and development. By default,

independently developed computing systems will lack interoperability and

adaptability.

Proprietary lock-in inhibits system extension. System extensions are the

most commonplace of software activities and the most expensive driver of
software costs [I-lorowitz, 93]. Once an organization commits to a propri-

etary solution, it is very difficult to extend the system without the vendor’s

involvement. Most end-user organizations have very little control over soft-

ware vendors; hence software costs are driven by external organizations that

have no direct interest in minimizing software costs.

Adaptability is the key quality of a system designed to minimize software
costs. Software architecture is the functional structure of the system that v

provides adaptability.

Good software architectures are based on only two types of design ele-

ments: things that are stable and things that can be controlled. Standards

represent the stable technology elements. If a standard is actively supported

by multiple vendors, then the standard is likely to be the most stable, lowest-

risk technology choice, compared to any proprietary technology. Control-

27



28

12

 

lNTRODUCT|ON

lable design elements are those that are under the direct control of the user

organization as well as system characteristics that can be changed inexpen-
sively. ’

A key part of the problem is that very few end users have identified soft-
ware architecture as a deliverable part of a computing system [Horowitz,

93]. Traditionally, the focus of system acquisition has been on predefined

user interface requirements. Other types of requirements are difficult to

verify except at the computer-user interface. Since software architecture is

the internal structure of the system, user requirements have little or no

relationship to software architecture. Without a deliverable software archi-
tecture, the end user invites an undocumented lock-in integration solution.

Large—volume end users are beginning to demand open systems compli-

ance, including conformance to standards profiles. (See Chapter 2.) Stan-

dards groups such as the Object Management Group (OMG) are making

excellent progress creating multivendor interoperability standards, but avail-
able standards are far from addressing all of the end user interoperability

needs. Systems integration and software architecture are needed to fill the

gap between available standards and end user interoperability needs.

Another way vendors enforce lock-in is through data formats. Many

packages provide data format translators for importing data from competi-

tor’s packages but no corresponding filters for exporting data to other appli-

cations. Once the end user imports data into a lock-in application, it becomes

effectively trapped in the vendor’s proprietary data format.
As a least common denominator, plain ASCII text usually can be trans-

ferred between applications, with compromise of data quality, such as pic-
tures and formats. A number of third-party vendors, such as KeyPack and

BlueBerry, sell high-quality filter packages to support multivendor data in-

terchange. A software architecture in the end-user system can leverage these

technologies to mitigate the lack of export filters in some commercial pack-

ages. In addition to application lock-in, vendors may hamper interoperability

through platform lock-in.

Although decreasingly common among UNIX vendors, platform lock-in

is still an active practice among PC operating systems vendors. In effect, plat-

form dependencies restrict portability of third-party software and end-user

software to foreign platforms. Many vendors need to maintain several inde-

pendent versions of their products. A common description of this problem is
that vendors need to maintain one version for Microsoft Windows platforms '

and another version for the Macintosh, RISC, and other platforms.

The cost of maintaining software with proprietary platform application

program interfaces (APIs) is prohibitive for most volume end users, who find

these platform API’s unsatisfactory as de facto standards because they are

beyond their development resources to use effectively. This excess cost has

two aspects: excess complexity and technology stability.

Complex proprietaryAPIs often require highly trained development staff

to utilize them effectively. These skills are not directly transferable between

23_



29

 

ISSUES IN COMPUTING 13

open systems and proprietary platforms. Training of programmers can take
several years, and maintaining this separate skill base is a prohibitive cost
factor for volume end users. \

A key element of technology instability is technology evolution. Tech-

nology evolution requires maintenance costs, such as product version up-

grade, upgrading integration code, testing, training, help-desk support, and
so» forth. The maintenance costs are increased due to the continual technol-

ogy evolution and obsolescence of proprietary technologies.

At the desktop level, there are likely to continue to be several incompat-

ible APIs, including Macintosh, Microsoft Windows, Common Open System

Environment (COSE), Common Desktop Environment (CDE), OPENSTEP,

and Taligent. In heterogeneous environments, there is likely to be some need

for platform-dependent custom software. In the section titled Advanced Ar-
chitecture Pattern: Separation of Facilities on page 97, we describe an archi-

tecture strategy for minimizing the potential costs supporting those platform

dependent APIs.

, Inconsistencies between Design and Implementation

The traditional waterfall system development process comprises a top-down

design process starting with end—user requirements. The waterfall concept
is implicit in most formal system design processes. Regardless of whether
the analysis and design methodology is based on structured programming,

object orientation, or design patterns, many methodologies rely exclusively

on top-down analysis of the application problem. Waterfall methodologies
assume that the application problem can be fully understood before imple-

mentation begins. We believe that this is a fundamentally flawed assump-

tion. Implementation experience is essential to the creation of good software
architectures.

The application problem (derived from end-user requirements) and the

. technical problem (for the software architect) are different. When the inte-
gration of preexisting components is the dominant development paradigm,
we have found that the essential understanding of the technical problem is

gained during the integration process. It is very difficult to scope this type
of effort because the implementation requirements do not become appar-

ent until each subsystem is integrated. Project planning involves substan-

tial guesswork. Project managers cope with this uncertainty by employing

highly talented programmers who can bail out a project, regardless of the
complexity that is discovered during implementation. In practice, lessons
learned during integration seldom bubble up to the formal system design.

There is a basic disconnect between formal development methodologies

and the informal process of system implementation. Due to their respective
roles, managers and senior staff are engaged in the formal process while

programmers conduct the informal process. The authors have participated
in projects where there is minimal communicationbetween these formal and

29



30

14

 

INTRODUCTION

Figure 1.1. Traditional waterfall process.

informal processes, except for formal process documents that programmers
are required to produce. Many programmers View the formal process as a
burden and View their real task in the context of the informal process that
produces the actual system implementation. Many managers are willing to
relax conformance of the implementation to the formal specification in favor
of successful implementation demonstrations.

Because the formal process appears to not provide substantive benefits
to the informal process, senior staff and programmers have little motivation

to maintain consistency between the design and the implementation. There
is also a general lack of tools that can enforce consistency and reveal incon-
sistencies between implementation and architecture. At best, rigid confor-
mance to formal methodologies is uncorrelated to project success, and there
are many examples of projects where formal methodologies have had an ad-
verse impact on project success [Coplien, 94]. What is needed is a balanced

approach that can allow programmers the freedom to pursue informal in-
tegration processes Within the context of a formal system architecture that

is consistent with the implementation. Our guidance for this approach is

30



31

 

__ ISSUES IN COMPUT!NG 15

summarized in Chapter 9. The balance of the book provides the details of
the approach for software architects and developers.

'I‘wo non-waterfall-based methodologies include the incremental develop-

mentprocess used in artificial intelligence and Rapid Structured Prototyping
[Connell, 87]". These methodologies are called spiral development processes,

in contrast to the waterfall—based processes.

Both methodologies recognize that the problem is poorly understood at

the beginning of the project and that understanding of the problem grows

as prototypes generate feedback from end users. The end—user involvement

reduces overall project risk by giving the user experience with the new sys-

tem and impacting the development process as it unfolds. The incremental

development process involves knowledge gathering from a domain expert,

the creation of a prototype knowledge base, and the refinement of the knowl-

edge with end-user involvement. Rapid Structured Prototyping is a phased
methodology where each phase defines system extensions, builds the ex-

tensions, and gathers end-user feedback. The process is iterated with each

 

  
  

  
  

 
 
  

PROGRAM
PLANNING

Precursor R&D

synsriggstlc R&DDel 11 tudyTet: Assessment
Working Group

 

Figure 1.2. Spiral development.

31



32

16

 

INTRODUCTION

experiment providing the planning for the next phase. Unfortunately, spiral

processes do not produce system architectures as a natural outcome; never-

theless, they assume that programmers can reimplement and extend major

features of the system at any time during the life cycle.

Standards Issues

Standards and the standards development process have been evolving over

many years. Standards and their processes that precede OMG and CORBA

have demonstrated some "key strengths and weaknesses.

In general, standards hold out the promise of interoperability and com-

ponent interchangeability. Current standards cover virtually every aspect

of computer systems, and many organizations have compiled comprehen-

sive profiles of standards that attempt to make some sense of the usage of

standards in the context of system design. (See Chapter 2.)

Standards as a Whole have not been effective in delivering the promised

benefits of interoperability and interchangeability. Part of the reason is due

to the organization of formal standards bodies. Formal standards are au-

thored by representatives from profit-making industrial firms that have

strong proprietary motivations. For many companies, the creation of a stan-

dard is viewed as a strategic opportunity. If a, company can standardize its

own product specifications in favor of a competitor’s product specifications,

then it can enter the market early with the first standards-compliant product

While waving the flag of the standards organization.

Many standards play the role of business regulations—laws installed by

one business to restrict the commerce of potential competitors. Excessively

complex standards can effectively inhibit market entry of new products. For

example, some have estimated that it would cost on the order of $100 million
to create a standard relational database product from scratch.

In formal standards bodies, standards grow in complexity dramatically’

during their adoption process. One wonders if the size of a standard is only

limited by the authors’ ability to carry it. Large, complex standards have

many technical loopholes. Various Waivers are written into many standards
to allow a Wide range of compliant products. For most standards, there are

products at all levels of compliance, and vendors can selectively support any

part of the standards and ignore others. Compliance tests are useful, Where

they exist, but they do not cover the broad range of applicable standards in

computing applications.

Even if standards addressed all these issues, a single standard is un-

likely to meet all the needs of end-user environments. In any given standards

area, there are competing standards. In order to build effective integration

solutions, the coexistence of multiple standards and proprietary solutions

for each capability must be considered.

A formal standards process requires four or more years; many formal
standards are obsolete when they are finally adopted. Innovative vendors

32



33

 

ISSUES IN COMPUTING 17

can easily outpace a formal standards process, providing significant new

proprietary capabilities.
If traditional formal standards do not provide portability and interop-

erability, what is their purpose? One explanation is that standards play an

essential role in establishing technology markets. A standard lends an air of

credibility to a technology that translates into market growth. For example,

without the Structured Query Language 1989 (SQL89) standard, supported

from its inception by IBM, the relational database market would not have

developed into the industry-dominating force that we know today. At both

marketing and technical levels, standards reduce risk for both suppliers and
consumers.

Prior to OMG, standards benefits were at the marketing level. For many

consumers, the marketing level is equivalent to the political decision-making

level. With OMG’s focus on multi-language API specifications, OMG stan-

dards also potentially provide real technical benefits, such as interoperabil-

ity and portability.

l Lack of Tools for Creating Effective Abstractions

The creation of higher-level machine abstractions is a fundamental concept

ofcomputer science. For our purposes, an abstraction is a simplified interface

that provides access to some underlying lower level mechanism. Program-

ming languages are abstractions of the underlying machine code. Databases

are abstractions of persistent storage. User interfaces are abstractions of

computer programs. Abstractions are useful for managing complexity, and
effective abstractions can reduce system cost by simplifying integration.

Object orientation is essentially an abstraction-building paradigm. A
fundamental characteristic of objects is encapsulation, which is an abstrac-

tion for some combined unit of software and storage that hides internal

data representations, algorithm choice, and other implementation details.
At the level of systems integration, effective tools for creating abstractions

are lacking with the possible exception of Object Management. As we dis-

cussed, system design and system implementation tend to diverge early

in the life cycle. When the system design and the system implementation

are completely separate descriptions, keeping the two in synchronization

is a fundamental problem. Auditing of code and reverse engineering might

reveal some consistency issues, but these techniques have not been Widely

applied in practice. Consider this question: What project manager would risk
breaking a working system to enforce architecture consistency and would be

willing to pay for it?

What we describe herein is an approach based on Object Management

that addresses many of these issues. There is a machine verifiable relation-

ship between the software architecture and the system implementation. To
create highly effective abstractions of complex system components (so-called

33



34

 

INTRODUCTION

black box abstractions), an implementation—independent way to specify these

abstractions is needed, such as that provided by the OMG’s Interface Defi-

nition Language (IDL).

Lack of Security Facilities

Security is a pervasive issue in computing systems. The importance of se-

curity is exacerbated by the popularity of networking, since networking en-

ables large groups to access vulnerable computing resources. For example,

security is a critical issue on the current Internet because network hackers

have penetrated and disrupted many systems that are directly connected,

including systems containing vital operational functions, such as payroll or
classified data.

Security is a requirement that most end users acknowledge, but few or-

ganizations are able to realize any workable solutions. Computer security

in a networked interoperable environment involves both horizontal and ver-

tical issues. Security must be enforced pervasively across all services and

communication interfaces (horizontal). Security also must apply to every

level of the system, from the applications down to the core of the operating

system kernel. In practice, computer security is very difficult to achieve,

short of complete system isolation.

Commercially available security technology is lacking. Technologies such

as Remote Procedure Call (RPC) based Security Service are useful but only a

partial solution. Effective solutions must be enforced pervasively across ev-

ery type of integration technology, not just distributed RPC. Security tech-

nologies, such as special-purpose operating systems and Compartmented

Mode Workstations, have never achieved the expected commercial success.

We believe that CORBA provides new opportunity for the creation of se-

cure software architectures and commercially viable security technologies.

Chapter 5 contains a discussion of computer security, including issues, stan-

dards activities, and security architecture approaches.

HETEROGENEOUS SYSTEMS INTEGRATION

Systems integration is an increasingly important discipline. As software

technology continues to evolve, there is a growing trend toward the con-

struction of systems from preexisting components. This trend is due in a

large part to readily available high-quality commercial software packages
that perform most major functions in today’s information systems. In the

1970s, complex software systems were configured almost exclusively from

custom software components, with the exception of perhaps a major compo-

nent, such as a commercial database package. In the 1980s, the availability

ofbitmapped graphics workstations led to the development of all-in-one soft-

ware packages so that complex systems could be configured around a major

34



35

 

I‘-IETEROGENEOUS SYSTEMS INTEGRATION 19

package, such as a Geographic Information System (GIS) or a document

processing system. Other components were custom integrated as needed. In

these systems, there remained a gap in interoperability from the end users’

perspective; the system integrator’s role was to provide a level of interop-

erability for the end user that was unavailable in the off-the-shelf software

packages.

Users’ expectations for interoperability have increased dramatically, due

to the readily available highly interoperable platforms such as Microsoft

Windows and Apple Macintosh. Unfortunately, vendor-specific solutions do

not solve today’s heterogeneous systems integration challenges. Information

systems are increasingly heterogeneous; it is rare to find any organization

with a monolithic computing base (all users on the same platform). Increas-

ingly, an organization’s interoperability needs span its customers’ and sup-

pliers’ networked offices. Heterogeneity will increase as software becomes

more portable and the role of computing becomes ubiquitous, with comput-

ing resources ranging from wireless notepads to massively parallel super

computers. I

I Vision for Systems Integration

Ideally, systems integration should be as simple as plugging together a home

audio system. In practice, it is a challenging activity and rarely results in a

good software architecture. Systems integrators face problems With, among

other things, different

Hardware platforms

Software languages

Compiler versions
Data access mechanisms

Component/module interfaces

Networking protocols

Custom integration approaches usually yield point-to-point integration

solutions, and the system becomes difficult to extend due to the complexity
and brittleness of the solution.

Our Vision for systems integration is founded on the need for system

adaptability through the system life cycle. In this book, we introduce soft-

ware architectures (integration frameworks) as the core concept for realizing

adaptability. We use the terms architecture and framework interchangeably.

Common interfaces is a key property of good software architectures. Ide-

ally, the same common interfaces are supported by custom components and

commercial software. Unfortunately, commercial interfaces are not always

the most appropriate solutions; they may mismatch the cost, complexity,

portability, or stability needs of the application system. The role of the soft-

35



36

20

 

|NTRODUCT|ON

Figure 1.3. Custom interfaces vs. framework based.

Ware architecture is to provide the right system-specific abstraction that can

be interoperable with commercial interfaces.
The framework should conform to the object-oriented paradigm, for some

practical reasons. For example, the object paradigm provides encapsula-
tion that enhances component isolation. Object orientation supports design
reuse through inheritance. Polymorphism supports component interchange-
ability. Object Management is a particularly appropriate technology for im-
plementation of these concepts, although simply practicing these principles
alone can yield measurable benefits. All of the characteristics of the object
paradigm are potentially beneficial, but the realization of these benefits is
closely tied to the design of the software architecture.

In this book, we emphasize that architectures should exploit methodol-

ogy paradigms (such as structured programming, object-oriented analysis
and design) instead of being driven by them. Methodologies are perhaps
the fastest changing of any aspect of technology, and methodologies will go
through many generations during a system life cycle. Good architectures

36



37

 

THE ROLE OF CORBA 21

must transcend ephemeral methodologies in order to provide their benefits

consistently during the system life cycle.

In the implementation of an architecture, all the software subsystems

support the integration framework. A layer of integration code called an

object wrapper may be added to preexisting modules to provide the mapping

between framework operations and application operations. A well-designed

framework will require a minimum of integration code in this layer.

Adaptability comes from the ability to modify or add modules without

having to modify the other components or their integration solutions. The

system should be self-describing, containing sufficient metadata so that new

subsystems can be discovered dynamically by preexisting subsystems. Se-

mantic and data format translations should be layered into the system at

the level of the integration framework, not tightly integrated to individual

applications. These mappings can be installed incrementally as part of the
system evolution, ensuring that legacy interfaces will be maintained as the

system evolves and providing a graceful evolution path from initial proto-

types throughout the system life cycle. Legacy systems provide a special

integration challenge since they often are closed and may provide no access

API or documentation. In Chapter 8 we present various object-wrapping

techniques and examples that can be used during the system’s migration

and integration with other legacy or new systems.

THE ROLE OF CORBA

Interoperability between applications presents similar problems to that of

interoperability between systems, just at a different scale and layer. Many
advancements have been made in the area of systems integration and global

networking.

Today communication networking capabilities are widely available be-

tween systems. Communication networks, phone lines, cables, and fiber are

V available; the necessary hardware also is available to connect systems to
local area or wide area networks, hubs, and switches.

We also have well-defined protocols that allow systems to communicate

by agreeing to certain standards that will be used. The Open Systems Inter-

connection (OSI) 7 layer model provides the definition of each layer and the

services that it must perform.

The lowest layer, the Physical layer, describes how the physical network

is accessed. The Data Link layer is concerned with reliable transmission

across a physical link. The Network layer deals with connection establish-

ment and routing. The Transport layer deals with reliable end-to-end trans-

mission. The Session layer provides connection control. The Presentation

layer is concerned with data syntax and transparency to the applications.

Finally, the upper layer, the Application layer, provides end-user functional-

37



38

 

22 INTRODUCTION

Figure 1.4. OS! 7 layer model.

ity. Much research also has been conducted in the area of security to provide

the protection of data and to provide privacy and data integrity.

CORBA represents the next generation of client—server facilities that

provide highly distributed systems and applications. Conceptually, CORBA

sits in the application layer.
CORBA insulates the client and actually the programmers from the

distributed heterogeneous characteristics of the information system.

0 OMG IDL provides an operating system and programming language

independent interface.

0 Due to this higher level of abstraction, the programmer does not have to

be concerned with the lower layer protocols.

0 The programmer does not have to be concerned with the server location
or activation state.

0 The programmer does not have to be concerned with the server host

hardware or operating system.

38



39

 

COMMENTS 23

0 Certain integration issues are simplified; for example, no longer does a

client or server have to be concerned with byte ordering of data when

transferring data between different platforms.

The Object Request Broker (ORB) provides a seamless infrastructure for

distributed communication across heterogeneous systems. OMG IDL pro-

vides a common language and syntax for client and server access. A remain-

ing issue is the selection ofAPIs used between applications. Technology has

provided excellent connectivity between hardware platforms, but there is

no analogous interoperability at the level of application functionality and

application data interchange. CORBA paves the way for component object

systems. A system builder should be able to select objects from several ven-

dors and connect them as easily as we connect audio components at home

today.

Ifcommercial objects use OMG IDL interfaces and are otherwise CORBA

compliant, we are a step closer to integrating the applications. CORBA en-

ables objects to discover each other at runtime and invoke each other’s ser-

vices. Standardized APIs provide another level of interoperability. OMG has

a growing set of API standards, called Object Services and Common Facili-

ties. (See Chapter 3.) The Object Service definitions cover fundamental APIs,

and the Common Facilities provide higher-level API standards.

Another level of specialization beyond standardized APIs addresses the

interoperability needs of individual application systems. In the OMG archi-

tecture, these are called application objects. Systems integration concerns

the design, implementation, and integration of application objects.

In this book, we describe the system-level design of these objects, which

we call software architectures and frameworks (Chapter 4). We provide many

important examples of architectures and frameworks (Chapters 6 and 7). We

also describe how to implement these system-level designs given preexisting

components, a practice that we call object wrapping (Chapter 8).

COMMENTS

This book is divided into two parts. Part I comprises Chapters 1 through 5

and covers the principles of systems integration. Here we present the con-

cepts on which we have based our approach to the integration problems at

hand. Chapter 2 covers strategies for using standards effectively through

technical reference models and standards profiles. Chapter 3 presents a de-

tailed introduction to CORBA and related standards. Design approaches for

designing architectures and frameworks are covered in Chapter 4. We con-

clude Part I with an introduction to security problems and concepts (Chapter

5), and we discuss security issues as they relate to the CORBA distributed
architecture.

39



40

24

 

INTRODUCTION

Part II, comprised of Chapters 6 through 9, presents detailed integration

examples, lessons learned and various integration methods used in differ-
ent situations. Chapter 6 provides framework examples from the commercial

World. Chapter 7 contains a detailed example of a desktop-independent and

platform-independent interoperability framework developed using our ap-

proach. Chapter 8 discusses various object-wrapping techniques and gives

program examples. Chapter 9 provides guidance both to managers and de-

velopers on using CORBA and system architecture. The appendix contains

summary descriptions of key CORBA products.

40



41

 

“Standards

Strategy 
In order to design a successful, long—lived software architecture, software
engineers must have an understanding of standards. Selecting and imple-

menting a standards strategy is the first step in our systems integration

approach.

A standards strategy is a plan for how to develop and evolve information

systems toward support for open systems standards and strategic standards

creation. Standards strategies can have multiple levels, including reference

models across multiple projects and project-specific standards profiles.

A key part of the standards strategy is a guidance document, called a

standards profile, that influences choices of information system components

‘based on their support for the right standards. As systems evolve, through

component upgrades, extensions, and error correction, the standards profile

identifies the standards objectives of the future system and guides the mi-

gration toward a goal architecture. Another key part of a standards strategy

involves the development of new specifications, which are a part of the de-

velopment of any new system or system extension. The organization must

consider the role that these specifications play in a larger community con-
text.

In essence, a standards strategy involves making sense out of the com-

plex, dynamic arena of open systems standards and exploiting standards

activities as opportunities to save costs and realize organizational goals.

The cost of implementing the standards strategy can be highly leveraged by

exploiting readily available information and harmonizing the organization’s

standards initiatives with emerging trends.

25

41



42

26

 

STANDARDS STRATEGY

STANDARDS BACKGROUND

Historically, suppliers have been the key drivers of standards processes.

For example, the fundamental concept behind “open systems” is standards.

Most open systems standards have portability as their primary objective.

This goal is motivated by a traditional view of the computing industry as

driven by hardware suppliers; narrowly defined, portability means indepen-

dence from particular hardware suppliers. An expanded View of portability

also considers the full range of software APIs, such as operating systems,

windowing interfaces, and higher level services.

The industry is experiencing some important new trends in the stan-

dards arena. There is a growing awareness of the need for areas of coop-

eration between organizations through standards because standards create

markets for products. We are seeing the creation of many new industry al-

liances, consortia, and special interest groups that are forums for standard-

ization. We are also seeing many strong alliances between major standards

groups, such as the Common Open Software Environment (COSE) with the

Open Software Foundation (OSF) and the Object Management Group (OMG)

with X/Open, the International Standards Organization Open Distributed

Processing (ISO ODP), X/Consortium, and so forth. End users are playing

an increasing role in standardization, primarily in high leverage vertical

market areas. The OMG is the only consortium defining standards for dis-

tributed systems based on Object Management technology. (See Chapter 3

for more details on the OMG.) OMG has done much to fuel these trends by

streamlining the standardization process and making standardization much

more accessible. Interoperability is an important standards goal that is a key
focus of the OMG.

The establishment of a standard enhances the credibility of a technical

specification, reduces risks for clients and implementors ofthe interface, and

enables reuse. The scope of the standard defines the scope of reuse. Proba-

bly the smallest useful scope of reuse is across a multiproject organization.
This is a minimal organizational scope to consider when designing software
architectures. (See Section Basic Architecture Patterns.) If we extend the

scope across company boundaries, we can characterize the standards as

applicable to a vertical or specialty market. Countless specialty market al-

liances and consortia groups provide forums for these standards. Standards

at the specialty market level and larger scopes are essential for establishing
commercial software markets. The standard becomes the common, stable

element that reduces risks and provides technical benefits to both suppliers
and consumers.

The OMG has reengineered the business process for standards creation

and made it much more feasible to create new standards to fill gaps in

specialty markets. (See Chapter 3.)

We can think of standards as the product of an organizational process

promoting reusability, stability, reduced risk, and interoperability. Stan-

42



43

 

STANDARDS BACKGROUND 27

dards may take on different levels of formality, depending on our goals and

strategy. The process of standards creation is an extension of system design

and development. The standards process differs principally in the intended
scope of impact. Whereas an ad hoc integration may solve an interoperabil-

ity problem between two specific subsystems, an integration standard might

be a reusable solution across a project, organization, industry, or larger con-

text. Management is responsible for defining the standards context of a new

specification and establishing the intended standards role in the target com-

munity.

From a traditional perspective, there are three principal types of stan-

dards: formal standards, de jure standards, and de facto standards. For-
mal standards are specifications that are formally adopted by accredited

standards bodies such as the Institute of Electrical and Electronics Engi-
neers (IEEE), the Consultative Committee International Telecommunica-

tions (CCITT), the American National Standards Institute (ANSI), and the

International Standards Organization (ISO). There is a hierarchical rela-

tionship between national standards groups such as ANSI (for the United

States) and ISO (encompassing an international community ofnational stan-

dards groups). De jure standards are those mandated by legal authorities.

Federal Information Processing Standards (FIPS) are an example; these are

standards approved by the United States for use in government information

systems. In another example, a company can select and mandate de jure

standards for its own organization. De facto standards are informal stan-

dards resulting from popular usage. X Windows and Network File Server

are examples of de facto standards that became established through popular

usage. Dominant vendors and vendor alliances frequently establish inter-

faces that become de facto standards through usage.

Standards are a broad category of specifications that encompass a great

deal more than just the approved releases offormal standards organizations.

Some standards are established by other forms of standards groups, such

as industry consortia. In the past, de facto standards could be established

by a single dominant company; today, multivendor support is essential for

establishing de facto standards. De facto standards can also be established
through informal means, for example, by popular usage.

In this chapter, our definition of the term standard is broad and closely

related to software reuse. Standards are recognized technical agreements

between people or organizations. The constituency of the group defines the

appropriate forum for standardization. It may be effective for informal stan-

dards to be established across a single organization or project. Standards

that are international in scope should be addressed in international forums,

such as ISO, X/Open, and the OMG. Informal standards can be established

at any organizational level between these extremes. It is simply a question

of the appropriate organizational forum recognizing the specification at its

standard. If the right forum does not exist, many groups have created new

organizations explicitly for this purpose.

43



44

28 STANDARDS STRATEGY

Some Vendor alliances that create standards include X/Open, the OMG,

the X Consortia, the OSF, the COSE alliance, and the Open GIS Foundation
(OGF).

BENEFITS OF STANDARDIZATION

Some of the key benefits that standards provide include:

Portability. Standards can provide portability of software between hard-

ware and operating systems platforms, windowing systems, networking

protocols, and a variety of other hardware and systems dependencies.

The benefit is the ability to move and access software among multiple

platforms in a heterogeneous environment. Portability also can support

transparent upgrade of underlying hardware and networks.

Interoperability. Standards define common formats and interface con-

ventions that provide interoperability between software systems. Inter-

operability benefits might include data interchange, event notification,

object embedding, application control, browsing, and others.

Risk reduction. Use of standards is an essential approach that frees

software architectures from implementation-specific dependencies. Use

of standards can facilitate multisource alternative components, which

reduces risks in system development, maintenance, and future system

extensibility.

Interchangeability. Standards promote product and subsystem inter-

changeability. Interchangeability can be used in several ways. It can

be used to allow a wider choice of system components, selection of which

may optimize cost, legacy leverage, performance, or other factors. And

interchangeability can support deployment of multiple system versions,

customized to site-specific user requirements. In addition, interchange-

ability supports system upgrade, as commercial and proprietary tech-

nologies evolve.

Cost reduction. Commercial support of standards and their subsequent

use for system integration implies a cost reduction for the end user. Com-

mercial vendor’s support of standards results in economy of scale. Cost

reduction also can be realized through competition between alternative

vendors conforming to the same standard.

Deferred obsolescence /Life cycle extension. Conformance to standards

can reduce the risk of system obsolescence. Standards can be used as a

hedge against obsolescence, since many standards represent the most

stable technology interfaces, which in most cases are supported contin-

uously as technology evolves into upwardly compatible products.

As systems become more complex, standards become increasingly im-

portant. Standards provide one of the most accessible ways of assuring com-

ponent compatibility.

44



45

 

SELECTING A STANDARDS STRATEGY 29

SELECTING A STANDARDS STRATEGY

Available standards are quite numerous and individually complex. A strat-

egy is needed to manage this complexity and diversity. Thousands of poten-

tially applicable standards exist to cover the issues in most application sys-

tems. An effective standards strategy involves careful selection of standards

among the many alternatives and selective use of parts of individual stan-

dards. After the selection, typical organizational standards profiles involve

about 300 standards. Evaluating standards can be a complex and expensive

task. The costs of strategy selection and implementation can be minimized

by leveraging the efforts of standards groups and other organizations.

Application of a standard is not a simplistic decision. Most standards
need to be utilized thoughtfully in order to yield their benefits. For example,

most standards are very complex, and this complexity needs to be abstracted

or subsetted in order to expose the desired functionality at the desired im-

plementation cost. Standards also are designed for general applicability for

multiple applications; many details must be added to the standard in order to

make it useful within an application. For example, most standards are more

general purpose and do not include any predefined data or metadata schemas

(the schema is usually an application-specific profile); these schemas must

be added to make use of the standard in the application system.

There are five potential goals to consider for your standards strategy.

Reducing Dependence on Custom Software‘ A key goal of a standards strat-
egy involves the migration of high-cost custom software functionality into

low-cost-commodity commercial software functionality. For most organiza-

tions, this goal cannot be realized overnight; it involves a longer-term strat-

egy to evolve system interfaces toward replaceable software components

provided by commercial vendors. We can think of custom software playing
several roles.

Custom software for systems integration fills interoperability gaps not

supported directly by commercial packages. For example, we might need
custom software to automate the process of moving data between two appli-

cation programs. Originally, the custom software may have eliminated some

rekeying and data entry operations, but as the system evolves and program-

ming staff turns over, custom software can become a maintenance burden.

As the system evolves, we can add support for standards in the application

systems, which can ease the data transfer problem between the systems.

Custom software for applications might entail functions that are fully

replaceable with commercially developed software, such as databases. Other

custom applications, such as user interfaces, might be migrated to commer-

cial application generators, which could reduce the cost of system modifica-

tions and new user interface development. The standards strategy provides

the guidance and rationale to architects and developers for making these
choices.

45



46

30

 

STANDARDS STRATEGY

Leverage Current and Future Commercial Technology The standards strat-

egy should identify commercial technology trends and place the organization

‘ in position to exploit support for standards as they become available. An im-

portant part of every standards strategy is knowing the mapping between

commercial support to standards and predicting Where commercial support

is evolving.

Synergy with Standards Groups Standards activities are long-term public

processes. Ascertaining their direction and predicting their progress is rel-

atively easy to do by attending meetings, reading about them in the press,

reviewing their publications, or talking to representatives. A highly effec-

tive standards strategy involves exploiting the products that the standards

groups are producing as well as positioning internal development efforts to

leverage emerging standards. Such products include:

Reference implementations

Vendor product disclosures

White papers

Plans and road maps
Architecture

Your organization may be able to exploit some plans or preliminary

specifications that standards groups will produce in the course of their pro-

cess. Alternatively, your organization may be pursuing designs that you may

consider proposing for standardization. A middle-ground strategy consists

of designing architectures to accommodate emerging standards, instead of

waiting for final approval.

Influencing Industry and Organizations A benefit of an effective standards

strategy is the influence that the strategy asserts on commercial developers

and other organizations. When a well—conceived strategy is explained clearly,

it has significant impact on whoever is exposed to it. In our experience, we

have noted positive changes in the product directions of many commercial
firms after exposure to our standards approach. Many of the standards and

technology issues that we identify are shared by other consumer organiza-

tions. Every time an issue is raised or concern is expressed about standards

compliance, it has a measurable influence on suppliers. When many orga-

nizations are voicing their concerns, common themes emerge that raise the

priorities for change. In a sense, each organization can play an activist role

in shaping the standards strategies of other organizations. There are also
direct ways of catalyzing technical change, such as reference technologies.

Reference Technologies Ifyour organization is interested in establishing or

promoting a new standard, an effective standards strategy involves devel-

oping reference technologies. If an implementation of the proposed standard

46



47

 

STANDARDS REFERENCE MODELS AND PROFILES 31

that leverages support across a community can be built and disseminated,

then it’s adoption is greatly accelerated. Some successful examples of this

strategy include X Windows, MOTIF, and Network File Server (NFS). In

each case, technology access was provided either free or for a nominal fee, so

that the technology could be transferred as rapidly as possible. The Internet

greatly enables this kind of technology transfer, because it provides “free”
electronic dissemination of software and “free” advertisements of software

availability through bulletin boards and e—mail lists. Reference technolo-

gies can be built by individual companies, by academic institutions, by the

government, and by consortia.

STANDARDS REFERENCE MODELS AND PROFILES

Because so many standards apply to computer systems, various well-

organized listsvof standards and rationale have been compiled as techni-

cal reference models and standards profiles. A technical reference model is

a standards guideline for multiple computer application systems. A stan-

dards profile is a specific set of standards, which may apply to a particular

computing system. Whereas a technical reference model will identify multi-

ple alternative standards for each category, a standards profile will provide
limited standards choices.

New standards reference models and profiles can be based on work that is

already available. For example, IEEE Portable Open Systems X (POSIX) is a

standards reference model that is generic enough to be a baseline reference

model for most application domains. Tailored reference models are often

extensions of generic reference models.

The X/Open Portability Guide (XPG) is a standards profile. XPG identi-

fies specific standards choices for generic applications systems. X/Open goes

further in certifying compliance of products and licensing a brand seal to

products that meet XPG guidelines.

_ Regarding standards reference models, we believe that your organiza~

tion should publish one and that it should be consulted as a normal part of

decision making during computer system design, component selection, sys~
tem extension, and purchases of commercial‘ software. Creating your own

standards reference model can be relatively inexpensive, given that multi~

ple generic models exist. You must ask how your organization’s application

domain differs from the generic model and focus your attentions on adding

more detail to the generic models in those areas.

Technical reference models and profiles should be used as guidelines,

not rigid regulations. Rigorous standards compliance can be very costly,
and a decision maker should balance the model’s guidance with practical

considerations. For example, if a function can be procured much cheaper or

faster or with less risk without strict compliance, then it is wise to disregard
the standards model; however, the rationale for this deviation should be

documented and revisited later when the system is upgraded.

47



48

 

32 STANDARDS STRATEGY

USER I

_|NTERFACE

2 i a
OPERATING’ USER page

I ~ -: SYSTEM iNTERFACE:-

,wAPPucAnoN; I V
TPLATFPBM A SECURITY SERVICE»

HARouuR

Figure 2.1. NIST Application portability profile (APP).

Another aspect of these models is that they need to be updated regularly.
A standards model portrays a snapshot of a changing standards picture. The
standards themselves can change or be replaced, such as when ISO adopted

Structured Query Language 1992 (SQL92) to replace SQL89. Evaluating
industry support for a standard is very important, and the situation can
change as the market changes. Indirect changes occur when standards are
added or deleted from XPG or POSIX that can have an affect on industry and

standards support. Typically, these types of changes occur to one-third of the
standards every year. This indicted that new standards are being introduced
frequently, but does not impact the stability of individual standards.

IMPLEMENTING A STANDARDS STRATEGY

If utilized inappropriately, standards can increase costs in system develop-
ment dramatically. In practice, only a handful of standards will have a direct

impact on software development. In particular, major standards relating to

48



49

 

IMPLEMENTING A STANDARDS STRATEGY 33

the operating system, windowing system, and networking interface are the

most critical. Many other standards are useful only as general guidelines,

and their importance is quite subjective.

It is important to have a standards strategy and to leverage ongoing

standards activities, particularly those that are attempting to catalogue the

overall environment, those that directly impact software development, and

those that impact your organizations specialty areas. This strategy starts

with the selection of a generic profile, such as POSIX or X/Open XPG4. Then

the particular specialty areas that are not adequately addressed by the

generic profiles need to be identified. The profile should include expanded

detail in these high-priority areas. Technology road-mapping is a useful ex-

ercise With respect to the specialty areas-—for example, prediction of future

industry trends based on past technology evolution and high—potential re-

search. Any standards gaps that are identified should become strategic tar-

gets for the creation of organization-level standards, With future potential
standardization in larger forums.

Figure 2.2. POSIX Open System Environment (OSE) reference model.

49



50

34

 

STANDARDS STRATEGY

It is important to evaluate the reality ofeach standard and to assess what

the real advantages are of its utilization. Detailed guidelines for utilization
of key standards should be documented.

Standards creation and revision is a dynamic process that must be

tracked. As much as a third of a comprehensive standards profile can change

in the course of a year.

Standards are important to overall decision-making and development

practices. Standards represent the long-term multiparty technology agree-

ments that are the stable basis for software architectures and life cycle

support.

COMMENTS

Weighing short-term needs against long-term needs is one of the most diffi-

cult problems that an organization faces. Often, decisions are based only on
currently available technology and standards. While an organization may be

able to answer some ofits immediate needs using available market products,

such decision making could be detrimental. Technology is moving at such an

accelerated pace that often what is available today is already outdated by

the time it is integrated. An organization must look into the future to deter-

mine its long-term needs and plan ahead using a combination of technology

that is available today and a collection of emerging new standards. By using

reference technologies for these new standards, an organization can experi-

ment and collect experience that would enable it to position itself to leverage

new products when they finally become available.

50



51

 

An Introduction

to CORBA 
Every major new distributed computing technology has held out the promise

of interoperability between disparate systems and applications. Today con-

nectivity between most types of operating systems platforms is readily avail-

able. However, interoperability at the application level remains elusive. Key

factors include the inherent difficulty of distributed application program-

ming and the lack of standard interfaces between applications. Since its

introduction ten years ago, remote procedure call (RPC) technology has gen-

erated few popular interfaces, with Network File Server being perhaps the

only widely used RPC interface definition.

The Object Management Group (OMG) is an industry consortium whose

mission is to define a set of interfaces for interoperable software. Its first

specification, the Common Object Request Broker Architecture (CORBA), is

"an industry consensus standard that defines a higher-level facility for dis-

tributed computing. CORBA simplifies distributed systems software in sev-

eral ways. The distributed environment is defined using an object-oriented

paradigm that hides all differences between programming languages, op-

erating systems, and object location. CORBA’s object-oriented approach en-

ables diverse types of implementations to interoperate at the same level,

hiding idiosyncrasies and supporting reuse. This interoperability is accom-

plished through well-defined interface specifications at the application level.

CORBA provides a portable notation for defining interfaces called the OMG

Interface Definition Language (IDL). The OMG participants are defining a

comprehensive set of standard OMG IDL interfaces called object services

and common facilities. Whereas CORBA simplifies the distributed software

environment, object services and common facilities address the need for in-

terface standards supporting application-level interoperability.

35

51



52

36

 

AN INTRODUCTION TO CORBA

OBJECT MANAGEMENT ARCHITECTURE

Figure 3.1.

The OMG’s object management architecture is defined in a reference book

which we highly recommend [OMG, 93]. The central component of the archi-

tecture is the object request broker (ORB). The ORB functions as a com-

munication infrastructure, transparently relaying object requests across

distributed heterogeneous computing environments. The CORBA specifica-
tion covers all the standard interfaces for ORBs. Common facilities are the

set of shared high—level services, such as printing and e-mail. Object services

are a shared set of lower-level services, such as object creation and event no-

tification. Application objects comprise all the remaining software including

developer’s programs, commercial applications, and legacy systems.
Much ofthe OMG standards activities centers around the three architec-

ture areas: ORB, object services, and common facilities. CORBA Version 1.1,

covering ORBs, was adopted in December 1991 [OMG, 92a]. The CORBA re-

vision process comprises upwardly compatible extensions. CORBA Version

Object management architecture.

52



53

 

OBJECT REQUEST BROKER 37

1.2, primarily a typographical revision, was adopted in June 1994. Exten-

sions to CORBA, under the umbrella of CORBA 2.0, include ORB interoper-

ability and further specification of the Interface Repository. Future CORBA

2.0 activities include additional language bindings such as Ada, Cobol, and

Smalltalk. Approved object services specifications include event notification,

object naming, and object life cycles. The OMG has released a comprehensive

road-map schedule for the adoption of additional object services [OMG, 92b].

The adoption process for common facilities is under way. Whereas object ser-

vices are fundamental enabling service specifications, common facilities are

high-level service specifications that will provide high leverage to application

developers.

Object services and common facilities supply interfaces for application-

to-application interoperability as well as commercially supplied services.

These standard interfaces have a dual role: Suppliers may supply implemen-

tations of standard services, but application developers also can reuse stan-
dard interfaces.

OBJECT REQUEST BROKER

CORBA is a specification for an application-level communication infrastruc-

ture. It provides communication facilities to applications through two mech-
anisms: static interfaces and the Dynamic Invocation Interface (DII). An

Interface Repository stores on-line descriptions of known OMG IDL inter-

faces. Any interface can be used with either mechanism. The Basic Object

Adapter (BOA) is an initial set of ORB interfaces for object implementations.

CORBA also specifies a set of basic system objects, such as general purpose
name-value lists.

CORBA is a peer-to-peer distributed computing facility where all appli-
cations are objects (in the sense of object orientation). Objects can alternate
between client roles and server roles. An object is in a client role when it

is the originator of an object invocation. An object is in a server role when

it is the recipient of an object invocation. Server objects are called object
implementations. Most objects probably will play both roles. More flexible

architectures can be implemented using CORBA rather than the pure client-

server architectures imposed by remote procedure calls.

Interface Definition Language

OMG IDL is a technology—independent syntax for describing object encap-

sulations. When used in software architectures, OMG IDL is the univer-

sal notation for defining software boundaries. In OMG IDL, interfaces that

have attributes and operation signatures can be defined. OMG IDL sup-

ports inheritance between interface descriptions in order to facilitate reuse.
Its specifications are compiled into’ header files and stub programs for di-

53



54

38

 

AN INTRODUCTION TO CORBA

rect use by developers. The mapping from OMG IDL to any programming
language could potentially be supported. Vendors have implemented map-
pings to many languages, such as C, C++, and Smalltalk. OMG IDL map-
pings to many other languages are under construction. OMG IDL compilers
are bundled with ORB products and allow programmers to define portable

compiler-checked interfaces.
In addition to header files, the OMG IDL compiler generates stub and

skeleton programs for each interface. The client program links directly to
the OMG IDL stub. From the client’s perspective, the stub acts like a lo-

cal function call. Transparently, the stub provides an interface to the ORB

that performs marshalling to encode and decode the operation’s parameters
into communication formats suitable for transmission. The OMG IDL skele-

ton program is the corresponding server-side implementation of the OMG
IDL interface. When the ORB receives the request, the skeleton provides

a callback to a server—supplied function implementation. When the server

completes processing of the request, the skeleton and stub return the results

Figure 3.2. CORBA interfaces.

54



55

 

OBJECTREQUESTBROKER 39

to the client program, along with any exception information. Exceptions can

be generated by the server or by the ORB in case of errors.

The OMG IDL language is defined in CORBA Chapter 4 and the C

language mapping is defined in CORBA Chapter 5. [OMG, 92a] The following

is an example of OMG IDL and its mapping to the C language. This OMG

IDL specification is for an interface with one operation. The interface name

is examplel, and the operation name is operationl. This operation has one

user-defined parameter, paraml. It also has clauses specifying a user-defined

exception and a context expression.

// OMG IDL

exception USER_EXCEPT1ON1 { string expianationl; };
interface examplel {

void operation1(inout long paraml)
raises (USER_EXCEPTlONl)
context( "CLIENT_CONTEXT1"); };

The corresponding C language mapping follows. The user-defined excep-

tion is mapped into a struct. The interface itselfis a renamed type ofCORBA-

type Object. In the function prototype, the operation name is concatenated
to the interface name with an underscore. This naming convention indicates

the scoping of the names from the OMG IDL. The first three parameters are

implicit parameters generated by the OMG IDL compiler. The first parame-

ter is the implementation object handle; this indicates the destination object

implementation for the example_operation1 message. The second parame-

ter is the Environment parameter, which is an exception value returned to

the client. The exception may be generated by the object implementation

or the ORB to indicate operation failure. In addition to the user exception

defined in the example, CORBA provides a comprehensive set of predefined

exceptions [OMG, 92a]. The Context parameter is a set of attribute values

specified by the client for usage by the ORB and object implementation. In

. general, these are a set of string values, associated with the attribute names

in the context clause of the OMG IDL specification. Context is useful for

the application programmer in order to pass default information about the
client’s environment. Following the implicit parameters is the list of user-

defined parameters. For C, there is a complex set of conventions for how

these parameters are passed, depending on whether the parameter is in,

inout, or out and on the parameter’s type.

/* C Mapping */

typedef struct { char *explanation1; } USER_EXCEPTION1;
typecode Object examplel;
void example1_operation1(

exampiel 0,
environment *ev,
Context *ctx,

long *param1);

55



56

 

AN INTRODUCTION TO CORBA

The OMG IDL specification contains more documentation for the ob-

ject interfaces. The header files and stub codes generated by the OMG IDL

compilers are somewhat cryptic in comparison. For example, all of the fol-

lowing OMG IDL constructs are mapped into C struct definitions: OMG IDL

structs, exception values, and union types. In addition, most OMG IDL com-

pilers do not pass through the OMG lDL’s comments. Programmers should

use the OMG IDL for comprehension of the interfaces and use the compiler-

generated header files as a reference for parameter handling and naming
conventions.

Other OMG IDL language mappings appear quite different from the

C mapping. Although the renaming of type Object does not seem to be an

important factor in C, the specialization of type Object is an important factor

in object-oriented languages such as C++ and CLOS, which depend on object

type specialization in their runtime binding algorithms. The mapping to

object-oriented languages is quite natural from OMG IDL, and the header

files generally include native object class definitions corresponding to the
OMG IDL interfaces. '

Implementing OMG IDL Specifications

The standard specification defining OMG IDL is only 35 pages long [OMG,

92a], but it has a fundamental importance analogous to Backus-Naur Form

(BNF). Like BNF, OMG IDL is a specification language. Where BNF is uni-

versally used to specify new language grammars, OMG IDL is universally

applicable to the specification of APIs.

OMG IDL can be used in several ways: as built-in library interfaces,
ORB interfaces, or RPC interfaces. An OMG IDL interface does not have to

be used with an ORB product, or vice-versa. OMG IDL can be used separate

from the balance of the CORBA specification, as a notation for specifying

APIs implemented with CORBA and non-CORBA technologies.

In the built-in library interface case, OMG IDL provides the advantage

of an implementation-free interface (Figure 3.3). However, the application

is not distributed. The client and server are compiled and linked in as a

single program. The ORB or RPC mechanism provides system distribution.
The client still makes a local function call. However, the stub call is sent via
the ORB or RPC to the remote skeleton function that in turn activates the

server implementation (Figure 3.4).

IDL is language independent and supports multiple language mappings.

Several mappings are already standardized by OMG: C, C++, and Smalltalk.

When IDL is mapped into a programming language, for example, C, three

arguments are generated automatically and the rest are user-defined param-

eters. These implicit parameters are the object handle, the environment, and

the context (Figure 3.5).

The object handle specifies the handle of the server that is to be acti-

vated. The Context can contain system- or user-specific properties that can

56



57

 

.....4

OBJECT REQUEST BROKER 41

IDL Specification

Figure 3.3. Built-in library interface: same compilation module.

impact ORB decisions or information for the server, such as Window sys-

tem preference, that may not be suitable for argument passing. Context

objects contain a list of properties that consist of a name and a string value.

Like environment variables, the properties represent information about the

client, environment, or information about a request that can be passed as

parameters [OMG, 92a].

Clients can pass this information to the server, which in turn can query

about them. The information can be used for policy and binding decisions.

Context objects may be chained. CORBA defines operations for creating,

deleting, setting values, and getting values of properties.

The environment variable is provided to return exception information.

The environment type is partially opaque and includes a major error type,

minor code, and error identification string components. The major error

type indicates Whether an exception occurred, a system exception occurred,
or a user exception was set. The minor code is a value that identifies the

particular exception in a form easily utilized by programmers in a case
statement. The identification string is a human—readable explanation of the

57



58

42

 

AN INTRODUCTION TO CORBA

IDL Specification» y

5-one/Rptc
ti‘ Skeleton

Figure 3.4. ORB or RPC mechanism.

error. CORBA defines a comprehensive set of standard exception types that

can be returned by the ORB and by application object implementations. The

predefined exceptions should be used Wherever applicable.

For special exceptions unique to a particular architecture, user excep-
tions can be readily defined in OMG IDL. User exceptions contain the basic

environment attributes, and user-defined properties can be added to the

exception structure. Exception handling is an important aspect of software

architecture specification that is well supported by OMG IDL.

Dynamic Invocation Interface

Early ORB products were based almost entirely on the DII, which is an al-

ternative to compiled OMG IDL static interfaces. The DII is a generic facility

for invoking any operation with a runtime-defined parameter list. A runtime

interface description of the operation signature can be retrieved on-line from

the CORBA Interface Repository. Using the metadata, a legal request can

58



59

 

OBJECT REQUEST BROKER 43

be constructed to a previously unknown operation and unknown object type.

Use of the DH instead of an OMG IDL static interface is transparent to
the object implementation. In general, programming with OMG IDL static

interfaces is much simpler and results in more robust code for the developer.

However, the DII provides a level of flexibility that is necessary in some

applications, such as desktops and operating systems.

Object Adapters

An object adapter comprises the interface between the ORB and the object

implementation. Object adapters support functions such as registration of

object implementations and activation of servers. There are many poten-

tial types of object adapters. There could be different adapters for general-

purpose uses, for object database integration, for legacy integration, and

so forth. CORBA 1.1 defines only the Basic Object Adapter (BOA), but it

recognizes the need for these other types of adapters.

interface foo {

void operation (inout long param)

raises (USER_EXCEPTlON) .

context (LOCAL_SYSTEM_CONTEXT);

};

typedef Object f_oo; _
void foo_operation (foo 0, Environment *ev,

Context *ctx, long *param);

$5366 eie.%¢=.;i¢.é- Specifies Server
geturns ’:Syste,m and User Exceptions

ser Systenjjispecific prspemés

Figure 3.5. Example of IDL-to—C mapping.

59



60

44

 

AN INTRODUCTION TO CORBA

The BOA is a general-purpose object adapter. When a client request

specifies an inactive server, the BOA automatically activates the server pro-
cess. The first responsibility of the server is to register its implementation

with the BOA. The BOA stores this registration to use in future object re-

quests. After an object is activated, it may receive client requests through the

method callbacks in the OMG IDL skeleton. BOA services include exception

handling and object reference management, among others.

CORBA Acceptance

CORBA and OMG IDL have gained Wide acceptance by industry and consor-

tia. OMG membership exceeds 500, including virtually all platform manu-

facturers and major independent software vendors. X/Open copublishes the

CORBA specification and has included CORBA in the X/Open Portability

Guide Release 4. OMG IDL is the Application Program Interface (API) spec~

ification language for the next release ofX Windows, called X11R6 FRESCO.

This makes X11R6 applicable to multiple programming languages instead

of being tied exclusively to C. CORBA also is supported by specification of

groups, such as Petroleum Open Systems Consortium and the Open Geo-

graphic Information System (GIS) Foundation.

CORBA acceptance in the U.S. government is growing rapidly. The

Department of Defense Defense Information Systems Agency (DISA), the

National Security Agency (NSA), the National Institute of Standards and

Technology (NIST), the National Institute of Health (NIH), and MITRE have

i joined the OMG, and CORBA is included in several government standards

profiles.

Product Availability

CORBA is a future standard of the Common Open Software Environment

(COSE), an industry alliance including companies such as SunSoft, Digi-

tal Equipment, IBM, HeWlett—Packard, Novell, and Santa Cruz Operation

(SCO). Successful elements of COSE are merging with the Open Software
Foundation (OSF). All of these vendors have committed to deliver CORBA-

compliant products, and CORBA will be bundled with most of their existing

operating systems.

Several vendors are already delivering productized CORBA implementa-

tions including: IONA, DEC, HP, and IBM. Apple has announced future sup-

port for CORBA. Microsoft is supporting CORBA through its alliance with

DEC in a cross-platform development product called the Common Object

Model. DEC will support two APIs for developers, CORBA and the Microsoft

Common Object Model, a more primitive alternative to CORBA. DEC and

others have productized CORBA interfaces to Microsoft OLE. Microsoft is

spearheading an OMG standards initiative to provide a standard definition

of CORBA/Common Object Model (COM) interoperability.Available CORBA

60



61

 

CORBA 2.0 45

implementations cover most operating systems environments including So-

laris, OS/2, AIX, HP-UX, DG UNIX, Virtual Memory System (VMS), OSF/1,

IRIX, Macintosh, Windows, and Windows-NT.

Third-party vendors, such as Integrated Computer Solutions, WordPer-

fect, and Paragon Imaging, have announced future CORBA—compliant ap-

plications products. Expersoft, FORTE, and other companies are developing

CORBA interfaces to major database products. As the common facilities

standards are released, weanticipate direct CORBA support from most ma-

jor independent software vendors. These companies are already actively

involved in the OMG standards processes.

Underlying CORBA

CORBA is an abstract specification that does not constrain its underlying

implementation. The ORB could be implemented as a linked library function

interface, a layer directly over RPC, or as a higher-level communication facil-

ity. This flexibility allows vendors to utilize their existing networking facili-
ties. Some vendors (such as IONA), are basing CORBA on ONC—compatible

RPCs; some vendors (such as HP), are using OSF DOE; and some (such as

Sunsoft) are bypassing the RPC layer and implementing CORBA at lower

layers. Most vendors also provide developer support for implementing linked

library code using OMG IDL interfaces.

The inherent flexibility underlying CORBA allows the software architect

to separate design from implementation decisions. Relevant implementation

decisions include process allocation and performance trade—offs. Because

CORBA makes these implementation properties transparent, it is unneces-

sary to hard-code these details into the architecture design. This frees the

designer to use OMG IDL to specify all architectural software boundaries

and then choose the underlying communication mechanisms later. Many

implementation decisions can be deferred until installation time, so system

adaptability is maximized.

Today’s CORBA products are like Ethernet products in the early days;

the Vendors are building to a common standard, and they are actively work-

ing toward interoperability with CORBA 2.0. Using earlier CORBA versions,

if you want to build a multiplatform ORB application, you must choose an

ORB vendor that runs on all the target machines. When CORBA products
are bundled with operating systems, the CORBA 2.0 standard will enable

multivendor ORB implementations to interoperate transparently. Most ORB
Vendors have announced and demonstrated interoperability between their

platforms.

CORBA 2.0

CORBA 2.0 is a set of upwardly compatible standards that complete and

augment the CORBA 1.2 specification. The key elements of CORBA 2.0 are:

61



62

46

 

AN INTRODUCTION TO CORBA

ORB-to-ORB interoperability specification

Client and server initialization specification

Additional programming language bindings: C++ and Smalltalk

Interface repository specification

Among these, the interoperability specification is the most significant
for the CORBA market. The specification provides for cross-ORB services

between multiple vendor’s products. The OMG adopted the Combined Sub-

mission for Interoperability, which is a merger ofthe major submissions. The

core of the specification is a general architecture for interoperability called

Universal Networked Objects (UNO).

Within UNO, there are two types of interoperability specifications: Gen-

eral Interoperability Protocols (GIOPs) and Environment Specific Interop-

erability Protocols (ESIOPs). The GIOPs are fully specified protocols that

are mandated to provide for out-of-the-box interoperability. An initial GIOP

called Internet Interoperability Protocol (IIOP) was included in UNO. IIOP
is based on Transmission Control Protocol/Internet Protocol (TCP/IP), the

ubiquitous protocol of the Internet. IIOP is a simplfied subset of an RPC

mechanism that is specifically directed at ORB-to-ORB interoperability. The

initial ESIOP specified within the Combined Submission is based on the

Open Software Foundation’s (OSF’s) DCE, called the DCE Common Inter-

operability Protocol (DCE CIOP). Vendors can support ESIOPs and still be

CORBA-compliant, as long as their products also support the GIOP. New

ESIOPs and GIOPs can be added to the specification later through OMG

technology adoption processes.

It is interesting to note that the choice of ORB interoperability solutions

does not impact application software. Interoperability is an issue between

the ORB vendors, not between vendors and users. Few, if any, application

developers will ever be involved in programming with GIOPs and ESIOPs.

Now that the ORB interoperability standard is in place, vendors can pro-

ceed to implement interoperable products with minimal risk. This standard

also reduces risks for CORBA users, and it will soon provide for ubiquitous

interoperability between ORB products.

I The CORBA 2.0 initialization specification has much more direct impact

on developers. The initialization specifications resolve important portability

issues for application software. Initialization defines how clients and servers

using CORBA establish initial communication with the ORB and obtain

initial object references, such as the naming service handle. With CORBA

2.0 initialization, the interfaces and calling sequences will be consistent and

portable between ORB products.

The language bindings for C++ and Smalltalk were standardized in

CORBA 2.0. These bindings define how OMG IDL specifications are mapped

into the API specifications of these programming languages. The bindings

will provide consistent, natural support for these languages across ORB

62



63

 

OBJECT SERVICES 47

products. These bindings also provide for seamless interoperability between

objects Written in different languages. Several ORB products are supporting
multiple language bindings.

The Interface Repository specification standardizes the access and man-

agement of on-line metadata describing all known OMG IDL interfaces. The

CORBA 2.0 Interface Repository completes the specification in CORBA 1.2,
which defined the basic retrieval interfaces.

OBJECT SERVICES

Object services comprise a fundamental set of system service interfaces.

The adopted OMG Object Services comprise the Common Object Service

Specification (COSS). COSS is a multivolume series, with one volume cor-

responding to each Object Services Request for Proposal (RFP). To date, the

OMG Object Services Task Force has released four of the five planned RFPs:
RFP1, RFP2, RFP3, and RFP4.

The RFP1 services include:

Object Event Notification Service

Object Life Cycle Service

Object Naming Service

Object Persistence Service

The RFP2 services include:

Object Concurrency Service

Object Externalization Service

Object Relationships Service

Object Transaction Service

. The RFP3 services include:

0 Object Security Service

0 Object Time Service

The RFP4 services include:

0 Object Licensing Service

0 Object Properties Service

0 Object Query Service

Each RFP takes about a year to complete the process and results in

technology adoption. RFP1 and RFP2 have already been adopted at the time

of this writing. RFP3 and RFP4 processes will be complete in 1995. RFP5 is

due to be released in mid-1995 and complete in 1996.

63



64

48

 

AN |NTRODUCT|ON TO CORBA

The RFP5 services will likely include:

Object Change Management Service

Object Collections Service

Object Trader Service

Object Startup Service

It is anticipated that the International Standards Organization (ISO)

will submit it’s OMG IDL binding to the Open Distributed Process (ODP)
Trader Service, which is in advanced stages of formal standards adoption.

The RFP5 services are the final services identified in the Object Ser-

vices Architecture [OMG, 94]. Thus, RFP5 will complete the Object Services

Architecture. By the end of RFP5, the standardization processes for both

CORBA and Object Services will be essentially complete.

The first services to be standardized included the Object Naming Ser-

vice and the Object Event Notification Service. The Naming Service enables

the retrieval of object handles based on the string-valued name of an object

server. Hierarchical naming contexts can be defined for groupings of ob-

jects. The Event Notification Service is a general facility for passing events

between objects. Event interfaces are defined for administration and alter-

native forms of event posting and retrieval.

Servers that implement COSS interfaces can be constructed by the ORB

vendor or by application developers. Allowing developers to build services is

a very useful feature ofthe object management architecture calledgeneric ob-

jects. Generic objects that reuse standard interfaces can interoperate trans-

parently with any application supporting the standards and can be tailored

for specific application needs. Generic objects can provide a common interface

layer on top of noncompliant services. For example, Naming Service inter-

faces could be layered on top of various directory standards (such as DCE

Cell Directory Service, X.500, or Internet naming) to provide simple consis-

tent access to multiple services. Object services interfaces are designed to be

extended through specialization. For example, a developer might specialize
the standard event interface with facilities for a real-time application, While

retaining interface compatibility with standard event clients and servers.

Other services adopted from RFP1 include the Object Life Cycle Service

and the Object Persistence Service. The Life Cycle Service comprises op-

erations for managing object creation, deletion, copy, and equivalence. The

Persistence Service comprises facilities for storage of objects.

Some of the most commonly used object services, the Object Naming

Service, the Object Event Service, and the Object Relationship Service, are
summarized in the next sections.

Object Naming Service

The basic operations for accessing the Object Naming Service include bind,

unbind, and resolve. Bind adds a (name, object handle) pair to a nam-

64



65

 

OBJECT SERVICES 49

ing context. Unbindlremoves the pair. Resolve retrieves an object handle

given a name. Some basic operations for accessing Naming contexts include:

new_context, bind_context, and destroy. These correspond to creating a con-

text, associating tvvo contexts hierarchically, and removing a context.

Figure 3.6 is an example of a set of names and naming contexts. Names

are defined as an OMG IDL sequence type, which allows the description

of a hierarchical list of identifiers Without imposing implementation-specific
syntax. This is useful because the major directory standards all use different

hierarchical naming syntax.

The naming service is one ofthe most basic and generally useful services.

CORBA users should expect to have an Object Naming Service bundled with

the ORB and layered over the native directory service. Most CORBA-based

programs should use the naming service to locate other basic services, such
as the Object Trader Service.

Figure 3.6. Naming contexts.

65



66

50

 

AN INTRODUCTION TO CORBA

Object Event Service

The Object Event Service is a general-purpose, reusable set of interfaces

for event posting and dissemination. The roles of the objects involved in

event notification include suppliers, consumers, channels, and factories.

The suppliers and consumers are usually application objects, and the event

channel and the event channel factory provide the event services. Event

channel interfaces operate in either push mode or pull mode. The IDL Con-

sumer interface provides the push() operation. In push mode, a supplier

can push() an event to the event channel object, and a consumer application

Will receive a corresponding push() invocation from the event channel object.

Alternatively, applications may utilize the IDL Supplier interface, which pro-

vides pull() and try_pull() operations. The try_pull() operation polls for ready

events, and the pull() operation retrieves the event. Using the administra-

tive interfaces, applications dynamically register themselves as consumers

indicating their interest in receiving event notification. The event channel

.Elv_e-nt Ctiannei
Factory interface

Factory/Object Interface

Figure 3.7. Event notification.

66



67

 

COMMON FACILITIES 51

can support both push mode and pull mode interfaces with both supplier
and consumer applications. This provides flexibility in selecting the event

channel integration approach.

Object Relationship Service

The Object Relationship Service provides a capability for managing associ-

ations and linkages between objects. The service utilizes dedicated rela-

tionship objects that retain the object handles of the associated objects.

Relationships are a fundamental service that can be used to implement

many types of object linkages. For example, relationships can be used for

desktop object linking and embedding. The relationship service is useful in

combination with other services such as events, life cycle, and externaliza-
tion.

The Object Properties service is a facility for attaching dynamic informa-

tion to an object. A set of properties of any type can be attached to an object

without changing the object’s implementation. Among other uses, properties

could be very useful for managing desktop objects, such as attaching icon

representations to arbitrary objects.

COMMON FACILITIES

Common Facilities is the newest area of OMG standardization. Whereas

CORBA and Object Services standardize the enabling infrastructure and

services, Common Facilities represents higher-level specifications that com-

plete the OMG’s vision for interoperability. Now that CORBA 2.0 is finalized
and most Object Services are standardized or near adoption, the OMG’s focus

is moving toward the standardization of the higher-level Common Facilities.

Common Facilities will provide richness and application-level focus to

the ensemble of OMG technologies. Whereas ORB and Object Services are

_ fundamental technologies, Common Facilities extend these technologies up

to the application developer and independent software vendor level. Common
Facilities may become the most important area of OMG standards because

it is the level that most developers will utilize.

Common Facilities include specifications for higher-level services and

vertical market specialty areas. Horizontal Common Facilities are appli-

cation domain independent. Some examples include system management

and compound documents. In addition, there are more specialized Vertical

Market Facilities, such as geospatial data processing and financial services.

Common facilities is an appropriate area for standards providing interoper-

ability between independent software vendors’ products.

The Common Facilities Task Force (CFTF) is the third permanent OMG

Task Force. It complements the areas addressed by the ORB Task Force

and the Object Services Task Force (OSTF). Common Facilities relates to

the other OMG technology areas in that it is closer to the application level.

67



68

 

AN INTRODUCTION TO CORBA

Ideally, the Common Facilities will include many specializations of the Ob-

ject Services, specializations that extend the primitive Object Services into

richer interfaces that directly address the needs of many applications and

independent software vendors. Both Object Services and Common Facili-

ties are intended to be reused by developers in application software and

commercial software products.

The CFTF. was created in December 1993 by vote of the OMG Techni-

cal Committee. CFTF is following the precedents established by the OSTF.

The task force has released an industrywide request for information (RFI)

and received many responses. The RFI responses are the source material for

three key documents: the Common Facilities (CF) Architecture, the CF Road

Map, and the first CF Request for Proposal (RFP). The Common Facilities
Architecture identifies and describes the major categories of Common Facil-

ities. The Common Facilities Road Map groups the CF categories by priority

and establishes a schedule for facilities adoption through the RFP process.

The first Common Facilities RFP (Compound Documents) initiates the tech-

nology adoption process by soliciting the first set of facilities specifications.

Figure 3.8. Common facilities in object management architecture.

68



69

COMMENTS 53

In comparison with the other task forces, Common Facilities has a more

diverse charter. Many Common Facilities probably will be important only to

particular specialty markets. The OMG has a fast-track Request for Com-

ment (RFC) process that can be used for technology adoption in areas where

industry consensus already exists. For those high priority areas that re-

quire an RFP process, the CFTF has documented the schedule for RFPs in

the Common Facilities Roadmap. [OMG, 95b]

As development budgets increasingly require system life cycle exten-

sion, reengineering, and multisystem consolidation, Common Facilities will

support system migration. For application developers, standards are needed

that mitigate long-term risks and increase leverage from commercial tech-

nology. For commercial software developers and R&D innovators, standards

are needed that create entry points in applications systems for value-added

products. We envision Common Facilities bridging these needs, by establish-

ing standards that are mutually supportable by both application developers

and independent software vendors.

COMMENTS

ORB technology is an infrastructure technology area that is near maturity.

Many CORBA implementations are available today, and platform vendors

are investing substantially in bundled CORBA products. (See Appendix.)

CORBA will be ubiquitous in the UNIX market, with bundled implemen-

tations on most platforms. CORBA also will be widely available on volume

platforms (Apple, Windows), bundled with packages (such as OpenDoc) from

major software vendors such as Claris, WordPerfect, Lotus, and Taligent.

Because it is independent of computer language and operating system,

OMG IDL is universally applicable. One does not have to have an ORB or
even use CORBA in order to obtain the benefits of the OMG IDL. OMG

IDL compilers can be used independently from other parts of the system

in order to allow the system architect and software developers to produce
clean, well-defined interfaces.

There are many ways to prepare for the impending technology transition

to CORBA. Most ORB vendors and some independent consultants offer com-

prehensive training courses covering CORBA products that offer insight into

the standard and the technology. The OMG has published the Object Man-

agement Architecture Guide [OMG, 93], the CORBA Specification [OMG,

92a], and the Common Object Services Specification [OMG, 94b]. These pub-

lications are John Wiley & Sons books that are generally available. Finally,

OMG IDL is a stable language that can be used for structuring architec-

tures today. OMG IDL is the specification language for the next generation

ofX Windows, X11R6 Fresco from the X Consortium. A public domain OMG

IDL compiler toolkit is available from the OMG (via ftp from omg.org); the

toolkit readily supports OMG IDL syntax checking and can be extended for

additional applications of OMG IDL.

69



70

 



71

 

Software

Architecture

Deagn 
The important decisions in design are not what to put in but what to leave
out.

—Attributed to Tony Hoare by Per Brinch Hansen, U.S.C.

There exists a range of alternative solutions for most application problems.

It is well known that object-oriented design processes do not yield unique so-

lutions. Design alternatives will vary in cost effectiveness. Designers should
be aware ofthe alternatives, and cost should be a key consideration in design
trade-offs.

When we talk about design alternatives in this chapter, we are discussing

trade-offs in the design of software architectures. There is no consensus in

' the computing literature on the definition of the phrase software architec-
ture. In our view, software architecture defines the boundaries between the

major components comprising a software system. The boundaries are in-

terface specifications that can be expressed in Object Management Group

Interface Definition Language (OMG IDL) with appropriate sequencing con-

straints and semantics. Sequencing constraints define the conventions for

the ordering of operation invocations. The semantics define the operation

meanings (usually in prose). These definitions are comparable to a typi-

cal OMG specification. By defining software architecture in this way, OMG

standards can be applied directly to application software architectures, and

elements of high-quality architectures can be migrated into standards.

There are many other issues beyond software architecture in the de-

sign and implementation of an application system. We categorize the other

55

71



72

56

 

SO‘!-_l'WARE ARCHITECTURE DESIGN

relevant design information as comprising the system architecture; every

thing else is captured in the system implementation. Software architecture
is a subset of system architecture; software implementation is a subset of

system implementation. The software implementation comprises the major

subsystems, which we sometimes call applications or components.
We use the terms software architecture and framework interchangeably.

An architecture is also a collection of frameworks, where at a minimum a

framework comprises an Application Program Interface (API) and sequenc~

ing constraints. In our view, a framework also includes metadata and other

interoperability conventions, such as supported data formats.

The design concepts that we present are applicable directly at the level

of the software architecture design. We avoid presenting higher-level issues

requiring formal Computer Aided Software Engineering (CASE) methodolo-

gies and notations; instead we refer readers to one of the many existing

methodologies [Hutt, 94]. In this chapter we focus on design at the OMG

IDL level, a level that is language and methodology independent but has a

straightforward mapping to both of these other levels. An increasing number

of useful OMG IDL standards are available and provide many useful design

patterns.

Typically, about 70 percent of the cost of a software system is incurred

for operations and maintenance (O&M) after the system is operational

[HoroWitz, 93]. Of the O&M expense, about two—thirds is due to system ex-

tensions needed because of changes in requirements. These figures indicate

that adaptability is the key characteristic of cost-effective software archi-

tectures. Our discussion of software architecture focuses on system-level

strategies that can minimize these substantial costs by enhancing system

adaptability.

Savings due to having well—structured software architectures versus un~

structured architectures typically exceed more than 50 percent [I-Iorowitz,

93]. When using CORBA-based software architectures, we believe the sav-

ings can be even greater. CORBA has simplified the creation ofgood software

architectures by providing architecture notations such as OMG IDL, useful

API standards, and the inherent system-level flexibilities built into Object

Request Brokers (ORBS).

This chapter covers many effective design elements of highly adaptable

systems. Perhaps the most powerful (but underutilized) concept for building

adaptable systems is metadata. Metadata is any self-descriptive informa-

tion contained in the software architecture and implementation. Typically,

metadata describes attributes of the components of the architecture, so that

it enables more adaptability, by allowing certain attributes to be determined

at runtime. Many helpful metadata standards exist to aid in the implemen-

tation of metadata knowledge that a wide community of programmers can

utilize. Metadata is the key to resource discovery in distributed, adaptable

systems. It enables the system to configure itself, and to adapt to system

extensions and changes automatically.

72



73

 

ROLE OF CORBA IN SOFFWARE ARCHITECTURE 57

ESTABLISHING ARCHITECTURAL VISION

There are two major types of organization for designing software architec-

ture: design by individual “chief” architects and design by teams. Individuals

can design conceptually coherent and elegantly simple architectures. Most

successful architectures are based on a strong architectural vision. The vi-

sion is generally due to one chief architect, and it is difficult to maintain a

consistent vision across teams of designers.

Communication of the architectural vision to the team of developers is a

Very important element of a successful architecture. About half of software

development activities involve system discovery, or trying to understand the

system’s structure. If developers do not understand the architectural vision,

then they can easily make implementation choices that violate architectural

assumptions.

With no direct relationship between separate design processes and im-

plementation processes, the implementations rapidly diverge from the de-

signed architecture. CORBA provides some important tools, such as OMG
IDL, for communicating, design information in a way that can be verified in

the system implementation. Communication of Vision must go beyond OMG
IDL to include other documentation. Creation of a tutorial-format architec-

tural walkthrough is an excellent way to communicate vision to a team of

developers. Capture the tutorial on videotape, and use it as a mandatory

part of each new developer’s and maintainer’s training.

I Design by teams is an approach used more widely than design by an

individual architect. Team design can result in robust architectures that in-

corporate the contingencies envisioned by a Whole group of architects. Many

team designs are large and complex because it is often easier to include

additional complexity than to compromise and merge viewpoints. Design

complexity exacerbates the problem of maintaining a consistent architec-

tural vision that developers understand.

Both approaches require iterative design and revision. An effective

' architecture can seldom be designed in a top-down manner with a priori

knowledge. To yield architecture benefits, an architecture design needs to

be prototyped, then utilized and updated through experience and knowledge

gained in the prototyping process. This process is most effective if changes

are made on a predictable release cycle, where the architecture is stable

between releases. Architecture revision is essentially a code cleanup task on

a systemwide level. As experience is gained with an immature architecture,
lessons learned can be used to create a new improved architecture that will

reduce O&M costs for future system extensions.

ROLE OF CORBA IN SOFTWARE ARCHITECTURE

CORBA is an enabling infrastructure for good software architectures. Its

architecture benefits are derived from two primary sources: OMG IDL and
the CORBA—based ORBS. ‘

73



74

58

 

SOFTWARE ARCHITECTURE DESIGN

OMG IDL is an important notational tool for software architects. Be-

cause it contains no implementation information, it provides a clean sepa-

ration between design and implementation. In the developed system, this

provides encapsulation of components and isolation between subsystems.

Component isolation is an important property of a good software architec-

ture because it enables the reconfiguration and replacement of components

during the system life cycle.

OMG IDL is a universal notation for specifying APIs. It can be used

without a commercial ORB product; for example, it can be used as a layer

directly on top of the Open Software Foundation Distributed Computing

Environment (OSF DCE). OSF has provided a guideline for this mapping in

its CORBA interoperability proposal [OSF CORBA 2.0]. APIs denote system-

level software boundaries. Defining good software boundaries is the primary

goal of a good software architecture. OMG IDL is the best standard notation

available for this purpose. It defines APIs concisely and rigorously, covering

important issues such as error handling.

By using OMG IDL for specifying all architectural boundaries, good soft-

ware architectures support a uniform abstraction layer with uniform access

to services. Where to place OMG IDL interfaces and where to use a commer-

cial ORB are two different decisions. The former is a design decision; and

the latter, an implementation decision. OMG IDL can support library func-

tion interfaces just as well as distributed objects across a network. CORBA

allows the deferral of many allocation decisions to installation time.

OMG IDL can be layered on top of virtually any communication layer.

Many different communication layers are available from standard, de facto,

and proprietary sources, and they are rapidly evolving; software architects
should consider an approach that isolates the application software from

these underlying layers. Direct integration of application software puts the
architecture at risk of obsolescence as the technologies evolve and are re-

placed with higher-level layers. There are successor technologies on the hori-

zon for virtually every communication layer available today, such as DCE,

ToolTalk, and so forth.

An alternative approach is to define a custom API layer encapsulat-

ing the communication-layer software. Commercial vendors use this tech-

nique routinely to enable them to substitute mechanisms for different system

builds. If this custom API layer is defined in OMG IDL, then the API spec-

ification can support multiple language bindings and be easily upgraded to

utilize an ORB product. This technique also can be used to mask differences

between layers ifmultiple communications layers must be supported within

an architecture. In this case, the OMG IDL defines the uniform service access

layer, independent of mechanism.

Stability is a key characteristic of good software architectures. No speci-
fication is more stable than a commercial or de facto standard with multiven-

dor support. Among standards, OMG IDL is a very stable standard because

74



75

 

ROLE OF CORBA IN SOFTWARE ARCHITECTURE 59

Figure 4.1. Three ways to utilize a low-level communication layer.

it is the basis for the OMG’s standards process and many commercial ORB

products. An adopted OMG standard comprises an OMG IDL specification
and a description of the sequencing constraints on the interfaces. By us-

ing OMG IDL, software architectures gain these same benefits: conciseness,
rigorousness, stability, and commercial support.

In addition, a reusable software architecture specified in OMG IDL is an

informal standard for an organization. High-quality architectural specifica-

tions that address industrywide interoperability problems can be upgraded
to standards. OMG IDL supports the migration of a specification from soft-

ware architecture to organizational reuse to industry standard. This process

may eventually enable general interoperability between applications.
OMG IDL provides a compilable linkage between the software archi-

tecture and the implementation. As OMG IDL is pure design information,

it is part of the software architecture design. OMG IDL also is compilable
to header files and stub programs, which the compiler uses to verify ar-
chitectural constraints in the application software. These architectural con-

75



76

60

 

SOFTWARE ARCHITECTURE DESIGN

straints include enforcement of encapsulations, parameter type checking,
and so forth.

This approach is a dramatic improvement on analysis and design pro-

cesses that provide no compilable linkage between design and implemen-

tation. The compiler cannot check some architectural constraints, such as

sequencing constraints. Therefore, the approach is not bulletproof; the pro-

grammer’s knowledge of the architectural vision is needed to incorporate the

architecture’s benefits fully into the software implementation.

The ORB provides benefits for software architectures by supporting flex-

ibility and transparency in the implementation. For example, CORBA’s loca-

tion transparency eliminates the need for direct code dependency on object

location and enables the relocation and replication of services after the sys-

tem is coded. Its use of automatic server startup greatly simplifies client
software’s involvement in server administration.

MGii..| Di .
pjectifications

rmalfbefinition of lnte
ilrt?ofpp‘Ar<‘:hitecture AND a V 7

ar V efclmplementationi
‘ pi|able.Specificatio

Figure 4.2. OMG IDL role in software architecture and implementation.

76



77

 

INTEGRATION CAPABILITY MATURITY MODEL 61

CORBA is a great enabler of software architectures, but it does not de-

sign or define the software architecture. CORBA is a very general—purpose

mechanism that supports almost any form of architecture. Many design de-

cisions are the responsibility of the software architect and the implementors.

ARCHITECTURE PROCESS COMPARED TO METHODOLOGY

Many processes are involved in creating a software architecture. The overall

process is difficult to define, because the architect’s intuitive vision plays a
more important role than any particular methodology. This fact is becoming

more widely recognized as the methodology community shifts its focus from

object-oriented design to “design patterns” [Gamma, 94].

In practice, formal design methodologies have had mixed results. More

than two dozen documented methodologies based on object orientation cur-

rently exist. The OMG has published a comprehensive review and compar-

ison of these methodologies [Hutt, 94]. In general, the quality of the people

working on a project is much more critical to success than the methodol-

ogy employed. The Hillside Group, a group of design patterns researchers,

states that successful software architectures have been designed in spite of

formal methodology..This group intends to study and document the success-

ful software architect’s expertise. In this book, we are relaying this expertise

directly, bypassing the methodologists.

The process of software architecture design goes beyond people and

methodology. We have met many competent people who have no concept

of what a good software architecture is and why it is needed. This indicates

that there is a serious educational gap. Software architecture is a top prior-

ity mainly for technology consumers such as corporate developers, systems

integrators, and government organizations.

INTEGRATION CAPABILITY MATURITY MODEL

The architectural awareness ofan organization can be characterized in terms

of a capability model, as shown in Figure 4.3. The model provides categories

for organizational use of systems integration technologies. It is useful as a
self-assessment model or for gauging the awareness of architecture and de-

velopment groups. This model applies primarily to corporate developers and

systems integrators, but it is interesting to gauge these categories against

technology supplier organizations in terms of how they support the practice

of software architecture concepts.

At Level 1, the organization performs no value-added integration and

produces no custom software; it is a straightforward user of commercially

available software. At Level 2, the organization does produce software for its

own needs, but it is indifferent to the integration technology utilized. Level

2 organizations use whatever integration technologies are readily available,

77



78

62

Figure 4.3.

 

SOFTWARE ARCHITECTURE DESIGN

lntegration capability maturity model.

such as Transmission Control Protocol/Internet Protocol (TCP/IP) sockets

and Object Network Computing Remote Procedure Call (ONC RPC), which
are available or bundled on most platforms. Level 2 organizations typically

implement ad hoc software architectures because they have no real con-
cern for creating a consistent architectural abstraction in the implemented

system.

Level 3 organizations recognize the need for a uniform integration ap-

proach and have adopted a “mature” RPC technology, such as OSF DCE.
OSF DCE adds security, naming, and other basic services to the RPC model,

which provides advantages compared to Level 2 users. Level 3 organizations
are technically conservative and are at risk of obsolescence. They are risking

being caught on a nonmainstream technology base that may be expensive

to support over the life cycle. Since these Level 3 organizations are not ex-

ploiting new technology advances, they are paying a high cost for software

development based on the use of lower—level communication layers.

78



79

 

INTEGRATION CAPABILITY MATURITY MODEL 63

Level 4 organizations use CORBA technology actively, generally in a

product-dependent manner. These organizations are primarily benefitting

from the inherent advantages of the ORB technology as a higher-level RPC

mechanism. Level 4 organizations insert the ORB only at distributed or het-

erogeneous system transitions. They do not have a concept of a software

architecture other than to provide distributed processing capabilities. Their

architectural interfaces utilize other legacy mechanisms when distributed

processing is not required. Most of these groups do not rely on the CORBA

specification, and they use the ORB products in a product—dependent man-

ner. Level 4 groups are at risk of technology obsolescence wherever they are

using vendor-dependent interfaces and do not realize any real software ar-

chitecture benefits. Basically, they are using an ORB product as an improved

form of RPC technology.

Level 5 organizations have developed software architecture frameworks

for project-specific needs. Their frameworks include both local and remote
uses of OMG IDL interfaces. Their frameworks embody sound software ar-

chitecture principals. They realize software architecture adaptability bene-

fits and cost savings over the entire system life cycle. Level 5 groups still

have problems with intersystem interoperability, and they have minimal

reuse across projects and systems. Level 5 groups have minimal external

impact on their industry and the commercial market.

Level 6 organizations produce high-quality software architectures and

services for reuse across multiple projects. They rely on the CORBA standard

in preference to vendor-dependent interfaces. This gives these organizations
the ability to support multiple platforms and ORBs and eliminates the risk

of vendor—driven technology obsolescence. Level 6 organizations drive the

limits of CORBA beyond the immediate support by the ORB vendor. For

example, level 6 groups layer OMG IDL interfaces on a variety of mech-

anisms, including alternative protocols to address specialized application

performance needs. These groups have external impact across systems and

their industry. They are the generators ofinteroperability standards for their

industries and enjoy business success by being industry leaders.

Level 6 organizations are superstar performers. Not every organization

can produce technology at the world-class level. We believe that most organi-

zations are capable of Level 5 performance. With the proper interoperability

standards in place, level 5 organizations can produce level 6 results. It is the

responsibility of the level 6 technology leaders to create the interoperability

standards needed to make this possible.

In this book, We define a general process, provide some important ex-

amples, and give a set of techniques for software architecture design and

implementation. Software architecture design is different from and not in

competition with formal methodologies and CASE tools. The methodologies
and tools have their roles within the process; these concepts are covered

79



80

64

 

SOFTWARE ARCHITECTURE DESIGN

extensively by other authors. [I-Iutt, 94] In defining the process, we are most

interested in the practical strategies that lead to good software architectures

and system success.

SOFTWARE ARCHITECTURE DESIGN PROCESS

The software architecture design process comprises a number of heuristic

steps. The process defined here is not a fixed methodology but an eclectic,

flexible process that guides the architect on a path of learning necessary

insights to create an effective architecture. We do not believe that good

architecture can be created in a purely top-down manner. Good architecture

involves experimentation and should be pursued in an environment that

can tolerate some initial failures (or Wrong turns). Overall, the pursuit of

good architecture is a risk-reduction activity that builds robustness into the

system design and adds adaptability that will save substantial costs over

the system life cycle.

Software architecture design is more like an art than a science. Formal

notations may provide the architect/artist’s media, but in pursuing a formal

methodology, it is important to keep the focus on the real source, the artist,

not the media. Formal methodology constraints should take second priority

to the creative directions of the architect. In this process, the architect uses

his or her learning ability and creativity to formulate a strawman solution,

then refines the working design through experience. In this description, we

use metaphors from Various industries to describe the creative processes

(Figure 4.4).

At the start, the key learning activities include farming and mining. In

farming, the architect pursues various domain analysis activities to create

abstractions of the system requirements. In mining, the architect studies

previous solutions and legacy systems to create generalizations of the com-

ponent subsystems. These first two steps serve as exercises for edifying the

architect, and the resulting artifacts might not be used directly in the ar-

chitecture. In the composition process, the architect (as artist) synergizes
the lessons learned to create an initial software architecture (the strawman

architecture).

The balance of the process involves a series of iterative refinements to
the architecture. The strawman architecture should be reviewed by the de-

velopers and refined by the architect a final time before prototyping begins.

During prototyping, the architecture design should be frozen into stable ver-

sions. The fixed architecture provides a stable basis for parallel development

ofapplications. As the architecture matures, the frequency ofchanges should

decrease and -the impact of any changes should decrease dramatically.

When the architecture is immature, prototyping should be relatively

small scale. Limiting the commitment of prototype software at this phase

enables more frequent and dramatic upgrades to the architecture.

80



81

 

SOFTWARE ARCHITECTURE DESIGN PROCESS 65

Archite t

Figure 4.4. Architecture process.

Architecture refinement decisions may involve substantial project re-

sources. Each time the architecture is modified, most or all of the compo-

nent subsystems are impacted. This may be expensive if the changes are
dramatic. The primary goal of the architecture process is to accommodate

future change.
The architecture is the stable basis for the system. As technology evolves,

components are added, interchanged, and upgraded While the architecture
remains stable. The architecture life cycle is equivalent to the system life

cycle and transcends the life cycles of individual component subsystems.

The architecture process is not an egalitarian group process. A Work of

fine art such as symphony composition or a museum painting are almost

always the Work of an individual artist’s vision. Good software architec-

tures also are based substantially on a chief architect’s vision and control

of the designs that implement the vision. The common notion that a group

of developers all “charge up the hill” as equals generally does not result in

81



82

66 SOEFWARE ARCHITECTURE DESIGN

effective software architectures. Good developers can always produce an ef-

fective demonstration, but ad hoc demonstrations rarely evolve into robust

full life cycle architectures. Individual developers in a group will have dif-

ferent interpretations and concepts for a common architectural vision. It is a

key architect’s responsibility to communicate the system vision to developers

and arbitrate between the differences of interpretation.

Software architecture design is a learning process. The design process

is analogous to the incremental development concept from artificial intelli-

gence. When the system is designed initially, the architect does not know

many of the key facts and intuitions necessary to create an effective so-

lution. The architect pursues an initial learning process through farming,

mining, and composing to create a strawman architecture. The strawman

architecture is evolved into the robust, finished architecture through a series

of refinements, which involve new insights gained through the prototyping

experience.

The Mining Process

The mining process involves the study of current technology and legacy sys-

tems. From these former designs, we hope to characterize the architecture-

level support provided by these systems. In this step, we can also generalize

the results so that a robust generalized component model emerges.

Figure 4.5 shows the set of models constructed during the mining pro-

cess. This is a bottom-up process; the first step involves clarifying the models

at the base of the diagram. The process proceeds to consolidate the models.

In the last step, the architect refines the design for completeness and robust-
ness.

The process begins by modeling the existing subsystems. These are mod-

els of specific concrete components. For example, ifwe are modeling database

products, then we would create models for Sybase, Oracle, and other specific

vendor products. In these models, we are seeking to represent an idealized

API for each concrete component. These API models represent access to all

of the functionality available, both that provided by the concrete API and

that provided through the user interface. Often the functionality available

through the concrete API is quite different from that offered through the

user interfaces. The model API should capture a superset of both. OMG IDL

is a suitable notation for describing the model APIs.

This first step serves to help the architect to understand a variety of
alternative concrete subsystems in detail. In practice, we have found the

artifacts of this step to be of minimal value. However, the learning process

is invaluable, because the architect learns the commonality and differences

between components. With this understanding, he or she can begin to create
a robust architectural design that captures the commonality and abstracts

the differences. Component interchangeability in the final architecture is a

82



83

 

SOFTWARE ARCHITECTURE DESIGN PROCESS 67

Figure 4.5. Mining process.

key goal of this exercise. To understand each component fully, the architect
should consider taking developer training courses and conferring with expert

' developers in addition to reviewing the component’s technical documentation
in depth.

The second step is a process of generalization. With an understanding
of the specialized components, the architect defines a common base class
definition. The common base class (or generalized model) should represent

a fully functional component API in its own right. It is possible to document
the mapping from the concrete component models to the generalized model.
In practice, we have not found much benefit in pursuing this exercise for
more than one concrete model. The one documented mapping can be used as

implementation guidance to the developer doing the integration.
The third step in the mining process involves the refinement of the de-

sign. Additional design concerns beyond capturing and abstracting the con-
crete subsytems need to be infused into the design. Whereas the first step
in mining could be approached scientifically, the second and third steps in-

83



84

‘sxnqosggqsle uoumxoo 12 pmmoq suxsqsfis quspusdspu; sqg

go IIO‘_[1I1[OA8 Jog qsfimo, sxngosqgqom sqa, sugsp £2111 uoggomqsqe uoumxos sq;
‘um 81101 sq; III '>{1oAAsum.Ig uotuuxos sqa, 03, IIISCLSKS qses fiuggeafisqug Xq Kg;
—[gqe.1sdo.1s:),ug spgzxoxd on, pssn sq mes uogspmcysqta uoumzoo sq; ‘fiuemug ‘soon
—oe.1:;sqe gmncgsscggqom uouxmos sutgsp on, pssn sq use smsqsxs qgoq go Apms
Sugugux V 'uog3,gsodo1d szxgsusdxs pue Bugfiusueqs zfineoguqssg 12 S; sup, ‘pegs
-us.8 I11 ‘suxsgsfis psdogemsp Xpuspusdspug ussmqsq sfiueqzusgug zfiogfeuogcpung
‘QUE egep spgzxoxd 03, S; 11903 sq; ‘qos_['o.Id Kgqgqexsdoxsqug me U1 'su1s3,sAs Ass
-391 f§ugA{oAug sgosfoxd K3,;[gq121sdo.1s:gu;Bugns1nd sm suogqezguefixo Knew-sasos

spxo-sgwq sonpsx pue Kgqgqeqdepe sp_LAo.1d mm qeqo, ssxnqsscnqom smmggos
psAo.Idu1g on, sAoux 03, sq pmoqs smsqsfis uoggmfigul go [1203 .I0_feu1 V 'ss;ous8
-ugquoo smqng 10g sppxoxd pus [spom sAgsusqs.1du1oo sxoux 12 sp;Ao,Id was geqo,
uogqefigm up psA[oAug Kposxgp 3,011 smsqsxs [euxsgxs xspgsuoo pgnoqs Kpngs
Bugugux sq; 's.1no,ss3,gqo.m qsnqox '8 sqesxs og pspssu zfimtauogqoung pus ssoeg
qsgug ICIV go ssg:;sg,neA sqa, 03,11; sqqfigsug spyxoxd use Kpms qong ‘suxsgsxs
$02391 sq; go Kpnqs Bugugm 12 spnpu; pmoqs sxnqosqgqsxe III8’.].Sz{S uogcyexfigm
sq; sutgsp on, pssn sssooxd ufigssp 9L'[\L 's:1so:> smes pus szgsumop 03, .1sp.1o I1;
scpsfoxd smsqsfis uogqeafigm 001 maqo, szoux Bumsmd Agqusmns sg ssusgsq
To gusunmdsq ssqegg psqgufl sq; Kgneuogcgoung .na[;u1gs Sugppxoxd smsqsfisJ

Xsefisg IEJLGAGS go uogqepqosuoo sqo, S8A[0AII'§ 'J,D3_f0.Id uzsqsxs uoggeafigm V
'2§3,;[;qe.1sdo.Isgu; uxsgszisxsqug

pus SIlI9’J,Sz{S uogqexfigm spnpug qqfigux smsqsfis sssqo, BugA[oAu; sqosfoxd go
ssdxo, omg, 'su1sn,s&s £32891 smmqgos-moqsns on, Agdde ospe sgdsouoo sssq_L

's.1m,ng s[qessss.1og sqa, .Iog spusxo, 3,s}{.Ieu1 sgqgspx

sqn, smgdeo um qeqo, S[8p0U.I pszqexsusfi 3,snqo.I &IsA pfinq ueo sm ‘ssxngesg
lusuodmoo s.m3,ng sssqo, .I9AOZ) on, sptredxs &pm,s Buyuguz .mo sV ‘s10pusA '.;s§{

mam sqogu ps:>ueApe zfiusaguqoso, ‘Hams go sqanpoxd sq; u; Agxegnogqxed ‘sseq
.{‘8o[0uq:>s9, 3,us.1.m:) sq; gnoqfinozqq psqnqgxqsgp ptmog sq ues sgonpoxd smq
--ng go ss.mo,esg sAp,eAouug sqo, go qsouz qeqo, szxsqsq sm. ‘gong ug ‘s[oqm. 2 Se
a,s:{.neu1 sqo, Kq samqng sq; ug psqdope sq mm ssmqesg snbgun sssqo, go sums
‘sxogegqusasgggp qonpoxd pue ssqogu a,s>{.mu1 sqq oqu; qqfigsug sppxozd osge Alsqq
qnq ‘fifiogouqaso, gusnno gusssxdsx sgonpoxd go 3,ss s81e1 V 'o,s>[.1su1 Afiogouqssg
sq; ug spusxo, sqo, 3.InfJ,dE0 on, sugfisq [epom pszqmsusfi sq; usqs, ‘psgpnqs sma
sqonpoxd 8.10111 .10 ssxqn, g1 qusgotggns sq Ken: sgqo, pus ‘sreqs qsxpeux go K9,;
-xofeux 12 qusssxdsx ueo sqsnpoxd om; ‘s9,s>[.IeuI Kfiopuqosg Knew [I] 'sg:mpo.Id
om, ssoqn, 3,3991 9,12 .10} psmsse S; Aqqgqesfiueqoxsgug gusuoduzoo ‘psgpngs sm
sgusuodmoo sqsxsuoo om; g1 quspusdsp gonpoxd sq mm [spoux pszqexsusfa‘
sq’; ‘spxom xsqgo ug——uo;:n23,usu1s[dIu; suo pmmoa, pssegq sq Agugegxss mm
Sq]_'['I.S9.I sqo, usqg ‘psgpnqs sg qusuoduzoo sqsxsuoo suo &[uo g1 -sgusuoduxoo sgsxs
-1103 go uogtpsgss go qqpesxq sq; S1 sssooxd sup, u; s[qeg.n3A gueuodmg UV

'su1souoo Kqggeuoggoung qgpm (&.1,1o;[du1;s ST1S.I9A Kggxsgdmoo "s'g)
stusouoo qsoo fiugsuepaq ‘3,usu:L‘3pn_f 3p,s;:1.Ie sgosggqoxe sq; 8A[0AI.I‘_[ fifiugsesxs

NQISEICI E|Hfl_l.OEU_] HOHV EIHV/\/\_l_-I08
84

 

89



85

 

SOFFWARE ARCHITECTURE DESIGN PROCESS 69

The Farming Process

Farming is the process of representing the system requirements at the soft-

ware architecture level. Most requirements for systems focus on user inter-
face characteristics. Software architectures deal with software-to-software

boundaries. Good architectures are independent of user interfaces because

user interfaces are some of the most dynamically changing parts of the sys-
tem.

Formal requirements can provide an overall shopping list of the kinds

of components that will be needed in the system, describe the general oper-

ation of the system, and give other useful characteristics. It is important to

understand the requirements thoroughly, but it is unreasonable to expect to
derive an architecture mechanically directly from requirements. Even if it

was possible, We believe it would be a mistake. A requirements document is

a snapshot of the user’s current needs. A good software architecture should

support these requirements at the system level and transcend them to pro-

vide enough adaptability to support all anticipated future needs and many
unanticipated ones.

Consider the potential dramatic changes over a 10- to 15-year system

life cycle. An important measure of the quality of the architecture will be

how well it adapts to those dramatic unanticipated changes. If the architec-

ture is heavily dependent on transient requirements, such as a particular

commercial, off-the-shelf product API, then the architecture probably will

become obsolete Within three years, as soon as there is a major product

upgrade. If the architecture is heavily dependent on the current business

process, then it may become obsolete following a reengineering activity (per-
haps within five years). The skilled software architect knows how to isolate

these dependencies on transient requirements. We provide some strategies
and techniques later.

Requirements-driven design does not result in effective architectures

because the requirements are not written with an architectural perspective.

Generally, written requirements documents do not contain enough architec-

tural substance to impact architecture design choices substantively. While

this gives the architect some freedom, requirements documents often neglect
to specify the need for a software architecture. If a software architecture is

not part of the system deliverable, the developer seldom makes an extra
investment to create one. Lack of a deliverable software architecture is a se-

rious requirements defect; most requirements will change substantially over
the system life cycle, and the software architecture is the only deliverable

facility that provides for overall system adaptability and stability.

In addition to the formal requirements, the architect also must perform

some additional research on the problem domain. This can take the form

of domain analysis, which allows the architect to formulate some new de-

tailed requirements as well as to gain an intuitive understanding of the

85



86

70

 

SOFTWARE ARCHITECTURE DESIGN

problem domain that may prove invaluable. Domain analysis allows the

architect to View the system from the perspective of the_end user. It can

use formal methodologies and notations, including object-oriented analysis,

object-oriented design, and business process reengineering.

Composing and Refinement

The composing process is an artistic process of creating the software archi-

tecture. It follows the background research processes, which may include

farming and mining. Composition is a very individualized process. Some ar-

chitects begin with a strawman design that they can refine. Some propose

multiple design concepts and trade off the alternatives. For others it is a

gestalt process where they create the architectural concept from knowledge

of the problem domain, experience, and intuition. Most architects have some

prior system success upon which they base their philosophy and concept for

the new architecture. In the composing process, the architectural vision is
first created and elaborated. .

Informal design reviews play an important role in the creative process.

After initial composition and some refinement, it is time to take the design

to friendly audiences, including some other various experts, managers, and

developers. Soliciting initial feedback is necessarily an informal process. As

the design gains more exposure and feedback, the architect can refine the

design to incorporate new ideas and test cases. In addition to developing the

technical design, the architect is learning to sell the architectural vision. It

is crucial for the architect to choose the right way of explaining the design so

that people understand it and have confidence in it. Management can play

a key role in supporting the architect’s organizational charter to control the

design and protect its integrity. Consulting with various technical experts is

useful to refine specific portions of the design. For example, if the architect

is proposing an innovative metadata scheme, he or she can gain confidence,

knowledge, and credibility by consulting with a metadata expert to refine

that portion of the design.

Ultimately the interaction with the developers is the most important

of all, in that, through this relationship, the architect will gain necessary

implementation feedback to determine the true effectiveness of the design.

Participating in the development team is an added benefit that can pro-

vide the architect with hands-on knowledge of the prototyping issues and

enhanced rapport with the development staff.

Communication of the architectural vision to the developers is a key

factor to system success. As We have suggested, communication tools should
include a tutoriallike architecture review. The tutorial should cover all the

key design concepts, relevant new technologies, and standards. This is an

important leveling step that is essential to communicating the vision. This

type of design information has been very elusive in previous systems; we

86



87

 

SOFTWARE ARCHITECTURE DESIGN PROCESS 71

believe a videotape record of the architecture tutorial should be a mandatory

part of every new developer’s training.

Prototyping and Lessons Learned

The software architecture should be stabilized (or frozen) whenever it sup-

ports active development. After prototyping begins architectural changes

should be considered Very carefully, and the changes should be implemented

in discrete updates, after which all the prototype software is upgraded to

support the current version.

Architecture updates and prototyping should be synchronized carefully.

The architecture updates should occur at natural transition points in the

prototyping activity. Figure 4.6 shows an evolutionary development process

that alternates architecture updates with prototyping activities. In this case,

the design and development process is a series of iterative steps, which guar-

"Eng. Prototype" "Pilot Systenif‘

2nd Prototype 3rd Prototype *

Figure 4.6. Evolutionary development.

87



88

72

 

SOFTWARE ARCHITECTURE DESIGN

antees architecture stability during development, and enhances architecture
maturity (robustness) in each iteration.

Knowledge is gained at many levels during each architecture iteration.

For example, there may be end-user deliverables that are driving the process.

Through end-user and developer feedback, the architect gains insight into

the architecture’s strengths and weaknesses. The developer gains experience
with the subsystems and component technologies as the system evolves.

Architecture updates should be driven primarily by real testbed ex-

periences in implementing the design. Updates should be consistent with

the architectural vision and avoid compromises for specific products, short-
term performance needs, or component implementation dependencies. The

lessons learned in the prototyping experience contain the detailed feedback

that confirm or deny architecture choices and indicate the need for changes.

In relating the lessons learned, key questions for the developer and architect
to discuss include:

1. What parts of the architecture were used? Why and how? What parts
were not used?

2. Does the developer understand the interoperability, flexibility, and ex-

tensibility features of the architecture? If so, how were these used?

3. Did the developer extend or need to Work around the architecture in any
Way?

Wherever the developers are compelled to work around the architecture,

there is likely to be an architectural flaw or a lack of communication. In fact,

it is useful to put some feature in the architecture, such as a very flexible

message-passing API, that will provide an escape valve to address these

unforeseen needs. This is preferable to having the developers invent their

own Workaround strategies that may not be easily discovered or changed in

an architecture update. Heavy use of these very flexible APIs may indicate
a flaw in the architecture or an incorrect transfer of the architectural vision

to the developers. I

INTERFACE DESIGN TRADE-OFFS USING OMG IDL

Careful design trade—offs at the level of OMG IDL specifications are neces-

sary to make the software architecture optimally effective. An idiom is an

expression that is peculiar to a particular language. In this section we study

some key IDL idioms. OMG IDL is distinct from other computing languages

in its syntax and purpose. In order to give the reader the full rationale for

these idioms, we introduce concepts from an important related area, pro-
gramming language design.

88



89

 

INTERFACE DESIGN TRADE-OFFS USING OMG IDL 73

Programming language design is a discipline closely associated with

interface definition. It is a research area of computer science in which scien-

tists define new high-level abstractions specifying the actions of computer
systems. Whereas a software architect defines the programmer’s interfaces

to subsystem components, language designers define the programmer’s in-

terface to the machine. Some of the best languages are concisely specified,

very easy to learn, and very flexible in their applicability. Good languages

adhere to many of the architecture design principles that we are espousing in

this book. Programming language design has more degrees of freedom than

the practice of defining OMG IDL interfaces. Nevertheless, there are a num-

ber of important concepts from language design that are highly applicable
to OMG IDL interfaces.

A key trade-off in programming language design involves the restriction

of inefficient operations. A programming language defines a higher-level

abstraction of the underlying machine. This abstraction must balance the

convenience of specifying operations with the cost of the operations in terms

of machine resources. In high-end systems, there has been an interesting

shift in the underlying machine model toward vector and massively parallel

processing. These changes are affecting new language definitions. For exam-

ple, changes in FORTRAN from the 1960s to the 1990s show the increased

importance of vector parallel processing.

V An effective language design must restrict programmers from inadver-

tently invoking highly inefficient operations. For example, most languages

restrict the passing of arrays and structures by value in function calls, an

operation that might require memory allocation and copying ofthe structure.

These programming language restrictions actually make it more diffi-

cult for the programmer to do certain types of operations. To the software

architecture designer this concept is very important. In many design choices,

the architect controls the ease or difficulty of using an architectural feature.

For example, if we want to guarantee certain properties in the architecture,

. such as interoperability or synchronization, we need to make it as difficult as

possible for the programmers to work around our intentions. In other cases,

we want to facilitate the ease of use. For example, we could include a power-

ful feature supporting extensibility that enables the developer to extend the

architecture in useful ways. Generally it is a good idea to provide a range of

restrictive and extensible operations in an architecture.

Data types provide some important idioms for controlling architecture

restrictions using OMG IDL. The purpose of data types in OMG IDL is to

allow the definition of the parameters of operations. There is a full range of

available types, including scalar types and complex user defined types. Per-

haps the most restrictive OMG IDL parameter type is the enumeration. The

architect can define a fixed set of values that can be passed as a parameter.

For example:

89



90

74

 

SOFTWARE ARCHITECTURE DESIGN

interface FruitBasket1 {
enum Fruit { APPLE, ORANGE, PEAR }:

Fruit takeone(in Fruit preference);
};

As a parameter, the Fruit enumeration will allow only the specification

of apple, orange, or pear. Specifying a grapefruit or a watermelon would not

be possible. Developers might try to work around this by specifying an illegal
enumeration value. That would be a conscious subversion of an architectural

restriction. The rationale for why an enumeration is used should be clearly

defined in the architecture documentation and perhaps could be explained

directly in the OMG IDL comments.

Other than modifying thespecification, there is no legal way to extend

an OMG IDL enumeration. Architects should use enumerations judiciously

where they are necessary or where they are unlikely to change over the

system life cycle.

An alternative approach that has much more extensibility is to substi-

tute a string parameter for an enumeration, as in the following example:

interface FruitBasket2 {

typedef string Fruit;
Fruit takeone(in Fruit Preference):
} ;

In this case, the choice of fruit preferences is unlimited. There also is

no guidance to the developer as to what the potential choices are. (From

the IDL, the developer does not know what fruit to ask for and has no way

to anticipate of what fruit will be returned.) This dilemma can be solved

in several ways. Without extending the interface, We could provide some

constant definitions to establish a set of fruit terminology, for example:

//OMG IDL ~ Constant Definitions for Fruit Basket Interface

//Developers may define their own fruit types as new string
//literals.

const string APPLE = "APPLE";
const string ORANGE = "ORANGE";
const string PEAR = "PEAR";

We also could include comments such as the one just given explaining

how developers can safely extend this interface by defining new string-valued

fruit types. Architects want to resist creating new APIs whenever possible,

because they add to system cost and complexity.

Note that the OMG IDL file containing the fruit types could be main-

tained separately from the OMG IDL file defining the APIs. In this way, we

can extend the defined set of fruit without changing the base class definition

file. This technique is discussed in the separation of Hierarchies section on

page 86.

90



91

SOFTWARE ACHITECTURE DESIGN PRINCIPLES 75

OMG IDL is a strongly typed language. It allows architects to define

simple and complex types of many forms that are compile-time checked by

the implementation language compilers. Strongly typed languages are great

for defining type restrictions, and OMG IDL extends these benefits across

many programming languages. «

OMG IDL also supports dynamic typing through the type “any.” Values

of type “any” can be of an arbitrary OMG IDL type. A value of type “any”

includes a typecode, which indicates the type. Typecode symbols generated

by OMG IDL compilers, improve the convenience of the handling of type

“any.” Generally if the value of type “any” needs to be accessed, the typecode

can be tested and the value recast to the appropriate predefined type.

Type “any” is very important to software architects interested in build-

ing extensible systems. For example, type “any” enables software to pass

unforeseen types through a set of robust architecture APIS.

In some cases, the architect might avoid using type “any” because of its

extreme extensbility. For example, type “any” should be avoided if we want

to provide some set of restrictions on parameters that guarantee interoper-

ability.

A more restricted alternative to type “any” is to use self-descriptive pa-

rameters. For example, the following is a very flexible type that can represent

any file format, such as data formatted in TIFF or PostScript:

struct FormattedData {

string representation;

sequence<octet> value;
I ;

The structure for FormattedData contains a tag “representation” that

identifies the format. Because this is a string-valued tag, it is user extensible.

The “value” is any arbitrary sequence of bytes, which makes this a very

general-purpose form of “flat-file” data.

The previous example uses a sequence type. The OMG IDL sequence

type is like a variable-length array; the elements have homogeneous values

(including type “any”) and the length can be defined at run time. Sequences

are very useful for passing lists of entities. The lists can be any runtime

length, and they even can be object handles.

We have found OMG IDL to be an outstanding language for architectural

specification. It allows a great range of control of architectural restrictions
in interfaces, and these restrictions are enforced by compiler-time checks in

multiple programming languages.

SOFTWARE ACHITECTURE DESIGN PRINCIPLES

As in programming language design, software architecture is more art than
science. Nevertheless, there are many important architectural design prin-

ciples (or design patterns) that can be useful in creating more effective soft-

91



92

 

SOFTWARE ARCHITECTURE DESIGN

ware architectures. The following sections describe some of these key design

principles and strategies.

Abstraction/Simplicity

Many organizations do not even consider abstraction or simplicity to be an

important consideration in software design. We consider simplicity to be per-

haps the most important architectural quality; that is why we are presenting

it first among our architecture principles. Simplicity is the visible charac-

teristic of a software architecture that has successfully managed system

complexity.

Functionality and simplicity are often considered to be opposing goals.

Functionality can be increased by adding new features to the design—by

increasing the complexity. In a committee design process, it is usually more

politically acceptable to add features than to remove them. In that way,

everyone can contribute ideas to a design and no one’s ideas get excluded.

Without much difficulty, it is easy to create specifications that no one per-

son understands because they are too large, too complex, and inconsistent.

Unfortunately, most specifications that you will encounter in practice have
these characteristics. Traditional, non-OMG standards have swelled to an

almost unbelievable complexity. In one generation, Structured Query Lan-

guage (SQL) has increased in complexity by an order ofmagnitude (from less

than 100 pages to more than 500 pages). Technology suppliers are driven to

excess complexity because having a lot of features is considered a marketing

benefit. Understanding enough of one complex specification to provide some

useful capability is a full-time challenge. To build a useful system, numer-

ous specifications must be utilized and integrated. This is one of the key

challenges of systems integration, and it is the software architectures role

to manage this complexity.

An important example of excess complexity is provided by EMACS, a

text editor on UNIX systems. EMACS was developed in an academic set-

ting, where multiple developers could contribute their software extensions.
The user interface evolved into a classic committee design. EMACS com-

mands comprise hundreds of unintuitive control sequences. For example,

CONTROL-X4-CONTROL-S and CONTROL-META-LINEFEED provide al-

ternative ways to save the text file. EMACS is programmable, so that users

may add their own control sequences. We know people who have spent major

portions of their careers creating their personalized EMACS environments.

We have used EMACS for many years but now find it quite anachronistic

compared to today’s mature editor technologies, which are quite intuitive

and so simple that they can be learned and used easily Without documenta-
tion.

EMACS provides an important analogy for software architectures. Like

modern text editors, good software architectures are simple, elegant, and

92



93

 

SOFIWARE ACHITECTURE DESIGN PRINCIPLES 77

mature designs that are easy to understand. Ease of understanding can

yield substantial cost savings. About half of all software development time

involves “system discovery” (trying to understand how the system works).

A primary difference between software architects and programmers is

that only the architect is concerned about the cost of the design. Architects

deal with system—level issues where cost is a serious concern. A mistake or

inefficiency in the architecture can have consequences in every subsystem,

whereas a mistake in a subsystem is usually an isolated software defect.

There is a direct relationship between simplicity and cost. In computing,

many phenomena occur in factors of 2. Let’s consider doubling the size of an

architecture specification, for example, providing twice as many APIs than

a more simplified design for integrating legacy and COTS components. In

an architecture, every new API adds development cost to every subsystem’s

integration code. Suppose several servers support each API as well as several

clients. Doubling the number of APIs could more than double the cost of

initial systems integration. Each time we add a new client or server, on

average, we need to support twice as many APIs to provide interoperability;

thus our system extension cost can double as well. System extension due

to changing requirements involves about half of all software life-cycle costs.

The new APIs can double the size of development documentation and can

double the cost ofinterface design (both substantial cost factors). On average,

testing and debugging will involve twice as many APIs, which will more than

double the cost of these activities. Training of software developers can take

double the investment and require double the replacement cost due to staff

turnover. Overall, we pay a big price for complexity.

Only about one out of five software developers has the capability to cre-

ate good abstractions [Cop1ien, 94]. Part of the problem is that abstraction

is not a concept widely conveyed in computer science education. These one

in five are different from the one in 20 developers who display exceptional

programming productivity. In fact, abstraction abilities and exceptional pro-

gramming abilities are somewhat incompatible because they represent two

fundamentally different perspectives of computer systems, one desiring a

simplified system model, the other thriving in the complexity of the details.

In order to create good software systems, the people who have the abstrac-

tion ability should be recognized and promoted into positions ofresponsibility
and authority as software architects.

Interoperability versus Extensibility

Interoperability and extensibility are also important properties of a software
architecture. Here we define these properties and describe how they interact

in an architecture design.

Interoperability is the ability to exchange functionality and interpretable
data between two software entities. Interoperability can be defined in terms

93



94

78

 

SOFFWARE ARCHITECTURE DESIGN

Figure 4.7. Definition of interoperability.

of four enabling requirements: communication, request generation, data for-

mat, and semantics. The software entities require a communication channel

with a common communication protocol. Across this channel, the entities

need to be able to formulate and transmit an interpretable request for func-

tions or data. The result from the request must be returned to the recipient
in a data interchange. Data interchange also implies a requirement for a

data format that can be parsed syntactically by the recipient. The last re-

quirement is that both entities understand the request and data through
some form of semantic translation.

The interoperability problem in current software systems is that there

are too many conflicting solutions for each of these requirements. There are

many different communication protocols. Commercial and legacy software

contain many different/conflicting protocols and levels. There are many stan-

dard and proprietary request generation languages and conflicting dialects

of these languages, such as SQL, Wide Area Information Services (WAIS),

scripting languages, and so on. There are numerous data formats; virtu-

ally every software package defines a new one. The semantic requirement is

94



95

 

SOFTWARE ACHITECTURE DESIGN PRINCIPLES 79

still primarily a research area, so the available solutions are divergent and
immature.

CORBA simplifies the problem ofinteroperability somewhat. It provides

a consistent, uniform service access mechanism that enables ubiquitous

transparent communications. Through Object Service definitions such as

the naming service and the query service, OMG standards provide standard

ways to generate requests. Object Services such as the data interchange ser-

vice will address data interchange issues. The OMG standards process can

support the standardization and commercialization of new services covering

semantic mediation and other areas of interoperability.

Extensibility is the characteristic of an architecture to support unfore-

seen uses and adapt to new developer requirements. Extensibility is a very

important property for long life cycle architectures where many new require-

ments will be levied against the design. Built-in extensibility is necessary in

order to support the needs of developers as they add new system improve-

ments throughout the life cycle.

Interoperability and extensibility are sometimes conflicting goals in an

architecture design. Interoperability requires a constrained relationship be-

tween software entities, which provides guarantees of mutual compatibility

ofrequest syntax and data formats. A flexible relationship is necessary for ex-

tensibility, which can easily extend into areas of incompatibility. In general,

it is very easy to make two software entities incompatible; minor changes

in data format or request syntax can easily prevent interoperability. It is no

wonder that separately developed applications share so little software reuse

and interoperability; lack of compatibility is the natural result of the brittle-

ness of technology. Creating interoperability requires rigorous interchange

conventions and extraordinary cooperation.

The architect can facilitate interoperability by designing some opera-

tions into the architecture that constrain the parameters to guarantee in-

teroperability. The following is an example of a well-constrained interface

for exchanging positional information. The “position” struct self-identifies
its own unit value. It uses an enumeration to constrain the choice of units

to two possibilities. It is a simple interface comprising send and receive op-

erations. The exception values cover all of the reasonable cases, and provide

good error traceability to the client. All of the data types are strongly typed.

With this type of interface, interoperability is likely to be assured between

a client and a server supporting it.

// OMG IDL

// Example Constrained for Interoperability
interface Positionlnterchangel {

enum Units {lNCHES, CENTIMETERS}:
struct Position {

Units unitkind;

double x, y, z;
};

95



96

80

 

SOFUNAREARCHHECTUREDEQGN

exception X_0UT_OF_RANGE { Position position_parameter; };
exception Y_OUT_OF_RANGE { Position position_parameter; };

exception Z_OUT_OF_RANGE { Position position_parameter; };
void send_position(in Position current_position)

raises( X_OUT_OF_RANGE,
Y_OUT_0F_RANGE,
Z_OUT_OF_RANGE );

void retrieve_position(out Position current_position);
};

The architect can facilitate extensibility by designing some operations

into the architecture that provide highly extensible parameters and request

syntax. The extensible operations need to provide extra conventions in the

IDL or documentation in order to encourage some level of interoperability.

The following is an example of a more extensible version of PositionInter-

change. Note that this example is an exaggeration of the changes that you

might make to add extensibility. In this case, the Units type is an arbitrary

string. We have established some units conventions using constants. The

position structure contains a sequence of type “any” to specify the coordi-

nates. This would allow for four-dimensional coordinates or virtually unlim-

ited types of coordinate specifications. The operations now pass _sequences

of positions so that multiple entities can be monitored. Each position has a

self-describing entity ID string that enables the association between entities

and positions. The exception and the operations have an extra type “any” pa-

rameter, which would allow additional request or response information. The

applications that use these interfaces can extend the uses of this interface

widely. This interface also could be misused to convey messages unrelated to

position interchange. Note also that this is a substantially more complicated

interface to program than the restricted example; it requires more code to

implement simple usages and a great deal of code to handle general cases of
its usage.

// OMG IDL

// Example Unrestricted for Extensibility
interface Positionlnterchangez {

typedef string Units;
const string INCHUNITS = "inches";

const string CENTIMETERUNITS = "centimeters";
struct Position {

string entityid;
Units unitkind;

sequence<any> coordinates;
};

typedef sequence<Position> Positionseq;
exception 0UT_OF_RANGE { Position invalid_position;

any error_data };

96



97

 

SOFTWARE ACHITECTURE DESIGN PRINCIPLES 81

exception BAD_REQUEST I any error_data }:

void send_positions( in any request,
in Positionseq current_positions,
out any status )

raises(BAD_REQUEST, 0UT_OF_RANGE );

void retrieve_position( in any request,
out Positionseq current_positions,
out any status )
raises( BAD_REQUEST );

};

It is important to include a range of operation extensibility in software

architectures. Some operations should guarantee interoperability, and some

should provide for extensibility. It is unnecessary to go to the extremes of

extensibility as shown in the previous example, but it is useful to have at

least one highly extensible operation in the architecture as a last resort

for developers to implement architecture workarounds. An analysis of the

ways that developer-s utilize the extensible operation will revealthe need for

improved communication of the architectural vision and provide important
feedback to consider in architecture revisions.

Symmetry

Symmetry in the architecture design is a key property for achieving com-

ponent interchange, code simplification, and reconfigurability. Symmetry is

the practice of using a common interface for a wide range of software com-

ponents. It can be realized as a common interface implemented by all sub-

systems or as a common base class with specializations for each subsystem.

The common interface should embody the basic interoperability services

provided by the architecture.

In a symmetric architecture, the clients are not hard-coded to specific
services; instead they are coded to the common interface framework. Since

all objects support the common interface, general interoperability is guar-
anteed. It is also possible to add, subtract, and interchange services without

affecting the existing software.

In contrast, an asymmetric architecture is one in which every application

provides a different software interface. In that case, the client code becomes

dedicated to particular services. If a client uses multiple services, it must

have separate code for each service. When a new application is added, new

code must be written in every client using the service. Asymmetry leads

to cascading costs, requiring architecture-wide code modifications whenever

the system is extended or reconfigured.

Symmetric architectures have many advantages, and we believe that

symmetry should be a principle behind most general-purpose architectures.

If symmetry is implemented through a common base class, then the special-

97



98

 

82 SOI-_|'WARE ARCHITECTURE DESIGN

. Figure 4.8. Custom interfaces vs. framework—based solutions.

izations play the role of an asymmetric architecture overlying the symmetric
architecture. There are many cases Where this is reasonable. ’I\:vo possible

motives are for special performance and special functionality. Suppose an
architecture needs general interoperability, but some subsystems need to
interchange very large images. The image applications‘ might need a special-
ized interface to support efficient image transfers. Another example is where
there are special functionality needs, for example, between a back-end map
database and a front—end mapping user interface. In this case, the mapping
user interface could reasonably be dedicated to use a specialized back—end

map service. If a standard is available supporting the special functionality,
it is preferable to utilize the standard rather than a custom interface. Use of
standards improves architecture stability, enables component interchange,
and reduces risks.

98



99

 

SOFTWARE ACHITECTURE DESIGN PRINCIPLES 83

Component Isolation

Component isolation is the architectural property that limits the scope of

changes as the system evolves. Component isolation means that a change
in one subsystem will not require changes in other subsystems. A good
architecture limits the scope of changes within modules instead of across

the system.

Object encapsulation is a basic concept behind component isolation. En-
capsulation means that the users of an interface (clients) are isolated from

the details of the implementation behind the interface. In other words, the

implementation can be completely replaced or modified without impacting
clients. OMG IDL is a useful tool for specifying good encapsulations. CORBA

provides excellent isolation between clients and object implementations. Im-

plementations can be replaced, modified, recompiled, in different languages,

in different activation states, in different locations, and all these changes

can be made without impacting client software at the OMG IDL level.

Conventions for handling parameter data also have an impact on compo-

nent isolation. Different implementations can handle parameters differently,

and the code that creates and utilizes this data may be impacted by changes

in the implementation.

For example, if we have two SQL databases that support a common

query service, and these databases use different dialects of SQL, then the

interchange ofthese components could impact the client software that gener-

ates the dynamic queries. Wherever possible, the architect should anticipate

the impact of changes at the parameter level and provide some approach to

enhance component isolation. Possible approaches include: insertion of a

mediator or middleware package that provides vendor—neutral SQL, use of

self-identifying data to identify the SQL dialect, use of server metadata to

provide some query templates, or the provision of some OMG IDL operations

with constraints that guarantee interoperability. To elaborate this last point,

we could include a special query operation that partitions the dynamic query

into type-checked parameters that are independent of SQL dialect.

In the earlier description of the Mining Process, we discussed how to

design generalized interfaces that provide a common abstraction of multiple

commercial products and legacy systems. This is an important technique for

isolating a system from component product dependencies.

Metadata

Metadata in an architecture is self-descriptive information. Metadata can
describe both services and information. Service metadata describes the avail-

able services and functions that the reachable applications can provide.

Information metadata describes the structure and access procedures for

persistent information. An example of service metadata is the Macintosh

99



100

84

 

SOEIWARE ARCHITECTURE DESIGN

chooser, which is an on-line directory of printers, file servers, and other ser-

vices. An example of information metadata is the facilities within SQL92
that standardize how relational databases store and retrieve their schema
data. '

Metadata is essential for system reconfigurability. With metadata, new

services can be added to a system and discovered at runtime. Metadata is

the resource that allows client software to be written Without hard-coding all

calls to particular servers. This enables system reconfiguration, component

interchange, and the possibility of multiple components providing similar

services. For example, we could create an architecture that provides on-line

metadata to identify the object handle of the database. In another installa-

tion of the software, we might have the clients access another database,

which is at their location. In the future, we may want to add multiple

databases to the system. The metadata supports the dynamic binding of

the clients to the servers and enables the creation of multiple symmetric
servers.

Metadata is most useful when it is provided in a consistent form across

many services. Using metadata provides many benefits, but it does require
additional software. The amount of software needed can be minimized if

metadata is defined consistently and is accessed in the simplest possible

manner to relay the essential information. Metadata’s utility is maximized

when it is used ubiquitously. The benefits of metadata greatly outweigh its

cost and complexity.

Metadata does not have to be complicated to be useful. We have found

that relatively simple forms of metadata that identify servers and provide
a consistent denotation of schemas covers most of the metadata needs in

an architecture. Metadata standards are very complex and expensive to

implement. As an example, the Information Resource Dictionary system is

a formal standard of nearly 1,000 pages of specification.

One simplifying technique for metadata involves consistent representa-

tion of schemas across many kinds of data sources. Figure 4.9 shows an ex-

ample of a common scheme for representing schemas ofrelational databases,

mapping databases, and object-oriented databases. This is a very high level

of data abstraction, but it may be all the detail that is needed at the archi-

tecture level to provide interoperability. This particular approach will not

meet all the needs of specialists in any of these fields, but it does provide

an inexpensive common way for general-purpose clients and browsers to

discover data across all types of data sources. Specialists can rely on much

more complex vertical market standards for their needs, and they can do

this without requiring every client to support the extra complexity.

The OMG has several current and future standards supporting meta-
data: the interface repository (IR), the naming service, and the trader service.

The IR is an on-line source of interface descriptions. It is an integral part of

100



101

 

SOFTWARE ACHITECTURE DESIGN PRINCIPLES 85

Object-Orién
Databas

Figure 4.9. Consistent metadata abstraction.

the CORBA standard [OMG, 92a]. The IR supports runtime discovery and
invocation of operations. The OMG IDL interface objects in the IR represent
all the accessible object types. The naming service is an adopted specifica-
tion, and part of the Common Object Services Specification [OMG, 94b]. The
naming service provides a directory service analogous to the telephone book
white pages. If the client knows the string—valued name of an object, the
naming service retrieves the object handle. The trader service is currently
a draft ISO standard, part of the ISO Open Distributed Process series of

standards. When the ISO standard is stable, it will be submitted through
the OMG Fast Track process for adoption. The trader service is a directory
service analogous to the telephone book yellow pages. If the client knows the

type of service, the trader can return a list of candidate services, including
some key server characteristics.

The three OMG metadata services cover most architectural needs. Note

that the naming service is supplied without a set of naming contexts, which
should be specified by the architect. Similarly, the trader service is specified

101



102

86

 

SOFTWARE ARCHITECTURE DESIGN

without a schema, which requires the architect to structure the service types
and service characteristics.

Other types ofmetadata may be useful in an architecture. We have found

that associating a metadata object with each server is a useful technique.

The server metadata can provide more detailed information than stored in

the trader. Since the server manages access to this data, it can be more sen-

sitive in nature than information advertised in a public directory. It also can

contain server-specific information, such as information about the schema,

documentation, request syntax, sample requests, and request templates.

Separation of Hierarchies

Good software architecture provides a stable basis for component and sys-

tems integration. In a particular architecture problem, some aspects are

more stable than others. By separating the problem into pieces, often we can
enhance the stability of the whole.

Some parts of the architecture need to be very stable; other parts can

be more flexible. The stability of the API designs is critical to architec-

ture success. If the API designs are unstable, any changes can lead to sys-

temwide software upgrades. Flexible elements can include virtually any

domain-specific information. For example, the list of domain-specific prop-

erties might be relatively unknown at initial system design time and may

even evolve while the system is operational. An important design strategy

is to separate the uncertain or changing elements from the stable elements

of the architecture. This separation can enhance the system’s adaptability

and provide a guideline for developers on how to extend the system.

In terms of OMG IDL, separation ofhierarchies means creating separate

IDL files. Perhaps the most critical OMG IDL files are sets of common base-

class interfaces that provide the common set of operations for all components

in the software architecture. Other OMG IDL files can contain the specialty '
API interfaces so that they can be included at the discretion ofprogrammers.

All of the API files need to be very stable, so they should contain the proper

balance of interoperability guarantees and built-in extensibility. Other files

in the flexible category include definitions of domain-specific object proper-

ties, specialty data types, domain-specific data types, and domain-specific

T constants. All of these specifications should be configured in a way so that

individual developers can add extensions without changing the common def-
initions. '

SOFTWARE ARCHITECTURE PATTERNS

The following sections describe a set of architectural patterns that present

key tradeoffs in the design of effective software architectures. Since these

are abstract architecture concepts, our intention is to provide enough infor-

102



103

 

SOFTWARE ARCHITECTURE PATTERNS 87

mation for you to understand the basic concept without investing excessive
time. We present these patterns in particular because they highlight our
architectural guidance.

The patterns are presented in three groups, the first focusing on the basic
architecture concepts, the second explaining a particular family of advanced
patterns, and the third looking at a Wide range of architectural concepts to
present these ideas within the more general context of commercial technolo-
gies.

Basic Architecture Patterns

The basic architecture patterns correspond to some general design perspec-
tives. These patterns include custom, vertical, horizontal, and hybrid. The
scope of

ject community context in which
scope is

Image

Histogram
Enhance
Annotate
Zoom T
Rotate
Select ROI

these patterns relates to the specific architecture and the multipro-
the design is formulated. This community

important because it represents the potential audience for reuse of

Application}
NITF Native
Load/Save ' ’ iiLoad/Saiiea

Overlay V
Projection :
Productsel.
Line of Sights

Figure 4.10. An example of an architecture design problem.

103



104

88

 

SOFTWARE ARCHITECTURE DESIGN

design and transfer of software. Our work differs from research on Design
Patterns, which often has a focus on programming issues well below the

In order to provide the community context, we consider the impact of
the architecture pattern across two similar systems. The analysis includes
a consideration of some common architectural changes: system extension,
subsystem replacement, and system migration. In the latter case, we are
considering the merger of the two similar systems into a common system.
This corresponds to many current downsizing and migration projects. The
analysis results define how the development costs scale with system size
and provide some interesting quantitative arguments supporting our archi-
tectural guidance.

T , Jnptegrationp code fordNxNli1iterfaoe:s =

Figure 4.11. Custom architecture pattern and baseline architecture.

104



105

 

SOFTWARE ARCHITECTURE PATTERNS 89

Figure 4.12. Custom architecture PIDL.

Custom Architecture A custom architecture is designed in terms of appli-
cation—specific APIS. Each application has a unique API that is not based

particularly on industry standards. A summary of the Pseudo IDL (PIDL) is
provided in Figure 4.12. This IDL shows that two systems with five appli-
cations both designed as custom architectures will yield a set of ten unique
APIs.

The custom APIS are utilized on an as—needed basis within the imple-
mentation. Our user model (based on two comprehensive surveys) indicates
that there is a strong rationale for providing most or all of these connections;
we would anticipate paying the development cost for fully populating these
connections as system extensions over the system life cycle. In terms of our

analysis, We shall assume that this is done as part ofthe initial development.
Custom architecture might be considered a negative example. Custom

architectures are the natural result of design without architectural focus. In
the integration capability model in Figure 4.3, the custom architecture is a

typical product of organizations at levels 2 to 4. These are groups that are

105



106

90

 

SOFTWARE ARCHITECTURE DESIGN

using distributed computing Without applying architecture principles such
as those presented in this book. For this analysis, custom architecture repre-
sents the experimental control group that provides a baseline for comparison
of effectiveness of the other basic architectural patterns. ‘

Vertical Architecture A vertical architecture is the likely result of an ar-
chitecture based on formal industry standards. Since many formal industry
standards represent particular vertical market specialty areas, the vertical
architecture assumes that there are standards defining APIs for each of the
application areas. This assumption is true if at least the two systems we
are considering are both using the same vertical specifications. For exam-

ple, Within the image area, a standard such as ISO Programmer’s Imaging
Kernel/Image Interchange Format (PIK/IIF) would define portability and in-
teroperability between image applications for image interchange and image
processing services.

Integration code for NXN interfaces ;-. T

Figure 4.13. Vertical architecture pattern and baseline architecture.

106



107

 

SOFTWARE ARCHITECTURE PATTERNS 91

Figure 4.14. Vertical architecture PIDL.

The PIDL for the Vertical architecture is shown in Figure 4.14. The
vertical standards appear in the PIDL because the interfaces for each kind

of application are identical across systems. Within each system, there are

still five different API interfaces, one for each application. Between the two
systems, there are five different software interfaces.

Horizontal Architecture The horizontal architecture is an example of a
fully symmetric architecture where the interfaces are common between ap-
plications. Integration of an application to a horizontal architecture requires
only one interface to be constructed. Horizontal architectures are Very ex-
tensible because of the low integration cost.

The PIDL for the horizontal architecture appears in Figure 4.16 on page

92. Since all interfaces are common, only one type of interface is needed for

integrating all applications in both systems. DISCUS (see Chapter 7) and Ob-
ject Linking and Embedding (OLE2)’s Uniform Data Transfer are real—world

examples ofhorizontal architectures. The limitation of these architectures is

107



108

 

92 SOFTWARE ARCHITECTURE DESIGN

//RWE?oRrd'%ProcessIn
interface C {1..i‘.V

./¢St,a§t4is1Ei‘c;<*L;AP! ‘E // Statisiies APi
interface }; ' V inten‘eaceCe{

F /r;eoa{gi§a§e A
. V .{ I

Figure 4.16. Horizontal architecture PIDL.

108



109

 

SOFTWARE ARCHITECTURE PATTERNS 93

that they do not address specialized needs. They require an unprecedented
level of consensus and coordination both Within and between projects. With
these limitations, pure horizontal architectures probably are not practical for
large communities of developers. The next pattern, the hybrid architecture,
uses both horizontal and vertical standards eclectically.

Hybrid Horizontal/Vertical Architecture The hybrid architecture is a

combination of both the horizontal and vertical concepts. The hybrid ar-
chitecture uses a common horizontal interface as an inherited base class

for each of the application interfaces. This guarantees a minimal accept-
able level of interoperability between all applications. The hybrid also uses

Vertical standards Where needed. The vertical standards are applied as spe-
cializations of the horizontal interface.

There is some latitude in the design of hybrid architectures. The hori-

zontal and vertical standards represent a range of integration options. At a

minimum, all applications should provide horizontal interoperability. Verti-

lorizontapi interfaces are used j;‘[_ V
ui “yérticai. interfaceps with horizontal embedded

Figure 4.17. Hybrid architecture pattern and baseline architecture.

109



110

 

94 SOFTWARE ARCHITECTURE DESIGN

Figure 4.18. Hybrid architecture PIDL.

cal standards can be added to that optionally, based on the need for special-
ized integration. For example, the Word processing application might need
only a horizontal interface to the map application, but the image and map
applications may need to support each other’s specialized interfaces for effi-
ciency or functionality reasons. The hybrid architecture presents a range of
integration costs based on interoperability needs. The DISCUS Framework,
presented in Chapter 7, is an example of a horizontal framework that can
be used in the Hybrid architecture.

Analysis of the Basic Architecture Patterns The basic patterns estab-
lish an interesting model of architecture development that We can compare
to different design practices and levels of community architecture coordina-tion.

In this analysis of the basic patterns, We use the implementation code
for an interface to estimate development and system extension cost. Fig-
ure 4.19 on page 95 shows the integration of an application in the custom
architecture. The preexisting application is considered to be commercial or

110



111

 

SOFTWARE ARCHITECTURE PATTERNS 95

legacy code that is supplied by an external technology source. To create the
system, we add a layer of integration code providing support for the appro-
priate interfaces. In the case of the custom architecture, this integration
code includes four client interfaces and support for one service interface.

Each piece of integration code must address many issues beyond basic
support for the architecture APIs. The integration must address the map-
ping between the application’s APIS and the architecture APls. The integra-
tion must address the format mappings and required conversions. Security
and error handling are also important issues that must be addressed in the
integration code. In some cases there may also be a need for semantic trans-
lations of information. By bundling these issues into the integration code
cost, we can total the number of interfaces to estimate the relative software
cost of architecture development and modification for different architecture
patterns.

Four development cost scenarios are evaluated for each of the architec-
ture patterns, as follows. The first scenario is initial system development.
The development cost reflects all of the initial integration code required to

_ inpter,facesi;

Figure 4.19. Application code vs. integration code.

111


