
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994 874

Short Notes

Low-Latency, Concurrent Checkpointing
for Parallel Programs

Kai Li, Jeffrey F. Naughton, and James S. Plank

Abstract-This short note presents the results of an implementation of
several algorithms for checkpointing and restarting parallel programs on
shared-memory multiprocessors. The algorithms are compared according
to the metrics of overall checkpointing time, overhead imposed by the
checkpointer on the target program, and amount of time during which the
checkpointer interrupts the target program. The best algorithm measured
achieves its efficiency through a variation of copy-on-write, which allows
the most time-consuming operations of the checkpoint to be overlapped
with the running of the program being checkpointed.

Zndex Terms-Checkpointing, fault tolerance, copy-on-write, multipro-
cessing, backward error recovery

I. INTRODUCTION
This short note presents four algorithms for checkpointing and

restarting parallel programs running on shared-memory multiproces-
sors. To test the efficiency of these algorithms, we implemented
them on the DEC Firefly multiprocessor [29], and profiled their
performance on five benchmark programs. The algorithms range from
very simple to more complex, using techniques such as copy-on-
write [9], [30] and buffering 1261 to realize good performance on the
multiprocessor. In the best of these algorithms, most of the checkpoint
is taken in parallel with the target program’s execution, and when it
does interrupt the target, the interrupts are for small, fixed periods of
time (under 0.1 s in our implementation).

The main use of checkpointing is to provide the mechanism
for performing backward error recovery, a general means of fault
tolerance defined in [l] . The strength of backward error recovery is
its ability to provide fault tolerance in the presence of unanticipated
faults-faults that were not envisioned in the design of the system.
No other means of fault tolerance has this property.

Checkpointing can also be used as a means of process migration or
coarse-grained job swapping. This is the intended use of the Condor
checkpointer [191. In fact, one can view backward error recovery as
merely process migration to the same machine at a different point
in time. .

All of the checkpointing algorithms presented take a “full check-
point”; they checkpoint the entire state of the target program. The
alternative would be to take “incremental” checkpoints, which save
only that portion of the state that has changed since the last check-
point. We have concentrated on full checkpoints to test the worst-
case behavior of these algorithms. The work involved in taking an
incremental checkpoint is a subset of the work involved in taking a

Manuscript received July 7, 1992; revised July 9, 1993. This work was
supported in part by the National Science Foundation under Grants CCR-
8814265 and IRI-8909795, and in part by the Digital Equipment External
Research Program and Systems Research Center.

K. Li is with the Department of Computer Science, Princeton University,
Princeton, NJ 08544 USA; e-mail: li@princeton.edu.

J. Naughton is with the Department of Computer Science, University of
Wisconsin, Madison, WI 53706 USA.

J. Plank is with the Department of Computer Science, University of
Tennessee, Knoxville, TN 37966 USA.

IEEE Log Number 9401208.

full checkpoint; therefore, if the algorithms exhibit good efficiency,
high concurrency, and low latency in taking a full checkpoint, taking
an incremental checkpoint can only exhibit better performance in
such measures.

11. THE CHECKPOINTING ALGORITHMS
The goal of a checkpointing algorithm is to establish a recovery

point in the execution of the program, and save enough information to
reconstruct the state of the program at this recovery point in the event
of a failure. In the case of a uniprocessor, a checkpoint can be taken
by freezing the processor and saving the state of the central processing
unit (CPU) (i.e., the registers) and the state of memory to disk. Note
that in saving the state of memory, one need not save the executable
code itself, as this can be reconstructed from the executable file.
To restore this recovery point, one merely reads the state of memory
from disk and then restores the state of the CPU. Thus, checkpointing
is exactly like generating a core file (which is, of course, a type of
checkpoint). This is the approach taken by Condor [19].

To generate a checkpoint for a shared-memory multiprocessor, one
can do the analogous things: Freeze all the processors, then save
the states of all of the CPU’s and the state of memory to disk. We
implemented this simple algorithm and called it sequential, because
it performs none of its work in parallel with the program that it is
checkpointing.

We set three goals for a good checkpointing algorithm on a
multiprocessor.

1) It must be reasonably efficient.
2) It must impose little overhead on the target program. In other

words, it should attempt to be maximally concurrent.
3) What overhead it does impose must be of low latency; that is,

it should interrupt the target program for only small periods
of time.

We believe that reasonable values for these goals are as follows.
The overall checkpoint time should be no more than twice the
optimal checkpoint time. The checkpointing should add no more
than 20% to the running time of the program during the time that
it is checkpointing. The latency of interrupts should be kept below
0.1 s. We chose this value because any more might be perceived as
noticeable to the user watching the program’s execution.

The sequential checkpointing algorithm is clearly optimal in terms
of overall checkpoint time, because it is limited solely by the duration
of the disk writes. However, it has zero concurrency and is 100%
latency. The second algorithm that we implemented attempts to
improve the concurrency of checkpointing. We call it main memory
checkpointing, because it freezes the processors, saves the checkpoint
into a separate address space in main memory, and then restarts
the processors. After starting the processors, the algorithm forks a
new thread in the new address space that writes the checkpoint to
disk. In this algorithm, the concurrency of checkpointing should be
improved over the sequential algorithm, because the execution of the
target program is overlapped with the writing of the checkpoint to
disk.

To improve the latency of the main memory algorithm, we im-
plemented a third algorithm, which uses copy-on-write [9], [30] to
make the main memory checkpoint. Copy-on-write is a technique
that uses a processor’s virtual memory page protection hardware to

1045-9219/94$04.00 0 1994 IEEE

f

Find authenticated court documents without watermarks at docketalarm.com.

mailto:li@princeton.edu
dblock
Typewritten Text
VEEAM 1029Veeam v. SymantecCase No: IPR2013-00150

https://www.docketalarm.com/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 8. AUGUST 1994 875

Globlr. El Address

m% ...
.
K P C K Pc

CPU
Space states

Sequential Algorithm

.............. C

.............. C

.............. c C C

.............. C c

.............. C

.............. C p- . . .

Adbrss CPU NewAddress

Address CPU NewAddress
Space States Space

Main Memory Algorithm

......... -- ____. - -.---
....
__..
....- ._..-.- F* pc

Address CPU

P a p
Pool

.... I!
i

Space States Space Space States
Copy-on-write Algorithm CLL Algorithm

c Bytes coped I written when all processors are frozen
................ D Bytes copied I written after the proccssors are restarted
-------+ Bytes written after the main memory checkpoint is complete

Fig. 1. The four checkpointing algorithms.

make a memory-to-memory copy with low latency. The copy-on-
write checkpointing algorithm works as follows: First, it freezes the
processors and copies their CPU states to the separate address space.
Also, it sets the page protection bits of all pages in main memory to
be “read-only.” Next it unfreezes the processors and starts a separate
copier thread that copies pages to the new address space and resets
the pages’ protection to “read-write.’’ If a thread of the target program
generates a page access violation, then it must write that page to the
new address space before setting its protection to “read-write” and
restarting. When the copier thread is done copying, the main memory
checkpoint is complete, and the copier thread writes the checkpoint
to disk.

Finally, we implemented a fourth algorithm which we call con-
current, low-latency (CLL) checkpointing. It improves upon the
copy-on-write algorithm by adding buffering, a standard operating
systems technique usually used to hide disk latency during file system
writes. What the buffering does in this case is allow the checkpoint
to be written to disk at the same time as it is being copied from
memory. Specifically, the CLL algorithm allocates a fixed pool of
pages (the buffer) in the second address space that the copier thread
and page fault handlers fill, and that a new thread called the writer
thread empties by writing the pages to disk. The writer and copier
threads are both started immediately after the processors are unfrozen.
All four algorithms are shown graphically in Fig. 1 .

The improvements of the CLL algorithm over the copy-on-write
algorithm should be twofold. First, the extra memory requirements of
this scheme are fixed; they are the size of the page pool. The copy-
on-write scheme needs extra space that is the same size as the target
program’s address space, and thus is more likely to cause thrashing.
Second, the overall checkpoint time of the CLL algorithm should be
less than that of the copy-on-write algorithm. This is because the CLL
algorithm starts writing to disk as soon as the processors are restarted,

instead of waiting until a complete main-memory checkpoint has been
made.

A possible concern of the CLL algorithm is what happens when
the page pool fills up. Then pages in the pool are freed only as fast as
they can be written to disk. If the size of the page pool is chosen to
be the amount of available physical memory, then the CLL algorithm
should still outperform the copy-on-write algorithm for the following
reason. In the copy-on-write algorithm, pages might be swapped to
the swap area on disk so that the checkpoint can fit into main memory.
If these pages are part of the checkpoint, then they must be swapped
back into memory to be written to the checkpoint file. If they are part
of the target program, then they will eventually have to be swapped
back into memory when the program needs them. In either case, the
copy-on-write algorithm performs an extra disk write and read for
each swapped page, whereas the CLL algorithm needs no swapping
and therefore performs no extra disk writes. This extreme case for
both algorithms is tested in our implementation.

111. RECOVERY
Recovering from a checkpoint is straightforward, and is the same

for all four algorithms. The processors are frozen, and the contents of
main memory are replaced with the contents saved in the checkpoint.
The states of the CPU’s are restored to their states at the recovery
point, which are also saved in the checkpoint. When the processors
are restarted, execution of the target program continues from the
recovery point.

IV. IMPLEMENTATION
We have implemented all four checkpointing algorithms as well

as recovery on a DEC Firefly multiprocessor. The Firefly is an
experimental shared-memory multiprocessor developed at the DEC
System Research Center [29]. A Firefly consists of four CVAX

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 8, AUGUST 1994

processors, each with a floating point unit and a direct-mapped 64
kilobyte cache. The caches are coherent, so that all processors within
a single Firefly see a consistent view of shared memory. The operating
system for the Firefly is Taos [20], an Ultrix with threads and cheap
thread synchronizations.

The Firefly upon which we tested our algorithms has 16 megabytes
of physical memory, and a separate input-output (1-0) processor that
shares memory with the other four processors, but also has a separate
bus connecting the Firefly to 1 - 0 devices and the outside world. In
our system, the 1-0 processor is connected to an RD54 disk drive.

The implementation is written in Modula-2+ [24], an extension of
Modula-2. The user interface to the checkpointing routines is a single
call to setup-checkpoint() at the beginning of the user’s program.
This call is used either to restore the program’s execution to a saved
recovery point or to specify how long the checkpointer should wait
before interrupting the program to take a checkpoint. Freezing the
processors is provided by Taos through a system call. In the absence
of such a system call, one could freeze the processors either through
interprocessor interrupts, or by protecting all the pages in memory
to be “no access,” and gaining control of the processors in the page
fault handlers.

In taking a checkpoint only the user’s address space is saved.
The states of the kernel and the file system are not saved. The
ramifications of this decision are that constructs that rely on kernel
and external state, such as remote procedure calls and open file
pointers, are not guaranteed to be recoverable. Thus, the programs that
we tested were bereft of such constructs. We view these restrictions
as tolerable for two reasons. First, the goal of our implementation
is to examine the performance of checkpointing algorithms in regard
to the metrics of speed, concurrency, and latency. The goal is not to
write a production-level checkpointing system for the Firefly. Second,
recoverable kernels have been studied and implemented [6], [21], as
have checkpointers for uniprocessors that either provide recovery for
read-only and sequential read-write files [19], or rewrite the UNIXTM
file system to be completely recoverable [28]. We cannot justify
taking the time to duplicate this work on Taos when the result is
so tangential to our experiments.

One of the variables in our implementation is the page size.
Although the actual page size on the Firefly’s memory management
unit is 512 bytes, we emulate different page sizes by varying the
number of bytes that are copied to the second address space by
the copier thread and by the page fault handlers. Larger pages will
increase the time required to handle a fault, but they will also decrease
the number of faults, and because of locality of reference, they may
also decrease the rapidity at which faults occur.

V. EXPERIMENTS
For our initial experiments, we tested all four checkpointing

algorithms on a parallel implementation of merge sort. We also
checkpointed four other parallel programs: traveling salesman, matrix
multiplication, pattern matching, and bubble sort. Since the results
from experiments with these programs were so similar to the results
with merge sort, we do not present them here. The merge sort program
sort 250000 indexed records, where the record size can be changed
to modify the size of the program’s address space.

In all experiments, the four processors of the Firefly are partitioned
so that the target program uses three and the checkpointer uses one.
This is to measure the maximal concurrency of our checkpointing
methods. The checkpointer waits for the target to run for 10 s, and
then it takes one complete snapshot. For the results presented here,
the page size is 8 kilobytes, and the page pool size is 1 megabyte.
All times represent wall-clock time when the target program and

4 Squential + Copy-on-Hate
t M a i n M m o r y +CLL

’0 1

I I I I I I
0 2 4 6 8 1 0

Address Space Size (MBptes)

Graph 1 . Checkpoint time.

-0- Sequential t Copy-on-Hate
t M A Memory + CLL

’O0 1 t 7 5w

:L 0

0

I

d

2 4 6 8 1 0 1 2

A d d m Spce Size (MByta)

Graph 2. Checkpoint time for large address space.

4 Squential t Copy-on-write
t Main Memory + CLL

o i i i i i o
A d d m Space S h (MEyta)

Graph 3. Checkpoint overhead.

checkpointer have exclusive use of the system. All times are averages
of five or more runs.

Graphs 1 thorough 4 display the overhead imposed by the four
checkpointing algorithms, as a function of the size of merge sort’s
address space. The total checkpoint time displayed in Graph 1
measures the elapsed time from the start of the checkpoint to its
conclusion. Graph 2 extends Graph I to include the checkpoint time
when the address space approaches the size of physical memory. The
checkpoint overhead in Graph 3 is the amount of time by which
the checkpoint increases the target’s running time. Graph 4 displays
the overhead as a percentage of the checkpoint’s running time. This
is equal to checkpoint overhead divided by the checkpoint time.
Concurrency can be calculated as follows:

concurrency = 100% - overhead.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

s a l -

600

877

-:1

+ Sequential + Copy-on-write
-e Main Memory -D- CLL

" 7 - = 0

70

0 2 4 6 8 1 0

Address Space Size W y t e s)

Graph 4. Checkpoint overhead percentage.

Initial Stop Time
-o- Maximum Fault Time

0 .o
0 2 4 6 8 1 0 1 2

J / -.---
0.01'; I . , . , . I r , . I .

0 2 4 6 8 1 0 1 2

Address S p e c Size W y t e s)

Graph 5. Latency data.

It comes as no surprise that in all four algorithms, checkpoint time
is proportional to the size of the address space. Also as expected, the
sequential algorithm records the fastest checkpointing time, followed
by the CLL algorithm. The other two algorithms take longer to
record a checkpoint, because they wait for a complete copy of the
checkpoint to exist in main memory before writing the checkpoint to
disk. Of these two algorithms, the copy-on-write algorithm takes the
longest, because of the extra work it spends processing page faults,
and because it copies a page at a time.

As shown in Graph 2, when the address space approaches the size
of physical memory, the main memory and copy-on-write algorithms
exhibit severe thrashing, because their memory needs far exceed
the size for physical memory. The other two algorithms keep their
memory needs below the size of physical memory, and therefore do
not suffer such rash penalties. It is worth noting that for all but the
smallest address space tested, the pool of pages in the CLL algorithm
became completely filled. Therefore, some worst-case data is included
in the graphs.

Graphs 3 and 4 show that the two algorithms based on copy-
on-write display the smallest overhead and therefore the greatest
concurrency. This is because these algorithms freeze the processors
for the smallest amount of time. Taken as a whole, Graphs 1 through
4 show that the CLL algorithm is clearly the best of the four with
regard to the combination of checkpoint time and concurrency. The
results that follows pertain only to this algorithm.

Graphs 5 and 6 show latency data for the CLL algorithm. The
overhead of checkpointing is divided into two parts: the time that all
the threads are stopped initially to protect the address space and save
the threads' states, and the time that the target threads are trapped,
waiting to process page faults. The first curve in Graph 5 represents

' 0 1 Avenge Trap Time I 0.015 seconds

0.0 0 5 1.0 1.5 2.0 2 5

Starting Time of 0.1 second interval (see)

Graph 6. Frequency of page faults.

% lzs 32 64

Page Slze (1LByte5)

Number of page faults vs. page size. Graph 7.

the initial stop time as a function of address space size, and the second
represents the maximum time that any thread waits as a result of a
page fault.

For address spaces up to 3 megabytes, the initial stop time is kept
below 0.1 s. Moreover, for all address space sizes, the maximum
page fault time is well below our low-latency goal of 0.1 s. Graph
6 displays the frequency of page faults over time for a run with a
4-megabyte address space. In this graph, the checkpoint is broken
into 0.1 s intervals, and the number of page faults in each interval
is plotted. The purpose of the graph is to show that work is indeed
being accomplished by the target threads during the initial phases of
the checkpoint.

Note that after an initial burst of nine page faults, the trapping
frequency steadies at six faults per 0.1 s for the first second. Then
it slows to about four traps per 0.1 s, until there are no more page
faults. The average time to process a page fault is 0.015 s. Thus,
during the first second of the checkpoint, the threads spend about
0.09 d0.1 s interval processing page faults. Since there are three
target threads, this means that the threads spend only one-third of
their time processing page faults in the first second; the rest of the
time is devoted to completing the merge. Thus, even at the beginning
of the checkpoint, when one expects the highest frequency of page
faults, the target still performs an adequate amount of work.

Graphs 7 and 8 display the results of altering the page size, again
for a merge sort example with a 4-megabyte address space. As would
be expected, the total number of page faults is proportional to the
inverse of the page size, whereas the maximum time to process a
trap increases almost linearly with the page size. Therefore, the ideal
page size is one that significantly decreases the number of page faults
while not significantly increasing the maximum page fault time.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 8, AUGUST 1994

Page Size (KBytes)

Graph 8. Maximum fault time vs. page size.

These data show that a page size of 16 kilobytes is ideal. The
number of page faults is kept relatively small (around 120 faults),
and the maximum page fault time is still below 0.1 s. Note that this
large page size has one other advantage: If the hardware were built
with an actual page size of 16 kilobytes, then upon protecting the
address space, it would have to change only $ the number of page
table entries that it currently has to change. This should reduce the
initial stop time (the first curve in Graph 5) by the same factor, which
would bring it to well under 0.1 s for all address space sizes.

We omit the data for the results of checkpointing for the other four
benchmark programs (traveling salesman, matrix multiplication, pat-
tern matching, and bubble sort), except to say that their performance
in all cases was the same or better than merge sort examples with
similar address space sizes.

VI. RELATED WORK
The bulk of work on and implementations of backward error

recovery and fault tolerance in parallel and distributed systems
has been in database and transaction-processing systems [5], [101,
[17], [22], [25]. These schemes benefit from the fact that database
computations can be viewed as consisting of atomic transactions.
Since we concentrate on general-purpose parallel programs, no such
computational model can be assumed.

General-purpose checkpointing has been studied and implemented
on both uniprocessors and distributed systems. Proposals and
overviews for uniprocessor checkpointing have been provided by
[l], [15], [23]. In [28], a backward recovery implementation is
described that focuses on a file system for UNIX that is fully
recoverable. Reference [191 describes a portable checkpointing
system called “Condor,” which runs on any commercial uniprocessor
and successfully checkpoints a majority of UNIX applications for
the purpose of process migration. Neither implementation attempts
to provide concurrency or low latency.

There has been much work on designing checkpointers for dis-
tributed systems [l], [3], [Ill-[14] and for multicomputers [4],
[18]. Here the focus of the work is on establishing a consistent
recovery point, that is, either synchronizing the processors to define a
global recovery point or postprocessing the processors’ checkpoints to
rebuild a plausible recovery point of the system. This is not a problem
in shared-memory multiporcessor checkpointing, because the memory
bus provides a simple place to enforce processor synchronization.

Staknis proposed a new memory design called sheaved memory
[27] for supporting checkpointing in paged systems. In a sheaved
memory, physical page frames can be bundled together, so that
data written to one frame in the bundle is simultaneously written
to all frames in the bundle. Removing a frame from its bundle
would provide a snapshot of that memory page. Building such a
memory would be quite costly, and it probably would be used only
in special-purpose machines.

Of special note is a recent implementation by Elnozahy, Johnson,
and Zwaenepoel [7]. They implement distributed checkpointing and
recovery on a network of sixteen Sun 3/60’s with a centralized file
server. They implement the sequential and CLL algorithms, as well
as both incremental and nonincremental checkpointing. They show
that incremental checkpointing can reduce the amount of data being
checkpointed by up to 97%. More relevantly to this short note, they
corroborate our results by showing that the CLL significantly lowers
overhead for incremental checkpointing. They do not show any results
conceming the CLL algorithm for nonincremental checkpointing. The
idea of using virtual-memory access protection hardware to achieve
synchronization for the concurrent checkpointing was motivated by
both shared virtual memory [161 and real-time, concurrent garbage
collection [2].

VII. CONCLUSION
We have presented and implemented a low-latency concurrent

algorithm for checkpointing parallel programs on stock shared-
memory multiprocessors. The algorithm requires a constant amount
of extra space, no change to the target parallel programs, and no
special hardware assistance. Our experiment shows that this algorithm
meets our performance goals on all five benchmarks: 80% to 97%
of its checkpointing executes concurrently with the target programs,
checkpoint time is always within 50% of optimal, and the latency is
kept under 0.1 s. These goals were met by applying the techniques
of copy-on-write [9], [30] and buffering [26] to the checkpointer.

Our algorithms are concerned solely with taking one snapshot
with no prior history of the target’s execution. For programs with
large virtual address spaces, recording the changes between snapshots
should be much more efficient than taking each snapshot separately.
In the future, our scheme can be combined with [8] to use dirty
page information and calculate snapshots incrementally. Such a
method would not impose a large initial stop time. Moreover, the
checkpointing time will be reduced because pages that have not been
changed since the last snapshot will not be brought into physical
memory and written out to disk. Results of distributed checkpointing
from [7] support these assertions.

ACKNOWLEDGMENT

We would like to thank G. Swart for his help with modifying Taos,
and M. Theimer for his helpful comments.

REFERENCES

T. Anderson and P. A. Lee, Fault Tolerence: Principles and Practice.
Englewood Cliffs, NJ: Rentice-Hall International, 198 1 .
A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection
on stock multiprocessors,” In ACM SIGPLA”88 Con5 Programming
Language Design Implementation, 1988, pp. 1 1-20.
K. Mani Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Compuf. Syst.. vol. 3 ,
no. 1 , pp. 3-75, Feb. 1985.
F. Cristian and F. Jahanain, “A timestamp-based checkpointing protocol
for long-lived distributed computations,” in Proc. 10th Symp. Reliable
Distrib. Syst., 1991, pp. 12-20.
D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. Wood, “Implementation techniques for main memory database
systems,” in Proc. ACM SIGMOD Inf. Con$ Management Data. 1984,

F. Douglis and J . Ousterhout, “Process migration in the sprite operating
system,” in Pmc. 7th In?. Con$ Distrib. Computing Syst., 1987, pp.
18-25.
E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance
of consistent checkpointing,” in Pmc. I Ith Symp. Reliable Distrib. Sysr.,
1992.

pp. 1-8.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

