
F E A T U R E

58

1089-7801/ 97/$10.00 ©1997 IEEE IEEE INTERNET COMPUTING

INFORMATION
RETRIEVAL ON
THE WORLD
WIDE WEB
VENKAT N. GUDIVADA

Dow Jones Markets
VIJAY V. RAGHAVAN

University of Southwestern Louisiana
WILLIAM I. GROSKY

Wayne State University
RAJESH KASANAGOTTU

University of Missouri

The World Wide Web is a very large distributed digital informa-
tion space. From its origins in 1991 as an organization-wide
collaborative environment at CERN for sharing research doc-

uments in nuclear physics, the Web has grown to encompass diverse
information resources: personal home pages; online digital libraries;
virtual museums; product and service catalogs; government informa-
tion for public dissemination; research publications; and Gopher,
FTP, Usenet news, and mail servers. Some estimates suggest that the
Web currently includes about 150 million pages and that this number
doubles every four months.

The ability to search and retrieve information from the Web effi-
ciently and effectively is an enabling technology for realizing its full
potential. With powerful workstations and parallel processing tech-
nology, efficiency is not a bottleneck. In fact, some existing search tools
sift through gigabyte-size precompiled Web indexes in a fraction of a
second. But retrieval effectiveness is a different matter. Current search
tools retrieve too many documents, of which only a small fraction are
relevant to the user query. Furthermore, the most relevant documents
do not necessarily appear at the top of the query output order.

Few details concerning system architectures, retrieval models, and
query-execution strategies are available for commercial search tools.
The cause of preserving proprietary information has promulgated the
view that developing Web search tools is esoteric rather than rational.
In this article, we hope to promote innovative research and develop-
ment in this area by offering a systematic perspective on the progress
and challenges in searching the Web.

Effective search and

retrieval are enabling

technologies for

realizing the full

potential of the Web.

The authors examine

relevant issues,

including methods

for representing

document content.

They also compare

available search tools

and suggest methods

for improving

retrieval effectiveness.

.

EMC, 1055, Page 1

We begin with a brief discussion of navigation strategies for
searching the Web, followed by a review of methods for repre-
senting the information content of Web documents and mod-
els for retrieving it. We then classify, describe, and compare
current search tools and services, and conclude by examining
some techniques for improving their retrieval effectiveness.

TRAVERSING THE WEB
One way to find relevant documents on the Web is to launch
a Web robot (also called a wanderer, worm, walker, spider, or
knowbot). These software programs receive a user query, then
systematically explore the Web to locate documents, evalu-
ate their relevance, and return a rank-ordered list of docu-
ments to the user. The vastness and exponential growth of
the Web make this approach impractical for every user query.

An alternative is to search a precompiled index built and
updated periodically by Web robots. The index is a search-
able archive that gives reference pointers to Web documents.
This is obviously more practical, and many existing search
tools are based on this approach.

Generating a comprehensive index requires systematic
traversal of the Web to locate all documents. The Web’s
structure is similar to that of a directed graph, so it can be
traversed using graph-traversal algorithms. Because Web
servers and clients use the client-server paradigm to com-
municate, it is possible for a robot executing on a single
computer to traverse the entire Web. There are currently
three traversal methods:

■ Providing the robot a “seed URL” to initiate exploration.
The robot indexes the seed document, extracts URLs
pointing to other documents, then examines each of these
URLs recursively in a breadth-first or depth-first fashion.

■ Starting with a set of URLs determined on the basis of
a Web site’s popularity and searching recursively.
Intuitively, we can expect a popular site’s home page to
contain URLs that point to the most frequently sought
information on the local and other Web servers.

■ Partitioning the Web space based on Internet names or
country codes and assigning one or more robots to
explore the space exhaustively. This method is more
widely used than the first two.

The frequency of Web traversal is another design variable
for Web robots with important implications for the curren-
cy and completeness of the index.

INDEXING WEB DOCUMENTS
We can view effective Web searches as an information
retrieval problem.1,2 IR problems are characterized by a col-
lection of documents and a set of users who perform queries
on the collection to find a particular subset of it. This dif-
fers from database problems, for example, where the search

and retrieval terms are precisely structured. In the IR con-
text, indexing is the process of developing a document rep-
resentation by assigning content descriptors or terms to the
document. These terms are used in assessing the relevance
of a document to a user query. They contribute directly to
the retrieval effectiveness of an IR system.

IR systems include two types of terms: objective and non-
objective. Objective terms are extrinsic to semantic content,
and there is generally no disagreement about how to assign
them. Examples include author name, document URL, and
date of publication. Nonobjective terms, on the other hand,
are intended to reflect the information manifested in the doc-
ument, and there is no agreement about the choice or degree
of applicability of these terms. Thus, they are also known as
content terms. Indexing in general is concerned with assign-
ing nonobjective terms to documents. The assignment may
optionally include a weight indicating the extent to which
the term represents or reflects the information content.

The effectiveness of an indexing system is controlled by
two main parameters. Indexing exhaustivity reflects the degree
to which all the subject matter manifested in a document is
actually recognized by the indexing system. When the index-
ing system is exhaustive, it generates a large number of terms
to reflect all aspects of the subject matter present in the doc-
ument; when it is nonexhaustive, it generates fewer terms,
corresponding to the major subjects in the document. Term
specificity refers to the breadth of the terms used for index-
ing.2 Broad terms retrieve many useful documents along with
a significant number of irrelevant ones; narrow terms retrieve
fewer documents and may miss some relevant items.

The effect of indexing exhaustivity and term specificity
on retrieval effectiveness can be explained by two parame-
ters used for many years in IR problems:

■ Recall is the ratio of the number of relevant documents
retrieved to the total number of relevant documents in
the collection.

■ Precision is the ratio of the number of relevant documents
retrieved to the total number of documents retrieved.

Ideally, you would like to achieve both high recall and high
precision. In reality, you must strike a compromise. Indexing
terms that are specific yields higher precision at the expense
of recall. Indexing terms that are broad yields higher recall
at the cost of precision. For this reason, an IR system’s effec-
tiveness is measured by the precision parameter at various
recall levels.

Indexing can be performed either manually or automat-
ically. The sheer size of the Web together with the diversity
of subject matter make manual indexing impractical.
Automatic indexing does not require the tightly controlled
vocabularies that manual indexers use, and it offers the
potential to represent many more aspects of a document

I N F O R M A T I O N R E T R I E V A L

59

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

EMC, 1055, Page 2

than manual indexing can. However, it also remains at a
primitive level of development, despite many years of study.
(For details on current ways to automatically assign content
terms to documents, see the sidebar below.)

INFORMATION RETRIEVAL MODELS
An IR model is characterized by four parameters:

■ representations for documents and queries,

■ matching strategies for assessing the relevance of docu-
ments to a user query,

■ methods for ranking query output, and
■ mechanisms for acquiring user-relevance feedback.

IR models can be classed into four types: set theoretic, alge-
braic, probabilistic, and hybrid models. In the following sec-
tions, we describe instances of each type in the context of
the IR model parameters.

F E A T U R E

60

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

The automatic assigning of content terms to documents can be
based on single or multiple terms.

Single-Term Indexing
The term set of the document includes its set of words and their
frequency. Words that perform strictly grammatical functions
are compiled into a stop list and removed. The term set can also
be refined by stemming to remove word suffixes.

Approaches to assigning weights for single terms may be
grouped into the following categories: statistical, information-
theoretic, and probabilistic. While the first two categories just
use document and collection properties, the probabilistic
approaches require user input in terms of relevance judgments.

Statistical methods. Assume that we have N documents in a
collection. Let tfij denote the term frequency, which is a function
of the frequency of the term Tj in document Di.

Indexing based on term frequency fulfills one indexing aim,
namely, recall. However, terms that have concentration in a few
documents of a collection can be used to improve precision by
distinguishing documents in which they occur from those in
which they do not. Let dfj denote the document frequency of the
term Tj in a collection of N documents, which is the number of
documents in which the term occurs. Then, the inverse document
frequency, given by log(N/dfj), is an appropriate indicator of Tj

as a document discriminator.
The term-frequency and inverse-document-frequency com-

ponents can be combined into a single frequency-based index-
ing model,1,2 where the weight of a term Tj in document Di denot-
ed wij is given by

wij = tfij log(N/dfj)

Another statistical approach to indexing is based on term
discrimination. This approach views each document as a point
in the document space. As the term sets for two documents
become more similar, the corresponding points in the document
space become closer (that is, the density of the document space
increases) and vice versa.

Under this scheme, we can approximate the value of a term

as a document discriminator based on the type of change that
occurs in the document space when a term is introduced to the
collection. We can quantify this change according to the increase
or decrease in the average distance between the documents. A
term has a good discrimination value if it increases the average
distance between the documents; in other words, terms with good
discrimination value decrease the density of the document space.
The term-discrimination value of a term Tj, denoted dvj, is then
computed as the difference of the document space densities
before and after the term Tj is introduced. The net effect is that
high-frequency terms have negative discrimination values, medi-
um-frequency terms have positive discrimination values, and low-
frequency terms tend to have discrimination values close to zero.1

A term-weighting scheme such as wij = tfijdvj is used to combine
term frequency and discrimination values.

Information-theoretic methods. In information theory, the
least-predictable terms carry the greatest information value.3

Least-predictable terms are those that occur with smallest
probabilities. Information theory concepts have been used to
derive a measure, called signal-noise ratio, of term usefulness
for indexing. This method favors terms that are concentrated in
particular documents. Therefore, its properties are similar to
those of inverse document frequency.

Probabilistic methods. Probabilistic approaches require a
training set of documents obtained by asking users to provide
relevance judgments with respect to query results.4 The training
set is used to compute term weights by estimating conditional
probabilities that a term occurs given that a document is relevant
(or irrelevant). Assume that a collection of N documents of which
R are relevant to the user query, Rt of the relevant documents
contain term t, and t occurs in ft documents. Two conditional
probabilities are estimated for each term as follows:

Pr [t in document|document is relevant] = Rt/R;
Pr [t in document|document is irrelevant] = (ft − Rt)/(N − R).

From these estimates, Bayes’ theorem is used, under certain
assumptions, to derive the weight of term t as

AUTOMATIC INDEXING METHODS

EMC, 1055, Page 3

Set Theoretic Models
The Boolean model represents documents by a set of index
terms, each of which is viewed as a Boolean variable and val-
ued as True if it is present in a document. No term weight-
ing is allowed. Queries are specified as arbitrary Boolean
expressions formed by linking terms through the standard
logical operators: AND, OR, and NOT. Retrieval status
value (RSV) is a measure of the query-document similarity.
In the Boolean model, RSV equals 1 if the query expression

evaluates to True; RSV is 0 otherwise. All documents whose
RSV evaluates to 1 are considered relevant to the query.

This model is simple to implement and many commer-
cial systems are based on it. User queries can employ arbi-
trarily complex expressions, but retrieval performance tends
to be poor. It is not possible to rank the output since all
retrieved documents have the same RSV, nor can weights be
assigned to query terms. The results are often counter-intu-
itive. For example, if the user query specifies 10 terms linked

I N F O R M A T I O N R E T R I E V A L

61

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

The numerator (denominator) expresses the odds of term t occur-
ring in a (irrelevant) relevant document. Term weights greater
than 0 indicate that the term’s occurrence in the document is evi-
dence of the document’s relevance to the query; values less than
0 indicate its irrelevance.

Multi-term or phrase indexing
Single terms are less than ideal for an indexing scheme because
their meanings out of context are often ambiguous. Term phras-
es, on the other hand, carry more specific meaning and thus
have more discriminating power. Phrase generation is intended
to improve precision; thesaurus-group generation is expected
to improve recall. A thesaurus assembles groups of related spe-
cific terms under more general, higher level class indicators.

Methods for generating complex index terms or term phras-
es automatically may be categorized as statistical, probabilis-
tic, or linguistic.

Statistical methods. A term phrase consists of the phrase
head, which is the principal phrase component, and other
components. A term with document frequency exceeding a
stated threshold, such as df > 2, is designated as the phrase
head. Other components of the phrase should be medium- or
low-frequency terms with stated co-occurrence relationships with
the phrase head, for example, that the phrase components
should occur in the same sentence as the phrase head within a
stated number of words.

Term grouping or term clustering methods are used to gen-
erate groups of related words by observing word co-occur-
rence patterns in a document collection. Given a term-docu-
ment matrix as a 2D array, one method compares the columns
of the matrix to each other and assesses whether the terms are
jointly assigned to many documents in the collection. If so, the
terms are assumed to be related and are grouped into the
same class.

Probabilistic methods. Probabilistic methods generate
complex index terms based on term-dependence information.
Since this requires considering an exponential number of term
combinations and, for each combination, estimating the
probabilities of coincidences in relevant and irrelevant
documents, only certain dependent-term pairs are considered
in practice. In theory, these dependencies can be user specific.

In the statistical and probabilistic approaches, terms that
occur together are not necessarily related semantically.
Therefore, these approaches are not likely to lead to high-qual-
ity indexing units.

Linguistic methods. Assigning syntactic class indicators such
as adjective, noun, or verb to terms can enhance the statistical
method described above. Phrase formation is then limited to
sequences of specified syntactic indicators (for example, noun-
noun, adjective-noun). A simple syntactic analysis process can
be used to identify syntactic units. The phrase elements can then
be chosen from within the same syntactic unit.

Linguistic approaches for generating term relationships usu-
ally involve the use of an electronic lexicon.5 There are also pro-
posals for generating term relationships based on user feedback.6

Though various automatic methods for thesaurus construction
have been proposed, their effectiveness is questionable outside
the special environments in which they are generated.

REFERENCES
1. G. Salton, Automatic Text Processing, Addison-Wesley, Reading, Mass.,

1989.

2. W.B. Croft, “Experiments with Representation in a Document Retrieval

System,” Information Technology, Vol. 2, No. 1, 1983, pp.1-21.

3. C.E. Shannon, “Prediction and Entropy in Printed English,” Bell Systems

J., Vol. 30, No. 1, 1951, pp. 50-65.

4. S. E. Robertson and K. Sparck-Jones, “Relevance Weighting of Search

Terms,” J. Am. Soc. of Information Sciences, 1976, pp.129-146.

5. G.A. Miller, “WordNet: A Lexicon Database for English,” Comm. ACM,

Vol. 38, No. 11, Nov. 1995, pp. 39-41.

6. G.S. Jung and V.V. Raghavan, “Connectionist Learning in Constructing

Thesaurus-like Knowledge Structure,” Working Notes of AAAI Symp. on

Text-Based Intelligent Systems, Mar. 1990, Palo Alto, Calif., pp. 123-127.

w
R R R

f R N f R r
t

t t

t t t t

= log
−()

−() − − −()()
/

/

EMC, 1055, Page 4

by the logical connective AND, a document that has nine
of these terms is not retrieved. User relevance feedback is
often used in IR systems to improve retrieval effectiveness.
Typically, a user is asked to indicate the relevance or irrele-
vance of a few documents placed at the top of the output.
Since the output is not ranked, however, the selection of
documents for relevance feedback elicitation is difficult.

The fuzzy-set model is based on fuzzy-set theory,3 which
allows partial membership in a set, as compared with conven-
tional set theory, which does not. It redefines logical operators
appropriately to include partial set membership, and process-
es user queries in a manner similar to the case of the Boolean
model. Nevertheless, IR systems based on the fuzzy-set model
have proved nearly as incapable of discriminating among the
retrieved output as systems based on the Boolean model.

The strict Boolean and fuzzy-set models are preferable to
other models in terms of computational requirements, which
are low in terms of both the disk space required for storing
document representations and the algorithmic complexity of
indexing and computing query-document similarities.

Algebraic Models
The vector-space model is based on the premise that docu-
ments in a collection can be represented by a set of vectors
in a space spanned by a set of normalized term vectors.4 If
the vector space is spanned by n normalized term vectors,
then each document will be represented by an n-dimensional
vector. The value of the first component in this vector
reflects the weight of the term in the document corre-
sponding to the first dimension of the vector space, and so
forth. A user query is similarly represented by an n-dimen-
sional vector. A query-document’s RSV is given by the scalar
product of the query and document vectors. The higher the
RSV, the greater is the document’s relevance to the query.

The strength of this model lies in its simplicity. Relevance
feedback can be easily incorporated into it. However, the
rich expressiveness of query specification inherent in the
Boolean model is sacrificed.

Probabilistic Models
The vector-space model assumes that the term vectors span-
ning the space are orthogonal and that existing term rela-
tionships need not be taken into account. Furthermore, the
model does not specify the query-document similarity,
which must be chosen somewhat arbitrarily. The probabilis-
tic model takes these term dependencies and relationships
into account and, in fact, specifies major parameters such as
the weights of the query terms and the form of the query-
document similarity.

The model is based on two main parameters—Pr(rel) and
Pr(nonrel), the probabilities of relevance and nonrelevance of
a document to a user query—which are computed using the
probabilistic term weights (see the sidebar, “Automatic

Indexing Methods”) and the actual terms present in the doc-
ument. Relevance is assumed to be a binary property so that
Pr(rel) = 1 − Pr(nonrel). In addition, the model uses two cost
parameters, a1 and a2, to represent the loss associated with
the retrieval of an irrelevant document and nonretrieval of
a relevant document, respectively.

The model requires term-occurrence probabilities in the
relevant and irrelevant parts of the document collection,
which are difficult to estimate. However, this model serves
an important function for characterizing retrieval processes
and provides a theoretical justification for practices previ-
ously used on an empirical basis (for example, the intro-
duction of certain term-weighting systems).

Hybrid Models
As in the case of the vector-space model, the extended Boolean
model represents a document as a vector in a space spanned
by a set of orthonormal term vectors. However, the extended
Boolean (or p-norm) model measures query-document sim-
ilarity by using a generalized scalar product between the cor-
responding vectors in the document space. This generaliza-
tion uses the well-known Lp norm defined for an
n-dimensional vector, d, where the length of d is given by

where 1 <=p <= ∞, and w1, w2, ... , wn are the components
of the vector d.

Generalized Boolean OR and AND operators are defined
for the p-norm model. The interpretation of a query can be
altered by using different values for p in computing query-
document similarity. When p = 1, the distinction between
the Boolean operators AND and OR disappears, as in the
case of the vector-space model.

When the query terms are all equally weighted and p = ∞,
the interpretation of the query is the same as that in the
fuzzy-set model. On the other hand, when the query terms
are not weighted and p = ∞, the p-norm model behaves like
the strict Boolean model. Varying the value of p from 1 to ∞
offers a retrieval model whose behavior corresponds to a point
on the continuum spanning from the vector-space model to
the fuzzy and strict Boolean models.

The best value for p is determined empirically for a col-
lection, but is generally in the range 2 <= p <=5.

A TAXONOMY FOR SEARCH
TOOLS AND SERVICES
Automated methods for retrieving information on the Web
can be broadly classed as search tools or search services.

Search tools employ robots for indexing Web documents.
They feature a user interface for specifying queries and

d = …() =

=∑w w w wn j

p

j

n p

1 2
1

1

, , ,

F E A T U R E

62

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

EMC, 1055, Page 5

browsing the results. At the heart of a search tool is the
search engine, which is responsible for searching the index
to retrieve documents relevant to a user query. Search tools
can be distinguished as type 1 or type 2 based on the trans-
parency of the index to the user.

Search services provide users a layer of abstraction over sev-
eral search tools and databases and aim at simplifying the
Web search.

We describe type 1 and type 2 search tools along the fol-
lowing dimensions:

■ methods for Web navigation,
■ indexing techniques,
■ query language or specification scheme for expressing

user queries,
■ strategies for query-document matching, and
■ methods for presenting the query output.

Type 1 Search Tools
These tools completely hide the organization and content of
the index from the user.

AltaVista* has a spider (called Scooter) that traverses the
Web and Usenet newsgroups. Indexing is based on the full
text of the document. The first few lines are used as an
abstract. HTML document authors can use the META tag
to specify index terms and a short description of their doc-
uments. The AltaVista index is updated at least once a day.
Scooter visits pages according to how frequently they appear
to be changing: A page that has been stable for months will
be revisited less often than a page that is different every time
Scooter visits it. AltaVista supports full Boolean, phrase, and
case-sensitive searches. It ranks results on the basis of rele-
vance, giving a higher score to documents that contain the
query terms in the first few words, documents in which the
query terms are found close to each other, and documents
containing more than one instance of the query terms.
Results include the title, a short abstract, size, and date of the
last modification for each retrieved document.

Excite* also has a spider and an indexer for the full text of
documents. The spider retrieves only Web and Usenet news-
group documents. Users can submit URLs for indexing. The
indexer generates index terms and a short document summa-
ry. The Excite index consists of about 50 million URLs. It sup-
ports proper name searches, the Boolean operators AND, OR,
and NOT, and Boolean expression queries. Search results are
rank ordered, and a summary is provided for each retrieved
document. Excite provides a “similar” query and a “sort by
site” option to display sites rank ordered according to the
number of documents retrieved from the site.

HotBot* retrieves and indexes Web documents using a
robot called Slurp and a parallel network of workstations. The
robot extracts all the URLs from a retrieved document and
places them into a scheduling data structure, which assigns

the URLs to different CPUs according to criteria such as how
recently a host has been accessed. Users can also submit URLs
for indexing. HotBot indexes the full text of only HTML and
plain-text documents. Terms are weighted, and the indexer
generates a short abstract. Indexes are distributed across several
computers, which enables HotBot to process a query in par-
allel. Users can search by a term, phrase, proper noun, or
URL. HotBot also supports case-sensitive and Boolean search-
es. Advanced users have options to specify a search for a par-
ticular type of media or format. Users can also limit searches
to specific Internet domains. The search results are rank
ordered. HotBot assigns relevance to documents according to
various factors such as term frequency and document length.
If query terms occur in a document’s title or META tag, high-
er relevance is assigned to that document. For retrieved doc-
uments, HotBot provides the last modified date and a short
abstract consisting of the first few lines of the document.

InfoSeek Guide* is a popular search engine with a robot
that retrieves HTML and PDF documents, indexes full text,
and generates a short summary of each document. InfoSeek
allows searches in the Web, Usenet groups, and Web FAQs.
Its indexes are distributed. It supports case sensitivity as well
as searches for symbols, phrases, and proper names. It also
allows image searches based on the captions or index terms
assigned to images. InfoSeek ranks its output, calculating the
RSV by giving more weight to documents that contain the
query terms at the beginning of the document. It returns a
short summary, relevancy score, and document size. InfoSeek
also provides a “similar pages” query.

Lycos* has a robot that uses heuristics to navigate the Web
and build a searchable index. For each document indexed,
the robot keeps the outgoing links (anchor text or link tags)
in a queue and selects a URL from it. One heuristic, for
example, might force the robot to select a URL that points
to a Web server’s home page. Users can submit URLs for
indexing. Lycos indexes titles, headings, and subheadings of
HTML, FTP, and Gopher documents. When the number of
index terms exceeds 100, only the 100 most-weighted terms
based on the tf.idf scheme are kept. The indexer also keeps
the first 20 lines of a document, its size in bytes, and the
number of words. Lycos has options for matching any term,
all terms, or some number of terms. It allows searches for word
fragments and has options for loose, fair, close, good, and strong
matches. It supports the Boolean operator NOT. The RSV is
computed as the sum of the weights of matched terms in the
document to the query. Index terms that appear in the title and
near the beginning of the document are given more weight. The
output is ranked and presented with clickable URLs. The doc-
ument size and RSV are included in the output.

OpenText* has a robot that traverses the Web by select-
ing a URL from a URL pool, retrieving the document at
that URL, and indexing the document. It also extracts all
the URLs in the retrieved document and places them in the

I N F O R M A T I O N R E T R I E V A L

63

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

EMC, 1055, Page 6

URL pool. Users can submit URLs for indexing. OpenText
indexes the full text of HTML documents and updates its
index continuously. The indexer generates a short summa-
ry consisting of the first 100 words of the document. It sup-
ports full Boolean searching as well as searches for proper
names, symbols, and phrases.

WebCrawler* has a robot that starts with a known set of
HTML documents and uses the URLs in them to retrieve
new documents. The search engine directs the navigation in
a modified breadth-first mode. It maintains a list of Web
servers and URLs to fetch from them, which it does in a
round-robin fashion to avoid fetching documents consecu-
tively from the same server. WebCrawler aims at indexing at
least one document from each server. Users can also submit
URLs. It indexes both the title and full text of HTML doc-
uments, and its index is updated weekly. Terms are weight-
ed by their frequency of occurrence in the document divid-
ed by their frequency in the reference domain (tf.idf). Terms
that appear frequently in the document and infrequently in
the reference domain are heavily weighted, while those that
appear infrequently in either are given lower weights.
WebCrawler supports full Boolean and phrase searches. The
query processor uses the vector-space model to compute
RSV. The output is rank ordered in a list of clickable URLs
that includes a short summary and a relevancy score. It also
provides “similar pages” query.

The Worldwide Web Worm* (WWWW) consists of two
components: a resource locator and a search engine. The
resource locator traverses the Web in depth-first mode and
indexes the titles, anchor text, and URLs of HTML docu-
ments. The resource locator stores the indexing information
in a flat file. The WWWW also indexes in-line images by
indexing their HTML titles and clickable hypertext (if any).
It supports the Boolean AND and OR operators. The
WWWW is limited by its lack of content-based indexing.
Title, anchor text, and URL names alone cannot represent
document content. Also, it has been estimated that 20 per-
cent of the HTML documents on the Web have no title.

Type 2 Search Tools
Type 2 search tools feature a hierarchically organized sub-
ject catalog or directory of the Web, which is visible to users
as they browse and search.

Yahoo* is a semi-automatically constructed, hierarchically
organized Web subject catalog that is both browsable and
searchable. Links to various resources are collected in two ways:
by user submissions and by robots that retrieve new links from
well-known pages such as NCSA/GNN’s What’s New Page.
Yahoo indexes Web, Usenet news, and e-mail addresses. It pro-
vides Boolean AND and OR operators and phrase searching.
The query output is a list of documents and related Yahoo cat-
egories, along with the first few lines of the document.

Magellan* is another subject catalog. It indexes Web sites,

FTP and Gopher servers, Usenet news, and telnet sessions. A
team of editors and writers review and rate Web sites accord-
ing to factors such as comprehensiveness and ease of explo-
ration. Users can submit URLs for review. The Magellan cat-
alog includes original editorial content, a directory of rated
and reviewed sites, a database of yet-to-be-reviewed sites, and
a search engine. Magellan provides +/− options similar to the
Boolean AND and OR operators. RSV is assigned based on
the frequency of query terms in the document. Higher rele-
vance is assigned to those documents that contain query terms
in their title, META tag, or URL. The query output is ranked.

Other tools in this category include WWW Virtual
Library and Galaxy. WWW Virtual Library* is a distributed
subject catalog, browsable and maintained by volunteers.
No engine is provided for searching the catalog. Galaxy*
indexes Web and Gopher documents. Its index is both
searchable and browsable.

Search Services
Search services broadcast user queries to several search
engines and various other information sources simultane-
ously. Then they merge the results submitted by these
sources, check for duplicates, and present them to the user as
an HTML page with clickable URLs. For example, IBM
InfoMarket* searches Yahoo, OpenText, Magellan, various
business resources, and Usenet newsgroups simultaneously
and generates a rank-ordered query output. MetaCrawler*
is another search service that sends queries to eight different
search engines: OpenText, Lycos, WebCrawler, InfoSeek,
Excite, AltaVista, Yahoo, and Galaxy. MetaCrawler supports
both Boolean and phrase search.

RETRIEVAL EFFECTIVENESS ASSESSMENT
The formal precision and recall measures used to quantify
retrieval effectiveness of IR systems are based on evaluation
experiments conducted under controlled conditions. This
requires a testbed comprising a fixed number of documents,
a standard set of queries, and relevant and irrelevant docu-
ments in the testbed for each query. Realizing such experi-
mental conditions in the Web context is extremely difficult.
Search engines operate on different indexes, and the index-
es differ in their coverage of Web documents.

We must therefore compare retrieval effectiveness in terms
of qualitative statements and the number of documents
retrieved. We evaluated various search tools and services using
two queries: “latex software” and “multiagent system architec-
ture.” The first query was intended to find both public-domain
sources and commercial vendors for obtaining LaTex software,
whereas the second query was intended to locate relevant
research publications on multiagent system architecture.

Table 1 presents results for the first query. The second col-
umn indicates the number of documents retrieved by inter-
preting the query as a disjunction of the query terms.

F E A T U R E

64

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

EMC, 1055, Page 7

Disjunction is the default interpretation in all
the search tools, except OpenText. The third
column shows the number of documents
retrieved by interpreting the query as a con-
junction of the query terms. Finally, the
fourth column denotes the number of docu-
ments retrieved by interpreting the query as
a phrase. N/A in the table cell indicates that
the query option is not available.

Among the search tools, InfoSeek
retrieved the largest number of documents
(over 3 million); WWWW retrieved the
smallest number (4,999). In general, the
number of documents retrieved decreased
moving from disjunctive to conjunctive to
phrase queries. In the case of Excite, the
number of documents retrieved for both
conjunctive and phrase queries was the same.

We examined the first 10 documents of
the ranked results to see if they contained
information on obtaining LaTex software.
The following results did:

■ Excite* (all three query types)
■ HotBot* (conjunctive and disjunctive)

queries)
■ InfoSeek Guide* (conjunctive query)
■ OpenText* (phrase query)
■ WebCrawler* (phrase query)
■ WWW Worm* (conjunctive and dis-

junctive queries)
■ Magellan* (conjunctive and disjunctive)
■ MetaCrawler* (conjunctive query)

Table 2 presents results for the second
query, multiagent system architecture.
Excepting WWWW and Galaxy, all tools and
services retrieved literature on multiagent sys-
tem architecture. Conjunctive and phrase
queries performed better than disjunctive
queries. This query is more difficult to evaluate than the first
one, since the phrase has several facets to it. The results are use-
ful in that the top-ranked documents can seed a manual refine-
ment of the query specification to a single facet of multiagent
system architecture.

For both test queries, relevant documents were inter-
spersed with irrelevant documents in the ranked query out-
put. This means that the retrieval user cannot afford to
examine only a few documents placed at the top of the rank
ordering and discard the rest. However, since the number of
documents in the ranked query output is in the order of
thousands, manually sifting through this output to glean rel-
evant documents is tedious and error-prone.

IMPROVING RETRIEVAL EFFECTIVENESS
The design and development of current-generation Web
search tools have focused on query-processing speed and
database size. This is largely a response to the lack of features
in the original HyperText Markup Language* for repre-
senting document content to search tools5,6 (not surprising,
given HTML’s original purpose: to render documents on a
wide array of output devices without concern for the com-
puter to which the device was connected).

HTML Version 3 introduced the META tag, which
allows authors to specify indexing information. We expect
this trend to continue, establishing standardized tags for
Web document content. Meanwhile, as we have seen, the

I N F O R M A T I O N R E T R I E V A L

65

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

Table 1. Comparison of number of results for “latex software” query.

Search tool/ Disjunctive Conjunctive Phrase
service query query query
AltaVista 200,000 30,000 100
Excite 134,669 29,287 29,287
HotBot 3,696,449 61,830 17,630
InfoSeek Guide 3,111,835 427 100
Lycos 29,881 26 N/A
OpenText 481,846 2,541 6
WebCrawler 158,751 864 6
WWW Worm 4,999 2 N/A
Galaxy 6,351 20 N/A
Magellan 17,658 17,658 N/A
Yahoo 373 categories 1 category N/A

18,344 sites 3 sites 101 sites
IBM InfoMarket 100 N/A N/A
MetaCrawler 29 32 34

Table 2. Results for “multiagent system architecture” query.

Search tool/ Disjunctive Conjunctive Phrase
service query query query
AltaVista 40,000,000 700 6
Excite 514,321 3 561
HotBot 18821 383 0
InfoSeek Guide 10,960,353 79 38
Lycos 53,525 0 N/A
OpenText 604,487 33 0
WebCrawler 150,619 0 0
WWW Worm 2,000 0 N/A
Galaxy 797 0 N/A
Magellan 58,080 84 N/A
Yahoo 615 categories 0 0

23,560 sites 5,890 sites 6 sites
IBM InfoMarket 100 N/A N/A
MetaCrawler 38 29 6

EMC, 1055, Page 8

ranked responses from many searches are in the order of
thousands, and the burden is on the user to sift through the
list and identify relevant documents. The focus should
instead shift to providing a short, ranked list of documents,
even if the system takes longer to process the query. In this
section, we discuss two methods for improving the retrieval
effectiveness of Web search tools.

Relevance Feedback Techniques
Unlike a database environment, an IR environment lacks
precise representations for user queries and documents.
Users typically start with an imprecise and incomplete query,
and improve the query specification—hence, the retrieval
effectiveness—iteratively and incrementally.1,4 The user is
asked to provide evaluations or relevance feedback on the
documents retrieved from the initial query. This feedback is
used in subsequently improving the retrieval effectiveness.

Relevance feedback is elicited in either two-level or multi-
level relevance relations. In the former case, the user simply
labels a retrieved document as relevant or not; in the latter,
a document can be relevant, somewhat relevant, or not rel-
evant. Multilevel relevance can also be specified in terms of
relationships. For example, for three retrieved documents
d1, d2, and d3, d1 can be more relevant than d2, and d2 more
relevant than d3.

For simplifying our presentation of relevance feedback,
we assume two-level relevance and the vector-space model.
The set of documents deemed relevant by the user constitute
positive feedback; those deemed irrelevant constitute negative
feedback.

Figure 1 shows the two major approaches to utilizing rel-
evance feedback: modifying the query and modifying the
document representations. Methods based on modifying the
query representation affect only the current user-query ses-
sion and have no effect on other user queries; methods based
on modifying the representation of documents in the col-
lection affect the retrieval effectiveness of future queries. In
all the methods, more than two or three iterations may result
in minimal improvements.

The basic assumption for relevance feedback is that doc-
uments relevant to a particular query resemble each other—
in the vector-space model, their corresponding vectors are
similar. Using relevance-feedback techniques in Web search
engines requires document representations to be more
descriptive and semantically rich than just indexing the title
or abstract of the document. One way to achieve this is to
index the entire document. The vector-space model readily
accommodates all relevance feedback techniques, whereas
the probabilistic model needs special extensions to accom-
modate query expansion.

Modifying the query representation. There are three
ways to improve retrieval effectiveness by modifying the

query representation. The first, modification of term weights,
involves adjusting the query term weights by adding docu-
ment vectors in the positive feedback set to the query vec-
tor. Optionally, negative feedback can be used to subtract
document vectors in the negative feedback set from the
query vector. The reformulated query should retrieve addi-
tional relevant documents similar to the documents in the
positive feedback set. This process can be carried out itera-
tively until the user is satisfied with the quality and number
of relevant documents in the query output.

Experimental results indicate that positive feedback is
more consistently effective. This is due to the fact that doc-
uments in the positive feedback set are generally more
homogeneous than documents in the negative feedback set.
However, an effective feedback technique, termed dec hi,
uses all documents in the positive feedback set and subtracts
from the query only the vectors of highest ranked irrelevant
documents in the negative feedback set.7

The second method, query expansion, modifies the orig-
inal query by adding new terms to it. The new terms are
selected from the positive feedback set and sorted using mea-
sures such as

■ noise (a global term-distribution measure similar to idf),
■ postings (the number of retrieved relevant documents

containing the term),
■ noise within postings,
■ noise.frequency within postings (frequency is log2 of the

total frequency of the term in the retrieved relevant set),
■ noise.frequency.postings, and
■ noise.frequency.

A predefined number of top terms from the sorted list are
added to the query. Experimental results show that the last
three sort methods produced the best results and that adding
only selected terms is superior to adding all terms. There is
no performance improvement by adding more than 20
terms.7

In some cases, the above two techniques do not produce
satisfactory results because the documents in the positive
feedback set are not homogeneous (that is, they do not form
a tight cluster in the document space) or because the irrele-
vant documents are scattered among certain relevant ones.
One way to detect this situation is to cluster the documents
in the positive feedback set to see if more than one homoge-
neous cluster exists. This method is called query splitting. If
the documents cluster, the query is split into subqueries such
that each subquery represents one cluster in the positive feed-
back set. The weight of terms in the subquery can then be
adjusted or expanded as in the previous two methods.

Modifying the document representation. This
approach involves adjusting the document vectors in the col-

F E A T U R E

66

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

EMC, 1055, Page 9

lection based on relevance feedback. It is also
referred to as user-oriented clustering.8 It is
implemented by adjusting the weights of
retrieved and relevant document vectors to
move them closer to the query vector. The
weights of retrieved irrelevant-document
vectors are adjusted to move them farther
from the query vector. Care must be taken
to ensure that individual document move-
ment is small, since user-relevance assess-
ments are necessarily subjective.

Agent-Based Filtering and Routing
Information agents offer a distinctly different paradigm for
harnessing Web information. These computer programs
work collaboratively with a user but do not require explicit
initiation by the user. Intelligent agents are equipped with
knowledge, problem-solving methodologies, and data per-
tinent to the problem; they also have their own built-in con-
trol mechanism.9

In the context of Web searching, agents can perform tasks
such as discovering documents (much like the Web robots),
indexing documents, filtering them, and automatically rout-
ing useful and interesting information to users. Agents lend
themselves to personalization, and they have learning and
adaptation capabilities.

In a single-agent system, the agent works alone, doing all
the tasks by itself. Single-agent systems are centralized.
Multiagent systems are decentralized and distribute tasks
among a number of agents. In fact, the multiagent paradigm
perfectly suits information discovery and retrieval in the Web.
For example, information discovery can be handled by one
agent, another agent can specialize in indexing, yet another
can implement an information retrieval model, and so forth.

Agents employ domain and user models in performing their
tasks. The domain model encodes domain-specific background
knowledge about the Web, its processes, information resources
relevant to the various disciplines of a user’s interests, and
domain ontologies.10 The user model captures information
about the user’s background, interests, and preferences.11

Expressiveness is an important issue in the representation
chosen for both models. Initial models are constructed man-
ually. The agent’s learning component helps to evolve the
domain and user models with changes in Web resources and
user interests. Relevance-feedback techniques are an impor-
tant source for evolving the user model.

A multiagent architecture for information-retrieval based
on these ideas is described in Gudivada and Tolety.12 The
system features generic templates for the user and domain
models, and the models are instantiated for individual users.
The system then semi-autonomously selects or discards
information of interest to the user from a dynamically
changing Web index.

CONCLUSIONS
None of the current generation of search tools incorporates
relevance-feedback or user-modeling techniques. Applying
these techniques to the list of documents retrieved by a
search tool could substantially weed out unrelated docu-
ments and improve the ranking quality of the remaining
documents. Agent-based personalized information filtering
and retrieval is a promising research direction to improve
the retrieval effectiveness of search tools. The agent-based
information retrieval paradigm offers a natural means to
incorporate domain models using ontologies in a way trans-
parent to the system user.12

Indexing quality has an overwhelming effect on retrieval
effectiveness. In fact, it has been called one of the grand chal-
lenges in the digital libraries realm.13 The task of automati-
cally assigning high-quality terms to documents remains elu-
sive, though the problem has been studied for many years.
Recently, this problem has received a renewed interest in the
information retrieval area under the name text categorization,
which aims at automatically discovering subject categories
and domain concepts manifested in documents. High-qual-
ity retrieval requires work on this grand challenge problem.

Comprehensively indexing the entire Web and building
one huge integrated index will only further deteriorate
retrieval effectiveness, since the Web is growing at an expo-
nential rate. On the other hand, a collection of Web index-
es, each with its own specialized search tool, holds promise.
Under this scheme, each Web index is targeted to compre-
hensively represent documents of a specific information
space. Information spaces are bounded by, for example, aca-
demic disciplines, a class of industries, a group of services.
The commonality in the subject matter indexed supports
the capture of semantic-level features and the incorporation
of domain semantics into the indexing process. The search
tool for such an index can also be specialized for the infor-
mation space.

An open-ended system with an appropriate suite of pro-
tocols can provide a layer of abstraction on the individual
indexes and the associated search tools. Such a system should
also be able to handle the participation and withdrawal of
individual indexes. This situation is analogous to a federat-

I N F O R M A T I O N R E T R I E V A L

67

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 1997

.

Relevance feedback techniques

Modifying query representation

Modification of term weights
Query expansion by adding new terms
Query splitting

Modifying document representation

Figure 1. A taxonomy for relevance feedback techniques.

EMC, 1055, Page 10

ed database system, in which the component databases oper-
ate under complete autonomy yet cooperate in processing
queries that require information stored in multiple compo-
nent databases. Such a system can be implemented using the
agent-based information retrieval paradigm.

Unless the current generation of search tools and services
significantly improve their retrieval effectiveness, the Web
will continue to evolve toward an information entertain-
ment center for users with no specific search objectives. ■

ACKNOWLEDGMENT
The authors are grateful to the anonymous referees whose suggestions have

significantly improved the clarity and content of this article.

REFERENCES
1. W.B. Frakes and R. Baeza-Yates, eds., Information Retrieval: Data

Structures and Algorithms, Prentice Hall, Englewood Cliffs, N.J., 1992.

2. G. Salton, Automatic Text Processing, Addison-Wesley, Reading, Mass.,

1989.

3. T. Radecki, “Fuzzy Set Theoretical Approach to Document Retrieval,”

Information Processing and Management, Vol. 15, 1979, pp. 247-259.

4. V. Raghavan and S.K.M. Wong, “A Critical Analysis of Vector Space

Model for Information Retrieval,” J. Am. Soc. Information Science, Vol.

37, No. 5, 1986, pp. 279-287.

5. O. Etzioni and D. Weld, “Intelligent Agents on the Internet: Fact,

Fiction, and Forecast,” IEEE Expert, Vol. 10, No. 4, 1995, pp. 44-49.

6. O. Etzioni, “The World-Wide Web: Quagmire or Gold Mine?”

Comm. ACM, Vol. 39, No. 11, Nov. 1996, pp. 65-68.

7. D. Harman, “Relevance Feedback Revisited,” Proc. 15th Ann. Int’l

ACM SIGIR Conf., ACM Press, New York, 1992, pp. 1-10.

8. J. Bhuyan et al., “An Adaptive Information Retrieval System Based on

User-Oriented Clustering,” submitted to ACM Transactions on

Information Systems, Jan. 1997.

9. D.E. O’Leary, “The Internet, Intranets, and the AI Renaissance,”

Computer, Vol. 30, No. 1, Jan. 1997, pp. 71-78.

10. A. Farquhan et al., “Collaborative Ontology Construction for

Information Integration,” Tech. Report: KSL-95-63, Knowledge

Systems Laboratory, Dept. of Computer Science, Stanford Univ.,

Stanford, Calif., Aug. 1995.

11. M.F. McTear, “User Modeling for Adaptive Computer Systems: A

Survey of Recent Developments,” Artificial Intelligence Review, Vol. 7,

1993, pp. 157-184.

12. V. Gudivada and S. Tolety, “A Multiagent Architecture for Information

Retrieval on the World-Wide Web,” to appear in Proc. Fifth RIAO

Conf. Computer Assisted Information Searching on the Internet, Centre de

Hautes Etudes Internationales d’Informatique Documentaires, Paris,

1997.

13. B. Schatz et al., “Federating Diverse Collections of Scientific

Literature,” Computer, Vol. 29, No. 5, May 1996, pp. 28-36.

Venkat N. Gudivada is a senior database designer at Dow Jones Markets.

His research interests are in multimedia information retrieval and

heterogeneous distributed database management. He received his

PhD in computer science from the University of Southwestern

Louisiana in 1993.

Vijay V. Raghavan is a distinguished professor of computer science at the

University of Southwestern Louisiana. His research focuses on

information retrieval strategies for text and image databases. He

received a B. Tech in mechanical engineering from the Indian

Institute of Technology, Madras; an MBA from McMaster

University; and a PhD in computing science from the University

of Alberta. Raghavan is currently an ACM National Lecturer. He is

a member of the ACM and the IEEE.

William I. Grosky is professor and chair of the Computer Science Depart-

ment at Wayne State University in Detroit, Michigan. His research

interests include multimedia information systems, hypermedia, and

Web technology. He received a BS in mathematics from MIT in

1965, MS in applied mathematics from Brown University in 1968,

and PhD in engineering and applied science from Yale University in

1971. Grosky is currently on the editorial boards of IEEE MultiMedia,

Pattern Recognition, and the Journal of Database Management.

Rajesh Kasanagottu is a graduate student at the University of Missouri,

Rolla. He received his bachelor’s degree in computer science from

Osmania University, India. His research interests include software

agents, search engines, and information retrieval.

Readers may contact Raghavan at the Center for Advanced Computer

Studies, University of Southwestern Louisiana, Lafayette, LA 70504, USA;

raghavan@cacs.usl.edu.

F E A T U R E

68

SEPTEMBER • OCTOBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

URLs FOR THIS ARTICLE
*A l taV i s ta • www.a l t av i s t a .d ig i t a l . com/av/con-
ten t/abou t .h tm
*Exc i te • www.exc i te .com
*HotBot • www.ho tbo t .com
* IBM InfoMarket • www.infomarket . ibm.com
* In foSeek Guide • www. in foseek .com
*Lycos • www. lycos .com
*Magel lan • www.mck in ley.com
*MetaCrawler • www.metacrawler.com/index_text.html
*OpenText • www.open tex t . com
*WebCrawler • www.webcrawler.com
*Wor ldWide Web Worm • www.goto .com
*Yahoo • www.yahoo.com
*WWW Vir tual L ibrar y • vl ib.s tanford.edu
*Galaxy • galaxy.e ine t .ne t

EMC, 1055, Page 11

