Case 2:14-cv-03106-JAK-JEM Document 53 Filed 09/25/14 Page 1 of 1 Page ID \#:660

AO $120($ Rev 08110$)$	Rail Stop 8
TO:	Director of the U.S. Patent and Trademark Office
	P.O. Box 1450 ON THE
	FIlexandria, VA 22313-1450

In Compliance with 35 U.S.C. $\$ 290$ and/or 15 U.S.C. $\$ 1116$ you are hereby advised that a court action has been		
\square Trademarks or \square Patents. (\square the patent action involves 35 U.S.C. § 292.):		
DOCKETNO. 14-CV-03106	DATE FILED $4 / 23 / 2014$	U.S. DISTRICT COURT Central District of California
$\begin{aligned} & \hline \text { PLAINTIFF } \\ & \text { SIGNAL IP, INC. } \end{aligned}$		DEFENDANT FORD MOTOR COMPANY
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,463,374$	10/31/1995	Signal IP, Inc.
2 5,714,927	2/3/1995	Signal IP, Inc.
3 5,732,375	3/24/1998	Signal IP, Inc.
4 6,012,007	1/4/2000	Signal IP, Inc.
5 6,434,486	8/13/2002	Signal IP, Inc.

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BYPATENT OR TRADEMARK NO.	
1	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
2		
3		
4		
5		

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT

Order

CLERK Terry Nafisi	(BY) DEPUTY CLERK Lori Muraoka	DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS

Po. Box 1450
Alexandria, Virginia 22313-1450
wwwiuspto gov

APPLICATION NUMBER	FLLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TTTLE
$08 / 566,029$	$12 / 01 / 1995$	ROBERT J. CASHLER	

CONFIRMATION NO. 3996
27571
Ascenda Law Group, PC
84 W. Santa Clara St.
Suite 550

San Jose, CA 95113
Date Mailed: 02/06/2015

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 02/03/2015.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/dtvernon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office

CONFIRMATION NO. 3996
MARK A NAVARRE POWER OF ATTORNEY NOTICE
DELCO ELECTRONICS CORPORATION
ERC BUILDING MAIL STOP D 32
P O BOX 9005
KOKOMO, IN 46904
Date Mailed: 02/06/2015

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 02/03/2015.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

/dtvernon/

[^0]
REVOCATION OF PREVIOUS POWERS OF ATTORNEY WITH NEW GENERAL POWER OF ATTORNEY TO PROSECUTE APPLICATIONS AND REEXAMINATION PROCEEDINGS BEFORE THE UNITED STATES PATENT AND TRADEMARK OFFICE

I hereby revoke all previous powers of attorney given in the application(s), reexamination proceeding(s) and/or patent(s) listed below and appoint

Practitioners associated with the Customer Number $\quad 27571$
as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications and reexamination proceedings assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73(b).

Please change the correspondence address for the application(s), reexamination proceeding(s) and/or patent(s) listed below to the address associated with Customer Number 27571.

Assignee Name and Address:
Signal IP, Inc.
11100 Santa Monica Blvd., Suite 100
Los Angeles, CA 90025

A statement under 37 CFR 3.73 is attached.

List of application(s), reexamination proceeding(s) and/or patent(s):

$\begin{gathered} \text { U.S. Patents } \\ 5,463,374 \\ 5,714,927 \\ 5,732,375 \\ 5,954,775 \\ 6,012,007 \\ 6,434,486 \\ 6,775,601 \end{gathered}$			
SIGNATURE OF ASSIGNEE OF RECORD The individual whose signature and title is supplied below is authorized to act on behalf of the assignee			
Signature	7		Date: 02/03/2015
Name	Douglas Croxall		Telephone:
Title	Chief Executive Officer		

STATEMENT UNDER 37 CFR 3.73(c)

Applicant/Patent Owner: Signal IP, Inc.
Application No./Patent No.: 5,732,375 Filed/Issue Date: Mar. 24, 1998
Titled: METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT
Signal IP, Inc. , a Corporation
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)
states that, for the patent application/patent identified above, it is (choose one of options $1,2,3$ or 4 below):

1. \checkmark The assignee of the entire right, title, and interest.
2. \square An assignee of less than the entire right, title, and interest (check applicable box): \square The extent (by percentage) of its ownership interest is \qquad $\%$. Additional Statement(s) by the owners holding the balance of the interest must be submitted to account for 100% of the ownership interest.
\square There are unspecified percentages of ownership. The other parties, including inventors, who together own the entire right, title and interest are:
\square
Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \square The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
B. v A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:

1. From:

INVENTOR
To: DELCO ELECTRONICS CORPORPATION
The document was recorded in the United States Patent and Trademark Office at
Reel 7801
, Frame 847 \qquad , or for which a copy thereof is attached.
2. From: \qquad To \qquad DELPHI TECHNOLOGIES, INC.
The document was recorded in the United States Patent and Trademark Office at Reel 17115 , Frame 208 , or for which a copy thereof is attached.

[Page 1 of 2]

This collection of information is required by 37 CFR3.73(b). The information is required toobtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentialityis governed by35 U.S.C. 122 and 37 CFR1.11 and1.14. Thiscollection is estimated to take 12 minutes to complete, including gathering, preparing, and submittingthe completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent tothe Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

STATEMENT UNDER 37 CFR 3.73(c)

3. From: \qquad
DELPHI TECHNOLOGIES, INC. To: LOOPBACK TECHNOLOGIES, INC.
The document was recorded in the United States Patent and Trademark Office at Reel 32534 , Frame 636 , or for which a copy thereof is attached.
4. From: \qquad To: SIGNAL IP, INC.

The document was recorded in the United States Patent and Trademark Office at Reel 32534 Frame 803 , or for which a copy thereof is attached.
5. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad or for which a copy thereof is attached.
6. From: \qquad To: \qquad The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.Additional documents in the chain of title are listed on a supplemental sheet(s).
[/ As required by 37 CFR 3.73 (c)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Tarek N. Fahmi/
Signature
2015-02-03
Date
Tarek N. Fahmi
Printed or Typed Name

41402
Title or Registration Number

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that yoube given certain informationin connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, pleasebe advised that: (1) the general authority forthe collection of thisinformation is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and(3) the principal purpose forwhich the information isused by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent applicationor patent. If you do not furnish the requested information,the U.S. Patent and Trademark Office may not be able to process and/or examineyour submission, which may result in termination of proceedings or abandonment of the applicationor expiration of the patent.

The informationprovided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the informationin order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an InternationalApplication filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. $122(\mathrm{~b})$ or issuance of a patent pursuant to 35 U.S.C. 151. Further, arecord may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from thissystem of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Electronic Acknowledgement Receipt	
EFS ID:	21391082
Application Number:	08566029
International Application Number:	
Confirmation Number:	3996
Title of Invention:	METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT
First Named Inventor/Applicant Name:	ROBERTJ. CASHLER
Correspondence Address:	MARK A NAVARRE DELCO ELECTRONICS CORPORATION ERC BUILDING MAIL STOP D 32 POBOX 9005 KOKOMO IN 46904 US
Filer:	Tarek N. Fahmi
Filer Authorized By:	
Attorney Docket Number:	H-195546
Receipt Date:	03-FEB-2015
Filing Date:	01-DEC-1995
Time Stamp:	20:30:48
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	no
File Listing:	

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		5732375aia0096.pdf	199337	yes	4
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Power of Attorney		1	1	
	Assignee showing of ownership per 37 CFR 3.73.		2	4	
Warnings:					
Information:					
Total Files Size (in bytes):			199337		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Electronic Version v1.1
Stylesheet Version v1.2

SUBMISSION TYPE:	NEW ASSIGNMENT			
NATURE OF CONVEYANCE:	SECURITY INTEREST			
CONVEYING PARTY DATA			Name	Execution Date
MARATHON PATENT GROUP, INC. $01 / 29 / 2015$ SIGNAL IP, INC. $01 / 29 / 2015$				

RECEIVING PARTY DATA

Name:	DBD CREDIT FUNDING, LLC
Street Address:	1345 AVENUE OF THE AMERICAS - 46TH FLOOR
City:	NEW YORK
State/Country:	NEW YORK
Postal Code:	10105

PROPERTY NUMBERS Total: 7

Property Type	Number
Patent Number:	5954775
Patent Number:	6434486
Patent Number:	6012007
Patent Number:	5463374
Patent Number:	5714927
Patent Number:	6775601
Patent Number:	5732375

CORRESPONDENCE DATA

Fax Number:
Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 2129139878
Email: jamesfornari@sbcglobal.net
Correspondent Name: JAMES D. FORNARI
Address Line 1: 1250 BROADWAY, SUITE 3701
Address Line 4: NEW YORK, NEW YORK 10001

NAME OF SUBMITTER:	JAMES D. FORNARI
SIGNATURE:	/JAMES D. FORNARI/
DATE SIGNED:	$02 / 02 / 2015$


```
source=Active_48036969_2_Marathon (Fortress) - Patent Security Agreement#page47.tif
source=Active_48036969_2_Marathon (Fortress) - Patent Security Agreement#page48.tif
source=Active_48036969_2_Marathon (Fortress) - Patent Security Agreement#page49.tif
source=Active_48036969_2_Marathon (Fortress) - Patent Security Agreement#page50.tif
source=Active_48036969_2_Marathon (Fortress) - Patent Security Agreement#page51.tif
```


Patent Security Agreement

Patent Security Agreement, dated as of January 29, 2015 by Marathon Patent Group, Inc. and the undersigned entities (collectively, the "Pledgor"), in favor of DBD Credit Funding LLC, in its capacity as collateral agent pursuant to the Revenue Sharing and Securities Purchase Agreement (in such capacity, the "Collateral Agent").

WITNESSETH:

Whereas, the Pledgor is party to a Security Agreement of even date herewith (the "Security Agreement") in favor of the Collateral Agent pursuant to which the Pledgor is required to execute and deliver this Patent Security Agreement;

Now, Therefore, in consideration of the premises and to induce the Collateral Agent, for the benefit of the Secured Parties, to enter into the Revenue Sharing and Securities Purchase Agreement, the Pledgor hereby agrees with the Collateral Agent as follows:

SECTION 1. Defined Terms. Unless otherwise defined herein, terms defined in the Security Agreement and used herein have the meaning given to them in the Security Agreement.

SECTION 2. Grant of Security Interest in Patent Collateral. The Pledgor hereby pledges and grants to the Collateral Agent for the benefit of the Secured Parties a lien on and security interest in and to all of its right, title and interest in, to and under all the following Collateral:
(a) all of the Company's existing and future acquired Patents, including, but not limited to, the items listed on Schedule A attached hereto; and
(b) all Proceeds of any and all of the foregoing.

SECTION 3. Security Agreement. The security interests granted to the Collateral Agent pursuant to this Patent Security Agreement are granted in conjunction with the security interests granted to the Collateral Agent pursuant to the Security Agreement, and Pledgor hereby acknowledges and affirms that the rights and remedies of the Collateral Agent with respect to the security interests in the Patents made and granted hereby are set forth in the Security Agreement, the terms and provisions of which are incorporated by reference herein as if fully set forth herein. In the event that any provision of this Patent Security Agreement is deemed to conflict with the Security Agreement, the provisions of the Security Agreement shall control.

SECTION 4. Counterparts. This Patent Security Agreement may be executed in any number of counterparts, all of which shall constitute one and the same instrument, and any party hereto may execute this Patent Security Agreement by signing and delivering one or more counterparts. Delivery of an executed counterpart of a signature page of this Patent Security Agreement by telecopier or other electronic transmission (i.e. a "pdf" or "tif" document) shall be effective as delivery of a manually executed counterpart of this Patent Security Agreement.
[Signature page follows]

In Wmess Whereof, the Pledgor has caused this Paten Security Agreement to be executed and defivered by its day anthonzed ofer as of the date first set forth above.

Very truly yours,
Pledgor:
MARATHON PATENT GROUP, INC.

SAMPOTP, LLC

RELAYIP, MC.

Tite:

CYBERFONE SYSTEMS, LLC

Tite:
(Signature Page to Paten Scentry Agrement)

ERE PROCESSING. RNC.

Tite:

LOOPBACK TECRNOLOCIES, INC.

[Signahure Page to Patom Securty Agreenem]

LOOPBACK TECHNOLOGES I. INC.

Tite:

HYBRID SEQUENCEIP, INC.

SOEMS ACQUISTION CORE.

[Signature Page to Paten Securty Agreement]

[Sigmare Page wo Paem Scemby Agrement]

DA ACQUSTTIONLIC

Tite:

CloUDHO CORP.

TLI ACQUISTHON CORP,

The:
[Sgnatwe Page to Patent Scamy Agrement]

TL COMMUNCATIONS LIC

Title:

MEDTECH GROUP ACQUISTTION CORP.

\{Sghame Page to Patent Securiy Agreement

Acecyted and Agreed:

SCHEDULEA
PATENTS

Owner	Atty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tye } \end{aligned}$	App Thle	Application Number	Filing Date	Patent Number	Issue Date	Applica tion Status	Publication Number
Dynamic Advances, LLC	$5164-$ DYNAD004	US	ORD	CALIBRATION-FREE gaze tracking UNDER NATURAL HEAD MOVEMENT	10787,959	26-Feb-01	7,306,337	11.Dea-17	Issuad	2004074496
Dynamic Advances, LLC	5164. DYNAD. 003	US	ORD	NATURAL LANGUAGE INTERFACEUSNG CONSTRANED INTERMEDIATE DICTIONARY OF RESULS	998861,860	21-May-fl	7,177,798	13 Feb- 07	Issud	2020059069
Dynamic Advances, LLC	5164 DYNAD002	US	ORD	SYSTEMS FOR PERFORMING CHEMICAL MECHANICAL PLANARZATION AND PROCESSESFOR CONDUCTING SAME	08/413,487	30-Mar-95	5,637,185	10-Jund 97	Issuled	
Dynamic Adrances, LLC	$5164-$ DYNAD001	US	ORD	DETECTIONOF CHOLESTEROL DEPOSITS N ARTERES	071962,777	$19-0 \mathrm{Ct}-92$	5,327,893	12-Jul. 94	Issued	
Seene Communication Technologies, LLC	$5164-$ Selen--867	US	ORD	METHOD AND APPARATUSFOR PROVIDING SCALABLE RESOURCE DISCOVERY	10242,285	12-Sep-12	7,17, 667	13-feb-07	Issued	2003077402
Selene Communication Technologies, LLC	$5164-$ Solen-44	US	ORD	APPLICATION-LAYER ANOMALY AND MISUSE DETECTION	09996,154	28-Nor-01	7,143,44	28-Nov-06	Issued	20030101358
Selene Communication	$5164 \cdot$ Selena-37?	US	ORD	SEARCHDATA PROCESSOR	09218,570	22-DEC-98	6,363,377	$26 \cdot \mathrm{Mar}-12$	Issled	

A-1
476479121

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tye } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	$\begin{aligned} & \hline \begin{array}{l} \text { Applica- } \\ \text { fion } \\ \text { Statas } \end{array} \end{aligned}$	Publication Number
Technologies,$L C$										
Sarif Biomedical, LC	$\begin{aligned} & \hline 5164- \\ & \text { SARIF. } \\ & \text { 726FR } \end{aligned}$	FR	ORD	COMPUTER-ASIITED MCROSURGERY EQUIPMENT AND METHODS AND METHODS FOR USE WITH SAID EQUIPMENT	EP94926060. 9	6-Sep-94	EP072229	12-Janto	Expried	EP0722299
Sarif Biomedital, LC	$5164 \cdot$ SARF. $7250 B$	GB	ORD	COMPUTER-ASSITTED MCROSURGERY EQUPMENT AND METHODS AND METHODS FOR USE WITH SAID EQUTPMENT	EP9492060. 9	6. 5 ep 94	EP072299	12- $\operatorname{an}=(1)$	Expired	EP012299
Sarif Biomedical, LLC	$5164-$ SARIF. 725 DE	DE	ORD	COMPUTER-ASSISTED MICROSURGERY EQUPMENT AND METHODS AND METHODS FOR USE WITH SAID EQUIPMENT	$\begin{aligned} & \text { EPY4926060. } \\ & 9 \end{aligned}$	6. Sep. 94	DE69422611.9	12-atar-0	Issued	EP0722299
Sarif Biomedical, LC	5164 . SARIF725.EP	EP	PCT	COMPUTER-ASSITED MICROSURGERY EQUPMENT AND NETHODS FOR USE WITH SAID EQUIPMENT	949269609	6.Sep-94	722299	12- $\operatorname{an}+10$	Granted	722299
Sanf Biomedical, LLC	$5164-$ SARIFT25	US	ORD	COMPUTER-ASSISTED MICROSURGERY EQUPMENT AND METHODS AND METHODS FOR USE WITH SADD EQUIPMENT	08612,932	10-Sep-96	5,755,725	26.May 98	Issued	
Vantage Point Terhology, Ine	5164. VaNT. 979.2	US	PRO	HIGH-AVALLABILTY SUPER SERVER	601011,979	20-Feb-96			Expried	
Yantage Point Techolngy, inc	$\begin{aligned} & 5164- \\ & \text { VANT. } \\ & 932.2 \\ & \hline \end{aligned}$	US	PR0	METHOD AND APPARATUSFOR SIGNAL HANDLING ON	60/11,932	20-Feb-96			Expied	

47479921

Onar	Atty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tye } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \hline \begin{array}{c} \text { Aplici- } \\ \text { fion } \\ \text { Status } \end{array} \end{gathered}$	Publication Number
				GTLTYPE BUSES						
Vantage Point Technolegy, Inc.	5164. VANT. 200.2	US	PRO	$\begin{aligned} & \text { APPARATUS AND } \\ & \text { METHOD FOR } \\ & \text { TRANSMTTING } \\ & \text { DOCUMENTS BETWEEN } \\ & \text { A SERVER COMPUTER } \\ & \text { AND ACLENT } \\ & \text { COMPUTER } \end{aligned}$	601074,920	17-Fel-98			Expried	
Vantage Point Technobgy, Inc.	5164. VANT. 876	US	ORD	METHOD AND APPARATUSFOR SPECULATIVE EXECUTIONOF INSTRUCTIONS	081776,876	21-Dei-95	6,185,668	6.Feb-011	Issuled	
Vantage Point Technology, Inc.	5164 VANT. 870	US	ORD	BYPASSING A NONPAGED POOL CONTROLLER WHEN ACCESSINGA REMAINER PORTION OF ARANDOM ACCESS MEMORY	091178,870	$26-004-98$	6,032,240	29.Feb-10	Issued	
Vantage Point Technology, Ins.	$5164-$ VANT. 845	US	ORD	$\begin{aligned} & \text { COMPUTER CHASSIS } \\ & \text { WITH RETRACTABLE } \\ & \text { ACCESS DOOR } \end{aligned}$	092000,845	2-Mar-99	6.219,226	17-Apr-01	Issued	
Vantage Point Technology, Inc.	5164 VANT. 832-DE	DE	ORD	VISIBLELINE PROCESSOR	$\begin{aligned} & \text { DE19966150 } \\ & 83 T \end{aligned}$		69615083.2	12-Sep-01	Granted	
Vantage Point Technolog, Inc.	$5164-$ VANT. 827	US	ORD	HIGH-AVALABILTY SUPER SERVER	088,802,827	19-Feb-97	6,374,329	16-Apr-02	Issud	
Vantage Point Techuology, Inc.	5164 VANT-818	US	ORD	METHOD AND APPARATUSFOR TRANSLATNG VIRTUAL ADDRESSES in adata processing SYSTEMHAVING MULTPIE Instruction PPELINES AND	08/146,818	2.Nov.93	5,46,750	31.000 .95	Issuld	

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Type } \end{aligned}$	App Tite	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Statas } \end{gathered}$	Publication Number
				SEPARATE TLB'S FOR EACH PIPELNE						
Vantage Point Technology, Ine.	$5164-$ VANT-80	US	ORD	APPARATUS AND METHOD FOR TESTING COMPUTER SYSTEMS	08,985,808	5 - Dec- 97	6,029,257	22 Feb -10	Granted	
Vantage Point Technobgy, inc.	$\begin{aligned} & 5164- \\ & \text { VANT. } \\ & 639 . \mathrm{DE} \end{aligned}$	DE	ORD	APPARATUS FOR IMPROVED ARR FLOW THOUGH ACOMPUTER CHASSIS	$\begin{array}{\|l\|} \hline \text { DEIP976186 } \\ 39 T \end{array}$		DE199761863 97	$22 \cdot \operatorname{and}\{3$	Granted	
Vantage Point Technology, Ine.	$\begin{array}{\|l\|} \hline 5164- \\ \text { VANT. } \\ \text { S37-NL } \end{array}$	NL	ORD	VIIBLELINE PROCESSOR	$\begin{array}{\|l\|} \hline \text { EP199601070 } \\ \hline 58 \end{array}$		742537	12.Sep-11	Grated	
Vantage Point Tectnolegy, Ime	5164- VANT. 537-IT	IT	ORD	VISIBLELNE PROCESSOR	$\begin{array}{\|l\|} \hline \text { Ep } 199601070 \\ 58 \end{array}$		742557	$12 \cdot \operatorname{sep}-11$	Granted	
Vantage Point Technolog, Ime.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 537 \text {-GB } \end{aligned}$	$9 B$	ORD	VISBLELNE PROCESSOR	$\begin{array}{\|l\|} \hline \text { EP199001070 } \\ 58 \end{array}$		712537	$12 . \operatorname{sep}-1]$	Granted	
Vantage Point Tectnolegy, Inc.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 537-\mathrm{FR} \end{aligned}$	FR	ORD	VISBLELINE PROCESSOR	$\begin{array}{\|l\|} \hline \text { EP199601070 } \\ 58 \end{array}$		742537	12-Sep-11	Granted	
Vantage Point Technolegy, Ine	$5164-$ VANT-49	US	DIV	COMPARATOR CELL FOR USE INA CONTENT ADDRESSABLE MEMORY	081/85,49	8.Feb- 95	5,598,115	28- $\mathrm{aman}-97$	Issued	
Vantage Point Technology, Ime.	$5164-$ VANT-479	US	ORD	APPARATUSFOR IMPROVED AIR FLOW THOUGH A COMPUTER CHASSIS	088866,479	30-May-97	5,892,654	6-4pro99	Issued	
Vantage Point Technolog, Ine.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 472-\mathrm{DE} \end{aligned}$	DE	ORD	BYPASSING A NONPAGED POOL CONTROLLER WHEN ACCESSING A REMAINDER PORTION OFARANDOMACCESS MEMORY	DE69816472 (T2)		DE199861647 27	16.J14.13	Gratated	
Vantage Point	5164	US	ORD	APPARATUS AND	09249,403	12-Fbl-99	6,615,233	$2 \cdot \mathrm{Sep}-13$	Issued	

476479121

Owner	Aty Docket Number	Country	Case Type	App Tite	Application Number	Filing Iate	Patemt Number	Issue Date	Applicia- tion Status	Publication Number
Technology, Ime.	VANT-403			METHOD FOR TRANSMIITING DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLENT COMPUTER						
Vamage Point Technology, Ime.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 239-\mathrm{Z} \end{aligned}$	US	PR0	COMPUTER EXPANSION SYSTEM WTH IMPROVED COMPUTER CHASSIS	601077,239	9-Mar-98			Expired	
Yantage Point Technolog, Inc.	5164. VANT-231	US	CON	MUTIPROCESSOR DATA COHERENCY	101886,231	7.5ul-04	7,584,30	1.5 sep 09	Granted	2005. 0188009
Vantage Point Technology, Ine.	5164 VANT. $126 \cdot \mathrm{NL}$	NL	ORD	APPARATUS AND METHOD FOR TRANSMITTING DOCIMENTS BETWEEN A SERVER COMPUTER AND ACLENT COMPUTER	ER1990000 1 26		1057121	16-Nov. 16	Abardon ed	
Vantage Point Technology, Ime.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 126 \mathrm{LU} \end{aligned}$	LU	ORD	APPARATUS AND METHOD FOR TRANSMITTING DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLENT COMPUTER	EP199909081 26		1057121	16-Nov-96	Abandon ed	
Vantage Point Technology, Inc.	$\begin{aligned} & 5164- \\ & \text { VANT- } \\ & 126 \mathrm{rIT} \end{aligned}$	IT	ORD	APPARATUS AND METHOD FOR TRANSMITTING DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLIENT COMPUTER	EP199909081 26		1057121	16-Nov-d6	Abandon ed	
Vantage Point Technology, me.	$\begin{array}{\|l\|} \hline 5164- \\ \text { VANT- } \\ 126-\mathrm{GB} \end{array}$	GB	ORD	APPARATUS AND METHOD FOR TRANSMITTING DOCJMENTS BETWEEN	EP199909081 26		1057121	16-Nov-16	Abandon ed	

Owner	Aty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tyee } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	Appicia- tion Status	Publication Number
				A SERVER COMPUTER AND ACLENT COMPUTER						
Vantage Point Technology, Ime.	$5164-$ VaNT. 126-BE	BE	ORD	APPARATUS AND METHOD FOR TRANBMITTING DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLIENT COMPUTER	$\begin{array}{\|l\|} \hline \text { EP199909081 } \\ 26 \end{array}$		105721	16-Nov-A6	Abandon ed	
Vantage Point Technology, inc.	5164 VANT. 121FR	FR	ORD	APPARATUS AND METHOD FOR TRANSMTTNG DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLENT COMPUTER	EP99908126	12-Feb-99	1057121	$4.0 \mathrm{Ct}+16$	Issued	EP1057121
Vantage Point Technology, Inc.	$\begin{array}{\|l\|} \hline \text { Si6t- } \\ \text { VANT. } \\ \text { 121.DE } \end{array}$	DE	PCT	APPARATUS AND METHOD FOR TRANSMITING DOCUMENTS BETWEEN A SERVER COMPUTER AND ACLIENT COMPUTER	69933435.7	12-Feb-99	69933435.7		Issued	
Vantage Point Technology, ine.	$5164-$ VANT. 083-NL	NL	ORD	BYPASSINGA NONPAGED POOL CONTROLLER WHEN ACCESSINGA REMAINDER PORTION OF ARANDOM ACCESS MEMORY	$\begin{array}{\|l\|} \hline \text { EP199809575 } \\ 31 \end{array}$		Ep1031083	16.JII -13	Grated	
Vantage Point Technology, ine.	$5164-$ VANT. (833.LU	LU	ORD	BYPASSING A NONPAGED POOL CONTROLLER WHEN ACCESSINGA REMAINDER PORTION OF ARANDOMACCESS	$\begin{array}{\|l\|} \hline \text { EPI } 199809575 \\ 31 \end{array}$		EP101083	16-JU1/-03	Granted	

Onaer	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tyue } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Statas } \end{gathered}$	Publication Number
				MEMORY						
Vanage Peint Technology, Inc.	5164. VaNT. 083-IT	IT	ORD	BYPASSNG A NONPAGED POOL CONTROLLER WHEN ACCESSINGA REMAINDER PORTION OF ARANDOM ACCESS MEMORY	$\begin{array}{\|l\|} \hline \text { EP19980975 } \\ 31 \end{array}$		EP1031083	16.Jutul ${ }^{\text {a }}$	Granted	
Yantage Point Technology, inc.	5164 VANT. 083.FR	FR	ORD	BYPASSINGA NONPAGED POOL CONTROLLER WHEN ACCESSINGA REMAINDER PORTION OF ARANDOM ACCESS MEMORY	$\begin{array}{\|l\|} \hline \text { EP199809775 } \\ 31 \end{array}$		EP1031083	16.514 .03	Gratted	
Vantage Point Technology, In.	$\begin{array}{\|l\|} \hline 5164- \\ \text { VANT- } \\ \text { O83-BG } \end{array}$	BG	ORD	BYPASSINGA NONPAGED POOL CONTROLLER WHEN accessing A REMAINDER PORTION OF ARANDOMACCESS MEMORY	$\begin{array}{\|l\|} \hline \text { EP199809575 } \\ 31 \end{array}$		EP1031083	16-514. -3	Grated	
Vantage Point Technology, ins.	$\begin{array}{\|l\|} \hline 5164- \\ \text { VANT- } \\ \text { 083-PE } \end{array}$	BE	ORD	BYPASSINGA NONPAGED POOL CONTROLLER WHEN ACCESSING A REMANDER PORTION OF ARANDOM ACCESS MEMORY	$\begin{array}{\|l\|} \hline \text { EPI } 198809575 \\ 31 \end{array}$		EP1031083	$16.511 .1 / 3$	Gratited	
Vantage Point Technology, Im.	$\begin{array}{\|l\|l\|} \hline 5164- \\ \text { VANT- } \\ 065-\mathrm{NL} \end{array}$	NL	ORD	APPARATUS FOR MPROVED ARR FLOW THOUGH A COMPUTER CHASSIS	$\begin{array}{\|l\|} \hline \text { EP199709267 } \\ 96 \\ \hline \end{array}$		EP0093665	22-and ${ }^{\text {a }}$	Granted	
Vantage Point Technology, whe.	5164. VANT. $065-\mathrm{IT}$	IT	ORD	APPARATUS FOR IMPROVED AIR FLOW THOUGH A COMPUTER CHASSIS	$\begin{array}{\|l\|} \hline \text { EP199709267 } \\ \% \end{array}$		EP0903065	22Jand 3	Granted	

Owner	Aly Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tyue } \end{aligned}$	App Tite	Application Number	Filing Date	Patent Number	Issue Date	Appicia- tion Status	Publication Number
Vantage Point Technolog, Inc.	$5164-$ VANT. 065-GB	$G B$	ORD	APPARATUS FOR IMPROVED AIR FLOW THOUGH A COMPUTER CHASSIS	$\begin{array}{\|l\|} \hline \text { EP19970267 } \\ \% \end{array}$		EP093065	22-Jan-03	Granted	
Vantage Point Technology, Inc.	$5164-$ VaNT. 065 FR	FR	ORD	APPARATUS FOR IMPROVED AIR FLOW THOUGH A COMPUTER CHASSIS	$\begin{array}{\|l\|} \hline \text { EP199709267 } \\ \% \end{array}$		EP0903065	22-Jan-03	Granted	
TLIF, LLC	$5164 \cdot$ TLF-919. CA	CA	ORD	PROSTHETICMPLANT ELEMENT	2226919	21-Nov-10	232919	23.0.0t-19?	Abandon ed	
TLI, LLC	5164 TLIF-907 PCT	W0	PCT	SPINALDISC PROSTHESIS	$\begin{array}{\|l\|} \hline \text { PCTIUS19981 } \\ \hline 021907 \\ \hline \end{array}$	16-0ct-98			Expred	
TLIF, LLC	$5164-$ TLIF 9000 AU	AU	ORD	Prosthetic implant element	7180900	24-Nov-10	772817	20-Aug-04	Abaidon ed	
TLIF, LLC	5164TLIF847	US	ORD	PROSTHETICIMPLANT ELEMENT	09714,847	16-Nov-10	6,592,624	15-5140, 03	Issued	
TLIF, LLC	5164. TLIF-836. AU	AU	PCT	Spinal disc prosthesis	10952/99	16-0ct-98	730836	28.Jun-01	Abandon ed	
TLF, LLC	$\begin{array}{\|l} \hline \text { S164- } \\ \text { TLI.775. } \\ \text { CA } \\ \hline \end{array}$	CA	PCT	SPINALDISC PROSTHESIS	2306775	16-0ct-98	2306775	29.andis	Abandon ed	
TLI, LLC	$5164-$ TLIF701 AT	AT	EPC	Intervetebral implant	19980121070	6-Nov-98	230245	$2 \cdot \tan -33$	Abandon ed	
TLIF, LLC	5164. TLIF-619JP	P	PCT	SPINALDISC PROSTHESIS	20000516619	16.001 .98			Publishe d	2001520079
TLIF,LLC	$5164-$ TLIF 505 . IP	IP	ORD	PROSTHESIS Transplanting CONSTITUTING ELEMENT	2000356505	22-Nov-10	2001187074	10.Juald	Abandon ed	
TIF, LLC	5164. TLIF 354	US	ORD	SPINALDISC	09/751,354	28-Dec-00			$\begin{aligned} & \text { Abandon } \\ & \mathrm{ed} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 2001- \\ 0016737 \\ \hline \end{array}$

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Tyye } \end{aligned}$	App Ttie	Application Number	Filing Date	Fatent Number	Issue Date	$\begin{aligned} & \text { Applica- } \\ & \text { fion } \\ & \text { Status } \end{aligned}$	Publicution Number
TIF, LLC	$5164-$ TLIF-323- NL	NL	EPC	Interveritebral implant	98121070.1	6-Nov-98	916323	$2 \cdot \tan -13$	Abandon ed	916623
TIF, LL	$5164-$ TLIF-323. L	L	EPC	Intereetrebral inplant	98121070.1	6-Nov-98	916323	2- $\mathrm{Fan}-13$	Abandon ed	91623
TLIF, LLC	$5164-$ TLF-323. GB	CB	EPC	Inienveribura implant	98121070.1	6-Nor-98	916823	2-Jan-03	Abandon ed	916323
TUF, LLC	$\begin{array}{\|l\|} \hline 5164- \\ \text { TUF. } 323- \\ \text { FR } \\ \hline \end{array}$	FR	EPC	Intervertebral implant	981210701	6-Nov-98	916323	$2 \mathrm{Tan}-03$	Abandon ed	916523
TIIF, LLC	5164. TLIF-323. EP	EP	ORD	Intervertitbal implant	98121070.1	6.Nov-98	916323	2.and 3	Granted	916223
TIIF, LLC	$5164-$ TLIF-323- DE	DE	EPC	Intervertebral inplast	58806807.4	6-Nov-98	916323	$2-\tan -13$	Abandon ed	916223
TIF, LLC	$5164-$ TLIF-323. CH	CH	EPC	Intervertebral implant	98121070.1	6-Nov-98	916223	$2 \mathrm{Tan}-03$	Abandon ed	91622
TLIF, LLC	$5164-$ TLIF-323. AT	AT	EPC	Interverebral implant	98121070.1	6-Nor-98	916323	2-an-03	Abarion ed	916323
TII, LLC	$5164-$ TUFF293	US	ORD	SPNALDISC	081954,293	$17.0 \mathrm{ct}-97$	5.824,094	20-0ct-98	Issued	
TIF, LLC	$5164-$ TLIF261- KR	KR	ORD	PROSTHESIS TRANSPLANTING ELEMENT	$\begin{aligned} & 1020000702 \\ & 61 \end{aligned}$	24-Now-11	$\begin{aligned} & \text { KR200100519 } \\ & 19 \end{aligned}$	25-hindi	Granted	
TLIF, LLC	$\begin{aligned} & 5164 \cdot \\ & \text { TLIF-259 } \end{aligned}$	US	ORD	SPINALDISC	10340,259	10-Tan-03			Abandon ed	$\begin{aligned} & 2003- \\ & 0100951 \\ & \hline \end{aligned}$
TLF, LLC	5164 TLIF-237. TR	TR	EPC	Prosthetic implarit element	20000310412	23-Nov-10	1103237	4-0ct-46	Abandon cd	
TIF, LLC	5164 - TLIF-237. SE	SE	EPC	Prosthetic implain element	20000310412	23-Nov-19	1103237	4.0 ct 106	Abandon ed	

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Type } \end{aligned}$	App Ttie	Application Number	Filing Date	Fatent Number	Issue Date	$\begin{aligned} & \text { Applica- } \\ & \text { fion } \\ & \text { Status } \end{aligned}$	Publication Number
TLIF, LLC	$5164-$ TLIF237- PT	PT	EPC	Prosthetic implan element	20000310412	23-Nou-10	110323	4-0.t-16	Abandon ed	
TLIF,LLC	$\begin{aligned} & 5164- \\ & \text { TLIF-237. } \end{aligned}$ N	NL	EPC	Prosthetic implant element	20000310412	23-Nov-10	1103237	4.0ct-16	Abandon ed	
TLF, LLC	$5164-$ TLF-227. MC	MC	EPC	Prosthetic implan element	20000310412	23-Nov.00	1102237	4-04-06	Abandon ed	
TLT, LIC	5164 TLIF-237 LU	LU	EPC	Prosthetic implant clement	20000310412	23-Nov-10	1103237	$4.00 \mathrm{c}-16$	Abandon ed	
TLIF,LLC	5164. TLIF237. U	LI	EPC	Prosthetic implan element	20006310412	23-Noval1	1103237	4.004 .16	Abandon ed	
TLIF, LLC	$5164-$ TLIF237. IT	IT	EPC	Prosthetic implan dement	20000310412	23-Nov-10	1103237	4-0ct-16	Abandon ed	
TLI, LLC	$5164-$ TLIF:237. IE	IE	EPC	Prosthetic implan element	20000310412	23-Nov-10	1102237	4.004 -16	Abandon ed	
TLF, LLC	5164 TLIF-237. GR	GR	EPC	Prosthetic implant element	20000310412	23-Noval0	1103237	4.0 ct 46	Abandon ed	
TLI, LLC	$5164-$ TUF-237. GB	GB	EPC	Prosthetic implant element	20000310412	23-Nov-10	1103237	4-0ct-06	Abandon ed	
TLIF, LLC	$\begin{aligned} & 5164- \\ & \text { TLF-237\% } \end{aligned}$ FR	FR	EPC	Prosthetic implan element	20003310412	23-Nov-10	110323	4.00t-16	Abandon ed	
TLI, LLC	$\begin{array}{\|l\|} \hline 5164 \cdot \\ \text { TLIF-237. } \end{array}$ FI	Fl	EPC	Prosthetic implan element	20000310412	23-Nov-00	1102237	4.04006	Abandon ed	
TLF, LLC	$5164-$ TLIF-237. ES	ES	EPC	Prosthetic implant element	20000310412	23-Nov-10	1103237	4.0 ct 46	Abandon ed	
TLI, LIC	5164 -	EP	ORD	Prosthetic implait element	20000310412	23-Nov-10	1103237	$4.0 \mathrm{ct.06}$	Gramed	

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Type } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	$\begin{aligned} & \text { Applica- } \\ & \text { fion } \\ & \text { Status } \end{aligned}$	Publication Number
	$\begin{aligned} & \text { TLF-237- } \\ & \text { EP } \end{aligned}$									
TLIF, LLC	5164 - TLIF-237. DK	DK	EPC	Prosthetic implant dement	20000310412	23-Nov-10	1103237	4-0t-16	Abandon ed	
TLF, LLC	$5164-$ TLF-237. DE	DE	EPC	Prosthetic implan element	60031073	23-Noval0	1102237	$4.00+46$	Abandon ed	
TLF, LLC	5164 TLFF-237. CY	CY	EPC	Prosthetic implant clement	20000310412	23-Nov-10	1103237	$4.0 \mathrm{ct}-06$	Abandon cd	
TLIF,LLC	5164. TLIF-237. CH	CH	EPC	Prosthetic implan element	20000310412	23-Nov-10	1113237	4-0. $\mathrm{CL}-16$	Abandon ed	
TLIF, LLC	$5164-$ TLIF237- BE	BE	EPC	Prosthetic implan element	20000310412	23-Nor-10	1103237	4-0ct-06	Abandon ed	
TLI, LLC	$5164-$ TLIF-227. AT	AT	EPC	Prosthetic implant element	20000310412	23-Nov.al	1102237	4-04-06	Abandon ed	
TLF, LLC	5164. TLIF229. DE	DE	ORD	Zwischenwibelimplatat	19844022.9	2-Feb-98	1980402	$19 . \operatorname{Sep}-12$	Abandon ed	19804022
TLI, LLC	5164 - TLIF-224 DE	DE	ORD	Zwischenwibelimplatat	2972022.4	12Nov-97			Abandon ed	DE29720022
TLF, LLC	5164 -TLIF-151	US	ORD	INTERVERTEBRAL IMPLANT	091/00,15]	12-Nov-98	6,143, 132	7Nov-10	Issued	
TLIF, LLC	$5164-$ TLF-1II CA	CA	ORD	INTERVERTEBRAL IMPLANT	225311	9-Nov-98	225311	23-Aug-d5	Abandon ed	
TLF, LLC	5164 TLIF-107. KR	KR	PCT	SPINAL DISC PROSTHESIS	$\begin{aligned} & 1020070041 \\ & 17 \end{aligned}$	17-App-00			Abandon cd	$1.02001 \mathrm{E}+12$
MI, LLC	5164 TLIF-182	US	ORD	SPNALDISC	009021,182	2-Aug 01	6.669732	30.Dec-33	Issued	2002 . 0022888
TLIF,LLC	$5164-$	SE	EPP	SPINALDISC	98953624.8	$16.0 \mathrm{ct} \cdot 98$	EP1023011	10.DeC-13	Abandon	1023011

A-11
476479921

Owner	Alty Docket Number	Country	$\begin{aligned} & \text { Case } \\ & \text { Type } \end{aligned}$	App Ttle	Application Number	Filing Date	Patent Number	Issue Date	$\begin{aligned} & \text { Applica- } \\ & \text { fion } \\ & \text { Status } \end{aligned}$	Publication Number
	$\begin{array}{\|l\|l\|} \hline \text { TLIF-M11- } \\ \hline \text { SE } \end{array}$			PROSTHESIS					ed	
TLIF, LLC	5164 -TLIF-11NL	NL	EPP	SPRALDISC PROSTHESIS	19980933624	16-0ct. 98	102301	10.DCC-06	Abandon ed	
TMF, LLC	$5164-$ TLF-011. LI	LI	EPP	SPNALDISC PROSTHESIS	98953624.8	$16-0 \mathrm{Ct}-98$	EP102001	10.feed 03	Abandon ed	102011
TUF, LLC	5164 TLF-011IT	IT	EPP	SPRAL DISC PROSTHESS	98959624	$16.00 t-18$	102301	10-Dec- 43	Abandon cd	
TIF,LLC	$5164-$ TLFP-111 IE	IE	EPP	SPINAL DISC PROSTHESIS	98953624.8	16.001 .08	102301	10. Dec. 33	Abaidon ed	
TIF, LLC	$5164-$ TLIF-N11- GR	GR	EPP	SPINALDISC PROSTHESIS	99953624.8	16-0ct-98	EP1023011	10-Dec 63	Abandon ed	102301
TLF, LLC	$5164-$ TLF-011. GB	CB	EPP	SPNALDISC PROSTHESIS	98953624.8	$16-0 \mathrm{ct}-98$	102011	10.1eced3	Abandon ed	
TLF, LC	5164. TLIF-011. FR	FR	EPP	SPNAL DISC PROSTHESIS	98953624.8	16-0ct-98	102301	10.Dec-03	Abaridon ed	
TIF, LLC	5164 - TLIF-111 FI	Fl	EPP	SPNAL DISC PROSTHESIS	98953624.8	$16-0 \mathrm{Ct}-98$	EP1023011	$10 \cdot \mathrm{Dec}-13$	Abandon ed	102301
TLF, LLC	$5164-$ TLIF-011 ES	ES	EPP	SPINALDISC PROSTHESIS	98953624.8	$16.00+98$	EP1023011	10.Dec- 03	Granted	102301
TLI, LLC	$5164-$ TLIF-011EP	EP	PCT	SPINALDISC PROSTHESIS	98953624.8	16-0ct-98	EP102011	10.Dec-0 ${ }^{\text {a }}$	Granted	102011
TLF, LLC	5164 TLIF-011DK	DK	EPP	SPNAL DISC PROSTHESIS	98953624.8	$16-0 \mathrm{Ct}-98$	102301	10.Dec-03	Abandon ed	
TLI, LLC	5164 . TLIF-111-	CH	EPP	SPNAL DISC PROSTHETIC	98953624	$16-0 \mathrm{ct}-88$			Abandon ed	

A. 12

4764179121

Owatr	Aty Docket Number	Country	Case Type	App Tite	Application Number	Filing late	Patent Number	Issue Date	Applica- tion Status	Publication Number
	CH									
TLIT, LLC	5164 TLIF-011- BE	BE	EPP	SPINAL DISC PROSTHESIS	98953624.8	16-0ct-98	1023011	10.Dec-0]	Abandon ed	
TLIF, LLC	$5164-$ TLIF-488	US	ORD	APPARATUS AND METHOD FOR RECORDNG, COMMUNICATING AND ADMINISTERING DIGITALIMAGES	081877,488	17.Jun-97	6,038,295	14-Mar-t0	Issued	
Signal IP, Ime.	$5164-$ SIGP-999	US	ORD	DUALRATE COMMUNICATION PROTOCOL	08775,999	5-Feb-97	5,954,775	$21 . \operatorname{Sep}-99$	Issued	
Signall 1 Ime.	5164 SIGP-972	US	ORD	TECHNDUEFOR LIMTING THE RANGE OF ANOBIECT SENSING SYSTEMIN A VEHCLE	091648,972	28 -Ang 40	6,434,486	13 -Ang.02	Issued	
Signal IP, Im,	$5164-$ SIGP-338	US	CIP	OCCUPANTDETECTION METHOD AND APPARATUSFOR AIR BAG SYSTEM	081868,338	3.Jnn-97	6,02,007	$4 \mathrm{Tan}-10$	Issued	
Signal IP, Ime,	5164. SIGP-322	US	ORD	METHOD AND APPARATUS FOR TIRE PRESSURE MONTORNG AND FOR SHARED KEYLESS ENTRY CONTROL	08208,322	10-Mar-94	5,463,374	$31.0 \mathrm{ct}-95$	Issued	
Signal IT, Ime.	$\begin{array}{\|l\|} \hline 5164+ \\ \text { SIGP-090 } \end{array}$	US	ORD	METHOD OF IMPROVINGZONE OF COVERAGERESPONSE OF AUTOMOTIVE RADAR	087762,090	9-Dec-96	5,714,927	3Feb-98	Issued	
SignaliP, Ime.	5164. SIGP. 448	US	ORD	METHOD AND CONTROL SYSTEM FOR CONTROLLNG PROPULSIONINA HYBRID VEHICLE	10214,048	6 Aug 02	6.775,601	10-Aug.04	Issued	20040030469

A. 13

476479921

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number'	Filing Date	Patent Number	Wssue Date	Application Status	Publication Number
Signal IP, Inc.	$\begin{aligned} & 5164- \\ & \text { SIGP-029 } \end{aligned}$	US	ORD	METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT	08/566,029	1-Dec-95	5,732,375	24-Mar-98	Issued	
Sampo IP LLC	$\begin{aligned} & \text { 5164- } \\ & \text { SAMP-999 } \end{aligned}$	US	ORD	SYSTEM FOR COMMUNICATING INFORMATION AMONG MEMBERS OF A DISTRIBUTED DISCUSSION GROUP RECEIVING A CHANNEL IN A NOTICE FOR AUTOMATIC ACCESSING THE INFORMATION	09/041,599	13-Mar-98	6,161,149	12-Dec-00	Issued	
Sampo IP LLC	$\begin{aligned} & 5164- \\ & \text { SAMP-943 } \end{aligned}$	US	CON	CENTRIFUGAL COMMUNICATION AND COLLABORATION METHOD	13/188,943	22-Jul-11			Publishe d	20120158869
Sampo IP LLC	$\begin{aligned} & 5164- \\ & \text { SAMP-441 } \end{aligned}$	US	ORD	CENTRIFUGAL COMMUNICATION AND COLLABORATION METHOD	09/709,441	13-Nov-00	6,772,229	3-Aug-04	Issued	
Sampo IP LLC	$\begin{aligned} & \text { 5164- } \\ & \text { SAMP-358 } \end{aligned}$	US	CON	CENTRIFUGAL COMMUNICATION AND COLLABORATION METHOD	10/375,358	28-Feb-03	8,015,495	6-Sep-11	Issued	$\begin{aligned} & 2003- \\ & 0149806 \end{aligned}$
Sampo IP LLC	$\begin{aligned} & 5164- \\ & \text { SAMP-326 } \end{aligned}$	US	CON	$\begin{aligned} & \text { GROUP } \\ & \text { COMMUNICATION AND } \\ & \text { COLLABORATION } \\ & \text { METHOD } \end{aligned}$	10/887,326	9-Jul-04			Abandon ed	$\begin{aligned} & 2006 \\ & 0090013 \end{aligned}$
Relay IP, Inc.										
Relay IP, Inc.	$\begin{aligned} & 5164- \\ & \text { RELAY- } \\ & 634 \\ & \hline \end{aligned}$	US	ORD	MULTICAST ROUTING USING CORE BASED TREES	08/100,634	30-Jul-93	5,331,637	$19-\mathrm{Jul}-94$	Issued	
E2C Processing, Inc.	$\begin{aligned} & 5164 \text { E } 2 \mathrm{E}- \\ & 863 \\ & \hline \end{aligned}$	US	ORD	$\begin{aligned} & \text { END-TO-END } \\ & \text { TRANSACTION } \end{aligned}$	09/928,863	13-Aug-01	6,981,222	27-Dec-05	Issued	20020054170
A-14										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Namber	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
				PROCESSING AND STATUSING SYSTEM AND METHOD						
E2E Processing, fne.	$\begin{aligned} & 5164-\mathrm{E} 2 \mathrm{E}- \\ & 476 \end{aligned}$	US	ORD	METHOD AND APPARATUS FOR PLANNING A MANUFACTURING SCHEDULE USING AN ADAPTIVE LEARNING PROCESS	12/010,476	25-Jan-08	7,818,082	19-Oct-10	Issued	20080140244
E2E Processing, lnc.	$\begin{aligned} & 5164-\mathrm{E} 2 \mathrm{E}- \\ & 204 \end{aligned}$	US	CON	METHOD AND APPARATUS FOR PLANNING A MANUFACTURING SCHEDULE USING AN ADAPTIVE LEARNING PROCESS	10/846,204	14-May-04	7,043,320	9-May-06	Issued	
E2E Processing, Inc.	$\begin{aligned} & 5164-\mathrm{E} 2 \mathrm{E}- \\ & 093 \end{aligned}$	US	ORD	METHOD FOR CALCULATING A TRANSITION PREFERENCE VALUE BETWEEN FIRST AND SECOND MANUFACTURING OBIECT ATTRIBUTES	11/382,093	8-May-06	7,406,359	29-Jul-08	Issued	20070073431
Mybrid Sequence ${ }^{T}$, Inc.	$\begin{aligned} & 5164- \\ & \text { HYBR-674 } \end{aligned}$	US	ORD	SYSTEM AND METHOD FOR PERFORMING NONDISRUPTIVE DIAGNOSTICS THROUGH A FRAME RELAY CIRCUIT	08/888,410	7-Jul-97	5,898,674	27-Apr-99	Issued	
Mybrid Seruence IP, Inc.	5164 -HYBR-082	US	ORD	SYSTEM AND METHOD FOR MULTIPLEXING A FRAME RELAY VIRTUAL CIRCUTT AND FOR PERFORMING NONDISRUPTIVE	09/079,048	14-May-98	6,269,082	31-3ul-01	Issued	
A-15										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
				DIAGNOSTICS THROUGH A CIRCUIT USING ASYNCHRONOUS TRANSFER MODE						
IP Liquidity Technologies										
IP Liquidity Technologies	5164 - IPTECH- 320	US	ORD	N/A	13/681,320				Pending	
Medtech GmbH	$\begin{aligned} & 5164- \\ & \text { MEDT-431 } \end{aligned}$	US	ORD	VASCULAR IMPLANT	10/135,431	30-Apr-02	6790230	14-Sep-04	Issued	20020193871
Medtech GmbH	5164 -MEDT-308-DE	DE	EPP	Systems for treating fractured or discased bone using expandable bodies	69841759.3	1-Jun-98	DE69840721	8-Apr-09	Issued	69841759.3
Medtech GrabH	5164-MEDT-103-DE	DE	EPP	SYSTEMS AND METHODS FOR PLACING MATERIALS INTO BONE	69933037.8	26-Jul-99	DE69933037	17-Oct-13	Issued	69933037.8
Medtech GmbH	5164 . MEDT- $100-\mathrm{DE}$	DE	ORD	Replacement heart valve, comprises an anchoring element, and has a starting volume which is opened up to the normal volume using a catheter	10121210	30-Apr-01	DE101212101	14-Nov-02	Issued	
Cyberfone Systems, LillC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF- } \\ & 961-\mathrm{GB} \end{aligned}$	GB	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	1942071	7-Jun-00	1311961	28-Apr-10	Granted	
Cyberfone Systems, LLC	5164 -CYBF- 961-FR	FR	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	1942071	7-Jun-00	1311961	28-Apr-10	Granted	
Cyberfone Systems, LLC	5164 -CYBF-	GB	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE	96915846.8	16-May-96	886954	16-May-95	Granted	
A. 16										

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Filing Date	Patent Number	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
	954-GB			AND SYSTEM FOR ENTERING TRANSACTION DATA INTO DATABASES						
Cyberfone Systems, LLC	5164. CYBF-$954-\mathrm{FR}$	FR	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA NTODATABASES	96915846.8	15-May-96	886954	19-May-95	Granted	
Cyberfone Systems, LLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF- } 952 \end{aligned}$	US	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTO DATABASES	11/849,952	4-Sep-07	8,019,060	13-Sep-11	Issued	20070297597
Cyberfone Systems, ILC	$\begin{aligned} & 5164- \\ & \text { CYBF-926 } \end{aligned}$	US	ORD	Telephone/Transaction Entry Device and System for Entering Transaction Data into Databases	11/849,926	4-Sep-07			Abandon ed	20070299808
Cyberfone Systems, LLC	$5164-$ CYBF-$895-\mathrm{NL}$	NL	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-05	Granted	
Cyberfone Systems, LLCC	$\begin{aligned} & 5164- \\ & \text { CYBF- } \\ & 895-\mathrm{MC} \end{aligned}$	MC	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-05	Granted	
Cyberfone Systems, LLC	5164 CYBF 895-LU	LU	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-05	Granted	
Cyberfone Systems, LLLC	5164 CYBF~ 895-IE	IE	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-05	Granted	
Cyberfone Systems, LLC	5164 . CYBF895 -GB	GB	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	29-Jun-97	996895	16-Nov-45	Granted	
Cyberfone Systems, LLC	5164 . CYBF-	FR	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-05	Abandon ed	
A-17										

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { thon } \\ \text { Status } \end{gathered}$	Publication Number
	895-FR									
Cyberfone Systems, LLC	5164. CYBF-$895-\mathrm{CH}$	CH	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	996895	16-Nov-14	Granted	
Cyberfone Systems, LLC	5164 . CYBF-895-BE	BE	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	16-May-96	996895	16-Nov-05	Granted	
Cyberfone Systems, LLLC	$\begin{aligned} & 5164- \\ & \text { CYBF-853 } \end{aligned}$	US	ORD	Data communication network for processing data transactions	10/947,853	23-Sep-04			Abandon ed	20050119992
Cyberfone Systems, LLC	5164 . CYBF. 831-DE	DE	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	20-Jun-97	69832383.1	16-Nov-05	Granted	
Cyberfone Systems, LLC	5164 -CYBE-819-GB	GB	ORD	N/A	8014819	20-Jun-97	2048763		Abandon ed	
Cyberfone Systems, LLC	5164 -CYBF814LL	LL	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	20020153300	5-Dec-02	153300	29-Dec-08	Issued	
Cyberfone Systems, LLLC	5164 -CYBF814HK	HK	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	20030104799	7-Jul-03	1052567	17-Dec-10	Issued	
Cyberfone Systems, LLC	5164 -CYBF814EP	EP	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	20010942071	7-Jun-01	1311961	28-Apr-10	Issued	1311961
Cyberfone Systems, LlC	5164 -CYBP814CA	CA	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	20012411458	7-Jun-01	2,411,458	27-Mar-07	Expired	
Cyberfone	5164	DE	ORD	SYSTEM FOR	1942071	7-Jun-01	60141967.7	8-Apr-10	Issued	
A-18										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	Applicathom Status	Publication Nwmber
Systems, LlC	$\begin{aligned} & \text { CYBF- } \\ & 814-\mathrm{DE} \end{aligned}$			SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS						
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } 814 \end{aligned}$	US	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	09/589,814	7-Jun-00	6,973,477	6-Dec-05	Issued	
Cyberfone Systems, LLC	5164- CYBF- 813-MX	MX	ORD	DATA TRANSACTION ASSEMBLY SERVER	99011824		217926		Granted	
Cyberfone Systems, LLLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF- } 798 \end{aligned}$	US	ORD	METHOD FOR ENTERING TRANSACTION DATA. INTO DATABASES USING TRANSACTION ENTRY DEVICE	09/390,798	7-Scp-99	6,574,314	3-Jun-03	Issued	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } 791 \end{aligned}$	US	ORD	PRINTED CIRCUIT BOARD CIRCUIT CONTROL DEVICE	08/232,791	22-Apr-94	5,414,219	9-May-95	Issued	
Cyberfone Systems, LLC	5164 -CYBF-744-KR	KR	ORD	SYSTEM FOR SECURELY COMMUNICATING AMONGST CLIENT COMPUTER SYSTEMS	$\begin{aligned} & 10-2002- \\ & 7016744 \end{aligned}$	7-Jun-01	$\begin{aligned} & 10-0767513- \\ & 0000 \end{aligned}$	26-Jul-07	Granted	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } 730 \end{aligned}$	US	ORD	Telephone/Transaction Entry Device and System for Entering Transaction Data into Databases	11/733,730	10-Apr-07			Abandon ed	20070237313
Cyberfone Systems, LLLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF-722 } \end{aligned}$	US	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTO DATABASES	11/734,722	12-Apr-07	7,778,395	17-Aug-10	Issued	20080031434
Cyberfone	5164	TW	ORD	DATA TRANSACTION	19980109969	22-Jun-98	448364	1-Aug-01	Expired	
A-19										

Owner	Atty Bocket Numbiber	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Mswue Date	Applicahion Status	Publication Number
Systems, LLC	$\begin{aligned} & \text { CYBF- } \\ & 636 \mathrm{TW} \end{aligned}$			ASSEMBLY SERVER						
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF } \\ & 636 \mathrm{PCT} \end{aligned}$	WO	ORD	DATA TRANSACTION ASSEMBLY SERVER	$\begin{aligned} & \text { PCT/US98/12 } \\ & 171 \end{aligned}$	22-Jun-98			Closed	9859301
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } \\ & 636 \mathrm{~L} \end{aligned}$	IL	ORD	DATA TRANSACTION ASSEMBLY SERVER	19980133496	22-Jun-98	133496	20-Jun-04	Issued	
Cyberfone Systems, ILLC	5164- CYBF- 636 EP	EP	ORD	DATA TRANSACTION ASSEMBL Y SERVER	19980931240	22-Jun-98	996895	16-Nov-05	Issued	996895
Cyberfone Systems, LLC	5164 CYBF- $636 \mathrm{CA}$	CA	ORD	DATA TRANSACTION ASSEMBLY SERVER	19982295139	22-Jun-98	2,295,139	14-Jun-05	Expired	
Cyberfone Systems, LLC	5164. CYBF- 636-DE	DE	ORD	DATA TRANSACTION ASSEMBLY SERVER	98931240	22-7un-98	69832383.1	16-Nov-05	Issued	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } 636 \end{aligned}$	US	ORD	DATA TRANSACTION ASSEMBLY SERVER	08/877,636	20-Jun-97	6,044,382	28-Mar-00	Issued	
Cyberfone Systems, LLC	5164 CYBF~ $627-\mathrm{DE}$	DE	DES	Casing primarily for a computer with telephone	M9505627.0	11-Jul-95			Abandon ed	
Cyberfone Systems, LLC	5164 . CYBF- 546 MX	MX	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEMFOR ENTERING TRANSACTION DATA INTO DATABASES.	19970008955	19-Nov-97	9708955	28-Jun-98	Issued	
Cyberfone Systems, LLC	5164- CYBF- 546 EPD	EP	DIV	Communication system which transmits data and voice as data transactions	20060009310	16-May-96			Abandon ed	1720334
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } \\ & 546 \mathrm{EP} \end{aligned}$	EP	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTODATABASES	60915846	16-May-96	886954	10-May -06	Issued	886954

4764179121

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Filing Date	Patent Namber	Ysue Itate	$\begin{gathered} \text { Applica- } \\ \text { honn } \\ \text { Status } \end{gathered}$	Publication Number
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } \\ & 546 \mathrm{CA} \end{aligned}$	CA	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTO DATABASES	19962221853	16-May-96	2,221,853	8-Aug-06	Abandon ed	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF- } \\ & 546-\mathrm{DE} \end{aligned}$	DE	ORD	```TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTODATABASES```	96915846.8	16-May-96	69636128	10-May-06	Granted	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF-546 } \end{aligned}$	US	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEM FOR ENTERING TRANSACTION DATA INTO DATABASES	08/446,546	19-May-95	5,805,676	8-Sep-98	Issued	
Cyberfone Systems, ILIC	$\begin{aligned} & 5164- \\ & \text { CYBF-490 } \end{aligned}$	US	DES	COMPUTER WITH INTERGRATED TELEPHONE	29/033,490	13-Jan-95	D371345	2-Jul-96	Issued	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF-470 } \end{aligned}$	US	ORD	SYSTEM FOR TRANSMISSION OF VOICE AND DATA OVER THE SAME COMMUNICATIONS LINE	11/055,470	10-Feb-05	7,334,024	19-Feb-08	Issued	20050165864
Cyberfone Systems, lllC	$\begin{aligned} & 5164- \\ & \text { CYBF-408 } \end{aligned}$	US	ORD	TELEPHONE/TRANSACT ION ENTRY DEVICE AND SYSTEMFOR ENTERING TRANSACTION DATA INTODATABASES	08/909,408	11-Ang-97	5,987,103	16-Nov-99	Issued	
Cyberfone Systems, LLC	$\begin{aligned} & 5164- \\ & \text { CYBF } \\ & 386-\mathrm{SG} \end{aligned}$	SG	ORD	LAPSED	1999060386		69659	24-Jan-02	Abandon ed	
Cyberfone	5164	US	ORD	Telephone/Transaction	11/851,302	6-Sep-07			Abandon	20080056467

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Fining Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
Systems, LLC	CYBF-302			Entry Device and System for Entering Transaction Data into Databases					ed	
Cyberfone Systems, LLC	CYBF-218	US	ORD	Telephone/Transaction Entry Device and System for Entering Transaction Data into Databases	11/851,218	6-Sep-07			Abandon ed	20080043946
Cyberfone Systems, LLC	$5164-$ CYBF-199	US	ORD	Telephone/Transaction Entry Device and System for Entering Transaction Data into Databases	11/851,199	6-Sep-07			Abandon ed	20070299908
Cyberfone Systems, LLC	5164 -CYBF-$167-\mathrm{CN}$	CN	ORD	ABANDONED	95104716.7				Abandon ed	
Cyberfone Systems, LLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF-130 } \end{aligned}$	US	ORD	Apparatus and Method for Cyber Healthcare Monitoring, Diagnosis and Treatment Using Thin Client Communicating Techniques	12/206,130	8-Sep-08			Abandon ed	20090066519
Cyberfone Systems, LLC	5164 -CYBF-$115-\mathrm{C}$	US	CON	DATA COMMUNICATION NETWORK FOR PROCESSING DATA TRANSACTION	14/191,112	26-Feb-14			Pending	
Cyberfone Systems, LLC	5164 - CYBF-115	US	CON	Data communication network for processing data transactions	13/425,115	20-Mar-12			Publishe d	20120233568
Cyberfone Syskems, LLC	5164 -CYBF-$070-\mathrm{KR}$	KR	ORD	ABANDONED	95-10070				Abandon ed	
Cyberfone Systems, LLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF-033 } \end{aligned}$	US	DES	COMPUTER WITH INTEGRATED TELEPHONE	29/034,033	25-Jan-95	D372225	30-Jul-96	Issued	
Cyberfone Systems, LLC	$\begin{aligned} & \text { 5164- } \\ & \text { CYBF-032 } \end{aligned}$	US	DES	COMPUTER WITH INTERGRATED TELEPHONE	29/034,032	25-lan-95	D371346	2-Jul-96	Issued	

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { thom } \\ \text { Status } \end{gathered}$	Publication Number
Cyberfone Systems, Llec	$\begin{aligned} & 5164- \\ & \text { CYBF-022 } \end{aligned}$	US	ORD	METHOD AND APPARATUS FOR CAPTURING AND POSITIONING A CABLE	08/127,022	27-Sep-93	5,427,327	27-Jun-95	Issued	
CRED Research, Inc.	$\begin{aligned} & 5164- \\ & \text { CRFD- } 865 \end{aligned}$	US	ORD	System for Automated Device-to-Device Transfer	14/147,865	6-Jan-14			Pending	
CRHO Research , me.	$\begin{aligned} & 5164- \\ & \text { CRFD- } 770 \end{aligned}$	US	ORD	WEB PAGE CONTENT TRANSLATOR	09,707,770	8-Nov-00	7,574,486	11-Aug-09	Granted	
CRFD Research , Knc.	$\begin{aligned} & 5164- \\ & \text { CRFD-680 } \end{aligned}$	US	ORD	WEB PAGE CONTENT TRANSLATOR	12/458,154	1-Jul-09	8,793,341	29-Jul-14	Issued	
CRFD Research , Knc.	$\begin{aligned} & 5164- \\ & \text { CRFD-433 } \end{aligned}$	US	ORD	SYSTEM FOR AUTOMATED DEVICE-TO-DEVICE TRANSFER	12/588,433	15-Oct-09	8,650,307	11-Feb-14	Issued	
CRFD Research, ,uc.	$\begin{aligned} & 5164- \\ & \text { CRFD-408 } \end{aligned}$	US	ORD	SYSTEM FOR AUTOMATED, MIDSESSION, USERDIRECTED, DEVICE-TODEVICE SESSION TRANSFER SYSTEM	09/953,408	17-Sep-01	7,191,233	13-Mar-07	Issued	$\begin{aligned} & 2003- \\ & 0055977 \end{aligned}$
CKKD Research ,Inc.	$\begin{aligned} & 5164- \\ & \text { CRFD-367 } \end{aligned}$	US	ORD	SYSTEM FOR AUTOMATED DEVICE-TO-DEVICE TRANSFER SYSTEM	11/701,367	2-Feb-07	7,624,185	24-Nov-09	Issued	
CRFD Research , ,ke.	$\begin{aligned} & 5164- \\ & \text { CRFD-154 } \end{aligned}$	US	ORD	WEB PAGE CONTENT TRANSLATOR	12/458,154	1-Jul-09	8,793,341	29-Jul-14	Issued	
CRFD Research, inc.	$\begin{aligned} & 5164- \\ & \text { CRFD-153 } \end{aligned}$	US	ORD	Web page content translator	12/458,153	1-Jul-09			Pending	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 990 \end{aligned}$	US	ORD	SYSTEM FOR CONFIGURATION OF DYNAMIC COMPUTING ENVIRONMENTS USING A VISUAL INTERFACE	09/662,990	15-Sep-00	7,065,637	20-Jun-06	Issued	
Clousding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-985 } \end{aligned}$	US	ORD	RE-MAPPINGA LOCATION. INDEPENDENT ADDRESS IN A COMPUTER NETWORK	10/609,985	30-Jun-03	7,467,194	16 -Dec-08	Issued	

4764179121

Owner	Atty Docket Number	Coundry	Case Type	App Title	Application Number	Filing Date	Patent Number"	Kswe Date	$\begin{gathered} \text { Applica- } \\ \text { hon } \\ \text { Status } \end{gathered}$	Publication Number
Clomding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 973-\mathrm{CA} \end{aligned}$	CA	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS			2183973		Granted	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 972-\mathrm{PCT} \end{aligned}$	WO	ORD	NETWORK MANAGEMENT SYSTEM HAVING VIRTUAL CATALOG OVERVIEW OF FILES DISTRIBUTIVELY STORED ACROSS NETWORK DOMANN	$\begin{aligned} & \text { PCT/US1994/ } \\ & 012972 \end{aligned}$	9-Nov-94			Expired	$\begin{aligned} & \text { WO1995/142 } \\ & 79 \end{aligned}$
Clounding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 971 \end{aligned}$	US	ORD	N/A	10/609,971				Pending	
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 958 \end{aligned}$	US	ORD	METHODS AND APPARATUSES FOR FLLE SYNCHRONZATION AND UPDATING USING A SIGNATURE LIST	09/303,958	3-May-99	6,574,657	3-Jun-03	Issued	
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 936-A U \end{aligned}$	AU	ORD	NETWORK MANAGEMENT SYSTEM HAVING VIRTUAL CATALOG OVERVIEW OF FILES DISTRIBUTIVELY STORED ACROSS NETWORK DOMAIN			1995010936		Granted	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-919 } \end{aligned}$	US	ORD	SYSTEM AND METHOD FOR STORING AND UTILIZING ROUTING INFORMATION IN A COMPU'TER NETWORK	10/403,919	31-Mar-03	7,292,585	6-Nov-07	Issued	
Clourding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-891 } \end{aligned}$	US	ORD	KEY MANAGEMENT FOR NETWORK COMMUNICATION	08/959.919	29-Oct-97	5,825,891	20-Oct-98	Issued	

4764179123

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number'	Filing Date	Patent Number	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-863 } \end{aligned}$	US	ORD	DYNAMIC DISTRIBUTED DATA SYSTEM AND METHOD	10/679,863	6-Oct-03	6,918,014	12-Jul-05	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 860 \end{aligned}$	US	PRO	Method and system for transferring application settings, files and other data from one computer to another computer	60/192,860	29-Mar-00			Expired	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 850-\mathrm{PCT} \end{aligned}$	WO	ORD	METHODS AND APPARATUSES FOR SINGLE-CONNECTION FILE SYNCHRONIZATION AND WORKGROUP FLLE UPDAT	$\begin{aligned} & \text { PCT/US } 00 / 11 \\ & 850 \end{aligned}$	2-May-00			Publishe d	2000/67158
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-831 } \end{aligned}$	US	ORD	DYNAMIC DISTRIBUTED DATA SYSTEM AND METHOD	09/972,831	5-Oct-01	6,631,449	7-Oct-03	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 811 \end{aligned}$	IP	ORD	< do not have title on file>	2009-063811				Abandon ed	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD }-774 \end{aligned}$	US	PRO	Extending snoopy cache consistency to networks	60/238,774	3-Oct-00			Expired	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-750 } \end{aligned}$	US	PRO	FILE SYNCHRONIZATION	60/017,750	15-May-96			Expired	
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD- } 682 \end{aligned}$	US	ORD	Topology and routing model for a computer network	10/326,682	20-Dec-02			Abandon ed	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 670 \end{aligned}$	US	ORD	REPLICA. SYNCHRONIZATION USING COPY-ON-READ TECHNIQUE	10/457,670	9-Jun-03	7,032,089	18-Apr-06	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 667-\mathrm{PCT} \end{aligned}$	WO	ORD	KEY MANAGEMENT FOR NETWORK COMMUNICATION	PCT/US1997/ 000667	16-Jan-97			Expired	WO $1997 / 26735$
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 661 \end{aligned}$	US	ORD	METHOD AND APPARATUS FOR MOVING LARGE NUMBERS OF DATA	08/741,661	31-Oct-96	5,819,296	6-Oct-98	Issued	
A-25										

Owner	Atty Docket Number	Cobuntry	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Mssue Date	Applicakion Status	Publication Number
				FILES BETWEEN COMPUTER SYSTEMS USING IMPORT AND EXPORT PROCESSES EMPLOYING A DIRECTORY OF FILE HANDLES						
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 660-\mathrm{PCT} \end{aligned}$	WO	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	$\begin{aligned} & \text { PCT/US95/01 } \\ & 660 \end{aligned}$	10-Feb-95			Publishe d	1995/23376
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 658 \mathrm{JP} \\ & \hline \end{aligned}$	JP	ORD	Data storage management for network interconnected processors	19950522361	10-Feb-95	3786955	21-Jun-06	Expired	H09510806
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD. } \\ & 658 \mathrm{AU} \end{aligned}$	AU	ORD	Data storage management for network interconnected processors	19142/95	10-Feb-95	693868	9-Jul-98	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-658 } \end{aligned}$	US	ORD	AUTOMATIC NETWORK MIGRATION OF DATA FILES INTO AND THEIR COLLECTION INTO A TRANSFER UNIT IN SECONDARY STORAGE	08/201,658	25-Feb-94	5,537,585	16-Jul-96	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 656-\mathrm{PCT} \end{aligned}$	WO	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	$\begin{aligned} & \text { PCT/US98/04 } \\ & 656 \end{aligned}$	11-Mar-98			Publishe d	1998/44403
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 644 \end{aligned}$	US	ORD	N/A	12/946,448				Pending	
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 637 \end{aligned}$	US	ORD	$\begin{aligned} & \text { STORAGE } \\ & \text { MANAGEMENT SYSTEM } \end{aligned}$	10/821.559	9-Apr--()4	7,266,637	4-Sep-07	Issued	
Clobading Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 618-E P \end{aligned}$	EP	ORD	NETWORK MANAGEMENT SYSTEM HAVING VIRTUAL			729618		Granted	
A-26										

Owner	Atty Docket Numblecr	Country	Case Type	Apg Tidle	Application Number	Filing Date	Patent Number	Yssue Date	Applicafion Status	Publication Nwmber
				CATALOG OVERVIEW OF FILES DISTRIBUTIVELY STORED ACROSS NETWORK DOMAIN						
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 609 \mathrm{~GB} \end{aligned}$	GB	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	98910281.9	11-Mar-98	1004069	31-Dec-08	Abandon ed	1004069
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 609 \mathrm{FR} \end{aligned}$	FR	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	98910281	11-Max-98	1004069	31-Dec-08	Abandon ed	1004069
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 609 \mathrm{EP} \end{aligned}$	EP	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	98910281.9	11-Mar-98	EP1004069	31-Dec-08	Issued	EP1004069
Clonding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD } \\ & 609 \mathrm{DE} \end{aligned}$	DE	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	69840409.2	11-Mar-98	69840409	31-Dec-08	Issued	69840409
Clourling Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 609 \mathrm{CA} \end{aligned}$	CA	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	2285031	11-Mar-98	CA2285031	20-May -08	Issued	CA2285031
Clouding Corp.	$\begin{aligned} & \text { 5164~ } \\ & \text { CLOD- } 609 \end{aligned}$	US	ORD	NETWORK DISTRIBUTED SYSTEM	08/829,609	31-Mar-97	6,029,246	$22-\mathrm{Feb}-00$	Issued	
A. 27										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Mssue Date	Applicathom Status	Publication Nwmber
				FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES						
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-607 } \end{aligned}$	US	ORD	NETWORK MANAGEMENT SYSTEM HAVING VIRTUAL CATALOG OVERVIEW OF FILES DISTRIBUTIVELY STORED ACROSS NETWORK DOMAIN	08/153,011	15-Nov-93	5,495,607	27-Feb-96	Issued	
Clouding Corp.	5164 CLOD. 573 GB	GB	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	98904874.9	4-Feb-98	968467	22-Jan-03	Abandon ed	968467
Clouding Corp.	5164- CLOD- $573 F R$	FR	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	98904874	4-Feb-98	968467	22.Jan-03	Expired	968467
Clouding Corp.	$5164-$ CLOD573 EP	EP	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A. COMPUTER SYSTEM	98904874.9	4-Feb-98	968467	22-Jan-03	Issued	968467
Clouding Corp.	5164-CLOD573 DE	DE	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	69810910.4	4-Feb-98	69810910	22-Jan-03	Issued	69810910
Clouding Corp.	$5164-$ CLOD573 CA	CA	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	2284214	4-Feb-98	CA2284214	8-Apr-03	Issued	2284214
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 573 \end{aligned}$	US	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	08/820,573	19-Mar-97	5,944,839	31-Aug-99	Issued	
Clouding Corp.	5164	US	ORD	METHOD SYSTEM AND	09/950,559	10-Sep-01	7,596,784	29-Sep-09	Issued	20020166117

4764179121

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Nwmber
	CLOD-559			APPARATUS FOR PROVIDING PAY-PERUSE DISTRIBUTED COMPUTING RESOURCES						
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 548 \end{aligned}$	US	ORD	ENTITY AUTHENTICATION IN A SHARED HOSTING COMPUTER NETWORK ENVIRONMENT	10/071,548	8-Feb-02	7,231,659	12-Jun-07	Issued	20030028762
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-528 } \end{aligned}$	US	ORD	NETWORK MANAGEMENT SYSTEM HAVING HISTORICAL VIRTUAL CATALOG SNAPSHOTS FOR OVERVIEW OF HISTORICAL CHANGES TOFLLES DISTRIBUTIVELY STORED ACROSS NETWORK DOMAIN	08/590,528	24-Jan-96	5,678,042	14-Oct-97	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 509 \end{aligned}$	US	ORD	N/A	12/391,509				Pending	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD. } \\ & 506-\mathrm{JP} \end{aligned}$	IP	ORD	NETWORK MANAGEMENT SYSTEM HAVING VIRTUAL CATALOG OVERVIEW of FILES DISTRIBUTIVELY STORED ACROSS NETWORK DOMAIN			1995-514506		Granted	
Clouding Corp.	$\begin{aligned} & \text { 5164-- } \\ & \text { CLOD-505 } \end{aligned}$	US	ORD	SYSTEM FOR TRANSFERRING CUSTOMIZED HARDWARE AND SOFTWARE SETTINGS FROM ONE COMPUTER	09/709,505	13-Nov-00	6,963,908	8-Nov-05	Issued	
A-29										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Vssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
				TO ANOTHER COMPUTER TO PROVIDE PERSONALIZED OPERATING ENVIRONMENTS						
Clouding Corp.	$5164-$ CLOD-487-AU	AU	ORD	KEY MANAGEMENT FOR NETWORK COMMUNICATION			1997017487		Abandon ed	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-483 } \end{aligned}$	US	ORD	DYNAMIC COMPUTING ENVIRONMENT USING REMOTELY ALLOCABLE RESOURCES	09/861,483	17-May-01	7,278,142	2-0ct-07	Issued	
Clouding Corp.	5164 CLOD-$467-\mathrm{GB}$	GB	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	99703190000		968467	19-Mar-17	Granted	
Clouding Corp.	5164CLOD. $467-\mathrm{FR}$	FR	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	99703190000		968467		Abandon ed	
Clouding Corp.	5164 . CLOD467 -EP	EP	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	99703190000		968467		Granted	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOO- } \\ & 448 \mathrm{PP} \end{aligned}$	JP	ORD	ARCHIVE STREAM BASED INSTALL	$\begin{aligned} & \mathrm{TP} 200900638 \\ & 11 \end{aligned}$	17-Mar-09			Abandon ed	$\begin{aligned} & \text { JP200923075 } \\ & 8 \end{aligned}$
Clouding Corp.	5164~ CLOD448EP	EP	ORD	ARCHIVE STREAM BASED INSTALL	$\begin{aligned} & \text { EP09155802. } \\ & 3 \end{aligned}$	20-Mar-09			Publishe d	EP2104039
Clouding Corp.	5164 . CLOD448 CN	CN	ORD	ARCHIVE STREAM BASED INSTALL	$\begin{aligned} & 20091012932 \\ & 7.8 \end{aligned}$	20-Mar-09			Abandon ed	101576827
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-448 } \end{aligned}$	US	ORD	ARCHIVE STREAM BASED INSTALL	12/053,448	21-Mar-08	7,917,902	29-Mar-11	Issued	20090240745

4764179121

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	Applicathom Status	Publication Nwmber
Clouding Corp.	$\begin{aligned} & 5164- \\ & \mathrm{CLOD}-437 \end{aligned}$	US	ORD	TECHNIQUE FOR ENABLING REMOTE DATA ACCESS AND MANIPULATION FROM A PERVASIVE DEVICE	11/075,437	7-Mar-05	7,254,621	7-Aug-07	Issued	20050216492
Clouding Corp.	$\begin{aligned} & 5164- \\ & \mathrm{CLOD}- \\ & 435 \mathrm{CON} \end{aligned}$	US	ORD	METHOD, SYSTEM AND APPARATUS FOR PROVIDINGPAY-PERUSE DISTRIBUTED COMPUTING RESOURCES	13/959,807	6-Aug-13			Publishe d	20130317981
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-435 } \end{aligned}$	US	ORD	METHOD, SYSTEM AND APPARATUS FOR PROVIDING PAY-PERUSE DISTRIBUTED COMPUTING RESOURCES	12/415,435	31-Mar-09	8,533,674	10-Sep-13	Issued	20090210356
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-419 } \end{aligned}$	US	ORD	SYSTEM AND METHOD FOR BUSINESS SYSTEMS TRANSACTIONS AND INFRASTRUCTURE MANAGEMENT	09/681,419	30-Mar-01	7,065,566	20-Jun-06	Issued	20020173997
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-409 } \end{aligned}$	US	ORD	SYSTEMS AND METHODS FOR MIGRATION AND RECALL OF DATA FROM LOCAL AND REMOTE STORAGE	09/144,409	31-Aug-98	6,269,382	31-Jul-01	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-394 } \end{aligned}$	US	ORD	TECHNIQUE FOR ENABLING REMOTE DATA ACCESS AND MANIPULATION FROM A PERVASIVE DEVICE	09/848,394	3-May-01	6,925,481	2-Aug-05	Issued	20020178211
Clouding Corp.	$\begin{aligned} & 5164- \\ & \mathrm{CLOO}-384 \end{aligned}$	US	ORD	N/A	08/950,384				Pending	
Clouding Corp.	5164 -	AU	ORD	SYSTEM AND METHOD			2002254364		Granted	
A-31										

Owner	Alty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Ksue Date	Applicahion Status	Pubhication Nwmber
	$\begin{aligned} & \text { CLOD } \\ & 364-\mathrm{AU} \end{aligned}$			FOR BUSINESS SYSTEMS TRANSACTIONS AND INFRASTRUCTURE MANAGEMENT						
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-352 } \end{aligned}$	US	ORD	USER INTERFACE FOR DYNAMIC COMPUTING ENVIRONMENT USTNG ALLOCATEABLE RESOURCES	09/663.252	15-Scp-00	7,082,521	25-Jul-06	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-344 } \end{aligned}$	US	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS USING TRANSFERRABLE PLACEHOLDERS	08/920,344	27-Aug-97	5,873,103	16-Feb-99	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 340-\mathrm{PCT} \end{aligned}$	WO	ORD	METHODS AND APPARATUSES FOR FILE SYNCHRONZZATION AND UPDATING USING A SIGNATURE LIST	$\begin{aligned} & \text { PCT/US00/12 } \\ & 048 \end{aligned}$	2-May-00			Publishe d	2000/67119
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 332 \end{aligned}$	US	ORD	USER INTERFACE FOR DYNAMIC COMPUTING ENVIRONMENT USING ALLOCATEABLE RESOURCES	11/492,332	25-Jul-06	7,457,944	25-Nov-08	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-324 } \end{aligned}$	US	ORD	SYSTEM TOPROVIDE COMPUTINGAS A PRODUCT USING DYNAMIC COMPUTING ENVIRONMENTS	10/066,324	30-7an-76	7,036,006	25-Apr-06	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-295 } \end{aligned}$	US	ORD	METHODS AND APPARATUSES FOR SINGLE-CONNECTION FILE	09/304,295	3-May-99	6,654,746	25-Nov-03	Issued	
A.32										

4764179121

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number'	Filing Date	Patent Number	Yssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
				A SIGNATURE LIST						
Clourding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-135 } \end{aligned}$	US	ORD	METHODS FOR AUTOMATICALLY LOCATING URLCONTAINING OR OTHER DATA-CONTAINING WINDOWS IN FROZEN BROWSER OR OTHER APPLICATION PROGRAM, SAVING CONTENTS, AND RELAUNCHING APPLICATION PROGRAM WITH LINK TO SAVED DATA	09/438,135	10-Nov-99	6,662,310	9.-Dec-03	Issued	20020152228
Clourding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-134 } \end{aligned}$	US	PRO	Method and system for monitoring the performance of a distributed application	60/249,134	16-Nov-00			Expired	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-129 } \end{aligned}$	US	ORD	SYSTEM TO PROVIDE COMPUTING AS A PRODUCT USING DYNAMIC COMPUTING ENVIRONMENTS	11/243,129	4-Oct-05	7,702,892	20-Apr-10	Issued	
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-127 } \end{aligned}$	US	ORD	METHOD AND SYSTEM FOR MONITORING THE PERFORMANCE OF A DISTRIBUTED APPLICATION	09/991,127	14-Nov-01	7,600,014	6-Oct-09	Issued	20020099818
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 114 \mathrm{IT} \end{aligned}$	IT	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	95911653.4	10-Fcb-95	746819	15-Dec-99	Issucd	746819
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 114 \mathrm{~GB} \end{aligned}$	GB	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED	95911653.4	10-Fcb-95	746819	15-Dec-99	Issued	746819

4764179123

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number'	Filing Date	Patent Number	Mssue Date	Applicathon Status	Publication Number
				PROCESSORS						
Clousding Corp.	5164 . CLOD114 FR	FR	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	95911653.4	10-Feb-95	746819	15-Dec-99	Expired	746819
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 114 \mathrm{EP} \end{aligned}$	EP	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	95911653.4	10-Feb-95	746819	15-Dec-99	Issued	746819
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD- } \\ & \text { 114DE } \end{aligned}$	DE	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	69513956.8	10-Feb-95	69513956	15-Dec-99	Expired	
Clouding Corp.	$\begin{aligned} & \text { 5164-- } \\ & \text { CLOD-114 } \end{aligned}$	US	ORD	DATA STORAGE MANAGEMENT FOR NETWORK INTERCONNECTED PROCESSORS	08/650,114	22-May-96	5,832,522	3-Nov-98	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-111 } \end{aligned}$	US	ORD	METHOD AND APPARATUS FOR SYNCHRONIZING FILES	08/856,111	14-May-97	5,978,805	2-Nov-99	Expired	
Clousding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-105 } \end{aligned}$	US	ORD	Dynamic computing environment using allocatable resources	60/228,105	24-Aug-00			Expired	
Clouding Corp.	5164 CLOD. 104-DE	DE	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	99703190000		69810910.4		Granted	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD. } \\ & 103-\mathrm{PCT} \end{aligned}$	WO	ORD	METHODS AND APPARATUSES FOR FILE SYNCHRONIZATION AND UPDATING USING A SIGNATURE LIST	$\begin{aligned} & \text { PCT/US00/12 } \\ & 048 \end{aligned}$	2-May-00			Publishe d	2000/67119
A. 35										

Owner	Atty Docket Number	Comantry	Case Type	App Title	Application Number	Filing Date	Patent Number"	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { hon } \\ \text { Status } \end{gathered}$	Publication Number
Clomding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 092-\mathrm{DE} \end{aligned}$	DE	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	19970331000		69840409.2		Abandon ed	
Chouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-091 } \end{aligned}$	US	CIP	NETWORK ACCESS WITH DELAYED DELIVERY	09/840,091	24-Apr-01	7,231,023	12-Jun-07	Issued	
Clousing Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-078 } \end{aligned}$	US	ORD	SYSTEM FOR CONFIGURATION OF DYNAMIC COMPUTING ENVIRONMENTS USING A VISUAL INTERFACE	11/857,078	18-Sep-07	7,836,292	16-Nov-10	Issued	
Cloading Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-076 } \end{aligned}$	US	ORD	METHODS FOR AUTOMATICALLY LOCATINGDATA. CONTAINING WINDOWS IN FROZEN APPLYCATION PROGRAM AND SAVING CONTENTS	09/438,076	10-Nov-99	6630946	7-Oct-03	Issued	20020169795
Clouding Corp.	$\begin{aligned} & 5164 . \\ & \text { CLOD } \\ & 069-6 B \end{aligned}$	GB	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	$\begin{aligned} & 19970331000 \\ & 0 \end{aligned}$		1004069		Abandon ed	
Cloudling Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD } \\ & 069-\mathrm{FR} \end{aligned}$	FR	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBJECTS IN CLIENT MACHINES	19970331000		1004069		Abandon ed	
Clourding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-063 } \end{aligned}$	US	ORD	$\begin{aligned} & \text { SYSTEM FOR } \\ & \text { CONFIGURATION OF } \\ & \text { DYNAMIC COMPUTING } \end{aligned}$	11/471,063	20-7un-06	7,272,708	18-Sep-07	Issued	

4764179123

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Filing Date	Patent Number	Vssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
				ENVIRONMENTS USING A VISUAL INTERFACE						
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } \\ & 061-\mathrm{PCT} \end{aligned}$	WO	ORD	SYSTEM AND METHOD FOR AUTOMATICALLY MAINTAINING A COMPUTER SYSTEM	$\begin{aligned} & \text { PCT/US98/02 } \\ & 061 \end{aligned}$	4-Feb-98			Pending	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD- } 038 \end{aligned}$	US	ORD	N/A	12/277,038				Pending	
Clouding Corp.	5164 CLOD. 031-CA	CA	ORD	NETWORK DISTRIBUTED SYSTEM FOR UPDATING LOCALLY SECURED OBIECTS IN CLIENT MACHINES	$\begin{aligned} & 19970331000 \\ & 0 \end{aligned}$		2285031		Abandon ed	
Clouding Corp.	$\begin{aligned} & \text { 5164- } \\ & \text { CLOD-027 } \end{aligned}$	US	ORD	METHOD AND SYSTEM FOR MONITORING THE PERFORMANCE OF A DISTRIBUTED APPLICATION	11/863,027	27-Sep-07	8,032,626	4-Oct-11	Issued	
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-019 } \end{aligned}$	US	ORD	EVENT MANAGEMENT SYSTEM FOR DISTRIBUTED COMPUTING ENVIRONMENT	08/732,019	16-Oct-96	5,944,782	31-Aug-99	Issued	
Clourding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-015 } \end{aligned}$	US	ORD	REPLICA SYNCHRONIZATION USING COPY-ON-READ TECHNIQUE	11/406,015	18-Apr-06	7,571,290	4.Aug-09	Issued	
Clouding Corp.	5164 CLOD. 012-IP	JP	ORD	Archive stream based install	S07-5012 JP				Pending	
Clouding Corp.	5164 -CLOD-012-EP	EP	ORD	Archive stream based install	S07-5012 EP				Pending	
Clouding Corp.	5164 . CLOD- $012-\mathrm{CN}$	CN	ORD	Archive stream based install	S07.5012 CN				Pending	
A-37										

Owner	Atty Docket Number	Country	Case Type	Apy Title	Application Number	Filing Date	Patent Number	Issue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
Clouding Corp.	$\begin{aligned} & 5164- \\ & \text { CLOD-011 } \end{aligned}$	US	ORD	SERVER BASED EXTRACTION, TRANSFER, STORAGE AND PROCESSING OF REMOTE SETTINGS, FILES AND DATA	09/852,011	10-May-01	7,032,011	18-Apr-06	Issued	20020104080
Bismark										
, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-797- } \\ & \text { DE } \end{aligned}$	DE	ORD	METHOD FOR EVALUATING PERFORMANCE-FEATURE-RELATED MESSAGES IN A PROGRAMCONTROLLED COMMUNICATION EQUIPMENT	$\begin{aligned} & \text { DE19951237 } \\ & 97 \end{aligned}$	29-Jun-95	DE19523797	2-Jan-97	Issued	
Bismark MP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-691- } \\ & \text { EP } \end{aligned}$	EP	ORD	HOW TO DISPLAY ON A TERMINAL EQUPMENT THE NAMES OF THE OPTIONS OFFERED TO THE USER	$\begin{aligned} & \text { EP199809078 } \\ & 53 \end{aligned}$	5-Feb-97	EP0958691	20-Aug-03	Granted	
Bismark IP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-494- } \\ & \text { DE } \end{aligned}$	DE	ORD	METHOD FOR THE INTERPRETATION OF FEATURE PERFORMANCE RELATED MESSAGES IN A PROGRAM CONTROLLED COMMUNICATION SYSTEM	$\frac{\mathrm{EP} 199601141}{72}$		DE59610494	10-Jul-03	Granted	
Bismark IP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-472- } \\ & \text { CN } \end{aligned}$	CN	ORD	METHOD FOR EVALUATNG PERFORMANCE-FEATURE-RELATED MESSAGES IN A PROGRAMCONTROLLED COMMUNICATION	$\begin{aligned} & \text { DE19951237 } \\ & 97 \end{aligned}$	29-Jun-95	CN1085472	22-May-02	Granted	
A-38										

Owner	Alty Docket Numbiner	Country	Case Type	App Title	Application Number	Filing Date	Patent Namber*	Kswe Date	$\begin{gathered} \text { Applica- } \\ \text { horn } \\ \text { Status } \end{gathered}$	Publication Nwmber
				EQUIPMENT						
Bismark MP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-398- } \\ & \text { CN } \end{aligned}$	CN	ORD	HOW TO DISPLAY ON A TERMINAL EQUIPMENT THE NAMES OF THE OPTIONS OFFERED TO THE USER	$\begin{aligned} & \text { EP199809078 } \\ & 53 \end{aligned}$	5-Feb-97	CN1132398	24 -Dec-03	Granted	
	$\begin{aligned} & 5164- \\ & \text { BISM-355 } \end{aligned}$	US	ORD	METHOD FOR EVALUATING PERFORMANCE-FEATURE-RELATED MESSAGES IN A PROGRAMCONTROLLED COMMUNICATION EQUIPMENT	08/713.355	13-5ep-96	5,734,832	31-Mar-98	Issued	
Bismark EP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-340- } \\ & \text { DE } \end{aligned}$	DE	ORD	HOW TO DISPLAY ON A TERMINAL EQUIPMENT THE NAMES OF THE OPTIONS OFFERED TO THE USER	$\begin{aligned} & \text { EP199809078 } \\ & 53 \end{aligned}$		DE59809340	25-Sep-03	Granted	
Bismark MP, Inc.	$\begin{aligned} & \text { 5164- } \\ & \text { BISM-233- } \\ & \text { FR } \end{aligned}$	FR	ORD	METHOD FOR EVALUATING PERFORMANCE- FEATURE-RELATED MESSAGES IN A PROGRAM- CONTROLLED COMMUNICATION EQUIPMENT	$\begin{aligned} & \text { DE19951237 } \\ & 97 \end{aligned}$	29-Jun-95	FR2736233	3-Jun-98	Granted	
Bismark Me, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-225 } \end{aligned}$	US	ORD	ARRANGEMENT FOR COUPLING OPTIONAL AUXILIARY DEVICES TO TERMINAL EQUIPMENT OF PRIVATE BRANCH EXCHANGES	08/670,225	21-7un-96	5,883,896	16-Mar-99	Issued	
Bismark \], Inc.	5164	US	ORD	METHOD FOR	09/341211	7-Jul-99	6,674,848	6-Jan-04	Issued	

4764179121

Owner	Atty Docket Number	Country	Case Type	App Title	Application Number	Filing Date	Patent Number	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
	BISM-211			DISPLAYING PERFORMANCE FEATURE NAMES AT A COMMUNICATION TERMINAL EOUIPMENT						
Bismark IP, Inc.	$5164-$ BISM-210- IT	IT	ORD	METHOD FOR EVALUATING PERFORMANCE-FEATURE-RELATED MESSAGES IN A PROGRAMCONTROLLED COMMUNICATION EQUIPMENT	$\begin{aligned} & \text { IT1996MI012 } \\ & 92 \end{aligned}$	29-Jun-95	IT1285210	3-Jun-98	Granted	
Bismark MP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-196- } \\ & \text { PCT } \end{aligned}$	WO	ORD	METHOD FOR DISPLAYING PERFORMANCE FEATURE NAMES AT A COMMUNICATION TERMINAL EQUIPMENT	$\begin{aligned} & \text { EP199809078 } \\ & 53 \end{aligned}$	5-Feb-97	$\begin{aligned} & \mathrm{PCT/DE} 98 / 00 \\ & 196 \end{aligned}$		Granted	
Bismark IP, Inc.	$\begin{aligned} & 5164- \\ & \text { BISM-172- } \\ & \text { EP } \end{aligned}$	EP	ORD	METHOD FOR THE INTERPRETATION OF FEATURE PERFORMANCE RELATED MESSAGES IN A PROGRAM CONTROLLED COMMUNICATION SYSTEM	$\begin{aligned} & \mathrm{EP} 199601141 \\ & \hline 72 \end{aligned}$	15-Sep-95	EP0763954	4-Jun-03	Granted	
Bismark IP, Inc.	$\begin{aligned} & \text { 5164- } \\ & \text { BISM-021- } \\ & \text { GB } \end{aligned}$	GB	ORD	METHOD FOR EVALUATING PERFORMANCE-FEATURE-RELATED MESSAGES IN A PROGRAMCONTROLLED COMMUNICATION	$\begin{aligned} & \text { DE19951237 } \\ & 97 \end{aligned}$	29-Jun-95	GB2303021	3-Jun-98	Granted	
A. 40										

Owner	Atty Docket Number	Country	Case Type	Apy Tidle	Application Number	Filing Date	Patent Number	Kswue Date	$\begin{gathered} \text { Applica- } \\ \text { honn } \\ \text { Status } \\ \hline \end{gathered}$	Pubhication Nwmber
				EQUIPMENT						
IP Liquidity Ventures	$\begin{aligned} & 5164-\mathrm{IPL}- \\ & 858 \end{aligned}$	US	ORD	ELECTRONIC TIRE MANAGEMENT SYSTEM	09/915,858	26-Jul-01	6,630,885	7 -Oct-03	Issued	$\begin{aligned} & 2002 . \\ & 0126005 \end{aligned}$
IP Liquidity Ventares	$\begin{aligned} & 5164-\mathrm{IPL}- \\ & 476 \end{aligned}$	US	DIV	METHOD OF MONITORING CONDITIONS OF VEHICLE TIRES	08/454,476	30-May-95	5,562,787	8-Oct-96	Issued	
IP Liquuidity Ventores	$\begin{aligned} & 5164 \text {-IPL- } \\ & 346 \end{aligned}$	US	ORD	TREATMENT OF CANCER WITH THALIDOMIDE ALONE OR IN COMBINATION WITH OTHER ANTICANCER AGENTS	09/071,813	4-May-98	6,140,346	31-Oct-00	Issued	
IP Liquidity Ventures	$\begin{aligned} & 5164-\mathrm{IPL}- \\ & 325 \end{aligned}$	US	ORD	TREATMENT OF MELANOMAS WITH THALIDOMIDE ALONE OR IN COMBINATION WITH OTHER ANTI. MEL ANOMA AGENTS	08/471,353	6-Jun-95	5,731,325	24-Mar-98	Issued	
EP Liquididy Ventures	$\begin{aligned} & 5164-\mathrm{IPL}- \\ & 155 \end{aligned}$	US	ORD	METHOD FOR TREATING NEUROCOGNITIVE DISORDERS	08/172,155	23-Dec-93	5,434,170	18-7ul-95	Issued	
IP Liquidity Vestures	$\begin{aligned} & 5164-\mathrm{IPL}- \\ & 028 \end{aligned}$	US	CIP	ELECTRONIC TIRE MANAGEMENT SYSTEM	09/916,028	26-Jul-01	7,161,476	9-Jan-07	Issued	20020075145
Loopback Technologies, Inc.	5164- LPBCK- 848	US	ORD	DYNAMIC OCCUPANT POSITION DETECTION SYSTEM AND METHOD FOR A MOTOR VEHICLE	09/309.848	11-May-99	$6,151,540$	21-Nov-00	Issued	
Loophack Technologies, Inc.	$\begin{aligned} & 5164- \\ & \text { LPBCK- } \\ & 832 \end{aligned}$	US	ORD	EXECUTABLE FILE SYSTEM FOR AN EMBEDDED COMPUTER	10/229,832	27-Aug-02	7,178,139	13-Feb-07	Issued	20040044708
Loophack Technologies, Inc.	$\begin{aligned} & 5164- \\ & \text { LPBCK- } \\ & 814 \\ & \hline \end{aligned}$	US	ORD	$\begin{aligned} & \text { CONTROL METHOD FOR } \\ & \text { VARIABLE LEVEL } \\ & \text { AIRBAG INFLATION } \end{aligned}$	08/695,814	5-Aug-96	5,999,871	7-Dec-99	Issued	
Loopback Technologies,	$\begin{aligned} & 5164- \\ & \text { LPBCK- } \end{aligned}$	DE	ORD	CONTROL METHOD FOR VARIABLE LEVEL			DE69707601	29-Nov-01	Granted	
A-41										

4764179121

Owner		Country	Case Type	App Title	Application Number	Filing Date	Patent Number	Mssue Date	$\begin{gathered} \text { Applica- } \\ \text { tion } \\ \text { Status } \end{gathered}$	Publication Number
Inc.	601-DE			AIRBAG INFLATION						
Loopback Technologies, Inc.	5164. LPBCK356 -EP	EP	ORD	CONTROL METHOD FOR VARIABLE LEVEL AIRBAGINFLATION			EP0823356	24-Oct-01	Granted	
Loopback Technologies, Inc.	5164- LPBCK588	US	CIP	ANALOG SIGNAL PROCESSING SYSTEM AND DECISION LOGIC FOR CONTROLLING AIRBAG DEPLOYMENT	08/927,588	11-Sep-97	5,801,619	1-Sep-98	Issued	
Loopback Technologies, Inc.	5164- LPBCK523	US	ORD	RESTRAINT DEPLOYMENT CONTROL METHOD HAVING A DELAYED ADAPTABLE DEPLOYMENT THRESHOLD	09/192,523	16-Nov-98	6,219,606	17-Apr-01	Issued	
Loophack Technologies, Inc.	$\begin{aligned} & \text { 5164-- } \\ & \text { LPBCK- } \\ & 464 \end{aligned}$	US	ORD	SIR DEPLOMMENT METHOD WITH ROUGH ROAD IMMUNITY	08/205,464	4-Mar-94	5,418,722	23-May-95	Issued	
Coopback Technologies, Inc.	5164 -LPBCK302	US	ORD	Tire pressure monitor and location identification sy stem	09/607,302	30-Jun-00	6,369,703	9-Apr-02	Issued	
Loopback Technologies, Inc.	$5164-$ LPBCK021	US	ORD	ANALOG SIGNAL PROCESSING SYSTEM FOR DETERMINING AIRBAG DEPLOYMENT	08/610,021	4-Mar-96	6,175,299	16-Jan-01	Issued	
Vantage Point Technology, Inc.		US		VISIBLE LINE PROCESSOR	08/438,048	8-May -95	5835095	10-Nov-98	Issued	
Clouding Corp.		US		Dynamic computing enviroment using remotely allocable resources	11/767,666	$25-$ June-07	7496920	24-Feb-09	Issued	
		US		DATA N/A	11/849,957					

A. 42

Case 2:14-cv-03105-JAK-JEM Document 54 Filed 10/06/14 Page 1 of 1 Page ID \#:672 AO 120 (Rev. $08 / 10$)

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK
1		\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
2		
3		
4		
5		

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 2:14-cv-03105-JAK-JEM Document 54 Filed 10/06/14 Page 1 of 1 Page ID \#:672 AO 120 (Rev. $08 / 10$)

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK
1		\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
2		
3		
4		
5		

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Paper No. \qquad

NOTICE OF EX PARTE REEXAMINATION

Notice is hereby given that a request for ex parte reexamination of U.S. Patent No.

5732375 was filed on $10-27-14$ under 35 U.S.C. 302 and

37 CFR 1.510(a).
The reexamination proceeding has been assigned Control No. $90 / 013386$.

This Notice incorporates by reference into the patent file, all papers entered into the reexamination file.

Note: This Notice should be entered into the patent file and given a paper number.

Case 2:14-cv-02454-JAK-JEM Document 6 Filed 04/01/14 Page 1 of 1 Page ID \#:68

AO $120($ Rev. $08 / 10)$	RAil Stop 8	REPORT ON THE
TO:	Director of the U.S. Patent and Trademark Office	
P.O. Box 1450	FILING OR DETERMINATION OF AN	
	Alexandria, VA 22313-1450	ACTION REGARDING A PATENT OR
		TRADEMARK

In Compliance with 35 U.S.C. $\$ 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Central District of California on the following\qquad 292.):		
DOCKET NO. 2:14-cv-2454	DATE FILED	U.S. DISTRICT COURT Central District of California
$\begin{aligned} & \text { PLAINTIFF } \\ & \text { SIGNAL IP, INC. } \end{aligned}$		DEFENDANT AMERICAN HONDA MOTOR CO., INC. and HONDA OF AMERICA MFG., INC.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 5,714,927	2/3/1998	Signal IP, Inc.
2 6,012,007	1/4/2000	Signal IP, Inc.
3 5,732,375	3/24/1998	Signal IP, Inc.
4 6,434,486	8/13/2002	Signal IP, Inc.
5 6,775,601	8/10/2004	Signal IP, Inc.

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
1		HOLDER OF PATENT OR TRADEMARK
2		
3		
4		
5		

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT

CLERK	(BY) DEPUTY CLERK	DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Director
U.S. Patent and Trademark Office

Mail Stop 8
P.O. Box 1450

Alexandria, VA 22313-1450
Re: \quad Signal IP, Inc. v. American Honda Motor Co., Inc., et al.; U.S. District Court Case No. 2:14-cv-2454-JAK (JEMx)

Dear Director:
Enclosed please find a copy of the Report on the Filing of an Action Regarding a Patent in the above referenced matter related to Signal IP, Inc. Patent Nos. 5,714,927 dated $2 / 3 / 1998,6,012,007$ dated $1 / 4 / 2000,5,732,375$ dated $3 / 24 / 1998,6,434,486$ dated $8 / 13 / 2002$ and $6,775,601$ dated 8/10/2004.

Very truly yours,

Xvonne Fide
Assistant to Ryan E. Hatch

YF
Enclosure

Case 2:14-cv-02462 Document 6 Filed 04/01/14 Page 1 of 1 Page ID \#:59
AO 120(Rev. 08/10)

Mail Stop 8
TO: \quad Director of the U.S. Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

REPORT ON THE
 FILING OR DETERMINATION OF AN ACTION REGARUING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\$ 290$ and/or 15 U.S.C. $\$ 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Central District of California on the following
\square Trademarks or \square Patents. ($\sqrt[\square]{ }$ the patent action involves 35 U.S.C. $\$ 292$.):

$\begin{aligned} & \text { DOCKET NO. } \\ & \text { 2:14-cv-02462 } \end{aligned}$	DATE FILED $4 / 1 / 2014$	U.S. DISTRICT COURT Central District of California
$\begin{aligned} & \text { PLAINTIFF } \\ & \text { SIGNAL IP, INC. } \end{aligned}$		DEFENDANT MITSUBISHI MOTORS NORTH AMERICA, INC.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,463,374$	10/31/1995	Signal IP, Inc.
2 6,012,007	1/4/2000	Signal IP, Inc.
3 5,732,375	3/24/1998	Signal IP, Inc.
$46,434,486$	8/13/2002	Signal IP, Inc.
5		

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Amendment $\quad \square$ Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading	
1			
2			
3			
4			
5			

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

SIGNAL IP, INC.

MITSUBISHI MOTORS NORTH AMERICA, INC.

DEFENDANT(S).

To: All Counsel Appearing of Record

\square Due to clerical error, this case was improperly assigned to theWesternSouthernEastern Division of this District. Pursuant to General Order98-3$02-06$, this case is hereby transferred to theWesternSouthern \qquad Eastern Division for all further proceedings.
\triangle Case was opened in the CM/ECF System by counsel, and provisionally assigned to a division of this Court. After review of the pleadings, pursuant to the General Orders of the Court, this case is hereby transferred to theWestern x SouthernEastern Division.

This case has been reassigned to case number \qquad and has been x assignedreassigned to Judge \qquad for all further proceedings.

Any matters that are or may be referred to a Magistrate Judge are hereby $\quad X$ assigned $\quad \square$ reassigned to Magistrate Judge __ Douglas F. McCormick for:
X any discovery and/or post-judgment matters that may be referred.for all proceedings in accordance with General Order 05-07.

All documents filed in this case must reflect the new case number and newly assigned Judge/Magistrate Judge initials so that the new case number will read: 8:14-cv-497-DOC (DFMx) This is very important because any documents presented to the Clerk for filing in paper format are routed by the initials.

Documents exempted from electronic filing that are presented to the Clerk for filing in paper format must be filed at the following location:
\square Western Division312 N. Spring St., Rm. G-8255 E. Temple St., Rm 178
Los Angeles, CA 90012
Failure to file at the proper location will result in your documents being returned to you.
Clerk, U.S. District Court
By: MDAVIS
cc: Previously assigned Judge/Magistrate Judge; Deputy-In-Charge; Intake Coordinator; Statistics Clerk
$\overline{\mathrm{G}-73(10 / 13)}$
NOTICE OF INTRA-DISTRICT TRANSFER BY CLERK OF COURT

April 3, 2014

Director
U.S. Patent and Trademark Office

Mail Stop 8
P.O. Box 1450

Alexandria, VA 22313-1450
Re: \quad Signal IP, Inc. v. Mitsubishi Motors North America, Inc.; U.S. District Court Case No. 8:14-cv-497-DOC (DFMx)

Dear Director:
Enclosed please find a copy of the Report on the Filing of an Action Regarding a Patent in the above referenced matter related to Signal IP, Inc. Patent Nos. 5,463,374 dated 10/31/1995, 6,012,007 dated $1 / 4 / 2000,5,732,375$ dated $3 / 24 / 1998$ and $6,434,486$ dated $8 / 13 / 2002$. Also enclosed is a copy of the Notice of Intra-District Transfer which indicates the new case number referenced above.

Very truly yours,

YF
Enclosures

DATE INCLUDED	INCLUDED BY			
	\square Amendment		\square Cross Bill	\square Other Pleading
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK	
1				
2				
3				
4				
5				

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1—Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

UNITED STATES DISTRICT COURT CENTRAL DISTRICT OF CALIFORNIA

Signal IP, Inc. a California corporation
PLAINTIFF(S)

Mazda Motor of America, Inc. a California corporation

DEFENDANT(S).

NOTICE OF INTRA-DISTRICT TRANSFER BY CLERK OF COURT

To: All Counsel Appearing of RecordDue to clerical error, this case was improperly assigned to the \square WesternSouthernEastern Division of this District. Pursuant to General Order98-3$02-06$, this case is hereby transferred to theWesternSouthernEastern Division for all further proceedings.
\triangle Case was opened in the CM/ECF System by counsel, and provisionally assigned to a division of this Court. After review of the pleadings, pursuant to the General Orders of the Court, this case is hereby transferred to theWestern X Southern \square Eastern Division.

This case has been reassigned to case number \qquad and has been X assignedreassigned to Judge \qquad for all further proceedings.

Any matters that are or may be referred to a Magistrate Judge are hereby $\quad X$ assigned $\quad \square$ reassigned to Magistrate Judge Douglas F. McCormick for:
X any discovery and/or post-judgment matters that may be referred.for all proceedings in accordance with General Order 05-07.
All documents filed in this case must reflect the new case number and newly assigned Judge/Magistrate Judge initials so that the new case number will read: 8:14-cv-00491 JVS (DFMx) . This is very important because any documents presented to the Clerk for filing in paper format are routed by the initials.

Documents exempted from electronic filing that are presented to the Clerk for filing in paper format must be filed at the following location:
\square Western Division312 N. Spring St., Rm. G-8255 E. Temple St., Rm 178
Los Angeles, CA 90012
Failure to file at the proper location will result in your documents being returned to you.
Clerk, U.S. District Court
By: E. TAMAYO
c:: Previously assigned Judge/Magistrate Judge; Deputy-In-Charge;
Intake Coordinator; Statistics Clerk
$\overline{\mathrm{G} .73(10 / 13)}$
NOTICE OF INTRA-DISTRICT TRANSFER BY CLERK OF COURT

1100 Glendon Avenile, 14th Floor
Los Angeles, CA 90024-3505
t. 310.500 .3500 \&. 310.500 .3501

Yvonne Fide
yfide@linerlaw.com Direct Dial: (310) 500-3518

April 3, 2014

Director
U.S. Patent and Trademark Office

Mail Stop 8
P.O. Box 1450

Alexandria, VA 22313-1450
Re: \quad Signal IP, Inc. v. Mazda Motor of America, Inc.; U.S. District Court Case No. 8:14-cv-00491 JVS (DFMx)

Dear Director:

Enclosed please find a copy of the Report on the Filing of an Action Regarding a Patent in the above referenced matter related to Signal IP, Inc. Patent Nos. 5,463,374 dated 10/31/1995, 5,714,927 dated $2 / 3 / 1998,6,012,007$ dated $1 / 4 / 2000,5,732,375$ dated $3 / 24 / 1998$ and $6,434,486$ dated 8/13/2002. Also enclosed is a copy of the Notice of Intra-District Transfer which indicates the new case number referenced above.

Very truly yours,
LINER LLP

yonne Fide
Assistant to Ryan E. Hatch

YF
Enclosures

Case 2:14-cv-02457-DMG-VBK Document 6 Filed 04/01/14 Page 1 of 1 Page ID \#:67

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	\square AmCLUDED BY		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading	
1			
2			
3			
4			
5			

In the above-entitled case, the following decision has been rendered or judgement issued:
DECISION/JUDGEMENT

CLERK	(BY) DEPUTY CLERK	DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

LINER

1100 Giendon Avenue, 14th Floor
Los Angeles, CA 90024-3505
t. 310.500 .3500 f. 310.500 .3501

Yvonne Fide yfide@linerlaw.com Direct Dial: (310) 500-3518

April 3, 2014

Director
U.S. Patent and Trademark Office

Mail Stop 8
P.O. Box 1450

Alexandria, VA 22313-1450
Re: \quad Signal IP, Inc. v. Kia Motors America, Inc.; U.S. District Court Case No. 2:14-cv-02457DMG (VBKX)

Dear Director:
Enclosed please find a copy of the Report on the Filing of an Action Regarding a Patent in the above referenced matter related to Signal IP, Inc. Patent Nos. 5,714,927 dated 2/3/1998, 6,012,007 dated 1/4/2000, 5,732,375 dated 3/24/1998, 6,434,486 dated 8/13/2002 and 6,775,601 dated 8/10/2004.

Very truly yours,

vonne Fide
Assistant to Ryan E. Hatch

YF
Enclosure

Case 2:14-cV-02962-CAS-FFM Document 7 Filed 04/17/14 Page 1 of 1 Page ID \#:83 AO 120 (Rev. 08/10)

In the above-entitled case, the following patent(s)/trademark(s) have been included:

In the above-entitled case, the following decision has been rendered or judgement issued: DECISION/JUDGEMENT

[^1]Case 2:14-cv-03113-SJO-RZ Document 5 Filed 04/23/14 Page 1 of 1 Page ID \#:74

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

| DATE INCLUDED | INCLUDED BY | | |
| :--- | :--- | :--- | :--- | :--- |
| PATENT OR
 TRADEMARK NO. | DATE OF PATENT
 OR TRADEMARK | \square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading | |
| 1 | | | |
| 2 | | | |
| 3 | | | |
| 4 | | | |
| 5 | | | |

In the above-entitled case, the following decision has been rendered or judgement issued:

Case 2:14-cv-03105-RSWL-JCG Document 10 Filed 04/23/14 Page 1 of 1 Page ID \#:85

AO $120($ Rev. $08 / 10)$	
TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
P.O. Box 1450	
	Alexandria, VA 22313-1450

REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been $\begin{array}{ccc}\text { filed in the U.S. District Court } & \text { Central District of California } & \text { on the following } \\ \square \text { Trademarks or } \square \text { Patents. (} \square \text { the patent action involves 35 U.S.C. § 292.): }\end{array}$

DOCKET NO. 14-cv-03105	DATE FILED $4 / 23 / 2014$	U.S. DISTRICT COURT Central District of California
PLAINTIFF SIGNAL IP, INC.		DEFENDANT FIAT U.S.A., INC., FIAT NORTH AMERICA LLC and CHRYSLER GROUP LLC
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,463,374$	10/31/1995	Signal IP, Inc.
$25,714,927$	2/3/1995	Signal IP, Inc.
3 5,732,375	3/24/1998	Signal IP, Inc.
4 6,012,007	1/4/2000	Signal IP, Inc.
5 6,434,486	8/13/2002	Signal IP, Inc.

In the above-entitled case, the following patent(s)/trademark(s) have been included:

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT	DATE	
CLERK	BY) DEPUTY CLERK	

Copy 1—Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 2:14-cv-03106-ODW-PJW Document 5 Filed 04/23/14 Page 1 of 1 Page ID \#:78 AO 120 (Rev. 08/10)

TO:	Mail Stop 8 Director of the U.S. Patent and Trademark Office $\text { P.O. Box } 1450$ Alexandria, VA 22313-1450	REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Central District of California on the following \square Trademarks or \square Patents. (\square the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|l\|} \hline \text { DOCKET NO. } \\ 14-\mathrm{cv}-03106 \\ \hline \end{array}$	DATE FILED $4 / 23 / 2014$	U.S. DISTRICT COURT Central District of California
PLAINTIFF SIGNAL IP, INC		$\begin{aligned} & \text { DEFENDANT } \\ & \text { FORD MOTOR COMPANY } \end{aligned}$
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,463,374$	10/31/1995	Signal IP, Inc.
2 5,714,927	2/3/1995	Signal IP, Inc.
3 5,732,375	3/24/1998	Signal IP, Inc.
4 6,012,007	1/4/2000	Signal IP, Inc.
$56,434,486$	8/13/2002	Signal IP, Inc.

In the above--entitled case, the following patent(s)/trademark(s) have been included:

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 2:14-cv-03111 Document 5 Filed 04/23/14 Page 1 of 1 Page ID \#:73

AO $120($ Rev. 08/10 $)$	
TO: \quad Mail Stop 8	
	Director of the U.S. Patent and Trademark Office
	P.O. Box 1450
	Alexandria, VA 22313-1450

REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Central District of California on the following \square Trademarks or $\quad \square$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

$\begin{aligned} & \hline \text { DOCKET NO. } \\ & 2: 14-\mathrm{cv}-03111 \\ & \hline \end{aligned}$	DATE FILED $4 / 23 / 2014$	U.S. DISTRICT COURT Central District of California
$\begin{aligned} & \text { PLAINTIFF } \\ & \text { SIGNAL IP, INC. } \end{aligned}$		DEFENDANT BMW OF NORTH AMERICA, LLC, a Delaware limited liability company; BMW (US) HOLDING CORP., a Delaware corporation
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,714,927$	2/3/1995	Signal IP, Inc.
$25,732,375$	3/24/1998	Signal IP, Inc.
3 5,954,775	9/21/1999	Signal IP, Inc.
4 6,012,007	1/4/2000	Signal IP, Inc.
$56,434,486$	8/13/2002	Signal IP, Inc.

In the above--entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Amendment	\square Answer
1		\square Cross Bill $\quad \square$ Other Pleading	
2			
3			
4			
5			

In the above-entitled case, the following decision has been rendered or judgement issued:
DECISION/JUDGEMENT

CLERK

(BY) DEPUTY CLERK
DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

AO $120($ Rev. $08 / 10)$	
TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
P.O. Box 1450	
	Alexandria, VA 22313-1450

REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Central District of California on the following
\square Trademarks or $\quad \square$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|l\|} \hline \text { DOCKET NO. } \\ 2: 14-\mathrm{cv}-03113 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DATE FILED } \\ 4 / 23 / 2014 \\ \hline \end{array}$	U.S. DISTRICT COURT Central District of California
PLAINTIFF Signal IP, Inc.		DEFENDANT Volkswagen Group of America, Inc., d/b/a. Audi of America, Inc.; Audi of America, LLC; and Bentley Motors, Inc.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$15,714,927$	2/3/1995	Signal IP, Inc.
2 5,732,375	3/24/1998	Signal IP, Inc.
3 5,954,775	9/21/1999	Signal IP, Inc.
4 6,012,007	1/4/2000	Signal IP, Inc.
5 6,434,486	8/13/2002	Signal IP, Inc.

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1—Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4 - Case file copy

Case 2:14-cv-02962-CAS-FFM Document 7 Filed 04/17/14 Page 1 of 1 Page ID \#:83

Mail Stop 8 TO: Director of the U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450			REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK
\qquad			
$\begin{gathered} \text { DOCKET NO. } \\ 2: 14-\mathrm{cv}-02962 \\ \hline \end{gathered}$	$\begin{array}{\|} \hline \text { DATE FILED } \\ 4 / 17 / 2014 \\ \hline \end{array}$		
PLAINTIFF SIGNAL IP, INC.			$\begin{aligned} & \text { DEFENDANT } \\ & \text { NISSAN NORTH AMERICA, INC. } \end{aligned}$
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK	
$15,463,374$	10/31/1995	Signal IP, Inc.	
2 5,714,927	2/3/1998	Signal IP, Inc.	
3 6,012,007	1/4/2000	Signal IP, Inc.	
4 5,732,375	3/24/1998	Signal IP, Inc.	
5 6,434,486	8/13/2002	Signal IP, Inc.	

In the above-entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Best Available Copy

MAILING INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE. Blocks 2 through $\mathbf{6}$ should be completed where appropriate. All further correspondence including the Issue Fee Receipt, the Patent, advance orders and notification of maintenance fees will be mailed to addressee entered in Block 1 unless you direct otherwise, by: (a) specifying a new correspondence address in Block 3 below; or (b) providing the PTO with a separate "FEE ADDRESS" for maintenance fee notifications with the payment of Issue Fee or thereafter. See reverse for Certificate of Mailing.

	ATTY'S DOCKET NO.	CLASS-SUBCLASS	BATCH NO.	APPLN. TYPE	SMALL ENTITY	FEE DUE	DATE DUE
2							

Certificate of Mailing

1
I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to:
$\therefore \quad$ Box ISSUE FEE
Commissioner of Patents and Trademarks
Washington, D.C. 20231
on \ldots November 11,1997

Carole J. Murdock
(Name of person making deposit)

Note: If this certificate of mailing is used, it can only be used to transmit the Issue Fee. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing.

Burden Hour Statement: This form is estimated to take .2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Office of Information Systems, Patent and Trademark Office, Washington, D.C. 20231, and to the Office of Information and Regulatory Affairs, Office of Management and Budget, (Project 06510033), Washington, D.C. 20503. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner of Patents and Trademarks, Box Issue Fee, Washington, DC 20231.

UNITED STATES'DEPARTMENT OF COMMERCE Patent and Trademark Office

Address: Box ISSUE FEE
COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D.C. 20231

| | ATTY'S DOCKET NO. | CLASS-SUBCLASS | BATCH NO. | APPLN. TYPE | SMALL ENTITY | FEE DUE | DATE DUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $H-195946$ | $701-045.000$ | $R 44$ | $3 T I L T T Y$ | NO | $\$ 1290.00$ | $12.10 / 9 \%$ |

THE APPLICATION IDENTIFIES ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED.
the issue fee must be paid within three months from the mailing date of this notice or this APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED.

HOW TO RESPOND TO THIS NOTICE:

I. Review the SMALL ENTITY Status shown above. If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the patent and Trademark Office of the change in status, or
B. If the Status is the same, pay the FEE DUE shown above.

If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or
B. File verified statement of Small Entity Status before, or with, pay of $1 / 2$ the FEE DUE shown above.
II. Part B of this notice should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even if the ISSUE FEE has already been paid by charge to deposit account, Part B should be completed and returned. If you are charging the ISSUE FEE to your deposit account, Part C of this notice should also be completed and returned.
III. All communications regarding this application must give series code (or filing date), serial number and batch number. Please direct all communication prior to issuance to Box ISSUE FEE unless advised to contrary.

IMPORTANT REMINDER: Patents issuing on applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance
fees when due.

E3M1/0910
MARK A NAVAFFE
DELIA ELECTFONISE EORFORATION
ERG BUILDING MAIL STGE D 32
FO BOX GOg:
KOKOMO IN 46504

date mailed:

NOTICE OF ALLOWABILITY

PART.
this communication is responsive to the amenkmout fated ow o6/13/1997
2 All the claims being allowable. PROSECUTION ON THE MERITS IS (OA -SED in this application. If not included
2. All the claims being allowable. PROSECUTON An Issue Fee Due or other appropriate communication will be sent in due herewith
course.
3 . The allowed claims are $-\frac{1-14,16,20-21,23-210195}{12}, 2$
4. The drawings filed on
5. Acknowledgment is made of the claim for priority \qquad filed on
6. Note the attached Examiner's Amendment.
7. Note the attached Examiner Interview Summary Record. PTOL-413.
8. Note the attached Examiner's Statement of Reasons for Allowance.
9. Note the attached NOTICE OF REFERENCES CITED. PTO-892.
10. 区 Note the attached INFORMATION DISCLOSURE CITATION, PTO-1449

PART II.

A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAILED" indicated on this form. Failure to timely comply will result in the ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR $1.136(a)$.

1. Note the attached EXAMINER'S AMENDMENT Or NOTICE OF INFORMAL APPLICATION. PTO-152, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED
2. APPLICANT MUST MAKE THE ORAWING CHANGES INDICATED BELOW IN THE MANNER SET FORTH ON THE REVERSE SIDE OF THIS PAPER.Drawing in formalities are indicated on the NOTICE RE PATENT DRAWINGS, PTO-948, attached hereto or to Paper No.
CORRECTION IS REQUIRED has been approved by the examiner. CORRECTION is b. The propose
c. \square Approved drawing corrections are described by the examiner in the attached EXAMINER'S AMENDMENT. CORRECTION IS REQUIRED.
d. \square Formal drawings are now REQUIRED

Any response to this letter should include in the upper right hand corner. the following information from the NOTICE OF ALLOWANCE AND ISSUE FEE DUE: ISSUE BATCH NUMBER, DATE OF THE NOTICE OF ALLOWANCE. AND SERIAL NUMBER.

Attachments:

_ Examiner's Amendment

- Notice of Informal Application. PTO-152

Examiner Interview Summary Record. PTOL. 413

- Notice re Patent Drawings. PTO-948
\bar{Y} Reasons tor Allowance
- Listing of Bonded Draftsmen
- Notice of References Cited. PTO-892
- Other
\bar{X} Information Disclosure Citation. PTO-1449

Serial No.: 08/566,029

1. EXAMINER'S STATEMENT OF REASONS FOR ALLOWANCE

2. This communication is an Examiner's reasons for allowance in response to application filed on December 01, 1995, assigned serial 08/566,029 and titled "METHOD OF INHIBITING OR ALLOWING AIR BAG DEPLOYMENT".
3. The following is the Examiner's statement of reasons for the indication of allowable subject matter:
a. After carefully reviewing the application in light of the prior art of record, the amended claims and additional search of all the possible areas relevant to the present application, a set of related prior art references has been found, but those prior art references are not deemed strong to make the application unpatentable. Thus, it is found that the application is now in condition for allowance.
b. Although the prior art disclose several claimed limitations, none of the references teaches a method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on the sensed force and the force distribution which includes the steps of defining a plurality of seat area in which each area includes at least one sensor, determining the existence of a local pressure area when the calculated total
force of the sensor array is concentrated in one of the seat areas, calculating a local force as the sum of forces sensed by each sensor located in the seat area in which the total force is concentrated, and allowing deployment if the local force is greater than a predefined seat area threshold force (claim 1). Also, neither references teaches the steps of assigning a load rating to each sensor based on its measured force, wherein the load ratings being limited to maximum value, summing the assigned load ratings for all the sensors to derive a total load rating, and allowing deployment if the total load rating is above a predefined total load threshold, even if the calculated total force of the sensor array is less than the total threshold force (claim 11).
c. The limitations "if the total force is not above the total threshold force, determining a fuzzy total force contribution value based on the calculated total force; defining a plurality of seat areas, at least one sensor located in each seat area, calculating a local force for each seat area as the sum of forces sensed by each sensor located in that seat area, determining a fuzzy local force contribution value based on each of the calculated local forces, summing the fuzzy total force and fuzzy local force contribution values, and allowing deployment if the summed contribution values exceed a predetermined fuzzy threshold" in claim 13 render the claim nonobvious over the prior art of record.
d. In the Schousek reference $(5,474,327)$, the total weight and weight
distribution are calculated and are used to distinguish the presence of an adult, an infant seat facing forward, or an infant sear facing rearward, and the inhibition deployment of the airbag is based on the presence of an adult, presence and position of an infant seat. However, Schousek does not disclose the steps of determining the local force as the sum of forces sensed by each sensor located in the seat area, and allowing deployment if the local force is greater than a predefined seat area. Moreover, the Barrus reference $(5,570,301)$ neither teaches the use of pattern recognition to identify the presence of an infant seat, nor the comparison of the sum of the fuzzy local force and the fuzzy total force contribution values with a predefined fuzzy threshold.
e. Claims 1-14, 16, 20, 21, 23, and 24 allowable over the prior art of record (now renumbered as 1-19).
4. Any inquiry concerning this communication or earlier communications from the examiner should be directed to examiner Tan Nguyen, whose telephone number is (703) 305-9755. The examiner can normally be reached on MondayThursday from 7:30 AM-6:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kevin J. Teska, can be reached on (703) 305-9704.

Any response to this action should be mailed to:
Commissioner of Patents and Trademarks
Washington, D.C. 20231
or faxed to:
(703) 308-9051, (for formal communications intended for entry)

Or:
(703) 308-5357 (for informal or draft communications, please label "PROPOSED" or "DRAFT")

Hand-delivered responses should be brought to Crystal Park II, 2121 Crystal Drive, Arlington. VA., Sixth Floor (Receptionist).

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 305-3900.
/tqn
September 09, 1997

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231 on

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Robert L. Cashier
Method of Inhibiting or Allowing
Air Bag Deployment
U. S. Serial No. 08/566,029

Group Art Unit 2304
Examiner: Tan Nguyen

Filed: December 1, 1995

REQUEST/PETITION ACCOMPANYING

INFORMATION DISCLOSURE STATEMENT

Applicants) hereby request the Examiner to consider the record of the references) and/or information on the attached PTO 1449.

CHECK ONE: (A, B OR C)
[] A. This statement is submitted within 1) three months after the filing date (even if after the first action); or 2) to the best of my knowledge, before the mailing date of certification is required.
[X] B. This statement is submitted after the period specified in Paragraph A, but before Final Office Action or Notice of Allowance.

CHECK ONE: (1,2, OR 3)
[] 1. I certify that each item of information contained in the attached material was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this statement; or

U. S. Serial No. 08/566,029-- 2
[X] 2. I certify that no item of information contained in the attached material was cited in a communication from a foreign patent office in a communication from a foreign patent office in a counterpart foreign application, or to the knowledge of the person signing the certification after making reasonable inquiry, was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of this statement; or
[] 3. Charge a petition fee of $\$ 230$ to Delco Electronics Corporation Deposit Account No. 04-0549. Two additional copies of this letter are enclosed.
[] C. This statement is submitted after a Final Office Action or Notice of Allowance, but before payment of the issue fee. Charge a petition fee of $\$ 130$ to Delco Electronics Corporation Deposit Account No. 04-0549. Two additional copies of this letter are enclosed.

CHECK ONE (1 OR 2)

[] 1. I certify that each item of information contained in the attached material was cited in a communication from a foreign patent office in a counterpart foreign patent application not more than three months prior to the filing of this statement; or
[] 2. I certify that no item of information contained in the attached material was cited in a communication from a foreign patent office in a counterpart foreign application or, to the knowledge of the person signing the certification after making reasonable inquiry, was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of this statement.

Respectfully submitted,

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington D. C. 20231 on

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Robert L. Cashler
Method of Inhibiting or Allowing Air Bag Deployment
U. S. Serial No. 08/566,029

Commissioner of Patents and Trademarks Washington D. C. 20231

Paper No. 3
AMENDMENT

Sir:
In response to the Office Action dated April 11, 1997, please amend the above-identified patent application as follows:

IN THE CLAIMS
Cancel Claims 15, 17-19 and 22
Add new Claims 23-24, and amend Claims 1-14; 16 and 20-21
as follows:
\mathbb{N}

1. (amended) A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining [permission for] whether to allow
```
USSN 08/566,029--2
```

airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force detected by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a [first] total threshold force [and inhibiting deployment if the total force is below a second threshold];
defining a plurality of seat areas [each having a group of sensors] at least one sensor located in each seat area; determining the existence of a local pressure area when the calculated total force is concentrated in [a] one of said seat [area] areas;
[for each group] calculating [the group] a local force as the sum of [sensor] forces sensed by each sensor located in the seat area in which the total force is concentrated; and
[for a group in a local pressure area,] allowing deployment if the [group] local force is greater than a predefined seat area threshold force [for that group;]
[determining a fuzzy value for the array; and]
[allowing deployment if the fuzzy value exceeds a threshold].
2. (amended) The [invention] method of airbag control as defined in claim 1 including:
determining a pattern of sensor loading;
determining from the pattern of sensor loading whether an infant seat is [present] on the passenger seat;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward facing seat; and
inhibiting deployment for a rearward facing seat.
3. (amended) The [invention] method of airbag control as defined in claim 1 including:
determining a pattern of sensor loading;
prior to the step of allowing deployment if the total
force is above a [first] total threshold force, determining from the pattern of sensor loading whether an infant seat is [present] on the seat;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward facing seat; and inhibiting deployment for a rearward facing seat.
3 A.
(amended) The [invention] method of airbag control as defined in claim 2 wherein the step of determining a pattern of sensor loading comprises detecting which sensors are below a first load threshold and which sensors are above a second load threshold.
H as defined in claim 2 wherein the step of determining from the pattern of loaded sensors whether an infant seat is present comprises:
establishing a table of loaded and unloaded sensor patterns which result from the configuration of the bottom of an infant seat; and
deciding that an infant seat is present when the pattern of sensor loading matches one of the table patterns.

5
6. (amended) The [invention] method of airbag control as defined in claim 2 wherein the step of determining whether the infant seat is facing forward or rearward comprises: deciding that the seat is facing forward when

1) the total force is greater than a first value, or

USSN 08/566,029--4
2) sensors in the front of the seat are loaded and the total force is greater than a second value; and
deciding that the seat is facing rearward when both the conditions 1) and 2) are not true.
7. (amended) The [invention] method of airbag control as defined in claim 1 wherein the defined seat areas [are overlapping] overlap so that some sensors are included in more than one [group] seat area, the [groups] seat areas including a front area [group], a rear area [group], a right area [group] and a left area [group].
8. (amended) The [invention] method of airbag control as defined in claim 1 wherein each [area] of said seat areas includes a secondary group of sensors peculiar to that seat area and the method includes:
calculating a modified local force for each secondary group located in a seat area in which the total force is concentrated; and
allowing deployment if the modified local force for [any secondary group] exceeds a threshold for that secondary group [and the secondary group is in a local pressure area].
9. (amended) The [invention] method of airbag control as defined in claim 8 wherein each secondary group of sensors comprises a pair and the step of calculating a modified local force comprises limiting the higher sensor force to a maximum delta above the lower sensor force and adding the higher sensor force, as limited, to the lower sensor force.
10. (amended) The [invention] method of airbag control as defined in claim 1 [wherein] including the steps of:

USSN 08/566,029--5
defining a center seat area [includes] including a [center] group of sensors located in the center of the passenger seat, [and the step of]
calculating a [group] local force for the center seat area [comprises summing] as the sum of the [measured] forces [of] sensed by the sensors in the center [group] seat area; and
allowing deployment if the local force for the center seat area is greater than a predefined center seat area threshold force.
11. (amended) [The invention as defined in claim 1 including the steps of:] A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force sensed by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force;
[calculating] assigning a load rating [for] to each sensor [from the] based on its measured force, said load ratings being limited to maximum value;
summing the assigned load ratings for all the sensors to derive a total load rating; and
allowing deployment if the total load rating is above a [maximum value; and] predefined total load threshold, whereby deployment is allowed if the sensed forces are distributed over the passenger seat, even if the total force is less than the total threshold force
[inhibiting deployment if the total load rating is below a minimum value].

USSN 08/566,029--6
12. (amended) The [invention] method of airbag control as defined in claim 11 wherein the step of [calculating] assigning a load rating [for] to each sensor comprises[;]:
establishing a base force; and
assigning a load rating according to the measured force minus the base force [and limiting the load rating to a maximum value].
11
13. (amended) [The invention as defined in claim 1 including the steps of:] A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force sensed by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force; and
[calculating a total load rating for the sensor array;]
if the total force is not above the total threshold force, determining a fuzzy total force contribution value based on the calculated total force;
defining a plurality of seat areas, at least one sensor located in each seat area, calculating a local force for [a plurality of groups of sensors in local areas of the] each seat area as the sum of forces sensed by each sensor located in that seat area, and determining a fuzzy local force contribution value based on each of the calculated local forces; and
[wherein the step of determining a fuzzy value includes assigning a contribution amount to each of the total force, the total load, and each group as a function of the respective forces and load rating, and summing the fuzzy total force and fuzzy local force contribution [amounts] values, and allowing

```
USSN 08/566,029--7
```

deployment if the summed contribution values exceed a predefined fuzzy threshold.

18 defined in claim 13 wherein the [step] steps of [assigning a] determining the fuzzy total and local force contribution [amount to the total force] values comprises:
setting a minimum and maximum force threshold for each total and local force; and
subtracting the minimum force [threshold] thresholds from the respective total and local [force] forces and limiting [the] each difference to the respective maximum force threshold, [wherein the limited difference is the contribution amount]; and
determining the fuzzy total and local force contribution values based on the respective limited differences.

19

16. (amended) The [invention] method of airbag control as defined in claim 133 wherein
[the groups include pairs] a pair of sensors are located in each seat area, and wherein:
[a pair] the step of calculating the local force for each [pair is calculated by] seat area comprises the steps of:
limiting the higher force of the [two] respective
pair of sensors to a set amount greater than the lower
force of the respective pair of sensors, and
summing the lower force and the higher force, as
limited, to derive [a pair] the local force;
and the step of [assigning] determining a fuzzy local
force contribution amount [to the pair force] comprises the steps of:
setting a maximum pair force threshold, and
```
USSN 08/566,029--8
```

setting the [pair force] fuzzy local force contribution amount equal to the [pair] local force limited to the maximum pair force threshold.

20. (amended) The [invention] method of airbag control as defined in claim [18] 11 further including the steps of: defining a plurality of seat areas [each having a group of sensors] at least one sensor located in each seat area; determining the existence of a local pressure area when the calculated total force is concentrated in [a] one of said seat [area] areas;
[for each group] calculating [the group] a local force as the sum of [sensor] forces sensed by each sensor located in the seat area in which the total force is concentrated; and
[for a group in a local pressure area,] allowing deployment if the [group] local force is greater than a predefined seat area threshold force [for that group].
21. (amended) ${ }^{\text {The }}$ [invention] method of airbag control as defined in claim 2^{13} further including the steps of:
determining [a] individual fuzzy [value for the array] values based on the total force, the [group] local forces for each seat area, and total load [ratings] rating; [and]
summing said fuzzy values; and
allowing deployment if the summed fuzzy [value exceeds] values exceed a threshold.

15
23. (new) A method of airbag control as set forth in Claim 11, including the steps of:
determining a fuzzy total force contribution value based on the calculated total force;
determining a fuzzy total loading contribution value based on the total load rating; and

```
USSN 08/566,029--9
```

summing the fuzzy total force and fuzzy total loading contribution values, and allowing deployment if the summed contribution values exceed a predefined fuzzy threshold.

16
24. (new) The method of airbag control as defined in claim 23 wherein the steps of determining the fuzzy total force and total loading contribution values comprises:
setting minimum and maximum thresholds for the total force and total load rating; and
subtracting the minimum thresholds from the respective total force and total load rating, and limiting each difference to the respective maximum threshold; and
determining the fuzzy total and total loading contribution values based on the respective limited differences.

REMARKS

In the subject Office Action, the examiner rejected Claim 18 under 35 USS $102(e)$ in view of Schousek ` 327 , and rejected Claims 1-7 and 10-22 under 35 US $103(\mathrm{a})$ over Schousek in view of Barrus '301. Claims 8-9 were indicated to be allowable but were objected to as depending from a rejected base claim. Applicant requests reconsideration of his application in view of this response which cancels Claims 15, 17-19 and 22, amends Claims 1-14, 16 and 20-21, adds new Claims 23-24, and provides argument in support of the allowability of the pending claims. For the convenience of the examiner, Applicant has set forth in an attachment to this amendment Claims 1-14, 16, 20-21 and 23-24, as amended herein.

Allowable Subject Matter

Applicant gratefully acknowledges the indication of allowability in respect to Claims 8-9, but defers the rewriting of such claims in independent format until this

USSN 08/566,029--10
amendment is considered by the examiner. Applicant believes, as explained below, that base Claim 1, particularly as amended herein, is allowable over the prior art of record, obviating the need to re-write Claims 8-9 in independent format. The above amendments to Claims 8-9 are intended to improve clarity and consistency of terminology.

Summary of Claims

Claim 1 has been amended to recite a method of airbag control in which deployment is allowed based on total force above a threshold or a local concentrated force above a threshold.

Claims 2-10 depend directly or indirectly from
independent Claim 1 .
Claim 11 has been re-written in independent format, and recites a method of airbag control in which deployment is allowed based on total force above a threshold or a total load rating above a threshold.

Claim 12 depends directly from re-written independent Claim 11.

Claim 13 has been re-written in independent format, and recites a method of airbag control in which deployment is allowed based on fuzzy total and local force contribution values above a predefined fuzzy threshold.

Claim 14 depends directly from rewritten independent Claim 13.

Claim 15 has been canceled.
Claim 16 depends directly from re-written independent Claim 13.

Claims 17-19 have been canceled.
Claim 20-21 depend directly or indirectly from re-written independent Claim 11.

Claim 22 has been canceled.
Claims 23-24 depend directly or indirectly from rewritten independent Claim 11.

```
USSN 08/566,029--11
```


The Rejection Under 35 USC $102(\mathrm{e})$

The rejection of Claim 18 under 35 USC $102(e)$ is rendered moot by the cancellation of such claim. Accordingly, Applicant respectfully requests that the rejection be withdrawn.
The Rejection Under 35 USC $103(a)$
The rejection of Claims 1-7 and 10-22 under 35 USC $103(\mathrm{a})$ is respectfully traversed in view of the amendments made herein and the following argumentation. It is thus respectfully submitted that the currently pending Claims 1-14, 16, 20-21 and 23-24 patently define over Schousek and Barrus, taken individually, or in combination.

Schousek is similar to Applicant's disclosed control method in that (1) it is directed to a method of determining whether to allow deployment of airbags based upon the sensed force on a passenger seat, (2) deployment is allowed if a total of the sensed forces exceeds a threshold, and (3) the total force is used to discriminate between adults and children. However, that is where the similarity ends. The additional aspects of Schousek -- such as the discrimination between front and rear facing infant seats (or out of position occupant) based on a calculated center of weight relative to a reference line -- are irrelevant to, or teach away from, Applicant's claimed invention. Thus, Schousek clearly does not, as stated by examiner, disclose the method of determining a local pressure area when the total force is concentrated in a seat area and calculating a local force as the sum of forces sensed by sensors located in that seat area; the portions of Schousek referenced by the examiner teach only that center of weight calculations should be used to distinguish between front and rear facing infant seats.

Barrus is directed to a seat sensor array and processing method in which sensed force patterns are compared with predetermined patterns to identify known occupant positions
for the purpose of display. Alternatively, it is suggested that a neural network could be trained through the use of example data to recognize positions corresponding to a sensed force pattern.

In view of the above, a supposed combination of the teachings of Schousek and Barrus -- if in fact such references are properly combinable under 35 USC 103 (a) -- might result in an airbag deployment method in which the measured forces are compared to predetermined force patterns for the recognition of occupant position, or alternatively, in which a neural network is used to recognize occupant positions corresponding to a given patterns of detected force. However, Applicant's claimed invention is not obviated by such a supposed combination, as explained below.

Applicant's invention is particularly directed to an airbag deployment method in which various techniques are used to determine if an occupant is suitably positioned on a passenger seat. These techniques do not utilize center of weight calculations as taught by Schousek, nor do they utilize neural networks as taught by Barrus. Although Applicant has disclosed the use of pattern recognition to identify the presence of an infant seat, pattern recognition is not used to identify the position of an occupant, as taught by Barrus.

In general, Applicant's claims set forth a method of allowing deployment even though the total force sensed by the seat sensors is less than a total threshold force. This situation arises primarily when a child is sitting on the seat. As set forth above in the claim summary, the subject application now contains three independent claims: 1, 11 and 13. Such claims, and their dependent claims are discussed briefly below.

Claim 1, as amended herein, recites:

```
USSN 08/566,029--13
```

1. (amended) A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force detected by each sensor; calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force;
defining a plurality of seat areas, at least one sensor located in each seat area;
determining the existence of a local pressure area when the calculated total force is concentrated in one of said seat areas;
calculating a local force as the sum of forces sensed by each sensor located in the seat area in which the total force is concentrated; and
allowing deployment if the local force is greater than a seat area threshold force.

As indicated above in italics, Applicant's Claim 1 defines a method wherein the controller determines the existence of a local pressure area when the total force is concentrated in one of the predefined seat areas, and in such event, sums the forces of the sensors located in that seat area for comparison with a seat area threshold force to determine if deployment should be allowed. There is no teaching of this sort in either Schousek or Barrus. According to Schousek, the controller computes the center of weight from all of the sensors, and compares it with a reference line;

USSN 08/566,029--14
according to Barrus, the controller would look for a recognizable occupant force pattern from all of the sensors. Since neither Schousek nor Barrus contain a teaching that suggests the claimed invention, no combination of Schousek and Barrus can be said to obviate the claimed invention. Accordingly, the rejection of Claim 1 and its dependent Claims 2-7 and 10 should be withdrawn.

Further to Claim 1, dependent Claims 2-6 recite, in various levels of detail, the recognition of an infant seat based on the pattern of sensor loading. As set forth above, Applicant's position is that Barrus does not obviate this functionality because Barrus simply teaches the use of pattern recognition per se, and does not teach the use of pattern recognition to identify the presence of an infant seat, as claimed by Applicant. Dependent Claim 7 requires that the defined seat areas overlap so that some sensors are included in more than one seat area. Dependent Claim 10 provides that deployment is also allowed if the sensors located in a center seat area of the passenger seat indicate a center seat area force in excess of a center seat area threshold force. Although these claimed features provide additional bases of patentability, Applicant reiterates that Claims 2-7 and 10 depend from Claim 1, and are therefore additionally patentable over Schousek and Barrus for the reasons given above in respect to Claim 1.

Claim 11, as amended herein, recites:
11. (amended) A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force sensed by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force;
assigning a load rating to each sensor based on its measured force, said load ratings being limited to maximum value;
summing the assigned load ratings for all the sensors to derive a total load rating; and
allowing deployment if the total load rating is above a predefined total load threshold, whereby deployment is allowed if the sensed forces are distributed over the passenger seat, even if the total force is less than the total threshold force.

As indicated above in italics, Applicant's Claim 11 defines a method wherein the controller assigns a load rating to each sensor, sums the load ratings and compares the total load rating to a total load threshold to determine whether deployment should be allowed. As claimed, the assigned load ratings are limited to a maximum value. This limits the contribution of any individual sensor to the total load rating so that the total load rating provides an indication as to whether the sensed forces are distributed over the passenger seat, as noted in the claim. Again, there is no teaching of this sort in either Schousek or Barrus. According to Schousek, the controller computes only total force and center of weight, as described above. According to Barrus, the controller simply looks for recognizable occupant force patterns from all of the sensors. Since neither Schousek nor Barrus contain a teaching that suggests the claimed load rating method, no combination of Schousek and Barrus can be

USSN 08/566,029--16
said to obviate the claimed method. Accordingly, the rejection of Claim 11 and its dependent Claims 12, 20-21 and 23-24 should be withdrawn.

Claim 12 recites additional detail as to the assignment of load ratings. Claim 20 additionally recites the method of allowing deployment based on the detection of a concentrated local force in excess of a threshold, as discussed above in respect to independent Claim 1. Claim 21 additionally recites a fuzzy contribution method, as applied to the method of Claim 20, and Claims 23-24 recite fuzzy contribution methods, as applied to the method of Claim 11. The uniqueness of the claimed fuzzy contribution methods per se is discussed in detail below in reference to independent Claim 13.

Claim 13, as amended herein, recites:
13. (amended) A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force sensed by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force; and
if the total force is not above the total threshold force, determining a fuzzy total force contribution value based on the calculated total force;
defining a plurality of seat areas, at least one sensor located in each seat area, calculating a local force for each seat area as the sum of forces
sensed by each sensor located in that seat area, and determining a fuzzy local force contribution value based on each of the calculated local forces; and
summing the fuzzy total force and fuzzy local force contribution values, and allowing deployment if the summed contribution values exceed a predefined fuzzy threshold.

As indicated above in italics, Applicant's Claim 13 sets forth a method wherein the controller defines a plurality of seat areas, calculates a local force for each seat area as the sum of forces sensed by each sensor located in that seat area, determines and sums fuzzy contribution values for the total force and for each of the local seat area forces, and allows deployment if the summed fuzzy contribution values exceed a fuzzy threshold. This technique allows deployment when the various occupant force measurements fail to exceed their individual thresholds. If the various force measurements come close to their respective thresholds, the summed fuzzy contribution values will, in turn, exceed the fuzzy threshold, allowing deployment. Claims 14 and 16 provide additional
detail as to how the fuzzy local force contribution values are determined. Once again, there is no teaching of this sort in either Schousek or Barrus. According to Schousek, the controller only computes a total force measure and compares it to a threshold; if the threshold is not exceeded, deployment is not allowed, and there is no measurement of how close the sensed force came to the threshold. And of course, Barrus is not even concerned with threshold achievement.

The examiner's emphasis on Barrus' neural network is misplaced because it assumes that a neural network is equivalent to fuzzy logic; this is simply untrue. If one were

USSN 08/566,029--18
motivated to apply Barrus' neural network teachings to Schousek, the result would not be Applicant's claimed fuzzy contribution values. Barrus' neural network is used for pattern recognition, not for determining how close various diverse measurements of occupancy came to their respective thresholds. Since neither Schousek nor Barrus contain a teaching that suggests the claimed fuzzy contribution method, no combination of Schousek and Barrus can be said to obviate the claimed invention. Accordingly, the rejection of Claim 13 and its dependent Claims 14 and 16 should be withdrawn.

Summary

For the above reasons, Applicant submits that his Claims 1-14, 16, 20-21 and 23-24 are now in condition for allowance, and therefore respectfully requests such allowance.

JUA
13
1997

1. (amended) A method of airbag control in a fiche having an array of force sensors on the passenger seat coupled to a controller for determining whether to allowfairbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force detected by each f sensor;
calculating the total force of the fensor array;
allowing deployment if the total force is above a total threshold force;
defining a plurality of seat areas, at least one sensor located in each seat area;
determining the existence of a local pressure area when the calculated total force isfoncentrated in one of said seat areas;
calculating a local ferce as the sum of forces sensed by each sensor located in the seat area in which the total force is concentrated; and
allowing deployment if the local force is greater than a seat area threshold force.
2. (amended) The method of airbag control as defined in claim 1 includinǵ:
determining a pattern of sensor loading;
determinifhg from the pattern of sensor loading whether an infant seat $\frac{1}{f}$ on the passenger seat;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward facing seat; and
infibiting deployment for a rearward facing seat.
(3. (amended) The method of airbag control as defined in claifm 1 including:
determining a pattern of sensor loading;
prior to the step of allowing deployment if the total force is above a total threshold force, determining from the pattern of sensor loading whether an infant seat is on the seat;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward/facing seat; and inhibiting deployment for a rearward facing seat.
3. (amended) The method of airbag control as defined in claim 2 wherein the step of determining a pattern of sensor loading comprises detecting which sensors are below a first load threshold and which sen'sors are above a second load threshold.
4. (amended) The method of airbag control as defined in claim 2 wherein the step of determining from the pattern of loaded sensors whether an infant seat is present comprises: establishing a table of loaded and unloaded sensor patterns which result from the configuration of the bottom of an infant seat; and
deciding that an infant seat is present when the pattern of sensor loading matches one of the table patterns.
5. (amended) The method of airbag control as defined in claim 2 wherein the step of determining whether the infant seat is falcing forward or rearward comprises:
deci/ding that the seat is facing forward when
1) the total force is greater than a first value, or
2) sensors in the front of the seat are loaded and the total force is greater than a second value; and
deciding that the seat is facing rearward when both the condítions 1) and 2) are not true.
7. (amended) The method of airbag control as defined in claim 1 wherein the defined seat areas overlap so that some sensors are included in more than one seat area, the seat areas including a front area, a rear area, a right area and a left area.
8. (amended) The method of airbag control as defined in claim 1 wherein each of said seat areas includes a secondary group of sensors peculiar to that seat area and the method includes:
calculating a modified local force for each secondary group located in a seat area intwhich the total force is concentrated; and
allowing deployment if the modified local force for exceeds a threshold for thất secondary group.
9. (amended) The méthod of airbag control as defined in claim 8 wherein each sécondary group of sensors comprises a pair and the step of calculating a modified local force comprises limiting the higher sensor force to a maximum delta above the lower sensor force and adding the higher sensor force, as limited, to the lower sensor force.
10. (amended) The method of airbag control as defined in claim 1 including the steps of:
defining a center seat area including a group of sensors located in the center of the passenger seat,
calculating a local force for the center seat area as the sum of the [measured] forces sensed by the sensors in the center seat area; and
allowing deployment if the local force for the center seat área is greater than a predefined center seat area threshold force.
11. (amended) A method of airbag control in a vehicle háving an array of force sensors on the passenger seat coupled
to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force sensed by each sensor;
calculating the total force of the, sensor array;
allowing deployment if the total force is above a total threshold force;
assigning a load rating to eadi sensor based on its measured force, said load ratings being limited to maximum value;
summing the assigned load ratings for all the sensors to derive a total load rating; ấnd
allowing deployment if the total load rating is above a predefined total load thréshold, whereby deployment is allowed if the sensed forces are distributed over the passenger seat, even if the total forcefis less than the total threshold force.
12. (amended) The method of airbag control as defined in claim 11 wherein the step of assigning a load rating to each sensor comprises
establishing a base force; and
assigning, a load rating according to the measured force minus the base force.
13. (amended) A method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining whether to allow airbag deployment based on sensed force and force distribution comprisfng the steps of:
measuring the force sensed by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a total threshold force; and
if the total force is not above the total threshold force, determining a fuzzy total force contribution value based on the calculated total force;
defining a plurality of seat areas, at least one sensor located in each seat area, calculating a local force for each seat area as the sum of forces sensed by each sensor located in that seat area, and determining a fúzzy local force contribution value based on each of the calculated local forces; and
summing the fuzzy total force and fuzzy local force contribution values, and allowing deployment if the summed contribution values exceed a predefined fuzzy threshold.
14. (amended) The method of airbag control as defined in claim 13 wherein the steps fof determining the fuzzy total and local force contribution fíalues comprises:
setting a minimum and maximum force threshold for each total and local force; and
subtracting the minimum force thresholds from the respective total and/local forces and limiting each difference to the respective maximum force threshold,; and
determining the fuzzy total and local force contribution values based on the respective limited differences.
15. (amended) The method of airbag control as defined in claim 13 wherein a pair of sensors are located in each seat area, and wherein:
the step of calculating the local force for each seat area comprises the steps of:
limiting the higher force of the pair of sensors to a set amount greater than the lower force of the respective pair of sensors, and
summing the lower force and the higher force, as
limited, to derive the local force;
! and the step of determining a fuzzy local force contribution amount comprises the steps of:
setting a maximum pair force threshold, and setting the fuzzy local force contribution amount equal to the local force limited to the maximum pair force threshold.
16. (amended) The method of airbag con̂trol as defined in claim 11 further including the steps of:
defining a plurality of seat areas, at least one sensor located in each seat area;
determining the existence of a Alocal pressure area when the calculated total force is concentrated in one of said seat areas;
calculating a local force as the sum of forces sensed by each sensor located in the seat "area in which the total force is concentrated; and
allowing deployment if the local force is greater than a predefined seat area threshold force.
17. (amended) The method of airbag control as defined in claim 20 further including the steps of:
determining individual fuzzy values based on the total force, the local forees for each seat area, and total load rating;
summing said fuzzy values; and
allowing depiloyment if the summed fuzzy values exceed a threshold.
18. (new) A method of airbag control as set forth in Claim 11, inćluding the steps of:
determining a fuzzy total force contribution value based on the calculated total force;
determining a fuzzy total loading contribution value based on the total load rating; and
summing the fuzzy total force and fuzzy total loading contribution values, and allowing deployment if the summed contribution values exceed a predefined fuzzy threshold.
19. (new) The method of airbag control as defined in claim 23 wherein the steps of determining the fuzzy total force and total loading contribution values comprises:
setting minimum and maximum thresholds for the total force and total load rating; and
subtracting the minimum thresholds from the respective total force and total load rating, and limiting each difference to the respective maximum threshold; and
determining the fuzzy total and total loading contribution values based on the respective limited differences.

- ATTORNEY DOCKET NO.

Part III DETAILED ACTION

Notice to Applicant(s)

1. This application has been examined. Claims 1-22 are pending.
2. The drawings are approved by the draftsman and examiner.

Claim Rejections - 35 USC § 102
3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. § 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent.
4. Claim 18 is rejected under 35 U.S.C. § 102(e) as being anticipated by Schousek $(5,474,327)$.

Schousek discloses the invention as claimed (see at least the abstract) including the steps of measuring the force detected by each of sensor (see figure 1 and figure 5 , step 64), calculating the total force of the sensor array (see figure 5 A , step 68),
calculating a load rating for each sensor form measure force and summing the load ratings for all the sensor to derive total load rating, and allowing deployment based on a high value of the total force or of the total load rating, and inhibiting deployment based on a low value of the total force or of the total load rating (see figure 5 A , column 3 , line 64 to column 4, line 21).

Therefore, all of the limitations of claim 1 are met by Schousek.

Claim Rejections - 35 USC § 103
5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
6. Claims 1-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Schousek $(5,474,327)$ in view or Barrus $(5,570,301)$.
a. With respect to claims 1,19 , and 21 , Schousek discloses a method of airbag control in a vehicle having an array of force sensors on the passenger seat
coupled to controller for determining permission for airbag deployment based on sensed force and force distribution comprising the steps of measuring the force detected by each sensor calculating the total force of the sensor array, allowing deployment if the total force is above a first threshold and inhibiting deployment if the total force is below a second threshold; defining seat areas each having a group of sensors (see figure 5A and the related text). Schousek also discloses that the method includes the steps of determining a local pressure area when the total force is concentrated in a seat area and calculating the group force as the sum of sensor forces, and allowing deployment if the group force is greater than a threshold for that group (see figure 5 A , steps $70,82,64$, 86 and the related text).

Schousek does not disclose that the method includes a step of determining a fuzzy value for the array and allowing deployment if the fuzzy value exceeds a threshold. However, Barrus suggests a system for unencumbered measurement and reporting of body structure which using a trained neural network (fuzzy logic) for estimating positional attitude by comparing the outputs of the array sensors (see figures 5 and 6) to pre-determined outputs of the sensors corresponding to a plurality of predetermined postures (see figures 7A to 9 ; column 3, lines 29-36; and column 6, lines $50-66)$. The suggestion of the Barrus patent in figures $5-9$ and columns 3 and 6 would have motivated one of ordinary skill in the art to combine the teaching of Barrus with
the system of Schousek in order to provide an accurate determination of the condition of the occupancy seat in a vehicle, thereby improve the safeness of the airbag deployment.

Thus, because of the motivation set forth above, it would have been obvious to a person of ordinary skill in the art at the time the invention was made to combine the teachings of Barrus and Schousek.
b. With respect to claims 2-4, Schousek discloses the steps of determining a pattern of sensor loading, determining from the pattern of sensor loading whether an infant seat is present; then determining from the total force and force distribution whether the infant seat is facing forward or rearward, allowing deployment for a forward facing seat, and inhibiting deployment for a rearward facing seat (see figure 5A-5B and the related text).
c. With respect to claim 5 , Schousek does not explicitly disclose that the step of determining from the pattern of loaded sensors whether an infant seat is present comprises the steps of establishing a table of loaded and unloaded sensor patterns which result from the configuration of the bottom of an infant seat, and deciding that an infant seat is present when the pattern of sensor loading matches one of the table patterns. However, such features are suggests in the Barrus teaching through the figure 8 and the related text. It would have been obvious to incorporate the teaching of the Barrus into
the system of Schousek because such combination would provide the system with the enhanced capability of determining an accurate the present of an infant seat in the passenger seat, thereby deciding whether to activate of deactivate the airbag.
d. With respect to claim 6, Schousek also discloses the steps of determining whether the infant seat is facing forward or rearward (see figure 5A, steps 82, 84 and 86).
e. With respect to claim 7, Schousek discloses that wherein the areas are overlapping so that some sensors are included in more than one group, the groups including a front area group, a rear area group, a right area group and a left area group (see figure 2 and column 3, line 64 to column 4, line 21).
f. With respect to claim 10 , Schousek discloses that wherein a center seat area includes a center group and the step of calculating a group force comprises summing the measured forces of the sensors in the center group (see at least figure 5A).
g. With respect to claims 11-17 and 22, the limitations of these claims have been noted in the rejection above. They are therefore considered rejected as set forth above.
7. Claims 8 and 9 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations

Serial No.: 08/566,029
of the base claim and any intervening claims.
a. After carefully reviewing the application in light of the search of all the possible areas relevant to the present application, a set of related prior art references has been found, but those prior art references are not deemed strong to make claims 8 and 9 unpatentable.
b. Although the prior art disclose several claimed limitations, none of the references teach a method of airbag control in a vehicle having an array of force sensors on the passenger seat coupled with a controller for determining permission for airbag deployment based on the sensed force and force distribution which includes, in each area a secondary group of sensors peculiar to that area and the method includes: calculating a modified force for each secondary group; and allowing deployment if the modified force for any secondary group exceeds a threshold for that secondary group and the secondary group is in a local pressure area (claim 8). Furthermore, none of the references teach that wherein each secondary group of sensors comprises a pair and the step of calculating a modified force comprises limiting the higher sensor force to a maximum delta above the lower sensor force and adding the higher sensor force, as limited, to the lower sensor force (claim 9).

Conclusion

8. Claims 1-7 and 10-22 are rejected. Claims 8 and 9 are objected.
9. The following references are cited as being of general interest: Kikuo et al.
$(5,010,774)$, Vollmer $(5,61,820)$, Blackburn et al. $(5,232,243)$, Araki et al.
$(5,384,716)$, Mazur et al. $(5,454,591)$, Blackburn et al. $(5,491,311)$, Meister et al.
$(5,570,903)$, Blackburn et al. $(5,605,348)$, and Zeidler et al. $(5,612,876)$.
10. Any inquiry concerning this communication or earlier communications from the examiner should be directed to examiner Tan Nguyen, whose telephone number is (703) 305-9755. The examiner can normally be reached on Monday-Thursday from 7:30 AM-5:00 PM. The examiner can also be reached on alternate Fridays.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kevin J. Teska, can be reached on (703) 305-9704. The fax phone number for this Group is (703) 308-5357.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 305-3800.

March 27, 1997

*Examiner: Initial if yef (erence considered whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
Form PTO-FB-A820 (also PTO-1449) Patent \& Trademark Office - U.S. Dept. of Commerce

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231 on:

NOTICE OF DRAFTSPERSON'SPATENT DRAWING REVIEW

PTO Draftpersons review all originally filed drawings regardless of whether they are designated as formal or informal. Additionally, patent Examiners will review the drawings for compliance with the regulations. Direct telephone inquiries concerning this review to the Drawing Review:Branch, 703-305-8404

$$
\begin{aligned}
& \text { Best Available Copy } \\
& \text { Drawing changes may also require changes in the specification, } \\
& \text { e.g., if Fig. } 1 \text { is changed to Fig. IA, Fig. IB. Fig. IC, etc., the } \\
& \text { specification, at the Brief Description of the }{ }^{\text {Drawings. nust }} \\
& \text { likewise bechanged. Please make such changes by } 37 \mathrm{CFR} \text { i. } 312 \\
& \text { Amendment at the time of submitting drawing changes. }
\end{aligned}
$$

INFORMATION ON HOW TO EFFECT DRAWING CHANGES

1. Correction of Informalities--37 CFR 1.85

File new drawings with the changes incorporated therein. The application number or the title of the invention, inventor's name, docket number fif any), and the name and telephone number of a person (t) call if the Office is umble to math the draming so the proper application, should be placed on the

 a tammital leter uddrssed to the Drawing Res ies Branch.

2. Timing of Corrections

 cxiension fee. Therefore, applicant should fle correted dawings as seon as possible.

Failure to take concective action within set (or extended) periof will result in ABANDONMENT of the Application.
3. Comections other than Informalities Noted by the Drawing Review Branch on the Form PTO 948

All changes to the drawings, other than informalities noted by the Drawing Review Branch, MUST be approved by the examiner before the application will be allowed. No changes will be permitted to be made, other than correction of informalities, unless the examiner has approved the proposed changes.

(FILE 'USPAT' ENTERED AT 08:27:57 ON 27 MAR 1997)

10811 S (WEIGHT OR FORCE) (P) SEAT?
(P) (OCCUPAN? OR CONDITION O
R S
L3 1 S L2 (P) (FUZZY OR NEURAL?)
L4
13 S L2 (L) (FUZZY OR NEURAL?)
$\Rightarrow d$ 11 1-4; d 13; d 1-13

1. 5,582, 400, Dec. 10, 1996, Device for conveying sheets to a sheet pile; Michael Seydel, 271/176, 183, 195, 204 [IMAGE AVAILABLE]
2. 4,933, 224, Jun. 12, 1990, Method for adapting separable fasteners for attachment to other objects; Richard N. Hatch, 428/100; 24/306, 444; $428 / 120,192,308.4,311.11,329,900$ [IMAGE AVAILABLE]
3. 4, 881,997, Nov. 21, 1989, Method for adapting separable fasteners for attachment to other objects; Richard N. Hatch, 156/66; 24/306, 444; $156 / 73.1,78,245,292 ; 264 / 46.4,46.7$; 297/DIG.1, DIG.6; 428/100, 120, 308.4, 900 [IMAGE AVAILABLE]
4. 4,059,909, Nov. 29, 1977, Neural receptor augmented G seat system; Gerald Joseph Kron, 434/59; 297/180.12, DIG. 3 [IMAGE AVAILABLE]
5. 5,019,979, May 28, 1991, Control for automatic transmission; Hiroshi Takahashi, $364 / 424.086 ; 395 / 900,905 ; 477 / 121,127$ [IMAGE AVAILABLE]
6. 5,586,561, Dec. 24, 1996, Back guard with tunnel for spinal column; Shreve M. Archer, III, 128/846; 602/19 [IMAGE AVAILABLE]
7. 5,577,816, Nov. 26, 1996, Method of and system for controlling brakes; Osamu Suzuki, et al., 303/174, 163 [IMAGE AVAILABLE]
8. 5,573, 313, Nov. 12, 1996, Method of and system for controlling brakes; Osamu Suzuki, et al., 303/115.2, 137, 150 [IMAGE AVAILABLE]
9. 5,570,301, Oct. 29, 1996, System for unencumbered measurement and reporting of body posture; John W. Barrus, 364/559; 73/172, 865.4; $364 / 550$ [IMAGE AVAILABLE]
10. 5,536,059, Jul. 16, 1996, seat suspension system using human body responses; Farid M. L. Amirouche, 296/65.1; 188/299; 248/550, 566; 267/131; 280/707 [IMAGE AVAILABLE]
11. 5, 480, 221, Jan. 2, 1996, Rear wheel braking force control method and an apparatus therefor; Takao Morita, et al., 303/113.5, 116.1, 119.1,

159, DIG. 2 [IMAGE AVAILABLE]
7. 5, 400,801, Mar. 28, 1995, Back guard; Shreve M. Archer, III, 128/846; 2/92, 467 [IMAGE AVAILABLE]
8. 5, 365,444, Nov. 15, 1994, Method of estimating vehicle velocity and method of and system for controlling brakes; Osamu suzuki, et al., $364 / 426.018 ; 180 / 170,197 ; 364 / 565$ [IMAGE AVAILABLE]
9. 5,321,617, Jun. 14, 1994, System for accommodating sitting attitude of vehicle occupant; Takakazu Mori, et al., 364/424.059; 296/65.1 [IMAGE AVAILABLE]
10. 5, 319,555, Jun. 7, 1994, Vehicle automatic transmission control system for controlling the speed change ratio based on driving resistance; Yoshihisa Iwaki, et al., 364/424.086; 395/900; 477/98, 120, 902, 903, 904 [IMAGE AVAILABLE]
11. 5,302,007, Apr. 12, 1994, Rear wheel braking force control method and an apparatus therefor; Takao Morita, et al., 303/9.73, 113.5 [IMAGE AVAILABLE]
12. 5,019,979, May 28, 1991, Control for automatic transmission; Hiroshi Takahashi, $364 / 424.086 ; 395 / 900,905 ; 477 / 121,127$ [IMAGE AVAILABLE]
13. 4, 059,909, Nov. 29, 1977, Neural receptor augmented G seat system; Gerald Joseph Kron, 434/59; 297/180.12, DIG. 3 [IMAGE AVAILABLE] =>

1. 5,579,994, Dec. 3, 1996, Method and control system for adaptively controlling an automotive HVAC system; Leighton I. Davis, Jr., et al., 236/49.3, 91C [IMAGE AVAILABLE]
2. 5,562,707, Oct. 8, 1996, Garment for applying controlled electrical stimulation to restore motor function; Arthur Prochazka, et al., 607/2, 48 [IMAGE AVAILABLE]
3. 5,481,615, Jan. 2, 1996, Audio reproduction system; Graham P. Eatwell, et al., 381/71, 72, 74, 103 [IMAGE AVAILABLE]
4. 5, 422,544, Jun. 6, 1995, Lighting controller with compensation for eye adaptability characteristics; Richard V. Giddings, et al., 315/156, 151, 158, DIG. 4 [IMAGE AVAILABLE]
5. 5,394,934, Mar. 7, 1995, Indoor air quality sensor and method; Alan D. Rein, et al., 165/200; 73/23.21; 236/49.3; 454/256 [IMAGE AVAILABLE]
(6.) $5,384,716$, Jan. 24, 1995, Occupant condition determining apparatus; Shbichi Araki, et al., 364/557; 374/112 [IMAGE AVAILABLE]
6. 5,321,617, Jun. 14, 1994, System for accommodating sitting attitude of vehicle occupant; Takakazu Mori, et al., 364/424.059; 296/65.1 [IMAGE AVAILABLE]
7. $5,319,248$, Jun. 7, 1994, Automotive vehicle seat adjusting system; Yoshimi Endou, 307/10.1; 318/468, 568.1; 364/424.059 [IMAGE AVAILABLE]
8. 5, 291, 748, Mar. 8, 1994, Air condition control apparatus; Matsuei Ueda, 62/179; 236/78D; 395/22 [IMAGE AVAILABLE]
9. 5,282,134, Jan. 25, 1994, Slant transform/signal space crash discriminator; Tony Gioutsos, et al., 364/424.055; 180/274 [IMAGE

AVAILABLE]
11. 5,261,596, Nov. 16, 1993, Air quality conditioning system; Hirokazu Tachibana, et al., 236/49.3; 165/248; 454/229, 256 [IMAGE AVAILABLE]
12. 4,059,909, Nov. 29, 1977, **Neural** receptor augmented G seat system; Gerald Joseph Kron, 434/59; 297/180.12, DIG. 3 [IMAGE AVAILABLE] =>

> d his
(FILE 'USPAT' ENTERED AT 12:46:49 ON 20 MAR 1997)
Ll 1121 S (PASSENGER OR CHILD? OR INFANT) (10A) (SIDE OR SEAT? OR
OCD
L2 268872 S (DEPLOY? OR INFLAT? OR FIR? OR AGNI?) AND (INHIBIT? OR D
LAB
Lu 3386 S SIR OR SUPPLEMENT? (BA) INFLAT? (BA) RESTRAINT
L4 9 S LI AND L2 AND L3
\Rightarrow d 1-9

1. 5,574,427, Nov. 12, 1996, Method and apparatus for detecting **air** **bag** **deployment**; Eric S. Cavallaro, 340/436; 280/735; 340/426, 438; 364/424.055 [IMAGE AVAILABLE]
2. 5,527,574, Jun. 18, 1996, Reinforced **air** **bag** door cover and method for making same; Peter J. Iannazzi, et al., 428/43; 280/728.3; 428/76 [IMAGE AVAILABLE]
3. 5,501, 890 , Mar. 26,1996 , Invisible tear seam for an **air** **bag** **deployment** opening cover; Daniel H. Mills, 428/68; 280/728.3, 743.1; $428 / 35.7,36.5,71,76,212,213,220$ [IMAGE AVAILABLE]
4. 5,496,060, Mar. 5, 1996, One piece detachable cover fastener; Timothy J. Whited, et al., 280/728.3; 24/297; 411/509 [IMAGE AVAILABLE]
5. 5,474, 327, Dec. 12, 1995, Vehicle occupant restraint with seat pressure sensor; Theresa J. Schousek, 280/735; 180/268; 280/730.1 [IMAGE AVAILABLE]
6. 5, 443, 777, Aug. 22, 1995, Method for producing an invisible tear seam for an **air** **bag** **deployment** opening cover; Daniel H. Mills, $264 / 255,265 ; 280 / 732 ; 425 / 434,435$ [IMAGE AVAILABLE]
7. 5,432,385, Jul. 11, 1995, **Supplemental** **inflatable** **restraint** energy management and **deployment** system; Kevin D. Kincaid, et al., 307/10.1; 280/735; 340/436 [IMAGE AVAILABLE]
8. 5,429,784, Jul. 4, 1995, Method for making a reinforced **air** **bag** door cover; Peter J. Iannazzi, et al., 264/126, 138, 139, 163, 255, 257, 310 [IMAGE AVAILABLE]
9. 5, 211,421, May 18, 1993, **Air** **bag** cover door retainer; Roger W. Catron, et al., 280/728.2, 732 [IMAGE AVAILABLE] =>

MAYA Search Report Summary for 566029
Sales Order Summary:
Customer ID:
681
Sales Transaction Nbr: 34888
Date Posted: March 3, 1997
Product: E003
Quantity: 50

E003 WORD FREQUENCY SEARCH REPORT

Top Referenced Classes (up to 50):

1. $280 / 735 \quad$ Total $=24$ ORs=13 XRs=11
2. $280 / 730.1 \quad$ Total $=10$ ORs $=5 \quad$ XRs $=5$
3. $180 / 273 \quad$ Total $=7 \quad$ ORs $=1 \quad$ XRs=6
4. $280 / 732 \quad$ Total $=7 \quad$ ORs $=2 \quad$ XRs $=5$
5. $307 / 10.1 \quad$ Total $=6 \quad$ ORs $=1 \quad$ XRs $=5$
6. $280 / 730.2$ Total $=5 \quad$ ORs $=2 \quad$ XRs $=3$
7. $297 / 238 \quad$ Total $=5 \quad$ ORs $=0 \quad$ XRs $=5$
8. $180 / 282 \quad$ Total $=3 \quad$ ORs $=0 \quad$ XRs $=3$
9. $280 / 736 \quad$ Total=3 \quad ORs=1 \quad XRs=2
10. $280 / 739 \quad$ Total $=3 \quad$ ORs $=0 \quad$ XRs $=3$
11. 297/216.11 Total=3 ORs=2 \quad XRs=1

Top Closest Patents:

5474327	5482314	5570903	5528698	5525843
5454591	5232243	5494311	5602734	5605348
5602425	5547149	5492361	5564736	5542742
5161820	4733956	5439249	5505485	5324071
5222761	5484166	5466001	5515933	5338062
4712892	5524962	5390952	5375908	5118134
5553909	5039169	5574427	5516194	5468047
5326133	4900079	5531472	5538284	5328233
5390977	5511820	5468044	5330226	5184844
4702572	5564739	5389751	4969687	5209510

METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT

POWER OF ATTORNEY AND DESIGNATION OF CORRESPONDENCE ADDRESS

As an agent of Delco Electronics Corporation, who is the assignee of this patent application, I hereby appoint the following attorney employed by Delco Electronics Corporation to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

MARK A. NAVARRE (Reg. No. 29572)

Address all communications to

```
MARK A. NAVARRE
Delco Electronics Corporation - P.O. BOX }900
ERC Building - Mail Stop D-32 - Kokomo, IN 46904
Telephone: 317/451-3480
```

I hereby declare and certify that I am an agent of Delco Electronics Corporation and Delco Electronics Overseas Corporation and am empowered to make the above - appointment, that the assignee's ownership of this patent application is established by the attached assignment documentation, that the attached documentation is a true copy of the original documentation, that the original or
\cdots a true copy of the attached documentation has been or is concurrently being submitted to the patent and Trademark Office for recording, that the attached documentation has been reviewed, and that to the best of the assignee's knowledge and belief, title is in the assignee seeking to take the action. I further declare that the foregoing statements made of my own knowledge are true and made on information and belief are believed to be true and made with the understanding that willful false statements and the like are punishable by fine or imprisonment, or both, under title 18 United states Code section 1001 and may jeopardize the validity of this application or any patent issuing thereon.

Date

patruar appucartoon serala wo. 08/566029
U.S. DEPARTMENT OF COMMERCE patent and trademark office

FEE RECORD SHEET

000000000∞

$$
\begin{aligned}
& 268 B 72 \mathrm{~S} \text { (DEPLOY? OR INPLAT? OR FIR? OR IGNI?) AND (INHIGIT? OR } D
\end{aligned}
$$

3386 S SIR OR SUPPLEMENT? (3A) IHTLAT? (3A) RESTRAINT
Aps sead
$03 / 2197 \mid \mathrm{N}$

SEARCHED

Class	Sub:	Date	Exmr.
364 180 307 340 880	424.055 424.056 494.057 567568 271 289 268 273 25.1 436 438 735 730.01 730.02	031/20/97	$T W$ 1 1 1
updafe as ab	geal	$109 / 031 / 97$	TN
-	\Rightarrow		

FIG - 2

FIG-9

FIG-8

METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT

Field of the Invention
This invention relates to occupant restraints for vehicles and particularly to a method using seat sensors to determine seat occupancy for control of airbag deployment.

Background of the Invention
The expanding use of supplemental inflatable restraints (SIRs) or airbags for occupant protection in vehicles increasingly involves equipment for the front outboard passenger seat. The driver side airbag has been deployed whenever an imminent crash is sensed. The position and size of the driver is fairly predictable so that such deployment can advantageously interact with the driver upon a crash. The passenger seat, however, may be occupied by a large or a small occupant including a baby in an infant seat. It can not be assumed that a passenger of any size is at an optimum position (leaning against or near the seat back). An infant seat is normally used in a rear facing position for small babies and in a forward facing position for larger babies and small children. While the forward facing position
25 approximates the preferred position for airbag interaction, the rear facing position places the top portion of the infant seat close to the vehicle dash which houses the airbag. In the latter event, it is desirable to prevent deployment of the airbag.

It has been proposed in United States Patent 5,474,327 which will issue December 12 , 1995 , entitled VEHICLE OCCUPANT RESTRAINT WITH SEAT PRESSURE SENSOR and assigned to the assignee of this invention, to incorporate pressure sensors in the passenger seat and monitor the response of the sensors by a microprocessor to evaluate the weight distribution and determine the type of occupant and
the facing direction of an infant seat. The sensor arrangement and the algorithm successfully cover most cases of seat occupancy. It is desirable, however, to encompass every case of seat occupancy.

Summary of the Invention

It is therefore an object of the invention to detect a comprehensive range of vehicle seat occupants including infant seats for a determination of whether an airbag deployment should be permitted. Another object in such a system is to determine whether an infant seat is facing the front or the rear. Another object is to include sensitivity to the possible seating positions of small children.

A SIR system, as is well known, has an acceleration sensor to detect an impending crash, a microprocessor to process the sensor signal and to decide whether to deploy an airbag, and a deployment unit fired by the microprocessor. An occupant detection system can determine if an occupant or infant seat is positioned in a way to not benefit from deployment, and then signaling the microprocessor whether to allow or inhibit deploying the airbag.

A dozen sensors, judicially located in the seat, can garner sufficient pressure and distribution information to allow determination of the occupant type and infant seat position. This information, in turn, can be used as desired to inhibit SIR deployment. The sensors are arranged symmetrically about the seat centerline and includes a front pair, a right pair, a rear pair, a left pair and four in the center. Each sensor is a very thin resistive device, having lower resistance as pressure increases. A microprocessor is programmed to sample each sensor, determine a total weight parameter by summing the pressures, and determine the pattern of pressure distribution by evaluating local groups of sensors.

Total force is sufficient for proper detection of adults in the seat, but the pattern recognition provides improved detection of small children and infant seats. To detect infant seats, all patterns of sensor loading which made possible by applying fuzzy logic concepts to the pressure readings for each sensor in the array and assigning a load rating to each sensor. Pattern recognition is also enhanced by sampling several pairs of sensors, applying

15 leveling technique to them, and computing a measure for the area of the seat covered by each pair. For all measures calculated within the algorithm, a contribution is made to an overall fuzzy rating which is used to handle marginal cases. correspond to the imprints of various seats are stored in a table and the detected sensor pattern is compared to the table entries. Front and rear facing seats are discriminated on the basis of total force and the loading of sensors in the front of the seat.

The pattern recognition for detecting children is

Brief Description of the Drawings

The above and other advantages of the invention will become more apparent from the following description taken in conjunction with the accompanying drawings wherein like references refer to like parts and wherein:

Figure 1 is a schematic diagram of an SIR system incorporating a seat occupant detector;

Figure 2 is a position diagram of seat sensors for the system of Figure 1, according to the invention;

Figure 3 is a flow chart representing an overview of an algorithm for determining deployment permission according to the invention;

Figure 4 is a flow chart representing a method of computing decision measures used in the algorithm of Figure 3;

Figure 5 is a graphical representation of a function used in fuzzy logic for total force and load ratings;

Figure 6 is a graphical representation of a
 function used in fuzzy logic for determining load rating; Figure 7 is a position diagram of seat sensors illustrating sensor grouping;

Figure 8 is a flow chart for deployment decision, according to the invention; and

Figure 9 is a flow chart representing the logic for determining the facing direction of an infant seat as required by the algorithm of Figure 8.

Description of the Invention
15
Referring to Figure 1, a SIR system includes a SIR module 13 coupled to a seat occupant sensing system 14 . The SIR module 13 includes an accelerometer 15 mounted on the vehicle body for sensing an impending crash, a microprocessor 16 for receiving a signal from the accelerometer and for deciding whether to deploy an airbag. An airbag deployment unit 18 is controlled by the microprocessor 16 and fires a pyrotechnic or compressed gas device to inflate an airbag when a deploy command is received. A fault indicator 20, also controlled by the microprocessor 16 will show a failure 25 of the seat occupant sensing system 14.

The seat occupant sensing system 14 comprises a microprocessor 22 having a 5 volt supply and an enabling line 24 periodically provided with a 5 volt enabling pulse, and a series of voltage dividers coupled between the enabling line 24 and ground. Each voltage divider has a fixed resistor 26 in series with a pressure sensor or variable resistor 28 , and the junction point of each resistor 26 and variable resistor 28 is connected to an A/D port 30 of the microprocessor 22 . The microprocessor 22 controls the pulse on enabling line 24 and reads each sensor 28 voltage during the pulse period. The microprocessor 22 analyzes the sensor inputs and issues a
decision whether to inhibit airbag deployment and the decision is coupled to the microprocessor 16 by a line 32 . The microprocessor 22 also monitors its decisions for consistency and issues a fault signal on line 34 to the microprocessor 16 if faults continue to occur over a long period.

Each fixed resistor 26 is, for example, 10 kohms and the variable resistors vary between 10 kohms at high pressure and 100 kohms at low pressure. Then the voltage applied to the ports 30 will vary with pressure. Each sensor comprises two polyester sheets each having a film of resistive ink connected to a conductive electrode, the two resistive films contacting one another such that the resistance between electrodes decreases as pressure increases. Such pressure sensors are available as ALPS pressure sensors from Alps Electric Co, Ltd, Tokyo, Japan. The mounting arrangement of sensors 28 on a bottom bucket seat cushion is shown in Figure 2. The sensors are numbered 1-12 according to seat location. A left pair of sensors 1 and 2 are on the left side of the seat with sensor 2 to the rear and slightly inboard of sensor 1 . Sensors 11 and 12 are the corresponding right pair of sensors. A front pair of sensors 6 and 7 are at the front of the seat and a rear pair of sensors 3 and 10 are at the rear. The four remaining sensors $4,5,8$ and 9 are the center group of sensors. Sensors 5 and 8 are astride the seat centerline and are just in front of sensors 4 and 9. The center group is positioned just to the rear of the seat middle.

The method of operation is illustrated by a series of flowcharts wherein the functional description of each block in the chart is accompanied by a number in angle brackets <nh> which corresponds to the reference number of the block. The overall operation is shown in Figure 3 wherein the sensor values are read by the microprocessor 22 <36> and the data is adjusted by bias correction and low pass filtering <38>. One sensor at a time is turned on, sampled
four times and averaged. Then a bias calibrated for each sensor is subtracted from each sensor reading, and the data is filtered with a time constant on the order of 1 second. Then all decision measures are computed <40> and decision
measures 40. Total force is calculated by summing the sensor values and a fuzzy contribution is calculated for the total force <50>. Each sensor produces a voltage which is expressed as a digital value in the range of $0-255$. The typical range is on the order of $0-50$, however. An empty seat will have a total force near 0 after the bias adjustments. A fully loaded seat could go up to about 3000 but 2000 is more likely. For discrimination purposes, the inhibit/allow threshold is less then 255 and for reporting to the display software, the value is clipped to 255.
20 The total fuzzy contribution is determined according to the function shown in Figure 5. If the total force is below a minimum or inhibit threshold b, the fuzzy value is zero; if it is above a maximum or allow threshold, the fuzzy value is the difference between the inhibit and allow thresholds; and if it is between the thresholds the fuzzy value is equal to the force value minus the inhibit threshold. The thresholds are calibrated for each application; they may be for example, an inhibit threshold of 32 and an allow threshold of 128.

The next step in Figure 4 is to determine the load rating of each sensor <52>. The load rating is a measure of whether the sensor is detecting some load and is used for pattern recognition purposes. Low loads present a borderline case which is rated by fuzzy logic according to a function similar to that of Figure 5. As shown in Figure 6, if a load algorithms are run <42>. Ultimately a decision is made to allow or inhibit airbag deployment <44>. Then either an inhibit light is turned on $\langle 46>$ or an allow light is turned on <48>.

Figure 4 shows the algorithm for computing decision is below a base value d, which may be four, the rating is zero and if it is above the base value it is the difference
between the base and the measured load up to a limit value of, say, four. The total load rating is calculated <54> by summing the individual sensor ratings and the fuzzy contribution of the total load rating is again determined as in Figure 5 where a total load below a minimum threshold b is zero, a total load above the minimum is the total load minus the minimum threshold up to a limit at maximum threshold c. The minimum threshold may be four, for example, and the maximum threshold may be 24 .

Next a check is made for force concentration in a localized area <56>. Four overlapping localized areas are defined as shown in Figure 7. The front four sensors 1, 6, 7 and 12 are in the front group, the rear eight sensors 2,3 , 4, 5, 8, 9, 10 and 11 are in the rear group, the left eight sensors $1,2,3,4,5,6,8$, and 9 are in the left group, and the eight sensors $4,5,7,8,9,10,11$, and 12 are in the right group. The algorithm determines if the pressure is all concentrated in one group by summing the load ratings of the sensors in each group and comparing to the total load rating. If the rating sum of any group is equal to the total rating, a flag is set for that group (all right, all front etc.).

Finally the force and fuzzy contribution is computed for each pair of sensors and for the center group <58>. The force on each pair is used to detect occupants such as small children which can easily sit in one small area of the seat. These measures are looking for the pressure to be evenly distributed over the two sensors of the pair. To accomplish this the algorithm looks at each pair, determines the minimum value of the two sensors, and clip the higher one to a calibrated "delta" from the lower. If the force is evenly distributed over the two sensors the values will be about equal and the sum will be unaffected by clipping. The sum of the two sensor forces, as adjusted, comprise the force measure of the pair. The fuzzy contribution of each pair is equal to the force measure of the pair but limited to a maximum value such as 20 which is calibrated separately for
each pair. The center group measure is the sum of the sensor forces and the fuzzy contribution is equal to the sum of the four sensors but limited to a calibrated maximum value.

Pattern	1	2	3	4	5	6	7	8	9	10	11	12

The measured values, ratings, patterns and flags are used in deciding whether to allow or inhibit deployment. As shown in Figure 8, the decision algorithm 42 first decides if rails of an infant seat are detected <60> and if so whether the seat is facing forwardly or rearwardly <62>. Deployment is allowed for a forward facing seat and inhibited for a rear facing seat. This is determined as shown in Figure 9 wherein if the total force is greater than a certain value <64> the seat is forward facing and deployment is allowed. If not, and the front pair of sensors is loaded and the total force is greater than another set value <66>, the seat is forward facing and deployment is allowed. Otherwise the seat is rear facing and deployment is inhibited. It should be noted that whenever an inhibit or allow decision is made, that decision is controlling and all other conditions lower on the chart are bypassed.

If rails are not detected $\langle 60\rangle$, the total force is compared to high and low thresholds $<68>$. If it is above the high threshold deployment is allowed and if below the low threshold the deployment is inhibited. Otherwise, if the localized force for a sensor group is above a threshold and
the flag corresponding to that group is set $\langle 70\rangle$, deployment is allowed. If not, the next step is to compare the total load rating to high and low thresholds $<72>$. Deployment is allowed if the rating is above the high threshold and inhibited if below the low threshold. Each of the sensor pairs for front, left, right, and rear are compared to threshold values $<74-80>$. If any of them are above its threshold and if the flag for that area is set, deployment is allowed. If not, the center group force is compared to a 10 threshold <82> to decide upon allowance. Finally, the total fuzzy value is compared to a threshold $<84>$ to allow deployment if it is sufficiently high, and if not the deployment is inhibited. The fuzzy value decision manages a marginal case where several of the previous measures came
15 close to exceeding their thresholds but didn't, the fuzzy measure can still allow deployment.

It will thus be seen that airbag deployment can be allowed or inhibited by a pattern of resistive sensors embedded in a seat cushion and coupled to a microprocessor to detect the force on each sensor to determine the loading pattern as well as the force values from which infant seat presence and orientation are determined as well as the presence of other occupants.

CLAIMS

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as

1. A method of airbag control in a vehicle having
force sensors on the passenger seat coupled to a an array of force sensors on the passenger seat coupled to a controller for determining permission for airbag deployment based on sensed force and force distribution comprising the steps of:
measuring the force detected by each sensor;
calculating the total force of the sensor array;
allowing deployment if the total force is above a first threshold and inhibiting deployment if the total force is below a second threshold;
defining seat areas each having a group of sensors;
determining a loo al pressure area when the total force is concentrated in a/seat area;
for each group calculating the group force as the sum of sensor forces;
for a group in a local pressure area, allowing deployment if the group force is greater than a threshold for that group;
determining a fuzzy value for the array; and
allowing deployment if the fuzzy value exceeds a threshold.
2. The invention as defined in claim 1 including:
determining a pattern of sensor loading;
determining from the pattern of sensor loading whether an infant seat is present;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward facing seat; and
inhibiting deployment for a rearward facing seat.
3. The invention as defined in claim 1 including: determining a pattern of sensor loading;
prior to the step of allowing deployment if the total force is above a first threshod, determining from the pattern of sensor loading whether ar infant seat is present;
then determining from the total force and force distribution whether the infant seat is facing forward or rearward;
allowing deployment for a forward facing seat; and inhibiting deployment for a rearward facing seat.
4. The invention as defined in claim 2 wherein the step of determining a pattern of/sensor loading comprises detecting which sensors are below a first load threshold and which sensors are above a second load threshold.
5. The invention as/defined in claim 2 wherein the step of determining from the pattern of loaded sensors whether an infant seat is present comprises:
establishing a table of loaded and unloaded sensor patterns which result from the configuration of the bottom of an infant seat; and
deciding that an infant seat is present when the pattern of sensor loading matches one of the table patterns.
6. The invention as defined in claim 2 wherein the step of determining whether the infant seat is facing forward or rearward comprises:
deciding that the seat is facing forward when
1) the total force is greater than a first value, or
2) sensors in the front of the seat are loaded and the total force is greater than a second value; and
deciding thot the seat is facing rearward when both the conditions 1) and 2) are not true.
7. The invention as defined in claim 1 wherein the areas ar\& overlapping so that some sensors are included in more than one group, the groups including a front
area group, a rear area group, a right area group and a left area group.
8. The invention as defined in claim 1 wherein each area includes a secondary group of sensors peculiar to that area and the method includes:
calculating a modified fofe for each secondary group; and
allowing deployment if the modified force for any secondary group exceeds a threshofd for that secondary group and the secondary group is in a local pressure area.
9. The invention as defined in claim 8 wherein each secondary group of sensors comprises a pair and the step of calculating a modified force comprises limiting the higher sensor force to a maximum delfa above the lower sensor force and adding the higher sensor force, as limited, to the lower sensor force.
10. The invention as defined in claim 1 wherein a center seat area includes center group and the step of calculating a group force comprises summing the measured forces of the sensors in the center group.
11. The invention as defined in claim 1 including the steps of:
calculating a load rating for each sensor from the measured force;
summing the load ratings for all the sensors to derive a total load rating;
allowing deployment if the total load rating is above a maximum value; and
inhibiting deployment if the total load rating is below a minimum value.
12. The invention as defined in claim 11 wherein the step of calculating a load rating for each sensor comprises;
establfshing a base force; and
assigning a load rating according to the measured force minus the base force and limiting the load rating to a the steps of:
calculating a total load rating for the sensor array;
calculating a for ge for a plurality of groups of sensors in local areas of the seat;
wherein the step of determining a fuzzy value includes assigning a contribution amount to each of the total force, the total load, and each group as a function of the respective forces and load rating, and summing the contribution amounts.
13. The j invention as defined in claim 13 wherein the step of assigning a contribution amount to the total force comprises:
setting a minimum and maximum force threshold; and
subtracting the minimum force threshold from the total force and limiting the difference to the maximum force threshold, wherein the limited difference is the contribution amount.
14. The invention as defined in claim 13 wherein:
the total load rating/is calculated by
calculating a load rating for each sensor from the measured force, and
summing the load ratings for all the sensors to derive a total load rating; and
the step of assigning a contribution amount to the total load rating comprises a
setting maximum and minimum thresholds,
subtracting the minimum threshold from the total load rating and limiting the difference to the maximum threshold, wherein the limited difference is the contribution amount.
15. The invention as defined in claim 13 wherein the groups include pairs of sensors and wherein:
a pair force for each pair is calculated by
limiting the higher force of the two sensors to set amount greater than the lowef force, and
summing the lower force and the higher force, as limited, to derive a pair/force; and
the step of afsigning a contribution amount to the pair force comprises
setting a maximum pair force threshold, and setting the pair force contribution amount equal to the pair force limjted to the maximum pair force threshold.
16. The invention as defined in claim 13 wherein the groups include a center group of sensors and wherein:
the center group force is equal to the sum of the sensor forces in the group; and
the step of assigning a contribution amount to the center group force comprises setting the center contribution amount equal to the center group force limited to a center maximum value.
17. A method of firbag control in a vehicle having an array of force sensors on the passenger seat coupled to a controller for determining/permission for airbag deployment based on sensed force and force distribution comprising the
steps of: steps of:
measuring the force detected by each sensor;
calculating the total force of the sensor array;
calculating a load rating for each sensor from the measured force;
summing the fload ratings for all the sensors to derive a total load rdting;
allowing deployment based on a high value of the total force or of the total load rating; and
inhibiting deployment based on a low value of the total force or of the total load rating.

18. The invention as defined in claim 18 further including the steps of: determining a fuzzy value for the array based on
allowing deployment if the fuzzy value exceeds a threshold.
19. The invention as defined in claim 18 further including the steps of:
defining seat areas each having a group of sensors;
determining a local pressure area when the total force is concentrated in a seat area;
for each group calglating the group force as the sum of sensor forces;
for a group in local pressure area, allowing deployment if the group force is greater than a threshold for that group.
20. The invention as defined in claim 20 further including the steps ff:
determining a fuzzy value for the array based on the total force, the group forces and load ratings; and
allowing deployment if the fuzzy value exceeds a threshold.
21. The invention as Aefined in claim 18 further including the steps of:
defining seat areas/each having a group of sensors;
determining a locaf pressure area when the total force is concentrated in a peat area;
calculating a combined sensor force for a pair of sensors in each seat area, and
allowing deployment when the combined sensor force for a pair of sensors in a local pressure area exceeds a set value.

Abstract of the Disclosure

An array of pressure sensors on a vehicle passenger seat senses the presence of an occupant including an infant seat and determines whether the infant seat faces forward or rearward. A microprocessor coupled to the sensors determines whether to allow or inhibit deployment based on the sensor load forces and the pattern of loading. The pattern can identify an infant seat and pattern and loading determine its orientation. Local areas are checked to detect child occupants. Fuzzy logic is used to determine loading and to recognize patterns.
 H-195546, Page 1

As an inventor named below, I hereby declare that:
My residence, post office address and citizenship are stated below next to my name.

I believe I am the original, first and sole inventor (if only one inventor is named below) or an original, first and joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought in the specification H-195546 entitled

METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT
I have reviewed and understand the contents of the above identified specification including the claims, as amended by any amendment referred to in this Declaration.
I acknowledge my duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in title 37 Code of Federal Regulations section. 1.56.

I further declare that all statements made above of my own knowledge are true, that all statements made above on information and belief are believed to be true, and that these statements were made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under title 18 United States Code section 1001 and may jeopardize the validity of the application or any patent issuing thereon.

Address all communications to
$\frac{\text { MARK A. NAVARRE }}{\text { Delco Electronics Corporation }}$
$\frac{\text { P.O. BOX } 9005}{\text { ERC Building-Mail_Stop D-32 }}$
Tokomo, IN 46904
Telephone : $317 / 451-3480$

DELCO ELECTRONICS CORPORATION
P.O. BOX 9005
ERE BUILDING - MS D-32
KOKOMO, IN 46904
$12 / 1 / 95$

```
Commissioner of Patents and Trademarks
Box Patent Application
Washington, D.C. 20231
Sir:
Enclosed for filing are the following patent application papers:
    Docket No.: H-195546
    Inventors: ROBERT JOHN CASHLER
    Title: METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT
```


Filing Fee Formula

The patent specification H-195546 entitled METHOD OF INHIBITING OR ALLOWING AIRBAG DEPLOYMENT and filed in the Patent and Trademark Office herewith is the patent specification for which the inventor (s) executed the Declaration enclosed herewith.

Please charge the $\$ 794.00$ filing fee to Delco Electronics Corporation Deposit Account No. 04-0549.
ins Q. Mamore
MARK A. NAVARRE
Reg. No. 29572
317/451-3480

Enclosures

ARTIFACT SHEET

Enter artifact number below. Artifact number is application number + artifact type code (see list below) + sequential letter (A, B, C ...). The first artifact folder for an artifact type receives the letter A, the second B, etc..
Examples: $59123456 \mathrm{PA}, 59123456 \mathrm{~PB}, 59123456 \mathrm{ZA}, 59123456 \mathrm{ZB}$

08566029ZA

Indicate quantity of a single type of artifact received but not scanned. Create individual artifact folder/box and artifact number for each Artifact Type.

$\mathrm{CD}(\mathrm{s})$ containing:
computer program listing
Doc Code: Computer pages of specification and/or sequence listing and/or table

Artifact Type Code: \mathbf{P}

Artifact Type Code: S

Doc Code: Artifact content unspecified or combined Doc Code: Artifact

Artifact Type Code: U

\square Stapled Set(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F
\square Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact Artifact Type Code: BConfidential Information Disclosure Statement or Other Documents marked Proprietary, Trade Secrets, Subject to Protective Order, Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

1 Other, description: FLOPPY DISK

Doc Code: Artifact Artifact Type Code: Z

March 8, 2004

[^0]: Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

[^1]: Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director
 Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy mail this copy to Director

