a2 United States Patent
Yap et al.

e

(10) Patent No.:
5) Date of Patent:

US 6,182,114 B1
Jan. 30, 2001

(54) APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING
USER-DEFINED DYNAMIC, MULTI-
FOVEATED IMAGES

(75) Inventors: Chee K. Yap; Ee-Chien Chang, both
of New York, NY (US); Ting-Jen Yen,
Jersey City, NJ (US)

(73) Assignee: New York University, New York, NY
Us)

(*) Notice: Under 35 U.S.C. 154(b), the term of this

patent shall be extended for O days.

(21) Appl. No.: 09/005,174

(22) Filed: Jan. 9, 1998
(51) Int. CL7 oo cenecensnncs GO6F 15/16
(52) US. Cl ..o 709/203; 709/246
(58) Field of Searchccccvevvcnunnne 709/217, 219,
709/246, 247, 203; 707/10; 382/103, 233,
235, 232, 240, 302
(56) References Cited
U.S. PATENT DOCUMENTS
4,622,632 11/1986 Tanimoto .
5,341,466 8/1994 Perlin .
5,481,622 * 1/1996 Gerhardt et al. ... 382/103
5,568,598 * 10/1996 Mack et al. ... 382/302 X
5,710,835 * 1/1998 Bradleyoviviniiinnnne 382/233
5,724,070 * 3/1998 Denninghoff et al. .. 382235 X
5,861,920 * 1/1999 Mead et al.oevevnnennn. 382/232 X
5,880,856 * 3/1999 Ferrierecvivvinninnnne 382/240 X
5,920,865 * 7/1999 Arigaoiiiinniinn. 707/10

OTHER PUBLICATIONS

Tams Frajka et al., Progressive Image Coding with Spatially
Variable Resolution, IEEE, Proceedings International Con-
ference on Image Processing 1997, Oct. 1997, vol. 1, pp.
53-56.%

2

E. C. Chang et al., “Realtime Visualization of Large . . .
Mar. 31, 11997, pp. 1-9, Courant Institute of Mathematical
Sciences, New York University, N.Y. US.A.

E. C. Chang et al., “A Wavelet Approach to Foveating
Images”, Jan. 10, 1997,pp. 1-11, Courant Institute of Math-
ematical Sciences, New York University, N.Y. U.S.A.

S.G. Mallat, “A Theory for Multiresolutional Signal Decom-
position . . . 7, IEEE Transactions on Pattern Analysis and
Machine Intelligence,pp. 3-23, Jul. 1989, vol. 11, No. 7,
IEEE Computer Society.

News Release, “Wavelet Image Features”,Summus’Wavelet
Image Compression,Summus 14 pages.

R.L. White et al., “Compression and Progressive Transmis-
sion of Astronomical Images”, SPIE Technical Conference
2199, 1994.

(List continued on next page.)

Primary Examiner—Zarni Maung
Assistant Examiner—Patrice Winder
(74) Attorney, Agent, or Firm—Baker Botts, L.L.P.

(7) ABSTRACT

A client apparatus which enables a realtime visualization of
at least one image. The client apparatus includes a storage
device which stores first data corresponding to a multifove-
ated representation of an original image, and a user input
device which providing second data corresponding to at
least one visualization command of at least one user. In
addition, the client apparatus includes a processing arrange-
ment which generates third data corresponding to a multi-
foveated image using the first data, the second data and a
foveation operator.

8 Claims, 6 Drawing Sheets

CONVERT USER INPUT
(FOVEAL REGION} TO
(MULTI RESOLUTION}
REQUEST FOR

COEFFICIENTS

SEND (MULT
RESOLUTION) REQUEST
TO SERVER FOR
COEFFICIENTS

DETERMINE FOVEAL

|

REGION FROM USER
INPUT 1

RECEIVE COEFFICIENTS
FROM SERVER

UPDATE DISPLAY
WINDOWS
(PROGRESSIVELY)

BASED ON PYRAMID
REPRESENTATION

—
-
i PERFORM INVERSE
WAVELET TRANSFORM
ON COEFFICIENTS
(IF NECESSARY}
AND STORE
(PROGRESSIVELY) IN
PYRAMID

20

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1
Page 2

OTHER PUBLICATIONS

E.L. Schwartz, “The Development of Specific Visual . . . ”
Journal of Theoretical Biology, 69:655-685, 1977.

E.S. Hill Jr. et al.,“Interactive Image Query . . . ” Computer
Graphics, 17(3), 1983.

T.H. Reeves et al,, “Adaptive Foveation of MPEG Video”,
Proceedings of the 4th ACM International Multimedia Con-
ference, 1996.

R.S. Wallace et al., “Space—variant image processing”. Int’l.
J. of Computer Vision, 13:1(1994) 71-90.

E.L. Schwartz A quantitative model of the functional archi-
tecture: Biological cybernetics, 37(1980) 63-76.

P. Kortum et al., “Implementation of a Foveated Image . . .
” Human Vision and Electronic Imagining, SPIE Proceed-
ings vol. 2657, 350-360, 1996.

M.H. Gross et al., “Efficient triangular surface . . . ”, IEEE
Trans on Visualization and Computer Graphics, 2(2) 1996.

* cited by examiner

Microsoft et al.

Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 1 of 6 US 6,182,114 B1

FI1G. 1

Microsoft et al. Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 2 of 6 US 6,182,114 B1
N > >
a b
17
|
Y
C d
v
N/2 —> \ > N/2
8\ g=@*btctd) | (atb-c-d) P
—~ 2 2 -
v
o f t o
s
_\ e
oo (3-bre-d) | (a-b-c+d)
2 2
N/2 > < N/2
FI1G. 2A

Microsoft et al. Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 3 of 6 US 6,182,114 B1

a'+b+c+d b a+b-c-d

17

-
a-b+c-d a-b-c+d
C = 2 d - 2
N
8 ,_(a+b+c+d) (@a+b-c-d) 10

— ° 2 ° 7 2 —

FI1G. 2B

Microsoft et al. Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 4 of 6 US 6,182,114 B1

LET L=0

v

LET N = NUMBER OF ROWS AND COLUMNS OF PIXELS IN THE (SQUARE) IMAGE

'
LET X = THE NEXT OF THE THREE COLOR COMPONENTS OF THE IMAGE (R, G OR B)

I

LET M, (X) = BE THE NxN MATRIX WHOSE COEFFICIENTS EQUAL THE NUMERIC
VALUE OF THE X COMPONENT OF THE CORRESPONDING PIXEL OF THE IMAGE

!

"AVERAGE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR COEFFICIENTS IN M, (X)

v
LETH, ,,(X) = BE THE Nj2xN|2 MATRIX WHOSE COEFFICIENTS EQUAL THE
"HORIZONTAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR
COEFFICIENTS IN M, (X)

:

LETV, ,,(X) = BE THE Nj2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE
"VERTICAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR
COEFFICIENTS IN M, (X)

l

LET D, , ,(X) = BE THE NJ2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE
"DIAGONAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR
COEFFICIENTS IN M, {X)

1]

(X) V

STOREH (X), D, _,(X)

L+1 L+1 L+1

NO

LET M, , ,(X) = BE THE Nj2xNJ2 MATRIX WHOSE COEFFICIENTS EQUAL THE t_

ISN < 2567
Y

STORE M, (X)

ARE THERE YES

MORE COLOR COMPONENT(S)
LEFT?

FIG. 3

Microsoft et al.

Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 5 of 6 US 6,182,114 B1

CONVERT USER INPUT 18
(FOVEAL REGION) TO /
(MULTI RESOLUTION)

REQUEST FOR
COEFFICIENTS

SEND (MULTI
RESOLUTION) REQUEST
TO SERVER FOR
COEFFICIENTS

l l

DETERMINE FOVEAL
REGION FROM USER |¢—
INPUT

UPDATE DISPLAY
RECEIVE COEFFICIENTS WINDOWS
FROM SERVER (PROGRESSIVELY)
BASED ON PYRAMID
REPRESENTATION

| S

PERFORM INVERSE
WAVELET TRANSFORM
ON COEFFICIENTS
(IF NECESSARY)
AND STORE
(PROGRESSIVELY) IN
PYRAMID

\

19

FIG. 4

Microsoft et al. Exhibit 1005

APPENDIX J

U.S. Patent Jan. 30, 2001 Sheet 6 of 6 US 6,182,114 B1

LET L = LEVEL OF RESOLUTION SUCH
THAT THE SIZE OF IMAGE M, IS 128 x128
MATRIX. THE LOWEST LEVEL OF
RESOLUTION SUPPORTED

200

-

210

IS
L = THE LEVEL OF LOWEST
RESOLUTION?

NO

260

HAVE THE
HORIZONTAL,
VERTICAL AND
DIAGONAL DIFFERENCE
COEFFICIENTS NECESSARY
TO RECONSTRUCT THE
COEFFICIENTS IN M, (R), M (G)

ANDM, (B) CORRESPONDING
TO THE PIXELS IN
THE FOVEAL
REGION BEEN
REQUESTED?

220

HAVE THE
COEFFICIENTS
OF M_(R), M, (G) AND
M, (B) CORRESPONDING \YES
TO THE PIXELS
IN THE FOVEAL
REGION BEEN
REQUESTED

YES

lNO

REQUEST THE

REQUEST THE
COEFFICIENTS
ACCORDING TO THE
MASK

DIFFERENCE
COEFFICIENTS
ACCORDING TO THE
MASK

240

\

270

RETURN TO 250
MANAGER THREAD |~
FIG.5

Microsoft et al. Exhibit 1005

APPENDIX J

US 6,182,114 B1

1

APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING USER-
DEFINED DYNAMIC, MULTI-FOVEATED
IMAGES

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for serving images, even very large images, over a “thin-
wire” (e.g., over the Internet or any other network or
application having bandwidth limitations).

BACKGROUND INFORMATION

The Internet, including the World Wide Web, has gained
in popularity in recent years. The Internet enables clients/
users to access information in ways never before possible
over existing communications lines.

Often, a client/viewer desires to view and have access to
relatively large images. For example, a client/viewer may
wish to explore a map of a particular geographic location.
The whole map, at highest (full) level of resolution will
likely require a pixel representation beyond the size of the
viewer screen in highest resolution mode.

One response to this restriction is for an Internet server to
pre-compute many smaller images of the original image.
The smaller images may be lower resolution (zoomed-out)
views and/or portions of the original image. Most image
archives use this approach. Clearly this is a sub-optimal
approach since no preselected set of views can anticipate the
needs of all users.

Some map servers (see, e.g., URLs http://
www.mapquest.com and http://www.MapOnUs.com) use an
improved approach in which the user may zoom and pan
over a large image. However, transmission over the Internet
involves significant bandwidth limitations (i.e transmission
is relatively slow). Accordingly, such map servers suffer
from at least three problems:

Since a brand new image is served up for each zoom or
pan request, visual discontinuities in the zooming and
panning result. Another reason for this is the discrete
nature of the zoom/pan interface controls.

Significantly less than realtime response.

The necessarily small fixed size of the viewing window
(typically about 3"x4.5"). This does not allow much of
a perspective.

To generalize, what is needed is an apparatus and method
which allows realtime visualization of large scale images
over a “thinwire” model of computation. To put it another
way, it is desirable to optimize the model which comprises
an image server and a client viewer connected by a low
bandwidth line.

One approach to the problem is by means of progressive
transmission. Progressive transmission involves sending a
relatively low resolution version of an image and then
successively transmitting better resolution versions.
Because the first, low resolution version of the image
requires far less data than the full resolution version, it can
be viewed quickly upon transmission. In this way, the viewer
is allowed to see lower resolution versions of the image
while waiting for the desired resolution version. This gives
the transmission the appearance of continuity. In addition, in
some instances, the lower resolution version may be suffi-
cient or may in any event exhaust the display capabilities of
the viewer display device (e.g., monitor).

Thus, R. L. White and J. W. Percival, “Compression and
Progressive Transmission of Astronomical Images,” SPIE

10

15

20

25

30

40

45

50

55

60

65

2

Technical Conference 2199, 1994, describes a progressive
transmission technique based on bit planes that is effective
for astronomical data.

However, utilizing progressive transmission barely begins
to solve the “thinwire” problem. A viewer zooming or
panning over a large image (e.g., map) desires realtime
response. This of course is not achieved if the viewer must
wait for display of the desired resolution of a new quadrant
or view of the map each time a zoom and pan is initiated.
Progressive transmission does not achieve this realtime
response when it is the higher resolution versions of the
image which are desired or needed, as these are transmitted
later.

The problem could be effectively solved, if, in addition to
variable resolution over time (i.e, progressive transmission),
resolution is also varied over the physical extent of the
image.

Specifically, using foveation techniques, high resolution
data is transmitted at the user’s gaze point but with lower
resolution as one moves away from that point. The very
simple rationale underlying these foveation techniques is
that the human field of vision (centered at the gaze point) is
limited. Most of the pixels rendered at uniform resolution
are wasted for visualization purposes. In fact, it has been
shown that the spatial resolution of the human eye decreases
exponentially away from the center gaze point. E. L.
Schwartz, “The Development of Specific Visual Projections
in the Monkey and the Goldfish: Outline of a Geometric
Theory of Receptotopic Structure,” Journal of Theoretical
Biology, 69:655-685, 1977

The key then is to mimic the movements and spatial
resolution of the eye. If the user’s gaze point can be tracked
in realtime and a truly multi-foveated image transmitted
(ie., a variable resolution image mimicking the spatial
resolution of the user’s eye from the gaze point), all data
necessary or useful to the user would be sent, and nothing
more. In this way, the “thinwire” model is optimized,
whatever the associated transmission capabilities and band-
width limitations.

In practice, in part because eye tracking is imperfect,
using multi-foveated images is superior to atempting display
of an image portion of uniform resolution at the gaze point.

There have in fact been attempts to achieve multifoveated
images in a “thinwire” environment.

F. S. Hill Jr., Sheldon Walker Jr. and Fuwen Gao, “Inter-
active Image Query System Using Progressive
Transmission,” Computer Graphics, 17(3), 1983, describes
progressive transmission and a form of foveation for a
browser of images in an archive. The realtime requirement
does not appear to be a concern.

T. H. Reeves and J. A. Robinson, “Adaptive Foveation of
MPEG Video,” Proceedings of the 4" ACM International
Multimedia Conference, 1996, gives a method to foveate
MPEG-standard video in a thin-wire environment. MPEG-
standard could provide a few levels of resolution but they
consider only a 2-level foveation. The client/viewer can
interactively specify the region of interest to the server/
sender.

R. S. Wallace and P. W. Ong and B. B. Bederson and E.
L. Schwartz, “Space-variant image processing”. Intl. J. Of
Computer Vision, 13:1 (1994) 71-90 discusses space-
variant images in computer vision. “Space-Variant” may be
regarded as synonymous with the term “multifoveated” used
above. A biological motivation for such images is the
complex logmap model of the transformation from the retina
to the visual cortex (E. L. Schwartz, “A quantitative model
of the functional architecture of human striate cortex with

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1

3

application to visual illusion and cortical texture analysis”,
Biological Cybernetics, 37(1980) 63-76).

Philip Kortum and Wilson S. Geisler, “Implementation of
a Foveated Image Coding System For Image Bandwidth
Reduction,” Human Vision and FElectronic Imaging, SPIE
Proceedings Vol. 2657, 350-360, 1996, implement a real
time system for foveation-based visualization. They also
noted the possibility of using foveated images to reduce
bandwidth of transmission.

M. H. Gross, O. G. Staadt and R. Gatti, “Efficient trian-
gular surface approximations using wavelets and quadtree
data structures”, IEEE Trans, On Visualization and Com-
puter Graphics, 2(2), 1996, uses wavelets to produce mul-
tifoveated images.

Unfortunately, each of the above attempts are essentially
based upon fixed super-pixel geometries, which amount to
partitioning the visual field into regions of varying (pre-
determined) sizes called super-pixels, and assigning the
average value of the color in the region to the super-pixel.
The smaller pixels (higher resolution) are of course intended
to be at the gaze point, with progressively larger super-pixels
(lower resolution) about the gaze point.

However, effective real-time visulization over a “thin
wire” requires precision and flexibility. This cannot be
achieved with a geometry of predetermined pixel size. What
is needed is a flexible foveation technique which allows one
to modify the position and shape of the basic foveal regions,
the maximum resolution at the foveal region and the rate at
which the resolution falls away. This will allow the “thin-
wire” model to be optimized.

In addition, none of the above noted references addresses
the issue of providing multifoveated images that can be
dynamically (incrementally) updated as a function of user
input. This property is crucial to the solution of the thinwire
problem, since it is essential that information be “streamed”
at a rate that optimally matches the bandwidth of the
network with the human capacity to absorb the visual
information.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the
prior art by utilizing means for tracking or approximating
the user’s gaze point in realtime and, based on the
approximation, transmitting dynamic multifoveated image
(s) (i.e., a variable resolution image over its physical extent
mimicking the spatial resolution of the user’s eye about the
approximated gaze point) updated in realtime.

“Dynamic” means that the image resolution is also vary-
ing over time. The user interface component of the present
invention may provide a variety of means for the user to
direct this multifoveation process in real time.

Thus, the invention addresses the model which comprises
an image server and a client viewer connected by a low
bandwidth line. In effect, the invention reduces the band-
width from server to client, in exchange for a very modest
increase of bandwidth from the client to the server

Another object of the invention is that it allows realtime
visualization of large scale images over a “thinwire” model
of computation.

An additional advantage is the new degree of user control
provided for realtime, active, visualization of images
(mainly by way of foveation techniques). The invention
allows the user to determine and change in realtime, via
input means (for example, without limitation, a mouse
pointer or eye tracking technology), the variable resolution
over the space of the served up image(s).

10

15

20

25

30

35

40

45

50

55

60

65

4

An additional advantage is that the invention demon-
strates a new standard of performance that can be achieved
by large-scale image servers on the World Wide Web at
current bandwidth or even in the near future.

Note also, the invention has advantages over the tradi-
tional notion of progressive transmission, which has no
interactivity. Instead, the progressive transmission of an
image has been traditionally predetermined when the image
file is prepared. The invention’s use of dynamic (constantly
changing in realtime based on the user’s input) multifove-
ated images allows the user to determine how the data are
progressively transmitted.

Other advantages of the invention include that it allows
the creation of the first dynamic and a more general class of
multifoveated images. The present invention can use wave-
let technology. The flexibility of the foveation approach
based on wavelets allows one to easily modify the following
parameters of a multifoveated image: the position and shape
of the basic foveal region(s), the maximum resolution at the
foveal region(s), and the rate at which the resolution falls
away. Wavelets can be replaced by any multi resolution
pyramid schemes. But it seems that wavelet-based
approaches are preferred as they are more flexible and have
the best compression properties.

Another advantage is the present invention’s use of
dynamic data structures and associated algorithms. This
helps optimize the “effective real time behavior” of the
system. The dynamic data structures allow the use of “partial
information” effectively. Here information is partial in the
sense that the resolution at each pixel is only partially
known. But as additional information is streamed in, the
partial information can be augmented. Of course, this prin-
ciple is a corollary to progressive transmission.

Another advantage is that the dynamic data structures
may be well exploited by the special architecture of the
client program. For example, the client program may be
multi-threaded with one thread (the “manager thread”)
designed to manage resources (especially bandwidth
resources). This manager is able to assess network
congestion, and other relevant parameters, and translate any
literal user request into the appropriate level of demand for
the network. For example, when the user’s gaze point is
focused on a region of an image, this may be translated into
requesting a certain amount, say, X bytes of data. But the
manager can reduce this to a request over the network of
(say) X/2 bytes of data if the traffic is congested, or if the
user is panning very quickly.

Another advantage of the present invention is that the
server need send only that information which has not yet
been served. This has the advantage of reducing communi-
cation traffic.

Further objects and advantages of the invention will
become apparent from a consideration of the drawings and
ensuing description.

BRIEF DESRIPTION OF DRAWINGS

FIG. 1 shows an embodiment of the present invention
including a server, and client(s) as well as their respective
components.

FIG. 2a illustrates one level of a particular wavelet
transform, the Haar wavelet transform, which the server may
execute in one embodiment of the present invention.

FIG. 2b illustrates one level of the Haar inverse wavelet
transform.

FIG. 3 is a flowchart showing an algorithm the server may
execute to perform a Haar wavelet transform in one embodi-
ment of the present invention.

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1

5

FIG. 4 shows Manager, Display and Network threads,
which the client(s) may execute in one embodiment of the
present invention.

FIG. 5 is a more detailed illustration of a portion of the
Manager thread depicted in FIG. 4.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 depicts an overview of the components in an
exemplary embodiment of the present invention. A server 1
is comprised of a storage device 3, a memory device 7 and
a computer processing device 4. The storage device 3 can be
implemented as, for example, an internal hard disk, Tape
Cartridge, or CD-ROM. The faster access and greater stor-
age capacity the storage device 3 provides, the more pref-
erable the embodiment of the present invention. The
memory device 7 can be implemented as, for example, a
collection of RAM chips.

The processing device 4 on the server 1 has network
protocol processing element 12 and wavelet transform ele-
ment 13 running off it. The processing device 4 can be
implemented with a single microprocessor chip (such as an
Intel Pentium chip), printed circuit board, several boards or
other device. Again, the faster the speed of the processing
device 4, the more preferable the embodiment. The network
protocol processing element 12 can be implemented as a
separate “software” (i.e., a program, sub-process) whose
instructions are executed by the processing device 4. Typical
examples of such protocols include TCP/IP (the Internet
Protocol) or UDP (User Datagram Protocol). The wavelet
transform element 13 can also be implemented as separate
“software” (i.e., a program, sub-process) whose instructions
are executed by the processing device 4.

In a preferred embodiment of the present invention, the
server 1 is a standard workstation or Pentium class system.
Also, TCP/IP processing may be used to implement the
network protocol processing element 12 because it reduces
complexity of implementation. Although a TCP/IP imple-
mentation is simplest, it is possible to use the UDP protocol
subject to some basic design changes. The relative advan-
tage of using TCP/IP as against UDP is to be determined
empirically. An additional advantage of using modern, stan-
dard network protocols is that the server 1 can be con-
structed without knowing anything about the construction of
its client(s) 2.

According to the common design of modern computer
systems, the most common embodiments of the present
invention will also include an operating system running off
the processing means device 4 of the server 1. Examples of
operating systems include, without limitation, Windows 95,
Unix and Windows NT. However, there is no reason a
processing device 4 could not provide the functions of an
“operating system” itself.

The server 1 is connected to a client(s) 2 in a network.
Typical examples of such servers 1 include image archive
servers and map servers on the World Wide Web.

The client(s) 2 is comprised of a storage device 3,
memory device 7, display 5, user input device 6 and pro-
cessing device 4. The storage device 3 can be implemented
as, for example, an internal hard disks, Tape Cartridge, or
CD-ROM. The faster access and greater storage capacity the
storage device 3 provides, the more preferable the embodi-
ment of the present invention. The memory device 7 can be
implemented as, for example, a collection of RAM chips.
The display 5 can be implemented as, for example, any
monitor, whether analog or digital. The user input device 6

10

15

35

40

45

50

55

60

65

6

can be implemented as, for example, a keyboard, mouse,
scanner or eye-tracking device.

The client 2 also includes a processing device 4 with
network protocol processing element 12 and inverse wavelet
transform element means 14 running off it. The processing
device 4 can be implemented as, for example, a single
microprocessor chip (such as an Intel Pentium chip), printed
circuit board, several boards or other device. Again, the
faster the run time of the processing device 4, the more
preferable the embodiment. The network protocol process-
ing element 12 again can be implemented as a separate
“software” (i.e., a program, sub-process) whose instructions
are executed by the processing device 4. Again, TCP/IP
processing may be used to implement the network protocol
processing element 12. The inverse wavelet transform ele-
ment 14 also may be implemented as separate “software.”
Also running off the processing device 4 is a user input
conversion mechanism 16, which also can be implemented
as “software.”

As with the server 1, according to the common design of
modern computer systems, the most common embodiments
of the present invention will also include an operating
system running off the processing device 4 of the client(s) 2.

In addition, if the server 1 is connected to the client(s) 2
via a telephone system line or other systems/lines not
carrying digital pulses, the server 1 and client(s) 2 both also
include a communications converter device 15. A commu-
nications converter device 15 can be implemented as, for
example, a modem. The communications converter device
15 converts digital pulses into the frequency/signals carried
by the line and also converts the frequency/signals back into
digital pulses, allowing digital communication.

In the operation of the present invention, the extent of
computational resources (e.g., storage capacity, speed) is a
more important consideration for the server 1, which is
generally shared by more than one client 2, than for the
client(s) 2.

In typical practice of the present invention, the storage
device 3 of the server 1 holds an image file, even a very large
image file. A number of client 2 users will want to view the
image.

Prior to any communication in this regard between the
server 1 and client(s) 2, the wavelet transform element 13 on
the server 1 obtains a wavelet transform on the image and
stores it in the storage device 3.

There has been extensive research in the area of wavelet
theory. However, briefly, to illustrate, “wavelets” are defined
by a group of basis functions which, together with coeffi-
cients dependant on an input function, can be used to
approximate that function over varying scales, as well as
represent the function exactly in the limit. Accordingly,
wavelet coefficients can be categorized as “average” or
“approximating coefficients” (which approximate the
function) and “difference coefficients” (which can be used to
reconstruct the original function exactly). The particular
approximation used as well as the scale of approximation
depend upon the wavelet bases chosen. Once a group of
basis functions is chosen, the process of obtaining the
relevant wavelet coefficients is called a wavelet transform.

In the preferred embodiment, the Haar wavelet basis
functions are used. Accordingly, in the preferred
embodiment, the wavelet transform element 13 on the server
1 performs a Haar wavelet transform on a file representation
of the image stored in the storage device 3, and then stores
the transform on the storage device 3. However, it is readily
apparent to anyone skilled in the art that any of the wavelet

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1

7

family of transforms may be chosen to implement the
present invention.

Note that once the wavelet transform is stored, the origi-
nal image file need not be kept, as it can be reconstructed
exactly from the transform.

FIG. 2 illustrates one step of the Haar wavelet transform.
Start with an n by n matrix of coefficients 17 whose entries
correspond to the numeric value of a color component (say,
Red, Green or Blue) of a square screen image of n by n
pixels. Divide the original matrix 17 into 2 by 2 blocks of
four coefficients, and for each 2x2 block, label the coeffi-
cient in the first column, first row “a,”; second column, first
row “b”; second row, first column “c”; and second row,
second column “d.”

Then one step of the Haar wavelet transform creates four
n/2 by n/2 matrices. The first is an n/2 by n/2 approximation
matrix 8 whose entries equal the “average” of the corre-
sponding 2 by 2 block of four coefficients in the original
matrix 17. As is illustrated in FIG. 2, the coefficient entries
in the approximation matrix 8 are not necessarily equal to
the average of the corresponding four coefficients a, b, ¢ and
d (ie., a'=(a+b+c+d)/4) in the original matrix 17. Instead,
here, the “average” is defined as (a+b+c+d)/2.

The second is an n/2 by n/2 horizontal difference matrix
10 whose entries equal b'=(a+b—c-d)/2, where a, b, ¢ and d
are, respectively, the corresponding 2x2 block of four coef-
ficients in the original matrix 17. The third is an n/2 by n/2
vertical difference matrix 9 whose entries equal c¢'=(a-b+c-
d)/2, where a, b, ¢ and d are, respectively, the corresponding
2x2 block of four coefficients in the original matrix 17. The
fourth is an n/2 by n/2 diagonal difference matrix 11 whose
entries equal d'=(a-b-c+d)/2, where a, b, ¢ and d are,
respectively, the corresponding 2x2 block of four coeffi-
cients in the original matrix 17.

A few notes are worthy of consideration. First, the entries
a', b', ¢!, d' are the wavelet coefficients. The approximation
matrix 8 is an approximation of the original matrix 17 (using
the “average” of each 2x2 group of 4 pixels) and is one
fourth the size of the original matrix 17.

Second, each of the 2x2 blocks of four entries in the
original matrix 17 has one corresponding entry in each of the
four n/2 by n/2 matrices. Accordingly, it can readily be seen
from FIG. 2 that each of the 2x2 blocks of four entries in the
original matrix 17 can be reconstructed exactly, and the
transformation is invertible. Therefore, the original matrix
17 representation of an image can be discarded during
processing once the transform is obtained.

Third, the transform can be repeated, each time starting
with the last approximation matrix 8 obtained, and then
discarding that approximation matrix 8 (which can be
reconstructed) once the next wavelet step is obtained. Each
step of the transform results in approximation and difference
matrices ¥ the size of the approximation matrix 8 of the
prior step.

Retracing each step to synthesize the original matrix 17 is
called the inverse wavelet transform, one step of which is
depicted in FIG. 2b.

Finally, it can readily be seen that the approximation
matrix 8 at varying levels of the wavelet transform can be
used as a representation of the relevant color component of
the image at varying levels of resolution.

Conceptually then, the wavelet transform is a series of
approximation and difference matrices at various levels (or
resolutions). The number of coefficients stored in a wavelet
transform is equal to the number of pixels in the original

10

15

20

25

30

35

40

45

50

55

60

65

8

matrix 17 image representation. (However, the number of
bits in all the coefficients may differ from the number of bits
in the pixels. Applying data compression to coefficients turns
out to be generally more effective on coefficients.) If we
assume the image is very large, the transform matrices must
be further decomposed into blocks when stored on the
storage means 3.

FIG. 3 is a flowchart showing one possible implementa-
tion of the wavelet transform element 13 which performs a
wavelet transform on each color component of the original
image. As can be seen from the flowchart, the transform is
halted when the size of the approximation matrix is 256x
256, as this may be considered the lowest useful level of
resolution.

Once the wavelet transform element 13 stores a transform
of the image(s) in the storage means 3 of the server 1, the
server 1 is ready to communicate with client(s) 2.

In typical practice of the invention the client 2 user
initiates a session with an image server 1 and indicates an
image the user wishes to view via user input means 6. The
client 2 initiates a request for the 256 by 256 approximation
matrix 8 for each color component of the image and sends
the request to the server 1 via network protocol processing
element 12. The server 1 receives and processes the request
via network protocol processing element 12. The server 1
sends the 256 by 256 approximation matrices 8 for each
color component of the image, which the client 2 receives in
similar fashion. The processing device 4 of the client 2 stores
the matrices in the storage device 3 and causes a display of
the 256 by 256 version of the image on the display 5. It
should be appreciated that the this low level of resolution
requires little data and can be displayed quickly. In a map
server application, the 256 by 256, coarse resolution version
of the image may be useful in a navigation window of the
display 5, as it can provide the user with a position indicator
with respect to the overall image.

A more detailed understanding of the operation of the
client 2 will become apparent from the discussion of the
further, continuous operation of the client 2 below.

Continuous operation of the client(s) 2 is depicted in FIG.
4. In the preferred embodiment, the client(s) 2 processing
device may be constructed using three “threads,” the Man-
ager thread 18, the Network Thread 19 and the Display
Thread 20. Thread programming technology is a common
feature of modern computers and is supported by a variety
of platforms. Briefly, “threads” are processes that may share
a common data space. In this way, the processing means can
perform more than one task at a time. Thus, once a session
is initiated, the Manager Thread 18, Network Thread 19 and
Display Thread 20 run simultaneously, independently and
continually until the session is terminated. However, while
“thread technology” is preferred, it is unnecessary to imple-
ment the client(s) 2 of the present invention.

The Display Thread 20 can be based on any modern
windowing system running off the processing device 4. One
function of the Display Thread 20 is to continuously monitor
user input device 6. In the preferred embodiment, the user
input device 6 consists of a mouse or an eye-tracking device,
though there are other possible implementations. In a typical
embodiment, as the user moves the mouse position, the
current position of the mouse pointer on the display 5
determines the foveal region. In other words, it is presumed
the user gaze point follows the mouse pointer, since it is the
user that is directing the mouse pointer. Accordingly, the
display thread 20 continuously monitors the position of the
mouse pointer.

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1

9

In one possible implementation, the Display Thread 20
places user input requests (i.e., foveal regions determined
from user input device 6) as they are obtained in a request
queue. Queue’s are data structures with first-in-first-out
characteristics that are generally known in the art.

The Manager Thread 18 can be thought of as the brain of
the client 2. The Manager Thread 18 converts the user input
request in the request queue into requests in the manager
request queue, to be processed by the Network Thread 19.
The user input conversion mechanism 16 converts the user
determined request into a request for coefficients.

A possible implementation of user input conversion
mechanism 16 is depicted in the flow chart in FIG. 5.
Essentially, the user input conversion mechanism 16
requests all the coefficient entries corresponding to the
foveal region in the horizontal difference 10 matrices, ver-
tical difference 9 matrices, diagonal difference matrices 11
and approximation matrix 8 of the wavelet transform of the
image at each level of resolution. (Recall that only the last
level approximation matrix 8 needs to be stored by the server
1.) That is, wavelet coeflicients are requested such that it is
possible to reconstruct the coefficients in the original matrix
17 corresponding to the foveal region.

As the coefficients are included in the request, they are
masked out. The use of a mask is commonly understood in
the art. The mask is maintained to determine which coeffi-
cients have been requested so they are not requested again.
Each mask can be represented by an array of linked lists (one
linked list for each row of the image at each level of
resolution).

As shown in FIG. 5, the input conversion mechanism 16
determines the current level of resolution (“L”) of an image
(“M,) such that the image M, is, e.g., 128x128 pixel matrix
(for example, the lowest supported resolution), as shown in
Step 200. Then, the input conversion mechanism 16 deter-
mines if the current level L is the lowest resolution level
(Step 210). If so, it is determined if the three color coeffi-
cients (i.e., M;(R), M, (G), and M, (B)) correspond to the
foveal region that has been requested (Step 220). If that is
the case, then the input conversion mechanism 16 confirms
that the current region L is indeed the lowest resolution
region (Step 240), and returns the control to the Manager
Thread 18 (Step 250). If, in Step 220, it is determined that
the three color coefficients have not been requested, these
coefficients are requested using the mask described above,
and the process continues to Step 240, and the control is
returned to the Manager Thread 18 (Step 250).

If, in Step 210, it is determined that the current level L is
not the lowest resolution level, then the input conversion
mechanism 16 determines whether the horizontal, vertical
and diagonal difference coefficients (which are necessary to
reconstruct the three color coefficients) have been requested
(Step 260). If so, then the input conversion mechanism 16
skips to Step 280 to decrease the current level L by 1.
Otherwise a set of difference coefficients may be requested.
This set depends on the mask and the foveal parameters
(e.g., a shape of the foveal region, a maximum resolution, a
rate of decay of the resolution, etc.). The user may select
“formal” values for these foveal parameters, but the Man-
ager Thread 18 may, at this point, select the “effective”
values for these parameters to ensure a trade-off between (1)
achieving a reasonable response time over the estimated
current network bandwidth, and (2) achieving a maximum
throughput in the transmission of data. The process then
continues to Step 280. Thereafter, the input conversion
mechanism 16 determines whether the current level L is

10

15

25

30

35

40

45

50

55

60

65

10

greater or equal to zero (Step 240). If that is the case, the
process loops back to step 260. Otherwise, the control is
returned to the Manager Thread 18 (Step 250).

The Network Thread 19 includes the network protocol
processing element 12. The Network Thread obtains the
(next) multi-resolution request for coefficients correspond-
ing to the foveal region from request queue and processes
and sends the request to the server 1 via network protocol
processing element 12.

Notice that the data requested is “local” because it rep-
resents visual information in the neighborhood of the indi-
cated part of the image. The data is incremental because it
represents only the additional information necessary to
increase the resolution of the local visual information.
(Information already available locally is masked out).

The server 1 receives and processes the request via
network protocol processing element 12, and sends the
coefficients requested. When the coefficients are sent, they
are masked out. The mask is maintained to determine which
coefficients have been sent and for deciding which blocks of
data can be released from main memory. Thus, an identical
version of the mask is maintained on both the client 2 side
and server 1 side.

The Network Thread 19 of the client 2 receives and
processes the coefficients. The Network Thread 19 also
includes inverse wavelet transform element 14. The inverse
wavelet transform element 14 performs an inverse wavelet
transform on the received coefficients and stores the result-
ing portion of an approximation matrix 8 each time one is
obtained (i.e., at each level of resolution) in the storage
device 3 of the client 2. The sub-image is stored at each
(progressively higher, larger and less course) level of its
resolution.

Note that as the client 2 knows nothing about the image
until it is gradually filled in as coefficients are requested.
Thus, sparse matrices (sparse, dynamic data structures) and
associated algorithms can be used to store parts of the image
received from the server 1. Sparse matrices are known in the
art and behave like normal matrices except that the memory
space of the matrix are not allocated all at once. Instead the
memory is allocated in blocks of sub-matrices. This is
reasonable as the whole image may require a considerable
amount of space.

Simultaneously, the Display thread 20 (which can be
implemented using any modern operating system or win-
dowing system) updates the display 5 based on the pyramid
representation stored in the storage device 3.

Of course, the Display thread 20 continues its monitoring
of the user input device 6 and the whole of client 2
processing continues until the session is terminated.

A few points are worthy of mention. Notice that since
lower, coarser resolution images will be stored on the client
2 first, they are displayed first Also, the use of foveated
images ensures that the incremental data to update the view
is small, and the requested data can arrive within the round
trip time of a few messages using, for example, the TCP/IP
protocol.

Also notice, that a wavelet coefficient at a relatively
coarser level of resolution corresponding to the foveal
region affects a proportionately larger part of the viewer’s
screen than a coefficient at a relatively finer level of reso-
lution corresponding to the foveal region (in fact, the reso-
lution on the display 5 exponentially away from the mouse
pointer). Also notice the invention takes advantage of pro-
gressive transmission, which gives the image perceptual
continuity. But unlike the traditional notion of progressive

Microsoft et al.

Exhibit 1005

APPENDIX J

US 6,182,114 B1

11

transmission, it is the client 2 user that is determining
transmission ordering, which is not pre-computed because
the server 1 doesn’t know what the client(s) 2 next request
will be. Thus, as noted in the objects and advantages section,
the “thinwire” model is optimized.

Note that in the event the thread technology is utilized to
implement the present invention, semaphores data structures
are useful if the threads share the same data structures (e.g.,
the request queue). Semaphores are well known in the art
and ensure that only one simultaneous process (or “thread”)
can access and modify a shared data structure at one time.
Semaphores are supported by modern operating systems.

CONCLUSION

It is apparent that various useful modifications can be
made to the above description while remaining within the
scope of the invention.

For example, without limitation, the user can be provided
with two modes for display: to always fill the pixels to the
highest resolution that is currently available locally or to fill
them up to some user specified level. The client 2 display 5
may include a re-sizable viewing window with minimal
penalty on the realtime performance of the system. This is
not true of previous approaches. There also may be an
auxiliary navigation window (which can be re-sized but is
best kept fairly small because it displays the entire image at
a low resolution). The main purpose of such a navigation
window would be to let the viewer know the size and
position of the viewing window in relation to the whole
image.

It is readily seen that further modifications within the
scope of the invention provide further advantages to the user.
For example, without limitation, the invention may have the
following capabilities: continuous realtime panning, con-
tinuous realtime zooming, foveating, varying the foveal
resolution and modification of the shape and size of the
foveal region. A variable resolution feature may also allow
the server 1 to dynamically adjust the amount of transmitted
data to match the effective bandwidth of the network.

While the above description contains many specificities,
these should not be construed as limitations on the scope of
the invention, but rather as an exemplification of one pre-
ferred embodiment thereof. Many other variations are pos-
sible. Accordingly, the scope of the invention should be
determined not by the embodiment(s) illustrated, but by the
appended claims and their legal equivalents.

12

What is claimed is:
1. A client apparatus for enabling a realtime visualization
of at least one image, the client apparatus comprising:
a storage device storing first data corresponding to a
5 multifoveated representation of an original image,

a user input device providing second data corresponding
to at least one visualization command of at least one
user; and

a processing arrangement generating third data corre-
sponding to a multifoveated image using the first data,
the second data and a foveation operator.

2. The client apparatus of claim 1, further comprising a
network protocol processing element which provides the
third data using a TCP/IP protocol.

3. The client apparatus of claim 1, wherein the processing
element transmits the third data to the at least one client via
the Internet.

4. The client apparatus of claim 1, wherein the user input
device includes a mouse device.

5. The client apparatus of claim 1, wherein the user input
device includes at least one of an eye-tracking device and a
keyboard.

6. The client apparatus of claim 1, wherein the foveation
operator is specified using parameters that include at least
one of:

a set of foveation points,

a shape of a foveated region,

a maximum resolution of the foveated region, and

a rate at which a maximum resolution of the foveal region
decays.

7. The client apparatus of claim 1,

wherein the processing arrangement receives the original
image from a server, and

wherein the memory arrangement stores a data structure
representing the multifoveated image, the data structure
that is optimized for the client apparatus being inde-
pendent of an image representation provided by a
server.

8. The client apparatus of claim 1, wherein the third data
corresponding to the multifoveated image is generated for at
least one of

a first arbitrary-shaped foveal region,

a second arbitrarily-fine foveal region, and

an arbitrary union of the first and second foveal regions.

10

20

25

30

35

45

Microsoft et al.

Exhibit 1005

APPENDIX K

O A 0 OO

United States Patent [

Dawson et al.

US005179638A
Patent Number:

Date of Patent:

(1]
[45]

5,179,638
Jan. 12, 1993

[54] METHOD AND APPARATUS FOR Attorney, Agent, or Firm—Ronald E. Champion; George
GENERATING A TEXTURE MAPPED A. Leone, Sr.
PERSPECTIVE VIEW (57] ABSTRACT
[75] Inventors: John F. Dawson; Thomas D. A method and apparatus for providing a texture
Snodgrass; James A. Cousens, all of mapped perspective view for digital map systems. The
Albuguerque, N. Mex. system includes apparatus for storing elevation data,
: X . : : apparatus for storing texture data, apparatus for scan-
[73] Assignee: Honeywell Inc., Minneapolis, Minn. ning a projected view volume from the elevation data
[21] Appl. No.: 514,598 storing apparatus, apparatus for processing, apparatus
) for generating a plurality of planar polygons and appa-
[22] Filed: Apr. 26, 1990 ratus for rendering images. The processing apparatus
further includes apparatus for receiving the scanned
5
g% {?ts %l 395/1‘%021;51/51/2672 projected view volume from the scanning apparatus,
e T e ’ 3951 36 iransforming the scanned projected view volume from
[58] Field of Search 395/125, 126, 127, 130, OPJect space to screen space, and computing surface
364,443, 723: 340,729 normals at each vertex of each polygon so as to modu-
’ ’ late texture space pixel intensity. The generating appa-
[56] References Cited r;tus genferatesd the pluralitg of pllgnarhpolygonﬁ from
the transformed vertices and supphes them to the ren-
U.S. PATENT DOCUMENTS dering apparatus which then shades each of the planar
4,677.576 6/1987 Berlin, Jr. et al. ... 395/127 X olygons. In one alternate embodiment of the invention,
p
4,876,651 10/1989 Dawson et al. ... e 3957126 X the polygons are shaded by apparatus of the rendering
4,884,220 11/1989 Dawson et al. ... - 395/125 apparatus assigning one color across the surface of each
jgig;g; 77-; iggg ﬁawsﬁgtettali ------- 332; }iii polygon. In yet another alternate embodiment of the
ouc etai .. 2 : B . . .
b X . invention, the rendering apparatus interpolates the in-
ggggg;: é;igg} ;Xilltltee:z:l;% """"" 3953/611?}2; tensities between the vertices of each polygon in a linear
T Commmmm—— fashion as in Gouraud shading.
Primary Examiner—Gary V. Harkcom
Assistant Examiner—Mark K. Zimmerman 8 Claims, 7 Drawing Sheets
Ch
DMU |;n
L rTi09 14 500
—— e U e o
S lf jl
SHAPE
1 {ELEVATION ADDRESS Tg:g&f |
Wreneacel] 16/0€ [CACKE GENERATOR 30 |
’ MEMORY \/IZ l
1 113/ { \IO |
~ DSM DEDICATED BUS f?’q ~42 : [46
| - RGB
r RENDERING|—{ DISPLAY |-+ viDEO [EMONO
l ENGINE |— MEMORY {——GENERATOR=pep
[—T_| MONO
1017\ | [
DSM l SYMBOL GEOMETRY TILING | master
11750) I GENERATOR ENGINE ENGINE | | TIMER
l
e || e N Nso || K“
SUNTER PROCESSOR BUS (GLOBAL) Y
R/C
C%LUX 21 05 _) PDC DEDICATED BUS 7
1553 GPP PDQ
RV MUX {1750} (1750}
3\ GPP BUS L7
Microsoft et al.

Exhibit 1005

APPENDIX K
U.S. Patent Jan. 12, 1993 Sheet 1 of 7 5,179,638

TEXTURE

t = SCREEN

CO-LOCATED
AERIAL
PHOTOGRAPH
DMA
ELEVATION

Microsoft et al. Exhibit 1005

APPENDIX K
U.S. Patent Jan. 12, 1993 Sheet 2 of 7 5,179,638

Fig-3

AlAx Ay A7)

8 (Bx By Bz)

X

IO’\

ELEVATION —'F—}g;—-—é
CACHE
MEMORY
SCAN PROJ. PROCESS GENERATE
VIEW VIEW POLYGON
VOLUME VOLUME FILL ADDR.
—t e e T ~ ===} ——— 5 [MEMORY 22
! e 20 : ADORESS [
! CALCULATE GENERATE POLY I ™ ruLL
! TEXTURE TEXTURE START! FRAME
, VERTEX ™ MEMORY I MEMORY
| ADDRESS ADDRESS !
' I
Lo
! 24 1
1 PIXEL
! ADDRESS COLOR 26| Woeo
| o ‘ | s
| FILTER & !
| | MEMORY COLOR INTERPOLATE| | T
[PIXELS , 9
{ |
b o e .|

Microsoft et al. Exhibit 1005

APPENDIX K

Sheet 3 of 7 5,179,638

Jan. 12, 1993

U.S. Patent

ya Sng ddo N\
(0s2) (osih XNW AY
oad dd9 £56I
r/ mo\ _N_¥ _)
J_ sn8 @3.1v21Q3g 0ad XNWAY
/4
L (1v8019) SN8 H0SS3308d HILNI\
144 —_jf—_——— - —— —_———— e —— -
[ov o¢ 8¢ _
AT N ™ N |
HIWIL _ —1 3NION3 INION3 ¥Olvu3N39| | | (0SLN
ILSYW | | AHL3WO039 108NAS | WSQ
~ 1 — \ _ _10I
ONOW |
RN |
SoLvH3INID AHOW3W] 3NION3 |
onow=] O3AIA = Avidsia —JONINION3YR AN\ /,///////////]
mom\ | / > sna g3l _M..oMa |s_.mo N
2y v
> “ . ol | el
"l
_ \) | 4 [
2T N HILN
| Ot 3Hov) [| 3asar Fov4uILN
HOIVHINIO] — ANa
_ uz_ouwﬁ Ss3yaav NOILVA313[
_ 3¥NL 3avHs _
rm--21
Y N § plptpupuges F_J
oAl
___ |
0os — Ui o
|

Exhibit 1005

Microsoft et al.

U.S. Patent

Fig-6 -

o

RENDERING

Jan. 12, 1993

2

N

ENGINE

APPENDIX K
Sheet 4 of 7 5,179,638

99 ¢rame BUFFER

Microsoft et al. Exhibit 1005

U.S. Patent Jan. 12, 1993

Fig-8

DENSITY
FUNCTION

[

APPENDIX K
Sheet 5 of 7 5,179,638

.2

MEAN 38 PIXELS

.02

AVE 102 PIXELS

.0l

~—

0 | 30 | 50
0 20 40

200

I T L
IOO’ 500 2000 l 4000 6000

1000 3000 5000

Microsoft et al.

Exhibit 1005

APPENDIX K

Sheet 6 of 7 5,179,638

Jan. 12, 1993

| U.S. Patent

NOILDONYLISNI Vdd —~— -
NOILONYLISNI Wdd ——— |, (09
¥GQV 1530 Sne-y¥ =——\ O | ¥ veon b3S
4AaV W4Y 44300 LHOd 8 ~—— Thols OHOIW
4aav WiY VIVa 180d 8 ~— T0HLINOD
d0aV WdH VIVQ 140d ¥V —~—| — - \\ ; SNg 104 1NOD
m_m\ iz 212 ¥3ON3NO03S
sng -y] .
2= wON/ |
i ¢
WNoJoV W3IW 3114 sng NI
802_ 4iNlOd » 431S1934 4430)
oNIlLYOTd| 44309 -
Pt | Tom) 2 403
8602 |v602_ 902 | o
950 1INW WaW 33 NI
ZHWO00Z LNiOd = ¥ALSI93¥ | 3y)734id
ONILVOT4 viva T e
O_N(\] " 1no
vo2| <0< 3NIN3did
sng-g
y
sSnNg-v

6-901

Exhibit 1005

Microsoft et al.

APPENDIX K

U.S. Patent Jan, 12, 1993 Sheet 7 of 7 5,179,638

Fig.-104

WORLD SPACE

w

ﬁop
v, w;v/
7 Fig.-10B

DTED POSTS

CO-LOCATED TEXTURE SPACE

Fig-10C
Ys SCREEN SPACE
ZVV
/ \
/ N\
DP
)
RP
" Fig.-10D
RP
RENDERED
POLYGON

Microsoft et al. Exhibit 1005

APPENDIX K

5,179,638

1

METHOD AND APPARATUS FOR GENERATING
A TEXTURE MAPPED PERSPECTIVE VIEW

The present invention is directed generally to graphic
display systems and, more particularly, to a method and
apparatus for generating texture mapped perspective
views for a digital map system.

"RELATED APPLICATIONS

The following applications are included herein by
reference:

(1) U.S. Pat. No. 4,876,651 filed May 11, 1988, issued
Oct. 24, 1989 entitled “Digital Map System” which was
assigned to the assignee of the present invention;

(2) Assignee copending application Ser. No.
09/514,685 filed Apr. 26, 1990, entitled “High Speed
Processor for Digital Signal Processing™;

(3) U.S. Pat. No. 4,884,220 entitled “Generator with
Variable Scan Patterns” filed Jun. 7. 1988, issued Nov.
28, 1989, which is assigned to the assignee of the present
invention;

(4) U.S. Pat. No. 4,899,293 entitled “A method of
Storage and Retrieval of Digital Map Data Based Upon
a Tessellated Geoid System”, filed Dec. 14, 1988, issued
Feb. 6, 1990:

(5) U.S. Pat. No. 5,020,014 entitled “Generic Interpo-
lation Pipeline Processor”, filed Feb. 7, 1989, issued
May 28, 1991, which is assigned to the assignee of the
present invention;

(6) Assignee’s copending patent application Ser. No.
07/732,725 filed Jul. 18, 1991 entitled *‘Parallel Poly-
gon/Pixel Rendering Engine Architecture for Com-
puter Graphics” which is a continuation of patent appli-
cation 07/419,722 filed Oct. 11, 1989 now abandoned;

(7) Assignee’s copending patent application Ser. No.
07/514,724 filed Apr. 26, 1990 entitied “Polygon Tiling
Engine™;

(8) Assignee’s copending patent application Ser. No.
07/514,723 filed Apr. 26, 1990 entitled “Polygon Sort
Engine”; and

(9) Assignee’s copending patent application Ser. No.
07/514,742 filed Apr. 26, 1990 entitled “Three Dimen-
sional Computer Graphic Symbol Generator”.

BACKGROUND OF THE INVENTION

Texture mapping is a computer graphics technique
which comprises a process of overlaying aerial recon-
naissance photographs onto computer generated three
dimensional terrain images. It enhances the visual real-
ity of raster scan images substantially while incurring a
relatively small increase in computational expense. A
frequent criticism of known computer-generated syn-
thesized imagery has been directed to the extreme
smoothness of the image. Prior art methods of generat-
ing images provide no texture, bumps, outcroppings, or
natural abnormalities in the display of digital terrain
elevation data (DTED).

In general, texture mapping maps a multidimensional
image to a multidimensional space. A texture may be
thought of in the usual sense such as sandpaper, a
plowed field, a roadbed, a lake, woodgrain and so forth
or as the pattern of pixels (picture elements) on a sheet
of paper or photographic film. The pixels may be ar-
ranged in a regular pattern such as a checkerboard or
may exhibit high frequencies as in a detailed photo-
graph of high resolution LandSat imagery. Texture may
also be three dimensional in nature as in marble or

20

25

30

35

40

45

50

55

65

2

woodgrain surfaces. For the purposes of the invention,
texture mapping is defined to be the mapping of a tex-
ture onto a surface in three dimensional object space. As
is illustrated schematically in FIG. 1, a texture space
object T is mapped to a display screen by means of a
perspective transformation.

The implementation of the method of the invention
comprises two processes. The first process is geometric
warping and the second process is filtering. FIG. 2
illustrates graphically the geometric warping process of
the invention for applying texture onto a surface. This
process applies the texture onto an object to be mapped
analogously to a rubber sheet being stretched over a
surface. In a digital map system application, the texture
typically comprises an aerial reconnaissance photo-
graph and the object mapped is the surface of the digital
terrain data base as shown in FIG. 2. After the geomet-
ric warping has been completed, the second process of
filtering is performed. In the second process, the image
is resampled on the screen grid.

The invention provides a texture mapped perspective
view architecture which addresses the need for in-
creased aircraft crew effectiveness, consequently reduc-
ing workload, in low altitude flight regimes character-
ized by the simultaneous requirement to avoid certain
terrain and threats. The particular emphasis of the in-
vention is to increase crew situational awareness. Crew
situational awareness has been increased to some degree
through the addition of a perspective view map display
to a plan view capability which already exists in digital
map systems. See, for example, assignee’s copending
application Ser. No. 07/192,798, for a DIGITAL MAP
SYSTEM, filed May 11, 1988, issued Oct. 24, 1989 as
U.S. Pat. No. 4,876,651 which is incorporated herein by
reference in its entirety. The present invention improves
the digital map system capability by providing a means
for overlaying aerial reconnaissance photographs over
the computer generated three dimensional terrain image
resulting in a one-to-one correspondence from the digi-
tal map image to the real world. In this way the inven-
tion provides visually realistic cues which augment the
informational display of such a computer generated
terrain image. Using these cues an aircraft crew can
rapidly make a correlation between the display and the
real world.

The architectural challenge presented by texture
mapping is that of distributing the processing load to
achieve high data throughput using parallel pipelines
and then recombining the parallel pixel flow into a
single memory module known as a frame buffer. The
resulting contention for access to the frame buffer re-
duces the effective throughput of the pipelines in addi-
tion to requiring increased hardware and board space to
implement the additional pipelines. The method and
apparatus of the invention addresses this challenge by
effectively combining the low contention attributes of a
single high speed pipeline with the increased processing
throughput of parallel pipelines.

SUMMARY OF THE INVENTION

A method and apparatus for providing a texture
mapped perspective view for digital map systems is
provided. The invention comprises means for storing
elevation data, means for storing texture data, means for
scanning a projected view volume from the elevation
data storing means, means for processing the projected
view volume, means for generating a plurality of planar
polygons and means for rendering images. The process-

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

3

ing means further includes means for receiving the
scanned projected view volume from the scanning
means, transforming the scanned projected view vol-
ume from object space to screen space, and computing
surface normals at each vertex of each polygon so as to
modulate texture space pixel intensity. The generating
means generates the plurality of planar polygons from
the transformed vertices and supplies them to the ren-
dering means which then shades each of the planar
polygons.

A primary object of the invention is to provide a
technology capable of accomplishing a fully integrated
digital map display system in an aircraft cockpit.

In one alternate embodiment of the invention, the
polygons are shaded by means of the rendering means
assigning one color across the surface of each polygon.

In yet another alternate embodiment of the invention,
the rendering means interpolates the intensities between
the vertices of each polygon in a linear fashion as in
Gouraud shading.

It is yet another object of the invention to provide a
digital map system including capabilities for perspective
view, transparency, texture mapping, hidden line re-
moval, and secondary visual effects such as depth cues
and artifact (i.e., anti-aliasing) control.

It is yet another object of the invention to provide the
capability for displaying forward looking infrared
(FLIR) data and radar return images overlaid onto a
plan and perspective view digital map image by fusing
images through combining or subtracting other sensor
video signals with the digital map terrain display.

It is yet another object of the invention to provide a
digital map system with an arbitrary warping capability
of one data base onto another data base which is accom-
modated by the perspective view texture mapping capa-
bility of the invention.

Other objects, features and advantages of the inven-
tion will become apparent to those skilled in the art
through the drawings, description of the preferred em-
bodiment and claims herein. In the drawings, like nu-
merals refer to like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

F1G. 1 shows the mapping of a textured object to a
display screen by a perspective transformation.

FIG. 2 illustrates graphically the geometric warping
process of the invention for applying texture onto a
surface.

FIG. 3 illustrates the surface normal calculation as
employed by the invention.

FIG. 4 presents a functional block diagram of one
embodiment of the invention.

FIG. 5 illustrates a top level block diagram of one
embodiment of the texture mapped perspective view
architecture of the invention.

FIG. 6 schematically illustrates the frame buffer con-
figuration as employed by one embodiment of the in-
vention.

FIGS. 7a, 7b and 7c illustrate three examples of dis-
play format shapes.

FIG. 8 graphs the density function for’ maximum
pixel counts.

FIG. 9 is a block diagram of one embodiment of the
geometry array processor as employed by the inven-
tion.

FIGS. 10A, 10B, 10C and 10D illustrated the tagged
architectural texture mapping as provided by the inven-
tion.

20

25

30

35

45

50

55

65

4

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Generally, perspective transformation from texture
space having coordinates U, V to screen space having
coordinates X, Y requires an intermediate transforma-
tion from texture space to object space having coordi-
nates Xo, Yo, Zo. Perspective transformation is accom-
plished through the general perspective transform equa-
tion as follows:

XYZH =[XxYZ1]X

[BT I N

T romow
[T "I o s -]

where a point (X,Y,Z) in 3-space is represented by a
four dimensional position vector [X Y Z H} in homoge-
neous coordinates.

The 3 X3 sub-matrix

(SIS
oo
~ om0

accomplishes scaling, shearing, and rotation.
The 1Xx 3 row matrix [L M N] produces translation.
The 3x 1 column matrix

i

produces perspective transformation.

The 11 scalar [S] produces overall scaling.

The Cartesian cross-product needed for surface nor-
mal requires a square root. As shown in FIG. 3, the
surface normal shown is a vector A X B perpendicular
to the plane formed by edges of a polygon as repre-
sented by vectors A and B, where A X B is the Cartesian
cross-product of the two vectors. Normalizing the vec-
tor allows calculation for sun angle shading in a per-
fectly diffusing Lambertian surface. This is accom-
plished by taking the vector dot product of the surface
normal vector with the sun position vector. The result-
ing angle is inversely proportional to the intensity of the
pixel of the surface regardless of the viewing angle. This
intensity is used to modulate the texture hue and inten-
sity value.

A= Ax2 + AP + 42
B = Bx? + By’ + Bz

AXB
(1411 [18H

where

A terrain triangle TT is formed by connecting the
endpoints of vectors A and B, from point By, By, Bz to
point Ay, Ay, Az

Having described some of the fundamental basis for
the invention, a description of the method of the inven-
tion will now be set out in more detail below.

Referring now to FIG. 4, a functional block diagram
of one embodiment of the invention is shown. The in-
vention functionally comprises a means for storing ele-

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

5

vation data 10, a means for storing texture data 24, a
means for scanning a projected view volume from the
elevation data storing means 12, means for processing
view volume 14 including means for receiving the
scanned projected view volume from the scanning
means 12, means for generating polygon fill addresses
16, means for calculating texture vertices addresses 18,
means for generating texture memory addresses 20,
means for filtering and interpolating pixels 26, a full-
frame memory 22, and video display 9. The processing
means 14 further includes means for transforming the
scanned projected view volume from object space to
screen space and means for computing surface normals
at each vertex of each polygon so as to calculate pixel
intensity.

The means for storing elevation data 10 may prefera-
bly be a cache memory having at least a 50 nsec access
time to achieve 20 Hz bi-linear interpolation of a
512% 512 pixel resolution screen. The cache memory
further may advantageously include a 256256 bit
buffer segment with 2K bytes of shadow RAM used for
the display list. The cache memory may arbitrarily be
reconfigured from 8 bits deep (data frame) to 64 bits
(i.e., comprising the sum of texture map data (24
bits)+DTED (16 bits)+aeronautical chart data (24
bits)). A buffer segment may start at any cache address
and may be written horizontally or vertically. Means
for storing texture data 24 may advantageously be a
texture cache memory which is identical to the eleva-
tion cache memory except that it stores pixel informa-
tion for warping onto the elevation data cache. Refer-
ring now to FIG. §, a top level block diagram of the
texture mapped perspective view architecture is shown.
The architecture implements the functions as shown in
FIG. 4 and the discussion which follows shall refer to
functional blocks in FIG. 4 and corresponding elements
in FIG. 5. In some cases, such as element 14, there is a
one-to-one correspondence between the functional
blocks in FIG. 4 and the architectural elements of FIG.
§. In other cases, as explained hereinbelow, the func-
tions depicted in FIG. 4 are carried out by a plurality of
elements shown in FIG. 5. The elements shown in FIG.
5 comprising the texture mapped perspective view sys-
tem 300 of the invention include elevation cache mem-
ory 10, shape address generator (SHAG) 12, texture
engine 30, rendering engine 34, geometry engine 36,
symbol generator 38, tiling engine 40, and display mem-
ory 42. These elements are typically part of a larger
digital map system including a digital map unit (DMU)
109, DMU interface 111, IC/DE 113, a display stream
manager (DSM) 101, a general purpose processor
(GPP) 105, RV MUX 121, PDQ 123, master time 44,
video generator 46 and a plurality of data bases. The
latter elements are described in assignee’s Digital Map
System U.S. Pat. No. 4,876,651.

GEOMETRY ENGINE

The geometry engine 36 is comprised of one or more
geometry array processors (GAPs) which process the
44 Euler matrix transformation from object space
(sometimes referred to as “world” space) to screen
space. The GAPs generate X and Y values in screen
coordinates and Zvv values in range depth. The GAPs
also compute surface normals at each vertex of a poly-
gon representing an image in object space via Cartesian
cross-products for Gouraud shading, or they may assign
one surface normal to the entire polygon for flat shad-
ing and wire mesh. Intensity calculations are performed

—

0

25

30

35

40

45

55

60

65

6

using a vector dot product between the surface normal
or normals and the illumination source to implement a
Lambertian diffusely reflecting surface. Hue and inten-
sity values are then assigned to the polygon. The
method and apparatus of the invention also provides a
dot rendering scheme wherein the GAPs only trans-
form one vertex of each polygon and the tiling engine
40, explained in more detail below, is inhibited. In this
dot rendering format, hue and intensity are assigned
based on the planar polygon containing the vertex and
the rendering engine is inhibited. Dot polygons may
appear in the same image as multiple vertex polygons or
may comprise the entire image itself. The *“dots” are
passed through the polygon rendering engine 34. A
range to the vertices or polygon (Zvv) is used if a fog or
“DaVinci” effect are invoked as explained below. The
GAPs also transform three dimensional overlay sym-
bols from world space to screen space.

Referring now to FIG. 9, a block diagram of one
example embodiment of a geometry array processor
(GAP) is shown. The GAP comprises a data register
file memory 202, a floating point multiplier 204, a coeffi-
cient register file memory 206, a floating point accumu-
lator 208, a 200 MHz oscillator 210, a microsequencer
212, a control store RAM 214, and latch 216.

The register file memory may advantageously have a
capacity of 512 by 32 bits. The floating point accumula-
tor 208 includes two input ports 209A and 209B with
independent enables, one output port 211, and a condi-
tion code interface 212 responsive to error codes. The
floating point accumulator operates on four instruc-
tions, namely, multiply, no-op, pass A, and pass B. The
microsequencer 212 operates on seven instructions in-
cluding loop on count, loop on condition, jump, con-
tinue, call, return and load counter. The mi-
crosequencer includes a debug interface having a read/-
write (R/W) internal register, R/W control store mem-
ory, halt on address, and single step, and further in-
cludes a processor interface including a signal interrupt,
status register and control register. The GAP is fully
explained in the assignee’s co-pending application No.
07/514,685 filed Apr. 26, 1990 entitled High Speed
Processor for Digital Signal Processing which is incor-
porated herein by reference in its entirety.

In one alternative embodiment of the invention, it is
possible to give the viewer of the display the visual
effect of an environment enshrouded in fog. The fog
option is implemented by interpolating the color of the
triangle vertices toward the fog color. As the triangles
get smaller with distance, the fog particles become
denser. By using the known relationship between dis-
tance and fog density, the fog thickness can be “dialed”
or adjusted as needed. The vertex assignment interpo-
lates the vertex color toward the fog color as a function
of range toward the horizon. The fog technique may be
implemented in the hardware version of the GAP such
as may be embodied in a GaAs semiconductor chip. If a
linear color space (typically referred to as “RGB” to
reflect the primary colors, red, green and blue) is as-
sumed, the amount of fog is added as a function of range
to the polygon vertices’ color computation by well
known techniques. Thus, as the hue is assigned by ele-
vation banding or monochrome default value, the fog
color is tacked on. The rendering engine 34, explained
in more detail below, then straight forwardly interpo-
lates the interior points.

In another alternative embodiment of the invention, a
DaVinci effect is implemented. The DaVinci effect

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

7

causes the terrain to fade into the distance and blend
with the horizon. It is implemented as a function of
range of the polygon vertices by the GAP. The horizon
color is added to the vertices similarly to the fog effect.

SHAPE ADDRESS GENERATOR (SHAG)

The SHAG 12 receives the orthographically pro-
jected view volume outline onto cache from the DSM.
It calculates the individual line lengths of the scans and
the delta x and delta y components. It also scans the
elevation posts out of the elevation cache memory and
passes them to the GAPs for transformation. In one
embodiment of the invention, the SHAG preferably
includes two arithmetic logic units (ALUs) to support
the 50 nsec cache 10. In the SHAG, data is generated
for the GAPs and control signals are passed to the tiling
engine 40. DFAD data is downloaded into overlay

RAM (not shown) and three dimensional symbols are

passed to the GAPs from symbol generator 38. Eleva-
tion color banding hue assignment is performed in this
function. The SHAG generates shapes for plan view,
perspective view, intervisibility, and radar simulation.
These are illustrated in FIG. 7. The SHAG is more fully
explained in assignee’s copending application, Ser. No.
203,660, Generator With Variable Scan Patterns, filed
Jun. 7, 1988 issued as U.S. Pat. No. 4,884,220 on Nov.
28, 1989 which is incorporated herein by reference in its
entirety.

A simple Lambertian lighting diffusion model has
proved adequate for generating depth cueing in one
embodiment of the invention. The sun angle position is
completely programmable in azimuth and zenith. It may
also be self-positioning based on time of day, time of
year, latitude and longitude. A programmable intensity
with gray scale instead of color implements the moon
angle position algorithm. The display stream manager
(DSM) programs the sun angle registers. The illumina-
tion intensities of the moon angle position may be varied
with the lunar waxing and waning cycles.

TILING ENGINE AND TEXTURE ENGINE

Still referring to FIGS. 4 and 5, the means for calcu-
lating texture vertex address 18 may include the tiling
engine 40. Elevation posts are vertices of planar trian-
gles modeling the surface of the terrain. These posts are
“tagged” with the corresponding U,V coordinate ad-
dress calculated in texture space. This tagging elimi-
nates the need for interpolation by substituting an ad-
dress lookup. Referring to FIGS. 10A, 10B, 10C and
10D, with continuing reference to FIGS. 4 and 5, the
tagged architectural texture mapping as employed by
the invention is illustrated. FIG. 10A shows an example
of DTED data posts, DP, in world space. FIG. 10B
shows the co-located texture space for the data posts.
FIG. 10C shows the data posts and rendered polygon in
screen space. FIG. 10D illustrates conceptually the
interpolation of tagged addresses into a rendered poly-
gon RP. The texture engine 30 performs the tagged data
structure management and filtering processes. When
the triangles are passed to the rendering engine by the
tiling engine for filling with texture, the tagged texture
address from the elevation post is used to generate the
texture memory address. The texture value is filtered by
filtering and interpolation means 26 before being writ-
ten to full-frame memory 22 prior to display.

The tiling engine generates the planar polygons from
the transformed vertices in screen coordinates and
passes them to the rendering engine. For terrain poly-

20

25

30

35

45

50

60

65

8

gons, a connectivity offset from one line scan to the next
is used to configure the polygons. For overlay symbols,
a connectivity list is resident in a buffer memory (not
shown) and is utilized for polygon generation. The
tiling engine also informs the GAP if it is busy. In one
embodiment 512 vertices are resident in a 1K buffer.

All polygons having surface normals more than 90
degrees from LOS are eliminated from rendering. This
is known in the art as backface removal. Such polygons
do not have to be transformed since they will not be
visible on the display screen. Additional connectivity
information must be generated if the polygons are non-
planar as the transformation process generates implied
edges. This requires that the connectivity information
be dynamically generated. Thus, only planar polygons
with less than 513 vertices are implemented. Non-planar
polygons and dynamic connectivity algorithms are not
implemented by the tiling engine. The tiling engine is
further detailed in assignee’s copending applications of
even filing date herewith entitled Polygon Tiling En-
gine, as referenced hereinabove and Polygon Sort En-
gine, as referenced hereinabove, both of which are in-
corporated herein by reference.

RENDERING ENGINE

Referring again to FIG. 5, the rendering engine 34 of
the invention provides a means of drawing polygons in
a plurality of modes. The rendering engine features may
include interpolation algorithms for processing coordi-
nates and color, hidden surface removal, contour lines,
aircraft relative color bands, flat shading, Gourand
shading, phong shading, mesh format or screen door
effects, ridgeline display, transverse slice, backface re-
moval and RECE (aerial reconnaissance) photo modes.
With most known methods of image synthesis, the
image is generated by breaking the surfaces of the ob-
ject into polygons, calculating the color and intensity at
each vertex of the polygon, and drawing the results into
a frame buffer while interpolating the colors across the
polygon. The color information at the vertices is calcu-
lated from light source data, surface normal, elevation
and/or cultural features.

The interpolation of coordinate and color (or inten-
sity) across each polygon must be performed quickly
and accurately. This is accomplished by interpolating
the coordinate and color at each quantized point or
pixel on the edges of the polygon and subsequently
interpolating from edge to edge to generate the fill lines.
For hidden surface removal, such as is provided by a
Z-buffer in a well-known manner, the depth or Z-value
for each pixel is also calculated. Furthermore, since
color components can vary independently across a sur-
face or set of surfaces, red, green and blue intensities are
interpolated independently. Thus, a minimum of six
different parameters (X,Y,Z,R,G,B) are independently
calculated when rendering polygons with Gouraud
shading and interpolated Z-values.

Additional features of the rendering engine include a
means of providing contour lines and aircraft relative
color bands. For these features the elevation also is
interpolated at each pixel. Transparency features dic-
tate that an alpha channel be maintained and similarly
interpolated. These requirements imply two additional
axes of interpolation bringing the total to eight. The
rendering engine is capable of processing polygons of
one vertex in its dot mode, two vertices in its line mode,
and three to 512 coplanar vertices in its polygon mode.

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

9

In the flat shading mode the rendering engine assigns
the polygon a single color across its entire surface. An
arbitrary vertex is selected to assign both hue and inten-
sity for the entire polygon. This is accomplished by
assigning identical RGB values to all vertices. Interpo-
lation is performed normally but results in a constant
value. This approach will not speed up the rendering
process but will perform the algorithm with no hard-
ware impact.

The Gouraud shading algorithm included in the ren-
dering engine interpolates the intensities between the
vertices of each polygon rendered in a linear fashion.
This is the default mode. The Phong shading algorithm
interpolates the surface normals between the vertices of
the polygon between applying the intensity calcula-
tions. The rendering engine would thus have to perform
an illumination calculation at each pixel after interpola-
tion. This approach would significantly impact the
hardware design. This algorithm may be simulated,
however, using a weighing function (typically a func-
tion of cosine (©)) around a narrow band of the intensi-
ties. This results in a non-linear interpolation scheme
and provides for a simulated specular reflectance. In an
alternative embodiment, the GAP may be used to assign
the vertices of the polygon this non-linear weighing via
the look-up table and the rendering engine would inter-
polate as in Gouraud shading.

Transparency is implemented in the classical sense
using an alpha channel or may be simulated with a
screen door effect. The screen door effect simply ren-
ders the transparent polygon as normal but then only
outputs every other or every third pixel. The mesh
format appears as a wire frame overlay with the option
of rendering either hidden lines removed or not. In the
case of a threat dome symbol, all polygon edges must be
displayed as well as the background terrain. In such a
case, the fill algorithm of the rendering engine is inhib-
ited and only the polygon edges are rendered. The
intensity interpolation is performed on the edges which
may have to be two pixels wide to eliminate strobing. In
one embodiment, an option for terrain mesh includes
the capability for tagging edges for rendering so that
the mesh appears as a regular orthogonal grid.

Typical of the heads up display (HUD) format used in
aircraft is the ridgeline display and the transverse slice.
In the ridgeline format, a line drawing is produced from
polygon edges whose slopes change sign relative to the
viewpoint. All polygons are transformed, tiled, and
then the surface normals are computed and compared to
the viewpoint. The tiling engine strips away the vertices
of non-ridge contributing edges and passes only the
ridge polygons to the rendering engine. In transverse
slice mode, fixed range bins relative to the aircraft are
defined. A plane orthogonal to the view LOS is then
passed through for rendering. The ridges then appear to
roll over the terrain as the aircraft flies along. These
algorithms are similar to backface removal. They rely
upon the polygon surface normal being passed to the
tiling engine.

One current implementation of the invention guaran-
tees non-intersecting polygon sides by restricting the
polygons rendered to be planar. They may have up to
512 vertices. Polygons may also consist of one or two
vertices. The polygon *“end” bit is set at the last vertex
and processed by the rendering engine. The polygon is
tagged with a two bit rendering code to select mesh,
transparent, or Gouraud shading. The rendering engine

40

45

50

65

10
also accomplishes a fine clip to the screen for the poly-
gon and implements a smoothing function for lines.

An optional aerial reconnaissance (RECE) photo
mode causes the GAP to texture map an aerial recon-
naissance photograph onto the DTED data base. In this
mode the hue interpolation of the rendering engine is
inhibited as each pixel of the warping is assigned a color
from the RECE photo. The intensity component of the
color is dithered in a well known manner as a function
of the surface normal as well as the Z-depth. These
pixels are then processed by the rendering engine for
Z-buffer rectification so that other overlays such as
threats may be accommodated. The RECE photos used
in this mode have been previously warped onto a tessel-
lated geoid data base and thus correspond pixel-for-
pixel to the DTED data. See assignee’s aforereferenced
copending application for A Method of Storage and
Retrieval of Digital Map Data Based Upon A Tessella-
ted Geoid System, which is hereby incorporated by
reference in its entirety. The photos may be denser than
the terrain data. This implies a deeper cache memory to
hold the RECE photos. Aeronautical chart warping
mode is identical to RECE photos except that aeronau-
tical charts are used in the second cache. DTED warp-
ing mode utilizes DTED data to elevation color band
aeronautical charts.

The polygon rendering engine may preferably be
implemented in a generic interpolation pipeline proces-
sor (GIPP) of the type as disclosed in assignee’s afore-
referenced patent entitled Generic Interpolation Pipe-
line Processor, which is incorporated herein by refer-
ence in its entirety. In one embodiment of the invention,
the GIPPs fill in the transformed polygons using a bi-
linear interpolation scheme with six axes
(X,Y,Z,R,G.B). The primitive will interpolate a 16 bit
pair and 8 bit pair of values simultaneously, thus requir-
ing 3 chips for a polygon edge. One embodiment of the
system of the invention has been sized to process one
million pixels each frame time. This is sufficient to pro-
duce a 1K X 1K high resolution chart, or a 512512
DTED frame with an average of four overwrites per
pixel during hidden surface removal with GIPPs out-
putting data at a 60 nsec rate, each FIFO, F1-F4, as
shown in FIG. 6, will receive data on the average of
every 240 nsec. An even distribution can be assumed by
decoding on the lower 2X address bits. Thus, the mem-
ory is divided into one pixel wide columns FIG. 6 is
discussed in more detail below.

Referring again to FIGS. 4 and 5, the “dots” are
passed through the GIPPs without further processing.
Thus, the end of each polygon’s bit is set. A ZB buffer
is needed to change the color of a dot at a given pixel
for hidden dot removal. Perspective depth cuing is
obtained as the dots get closer together as the range
from the viewpoint increases.

Bi-linear interpolation mode operates in plan view on
either DLMS or aeronautical charts. It achieves 20 Hz
interpolation on a 512512 display. The GIPPs per-
form the interpolation function.

DATA BASES

A Level I DTED data base is included in one em-
bodiment of the invention and is advantageously sam-
pled on three arc second intervals. Buffer segments are
preferably stored at the highest scales (104.24 nm) and
the densest data (13.03 nm). With such a scheme, all
other scales can be created. A Level I DTED data base
is also included and is sampled at one arc second inter-

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

11
vals. Buffer segments are preferably stored only at the
densest data (5.21 nm).

A DFAD cultural feature data base is stored in a
display list of 2K words for each buffer segment. The
data structure consists of an icon font call, a location in
cache, and transformation coefficients from model
space to world space consisting of scaling, rotation, and
position (translation). A second data structure com-
prises a list of polygon vertices in world coordinates
and a color or texture. The DFAD data may also be
rasterized and overlaid on a terrain similar to aerial
reconnaissance photos.

Aeronautical charts at the various scales are warped
into the tessellated geoid. This data is 24 bits deep. Pixel
data such as LandSat, FLIR, data frames and other
scanned in source data may range from one bit up to 24
bits in powers of two (1,2,4,8,16,24).

FRAME BUFFER CONFIGURATION

Referring again to FIG. 6, the frame buffer configura-
tion of one embodiment of the invention is shown sche-
matically. The frame buffer configuration is imple-
mented by one embodiment of the invention comprises
a polygon rendering chip 34 which supplies data to
full-frame memory 42. The full-frame memory 42 ad-
vantageously includes first-in, first-out buffers (FIFO)
Fi, F3, F3and Fs. As indicated above with respect to
the discussion of the rendering engine, the memory is
divided up into one pixel wide columns as shown in
FIG. 6. By doing so, however, chip select must changed
on every pixel when the master timer 44 shown in FIG.
5 reads the memory. However, by orienting the SHAG
scan lines at 90 degrees to the master timer scan lines,
the chip select will change on every line. The SHAG
starts scanning at the bottom left corner of the display
and proceeds to the upper left corner of the display.

With the image broken up in this way, the probability
that the GIPP will write to the same FIFO two times in
a row, three times, four, and so on can be calculated to
determine how deep the FIFO must be. Decoding on
the lower order address bits means that the only time
the rendering engine will write to the same FIFO twice
in a row is when a new scan line is started. At four deep
as shown in the frame buffer graph 100, the chances of
the FIFO filling up are approximately one in 6.4K. With
an image of 1 million pixels, this will occur an accept-
ably small number of times for most applications. The
perspective view transformations for 10,000 polygons
with the power and board area constraints that are
imposed by an avionics environment is significant. The
data throughput for a given scene complexity can be
achieved by adding more pipeline in parallel to the
architecture. It is desirable to have as few pipelines as
possible, preferably one, so that the image reconstruc-
tion at the end of the pipeline does not suffer from an
arbitration bottleneck for a Z-buffered display memory.

In one embodiment of the invention, the processing
throughput required has been achieved through the use
of GaAs VSLI technology for parallel pipelines and a
parallel frame buffer design has eliminated contention
bottlenecks. A modular architecture allows for addi-
tional functions to be added to further the integration of
the digital map into the avionics suite. The system archi-
tecture of the invention has high flexibility while main-
taining speed and data throughput. The polygonal data
base structure approach accommodate arbitrary scene
complexity and a diversity of data base types.

20

25

30

35

45

50

55

60

65

12

The data structure of the invention is tagged so that
any polygon may be rendered via any of the imple-
mented schemes in a single frame. Thus, a particular
image may have Gouraud shaded terrain, transparent
threat domes. flat shaded cultural features, lines, and
dots. In addition, since each polygon is tagged, a single
icon can be comprised of differently shaded polygons.
The invention embodies a 24 bit color system, although
a production map would be scaled to 12 bits. A 12 bit
system provides 4K colors and would require a 32K by
8 RGB RAM look-up table (LUT).

MISCELLANEOUS FEATURES

The display formats in one example of the invention
are switchable at less than 600 milliseconds between
paper chart, DLMS plan and perspective view. A large
cache (1 megabit D-RAMs) is required for texture map-
ping. Other format displays warp chart data over
DTED, or use DTED to pseudo-color the map. For
example, change the color palate LUT for transpar-
ency. The GAP is used for creating a true orthographic
projection of the chart data.

An edit mode for three dimensions is supported by
the apparatus of the invention. A three dimensional
object such as a “pathway in the sky” may be tagged for
editing. This is accomplished by first, moving in two
dimensions at a given AGL, secondly, updating the
AGL in the three dimensional view, and finally, updat-
ing the data base.

The overlay memory from the DMC may be video
mixed with the perspective view display memory.

Freeze frame capability is supported by the invention.
In this mode, the aircraft position is updated using the
cursor. If the aircraft flies off the screen, the display will
snap back in at the appropriate place. This capability is
implemented in plan view only. There is data frame
software included to enable roaming through cache
memory. This feature requires a two axis roam joystick
or similar control. Resolution of the Z-buffer is 16 bits.
This allows 64K meters down range.

The computer generated imagery has an update rate
of 20 Hz. The major cycle is programmable and vari-
able with no frame extend invoked. The system will run
as fast as it can but will not switch ping-pong display
memories until each functional unit issues a “pipeline
empty” message to the display memory. The major
cycle may also be locked to a fixed frame in multiples of
16.6 milliseconds. In the variable frame mode, the pro-
cessor clock is used for a smooth frame interpolation for
roam or zoom. The frame extend of the DMC is elimi-
nated in perspective view mode. Plan view is imple-
mented in the same pipeline as the perspective view.
The GPP 105 loads the countdown register on the mas-
ter timer to control the update rate.

The slowest update rate is 8.57 Hz. The image must
be generated in this time or the memories will switch.
This implies a pipeline speed of 40 million pixels per
second. In a 512X 512 image, it is estimated that there
would be 4 million pixels rendered worst case with
heavy hidden surface removal. In most cases, only mil-
lion pixels need be rendered. FIG. 8 illustrates the anal-
ysis of pixel over-writes. The minimum requirement for
surface normal resolution so that the best image is
achieved is 16 bits. Tied to this is the way in which the
normal is calculated. Averaging from surrounding tiles
gives a smoother image on scale change or zoom. Using
one tile is less complex, but results in poorer image

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

13
quality. Surface normal is calculated on the fly in accor-
dance with known techniques.

DISPLAY MEMORY

This memory is a combination of scene and overlay
with a Z-buffer. It is distributed or partitioned for opti-
mal loading during write, and configured as a frame
buffer during read-out. The master time speed required
is approximately 50 MHz. The display memory resolu-
tion can be configured as 512X512x12 or as
1024 x 1024 x12. The Z-buffer is 16 bits deep and
1K X 1K resolution. At the start of each major cycle,
the Z-values are set to plus infinity (FF Hex). Infinity
(Zmax) is programmable. The back clipping plane is set
by the DSM over the control bus.

At the start of each major cycle, the display memory
is set to a background color. In certain modes such as
mesh or dot, this color will change. A background color
register is loaded by the DSM over the configuration
bus and used to fill in the memory.

VIDEO GENERATOR/MASTER TIMER

The video generator 46 performs the digital to analog
conversion of the image data in the display memory to
send to the display head. It combines the data stream
from the overlay memory of the DMC with the display
memory from the perspective view. The configuration
bus loads the color map.

A 30 Hz interlaced refresh rate may be implemented
in a system employing the present invention. Color
pallets are loadable by the GPP. The invention assumes
a linear color space in RGB. All colors at zero intensity
go to black.

THREE DIMENSIONAL SYMBOL GENERATOR

The three-dimensional symbol generator 38 performs
the following tasks:

1. It places the model to world transformation coeffi-
cients in the GAP.

2. It operates in cooperation with the geometry en-
gine to multiply the world to screen transformation
matrix by the model to world transformation matrix to
form a model to screen transformation matrix. This
matrix is stored over the model to world transformation
matrix.

3. Tt operates in cooperation with the model to screen
transformation matrix to each point of the symbol from
the vertex list to transform the generic icon to the par-
ticular symbol.

4. It processes the connectivity list in the tiling engine
and forms the screen polygons and passes them to the
rendering engine.

One example of a three-dimensional symbol genera-
tor is described in detail in the assignee’s aforerefer-
enced patent application entitled ‘““Three Dimensional
Computer Graphic Symbol Generator”.

The symbol generator data base consists of vertex list
library and 64K bytes of overlay RAM and a connectiv-
ity list. Up to 18K bytes of DFAD (i.e., 2K bytes dis-
play list from cache shadow RAM X 9 buffer segments)
are loaded into the overlay RAM for cultural feature
processing. The rest of the memory holds the threat/in-
telligence file and the mission planning file for the entire
gaming area. The overlay RAM is loaded over the
control bus from the DSM processor with the threat
and mission planning files. The SHAG loads the DFAD
files. The symbol libraries are updated via the configu-
ration bus.

15

20

25

30

40

45

50

55

65

14

The vertex list contains the relative vertex positions
of the generic library icons. In addition, it contains a 16
bit surface normal, a one bit end of polygon flag, and a
one bit end of symbol flag. The table is 32K X 16 bits. A
maximum of 512 vertices may be associated with any
given icon. The connectivity list contains the connec-
tivity information of the vertices of the symbol. A 64K
by 12 bit table holds this information.

A pathway in the sky format may be implemented in
this system. It consists of either a wire frame tunnel or
an elevated roadbed for flight path purposes. The wire
frame tunnel is a series of connected transparent rectan-
gles generated by the tiling engine of which only the
edges are visible (wire mesh). Alternatively, the poly-
gons may be precomputed in world coordinates and
stored in a mission planning file. The roadbed is simi-
larly comprised of polygons generated by the tiler along
a designated pathway. In either case, the geometry
engine must transform these polygons from object
space (world coordinate system) to screen space. The
transformed vertices are then passed to the rendering
engine. The parameters (height, width, frequency) of
the tunnel and roadbed polygons are programmable.

Another symbol used in the system is a waypoint flag.
Waypoint flags are markers consisting of a transparent
or opaque triangle on a vertical staff rendered in per-
spective. The waypoint flag icon is generated by the
symbol generator as a macro from a mission planning
file. Alternatively, they may be precomputed as poly-
gons and stored. The geometry engine receives the
vertices from the symbol generator and performs the
perspective transformation on them. The geometry
engine passes the rendering engine the polygons of the
flag staff and the scaled font call of the alphanumeric
symbol. Plan view format consists of a circle with a
number inside and is not passed through the geometry
engine.

DFAD data processing consists of a generalized
polygon renderer which maps 32K points possible
down to 256 polygons or less for a given buffer seg-
ment. These polygons are then passed to the rendering
engine. This approach may redundantly render terrain
and DFAD for the same pixels but easily accommo-
dates declutter of individual features. Another ap-
proach is to rasterize the DFAD and use a texture warp
function to color the terrain. This would not permit
declutter of individual features but only classes (by
color). Terrain color show-through in sparse overlay
areas would be handled by a transparent color code
(screen door effect). No verticality is achieved.

There are 298 categories of aerial, linear, and point
features. Linear features must be expanded to a double
line to prevent interlace strobing. A point feature con-
tains a length, width, and height which can be used by
the symbol generator for expansion. A typical lake con-
tains 900 vertices and produces 10 to 20 active edges for
rendering at any given scan line. The number of vertices
is limited to 512. The display list is 64K bytes for a
1:250K buffer segment. Any given feature could have
32K vertices.

Up to 2K bytes of display list per buffer segment
DTED is accommodated for DFAD. The DSM can tag
the classes or individual features for clutter/declutter
by toggling bits in the overlay RAM of the SHAG.

The symbol generator processes macros and graphic
primitives which are passed to the rendering engine.
These primitives include lines, arcs, alphanumerics, and
two dimensional symbology. The rendering engine

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

15

draws these primitives and outputs pixels which are
anti-aliased. The GAP transforms these polygons and
passes them to the rendering engine. A complete 4X 4
Euler transformation is performed. Typical macros
include compass rose and range scale symbols. Given a
macro command, the symbol generator produces the
primitive graphics calls to the rendering engine. This
mode operates in plan view only and implements two
dimensional symbols. Those skilled in the art will appre-
ciate that the invention is not limited to specific fonts.

Three dimensional symbology presents the problem
of clipping to the view volume. A gross clip is handled
by the DSM in the cache memory at scan out time. The
base of a threat dome, for example, may lie outside the
orthographic projection of the view volume onto
cache, yet a part of its dome may end up visible on the
screen. The classical implementation performs the func-
tions of tiling, transforming, clipping to the view vol-
ume (which generates new polygons), and then render-
ing. A gross clip boundary is implemented in cache
around the view volume projection to guarantee inclu-
sion of the entire symbol. The anomaly under animation
to be avoided is that of having symbology sporadically
appear and disappear in and out of the frame at the
frame boundaries. A fine clip to the screen is performed
downstream by the rendering engine. There is a 4K
boundary around the screen which is rendered. Outside
of this boundary, the symbol will not be rendered. This
causes extra rendering which is clipped away.

Threat domes are represented graphically in one
embodiment by an inverted conic volume. A threat/in-
telligence file contains the location and scaling factors
for the generic model to be transformed to the specific
threats. The tiling engine contains the connectivity
information between the vertices and generates the
planar polygons. The threat polygons are passed to the
rendering engine with various viewing parameters such
as mesh, opaque, dot, transparent, and so forth.

Graticles represent latitude and longitude lines, UTM
klicks, and so forth which are warped onto the map in
perspective. The symbol generator produces these lines.

Freeze frame is implemented in plan view only. The
cursor is flown around the screen, and is generated by
the symbol generator.

Programmable blink capability is accommodated in
the invention. The DSM updates the overlay RAM
toggle for display. The processor clock is used during
variable frame update rate to control the blink rate.

A generic threat symbol is modeled and stored in the
three dimensional symbol generation library. Parame-
ters such as position, threat range, and angular threat
view are passed to the symbol generator as a macro call
(similar to a compass rose). The symbol generator cre-
ates a polygon list for each threat instance by using the
parameters to modify the generic model and place it in
the world coordinate system of the terrain data base.
The polygons are transformed and rendered into screen
space by the perspective view pipeline. These polygons
form only the outside envelope of the threat cone.

This invention has been described herein in consider-
able detail in order to comply with the Patent Statues
and to provide those skilled in the art with the informa-
tion needed to apply the novel principles and to con-
struct and use such specialized components as are re-
quired. However, it is to be understood that the inven-
tion can be carried out by specifically different equip-
ment and devices, and that various modifications, both
as to the equipment details and operating procedures,

20

25

30

35

45

50

55

65

16
can be accomplished without departing from the scope
of the invention itself.
What is claimed is:
1. A system for providing a texture mapped perspec-
tive view for a digital map system wherein objects are
transformed from texture space having U, V coordi-
nates to screen space having X, Y coordinates compris-
ing:
(a) a cache memory means for storing terrain data
including elevation posts, wherein the cache mem-
ory means includes an output and an address bus;
(b) 2 shape address generator means for scanning
cache memory having an ADDRESS SIGNAL
coupled to the cache memory means address bus
wherein the shape address generator means scans
the elevation posts out of the cache memory means;
(c) a geometry engine coupled to the cache memory
means output to receive the elevation posts
scanned from the cache memory by the shape ad-
dress generator means, the geometry engine includ-
ing means for
i. transformation of the scanned elevation posts
from object space to screen space so as to gener-
ate transformed vertices in screen coordinates
for each elevation post, and

ii. generating three dimensional coordinates;

(d) a tilling engine coupled to the geometry engine
for generating planar polygons from the generated
three dimensional coordinates;

(e) a symbol generator to the geometry engine for
transmitting a vertex list to the geometry engine
wherein the geometry engine operates on the ver-
tex list to transform the vertex list into screen space
X, Y coordinates and passes the screen space X, Y
coordinates to the tilling engine for generating
planar polygons which form icons for display and
processing information from the tilling engine into
symbols,

(f) a texture engine means coupled to receive the
ADDRESS SIGNAL from the shape address gen-
erator means including a texture memory and in-
cluding a means for generating a texture vertex
address to texture space correlated to an elevation
post address and further including a means for
generating a texture memory address for scanning
the texture memory wherein the texture memory
provides texture data on a texture memory data bus
in response to being scanned by the texture mem-
ory address;

(g) a rendering engine having an input coupled to the
tilling engine and the texture memory data bus for
generating image data from the planar polygons;
and

(h) a display memory for receiving image data from
the rendering engine output wherein the display
memory includes at least four first-in, first-out
memory buffers.

2. The apparatus of claim 1 wherein each polygon has

a surface and the rendering means assigns one color
across the surface of each polygon.

3. The apparatus of claim 1 wherein the vertices of
each polygon have an intensity and the rendering means
interpolates the intensities between the vertices of each
polygon in a linear fashion.

4. The apparatus of claim 1 wherein the rendering
means further includes means for generating transpar-
ent polygons and passing the transparent polygon to the
display memory.

Microsoft et al.

Exhibit 1005

APPENDIX K

5,179,638

17

5. A method for providing a texture mapped perspec-
tive view for a digital map system having a cache mem-
ory, a geometry engine coupled to the cache memory, a
shape address generator coupled to the cache memory,
a tiling engine coupled to the geometry engine, a sym-
bol generator coupled to the geometry engine and the
tiling engine, a texture engine coupled to the cache
memory, a rendering engine coupled to the tiling engine
and the texture engine, and a display memory coupled
to the rendering engine, wherein objects are trans-
formed from texture space having U, V coordinates to
screen space having X, Y coordinates, the method com-
prising the steps of:

(a) storing terrain data, including elevation posts, in

the cache memory;

(b) scanning the cache memory to retrieve the eleva-
tion posts;

(c) transforming the terrain data from elevation posts
in object space to transformed vertices in screen
space, and s

(d) generating planar polygons from the generated
three dimensional coordinates;

(e) transmitting a vertex list to the geometry engine,
operating the geometry engine to transform the
vertex list into screen space X, Y coordinates and
passing the screen space X, Y coordinates to the

20

25

30

35

45

50

55

65

18
tiling engine for generating planar polygons which
form icons for display;

(f) tagging elevation posts with corresponding ad-
dresses in texture space;

(g) generating image data in the rendering engine
from the planar polygons and the tagged elevation
posts; and

(h) storing the generated image data in the display
memory wherein the display memory comprises at
least four first-in, first-out memory buffers and the
step of storing the generated images includes stor-
ing the generated image data in the at least four
First-in, First-out memory buffers.

6. The method of claim § wherein each polygon has

a surface and wherein the step of generating image data
further includes the steps of assigning one color across
the surface of each polygon.

7. The method of claim § wherein the vertices of each
polygon have an intensity and the step of generating
image data further includes the step of interpolating the
intensities between the vertices of each polygon in a
linear fashion.

8. The method of claim 5§ wherein the step of generat-
ing image data further includes the step of generating
transparent polygons and passing the transparent poly-
gons to the display memory.

* * * * *

Microsoft et al.

Exhibit 1005

APPENDIX K

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. @ 5,179,638
DATED . January 12, 1993
INVENTOR(S) : John F. Dawson, Thomas D. Snodgrass, and
James A. Cousens
It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby

corrected as shown below:

Column 17, line 21, after "and" insert --generating three

dimensional coordinates for the transformed vertices

in screen space--,.

Signed and Sealed this
Twenty-second Day of March, 1994

Attest: 6«4« Zexcmw\

BRUCE LEHMAN

Commissioner of Patents and Trademarks

Attesting Officer

Microsoft et al. Exhibit 1005

Computer Graphics

APPENDIX L

Volume 17, Number 3 July 1983

Pyramidal Parametrics

Lance Williams

Computer Graphics Laboratory
New York Institute of Technology
0ld Westbury, New York

Abstract

The mapping of images onto surfaces
may substantially increase the realism and
information content of computer-generated
imagery. The projection of a flat source
image onto a curved surface may involve
sampling difficulties, however, which are
compounded as the view of the surface
changes. As the projected scale of the
surface increases, interpolation between
the original samples of the source image
is necessary; as the scale 1is reduced,
approximation of multiple samples in the
source is required. Thus a constantly
changing sampling window of view-dependent
shape must traverse the source image.

To reduce the computation implied by
these requirements, a set of prefiltered
gsource images may be created. This
approach can be applied to particular
advantage in animation, where a large
number of frames using the same source
image must be generated. This paper
advances a "pyramidal parametric" pre-
filtering and sampling geometry which
minimizes aliasing effects and assures
continuity within and between target
images.

Although the mapping of texture onto
surfaces 1is an excellent example of the
process and provided the original motiva-
tion for its development, pyramidal
parametric data structures admit of wider
application. The aliasing of not only
surface texture, but also highlights and
even the surface representations them-
selves, may be minimized by pyramidal
parametric means.

General Terms: Algorithms.

Keywords and Phrases: Antialiasing,
T1lumination Models, Modeling, Pyramidal
Data Structures, Reflectance Mapping, Tex-
ture Mapping, Visible Surface Algorithms.

CR Categories: I.3.3 [Computer Graphics]:
Picture/Image Generation--displa algo-
rithms; I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling--
curve, surface, solid and object represen-
tations, geometric algorithms, languages
and systems; I.3.7 [Computer Graphics]:

Three-Dimensional Graphics and Realism--
color, shading, shadowing, and texture.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

© ACM 0-89791-109-1/83/007/0001 $00.75

l. Pyramidal Data Structures

Pyramidal data
based on various

structures may be
subdivisions: binary
trees, gquad trees, oct trees, or n-
dimensional Thierarchies [17]. The common
feature of these structures is a succes-
sion of 1levels which vary the resolution
at which the data is represented.

The decomposition of an
two-dimensional binary
pioneering strategy in computer graphics
for visible surface determination [15].
The approach was essentially a synthesis-
by-analysis: the image plane was subdi-
vided into quadrants recursively until
analysis of a subsection showed that sur-
face ordering was sufficiently simple to
permit rendering. Such subdivision and
analysis has been subsequently adopted to
generate spatial data structures [5],
which have been used to represent images
[9] both for pattern recognition [13] and
for transmission [10], [14]. 1In the field
of computer graphics, such data structures
have been adopted for texture mapping [4],
[16], and generalized to represent objects
in space [11].

image by
subdivision was a

The application of pyramidal data to
image storage and transmission may permit
significant compression of the data to be
stored or transmitted. This is so because
highly detailed features may be 1localized
within an otherwise low-frequency image,
permitting the sampling rate to be reduced
for 1large sections of the image. Besides
permitting bandwidth compression, the
representation orders data in such a way
that the general character of images may
be recalled or transmitted before the
specific details.

Pattern recognition and classifica-
tion often require the comparison of a
candidate image against a set of canonical
patterns. This is an operation the
expense of which increases as the square
of the resolution at which it is per-
formed. The use of pyramidal data struc-
tures in pattern recognition and classifi-
cation permits the comparison of the gross
features of two-dimensional functions
preliminary to the minute particulars; a
good general reference on this application
is [121].

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ or specific permission.

Microsoft et al.

Exhibit 1005

Computer Graphics

In computer graphics, pyramidal tex-
ture maps may be used to perform arbitrary
mappings of a function with minimal alias-
ing artifacts and reduced computation.
Once again, images may be represented at
different spatial bandwidths. The concern
is that inappropriate resolution
misrepresents the data; that is, sampling
high-resolution data at larger sample
intervals invites aliasing.

2. Parametric Interpolation

By a pyramidal parametric data struc-
ture, we will mean simply a pyramidal
structure with both intra- and inter-level
interpolation. Consider the case of an
image represented as a two-dimensional
array of samples. Interpolation is neces-
sary to produce a continuous function of
two parameters, U and V. If, in addition,
a third parameter (call it D) moves us up
and down a hierarchy of corresponding
two-dimensional functions, with interpola-
tion Dbetween (or among) the levels of the

pyramid providing continuity, the struc-
ture is pyramidal parametric.
The practical distinction between

such a structure and an ordinary interpo-
lant over an n-dimensional array of sam-
ples is that the number of samples
representing each level of the pyramid may
be different.

3. Mip Mapping

"Mip" mapping is a particular format
for two-dimensional parametric functions,
which, along with its associated address-
ing scheme, has been used successfully to
bandlimit texture mapping at New York
Institute of Technology since 1979. The
acronym "mip" is from the Latin phrase
“multum in parvo," meaning "many things in
a small place." Mip mapping supplements
bilinear interpolation of pixel values in
the texture map (which may be used to
smoothly translate and magnify the tex-
ture) with interpolation between prefil-
tered versions of the map (which may be
used to compress many pixels into a small
place). In this 1latter capacity, mip
offers much greater speed than texturing
algorithms which perform explicit convolu-

tion over an area in the texture map for
each pixel rendered [1], [6].
Mip owes 1its speed 1in compressing

texture to two factors. First, a fair
amount of filtering of the original tex-
ture takes place when the mip map is first
created. Second, subsequent filtering is
approximated by blending different levels
of the mip map. This means that all
filters are approximated by linearly
interpolating a set of square box filters,
the sides of which are powers~of-two pix-
els in length. Thus, mapping entails a
fixed overhead, which 1is independent of
the area filtered to compute a sample.

Volume 17, Number 3

APPENDIX L

July 1983

D)

]

=E R |
B|G

b

Figure (1)

Structure of a Color Mip Map
Smaller and smaller images diminish into
the upper left corner of the map. Each of
the 1images is averaged down from its
larger predecessor.

(Below:)
Mip maps are indexed by three coordinates:
U, V, and D. U and V are spatial coordi-
nates of the map; D is the wvariable used
to index, and interpolate between, the
different levels of the pyramid.

S m

e Y v
r’“\ v
Y \

l——-’-u St

w U

-« -

Figure (1) illustrates the memory
organization of a color mip map. The
image is separated into its red, green,
and blue components (R, G, and B in the
diagram). Successively filtered and down-
sampled versions of each component are
instanced above and to the 1left of the
originals, in a series of smaller and
smaller images, each half the linear
dimension (and a quarter the number of

Microsoft et al.

Exhibit 1005

Computer Graphics

samples) of its parent. Successive divi-
sions by four partition the frame buffer
equally among the three components, with a
single unused pixel remaining in the upper
left-hand corner.

The concept behind this memory organ-
ization is that corresponding points in

different prefiltered maps can be
addressed simply by a binary shift of an
input U, V coordinate pair. Since the

filtering and sampling are performed at
scales which are powers of two, indexing
the maps is possible with inexpensive

binary scaling. In a hardware implementa-
tion, the addresses in all the correspond-
ing maps (now separate memories) would be
instantly and simultaneously available
from the U, V input.

The routines for creating and access-
ing mip maps at NYIT are based on simple
box (Fourier) window prefiltering, bil-
inear interpolation of pixels within each
map instance, and linear interpolation
between two maps for each value of D (the
pyramid's vertical coordinate). For each
of the three components of a color mip
map, this requires 8 pixel reads and 7
multiplications. This choice of filters
is strictly for the sake of speed. Note
that the bilinear interpolation of pixel
values at the extreme edges of each map
instance must be performed with pixels
from the opposite edge(s) of that map, for
texture which 1is periodic. For non-
periodic texture, scaling or clipping of
the U, V coordinates prevents the intru-
sion of an inappropriate map or color com-
ponent into the interpolation.

The box (Fourier) window used to
create the mip maps illustrated here, and
the tent (Bartlett) window used to inter-
polate them, are far from ideal; yet prob-
ably the most severe compromise made by
mip filtering is that it is symmetrical.
Each of the prefiltered levels of the map
is filtered equally in X and Y. Choosing
a value of D trades off aliasing against
blurring, which becomes a tricky proposi-
tion as a pixel's projection in the tex-
ture map deviates from symmetry. Heckbert
[8] suggests:

d = max \/(au)2+(gg)2 ,\/6__1)2+ av)z)
ax X ay. av.
where D is proportional to the "diameter"
of the area in the texture to be filtered,
and the partials of U and V (the texture-
map coordinates) with respect to X and Y

(the screen coordinates) can be calculated
from the surface projection.

Illustrations of mapping per formed by
the mip technique are the subject of Fig-
ures (2) through (10). The NYIT Test Frog
in Figure (2) is magnified by simple point
sampling in (3), and by interpolation in
(4). The hapless amphibian is similarly

APPENDIX L

Volume 17, Number 3 July 1983

Figure (2)
Mip map of the flexible NYIT Test Frog.

compressed by point sampling in (5) and by
mipping in (6).

The more general and interesting case
-—- continuously variable upsampling and
downsampling of the original texture -- is
illustrated in (7) on a variety of sur-
faces. Since the symmetry of mip filter-
ing would be expected to show up badly
when texture is compressed in only one
dimension, figures (8) through (10) are of
especial interest. These pictures,
created by Ed Emshwiller at NYIT for his
videotape, "Sunstone," were mapped using
Alvy Ray Smith's TEXAS animation program,
which in turn used MIP to antialias tex-
ture. As the panels rotate edge-on, the
texture collapses to a line smoothly and
without apparent artifacts.

Figure (7)
General mapping: interpolation and
pyramidal compression.

Microsoft et al.

Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983

Figure (3) Figure (4)
Upsampling the frog: magnification by Upsampling the frog: magnification by
point sampling. bilinear interpolation.

Figure (5)
compression by point samplina (detail. riaht).

. . Fiqure (6)
Downsampling: compression by pyramidal interpolation (detail, right).

Microsoft et al. Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983

Figures (8)-(9)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

Microsoft et al. Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983

Figures (10)-(11)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

Microsoft et al. Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983
4. Highlight Antialiasing Figure (13) é&) <E§§
As small or highly curved objects / b

move across a raster, their surface nor-
mals may beat erratically with the sam-
pling grid. This causes the shading
values to flash annoyingly in motion
sequences, a symptom of illumination
aliasing. The surface normals essentially
point-sample the illumination function.

Figure (12) illustrates samples of
the surface normals of a set of parallel
cylinders. The cylinders in the diagram
are depicted as if from the edge of the
image plane; the regularly-spaced vertical
line segments are the samples along a sin-
gle axis. The arrows at the sample points
indicate the directions of the surface
normals. Depending on the shading formula
invoked, there may be very high contrast
between samples where the normal is nearly
parallel to the sample axis, and samples
where the normal points directly at the
observer's eye.

specular surface reflection function. The
Figure (12) highlight indicated by the bump falls
entirely between the samples. (Note that
this is only possible on a flat surface if
either the eye or the light is local, a
A;) point in space rather than simply a direc-
tion vector. Some boring shading formulae
exclude the possibility of Thighlight
aliasing on polygons by requiring all flat
surfaces to be flat in shading.)

A first attempt to overcome the limi-
tations of point-sampling the illumination

function is to integrate the function over
| the projected area represented by each
: 5 d ‘\\1//~\\ sample point. This approach is illus-~

trated in Pigure (14). The brackets at
each sample represent the area of the sur-
face over which the illumination function
is integrated. This procedure is analo-
gous to area-averaging of sampled edges or

The shading function depends not only texture [3].
on the shape of the surface, but its light
reflection properties (chara?tgrlzed by In order to generalize this approach
the shading formula), the position of the to curved surfaces, the "sample interval"
light source, and the position of the over which illumination is integrated must
observer's eye. Hanrahan f7] expresses it be modified according to the local curva-
in honest Greek: ture of the surface at a sample. In Fig-
ure (15), the area of a surface
S S ©(E,N,L) Q(y,v) dxdy represented by a pixel has been projected
X'y d(x,y) onto a curved surface. The solid angle
. over which illumination must be integrated
where the normal, N, the light sources, L, is approximated by the volume enclosed by
and the eye, E, are vectors which may each the normals at the pixel corners. The
be functions of U and V, and the limits of distribution of 1light within this volume
integration are the X, Y boundaries of the will sum to an estimate of the diffuse
pixel. reflection over the pixel. If the surface
. . . . exhibits undulations at the pixel level,
Figure (13) illustrates Thighlight however, aliasing will result.

aliasing on a perfectly flat surface. The
viewing conventions of the diagram are the
same as in Figure (12). "L" is the direc-
tion vector of the light source; the sur-
face is a polygon at an angle to the image
plane; the dotted bump is a graph of the
reflected light, characteristic of a

Figure (15)

Microsoft et al. Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983

We might divide the surface wup into
regions of relatively low curvature (as is
done in some patch rendering algorithms),
and rely on "edge antialiasing" to
integrate the different surfaces within a
pixel. Alternatively, we may develop some
mechanism for limiting the local curvature
of surfaces before rendering. This possi-
bility is explored in the next section.

If we represent the illumination of a
scene as a two-dimensional map, highlights
can be effectively antialiased in much the
same way as textures. Blinn and Newell
[1] demonstrated specular reflection using
an illumination map. The map was an image
of the environment (a spherical projection
of the scene, indexed by the X and Y com-
ponents of the surface normals) which
could be used to cast reflections onto

Figure (16) specular surfaces. The impression of mir-
Michael Chou (right) poses with an ima- rored facets and chrome objects which can
ginary companion. Reflectance maps can be achieved with this method is striking:
enhance the realism of synthetic shading. Figure (16) provides an 1illustration.

Reflectance mapping is not, however, accu-
rate for 1local reflections. To achieve
similar results with three dimensional
accuracy requires ray-tracing.

A pyramidal parametric illumination
map permits convenient antialiasing of
highlights as long as a good measure of
local surface curvature is available. The
value of "D" used to index the map is pro-
portional to the solid angle subtended by
the surface over the pixel being computed:
this may be estimated by the same formula
used to compute D for ordinary texture
mapping. Nine 1light sources of varying
brightness glint raggedly from the test
object in Figure (18); the reflectance map
in Figure (17) provided the illumination.
In Figure (19), convincing highiight
antialiasing results from the full pyrami-
dal parametric treatment.

Figure (17)
A pyramidal parametric reflectance map,

contéining 9 1light sources. The region
outside the "anhera" iae 1nnead

Figure (18) Before Figure (19) After

Microsoft et al. Exhibit 1005

Computer Graphics

Volume 17, Number 3

E .

W
i

N
-
-
2
e
2

N
N
M
H

32 x 32

64 X 64

APPENDIX L

July 1983

8 x 8

Figures (20-23) Different resolution meshes.

5. Levels of Detail in Surface Represen-

tation

In addition to bandlimiting texture
and illumination functions for mapping
onto a surface, pyramidal parametrics may
be used to limit the level of detail with
which the surface itself 1is represented.
The goal 1is to represent an object for
graphic display as economically as its
projection on the image plane permits,
without boiling and sparkling aliasing
artifacts as the projection changes.

The expense of computing and shading
each pixel dominates the cost of many
algorithms for rendering higher-order sur-
faces. For meshes of polygons or patch
control points which project onto a small
portion of the image, however, the vertex
(or control-point) expense dominates. In
these situations it is desirable to reduce
the number of points used to represent the
object.

A pyramidal parametric data structure
the components of which are spatial coor-
dinates (the X-Y-Z of the vertices of a
rectangular mesh, for example, as opposed
to the R-G-B of a texture or illumination
map) provides a continuously-variable fil-
tered instance of the surface for sampling
at any desired degree of resolution.

Figures (20) through (23) illustrate
a simple surface based on a human face
model developed by Fred Parke at the
University of Utah. As the sampling den-
sity varies, so does the filtering of the

surface. These faces are filtered and
sampled by the same methods previously
discussed for texture and reflectance
maps . Pyramidal parametric representa-

tions such as these appear promising for
reducing aliasing effects as well as sys-
tematically sampling very large data bases
over a wide range of scales and viewing
angles.

Microsoft et al. Exhibit 1005

Computer Graphics

6. Conclusions

Pyramidal data structures are of pro-
ven value in image analysis and have
interesting application to image bandwidth
compression and transmission. "Pyramidal
parametrics," pyramidal data structures
with intra- and inter-level interpolation,
are here proposed for use in image syn-
thesis. By continuously varying the
detail with which data are resolved,
pyramidal parametrics provide economical
approximate solutions to filtering prob-
lems in mapping texture and illumination
onto surfaces, and preliminary experiments
suggest they may provide flexible surface
representations as well.

7. Acknowledgments

I would like to acknowledge Ed Cat-
mull, the first (to my knowledge) to apply
multiple prefiltered images to texture
mapping: the method was applied to the
bicubic patches in his thesis, although it
was not described. Credit is also due Tom
Duff, who wrote both recursive and scan-
order routines for creating mip maps which
preserved numerical precision over all map
instances; Dick Lundin, who wrote the
first assembly-coded mip map accessing
routines; Ephraim Cohen, who wrote the
second; Rick Ace, who translated Ephraim's
PDP-11 versions for the VAX assembler;
Paul Heckbert, for refining and speeding
up both creation and accessing routines,
and 1investigating various estimates of
"D"; Michael Chou, for implementing
highlight antialiasing and high-resolution
reflectance mapping on quadric surfaces.

I owe special thanks to Jules
Bloomenthal, Michael Chou, Pat Hanrahan,
and Paul Heckbert for critical reading and
numerous helpful suggestions in the course
of preparing this text. Photographic sup-
port was provided by Michael Lehman.

10

Volume 17, Number 3

APPENDIX L

Microsoft et al.

July 1983

Exhibit 1005

APPENDIX L

Computer Graphics Volume 17, Number 3 July 1983

,§' References

(1] Blinn, J., and Newell, M., ‘“Texture Electrical and Systems Engineering
and Reflection on Computer Generated Dept., Rensselaer Polytechnic Insti-
Images," CACM, Vol. 19, #10, Oct. tute, October 1980.

1976, pp. 542-547.

[12] Tanimoto, S.L., and Klinger, A.,
[2] Bui-Tuong Phong, "“Illumination for Structured Computer Vision, Academic
Computer Generated Pictures," PhD. Press, New York, 1980.
dissertation, Department of Computer
Science, University of Utah, December

1978. [13] Tanimoto, S.L., and Pavlidis, T., "A
Hierarchical Data Structure for Pic-
ture Processing,"” Computer Graphics

{3] crow, F.C., "The Aliasing Problem in and 1Image Processing, Vol. 4, #2,

Computer Synthesized Shaded Images," June 1975.

PhD. dissertation, Department of Com-
puter Science, University of Utah,
Tech. Report UTEC-CSc-76-015, March [14] Tanimoto, S.L., "Image Processing

1976. with Gross Information First," Com-
puter Graphics and Image Processing
9, 1979.

[4] Dungan, W., Stenger, A., and Sutty,

G., "Texture Tile Considerations for

Raster Graphics," SIGGRAPH 1978 [15] warnock, J.E., "A Hidden-Line Algo-

Proceedings, Vol. 12, #3, August rithm for Halftone Picture Represen-

1978. tation," Department of Computer Sci=-
ence, University of Utah, TR 4-15,
1969.

[5] Eastman, Charles M., "Representations

for Space Planning," CACM, Vol. 13,

#4, April 1970. [16] Williams, L., "Pyramidal
Parametrics,"” SIGGRAPH tutorial
notes, "Advanced Image Synthesis,"

[6] Feibush, E.A., Levoy, M., and Cook, 1981.

R.L., "Synthetic Texturing Using

Digital Filters," Computer Graphics,

Vol. 14, July, 1980. [17] Yau, M.M., and Srihari, S.N., "Recur-
sive Generation of Hierarchical Data
Structures for Multidimensional Digi-

[7]) Hanrahan, Pat, private communication, tal Images," Proceedings of the IEEE

1983. Computer Society Conference on Pat-
tern Recognition and Image Process-—
ing, August 1981.

[8] Heckbert, Paul, "Texture Mapping

Polygons in Perspective," NYIT Com-
puter Graphics Lab Tech. Memo #13,
April, 1983.

[9] Klinger, A., and Dyer, C.R., "Experi-
ments on Picture Representation Using
Regular Decomposition," Computer
Graphics and 1Image Processing, #5,
March, 1976.

[10] Knowlton, K., "Progressive Transmis-
sion of Gray-Scale and Binary Pic-
tures by Simple, Efficient, and Loss-
less Encoding Schemes," Proceedings
of the IEEE, Vol. 68, #7, July 1980,
pp. 885-896.,

[11] Meagher, D., "Octree Encoding: A New
Technique for the Representation,
Manipulation, and Display of Arbi-
trary 3D Objects by Computer," IPL-
TR-80~-111, Image Processing Lab,

11

Microsoft et al. Exhibit 1005

Mipmapping Page 1 of 2
APPENDIX M

Up|
Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a mipmap. A mipmap
is an ordered set of arrays representing the same image; each array has a resolution lower than the

previous one. If the texture has dimensions 2% X 2m, then there are max {5, m} + 1 mipmap arrays.

The first array is the original texture with dimensions 2% x 2™ Each subsequent array has
S Q[k—l] X 2([—1]

k {
where 2" X 2" are the dimensions of the previous array. This is the case

(-1]

dimension
as long as both k>0 and 1>0. Once either k=0 or 1=0, each subsequent array has dimension 1x2

or 2lk=1) x 1 respectively, until the last array is reached with dimension 1x1

Each array in a mipmap is transmitted to the GL using TexImage2D or TexImagelD ; the array
being set is indicated with the level-of-detail argument. Level-of-detail numbers proceed from 0 for

the original texture array through ¥ = max{#, M} with each unit increase indicating an array of half

the dimensions of the previous one as already described. If texturing is enabled (and
TEXTURE MIN FILTER is one that requires a mipmap) at the time a primitive is rasterized and if the set
of arrays 0 through p is incomplete, based on the dimensions of array 0, then it is as if texture
mapping were disabled. The set of arrays 0 through p is incomplete if the internal formats of all the
mipmap arrays were not specified with the same symbolic constant, or if the border widths of the
mipmap arrays are not the same, or if the dimensions of the mipmap arrays do not follow the
sequence described above. Arrays indexed greater than p are insignificant.

The mipmap is used in conjunction with the level of detail to approximate the application of an
appropriately filtered texture to a fragment. Let B = max{#n, M} and let ¢ be the value of 4 at which

the transition from minification to magnification occurs (since this discussion pertains to minification,
we are concerned only with values of § where A > €). For NEAREST MIPMAP NEAREST, if

€ < A X 0.9 then the mipmap array with level-of-detail of 0 is selected. Otherwise, the dth mipmap
array is selected when d— % <ALd+ %as long as 1<d<pirA>p+ %, then the pth

mipmap array is selected. The rules for NEAREST are then applied to the selected array.

The same mipmap array selection rules apply for LINEAR MIPMAP NEAREST as for
NEAREST MIPMAP NEAREST, but the rules for LINEAR are applied to the selected array.

For NEAREST MIPMAP LINEAR, the level d-1 and the level d mipmap arrays are selected, where
d—1<A< 'i, unless 4 2 P, in which case the pth mipmap array is used for both arrays. The rules

Microsoft et al. Exhibit 1005
https://www.opengl.org/documentation/specs/versionl.1/glspecl.1/node84.html 4/22/2015

Mipmapping Page 2 of 2
APPENDIX M

for NEAREST are then applied to each of these arrays, yielding two corresponding texture values Td=1
and 4. The final texture value is then found as

T = [1 —frac(A)]rs-; + frac(A)rs.

LINEAR MIPMAP LINEAR has the same effect as NEAREST MIPMAP LINEAR except that the rules for
LINEAR are applied for each of the two mipmap arrays to generate Td—1 and 7d.

|
Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

David Blythe
Sat Mar 29 02:23:21 PST 1997

Microsoft et al. Exhibit 1005
https://www.opengl.org/documentation/specs/versionl.1/glspecl.1/node84.html 4/22/2015

APPENDIX N

Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, anew scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphi cs/hoppe/

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citaion on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

© 1996 ACM-0-89791-746-4/96/008...$3.50

99

Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of asingle model to platforms of varying performance.
Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visua transitions,
geomor phs, between meshes at different resolutions.
Progressive transmission: When a mesh is transmitted over a
communication line, onewould like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
Oneisto use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

Sdlective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M is stored as a much
coarser mesh MP together with a sequence of n detail records that
indicate how to incrementally refine M° exactly back into the orig-
inal mesh M = M". Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M thus defines a.continuous sequence of meshesM®, M2, ..., M"
of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resol ution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.

Microsoft et al.

Exhibit 1005

2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.! Geometrically, atriangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K, V), whereK isasimplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = {vy,..., vm} isthe set of vertex positions defining
the shape of the mesh in R®. More precisely (cf. [9]), we construct
aparametric domain |K| C R™ by identifying each vertex of K with
a canonical basis vector of R™, and define the mesh as the image
#v(|K|) where ¢v : R™ — R2¥isalinear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, atrivial shader function may involvesimplelook-up within
a specified texture map.

Many scalar attributes are often associated with amesh, including
diffuse color (r, g, b), norma (n, ny,n;), and texture coordinates
(u, v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. Insimple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuitiesin the scalar fields, and because adjacent
facesmay havedifferent shadingfunctions, itiscommonto associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v, f) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

Weexpressamesh asatupleM = (K, V, D, S) where V specifies
its geometry, D is the set of discrete attributes di associated with
thefacesf = {j, k, 1} € K, and Sis the set of scalar attributes sy,
associated with the corners (v, f) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge {vj, v} of the mesh is said to be
sharp if either (1) itisaboundary edge, or (2) itstwo adjacent faces
fi and f; have different discrete attributes (i.e. dy, 7 d,), or (3) its
adjacent corners have different scalar attributes (i.e. Sy.1) 7 Sy.f)
Of Sy.f) 7 Swf)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview

Hoppe et d. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M by a much simpler one.
Their optimization agorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations. edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
Asshown in Figure 1, an edge collapsetransformation ecol ({vs, Vi })

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.

100

APPENDIX N

l ecol
— A
V, V
| <> v, | v,
) S
A vsplit
Figure 1: Illustration of the edge collapse transformation.
Mi*l (i=3) Mi MO mf M¢e
AC
Vi Vi D eco|0 Vi Vi Vi
v2 V2 — V2 V2 V2
$,=2
Vs ecol, Vs | Vs Vs
v \Y m,=3 v,
4 si:4 4 o 4
Vs Vs Vs
Ve Ve Ve
V7 V7

(@
Figure 2. (a) Sequence of edge collapses; (b)
correspondence.

(b)
Resulting vertex

unifies 2 adjacent vertices vs and v; into asingle vertex vs. The ver-
tex v and the two adjacent faces {vs, vi, vi} and {w, Vs, v; } vanish
inthe process. A position vs is specified for the new unified vertex.

Thus, an initiad mesh M = M" can be simplified into a coarser
mesh M? by applying a sequence of n successive edge collapse
transformations:

ecolp_1
—

(M=M") i SV SV
The particular sequence of edge collapse transformations must be
chosen carefully, sinceit determinesthequality of theapproximating
meshes M',i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let mo bethenumber of verticesinM?, and let uslabel thevertices
of mesh M' as V' = {vi,..., Vi }, SO that edge {Vs, Vmy+i+1} iS
collapsed by ecol; as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj inM' asvj.

A key observation is that an edge collapse transformation is in-
vertible. Let uscall that inverse transformation avertex split, shown
asvsplitin Figure 1. A vertex split transformation vsplit(s, I, r, t, A)
adds near vertex vs anew vertex v; and two new faces {vs, v, vi } and
{w, Vs, r }. (If the edge {vs, v} is a boundary edge, welet v, =0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs
and v of the two affected vertices, the discrete attributes dyy v v}
and dgy, v,y Of the two new faces, and the scalar ettributes of the
affected corners (S(Vs,')v St)1 S, {ve, M 1) and S(v,,{vl,vs,vr}))-

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M as a simple mesh
MO together with a sequence of n vsplit records:

vsplity vsplit: vsplitn_1
(VR V Eie. iy

M"=M)
where each record is parametrized as vspliti(s, li, ri, A). We call
(MO, {vsplito, .. ., vsplitn—1}) a progressive mesh (PM) representa-
tion of M.

As an example, the mesh M of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M° of Figure5a(150faces) using

Microsoft et al.

Exhibit 1005

6,698 edge collapse transformations. Thus its PM representation
consists of M together with a sequence of n=6698 vsplit records.
From thisPM representation, one can extract approximating meshes
with any desired number of faces (actually, within 1) by applying
to M? aprefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs

A nice property of the vertex split transformation (and its inverse,
edge collapse) isthat asmooth visual transition (ageomor ph) can be
created between the two meshes M' and M2 in M' 2% M1, For
themoment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(s, li, i, A = (v, vinsisg)). We construct a
geomorph M®(«) with blend parameter 0< o < 1 such that M(0)
looks like M and M®(1) looks like M*—in fact M®(1) =M *1—by
defining amesh
M®(a) = (K™, Vo(a))

whose connectivity is that of M™* and whose vertex positions lin-
early interpolate from vs € M' to the split vertices Vs ,Vimg+iv1 € M

o y=) @Vt +(A—a)vy , j€{s,mo+i+1}
o= { 5L T 1, morit1)

Using such geomorphs, an application can smoothly transition from
amesh M' to meshes M™* or M'~* without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of aPM representation. Indeed, given afiner mesh M and acoarser
mesh M®, 0 < ¢ < f < n, there exists a natural correspondence
between their vertices: each vertex of M isrelated to aunique an-
cestor vertex of M® by a surjective map A° obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex v; of M corresponds with the vertex vacg) in M® where

i = j
A0 ‘{ PSS -my-1)

(In practice, this ancestor information A° is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define ageomorph M€ () such that M®(0) looks like M€ and M®(1)
equals M. We simply define M®(a) = (K", V¢(a)) to have the
connectivity of M" and the vertex positions

,j<mo+c
,j>m+c .

vi(@) = (@)v] + (1—a)vis) -

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
MC are a proper subset of the faces of M, and that those faces of
M missing from M€ areinvisiblein M®(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpol ated
much like the vertex positions. There is a slight complication in
that a corner (v,f) in a mesh M is not naturally associated with

101

APPENDIX N

any “ancestor corner” in a coarser mesh M° if f is not a face of
M. We can still attempt to infer what attribute value (v, f) would
have in M as follows. We examine the mesh M™* in which f is
first introduced, locate a neighboring corner (v, f') in M™*! whose
attribute value is the same, and recursively backtrack from it to a
corner in M. If there is no neighboring corner in M'** with an
identical attribute value, then the corner (v, f) has no equivalent in
M€ and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstratesageomorph between two meshes M "™ (500
faces) and M“?® (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission

Progressive meshes are a natural representation for progressive
transmission. The compact mesh M is transmitted first (using
a conventiona uni-resolution format), followed by the stream of
vsplit; records. The receiving process incrementally rebuilds M as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M isrecovered exactly after al nrecords are received,
since PM is alossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M and interactive display. With a
slow communication line, asimple strategy isto display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arisein the display of images transmitted using progressive JPEG.)

3.4 Mesh compression

Even though the PM representation encodes both M and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(s, li, ri) of vsplit;, one need only store s and approximately 5 bits
to select the remaining two vertices among those adjacent to vg .
Second, because avertex split haslocal effect, one can expect signif-
icant coherence in mesh attri butesthro_u%)h each transformation. For
instance, when vertex v issplitinto vy ™ and \/n*bl+i+1, we can predict
the positions vg* and vinsis1 from vy, and use delta-encoding to
reduce storage. Scalar attributes of cornersin M'** can similarly be
predicted fromthosein M'. Finally, the material identifiersdyy, v v1
and dgy, vy} Of the new facesin mesh M'*! can often be predicted
from those of adjacent facesin M' using only afew control bits.

As aresult, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goa in mind. However, we anayze
the compression of theconnectivity K, and report resultsonthecom-
pression of the geometry V. In the following analysis, we assume
for simplicity that mp = 0 since typicaly mp < n.

A common representation for the mesh connectivity K isto list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such alist requires
6[log,(n)]n bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2Onaverage, vg has6 neighbors, and the number of permutations P§ =30
can be encoded in [log,(PS)] =5 bits.

Microsoft et al.

Exhibit 1005

([log,(n)T+2k)n bits, where vertices are back-referenced once on
average and k ~ 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering's generalized
triangle mesh representation [6] further reduces storage to about
(210g,(n)] +8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus O meshes) can be encoded
in 12n hits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vsplit; re-
quires specification of s and itstwo neighbors, for atotal storage of
about ([log,(n)]+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditiona representation of the mesh geometry V requires
storage of 3n coordinates, or 96n hits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-hit fixed precision val ues without significant
loss of visual quality, thus reducing storage to 48n hits. Deering is
abletofurther compressthisstorage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35.8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach withthe PM representation, we encode V in 31nto 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge {Vvs, \}, it considers three starting points for
the resulting vertex position vi: {vs, vi, Y55t }. Depending on the
starting point chosen, we delta-encode either {vs—vn, vi — vy} or
{¥5¥t — vy, Y15¥s}, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
agorithm to forego optimization and let vy € {vs, vi, Y }. This
would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bitsin our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

ny

3.5 Selective refinement

The PM representation also supports selective refinement, whereby
detail isadded tothemodel only in desired areas. Let theapplication
supply acallback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initid mesh M° is selectively refined by
iterating through thelist {vsplitc, . . . , vsplita—1} as before, but only
performing vspliti(s, Ii, ri, A) if

(1) al three vertices {vs, wi;, Vi, } are present in the mesh, and
(2) REFINE(vs) evaluatesto TRUE.

(A vertex v; is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj_m,—1, was not performed due to
the above conditions.)

Asan example, to obtain selective refinement of the model within
aview frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem isthat a
vertex v within the frustum may fail to be split because its expected
neighbor v;; lies just outside the frustum and was not previously
created. The problem isremedied by using aless stringent version
of condition (1). Let usdefinethe closest living ancestor of avertex
Vj to be the vertex with index

A’(j):{ , j , ifvj existsin the mesh
A(S-mp-1) , otherwise

102

APPENDIX N

The new condition becomes:

(1') vs ispresentinthemesh (i.e. A'(s) =) and the vertices v ;)
and var () are both adjacent to vs.

As when constructing the geomorphs, the ancestor information A/
is carried efficiently as the vsplit records are parsed. If conditions
(1) and (2) are satisfied, vsplit(s, A'(Ii), A'(ri), A) is applied to the
mesh. A mesh selectively refined with this new strategy isshownin
Figure 7b. Thissame strategy wasalso used for Figure 10. Notethat
it is still possible to create geomorphs between M® and selectively
refined meshes thus created.

Aninteresting application of selective refinement isthe transmis-
sion of view-dependent model sover low-bandwidth communication
lines. Asthereceiver’sview changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M requires a sequence
of edge collapses transforming M = M" into a base mesh M°.
The quality of the intermediate approximations M', i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vy

There are many possible PM construction a gorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane’ metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Eqis geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design asimplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppeet d. [9], which
isoutlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3-4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization

The goa of mesh optimization [9] is to find a mesh M = (K, V)
that both accurately fits a set X of points x; € R® and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edit(M) + Erep(M) + Egpring(M) .
The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Eas(M) =) d(xi, v ((K()

measures the total squared distance of the points from the mesh,
and the representation energy term Eregp(M) = Cregom penalizes the
number m of vertices in M. The third term, the spring energy
Esring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension «:

EpringM) =) sillv; — vl*.

{i,k}eK

Microsoft et al.

Exhibit 1005

A |
poor \

v space of meshes .-

accuracy
E

dist

perfect

size (# vertices)

Figure 3: lllustration of the paths taken by mesh optimization using
three different settings of Crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

e Outer loop: The agorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K — K’, the continuous
optimization described below computes Ey:, the minimum of
E subject to the new connectivity K'. If AE = Exs — Ex is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

Inner loop: For each candidate mesh transformation, the algo-
rithm computes Ex = miny Eais(V) + Espring(V) by optimizing
over the vertex positions V. For the sake of efficiency, the ago-
rithmin fact optimizes only one vertex position vs, and considers
only the subset of points X that project onto the neighborhood
affected by K — K’. To avoid surface self-intersections, the
edge collapse is disalowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et a. [9] find that the regularizing spring energy term
Egring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants .

Mesh optimizationisdemonstrated to be an effectivetool for mesh
simplification. Given aninitial mesh M to approximate, a dense set
of points X is sampled both at the vertices of M and randomly over
itsfaces. The optimization algorithm isthen invoked with M asthe
starting mesh. Varying the setting of the representation constant Crep
resultsin optimized mesheswith different trade-offs of accuracy and
size. Thepathstaken by these optimizations are shown illustratively
inFigure 3.

4.2 Overview of the simplification algorithm

Asinmesh optimization [9], weal so definean explicit energy metric
E(M) to measuretheaccuracy of simplifiedmeshesM = (K,V,D, S
with respect to the original M, and we also modify the mesh M
starting from M while minimizing E(M).

Our energy metric has the following form:
E(M) = Edit(M) + Espring(M) + Escalar (M) + Edisc(M) -

The first two terms, Egis(M) and Egring(M) are identical to those
in[9]. The next two terms of E(M) are added to preserve attributes
associated with M: Esaar (M) measures the accuracy of its scalar
attributes (Section 4.4), and Eqis(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)

103

APPENDIX N

poor \

accuracy

Edisl

ideal
0

perfect

size (#vertices)

Figure 4: lllustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes areusually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations asin [9],
we place al (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost AE. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest AE), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter Cp aswell as the energy term E;e(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resol ution family of
meshes, namely the PM representation of M (Figure 4).

For each edge collapse K — K’, we compute its cost AE =
Ex: — Ex by solving a continuous optimization

Ex = n\’/“g Edis{(V) + Espring(v) + Esca]ar(v, 5) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K’. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Egist +Egpring)

As in [9], we “record” the geometry of the origina mesh M by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M. If requested by the user, additional points
are sampled randomly over the surface of M. The energy terms
Edis(M) and Egying(M) are defined asin Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Eqist(V) + Egring(V) closely followsthat
of [9]. Evaluating Egis (V) involves computing the distance of each
point x; to themesh. Each of these distancesisitself aminimization
problem

d*(xi, ov(IKD) = min Ixi — pv(bi)]* €
bie|k|
where the unknown b is the parametrization of the projection of
x; on the mesh. The nonlinear minimization of Egist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:

Microsoft et al.

Exhibit 1005

. For fixed vertex positions V, compute the optimal parametriza-
tions B = {by,...,bjx } by projecting the points X onto the
mesh.

. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear |east-squares problem.

Asin [9], when considering ecol ({vs, vt }), we optimize only one
vertex position, vs. We perform three different optimizati ons with
different starting points, vt = (1-a)vs™ +(a)vi™ fora = {0, 3,1},
and accept the best one.

Instead of defining a global spring constant « for Egying 85in[9],
we adapt x each time an edge coll apse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Eqis(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set « as a function of the ratio of the number of points to the
number of faces in the neighborhood.® With this adaptive scheme,
theinfluence of Eying(M) decreases gradually and adaptively asthe
mesh issimplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Egalar)

Asdescribed in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex areidentical. The generalization to piecewise
continuous fieldsis discussed shortly.

Optimizing scalar attributes at vertices Let the orlgl
mesh M have at each vertex \g not only a position vj € R” but
also a scalar attribute v, € R®. To capture scalar attributes, we
sample at each point x; e Xtheattribute value x; € RY. Wewould
then like to generalize the distance metric Eqgig to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve thisisto redefine the distance metric
to measure distance in R3*¢:

d((xi x), MK, V,V)) = min [|(xi x;)— ($v(bi) ¢x(bi))|I2~
bicl|

This new distance functional could be minimized using theiterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization b; of each point x; would re-

quire projection in R*9, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations b; using only
geometry with equation (1), and to introduce a separate energy term
Esaar t0 measure attribute deviation based on these parametriza-

tions:
Escaar (V) = (Coatar)” D _ |13 — pw(b1)||?

wherethe constant csaiar assignsarelative wel ght between the scalar
attribute errors (Escaar) @nd the geometric errors (Egis).

Thus, to minimize E(V, V) = Eqigt(V) + Espring(V) + Escalar (V), OUr
algorithm first finds the vertex position vs minimizing Egis(V) +
Esring(V) by aternately projecting the points onto the mesh (ob-
taining the parametrizations b;) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation isthe set of faces
shown in Figure 1. Using C notation, weset kK = r < 4?21072:r1 <
8?10~ : 108 wherer istheratio of the number of points to faces in the
neighborhood.

104

APPENDIX N

bj, it finds the vertex attribute v, minimizing Esaar by solving a
single linear least-squares problem. Hence introducing Esalar into
the optimization causes negligible performance overhead.

Since AEgaar contributes to the estimated cost AE of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our schemefor op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value v, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scaar attributes have constrained
ranges. For instance, the components (r, g, b) of color aretypically
constrained to lie between 0 and 1. L east-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of aEuclidean norm at asingle vertex, thisisin fact optimal.

Normals Surface normals (ny, ny, n;) aretypically constrained to
haveunit length, and thustheir domainisnon-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex v' by interpolating between
the normals at vertices Vi and Vi, 1+|+1 using the a value that re-
sulted in the best vertex posmon vy in Section 4.3. Fortunately,
the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Egix)

Appearance attributesgiveriseto aset of discontinuity curvesonthe
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(v;, i)
denotethat anedge {v;, v} issharp, andlet #sharp(v;) bethe number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol ({vs, v }) modifiesthetopology of discontinuity curvesif either:

sharp(vs, vi) and sharp(vi, vi), or

sharp(vs, Vr) and sharp(v, Vi), or

#sharp(vs) > 1 and #sharp(v) > 1 and not sharp(vs,), or
#sharp(vs) > 3 and #sharp(v;) > 3 and sharp(vs,), or
sharp(vs, vt) and #sharp(vs) = 1 and #sharp(w) 7 2, or
sharp(vs, vt) and #sharp(v:) = 1 and #sharp(vs) 7 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xgisc from the sharp edges of M, and define
an additional energy term Egis: equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Egis: is defined just like Egist, €xcept that the points
Xaisc are constrained to project onto aset of sharp edgesin the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-

Microsoft et al.

Exhibit 1005

ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Egis: energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol({vs, wt}) changes the topology of the discontinuity
curves, we add to its cost AE the value [Xgise, fvot | - [|Vs — vil|?
where |Xgiss, {vs,v} | 1 the number of points of Xuis: projecting onto
{vs,wt}. That simple strategy, although ad hoc, has proven very
effective. For example, it alows the dark gray window frames of
the“cessna’ (visiblein Figure 9) to vanish in the simplified meshes
(Figures 5a—=).

Table 1: Parameter settings and quantitative results.

Object | Origina M Base MO | User param. | |Xgic| | V [Time

mo + n| #aces | my |#faces| [X~(mo+n)| Ceolor 22 mins
cessna 6,795| 13,546 97| 150f 100,000{ - |(46,811|46| 23
terrain | 33,847| 66,960 3 1 ol - 3,796| 46| 16
mandrill |{40,000| 79,202 3 1 0| 0.1 4,776/ 31| 19
radiosity| 78,923|150,983]1,192| 1,191} 200,000(0.01|74,316| 37| 106
fandisk | 6,475 12,946 27 50{ 10,000| - 5,924| 50| 19
5 RESULTS

Table 1 shows, for the meshes in Figures 5-12, the number of
vertices and faces in both M and M°. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna’, we stopped at 150 faces to obtain a
visually aesthetic base mesh. Asindicated, the only user-specified
parameters are the number of additional points (besides the my +n
vertices of M) sampled to increase fidelity, and the Cgaar CONstants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and itS Csalar CON-
stant is denoted as Ceolor. The number | Xgisc| of points sampled from
sharp edges is set automatically so that the densities of X and Xgisc
are proportional.* Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification agorithm applies a sequence
ecol—1 ... ecolg of transformations to the original mesh, it writes
to a file the sequence vsplit,—1 ... vsplity of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M. Next, we reverse the order of the
vsplit records. Finaly, we renumber the vertices and faces of
(M, vsplito . . . vsplit,_1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M'" and
M“% of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. \We have obtained

4We set | Xgisc| such that [Xgisc| / perim = C(\X\/area)% where perim is
the total length of al sharp edgesin M, area istotal area of dl faces, and
the constant ¢ = 4.0 is chosen empirically.

105

APPENDIX N

good results by selecting meshes whose complexities grow expo-
nentialy, asin Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181 x 187
vertices) using a new REFINE(V) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fy adjacent to v, we compute the signed projected screen areas
{ar : f € Fv}. Welet REFINE(v) return TRUE if

(1) any facef € Fy lieswithin the view frustum, and either

(2a) the signs of a; are not al equal (i.e. v lies near a silhouette
edge) or

(2b) ZfEFV a > thresh for a screen area threshold thresh = 0.162
(wheretotal screen areaisl).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of |o-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangul ate the resulting holes. Cohen et a. are
ableto bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et d. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topologica type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et a. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et a. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et a. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similaritieswiththe PM scheme, sinceboth storeasimplebase
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

e MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as aresult an arbitrary initial
mesh M can only be recovered to within an e tolerance. In
contrast, the PM representation islossess since M" = M.

Because the approximating meshes M',i < nin aPM may have
arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically aong edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

PM'’scapture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such asthe Haar ba-
sisas used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it isnot clear how MRA could be extended
to capture discrete attributes.

Microsoft et al.

Exhibit 1005

Advantages of MRA over PM:

e The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s aso offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

e Eck et a. [7] construct MRA approximations with guaranteed
maximum error bounds to M. Our PM construction algorithm
doesnot provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

e MRA alows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One specia instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schroder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supportsgeomorphs, progressivetransmission, com-
pression, and selective refinement. Inaddition, asaPM construction
method, we have presented anew mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
alsoitsoverall appearance.

There are anumber of avenues for future work, including:

e Development of an explicit metric and optimization scheme for
preserving surface normals.

e Experimentation with PM editing.
e Representation of articulated or animated models.
e Application of the work to progressive subdivision surfaces.

e Progressive representation of more general smplicial complexes
(not just 2-d manifolds).

e Addition of spatia data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.

ACKNOWLEDGMENTS

I wishto thank Viewpoint Datal absfor providing the“cessna’ mesh,
Pratt & Whitney for the gas turbine engine component (“fandisk”),
Softimage for the “terrain” mesh, and especially Steve Drucker for
creating several radiosity models using Lightscape. Thanks also to
Michadl Cohen, Steven “Shlomo” Gortler, and Jim Kagjiyafor their
enthusiastic support, and to Rick Szeliski for helpful comments on
the paper. Mark Kenworthy first coined theterm “geomorph” in’92
to distinguish them from image morphs.

106

APPENDIX N

REFERENCES

(1]

(2]

(3]

[4]

(9]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]
(17]
(18]

(19]

AppLE COMPUTER, INC. 3D graphics programming with
QuickDraw 3D. Addison Wesley, 1995.

CERTAIN, A., Popovic, J., DucHAMP, T., SALESIN,
D., StueTzLE, W., AND DEROSE, T. Interactive multi-
resolution surface viewing. Computer Graphics (S GGRAPH
"96 Proceedings) (1996).

CLARK, J. Hierarchical geometric modelsfor visible surface
agorithms. Communications of the ACM 19, 10 (Oct. 1976),
547-554.

CoHEN, J., VARSHNEY, A., MANOCHA, D., TURK,
G., WEBER, H., AcarwaL, P., Brooks, F., AND
WriGHT, W. Simplification envelopes. Computer Graphics
(S GGRAPH 96 Proceedings) (1996).

CURLESs, B., AND LEvoy, M. A volumetric method
for building complex models from range images. Computer
Graphics (S GGRAPH ’96 Proceedings) (1996).

DEERING, M. Geometry compression. Computer Graphics
(SGGRAPH ’ 95 Proceedings) (1995), 13-20.

Eck, M., DERosg, T., Ducuamp, T., HoprpPE, H.,
LOUNSBERY, M., AND STUETZLE, W. Multiresolution
analysisof arbitrary meshes. Computer Graphics (9 GGRAPH
'95 Proceedings) (1995), 173-182.

FUNKHOUSER, T., AND SEQUIN, C. Adaptive display al-
gorithmfor interactiveframeratesduring visualization of com-
plex virtual environments. Computer Graphics (S GGRAPH
'93 Proceedings) (1995), 247-254.

Horpe, H., DEROSE, T., DucHAamP, T., MCcDONALD,
J., AND STUETZLE, W. Mesh optimization. Computer
Graphics (SGGRAPH ’93 Proceedings) (1993), 19-26.

LounsBERY, J. M. Multiresolution analysis for surfaces
of arhitrary topological type. PhD thesis, Dept. of Computer
Science and Engineering, U. of Washington, 1994.

LounsBERY, M., DEROSE, T., AND WARREN, J. Mul-
tiresolution analysis for surfaces of arbitrary topological type.
Submitted for publication. (TR 93-10-05b, Dept. of Computer
Science and Engineering, U. of Washington, January 1994.).

RossigNac, J., AND BoORREL, P. Multi-resolution 3D
approximations for rendering complex scenes. In Modeling
in Computer Graphics, B. Falcidieno and T. L. Kunii, Eds.
Springer-Verlag, 1993, pp. 455-465.

SCHRODER, P., AND SWELDENS, W. Spherica wavelets:
Efficiently representing functions on the sphere. Computer
Graphics (SGGRAPH ' 95 Proceedings) (1995), 161-172.

SCHROEDER, W., ZARGE, J., AND LORENSEN, W. Dec-
imation of triangle meshes. Computer Graphics (S GGRAPH
'92 Proceedings) 26, 2 (1992), 65-70.

TAauBIN, G., AND RossiaNAC, J. Geometry compres-
sion through topological surgery. Research Report RC-20340,
IBM, January 1996.

TurAN, G. Succinct representations of graphs. Discrete
Applied Mathematics 8 (1984), 289-294.

Turk, G. Re-tiling polygonal surfaces. Computer Graphics
(SGGRAPH ’ 92 Proceedings) 26, 2 (1992), 55-64.

UpsTILL, S. The RenderMan Companion. Addison-Wesley,
1990.

WITTEN, I., NEAL, R., AND CLEARY, J. Arithmetic
coding for data compression. Communications of the ACM
30, 6 (June 1987), 520-540.

Microsoft et al. Exhibit 1005

APPENDIX N

(@) Base mesh M (150 faces) () Mesh M** (500 faces) (c) Mesh M*> (1,000 faces) (d) Original M=M" (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh M captures a continuous-resol ution family of approximating meshes M° ... M"=M.

@ o = 0.00 ©) =025 (© o = 050 @a=075 (© o = 1.00
Figure 6: Example of ageomorph M®(c) defined between M€(0) =M™ (with 500 faces) and M®(1)=M*?® (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

() M (200x 200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Esaar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
(M isamesh with regular connectivity whose vertex colors correspond to the pixels of animage.)

107 Microsoft et al. Exhibit 1005

APPENDIX N

Figure9: (a) Simplification without Egs: ~ Figure 10: Selective refinement of aterrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

| 'E’%?":\

Figure 11: Simplification of aradiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) M (12,946 faces) () M (200 faces) (c) M*™ (1,000 faces)

(d) e = 9.0 (192 faces) (€) e = 2.75 (1,070 faces) (f) e = 0.1 (15,842 faces)
Figure 12: Approximations of amesh M using (b—c) the PM representation, and (d—f) the MRA scheme of Eck et a. [7]. As demonstrated,
MRA cannot recover M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.

108 Microsoft et al. Exhibit 1005

United States Patent [

APPENDIX O

US005798770A ‘

(t11 Patent Number: 5,798,770

Baldwin (451 Date of Patent: Aug. 25, 1998
[54] GRAPHICS RENDERING SYSTEM WITH OTHER PUBLICATIONS
RECONFIGURABLE PIPELINE SEQUENCE Foley et al.. “Computer Graphics, Principles and Practice”,
[75] Inventor: David Robert Baldwin, Weybridge. 2 ed in C.1996. Chapter 18. pp. 855-920.
United Kingdom Kogge, PM.. “The Microprogramming of Pipelined Proces-
sors”, 1977, Proc. 4th Ann. Conf Parallel Procesing. IEEE,
[73] Assignee: 3DLabs Inc. Ltd., Hamilton, Bermuda March, pp. 63-69.
Computer Graphics. vol. 22, No. 4. “A display system for
. the Stellar graphics Supercomputer Model GS1000”. Brian
[21] Appl. No.: 640,620 Apgar et al.. Aug. 1988.
[22] Filed: May 1, 1996 ,)
Primary Examiner—Kee M. Tung
Related U.S. Application Data Attorney, Agent, or Firm—Robert Groover; Betty Formby;
Matthew S. Anderson
[60} Provisional application No. 60/008,803 Dec. 18, 1995. [571 ABSTRACT
[63] Continuation-in-part of Ser. No. 410,345, Mar. 24, 1995. The preferred embodiment discloses a pipelined graphics
[51] Int. CL® Go6T 1120 processor in which the sequence can be dynamically recon-
[521 US. CL oo 345/506; 345/519; 345/509 figured (e.g. between primitives) in a rendering sequence.
[58] Field of Search 395/506. S02 The pipeline sequence can be configured for compliance
395/507. 509. 519. 122. 130, 132, 125, With specifications such as OpenGL. but may also be opti-
503: 345/506’ 507. 502. 509Q 519. 422. mized by reconfiguring the pipeline sequence to eliminate
’ T 430432, 425, 503 unmecessary processing. In a preferred embodiment. pixel
) elimination sequences such as depth and stencil tests are
[56] References Cited performed before texturing calculations are performed. so
that unneeded pixel data is discarded before said texturing
U.S. PATENT DOCUMENTS calculations are performed.
4,866,637 9/1989 Gonzalez-Lopezccouveee. 395/506
5392391 2/1995 Caulk, Jr. et al. .cecnvcunnnenne 395/503 26 Claims, 12 Drawing Sheets
RASTERIZER e STIPPLE COLOR DDA
ALPHA TEST Fosboiel FOG TEXTURE
PIXEL
LB STENCIL DEPTH LB
READ ey TEST WRITE
LOCALBUFFER
y
LOGICAL 0P/ COLOR
FB ALPHA F8
FRAMEBUFFER FORMAT
WRITE MASK (DITHER) BLEND READ
FRAMEBUFFER
HOST
ouT

Microsoft et al. Exhibit 1005

APPENDIX O

U.S. Patent Aug. 25, 1998 Sheet 1 of 12 5,798,770

FIG. 1A

l WORLD COORDINATES (3D)

TRANSFORM INTO VIEW
TRANSFORM COORDINATES AND
CANONICAL VIEW VOLUME

VIEW COORDINATES (3D)

) J
% CLIP AGAINST CANONICAL

CLIP VIEW VOLUME

VIEW COORDINATES (3D)

Y

PROJECT ON TO
VIEW PLANE

VIEW COORDINATES (2D)

Y

Y

TRANSFORM MAP INTO VIEW PORT

NORMALIZED DEVICE COORDINATES

4

TRANSFORM TO PHYSICAL
DEVICE COORDINATES

PHYSICAL DEVICE COORDINATES

) 4

RENDER

Microsoft et al. Exhibit 1005

U.S. Patent

VER%ICES

PRIMITIVES

FRAGMENTS

Vv

PIXELS

Y

Aug. 25, 1998

Sheet 2 of 12

APPENDIX O

5,798,770

Y

FIC. 1B
VERTEX COLOR
RASTERPOS NORMAL INDEX TEXCOORD
CURRENT | | CURRENT CURRENT
NORMAL | | COLOR TEXTURE
COORDINATES
A
MODELVIEW
MATRIX
¥ \ * y
| LIGHTING
AND COLORING | | TEXGEN
y
TEXTURE
MATRIX
v \ v
PRIMITIVE ASSEMBLY
D ¥ ¥
APPLICATION-SPECIFIC CLIPPING READPIXELS
v DRAWPIXELS
PROJECTION TEXIMAGE
MATRIX ,
IR 1 i PIXEL
STORAGE
VIEW VOLUME CLIPPING MODES
N ,
DIVIDE BY PIXEL
CURRENT _
RASTER | RASTERIZATION
POSITION

PER-FRAGMENT OPERATIONS

TEXTURE
MEMORY

¥

[FRAME BUFFERJL

Microsoft et al.

Exhibit 1005

APPENDIX O

5,798,770

Sheet 3 of 12

Aug. 25, 1998

U.S. Patent

LINN 3OVAY3INT ¥344NE3INVAA

LINQ JOVAH3INT ¥333NEINVYS

1IN JIVAYIINI ¥344n8 WI01

[v2] ssawoav [ve] ssaaav [zg] viva [2€] viva (310N
vy J1I4M v LM ISIMMIHIO SSTINN
q a h 4330 1) 0414
[y o] X] [’ »| >mv.
¥ , _
{
Qv3y (N3 NIHLIT Sd0 ALIHM 1no m ~ JOVA4IINI
¥344NGINVY 4 VHA TV WII90T ¥344NEINVYS 1SOH m 1SOH
(1no) 0414
4OSSI20Y8d SOIHAYHO
Juam | N | Hid3g av3y 40100
m 434908 1 19nais HH wasang s 904 o A A NETANEIY o
| woon 019 W01 J¥NIXIL
: Y (NI) 0414
R SRR B R 40SS3008d SDIHAWYO
¢l viva [es] viva [v2] ss3yaav [ve] sSwaav .
L% av3y IL1HM vy Ve 9Id

Exhibit 1005

Microsoft et al.

APPENDIX O

5,798,770

Sheet 4 of 12

Aug. 25, 1998

U.S. Patent

HOST DATA
HOST ADDRESS

CIN JOVA4IINI 1SOH |
|
- . . | ossvdad |
-IAVa4 a 3 v [§ q “
3 1 30D SIHAVED | "
_ 540 1no | (LnO) 0414 | |
| ~| P¥ 84 [ONIE [UG H X0 M s o el H0SSI00Y4 H
| 11| SoHdv¥d | |
_ — _ _
| 1 |
| - _——-_C " - _ _
- | LIND 34131 i | |
_ ' [90100 _ | _
_ 1S3l ! vag | _
I, Y O R YT N .V R |
1. ik I e | 900 m 3ddlIS | 1y37193)5wy L mw_m_wuww_ma |
“ M _r i .“ S HOSSIAS " SOHdVY9 “
e £ U R S . | _
|5 _
I W “ |
i HINILS I
I i | py A1
| W8 2 sz | P B | _ _
| | |
e e b e e | |
a alv | v _
SsveAd [t
- JOVANIINT Y3348 W01 « >
¥344n8 20 ﬂwu@%gm |
WI0T ,
llllllll J
o 914

Exhibit 1005

Microsoft et al.

APPENDIX O

U.S. Patent Aug. 25, 1998 Sheet 5 of 12 5,798,770
FIG. 2C
RASTERIZER , schEngOR - STIPPLE COLOR DDA
)
ANTIALIAS | B
ALPHA TEST il 0G| TEXTURE
y
8 onmbeso || sTENCIL DEPTH T
READ GI0) TTEST " TEST WRITE
LOCALBUFFER
\ 4
LOGICAL OP/ COLOR
B e |FRAMEBUFFER |« FORMAT |« ALPHA [FB
FRAMEBUFFER
HOST
ouT

Microsoft et al. Exhibit 1005

APPENDIX O

5,798,770

Sheet 6 of 12

Aug. 25, 1998

U.S. Patent

C aungwemw i

| N |

LI v m (LI Sd0 3L14M o | _ 30V343INI

[|eanaam] wHaw WI001[N | 434anganvaa [| Lson [} LSOH

| . |

! _ | _ _ _ [

b 334 HOLYN ONV XN] " 3L

ittt bttt - | HOIVW e

||||||||||||||||||||||||||||||||||||| " anv Hov
- -
Ll 3341 HOLYN ONY XNW e -
— i | _ | -
N | r-————="="9~-—"~"~"——= T
L su 40100 vaq vy gaav [N T |
va whaw [2% T Jaunuar 3] wonoo [Janoar N jasnoan N1 |1 | H__E HOLYN ONY _x:s_ K
oo | | B i 1 |
= ! JUNLXILN D e | !
e e ettt Lt e [N 31dd1lS _
L} S let HIZIHUSYY H
S| r-m---mToos s ———- - 40SS198 N
ST ¥314NGVI0T i g| 1 [4sP | NN
=]
ARETT HLd3 TERE N L asww !
«+—1 433408 [NS - ¥34408

|| v 19 w001 | | \
! | _ L ._| ade 9Id

b 3L HOLVA ONV XN |+

Exhibit 1005

Microsoft et al.

U.S. Patent

PCl
BUS

Aug. 25, 1998

Sheet 7 of 12

APPENDIX O

5,798,770

GLINT 400TX GRAPHICS PROCESSOR

| [LoCALBUFFER

BYPASS

EXPANSION
ROM INTERFACE

1. EPROM

DMA
CONTROL

LOGIC INTERFACE |

| EXTERNAL VIDEO |_

il B

CONTROLS

VIDEO

\

LOCALBUFFER MEMORY INTERFACE

LOGIC
CONTROLS

A {

» LOCALBUFFER

4

DATA
FORMATTER

INPUT
FIFO

A 4

GRAPHICS

OUTPUT
FIFO

CORE

SHARED
FRAMEBUFFER
INTERFACE

[

SHARED
FRAMEBUFFER

a4

| | FRAMEBUFFER |

BYPASS

) 4

[
Yy

VIG
INTERFACE

A

FRAMEBUFFER MEMORY INTERFACE

A

CONTROL
SIGNALS

[
L

VIDEO TIMING
GENERATOR

-

FRAMEBUFFER

 /

TIMING

CONTROL
SIGNALS

FIG. R2E

Microsoft et al.

Exhibit 1005

APPENDIX O

5,798,770

Sheet 8 of 12

Aug. 25, 1998

U.S. Patent

LINM 3OVAYIINT ¥343NB3INVHS

1NN FOVAYSINT ¥34INGINVHAS

[¥2] ss3waav [vz] ssaav [zg] viva [ze] viva ;
V3 3L vy JL14M AE OIH
by } g by y
ETTSS) BTN AT silg ¢
- Lt — 4 0l 437q3y 8
LM avay ON3g SIHLIO Sd0 ALIYM no @ JOVS4IINI
SERERENE AR YHd ¥ W21901 ¥344NE3INVY LSOH 1SOH
(= === - m. |||||||||||| vllv
| 9v1 SLIB 6 'Vivad SLig o (100) 0414
|
. S8 6% E_ aoz&m] 40SS1708d
__ A Z z SOHAYY9
~J) ’J
_ 1831 50,4 N | 40100 vaa vy 400¥ |
| VHd W \ m MNLX3L ¥0102 NIX3L N [3nxaL
| \
| | - — - === Anumn._ ﬁn_ ||||| . 4 4 | €
blse £ 9 E ~ o
j.) [}
s . RN o B
= (9vL SLlg 6 ‘¥Iv@ Su8 ZS) (2] viva [vZ) sS3waay &
=2 SLIg 19 01 G3ONvdX3 Qv vy
Z | . (NI) 0414
¥0$53204d
JLIUM HLd3a av3y SIIHdVY9
¥343ng TONIIS ¥344n8
] W01 an V01]
-] — — - — e —— - _ _ e o — — —— = ————
- « Y = « 9 F;« T =] 3 NVdS .QV3IHY Y001, 9V14 014 =—- (310N f
¥ 8) b
3ZIS INLYNY3LTY) SNE 39VSSIN —— ISIMYIHLO SSTINN
[zs] wiva [26] viva [¥2] SS3yaav [vz] SS3yaav () 35S 4330 1) 0414

JLINM vy JL14M
LINN JOVAUIINI ¥33408 WOO01

(9vL SLI@ 6 'VIvQ SLI8 2€) SnE FOVSSIN —
AN

vy

Exhibit 1005

Microsoft et al.

APPENDIX O

U.S. Patent Aug. 25, 1998 Sheet 9 of 12 5,798,770
FIG. 38A
PLUG-IN CARD
32 BITS WIDE
| -8 MBYTES DRAM
LOCALBUFFER
HOST CPU DOES
GEOMETRY PROCESSING 4 MBYTES
\ /
HOST CPU %{’)"T’; VRAM LUT-DAC
PCI LOCAL BUS
FIG. 3B
PLUG-IN CARD
48 BITS WIDE_ |
>=10 MBYTES ™ LOCALBUFFER 16 MBYTES
(1024x1280x32 BITS
DOUBLE BUFFERED)
/
LOCAL
GEOMETRY %gg VRAM LUT-DAC
PROCESSOR
L
PCI-PCI
BRIDGE

PCl LOCAL BUS

Microsoft et al. Exhibit 1005

U.S. Patent

PCI
LOCAL
BUS

PCI
LOCAL
BUS

APPENDIX O

Aug. 25, 1998 Sheet 10 of 12 5,798,770
FIG. 3C
|_~e.g. S3 VISIONG64
GUI
ACCELERATOR
PCI-PCI GLINT
BRIDGE 200TX FRAMEBUFFER [—— LUT-DAC
LOCALBUFFER
PLUG-IN CARD
FIG. 3D
_~ FOR VIDEO CAPTURE
VIDEO AND PLAYBACK
COPROCESSOR
PCI-PC] GLINT
LOCALBUFFER
PLUG-IN CARD

Microsoft et al.

Exhibit 1005

APPENDIX O

U.S. Patent Aug. 25, 1998 Sheet 11 of 12 5,798,770

FIG. 4A

SUBORDINATE

// SIDES

SUBORDINATE
SDE. N\

DOMINANT
SIDE DOMINANT

SIDE

SUBORDINATE "
SIDE

FIG. 4B

\dXD om?2
\ Knee2

Trapezoid C

countd
oun Trapezoid B dXSub2

-

count?

Knee‘l\

|
1
count1 v dXSub 1

dXDom 1

Trapezoid A

Microsoft et al. Exhibit 1005

APPENDIX O

U.S. Patent Aug. 25, 1998 Sheet 12 of 12 5,798,770
[LB READ, GSD AND -
> LB WRITE UNITS "
o &
FROM b 5 10
SCISSOR/ —»| © T |—» FB READ
STIPLE = =
w s |
=
| COLOR DDA, TEXTURE AND -
g ALPHA TEST UNITS "
ROUTER UNIT
FIG. 54
LB READ, GSD AND .
LB WRITE UNITS -
5
FROM & = 10
SCISSOR/ S & 4 FB READ
STIPLE = =
-
=
COLOR DDA, TEXTURE AND R
ALPHA TEST UNITS -
ROUTER UNIT
FIG. 5B
LB READ, GSD AND -
LB WRITE UNITS o
o &
FROM & >< 0
SCISSOR/ o T —» FB READ
STIPLE = =
w -}
=
[COLOR DDA, TEXTURE AND
ALPHA TEST UNITS -
ROUTER UNIT
FIG. 5C

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

1

GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of 08/410.345
filed Mar. 24, 1995, and claims priority from provisional
60/008.803 filed Dec. 18, 1995. which is hereby incorpo-
rated by reference.

BACKGROUND AND SUMMARY OF THE
INVENTION

The present application relates to computer graphics and
animation systems. and particularly to 3D graphics render-
ing hardware. Background of the art and the prior
embodiment, according to the parent application. is
described below. Some of the distinctions of the presently
preferred embodiment are particularly noted beginning on

page 8.
COMPUTER GRAPHICS AND RENDERING

Modern computer systems normally manipulate graphical
objects as high-level entities. For example, a solid body may
be described as a collection of triangles with specified
vertices, or a straight line segment may be described by
listing its two endpoints with three-dimensional or two-
dimensional coordinates. Such high-level descriptions are a
necessary basis for high-level geometric manipulations, and
also have the advantage of providing a compact format
which does not consume memory space unnecessarily.

Such higher-level representations are very convenient for
performing the many required computations. For example,
ray-tracing or other lighting calculations may be performed,
and a projective transformation can be used to reduce a
three-dimensional scene to its two-dimensional appearance
from a given viewpoint. However. when an image contain-
ing graphical objects is to be displayed, a very low-level
description is needed. For example, in a conventional CRT
display, a “flying spot” is moved across the screen (one line
at a time), and the beam from each of three electron guns is
switched to a desired level of intensity as the flying spot
passes each pixel location. Thus at some point the image
model must be translated into a data set which can be used
by a conventional display. This operation is known as
“rendering.”

The graphics-processing system typically interfaces to the
display controller through a “frame store” or “frame buffer”
of special two-port memory, which can be written to ran-
domly by the graphics processing system, but also provides
the synchronous data output needed by the video output
driver. (Digital-to-analog conversion is also provided after
the frame buffer.) Such a frame buffer is usually imple-
mented using VRAM memory chips (or sometimes with
DRAM and special DRAM controllers). This interface
relieves the graphics processing system of most of the
burden of synchronization for video output. Nevertheless,
the amounts of data which must be moved around are very
sizable, and the computational and data-transfer burden of
placing the correct data into the frame buffer can still be very
large.

Even if the computational operations required are quite
simple, they must be performed repeatedly on a large
number of data points. For example, in a typical 1995
high-end configuration, a display of 1280x1024 elements
may need to be refreshed at 72 Hz, with a color resolution

10

15

20

25

30

35

45

50

55

65

2

of 24 bits per pixel. If blending is desired. additional bits
(e.g. another 8 bits per pixel) will be required to store an
“alpha™ or transparency value for each pixel. This implies
manipulation of more than 3 billion bits per second, without
allowing for any of the actual computations being per-
formed. Thus it may be seen that this is an environment with
unique data manipulation requirements.

If the display is unchanging. no demand is placed on the
rendering operations. However, some common operations
(such as zooming or rotation) will require every object in the
image space to be re-rendered. Slow rendering will make the
rotatior or zoom appear jerky. This is highly undesirable.
Thus efficient rendering is an essential step in translating an
image representation into the correct pixel values. This is
particularly true in animation applications. where newly
rendered updates to a computer graphics display must be
generated at regular intervals.

The rendering requirements of three-dimensional graph-
ics are particularly heavy. One reason for this is that, even
after the three-dimensional model has been translated to a
two-dimensional model, some computational tasks may be
bequeathed to the rendering process. (For example. color
values will need to be interpolated across a triangle or other
primitive.) These computational tasks tend to burden the
rendering process. Another reason is that since three-
dimensional graphics are much more lifelike, users are more
likely to demand a fully rendered image. (By contrast, in the
two-dimensional images created e.g. by a GUI or simple
game, users will learn not to expect all areas of the scene to
be active or filled with information.)

FIG. 1A is a very high-level view of other processes
performed in a 3D graphics computer system. A three
dimensional image which is defined in some fixed 3D
coordinate system (a “world” coordinate system) is trans-
formed into a viewing volume (determined by a view
position and direction). and the parts of the image which fall
outside the viewing volume are discarded. The visible
portion of the image volume is then projected onto a viewing
plane, in accordance with the familiar rules of perspective.
This produces a two-dimensional image, which is now
mapped into device coordinates. It is important to under-
stand that all of these operations occur prior to the operations
performed by the rendering subsystem of the present inven-
tion. FIG. 1B is an expanded version of FIG. 1A, and shows
the flow of operations defined by the OpenGL standard.

A vast amount of enginecring effort has been invested in
computer graphics systems, and this area is one of increasing
activity and demands. Numerous books have discussed the
requirements of this area; see, .g., ADVANCES IN COMPUTER
GRAPHICS (ed. Enderle 1990-); Chellappa and Sawchuk,
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); CoM-
PUTER GRAPHICS HARDWARE (ed. Reghbati and Lee 1988);
COMPUTER GRAPHICS: IMAGE SYNTHESIS (ed. Joy et al.);
Foley et al., FUNDAMENTALS OF INTERACTIVE COMPUTER
GRAPHICS (2.ed. 1984); Foley, COMPUTER GRAPHICS PRIN-
CIPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO
COMPUTER GRAPHICS (1994); Giloi, Interactive Computer
Graphics (1978); Hearn and Baker. COMPUTER GRAPHICS
(2.ed. 1994); Hill. CoMPUTER GRAPHICS (1990); Latham,
DICTIONARY OF COMPUTER GRAPHICS (1991); Magnenat-
Thalma, IMAGE SYNTHESIS THEORY & PRACTICE (1988);
Newman and Sproull, PRINCIPLES OF INTERACTIVE COM-
PUTER GRAPHICS (2.ed. 1979); PICTURE ENGINEERING (ed. Fu
and Kunii 1982); PICTURE PROCESSING & DIGITAL FILTERING
(2.ed. Huang 1979); Prosise, How COMPUTER GRAPHICS
WORK (1994); Rimmer. BIT MAPPED GRAPHICS (2.ed. 1993);
Salmon, COMPUTER GRAPHICS SYSTEMS & CONCEPTS

Microsoft et al.

Exhibit 1005

APPENDIX O

5.,798.770

3

(1987); Schachter, COMPUTER IMAGE GENERATION (1990);
Watt, THREE-DIMENSIONAL COMPUTER GRAPHICS (2.ed.
1994); Scott Whitman. MULTIPROCESSOR METHODS FOR
CoMPUTER GRAPHICS RENDERING; the SIGGRAPH Pro-
CEEDINGS for the years 1980-1994; and the /EEE Computer
Graphics and Applications magazine for the years
1990-1994.

Background: Graphics Animation

In many areas of computer graphics a succession of
slowly changing pictures are displayed rapidly one after the
other, to give the impression of smooth movement. in much
the same way as for cartoon animation. In general the higher
the speed of the animation, the smoother (and better) the
result.

When an application is generating animation images. it is
normally necessary not only to draw each picture into the
frame buffer, but also to first clear down the frame buffer,
and to clear down auxiliary buffers such as depth (Z) buffers,
stencil buffers, alpha buffers and others. A good treatment of
the general principles may be found in Computer Graphics:
Principles and Practice. James D. Foley et al., Reading
Mass.: Addison-Wesley. A specific description of the various
auxiliary buffers may be found in The OpenGL Graphics
System: A Specification (Version 1.0), Mark Segal and Kurt
Akeley, SGL

In most applications the value written, when clearing any
given buffer, is the same at every pixel location, though
different values may be used in different auxiliary buffers.
Thus the frame buffer is often cleared to the value which
corresponds to black, while the depth (Z) buffer is typically
cleared to a value corresponding to infinity.

The time taken to clear down the buffers is often a
significant portion of the total time taken to draw a frame, so
it is important to minimize it.

Background: Paralielism in Graphics Processing

Due to the large number of at least partially independent
operations which are performed in rendering, many propos-
als have been made to use some form of parallel architecture
for graphics (and particularly for rendering). See, for
example, the special issue of Computer Graphics on parallel
rendering (September 1994). Other approaches may be
found in earlier patent filings by the assignee of the present
application and its predecessors, e.g. U.S. Pat. No. 5,195,
186. and published PCT applications PCT/GB%0/00987,
PCT/GB%0/01209. PCT/GB%0/01210, PCT/GB90/01212,
PCT/GB90/01213, PCTAGB90/01214, PCT/GB90/01215,
and PCT/GB90/01216.

Background: Pipelined Processing Generally

There are several general approaches to parallel process-
ing. One of the basic approaches to achieving parallelism in
computer processing is a technique known as pipelining. In
this technique the individual processors are, in effect, con-
nected in series in an assembly-line configuration: one
processor performs a first set of operations on one chunk of
data, and then passes that chunk along to another processor
which performs a second set of operations, while at the same
time the first processor performs the first set operations
again on another chunk of data. Such architectures are
generally discussed in Kogge, THE ARCHITECTURE OF PIPE-
LINED COMPUTERS (1981).

Background: The OpenGL™ Standard

The “OpenGL” standard is a very important software
standard for graphics applications. In any computer system
which supports this standard, the operating system(s) and
application software programs can make calls according to
the OpenGL standards, without knowing exactly what the
hardware configuration of the system is.

10

20

25

30

35

45

55

65

4

The OpenGL standard provides a complete library of
low-level graphics manipulation commands. which can be
used to implement three-dimensional graphics operations.
This standard was originally based on the proprietary stan-
dards of Silicon Graphics. Inc.., but was later transformed
into an open standard. It is now becoming extremely
important. not only in high-end graphics-intensive
workstations. but also in high-end PCs. OpenGL is sup-
ported by Windows NT™, which makes it accessible to
many PC applications.

The OpenGL specification provides some constraints on
the sequence of operations. For instance. the color DDA
operations must be performed before the texturing
operations, which must be performed before the alpha
operations. (A “DDA” or digital differential analyzer. is a
conventional piece of hardware used to produce linear
gradation of color (or other) values over an image area.)

Other graphics interfaces (or “APIs”), such as PHIGS or
XGL. are also current as of 1995; but at the lowest level,
OpenGL is a superset of most of these.

The OpenGL standard is described in the OPENGL ProO-
GRAMMING GUIDE (1993), the OPENGL REFERENCE
MANUAL (1993), and a book by Segal and Akeley (of SGI)
entitled THE OPENGL GRAPHICS SYSTEM: A SPECIFICATION
(Version 1.0).

FIG. 1B is an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard. Note
that the most basic model is carried in terms of vertices, and
these vertices are then assembled into primitives (such as
triangles. lines, etc.). After all manipulation of the primitives
has been completed, the rendering operations will transiate
each primitive into a set of “fragments.” (A fragment is the
portion of a primitive which affects a single pixel.) Again, it
should be noted that all operations above the block marked
“Rasterization” would be performed by a host processor, or
possibly by a “geometry engine” (i.c. a dedicated processor
which performs rapid matrix multiplies and related data
manipulations), but would normally not be performed by a
dedicated rendering processor such as that of the presently
preferred embodiment.

One disadvantage of standards such as OpenGL is that
they require that texturing or other processor-intensive
operations be performed on data before pixel elimination
tests, e.g. depth testing, is performed, which wastes proces-
sor time by performing costly texturing calculations on
pixels which will be eliminated later in the pipeline. When
the OpenGL specification is not required or when the current
Open(I state vector cannot eliminate pixels as a result of the
alpha test, however, it would be much more efficient to
climinate as many pixels as possible before doing these
calculations. The present application discloses a method and
device for reordering the processing steps in the rendering
pipeline to either accommodate order-specific specifications
such as OpenGL. or to provide for an optimized throughput
by only performing processor-intensive operations on pixels
which will actually be displayed.

Background: Texturing

Texture patterns are commonly used as a way to apply
realistic visual detail at the sub-polygon level. See Foley et
al.. COMPUTER GRAPHICS: PRINCIPLES AND PRACTICE (2.ed.
1990, comr. 1995). especially at pages 741-744; Paul S.
Heckbert, “Fundamentals of Texture Mapping and Image
Warping.,” Thesis submitted to Dept. of EE and Computer
Science, University of California, Berkeley, Jun. 17, 1994;
Heckbert. “Survey of Computer Graphics,” IEEE Computer
Graphics. November 1986, pp.56ff. Since the surfaces are
transformed (by the host or geometry engine) to produce a

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

5

2D view, the textures will need to be similarly transformed
by a linear transform (normally projective or “affine™). (In
conventional terminology, the coordinates of the object
surface, i.e. the primitive being rendered, are referred to as
an (s.t) coordinate space. and the map of the stored texture
is referred to a (u.v) coordinate space.) The transformation
in the resulting mapping means that a horizontal line in the
(x.y) display space is very likely to correspond to a slanted
line in the (u.v) space of the texture map, and hence many
page breaks will occur, due to the texturing operation, as
rendering walks along a horizontal line of pixels.

Innovative System and Methods

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon-
figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL, but may also be opti-
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment. pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed, so
that unneeded pixel data is discarded before said texturing
calculations are performed.

It is noted that the texturing operations become more
computation-intense, early elimination of unneeded pixels
becomes even more valuable. For example, Phong shading
and bump mapping both require many more operations than
more common shading and texture mapping techniques, thus
making the system of the present application even more
valuable in real-time rendering systems.

An overhead cost is that the reconfigurable portion of the
pipeline must be flushed at each reconfiguration—but since
reconfiguration is normally done only on a per-primitive
basis, or even less frequently. this is a relatively small cost.

BRIEF DESCRIPTION OF THE DRAWING

The disclosed inventions will be described with reference
to the accompanying drawings, which show important
sample embodiments of the invention and which are incor-
porated in the specification hereof by reference, wherein:

FIG. 1A, described above. is an overview of key elements
and processes in a 3D graphics computer system.

FIG. 1B is an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard.

FIG. 2A is an overview of the graphics rendering chip of
the preferred embodiment of the parent case.

FIG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment.

FIG. 2C is a more schematic view of the sequence of
operations performed in the graphics rendering chip of FIG.
2B. when operating in a first mode.

FIG. 2D is a different view of the graphics rendering chip
of FIG. 2B. showing the connections of a readback bus
which provides a diagnostic pathway.

FIG. 2E is yet another view of the graphics rendering chip
of FIG. 2B, showing how the functions of the core pipeline
of FIG. 2C are combined with various external interface
functions.

FIG. 2F is yet another view of the graphics rendering chip
of FIG. 2B. showing how the details of FIFO depth and
lookahead are implemented. in the presently preferred
embodiment.

FIG. 3A shows a sample graphics board which incorpo-
rates the chip of FIG. 2B.

20

25

30

35

45

65

6

FIG. 3B shows another sample graphics board
implementation. which differs from the board of FIG. 3Ain
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with GUI
accelerator chip.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with a
video coprocessor (which may be used for video capture and
playback functions.

FIG. 4A illustrates the definition of the dominant side and
the subordinate sides of a triangle.

FIG. 4B illustrates the sequence of rendering an Anti-
aliased Line primitive.

FIG. 5A is a detailed view of the router unit of the
presently preferred embodiment.

FIG. 5B is a detailed view of the data path through the
router unit of the presently prefemred embodiment when
operating in a first mode.

FIG. 5C is a detailed view of the data path through the
router unit of the presently preferred embodiment when
operating in a second mode.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The numerous innovative teachings of the present appli-
cation will be described with particular reference to the
presently preferred embodiment (by way of example. and
not of limitation). The presently preferred embodiment is a
GLINT™ 400TX™ 3D rendering chip. The Hardware Ref-
erence Manual and Programmer’s Reference Manual for this
chip describe further details of this sample embodiment.
Both are available, as of the effective filing date of this
application, from 3Dlabs Inc. Ltd., 181 Metro Drive, Suite
520, San Jose Calif. 95110.

Definitions

The following definitions may help in understanding the
exact meaning of terms used in the text of this application:
application: a computer program which uses graphics ani-

mation.

depth (Z) buffer: A memory buffer containing the depth
component of a pixel. Used to, for example, eliminate
hidden surfaces.

blt double-buffering: A technique for achieving smooth
animation, by rendering only to an undisplayed back
buffer, and then copying the back buffer to the front once
drawing is complete.

FrameCount Planes: Used to allow higher animation rates by
enabling DRAM local buffer pixel data, such as depth (Z),
to be cleared down quickly.

frame buffer: An area of memory containing the displayable
color buffers (front, back, left, right, overlay, underlay).
This memory is typically separate from the local buffer.

local buffer: An area of memory which may be used to store
non-displayable pixel information: depth(Z). stencil.

FrameCount and GID planes. This memory is typically

separate from the framebuffer.

pixel: Picture element. A pixel comprises the bits in all the
buffers (whether stored in the local buffer or framebuffer),
corresponding to a particular location in the framebuffer.

stencil buffer: A buffer used to store information about a
pixel which controls how subsequent stencilled pixels at
the same location may be combined with the current value

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

7

in the framebuffer. Typically used to mask complex
two-dimensional shapes.

Preferred Chip Embodiment—Overview

The GLINT™ high performance graphics processors
combine workstation class 3D graphics acceleration. and
state-of-the-art 2D performance in a single chip. All 3D
rendering operations are accelerated by GLINT. including
Gouraud shading. texture mapping. depth buffering, anti-
aliasing. and alpha blending.

The scalable memory architecture of GLINT makes it
ideal for a wide range of graphics products. from PC boards
to high-end workstation accelerators.

There will be several of the GLINT family of graphics
processors: the GLINT 300SX™ is the embodiment of the
parent case, and the GLINT 400TX™ is a presently pre-
ferred embodiment which is which is described herein in
great detail. The two devices are generally compatible, with
the 400TX adding local texture storage and texel address
generation for all texture modes.

FIG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment (i.e. the GLINT
400TX™),

General Concept

The overall architecture of the GLINT chip is best viewed
using the software paradigm of a message passing system. In
this system all the processing blocks are connected in a long
pipeline with communication with the adjacent blocks being
done through message passing. Between each block there is
a small amount of buffering, the size being specific to the
local communications requirements and speed of the two
blocks.

The message rate is variable and depends on the rendering
mode. The messages do not propagate through the system at
a fixed rate typical of a more traditional pipeline system. If
the receiving block can not accept a message, because its
input buffer is full, then the sending block stalls until space
is available.

The message structure is fundamental to the whole system
as the messages are used to control, synchronize and inform
each block about the processing it is to undertake. Each
message has two fields—a 32 bit data field and a 9 bit tag
field. (This is the minimum width guaranteed, but some local
block to block connections may be wider to accommodate
more data.) The data field will hold color information,
coordinate information, local state information. etc. The tag
field is used by each block to identify the message type so
it knows how to act on it.

Each block. on receiving a message, can do one of several
things:

Not recognize the message so it just passes it on to the

next block.

Recognize it as updating some local state (to the block) so
the local state is updated and the message terminated,
i.e. not passed on to the next block.

Recognize it as a processing action, and if appropriate to
the unit, the processing work specific to the unit is
done. This may entail sending out new messages such
as Color and/or modifying the initial message before
sending it on. Any new messages are injected into the
message stream before the initial message is forwarded
on. Some examples will clarify this.

When the Depth Block receives a message ‘new
fragment’, it will calculate the corresponding depth and do
the depth test. If the test passes then the ‘new fragment’
message is passed to the next unit. If the test fails then the

10

15

20

25

35

45

50

55

60

8

message is modified and passed on. The temptation is not to
pass the message on when the test fails (because the pixel is
not going to be updated), but other units downstream need
to keep their local DDA units in step.

(In the present application. the messages are being
described in general terms so as not to be bogged down in
detail at this stage. The details of what a ‘rew fragment’
message actually specifies (i.e. coordinate. color
information) is left till later. In general. the term “pixel” is
used to describe the picture element on the screen or in
memory. The term “fragment” is used to describe the part of
a polygon or other primitive which projects onto a pixel.
Note that a fragment may only cover a part of a pixel.) When
the Texture Read Unit (if enabled) gets a ‘new fragment’
message. it will calculate the texture map addresses, and will
accordingly provide 1. 2, 4 or 8 texels to the mext unit
together with the appropriate number of interpolation coef-
ficients.

Each unit and the message passing are conceptually
running asynchronous to all the others. However, in the
presently preferred embodiment there is considerable syn-
chrony because of the common clock.

How does the host process send messages? The message
data field is the 32 bit data written by the host. and the
message tag is the bottom 9 bits of the address (excluding
the byte resolution address lines). Writing to a specific
address causes the message type associated with that address
to be inserted into the message queue. Alternatively, the
on-chip DMA controller may fetch the messages from the
host’s memory.

The message throughput, in the presently preferred
embodiment, is S0M messages per second and this gives a
fragment throughput of up to 50M per second, depending on
what is being rendered. Of course, this rate will predictably
be further increased over time, with advances in process
technology and clock rates.

Linkage

The block diagram of FIG. 2A shows how the units are
connected together in the GLINT 300SX embodiment, and
the block diagram of FIG. 2B shows how the units are
connected together in the presently preferred embodiment.
Some general points are:

The following functionality is present in the 400TX. but
missing from the 300SX: The Texture Address (TAddr)
and Texture Read (TRd) Units are missing. Also. the
router and multiplexer are missing from this section, so
the unit ordering is Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc.

In the embodiment of FIG. 2B, the order of the units can
be configured in two ways. The most general order
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd,
GID/Z/Stencil, LB Wr, Multiplexer) and will work in
all modes of OpenGL. However, when the alpha test is
disabled it is much better to do the Graphics ID. depth
and stencil tests before the texture operations rather
than after. This is because the texture operations have
a high processing cost and this should not be spent on
fragments which are later rejected because of window,
depth or stencil tests.

The loop back to the host at the bottom provides a simple
synchronization mechanism. The host can insert a Sync
command and when all the preceding rendering has
finished the sync command will reach the bottom host
interface which will notify the host the sync event has
occurred.

Benefits

The very modular nature of this architecture gives great

berefits. Each unit lives in isolation from all the others and

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

9

has a very well defined set of input and output messages.

This allows the internal structure of a unit (or group of units)

to be changed to make algorithmic/speed/gate count trade-

offs.

The isolation and well defined logical and behavioral
interface to each unit allows much better testing and veri-
fication of the correctness of a unit.

The message passing paradigm is casy to simulate with
software, and the hardware design is nicely partitioned. The
architecture is self synchronizing for mode or primitive
changes.

The host can mimic any block in the chain by inserting
messages which that block would normally generate. These
message would pass through the earlier blocks to the mim-
icked block unchanged and from then onwards to the rest of
the blocks which cannot tell the message did not originate
from the expected block. This allows for an easy work
around mechanism to correct any flaws in the chip. It also
allows other rasterization paradigms to be implemented
outside of the chip, while still using the chip for the low level
pixel operations.

“A Day in the Life of a Triangle”

Before we get too detailed in what each unit does it is
worth while looking in general terms at how a primitive (e.g.
triangle) passes through the pipeline. what messages are
generated, and what happens in each unit. Some simplifi-
cations have been made in the description to avoid detail
which would otherwise complicate what is really a very
simple process. The primitive we are going to look at is the
familiar Gouraud shaded Z buffered triangle, with dithering.
It is assumed any other state (i.e. depth compare mode) has
been set up, but (for simplicity) such other states will be
mentioned as they become relevant.

The application generates the triangle vertex information
and makes the necessary OpenGL calls to draw it.

The OpenGL serverflibrary gets the vertex information,
transforms, clips and lights it. It calculates the initial
values and derivatives for the values to interpolate (X,
X ighr Ted, green, blue and depth) for unit change in dx
and dxdy,,,. All these values are in fixed point integer and
have unique message tags. Some of the values (the depth
derivatives) have more than 32 bits to cope with the
dynamic range and resolution so are sent in two halves
Finally, once the derivatives, start and end values have
been sent to GLINT the ‘render triangle’ message is sent.

On GLINT: The derivative, start and end parameter mes-
sages are received and filter down the message stream to
the appropriate blocks. The depth parameters and deriva-
tives to the Depth Unit; the RGB parameters and deriva-
tive to the Color DDA Unit; the edge values and deriva-
tives to the Rasterizer Unit.

The ‘render triangle’ message is received by the rasterizer
unit and all subsequent messages (from the host) are
blocked until the triangle has been rasterized (but mot
necessarily written to the frame store). A ‘prepare to
render’ message is passed on so any other blocks can
prepare themselves.

The Rasterizer Unit walks the left and right edges of the
triangle and fills in the spans between. As the walk
progresses messages are send to indicate the direction of
the next step: StepX or StepYDomEdge. The data field
holds the current (x, y) coordinate. One message is sent
per pixel within the triangle boundary. The step messages
are duplicated into two groups: an active group and a
passive group. The messages always start off in the active
group but may be changed to the passive group if this
pixel fails one of the tests (e.g. depth) on its path down the

10

15

20

25

30

35

45

55

65

10

message stream. The two groups are distinguished by a
single bit in the message tag. The step messages (in either
form) are always passed throughout the length of the
message stream, and are used by all the DDA units to keep
their interpolation values in step. The step message effec-
tively identifies the fragment and any other messages
pertaining to this fragment will always precede the step
message in the message stream.

The Scissor and Stipple Unit. This unit does 4 tests on the
fragment (as embodied by the active step message). The
screen scissor test takes the coordinates associated with
the step message, converts them to be screen relative (if
necessary) and compares them against the screen bound-
aries. The other three tests (user scissor. line stipple and
area stipple) are disabled for this example. If the enabled
tests pass then the active step is forwarded onto the next
unit, otherwise it is changed into a passive step and then
forwarded.

The Color DDA unit responds to an active step message by
generating a Color message and sending this onto the next
unit. The active step message is then forwarded to the next
unit. The Color message holds, in the data field. the
current RGBA value from the DDA. If the step message
is passive then no Color message is generated. After the
Color message is sent (or would have been sent) the step
message is acted on to increment the DDA in the correct
direction, ready for the next pixel.

Texturing, Fog and Alpha Tests Units are disabled so the
messages just pass through these blocks.

In general terms the Local Buffer Read Unit reads the
Graphic ID, Stencil and Depth information from the Local
Buffer and passes it onto the next unit. More specifically
it does:

1. If the step message is passive then no further action
occurs.

2. On an active step message it calculates the linear
address in the local buffer of the required data. This is
done using the (X, Y) position recorded in the step
message and locally stored information on the ‘screen
width’ and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Local Buffer Interface
Unit and the identified local buffer location read. The
write address is held for use later.

4. Sometime later the local buffer data is returned and is
formatted into a consistent internal format and inserted
into a ‘Local Buffer Data’ message and passed on to the
next unit.

The message data field is made wider to accommodate
the maximum Local Buffer width of 52 bits (32
depth, 8 stencil, 4 graphic ID, 8 frame count) and this
extra width just extends to the Local Buffer Write
block.

The actual data read from the local buffer can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The narrower data
is formatted into a consistent internal format in this
block.

The Graphic ID, Stencil and Depth Unit just passes the
Color message through and stores the LBData message
until the step message arrives. A passive step message
would just pass straight through. When the active step
message is received the internal Graphic ID, stencil and
depth values are compared with the ones in the LBData
message as specified by this unit’s mode information. If
the enabled tests pass then the new local buffer data is sent
in the LBWriteData message to the next unit and the

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

1

active step message forwarded. If any of the enabled tests

fail then an LBCancelWrite message is sent followed by

the equivalent passive step message. The depth DDA is
stepped to update the local depth value.

The Local Buffer Write Unit performs any writes which are
necessary. The LBWriteData message has its data format-
ted into the external local buffer format and this is posted
to the Local Buffer Interface Unit to be written into the
memory (the write address is already waiting in the Local
Buffer Interface Unit). The LBWriteCancel message just
informs the Local Buffer Interface Unit that the pending
write address is no longer needed and can be discarded.
The step message is just passed through.

In general terms the Framebuffer Read Unit reads the color
information from the framebuffer and passes it onto the
next unit. More specifically it does:

1. If the step message is passive then no further action
occeurs,

2. On an active step message it calculates the linear
address in the framebuffer of the required data. This is
done using the (X. Y) position recorded in the step
message and locally stored information on the ‘screen
width’ and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Framebuffer Interface
Unit and the identified framebuffer location read. The
write address is held for use later.

4. Sometime later the color data is returned and inserted
into a ‘Frame Buffer Data’ message and passed on to
the next unit.

The actual data read from the framestore can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The formatting of
the data is deferred until the Alpha Blend Unit as it
is the only unit which needs to match it up with the
internal formats. In this example no alpha blending
or logical operations are taking place, so reads are
disabled and hence no read address is sent to the
Framebuffer Interface Unit. The Color and step mes-
sages just pass through.

The Alpha Blend Unit is disabled so just passes the messages
through.

The Dither Unit stores the Color message internally until an
active step is received. On receiving this it uses the least
significant bits of the (X, Y) coordinate information to
dither the contents of the Color message. Part of the
dithering process is to convert from the internal color
format into the format of the framebuffer. The new color
is inserted into the Color message and passed on, followed
by the step message.

The Logical Operations are disabled so the Color message is
just converted into the FBWriteData message (just the tag
changes) and forwarded on to the next unit. The step
message just passes through.

The Framebuffer Write Unit performs any writes which are
necessary.

The FBWriteData message has its data posted to the
Framebuffer Interface Unit to be written into the
memory (the write address is already waiting in the
Framebuffer Interface Unit).

The step message is just passed through.

The Host Out Unit is mainly concerned with synchroniza-
tion with the host so for this example will just consume
any messages which reach this point in the message
stream.

This description has concentrated on what happens as one

fragment flows down the message stream. It is important to

10

15

20

25

30

35

45

50

55

65

12

remember that at any instant in time there are many frag-
ments flowing down the message stream and the further
down they reach the more processing has occurred.
Interfacing Between Blocks FIG. 2B shows the FIFO buff-
ering and lookahead connections which are used in the
presently preferred embodiment. The FIFOs are used to
provide an asynchronous interface between blocks. but are
expensive in terms of gate count. Note that most of these
FIFOs are only one stage deep (except where indicated).
which reduces their area. To maintain performance. looka-
head connections are used to accelerate the “startup” of the
pipeline. For example, when the Local-Buffer-Read block
issues a data request, the Texture/Fog/Color blocks also
receive this, and begin to transfer data accordingly. Nor-
mally a single-entry deep FIFO cannot be read and written
in the same cycle. as the writing side doesn’t know that the
FIFO is going to be read in that cycle (and hence become
eligible to be written). The look-ahead feature give the
writing side this insight, so that single-cycle transfer can be
achieved. This accelerates the throughput of the pipeline.

Programming Model

The following text describes the programming model for
GLINT.

GLINT as a Register file

The simplest way to view the interface to GLINT is as a
flat block of memory-mapped registers (i.e. a register file).
This register file appears as part of Region 0 of the PCI
address map for GLINT. See the GLINT Hardware Refer-
ence Manual for details of this address map.

When a GLINT host software driver is initialized it can
map the register file into its address space. Each register has
an associated address tag. giving its offset from the base of
the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of § bytes).
The most straightforward way to load a value into a register
is to write the data to its mapped address. In reality the chip
interface comprises a 16 entry deep FIFQ, and each write to
a register causes the written value and the register’s address
tag to be written as a new eatry in the FIFO.

Programming GLINT to draw a primitive consists of
writing initial values to the appropriate registers followed by
a write to a command register. The last write triggers the
start of rendering.

GLINT has approximately 200 registers. All registers are
32 bits wide and should be 32-bit addressed. Many registers
are split into bit fields, and it should be noted that bit 0 is the
least significant bit.

Register Types

GLINT has three main types of register:

Control Registers

Command Registers

Internal Registers

Control Registers are updated only by the host—the chip
effectively uses them as read-only registers. Examples of
control registers are the Scissor Clip unit min and max
registers. Once initialized by the host, the chip only reads
these registers to determine the scissor clip extents.

Command Registers are those which, when written to,
typically cause the chip to start rendering (some command
registers such as ResetPickResult or Sync do not initiate
rendering). Normally, the host will initialize the appropriate
control registers and then write to a command register to
initiate drawing. There are two types of command registers:
begin-draw and continue-draw. Begin-draw commands
cause rendering to start with those values specified by the

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

13

control registers. Continue-draw commands cause drawing
to continue with internal register values as they were when
the previous drawing operation completed. Making use of
continue-draw commands can significantly reduce the
amount of data that has to be loaded into GLINT when
drawing multiple connected objects such as polylines.
Examples of command registers include the Render and
ContinueNewL.ine registers.

For convenience this application will usually refer to
“sending a Render command to GLINT” rather than saying
(more precisely) “the Render Command register is written
to, which initiates drawing”.

Internal Registers are not accessible to host software.
They are used internally by the chip to keep track of
changing values. Some control registers have corresponding
internal registers. When a begindraw command is sent and
before rendering starts, the internal registers are updated
with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not
happen and drawing continues with the current values in the
internal registers. For example. if a line is being drawn then
the StartXDom and StartY control registers specify the (x. y)
coordinates of the first point in the line. When a begin-draw
command is sent these values are copied into internal
registers. As the line drawing progresses these internal
registers are updated to contain the (X, y) coordinates of the
pixel being drawn. When drawing has completed the internal
registers contain the (X. y) coordinates of the next point that
would have been drawn. If a continue-draw command is
now given these final (X, y) internal values are not modified
and further drawing uses these values. If a begin-draw
command had been used the internal registers would have
been reloaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It is
helpful to appreciate that they exist in order to understand
the continue-draw commands.

GLINT VO Interface

There are a number of ways of loading GLINT registers
for a given context:

The host writes a value to the mapped address of the

register

The host writes address-tag/data pairs into a host memory
buffer and uses the on-chip DMA to transfer this data
to the FIFO.

The host can perform a Block Command Transfer by
writing address and data values to the FIFQO interface
registers.

In all cases where the host writes data values directly to
the chip (via the register file) it has to worry about FIFO
overflow. The InFIFOSpace register indicates how many
free entries remain in the FIFQ. Before writing to any
register the host must ensure that there is enough space left
in the FIFO. The values in this register can be read at any
time. When using DMA, the DMA controller will automati-
cally ensure that there is room in the FIFO before it performs
further transfers. Thus a buffer of any size can be passed to
the DMA controller.

FIFO Control

The description above considered the GLINT interface to
be a register file. More precisely, when a data value is
written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry.
The actual register is not updated until GLINT processes this
entry. In the case where GLINT is busy performing a time
consuming operation (e.g. drawing a large texture mapped
polygon). and not draining the FIFO very quickly. it is
possible for the FIFO to become full. If a write to a register

10

15

20

25

30

35

45

50

55

65

14

is performed when the FIFO is full no entry is put into the
FIFO and that write is effectively lost.

The input FIFO is 16 entries deep and each entry consists
of a tag/data pair. The InFIFOSpace register can be read to
determine how many entries are free. The value returned by
this register will never be greater than 16.

To check the status of the FIFO before every write is very
inefficient. so it is preferably checked before loading the data
for each rectangle. Since the FIFO is 16 entries deep. a
further optimization is to wait for all 16 entries to be free
after every second rectangle. Further optimizations can be
made by moving dXDom. dXSub and dY outside the loop
(as they are constant for each rectangle) and doing the FIFO
wait after every third rectangle.

The InFIFOSpace FIFO control register contains a count
of the number of entries currently free in the FIFO. The chip
increments this register for each entry it removes from the
FIFO and decrements it every time the host puts an entry in
the FIFO.

The DMA Interface

Loading registers directly via the FIFO is often an inef-
ficient way to download data to GLINT. Given that the FIFO
can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much
space is left. Also, consider the situation where a given API
function requires a large amount of data to be sent to GLINT.
If the FIFO is written directly then a return from this
function is not possible until almost all the data has been
consumed by GLINT. This may take some time depending
on the types of primitives being drawn.

To avoid these problems GLINT provides an on-chip
DMA controller which can be used to load data from
arbitrary sized (<64K 32-bit words) host buffers into the
FIFO. In its simplest form the host software has to prepare
a host buffer containing register address tag descriptions and
data values. It then writes the base address of this buffer to
the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the
DMACount register starts the DMA transfer and the host can
now perform other work. In general, if the complete set of
rendering commands required by a given call to a driver
function can be loaded into a single DMA buffer then the
driver function can return. Meanwhile, in parallel, GLINT is
reading data from the host buffer and loading it into its FIFO.
FIFO overflow never occurs since the DMA controller
automatically waits until there is room in the FIFO before
doing any transfers.

The only restriction on the use of DMA control registers
is that before attempting to reload the DMACount register
the host software must wait until previous DMA has com-
pleted. It is valid to load the DM A Address register while the
previous DMA is in progress since the address is latched
internally at the start of the DMA transfer.

Using DMA leaves the host free to return to the
application. while in parallel. GLINT is performing the
DMA and drawing. This can increase performance signifi-
cantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g.
drawing the same object across multiple clipping
rectangles). Since the GLINT DMA only reads the buffer
data, it can be downloaded many times simply by restarting
the DMA. This can be very beneficial if composing the
buffer data is a time consuming task.

The host can use this hardware capability in various ways.
For example, a further optional optimization is to use a
double buffered mechanism with two DMA buffers. This
allows the second buffer to be filled before waiting for the

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

15

previous DMA to complete. thus further improving the
parallelism between host and GLINT processing. Thus., this
optimization is dependent on the allocation of the host
memory. If there is only one DMA host buffer then either it
is being filled or it is being emptied—it cannot be filled and
emptied at the same time. since there is no way for the host
and DMA to interact once the DMA transfer has started. The
host is at liberty to allocate as many DMA buffers as it
wants; two is the minimum to do double buffering. but
allocating many small buffers is generally better, as it gives
the benefits of double buffering together with low latency
time, so GLINT is not idle while large buffer is being filled
up. However. use of many small buffers is of course more
complicated.

In general the DMA buffer format consists of a 32-bit
address tag description word followed by one or more data
words. The DMA buffer consists of one or more sets of these
formats. The following paragraphs describe the different
types of tag description words that can be used.

DMA Tag Description Format

There are 3 different tag addressing modes for DMA:
hold, increment and indexed. The different DMA modes are
provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA
bandwidth. Each of these is described in the following
sections.

Hold Format

In this format the 32-bit tag description contains a tag
value and a count specifying the number of data words
following in the buffer. The DMA controller writes each of
the data words to the same address tag. For example. this is
useful for image download where pixel data is continuously
written to the Color register. The bottom 9 bits specify the
register to which the data should be written; the high-order
16 bits specify the number of data words (minus 1) which
follow in the buffer and which should be written to the
address tag (note that the 2 -bit mode field for this format is
zero so a given tag value can simply be loaded into the low
order 16 bits).

A special case of this format is where the top 16 bits are
zero indicating that a single data value follows the tag (i.e.
the 32-bit tag description is simply the address tag value
itself). This allows simple DMA buffers to be constructed
which consist of tag/data pairs.

Increment Format

This format is similar to the hold format except that as
each data value is loaded the address tag is incremented (the
value in the DMA buffer is not changed; GLINT updates an
internal copy). Thus, this mode allows contiguous GLINT
registers to be loaded by specifying a single 32-bit tag value
followed by a data word for each register. The low-order 9
bits specify the address tag of the first register to be loaded.
The 2 bit mode field is set to 1 and the high-order 16 bits are
set to the count (minus 1) of the number of registers to
update. To enable use of this format, the GLINT register file
has been organized so that registers which are frequently
loaded together have adjacent address tags. For example. the
32 AreaStipplePattern registers can be loaded as follows:

AreaStipplePattern0, Count=31, Mode=1
row O bits
row 1 bits

row 31 bits

Indexed Format
GLINT address tags are 9 bit values. For the purposes of
the Indexed DMA Format they are organized into major

10

15

20

25

30

35

45

50

55

65

16

groups and within each group there are up to 16 tags. The
low-order 4 bits of a tag give its offset within the group. The
high-order 5 bits give the major group number.

The following Register Table lists the individual registers
with their Major Group and Offset in the presently preferred
embodiment:

Register Table

The folowing table lists registers by group. giving their
tag values and indicating their type. The register groups may
be used to improve data transfer rates to GLINT when using
DMA.

The following types of register are distinguished:

Major Off-
Group set
Unit Register (hex) (hex) Type
Rasterizer StartXDom 00 g Control
dXDom [0.0] 1 Control
StartXSub 00 2 Control
dXSub 00 3 Control
StartY 00 4 Control
dy 00 5 Control
Count 00 6 Control
Render 00 7 Command
ContinneNewLine [4.4] 8 Command
ContinueNewDom 00 9 Command
ContinueNewSub 0 A Command
Continue 00 B Command
FlushSpan 00 C Command
BitMaskPattern 00 D Mixed
Rasterizer PointTable[0-3) 01 0-3 Control
RasterizerMode 01 4 Control
Scissor ScissorMode o3 0 Control
Stipple
ScissorMinXY 03 1 Control
ScissorMaxXY 03 2 Control
ScreenSize 03 3 Control
AreaStippleMode 03 4 Control
LineStippleMode 03 5 Control
LoadLineStipple 03 6 Controt
Counters
UpdateLineStipple 03 7 Command
Counters
SaveLineStipple 03 8 Command
State
WindowOrigin 03 9 Control
Scissor AreaStipplePat- 04 O-F Control
Stipple tern[0-31] o5 oOF
Texture TexelQ oC 1] Control
Color/Fog
Texell oc 1 Control
Texel2 oc 2 Control
Texel3 ocC 3 Control
Texeld oc 4 Control
Texel5 oC 5 Control
Texel6 0G 6 Control
Texel7 ocC 7 Control
Interp0 oC 8 Control
Interpl oC 9 Control
Interp2 oC A Control
Interp3 ocC B Control
Interpd oc C Control
TextureFilter oc D Control
Texture/Fog TextureColor oD o} Control
Color Mode
TextureEnvColor oD 1 Control
FogMode oD 2 Control
FogColor oD 3 Control
FStart oD 4 Control
dFdx oD 5 Control
dFdyDom oD 6 Control
Color DDA RStart OF 0 Control
dRdx OF 1 Control
dRdyDom OF 2 Control
GStart OF 3 Control
dGdx OF 4 Control
dGdyDom OF 5 Control

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770
17 18
_continued DMA Buffer Addresses
Major Off- Host software must generate the correct DMA buffer
Group set address for the GLINT DMA controller. Normally, this
Unit Register (hex) (hex) Type 5 means that the address passed to GLINT must be the
BStast OF 6 Control physical address of ‘thc DMA 'buﬂer in hqst memory. The
dBdx OF 7 Control buffer must also reside at contiguous physical addresses as
dBdyDom OF 8 Control accessed by GLINT. On a system which uses virtual
AStart OF 9 Control memory for the address space of a task. some method of
dAdx OF A Control llocati i hvsical d ing thi
dAdyDom OF B Control 1o Allocating contiguous physical memory. and mapping this
ColorDDAMode OF C Control into the address space of a task, must be used.
ConstantColor OF D Control If the virtual memory buffer maps to non-contiguous
Color OF E Mixed hvsical then the buff t be divided int t
Alpha Test AlphaTestMode 10 0 Control physical memory. then the er mus vided into sets
AntialiasMode 10 1 Control of contiguous physical memory pages and each of these sets
Alpha Blend AlphaBiendMode 10 2 Control 15 transferred separately. In such a situation the whole DMA
Dither DitherMode 3 Control buffer cannot be transferred in one go; the host software
Logical Ops ﬂ”aik?f“"“"w“‘“ 10 4 Conl must wait for each set to be transferred. Often the best way
LogicalOpMode 10 5 Control to handle these fragmented transfers is via an interrupt
FBWriteData 10 6 Contro} handler.
LB Read LBReadMode 11 Q Control 2
LBReadFormat 11 1 Control
LBSourceOffset 1 2 Control DMA Interrupts
tgls;:;fh‘l ii 2 g&: GLINT provides interrupt support. as an alternative
LBWindowBase 1 7 Control means of determining when a DMA transfer is complete. If
LB Write LBWriteMode 11 $ Control enabled. the interrupt is generated whenever the DMACount
CID/Stencil I&leg‘epm‘ n 9 gm‘ml 25 register changes from having a non-zero to having a zero
Depmtem v 3 ° ontrol value. Since the DMACount register is decremented every
StencilMode 13 1 Control time a data item is transferred from the DMA buffer this
StencilData 13 2 Control happens when the last data item is transferred from the DMA
Stencil 13 3 Mixed buffer.
DepthMode 13 4 Control .
Depth 5 s Maed 2 To enable the DMA interrupt. the DMAInterruptEnable
ZStartU 13 6 Control bit must be set in the IntEnable register. The interrupt
ZS‘"I'II‘ 13 7 (C3°ﬂ"°1 handler should check the DMAFlag bit in the IntFlags
'ZZ:] {I ;g g Cﬁﬁi register to determine that a DMA interrupt has actually
dZdyDomU 13 A Control 35 occurred. To clear the interrupt a word should be written to
dZdyDomL 13 B Control the IntFlags register with the DMAFlag bit set to one.
FB Read i;stlea’ﬂ Dep[] th g g gx‘:{ This scheme frees the processor for other work while
FBSourceOffset 15 1 Control DMA is being completed. Since the overhead of handling an
FBPixelOffset 15 2 Control interrupt is often quite high for the host processor, the
gg;”‘;’o 5 :: 2 g“‘Pn‘:l 40 Scheme should be tuned to allow a period of polling before
maoowpase Onf . .
FB Write FBWriteMode 15 7 Control sleeping on the interrupt.
FBHardwareWrite 15 8 Control .
Mask Output FIFO and Graphics Processor FIFO
FBBlockColor 15 9 Control Interface
Host Out FilterMode 18 0 Control
StatisticMode 18 1 Control 45 To read data back from GLINT an output FIFO is pro-
MinRegion 18 2 Control vided. Each entry in this FIFO is 32-bits wide and it can hold
MaxRegion 18 3 Control
ResetPickResult 18 4 Command tag or data.values. Thus its format is unlike the input FIFO
MinHitRegion 18 5 Command whose entries are always tag/data pairs (we can think of each
gﬁ;ﬁﬂsgim 18 g gommmg entry in the input FIFO as being 41 bits wide: 9 bits for the
esult 18 omman: 50 H :
Sync 18 g P v tag and 32 bits for the data). The type of data written by

This format allows up to 16 registers within a group to be
loaded while still only specifying a single address tag
description word.

If the Mode of the address tag description word is set to
indexed mode. then the high-order 16 bits are used as a mask
to indicate which registers within the group are to be used.
The bottom 4 bits of the address tag description word are
unused. The group is specified by bits 4 to 8. Each bit in the
mask is used to represent a unique tag within the group. If
a bit is set then the corresponding register will be loaded.
The number of bits set in the mask determines the number
of data words that should be following the tag description
word in the DMA buffer. The data is stored in order of
increasing corresponding address tag.

55

65

GLINT to the output FIFO is controlled by the FilterMode
register. This register allows filtering of output data in
various categories including the following:

Depth: output in this category results from an image

upload of the Depth buffer.

Stencil: output in this category results from an image

upload of the Stencil buffer.

Color: output in this category results from an image

upload of the framebuffer.

Synchronization: synchronization data is sent in response

to a Sync command.

The data for the FilterMode register consists of 2 bits per
category. If the least significant of these two bits is set (0x1)
then output of the register tag for that category is enabled;
if the most significant bit is set (0x2) then output of the data
for that category is enabled. Both tag and data output can be

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

19
enabled at the same time. In this case the tag is written first
to the FIFO followed by the data.

For example. to perform an image upload from the
framebuffer. the FilterMode register should have data output
enabled for the Color category. Then. the rectangular area to
be uploaded should be described to the rasterizer. Each pixel
that is read from the framebuffer will then be placed into the
output FIFO. If the output FIFO becomes full, then GLINT
will block internally until space becomes available. It is the
programmer’s responsibility to read all data from the output
FIFO. For example, it is important to know how many pixels
should result from an image upload and to read exactly this
many from the FIFO.

To read data from the output FIFO the OutputFIFOWords
register should first be read to determine the number of
entries in the FIFQ (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the
expected data or tag items have been read. The address of the
output FIFO is described below.

Note that all expected data must be read back. GLINT will
block if the FIFO becomes full. Programmers must be
careful to avoid the deadlock condition that will result if the
host is waiting for space to become free in the input FIFO
while GLINT is waiting for the host to read data from the
output FIFO.

Graphics Processor FIFO Interface

GLINT has a sequence of 1Kx32 bit addresses in the PCI
Region 0 address map called the Graphics Processor FIFO
Interface. To read from the output FIFO any address in this
range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All
32-bit addresses in this region perform the same function:
the range of addresses is provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location in this address range provides raw
access to the input FIFO. Again, the first address is normally
chosen. Thus the same address can be used for both input
and output FIFOs. Reading gives access to the output FIFO;
writing gives access to the input FIFO.

Writing to the input FIFO by this method is different from
writing to the memory mapped register file. Since the
register file has a unique address for each register, writing to
this unique address allows GLINT to determine the register
for which the write is intended. This allows a tag/data pair
to be constructed and inserted into the input FIFQ. When
writing to the raw FIFO address an address tag description
must first be written followed by the associated data. In fact,
the format of the tag descriptions and the data that follows
is identical to that described above for DMA buffers. Instead
of using the GLINT DMA it is possible to transfer data to
GLINT by constructing a DMA-style buffer of data and then
copying each item in this buffer to the raw input FIFO
address. Based on the tag descriptions and data written
GLINT constructs tag/data pairs to enter as real FIFO
entries. The DMA mechanism can be thought of as an
automatic way of writing to the raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO
full condition must still be checked by reading the
InFIFOSpace register. However. writing tag descriptions
does not cause any entries to be entered into the FIFO: such
a write simply establishes a set of tags to be paired with the
subsequent data. Thus, free space need be ensured only for
actual data items that are written (not the tag values). For
example. in the simplest case where each tag is followed by
a single data item. assuming that the FIFO is empty, then 32
writes are possible before checking again for free space.

20

25

35

45

50

55

65

20

Other Interrupts
GLINT also provides interrupt facilities for the following:

Sync: If a Sync command is sent and the Sync interrupt has
been enabled then once all rendering has been completed,
a data value is entered into the Host Out FIFO. and a Sync
interrupt is generated when this value reaches the output
end of the FIFQO. Synchronization is described further in
the next section.

External: this provides the capability for external hardware
on a GLINT board (such as an external video timing
generator) to generate interrupts to the host processor.

Error: if enabled the error interrupt will occur when GLINT
detects certain error conditions . such as an attempt to
write to a full FIFO.

Vertical Retrace: if enabled a vertical retrace interrupt is
generated at the start of the video blank period.

Each of these are enabled and cleared in a similar way to
the DMA interrupt.

Synchronization

There are three main cases where the host must synchro-
nize with GLINT:

before reading back from registers

before directly accessing the framebuffer or the local-

buffer via the bypass mechanism

framebuffer management tasks such as double buffering

Synchronizing with GLINT implies waiting for any pend-
ing DMA to complete and waiting for the chip to complete
any processing currently being performed. The following
pseudo-code shows the general scheme:

GLINTData data;
/1 wait for DMA to complete
while (*DMACount != 0) {
poll or wait for interrupt
}
while (*InFIFOSpace < 2) {
3 /1 wait for free space in the FIFO

}
1/ enable sync output and send the Sync command
data.Word = 0;
data.FilterMode.Synchronization = 0x1;
FilterMode(data. Word);
Sync(0x0);
/* wait for the sync output data */
do {

while (*OutFIFOWords = 0)

; /1 poll waiting for data in output

FIFO
} while (*OutputFIFO != Sync.._tag);

Initially, we wait for DMA to complete as normal. We
then have to wait for space to become free in the FIFO (since
the DMA controller actually loads the FIFO). We need space
for 2 registers: one to enable generation of an output sync
value, and the Sync command itself. The enable flag can be
set at initialization time. The output value will be generated
only when a Sync command has actually been sent, and
GLINT has then completed all processing.

Rather than polling it is possible to use a Sync interrupt
as mentioned in the previous section. As well as enabling the
interrupt and setting the filter mode, the data sent in the Sync
command must have the most significant bit set in order to
generate the interrupt. The interrupt is generated when the
tag or data reaches the output end of the Host Out FIFQ. Use
of the Sync interrupt has to be considered carefully as
GLINT will generally empty the FIFO more quickly than it
takes to set up and handle the interrupt.

Host Framebuffer Bypass

Normally. the host will access the framebuffer indirectly
via commands sent to the GLINT FIFO interface. However,

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

21

GLINT does provide the whole framebuffer as part of its
address space so that it can be memory mapped by an
application. Access to the framebuffer via this memory
mapped route is independent of the GLINT FIFO.

Drivers may choose to use direct access to the framebuffer
for algorithms which are not supported by GLINT. The
framebuffer bypass supports big-endian, little-endian and
GIB-endian formats.

A driver making use of the framebuffer bypass mecha-
nism should synchronize framebuffer accesses made
through the FIFO with those made directly through the
memory map. If data is written to the FIFO and then an
access is made to the framebuffer, it is possible that the
framebuffer access will occur before the commands in the
FIFO have been fully processed. This lack of temporal
ordering is generally not desirable.

Framebuffer Dimensions and Depth

At reset time the hardware stores the size of the frame-
buffer in the FBMemoryControl register. This register can be
read by software to determine the amount of VRAM on the
display adapter. For a given amount of VRAM., software can
configure different screen resolutions and off-screen
memory regions.

The framebuffer width must be set up in the FBReadMode
register. The first 9 bits of this register define 3 partial
products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked
out at initialization time and a copy kept in software. When
this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the
register.

Once the offset from one scanline to the next has been
established, determining the visible screen width and height
becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by
setting the ScreenScissorEnable bit in the ScissorMode
register.

The framebuffer depth (8, 16 or 32-bit) is controlled by
the FBModeSel register. This register provides a 2 bit field
to control which of the three pixel depths is being used. The
pixel depth can be changed at any time but this should not
be attempted without first synchronizing with GLINT. The
FBModeSel register is not a FIFO register and is updated
immediately it is written. f GLINT is busy performing
rendering operations, changing the pixel depth will corrupt
that rendering.

Normally. the pixel depth is set at initialization time, To
optimize certain 2D rendering operations it may be desirable
to change it at other times. For example. if the pixel depth
is normally 8 (or 16) bits, changing the pixel depth to 32 bits
for the duration of a bitblt can quadruple (or double) the blt
speed, when the bit source and destination edges are aligned
on 32 bit boundaries. Once such a blt sequence has been set
up the host software must wait and synchronize with GLINT
and then reset the pixel depth before continuing with further
rendering. It is not possible to change the pixel depth via the
FIFO, thus explicit synchronization must always be used.

Host Localbuffer Bypass

As with the framebuffer. the localbuffer can be mapped in
and accessed directly. The host should synchronize with
GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer
in the LBMemoryControl register (localbuffer visible region
size). In bypass mode the number of bits per pixel is either
32 or 64. This information is also set in the LBMemory-
Control register (localbuffer bypass packing). This pixel
packing defines the memory offset between one pixel and the

15

20

25

30

as

45

50

55

65

22

next. A further set of 3 bits (localbuffer width) in the
LBMemoryControl register defines the number of valid bits
per pixel. A typical localbuffer configuration might be 48
bits per pixel but in bypass mode the data for each pixel
starts on a 64-bit boundary. In this case valid pixel data will
be contained in bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid
bits.

Host software must set the width in pixels of each scanline
of the localbuffer in the LBReadMode FIFO register. The
first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next.
As with the framebuffer partial products, these values will
usually be worked out at initialization time and a copy kept
in software. When this register needs to be modified the
software copy is retrieved and any other bits modified before
writing to the register. If the system is set up so that each
pixel in the framebuffer has a comresponding pixel in the
localbuffer then this width will be the same as that set for the
framebuffer.

The localbuffer is accessible via Regions 1 and 3 of the
PCI address map for GLINT. The localbuffer bypass sup-
ports big-endian and little-endian formats. These are
described in a later section.

Register Read Back

Under some operating environments, multiple tasks will
want access to the GLINT chip. Sometimes a server task or
driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances, the state of the
GLINT chip may need to be saved and restored on each
context switch. To facilitate this, the GLINT control regis-
ters can be read back. (However, internal and command
registers cannot be read back.)

To perform a context switch the host must first synchro-
nize with GLINT. This means waiting for outstanding DMA
to complete. sending a2 Sync command and waiting for the
sync output data to appear in the output FIFQ. After this the
registers can be read back.

To read a GLINT register the host reads the same address
which would be used for a write, i.c. the base address of the
register file plus the offset value for the register.

Note that since internal registers cannot be read back care
must be taken when context switching a task which is
making use of continue-draw commands. Continue-draw
commands rely on the internal registers maintaining previ-
ous state. This state will be destroyed by any rendering work
done by a new task. To prevent this. continue-draw com-
mands should be performed via DMA since the context
switch code has to wait for outstanding DMA to complete.
Alternatively, continue-draw commands can be performed
in a non-preemptable code segment.

Normally, reading back individual registers should be
avoided. The need to synchronize with the chip can
adversely affect performance. It is usually more appropriate
to keep a software copy of the register which is updated
when the actual register is updated.

Byte Swapping

Internally GLINT operates in little-endian mode.
However, GLINT is designed to work with both big- and
little-endian host processors. Since the PCIBus specification
defines that byte ordering is preserved regardless of the size
of the transfer operation., GLINT provides facilities to
handle byte swapping. Each of the Configuration Space,
Control Space. Framebuffer Bypass and Localbuffer Bypass
memory areas have both big and little endian mappings
available. The mapping to use typically depends on the
endian ordering of the host processor.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

23

The Configuration Space may be set by a resistor in the
board design to be either little endian or big endian.

The Control Space in PCI address region 0. is 128K bytes
in size, and consists of two 64K sized spaces. The first 64K
provides little endian access to the control space registers;
the second 64K provides big endian access to the same
registers.

The framebuffer bypass consists of two PCI address
regions: Region 2 and Region 4. Each is independently
configurable to by the Aperture0 and Aperture 1 control
registers respectively. to one of three modes: no byte swap.
16-bit swap. full byte swap. Note that the 16 bit mode is
needed for the following reason. If the framebuffer is
configured for 16-bit pixels and the host is big-endian then
simply byte swapping is not enough when a 32-bit access is
made (to write two pixels). In this case, the required effect
is that the bytes are swapped within each 16-bit word, but the
two 16-bit halves of the 32-bit word are not swapped. This
preserves the order of the pixels that are written as well as
the byte ordering within each pixel. The 16 bit mode is
referred to as GIB-endian in the PCI Multimedia Design
Guide, version 1.0.

The localbuffer bypass consists of two PCI address
regions: Region 1 and Region 3. Each is independently
configurable to by the Aperture0 and Aperture 1 control
registers respectively. to one of two modes: no byte swap.
full byte swap.

To save on the size of the address space required for
GLINT. board vendors may choose to turn off access to the
big endian regions (3 and 4) by the use of resistors on the
board.

There is a bit available in the DMAControl control
register to enable byte swapping of DMA data. Thus for
big-endian hosts, this control bit would normally be enabled.
Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will
usually force a given interpretation for true color pixel
values. For example, 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3, red at byte 2, green at byte 1
and blue at byte 0) or ABGR (blue at byte 2 and red at byte
0). The byte position for red and blue may be important for
software which has been written to expect one byte order or
the other, in particular when handling image data stored in
a file.

GLINT provides two registers to specify the byte posi-
tions of blue and red internally. In the Alpha Blend Unit the
AlphaBlendMode register contains a 1-bit field called Col-
orOrder. If this bit is set to zero then the byte ordering is
ABGR; if the bit is set to one then the ordering is ARGB. As
well as setting this bit in the Alpha Blend unit, it must also
be set in the Color Formatting unit. In this unit the Dither-
Mode register contains a Color Order bit with the same
interpretation. The order applies to all of the true color pixel
formats. regardless of the pixel depth.

Hardware Data Structures

Some of the hardware data structure implementations
used in the presently preferred embodiment will now be
described in detail. Of course these examples are provided
merely to illustrate the presently preferred embodiment in
great detail, and do not necessarily delimit any of the
claimed inventions.

Localbuffer

The localbuffer holds the per pixel information corre-
sponding to each displayed pixel and any texture maps. The
per pixel information held in the localbuffer are Graphic ID
(GID). Depth. Stencil and Frame Count Planes (FCP). The
possible formats for each of these fields, and their use are
covered individually in the following sections.

10

15

20

25

30

35

40

45

50

55

65

24

The maximum width of the localbuffer is 48 bits. but this
can be reduced by changing the external memory
configuration, albeit at the expense of reducing the func-
tionality or dynamic range of one or more of the ficlds.

The localbuffer memory can be from 16 bits (assuming a
depth buffer is always needed) to 48 bits wide in steps of 4
bits. The four fields supported in the localbuffer, their
allowed lengths and positions are shown in the following
table:

Field Lengths Start bit positions

Depth 16,24,32 0

Stencil 0,48 16, 20, 24, 28, 32

FrameCount 0,4, 8 16, 20, 24, 28, 32, 36, 40

GID 0,4 16, 20, 24, 28, 32, 36, 40, 44, 48

The order of the fields is as shown with the depth field at
the least significant end and GID field at the most significant
end. The GID is at the most significant end so that various
combinations of the Stencil and FrameCount field widths
can be used on a per window basis without the position of
the GID fields moving. If the GID field is in a different
positions in different windows then the ownership tests
become impossible to do.

The GID, FrameCount, Stencil and Depth fields in the
localbuffer are converted into the internal format by right
justification if they are less than their internal widths, i.e. the
unused bits are the most significant bits and they are set to
0.

The format of the localbuffer is specified in two places:
the LBReadFormat register and the LBWriteFormat register.

It is still possible to part populate the localbuffer so other
combinations of the field widths are possible (i.e. depth field
width of 0). but this may give problems if texture maps are
to be stored in the localbuffer as well.

Any non-bypass read or write to the localbuffer always
reads or writes all 48 bits simultaneously.

GID field

The 4 bit GID field is used for pixel ownership tests to
allow per pixel window clipping. Each window using this
facility is assigned one of the GID values, and the visible
pixels in the window have their GID field set to this value.
If the test is enabled the current GID (set to correspond with
the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel
belongs to the window so the localbuffer and framebuffer at
this coordinate may be updated.

Using the GID field for pixel ownership tests is optional
and other methods of achieving the same result are:
clip the primitive to the window’s boundary (or rectangular

tiles which make up the window’s area) and render only

the visible parts of the primitive

use the scissor test to define the rectangular tiles which make
up the window’s visible area and render the primitive
once per tile (This may be limited to only those tiles
which the primitive intersects).

Depth Field

The depth field holds the depth (Z) value associated with
a pixel and can be 16, 24 or 32 bits wide.

Stencil Field

The stencil field holds the stencil value associated with a
pixel and can be 0. 4 or 8 bits wide.

The width of the stencil buffer is also stored in the
StencilMode register and is needed for clamping and mask-
ing during the update methods. The stencil compare mask
should be set up to exclude any absent bits from the stencil
compare operation.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

25

FrameCount Field

The Frame Count Field holds the frame count value
associated with a pixel and can be 0. 4 or 8 bits wide. It is
used during animation to support a fast clear mechanism to
aid the rapid clearing of the depth and/or stencil fields
needed at the start of each frame.

In addition to the fast clear mechanism the extent of all
updates to the localbuffer and framebuffer can be recorded
(MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the
bounding box of the smallest area to clear. For some
applications this will be significantly smaller than the whole
window or screen. and hence faster.

The fast clear mechanism provides a method where the
cost of clearing the depth and stencil buffers can be amor-
tized over a number of clear operations issued by the
application. This works as follows:

The window is divided up into n regions. where n is the
range of the frame counter (16 or 256). Every time the
application issues a clear command the reference frame
counter is incremented (and allowed to roll over if it exceeds
its maximum value) and the n™ region is cleared only. The
clear updates the depth and/or stencil buffers to the new
values and the frame count buffer with the reference value.
This region is much smaller than the full window and hence
takes less time to clear.

When the localbuffer is subsequently read and the frame
count is found to be the same as the reference frame count
(held in the Window register) the localbuffer data is used
directly. However, if the frame count is found to be different
from the reference frame count (held in the Window register)
the data which would have been writien. if the localbuffer
had been cleared properly. is substituted for the stale data
returned from the read. Any new writes to the localbuffer
will set the frame count to the reference value so the next
read on this pixel works normally without the substitution.
The depth data to substitute is held in the FastClearDepth
register and the stencil data to substitute is held in the
StencilData register (along with other stencil information).

The fast clear mechanism does not present a total solution
as the user can elect to clear just the stencil planes or just the
depth planes. or both. The situation where the stencil planes
only are ‘cleared’ using the fast clear method, then some
rendering is done and then the depth planes are ‘cleared’
using the fast clear will leave ambiguous pixels in the
localbuffer. The driver software will need to catch this
situation. and fall back to using a per pixel write to do the
second clear. Which field(s) the frame count plane refers to
is recorded in the Window register.

When clear data is substituted for real memory data
(during normal rendering operations) the depth write mask
and stencil write masks are ignored to mimic the OpenGL
operation when a buffer is cleared.

Localbuffer Coordinates

The coordinates generated by the rasterizer are 16 bit 2°s
complement numbers, and so have the range +32767 to
-32768. The rasterizer will produce values in this range. but
any which have a negative coordinate, or exceed the screen
width or height (as programmed into the ScreenSize
register) are discarded.

Coordinates can be defined window relative or screen
relative and this is only relevant when the coordinate gets
converted to an actual physical address in the localbuffer. In
general it is expected that the windowing system will use
absolute coordinates and the graphics system will use rela-
tive coordinates (to be independent of where the window
really is).

10

15

20

25

35

45

50

55

65

26

GUI systems (such as Windows, Windows NT and X)
usually have the origin of the coordinate system at the top
left corner of the screen but this is not true for all graphics
systems. For instance OpenGL uses the bottom left corner as
its origin. The WindowQOrigin bit in the LBReadMode
register selects the top left (0) or bottom left (1) as the origin.

The actual equations used to calculate the localbuffer
address to read and write are:

Botiom left origin:
Destination address = LBWindowBase — Y * W + X

Source address =
LBWmdowBase — Y*W + X + LBSourceOffset
Top left origin:
Destination address = LBWindowBase + Y * W+ X
Source address =

LBWindowBase + Y*W + X + LBSourceOffset

where:
X is the pixel’s X coordinate.
Y is the pixel’s Y coordinate.
LBWindowBase holds the base address in the localbuffer
of the current window.

LBSourceOffset is normally zero except during a copy
operation where data is read from one address and
written to another address. The offset between source
and destination is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO, PP1 and
PP2 fields in the LBReadMode register.

These address calculations translate a 2D address into a

linear address.

The Screen width is specified as the sum of selected
partial products so a full multiply operation is not needed.
The partial products are selected by the fields PP0, PP1 and
PP2 in the LBReadMode register.

For arbitrary width screens. for instance bitmaps in ‘off
screen” memory, the next largest width from the table must
be chosen. The difference between the table width and the
bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block.
However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Texture Memory

The localbuffer is used to hold textures in the GLINT
400TX variant. In the GLINT 300SX variant the texture
information is supplied by the host.

Framebuffer

The framebuffer is a region of memory where the infor-
mation produced during rasterization is written prior to
being displayed. This information is not restricted to color
but can include window control data for LUT management
and double buffering.

The framebuffer region can hold up to 32 MBytes and
there are very few restrictions on the format and size of the
individual buffers which make up the video stream. Typical
buffers include:

True color or color index main planes,

Overlay planes,

Underlay planes,

Window ID planes for LUT and double buffer

management,

Cursor planes.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

27

Any combination of these planes can be supported up to
a maximum of 32 MBytes, but usually it is the video level
processing which is the limiting factor. The following text
examines the options and choices available from GLINT for
rendering, copying. etc. data to these buffers.

To access alternative buffers either the FBPixelOffset
register can be loaded, or the base address of the window
held in the FBWindow-Base register can be redefined. This
is described in more detail below.

Buffer Organization

Each buffer resides at an address in the framebuffer
memory map. For rendering and copying operations the
actual buffer addresses can be on any pixel boundary.
Display hardware will place some restrictions on this as it
will need to access the multiple buffers in parallel to mix the
buffers together depending on their relative priority. opacity
and double buffer selection. For instance, visible buffers
(rather than offscreen bitmaps) will typically need to be on
a page boundary.

Consider the following highly configured example with a
1280x1024 double buffered system with 32 bit main planes
(RGBA). 8 bit overlay and 4 bits of window control infor-
mation (WID).

Combining the WID and overlay planes in the same 32 bit
pixel has the advantage of reducing the amount of data to
copy when a window moves. as only two copies are
required—one for the main planes and one for the overlay
and WID planes.

Note the position of the overlay and WID planes. This was
not an arbitrary choice but one imposed by the (presumed)
desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conver-
sion of the internal color format to the external one stored in
the framebuffer depends on the size and position of the
component. Note that GLINT does not support all possible
configurations. For example; if the overlay and WID bits
were swapped, then eight bit color index starting at bit 4
would be required to render to the overlay. but this is not
supported.

Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to
that for the localbuffer. but there are some key differences.

As was mentioned before, the coordinates generated by
the rasterizer are 16 bit 2's complement numbers. Coordi-
nates can be defined as window relative or screen relative,
though this is only relevant when the coordinate gets con-
verted to an actual physical address in the framebuffer. The
WindowOrigin bit in the FBReadMode register selects top
left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuffer
address to read and write are:

Bottom left origin:
Destination address = FBWindowBase — Y*W + X +
FBPixelOffset
Source address = FBWindowBase — Y*W + X +
FBPixelOffset + FBSourceOffset
Top left Origin:
Destination address = FBWindowBase + Y*W + X +
FBPixelOffset
Source address = FBWindowBase + Y*W + X +
FBPixelOffset + FBSourceOffset

These address calculations translate a 2D address into a
linear address. so non power of two framebuffer widths (i.e.
1280) are economical in memory.

The width is specified as the sum of selected partial
products so a full multiply operation is not needed. The

10

15

25

30

35

45

50

28

partial products are selected by the fields PP0, PP1 and PP2

in the FBReadMode register. This is the same mechanism as

is used to set the width of the localbuffer. but the widths may
be set independently.

For arbitrary screen sizes, for instance when rendering to
‘off screen” memory such as bitmaps the next largest width
from the table must be chosen. The difference between the
table width and the bitmap width will be an unused strip of
pixels down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block
However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Color Formats

The contents of the framebuffer can be regarded in two
ways:

As a collection of fields of up to 32 bits with no meaning or
assumed format as far as GLINT is concerned. Bit planes
may be allocated to control cursor. LUT. multi-buffer
visibility or priority functions. In this case GLINT will be
used to set and clear bit planes quickly but not perform
any color processing such as interpolation or dithering.
All the color processing can be disabled so that raw reads
and writes are done and the only operations are write
masking and logical ops. This allows the control planes to
be updated and modified as necessary. Obviously this
technique can also be used for overlay buffers, etc.
providing color processing is not required.

As a collection of one or more color components. All the
processing of color components. except for the final write
mask and logical ops are done using the internal color
format of 8 bits per red, green, blue and alpha color
channels. The final stage before write mask and logical
ops processing converts the internal color format to that
required by the physical configuration of the framebuffer
and video logic. The nomenclature n@m means this
component is n bits wide and starts at bit position m in the
framebuffer. The least significant bit position is 0 and a
dash in a column indicates that this component does not
exist for this mode. The ColorOrder is specified by a bit
in the DitherMode register.

Some important points to note:

The alpha channel is always associated with the RGB color
channels rather than being a separate buffer. This allows
it to be moved in parallel and to work cormrectly in
multi-buffer updates and double buffering, If the frame-
buffer is not configured with an alpha channel (e.g. 24 bit
framebuffer width with 8:8:8:8 RGB format) then some of
the rendering modes which use the retained alpha buffer
cannot be used. In these cases the NoAlphaBuffer bit in
the AlphaBlendMode register should be set so that an
alpha value of 255 is substituted. For the RGB modes
where no alpha channel is present (e.g. 3:3:2) then this
substitution is done automatically.

For the Front and Back modes the data value is replicated
into both buffers.

All writes to the framebuffer try to update all 32 bits
irrespective of the color format. This may not matter if the
memory planes don’t exist, but if they are being used (as
overlay planes, for example) then the write masks
(FBSoftwareWriteMask or FBHardware WriteMask) must
be set up to protect the alternative planes.

‘When reading the framebuffer RGBA components are scaled
to their internal width of 8 bits, if needed for alpha
blending.

CI values are left justified with the unused bits (if any) set
to zero and are Subsequently processed as the red compo-

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

29

nent. The result is replicated into each of the streams G.B
and A giving four copies for CI8 and eight copies for CI4.
The 4:4:4:4 Front and Back formats are designed to
support 12 bit double buffering with 4 bit Alpha, in a32
bit system.
The 3:3:2 Front and Back formats are designed to support
8 bit double buffering in a 16 bit system.
The 1:2:1 Front and Back formats are designed to support
4 bit double buffering in an 8 bit system.
1t is possible to have a color index buffer at other positions
as long as reduced functionality is acceptable. For
example a 4 bit CI buffer at bit position 16 can be
achieved using write masking and 4:4:4:4 Front format
with color interpolation, but dithering is lost.
The format information needs to be stored in two places:
the DitherMode register and the AlphaBlendMode register.

Internal Color Channe]
Format Name R G B A
Color 0 818388 3@0 8@8 8@16 8@
Order: 1 5555 5@0 5@5 5@10 5@15
RGB 2 4444 4@0 4@4 4@8 4@12
3 44:44 4@0 4@8 4@16 4@24
Front 4@4 4@12 4@20 4@28
4 4444 4@0 4@8 4@16 4@24
Back 4@4 4@12 4@20 4@28
5 332 3@0 3@3 2@6 —
Front 3@8 3@11 2@14
6 332 3@0 3@3 2@6 —
Back 3@38 3@11 2@14
7 L2l 1@0 2@1 1@3 —
Front 1@4 2@5 1@7
8 L2l 1@0 2@1 1@3 —
Back 1@4 2@5 1@7
Color 0 88:88 8@16 8@8 8@0 s@24
Order: 1 5555 5@10 5@5 5@0 5@15
BGR 2 4444 4@8 4@4 4@0 4@12
3 4444 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28
4 4444 4@16 4@8 4@0 4@24
Back 4@20 4@12 4@4 4@28
5 332 3@s 3@2 2@0 —
Front 3@13 3@10 2@8
6 3:3:2 3@5 3@2 2@0 —
Back 3@13 3@10 2@8
7 1:2:1 i@3 2@l 1@0 —
Front 1@7 2@5 1@4
8 L2 1@3 2@1 1@0 —
Back 1@7 2@5 1@4
CI 14 CI8 8@0 0 0 o]
15 CH 4@0 0 0 0

Overlays and Underlays

In a GUI system there are two possible relationships
between the overlay planes (or underlay) and the main
planes.

The overlay planes are fixed to the main planes, so that if
the window is moved then both the data in the main
planes and overlay planes move together.

The overlay planes are not fixed to the main planes but
floating, so that moving a window only moves the
associated main or overlay planes.

In the fixed case both planes can share the same GID. The
pixel offset is used to redirect the reads and writes between
the main planes and the overlay (underlay) buffer. The pixel
ownership tests using the GID field in the localbuffer work
as expected.

In the floating case different GIDs are the best choice,
because the same GID planes in the localbuffer can not be
used for pixel ownership tests. The alternatives are not to use

15

20

25

35

45

50

55

65

30

the GID based pixel ownership tests for one of the buffers
but rely on the scissor clipping. or to install a second set of
GID planes so each buffer has it’s own set. GLINT allows
either approach.

If rendering operations to the main and overlay planes
both need the depth or stencil buffers, and the windows in
each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. This is easily achieved with
GLINT by assigning different regions in the localbuffer to
each of the buffers. Typically this would double the local-
buffer memory requirements.

One scenario where the above two considerations do not
cause problems. is when the overlay planes are used exclu-
sively by the GUI system. and the main planes are used for
the 3D graphics.

VRAM Modes

High performance systems will typically use VRAM for
the framebuffer and the extended functionality of VRAM
over DRAM can be used to enhance performance for many
rendering tasks.

Hardware Write Masks.

These allow write masking in the framebuffer without
incurring a performance penalty. If hardware write masks
are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the write
mask, and write it back.

To use hardware write masking, the required write mask
is written to the FBHardwareWriteMask register, the
FBSoftwareWriteMask register should be set to all 1’s, and
the number of framebuffer reads is set to O (for normal
rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software write masking, the required write mask is
written to the FBSoftwareWriteMask register and the num-
ber of framebuffer reads is set to 1 (for normal rendering).
This is achieved by setting the ReadDestination enable in the
FBReadMode register.

Block Writes Block writes cause consecutive pixels in the
framebuffer to be written simultaneously. This is useful
when filling large areas but does have some restrictions:

No pixel level clipping is available;

No depth or stencil testing can be done;

All the pixels must be writien with the same value so no
color interpolation, blending, dithering or logical ops
can be done; and

The area is defined in screen relative coordinates.

Block writes are not restricted to rectangular areas and
can be used for any trapezoid. Hardware write masking is
available during block writes.

The following registers need to be set up before block fills
can be used:

FBBlockColor register with the value to write to each

pixel; and

FBWriteMode register with the block width field.

Sending a Render command with the PrimitiveType field
set to “trapezoid™ and the FastFillEnable and FastFillIncre-
ment fields set up will then cause block filling of the area.
Note that during a block fill of a trapezoid any inappropriate
state is ignored so even if color interpolation, depth testing
and logical ops. for example, are enabled they have no effect.

The block sizes supported are 8, 16 and 32 pixels. GLINT
takes care of filling any partial blocks at the end of spans.
Graphics Programming

GLINT provides a rich variety of operations for 2D and
3D graphics supported by its Pipelined architecture.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

31

The Graphics Pipeline
This section describes each of the units in the graphics

Pipeline. FIG. 2C shows a schematic of the pipeline. In this

diagram., the localbuffer contains the pixel ownership values

(known as Graphic IDs), the FrameCount Planes (FCP).

Depth (Z) and Stencil buffer. The framebuffer contains the

Red. Green. Blue and Alpha bitplanes. The operations in the

Pipeline include:

Rasterizer scan converts the given primitive into a series of
fragments for processing by the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds
of a user defined scissor rectangle and also performs
screen clipping to stop illegal access outside the screen
memory.

Stipple Test masks out certain fragments according to a
specified pattern. Line and area stipples are available.
Color DDA is responsible for generating the color informa-
tion (True Color RGBA or Color Index(CI)) associated

with a fragment.

Texture is concerned with mapping a portion of a specified
image (texture) onto a fragment. The process involves
filtering to calculate the texture color, and application
which applies the texture color to the fragment color.

Fog blends a fog color with a fragment’s color according to
a given fog factor. Fogging is used for depth cuing images
and to simulate atmospheric fogging.

Antialias Application combines the incoming fragment’s
alpha value with its coverage value when anti aliasing is
enabled.

Alpha Test conditionally discards a fragment based on the
outcome of a comparison between the fragments alpha
value and a reference alpha value.

Pixel Ownership is concerned with ensuring that the location
in the framebuffer for the current fragment is owned by
the current visual. Comparison occurs between the given
fragment and the Graphic ID value in the localbuffer, at
the corresponding location, to determine whether the
fragment should be discarded.

Stencil Test conditionally discards a fragment based on the
outcome of a test between the given fragment and the
value in the stencil buffer at the corresponding location.
The stencil buffer is updated dependent on the result of the
stencil test and the depth test.

Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given
fragment and the value in the depth buffer at the corre-
sponding location. The result of the depth test can be used
to control the updating of the stencil buffer.

Alpha Blending combines the incoming fragment’s color
with the color in the framebuffer at the corresponding
location.

Color Formatting converts the fragment’s color into the
format in which the color information is stored in the
framebuffer.

This may optionally involve dithering.

The Pipeline structure of GLINT is very efficient at
processing fragments, for example, texture mapping calcu-
lations are not actually performed on fragments that get
clipped out by scissor testing. This approach saves substan-
tial computational effort. The pipelined nature does however
mean that when programming GLINT one should be aware
of what all the pipeline stages are doing at any time. For
example. many operations require both a read and/or write
to the localbuffer and framebuffer; in this case it is not
sufficient to set a logical operation to XOR and enable
logical operations, but it is also necessary to enable the
reading/writing of data from/to the framebuffer.

10

15

20

25

30

35

45

55

65

32
A Gouraud Shaded Triangle

We may now revisit the “day in the life of a triangle”
example given above. and review the actions taken in greater
detail. Again, the primitive being rendered will be a Gouraud
shaded. depth buffered triangle. For this example assume
that the triangle is to be drawn into a window which has its
colormap set for RGB as opposed to color index operation.
This means that all three color components; red. green and
blue, must be handled. Also, assume the coordinate origin is
bottom left of the window and drawing will be from top to
bottom. GLINT can draw from top to bottom or bottom to
top.

Consider a triangle with vertices. v,. v, and v, where each
vertex comprises X. Y and Z coordinates. Each vertex has a
different color made up of red. green and blue (R. G and B}
components. The alpha component will be omitted for this
example,

Initialization

GLINT requires many of its registers to be initialized in
a particular way. regardless of what is to be drawn. for
instance, the screen size and appropriate clipping must be set
up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been
done.

Other state will change occasionally, though not usually
on a per primitive basis, for instance enabling Gouraud
shading and depth buffering.

Dominant and Subordinate Sides of a Triangle

As shown in FIG. 4A, the dominant side of a triangle is
that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either flat
bottomed or flat topped.

GLINT always draws triangles starting from the dominant
edge towards the subordinate edges. This simplifies the
calculation of set up parameters as will be seen below.

These values allow the color of each fragment in the
triangle to be determined by linear interpolation. For
example, the red component color value of a fragment at
XN, Ym could be calculated by:

adding dRdy,,. for each scanline between Y, and Y,,, to
R,.

then adding dRdx for each fragment along scanline Y,
from the left edge to X,.

The example chosen has the ‘knee.’ i.e. vertex 2. on the
right hand side, and drawing is from left to right. If the knee
were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed
to interpolate the start values for each color component (and
the depth value) on each scanline. For this reason GLINT
always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle, this
means left to right.

Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set
as follows, for color interpolation. Note that the format for
color values is 24 bit, fixed point 2°s complement.

/! Load the color start and delta values to draw
I a triangle

RStart (R,)

GStart (G,)

BStart (B,)
dRdyDom (dRdy, ;)
dGdyDom (dGdy,3)
dBdyDom (dBdy,,)
dRdx (dRdx)

/f To walk up the dominant edge

/! To walk along the scanline

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770
33 34
-continued dXDom=dX,,
dXSub=dX,,
gg: gﬁ: The start X.Y. the number of scanlines. and the above

Calculating Depth Gradient Values
To draw from left to right and top to bottom, the depth
gradients or deltas) required for interpolation are:

L-Z)

dZdyy3 = -YT—T[

And from the plane equation:

Y: - Y- Y: - ¥
= @2y B V| @z 22 }

where
c=1(X; — X5)(¥a = ¥3) — (X - X3)(Y, - Y¥p)h

The divisor, shown here as c. is the same as for color
gradient values. The two deltas dZdyl, , and dZdx allow the
Z value of each fragment in the triangle to be determined by
linear interpolation. just as for the color interpolation.
Register Set Up for Depth Testing

Internally GLINT uses fixed point arithmetic. Each depth
value must be converted into a 2’s complement 32.16 bit
fixed point number and then loaded into the appropriate pair
of 32 bit registers. The ‘Upper’ or ‘U’ registers store the
integer portion, whilst the ‘Lower’ or ‘L’ registers store the
16 fractional bits. left justified and zero filled.

For the example triangle. GLINT would need its registers
set up as follows:

/1 Load the depth start and delta values
// to draw a triangie

ZStartU (Z1_MS)

ZStartL (Z1_LS)

dZdyDomU (dZdy13_MS)
dZdyDoml (dZdy13_LS)

dZdxU (dZdx_MS)

dZaxL (dZdx_LS)

Calculating the Slopes for each Side

GLINT draws filled shapes such as triangles as a series of
spans with one span per scanline. Therefore it needs to know
the start and end X coordinate of each span. These are
determined by ‘edge walking’. This process involves adding
one delta value to the previous span’s start X coordinate and
another delta value to the previous span’s end x coordinate
to determine the X coordinates of the new span. These delta
values are in effect the slopes of the triangle sides. To draw
from left to right and top to bottom. the slopes of the three
sides are calculated as:

X;-X,

dXp=—p—y—
X-X

dXp=—p—y—
X;—-X3

G 7

This triangle will be drawn in two parts. top down to the
‘knee’ (i.e. vertex 2). and then from there to the bottom. The
dominant side is the left side so for the top half:

10

15

20

25

30

35

45

50

55

deltas give GLINT enough information to edge walk the top
half of the triangle. However. to indicate that this is not a flat
topped triangle (GLINT is designed to rasterize screen
aligned trapezoids and flat topped triangles). the same start
position in terms of X must be given twice as StartXDom
and StartXSub.

To edge walk the lower half of the triangle. selected
additional information is required. The slope of the domi-
nant edge remains unchanged, but the subordinate edge
slope needs to be set to:

dXSub=dX,,

Also the number of scanlines to be covered from Y, to Y,
needs to be given. Finally to avoid any rounding errors
accumulated in edge walking to X, (which can lead to pixel
errors), StartXSub must be set to X,

Rasterizer Mode

The GLINT rasterizer has a number of modes which have
effect from the time they are set until they are modified and
can thus affect many primitives. In the case of the Gouraud
shaded triangle the default value for these modes are suit-
able.

Subpixel Correction

GLINT can perform subpixel cormrection of all interpo-
lated values when rendering aliased trapezoids. This comec-
tion ensures that any parameter (color/depth/texture/fog) is
comrectly sampled at the center of a fragment. Subpixel
correction will generally always be enabled when rendering
any trapezoid which is smooth shaded., textured. fogged or
depth buffered. Control of subpixel correction is in the
Render command register described in the next section. and
is selectable on a per primitive basis.

Rasterization

GLINT is almost ready to draw the triangle. Setting up the
registers as described here and sending the Render command
will cause the top half of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within
the Render command should be set to 0 except the Primi-
tiveType which should be set to trapezoid and the SubPix-
elCorrectionEnable bit which should be set to TRUE.

// Draw triangle with knee

/1 Set deltas

StartXDom (X,<<16) // Converted to 16.16 fixed
point

dXDom (((X; - X)<<16¥(Y; - Y,))

StartXSub (X,<<16})

dXSub (X, - X,)<<16)/(Y, - ¥}))

StartY (Y,<<16)

dY (-1<<16)

Count (Y, - Y,)

1/ Set the render command mode

render. PrimitiveType = GLINT__TRAPEZOID_ PRIMITIVE
render. SubPixelCorrectionEnable = TRUE

// Draw the top half of the triangle

Render{render)

After the Render command has been issued, the registers
in GLINT can immediately be altered to draw the lower half
of the triangle. Note that only two registers need be loaded
and the command ContinueNewSub sent. Once GLINT has
received ContinueNewSub, drawing of this sub-triangle will
begin.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

35

/] Setup the delta and start for the new edge
StartXSub (X,<<16)

dXSub ((Xs - X;)<<16)(Y; - Y5))

/! Draw sub-triangle

ContinueNewSub (Y, — Y;) / Draw lower half

Rasterizer Unit

The rasterizer decomposes a given primitive into a series
of fragments for processing by the rest of the Pipeline.

GLINT can directly rasterize:

aliased screen aligned trapezoids

aliased single pixel wide lines

aliased single pixel points

antialiased screen aligned trapezoids

antialiased circular points

All other primitives are treated as one or more of the

above. for example an antialiased line is drawn as a series of
antialiased trapezoids.
Trapezoids GLINT’s basic area primitives are screen
aligned trapezoids. These are characterized by having top
and bottom edges parallel to the X axis. The side edges may
be vertical (a rectangle). but in general will be diagonal. The
top or bottom edges can degenerate into points in which case
we are left with either flat topped or flat bottomed triangles.
Any polygon can be decomposed into screen aligned trap-
ezoids or triangles. Usually, polygons are decomposed into
triangles because the interpolation of values over non-
triangular polygons is ill defined. The rasterizer does handle
flat topped and flat bottomed ‘bow tie’ polygons which are
a special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine
which fragments are to be drawn is known as ‘edge walk-
ing’. Suppose the aliased triangle shown in FIG. 4A was to
be rendered from top to bottom and the origin was bottom
left of the window. Starting at (X1, Y1) then decrementing
Y and using the slope equations for edges 1-2 and 1-3. the
intersection of each edge on each scanline can be calculated.
This results in a span of fragments per scanline for the top
trapezoid. The same method can be used for the bottom
trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons
which share an edge or vertex are drawn such that pixels
which make up the edge or vertex get drawn exactly once,
This may be achicved by omitting the pixels down the left
or the right sides and the pixels along the top or lower sides.
GLINT has adopted the convention of omitting the pixels
down the right hand edge. Control of whether the pixels
along the top or lower sides are omitted depends on the start
Y value and the number of scanlines to be covered. With the
example. if StartY =Y1 and the number of scanlines is set to
Y1-Y2, the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the
lower half of the triangle.

To minimize delta calculations. triangles may be scan
converted from left to right or from right to left. The
direction depends on the dominant edge, that is the edge
which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the rel-
evant subordinate edge. In the example above, the dominant
edge is 1-3 so rendering will be from right to left.

The sequence of actions required to render a triangle (with
a ‘knee’) is:

Load the edge parameters and derivatives for the domi-

nant edge and the first subordinate edges in the first
triangle.

w

15

25

30

35

45

50

55

65

36

Send the Render command. This starts the scan conver-
sion of the first triangle. working from the dominant
edge. This means that for triangles where the knee is on
the left we are scanning right to left, and vice versa for
triangles where the knee is on the right.

Load the edge parameters and derivatives for the remain-
ing subordinate edge in the second triangle.

Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:

// Set the rasterizer mode to the default
RasterizerMode (0)

/1 Setup the start values and the deltas.

/! Note that the X and Y coordinates are converted
10 16.16 format

StartXDom (X1<<16)

dXDom ((X3— X1)<<16}(Y3 - Y1))

StartXSub (X1<<16)

dXSub (((X2—- X1)<<16¥/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<16) /f Down the screen

Count (Y1 - Y2)

{/ Set the render mode to aliased primitive with

{/ subpixel correction.

render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubpixelCorrectionEnable = GLINT_TRUE
render. AntialiasEnable = GLINT_DISABLE

// Draw top half of the triangle

Render(render)

/1 Set the start and delta for the second half of

/1 the triangle.

StartXSub (X2<<16)

dXSub {(((X3- X2)<<16¥(Y3 ~Y2))

/f Draw lower half of triangle

ContinueNewSub (abs(Y2 — Y3))

After the Render command has been sent, the registers in
GLINT can immediately be altered to draw the second half
of the triangle. For this. note that only two registers need be
loaded and the command ContinueNewSub be sent. Once
drawing of the first triangle is complete and GLINT has
received the ContinueNewSub command, drawing of this
sub-triangle will start. The ContinueNewSub command reg-
ister is loaded with the remaining number of scanlines to be
rendered.

Lines

Single pixel wide aliased lines are drawn using a DDA
algorithm, so all GLINT needs by way of input data is
StartX, StartY, dX. dY and length.

For polylines, a ContinueNewLine command (analogous
to the Continue command used at the knee of a triangle) is
used at vertices.

When a Continue command is issued some error will be
propagated along the line. To minimize this, a choice of
actions are available as to how the DDA units are restarted
on the receipt of a Continue command. It is recommended
that for OpenGL rendering the ContinneNewLine command
is not used and individual segments are rendered.

Antialiased lines, of any width. are rendered as antialiased
screen-aligned trapezoids.

Points

GLINT supports a single pixel aliased point primitive. For
points larger than one pixel trapezoids should be used. In this
case the PrimitiveType field in the Render command should
be set to equal GLINT_POINT__PRIMITIVE.

Anti aliasing

GLINT uses a subpixel point sampling algorithm to
antialias primitives. GLINT can directly rasterize antialiased
trapezoids and points. Other primitives are composed from
these base primitives.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

37

The rasterizer associates a coverage value with each
fragment produced when antialiasing. This value represents
the percentage coverage of the pixel by the fragment.
GLINT supports two levels of antialiasing quality:

normal, which represents 4x4 pixel subsampling

high. which represents 8x8 pixel subsampling.

Selection between these two is made by the Antialias-
ingQuality bit within the Render command register.

When rendering antialiased primitives with GLINT the
FlushSpan command is used to terminate rendering of a
primitive. This is due to the pature of GLINT antialiasing.
When a primitive is rendered which does not happen to
complete on a scanline boundary. GLINT retains antialiasing
information about the last sub-scanline(s) it has processed.
but does not generate fragments for them unless a FlushSpan
command is received. The commands ContinueNewSub.
ContinueNewDom or Continue can then be used, as
appropriate, to mainfain continuity between adjacent trap-
ezoids. This allows complex antialiased primitives to be
built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids
to render an antialiased line. The line will in general consist
of three screen aligned trapezoids as shown in FIG. 4B. This
FIG. illustrates the sequence of rendering an Antialiased
Line primitive. Note that the line has finite width.

The procedure to render the line is as follows:

1 Setup the blend and coverage application units
/! as appropriate - not shown

// In this example only the edge deltas are shown
1/ loaded into registers for clarity. In reality

/f start X and Y values are required

/1 Render Trapezoid A

dY(1<<16)

dXDom(dXDoml<<16)

dXSub(dXSubl<<16)

Count(countl)

render PrimitiveType = GLINT__TRAPEZOID
remder. AntialiasEnable = GLINT_TRUE
render.AntialiasQuality = GLINT_ MIN_ ANTIALIAS
render.CoverageEnable = GLINT__TRUE
Render(render)

11 Render Trapezoid B

dXSub(dXSub2<<16)

ContinueNew Sub{count2)

// Render Trapezoid C

dXDom(dXDom2<<16)
ContinmueNewDom(count3)

// Now we have finished the primitive flush out
/f the last scanline

FlushSpan()

Note that when rendering antialiased primitives, any
count values should be given in subscanlines, for example if
the quality is 4x4 then any scanline count must be multiplied
by 4 to convert it into a subscanline count. Similarly, any
delta value must be divided by 4.

When rendering. AntialiasEnable must be set in the
Antialias-Mode register to scale the fragments color by the
coverage value. An appropriate blending function should
also be enabled.

Note. when rendering antialiased bow-ties, the coverage
value on the cross-over scanline may be incorrect.

GLINT can render small antialiased points. Antialiased
points are treated as circles, with the coverage of the
boundary fragments ranging from 0% to 100%. GLINT
supports:

point radii of 0.5 to 16.0 in steps of 0.25 for 4x4

antialiasing

point radii of 0.25 to 8.0 in steps of 0.125 for §x8

antialiasing

10

15

20

25

30

35

45

50

55

65

38

To scan convert an antialiased point as a circle, GLINT
traverses the boundary in sub scanline steps to calculate the
coverage value. For this, the sub-scanline intersections are
calculated incrementally using a small table. The table holds
the change in X for a step in Y. Symmetry is used so the table
only holds the delta values for one quadrant.

StartXDom. StartXSub and StartY are set to the top or
bottom of the circle and dY set to the subscanline step. In the
case of an even diameter, the last of the required entries in
the table is set to zero.

Since the table is configurable, point shapes other than
circles can be rendered. Also if the StartXDom and StartX-
Sub values are not coincident then horizontal thick lines
with rounded ends. can be rendered.

Block Write Operation

GLINT supports VRAM block writes with block sizes of
8. 16 and 32 pixels. The block write method does have some
restrictions: None of the per pixel clipping. stipple., or
fragment operations are available with the exception of write
masks. One subtle restriction is that the block coordinates
will be interpreted as screen relative and not window relative
when the pixel mask is calculated in the Framebuffer Units.

Any screen aligned trapezoid can be filled using block
writes. not just rectangles.

The use of block writes is enabled by setting the FastFil-
1Enable and FastFilllncrement fields in the Render command
register. The framebuffer write unit must also be configured.

Note only the Rasterizer, Framebuffer Read and Frame-
buffer Write units are involved in block filling. The other
units will ignore block write fragments, so it is not necessary
to disable them.

Sub Pixel Precision and Correction

As the rasterizer has 16 bits of fraction precision, and the
screen width used is typically less than 26 wide a number
of bits called subpixel precision bits, are available. Consider
a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=2"%). The extra bits are required for
a number of reasons:

antialiasing (where vertex start positions can be supplied

to subpixel precision)

when using an accumulation buffer (where scans are

rendered multiple times with jittered input vertices)
for correct interpolation of parameters to give high quality
shading as described below

GLINT supports subpixel correction of interpolated val-
ues when rendering aliased trapezoids. Subpixel correction
ensures that all interpolated parameters associated with a
fragment (color, depth, fog, texture) are correctly sampled at
the fragment’s center. This correction is required to ensure
consistent shading of objects made from many primitives. It
should generally be enabled for all aliased rendering which
uses interpolated parameters.

Subpixel comrection is not applied to antialiased primi-
tives.

Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros
which control which fragments are generated by the raster-
izer. Only fragments where the corresponding Bitmap bit is
set are submitted for drawing. The normal use for this is in
drawing characters, although the mechanism is available for
all primitives. The Bitmap data is packed contiguously into
32 bit words so that rows are packed adjacent to each other.
Bits in the mask word are by default used from the least
significant end towards the most significant end and are
applied to pixels in the order they are generated in.

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

39

The rasterizer scans through the bits in each word of the
Bitmap data and increments the XY coordinates to trace out
the rectangle of the given width and height. By default. any
set bits (1) in the Bitmap cause a fragment to be generated,

40
Warning: During image upload, all the returned fragments
must be read from the Host Qut FIFO, otherwise the GLINT
pipeline will stall. In addition it is strongly recommended
that any units which can discard fragments (for instance the

any reset bits (0) cause the fragment to be rejected. 5 following tests: bitmask. alpha. user scissor, screen scissor.
The selection of bits from the BitMaskPattern register can gipple. pixel ownership, depth. stencil), are disabled other-
be mirrored. that is. the pattern is traversed from MSB to yice 3 shortfall in pixels returned may occur. also leading to
LSB rather than LSB to MSB. Also. the sense of the test can deadlock.
be reversed such that a set bit causes a fragment to be . .
rejected and vice versa. This control is found in the Raster- 10 Note that because the area of interest in copy/upload/
izerMode register. dl‘ovynload operations is df:ﬁncd by the rasterizer, it is not
When one Bitmap word has been exhausted and pixels jn ~ limited to rectangular regions.
the rectangle still remain then rasterization is suspended Color formatting can be used when performing image
until the next write to the BitMaskPattern register. Any copies. uploads and downloads. This allows data to be
unused bits in the last Bitmap word are discarded. 15 formatted from, or to. any of the supported GLINT color
Image Copy/Upload/Download formats.
GLINT supports three “pixel rectangle” operations: copy,
upload and download. These can apply to the Depth or Rasterizer Mode
Stencil Buffers (held within the localbuffer) or the frame-
buffer. 20 A number of long-term modes can be set using the
It should be emphasized that the GLINT copy operation Rasterizer-Mode register, these are:
moves RAW blocks of data around buffers. To zoom or Mirror BitMask: This is a single bit flag which specifies the
re-format data. in the presently preferred embodiment. exter- direction bits are checked in the BitMask register. If the
nal software must upload the data, process it and then bit is reset. the direction is from least significant to most
download it again. 25 significant (bit 0 to bit 31), if the bit is set, it is from most
To copy a rectangular area, the rasterizer would be significant to least significant (from bit 31 to bit 0).
configured to render the destination rectangle, thus gener- Invert BitMask: This is a single bit which controls the sense
ating fragments for the area to be copied. GLINT copy of the acceptreject test when using a Bitmask. If the bit
works by adding a linear offset to the destination fragment’s is reset then when the BitMask bit is set the fragment is
address to find the source fragment’s address. 30 accepted and when it is reset the fragment is rejected.
Note that the offset is independent of the origin of the When the bit is set the sense of the test is reversed.
buffer or window, as it is added to the destination address. Fraction Adjust: These 2 bits control the action taken by the
Care must be taken when the source and destination overlap rasterizer on receiving a ContinueNewLine command. As
to choose the source SCann.ing direction so that the Over]ap- GLINT uses a DDA algorithm to render IanS. an error
ping area is not overwritten before it has been moved. This 35 accumulates in the DDA value. GLINT provides for
may be done by swapping the values writien to the StartX- greater control of the error by doing one of the following:
Dom and StartXSub. or by changing the sign of dY and leaving the DDA running. which means errors will be
setting StartY to be the opposite side of the rectangle. propagated along a line.
Localbuffer copy operations are correctly tested for pixel j ; . .
ownership. Note that this implies two reads of the 40 setting the fraction bits to either zero. a half or almost
localbuffer, one to collect the source data, and one to get the .2 half ,(OX TFFF). N . .
destination GID for the pixel ownership test. Bias Coordinates: Only the integer portion of the values in
GLINT buffer upload/downloads are very similar to cop- the DDAs aret used to' genf:rate ﬁaglpent addresses. then
ies in that the region of interest is generated in the rasterizer. the actu.al astlgn required is alr)c_)undmg gif valulc)§. this can
However, the localbuffer and framebuffer are generally 45 0¢ achieved by setting the bias coordinate bit to true
configured to read or to write only, rather than both read and which will automatically add almost a half (0x7FFF) to
write. The exception is that an image load may use pixel all 1f1put co?rd.ma.tes.
ownership tests, in which case the localbuffer destination Rasterizer Unit Registers
read must be enabled. Real coordinates with fractional parts are provided to the
Units which can generate fragment values, the color DDA 50 rasterizer in 2°s complement 16 bit integer, 16 bit fraction
unit for example, should generally be disabled for any format. The following Table lists the command registers
copy/upload/download operations. which control the rasterizer unit:
Register Name Description
Render Starts the rasterization process
ContinueNewDom Allows the rasterization to continue with a new dominant
edge. The dominant edge DDA is reloaded with the new
parameters. The subordinate edge is carried on from the
previous trapezoid. This allows any convex polygon to be
broken down info a collection of trapezoids, with continuity
maintained across boundaries.
The data field holds the number of scanlines {or sub scan-
lines) to fill. Note this count does not get loaded into the
Count register.
ContinueNewSub Allows the rasterization to continue with a new subordinate

edge. The subordinate DDA is reloaded with the new

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770

41

-continued

42

Register Name Description

parameters. The dominant edge is carried on from the

previous trapezoid. This is useful when scan converting

triangles with a ‘knee’ (i.e. two subordinate edges).
The data field holds the number of scanlines {or sub

scanlines) to fill. Note this count does not get loaded into

the Count register.
Continue

have been loaded, but does not cause either of the

trapezoid’s edge DDAs to be reloaded.

The data field holds the number of scanlines {or sub

scanlines) to fill. Note this count does not get loaded into

the Count register.
ContinueNewLine
a polyline. The XY position is carried on from the

previous line, but the fraction bits in the DDAs can be:

kept, set to zero, half, or nearly one half, under control of

the RasterizerMode.

The data field hoids the number of scanlines to fill. Note

this count does not get loaded into the Count register.
The use of ContinueNewLine is not recommended for

OpenGL because the DDA units will start with a slight
etror as compared with the value they would have been

loaded with for the second and subsequent segments.
FlushSpan
all sub spans may be defined.

Used when antialiasing to force the last span out when not

Allows the rasterization to continue after new delta value(s)

Allows the rasterization to continue for the next segment in

The following Table shows the control registers of the
rasterizer, in the presently preferred embodiment:

RasterizerMod

e Defines the long term mode of operation of the rasterizer.

StartXDom Initial X value for the dominant edge in trapezoid filling,
or initial X value in line drawing.

dXDom Value added when moving from one scanline (or sub
scanline) to the next for the dominant edge in trapezoid
filling.
Also holds the change in X when plotting lines so for Y
major lines this will be some fraction (dx/dy), otherwise
it is normally + 1.0, depending on the required scanning
direction.

StartXSub Initial X value for the subordinate edge.

dXSub Value added when moving from one scanline (or sub
scanline) to the next for the subordinate
edge in trapezoid filling.

StartY Initial scanline (or sub scanline) in trapezoid filling,
or initial Y position for line drawing.

dy ‘Value added to Y to move from one scanline to the
next. For X major lines this will be some fraction
(dy/dx), otherwise it is normally + 1.0,
depending on the required scanning direction.

Count Number of pixels in a line.
Number of scanlines in a trapezoid,
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.

BitMaskPattern Value used to control the BitMask stipple operation (if
enabled).

PointTable0 Antialias point data table, There are 4 words in the table

PointTabie1 and the register tag is decoded to select a word.

PointTable2

PointTable3

For efficiency. the Render command register has a number
of bit fields that can be set or cleared per render operation,
and which qualify other state information within GLINT.
These bits are AreaStippleEnable, LineStippleEnable.
ResetLineStipple. TextureEnable FogEnable. CoverageEn-
able and SubpixelCormection.

One use of this feature can occur when a window is
cleared to a background color. For normal 3D primitives,
stippling and fog operations may have been enabled, but
these are to be ignored for window clears. Initially the
FogMode, AreaStippleMode and LineStippleMode registers

30

35

45

55

65

are enabled through the UnitEnable bits. Now bits need only
be set or cleared within the Render command to achieve the
required result, removing the need for the FogMode. AreaSt-
ippleMode and LineStippleMode registers to be loaded for
every render operation.

The bitfields of the Render command register. in the
presently preferred embodiment, are detailed below:

Microsoft et al.

Exhibit 1005

APPENDIX O

5.798.770
43 44

Bit

Name

Description

4,5

67

10

11

12

13

Area-
Stipple-
Enable

Line-
Stipple-
Enable

Reset-
Line-
Stipple

FastFillE
nable
Fast-Fill-
Incremen
t

Primitive-

Antialias-
Enable

SyncOn
HostData

TextureE
nable

This bit, when set, enables area stippling of the fragments
produced during rasterization. Note that area stipple in the
Stipple Unit must be enabled as well for stippling to occur.
‘When this bit is reset no area stippling occurs irrespective of
the setting of the area stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no area stippling for this
primitive.

This bit, when set, enables line stippling of the fragments
produced during rasterization in the Stipple Unit. Note that
line stipple in the Stipple Unit must be enabled as well for stip-
pling to occur.

When this bit is reset no line stippling occurs irrespective of
the setting if the line stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no line stippling for this
primmitive.

This bit, when set, causes the line stipple counters in the
Stipple Unit to be reset to zero, and would typically be used
for the first segment in a polyline. This action is also qualif