
(12) United States Patent
Yap et al.

(54) APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING
USER-DEFINED DYNAMIC, MULTI
FOVEATED IMAGES

(75) Inventors: Chee K. Yap; Ee-Chien Chang, both
of New York, NY (US); Ting-Jen Yen,
Jersey City, NJ (US)

(73) Assignee: New York University, New York, NY
(US)

(*) Notice: Under 35 U.S.C. 154(b), the term of this
patent shall be extended for 0 days.

(21) Appl. No.: 09/005,174

(22) Filed: Jan. 9, 1998

(51) Int. Cl? .. G06F 15/16
(52) U.S. Cl. ... 709/203; 709/246
(58) Field of Search 709/217, 219,

709/246, 247, 203; 707 /10; 382/103, 233,
235, 232, 240, 302

(56) References Cited

U.S. PATENT DOCUMENTS

4,622,632 11/1986 Tanimoto .
5,341,466 8/1994 Perlin.
5,481,622 * 1!1996 Gerhardt et a!. 382/103
5,568,598 * 10/1996 Mack et a!. 382/302 X
5,710,835 * 1!1998 Bradley 382/233
5,724,070 * 3/1998 Denninghoff eta!. 382/235 X
5,861,920 * 1!1999 Mead et a!. 382/232 X
5,880,856 * 3/1999 Ferriere 382/240 X
5,920,865 * 7/1999 Ariga 707/10

01HER PUBLICATIONS

Tams Frajka et al., Progressive Image Coding with Spatially
Variable Resolution, IEEE, Proceedings International Con
ference on Image Processing 1997, Oct. 1997, vol. 1, pp.
53-56.*

111111 111
US006182114Bl

(10) Patent No.: US 6,182,114 B1
Jan.30,2001 (45) Date of Patent:

E. C. Chang et al., "Realtime Visualization of Large ... "
Mar. 31, 11997,pp. 1-9, Courant Institute of Mathematical
Sciences, New York University, N.Y. U.S.A

E. C. Chang et al., "A Wavelet Approach to Foveating
Images", Jan. 10, 1997,pp. 1-11, Courant Institute of Math
ematical Sciences, New York University, N.Y. U.S.A

S.G. Mallat, "A Theory for Multiresolutional Signal Decom
position ... ", IEEE Transactions on Pattern Analysis and
Machine Intelligence,pp. 3-23, Jul. 1989, vol. 11, No. 7,
IEEE Computer Society.

News Release, "Wavelet Image Features",Summus'Wavelet
Image Compression,Summus 14 pages.

R.L. White et al., "Compression and Progressive Transmis
sion of Astronomical Images", SPIE Technical Conference
2199, 1994.

(List continued on next page.)

Primary Examiner-Zarni Maung
Assistant Examiner-Patrice Winder
(74) Attorney, Agent, or Firm-Baker Botts, L.L.P.

(57) ABSTRACT

A client apparatus which enables a realtime visualization of
at least one image. The client apparatus includes a storage
device which stores first data corresponding to a multifove
ated representation of an original image, and a user input
device which providing second data corresponding to at
least one visualization command of at least one user. In
addition, the client apparatus includes a processing arrange
ment which generates third data corresponding to a multi
foveated image using the first data, the second data and a
foveation operator.

8 Claims, 6 Drawing Sheets

CONVERT USER INPUT /18 (FOVEAL REGION) TO
(MUL Tl RESOLUTION)

REQUEST FOR
COEFFICIENTS

I ~
SEND {MULTI DETERMINE FOVEAL

RESOLUTION) REQUEST REGION FROM USER

rj
TO SERVER FOR INPUT
COEFFICIENTS

1 1
UPDATE DISPLAY

II<ECEIVE COEFFICIENTS
WINDOWS

(PROGRESSIVELY)
FROM SERVER BASED ON PYRAMID

I REPRESENTATION

r l ';a
I w~~~~~~~~~~~~~~M

ON COEFFICIENTS
(IF NECESSARY)

AND STORE
(PROGRESSIVELY) IN

PYAAMID

~
19

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
Page 2

01HER PUBLICATIONS

E.L. Schwartz, "The Development of Specific Visual ... "
Journal of Theoretical Biology, 69:655-685, 1977.
F.S. Hill Jr. et al.,"Interactive Image Query ... " Computer
Graphics, 17(3), 1983.
T.H. Reeves et al., "Adaptive Foveation of MPEG Video",
Proceedings of the 4th ACM International Multimedia Con
ference, 1996.
R.S. Wallace et al., "Space-variant image processing". Int'l.
J. of Computer Vision, 13:1(1994) 71-90.

E.L. Schwartz A quantitative model of the functional archi
tecture: Biological cybernetics, 37(1980) 63-76.

P. Kortum et al., "Implementation of a Foveated Image ...
" Human Vision and Electronic Imagining, SPIE Proceed
ings vol. 2657, 350-360, 1996.

M.H. Grosset al., "Efficient triangular surface ... ", IEEE
Trans on Visualization and Computer Graphics, 2(2) 1996.

* cited by examiner

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 1 of 6 US 6,182,114 B1

[OJ

(16

1
4

FIG. 1

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 2 of 6 US 6,182,114 B1

N --------------~------------~

a b
17

/

c d

1ir

N/2
L '"

-+ N/2
~

8 (a+ b + c +d) (a+ b- c- d) 1
\,.__ a' = b'=
~ 2 2 v-

0

..
·~ ~

9 11
\,.__
~ ~~

v

c' =
(a- b + c- d)

d'=
(a - b - c + d)

2 2

N/2 --------------. N/2

FIG. 2A

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 3 of 6 US 6,182,114 B1

a' + b' + c' + d'
b=

a' + b' - c' - d'
8=

2 2

l---)7

a' - b' + ci - d'
d=

a' - b' - c' + d'
C=

2 2

71\

8 (a+ b + c +d)
b' = (a + b - c- d)

~ ~ a' =
2 2

10

~ v 9 11

c' = (a - b + c -d)
d' = (a-b-c+ d)

2 2

FIG. 28

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 4 of 6 US 6,182,114 B1

I LET l=O t
j

LET N = NUMBER OF ROWS AND COLUMNS OF PIXELS IN THE (SQUARE) IMAGE

~
LET X = THE NEXT OF THE THREE COLOR COMPONENTS OF THE IMAGE (R, G OR B)

~
LET ML (X) = BE THE NxN MATRIX WHOSE COEFFICIENTS EQUAL THE NUMERIC
VALUE OF THE X COMPONENT OF THE CORRESPONDING PIXEL OF THE IMAGE

j
LET ML+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE -"AVERAGE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR COEFFICIENTS IN ML(X)

~

LET HL+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE
"HORIZONTAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS IN ML{X)

~
LET VL+ 1(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE

"VERTICAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS IN ML(X)

l
LET DL+ 1{X) =BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE

"DIAGONAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS iN ML{X)

~ l STORE HL+1(X), VL+1(X), DL+1(X) I
j._

1 L~l+1 I • I N~N/2 I

~NO .

s
I STORE ML (X) I

ARE THERE YES
MORE COLOR COMPONENT(S)

LEFT?

F I G. 3 NO

I END I

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 5 of 6 US 6,182,114 B1

CONVERT USER INPUT v18
(FOVEAL REGION) TO
(MUL Tl RESOLUTION)

REQUEST FOR
COEFFICIENTS

SEND (MULTI
RESOLUTION) REQUEST

TO SERVER FOR
COEFFICIENTS

HECEIVE COEFFICIENTS
FROM SERVER

PERFORM INVERSE
WAVELET TRANSFORM

ON COEFFICIENTS
(IF NECESSARY)

AND STORE
(PROGRESSIVELY) IN

PYRAMID

~
19

FIG. 4

DETERMINE FOVEAL
REGION FROM USER ~

INPUT

UPDATE DISPLAY
WINDOWS

(PROGRESSIVELY) I

BASED ON PYRAMID
REPRESENTATION

'\
20

APPENDIX J

Microsoft et al. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 6 of 6 US 6,182,114 B1

LET l = LEVEL OF RESOLUTION SUCH
THAT THE SIZE OF IMAGE ML IS 128 x128

MATRIX. THE LOWEST LEVEL OF
RESOLUTION SUPPORTED

200

HAVE THE
COEFFICIENTS

OF ML(R), MdG) AND
ML(B) CORRESPONDING

TO THE PIXELS
IN THE FOVEAL
REGION BEEN
REQUESTED

REQUEST THE
COEFFICIENTS

ACCORDING TO THE
MASK

240

260
HAVETHE /

HORIZONTAL,
VERTICAL AND

DIAGONAL DIFFERENCE
COEFFICIENTS NECESSARY

TO RECONSTRUCT THE
COEFFICIENTS IN ML(R),ML(G)
ANDML(B) CORRESPONDING

TO THE PIXELS IN
THE FOVEAL

REGION BEEN
REQUESTED?

REQUEST THE
DIFFERENCE

COEFFICIENTS
ACCORDING TO THE

MASK

280

YES

RETURN TO 250

270

MANAGER THREAD

FIG. 5

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
1

APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING USER

DEFINED DYNAMIC, MULTI-FOVEATED
IMAGES

2
Technical Conference 2199, 1994, describes a progressive
transmission technique based on bit planes that is effective
for astronomical data.

However, utilizing progressive transmission barely begins

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for serving images, even very large images, over a "thin
wire" (e.g., over the Internet or any other network or
application having bandwidth limitations).

5 to solve the "thinwire" problem. A viewer zooming or
panning over a large image (e.g., map) desires realtime
response. This of course is not achieved if the viewer must
wait for display of the desired resolution of a new quadrant
or view of the map each time a zoom and pan is initiated.

BACKGROUND INFORMATION

10 Progressive transmission does not achieve this realtime
response when it is the higher resolution versions of the
image which are desired or needed, as these are transmitted
later.

The Internet, including the World Wide Web, has gained
in popularity in recent years. The Internet enables clients/ 15

users to access information in ways never before possible
over existing communications lines.

Often, a client/viewer desires to view and have access to
relatively large images. For example, a client/viewer may
wish to explore a map of a particular geographic location. 20

The whole map, at highest (full) level of resolution will
likely require a pixel representation beyond the size of the
viewer screen in highest resolution mode.

The problem could be effectively solved, if, in addition to
variable resolution over time (i.e, progressive transmission),
resolution is also varied over the physical extent of the
image.

Specifically, using foveation techniques, high resolution
data is transmitted at the user's gaze point but with lower
resolution as one moves away from that point. The very
simple rationale underlying these foveation techniques is
that the human field of vision (centered at the gaze point) is
limited. Most of the pixels rendered at uniform resolution
are wasted for visualization purposes. In fact, it has been One response to this restriction is for an Internet server to

pre-compute many smaller images of the original image.
The smaller images may be lower resolution (zoomed-out)
views and/or portions of the original image. Most image
archives use this approach. Clearly this is a sub-optimal
approach since no preselected set of views can anticipate the
needs of all users.

25 shown that the spatial resolution of the human eye decreases
exponentially away from the center gaze point. E. L.
Schwartz, "The Development of Specific Visual Projections
in the Monkey and the Goldfish: Outline of a Geometric
Theory of Receptotopic Structure," Journal of Theoretical

30 Biology, 69:655-685, 1977
The key then is to mimic the movements and spatial

resolution of the eye. If the user's gaze point can be tracked
in realtime and a truly multi-foveated image transmitted
(i.e., a variable resolution image mimicking the spatial

Some map servers (see, e.g., URLs http://
www.mapquest.com and http://www.MapOnUs.com) use an
improved approach in which the user may zoom and pan
over a large image. However, transmission over the Internet
involves significant bandwidth limitations (i.e transmission
is relatively slow). Accordingly, such map servers suffer
from at least three problems:

35 resolution of the user's eye from the gaze point), all data
necessary or useful to the user would be sent, and nothing
more. In this way, the "thinwire" model is optimized,
whatever the associated transmission capabilities and band-

Since a brand new image is served up for each zoom or
pan request, visual discontinuities in the zooming and 40
panning result. Another reason for this is the discrete
nature of the zoom/pan interface controls.

Significantly less than realtime response.
The necessarily small fixed size of the viewing window

(typically about 3"x4.5"). This does not allow much of 45

a perspective.

width limitations.
In practice, in part because eye tracking is imperfect,

using multi-foveated images is superior to atempting display
of an image portion of uniform resolution at the gaze point.

There have in fact been attempts to achieve multifoveated
images in a "thinwire" environment.

F. S. Hill Jr., Sheldon Walker Jr. and Fuwen Gao, "Inter-
active Image Query System Using Progressive
Transmission," Computer Graphics, 17(3), 1983, describes
progressive transmission and a form of foveation for a
browser of images in an archive. The realtime requirement

To generalize, what is needed is an apparatus and method
which allows realtime visualization of large scale images
over a "thinwire" model of computation. To put it another
way, it is desirable to optimize the model which comprises
an image server and a client viewer connected by a low
bandwidth line.

50 does not appear to be a concern.

One approach to the problem is by means of progressive
transmission. Progressive transmission involves sending a
relatively low resolution version of an image and then 55

successively transmitting better resolution versions.
Because the first, low resolution version of the image
requires far less data than the full resolution version, it can
be viewed quickly upon transmission. In this way, the viewer

T. H. Reeves and J. A. Robinson, "Adaptive Foveation of
MPEG Video," Proceedings of the 4'h ACM International
Multimedia Conference, 1996, gives a method to foveate
MPEG-standard video in a thin-wire environment. MPEG-
standard could provide a few levels of resolution but they
consider only a 2-level foveation. The client/viewer can
interactively specify the region of interest to the server/
sender.

R. S. Wallace and P. W. Ong and B. B. Bederson and E.
L. Schwartz, "Space-variant image processing". Intl. J. Of
Computer Vision, 13:1 (1994) 71-90 discusses space
variant images in computer vision. "Space-Variant" may be
regarded as synonymous with the term "multifoveated" used
above. A biological motivation for such images is the

is allowed to see lower resolution versions of the image 60

while waiting for the desired resolution version. This gives
the transmission the appearance of continuity. In addition, in
some instances, the lower resolution version may be suffi
cient or may in any event exhaust the display capabilities of
the viewer display device (e.g., monitor). 65 complex logmap model of the transformation from the retina

to the visual cortex (E. L. Schwartz, "A quantitative model
of the functional architecture of human striate cortex with

Thus, R. L. White and J. W. Percival, "Compression and
Progressive Transmission of Astronomical Images," SPIE

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
3

application to visual illusion and cortical texture analysis",
Biological Cybernetics, 37(1980) 63-76).

Philip Kortum and WilsonS. Geisler, "Implementation of

4

a Foveated Image Coding System For Image Bandwidth
Reduction," Human Vision and Electronic Imaging, SPIE 5

Proceedings Vol. 2657, 350-360, 1996, implement a real
time system for foveation-based visualization. They also
noted the possibility of using foveated images to reduce
bandwidth of transmission.

An additional advantage is that the invention demon
strates a new standard of performance that can be achieved
by large-scale image servers on the World Wide Web at
current bandwidth or even in the near future.

Note also, the invention has advantages over the tradi-
tional notion of progressive transmission, which has no
interactivity. Instead, the progressive transmission of an
image has been traditionally predetermined when the image
file is prepared. The invention's use of dynamic (constantly

M. H. Gross, 0. G. Staadt and R. Gatti, "Efficient trian
gular surface approximations using wavelets and quadtree
data structures", IEEE Trans, On Visualization and Com
puter Graphics, 2(2), 1996, uses wavelets to produce mul
tifoveated images.

Unfortunately, each of the above attempts are essentially
based upon fixed super-pixel geometries, which amount to
partitioning the visual field into regions of varying (pre
determined) sizes called super-pixels, and assigning the
average value of the color in the region to the super-pixel.
The smaller pixels (higher resolution) are of course intended
to be at the gaze point, with progressively larger super-pixels
(lower resolution) about the gaze point.

10
changing in realtime based on the user's input) multifove
ated images allows the user to determine how the data are
progressively transmitted.

Other advantages of the invention include that it allows
the creation of the first dynamic and a more general class of

15
multifoveated images. The present invention can use wave
let technology. The flexibility of the foveation approach
based on wavelets allows one to easily modify the following
parameters of a multifoveated image: the position and shape
of the basic foveal region(s), the maximum resolution at the

20
foveal region(s), and the rate at which the resolution falls
away. Wavelets can be replaced by any multi resolution
pyramid schemes. But it seems that wavelet-based
approaches are preferred as they are more flexible and have
the best compression properties.

However, effective real-time visulization over a "thin
wire" requires precision and flexibility. This cannot be
achieved with a geometry of predetermined pixel size. What 25

is needed is a flexible foveation technique which allows one

Another advantage is the present invention's use of
dynamic data structures and associated algorithms. This
helps optimize the "effective real time behavior" of the
system. The dynamic data structures allow the use of "partial
information" effectively. Here information is partial in the

to modify the position and shape of the basic foveal regions,
the maximum resolution at the foveal region and the rate at
which the resolution falls away. This will allow the "thin
wire" model to be optimized.

In addition, none of the above noted references addresses
the issue of providing multifoveated images that can be
dynamically (incrementally) updated as a function of user
input. This property is crucial to the solution of the thinwire
problem, since it is essential that information be "streamed"
at a rate that optimally matches the bandwidth of the
network with the human capacity to absorb the visual
information.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the
prior art by utilizing means for tracking or approximating
the user's gaze point in realtime and, based on the
approximation, transmitting dynamic multifoveated image
(s) (i.e., a variable resolution image over its physical extent
mimicking the spatial resolution of the user's eye about the
approximated gaze point) updated in realtime.

"Dynamic" means that the image resolution is also vary
ing over time. The user interface component of the present
invention may provide a variety of means for the user to
direct this multifoveation process in real time.

Thus, the invention addresses the model which comprises

30 sense that the resolution at each pixel is only partially
known. But as additional information is streamed in, the
partial information can be augmented. Of course, this prin
ciple is a corollary to progressive transmission.

Another advantage is that the dynamic data structures

35 may be well exploited by the special architecture of the
client program. For example, the client program may be
multi-threaded with one thread (the "manager thread")
designed to manage resources (especially bandwidth
resources). This manager is able to assess network

40 congestion, and other relevant parameters, and translate any
literal user request into the appropriate level of demand for
the network. For example, when the user's gaze point is
focused on a region of an image, this may be translated into
requesting a certain amount, say, X bytes of data. But the

45 manager can reduce this to a request over the network of
(say) X/2 bytes of data if the traffic is congested, or if the
user is panning very quickly.

Another advantage of the present invention is that the
server need send only that information which has not yet

50 been served. This has the advantage of reducing communi
cation traffic.

an image server and a client viewer connected by a low
bandwidth line. In effect, the invention reduces the band- 55
width from server to client, in exchange for a very modest
increase of bandwidth from the client to the server

Further objects and advantages of the invention will
become apparent from a consideration of the drawings and
ensuing description.

BRIEF DESRIPTION OF DRAWINGS

FIG. 1 shows an embodiment of the present invention
including a server, and client(s) as well as their respective
components.

Another object of the invention is that it allows realtime
visualization of large scale images over a "thinwire" model
of computation. 60

An additional advantage is the new degree of user control
provided for realtime, active, visualization of images
(mainly by way of foveation techniques). The invention
allows the user to determine and change in realtime, via
input means (for example, without limitation, a mouse 65

pointer or eye tracking technology), the variable resolution
over the space of the served up image(s).

FIG. 2a illustrates one level of a particular wavelet
transform, the Haar wavelet transform, which the server may
execute in one embodiment of the present invention.

FIG. 2b illustrates one level of the Haar inverse wavelet
transform.

FIG. 3 is a flowchart showing an algorithm the server may
execute to perform a Haar wavelet transform in one embodi
ment of the present invention.

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
5

FIG. 4 shows Manager, Display and Network threads,
which the client(s) may execute in one embodiment of the
present invention.

6
can be implemented as, for example, a keyboard, mouse,
scanner or eye-tracking device.

The client 2 also includes a processing device 4 with
network protocol processing element 12 and inverse wavelet FIG. 5 is a more detailed illustration of a portion of the

Manager thread depicted in FIG. 4.

DETAILED DESCRIPTION OF 1HE
INVENTION

FIG. 1 depicts an overview of the components in an
exemplary embodiment of the present invention. A server 1
is comprised of a storage device 3, a memory device 7 and
a computer processing device 4. The storage device 3 can be
implemented as, for example, an internal hard disk, Tape
Cartridge, or CD-ROM. The faster access and greater stor
age capacity the storage device 3 provides, the more pref
erable the embodiment of the present invention. The
memory device 7 can be implemented as, for example, a
collection of RAM chips.

5 transform element means 14 running off it. The processing
device 4 can be implemented as, for example, a single
microprocessor chip (such as an Intel Pentium chip), printed
circuit board, several boards or other device. Again, the
faster the run time of the processing device 4, the more

10 preferable the embodiment. The network protocol process
ing element 12 again can be implemented as a separate
"software" (i.e., a program, sub-process) whose instructions
are executed by the processing device 4. Again, TCP!IP
processing may be used to implement the network protocol

15 processing element 12. The inverse wavelet transform ele
ment 14 also may be implemented as separate "software."
Also running off the processing device 4 is a user input
conversion mechanism 16, which also can be implemented
as "software." The processing device 4 on the server 1 has network

protocol processing element 12 and wavelet transform ele- 20

ment 13 running off it. The processing device 4 can be
implemented with a single microprocessor chip (such as an
Intel Pentium chip), printed circuit board, several boards or
other device. Again, the faster the speed of the processing
device 4, the more preferable the embodiment. The network 25

protocol processing element 12 can be implemented as a
separate "software" (i.e., a program, sub-process) whose
instructions are executed by the processing device 4. Typical
examples of such protocols include TCP/IP (the Internet
Protocol) or UDP (User Datagram Protocol). The wavelet 30

transform element 13 can also be implemented as separate
"software" (i.e., a program, sub-process) whose instructions
are executed by the processing device 4.

As with the server 1, according to the common design of
modern computer systems, the most common embodiments
of the present invention will also include an operating
system running off the processing device 4 of the client(s) 2.

In addition, if the server 1 is connected to the client(s) 2
via a telephone system line or other systems/lines not
carrying digital pulses, the server 1 and client(s) 2 both also
include a communications converter device 15. A commu
nications converter device 15 can be implemented as, for
example, a modem. The communications converter device
15 converts digital pulses into the frequency/signals carried
by the line and also converts the frequency/signals back into
digital pulses, allowing digital communication.

In the operation of the present invention, the extent of

35
computational resources (e.g., storage capacity, speed) is a
more important consideration for the server 1, which is
generally shared by more than one client 2, than for the
client(s) 2.

In a preferred embodiment of the present invention, the
server 1 is a standard workstation or Pentium class system.
Also, TCP/IP processing may be used to implement the
network protocol processing element 12 because it reduces
complexity of implementation. Although a TCP/IP imple
mentation is simplest, it is possible to use the UDP protocol

40
subject to some basic design changes. The relative advan
tage of using TCP/IP as against UDP is to be determined
empirically. An additional advantage of using modern, stan
dard network protocols is that the server 1 can be con
structed without knowing anything about the construction of

45
its client(s) 2.

According to the common design of modern computer
systems, the most common embodiments of the present
invention will also include an operating system running off
the processing means device 4 of the server 1. Examples of 50
operating systems include, without limitation, Windows 95,
Unix and Windows NT. However, there is no reason a
processing device 4 could not provide the functions of an
"operating system" itself.

The server 1 is connected to a client(s) 2 in a network. 55

Typical examples of such servers 1 include image archive
servers and map servers on the World Wide Web.

The client(s) 2 is comprised of a storage device 3,
memory device 7, display 5, user input device 6 and pro
cessing device 4. The storage device 3 can be implemented 60

as, for example, an internal hard disks, Tape Cartridge, or
CD-ROM. The faster access and greater storage capacity the
storage device 3 provides, the more preferable the embodi
ment of the present invention. The memory device 7 can be
implemented as, for example, a collection of RAM chips. 65

The display 5 can be implemented as, for example, any
monitor, whether analog or digital. The user input device 6

In typical practice of the present invention, the storage
device 3 of the server 1 holds an image file, even a very large
image file. A number of client 2 users will want to view the
image.

Prior to any communication in this regard between the
server 1 and client(s) 2, the wavelet transform element 13 on
the server 1 obtains a wavelet transform on the image and
stores it in the storage device 3.

There has been extensive research in the area of wavelet
theory. However, briefly, to illustrate, "wavelets" are defined
by a group of basis functions which, together with coeffi
cients dependant on an input function, can be used to
approximate that function over varying scales, as well as
represent the function exactly in the limit. Accordingly,
wavelet coefficients can be categorized as "average" or
"approximating coefficients" (which approximate the
function) and "difference coefficients" (which can be used to
reconstruct the original function exactly). The particular
approximation used as well as the scale of approximation
depend upon the wavelet bases chosen. Once a group of
basis functions is chosen, the process of obtaining the
relevant wavelet coefficients is called a wavelet transform.

In the preferred embodiment, the Haar wavelet basis
functions are used. Accordingly, in the preferred
embodiment, the wavelet transform element 13 on the server
1 performs a Haar wavelet transform on a file representation
of the image stored in the storage device 3, and then stores
the transform on the storage device 3. However, it is readily
apparent to anyone skilled in the art that any of the wavelet

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
7

family of transforms may be chosen to implement the
present invention.

Note that once the wavelet transform is stored, the origi
nal image file need not be kept, as it can be reconstructed
exactly from the transform.

FIG. 2 illustrates one step of the Haar wavelet transform.
Start with an n by n matrix of coefficients 17 whose entries
correspond to the numeric value of a color component (say,
Red, Green or Blue) of a square screen image of n by n
pixels. Divide the original matrix 17 into 2 by 2 blocks of
four coefficients, and for each 2x2 block, label the coeffi
cient in the first column, first row "a,"; second column, first
row "b"; second row, first column "c"; and second row,
second column "d."

Then one step of the Haar wavelet transform creates four
n/2 by n/2 matrices. The first is an n/2 by n/2 approximation
matrix 8 whose entries equal the "average" of the corre
sponding 2 by 2 block of four coefficients in the original
matrix 17. As is illustrated in FIG. 2, the coefficient entries
in the approximation matrix 8 are not necessarily equal to
the average of the corresponding four coefficients a, b, c and
d (i.e., a'=(a+b+c+d)/4) in the original matrix 17. Instead,
here, the "average" is defined as (a+b+c+d)/2.

The second is an n/2 by n/2 horizontal difference matrix
10 whose entries equal b'=(a+b-c-d)/2, where a, b, c and d
are, respectively, the corresponding 2x2 block of four coef
ficients in the original matrix 17. The third is an n/2 by n/2
vertical difference matrix 9 whose entries equal c'=(a-b+c
d)/2, where a, b, c and dare, respectively, the corresponding
2x2 block of four coefficients in the original matrix 17. The
fourth is an n/2 by n/2 diagonal difference matrix 11 whose
entries equal d'=(a-b-c+d)/2, where a, b, c and d are,
respectively, the corresponding 2x2 block of four coeffi
cients in the original matrix 17.

A few notes are worthy of consideration. First, the entries
a', b', c', d' are the wavelet coefficients. The approximation
matrix 8 is an approximation of the original matrix 17 (using
the "average" of each 2x2 group of 4 pixels) and is one
fourth the size of the original matrix 17.

Second, each of the 2x2 blocks of four entries in the
original matrix 17 has one corresponding entry in each of the
four n/2 by n/2 matrices. Accordingly, it can readily be seen
from FIG. 2 that each of the 2x2 blocks of four entries in the
original matrix 17 can be reconstructed exactly, and the
transformation is invertible. Therefore, the original matrix
17 representation of an image can be discarded during
processing once the transform is obtained.

8
matrix 17 image representation. (However, the number of
bits in all the coefficients may differ from the number of bits
in the pixels. Applying data compression to coefficients turns
out to be generally more effective on coefficients.) If we

5 assume the image is very large, the transform matrices must
be further decomposed into blocks when stored on the
storage means 3.

FIG. 3 is a flowchart showing one possible implementa
tion of the wavelet transform element 13 which performs a

10 wavelet transform on each color component of the original
image. As can be seen from the flowchart, the transform is
halted when the size of the approximation matrix is 256x
256, as this may be considered the lowest useful level of

15
resolution.

Once the wavelet transform element 13 stores a transform
of the image(s) in the storage means 3 of the server 1, the
server 1 is ready to communicate with client(s) 2.

In typical practice of the invention the client 2 user

20
initiates a session with an image server 1 and indicates an
image the user wishes to view via user input means 6. The
client 2 initiates a request for the 256 by 256 approximation
matrix 8 for each color component of the image and sends
the request to the server 1 via network protocol processing

25
element 12. The server 1 receives and processes the request
via network protocol processing element 12. The server 1
sends the 256 by 256 approximation matrices 8 for each
color component of the image, which the client 2 receives in
similar fashion. The processing device 4 of the client 2 stores

30
the matrices in the storage device 3 and causes a display of
the 256 by 256 version of the image on the display 5. It
should be appreciated that the this low level of resolution
requires little data and can be displayed quickly. In a map
server application, the 256 by 256, coarse resolution version

35
of the image may be useful in a navigation window of the
display 5, as it can provide the user with a position indicator
with respect to the overall image.

A more detailed understanding of the operation of the
client 2 will become apparent from the discussion of the

40 further, continuous operation of the client 2 below.
Continuous operation of the client(s) 2 is depicted in FIG.

4. In the preferred embodiment, the client(s) 2 processing
device may be constructed using three "threads," the Man
ager thread 18, the Network Thread 19 and the Display

45 Thread 20. Thread programming technology is a common
feature of modern computers and is supported by a variety
of platforms. Briefly, "threads" are processes that may share
a common data space. In this way, the processing means can
perform more than one task at a time. Thus, once a session

50 is initiated, the Manager Thread 18, Network Thread 19 and
Display Thread 20 run simultaneously, independently and
continually until the session is terminated. However, while
"thread technology" is preferred, it is unnecessary to imple
ment the client(s) 2 of the present invention.

Third, the transform can be repeated, each time starting
with the last approximation matrix 8 obtained, and then
discarding that approximation matrix 8 (which can be
reconstructed) once the next wavelet step is obtained. Each
step of the transform results in approximation and difference
matrices Y2 the size of the approximation matrix 8 of the
prior step. 55 The Display Thread 20 can be based on any modern

windowing system running off the processing device 4. One
function of the Display Thread 20 is to continuously monitor
user input device 6. In the preferred embodiment, the user
input device 6 consists of a mouse or an eye-tracking device,

Retracing each step to synthesize the original matrix 17 is
called the inverse wavelet transform, one step of which is
depicted in FIG. 2b.

Finally, it can readily be seen that the approximation
matrix 8 at varying levels of the wavelet transform can be
used as a representation of the relevant color component of
the image at varying levels of resolution.

Conceptually then, the wavelet transform is a series of
approximation and difference matrices at various levels (or
resolutions). The number of coefficients stored in a wavelet
transform is equal to the number of pixels in the original

60 though there are other possible implementations. In a typical
embodiment, as the user moves the mouse position, the
current position of the mouse pointer on the display 5
determines the foveal region. In other words, it is presumed
the user gaze point follows the mouse pointer, since it is the

65 user that is directing the mouse pointer. Accordingly, the
display thread 20 continuously monitors the position of the
mouse pointer.

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
9 10

In one possible implementation, the Display Thread 20 greater or equal to zero (Step 240). If that is the case, the
places user input requests (i.e., foveal regions determined process loops back to step 260. Otherwise, the control is
from user input device 6) as they are obtained in a request returned to the Manager Thread 18 (Step 250).
queue. Queue's are data structures with first-in-first-out The Network Thread 19 includes the network protocol
characteristics that are generally known in the art. 5 processing element 12. The Network Thread obtains the

The Manager Thread 18 can be thought of as the brain of (next) multi-resolution request for coefficients correspond-
the client 2. The Manager Thread 18 converts the user input ing to the foveal region from request queue and processes
request in the request queue into requests in the manager and sends the request to the server 1 via network protocol
request queue, to be processed by the Network Thread 19. processing element 12.
The user input conversion mechanism 16 converts the user 10 Notice that the data requested is "local" because it rep-
determined request into a request for coefficients. resents visual information in the neighborhood of the indi-

A possible implementation of user input conversion cated part of the image. The data is incremental because it
mechanism 16 is depicted in the flow chart in FIG. 5. represents only the additional information necessary to
Essentially, the user input conversion mechanism 16 increase the resolution of the local visual information.
requests all the coefficient entries corresponding to the 15 (Information already available locally is masked out).
foveal region in the horizontal difference 10 matrices, ver- The server 1 receives and processes the request via
tical difference 9 matrices, diagonal difference matrices 11 network protocol processing element 12, and sends the
and approximation matrix 8 of the wavelet transform of the coefficients requested. When the coefficients are sent, they
image at each level of resolution. (Recall that only the last are masked out. The mask is maintained to determine which
level approximation matrix 8 needs to be stored by the server 20 coefficients have been sent and for deciding which blocks of
1.) That is, wavelet coefficients are requested such that it is data can be released from main memory. Thus, an identical
possible to reconstruct the coefficients in the original matrix version of the mask is maintained on both the client 2 side
17 corresponding to the foveal region. and server 1 side.

As the coefficients are included in the request, they are
25

The Network Thread 19 of the client 2 receives and
masked out. The use of a mask is commonly understood in processes the coefficients. The Network Thread 19 also
the art. The mask is maintained to determine which coeffi- includes inverse wavelet transform element 14. The inverse
cients have been requested so they are not requested again.
Each mask can be represented by an array of linked lists (one
linked list for each row of the image at each level of

30
resolution).

wavelet transform element 14 performs an inverse wavelet
transform on the received coefficients and stores the result
ing portion of an approximation matrix 8 each time one is
obtained (i.e., at each level of resolution) in the storage
device 3 of the client 2. The sub-image is stored at each
(progressively higher, larger and less course) level of its
resolution.

35
Note that as the client 2 knows nothing about the image

until it is gradually filled in as coefficients are requested.
Thus, sparse matrices (sparse, dynamic data structures) and
associated algorithms can be used to store parts of the image
received from the server 1. Sparse matrices are known in the

As shown in FIG. 5, the input conversion mechanism 16
determines the current level of resolution ("L") of an image
("ML") such that the image ML is, e.g., 128x128 pixel matrix
(for example, the lowest supported resolution), as shown in
Step 200. Then, the input conversion mechanism 16 deter
mines if the current level L is the lowest resolution level
(Step 210). If so, it is determined if the three color coeffi
cients (i.e., ML(R), ML(G), and ML(B)) correspond to the
foveal region that has been requested (Step 220). If that is
the case, then the input conversion mechanism 16 confirms
that the current region L is indeed the lowest resolution
region (Step 240), and returns the control to the Manager
Thread 18 (Step 250). If, in Step 220, it is determined that
the three color coefficients have not been requested, these 45
coefficients are requested using the mask described above,
and the process continues to Step 240, and the control is
returned to the Manager Thread 18 (Step 250).

If, in Step 210, it is determined that the current level Lis
not the lowest resolution level, then the input conversion
mechanism 16 determines whether the horizontal, vertical
and diagonal difference coefficients (which are necessary to
reconstruct the three color coefficients) have been requested
(Step 260). If so, then the input conversion mechanism 16
skips to Step 280 to decrease the current level L by 1.
Otherwise a set of difference coefficients may be requested.
This set depends on the mask and the foveal parameters
(e.g., a shape of the foveal region, a maximum resolution, a
rate of decay of the resolution, etc.). The user may select
"formal" values for these foveal parameters, but the Man
ager Thread 18 may, at this point, select the "effective"
values for these parameters to ensure a trade-off between (1)
achieving a reasonable response time over the estimated
current network bandwidth, and (2) achieving a maximum
throughput in the transmission of data. The process then
continues to Step 280. Thereafter, the input conversion
mechanism 16 determines whether the current level L is

40
art and behave like normal matrices except that the memory
space of the matrix are not allocated all at once. Instead the
memory is allocated in blocks of sub-matrices. This is
reasonable as the whole image may require a considerable
amount of space.

Simultaneously, the Display thread 20 (which can be
implemented using any modern operating system or win
dowing system) updates the display 5 based on the pyramid
representation stored in the storage device 3.

Of course, the Display thread 20 continues its monitoring

50 of the user input device 6 and the whole of client 2
processing continues until the session is terminated.

A few points are worthy of mention. Notice that since
lower, coarser resolution images will be stored on the client
2 first, they are displayed first Also, the use of foveated

55 images ensures that the incremental data to update the view
is small, and the requested data can arrive within the round
trip time of a few messages using, for example, the TCP/IP
protocol.

Also notice, that a wavelet coefficient at a relatively
60 coarser level of resolution corresponding to the foveal

region affects a proportionately larger part of the viewer's
screen than a coefficient at a relatively finer level of reso
lution corresponding to the foveal region (in fact, the reso
lution on the display 5 exponentially away from the mouse

65 pointer). Also notice the invention takes advantage of pro
gressive transmission, which gives the image perceptual
continuity. But unlike the traditional notion of progressive

APPENDIX J

Microsoft et al. Exhibit 1005

US 6,182,114 Bl
11

transm1sswn, 1t 1s the client 2 user that is determining
transmission ordering, which is not pre-computed because
the server 1 doesn't know what the client(s) 2 next request
will be. Thus, as noted in the objects and advantages section,
the "thinwire" model is optimized. 5

12
What is claimed is:
1. A client apparatus for enabling a realtime visualization

of at least one image, the client apparatus comprising:

a storage device storing first data corresponding to a
multifoveated representation of an original image,

a user input device providing second data corresponding
to at least one visualization command of at least one
user; and

a processing arrangement generating third data corre
sponding to a multifoveated image using the first data,
the second data and a foveation operator.

Note that in the event the thread technology is utilized to
implement the present invention, semaphores data structures
are useful if the threads share the same data structures (e.g.,
the request queue). Semaphores are well known in the art
and ensure that only one simultaneous process (or "thread") 10

can access and modify a shared data structure at one time.
Semaphores are supported by modern operating systems.

CONCLUSION

2. The client apparatus of claim 1, further comprising a
network protocol processing element which provides the

15
third data using a TCP/IP protocol.

3. The client apparatus of claim 1, wherein the processing
element transmits the third data to the at least one client via

It is apparent that various useful modifications can be
made to the above description while remaining within the
scope of the invention.

For example, without limitation, the user can be provided
with two modes for display: to always fill the pixels to the 20

highest resolution that is currently available locally or to fill
them up to some user specified level. The client 2 display 5
may include a re-sizable viewing window with minimal
penalty on the realtime performance of the system. This is
not true of previous approaches. There also may be an 25

auxiliary navigation window (which can be re-sized but is
best kept fairly small because it displays the entire image at
a low resolution). The main purpose of such a navigation
window would be to let the viewer know the size and
position of the viewing window in relation to the whole 30

image.

It is readily seen that further modifications within the
scope of the invention provide further advantages to the user.
For example, without limitation, the invention may have the

35
following capabilities: continuous realtime panning, con
tinuous realtime zooming, foveating, varying the foveal
resolution and modification of the shape and size of the
foveal region. A variable resolution feature may also allow
the server 1 to dynamically adjust the amount of transmitted
data to match the effective bandwidth of the network.

40

While the above description contains many specificities,
these should not be construed as limitations on the scope of
the invention, but rather as an exemplification of one pre
ferred embodiment thereof. Many other variations are pos- 45
sible. Accordingly, the scope of the invention should be
determined not by the embodiment(s) illustrated, but by the
appended claims and their legal equivalents.

the Internet.
4. The client apparatus of claim 1, wherein the user input

device includes a mouse device.
5. The client apparatus of claim 1, wherein the user input

device includes at least one of an eye-tracking device and a
keyboard.

6. The client apparatus of claim 1, wherein the foveation
operator is specified using parameters that include at least
one of:

a set of foveation points,
a shape of a foveated region,
a maximum resolution of the foveated region, and
a rate at which a maximum resolution of the foveal region

decays.
7. The client apparatus of claim 1,
wherein the processing arrangement receives the original

image from a server, and
wherein the memory arrangement stores a data structure

representing the multifoveated image, the data structure
that is optimized for the client apparatus being inde
pendent of an image representation provided by a
server.

8. The client apparatus of claim 1, wherein the third data
corresponding to the multifoveated image is generated for at
least one of

a first arbitrary-shaped foveal region,
a second arbitrarily-fine foveal region, and
an arbitrary union of the first and second foveal regions.

* * * * *

APPENDIX J

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

APPENDIX K

Microsoft et al. Exhibit 1005

Pyramidal Parametrics

Lance Williams

Computer Graphics Laboratory
New York Institute of Technology

Old Westbury, New York

Abstract

The mapping of images onto surfaces
may substantially increase the realism and
information content of computer-generated
imagery. The projection of a flat source
image onto a curved surface may involve
sampling difficulties, however, which are
compounded as the view of the surface
changes. As the projected scale of the
surface increases, interpolation between
the original samples of the source image
is necessary; as the scale is reduced,
approximation of multiple samples in the
source is required. Thus a constantly
changing sampling window of view-dependent
shape must traverse the source image.

To reduce the computation implied by
these requirements, a set of prefiltered
source images may be created. This
approach can be applied to particular
advantage in animation, where a large
number of frames using the same source
image must be generated. This paper
advances a "pyramidal parametric" pre-
filtering and sampling geometry which
minimizes aliasing effects and assures
continuity within and between target
images.

Although the mapping of texture onto
surfaces is an excellent example of the
process and provided the original motiva-
tion for its development, pyramidal
parametric data structures admit of wider
application. The aliasing of not only
surface texture, but also highlights and
even the surface representations them-
selves, may be minimized by pyramidal
parametric means.

General Terms: Algorithms.

Keywords and Phrases: Antialiasing,
Illumination Models, Modeling, Pyramidal
Data Structures, Reflectance Mapping, Tex-
ture Mapping, Visible Surface Algorithms.

C R Categories: 1.3.3 [Computer Graphics]:
Picture/Image Generation--~ algo-
rithms; 1.3.5 [Computer Graphlc~: Compu-
tational Geometry and Object Modeling--
curve, surface, solid and object represen-
tations, geometric algorithms, languages
and systems; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism--
color, shading, shadowing, and texture.

Permission to copy without ~e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
commercial advantage, the ACM copyright notice and the title of the

~. Pyramidal Data Structures

Pyramidal data structures may be
based on various subdivisions: binary
trees, quad trees, oct trees, or n-
dimensional hierarchies [17]. The common
feature of these structures is a succes-
sion of levels which vary the resolution
at which the data is represented.

The decomposition of an image by
two-dimensional binary subdivision was a
pioneering strategy in computer graphics
for visible surface determination [15].
The approach was essentially a synthesis-
by-analysis: the image plane was subdi-
vided into quadrants recursively until
analysis of a subsection showed that sur-
face ordering was sufficiently simple to
permit rendering. Such subdivision and
analysis has been subsequently adopted to
generate spatial data structures [5],
which have been used to represent images
[9] both for pattern recognition [13] and
for transmission [i0], [14]. In the field
of computer graphics, such data structures
have been adopted for texture mapping [4],
[16], and generalized to represent objects
in space [Ii].

The application of pyramidal data to
image storage and transmission may permit
significant compression of the data to be
stored or transmitted. This is so because
highly detailed features may be localized
within an otherwise low-frequency image,
permitting the sampling rate to be reduced
for large sections of the image. Besides
permitting bandwidth compression, the
representation orders data in such a way
that the general character of images may
be recalled or transmitted before the
specific details.

Pattern recognition and classifica-
tion often require the comparison of a
candidate image against a set of canonical
patterns. This is an operation the
expense of which increases as the square
of the resolution at which it is per-
formed. The use of pyramidal data struc-
tures in pattern recognition and classifi-
cation permits the comparison of the gross
features of two-dimensional functions
preliminary to the minute particulars; a
good general reference on this application
is [12].

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0001 $00.75

APPENDIX L

Microsoft et al. Exhibit 1005

In computer graphics, pyramidal tex-
ture maps may be used to perform arbitrary
mappings of a function with minimal alias-
ing artifacts and reduced computation.
Once again, images may be represented at
different spatial bandwidths. The concern
is that inappropriate resolution
misrepresents the data; that is, sampling
high-resolution data at larger sample
intervals invites aliasing.

2. Parametric Interpolation

By a pyramidal parametric data struc-
ture, we will mean simply a pyramidal
structure with both intra- and inter-level
interpolation. Consider the case of an
image represented as a two-dimensional
array of samples. Interpolation is neces-
sary to produce a continuous function of
two parameters, U and V. If, in addition,
a third parameter (call it D) moves us up
and down a hierarchy of corresponding
two-dimensional functions, with interpola-
tion between (or among) the levels of the
pyramid providing continuity, the struc-
ture is pyramidal parametric.

~he practical distinction between
such a structure and an ordinary interpo-
lant over an n-dimensional array of sam-
ples is that the number of samples
representing each level of the pyramid may
be different.

~. Mip Mapping

"Mip" mapping is a particular format
for two-dimensional parametric functions,
which, along with its associated address-
ing scheme, has been used successfully to
bandlimit texture mapping at New York
Institute of Technology since 1979. The
acronym "mip" is from the Latin phrase
"multum in parvo," meaning "many things in
a small place." Mip mapping supplements
bilinear interpolation of pixel values in
the texture map (which may be used to
smoothly translate and magnify the tex-
ture) with interpolation between prefil-
tered versions of the map (which may be
used to compress many pixels into a small
place). In this latter capacity, mip
offers much greater speed than texturing
algorithms which perform explicit convolu-
tion over an area in the texture map for
each pixel rendered [I], [6].

Mip owes its speed in compressing
texture to two factors. First, a fair
amount of filtering of the original tex-
ture takes place when the mip map is first
created. Second, subsequent filtering is
approximated by blending different levels
of the mip map. This means that all
filters are approximated by linearly
interpolating a set of square box filters,
the sides of which are powers-of-two pix-
els in length. Thus, mapping entails a
fixed overhead, which is independent of
the area filtered to compute a sample.

G

Figure (i)
Structure of a Color Mip Map

Smaller and smaller images diminish into
the upper left corner of the map. Each of
the images is averaged down from its
larger predecessor.

(Below:)
Mip maps are indexed by three coordinates:
U, V, and D. U and V are spatial coordi-
nates of the map; D is the variable used
to index, and interpolate between, th~
different levels of the pyramid.

V

~ L L

V

V

Figure (I) illustrates the memory
organization of a color mip map. The
image is separated into its red, green,
and blue components (R, G, and B in the
diagram). Successively filtered and down-
sampled versions of each component are
instanced above and to the left of the
originals, in a series of smaller and
smaller images, each half the linear
dimension (and a quarter the number of

APPENDIX L

Microsoft et al. Exhibit 1005

samples) of its parent. Successive divi-
sions by four partition the frame buffer
equally among the three components, with a
single unused pixel remaining in the upper
left-hand corner.

The concept behind this memory organ-
ization is that corresponding points in
different prefiltered maps can be
addressed simply by a binary shift of an I
input U, V coordinate pair. Since the
filtering and sampling are performed at
scales which are powers of two, indexing
the maps is possible with inexpensive
binary scaling. In a hardware implementa-
tion, the addresses in all the correspond-
ing maps (now separate memories) would be
instantly and simultaneously available
from the U, V input.

The routines for creating and access-
ing mip maps at NYIT are based on simple
box (Fourier) window prefiltering, bil-
inear interpolation of pixels within each
map instance, and linear interpolation
between two maps for each value of D (the
pyramid's vertical coordinate). For each
of the three components of a color mip
map, this requires 8 pixel reads and 7
multiplications. This choice of filters
is strictly for the sake of speed. Note
that the bilinear interpolation of pixel
values at the extreme edges of each map
instance must be performed with pixels
from the opposite edge(s) of that map, for
texture which is periodic. For non-
periodic texture, scaling or clipping of
the U, V coordinates prevents the intru-
sion of an inappropriate map or color com-
ponent into the interpolation.

The box (Fourier) window used to
create the mip maps illustrated here, and
the tent (Bartlett) window used to inter-
polate them, are far from ideal; yet prob-
ably the most severe compromise made by
mip filtering is that it is symmetrical.
Each of the prefiltered levels of the map
is filtered equally in X and Y. Choosing
a value of D trades off aliasing against
blurring, which becomes a tricky proposi-
tion as a pixel's projection in the tex-
ture map deviates from symmetry. Heckbert
[8] suggests:

d = max Ou 2+ v 2 _ //~u~2+/av~2~

where D is proportional to the "diameter"
of the area in the texture to be filtered,
and the partials of U and V (the texture-
map coordinates) with respect to X and Y
(the screen coordinates) can be calculated
from the surface projection.

Illustrations of mapping performed by
the mip technique are the subject of Fig-
ures (2) through (i0). The NYIT Test Frog
in Figure (2) is magnified by simple point
sampling in (3), and by interpolation in
(4). The hapless amphibian is similarly

Figure (2)
Mip map of the flexible NYIT Test Frog.

compressed by point sampling in (5) and by
mipping in (6).

The more general and interesting case
-- continuously variable upsampling and
downsampling of the original texture -- is
illustrated in (7) on a variety of sur-
faces. Since the symmetry of mip filter-
ing would be expected to show up badly
when texture is compressed in only one
dimension, figures (8) through (i0) are of
especial interest. These pictures,
created by Ed Emshwiller at NYIT for his
videotape, "Sunstone," were mapped using
Alvy Ray Smith's TEXAS animation program,
which in turn used MIP to antialias tex-
ture. As the panels rotate edge-on, the
texture collapses to a line smoothly and
without apparent artifacts.

Figure (7)

General mapping: interpolation and

pyramidal compression.

APPENDIX L

Microsoft et al. Exhibit 1005

Figure (3)
Upsampling the frog: magnification by

point samplinq.

Figure (4)
Upsampling the frog: magnification by

bilinear interpolation.

Figure (5)
Downsampling the frog= compression by point sampling (detail, right).

Figure (6)
Downsampling: compression by pyramidal interpolation (detail, right).

4

APPENDIX L

Microsoft et al. Exhibit 1005

Figures (8)-(9)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

APPENDIX L

Microsoft et al. Exhibit 1005

Figures (i0)-(ii)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

APPENDIX L

Microsoft et al. Exhibit 1005

4. Hi@blight Antialiasin@

As small or highly curved objects
move across a raster, their surface nor-
mals may beat erratically with the sam-
pling grid. This causes the shading
values to flash annoyingly in motion
sequences, a symptom of illumination
aliasing. The surface normals essentially
point-sample the illumination function.

Figure (12) illustrates samples of
the surface normals of a set of parallel
cylinders. The cylinders in the diagram
are depicted as if from the edge of the
image plane; the regularly-spaced vertical
line segments are the samples along a sin-
gle axis. The arrows at the sample points
indicate the directions of the surface
normals. Depending on the shading formula
invoked, there may be very high contrast
between samples where the normal is nearly
parallel to the sample axis, and samples
where the normal points directly at the
observer's eye.

Figure (12)

4)

The shading function depends not only
on the shape of the surface, but its light
reflection properties (characterized by
the shading formula), the position of the
light source, and the position of the
observer's eye. Hanrahan [7] expresses it
in honest Greek:

Ixly~(E,N,L) ~(u,v)0(x,y) dxdy

where the normal, N, the light sources, L,
and the eye, E, are vectors which may each
be functions of U and V, and the limits of
integration are the X, Y boundaries of the
pixel.

Figure (13) illustrates highlight
aliasing on a perfectly flat surface. The
viewing conventions of the diagram are the
same as in Figure (12). "L" is the direc-
tion vector of the light source; the sur-
face is a polygon at an angle to the image
plane; the dotted bump is a graph of the
reflected light, characteristic of a

Figure (13)

Figure (14)

.-",..

: i ' .
i s

/

:i •

' \ ! i~

specular surface reflection function. The
highlight indicated by the bump falls
entirely between the samples. (Note that
this is only possible on a flat surface if
either the eye or the light is local, a
point in space rather than simply a direc-
tion vector. Some boring shading formulae
exclude the possibility of highlight
aliasing on polygons by requiring all flat
surfaces to be flat in shading.)

A first attempt to overcome the limi-
tations of point-sampling the illumination
function is to integrate the function over
the projected area represented by each
sample point. This approach is illus-
trated in Figure (14). The brackets at
each sample represent the area of the sur-
face over which the illumination function
is integrated. This procedure is analo-
gous to area-averaging of sampled edges or
texture [3].

In order to generalize this approach
to curved surfaces, the "sample interval"
over which illumination is integrated must
be modified according to the local curva-
ture of the surface at a sample. In Fig-
ure (15), the area of a surface
represented by a pixel has been projected
onto a curved surface. The solid angle
over which illumination must be integrated
is approximated by the volume enclosed by
the normals at the pixel corners. The
distribution of light within this volume
will sum to an estimate of the diffuse
reflection over the pixel. If the surface
exhibits undulations at the pixel level,
however, aliasing will result.

Figure (15)

APPENDIX L

Microsoft et al. Exhibit 1005

Figure (16)
Michael Chou (right) poses with an ima-
ginary companion. Reflectance maps can
enhance the realism of synthetic shading.

Figure (17)
A pyramidal parametric reflectance map,
containing 9 light sources. The region
outside the "sDhere" is unused.

We might divide the surface up into
regions of relatively low curvature (as is
done in some patch rendering algorithms),
and rely on "edge antialiasing" to
integrate the different surfaces within a
pixel. Alternatively, we may develop some
mechanism for limiting the local curvature
of surfaces before rendering. This possi-
bility is explored in the next section.

If we represent the illumination of a
scene as a two-dimensional map, highlights
can be effectively antialiased in much the
same way as textures. Blinn and Newell
[I] demonstrated specular reflection using
an illumination map. The map was an image
of the environment (a spherical projection
of the scene, indexed by the X and Y com-
ponents of the surface normals) which
could be used to cast reflections onto
specular surfaces. The impression of mir-
rored facets and chrome objects which can
be achieved with this method is striking;
Figure (16) provides an illustration.
Reflectance mapping is not, however, accu-
rate for local reflections. To achieve
similar results with three dimensional
accuracy requires ray-tracing.

A pyramidal parametric illumination
map permits convenient antialiasing of
highlights as long as a good measure of
local surface curvature is available. The
value of "D" used to index the map is pro-
portional to t~e solid angle subtended by
the surface over the pixel being computed;
this may be estimated by the same formula
used to compute D for ordinary texture
mapping. Nine light sources of varying
brightness glint raggedly from the test
object in Figure (18); the reflectance map
in Figure (17) provided the illumination.
In Figure (19), convincing highllght
antialiasing results from the full pyrami-
dal parametric treatment.

Figure (18) Before Figure (19) After

APPENDIX L

Microsoft et al. Exhibit 1005

32 x 32

64 x 64

Figures (20-23) Different resolution meshes.

5. Levels of Detail in Surface Represen-
tation

In addition to bandlimiting texture
and illumination functions for mapping
onto a surface, pyramidal parametrics may
be used to limit the level of detail with
which the surface itself is represented.
The goal is to represent an object for
graphic display as economically as its
projection on the image plane permits,
without boiling and sparkling aliasing
artifacts as the projection changes.

The expense of computing and shading
each pixel dominates the cost of many
algorithms for rendering higher-order sur-
faces. For meshes of polygons or patch
control points which project onto a small
portion of the image, however, the vertex
(or control-point) expense dominates. In
these situations it is desirable to reduce
the number of points used to represent the
object.

A pyramidal parametric data structure
the components of which are spatial coor-
dinates (the X-Y-Z of the vertices of a
rectangular mesh, for example, as opposed
to the R-G-B of a texture or illumination
map) provides a continuously-variable fil-
tered instance of the surface for sampling
at any desired degree of resolution.

Figures (20) through (23) illustrate
a simple surface based on a human face
model developed by Fred Parke at the
University of Utah. As the sampling den-
sity varies, so does the filtering of the
surface. These faces are filtered and
sampled by the same methods previously
discussed for texture and reflectance
maps. Pyramidal parametric representa-
tions such as these appear promising for
reducing aliasing effects as well as sys-
tematically sampling very large data bases
over a wide range of scales and viewing
angles.

APPENDIX L

Microsoft et al. Exhibit 1005

6. Conclusions

Pyramidal data structures are of pro-
ven value in image analysis and have
interesting application to image bandwidth
compression and transmission. "Pyramidal
parametrics," pyramidal data structures
with intra- and inter-level interpolation,
are here proposed for use in image syn-
thesis. By continuously varying the
detail with which data are resolved,
pyramidal parametrics provide economical
approximate solutions to filtering prob-
lems in mapping texture and illumination
onto surfaces, and preliminary experiments
suggest they may provide flexible surface
representations as well.

7. Acknowledgments

I would like to acknowledge Ed Cat-
mull, the first (to my knowledge) to apply
multiple prefiltered images to texture
mapping: the method was applied to the
bicubic patches in his thesis, although it
was not described. Credit is also due Tom
Duff, who wrote both recursive and scan-
order routines for creating mip maps which
preserved numerical precision over all map
instances; Dick Lundin, who wrote the
first assembly-coded mip map accessing
routines; Ephraim Cohen, who wrote the
second; Rick Ace, who translated Ephraim's
PDP-II versions for the VAX assembler;
Paul Heckbert, for refining and speeding
up both creation and accessing routines,
and investigating various estimates of
"D"; Michael Chou, for implementing
highlight antialiasing and high-resolution
reflectance mapping on quadric surfaces.

I owe special thanks to Jules
Bloomenthal, Michael Chou, Pat Hanrahan,
and Paul Heckbert for critical reading and
numerous helpful suggestions in the course
of preparing this text. Photographic sup-
port was provided by Michael Lehman.

10

APPENDIX L

Microsoft et al. Exhibit 1005

8. References

[1] Blinn, J., and Newell, M., "Texture
and Reflection on Computer Generated
Images," CACM, Vol. 19, #i0, Oct.
1976, pp. 542-547.

Electrical and Systems Engineering
Dept., Rensselaer Polytechnic Insti-
tute, October 1980.

[2] Bui-Tuong Phong, "Illumination for
Computer Generated Pictures," PhD.
dissertation, Department of Computer
Science, University of Utah, December
1978.

[3] Crow, F.C., "The Aliasing Problem in
Computer Synthesized Shaded Images,"
PhD. dissertation, Department of Com-
puter Science, University of Utah,
Tech. Report UTEC-CSc-76-015, March
1976.

[4] Dungan, W., Stenger, A., and Sutty,
G., "Texture Tile Considerations for
Raster Graphics," SIGGRAPH 1978
Proceedings, Vol. 12, #3, August
1978.

[5] Eastman, Charles M., "Representations
for Space Planning," CACM, Vol. 13,
#4, April 1970.

[6] Feibush, E.A., Levoy, M., and Cook,
R.L., "Synthetic Texturing Using
Digital Filters," Computer Graphics,
Vol. 14, July, 1980.

[7] Hanrahan, Pat, private communication,
1983.

[8] Heckbert, Paul, "Texture Mapping
Polygons in Perspective," NYIT Com-
puter Graphics Lab Tech. Memo #13,
April, 1983.

[12] Tanimoto, S.L., and Klinger, A.,
Structured Computer Vision, Academic
Press, New York, 1980.

[13] Tanimoto, S.L., and Pavlidis, T., "A
Hierarchical Data Structure for Pic-
ture Processing," Computer Graphics
and Image Processing, Vol. 4, #2,
June 1975.

[14] Tanimoto, S.L., "Image Processing
with Gross Information First," Com-
puter Graphics and Image Processing
9, 1979.

[15] Warnock, J.E., "A Hidden-Line Algo-
rithm for Halftone Picture Represen-
tation," Department of Computer Sci-
ence, University of Utah, TR 4-15,
1969.

[16] Williams, L., "Pyramidal
Parametrics," SIGGRAPH tutorial
notes, "Advanced Image Synthesis,"
1981.

[17] Yau, M.M., and Srihari, S.N., "Recur-
sive Generation of Hierarchical Data
Structures for Multidimensional Digi-
tal Images," Proceedings of the IEEE
Computer Society Conference on Pat-
tern Recognition and Image Process-
ing, August 1981.

[9] Klinger, A., and Dyer, C.R., "Experi-
ments on Picture Representation Using
Regular Decomposition," Computer
Graphics and Image Processing, #5,
March, 1976.

[i0] Knowlton, K., "Progressive Transmis-
sion of Gray-Scale and Binary Pic-
tures by Simple, Efficient, and Loss-
less Encoding Schemes," Proceedings
of the IEEE, Vol. 68, #7, July 1980,
pp. 885-896.

[ii] Meagher, D., "Octree Encoding: A New
Technique for the Representation,
Manipulation, and Display of Arbi-
trary 3D Objects by Computer," IPL-
TR-80-111, Image Processing Lab,

11

APPENDIX L

Microsoft et al. Exhibit 1005

Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of a mipmap. A mipmap
is an ordered set of arrays representing the same image; each array has a resolution lower than the
previous one. If the texture has dimensions , then there are mipmap arrays.
The first array is the original texture with dimensions . Each subsequent array has

dimensions where are the dimensions of the previous array. This is the case

as long as both k>0 and l>0. Once either k=0 or l=0, each subsequent array has dimension

or , respectively, until the last array is reached with dimension .

Each array in a mipmap is transmitted to the GL using TexImage2D or TexImage1D ; the array
being set is indicated with the level-of-detail argument. Level-of-detail numbers proceed from 0 for
the original texture array through with each unit increase indicating an array of half
the dimensions of the previous one as already described. If texturing is enabled (and
TEXTURE_MIN_FILTER is one that requires a mipmap) at the time a primitive is rasterized and if the set
of arrays 0 through p is incomplete, based on the dimensions of array 0, then it is as if texture
mapping were disabled. The set of arrays 0 through p is incomplete if the internal formats of all the
mipmap arrays were not specified with the same symbolic constant, or if the border widths of the
mipmap arrays are not the same, or if the dimensions of the mipmap arrays do not follow the
sequence described above. Arrays indexed greater than p are insignificant.

The mipmap is used in conjunction with the level of detail to approximate the application of an
appropriately filtered texture to a fragment. Let and let c be the value of at which
the transition from minification to magnification occurs (since this discussion pertains to minification,
we are concerned only with values of where). For NEAREST_MIPMAP_NEAREST, if

 then the mipmap array with level-of-detail of 0 is selected. Otherwise, the dth mipmap

array is selected when as long as . If , then the pth
mipmap array is selected. The rules for NEAREST are then applied to the selected array.

The same mipmap array selection rules apply for LINEAR_MIPMAP_NEAREST as for
NEAREST_MIPMAP_NEAREST, but the rules for LINEAR are applied to the selected array.

For NEAREST_MIPMAP_LINEAR, the level d-1 and the level d mipmap arrays are selected, where
, unless , in which case the pth mipmap array is used for both arrays. The rules

Page 1 of 2Mipmapping

4/22/2015https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html

APPENDIX M

Microsoft et al. Exhibit 1005

for NEAREST are then applied to each of these arrays, yielding two corresponding texture values
and . The final texture value is then found as

LINEAR_MIPMAP_LINEAR has the same effect as NEAREST_MIPMAP_LINEAR except that the rules for
LINEAR are applied for each of the two mipmap arrays to generate and .

Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

David Blythe
Sat Mar 29 02:23:21 PST 1997

Page 2 of 2Mipmapping

4/22/2015https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html

APPENDIX M

Microsoft et al. Exhibit 1005

Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, a new scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphics/hoppe/

� Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of a single model to platforms of varying performance.

� Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visual transitions,
geomorphs, between meshes at different resolutions.

� Progressive transmission: When a mesh is transmitted over a
communication line, one would like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

� Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
One is to use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

� Selective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M̂ is stored as a much
coarser mesh M0 together with a sequence of n detail records that
indicate how to incrementally refine M0 exactly back into the orig-
inal mesh M̂ = Mn. Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M̂ thus defines a continuous sequence of meshes M0

;M1
; : : : ;Mn

of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M̂ itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resolution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M̂. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1996 ACM-0-89791-746-4/96/008...$3.50

99

APPENDIX N

Microsoft et al. Exhibit 1005

2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K;V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = fv1; : : : ;vmg is the set of vertex positions defining
the shape of the mesh in R3. More precisely (cf. [9]), we construct
a parametric domain jKj � R

m by identifying each vertex of K with
a canonical basis vector of Rm, and define the mesh as the image
�V(jKj) where �V : Rm ! R

3 is a linear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
diffuse color (r; g; b), normal (nx; ny; nz), and texture coordinates
(u; v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
faces may have different shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v; f) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

We express a mesh as a tuple M = (K;V;D; S) where V specifies
its geometry, D is the set of discrete attributes df associated with
the faces f = fj; k; lg 2 K, and S is the set of scalar attributes s(v;f)

associated with the corners (v; f) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge fvj; vkg of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl 6= dfr), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj;fl) 6= s(vj;fr)

or s(vk;fl) 6= s(vk;fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M̂ by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(fvs; vtg)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.

v
t

vs

vl vr
vl vr

vs

ecol

vsplit

Figure 1: Illustration of the edge collapse transformation.

v
1

v
2

v
3

v
4

v5

v6

v
7

v
1

v
2

v
3

v
4

v5

v6

v
1

v
2

v
3

Mi+1 Mi

ecoli

M0

ecol0

m0=3

s
0
=2

s
i
=4

(i=3)

v
1

v
2

v
3

v
4

v5

v6

v
7

Mf

v
1

v
2

v
3

Mc

Ac

(a) (b)

Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces fvs; vt; vlg and fvt; vs; vrg vanish
in the process. A position vs is specified for the new unified vertex.

Thus, an initial mesh M̂ = Mn can be simplified into a coarser
mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0
:

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi

; i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let m0 be the number of vertices in M0 , and let us label the vertices
of mesh Mi as Vi = fv1; : : : ; vm0+ig, so that edge fvsi ; vm0+i+1g is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj in Mi as vi

j.

A key observation is that an edge collapse transformation is in-
vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s; l; r; t;A)
adds near vertex vs a new vertex vt and two new faces fvs; vt; vlg and
fvt; vs; vrg. (If the edge fvs; vtg is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs

and vt of the two affected vertices, the discrete attributes dfvs;vt;vlg

and dfvt;vs;vrg of the two new faces, and the scalar attributes of the
affected corners (s(vs;�), s(vt;�), s(vl;fvs;vt;vlg), and s(vr;fvt;vs;vrg)).

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M̂ as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

where each record is parametrized as vspliti(si; li; ri;Ai). We call
(M0

; fvsplit0; : : : ; vsplitn�1g) a progressive mesh (PM) representa-
tion of M̂.

As an example, the mesh M̂ of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M0 of Figure 5a (150 faces) using

100

APPENDIX N

Microsoft et al. Exhibit 1005

6,698 edge collapse transformations. Thus its PM representation
consists of M0 together with a sequence of n = 6698 vsplit records.
From this PM representation, one can extract approximating meshes
with any desired number of faces (actually, within �1) by applying
to M0 a prefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs
A nice property of the vertex split transformation (and its inverse,
edge collapse) is that a smooth visual transition (a geomorph) can be
created between the two meshes Mi and Mi+1 in Mi vspliti

�! Mi+1. For
the moment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(si; li; ri;Ai = (vi+1

si ;v
i+1
m0+i+1)). We construct a

geomorph MG(�) with blend parameter 0���1 such that MG(0)
looks like Mi and MG(1) looks like Mi+1—in fact MG(1)=Mi+1—by
defining a mesh

MG(�) = (Ki+1
;VG(�))

whose connectivity is that of Mi+1 and whose vertex positions lin-
early interpolate from vsi 2Mi to the split vertices vsi ;vm0+i+12Mi+1:

v
G
j (�) =

�
(�)vi+1

j + (1��)vi
si ; j 2 fsi;m0 +i+1g

v
i+1
j = vi

j ; j =2 fsi;m0 +i+1g

Using such geomorphs, an application can smoothly transition from
a mesh Mi to meshes Mi+1 or Mi�1 without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of a PM representation. Indeed, given a finer mesh Mf and a coarser
mesh Mc, 0 � c < f � n, there exists a natural correspondence
between their vertices: each vertex of Mf is related to a unique an-
cestor vertex of Mc by a surjective map Ac obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex vj of Mf corresponds with the vertex vAc(j) in Mc where

Ac(j) =

�
j ; j � m0 + c

Ac(sj�m0�1) ; j > m0 + c :

(In practice, this ancestor information Ac is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define a geomorph MG(�) such that MG(0) looks like Mc and MG(1)
equals Mf . We simply define MG(�) = (Kf

; VG(�)) to have the
connectivity of Mf and the vertex positions

v
G
j (�) = (�)vf

j + (1��)vc
Ac(j) :

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
Mc are a proper subset of the faces of Mf , and that those faces of
Mf missing from Mc are invisible in MG(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpolated
much like the vertex positions. There is a slight complication in
that a corner (v; f) in a mesh M is not naturally associated with

any “ancestor corner” in a coarser mesh Mc if f is not a face of
Mc. We can still attempt to infer what attribute value (v; f) would
have in Mc as follows. We examine the mesh Mi+1 in which f is
first introduced, locate a neighboring corner (v; f 0) in Mi+1 whose
attribute value is the same, and recursively backtrack from it to a
corner in Mc. If there is no neighboring corner in Mi+1 with an
identical attribute value, then the corner (v; f) has no equivalent in
Mc and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstrates a geomorph between two meshes M175 (500
faces) and M425 (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission
Progressive meshes are a natural representation for progressive
transmission. The compact mesh M0 is transmitted first (using
a conventional uni-resolution format), followed by the stream of
vspliti records. The receiving process incrementally rebuilds M̂ as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M̂ is recovered exactly after all n records are received,
since PM is a lossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M̂ and interactive display. With a
slow communication line, a simple strategy is to display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arise in the display of images transmitted using progressive JPEG.)

3.4 Mesh compression
Even though the PM representation encodes both M̂ and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(si; li; ri) of vspliti, one need only store si and approximately 5 bits
to select the remaining two vertices among those adjacent to vsi .

2

Second, because a vertex split has local effect, one can expect signif-
icant coherence in mesh attributes through each transformation. For
instance, when vertex vi

si is split into vi+1
si and vi+1

m0+i+1, we can predict
the positions vi+1

si and vi+1
m0+i+1 from v

i
si , and use delta-encoding to

reduce storage. Scalar attributes of corners in Mi+1 can similarly be
predicted from those in Mi. Finally, the material identifiers dfvs;vt;vlg

and dfvt;vs;vrg of the new faces in mesh Mi+1 can often be predicted
from those of adjacent faces in Mi using only a few control bits.

As a result, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goal in mind. However, we analyze
the compression of the connectivity K, and report results on the com-
pression of the geometry V . In the following analysis, we assume
for simplicity that m0 = 0 since typically m0 � n.

A common representation for the mesh connectivity K is to list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such a list requires
6dlog2(n)en bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2On average, vsi has 6 neighbors, and the number of permutations P6
2 =30

can be encoded in dlog2(P6
2)e=5 bits.

101

APPENDIX N

Microsoft et al. Exhibit 1005

(dlog2(n)e+2k)n bits, where vertices are back-referenced once on
average and k ' 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering’s generalized
triangle mesh representation [6] further reduces storage to about
(1

8dlog2(n)e+8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus 0 meshes) can be encoded
in 12n bits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vspliti re-
quires specification of si and its two neighbors, for a total storage of
about (dlog2(n)e+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditional representation of the mesh geometry V requires
storage of 3n coordinates, or 96n bits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-bit fixed precision values without significant
loss of visual quality, thus reducing storage to 48n bits. Deering is
able to further compress this storage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35:8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach with the PM representation, we encode V in 31n to 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge fvs; vtg, it considers three starting points for
the resulting vertex position vn: fvs;vt;

vs+vt
2 g. Depending on the

starting point chosen, we delta-encode either fvs�vn;vt�vng or
fvs+vt

2 �vn;
vt�vs

2 g, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
algorithm to forego optimization and let vn 2 fvs;vt;

vs+vt
2 g. This

would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bits in our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

3.5 Selective refinement
The PM representation also supports selective refinement, whereby
detail is added to the model only in desired areas. Let the application
supply a callback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initial mesh Mc is selectively refined by
iterating through the list fvsplitc; : : : ; vsplitn�1g as before, but only
performing vspliti(si; li; ri;Ai) if

(1) all three vertices fvsi ; vli ; vrig are present in the mesh, and

(2) REFINE(vsi) evaluates to TRUE.

(A vertex vj is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj�m0�1, was not performed due to
the above conditions.)

As an example, to obtain selective refinement of the model within
a view frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem is that a
vertex vsi within the frustum may fail to be split because its expected
neighbor vli lies just outside the frustum and was not previously
created. The problem is remedied by using a less stringent version
of condition (1). Let us define the closest living ancestor of a vertex
vj to be the vertex with index

A0(j) =

�
j ; if vj exists in the mesh

A0(sj�m0�1) ; otherwise

The new condition becomes:

(1’) vsi is present in the mesh (i.e. A0(si) = si) and the vertices vA0 (li)

and vA0 (ri) are both adjacent to vsi .

As when constructing the geomorphs, the ancestor information A0

is carried efficiently as the vsplit records are parsed. If conditions
(1’) and (2) are satisfied, vsplit(si;A0(li);A0(ri);Ai) is applied to the
mesh. A mesh selectively refined with this new strategy is shown in
Figure 7b. This same strategy was also used for Figure 10. Note that
it is still possible to create geomorphs between Mc and selectively
refined meshes thus created.

An interesting application of selective refinement is the transmis-
sion of view-dependent models over low-bandwidth communication
lines. As the receiver’s view changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M̂ requires a sequence
of edge collapses transforming M̂ = Mn into a base mesh M0.
The quality of the intermediate approximations Mi

; i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vi

si .

There are many possible PM construction algorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane” metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Edist geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design a simplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppe et al. [9], which
is outlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3–4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization
The goal of mesh optimization [9] is to find a mesh M = (K;V)
that both accurately fits a set X of points xi 2 R

3 and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edist(M) + Erep(M) + Espring(M) :

The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Edist(M) =
X

i

d2(xi; �V (jKj))

measures the total squared distance of the points from the mesh,
and the representation energy term Erep(M) = crepm penalizes the
number m of vertices in M. The third term, the spring energy
Espring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension �:

Espring(M) =
X

fj;kg2K

�kvj � vkk
2
:

102

APPENDIX N

Microsoft et al. Exhibit 1005

size (# vertices)

accuracy
Edist

Mc

Mb

Ma

M

poor

perfect
0 n

ideal

space of meshes

Figure 3: Illustration of the paths taken by mesh optimization using
three different settings of crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

� Outer loop: The algorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K̂ can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K ! K0, the continuous
optimization described below computes EK0 , the minimum of
E subject to the new connectivity K0. If �E = EK0 � EK is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

� Inner loop: For each candidate mesh transformation, the algo-
rithm computes EK0 = minV Edist(V) + Espring(V) by optimizing
over the vertex positions V . For the sake of efficiency, the algo-
rithm in fact optimizes only one vertex positionvs, and considers
only the subset of points X that project onto the neighborhood
affected by K ! K0. To avoid surface self-intersections, the
edge collapse is disallowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et al. [9] find that the regularizing spring energy term
Espring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants �.

Mesh optimization is demonstrated to be an effective tool for mesh
simplification. Given an initial mesh M̂ to approximate, a dense set
of points X is sampled both at the vertices of M̂ and randomly over
its faces. The optimization algorithm is then invoked with M̂ as the
starting mesh. Varying the setting of the representation constant crep

results in optimized meshes with different trade-offs of accuracy and
size. The paths taken by these optimizations are shown illustratively
in Figure 3.

4.2 Overview of the simplification algorithm
As in mesh optimization [9], we also define an explicit energy metric
E(M) to measure the accuracy of simplified meshes M = (K;V;D; S)
with respect to the original M̂, and we also modify the mesh M
starting from M̂ while minimizing E(M).

Our energy metric has the following form:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) :

The first two terms, Edist(M) and Espring(M) are identical to those
in [9]. The next two terms of E(M) are added to preserve attributes
associated with M: Escalar(M) measures the accuracy of its scalar
attributes (Section 4.4), and Edisc(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)

size (# vertices)

accuracy
Edist

M0

M

poor

perfect

0 n

ideal

PM
representation

space of meshes

Figure 4: Illustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes are usually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations as in [9],
we place all (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost �E. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest �E), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter crep as well as the energy term Erep(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resolution family of
meshes, namely the PM representation of M̂ (Figure 4).

For each edge collapse K ! K0, we compute its cost �E =
EK0 � EK by solving a continuous optimization

EK0 = min
V;S

Edist(V) + Espring(V) + Escalar(V; S) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K0. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Edist +Espring)
As in [9], we “record” the geometry of the original mesh M̂ by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M̂. If requested by the user, additional points
are sampled randomly over the surface of M̂. The energy terms
Edist(M) and Espring(M) are defined as in Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Edist(V)+Espring(V) closely follows that
of [9]. Evaluating Edist(V) involves computing the distance of each
point xi to the mesh. Each of these distances is itself a minimization
problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k
2 (1)

where the unknown bi is the parametrization of the projection of
xi on the mesh. The nonlinear minimization of Edist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:

103

APPENDIX N

Microsoft et al. Exhibit 1005

1. For fixed vertex positions V , compute the optimal parametriza-
tions B = fb1; : : : ;bjXjg by projecting the points X onto the
mesh.

2. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear least-squares problem.

As in [9], when considering ecol(fvs; vtg), we optimize only one
vertex position, vi

s. We perform three different optimizations with
different starting points, vi

s = (1��)vi+1
s +(�)vi+1

t for � = f0; 1
2 ; 1g,

and accept the best one.

Instead of defining a global spring constant � for Espring as in [9],
we adapt � each time an edge collapse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Edist(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set � as a function of the ratio of the number of points to the
number of faces in the neighborhood.3 With this adaptive scheme,
the influence of Espring(M) decreases gradually and adaptively as the
mesh is simplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Escalar)
As described in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex are identical. The generalization to piecewise
continuous fields is discussed shortly.

Optimizing scalar attributes at vertices Let the original
mesh M̂ have at each vertex vj not only a position vj 2 R

3 but
also a scalar attribute vj 2 R

d. To capture scalar attributes, we
sample at each point xi 2 X the attribute value xi 2 R

d . We would
then like to generalize the distance metric Edist to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve this is to redefine the distance metric
to measure distance in R3+d:

d2((xi xi);M(K;V;V)) = min
bi2jKj

k(xi xi) � (�V(bi) �V(bi))k
2
:

This new distance functional could be minimized using the iterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization bi of each point xi would re-
quire projection in R3+d, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations bi using only
geometry with equation (1), and to introduce a separate energy term
Escalar to measure attribute deviation based on these parametriza-
tions:

Escalar(V) = (cscalar)
2
X

i

kxi � �V(bi)k
2

where the constant cscalar assigns a relative weight between the scalar
attribute errors (Escalar) and the geometric errors (Edist).

Thus, to minimize E(V;V) = Edist(V) + Espring(V) + Escalar(V), our
algorithm first finds the vertex position vs minimizing Edist(V) +
Espring(V) by alternately projecting the points onto the mesh (ob-
taining the parametrizations bi) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation is the set of faces
shown in Figure 1. Using C notation, we set � = r < 4 ? 10�2 : r <

8 ? 10�4 : 10�8 where r is the ratio of the number of points to faces in the
neighborhood.

bi, it finds the vertex attribute vs minimizing Escalar by solving a
single linear least-squares problem. Hence introducing Escalar into
the optimization causes negligible performance overhead.

Since �Escalar contributes to the estimated cost �E of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our scheme for op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value vs, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scalar attributes have constrained
ranges. For instance, the components (r; g; b) of color are typically
constrained to lie between 0 and 1. Least-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of a Euclidean norm at a single vertex, this is in fact optimal.

Normals Surface normals (nx; ny; nz) are typically constrained to
have unit length, and thus their domain is non-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex vi

si by interpolating between
the normals at vertices vi+1

si and vi+1
m0+i+1 using the � value that re-

sulted in the best vertex position vi
si in Section 4.3. Fortunately,

the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Edisc)
Appearance attributes give rise to a set of discontinuity curves on the
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(vj; vk)
denote that an edge fvj ; vkg is sharp, and let #sharp(vj) be the number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol(fvs; vtg) modifies the topology of discontinuity curves if either:

� sharp(vs; vl) and sharp(vt; vl), or
� sharp(vs; vr) and sharp(vt; vr), or
� #sharp(vs) � 1 and #sharp(vt) � 1 and not sharp(vs; vt), or
� #sharp(vs) � 3 and #sharp(vt) � 3 and sharp(vs; vt), or
� sharp(vs; vt) and #sharp(vs) = 1 and #sharp(vt) 6= 2, or
� sharp(vs; vt) and #sharp(vt) = 1 and #sharp(vs) 6= 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xdisc from the sharp edges of M̂, and define
an additional energy term Edisc equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Edisc is defined just like Edist, except that the points
Xdisc are constrained to project onto a set of sharp edges in the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-

104

APPENDIX N

Microsoft et al. Exhibit 1005

ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Edisc energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol(fvs; vtg) changes the topology of the discontinuity
curves, we add to its cost �E the value jXdisc;fvs;vtgj � kvs � vtk

2

where jXdisc;fvs;vtgj is the number of points of Xdisc projecting onto
fvs; vtg. That simple strategy, although ad hoc, has proven very
effective. For example, it allows the dark gray window frames of
the “cessna” (visible in Figure 9) to vanish in the simplified meshes
(Figures 5a–c).

Table 1: Parameter settings and quantitative results.

Object Original ^M Base M0 User param. jXdiscj V Time
m0 + n #faces m0 #faces jXj�(m0+n) ccolor

bits
n mins

cessna 6,795 13,546 97 150 100,000 - 46,811 46 23
terrain 33,847 66,960 3 1 0 - 3,796 46 16
mandrill 40,000 79,202 3 1 0 0.1 4,776 31 19
radiosity 78,923 150,983 1,192 1,191 200,000 0.01 74,316 37 106
fandisk 6,475 12,946 27 50 10,000 - 5,924 50 19

5 RESULTS

Table 1 shows, for the meshes in Figures 5–12, the number of
vertices and faces in both M̂ and M0. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna”, we stopped at 150 faces to obtain a
visually aesthetic base mesh. As indicated, the only user-specified
parameters are the number of additional points (besides the m0 + n
vertices of M̂) sampled to increase fidelity, and the cscalar constants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and its cscalar con-
stant is denoted as ccolor. The number jXdiscj of points sampled from
sharp edges is set automatically so that the densities of X and Xdisc

are proportional.4 Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification algorithm applies a sequence
ecoln�1 : : : ecol0 of transformations to the original mesh, it writes
to a file the sequence vsplitn�1 : : : vsplit0 of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M0. Next, we reverse the order of the
vsplit records. Finally, we renumber the vertices and faces of
(M0

; vsplit0 : : : vsplitn�1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M175 and
M425 of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. We have obtained

4We set jXdiscj such that jXdiscj=perim = c(jXj=area)
1
2 where perim is

the total length of all sharp edges in ^M, area is total area of all faces, and
the constant c = 4:0 is chosen empirically.

good results by selecting meshes whose complexities grow expo-
nentially, as in Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181�187
vertices) using a new REFINE(v) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fv adjacent to v, we compute the signed projected screen areas
faf : f 2 Fvg. We let REFINE(v) return TRUE if

(1) any face f 2 Fv lies within the view frustum, and either

(2a) the signs of af are not all equal (i.e. v lies near a silhouette
edge) or

(2b)
P

f2Fv
af > thresh for a screen area threshold thresh = 0:162

(where total screen area is 1).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of lo-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangulate the resulting holes. Cohen et al. are
able to bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et al. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topological type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et al. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et al. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et al. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similarities with the PM scheme, since both store a simple base
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

� MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as a result an arbitrary initial
mesh M̂ can only be recovered to within an � tolerance. In
contrast, the PM representation is lossless since Mn = M̂.

� Because the approximating meshes Mi
; i<n in a PM may have

arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

� The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically along edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

� PM’s capture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such as the Haar ba-
sis as used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it is not clear how MRA could be extended
to capture discrete attributes.

105

APPENDIX N

Microsoft et al. Exhibit 1005

Advantages of MRA over PM:

� The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s also offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

� Eck et al. [7] construct MRA approximations with guaranteed
maximum error bounds to M̂. Our PM construction algorithm
does not provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

� MRA allows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One special instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schröder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supports geomorphs, progressive transmission, com-
pression, and selective refinement. In addition, as a PM construction
method, we have presented a new mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
also its overall appearance.

There are a number of avenues for future work, including:

� Development of an explicit metric and optimization scheme for
preserving surface normals.

� Experimentation with PM editing.

� Representation of articulated or animated models.

� Application of the work to progressive subdivision surfaces.

� Progressive representation of more general simplicial complexes
(not just 2-d manifolds).

� Addition of spatial data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.

ACKNOWLEDGMENTS

I wish to thank Viewpoint Datalabs for providing the “cessna” mesh,
Pratt & Whitney for the gas turbine engine component (“fandisk”),
Softimage for the “terrain” mesh, and especially Steve Drucker for
creating several radiosity models using Lightscape. Thanks also to
Michael Cohen, Steven “Shlomo” Gortler, and Jim Kajiya for their
enthusiastic support, and to Rick Szeliski for helpful comments on
the paper. Mark Kenworthy first coined the term “geomorph” in ’92
to distinguish them from image morphs.

REFERENCES
[1] Apple Computer, Inc. 3D graphics programming with

QuickDraw 3D. Addison Wesley, 1995.

[2] Certain, A., Popovic, J., Duchamp, T., Salesin,

D., Stuetzle, W., and DeRose, T. Interactive multi-
resolution surface viewing. Computer Graphics (SIGGRAPH
’96 Proceedings) (1996).

[3] Clark, J. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (Oct. 1976),
547–554.

[4] Cohen, J., Varshney, A., Manocha, D., Turk,

G., Weber, H., Agarwal, P., Brooks, F., and

Wright, W. Simplification envelopes. Computer Graphics
(SIGGRAPH ’96 Proceedings) (1996).

[5] Curless, B., and Levoy, M. A volumetric method
for building complex models from range images. Computer
Graphics (SIGGRAPH ’96 Proceedings) (1996).

[6] Deering, M. Geometry compression. Computer Graphics
(SIGGRAPH ’95 Proceedings) (1995), 13–20.

[7] Eck, M., DeRose, T., Duchamp, T., Hoppe, H.,

Lounsbery, M., and Stuetzle, W. Multiresolution
analysis of arbitrary meshes. Computer Graphics (SIGGRAPH
’95 Proceedings) (1995), 173–182.

[8] Funkhouser, T., and S�equin, C. Adaptive display al-
gorithm for interactive frame rates during visualization of com-
plex virtual environments. Computer Graphics (SIGGRAPH
’93 Proceedings) (1995), 247–254.

[9] Hoppe, H., DeRose, T., Duchamp, T., McDonald,

J., and Stuetzle, W. Mesh optimization. Computer
Graphics (SIGGRAPH ’93 Proceedings) (1993), 19–26.

[10] Lounsbery, J. M. Multiresolution analysis for surfaces
of arbitrary topological type. PhD thesis, Dept. of Computer
Science and Engineering, U. of Washington, 1994.

[11] Lounsbery, M., DeRose, T., and Warren, J. Mul-
tiresolution analysis for surfaces of arbitrary topological type.
Submitted for publication. (TR 93-10-05b, Dept. of Computer
Science and Engineering, U. of Washington, January 1994.).

[12] Rossignac, J., and Borrel, P. Multi-resolution 3D
approximations for rendering complex scenes. In Modeling
in Computer Graphics, B. Falcidieno and T. L. Kunii, Eds.
Springer-Verlag, 1993, pp. 455–465.

[13] Schr�oder, P., and Sweldens, W. Spherical wavelets:
Efficiently representing functions on the sphere. Computer
Graphics (SIGGRAPH ’95 Proceedings) (1995), 161–172.

[14] Schroeder, W., Zarge, J., and Lorensen, W. Dec-
imation of triangle meshes. Computer Graphics (SIGGRAPH
’92 Proceedings) 26, 2 (1992), 65–70.

[15] Taubin, G., and Rossignac, J. Geometry compres-
sion through topological surgery. Research Report RC-20340,
IBM, January 1996.

[16] Turan, G. Succinct representations of graphs. Discrete
Applied Mathematics 8 (1984), 289–294.

[17] Turk, G. Re-tiling polygonal surfaces. Computer Graphics
(SIGGRAPH ’92 Proceedings) 26, 2 (1992), 55–64.

[18] Upstill, S. The RenderMan Companion. Addison-Wesley,
1990.

[19] Witten, I., Neal, R., and Cleary, J. Arithmetic
coding for data compression. Communications of the ACM
30, 6 (June 1987), 520–540.

106

APPENDIX N

Microsoft et al. Exhibit 1005

(a) Base mesh M0 (150 faces) (b) Mesh M175 (500 faces) (c) Mesh M425 (1,000 faces) (d) Original ^M =Mn (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh ^M captures a continuous-resolution family of approximating meshes M0

: : :Mn = ^M.

(a) � = 0:00 (b) � = 0:25 (c) � = 0:50 (d) � = 0:75 (e) � = 1:00
Figure 6: Example of a geomorph MG(�) defined between MG(0)

:

=M175 (with 500 faces) and MG(1)=M425 (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1’) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

(a) ^M (200�200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Escalar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
(^M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)

107

APPENDIX N

Microsoft et al. Exhibit 1005

Figure 9: (a) Simplification without Edisc Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Figure 11: Simplification of a radiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) ^M (12,946 faces) (b) M75 (200 faces) (c) M475 (1,000 faces)

(d) � = 9:0 (192 faces) (e) � = 2:75 (1,070 faces) (f) � = 0:1 (15,842 faces)
Figure 12: Approximations of a mesh ^M using (b–c) the PM representation, and (d–f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover ^M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.

108

APPENDIX N

Microsoft et al. Exhibit 1005

United States Patent [19]

Baldwin

[54] GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

[75] Inventor: David Robert Baldwin. Weybridge.
United Kingdom

[73] Assignee: 3DLabs Inc. Ltd •. Hamilton. Bermuda

[21] Appl. No.: 640,620

[22] Filed: May 1, 1996

Related U.S. Application Data

[60] Provisional application No. 601008,803 Dec. 18, 1995.

[63] Continuation-in-part of Ser. No. 410,345, Mar. 24, 1995.

[51] Int. Cl.6
... G06T 1/20

[52] U.S. Cl 345/506; 345/519; 345/509
[58] Field of Search 395/506. 502.

395/507. 509. 519. 122. 130. 132. 125.
503; 345/506. 507. 502. 509. 519. 422.

430-432. 425. 503

[56] References Cited

U.S. P~ DOCUMENTS

4,866,637 9/1989 Gonzalez-Lopez 395/506
5,392,391 211995 Caulk, Jr. et al 395/503

SCISSOR

111111 111
US005798770A

[111 Patent Number:

[451 Date of Patent:

5,798,770
Aug. 25, 1998

OTHER PUBLICATIONS

Foley et al .. "Computer Graphics. Principles and Practice".
2 ed in C.1996. Chapter 18. pp. 855-920.
Kogge. P.M .. "The Microprogramming of Pipelined Proces
sors". 1977. Proc. 4th Ann. Conf Parallel Procesing. IEEE.
March. pp. 63-69.
Computer Graphics. vol. 22. No. 4. "A display system for
the Stellar graphics Supercomputer Model GSlOOO". Brian
Apgar et al.. Aug. 1988.

Primary Examiner-Kee M. Tung
Attorney, Agent, or Firm-Robert Groover; Betty Formby;
Matthew S. Anderson

[57] ABSTRACT

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon
figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL. but may also be opti
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment, pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed. so
that unneeded pixel data is discarded before said texturing
calculations are performed.

26 Claims, 12 Drawing Sheets

RASTERIZER
TEST - STIPPLE COLOR DDA

~

ALPHA TEST ANTIAI.IAS I--- FOG TEXTURE APPLICATION

J_
LB PIXEL STENCIL DEPTH LB f-- OWNERSHIP f-- 1------ 1------READ (GID) TEST TEST WRITE

LOCALBUFFER

v~

,----- .-- '----

FB LOGICAL OP/ COLOR ALPHA FB
WRITE I-- FRAME BUFFER 1---- FORIJAT I-- BLEND I-- READ MASK (DITHER)

~~
FRAMEBUFFER

HOST
OUT

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 1 of 12 5,798,770

FIG. 1A

WORLD COO RDINATES (3D)

TRANSFORM {
TRANSFORM INTO VIEW

COORDINATES AND
CANONICAL VIEW VOLUME

VIEW COOR DINATES (3D)

CLIP CLIP AGAINST CANONICAL
VIEW VOLUME

VIEW COOR DINATES (3D)

PROJECT ON TO
VIEW PLANE

VIEW COOR DINATES (2D)

TRANSFORM MAP INTO VIEW PORT

NORMALIZED DEVICE COORDINATES

TRANSFORM TO PHYSICAL
DEVICE COORDINATES

PHYSICAL D EVICE COORDINATES

RENDER

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent

VERTICES

PRIMITIVES

• CURRENT
FRAGMENTS RASTER

POSITION

PIXELS

0

Aug. 25, 1998 Sheet 2 of 12 5,798,770

FIG. 1B
VERTEX

RASTERPOS NORMAL
COLOR
INDEX

+ ~
CURRENT CURRENT
NORMAL COLOR

1
MODEL VIEW

MATRIX

LIGHTING
AND COLORING

PRIMITIVE ASSEMBLY

~ t

TEXCOORD
l

CURRENT
TEXTURE

COORDINATES

•
TEXGEN

• TEXTURE
MATRIX

•
l

APPLICATION-SPECIFIC CLIPPING READPIXELS

+ DRAWPIXELS
PROJECTION TEXIMAGE

MATRIX

~ 1 , PIXEL
STORAGE

VIEW VOLUME CLIPPING MODES

• DIVIDE BY PIXEL
W; VIEWPORT TRANSFER

• MODES

f.+ RASTERIZATION

• l
PER-FRAGMENT OPERATIONS TEXTURE

f.--
MEMORY

•
FRAME BUFFER

APPENDIX O

Microsoft et al. Exhibit 1005

F
IG

.
2

A

GR
AP

H

HO
ST

IN

TE
RF

AC
E

RA
ST

ER
IZ

ER
 f

-
SC

IS
SO

R
1

-
CO

LO
R

TE
XT

UR
E

1
-

1
-

FO
G

G
RA

PH
 IC

S
PR

OC
ES

SO
R

FI
FO

 (
OU

T)

HO
ST

IN

TE
RF

AC
E -

-

HO
ST

OU

T

R
 UN

LE
SS

 O
TH

ER
W

IS
E

w
 NO

TE
D)

-
ST

IP
PL

E
DD

A
CO

LO
R

FR
AM

E B
UF

FE
R

LO
GI

CA
L

-
-

-
-

W
RI

TE

OP
S

l !
W

RI
TE

DA

TA
 (

32
]

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

- ~

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

UN
IT

RE

AD

W
RI

TE

RE
AD

W

RI
TE

AD

DR
ES

S
(2

4)

AD
DR

E$
S

(2
4)

DA

TA
 (

52
)

DA
TA

 (
52

)

:'1

t
I +

I

i
I

AL
PH

A
LO

CA
L

GI
D

LO
CA

L
1

-
BU

FF
ER

 -
1

-
ST

EN
CI

L
1

-
'I

-
BU

FF
ER

 -
--

TE
ST

f
-

-
RE

AD

DE
PT

H
W

RI
TE

DI
TH

ER

AL
PH

A
FR

AM
EB

UF
FE

R
~

-
1

-
BL

EN
D

-,
-

RE
AD

1
f
! I

t

I
~

!
RE

AD

W
RI

TE

RE
AD

DA

TA
 (

32
]

AD
DR

ES
S

[2
4]

AD

DR
ES

S
(2

4]

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

~

• r.n

• ~

.....
.

~
 =

.....
.

>
 =

~

N

V
I .. 1-
<

 ~ rJ
J

t:r
' l w

~

1-
<

N

 O
l

.... '"" \C

01
0

.... '"" '"" =
 APPENDIX O

Microsoft et al. Exhibit 1005

F
IG

.
2

B

r-
--

--
--

-,

I
I

LO
CA

L
BU

FF
ER

~
~
-
-
+
-
-
~

LO
CA

L
I

:
BU

FF
ER

:

I I I I I I I I I I I
:I

:
I

~
:
:
c
l

-
-
lO

I

E
;
~
l

o
o

l

;
:
g
~
l

V
>

>
l

V
>

I

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

BY
PA

SS

i r-
--

--
--

--
--

--
--

--
--

--
--

~-
--
--

~ ~
 ~P

t ~
--

--
--

__ o
r-

--
n-

-,

I
I

I
I

I
I

I

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

 (
IN

)

I
I

I
I

I
I

I
I

I
I

.-
-

G
!D

/Z
/

LB
 R

d
H

 S
TE

NC
IL

H

LB
 W

r
~--<

I
I

r
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-
,

I
I

;;
o

1

I
I

I
SC

IS
SO

R
g

1
I

RA
ST

ER
IZ

ER

ST
IP

PL
E

r;:1

CO
LO

R
1

TE
XT

UR
E

1

s:::

c '=t

~
h

fT
I

X

fT
I

;;
o

I
I

;;
o

TA

dd
r

TR
d

FO
G

I
I

DD
A

I
CO

LO
R

I
I

I
u

I
I

I
1

I
·

I
I

I
1

TE
XT

UR
E

UN
IT

I

I

AL
PH

A
_S

T
1

-
-

I
I

1
..

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.J

I

I
I

._
.

I
I

I
~

I
I

I
I

I
I

I
GR

AP
HI

CS

1
1

HO
ST

1

-
FB

 W

1
-

LO
GI

CA
L

DI
TH

ER

1
-

BL
EN

D
1

-
FB

Rd

1

PR
OC

ES
SO

R
1

OU
T

r
OP

S
1

I
I F

IF
O

(O
UT

)
I

I
I

I
:I

GR
AP

HI
CS

 C
OR

E
--

--
--

--
--

--
--
--
--
--
-~
--

_
_

_
_

_
_

_
 _

j
:

1
L

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0

A

D

FR

AM
E-

'
I

1
BU

FF
ER

I

FR
AM

EB
UF

FE
R

I
FR

AM
EB

UF
FE

R
IN

TE
RF

AC
E

I
:

BY
PA

SS

. :
I

I
I

HO
ST

IN

TE
RF

AC
E
J

L
-
-
-
-
-
-
-
-

GL
iN

T2

d • 00

• ~

'"""
"

~
 =

'"""
" >
 =

~

N

U
l

-.. - ~ \I
).

 =- a "" s, -N O
l

~

:a
\C

0

0

~

:a
.....

:a =

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 5 of 12 5,798,770

FIG. 2C

RASTERIZER SCISSOR STIPPLE COLOR DDA
TEST

~

ALPHA TEST ANTI ALIAS FOG TEXTURE
APPLICATION

LB PIXEL STENCIL DEPTH LB
READ OWNERSHIP TEST TEST WRITE (GID)

LOCALBUFFER

FB LOGICAL OP/ COLOR ALPHA FB
WRITE FRAMEBUFFER FORMAT BLEND READ MASK (DITHER)

FRAME BUFFER

HOST
OUT

APPENDIX O

Microsoft et al. Exhibit 1005

r-
--

--
--

--
--

--
--

--
--

-,

MU
X

AN
D

MA
TC

H
TR

EE

I

1
I

I
I

F
IG

.
2D

I

I
I

I
I

I
..

--
I

LO
CA

L
GI

O
LO

CA
L

I
:,

_
_

BU

FF
ER

 '
--

-
-

ST
EN

CI
L

r-
'r

-
BU

FF
ER

 1
-

L..
.+.

-
r-

--
--

--
--

--
--

-,

I
RE

AD

DE
PT

H
W

RI
TE

I

1
MR

AS
TE

R
1

I
'

I
s:::

:
HO

ST

I
I

I
ML

OC
AL

BU
FF

ER

I
c

IN
TE

RF
AC

E
1

SC
IS

SO
R

I
:::

0
r:::

:t
0

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

RA
ST

ER
IZ

ER
 -

ST
IP

PL
E

H
+

s
""

0
f-

1
-

I
I

r"
"1

r-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1

' r""1

I
I

:::
0

1
MT

EX
TU

RE

1
X

I
r"

"1

I
I

I
I

-
,

I
:::

0

I
MU

X
AN

D
MA

TC
H

TR
EE

I

I
TE

XT
UR

E
TE

XT
UR

E
CO

LO
R

TE
XT

UR
E

AL
PH

A
I

I
I

--
'-

1
-

FO
G

-'
r-

~

L
--

--
--

t-
--

--
--

J
-

:
AD

DR

RE
AD

DD

A
CO

LO
R

TE
ST

,

I

I
I

I
-

'
I
-

I
I

I
MU

X
AN

D
MA

TC
H

TR
EE

I

I
I

MU
X

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

RE
AD

 BA
CK

AN

D
BU

S
MA

TC
H

r-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1

TR
EE

I

I
I

MU
X

AN
D

MA
TC

H
TR

EE

I
I

I
I

I
I

I
I

I
I

I
'

I
HO

ST

HO
ST

_

FR
AM

EB
UF

FE
R

_
LO

GI
CA

L
',

AL
PH

A
_

FR
AM

EB
UF

FE
R

OP
S

-
DI

TH
ER

 r
-,

BL

EN
D

1
-

'
,
~

IN
TE

RF
AC

E
I

OU
T

W
RI

TE

RE
AD

I

I
I

I L
_

_
_

_

M
FR

AM
EB

UF
FE

R
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

e • \J
).

• ~

~

.

~
 a >

c ~

N

tT
l

~
 1
-"

 ~ 0
0

::r

 ~ ~

s, 1
-"

N

 o-
.

~

.:1
\C

Q

e
~

.:1 "'
I

Q

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 7 of 12

EXPANSION
GLINT 400TX GRAPHICS PROCESSOR r+ ROM INTERFACE

...

PCJ
BUS

r-
LOCALBUFFER

BYPASS

1-
DMA

CONTROL

DATA
1-

FORMATTER

1- FRAMEBUFFER
BYPASS

VTG -
INTERFACE

'--

EXTERNAL VIDEO ...
LOGIC INTERFACE

LOCALBUFFER MEMORY INTERFACE j.-

INPUT _
FIFO

GRAPHICS SHARED

OUTPUT
CORE FRAMEBUFFER ~

FIFO - INTERFACE

t
FRAMEBUFFER MEMORY INTERFACE r-

t
VIDEO TIMING ...

GENERATOR

FIG. 2E

r.-

r.-

r.-

f+-

r.-

r.-

5,798,770

EPROM
CONTROLS

VIDEO
LOGIC
CONTROLS

LOCALBUFFER

SHARED
FRAME BUFFER
CONTROL
SIGNALS

FRAME BUFFER

TIMING
CONTROL
SIGNALS

APPENDIX O

Microsoft et al. Exhibit 1005

KE
Y

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

UN
IT

UN
LE

SS
 O

TH
ER

W
IS

E
-

ME
SS

AG
E

BU
S

(A
LT

ER
NA

TI
VE

 S
IZ

E)

AD
DR

ES
S

[2
4]

AD

DR
ES

S
[24

]
DA

TA
 [

52
]

DA
TA

 [
52

]

~ FI
FO

 (
1

DE
EP

-

ME
SS

AG
E

BU
S

(3
2

BI
TS

 D
AT

A,
 9

 B
IT

S
TA

G)

RE
AD

W

RI
TE

RE

AD

W
RI

TE

NO
TE

D)

-
-~
 FIF

O
FL

AG

'LO
OK

 A
HE

AD
'

SP
AN

4

8
8

4

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

(IN

)

HO
ST

IN

TE
RF

AC
E
~
1
-

RA
ST

ER
IZ

ER
 H

::}
-IS

CI
SS

O
R

ST
IP

PL
E

32
 1

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

(O

UT
)

2

--
--

--
--

--
--

~

--
--

--
--

--
LO

CA
L

GI
D

'L-0
...!.

-CA
.:...

.L
I

r
-
-
-
-
-
-
-
-
-
-
-
-
1

 BU
FF

ER

ST
EN

CI
L

BU
FF

ER

~r

RE
AD

RE

AD

e5l

AD
DR

ES
S

[2
4]

DA

TA
 [

52
)

~~

~

~

4
~

&
ss

,
">

SS
J

--
--

-;;

=-
-;
~

2

H
 T

EX
TU

RE

TE
XT

UR
E

CO
LO

R
AD

OR

~

RE
AD

t-

DD
A

2
'
-

EX
PA

ND
ED

 T
O

49

BI
TS

(4

0
BI

TS
 D

AT
A,

 9
 B

IT
S

TA
G)

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

"
'

M

r
-
-

RE
AD

DE

PT
H

W
RI

TE

EX
PA

ND
ED

 T
O

61

BI
TS

(5

2
BI

TS
 D

AT
A,

 9
 B

IT
S

TA
G)

--
--

--
--

--
--

·

2

TE
XT

UR
E

CO
LO

R
FO

G

M

,
-
-
-
-

AL
PH

A
TE

ST

L
l 3:

:
c I ~~

X

1"
'1

:::

0

~I

L
L

--
--

--
--

.-

-
-
-
-
-
-
-
-
-
"
'

,...,

HO
ST

IN

TE
RF

AC
E
11

t

I HO
ST

OU

T
FR

AM
EB

UF
FE

R
W

RI
TE

LO

GI
CA

L
OP

S
DI

TH
ER

AL

PH
A

H

BL
EN

D
'H

 FR
AM

EB
UF

FE
R
H

 ~
-
-
-
-
-
~

,
RE

AD

•

8
RE

DU
CE

D
TO

32

BI

TS

l
4

+

4
~

8
t

~
·
·
l

&
;!

£~

·,
•3

~

4
t

2

W
RI

TE

DA
TA

 [
32

]
F

IG
.

2
F

RE

AD

W
RI

TE

RE
AD

DA

TA
 [

32
]

AD
DR

ES
S

{2
4]

AD

DR
ES

S
[2

4)

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

~

• 00

• ~

~

("t
> =

~

>
 =

~

N

~V
I

~

~

0
0

 g: f! 0
0

~

~

N
 0
1

._.

.:.)

\C

~

"'
...,

J
....

.:.)
 =

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 9 of 12 5,798,770

T CPU DOES HOS
GEOME TRY PROCESSING

\

HOST CPU

48 BITS WID~,
>=10 MBYTES

LOCAL
GEOMETRY

PROCESSOR

I

FIG. 3A

PLUG-IN CARD
32 BITS WIDE

vB MBYTES DRAM
LOCALBUFFER

4 MBYTES
/

GLINT VRAM LUT -DAC 400TX
1-~ -

I
PCI LOCAL BUS

FIG. 3B
PLUG-IN CARD

LOCALBUFFER 16 MBYTES
{1024x1280x32 BITS
DOUBLE BUFFERED)

I

GLINT
400TX

~---~ VRAM 1--- LUT-DAC

I
PCI-PCI
BRIDGE

PCI LOCAL BUS

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent

PCI
LOCAL
BUS

PCI
LOCAL
BUS

Aug. 25, 1998 Sheet 10 of 12 5,798,770

FIG. 3C

/e.g. S3 VISION964
GUI

ACCELERATOR

I
PCI-PCI GLINT FRAME BUFFER LUT -OAC BRIDGE

f--
400TX

~---~ 1-->--

I
LOCALBUFFER

PLUG-IN CARD

FIG. 3D

y FOR VIDEO CAPTURE
VIDEO AND PLAYBACK

COPROCESSOR

I
PCI-PCI GLINT -- FRAMEBUFFER ~---- LUT-DAC
BRIDGE

f--
400TX

I
LOCALBUFFER

PLUG-IN CARD

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent

SUBORDINATE""-
SIDE "

SUBORDINATE/
SIDE

count3

count2

count1

Aug. 25, 1998 Sheet 11 of 12 5,798,770

FIG. 4A

FIG. 4B

Trapezoid C

Knee1~ -------

APPENDIX O

Microsoft et al. Exhibit 1005

U.S. Patent

FROM
SCISSOR/

STIPLE -
a::
w
:::c:
u
I--

3:
V)

Aug. 25, 1998 Sheet 12 of 12

LB READ, GSD AND
LB WRITE UNITS

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5A

LB READ, GSD AND
LB WRITE UNITS

5,798,770

a::
w
X
w TO __,
CL - FB READ
1--__,
:::::1
~

a::
w a::

u...J X
:::c w rn~ ro

---1
__,

f-+-u CL I--

~ i= __,
V) ::::>

SCISSOR/ FB READ
STIPLE

~

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5B

LB READ, GSD AND
LB WRITE UNITS

a::
a:: w
u...J X
:::c w

---1 u __, I-- CL

rn~ ro
SCISSOR/ FB READ

3:: 1--__,
V) :::::1

STIPLE
~

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5C

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
1

GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of 08/410.345
filed Mar. 24, 1995, and claims priority from provisional
60/008.803 filed Dec. 18. 1995. which is hereby incorpo
rated by reference.

BACKGROUND AND SUMMARY OF THE
INVENI'ION

The present application relates to computer graphics and
animation systems. and particularly to 3D graphics render
ing hardware. Background of the art and the prior
embodiment, according to the parent application. is
described below. Some of the distinctions of the presently
preferred embodiment are particularly noted beginning on
page 8.

COMPUTER GRAPIDCS AND RENDERING

Modern computer systems normally manipulate graphical
objects as high-level entities. For example, a solid body may
be described as a collection of triangles with specified
vertices, or a straight line segment may be described by
listing its two endpoints with three-dimensional or two
dimensional coordinates. Such high-level descriptions are a
necessary basis for high-level geometric manipulations. and
also have the advantage of providing a compact format
which does not consume memory space unnecessarily.

Such higher-level representations are very convenient for
performing the many required computations. For example.
ray-tracing or other lighting calculations may be performed,
and a projective transformation can be used to reduce a
three-dimensional scene to its two-dimensional appearance
from a given viewpoint However. when an image contain
ing graphical objects is to be displayed, a very low-level
description is needed. For example. in a conventional CRf
display, a "flying spot" is moved across the screen (one line
at a time). and the beam from each of three electron guns is
switched to a desired level of intensity as the flying spot
passes each pixel location. Thus at some point the image
model must be translated into a data set which can be used
by a conventional display. This operation is known as
"rendering."

The graphics-processing system typically interfaces to the
display controller through a "frame store" or "frame buffer"
of special two-port memory. which can be written to ran
domly by the graphics processing system, but also provides
the synchronous data output needed by the video output
driver. (Digital-to-analog conversion is also provided after
the frame buffer.) Such a frame buffer is usually imple
mented using VRAM memory chips (or sometimes with
DRAM: and special DRAM: controllers). This interface
relieves the graphics processing system of most of the
burden of synchronization for video output. Nevertheless.
the amounts of data which must be moved around are very
sizable. and the computational and data-transfer burden of
placing the correct data into the frame buffer can still be very
large.

Even if the computational operations required are quite
simple. they must be performed repeatedly on a large
number of data points. For example. in a typical 1995
high-end configuration. a display of 1280x1024 elements
may need to be refreshed at 72 Hz, with a color resolution

2
of 24 bits per pixel. If blending is desired. additional bits
(e.g. another 8 bits per pixel) will be required to store an
"alpha" or transparency value for each pixel. This implies
manipulation of more than 3 billion bits per second, without

5 allowing for any of the actual computations being per
formed. Thus it may be seen that this is an environment with
unique data manipulation requirements.

If the display is unchanging. no demand is placed on the
rendering operations. However. some common operations

10 (such as zooming or rotation) will require every object in the
image space to be re-rendered. Slow rendering will make the
rotation or zoom appear jerky. This is highly undesirable.
Thus efficient rendering is an essential step in translating an
image representation into the correct pixel values. This is

15 particularly true in animation applications. where newly
rendered updates to a computer graphics display must be
generated at regular intervals.

The rendering requirements of three-dimensional graph
ics are particularly heavy. One reason for this is that. even

20 after the three-dimensional model has been translated to a
two-dimensional model. some computational tasks may be
bequeathed to the rendering process. (For example, color
values will need to be interpolated across a triangle or other
primitive.) These computational tasks tend to burden the

25 rendering process. Another reason is that since three
dimensional graphics are much more lifelike. users are more
likely to demand a fully rendered image. (By contrast. in the
two-dimensional images created e.g. by a GUI or simple
game, users will learn not to expect all areas of the scene to

30 be active or filled with information.)
FIG. lA is a very high-level view of other processes

performed in a 3D graphics computer system. A three
dimensional image which is defined in some fixed 3D
coordinate system (a ''world" coordinate system) is trans-

35 formed into a viewing volume (determined by a view
position and direction). and the parts of the image which fall
outside the viewing volume are discarded. The visible
portion of the image volume is then projected onto a viewing
plane, in accordance with the familiar rules of perspective.

40 This produces a two-dimensional image, which is now
mapped into device coordinates. It is important to under
stand that all of these operations occur prior to the operations
performed by the rendering subsystem of the present inven
tion. FIG. lB is an expanded version of FIG. lA. and shows

45 the flow of operations defined by the OpenGL standard.
A vast amount of engineering effort has been invested in

computer graphics systems. and this area is one of increasing
activity and demands. Numerous books have discussed the
requirements of this area; see. e.g .• ADVANCES IN COMPUIER

50 GRAPHics (ed. Enderle 1990-); Chellappa and Sawchuk.
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); COM
PUlER GRAPmcs HARDWARE (ed. Reghbati and Lee 1988);
COMPUIER GRAPHics: IMAGE SYNIHESIS (ed. Joy et al.);
Foley et al .• FuNDAMENTALS OF lNIERACTIVE CoMPU1ER

55 GRAPmcs (2.ed. 1984); Foley. CoMPUTER GRAPmcs PRIN
ciPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO
COMPUIER GRAPIDCS (1994); Giloi, Interactive Computer
Graphics (1978); Hearn and Baker. CoMPUIER GRAPmcs
(2.ed. 1994); Hill. COMPUIER GRAPmcs (1990); Latham,

60 DICTIONARY OF COMPU1ER GRAPJnCS (1991); Magnenat
Thalma, IMAGE SYNTIIESIS THEoRY & PRACTICE (1988);
Newman and Sproull, PRINclPI..ES OF INTERACTIVE COM
PUTER GRAPIDCS (2.ed. 1979); PlcruRE ENGINEERING (ed. Fu
and Kunii 1982); PICTURE PROCESSING & DIGITAL FILTERING

65 (2.ed. Huang 1979); Prosise. How COMPUIER GRAPIDCS
WORK (1994); Rimmer, BIT MAPPED GRAPJDCS (2.ed. 1993);
Salmon, COMPU1ER GRAPIDCS SYSTEMS & CONCEPTS

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
3 4

(1987); Schachter. CoMPUTER IMAGE GENERATION (1990); The OpenGL standard provides a complete library of
Watt. THREE-DIMENSIONAL CoMPUTER GRAPmcs (2.ed. low-level graphics manipulation corrunands. which can be
1994); Scott Whitman. MULTIPROCESSOR ME1Hons FOR used to implement three-dimensional graphics operations.
CoMPUIER GRAPmcs RENDERING; the SIGGRAPH PRo- This standard was originally based on the proprietary stan-
CEEDINGS for the years 1980-1994; and the IEEE Computer 5 dards of Silicon Graphics, Inc .• but was later transformed
Graphics and Applications magazine for the years into an open standard. It is now becoming extremely
1990-1994. important. not only in high-end graphics-intensive
Background: Graphics Animation workstations. but also in high-end PCs. OpenGL is sup-

In many areas of computer graphics a succession of ported by Windows NT™. which makes it accessible to
slowly changing pictures are displayed rapidly one after the 10 many PC applications.
other. to give the impression of smooth movement, in much The OpenGL specification provides some constraints on
the same way as for cartoon animation. In general the higher the sequence of operations. For instance. the color DDA
the speed of the animation, the smoother (and better) the operations must be performed before the texturing
result. operations, which must be performed before the alpha

When an application is generating animation images, it is 15 operations. (A "DDA'' or digital differential analyzer. is a
normally necessary not only to draw each picture into the conventional piece of hardware used to produce linear
frame buffer, but also to first clear down the frame buffer, gradation of color (or other) values over an image area.)
and to dear down auxiliary buffers such as depth (Z) buffers, Other graphics interfaces (or "APis"), such as PHIGS or
stencil buffers, alpha buffers and others. A good treatment of XGL. are also current as of 1995; but at the lowest level.
the general principles may be found in Computer Graphics: 20 OpenGL is a superset of most of these.
Principles and Practice. James D. Foley et al .. Reading The OpenGL standard is described in the OPENGL PRO-
Mass.: Addison-Wesley. A specific description of the various GRAMMING GUIDE (1993), the OPENGL REFERENCE
auxiliary buffers may be found in The OpenGL Graphics MANUAL (1993), and a book by Segal and Akeley (of SGI)
System: A Specification (Version 1.0), Mark Segal and Kurt entitled THE OPENGL GRAPmcs SYS1EM: A SPECIFICATION
Akeley, SGL 25 (Version 1.0).

In most applications the value written, when clearing any FIG. IBis an expanded version of FIG. IA. and shows the
given buffer. is the same at every pixel location. though fiow of operations defined by the OpenGL standard. Note
different values may be used in different auxiliary buffers. that the most basic model is carried in terms of vertices, and
Thus the frame buffer is often cleared to the value which these vertices are then assembled into primitives (such as
corresponds to black. while the depth (Z) buffer is typically 30 triangles. lines, etc.). After all manipulation of the primitives
cleared to a value corresponding to infinity. has been completed, the rendering operations will translate

The time taken to clear down the buffers is often a each primitive into a set of "fragments." (A fragment is the
significant portion of the total time taken to draw a frame, so portion of a primitive which affects a single pixel.) Again. it
it is important to minimize it. should be noted that all operations above the block marked
Background: Parallelism in Graphics Processing 35 "Rasterization" would be performed by a host processor. or

Due to the large number of at least partially independent possibly by a "geometry engine" (i.e. a dedicated processor
operations which are performed in rendering, many propos- which performs rapid matrix multiplies and related data
als have been made to use some form of parallel architecture manipulations), but would normally not be performed by a
for graphics (and particularly for rendering). See. for dedicated rendering processor such as that of the presently
example, the special issue of Computer Graphics on parallel 4<l preferred embodiment.
rendering (September 1994). Other approaches may be One disadvantage of standards such as OpenGL is that
found in earlier patent filings by the assignee of the present they require that texturing or other processor-intensive
application and its predecessors, e.g. U.S. Pat. No. 5,195. operations be performed on data before pixel elimination
186. and published PCT applications PCT/GB90/00987, tests, e.g. depth testing, is performed. which wastes proces-
PCT/GB90/01209, PCT/GB90/01210, PCT/GB90/01212. 45 sor time by performing costly texturing calculations on
PCT/GB90/01213. PCT/GB90/01214. PCT/GB90/01215. pixels which will be eliminated later in the pipeline. When
and PCf/GB90/01216. the OpenGL specification is not required or when the current
Background: Pipelined Processing Generally OpenGI state vector cannot eliminate pixels as a result of the

There are several general approaches to parallel process- alpha test, however. it would be much more efficient to
ing. One of the basic approaches to achieving parallelism in 50 eliminate as many pixels as possible before doing these
computer processing is a technique known as pipelining. In calculations. The present awlication discloses a method and
this technique the individual processors are. in effect. con- device for reordering the processing steps in the rendering
nected in series in an assembly-line configuration: one pipeline to either accommodate order-specific specifications
processor performs a first set of operations on one chunk of such as OpenGL. or to provide for an optimized throughput
data. and then passes that chunk along to another processor 55 by only performing processor-intensive operations on pixels
which performs a second set of operations, while at the same which will actually be displayed.
time the first processor performs the first set operations Background: Texturing
again on another chunk of data. Such architectures are Texture patterns are commonly used as a way to apply
generally discussed in Kogge. THE ARcHITECIURE OF PIPE- realistic visual detail at the sub-polygon level. See Foley et
LINED COMPUTERS (1981). 60 al .. CoMPUIER GRAPIDCS: PRINCIPLES AND PRACTICE (2.ed.
Background: The OpenGL™ Standard 1990. coer. 1995), especially at pages 741-744; Paul S.

The "OpenGL" standard is a very important software Heckbert. "Fundamentals of Texture Mapping and Image
standard for graphics applications. In any computer system Warping," Thesis submitted to Dept. of EE and Computer
which supports this standard. the operating system(s) and Science. University of California. Berkeley. Jun. 17, 1994;
application software programs can make calls according to 65 Heckbert. "Survey of Computer Graphics." IEEE Computer
the OpenGL standards. without knowing exactly what the Graphics. November 1986. pp.56ff. Since the surfaces are
hardware configuration of the system is. transformed (by the host or geometry engine) to produce a

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
5 6

FIG. 3B shows another sample graphics board
implementation. which differs from the board of FIG. 3A in
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with GUI
accelerator chip.

2D view. the textures will need to be similarly transformed
by a linear transform (normally projective or "affine"). (In
conventional terminology. the coordinates of the object
surface, i.e. the primitive being rendered. are referred to as
an (s.t) coordinate space. and the map of the stored texture
is referred to a (u.v) coordinate space.) The transformation
in the resulting mapping means that a horizontal line in the
(x.y) display space is very likely to correspond to a slanted
line in the (u.v) space of the texture map. and hence many
page breaks will occur, due to the texturing operation, as
rendering walks along a horizontal line of pixels.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with a

10 video coprocessor (which may be used for video capture and
playback functions.

Innovative System and Methods FIG. 4A illustrates the definition of the dominant side and
the subordinate sides of a triangle.

FIG. 4B illustrates the sequence of rendering an Anti
aliased Line primitive.

FIG. SA is a detailed view of the router unit of the
presently preferred embodiment.

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon- 15

figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL. but may also be opti
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment. pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed. so
that unneeded pixel data is discarded before said texturing
calculations are performed.

FIG. SB is a detailed view of the data path through the
20 router unit of the presently preferred embodiment when

operating in a first mode.

25 It is noted that the texturing operations become more
computation-intense. early elimination of unneeded pixels
becomes even more valuable. For example. Phong shading
and bump mapping both require many more operations than
more common shading and texture mapping techniques, thus
making the system of the present application even more 30

valuable in real-time rendering systems.
An overhead cost is that the reconfigurable portion of the

pipeline must be flushed at each reconfiguration--but since
reconfiguration is normally done only on a per-primitive

35
basis. or even less frequently. this is a relatively small cost.

BRIEF DESCR1PTION OF THE DRAWING

The disclosed inventions will be described with reference
to the accompanying drawings. which show important 40
sample embodiments of the invention and which are incor
porated in the specification hereof by reference, wherein:

FIG. lA, described above, is an overview of key elements
and processes in a 3D graphics computer system.

FIG. lB is an expanded versionofFIG.lA. and shows the 45

flow of operations defined by the OpenGL standard.
FIG. 2A is an overview of the graphics rendering chip of

the preferred embodiment of the parent case.
FIG. 2B is an overview of the graphics rendering chip of

the presently preferred embodiment. 50

FIG. 2C is a more schematic view of the sequence of
operations performed in the graphics rendering chip of FIG.
2B. when operating in a first mode.

FIG. 2D is a different view of the graphics rendering chip
55

of FIG. 2B. showing the connections of a readback bus
which provides a diagnostic pathway.

FIG. 2E is yet another view of the graphics rendering chip
of FIG. 2B, showing how the functions of the core pipeline
of FIG. 2C are combined with various external interface 60
functions.

FIG. SC is a detailed view of the data path through the
router unit of the presently preferred embodiment when
operating in a second mode.

DErAILED DESCRIPITON OF THE
PREFERRED EM:BODIMENTS

The numerous innovative teachings of the present appli
cation will be described with particular reference to the
presently preferred embodiment (by way of example. and
not of limitation). The presently preferred embodiment is a
GLINT™ 400TX™ 3D rendering chip. The Hardware Ref
erence Manual and Programmer's Reference Manual for this
chip describe further details of this sample embodiment.
Both are available, as of the effective filing date of this
application, from 3Dlabs Inc. Ltd. 181 Metro Drive. Suite
520. San Jose Calif. 95110.

Definitions

The following definitions may help in understanding the
exact meaning of terms used in the text of this application:
application: a computer program which uses graphics ani

mation.
depth (Z) buffer: A memory buffer containing the depth

component of a pixel. Used to, for example, eliminate
hidden surfaces.

blt double-buffering: A technique for achieving smooth
animation. by rendering only to an undisplayed back
buffer. and then copying the back buffer to the front once
drawing is complete.

Frame Count Planes: Used to allow higher animation rates by
enabling DRAM local buffer pixel data, such as depth (Z),
to be cleared down quickly.

frame buffer: An area of memory containing the displayable
color buffers (front, back, left, right, overlay. underlay).
This memory is typically separate from the local buffer.

local buffer: An area of memory which may be used to store
non-displayable pixel information: depth(Z). stencil.
FrameCount and GID planes. This memory is typically
separate from the framebuffer.

FIG. 2F is yet another view of the graphics rendering chip
of FIG. 2B. showing how the details of FIFO depth and
lookahead are implemented, in the presently preferred
embodiment.

pixel: Picture element. A pixel comprises the bits in all the
buffers (whether stored in the local buffer or framebu1fer).
corresponding to a particular location in the framebuffer.

65 stencil buffer: A buffer used to store information about a
FIG. 3A shows a sample graphics board which incorpo

rates the chip of FIG. 2B.
pixel which controls how subsequent stencilled pixels at
the same location may be combined with the current value

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
7

in the framebuffer. Typically used to mask complex
two-dimensional shapes.

Preferred Chip Embodiment-Overview

8
message is modified and passed on. The temptation is not to
pass the message on when the test fails (because the pixel is
not going to be updated), but other units downstream need
to keep their local DDA units in step.

(In the present application, the messages are being
described in general terms so as not to be bogged down in
detail at this stage. The details of what a 'new fragment'
message actually specifies (i.e. coordinate. color
information) is left till later. In general, the term "pixel" is

The GLINT™ high performance graphics processors 5

combine workstation class 3D graphics acceleration, and
state-of-the-art 2D performance in a single chip. All 3D
rendering operations are accelerated by GLINT, including
Gouraud shading. texture mapping, depth buffering, anti
aliasing. and alpha blending. 10

used to describe the picture element on the screen or in
memory. The term "fragment" is used to describe the part of
a polygon or other primitive which projects onto a pixel.
Note that a fragment may only cover a part of a pixel.) When
the Texture Read Unit (if enabled) gets a 'new fragment'
message. it will calculate the texture map addresses. and will

The scalable memory architecture of GLINT makes it
ideal for a wide range of graphics products. from PC boards
to high-end workstation accelerators.

There will be several of the GLINT family of graphics
processors: the GLINT 300SX™ is the embodiment of the
parent case, and the GLINT 400TX™ is a presently pre
ferred embodiment which is which is described herein in
great detail. The two devices are generally compatible, with
the 40<YIX adding local texture storage and texel address
generation for all texture modes.

15 accordingly provide 1. 2, 4 or 8 texels to the next unit
together with the appropriate number of interpolation coef
ficients.

FlG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment (i.e. the GLINT
400'J'XTM).

Each unit and the message passing are conceptually
running asynchronous to all the others. However, in the

20 presently preferred embodiment there is considerable syn
chrony because of the common clock.

How does the host process send messages? The message
data field is the 32 bit data written by the host, and the
message tag is the bottom 9 bits of the address (excluding

General Concept
25 the byte resolution address lines). Writing to a specific

address causes the message type associated with that address
to be inserted into the message queue. Alternatively. the
on-chip DMA controller may fetch the messages from the

The overall architecture of the GLINT chip is best viewed
using the software paradigm of a message passing system. In
this system all the processing blocks are connected in a long
pipeline with communication with the adjacent blocks being
done through message passing. Between each block there is 30
a small amount of buffering, the size being specific to the
local communications requirements and speed of the two
blocks.

host's memory.
The message throughput, in the presently preferred

embodiment, is 50M messages per second and this gives a
fragment throughput of up to 50M per second, depending on
what is being rendered. Of course, this rate will predictably
be further increased over time, with advances in process The message rate is variable and depends on the rendering

mode. The messages do not propagate through the system at
a fixed rate typical of a more traditional pipeline system. If
the receiving block can not accept a message. because its
input buffer is full, then the sending block stalls until space

35 technology and clock rates.
Linkage

is available.
The message structure is fundamental to the whole system

The block diagram of FlG. 2A shows how the units are
connected together in the GLINT 300SX embodiment, and
the block diagram of FlG. 2B shows how the units are

40 connected together in the presently preferred embodiment.
as the messages are used to control, synchronize and inform
each block about the processing it is to undertake. Each
message has two fields-a 32 bit data field and a 9 bit tag
field. (This is the minimum width guaranteed, but some local
block to block connections may be wider to accommodate

45
more data) The data field will hold color information,
coordinate information, local state information. etc. The tag
field is used by each block to identify the message type so
it knows how to act on it.

Each block. on receiving a message, can do one of several
50

things:
Not recognize the message so it just passes it on to the

next block.
Recognize it as updating some local state (to the block) so

the local state is updated and the message terminated. 55
i.e. not passed on to the next block.

Recognize it as a processing action, and if appropriate to
the unit, the processing work specific to the unit is
done. This may entail sending out new messages such
as Color and/or modifying the initial message before 60

sending it on. Any new messages are injected into the
message stream before the initial message is forwarded
on. Some examples will clarify this.

Some general points are:
The following functionality is present in the 400IX, but

missing from the 300SX: The Texture Address (TAddr)
and Texture Read (TRd) Units are missing. Also, the
router and multiplexer are missing from this section, so
the unit ordering is Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc.

In the embodiment of FlG. 2B, the order of the units can
be configured in two ways. The most general order
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd,
GIDfZJStencil, LB Wr, Multiplexer) and will work in
all modes of OpenGL. However, when the alpha test is
disabled it is much better to do the Graphics ID. depth
and stencil tests before the texture operations rather
than after. This is because the texture operations have
a high processing cost and this should not be spent on
fragments which are later rejected because of window,
depth or stencil tests.

The loop back to the host at the bottom provides a simple
synchronization mechanism. The host can insert a Sync
command and when all the preceding rendering has
finished the sync command will reach the bottom host
interface which will notify the host the sync event has
occurred. When the Depth Block receives a message 'new

fragment', it will calculate the corresponding depth and do
the depth test. If the test passes then the 'new fragment'
message is passed to the next unit. If the test fails then the

65 Benefits
The very modular nature of this architecture gives great

benefits. Each unit lives in isolation from all the others and

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
9

has a very well defined set of input and output messages.
This allows the internal structure of a unit (or group of units)
to be changed to make algorithmic/speed/gate count trade
otis.

The isolation and well defined logical and behavioral 5

interface to each unit allows much better testing and veri
fication of the correctness of a unit.

The message passing paradigm is easy to simulate with
software, and the hardware design is nicely partitioned. The
architecture is self synchronizing for mode or primitive 10

changes.
The host can mimic any block in the chain by inserting

messages which that block would normally generate. These
message would pass through the earlier blocks to the mim
icked block unchanged and from then onwards to the rest of 15
the blocks which cannot tell the message did not originate
from the expected block. This allows for an easy work
around mechanism to correct any flaws in the chip. It also
allows other rasterization paradigms to be implemented
outside of the chip, while still using the chip for the low level 20

pixel operations.
"A Day in the Life of a Triangle"

Before we get too detailed in what each unit does it is
worth while looking in general terms at how a primitive (e.g.
triangle) passes through the pipeline, what messages are 25

generated, and what happens in each unit. Some simplifi
cations have been made in the description to avoid detail
which would otherwise complicate what is really a very
simple process. The primitive we are going to look at is the
familiar Gouraud shaded Z buffered triangle, with dithering. 30

It is assumed any other state (i.e. depth compare mode) has
been set up, but (for simplicity) such other states will be
mentioned as they become relevant.
The application generates the triangle vertex information

and makes the necessary OpenGL calls to draw it. 35

The OpenGL server/library gets the vertex information.
transforms, clips and lights it. It calculates the initial
values and derivatives for the values to interpolate (X/eft'
Xrighr red, green. blue and depth) for unit change in dx
and dxdy lefr All these values are in fixed point integer and 40

have unique message tags. Some of the values (the depth
derivatives) have more than 32 bits to cope with the
dynamic range and resolution so are sent in two halves
Finally. once the derivatives, start and end values have
been sent to GLINT the 'render triangle' message is sent 45

On GLINT: The derivative. start and end parameter mes
sages are received and filter down the message stream to
the appropriate blocks. The depth parameters and deriva
tives to the Depth Unit; the RGB parameters and deriva
tive to the Color DDA Unit; the edge values and deriva- 50

tives to the Rasterizer Unit.
The 'render triangle' message is received by the rasterizer

unit and all subsequent messages (from the host) are
blocked until the triangle has been rasterized (but not
necessarily written to the frame store). A 'prepare to 55

render' message is passed on so any other blocks can
prepare themselves.

10
message stream. The two groups are distinguished by a
single bit in the message tag. The step messages (in either
form) are always passed throughout the length of the
message stream. and are used by all the DDA units to keep
their interpolation values in step. The step message effec
tively identifies the fragment and any other messages
pertaining to this fragment will always precede the step
message in the message stream.

The Scissor and Stipple Unit. This unit does 4 tests on the
fragment (as embodied by the active step message). The
screen scissor test takes the coordinates associated with
the step message, converts them to be screen relative (if
necessary) and compares them against the screen bound
aries. The other three tests (user scissor. line stipple and
area stipple) are disabled for this example. If the enabled
tests pass then the active step is forwarded onto the next
unit, otherwise it is changed into a passive step and then
forwarded.

The Color DDA unit responds to an active step message by
generating a Color message and sending this onto the next
unit. The active step message is then forwarded to the next
unit. The Color message holds. in the data field. the
current RGBA value from the DDA. If the step message
is passive then no Color message is generated After the
Color message is sent (or would have been sent) the step
message is acted on to increment the DDA in the correct
direction, ready for the next pixel.

Texturing. Fog and Alpha Tests Units are disabled so the
messages just pass through these blocks.

In general terms the Local Buffer Read Unit reads the
Graphic ID. Stencil and Depth information from the Local
Buffer and passes it onto the next unit. More specifically
it does:
1. If the step message is passive then no further action

occurs.
2. On an active step message it calculates the linear

address in the local buffer of the required data. This is
done using the (X, Y) position recorded in the step
message and locally stored information on the 'screen
width' and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Local Buffer Interface
Unit and the identified local buffer location read. The
write address is held for use later.

4. Sometime later the local buffer data is returned and is
formatted into a consistent internal format and inserted
into a 'Local Buffer Data' message and passed on to the
next unit.
The message data field is made wider to accommodate

the maximum Local Buffer width of 52 bits (32
depth, 8 stencil. 4 graphic ID, 8 frame count) and this
extra width just extends to the Local Buffer Write
block.

The actual data read from the local buffer can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The narrower data
is formatted into a consistent internal format in this
block.

The Graphic ID. Stencil and Depth Unit just passes the
The Rasterizer Unit walks the left and right edges of the

triangle and fills in the spans between. As the walk
progresses messages are send to indicate the direction of
the next step: StepX or StepYDomEdge. The data field
holds the current (x. y) coordinate. One message is sent
per pixel within the triangle boundary. The step messages
are duplicated into two groups: an active group and a
passive group. The messages always start off in the active
group but may be changed to the passive group if this
pixel fails one of the tests (e.g. depth) on its path down the

60 Color message through and stores the LBData message
until the step message arrives. A passive step message
would just pass straight through. When the active step
message is received the internal Graphic ID. stencil and
depth values are compared with the ones in the LBData

65 message as specified by this unit's mode information. If
the enabled tests pass then the new local buffer data is sent
in the LBWriteData message to the next unit and the

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
11

active step message forwarded. If any of the enabled tests
fail then an LBCancelWrite message is sent followed by
the equivalent passive step message. The depth DDA is
stepped to update the local depth value.

The Local Buffer Write Unit performs any writes which are 5
necessary. The LBWriteData message has its data format
ted into the external local buffer format and this is posted
to the Local Buffer Interface Unit to be written into the
memory (the write address is already waiting in the Local
Buffer Interface Unit). The LBWriteCancel message just

10 informs the Local Buffer Interface Unit that the pending
write address is no longer needed and can be discarded.
The step message is just passed through.

In general terms the Framebuffer Read Unit reads the color
information from the framebuffer and passes it onto the
next unit. More specifically it does: 15

1. H the step message is passive then no further action
occurs.

12
remember that at any instant in time there are many frag
ments flowing down the message stream and the further
down they reach the more processing has occurred.
Interfacing Between Blocks FlG. 2B shows the FIFO buff
ering and lookahead connections which are used in the
presently preferred embodiment. The FlFOs are used to
provide an asynchronous interface between blocks. but are
expensive in terms of gate count. Note that most of these
FlFOs are only one stage deep (except where indicated).
which reduces their area. To maintain performance. looka
head connections are used to accelerate the "startup" of the
pipeline. For example. when the Local-Buffer-Read block
issues a data request. the Texture/Fog/Color blocks also
receive this, and begin to transfer data accordingly. Nor
mally a single-entry deep FIFO cannot be read and written
in the same cycle. as the writing side doesn't know that the
FlFO is going to be read in that cycle (and hence become
eligible to be written). The look-ahead feature give the
writing side this insight. so that single-cycle transfer can be 2. On an active step message it calculates the linear

address in the framebuffer of the required data. This is
done using the (X. Y) position recorded in the step
message and locally stored information on the 'screen
width' and window base address. Separate read and
write addresses are calculated.

20 achieved. This accelerates the throughput of the pipeline.

Programming Model

The following text describes the programming model for
GLINT.
GLINT as a Register file

3. The addresses are passed to the Framebuffer Interface 25
Unit and the identified framebuffer location read. The
write address is held for use later. The simplest way to view the interface to GLINT is as a

flat block of memory-mapped registers (i.e. a register file).
This register file appears as part of Region 0 of the PCI

30
address map for GLINT. See the GLINT Hardware Refer
ence Manual for details of this address map.

4. Sometime later the color data is returned and inserted
into a 'Frame Buffer Data' message and passed on to
the next unit.
The actual data read from the framestore can be in

several formats to allow narrower width memories to
be used in cost sensitive systems. The formatting of
the data is deferred until the Alpha Blend Unit as it
is the only unit which needs to match it up with the
internal formats. In this example no alpha blending
or logical operations are taking place, so reads are
disabled and hence no read address is sent to the
Framebuffer Interface Unit. The Color and step mes
sages just pass through.

The Alpha Blend Unit is disabled so just passes the messages
through.

The Dither Unit stores the Color message internally until an
active step is received. On receiving this it uses the least
significant bits of the (X, Y) coordinate information to
dither the contents of the Color message. Part of the
dithering process is to convert from the internal color
format into the format of the framebuffer. The new color
is inserted into the Color message and passed on, followed
by the step message.

The Logical Operations are disabled so the Color message is
just converted into the FBWriteData message Gust the tag
changes) and forwarded on to the next unit. The step
message just passes through.

35

40

When a GLINT host software driver is initialized it can
map the register file into its address space. Each register has
an associated address tag. giving its offset from the base of
the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of 8 bytes).
The most straightforward way to load a value into a register
is to write the data to its mapped address. In reality the chip
interface comprises a 16 entry deep FIFO. and each write to
a register causes the written value and the register's address
tag to be written as a new entry in the FIFO.

Programming GLINT to draw a primitive consists of
writing initial values to the appropriate registers followed by
a write to a command register. The last write triggers the
start of rendering.

45 GLINT has approximately 200 registers. All registers are
32 bits wide and should be 32-bit addressed. Many registers
are split into bit fields. and it should be noted that bit 0 is the
least significant bit.
Register Types

50 GLINT has three main types of register:

The Framebuffer Write Unit performs any writes which are 55
necessary.

Control Registers
Command Registers
Internal Registers
Control Registers are updated only by the host-the chip

effectively uses them as read-only registers. Examples of
control registers are the Scissor Clip unit min and max
registers. Once initialized by the host, the chip only reads
these registers to determine the scissor clip extents.

The FBWriteData message has its data posted to the
Framebuffer Interface Unit to be written into the
memory (the write address is already waiting in the
Framebuffer Interface Unit).

The step message is just passed through.
The Host Out Unit is mainly concerned with synchroniza

tion with the host so for this example will just consume
any messages which reach this point in the message
stream.
This description has concentrated on what happens as one

fragment flows down the message stream. It is important to

60 Command Registers are those which, when written to.
typically cause the chip to start rendering (some command
registers such as ResetPickResult or Sync do not initiate
rendering). Normally. the host will initialize the appropriate
control registers and then write to a command register to

65 initiate drawing. There are two types of command registers:
begin-draw and continue-draw. Begin-draw commands
cause rendering to start with those values specified by the

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
13

control registers. Continue-draw commands cause drawing
to continue with internal register values as they were when
the previous drawing operation completed. Making use of
continue-draw commands can significantly reduce the
amount of data that has to be loaded into GLINT when
drawing multiple connected objects such as polylines.
Examples of command registers include the Render and
ContinueNewLine registers.

For convenience this application will usually refer to
"sending a Render command to GLINT" rather than saying
(more precisely) "the Render Command register is written
to. which initiates drawing".

Internal Registers are not accessible to host software.
They are used internally by the chip to keep track of
changing values. Some control registers have corresponding
internal registers. When a begindraw command is sent and
before rendering starts. the internal registers are updated
with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not
happen and drawing continues with the current values in the
internal registers. For example. if a line is being drawn then
the StartXDom and StartY control registers specify the (x. y)
coordinates of the first point in the line. When a begin-draw
command is sent these values are copied into internal
registers. As the line drawing progresses these internal
registers are updated to contain the (x. y) coordinates of the
pixel being drawn. When drawing has completed the internal
registers contain the (x. y) coordinates of the next point that
would have been drawn. If a continue-draw command is
now given these final (x. y) internal values are not modified
and further drawing uses these values. If a begin-draw
command had been used the internal registers would have
been reloaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It is
helpful to appreciate that they exist in order to understand
the continue-draw commands.
GLINT J/0 Interface

There are a number of ways of loading GLINT registers
for a given context:

The host writes a value to the mapped address of the
register

The host writes address-tag/data pairs into a host memory
buffer and uses the on-chip DMA to transfer this data
to the FIFO.

The host can perform a Block Command Transfer by
writing address and data values to the FIFO interface
registers.

In all cases where the host writes data values directly to
the chip (via the register file) it has to worry about FIFO
overtlow. The InFIFOSpace register indicates how many
free entries remain in the FIFO. Before writing to any
register the host must ensure that there is enough space left
in the FIFO. The values in this register can be read at any
time. When using DMA. the DMA controller will automati
cally ensure that there is room in the FIFO before it performs
further transfers. Thus a buffer of any size can be passed to
the DMA controller.

FIFO Control
The description above considered the GLINT interface to

be a register file. More precisely. when a data value is
written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry.
The actual register is not updated until GLINT processes this
entry. In the case where GLINT is busy performing a time
consuming operation (e.g. drawing a large texture mapped
polygon). and not draining the FIFO very quickly. it is
possible for the FIFO to become full. If a write to a register

14
is performed when the FIFO is full no entry is put into the
FIFO and that write is effectively lost.

The input FIFO is 16 entries deep and each entry consists
of a tag/data pair. The InFIFOSpace register can be read to

5 determine how many entries are free. The value returned by
this register will never be greater than 16.

To check the status of the FIFO before every write is very
inefficient. so it is preferably checked before loading the data
for each rectangle. Since the FIFO is 16 entries deep. a

10 further optimization is to wait for all 16 entries to be free
after every second rectangle. Further optimizations can be
made by moving dXDom. dXSub and dY outside the loop
(as they are constant for each rectangle) and doing the FIFO
wait after every third rectangle.

15 The InFIFOSpace FIFO control register contains a count
of the number of entries currently free in the FIFO. The chip
increments this register for each entry it removes from the
FIFO and decrements it every time the host puts an entry in
the FIFO.

20 The DMA Interface
Loading registers directly via the FIFO is often an inef

ficient way to download data to GLINT. Given that the FIFO
can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much

25 space is left. Also, consider the situation where a given API
function requires a large amount of data to be sent to GLINT.
If the FIFO is written directly then a return from this
function is not possible until almost all the data has been
consumed by GLINT. This may take some time depending

30 on the types of primitives being drawn.
To avoid these problems GLINT provides an on-chip

DMA controller which can be used to load data from
arbitrary sized (<64K 32-bit words) host buffers into the
FIFO. In its simplest form the host software has to prepare

35 a host buffer containing register address tag descriptions and
data values. It then writes the base address of this buffer to

the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the
DMACount register starts the DMA transfer and the host can

40 now perform other work. In general, if the complete set of
rendering commands required by a given call to a driver
function can be loaded into a single DMA buffer then the
driver function can return. Meanwhile. in parallel. GLINT is
reading data from the host buffer and loading it into its FIFO.

45 FIFO overtlow never occurs since the DMA controller
automatically waits until there is room in the FIFO before
doing any transfers.

The only restriction on the use of DMA control registers
is that before attempting to reload the DMACount register

50 the host software must wait until previous DMA has com
pleted. It is valid to load the DMAAddress register while the
previous DMA is in progress since the address is latched
internally at the start of the DMA transfer.

Using DMA leaves the host free to return to the
55 application. while in parallel. GLINT is performing the

DMA and drawing. This can increase performance signifi
cantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g.
drawing the same object across multiple clipping

60 rectangles). Since the GLINT DMA only reads the buffer
data. it can be downloaded many times simply by restarting
the DMA. This can be very beneficial if composing the
buffer data is a time consuming task.

The host can use this hardware capability in various ways.
65 For example, a further optional optimization is to use a

double buffered mechanism with two DMA buffers. This
allows the second buffer to be filled before waiting for the

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
15 16

previous DMA to complete. thus further improving the groups and within each group there are up to 16 tags. The
parallelism between host and GLINT processing. Thus. this low-order 4 bits of a tag give its offset within the group. The
optimization is dependent on the allocation of the host high-order 5 bits give the major group number.
memory. If there is only one DMA host buffer then either it The following Register Table lists the individual registers
is being filled or it is being emptied-it cannot be filled and 5 with their Major Group and Offset in the presently preferred
emptied at the same time. since there is no way for the host embodiment:
and DMA to interact once the DMA transfer has started. The Register Table
host is at liberty to allocate as many DMA buffers as it The following table lists registers by group. giving their
wants; two is the minimum to do double buffering. but tag values and indicating their type. The register groups may
allocating many small buffers is generally better. as it gives 10 be used to improve data transfer rates to GLINT when using
the benefits of double buffering together with low latency DMA.
time, so GLINT is not idle while large buffer is being filled The following types of register are distinguished:
up. However. use of many small buffers is of course more
complicated

In general the DMA buffer format consists of a 32-bit 15 Major Off-

address tag description word followed by one or more data Group set

words. The DMA buffer consists of one or more sets of these Unit Register (hex) (hex) Type

formats. The following paragraphs describe the different Rasterizer StartXDom 00 0 Con1rol
types of tag description words that can be used. dXDom 00 1 Con1rol

20
StartXSub 00 2 Con1rol

DMA Tag Description Format dXSub 00 3 Conttol

There are 3 different tag addressing modes for DMA: StartY 00 4 Con1rol
dY 00 5 Con1rol

hold. increment and indexed. The different DMA modes are Couot 00 6 Con1rol
provided to reduce the amount of data which needs to be Render 00 7 Command
transferred. hence making better use of the available DMA ContinueNewLine 00 8 Command

bandwidth. Each of these is described in the following 25 ContinueNewDom 00 9 Command

sections. ContinueNewSub 00 A Command

Hold Format Continue 00 B Command
FlushSpan 00 c Command

In this format the 32-bit tag description contains a tag BitMaskPattem 00 D Mixed
value and a count specifying the number of data words Rasterizer Poinffable[G-3] 01 G-3 Con1rol

following in the buffer. The DMA controller writes each of 30 RasterizerMode 01 4 Con1rol

the data words to the same address tag. For example. this is Scissor ScissorMode 03 0 Con1rol

useful for image download where pixel data is continuously Stipple
ScissorMinXY 03 1 Con1rol

written to the Color register. The bottom 9 bits specify the ScissorMaxXY 03 2 Con1rol
register to which the data should be written; the high-order ScreenSize 03 3 Con1rol

16 bits specify the number of data words (minus 1) which 35 AreaStipp!eMode 03 4 Con1rol

follow in the buffer and which should be written to the LineStippleMode 03 5 Con1rol

address tag (note that the 2 -bit mode field for this format is LoadLineStipple 03 6 Con1rol
Couoters

zero so a given tag value can simply be loaded into the low UpdateLineStipple 03 7 Command
order 16 bits). Couoters

A special case of this format is where the top 16 bits are 40
SaveLineStipple 03 8 Command

zero indicating that a single data value follows the tag (i.e. State

the 32-bit tag description is simply the address tag value WmdowOrigin 03 9 Con1rol

itself). This allows simple DMA buffers to be constructed Scissor AreaStipplePat- 04 0-F Conttol
Stipple tern(G-31] 05 0-F

which consist of tag/data pairs. Texture Texe10 oc 0 Con1rol
Increment Format Color/Fog

This format is similar to the hold format except that as 45 Texell oc 1 Con1rol

each data value is loaded the address tag is incremented (the Texel2 oc 2 Con1rol
Texe13 oc 3 Con1rol

value in the DMA buffer is not changed; GLINT updates an Texe14 oc 4 Con1rol
internal copy). Thus. this mode allows contiguous GLINT Texel5 oc 5 Conttol
registers to be loaded by specifying a single 32-bit tag value Texel6 00 6 Con1rol

followed by a data word for each register. The low-order 9 50 Texel7 oc 7 Con1rol

bits specify the address tag of the first register to be loaded. InterpO oc 8 Con1rol

The 2 bit mode field is set to 1 and the high-order 16 bits are Interp1 oc 9 Con1rol
Interp2 oc A Con1rol

set to the count (minus 1) of the number of registers to Interp3 oc B Con1rol
update. To enable use of this format. the GLINT register file Interp4 oc c Con1rol

has been organized so that registers which are frequently 55 TextureFilter oc D Con1rol

loaded together have adjacent address tags. For example. the Texture/Fog TextureColor OD 0 Con1rol

32 AreaStipplePattern registers can be loaded as follows: Color Mode
TextureEnvColor OD 1 Con1rol
FogMode OD 2 Con1rol
FogColor OD 3 Con1rol

AreaStipplePattemO, Count=31, Mode=1
60

FStart OD 4 Con1rol
row 0 bits dFdx OD 5 Con1rol
row 1 bits dFdyDom OD 6 Con1rol

ColorDDA RStart OF 0 Con1rol
row 31 bits dRdx OF 1 Control

dRdyDom OF 2 Con1rol
GStart OF 3 Con1rol

Indexed Format 65 dGdx OF 4 Con1rol
GLINT address tags are 9 bit values. For the purposes of dGdyDom OF 5 Con1rol

the Indexed DMA Format they are organized into major

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
17 18

-continued DMA Buffer Addresses

Major Off- Host software must generate the correct DMA buffer
Group set address for the GLINT DMA controller. Normally. this

Unit Register (hex) (hex) Type means that the address passed to GLINT must be the
5

BStart OF 6 Control physical address of the DMA buffer in host memory. The
dBdx OF 7 Control buffer must also reside at contiguous physical addresses as
dBdyDom OF 8 Control accessed by GLINT. On a system which uses virtual
AStart OF 9 Control memory for the address space of a task. some method of
dAdx OF A Control allocating contiguous physical memory. and mapping this dAdyDom OF B Control 10
ColorDDAMode OF c Control into the address space of a task. must be used.
ConstantColor OF D Control If the virtual memory buffer maps to non-contiguous
Color OF E Mixed physical memory. then the buffer must be divided into sets Alpha Test AlphaTestMode 10 0 Control
AntialiasMode 10 1 Control of contiguous physical memory pages and each of these sets

Alpha Blend AlphaBiendMode 10 2 Control 15 transferred separately. In such a situation the whole DMA
Dither Dither Mode 3 Control buffer cannot be transferred in one go; the host software
Logical Ops FBSoftwareWrite 10 4 Control must wait for each set to be transferred. Often the best way Mask

LogicalOpMode 10 5 Control to handle these fragmented transfers is via an interrupt
FBWriteData 10 6 Control handler.

LB Read LBReadMode 11 0 Control
LBReadFormat 11 1 Control 20

LBSoUICeOffset 11 2 Control
DMA Interrupts

LBStencil 11 5 Output GLINT provides interrupt support. as an alternative
LBDepth 11 6 Output
LBWmdowBase 11 7 Control means of determining when a DMA transfer is complete. If

LB Write LBWriteMode 11 8 Control enabled. the interrupt is generated whenever the DMACount
LBWriteFormat 11 9 Control 25 register changes from having a non-zero to having a zero

GID/Stencill Wmdow 13 0 Control value. Since the DMACount register is decremented every
Depth

StencilMode 13 1 Control time a data item is transferred from the DMA buffer this
Stenci!Data 13 2 Control happens when the last data item is transferred from the DMA
Stencil 13 3 Mixed buffer.
DepthMode 13 4 Control 30 To enable the DMA interrupt. the DMAinterruptEnable Depth 13 5 Mixed
ZStartU 13 6 Control bit must be set in the IntEnable register. The interrupt
ZStartL 13 7 Control handler should check the DMAFlag bit in the IntFlags
dZdxU 13 8 Control register to determine that a DMA interrupt has actually
dZdxL 13 9 Control
dZdyDomU 13 A Control 35

occurred. To clear the interrupt a word should be written to
dZdyDomL 13 B Control the IntFiags register with the DMAFlag bit set to one.
FastClearDepth 13 c Control This scheme frees the processor for other work while

FB Read FBReadMode 15 0 Control
FBSourceOffset 15 1 Control DMA is being completed. Since the overhead of handling an
FBPixeiOffset 15 2 Control interrupt is often quite high for the host processor, the
FBColor 15 3 Output scheme should be tuned to allow a period of polling before
FBWmdowBase 15 6 Control 40

FB Write FBWriteMode 15 7 Control
sleeping on the interrupt

FBHardwareWrite 15 8 Control
Mask Output FIFO and Graphics Processor FIFO
FBBiockColor 15 9 Control Interface

Host Out FilterMode 18 0 Control
StatisticMode 18 1 Control 45 To read data back from GLINT an output FIFO is pro-
MinRegion 18 2 Control vided. Each entry in this FIFO is 32-bits wide and it can hold
MaxRegion 18 3 Control

tag or data values. Thus its format is unlike the input FIFO ResetPickResult 18 4 Command
MinHitRegion 18 5 Command whose entries are always tag/data pairs (we can think of each
MaxHitRegion 18 6 Command entry in the input FIFO as being 41 bits wide: 9 bits for the
PickResult 18 7 Command 50 tag and 32 bits for the data). The type of data written by
Sync 18 8 Command

GLINT to the output FIFO is controlled by the FilterMode
register. This register allows filtering of output data in

This format allows up to 16 registers within a group to be various categories including the following:
loaded while still only specifying a single address tag

55
Depth: output in this category results from an image

description word. upload of the Depth buffer.

If the Mode of the address tag description word is set to Stencil: output in this category results from an image
indexed mode. then the high-order 16 bits are used as a mask upload of the Stencil buffer.
to indicate which registers within the group are to be used. Color: output in this category results from an image
The bottom 4 bits of the address tag description word are 60 upload of the framebuffer.
unused. The group is specified by bits 4 to 8. Each bit in the Synchronization: synchronization data is sent in response
mask is used to represent a unique tag within the group. If to a Sync command.
a bit is set then the corresponding register will be loaded. The data for the Filter Mode register consists of 2 bits per
The number of bits set in the mask determines the number category. If the least significant of these two bits is set (Ox1)
of data words that should be following the tag description 65 then output of the register tag for that category is enabled;
word in the DMA buffer. The data is stored in order of if the most significant bit is set (0><2) then output of the data
increasing corresponding address tag. for that category is enabled. Both tag and data output can be

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
19

enabled at the same time. In this case the tag is written first
to the FIFO followed by the data.

For example. to perform an image upload from the
framebuffer. the FilterMode register should have data output
enabled for the Color category. Then. the rectangular area to 5

be uploaded should be described to the rasterizer. Each pixel
that is read from the framebuffer will then be placed into the
output FIFO. If the output FIFO becomes full. then GLINT
will block internally until space becomes available. It is the
programmer's responsibility to read all data from the output 10

FIFO. For example. it is important to know how many pixels
should result from an image upload and to read exactly this
many from the FIFO.

20
Other Interrupts

GLINT also provides interrupt facilities for the following:
Sync: If a Sync command is sent and the Sync interrupt has

been enabled then once all rendering has been completed,
a data value is entered into the Host Out FIFO. and a Sync
interrupt is generated when this value reaches the output
end of the FIFO. Synchronization is described further in
the next section.

External: this provides the capability for external hardware
on a GLINT board (such as an external video timing
generator) to generate interrupts to the host processor.

Error: if enabled the error interrupt will occur when GLINT
detects certain error conditions . such as an attempt to
write to a full FIFO.

Vertical Retrace: if enabled a vertical retrace interrupt is
generated at the start of the video blank period.
Each of these are enabled and cleared in a similar way to

the DMA interrupt.
Synchronization

To read data from the output FIFO the OutputFIFOWords
register should first be read to determine the number of 15
entries in the FIFO (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the
expected data or tag items have been read. The address of the There are three main cases where the host must synchro-

20 nize with GLINT: output FIFO is described below.
Note that all expected data must be read back GLINT will

block if the FIFO becomes full. Programmers must be
careful to avoid the deadlock condition that will result if the
host is waiting for space to become free in the input FIFO
while GLINT is waiting for the host to read data from the 25

output FIFO.
Graphics Processor FIFO Interface

GLINT has a sequence of 1Kx32 bit addresses in the PCI
Region 0 address map called the Graphics Processor FIFO

before reading back from registers
before directly accessing the framebuffer or the local

buffer via the bypass mechanism
framebuffer management tasks such as double buffering
Synchronizing with GLINT implies waiting for any pend

ing DMA to complete and waiting for the chip to complete
any processing currently being performed. The following
pseudo-code shows the general scheme:

Interface. To read from the output FIFO any address in this 30 --------------------
range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All
32-bit addresses in this region perform the same function:
the range of addresses is provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location in this address range provides raw
access to the input FIFO. Again, the first address is normally
chosen. Thus the same address can be used for both input
and output FlFOs. Reading gives access to the output FIFO;

35

writing gives access to the input FIFO. 40

Writing to the input FIFO by this method is different from
writing to the memory mapped register file. Since the
register file has a unique address for each register. writing to
this unique address allows GLINT to determine the register
for which the write is intended This allows a tag/data pair 45

to be constructed and inserted into the input FIFO. When
writing to the raw FIFO address an address tag description
must first be written followed by the associated data. In fact.
the format of the tag descriptions and the data that follows
is identical to that described above for DMA buffers. Instead 50

of using the GLINT DMA it is possible to transfer data to
GLINT by constructing a DMA-style buffer of data and then
copying each item in this buffer to the raw input FIFO
address. Based on the tag descriptions and data written
GLINT constructs tag/data pairs to enter as real FIFO 55
entries. The DMA mechanism can be thought of as an
automatic way of writing to the raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO
full condition must still be checked by reading the
InFIFOSpace register. However. writing tag descriptions 60

does not cause any entries to be entered into the FIFO: such
a write simply establishes a set of tags to be paired with the
subsequent data. Thus. free space need be ensured only for
actual data items that are written (not the tag values). For
example. in the simplest case where each tag is followed by 65

a single data item. assuming that the FIFO is empty. then 32
writes are possible before checking again for free space.

GLIN'IData data;
II wait fur DMA to complete
while (*DMACOWll != 0) {

poll or wait for interrupt
}
while (*InFIFOSpa::e < 2) {

; II wait for free space in tbe FIFO
}
II enable sync output and send the Sync command
data. Word = 0;
data.FilterMode.Synchronization = Oxl;
FilterMode(data.Word);
Sync(OxO);
/* wait for tbe sync output clala */
do{

while (*OutFIFOWords = 0)
; II poll waiting for data in output

FIFO
} while (*OutputFIFO != Sync_tag);

Initially, we wait for DMA to complete as normal. We
then have to wait for space to become free in the FIFO (since
the DMA controller actually loads the FIFO). We need space
for 2 registers: one to enable generation of an output sync
value, and the Sync command itself. The enable flag can be
set at initialization time. The output value will be generated
only when a Sync command has actually been sent, and
GLINT has then completed all processing.

Rather than polling it is possible to use a Sync interrupt
as mentioned in the previous section. As well as enabling the
interrupt and setting the filter mode, the data sent in the Sync
command must have the most significant bit set in order to
generate the interrupt. The interrupt is generated when the
tag or data reaches the output end of the Host Out FIFO. Use
of the Sync interrupt has to be considered carefully as
GLINT will generally empty the FIFO more quickly than it
takes to set up and handle the interrupt.

Host Framebuffer Bypass
Normally. the host will access the framebuffer indirectly

via commands sent to the GLINT FIFO interface. However.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
21

GLINT does provide the whole framebuffer as part of its
address space so that it can be memory mapped by an
application. Access to the framebuffer via this memory
mapped route is independent of the GLINT FIFO.

22
next. A further set of 3 bits (localbuffer width) in the
LBMemoryControl register defines the number of valid bits
per pixel. A typical localbuffer configuration might be 48

Drivers may choose to use direct access to the framebuffer 5

for algorithms which are not supported by GLINT. The
framebuffer bypass supports big-endian, little-endian and
GIB-endian formats.

bits per pixel but in bypass mode the data for each pixel
starts on a 64-bit boundary. In this case valid pixel data will
be contained in bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid
bits.

A driver making use of the framebuffer bypass mecha
nism should synchronize framebuffer accesses made 10

through the FIFO with those made directly through the
memory map. If data is written to the FIFO and then an
access is made to the framebuffer, it is possible that the
framebuffer access will occur before the commands in the
FIFO have been fully processed. This lack of temporal 15
ordering is generally not desirable.

Host software must set the width in pixels of each scanline
of the localbuffer in the LBReadMode FIFO register. The
first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next.
As with the framebuffer partial products. these values will
usually be worked out at initialization time and a copy kept
in software. When this register needs to be modified the
software copy is retrieved and any other bits modified before

Framebuffer Dimensions and Depth
At reset time the hardware stores the size of the frame

buffer in the FBMemoryControl register. This register can be
read by software to determine the amount of VRAM on the 20

display adapter. For a given amount of VRAM, software can
configure different screen resolutions and off-screen
memory regions.

writing to the register. If the system is set up so that each
pixel in the framebuffer has a corresponding pixel in the
localbuffer then this width will be the same as that set for the
framebuffer.

The localbuffer is accessible via Regions 1 and 3 of the
PCI address map for GLINT. The localbuffer bypass sup
ports big-endian and little-endian formats. These are
described in a later section.

Register Read Back
Under some operating environments, multiple tasks will

want access to the GLINT chip. Sometimes a server task or
driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances. the state of the

The framebuffer width must be set up in the FBReadMode
register. The first 9 bits of this register define 3 partial 25

products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked
out at initialization time and a copy kept in software. When
this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the
register.

30 GLINT chip may need to be saved and restored on each
context switch. To facilitate this, the GLINT control regis
ters can be read back. (However. internal and command
registers cannot be read back.)

Once the offset from one scanline to the next has been
established, determining the visible screen width and height
becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by
setting the ScreenScissorEnable bit in the ScissorMode
register.

The framebuffer depth (8, 16 or 32-bit) is controlled by
the FBModeSel register. This register provides a 2 bit field
to control which of the three pixel depths is being used. The
pixel depth can be changed at any time but this should not
be attempted without first synchronizing with GLINT. The
FBModeSel register is not a FIFO register and is updated
immediately it is written. If GLINT is busy performing
rendering operations. changing the pixel depth will corrupt
that rendering.

Normally. the pixel depth is set at initialization time. To
optimize certain 2D rendering operations it may be desirable
to change it at other times. For example. if the pixel depth
is normally 8 (or 16) bits, changing the pixel depth to 32 bits
for the duration of a bitblt can quadruple (or double) the blt
speed, when the bit source and destination edges are aligned
on 32 bit boundaries. Once such a blt sequence has been set
up the host software must wait and synchronize with GLINT
and then reset the pixel depth before continuing with further
rendering. It is not possible to change the pixel depth via the
FIFO, thus explicit synchronization must always be used.

Host Localbuffer Bypass
As with the framebuffer. the localbuffer can be mapped in

and accessed directly. The host should synchronize with
GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer
in the LBMemoryControl register (localbuffer visible region
size). In bypass mode the number of bits per pixel is either
32 or 64. This information is also set in the LBMemory
Control register (localbuffer bypass packing). This pixel
packing defines the memory offset between one pixel and the

To perform a context switch the host must first synchro-
35 nize with GLINT. This means waiting for outstanding DMA

to complete. sending a Sync command and waiting for the
sync output data to appear in the output FIFO. After this the
registers can be read back.

To read a GLINT register the host reads the same address
40 which would be used for a write, i.e. the base address of the

register file plus the offset value for the register.
Note that since internal registers cannot be read back care

must be taken when context switching a task which is
making use of continue-draw commands. Continue-draw

45 commands rely on the internal registers maintaining previ
ous state. This state will be destroyed by any rendering work
done by a new task. To prevent this, continue-draw com
mands should be performed via DMA since the context
switch code has to wait for outstanding DMA to complete.

50 Alternatively. continue-draw commands can be performed
in a non-preemptable code segment.

Normally, reading back individual registers should be
avoided. The need to synchronize with the chip can
adversely affect performance. It is usually more appropriate

55 to keep a software copy of the register which is updated
when the actual register is updated.

Byte Swapping
Internally GLINT operates in little-endian mode.

However, GLINT is designed to work with both big- and
60 little-endian host processors. Since the PCIBus specification

defines that byte ordering is preserved regardless of the size
of the transfer operation, GLINT provides facilities to
handle byte swapping. Each of the Configuration Space,
Control Space, Framebuffer Bypass and Localbuffer Bypass

65 memory areas have both big and little endian mappings
available. The mapping to use typically depends on the
endian ordering of the host processor.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
23

The Configuration Space may be set by a resistor in the
board design to be either little endian or big endian.

The Control Space in PCI address region 0. is 128K bytes
in size. and consists of two MK sized spaces. The first MK
provides little endian access to the control space registers; 5
the second 64K provides big endian access to the same
registers.

The framebuffer bypass consists of two PCI address
regions: Region 2 and Region 4. Each is independently
configurable to by the ApertureO and Aperture 1 control

10 registers respectively. to one of three modes: no byte swap.
16-bit swap. full byte swap. Note that the 16 bit mode is
needed for the following reason. If the framebuffer is
configured for 16-bit pixels and the host is big-endian then
simply byte swapping is not enough when a 32-bit access is
made (to write two pixels). In this case. the required effect 15

is that the bytes are swapped within each 16-bit word. but the
two 16-bit halves of the 32-bit word are not swapped. This
preserves the order of the pixels that are written as well as
the byte ordering within each pixel. The 16 bit mode is
referred to as Gffi-endian in the PCI Multimedia Design 20

Guide, version 1.0.
The localbuffer bypass consists of two PCI address

regions: Region 1 and Region 3. Each is independently
configurable to by the ApertureO and Aperture 1 control
registers respectively. to one of two modes: no byte swap. 25

full byte swap.
To save on the size of the address space required for

GLINT. board vendors may choose to turn off access to the
big endian regions (3 and 4) by the use of resistors on the
board. 30

24
The maximum width of the localbuffer is 48 bits. but this

can be reduced by changing the external memory
configuration, albeit at the expense of reducing the func
tionality or dynamic range of one or more of the fields.

The localbuffer memory can be from 16 bits (assuming a
depth buffer is always needed) to 48 bits wide in steps of 4
bits. The four fields supported in the localbuffer. their
allowed lengths and positions are shown in the following
table:

Field

Depth
SteDCil
FrameCount
GID

Lengths

16, 24, 32
0, 4. 8
0, 4, 8
0, 4

Start bit p<>Sitions

0
16, 20, 24, 28, 32
16, 20, 24, 28, 32, 36, 40
16, 20. 24, 28, 32, 36, 40, 44, 48

The order of the fields is as shown with the depth field at
the least significant end and GID field at the most significant
end. The GID is at the most significant end so that various
combinations of the Stencil and FrameCount field widths
can be used on a per window basis without the position of
the GID fields moving. If the GID field is in a different
positions in different windows then the ownership tests
become impossible to do.

The GID, FrameCount, Stencil and Depth fields in the
localbuffer are converted into the internal format by right
justification if they are less than their internal widths, i.e. the
unused bits are the most significant bits and they are set to
0.

The format of the localbuffer is specified in two places:
the LBReadFormat register and the LBWriteFormat register. There is a bit available in the DMAControl control

register to enable byte swapping of DMA data. Thus for
big-endian hosts, this control bit would normally be enabled.
Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will
usually force a given interpretation for true color pixel
values. For example. 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3. red at byte 2. green at byte 1
and blue at byte 0) or ABGR (blue at byte 2 and red at byte

It is still possible to part populate the localbuffer so other
combinations of the field widths are possible (i.e. depth field
width of 0). but this may give problems if texture maps are

35 to be stored in the localbuffer as well.

0). The byte position for red and blue may be important for 40

software which has been written to expect one byte order or
the other, in particular when handling image data stored in
a file.

GLINT provides two registers to specify the byte posi
tions of blue and red internally. In the Alpha Blend Unit the 45

AlphaBlendMode register contains a 1-bit field called Col
orOrder. If this bit is set to zero then the byte ordering is
ABGR; if the bit is set to one then the ordering is ARGB. As
well as setting this bit in the Alpha Blend unit. it must also
be set in the Color Formatting unit In this unit the Dither- 50

Mode register contains a Color Order bit with the same
interpretation. The order applies to all of the true color pixel
formats. regardless of the pixel depth.
Hardware Data Structures

Some of the hardware data structure implementations 55
used in the presently preferred embodiment will now be
described in detail. Of course these examples are provided
merely to illustrate the presently preferred embodiment in
great detail, and do not necessarily delimit any of the
claimed inventions. 60

Localbuffer
The localbuffer holds the per pixel information corre

sponding to each displayed pixel and any texture maps. The
per pixel information held in the localbuffer are Graphic ID
(GID). Depth. Stencil and Frame Count Planes (PCP). The 65

possible formats for each of these fields. and their use are
covered individually in the following sections.

Any non-bypass read or write to the localbuffer always
reads or writes all 48 bits simultaneously.

GID field
The 4 bit GID field is used for pixel ownership tests to

allow per pixel window clipping. Each window using this
facility is assigned one of the GID values, and the visible
pixels in the window have their GID field set to this value.
If the test is enabled the current GID (set to correspond with
the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel
belongs to the window so the localbuffer and framebuffer at
this coordinate may be updated.

Using the GID field for pixel ownership tests is optional
and other methods of achieving the same result are:
clip the primitive to the window's boundary (or rectangular

tiles which make up the window's area) and render only
the visible parts of the primitive

use the scissor test to define the rectangular tiles which make
up the window's visible area and render the primitive
once per tile (This may be limited to only those tiles
which the primitive intersects).
Depth Field
The depth field holds the depth (Z) value associated with

a pixel and can be 16, 24 or 32 bits wide.
Stencil Field
The stencil field holds the stencil value associated with a

pixel and can be 0. 4 or 8 bits wide.
The width of the stencil buffer is also stored in the

StencilMode register and is needed for clamping and mask
ing during the update methods. The stencil compare mask
should be set up to exclude any absent bits from the stencil
compare operation.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
25

FrameCount Field
The Frame Count Field holds the frame count value

associated with a pixel and can be 0. 4 or 8 bits wide. It is
used during animation to support a fast clear mech~nism to
aid the rapid clearing of the depth and/or stencil fields 5

needed at the start of each frame.
In addition to the fast clear mechanism the extent of all

updates to the localbuffer and framebuffer can be recorded
(MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the 10

bounding box of the smallest area to clear. For some
applications this will be significantly smaller than the whole
window or screen. and hence faster.

The fast clear mechanism provides a method where the
cost of clearing the depth and stencil buffers can be amor- 15

tized over a number of clear operations issued by the
application. This works as follows:

The window is divided up into n regions. where n is the
range of the frame counter (16 or 256). Every time the
application issues a clear command the refer.e~ce frame 20

counter is incremented (and allowed to roll over if It exceeds
its maximum value) and the n'h region is cleared only. The
clear updates the depth and/or stencil buffers to the new
values and the frame count buffer with the reference value.
This region is much smaller than the full window and hence 25

takes less time to clear.
When the localbuffer is subsequently read and the frame

count is found to be the same as the reference frame count
(held in the Window register) the localbuffer data is used
directly. However. if the frame count is found to be di11erent 30

from the reference frame count (held in the Window register)
the data which would have been written. if the localbuffer
had been cleared properly. is substituted for the stale data
returned from the read. Any new writes to the localbuffer
will set the frame count to the reference value so the next 35

read on this pixel works normally without the substitution.
The depth data to substitute is held in the FastClearDepth
register and the stencil data to substitute is held in the
StencilData register (along with other stencil information).

The fast clear mechanism does not present a total solution 40

as the user can elect to clear just the stencil planes or just the
depth planes. or both. The situation where the stencil planes
only are 'cleared' using the fast clear method, then some
rendering is done and then the depth planes are 'cleared'
using the fast clear will leave ambiguous pixels in the 45

localbuffer. The driver software will need to catch this
situation. and fall back to using a per pixel write to do the
second clear. Which field(s) the frame count plane refers to
is recorded in the Window register.

When clear data is substituted for real memory data so
(during normal rendering operations) the depth write mask
and stencil write masks are ignored to mimic the OpenGL
operation when a buffer is cleared.

Localbuffer Coordinates

26
GUI systems (such as Windows. Windows Nf and X)

usually have the origin of the coordinate system at the t?P
left corner of the screen but this is not true for all graphics
systems. For instance OpenGL uses the bottom left corner as
its origin. The WindowOrigin bit in the LBRea~o~e
register selects the top left (0) or bottom left (1) as the ong.n.

The actual equations used to calculate the localbuffer
address to read and write are:

Bottom left origin:
Destination address= LBWmdowBase- Y • W +X
Source address =

LBWmdowBase - Y*W + X + LBSourceOffset
Top left origin:

where:

Destination address= LBWmdowBase + Y • W +X
Source address =

LBWindowBase + Y*W + X + LBSowceOffset

x is the pixel's X coordinate.
Y is the pixel's Y coordinate.
LBWindowBase holds the base address in the localbuffer

of the current window.
LBSourceOffset is normally zero except during a copy

operation where data is read from one address and
written to another address. The offset between source
and destination is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO. PPl and
PP2 fields in the LBReadMode register.

These address calculations translate a 2D address into a
linear address.

The Screen width is specified as the sum of selected
partial products so a full multiply operation is not needed.
The partial products are selected by the fields PPO. PPl and
PP2 in the LBReadMode register.

For arbitrary width screens. for instance bitmaps in 'off
screen' memory. the next largest width from the table must
be chosen. The di11erence between the table width and the
bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block.
However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Texture Memory
The localbuffer is used to hold textures in the GLlNf

40aiX variant. In the GLlNf 300SX variant the texture
information is supplied by the host.
Framebuffer

The framebuffer is a region of memory where the infor
mation produced during rasterization is written prior to
being displayed. This information is not restricted to color
but can include window control data for LUf management
and double buffering.

The coordinates generated by the rasterizer are 16 bit 2's 55

complement numbers. and so have the range +32767 to
-32768. The rasterizer will produce values in this range. but
any which have a negative coordinate. or exceed the screen
width or height (as programmed into the ScreenSize
register) are discarded.

Coordinates can be defined window relative or screen
relative and this is only relevant when the coordinate gets
converted to an actual physical address in the localbuffer. In
general it is expected that the windowing system will use
absolute coordinates and the graphics system will use rela- 65

tive coordinates (to be independent of where the window
really is).

The framebuffer region can hold up to 32 MBytes and
there are very few restrictions on the format and size of the
individual buffers which make up the video stream. l)'pical

60 buffers include:
True color or color index main planes.
Overlay planes.
Underlay planes.
Window ID planes for LUT and double buffer

management.
Cursor planes.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
27

Any combination of these planes can be supported up to
28

partial products are selected by the fields PPO. PPl and PP2
in the FBReadMode register. This is the same mechanism as
is used to set the width of the localbuffer. but the widths may
be set independently.

a maximum of 32 MBytes. but usually it is the video level
processing which is the limiting factor. The following text
examines the options and choices available from GLINT for
rendering. copying. etc. data to these buffers. 5 For arbitrary screen sizes. for instance when rendering to

To access alternative buffers either the FBPixelOOset
register can be loaded. or the base address of the window
held in the FBWindow-Base register can be redefined. This
is described in more detail below.

'off screen' memory such as bitmaps the next largest width
from the table must be chosen. The difference between the
table width and the bitmap width will be an unused strip of
pixels down the right hand side of the bitmap.

Buffer Organization
Each buffer resides at an address in the framebuffer

memory map. For rendering and copying operations the
actual buffer addresses can be on any pixel boundary.
Display hardware will place some restrictions on this as it
will need to access the multiple buffers in parallel to mix the 15
buffers together depending on their relative priority. opacity
and double buffer selection. For instance. visible buffers
(rather than offscreen bitmaps) will typically need to be on

Note that such bitmaps can be copied to the screen only
10 as a series of scanlines rather than as a rectangular block.

a page boundary.
Consider the following highly configured example with a 20

1280x1024 double buffered system with 32 bit main planes
(RGBA). 8 bit overlay and 4 bits of window control infor
mation (WID).

Combining the WID and overlay planes in the same 32 bit
pixel has the advantage of reducing the amount of data to 25
copy when a window moves. as only two copies are
required-one for the main planes and one for the overlay
and WID planes.

Note the position of the overlay and WID planes. This was
not an arbitrary choice but one imposed by the (presumed) 30
desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conver
sion of the internal color format to the external one stored in
the framebuffer depends on the size and position of the
component. Note that GLINT does not support all possible 35
configurations. For example; if the overlay and WID bits
were swapped, then eight bit color index starting at bit 4
would be required to render to the overlay. but this is not
supported.

Framebuffer Coordinates
Coordinate generation for the framebuffer is similar to

that for the localbuffer. but there are some key differences.

40

As was mentioned before. the coordinates generated by
the rasterizer are 16 bit 2's complement numbers. Coordi
nates can be defined as window relative or screen relative, 45
though this is only relevant when the coordinate gets con
verted to an actual physical address in the framebuffer. The
WindowOrigin bit in the FBReadMode register selects top
left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuffer 50
address to read and write are:

Bottom left origin:

However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Color Formats
The contents of the framebuffer can be regarded in two

ways:
As a collection of fields of up to 32 bits with no meaning or

assumed format as far as GLINT is concerned. Bit planes
may be allocated to control cursor. LUT. multi-buffer
visibility or priority functions. In this case GLINT will be
used to set and clear bit planes quickly but not perform
any color processing such as interpolation or dithering.
All the color processing can be disabled so that raw reads
and writes are done and the only operations are write
masking and logical ops. This allows the control planes to
be updated and modified as necessary. Obviously this
technique can also be used for overlay buffers, etc.
providing color processing is not required.

As a collection of one or more color components. All the
processing of color components. except for the final write
mask and logical ops are done using the internal color
format of 8 bits per red, green, blue and alpha color
channels. The final stage before write mask and logical
ops processing converts the internal color format to that
required by the physical configuration of the framebuffer
and video logic. The nomenclature n @m means this
component is n bits wide and starts at bit position min the
framebuffer. The least significant bit position is 0 and a
dash in a column indicates that this component does not
exist for this mode. The ColorOrder is specified by a bit
in the DitherMode register.
Some important points to note:

The alpha channel is always associated with the RGB color
channels rather than being a separate buffer. This allows
it to be moved in parallel and to work correctly in
multi-buffer updates and double buffering. H the frame-
buffer is not configured with an alpha channel (e.g. 24 bit
framebuffer width with 8:8:8:8 RGB format) then some of
the rendering modes whicq use the retained alpha buffer
cannot be used. In these cases the NoAlphaBuffer bit in
the AlphaBlendMode register should be set so that an
alpha value of 255 is substituted. For the RGB modes
where no alpha channel is present (e.g. 3:3:2) then this
substitution is done automatically. Destination address = FBWmdowBase - Y*W + X +

FBPixe!Olfset
Source address= FBWmdowBase - Y*W +X+

FBPixe!Olfset + FBSowceOlfset

55 For the Front and Back modes the data value is replicated
into both buffers.

Top left Origin:
Destination address = FBWmdowBase + Y*W + X +

FBPixe!Olfset
Source address = FBWmdowBase + Y*W + X +

FBPixe!Olfset + FBSowceOffset

These address calculations translate a 2D address into a
linear address. so non power of two framebuffer widths (i.e.
1280) are economical in memory.

The width is specified as the sum of selected partial
products so a full multiply operation is not needed. The

60

65

All writes to the framebuffer try to update all 32 bits
irrespective of the color format This may not matter if the
memory planes don't exist, but if they are being used (as
overlay planes, for example) then the write masks
(FBSoftware WriteMask or FBHardware WriteMask) must
be set up to protect the alternative planes.

When reading the framebuffer RGBA components are scaled
to their internal width of 8 bits. if needed for alpha
blending.
CI values are left justified with the unused bits (if any) set

to zero and are subsequently processed as the red compo-

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
29

nent. The result is replicated into each of the streams G .B
and A giving four copies for CIS and eight copies for CI4.

The 4:4:4:4 Front and Back formats are designed to
support 12 bit double buffering with 4 bit Alpha, in a 32
bit system.

The 3:3:2 Front and Back formats are designed to support
8 bit double buffering in a 16 bit system.

The 1:2: 1 Front and Back formats are designed to support
4 bit double buffering in an 8 bit system.

It is possible to have a color index buffer at other positions
as long as reduced functionality is acceptable. For
example a 4 bit CI buffer at bit position 16 can be
achieved using write masking and 4:4:4:4 Front format
with color interpolation. but dithering is lost.

The format information needs to be stored in two places:
the DitherMode register and the AlphaBlendMode register.

lnlernal Color Channel

Fonnat Name R G B A

Color 0 8:8:8:8 8@0 8@8 8@16 8@24
Order: 1 5:5:5:5 5@0 5@5 5@10 5@15
RGB 2 4:4:4:4 4@0 4@4 4@8 4@12

3 4:4:4:4 4@0 4@8 4®16 4@24
Front 4@4 4@12 4@20 4@28

4 4:4:4:4 4@0 4@8 4@16 4@24
Back 4@4 4@12 4@20 4@28

5 3:3:2 3@0 3@3 2@6
Front 3@8 3@11 2@14

6 3:3:2 3@0 3@3 2@6
Back 3@8 3@11 2@14

7 1:2:1 1@0 2@1 1@3
Front 1@4 2@5 1@7

8 1:2:1 1@0 2@1 1@3
Back 1@4 2@5 1@7

Color 0 8:8:8:8 8@16 8@8 8@0 8@24
Order: 1 5:5:5:5 5@10 5@5 5@0 5@15
BGR 2 4:4:4:4 4@8 4@4 4@0 4@12

3 4:4:4:4 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28

4 4:4:4:4 4@16 4@8 4@0 4@24
Back 4@20 4@12 4@4 4@28

5 3:3:2 3@5 3@2 2@0
Front 3@13 3@10 2@8

6 3:3:2 3@5 3@2 2@0
Back 3@13 3@10 2@8

7 1:2:1 1@3 2@1 1@0
Front 1@7 2@5 1@4

8 1:2:1 1@3 2@1 1@0
Back 1@7 2@5 1@4

CI 14 CIS 8@0 0 0 0
15 Cl4 4@0 0 0 0

5

10

15

20

25

30

35

40

45

30
the GID based pixel ownership tests for one of the buffers
but rely on the scissor clipping. or to install a second set of
GID planes so each buffer has it's own set. GLINT allows
either approach.

If rendering operations to the main and overlay planes
both need the depth or stencil buffers, and the windows in
each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. This is easily achieved with
GLINT by assigning different regions in the localbuffer to
each of the buffers. Typically this would double the local
buffer memory requirements.

One scenario where the above two considerations do not
cause problems. is when the overlay planes are used exclu
sively by the GUI system. and the main planes are used for
the 3D graphics.

VRAM Modes

High performance systems will typically use VRAM for
the framebuffer and the extended functionality of VRAM
over DRAM can be used to enhance performance for many
rendering tasks.
Hardware Write Masks.

These allow write masking in the framebuffer without
incurring a performance penalty. If hardware write masks
are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the write
mask, and write it back.

To use hardware write masking. the required write mask
is written to the FBHardwareWriteMask register. the
FBSoftwareWriteMask register should be set to alii's, and
the number of framebuffer reads is set to 0 (for normal
rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software write masking. the required write mask is
written to the FBSoftwareWriteMask register and the num_..
ber of framebuffer reads is set to 1 (for normal rendering).
This is achieved by setting the ReadDestination enable in the
FBReadMode register.
Block Writes Block writes cause consecutive pixels in the
framebuffer to be written simultaneously. This is useful
when filling large areas but does have some restrictions:

No pixel level clipping is available;
No depth or stencil testing can be done;
All the pixels must be written with the same value so no

color interpolation, blending, dithering or logical ops
can be done; and

The area is defined in screen relative coordinates.

Overlays and Underlays
In a GUI system there are two possible relationships

between the overlay planes (or underlay) and the main
planes.

Block writes are not restricted to rectangular areas and

50 can be used for any trapezoid. Hardware write masking is
available during block writes.

The overlay planes are fixed to the main planes, so that if
the window is moved then both the data in the main 55

planes and overlay planes move together.
The overlay planes are not fixed to the main planes but

floating. so that moving a window only moves the
associated main or overlay planes.

In the fixed case both planes can share the same GID. The 60

pixel offset is used to redirect the reads and writes between
the main planes and the overlay (underlay) buffer. The pixel
ownership tests using the GID field in the localbuffer work
as expected.

In the floating case different Gills are the best choice, 65

because the same GID planes in the localbuffer can not be
used for pixel ownership tests. The alternatives are not to use

The following registers need to be set up before block fills
can be used:

FBBlockColor register with the value to write to each
pixel; and

FBWriteMode register with the block width field.
Sending a Render command with the PrimitiveType field

set to "trapezoid" and the FastFillEnable and FastFilllncre
ment fields set up will then cause block filling of the area.
Note that during a block fill of a trapezoid any inappropriate
state is ignored so even if color interpolation, depth testing
and logical ops. for example, are enabled they have no effect.

The block sizes supported are 8. 16 and 32 pixels. GLINT
takes care of filling any partial blocks at the end of spans.
Graphics Programming

GLINT provides a rich variety of operations for 2D and
3D graphics supported by its Pipelined architecture.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
31

The Graphics Pipeline
This section describes each of the units in the graphics

Pipeline. FIG. 2C shows a schematic of the pipeline. In this
diagram. the local buffer contains the pixel ownership values
(known as Graphic IDs). the FrameCount Planes (FCP). 5
Depth (Z) and Stencil buffer. The framebuffer contains the
Red. Green. Blue and Alpha bitplanes. The operations in the
Pipeline include:

32
A Gouraud Shaded Triangle

We may now revisit the "day in the life of a triangle"
example given above. and review the actions taken in greater
detail. Again. the primitive being rendered will be a Gouraud
shaded. depth buffered triangle. For this example assume
that the triangle is to be drawn into a window which has its
colormap set for RGB as opposed to color index operation.
This means that all three color components; red. green and
blue. must be handled. Also. assume the coordinate origin is Rasterizer scan converts the given primitive into a series of

fragments for processing by the rest of the pipeline.
Scissor Test clips out fragments that lie outside the bounds

of a user defined scissor rectangle and also performs
screen clipping to stop illegal access outside the screen
memory.

10 bottom left of the window and drawing will be from top to
bottom. GLINT can draw from top to bottom or bottom to
top.

Consider a triangle with vertices. v 1• v 2 and v 3 where each
vertex comprises X. Y and Z coordinates. Each vertex has a

Stipple Test masks out certain fragments according to a
specified pattern. Line and area stipples are available.

Color DDA is responsible for generating the color informa
tion (frue Color RGBA or Color Index(CI)) associated
with a fragment.

15 different color made up of red. green and blue (R. G and B)
components. The alpha component will be omitted for this
example.

Texture is concerned with mapping a portion of a specified 20

image (texture) onto a fragment. The process involves
filtering to calculate the texture color. and application
which applies the texture color to the fragment color.

Fog blends a fog color with a fragment's color according to
a given fog factor. Fogging is used for depth cuing images 25

and to simulate atmospheric fogging.
Antialias Application combines the incoming fragment's

alpha value with its coverage value when anti aliasing is
enabled.

Alpha Test conditionally discards a fragment based on the 30

outcome of a comparison between the fragments alpha
value and a reference alpha value.

Pixel Ownership is concerned with ensuring that the location
in the framebuffer for the current fragment is owned by
the current visual. Comparison occurs between the given 35

fragment and the Graphic ID value in the localbuffer, at
the corresponding location, to determine whether the
fragment should be discarded.

Stencil Test conditionally discards a fragment based on the
outcome of a test between the given fragment and the 40

value in the stencil buffer at the corresponding location.
The stencil buffer is updated dependent on the result of the
stencil test and the depth test.

Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given 45

fragment and the value in the depth buffer at the corre
sponding location. The result of the depth test can be used
to control the updating of the stencil buffer.

Alpha Blending combines the incoming fragment's color
with the color in the framebuffer at the corresponding so
location.

Color Formatting converts the fragment's color into the
format in which the color information is stored in the
framebuffer.
This may optionally involve dithering. 55
The Pipeline structure of GLINT is very efficient at

processing fragments. for example. texture mapping calcu
lations are not actually performed on fragments that get
clipped out by scissor testing. This approach saves substan
tial computational effort. The pipelined nature does however 60
mean that when programming GLINT one should be aware
of what all the pipeline stages are doing at any time. For
example. many operations require both a read and/or write
to the localbuffer and framebuffer; in this case it is not
sufficient to set a logical operation to XOR and enable 65

logical operations. but it is also necessary to enable the
reading/writing of data from/to the framebuffer.

Initialization
GLINT requires many of its registers to be initialized in

a particular way. regardless of what is to be drawn. for
instance. the screen size and appropriate clipping must be set
up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been
done.

Other state will change occasionally, though not usually
on a per primitive basis, for instance enabling Gouraud
shading and depth buffering.
Dominant and Subordinate Sides of a Triangle

As shown in FIG. 4A, the dominant side of a triangle is
that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either fiat
bottomed or fiat topped.

GLINT always draws triangles starting from the dominant
edge towards the subordinate edges. This simplifies the
calculation of set up parameters as will be seen below.

These values allow the color of each fragment in the
triangle to be determined by linear interpolation. For
example, the red component color value of a fragment at
XN, Ym could be calculated by:

adding dRdy 13, for each scanline between Y 1 and Y n• to
R1.

then adding dRdx for each fragment along scanline Y n

from the left edge to xn.
The example chosen has the 'knee,' i.e. vertex 2. on the

right hand side. and drawing is from left to right. If the knee
were on the left side (or drawing was from right to left). then
the Y deltas for both the subordinate sides would be needed
to interpolate the start values for each color component (and
the depth value) on each scanline. For this reason GLINT
always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle. this
means left to right.
Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set
as follows, for color interpolation. Note that the format for
color values is 24 bit, fixed point 2's complement.

II Load the color start and delta values to draw
II a triangle
RStart (R1)

GStart (01)

BStart (B1)

dRdyDom (dRdy13)
dGdyDom (dGdy13)
dBdyDom (dBdy,,)
dRdx (dRdx)

II To walk up the dominant edge

II To walk along the scanli.ne

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770

dGdx(dGdx)
dBdx (dBdx)

33
-continued dXDom=dX13

dXSub=dX12

34

The start X.Y. the number of scanlines. and the above
deltas give GLINT enough information to edge walk the top

Calculating Depth Gradient Values
To draw from left to right and top to bottom. the depth

gradients or deltas) required for interpolation are:

5 half of the triangle. However, to indicate that this is not a flat
topped triangle (GLINT is designed to rasterize screen
aligned trapezoids and flat topped triangles). the same start
position in terms of X must be given twice as StartXDom
and StartXSub.

10 To edge walk the lower half of the triangle. selected

And from the plane equation:

dliU= { } - { } 15

where

The divisor. shown here as c. is the same as for color 20

gradient values. The two deltas dZdyl13 and dZdx allow the
Z value of each fragment in the triangle to be determined by
linear interpolation. just as for the color interpolation.
Register Set Up for Depth Testing

Internally GL1NT uses fixed point arithmetic. Each depth 25

value must be converted into a 2's complement 32.16 bit
fixed point number and then loaded into the appropriate pair
of 32 bit registers. The 'Upper' or 'U' registers store the
integer portion. whilst the 'Lower' or 'L' registers store the
16 fractional bits. left justified and zero filled.

For the example triangle, GLINT would need its registers
set up as follows:

II Load the depth slart and delta values
II to draw a triangle
ZScartU (Zl_MS)

30

35

additional information is required. The slope of the domi
nant edge remains unchanged, but the subordinate edge
slope needs to be set to:

dXSub=dX23
Also the number of scanlines to be covered from Y 2 to Y 3

needs to be given. Finally to avoid any rounding errors
accumulated in edge walking to X2 (which can lead to pixel
errors). StartXSub must be set to X2•

Rasterizer Mode

The GLINT rasterizer has a number of modes which have
effect from the time they are set until they are modified and
can thus affect many primitives. In the case of the Gouraud
shaded triangle the default value for these modes are suit
able.
Subpixel Correction

GLINT can perform subpixel correction of all interpo
lated values when rendering aliased trapezoids. This correc
tion ensures that any parameter (color/depth/texture/fog) is
correctly sampled at the center of a fragment Subpixel
correction will generally always be enabled when rendering
any trapezoid which is smooth shaded. textured. fogged or
depth buffered. Control of subpixel correction is in the
Render command register described in the next section, and
is selectable on a per primitive basis.
Rasterization

ZStartL (Z1_LS)
dZdyDomU (dZdy13_MS)
dZdyDomL (dZdy13_LS)
dZdxU (dZdx_MS)
dZdxL (dZdx_LS)

GLINT is almost ready to draw the triangle. Setting up the
registers as described here and sending the Render command

40
will cause the top half of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within
the Render command should be set to 0 except the Primi
tiveType which should be set to trapewid and the SubPix
elCorrectionEnable bit which should be set to TRUE.

Calculating the Slopes for each Side
GLINT draws filled shapes such as triangles as a series of

spans with one span per scanline. Therefore it needs to know 45

the start and end X coordinate of each span. These are
determined by 'edge walking'. This process involves adding
one delta value to the previous span's start X coordinate and
another delta value to the previous span's end x coordinate
to determine the X coordinates of the new span. These delta 50
values are in effect the slopes of the triangle sides. To draw
from left to right and top to bottom. the slopes of the three
sides are calculated as:

dXu
X3-X1

Y3-Y1
55

dXu
x2-x,

Y2- Yt

II Draw triangle with knee
II Set deltas
StartXDom (X1«16) II Converted to 16.16 fixed
point
dXDom (((X3 - X 1)«16)/(Y3 - Y 1))

SlartXSub (X1«16)
dXSub (((X2 - X 1)«16)/(Y2 - Y 1))

ScartY (Y1«16)
dY (-1«16)
Cowt (Y1 - Y2)

If Set the render cOII1IIllllld mode
render.PrimitiveType = GLINT_TRAPEZOIDJRIMITIVE
render.SubPixeiCorrectionEnable = TRUE
II Draw the top half of the triangle
Render(render)

dXn
X3-X2

Y3- Y2
60 After the Render command has been issued. the registers

This triangle will be drawn in two parts. top down to the
'knee' (i.e. vertex 2). and then from there to the bottom. The
dominant side is the left side so for the top half:

in GLINT can immediately be altered to draw the lower half
of the triangle. Note that only two registers need be loaded
and the command ContinueNewSub sent. Once GLINT has
received ContinueNewSub, drawing of this sub-triangle will
begin.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
35

II Setup the delta and start for the new edge
StartXSub (X2«16)
dXSub (((X3 - X2)<<16Y(Y3 - Y2))

II Draw sub-triangle
ContinueNewSub (Y2 - Y3) II Draw lower half

Rasterizer Unit

5

The rasterizer decomposes a given primitive into a series
of fragments for processing by the rest of the Pipeline. 10

GLINT can directly rasterize:
aliased screen aligned trapezoids
aliased single pixel wide lines
aliased single pixel points
antialiased screen aligned trapezoids
antialiased circular points
All other primitives are treated as one or more of the

above. for example an antialiased line is drawn as a series of
antialiased trapezoids.
Trapezoids GLINT's basic area primitives are screen
aligned trapezoids. These are characterized by having top
and bottom edges parallel to the X axis. The side edges may

15

20

be vertical (a rectangle). but in general will be diagonal. The
top or bottom edges can degenerate into points in which case 25

we are left with either flat topped or fiat bottomed triangles.
Any polygon can be decomposed into screen aligned trap
ezoids or triangles. Usually. polygons are decomposed into
triangles because the interpolation of values over non
triangular polygons is ill defined. The rasterizer does handle 30

fiat topped and flat bottomed 'bow tie' polygons which are
a special case of screen aligned trapezoids.

To render a triangle. the approach adopted to determine
which fragments are to be drawn is known as 'edge walk
ing'. Suppose the aliased triangle shown in FIG. 4A was to 35

be rendered from top to bottom and the origin was bottom
left of the window. Starting at (X1, Y1) then decrementing
Y and using the slope equations for edges 1-2 and 1-3. the
intersection of each edge on each scanline can be calculated.
This results in a span of fragments per scanline for the top 40

trapezoid. The same method can be used for the bottom
trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons
which share an edge or vertex are drawn such that pixels
which make up the edge or vertex get drawn exactly once. 45

This may be achieved by omitting the pixels down the left

36
Send the Render command. This starts the scan conver

sion of the first triangle. working from the dominant
edge. This means that for triangles where the knee is on
the left we are scanning right to left, and vice versa for
triangles where the knee is on the right.

Load the edge parameters and derivatives for the remain
ing subordinate edge in the second triangle.

Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:

II Set the rasterizer mode to the default
RasterizerMode (0)
II Setup the start values and the deltas.
II Note that the X andY coordinates are converted
II to 16.16 fonnat
StartXDom (Xl«l6)
dXDom (((X3- X1)«16:V(Y3- Y1))
StartXSub (Xl«l6)
dXSub (((X2- X1)<<16Y(Y2- Yl))
StartY (Y1«16)
dY (-1<16) II Down the screen
Count (Yl - Y2)
II Set the render mode to aliased primitive with
II subpillel correction.
render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubpilleiCorrectionEnable = GLINT_ TRUE
render.AntialiasEnable = GLINL..DISABLE
II Draw top half of the triangle
Render(render)
II Set the start and delta for the second half of
II the triangle.
StartXSub (X2«16)
dXSub (((X3- X2)<<16:V(Y3- Y2))
II Draw lower half of triangle
CootinueNewSub (abs(Y2 - Y3))

After the Render command has been sent. the registers in
GLINT can immediately be altered to draw the second half
of the triangle. For this. note that only two registers need be
loaded and the command ContinueNewSub be sent. Once
drawing of the first triangle is complete and GLINT has
received the ContinueNewSub command, drawing of this
sub-triangle will start. The ContinueNewSub command reg
ister is loaded with the remaining number of scanlines to be
rendered.
Lines

Single pixel wide aliased lines are drawn using a DDA
algorithm. so all GLINT needs by way of input data is
StartX. StartY. dX. dY and length.

For polylines. a ContinueNewLine command (analogous
to the Continue command used at the knee of a triangle) is
used at vertices.

When a Continue command is issued some error will be
propagated along the line. To minimize this. a choice of
actions are available as to how the DDA units are restarted
on the receipt of a Continue command. h is recommended
that for OpenGLrendering the ContinueNewLine command

or the right sides and the pixels along the top or lower sides.
GLINT has adopted the convention of omitting the pixels
down the right hand edge. Control of whether the pixels
along the top or lower sides are omitted depends on the start 50

Y value and the number of scanlines to be covered. With the
example. if StartY =Y1 and the number of scanlines is set to
Y1-Y2. the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the
lower half of the triangle. 55 is not used and individual segments are rendered.

Antialiased lines. of any width, are rendered as antialiased
screen-aligned trapezoids.
Points

GLINT supports a single pixel aliased point primitive. For

To minimize delta calculations. triangles may be scan
converted from left to right or from right to left. The
direction depends on the dominant edge, that is the edge
which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the rel
evant subordinate edge. In the example above. the dominant
edge is 1-3 so rendering will be from right to left.

60 points larger than one pixel trapezoids should be used. In this
case the PrimitiveType field in the Render command should
be set to equal GLINT_POINT_PRIMITIVE.

The sequence of actions required to render a triangle (with
a 'knee') is:

Load the edge parameters and derivatives for the domi- 65

nant edge and the first subordinate edges in the first
triangle.

Anti aliasing
GLINT uses a subpixel point sampling algorithm to

antialias primitives. GLINT can directly rasterize antialiased
trapezoids and points. Other primitives are composed from
these base primitives.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
37

The rasterizer associates a coverage value with each
fragment produced when antialiasing. This value represents
the percentage coverage of the pixel by the fragment.
GLINT supports two levels of antialiasing quality:

normal. which represents 4x4 pixel subsampling
high. which represents 8x8 pixel subsampling.
Selection between these two is made by the Antialias-

ingQuality bit within the Render command register.

38
To scan convert an antialiased point as a circle. GLINT

traverses the boundary in sub scanline steps to calculate the
coverage value. For this, the sub-scanline intersections are
calculated incrementally using a small table. The table holds

5 the change in X for a step in Y. Symmetry is used so the table
only holds the delta values for one quadrant.

StartXDom. StartXSub and StartY are set to the top or
bottom of the circle and dY set to the subscanline step. In the
case of an even diameter, the last of the required entries in

10 the table is set to zero.
When rendering antialiased primitives with GLINT the

FlushSpan command is used to terminate rendering of a
primitive. This is due to the nature of GLINT antialiasing.
When a primitive is rendered which does not happen to
complete on a scanline boundary. GLINT retains antialiasing
information about the last sub-scanline(s) it has processed.
but does not generate fragments for them unless a FlushSpan

15 command is received. The commands ContinueNewSub.
ContinueNewDom or Continue can then be used, as
appropriate, to maintain continuity between adjacent trap
ezoids. This allows complex antialiased primitives to be
built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids 20

to render an antialiased line. The line will in general consist

Since the table is configurable. point shapes other than
circles can be rendered. Also if the StartXDom and StartX
Sub values are not coincident then horizontal thick lines
with rounded ends, can be rendered.

Block Write Operation

GLINT supports VRAM block writes with block sizes of
8, 16 and 32 pixels. The block write method does have some
restrictions: None of the per pixel clipping, stipple, or
fragment operations are available with the exception of write
masks. One subtle restriction is that the block coordinates

of three screen aligned trapezoids as shown in FIG. 4B. This
FIG. illustrates the sequence of rendering an Antialiased
Line primitive. Note that the line has finite width.

The procedure to render the line is as follows:

If Setup the blend and coverage application l.Dlits
If as appropriate - not shown
II In this example only the edge deltas ale shown
II loaded into registers for clarity. In reality
II start X and Y values ale required
II Render Thlpezoid A
dY(1«16)
dXDom(dXDom1 «16)
dXSub(dXSub1«16)
Count(count!)
render.PrimitiveType = GLINT_TRAPEZOID
remder.AntialiasEnable =GLINT_ TRUE
render.AntialiasQuality = GLINT_MIN_ANTIALIAS
render.CoverageEnable = GLINT_TRUE
Render(render)
II Render Trapezoid B
dXSub(dXSub2«16)
ContinueNewSub(count2)
II Render Trapezoid C
dXDom(dXDom2«16)
ContinueNewDom(count3)
If Now we have finished the primitive tlush out
If the last scanline
F1ushSpan()

Note that when rendering antialiased primitives, any
count values should be given in subscanlines, for example if
the quality is 4x4 then any scanline count must be multiplied
by 4 to convert it into a subscanline count. Similarly. any
delta value must be divided by 4.

will be interpreted as screen relative and not window relative
when the pixel mask is calculated in the Frarnebuffer Units.

Any screen aligned trapezoid can be filled using block
25 writes. oot just rectangles.

The use of block writes is enabled by setting the FastFil
lEnable and FastFilllncrement fields in the Render command
register. The framebuffer write unit must also be configured.

30
Note only the Rasterizer. Framebuffer Read and Frame-

buffer Write units are involved in block filling. The other
units will ignore block write fragments, so it is not necessary
to disable them.
Sub Pixel Precision and Correction

35 As the rasterizer has 16 bits of fraction precision, and the
screen width used is typically less than 216 wide a number
of bits called subpixel precision bits, are available. Consider
a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=212

). The extra bits are required for

40 a number of reasons:

45

antialiasing (where vertex start positions can be supplied
to subpixel precision)

when using an accumulation buffer (where scans are
rendered multiple times with jittered input vertices)

for correct interpolation of parameters to give high quality
shading as described below

GLINT supports subpixel correction of interpolated val
ues when rendering aliased trapezoids. Subpixel correction
ensures that all interpolated parameters associated with a

50 fragment (color, depth. fog, texture) are correctly sampled at
the fragment's center. This correction is required to ensure
consistent shading of objects made from many primitives. It
should generally be enabled for all aliased rendering which

When rendering. AntialiasEnable must be set in the
Antialias-Mode register to scale the fragments color by the 55

coverage value. An appropriate blending function should
also be enabled.

uses interpolated parameters.
Subpixel correction is not applied to antialiased primi

tives.
Bitmaps

Note. when rendering antialiased bow-ties. the coverage
value on the cross-over scanline may be incorrect.

GLINT can render small antialiased points. Antialiased
points are treated as circles, with the coverage of the
boundary fragments ranging from 0% to 100%. GLINT
supports:

point radii of 0.5 to 16.0 in steps of 0.25 for 4x4
antialiasing

point radii of 0.25 to 8.0 in steps of 0.125 for 8x8
antialiasing

A Bitmap primitive is a trapezoid or line of ones and zeros
which control which fragments are generated by the raster-

60 izer. Only fragments where the corresponding Bitmap bit is
set are submitted for drawing. The normal use for this is in
drawing characters. although the mechanism is available for
all primitives. The Bitmap data is packed contiguously into
32 bit words so that rows are packed adjacent to each other.

65 Bits in the mask word are by default used from the least
significant end towards the most significant end and are
applied to pixels in the order they are generated in.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
39

The rasterizer scans through the bits in each word of the
Bitmap data and increments the X. Y coordinates to trace out
the rectangle of the given width and height. By default. any

40
Warning: During image upload, all the returned fragments

must be read from the Host Out FIFO. otherwise the GLINT
pipeline will stall. In addition it is strongly recommended
that any units which can discard fragments (for instance the set bits (1) in the Bitmap cause a fragment to be generated.

any reset bits (0) cause the fragment to be rejected.
The selection of bits from the BitMas.kPattero register can

be mirrored. that is. the pattern is traversed from MSB to
LSB rather than LSB to MSB. Also. the sense of the test can

5 following tests: bitrnask. alpha. user scissor. screen scissor.
stipple. pixel ownership. depth. stencil). are disabled other
wise a shortfall in pixels returned may occur. also leading to
deadlock.

be reversed such that a set bit causes a fragment to be
rejected and vice versa. This control is found in the Raster- 10

izerMode register.

Note that because the area of interest in copy/upload/
download operations is defined by the rasterizer. it is not
limited to rectangular regions. When one Bitmap word has been exhausted and pixels in

the rectangle still remain then rasterization is suspended
until the next write to the BitMas.kPattero register. Any
unused bits in the last Bitmap word are discarded.
Image Copy/Upload/Download

Color formatting can be used when performing image
copies. uploads and downloads. This allows data to be

15 formatted from, or to, any of the supported GLINT color
formats.

GLINT supports three "pixel rectangle" operations: copy,
upload and download. These can apply to the Depth or
Stencil Buffers (held within the localbuffer) or the frame
buffer.

It should be emphasized that the GLINT copy operation
moves RAW blocks of data around buffers. To zoom or
re-format data, in the presently preferred embodiment, exter-
nal software must upload the data. process it and then
download it again.

To copy a rectangular area, the rasterizer would be
configured to render the destination rectangle. thus gener
ating fragments for the area to be copied. GLINT copy
works by adding a linear offset to the destination fragment's
address to find the source fragment's address.

Note that the offset is independent of the origin of the
buffer or window, as it is added to the destination address.
Care must be taken when the source and destination overlap

20

25

30

to choose the source scanning direction so that the overlap
ping area is not overwritten before it has been moved. This 35

may be done by swapping the values written to the StartX
Dom and StartXSub. or by changing the sign of dY and
setting StartY to be the opposite side of the rectangle.

Localbuffer copy operations are correctly tested for pixel
ownership. Note that this implies two reads of the 40

localbuffer, one to collect the source data. and one to get the
destination GID for the pixel ownership test.

GLINT buffer upload/downloads are very similar to cop-
ies in that the region of interest is generated in the rasterizer.
However, the localbuffer and framebuffer are generally 45

configured to read or to write only, rather than both read and
write. The exception is that an image load may use pixel
ownership tests. in which case the localbuffer destination
read must be enabled.

Units which can generate fragment values, the color DDA 50

unit for example, should generally be disabled for any
copy/upload/download operations.

Rasterizer Mode

A number of long-term modes can be set using the
Rasterizer-Mode register, these are:

Mirror BitMask: This is a single bit flag which specifies the
direction bits are checked in the BitMask register. If the
bit is reset. the direction is from least significant to most
significant (bit 0 to bit 31), if the bit is set, it is from most
significant to least significant (from bit 31 to bit 0).

Invert BitMask: This is a single bit which controls the sense
of the accept/reject test when using a Bitmask. If the bit
is reset then when the BitMask bit is set the fragment is
accepted and when it is reset the fragment is rejected.
When the bit is set the sense of the test is reversed.

Fraction Adjust: These 2 bits control the action taken by the
rasterizer on receiving a ContinueNewLine command. As
GLINT uses a DDA algorithm to render lines, an error
accumulates in the DDA value. GLINT provides for
greater control of the error by doing one of the following:
leaving the DDA running. which means errors will be

propagated along a line.
or setting the fraction bits to either zero, a half or almost

a half (Ox7FFF).
Bias Coordinates: Only the integer portion of the values in

the DDAs are used to generate fragment addresses. Often
the actual action required is a rounding of values, this can
be achieved by setting the bias coordinate bit to true
which will automatically add almost a half (Ox7FFF) to
all input coordinates.

Rasterizer Unit Registers
Real coordinates with fractional parts are provided to the

rasterizer in 2'scomplement 16 bit integer, 16 bit fraction
format. The following Table lists the command registers
which control the rasterizer unit:

Register Name Description

Render Starts the rasrerization process
Continue New Dom Allows the rasterization to continue with a new dominant

edge. 1be dominant edge DDA is reloaded with the new
parameters. The subotdinate edge is canied on from the
previous trapezoid. This allows any convex polygon to be
broken down into a collection of trapezoids, with continuity
maintained across boundaries.
The data &ld holds the number of scanlines (or sub scan
lines) to fill. Note this count does not get loaded into the
Co1mt register.

ContinueNewSub Allows the rasterization to continue with a new subordinate
edge. 1be subordinate DDA is reloaded with the new

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
41

-continued

Register Name Description

parameters. The dominant edge is carried on from the
previous trapezoid. TI1is is useful when scan converting
triangles with a 'knee' (i.e. two subon:linate edges).
The data field holds the number of scanlines (or sub
scanlines) to fill. Note tl1is cotmt does not get loaded into
the CoWl! register.

42

Continue Allows the rasterization to continue after new delta value(s)
have been loaded, but does not cause either of the
trapezoid's edge DDAs to be reloaded.
The data field holds the number of scanlines (or sub
scanlines) to fill. Note this cotmt does not get loaded into
the CoWlt register.

ContinueNewLine Allows the rasterization to continue for the next segment in
a polyline. The XY position is carried on from the
previous line, but the fraction bits in the DDAs can be:
kep~ set to zero, half, or nearly one half, under control of
the RasterizerMode.
The data field holds the number of scanlines to fill. Note
this cotmt does not get loaded into the Count register.
The use of ContinueNewLine is not recommended for
OpenGL because the DDA units will start with a slight
error as compared with the value they would have been
loaded with for the second and subsequent segments.

F1ushSpan Used when antialiasing to force the last span out when not
all sub spans may be defined.

The following Table shows the control registers of the
rasterizer, in the presently preferred embodiment:

RasterizerMod
e Defines the long term mode of operation of the rasterizer.

StartXDom Initial X value for the dominant edge in trapezoid filling,
or initial X value in line drawing.

dXDom Value added when moving from one scanline (or sub
scanline) to the next for the dominant edge in trapezoid
filling.
Also holds the change in X when plotting Jines so for Y
major Jines this will be some fraction (dx/dy), otherwise
it is normally ± 1.0, depending on the required scanning
direction.

StartXSub Initial X value for the subonlinate edge.
dXSub Value added when moving from one scanline (or sub

scanline) to the next for the subordinate
edge in trapezoid filling.

StartY Initial scanline (or sub scanline) in trapezoid filling,
or initial Y position for line drawing.

dY Value added to Y to move from one scanline to the
next. For X major lines this will be some fraction
(dy/dx), otherwise it is nonnally ± 1.0,
depending on the required scanning direction.

Cotmt Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.

BitMask:Pattem Value used to control the BitMask stipple operation (if
enabled).

PoiniTableO Antialias point data table. There are 4 words in the table
PointTable 1 and the register tag is decoded to select a word.
PoiniTable2
PointTable3

For efficiency. the Render command register has a number

30

35

40

45

50

55

of bit fields that can be set or cleared per render operation,
and which qualify other state information within GLINT.
These bits are AreaStippleEnable. LineStippleEnable. 60

ResetLineStipple. TextureEnable FogEnable. CoverageEn
able and SubpixelCorrection.

One use of this feature can occur when a window is
cleared to a background color. For normal 3D primitives.
stippling and fog operations may have been enabled, but 65

these are to be ignored for window clears. Initially the
FogMode. AreaStippleMode and LineStippleMode registers

are enabled through the UnitEnable bits. Now bits need only
be set or cleared within the Render command to achieve the
required result. removing the need for the FogMode. AreaSt
ippleMode and LineStippleMode registers to be loaded for
every render operation.

The bitfields of the Render command register. in the
presently preferred embodiment, are detailed below:

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
43 44

Bit Name Description

0 Area- This bit, when set, enables area stippling of the fragments
Stipple- produced during rasterization. Note that area stipple in the
Enable Stipple Unit must be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs irrespective of
the setting of the area stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no area stippling for this
primitive.

Line- This bit, when set, enables line stippling of the fragments
Stipple- produced during rasterization in the Stipple Unit. Note that
Enable line stipple in the Stipple Unit must be enabled as well for slip-

piing to occur.
When this bit is reset no line stippling occurs irrespective of
the setting if the line stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no line stippling for this
primitive.

2 Reset- This bit, when set, causes the line stipple counters in the
Line- Stipple Unit to be reset to zero, and would typically be used
Stipple for the first segment in a polyline. This action is also qualified

by the LineStippleEnable bit and also the stipple enable bits in
the Stipple Unit.
When this bit is reset the stipple counters carry on from where
they left off (if line stippling is enabled)

3 FastFillE This bit, when set, causes fast block filling of primitives.
nable When this bit is reset the nonnal rasterization process occurs.

4, 5 Fast-Fill- This two bit field selects the block size the frarnebuffer
Incremen supports. The sizes supported and the corresponding codes
I are:

0 = 8 pixels
1 = 16 pixels
2 = 32 pixels

6.,7 Primitive- This two bit field selects the primitive type to rasterize. The
'JYpe primitives are:

0 =Line
1 = Trapezoid
2 =Point

8 Antialias- This bit, when set, causes the generation of sub scanline dala
Enable and the coverage value to be calculated for each fragment.

The number of sub pixel samples to use is conttolled by the
AntialiasingQuality bit.
When this bit is reset normal rasterization occurs.

9 An- This bit, when set, sets the sub pixel resolution to be 8 x 8
tialiasing- When this bit is reset the sub pixel resolution is 4 x 4.
Quality

10 UsePoint- When this bit and the AntialiasingEnable are set, the dx values
Table used to remove from one scanline to the next are derived from

the Point Table.
11 SyncOn- This bit, when set, causes a number of actions: -

Bi!Mask The least significant bit or most significant bit (depeiJdins oo
the MirrorBitMask bit) in the Bit Mask register is extracted
and optionally inverted (controlled by the lnvertMask bit).
If this bit is 0 then the corresponding fragment is culled from
being drawn.
After every fragrant the Bit Mask register is rotated by one
bit.
If all the bits in the Bit Mask register have been used then
rasterization is suspended wtil a oow BitMasld'attem is
received. If any other register is written while the rasterization
is suspended then the rasterization is aborted The register
write which caused the abort is then processed as nonnal.
Note the behavior is slightly different w ben the Syn-
cOnHostData bit is set to prevent a deadlock from occurring.
In this case the rasterization ck>esn't suspend when all the bits
have been used and if new BitMaskPattern data words are not
received in a timely manner then the subsequent fragments will
just reuse the bi1mask.

12 Sync On When this bit is set a fragment is produced only when one of
HostData the following registers has been written by the host: Depth,

FBColor, Stencil or Color. If SyncOnBitMask is reset, then if
any register other than one of these four is written to, the
rasterization is aborted If SyncOnBitMask is set, then if any
register other than one of these four, or BitMaskPattem, is
written to, the rasterization is aborted. The register write
which caused the abort is then processed as normal. Writing to
the BitMaskPattem register doesn't cause any fragments to be
generated, but just updates the BitMask register.

l3 TextureE This bit, when set, enables texturing of the fragments produ::ed
nable during rasterization. Note that the Texture Units must be

suitably enabled as well for any texturing to occur.

APPENDIX O

Microsoft et al. Exhibit 1005

Bit Name

14 Fog-
Enable

5.798.770
45

-continued

Description

When this bit is reset no texturing occurs irrespective of the
setting of the Texture Unit controls.
This bit is useful to temporarily force no texturing for this
primitive.
This bit, When set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably
enabled as well for any fogging to occur.
When this bit is reset no fogging occurs irrespective of the
setting of the Fog Unit controls.
This bit is useful to temporarily force no fogging for this
primitive.

46

15 Coverage- This bit, when set, enables the coverage value produced as part
of the antialiasing to weight the alpha value in the alpha test
unit Note that this unit must be suitably enabled as well.
When this bit is reset no coverage application. occurs irrespec
tive of the setting of the AntialiasMode in the Alpha. Test unit
This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When
this bit is reset no correction is done at the start of a scanline.
Sub pixel corrections are only applied to aliased trapezoids.

Enable

16 SubPixel-
Cor=-
tion
Enable

A number of long-term rasterizer modes are stored in the
RasterizerMode register as shown below:

Bit Name

0 Mirror-
BitMask

lnvertBit-
Mask

2,3 Fraction-
Adjust

4,5 BiasCoor
dinates

Description

When this bit is set the bitmask bits are conswned from
the most significant end towards the least significant end.
When this bit is reset the bitmask bits are consumed from
the least significant end towards the most significant end.
When this bit is set the bitmask is inverted first before
being tested.
These bits control the action of a ContinueNewLine com
mand and specify how the fraction bits in the Y and
XDom DDAs are adjusted
0: No adjustment is done
1: Set the fraction bits to zero
2: Set the fraction bits to half
3: Set the fraction to nearly half, i.e. Ox7fff
These bits control how much is added onto the
StartXDom, StartXSub and StartY values, when they are
loaded into the DDA units. The original registers are not
affected:
0: Z..ro is added
1: Half is added
2: Nearly half, i.e. Ox7fff is added

Scissor Unit

address selection can be controlled independently in the X
and Y directions. In addition the bit pattern can be inverted

25 or mirrored. Inverting the bit pattern has the effect of
changing the sense of the accept/reject test. H the mirror bit
is set the most significant bit of the pattern is towards the left
of the window, the default is the converse.

In some situations window relative stippling is required
but coordinates are only available screen relative. To allow

30 window relative stippling, an offset is available which is
added to the coordinates before indexing the stipple table. X
and Y offsets can be controlled independently.
line Stippling

In this test, fragments are conditionally rejected on the
35 outcome of testing a linear stipple mask. H the bit is zero

then the test fails, otherwise it passes. The line stipple
pattern is 16 bits in length and is scaled by a repeat factor r
(in the range 1 to 512). The stipple mask bit b which
controls the acceptance or rejection of a fragment is deter-

40 mined using:
b=(floor (s/r)) mod 16

where s is the stipple counter which is incremented for every
fragment (normally along the line). This counter may be
reset at the start of a polyline, but between segments it

45 continues as if there were no break.
The stipple pattern can be optionally mirrored, that is the

bit pattern is traversed from most significant to least sig
nificant bits, rather than the default, from least significant to
most significant.

Two scissor tests are provided in GLINT, the User Scissor
test and the Screen Scissor test. The user scissor checks each
fragment against a user supplied scissor region; the screen
scissor checks that the fragment lies within the screen.

This test may reject fragments if some part of a window 50

has been moved off the screen. It will not reject fragments

Color DDA Unit
The color DDA unit is used to associate a color with a

fragment produced by the rasterizer. This unit should be
enabled for rendering operations and disabled for pixel
rectangle operations (i.e. copies, uploads and downloads).
Two color modes are supported by GLINT. true color RGBA
and color index (CI).

if part of a window is simply overlapped by another window
(GID testing can be used to detect this).

Stipple Unit

Gouraud Shading

Stippling is a process whereby each fragment is checked 55

against a bit in a defined pattern, and is rejected or accepted
depending on the result of the stipple test. H it is rejected it
undergoes no further processing; otherwise it proceeds down
the pipeline. GLINT supports two types of stippling, line and

When in Gouraud shading mode, the color DDA unit
performs linear interpolation given a set of start and incre-

60 ment values. Clamping is used to ensure that the interpolated
value does not underflow or overflow the permitted color

area.
Area Stippling

A 32><32 bit area stipple pattern can be applied to frag
ments. The least significant n bits of the fragment's (X.Y)
coordinates, index into a 2D stipple pattern. If the selected
bit in the pattern is set, then the fragment passes the test. 65

otherwise it is rejected. The number of address bits used,
allow regions of 1,2,4,8.16 and 32 pixels to be stippled. The

range.
For a Gouraud shaded trapezoid, GLINT interpolates

from the dominant edge of a trapezoid to the subordinate
edges. This means that two increment values are required
per color component, one to move along the dominant edge
and one to move across the span to the subordinate edge.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
47

Note that jf one is rendering to multiple buffers and has
initialized the start and increment values in the color DDA
unit. then any subsequent Render command will cause the
start values to be reloaded.

If subpixel correction has been enabled for a primitive.
then any correction required will be applied to the color
components.
Flat Shading

In fiat shading mode. a constant color is associated with
each fragment. This color is loaded into the ConstantColor
register.

Texture Unit
The texture unit combines the incoming fragment's color

(generated in the color DDA unit) with a value derived from
interpolating texture map values (texels).

Texture application consists of two stages; derivation of
the texture color from the texels (a filtering process) and then
application of the texture color to the fragment's color,
which is dependent on the application mode (Decal. Blend
or Modulate).
GLINT 300SX compared with the GLINT 400TX

Both the GLINT 300SX and GLINT 300TX support all
the filtering and application modes described in this section.
However. when using the GLINT 300SX. texel values.
interpolants and texture filter selections are supplied by the
host. This implies that texture coordinate interpolation and
texel extraction are performed by the host using texture
maps resident on the host. The recommended technique for
performing texture mapping using the GLINT 300SX is to
scan convert primitives on the host and render fragments as
GLINT point primitives.

The GLINT 400TX automatically generates all data
required for texture application as textures are stored in the
localbuffer and texture parameter interpolation with full
perspective correction takes place within the processor. Thus
the GLINT 400TX is the processor of choice when full
texture mapping acceleration is desired. the GLINT 300SX
is more suitable in applications where the performance of
texture mapping is not critical.

Texture Color Generation.

Texture color generation supports all the filter modes of
OpenGL. that is:

Minification:
Nearest
Unear
N earestMipMapN earest
NearestMipMapLinear
UnearMipMapNearest
UnearMipMapLinear

Magnification:
Nearest
Unear

48
Mip Mapping is a technique to allow the efficient filtering

of texture maps when the projected area of the fragment
covers more than one texel (ie. minification). A hierarchy of
texture maps is held with each one being half the size (or one

5 quarter the area) of the preceding one. A pair of maps are
selected. based on the projected area of the texture. In terms
of filtering this means that three filter operations are per
formed: one on the first map. one on the second map and one
between the maps. The first filter name (Nearest or Linear)

10 in the MipMap name specifies the filtering to do on the two
maps. and the second filter name specifies the filtering to do
between maps. So for instance. linear mapping between two
maps. with linear interpolation between the results is sup
ported (LinearMipMapUnear). but linear interpolation on

15 one map. nearest on the other map. and linear interpolation
between the two is not supported.

The filtering process takes a number of texels and
interpolants. and with the current texture filter mode pro
duces a texture color.

20 Fog Unit
The fog unit is used to blend the incoming fragment's

color (generated by the color DDA unit. and potentially
modified by the texture unit) with a predefined fog color.
Fogging can be used to simulate atmospheric fogging. and

25 also to depth cue images.
Fog application has two stages; derivation of the fog

index for a fragment. and application of the fogging effect.
The fog index is a value which is interpolated over the
primitive using a DDA in the same way color and depth are

30 interpolated. The fogging effect is applied to each fragment
using one of the equations described below.

Note that although the fog values are linearly interpolated
over a primitive the fog values can be calculated on the host
using a linear fog function (typically for simple fog effects

35 and depth cuing) or a more complex function to model
atmospheric attenuation. This would typically be an expo
nential function.

Fog Index Calculation-The Fog DDA
The fog DDA is used to interpolate the fog index (f)

40 across a primitive. The mechanics are similar to those of the
other DDA units. and horizontal scanning proceeds from
dominant to subordinate edge as discussed above.

The DDA has an internal range of approximately +511 to
-512. so in some cases primitives may exceed these bounds.

45 This problem typically occurs for very large polygons which
span the whole depth of a scene. The correct solution is to
tessellate the polygon until polygons lie within the accept
able range, but the visual effect is frequently negligible and

50

can often be ignored.
The fog DDA calculates a fog index value which is

clamped to lie in the range 0.0 to 1.0 before it is used in the
appropriate fogging equation. (Fogging is applied differently
depending on the color mode.)

Minification is the name given to the filtering process
used whereby multiple texels map to a fragment, while 55

magnification is the name given to the filtering process
whereby only a portion of a single texel maps to a single
fragment.

Antialias Application Unit
Antialias application controls the combining of the cov

erage value generated by the rasterizer with the color gen
erated in the color DDA units. The application depends on
the color mode. either RGBA or Color Index (Cl).

Nearest is the simplest form of texture mapping where the
nearest texel to the sample location is selected with no 60

filtering applied.

Antialias Application
When antialiasing is enabled this unit is used to combine

the coverage value calculated for each fragment with the
fragment's alpha value. In RGBA mode the alpha value is
multiplied by the coverage value calculated in the rasterizer
(its range is 0% to 100%). The RGB values remain

Unear is a more sophisticated algorithm which is depen
dent on the type of primitive. For lines (which are lD). it
involves linear interpolation between the two nearest texels,
for polygons and points which are considered to have finite
area, linear is in fact bi-linear interpolation which interpo
lates between the nearest 4 texels.

65 unchanged and these are modified later in the Alpha Blend
unit which must be set up appropriately. In CI mode the
coverage value is placed in the lower 4 bits of the color field.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
49

The Color Look Up Table is assumed to be set up such that
each color has 16 intensities associated with it, one per
coverage entry.
Polygon Antialiasing

When using GLINT to render antialiased polygons. depth
buffering cannot be used. This is because the order the
fragments are combined in is critical in producing the
correct final color. Polygons should therefore be depth
sorted. and rendered front to back. using the alpha blend
modes: SourceAlphaSaturate for the source blend function
and One for the destination blend function. In this way the
alpha component of a fragment represents the percentage
pixel coverage. and the blend function accwnulates cover
age until the value in the alpha buffer equals one, at which
point no further contributions can made to a pixel.

For the antialiasing of general scenes. with no restrictions
on rendering order. the accumulation buffer is the preferred
choice. This is indirectly supported by GLINT via image
uploading and downloading, with the accumulation buffer
residing on the host.

When antialiasing, interpolated parameters which are
sampled within a fragment (color. fog and texture), will
sometimes be unrepresentative of a continuous sampling of
a surface, and care should be taken when rendering smooth
shaded antialiased primitives. This problem does not occur
in aliased rendering, as the sample point is consistently at the
center of a pixel.

Alpha Test Unit
The alpha test compares a fragment's alpha value with a

reference value. Alpha testing is not available in color index
(CI) mode. The alpha test conditionally rejects a fragment
based on the comparison between a reference alpha value
and one associated with the fragment.

Localbuffer Read/Write Unit
The localbu:ffer holds the Graphic ID, FrameCount, Sten

cil and Depth data associated with a fragment. The local
buffer read/write unit controls the operation of GID testing,
depth testing and stencil testing.
Localbuffer Read

The LBReadMode register can be configured to make 0,
1 or 2 reads of the localbuffer. The following are the most
common modes of access to the localbuffer:

Normal rendering without depth, stencil or GID testing.
This requires no localbuffer reads or writes.

Normal rendering without depth or stencil testing and
with GID testing. This requires a localbu:ffer read to get
the GID from the localbuffer.

Normal rendering with depth and/or stencil testing
required which conditionally requires the localbuffer to
be updated. This requires localbuffer reads and writes
to be enabled.

Copy operations. Operations which copy all or part of the
localbuffer with or without GID testing. This requires
reads and writes enabled.

Image upload/download operations. Operations which
download depth or stencil information to the local
buffer or read depth, stencil fast clear or GID from the
localbuffer.

Localbuffer Write

50
Pixel Ownership Test

The ownership of a pixel is established by testing the GID
of the current window against the GID of a fragment's
destination in the GID buffer. If the test passes. then a write

5 can take place. otherwise the write is discarded. The sense
of the test can be set to one of: always pass. always fail. pass
if equal. or pass if not equal. Pass if equal is the normal
mode. In GLINT the GID planes. if present, are 4 bits deep
allowing 16 possible Graphic ID's. The current GID is

10 established by setting the Window register.
If the unit is disabled fragments pass through undisturbed.
Stencil Test Unit
The stencil test conditionally rejects fragments based on

the outcome of a comparison between the value in the stencil
15 buffer and a reference value. The stencil buffer is updated

according to the current stencil update mode which depends
on the result of the stencil test and the depth test.
Stencil Test

This test only occurs if all the preceding tests (bitmask.
20 scissor, stipple, alpha, pixel ownership) have passed. The

stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test
between the reference stencil value and the value held in the
stencil buffer. The stencil operation controls the updating of

25 the stencil buffer, and is dependent on the result of the stencil
and depth tests.

If the stencil test is enabled then the stencil buffer will be
updated depending on the outcome of both the stencil and
the depth tests (if the depth test is not enabled the depth

30 result is set to pass).
In addition a comparison bit mask is supplied in the

StencilData register. This is used to establish which bits of
the source and reference value are used in the stencil
function test. In addition it should normally be set to exclude

35 the top four bits when the stencil width has been set to 4 bits
in the StencilMode register.

The source stencil value can be from a number of places
as controlled by a field in the StencilMode register:

40

45

LBWriteData
Stencil

Test logic
Stencil
register

LBSourceData:
(stencil

50 value read
from the
localbuffer)
SOUICe stencil
value read
from the

55 localbuffer

Use

Ibis is the 110rmal mode.
Ibis is used, for instance, in the OpenGL draw pixels
function where the host supplies the stencil values in the
Stencil register.
Ibis is used wben a constant stencil values is needed, for
example, wben clearing the stencil buffer when fast clear
planes are not available.
Ibis is used, for instance, in the OpenGL copy pixels
function when the stencil planes are to be copied to the
destination. The source is offset from the destination by
the value in LBSourceOffset register.

Ibis is used, for instance, in the OpenGL copy pixels
function wben the stencil planes in the destination
are not to be updated. The stencil data will come
either from the localbuffer date, or the FCStencil
register, depending on whether fast clear
operations are enabled.

Writes to the localbuffer must be enabled to allow any
update of the localbuffer to take place. The LBWriteMode 60

register is a single bit flag which controls updating of the
buffer.

Depth Test Unit
The depth (Z) test, if enabled. compares a fragment's

depth against the corresponding depth in the depth buffer.
The result of the depth test can effect the updating of the
stencil buffer if stencil testing is enabled. This test is only
performed if all the preceding tests (bitmask. scissor. stipple,
alpha. pixel ownership. stencil) have passed. The source
value can be obtained from a number of places as controlled
by a field in the DepthMode register:

Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a 65

pixel ownership test. This test establishes the current frag
ment's write permission to the localbuffer and frame buffer.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
51

Source Use

52
The data read from the framebuffer may be tagged either

FBDefault (data which may be written back into the frame
buffer or used in some manner to modify the fragment color)
or FBColor (data which will be uploaded to the host). The DDA (see

below)
Depth register

This is used for normal Depth buffered 3D rendering.

This is used, for instance, in the OpenGL draw pixels
function where dte host supplies the depth values through
the Depd1 register.

5 table below summarizes the framebuffer read/write control
for common rendering operations:

Read-
Alternatively this is used when a constant depth value is
needed, for example, when clearing the depth buffer
(when fast clear planes are not available) or 2D
rendering where the depth is held constant.

10 Source
ReadDes·
tination Writes

Read Data
Type Rendering Operation

LBSourceData: This is used, for instance, in the OpenGL copy pixels
function when the depth plartes are to be copied

Disabled Disabled Enabled

Source depth
value from the
localbuffer
Source Depth

to the destination.

This is used, for instance, in the OpenGL copy pixels
function when the depth planes in the destination are
not updated The depth data will COnte either from the
localbuffer or the FCDepth register depending the state
of the Fast Clear modes in operation.

Disabled
Disabled

15 Enabled

Disabled
Enabled
Disabled

Enabled
Disabled
Enabled

FBColor
FBDefault

Rendering with no logi
cal operations, software
write masks or blending.
Image cbwnload.
Image upload.
Image copy with
hardware write masks.
Rendering using logi
cal operations, soft
ware write masks

Disabled Enabled Enabled FBDefault

or blending.

When using the depth DDA for normal depth buffered
rendering operations the depth values required are similar to
those required for the color values in the color DDA unit:

20 Enabled Enabled Enabled FBDefault Image copy with
software writemasks.

ZStart=Start Z Value
dZdYDom=lncrement along dominant edge.
dZdX=Increment along the scan line.

The dZdX value is not required for Z-buffered lines.
The depth unit must be enabled to update the depth buffer.

H it is disabled then the depth buffer will only be updated if
ForceL-BUpdate is set in the Window register.

25

Framebuffer Write

Framebuffer writes must be enabled to allow the frame
buffer to be updated. A single 1 bit flag controls this
operation.

Framebuffer Read/Write Unit
Before rendering can take place GLINT must be config

ured to perform the correct framebuffer read and write
operations. Framebuffer read and write modes effect the
operation of alpha blending, logic ops, write masks, image
upload/download operations and the updating of pixels in

35 the framebuffer.

The framebuffer write unit is also used to control the
operation of fast block fills, if supported by the framebuffer.

3° Fast fill rendering is enabled via the FastFillEnable bit in the
Render command register, the framebuffer fast block size
must be configured to the same value as the FastFilllncre
ment in the Render command register. The FBBlock:Color
register holds the data written to the framebuffer during a
block fill operation and should be formatted to the 'raw'

Framebuffer Read
The FBReadMode register allows GLINT to be config

ured to make 0, 1 or 2 reads of the framebuffer. The
following are the most common modes of access to the
framebuffer: Note that avoiding unnecessary additional 40
reads will enhance performance.

framebuffer format When using the framebuffer in 8 bit
packed mode the data should be replicated into each byte.
When using the framebuffer in packed 16 bit mode the data
should be replicated into the top 16 bits.

When uploading images the UpLoadData bit can be set to
allow color formatting (which takes place in the Alpha
Blend unit).

It should be noted that the block write capability provided

Rendering operations with no logical operations, software
write-masking or alpha blending. In this case no read of
the framebuffer is required and framebuffer writes should
be enabled.

Rendering operations which use logical ops, software write
masks or alpha blending. In these cases the destination
pixel must be read from the framebuffer and framebuffer
writes must be enabled.

45 by the chip of the presently preferred embodiment is itself
believed to be novel. According to this new approach. a
graphics system can do masked block writes of variable
length (e.g. 8, 16, or 32 pixels, in the presently preferred

Image copy operations. Here setup varies depending on 50
whether hardware or software write masks are used. For
software write masks. the framebuffer needs two reads,
one for the source and one for the destination. When
hardware write masks are used (or when the software
write mask allows updating of all bits in a pixel) then only
one read is required. 55

Image upload. This requires reading of the destination
framebuffer reads to be enabled and framebuffer writes to
be disabled.

Image download. In this case no framebuffer read is required
(as long as software writemasking and logic ops are 60

disabled) and the write must be enabled.
For both the read and the write operations, an offset is

added to the calculated address. The source offset
(FBSourceOffset) is used for copy operations. The pixel
offset (FBPixelOOset) can be used to allow multi-buffer 65

updates. The offsets should be set to zero for normal
rendering.

embodiment). The rasterizer defines the limits of the block
to be written, and hardware masking logic in the frame
buffer interface permits the block to be filled in, with a
specified primitive. only up to the limits of the object being
rendered. Thus the rasterizer can step by the Block Fill
increment. This permits the block-write capabilities of the
VRAM chips to be used optimally, to minimize the length
which must be written by separate writes per pixel.

Alpha Blend Unit
Alpha blending combines a fragment's color with those of

the corresponding pixel in the framebuffer. Blending is
supported in RGBA mode only.
Alpha Blending

The alpha blend unit combines the fragment's color value
with that stored in the frarnebuffer. using the blend equation:

Co=CsS+Cfl

where: C., is the output color; Cs is the source color
(calculated internally); Cd is the destination color read from

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
53

the framebuffer; S is the source blending weight; and D is
the destination blending weight. S and D are not limited to
linear combinations; lookup functions can be used to imple
ment other combining relations.

H the blend operations require any destination color 5
components then the frarnebuffer read mode must be set
appropriately.
Image Formatting

The alpha blend and color formatting units can be used to
format image data into any of the supported GLINT frame-

10
buffer formats.

Consider the case where the frarnebuffer is in RGBA
4:4:4:4 mode, and an area of the screen is to be uploaded and
stored in an 8 bit RGB 3:3:2 format. The sequence of

54
Flat shaded aliased primitive
No dithering required
No logical ops
No stencil. depth or GID testing required
No alpha blending The following are available:
Bit masking in the rasterizer
Area and line stippling
User and Screen Scissor test

operations is:
Set the rasterizer as appropriate
Enable frarnebuffer reads

H all the conditions are met then high speed rendering can
be achieved by setting the FBWriteData register to hold the
framebuffer data (formatted appropriately for the frame
buffer in use) and setting the UseConstantFBWriteData bit
in the LogicalOpMode register. All unused units should be

15 disabled.

Disable frarnebuffer writes and set the UpLoadData bit in
the FBWriteMode register

Enable the alpha blend unit with a blend function which
passes the destination value and ignores the source
value (source blend Zero. destination blend One) and
set the color mode to RGBA 4:4:4:4

20

Set the color formatting unit to format the color of
incoming fragments to an 8 bit RGB 3:3:2 frarnebuffer
format. 25

The upload now proceeds as normal. This technique can
be used to upload data in any supported format.

The same technique can be used to download data which
is in any supported framebuffer format. in this case the
rasterizer is set to sync with FBColor, rather than Color. In 30

this case framebuffer writes are enabled, and the UpLoad
Data bit cleared.

Color Formatting Unit
The color formatting unit converts from GLINT's internal

color representation to a format suitable to be written into 35

the framebuffer. This process may optionally include dith
ering of the color values for framebuffers with less than 8
bits width per color component. H the unit is disabled then
the color is not modified in any way.

As noted above. the framebuffer may be configured to be 40

RGBA or Color Index (Cl).
Color Dithering

GLINT uses an ordered dither algorithm to implement
color dithering. Several types of dithering can be selected.

H the color formatting unit is disabled. the color compo- 45

nents RGBA are not modified and will be truncated when
placed in the frarnebuffer. In Cl mode the value is rounded
to the nearest integer. In both cases the result is clamped to
a maximum value to prevent overflow.

In some situations only screen coordinates are available, 50

but window relative dithering is required. This can be
implemented by adding an optional offset to the coordinates
before indexing the dither tables. The offset is a two bit
number which is supplied for each coordinate, X and Y. The
XOffset. YOffset fields in the DitherMode register control 55

this operation, if window relative coordinates are used they
should be set to zero.

Logical Op Unit
The logical op unit performs two functions; logic opera

tions between the fragment color (source color) and a value 60

from the framebuffer (destination color); and. optionally,
control of a special GLINT mode which allows high per
formance flat shaded rendering.
High Speed Flat Shaded Rendering

A special GLINT rendering mode is available which 65

allows high speed rendering of unshaded images. To use the
mode the following constraints must be satisfied:

This mode is most useful for 2D applications or for
clearing the framebuffer when the memory does not support
block writes. Note that FBWriteData register should be
considered volatile when context switching.

Logical Operations

The logical operations supported by GLINT are:

Mode Name Operation Mode Name Operation

0 Clear 0 8 Nor --(S I D)
I And S&D 9 Equivalent --(S. D)
2 And Reverse S&-D 10 Invert -D
3 Copy s 11 Or Reverse S 1-D
4 And Inverted -S&D 12 Copy Invert -s
5 Noop D 13 Or Invert -SID
6 X or s 'D 14 Nand --(S & D)
7 Or SID 15 Set 1

Where:
S=Source (fragment) Color, D=Destination (frarnebuffer)

Color.
For correct operation of this unit in a mode which takes

the destination color. GLINT must be configured to allow
reads from the framebuffer using the FBReadMode register.

GLINT makes no distinction between RGBA and CI
modes when performing logical operations. However, logi
cal operations are generally only used in Cl mode.
Framebuffer Write Masks

1\vo types of frarnebuffer write masking are supported by
GLINT. software and hardware. Software write masking
requires a read from the frarnebuffer to combine the frag
ment color with the frarnebuffer color. before checking the
bits in the mask to see which planes are writeable. Hardware
write masking is implemented using VRAM write masks
and no framebuffer read is required.
Software Write Masks

Software write masking is controlled by the FBSoftware
WriteMask register. The data field has one bit per frame
buffer bit which when set. allows the corresponding frame
buffer bit to be updated. When reset it disables writing to that
bit Software write masking is applied to all fragments and
is not controlled by an enable/disable bit. However it may
effectively be disabled by setting the mask to all 1' s. Note
that the ReadDestination bit must be enabled in the FBRead
Mode register when using software write masks. in which
some of the bits are zero.
Hardware Write Masks

Hardware write masks. if available. are controlled using
the FBHardwareWriteMask register. H the framebuffer sup
ports hardware write masks, and they are to be used. then
software write masking should be disabled (by setting all the

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
55

bits in the FBSoftwareWriteMask register). This will result
in fewer framebuffer reads when no logical operations or
alpha blending is needed.

If the framebuffer is used in 8 bit packed mode. then an
8 bit hardware write mask must be replicated to all 4 bytes 5
of the FBHardwareWriteMask register. If the framebuffer is
in 16 bit packed mode then the 16 bit hardware write mask
must be replicated to both halves of the FBHardwareWrite
Mask register.
Host Out Unit

10
Host Out Unit controls which registers are available at the

output FIFO. gathering statistics about the rendering opera
tions (picking and extent testing) and the synchronization of
GLINT via the Sync register. These three functions are as
follows:
Message filtering. This unit is the last unit in the core so any 15

message not consumed by a preceding unit will end up
here. These messages will fall in to three classifications:
Rasterizer messages which are never consumed by the
earlier units. messages associated with image uploads.
and finally programmer mistakes where an invalid rues- 20

sage was written to the input FIFO. Synchronization
messages are a special category and are dealt with later.
Any messages not filtered out are passed on the output
FIFO.

56
In the presently preferred embodiment. the frame buffer

interface of the GLINT chip contains additional simple
interface logic. so that two chips can both access the same
frame buffer memory. This permits the GLINT chip to be
combined with an additional chip for management to the
graphics produced by the graphical user interface. This
provides a migration path for users and applications who
need to take advantage of the existing software investment
and device drivers for various other graphics chips.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with a
GUI accelerator chip (such as an S3 chip). This provides a
path for software migration. and also provides a way to
separate 3D rendering tasks from 2D rendering.

In this embodiment. a shared framebuffer is used to enable
multiple devices to read or write data to the same physical
framebuffer memory. Example applications using the
GLINT 300SX:

Using a video device as a coprocessor to GLINT. to grab
live video into the framebuffer. for displaying video in
a window or acquiring a video sequence;

Using GLINT as a 3D coprocessor to a 2D GUl
accelerator. preserving an existing investment in 2D
driver software.

Statistic Collection. Here the active step messages are used
to record the extent of the rectangular region where
rasterization has been occurring. or if rasterization has
occurred inside a specific rectangular region. These facili
ties are useful for picking and debug activities.

25 In a coprocessor system. the framebuffer is a shared
resource. and so access to the resource needs to be arbitrated.
There are also other aspects of sharing a framebuffer that
need to be considered:

30
Memory refreshing;

Synchronization. It is often useful for the controlling soft
ware to find out when some rendering activity has
finished, to allow the timely swapping or sharing of
buffers, reading back of state. etc. To achieve this the
software would send a Sync message and when this
reached this unit any preceding messages or their actions 35

are guaranteed to have finished. On receiving the Sync
message it is entered into the FIFO and optionally gen
erates an interrupt.

Sample Board-Level Embodiment

A sample board incorporating the GLINf chip may
include simply:

40

Transfer of data from the memory cells into the shift
registers of the VRAM;

Control of writemasks and color registers.
GLINf uses the S3 Shared Frame Buffer Interface (SFBI) to
share a framebuffer. This interface is able to handle all of the
above aspects for two devices sharing a frame buffer, with
the GLINf acting as an arbitration master or slave.

Timing Considerations in Shared Frame-Buffer
Interface

The Control Signals used in the Shared Framebuffer
interface, in the presently preferred embodiment. are as
follows: the GLINf chip itself. which incorporates a PCI interface;

Video RAM (VRAM). to which the chip has read-write
access through its frame buffer (FB) port;

GLINT as Primary Controller
45

DRAM. which provides a local buffer then made for such
purposes as Z buffering; and

a RAMDAC. which provides analog color values in accor
dance with the color values read out from the VRAM.
Thus one of the advantages of the chip of the presently 5{)

preferred embodiment is that a minimal board implementa
tion is a trivial task.

FIG. 3A shows a sample graphics board which incorpo
rates the chip of FIG. 2B.

FIG. 3B shows another sample graphics board 55

implementation. which differs from the board of FIG. 3A in
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with GUl 60

accelerator chip.
FIG. 3D shows another graphics board. in which the chip

of FIG. 2B shares access to a common frame store with a
video coprocessor (which may be used for video capture and
playback functions (e.g. frame grabbing).
Alternative Board Embodiment with Additional Video Pro-
cess or

65

FBReqN is internally re-synchronized to System Clock.
FBSelOEN remains negated.
FBGntN is asserted an unspecified amount of time after

FBReqN is asserted.-Framebuffer Address, Data and
Control lines are tri-stated by GLINT (the control lines
should be held high by external pull-up resistors). The
secondary controller is now free to drive the Frame
buffer lines and access the memory.

FBGntN remains asserted until GLINT requires a frame
buffer access. or a refresh or transfer cycle.

FBReqN must remain asserted while FBGntN is asserted.
When FBGntN is removed. the secondary controller must

relinquish the address. data and control bus in a grace
ful manner i.e. RAS. CAS. WE and OE must all be
driven high before being tri-stated.

The secondary controller must relinquish the bus and
negate FBReqN within 500 ns of FBGntN being
negated.

Once FBReqN has been negated. it must remain inactive
for at least 2 system clocks (40 ns at 50 MHz).

GLINT as a Secondary Controller

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
57 58

Framebuffer Refresh and VRAM transfer cycles by The memory systems (i.e. local buffer and framebuffer) are
GLINT are turned off when GLINT is a secondary duplicated for each GLINT. Recall that the texture maps
framebuffer controller. are stored in the local buffer. A single GLINT places very

GLINT asserts FBReqN whenever is requires a frame- high demands on the memory systems. and it would be
buffer access. s very difficult to share them between multiple GLINTs. In

the presently preferred embodiment there are no provi-
FBGntN is internally re-synchronized to system clock. sions for sharing the local buffer. so if this is necessary it
When FBGntN is asserted. GLINT drives FBselOEN to would have to be done behind GLINT's back and trans-

enable any external buffers used to drive the control parently. The framebuffer can be shared (since GLINT has
signals, and then drives the framebuffer address. data a SFB interface). but this is likely to be a bottle neck if

10 and control lines to perform the memory access. shared between GLINTs.
FBReqN remains asserted while FBGntN is asserted. Broadcast. In some parallel systems each GLINT will get the

When FBGntN is negated. GLINT finishes any outstand- same (or mostly the same) primitive data and just render
ing memory cycles. drives the control lines inactive, those pixels assigned to it. It is very desirable that this data
negates FBselOEN and then tri-states the address. data

15
is written by the host only once, or fetched from the host

and control lines. then releases FBReqN. GLINT guar- address space once if DMA is being used. This presents
antees to release FBReqN within 500 ns of FBGntN two issues: Firstly the PCI bus does not have any concept
being negated of broadcasting to multiple devices. and secondly GLINT

does not have a dedicated FIFO status signal pin an
GLINT will not reassert FBReqN within 4 system clock external controller can use. Neither of these issues are

cycles (80 ns@ 50 MHz). 20 insurmountable. but will require hardware to solve.
Considerations for Board-Level Implementations However. if the application only uses a 'few' large texture

The following are some points to be noted when imple- mapped primitives so repeatedly sending or fetching the
menting a shared framebuffer design with a GLINT 300SX: parameters for each GLINT will not be a problem.

Some 2D Gill Accelerators such as the S3 Vision964. and To avoid problems with Antialiasing. Bitmasks for
GLINT use configuration resistors on the framebuffer 25 characters. or Line stipple, the area stipple table can be used
databus at reset. In this case care should be taken with to reserve scanlines to a processor.
the configuration setup where it effects read only reg- Parallel Configurations
isters inside either device. If conflicts exist that can not This section looks at some of the common ways of
be resolved by the board initialization software. then applying parallelism to the rendering operation. The list is
the conflicts should be resolved by isolating the two 30 not exhaustive and an interested reader is directed to the
devices from each other at reset so they can read the book by Whitman cited above. No one paradigm is best and
correct configuration information. This isolation need the choice is very application or market dependent.
only be done for the framebuffer databus lines that Frame Interleaving
cause problems; Frame Interleaving is where a GLINT works on frame n.

GLINT should be configured as the secondary controller 35 the next GLINT works on frame n+ 1. etc. Each GLINT does
when used with an S3 GUI accelerator. as the S3 everything for its own frame and the video is sourced from
devices can only be primary controllers; each GLINT's framebuffer in turn. This paradigm is perhaps

GLINT cannot be used on the daughter card interface as the simplest one with very little hardware overhead and none
described in the S3 documentation. because this gives of the above complications regarding antialiasing. block
no access to the PCI bus. A suitable PO bridge should 40 copies, bitrnasks and line stipples.
be used in a design with a PCI 2D GUI accelerator and This scheme only works when the image is double
GLINT so they can both have access to the PO bus; buffered (normal for simulation systems) and where the

The use of ribbon cable to carry the framebuffer signals increase in transport delay is acceptable. Transport delay is
between two PCI boards is not recommended, because the time it takes for a user to see a visual change after new
of noise problems and the extra buffering required 45 input stimulus to the system has occurred. With 4 GLINTs
would impact performance; this will be 4 frame times attributable to the rendering

The GLINT 300SX does not provide a way of sharing its system. plus whatever else the whole system adds.
localbuffer. The cost of this method is also one of the highest. as ALL

The 400TX also allows grabbing of live video into the the memory has to be duplicated. By contrast. the schemes
localbuffer and real-time texture mapping of that video into so where the screen is divided up can save depth and color
the framebuffer for video manipulation effects. buffer memory (but not texture memory).

Sequential frames will usually have very similar amounts
Alternative Board Embodiments with Multiple of rendering. unless there is a discontinuity in the viewing

Rendering Accelerator Chips position and/or orientation. so load balancing is generally
This technical note describes some system design issues 55 good.

on how multiple GLINT devices can be used in parallel to Frame Merging or Primitive Parallelism
achieve higher performance. The main driving force for Frame merging is a similar technique to frame interleav-
higher performance is the simulation market which. at the ing where each GLINT has a full local buffer and frame-
low end. demands somewhere between 25-30M texture buffer. In this case the primitives are distributed amongst the
mapped pixels per second 60 GLINTs and the resultant partial images composited using

There are some key points before we look at different the depth information to control which fragment from the
parallel organizations: multiple buffers is displayed in each pixel position.
To gain any benefit from running multiple GLINTs in GLINT has not been designed to share the local buffer

parallel. the overall system must be rendering bound. If (where the depth information is held) so the compositing is
the system is host bound or geometry bound. then adding 65 not readily supported. Also the composition frequently
in more GLINTs will not improve the systems perfor- needs to be done at video rate so requires some fast
mance. hardware.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
59 60

Alpha blending and Antialiasing presents some problems
but the bitmask. block copies and line stipple are easily
accommodated. Good load balancing depends on even dis
tribution of primitives. Not all primitives will take the same
amount of time to process so a round robin distribution 5

scheme. or a heuristic one with takes into account the
expected processing time for each primitive will be needed.
Screen Subdivision-Blocks

Router Unit Description
The Router Unit allows the order of some of the units to

be changed so that texturing can be done before or after the
depth test. Any texture operations will cause a loss in
performance over the same non-textured rendering. so it is
a good idea only to texture those pixels which pass all the
depth. stencil and GID tests. OpenGL defines the order in
which operations are to be performed on fragments as
texture. alpha test. stencil and then depth. It is very likely Here the screen is divided up into large contiguous

regions and a GLINT looks after each region. Primitives 10

which overlap between regions are sent to both regions and
scissor clipping used. Primitives contained wholly in one
region are ideally just sent to the one GLINT.

that in a typical scene many textured fragments will get
rejected by the depth test. say. which isn't the most effective
use of the texturing capacity. If the alpha test is disabled (or
cannot reject fragments) then OpenGL compatible semantics
are still maintained if the order is rearranged to be stencil.

The number of regions and the horizontal and/or vertical
division of the screen can be chosen as appropriate. but 15
horizontal bands are usually easier for the video hardware to
cope with. Each GLINT only needs enough local buffer and
frame buffer to cover the pixels in its own region. but texture
maps are duplicated in full. Block copies are a problem
when the block. or part block is moved between regions. Bit 20
masking and line stipples can be solved with some careful
clipping.

depth. texture and then alpha test.
The message stream can be re-configured into either of

the two orders using the RouterMode message. The reset
order is texture. then depth so a to be compatible with
OpenGL. Changing the pipeline order is self synchronising
so the user doesn't need to wait for the message stream to
empty first.
Implementation

This unit is divided into two sub-units: a switcher and a
multiplexer. FIG. SA shows how these are connected
together. The basic operation is as follows:

Load balancing is very poor in this paradigm. since most
of the scene complexity can be concentrated into one region.
Dynamically changing the size of the regions based on 25

expected scene complexity (maybe measured from the pre
vious frame) can alleviate the poor load balancing to some
extent.

When the Switcher sub-unit receives a Router Mode mes
sage it makes a note of the new order, forwards the Rou
terMode message on and blocks all further messages until it
receives a resume signal from the Multiplexer sub unit
When the resume signal is asserted the Switcher Screen Subdivision-Interleaved Scanlines

The interleave factor is every other n'h scanline where n
is the number of GLINTs. Vertical interleaves are possible.
but not supported by the GLINT rasterizer. Nearly all
primitives will overlap multiple scanlines so are ideally
broadcast to all GLINTs. Each GLINT will have different
start values for the rasterization and interpolation param
eters.

Each GLINT only needs enough local buffer and frame
buffer to cover the pixels in its own region. but texture maps
are duplicated in full.

Some block copies are a problem when the block is
moved between non nth scanlines. but horizontal moves are
available with any alignment. Bit masking can be solved
with some careful clipping. but line stipples have no easy
solution. Antialiasing is not normally a problem but with
GLINT 300SX there is no provision for sub scanline steps
as well as nth scanline steps. Load balancing is excellent in
this paradigm which is the main reason it features promi
nently in the literature.

Thus the simplest and lowest risk method of using mul
tiple GLINTs is Frame Interleaving. but if this is not an
option. e.g. because of the transport delay or the amount of
memory needed. then the next best choice is the Interleaved
Scanlin e.
Linkage

FIG. 2B shows how the units are connected together.
Some general points are:

The order of the units can be configured in two ways. The
most general order (Router. Colour DDA. Texture Units.
Fog Unit. Alpha Test. LB Rd. GID/ZJStencil, LB Wr,
Multiplexer) and will work in all modes of OpenGL.
However. when the alpha test is disabled it is much better to
do the Graphics ID. depth and stencil tests before the texture
operations rather than after. This is because the texture
operations have a high processing cost and this should not be
spent on fragments which are later rejected because of
window. depth or stencil tests.

30 re-configures the message paths according to the new order
and un-blocks the message stream so it starts to flow again.

When the Multiplexer sub-unit receives the RouterMode
message it re-configures the message paths according to the
new order and asserts the resume signal to the Switcher. The

35 RouterMode message is consumed. The unit order is con
trolled using the RouterMode message. It uses the O-bit of
the passed message to indicate if the processing order is:

40 Bit 0=0
BitO=l

Texture Depth
Depth Texture

When the order is TextureDepth (the default after reset) the
message routing is done according to FIG. SB. When the

45 order is Depth Texture the message routing is done according
to FIG. SC.

Disclosed Embodiments

Among the disclosed classes of preferred embodiments,
50 there is provided: A method for processing graphics data

through a data path comprising the steps of: (a) receiving a
routing command from a data bus input; (b) stalling further
input from said data bus input until previous data has exited
said data path; (c) resuming said input from said data bus

55 input; (d) if said routing command has a first value, then
performing a first set of graphics processes on said data. and
then performing a second set of graphics processes on said
data; (e) if said routing command has a second value.
thenperforming said second set of graphics processes on said

6(1 data. and thenperforming said first set of graphics processes
on said data. wherein some portion of said data may be
eliminated by said first or second sets of graphics process
according to the results of said processes; wherein steps (d)
and (e) are repeated until a new routing command is

65 received; wherein said first set of graphics processes
requires a longer processing time than said second set of
graphics processes.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
61

Among the disclosed classes of preferred embodiments.
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path: (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
then performing a set of texturing processes on said data, and
thenperforming a set of pixel elimination processes on said
data; (e) if said routing command has a second value.
thenperforrning said set of pixel elimination processes on
said data, and thenperforming said set of texturing processes
on said data, wherein some portion of said data may be
eliminated by said set of pixel elimination processes accord
ing to the results of said processes; wherein steps (d) and (e)
are repeated until a new routing command is received;
wherein said first set of graphics processes requires a longer
processing time than said second set of graphics processes.

62
Among the disclosed classes of preferred embodiments,

there is also provided: A pipelined graphics processing
device, comprising:a switching device connected to a data
bus input and configured to route graphics data received on

5 said data bus according to instruction data received on said
data bus; a multiplexing device connected to said switching
device and to a data bus output; a first processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to

10 said multiplexing device; anda second processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to
said multiplexing device; wherein said switching device
routes said graphics data according to a first data path,

15 wherein said graphics data is processed by said first pro
cessing block and then by said second processing block, or
a second data path. wherein said graphics data is processed
by said second processing block before said first processing

Among the disclosed classes of preferred embodiments,
there is also provided: A method for rendering graphics data 20
comprising the steps of: (a) receiving a routing command
from a data bus input; (b) stalling further input from said
data bus input until previous data has exited said data path;

block. according to said instruction data.
Among the disclosed classes of preferred embodiments.

there is also provided: A pipelined graphics processing
device, comprising: a routing device connected to a data bus
input and data bus output and configured to route graphics
data received on said data bus according to instruction data (c) resuming said input from said data bus input; (d) if said

routing command has a first value, thenperforrning a set of
texturing processes on said data, and thenperforming a set of
pixel elimination processes on said data; (e) if said routing
command has a second value, thenperforming said set of
pixel elimination processes on said data, and thenperforrning
said set of texturing processes on said data, wherein some
portion of said data may be eliminated by said set of pixel
elimination processes according to the results of said pro
cesses; (f) rendering said data and writing the results to a
memory; (g) displaying the contents of said memory;
wherein steps (d) and (e) are repeated until a new routing
command is received;wherein said set of texturing processes
requires a longer processing time than said set of pixel
elimination processes.

25 received on said data bus; a first processing block connected
and configured to receive said graphics data from said
routing device and pass processed graphics data back to said
routing device; anda second processing block connected and
configured to receive said graphics data from said routing

30 device and pass processed graphics data back to said routing
device; wherein said routing device routes data according to
a first data path, wherein said graphics data is processed by
said first processing block and then by said second process
ing block. or a second data path, wherein said graphics data

35 is processed by said second processing block before said
first processing block, according to said instruction data.

Among the disclosed classes of preferred embodiments,
there is also provided: A graphics processing subsystem.,
comprising: at least four functionally distinct processing

40 units, each including hardware elements which are custom
ized to perform a rendering operation which is not per
formed by at least some others of said processing units; at
least some ones of said processing units being connected to
operate asynchronously to one another; a frame buffer.

Among the disclosed classes of preferred embodiments,
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path; (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
thenreading said graphics data from said data bus input;
performing a color DDA process on said data;performing a
texturing process on said data;performing an alpha test on
said data; if the data has passed the previous test, then
performing a graphics ID test on said data; if the data has
passed the previous tests, then performing a stencil test on
said data;if the data has passed the previous tests, then
performing a depth test on said data; and if the data has
passed the previous tests, then writing said data to a local
bus; (e) if said routing command has a second value,
thenreading said graphics data from said data bus input;
performing a graphics ID test on said data;if the data has
passed the previous test, then performing a stencil test on
said data; if the data has passed the previous tests, then
performing a depth test on said data; if the data has passed 60
the previous tests, then performing a color DDA process on
said data; if the data has passed the previous tests. then
performing a texturing process on said data; if the data has
passed the previous tests. then performing an alpha test on
said data; if the data has passed the previous tests. then 65
writing said data to a local bus; wherein steps (d) and (e) are
repeated until a new routing command is received.

45 connected to be accessed by at least one of said processing
units;said processing units being mutually interconnected in
a pipeline relationship. with at least some successive ones of
said processing units being interconnected through a FIFO
buffer; and wherein at least one said processing unit is

50 connected to look downstream, in said pipeline relationship,
past the immediately succeeding one of said processors; and
wherein at least two of said processing units may be dynami
cally reordered in said pipeline relationship; whereby the
duty cycle of said processors is increased while permitting

55 use of a reduced depth for said FIFO.

Modifications and Variations

As will be recognized by those skilled in the art. the
innovative concepts described in the present application can
be modified and varied over a tremendous range of
applications. and accordingly the scope of patented subject
matter is not limited by any of the specific exemplary
teachings given.

The foregoing text has indicated a large number of
alternative implementations. particularly at the higher
levels, but these are merely a few examples of the huge
range of possible variations.

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
63

For example. the preferred chip context can be combined
with other functions. or distributed among other chips. as
will be apparent to those of ordinary skill in the art

For another example. the described graphics systems and 5
subsystems can be used. in various adaptations. not only in
high-end PC's. but also in workstations. arcade games. and
high-end simulators.

For another example, the described graphics systems and
subsystems are not necessarily limited to color displays. but 10

can be used with monochrome systems.

For another example. the described graphics systems and
subsystems are not necessarily limited to displays, but also
can be used in printer drivers. 15

What is claimed is:
I. A method for processing graphics data through a data

path comprising the steps of:

(a) receiving a routing command from a data bus input; 20

(b) stalling further input from said data bus input until
previous data has exited said data path;

(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

25
performing a first set of graphics processes on said data.

and then
performing a second set of graphics processes on said

data;

(e) if said routing command has a second value, then
performing said second set of graphics processes on

said data. and then

30

performing said first set of graphics processes on said
data. wherein some portion of said data is selectively
eliminated by said first or second sets of graphics 35
process according to the results of said processes;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said first set of graphics processes requires a
longer processing time than said second set of graphics 40
processes.

2. The method of claim I. wherein said first set of graphics
processes comprises the steps of:

reading said graphics data from said data bus input;
performing a color DDA process on said data;

performing a texturing process on said data; and
performing an alpha test on said data.

45

3. The method of claim I. wherein said second set of
graphics processes comprises the step of if the data has so
passed all previous tests. then performing a graphics ID test
on said data.

4. The method of claim I. wherein said second set of
graphics processes comprises the step of if the data has
passed the previous tests. then performing a stencil test on 55
said data.

5. The method of claim I. wherein said second set of
graphics processes comprises the steps of if the data has
passed the previous tests. then performing a depth test on
said data. 60

6. The method of claim I. wherein step (d) comprises
steps according to the OpenGL standard.

7. The method of claim I. wherein step (b) is performed
by a switcher connected at said data bus input.

8. The method of claim I. wherein a multiplexer at an 65
output of said data path indicates when said data path is clear
and step (c) can begin.

64
9. A method for processing graphics data through a data

path comprising the steps of:
(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

performing a set of texturing processes on said data.
and then

performing a set of pixel elimination processes on said
data;

(e) if said routing command has a second value. then
performing said set of pixel elimination processes on

said data. and then
performing said set of texturing processes on said data.

wherein some portion of said data is selectively
eliminated by said set of pixel elimination processes
according to the results of said processes;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said first set of graphics processes requires a
longer processing time than said second set of graphics
processes.

IO. A method for rendering graphics data comprising the
steps of:

(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

performing a set of texturing processes on said data.
and then

performing a set of pixel elimination processes on said
data;

(e) if said routing command has a second value. then
performing said set of pixel elimination processes on

said data, and then
performing said set of texturing processes on said data,

wherein some portion of said data is selectively
eliminated by said set of pixel elimination processes
according to the results of said processes;

(f) rendering said data and writing the results to a
memory;

(g) displaying the contents of said memory;
wherein steps (d) and (e) are repeated until a new routing

command is received;
wherein said set of texturing processes requires a longer

processing time than said set of pixel elimination
processes.

ll. A method for processing graphics data through a data
path comprising the steps of:

(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

reading said graphics data from said data bus input;
performing a color DDA process on said data;
performing a texturing process on said data;
performing an alpha test on said data;
if the data has passed the previous test. then performing

a graphics ID test on said data;
if the data has passed the previous tests. then perform

ing a stencil test on said data;

APPENDIX O

Microsoft et al. Exhibit 1005

5.798.770
65

if the data has passed the previous tests. then perform
ing a depth test on said data; and

if the data has passed the previous tests. then writing
said data to a local bus;

(e) if said routing command has a second value. then
reading said graphics data from said data bus input;
performing a graphics ID test on said data;
if the data has passed the previous test. then performing

a stencil test on said data;

5

66
19. A pipelined graphics processing device. comprising:

a routing device connected to a data bus input and data
bus output and configured to route graphics data
received on said data bus according to instruction data
received on said data bus;

if the data has passed the previous tests. then perform- IO

ing a depth test on said data;

a first processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device; and

a second processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device;

if the data has passed the previous tests. then perform
ing a color DDA process on said data;

if the data has passed the previous tests. then perform
ing a texturing process on said data;

if the data has passed the previous tests. then perform
ing an alpha test on said data;

if the data has passed the previous tests. then writing
said data to a local bus;

15 wherein said routing device routes data according to a first
data path. wherein said graphics data is processed by
said first processing block and then by said second
processing block. or a second data path. wherein said

wherein steps (d) and (e) are repeated until a new routing 20

command is received.

graphics data is processed by said second processing
block before said first processing block, according to
said instruction data.

12. The method of claim 1L wherein step (d) comprises
steps according to the OpenGL standard

20. A graphics processing subsystem. comprising:

13. The method of claim 11. wherein step (b) is performed
by a switcher connected at said data bus input. 25

at least four functionally distinct processing units. each
including hardware elements which are customized to
perform a rendering operation which is not performed
by at least some others of said processing units; at least 14. The method of claim 11. wherein a multiplexer at said

local bus indicates when said data path is clear and step (c)
can begin.

15. A pipelined graphics processing device, comprising:
a switching device connected to a data bus input and

configured to route graphics data received on said data
bus according to instruction data received on said data
bus;

30

some ones of said processing units being connected to
operate asynchronously to one another;

a frame buffer. connected to be accessed by at least one of
said processing units;

a multiplexing device connected to said switching device 35
and to a data bus output;

said processing units being mutually interconnected in a
pipeline relationship. with at least some successive
ones of said processing units being interconnected
through a FIFO buffer;

and wherein at least one said processing unit is connected
to look downstream, in said pipeline relationship, past
the immediately succeeding one of said processors;

and wherein at least two of said processing units are
selectively dynamically reordered in said pipeline rela
tionship;

a first processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device; and

a second processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device;

wherein said switching device routes said graphics data
according to a first data path, wherein said graphics
data is processed by said first processing block and then
by said second processing block. or a second data path,
wherein said graphics data is processed by said second
processing block before said first processing block.
according to said instruction data.

16. The device of claim 15. wherein said first data path
processes said graphics data according to the OpenGL
standard

17. The device of claim 15. wherein said switching device
halts all input data until the current data path is clear before
switching data paths.

18. The device of claim 15. wherein said multiplexing
device is configured to determine when the current data path
is clear and to allow said switching device to switch data
paths.

40

whereby the duty cycle of said processors is increased
while permitting use of a reduced depth for said FIFO.

21. The graphics processing subsystem of claim 20,
45 wherein said processing units include a texturing unit.

22. The graphics processing subsystem of claim 20.
wherein said processing units include a scissoring unit.

23. The graphics processing subsystem of claim 20.
wherein said processing units include a memory access unit

50 which reads and writes a local buffer memory.
24. The graphics processing subsystem of claim 20.

wherein at least some ones of said processing units include
internally paralleled data paths.

25. The graphics processing subsystem of claim 20.
55 wherein all of said processing units are integrated into a

single integrated circuit.

60

26. The graphics processing subsystem of claim 20.
wherein all of said processing units, but not said frame
buffer. are integrated into a single integrated circuit.

* * * * *

APPENDIX O

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

APPENDIX P

Microsoft et al. Exhibit 1005

Visualization of Large Terrains in Resource-Limited Computing

Environments

Boris Rabinovich Craig Gotsman

Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

[borisr|gotsman]@cs.technion.ac.il

Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An efficient paging
scheme minimizes data I/O, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.
Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “flythrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to efficient terrain rendering is efficient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very inefficient procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-

APPENDIX R

Microsoft et al. Exhibit 1005

gons in the approximation is more or less constant, independent of
the viewing parameters (for a fixed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefixes of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the image resolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fixed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O�)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of fixed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable efficient answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the fly by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for efficient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain

visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefix of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
of the prefix of minimal length sufficing for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffice to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface approximation
is most significant. The contribution of a point to the approxima-
tion is quantified by its vertical distance from the piecewise-linear
approximation built with all previous points. The larger this dis-
tance - the more important the point is. The incremental procedure
is done efficiently using a priority queue mechanism.

We use the Heckbert and Garland procedure at the server as a
preprocessing operation on each tile to assign each DTM point a
numeric “grade” - precisely the vertical distance described in the
previous paragraph. This grade is stored with the point, and used
later to determine online whether the point is required for the ter-
rain approximation. This decision is based on the grade and the
point’s distance from the viewpoint. To facilitate efficient decision-
making, we build a 3D octree of the DTM points, the grade serving
as the third dimension. The grid structure of the points in the XY
plane facilitates a fixed quadtree structure in this plane, which, in
turn, facilitates the organization of the data stored in the tile in a

APPENDIX R

Microsoft et al. Exhibit 1005

record of fixed length. This hierarchical spatial data structure will
enable efficient range reporting of points.

3.2 View Frustum Culling

The first step in frame generation is to determine which DTM tiles
are relevant to the current view. In principle, if the terrain surface
were planar, the intersection of the viewing frustum with the terrain
surface (the view footprint) would be a trapezoid, whose four vertex
positions could be easily computed (see Fig. 3). Since the terrain
surface is not planar, the footprint terrain is bounded by a region
which is the union of two trapezoids, formed on horizontal planes
whose elevations coincide with the minimal and maximal elevations
in the projection area, repectively.

The footprint is “scan-converted” by the client to determine
which DTM tiles intersect it, and what resolution data (which levels
of the octree) are required. This data is requested from the server.
For every tile received, the octree structure of its points enables
to efficiently determine which tile points are actually contained in
the footprint. Efficiency is achieved by pruning off large sets of
the points corresponding to branches of the octree close to its root.
The remaining points are then tested, as described in Section 3.3,
to determine if they are required for the terrain approximation and
rendering.

3.3 Continuous Resolution

Each DTM point has a grade quantifying its importance in the ter-
rain approximation. This grade is traded off with distance from the
viewpoint. In other words, more distant points are considered less
significant. In practice, the client considers a virtual cone centered
at the viewpoint, and calculates which DTM points in the geome-
try cache have a grade positioning them inside the cone (see Fig.
3). We would like to be able to determine this set of points in time
proportional mainly to their number (and not to the total number of
points in the viewing frustum). In computational-geometric termi-
nology, this is called output-sensitive range reporting. We achieve
this again using the tile octree. The complexity of the range report-
ing procedure is O�

p
N � k�, where N is the number of points in

the viewing frustum, and k the number of points in the answer to
the query ([13], p.79). Using this virtual cone also implies that a
small change in the viewpoint induces a small change in the DTM
points used for the rendering, thus ensuring the temporal continuity
of the rendered images.

3.4 Caching

Portions of geometry tiles are imported from the server on demand
and stored in the client cache. Only the neccesary upper levels of
the tile octree are imported, possible due to the fixed structure of
the octree. Hence a typical snapshot of the client cache contents
would reveal a few (foreground) tiles from which almost the en-
tire data content has been read, and many (background) tiles with a
very sparse content. A prediction mechanism, based on the view-
point trajectory, enables the loading of tiles in advance, resulting in
smooth streaming of geometry from server to client.

3.5 Dynamic Delaunay Triangulation

The piecewise linear surface induced by the Delaunay triangulation
of the 2D projection of the DTM points is generally considered the
most suitable for surface approximation. This is because the mini-
mal angle in the triangulation is maximized, eliminating long “sliv-
ery” triangles. Hence, the client constantly maintains a Delaunay
triangulation of the DTM points contributing to the approximation
of the terrain in the footprint. Many O�n log n� time algorithms
exist for the Delaunay triangulation of n points, but not many are
able to efficiently support update of the triangulation upon insertion
or deletion of points. We use the algorithm of DeVillers et al [7],
which inserts points in O�log n� and deletes points in O�log log n�

average time using a hierarchical data structure. Care must be taken
to slightly perturb the spatial positions of the DTM points, other-
wise degeneracies in the Delaunay triangulation and unstable nu-
merics may occur.

At the client, points which were in the footprint corresponding
to the previous frame, and are no longer in the current footprint, are
removed from the triangulation - the main geometric data structure
maintained online by the client. New points which were previously
not in the footprint, and now are, are inserted into the triangulation.
The turnover of points in the triangulation depends on the viewpoint
velocity. Theoretically, very large velocities could cause successive
frames to see totally different regions of the terrain, requiring the
formation of an entirely different triangulation between frames. In
practice, however, this does not occur. Typically, 99% of the foot-
print areas overlap between successive frames.

Pseudo-code of the flow of control in the client while rendering
a single frame appears in Fig. 1.

4 Texture Processing

The texture data must also be manipulated at multiple resolutions,
since image foreground pixels contain high resolution texels, and
image background pixels contain low resolution texels. The reso-
lution of the texels contributing to any given image pixel is essen-
tially a function of the viewing distance to that scene point. The
server texture database is also organized in tiles, storing the texels
compressed to approximately 30% of their original volume, using
a progressive wavelet scheme. This results in a bit stream sorted by
importance.

A typical low-end client computer contains a texture buffer of
limited capacity (e.g. 1024x1024 pixels) with a pyramid struc-
ture on top of it. By supplying appropriate texture coordinates for
the rendered triangle vertices, the graphics hardware/software maps
texels from the texture buffer to the image pixels in the interior of
the projected triangles. Each level of the texture pyramid contains
texels representing the same terrain area, at decreasing resolutions.
However, since not all texels, especially not at all resolutions, will
contribute to the terrain image (see Fig. 4), there is no need to
import them from the server. We optimize network bandwidth by
loading only those texture tiles which intersect the view footprint,
at the appropriate resolution, if they are not yet loaded. By this
we mean we calculate the number of encoded bits of the texture
stream required to reconstruct the texture tile at the appropriate res-

APPENDIX R

Microsoft et al. Exhibit 1005

olution (the lower the required resolution, the less bits required). In
any case, we use any bits available at rendering time, even though
there might be less than required (if the network temporarily slows
down). Which tiles are relevant can be easily determined from the
geometry of the footprint. Occasionally, it is neccesary to shift the
contents of the texture buffer, due to the movement of the view-
point.

5 Experimental Results

We have implemented the procedures described in Sections 2 - 4
as a prototype client/server system, the client running on a R5000
SGIO� , at 180MHz with 64MB RAM, based on the OpenGL API,
and an X/Motif GUI. This client accesses the scene database server
over a 3 KByte/sec network. The main parameters influencing the
overall performance of the system are the size of the visualization
window, i.e. the number of rendered image pixels, and the flight
velocity. This performance is measured in the client frame rate, and
the quality of the imagery delivered at that frame rate. There is an
obvious tradeoff between the two, which is controlled by two inde-
pendent “resolution” parameters, one for geometry, and one for tex-
ture. Increasing these parameters increases the number of triangles
and/or texture bytes used for the rendering process, thus increasing
the image quality, but decreasing the frame rate, due to higher ren-
dering and bandwidth overhead. There is, however, a point beyond
which the resolution parameter saturates, i.e. the marginal increase
in image quality is insignificant.

The geometric resolution parameter, namely, the average number
of triangles rendered per image pixel, is controlled by the angle
of the cone used for culling DTM points, as described in Section
3.3. The smaller the angle, the narrower the cone, admitting less
DTM points into the Delaunay triangulation, in turn implying less
triangles for the same number of image pixels (see also Fig. 3).
The texture resolution is controlled by specifying the fraction of
the texture tile bit stream imported and decoded to texels for the
foreground image pixels. The resolution of the background image
pixels is derived from this.

Keeping the resolution parameters and velocity fixed causes the
system to maintain a fixed frame rate. Increasing the velocity would
slow down the system, as the turnover of points in the Delaunay
triangulation and turnover of texture tiles in the texture buffer in-
creases, incurring more CPU and bandwidth overhead. By trial and
error, it seems that reasonable image quality is obtained at a geo-
metric resolution of 0.06 triangles and 0.5 texture bytes per output
image pixel. Any more than that imposes an unneccesary load on
the system, slowing it down, and any less than that results in poor
quality images (see Fig. 2). A telltale sign of insufficient geometric
resolution (triangles per image pixel) is if there are “jumps” (also
known as “popping”) in the terrain surface during animation, due to
the triangles being too large and crude. A telltale sign of insufficient
texture resolution (texels per image pixel) are blurred images.

Fig. 5 shows the speed/quality tradeoffs we are able to achieve
with our system at different “flight” velocity parameters, when
one of the geometric/texture resolution parameters is fixed, and
the other varied. Velocity is measured as the percentage of non-

overlapping area between footprints corresponding to successive
frames. The figure shows that approximately 3 frames/sec are
achievable with reasonable quality, when the image size is fixed at
300x400 pixels, and flying at an average (3%) velocity. Higher ve-
locities result in a larger turnover of geometry and texture, slowing
down the system frame rate. Our system accesses a scene database
server covering the northern part of Israel, containing a total of ���

DTM points and ��
� texels. The client uses a geometry cache of

size 2MB RAM, and texture buffer of 1024x1024 texels.

6 Conclusion

In the long-term, our techniques will support client/server terrain
visualization applications over the Internet. A large scene database
resides at a central server site, and is accessed (perhaps simultane-
ously) by a number of low-end clients over the Internet for visual-
ization purposes. This application requires tight optimization of the
available network bandwidth and client rendering power.

The ever-increasing user appetite for larger and richer geomet-
ric scenes has forced computer graphics practitioners to develop
output-sensitive rendering algorithms whose computational com-
plexity is not sensitive to the complexity of the input scene, rather
to the complexity of the output image. We have implemented this
for the terrain visualization application by rendering at geometric
and texture level-of-detail which changes continuously along the
spatial and temporal dimensions. Our algorithm satisfies almost all
of the five requirements from such an algorithm, as formulated in
[12].

Use of other sophisticated data optimization techniques, such as
occlusion culling [14], in which large portions of the geometry in-
side the view frustrum are efficiently culled because they are invis-
ible, can further reduce the rendering load.

Temporal aliasing sometimes occurs in our implementation. The
use of morphing techniques to alleviate this, such as that of Cohen-
Or and Levanoni [5], are not directly applicable, again due to the
dynamic nature of our Delaunay triangulation. Alternatives are be-
ing investigated.

Acknowledgements

We thank Olivier DeVillers for providing code implementing the al-
gorithm of [7], Paul Heckbert for code implementing the algorithm
of [9], and R. Buccigrossi for code implementing the algorithm of
[2].

This research was supported by the Technion V.P.R. Fund - Pro-
motion of Sponsored Research.

APPENDIX R

Microsoft et al. Exhibit 1005

References

[1] M. De Berg and K. Dobrindt. On levels of detail in terrains. In
11th Annual ACM Symposium on Computational Geometry.
ACM, 1994.

[2] R.W. Buccigrossi and E.P. Simoncelli. Progressive wavelet
image coding based on a conditional probability model. In
Proceedings of Int’l Conf. Acoustics Speech and Signal Pro-
cessing. IEEE, 1997.

[3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and
flight simulation. IEEE Computer Graphics and Applications,
14(2):10–12, March 1994.

[4] D. Cohen-Or, U. Lerner, E. Rich, and V. Shenkar. A real-time
photo-realistic visual flythrough. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):255–265, September
1996.

[5] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels
of detail in Delaunay triangulated terrain. In Proceedings of
Visualization ’96. IEEE Computer Society Press, 1996.

[6] T. Delepine. Online terrain level-of-detail. In Proceedings of
ITECH, 1997.

[7] O. Devillers, S. Meiser, and M.Teillaud. Fully dynamic De-
launay triangulation in logarithmic expected time per oper-
ation. Computational Geometry: Theory and Applications,
2:55–80, 1992.

[8] L. De Floriani. A pyramidal data structure for triangle-based
surface representation. IEEE Computer Graphics and Appli-
cations, 9(2):67–78, 1989.

[9] P. Heckbert and M. Garland. Fast polygonal approximation
of terrains and height fields. Technical Report CMU-CS-95-
181, School of Computer Science,Carnegie Mellon Univer-
sity,Pittsburg ,PA , 15213, 1995.

[10] K. Kaneda, F. Kato, E. Nakamae, T. Nishita, Tanaka, and No-
gushi. Three-dimensional terrain modeling and display for
environmental assessment. Computer Graphics (Proceedings
of SIGGRAPH’89), 23(3):207–214, 1989.

[11] R. Klein and T. Huttner. Simple camera-dependent approx-
imation of terrain surfaces for fast visualization and anima-
tion. In Proceedings of Visualization ’96 (late breaking top-
ics). IEEE Computer Society Press, 1996.

[12] P. Lindstrom, D. Koller, L.F. Hodges W. Ribarsky, N. Faust,
and G. Turner. Real-time, continuous level of detail rendering
of height fields. In Proceedings of SIGGRAPH ’96, 1996.

[13] M. Shamos and F. Preparata. Computational Geometry.
Springer, 1989.

[14] O. Sudarsky and C. Gotsman. Output-sensitive visibility algo-
rithms for dynamic scenes with applications to virtual reality.
Computer Graphics Forum, 15(3):249–258, 1996 (Proceed-
ings of Eurographics, Poitiers, France, August 1996).

1. Calculate view frustum and bound terrain footprint by rectangle.

2. Scan-convert the rectangle and for each geometry tile in it:

(a) If the tile is not in the footprint, but was in it in the previous

frame, then:

� Remove all its points from the Delaunay triangulation.

(b) If the tile is in the footprint, but was not in the previous frame,

then:

� Request tile from server at appropriate resolution.

� Search in tile octree for appropriate voxels.

� Insert the points from these voxels in Delaunay triangu-
lation.

(c) If tile is in the footprint and was also in the previous frame,
then:

� Search in tile octree for appropriate voxels.

� Find difference from previous frame.

� Insert (Delete) difference points in (from) Delaunay tri-

angulation.

3. For each texture tile in the bounding rectangle:

(a) If the texture tile is in the footprint, but was not in the previous
frame, then:

� Calculate required resolution.

� Request the appropriate bit stream prefix from the server.

(b) If texture tile is in the footprint, and was also in the previous
frame, then:

� Calculate its resolution.

� If this resolution is higher than that of the previous frame,
then request more of the bit stream from the server.

4. For every tenth frame check the actual performance (frames/sec)

against the required performance and adjust the geometric and/or tex-
ture resolution parameters to achieve that performance.

5. Render image.

Figure 1: Pseudo-code of the client algorithm.

APPENDIX R

Microsoft et al. Exhibit 1005

(a) (b)

Figure 2: Terrain meshes (Delaunay triangulated) and views rendered at different data resolutions. (a) High resolution: 0.08 triangles/pixel
and 1 texels/pixel. (b) Equivalent quality at lower resolution: 0.02 triangles and 0.8 texels/pixels. Note how more DTM points are used in
foreground areas or areas of high curvature.

APPENDIX R

Microsoft et al. Exhibit 1005

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Viewpoint

DTM tile

view footprint (trapezoid)

relevant DTM tiles

DTM point not rendered

DTM point rendered at low resolution

DTM point rendered at high resolution

Figure 3: Determining the DTM points of the rendered Delaunay triangulation for a given view at different geometric resolutions. The
narrow cone represents a low-resolution view, and the wide one a high resolution. The “elevations” of the DTM points are their precalculated
grades. All points within the footprint with grade above the relevant cone are included in the triangulation. This range-reporting operation is
performed efficiently using an octree structure on the points in each tile. Note that more points are admitted in the view foreground than in
its background.

rendered image

level 1

texture pyramid

level 3 level 4

level 2

Figure 4: The contribution of individual tiles in the texture buffer to the rendered image corresponding to the marked footprint. Those tiles
not contributing need not reside in the texture buffer at all, and are not streamed and decoded from the server.

APPENDIX R

Microsoft et al. Exhibit 1005

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

frames/sec

tr
ia

ng
le

s/
pi

xe
l

1%

3%

5%

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

frames/sec

te
xt

ur
e

by
te

s/
pi

xe
l

1%

3%

5%

(a) (b)

Figure 5: Speed/resolution tradeoff in our prototype visualization client while rendering 300x400 pixel images on a R5000 SGIO�, accessing
the scene database server over a 3 KByte/sec network. (a) Varying only geometric resolution. The texture resolution is fixed to 0.5 compressed
texture bytes per pixel. (b) Varying only texture resolution. The geometric resolution is fixed to 0.06 triangles/pixel. The individual curves
correspond to different flight velocities, which influence the turnover of data in system caches and bandwidth overhead.

APPENDIX R

Microsoft et al. Exhibit 1005

PROC E:' ED I N GS

V i s u a I i za t i o n ' 9 7

October 19 - 24,1997

Phoenix,, Arizona

Sponslored by
IEEE Computer Society Technical Committee on Computer Graphics

In cooperation with
ACMSIGGRAPH

APPENDIX R

Microsoft et al. Exhibit 1005

The Association for Computing Machinery
1515 Broadway

New York, NY 10036

Copyright 0 1997 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the lim-
its of US copyright law, for private use of patrons, those articles in this volume that cany a code at the bottom of the first page,
provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Other copying, reprint or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors’
opinions and,” in the interests of timely dissemination, are published as presented and without change. Their inclusion in this pub-
lication does not necessarily constitute endorsement by the editors, the IEEE Computer Society Press, or the Institute of Electrical
and Electronics Engineers, Inc.

ACM ISBN: 1-58113-011-2
ACM Order Number: 428978

ACM Order Department
P.O. Box 12114
Church Street Station
New York, NY 10257 USA
Tel: +1-212-626-0500
Fax: +1-212-944- 13 18
E-mail: orders@acm.org

ACM European Service Center
108 Cowley Road
Oxford OX4 1JF
United Kingdom
E-mail: acm-europe@acm.org

IEEE Computer Society Press Order Number: PRO8262
IEEE Catalog Number: 97CB36155

IEEE ISBN - Library Binding: 0-8186-8263-9
IEEE ISBN - Microfiche: 0-8186-8264-7

IEEE ISBN: 0-8186-8262-0

ISSN: 1070-2385

Additional copies may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264 USA
Tel: +1-714-821-8380
Fax: +1-714-821-4641
E-mail: cs.books @computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331 USA
Tel: +1-908-981-1393
Fax: +1-908-981-9667
E-mail: mis.custserv@computer.org

IEEE Computer Society
13, Avenue de 1’Aquilon
B-1200 Brussels
Belgium
Tel: +32-2-770-2198
Fax: +32-2-770-8505
E-mail; euro.ofc @computer.org

IEEE Computer Society
Ooshima Building
2- 19- 1 Minami- Aoyama
Minato-ku, Tokyo 107
Japan
Tel: +81-3-3408-3118
Fax: +81-3-3408-3553
E-mail: tokyo.ofc@computer.org

APPENDIX R

Microsoft et al. Exhibit 1005

mailto:orders@acm.org
mailto:acm-europe@acm.org
mailto:computer.org
mailto:mis.custserv@computer.org
mailto:computer.org
mailto:tokyo.ofc@computer.org

Table of Contents
Preface . 11
Conference Committee . 13
Programcommittee . 14

Keynote Address: Global Tele-Immersion . 15
Tom DeFanti

Capstone Address: Dissolving Descartes: Perception and the Construction of Reality . 16
Mark Pesce

Papers

Session 2B: Volume Rendering I

A Comparison of Normal Estimation Schemes . 19
Torsten Mollel; Raghu Machiraju. Klaus Muellel; Roni Yagel
ColorPlate . 525

Collision Detection for Volumetric Models . 27
Taosong He. Arie Kaufman
ColorPlate . 526

The VSBUFFER: Visibility Ordering of Unstructured Volume Primitives by Polygon Drawing 35
Riidiger Westermann. Thomas Ertl
ColorPlate . 527

Volume Rendering of Abdominal Aortic Aneurysms . 43
Roger C . Tam. Christopher G . Healey. Bops Flak. Fkter Cahoon
ColorPlate . 528

Session 3A: Vector Fields

Auralization of Streamline Vorticity in Computational Fluid Dynamics Data . 5 1

Singularities in Nonuniform Tensor Fields . 59

Visualization of Higher Order Singularities in Vector Fields . 67
Gerik Scheuermann. Hans Hagen. Heinz Kriigel; Martin Menzel. Alyn Rockwood

Principal Stream Surfaces . 75
Wenli Cui. Pheng-Ann Heng
ColorPlate . 529

Christopher R . Volpe. Ephraim F? Glinert

Yingmei Lavin. Yuval Levy. Lambertus Hesselink

Session 3B: Terrain Visualization

ROAMing Terrain: Real-time Optimally Adapting Meshes . 81

Visualization of Height Field Data with Physical Models and Texture Photomapping . 89

Mark A . Duchaineau. Murray Wolinsky. David E . Sigeti. Mark C . Millel; Charles Aldrich.
Mark B . Mineev- Weinstein

Dru Clark. Michael J . Bailey
ColorPlate . 530

Visualization of Large Terrains in Resource-Limited Computing Environments . 95

Building and Traversing a Surface at Variable Resolution . 103

Boris Rabinovitch. Craig Gotsman

Leila De Floriani. Paola Magillo. Enrico Puppo
ColorPlate . 531

APPENDIX R

Microsoft et al. Exhibit 1005

Session 4A: Information Visualization

Multivariate Visualization Using Metric Scaling

Color Plate S32

Visualizing the Behavior of Higher Dimensional Dynamical Systems . .119

Color Plate 533

Displaying Data in Multidimensional Relevance Space with 2D Visualization Maps

ColorPlates34

Pak Chung Wong, R. Daniel Bergeron

Ruiner Wegenkittl, Helwig Loffelmann, Eduard Groller

. 127
Jackie Assa, Daniel Cohen-Or, Tova Milo

Session 4B: MultiResolution

Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data . .135
Yong Zhou, Baoquan Chen, Arie Kaufman
ColorPlate . 535

Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere . .143
Gregory M. Nielson, Il-Hong Jung, Junwon Sung
ColorPlate . S36

Wavelet-based Multiresolutional Representation of Computational Field Simulation Datasets1S1

ColorPlate . 537

*err

Zhifan Zhu, Raghu Machiraju, Bryan Fry, Robert J. Moorhead

Session 5A: User Interfaces & Interaction

Dynamic Color Mapping of Bivariate Qualitative Data 159
Penny Rheingans
ColorPlate . . .538

TheCon tourSpec t~m .
Chandrajit L. Bajaj, Valerio Pascucci, Daniel R. Schikore
ColorPlate .

Constrained 3D Navigation with 2D Controllers ,175
Andrew J. Hanson, Eric A. Wernert
Color Plate 540

Session 5B: Volume Rendering II

Two-Phase Perspective Ray Casting for Interactive Volume Navigation . .183
Martin L. Brady, Kenneth Jung, HT Nguyen, Thinh Nguyen
ColorPlate . S41

Accelerated Volume Rendering Using Homogenous Region Encoding . .19 1
Jason L. Freund, Kenneth Sloan
ColorPlates . S42-S43

An Anti-Aliasing Technique for Splatting . .197
J. Edward Swan II, Klaus Muellel; Torsten Mollel; Naeem ShareeJ Roger A. Crawfis, Roni Yagel
ColorPlate . S44

6

APPENDIX R

Microsoft et al. Exhibit 1005

Session 6A: Zsosurfaces

A Topology Modifying Progressive Decimation Algorithm . 205
William J. Schroeder
ColorPlate . 545

Efficient Subdivision of Finite-Element Datasets into Consistent Tetrahedra . 213
Guy Albertelli. Roger A . Crawfis

Interval Volume Tetrahedrization . 221
Gregory M . Nielson. Junwon Sung
ColorPlate . 546

Computing the Separating Surface for Segmented Data . 229
Gregory M . Nielson. Richard Franke

Session 6B: Visualization Systems

Application-Controlled Demand Paging for Out-of-Core Visualization . 235
Michael B . Cox. David Ellsworth
ColorPlate . 547

GADGET Goal-Oriented Application Design Guidance for Modular Visualization Environments 245
Issei Fujishiro. Yuriko Takeshima. Yoshihiko Ichikawa. Kyoko Nakamura
ColorPlate . 548

Collaborative Visualization . 253
Jason D . Wood. Helen Wright. Ken W Brodlie
Colorplate . 549

VizWiz: A Java Applet for Interactive 3D Scientific Visualization on the Web . 261
Cherilyn K . Michaels. Michael J . Bailey
ColorPlate . 550

Session 7A: Data Extraction

Image Synthesis From A Sparse Set of Views . 269
Qian Chen. Gkrard G . Medioni
ColorPlate . 551

Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real World Events 277
Peter W Randez PJ Narayanan, Takeo Kanade
ColorPlate . 552

Extracting Feature Lines from 3D Unstructured Grids . 285

I/O Optimal Isosurface Extraction . 293

Kwan-Liu Ma, Victoria L . Interrante
ColorPlate . 553

E-Jen Chiang, Claudio I: Silva
ColorPlate . 554

'7

APPENDIX R

Microsoft et al. Exhibit 1005

Session 7B: Flow Visualization

CAVEvis: Distributed Real-Time Visualization of Time-Varying Scalar and Vector Fields Using the

Vzjendra S . Jaswal
ColorPlate . 555

CAVE Virtual Reality Theater . 301

Fast Oriented Line Integral Convolution for Vector Field Visualization via the Internet 309

UFLIC: A Line Integral Convolution Algorithm For Visualizing Unsteady Flows

Rainer Wegenkittl, Eduard Groller

. 317
Han-Wei Shen, David L . Kao
ColorPlate . 556

The Motion Map: Efficient Computation of Steady Flow Animations . 323
Bruno Jobard. Wilfrid Lefer

Session SA: Compression

Integrated Volume Compression and Visualization . 329
Tzi-cker Chiueh. Chuan-kai Yang. Taosong He. Hanspeter P$stel; Arie Kaujkan
ColorPlate . 557

Multiresolution Compression And Reconstruction . 337

ColorPlate . 558
Oliver G . Staadt. Markus H . Gross. Roger Weber h

Optimized Geometry Compression for Real-time Rendering . 347
Mike M . Chow
ColorPlate . 559

Session 9A: Polygonal Surfaces

Architectural Walkthroughs Using Portal Textures . 355
Daniel G . Aliaga. Anselmo A . Lustra
ColorPlate . 560

Repairing CADModels . 363
Gill Barequet. Subodh Kumar
ColorPlate . 561

Dynamic Smooth Subdivision Surfaces for Data Visualization . 371
Chhandomay Mandal. Hong Qin. Baba C . Vemuri
ColorPlate . 562

Session IOA: Surface Simplification

Smooth Hierarchical Surface Triangulations . 379
Tran S . Gieng. Bernd Hamann. Kenneth I . Joy. Gregory L . Schlussmann. Isaac J . Trotts

The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data 387
Roberto Grosso. Christoph Liirig. Thomas Ertl
ColorPlate . 563

Simplifying Polygonal Models Using Successive Mappings . 395
Jonathan Cohen. Dinesh Manocha. Marc Olano
ColorPlate . 564

Controlled Simplification of Genus for Polygonal Models . 403
Jihad El.Sana. Amitabh Varshney
ColorPlate . 565

8

APPENDIX R

Microsoft et al. Exhibit 1005

Case Studies

Session 2C: Flow Visualization

Vortex Identification . Applications in Aerodynamics . 413
David Kenwright. Robert Haimes
ColorPlate . 566

exVis 1 . 0. Developing a Wind Tunnel Data Visualization Tool . 417
Samuel P. Uselton
ColorPlate . 567

Strategies for Effectively Visualizing 3D Flow with Volume LIC . 421
Vctoria Interrante. Chester Grosch
ColorPlate . 568

Towards Efficient Visualization Support for Single-block and Multi-block Datasets . 425
Jean M . Favre
ColorPlate . 569

Session 3C: Medical Visualization

Brushing Techniques for Exploring Volume Dataset!; . 429
Pak Chung Wong. R . Daniel Bergeron
ColorPlate . 570

Interactive Volume Rendering for Virtual Colonoscopy . 433
Suya You. Lichan Hong. Ming Wan. Kittiboon Junya.prasert. Arie Kaufman. Shigeru Mumki.
Yong Zhou. Mark W a . Zhengrong Liang
ColorPlate . 571

DNA Visual And Analytic Data Mining . 437
Patrick Hoffman. Georges Grinstein. Kenneth Marx. Ivo Grosse. Eugene Stanley
ColorPlate . 572

An Interactive Cerebral Blood Vessel Exploration System . 443
Anna Puig. Dani Tost. Isabel Navazo
ColorPlate . 573

Session 5C: Educational Visualization

Instructional Software for Visualizing Optical Phenomena . 447
David C . Banks. John 7: Foley. Kiril N . Mdimce. Ming-Hoe Kiu
ColorPlate . 574

WildfireVisualization . 451
James Ahrens. Patrick McCormick. James Bossert. Jon Reisnel; Judith Winterkamp
ColorPlate . 575

Visualization of Geometric Algorithms in an Electronic Classroom . 455
Maria Shneerson. Ayellet Tal
ColorPlate . 576

9

APPENDIX R

Microsoft et al. Exhibit 1005

Session 6C: Web & Virtual Reality

Collaborative Augmented Reality: Exploring Dynamical Systems . .459
Anton Fuhrmann, Helwig Loffelmann, Dieter Schmalstieg
ColorPlate . 577

Visualizing Customer Segmentations Produced by Self Organizing Maps . .463
Holly Rushmeiel; Richard Lawrence, George Almasi
ColorPlate . S78

Pearls Found on the way to the Ideal Interface for Scanned-probe Microscopes . .467
Russell M. Taylor II, Jun Chen, Shoji Okimoto, Noel Llopis-Artime, Vernon L. Chi, Fredrick P: Brooks JK,
Mike Falvo, Scott Paulson, Pichet Thiansanthaporn, Dave Glick, Sean Washburn, Richard Superfine
ColorPlate . 579

ViewingIGESFilesThroughVRML . 471
Jed Marti

Session 7C: Engineering and Computational Geometry

Visualization of Plant Growth . .475
Jeremy J. Loomis, Xiuwen Liu, Zhaohua Ding, Kikuo Fujimura, Michael L. Evans, Hideo Ishikawa
ColorPlate . 580

Determination of Unknown Particle Charges in a Thunder Cloud Based Upon Detected Electric Field Vectors .479
Dun Drake, Thomas Simpson, Larry Smithmeil; Penny Rheingans
ColorPlate . 581

'+-

Interactive Visualization of Aircraft and Power Generation Engines . .483
Lisa Sobierajski Avila, William Schroeder
ColorPlate . S82,

Efficient visualization of physical and structural properties in crash-worthiness simulations ,487
Sven Kuschfeldt, Thomas Ertl, Michael Holzner
ColorPlate . 5 8 ~

Session 9B: Math & Statistics

Visualization of Rotation Fields . ,491
Mark A. Livingston
ColorPlate . 5 8 ~

Isosurface Extraction Using Particle Systems . ,495
Patricia Crossno, Edward Angel
ColorPlate . 585

A Visualization of Music . ,499
Sean M. Smith, Glen M. Williams

Panels

Terascale Visualization: Approaches, Pitfalls, and Issuesso7
Organizers: Carol Huntel; Roger Crawfis
Panelists: Michael Cox, Roger Crawfis, Bernd Hamann, Chuck Hansen, Carol Huntel; Mark Miller

Information Exploration Shootout Project and Benchmark Data Sets:
Evaluating how Visualization does in Analyzing Real-World Data Analysis ProblemsS 11 1
Organizer: Georges Grinstein
Panelists: Sharon Laskowski, Bernice Rogowitz, Graham Wills

Perceptual Measures for Effective Visualizations . .5 115
Organizer: Holly Rushmeier
Panelists: Harrison Barrett, Penny Rheingans, Sam Uselton, Andrew Watson

AuthorIndex . . . SI19
Cover Image Credits . 521
Color Plate Section 523

10

APPENDIX R

Microsoft et al. Exhibit 1005

User Datagram Protocol (UDP) (Windows CE 5.0)

Send Feedback
UDP provides a connectionless, unreliable transport service. Connectionless means that a communication session between hosts is not established before exchanging data. UDP is often
used for one-to-many communications that use broadcast or multicast IP datagrams. The UDP connectionless datagram delivery service is unreliable because it does not guarantee data
packet delivery and no notification is sent if a packet is not delivered. Also, UDP does not guarantee that packets are delivered in the same order in which they were sent.

Because delivery of UDP datagrams is not guaranteed, applications using UDP must supply their own mechanisms for reliability, if needed. Although UDP appears to have some limitations,
it is useful in certain situations. For example, Winsock IP multicasting is implemented with UDP datagram type sockets. UDP is very efficient because of low overhead. Microsoft networking
uses UDP for logon, browsing, and name resolution. UDP can also be used to carry IP multicast streams for applications such as Microsoft® Windows Media®.

See Also
Core Protocol Stack for IPv4 | User Datagram Protocol (UDP) and Name Resolution for IPv4

Send Feedback on this topic to the authors

Feedback FAQs

© 2006 Microsoft Corporation. All rights reserved.

© 2015 Microsoft

Windows CE 5.0

Page 1 of 1User Datagram Protocol (UDP) (Windows CE 5.0)

4/28/2015https://msdn.microsoft.com/en-us/library/ms885773.aspx

APPENDIX S

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

The OpenGL
R

Graphics System:

A Speci�cation
(Version 1.2.1)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1): Jon Leech

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Copyright c 1992-1999 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The "X" device and X Windows System are trademarks of
The Open Group.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Contents

1 Introduction 1

1.1 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1

1.3 Programmer's View of OpenGL 2

1.4 Implementor's View of OpenGL 2

1.5 Our View . 3

2 OpenGL Operation 4

2.1 OpenGL Fundamentals . 4

2.1.1 Floating-Point Computation 6

2.2 GL State . 6

2.3 GL Command Syntax . 7

2.4 Basic GL Operation . 9

2.5 GL Errors . 11

2.6 Begin/End Paradigm . 12

2.6.1 Begin and End Objects 15

2.6.2 Polygon Edges . 18

2.6.3 GL Commands within Begin/End 19

2.7 Vertex Speci�cation . 19

2.8 Vertex Arrays . 21

2.9 Rectangles . 28

2.10 Coordinate Transformations 28

2.10.1 Controlling the Viewport 30

2.10.2 Matrices . 31

2.10.3 Normal Transformation 34

2.10.4 Generating Texture Coordinates 36

2.11 Clipping . 38

2.12 Current Raster Position . 40

2.13 Colors and Coloring . 43

i

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

ii CONTENTS

2.13.1 Lighting . 44
2.13.2 Lighting Parameter Speci�cation 49

2.13.3 ColorMaterial . 51
2.13.4 Lighting State . 53

2.13.5 Color Index Lighting 53
2.13.6 Clamping or Masking 54

2.13.7 Flatshading . 54
2.13.8 Color and Texture Coordinate Clipping 55

2.13.9 Final Color Processing 56

3 Rasterization 57

3.1 Invariance . 59
3.2 Antialiasing . 59

3.3 Points . 60
3.3.1 Point Rasterization State 62

3.4 Line Segments . 62
3.4.1 Basic Line Segment Rasterization 64

3.4.2 Other Line Segment Features 66
3.4.3 Line Rasterization State 69

3.5 Polygons . 70
3.5.1 Basic Polygon Rasterization 70

3.5.2 Stippling . 72
3.5.3 Antialiasing . 72

3.5.4 Options Controlling Polygon Rasterization 73
3.5.5 Depth O�set . 73

3.5.6 Polygon Rasterization State 75
3.6 Pixel Rectangles . 75

3.6.1 Pixel Storage Modes 75
3.6.2 The Imaging Subset 76

3.6.3 Pixel Transfer Modes 78
3.6.4 Rasterization of Pixel Rectangles 88

3.6.5 Pixel Transfer Operations 100
3.7 Bitmaps . 110
3.8 Texturing . 111

3.8.1 Texture Image Speci�cation 112
3.8.2 Alternate Texture Image Speci�cation Commands . . 118

3.8.3 Texture Parameters 123
3.8.4 Texture Wrap Modes 124

3.8.5 Texture Mini�cation 125
3.8.6 Texture Magni�cation 131

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

CONTENTS iii

3.8.7 Texture State and Proxy State 131

3.8.8 Texture Objects . 132

3.8.9 Texture Environments and Texture Functions 135

3.8.10 Texture Application 138

3.9 Color Sum . 138

3.10 Fog . 138

3.11 Antialiasing Application . 140

4 Per-Fragment Operations and the Framebu�er 141

4.1 Per-Fragment Operations . 142

4.1.1 Pixel Ownership Test 142

4.1.2 Scissor test . 143

4.1.3 Alpha test . 143

4.1.4 Stencil test . 144

4.1.5 Depth bu�er test . 145

4.1.6 Blending . 146

4.1.7 Dithering . 149

4.1.8 Logical Operation . 150

4.2 Whole Framebu�er Operations 150

4.2.1 Selecting a Bu�er for Writing 150

4.2.2 Fine Control of Bu�er Updates 152

4.2.3 Clearing the Bu�ers 153

4.2.4 The Accumulation Bu�er 155

4.3 Drawing, Reading, and Copying Pixels 156

4.3.1 Writing to the Stencil Bu�er 156

4.3.2 Reading Pixels . 156

4.3.3 Copying Pixels . 162

4.3.4 Pixel Draw/Read state 162

5 Special Functions 164

5.1 Evaluators . 164

5.2 Selection . 170

5.3 Feedback . 173

5.4 Display Lists . 175

5.5 Flush and Finish . 179

5.6 Hints . 179

6 State and State Requests 181

6.1 Querying GL State . 181

6.1.1 Simple Queries . 181

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

iv CONTENTS

6.1.2 Data Conversions . 182

6.1.3 Enumerated Queries 182

6.1.4 Texture Queries . 184

6.1.5 Stipple Query . 185

6.1.6 Color Matrix Query 185

6.1.7 Color Table Query . 185

6.1.8 Convolution Query . 186

6.1.9 Histogram Query . 187

6.1.10 Minmax Query . 188

6.1.11 Pointer and String Queries 189

6.1.12 Saving and Restoring State 189

6.2 State Tables . 193

A Invariance 218

A.1 Repeatability . 218

A.2 Multi-pass Algorithms . 219

A.3 Invariance Rules . 219

A.4 What All This Means . 221

B Corollaries 222

C Version 1.1 225

C.1 Vertex Array . 225

C.2 Polygon O�set . 226

C.3 Logical Operation . 226

C.4 Texture Image Formats . 226

C.5 Texture Replace Environment 226

C.6 Texture Proxies . 227

C.7 Copy Texture and Subtexture 227

C.8 Texture Objects . 227

C.9 Other Changes . 227

C.10 Acknowledgements . 228

D Version 1.2 230

D.1 Three-Dimensional Texturing 230

D.2 BGRA Pixel Formats . 230

D.3 Packed Pixel Formats . 230

D.4 Normal Rescaling . 231

D.5 Separate Specular Color . 231

D.6 Texture Coordinate Edge Clamping 231

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

CONTENTS v

D.7 Texture Level of Detail Control 232
D.8 Vertex Array Draw Element Range 232
D.9 Imaging Subset . 232

D.9.1 Color Tables . 232
D.9.2 Convolution . 233
D.9.3 Color Matrix . 233
D.9.4 Pixel Pipeline Statistics 234
D.9.5 Constant Blend Color 234
D.9.6 New Blending Equations 234

D.10 Acknowledgements . 234

E Version 1.2.1 238

F ARB Extensions 239
F.1 Naming Conventions . 239
F.2 Multitexture . 240

F.2.1 Dependencies . 240
F.2.2 Issues . 240
F.2.3 Changes to Section 2.6 (Begin/End Paradigm) 240
F.2.4 Changes to Section 2.7 (Vertex Speci�cation) 241
F.2.5 Changes to Section 2.8 (Vertex Arrays) 243
F.2.6 Changes to Section 2.10.2 (Matrices) 244
F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-

dinates) . 245
F.2.8 Changes to Section 2.12 (Current Raster Position) . . 246
F.2.9 Changes to Section 3.8 (Texturing) 246
F.2.10 Changes to Section 3.8.5 (Texture Mini�cation) 248
F.2.11 Changes to Section 3.8.8 (Texture Objects) 248
F.2.12 Changes to Section 3.8.10 (Texture Application) . . . 249
F.2.13 Changes to Section 5.1 (Evaluators) 249
F.2.14 Changes to Section 5.3 (Feedback) 249
F.2.15 Changes to Section 6.1.2 (Data Conversions) 251
F.2.16 Changes to Section 6.1.12 (Saving and Restoring State)251

Index of OpenGL Commands 256

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

List of Figures

2.1 Block diagram of the GL. 9

2.2 Creation of a processed vertex from a transformed vertex and
current values. 13

2.3 Primitive assembly and processing. 13

2.4 Triangle strips, fans, and independent triangles. 16

2.5 Quadrilateral strips and independent quadrilaterals. 17

2.6 Vertex transformation sequence. 28

2.7 Current raster position. 41

2.8 Processing of RGBA colors. 43

2.9 Processing of color indices. 43

2.10 ColorMaterial operation. 51

3.1 Rasterization. 57

3.2 Rasterization of non-antialiased wide points. 61

3.3 Rasterization of antialiased wide points. 61

3.4 Visualization of Bresenham's algorithm. 64

3.5 Rasterization of non-antialiased wide lines. 67

3.6 The region used in rasterizing an antialiased line segment. . . 69

3.7 Operation of DrawPixels. 88

3.8 Selecting a subimage from an image 93

3.9 A bitmap and its associated parameters. 110

3.10 A texture image and the coordinates used to access it. 118

4.1 Per-fragment operations. 142

4.2 Operation of ReadPixels. 156

4.3 Operation of CopyPixels. 162

5.1 Map Evaluation. 166

5.2 Feedback syntax. 176

vi

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

LIST OF FIGURES vii

F.1 Creation of a processed vertex from a transformed vertex and
current values. 241

F.2 Current raster position. 246
F.3 Multitexture pipeline. 249

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

List of Tables

2.1 GL command su�xes . 8

2.2 GL data types . 10

2.3 Summary of GL errors . 13

2.4 Vertex array sizes (values per vertex) and data types 22

2.5 Variables that direct the execution of InterleavedArrays. . 26

2.6 Component conversions . 44

2.7 Summary of lighting parameters. 46

2.8 Correspondence of lighting parameter symbols to names. . . . 50

2.9 Polygon atshading color selection. 55

3.1 PixelStore parameters pertaining to one or more of Draw-
Pixels, TexImage1D, TexImage2D, and TexImage3D. . 76

3.2 PixelTransfer parameters. 78

3.3 PixelMap parameters. 79

3.4 Color table names. 80

3.5 DrawPixels and ReadPixels types 91

3.6 DrawPixels and ReadPixels formats. 92

3.7 Swap Bytes Bit ordering. 92

3.8 Packed pixel formats. 94

3.9 UNSIGNED BYTE formats. Bit numbers are indicated for each
component. 95

3.10 UNSIGNED SHORT formats . 96

3.11 UNSIGNED INT formats . 97

3.12 Packed pixel �eld assignments 98

3.13 Color table lookup. 103

3.14 Computation of �ltered color components. 104

3.15 Conversion from RGBA pixel components to internal texture,
table, or �lter components. 114

3.16 Correspondence of sized internal formats to base internal for-
mats. 115

viii

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

LIST OF TABLES ix

3.17 Texture parameters and their values. 124

3.18 Replace and modulate texture functions. 136

3.19 Decal and blend texture functions. 137

4.1 Values controlling the source blending function and the source
blending values they compute. f = min(As; 1�Ad). 148

4.2 Values controlling the destination blending function and the
destination blending values they compute. 148

4.3 Arguments to LogicOp and their corresponding operations. . 151

4.4 Arguments to DrawBu�er and the bu�ers that they indicate.152

4.5 PixelStore parameters pertaining to ReadPixels,
GetTexImage1D, GetTexImage2D, GetTexImage3D,
GetColorTable, GetConvolutionFilter, GetSeparable-
Filter, GetHistogram, and GetMinmax. 158

4.6 ReadPixels index masks. 160

4.7 ReadPixels GL Data Types and Reversed component con-
version formulas. 161

5.1 Values speci�ed by the target to Map1. 165

5.2 Correspondence of feedback type to number of values per vertex.174

6.1 Texture, table, and �lter return values. 185

6.2 Attribute groups . 191

6.3 State variable types . 192

6.4 GL Internal begin-end state variables (inaccessible) 194

6.5 Current Values and Associated Data 195

6.6 Vertex Array Data . 196

6.7 Transformation state . 197

6.8 Coloring . 198

6.9 Lighting (see also Table 2.7 for defaults) 199

6.10 Lighting (cont.) . 200

6.11 Rasterization . 201

6.12 Texture Objects . 202

6.13 Texture Objects (cont.) . 203

6.14 Texture Environment and Generation 204

6.15 Pixel Operations . 205

6.16 Framebu�er Control . 206

6.17 Pixels . 207

6.18 Pixels (cont.) . 208

6.19 Pixels (cont.) . 209

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

x LIST OF TABLES

6.20 Pixels (cont.) . 210
6.21 Pixels (cont.) . 211
6.22 Evaluators (GetMap takes a map name) 212
6.23 Hints . 213
6.24 Implementation Dependent Values 214
6.25 More Implementation Dependent Values 215
6.26 Implementation Dependent Pixel Depths 216
6.27 Miscellaneous . 217

F.1 Changes to State Tables . 252
F.2 Changes to State Tables (cont.) 253
F.3 New State Introduced by Multitexture 254
F.4 New Implementation-Dependent Values Introduced by Mul-

titexture . 255

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the speci�cation are
considered optional; an OpenGL implementation may or may not choose to
provide them (see section 3.6.2).

Portions of the speci�cation which are optional are so labelled where
they are de�ned. Additionally, those portions are typeset in gray, and state
table entries which are optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for \Open Graphics Library") is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, speci�cally color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
bu�er. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a

1

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2 CHAPTER 1. INTRODUCTION

framebu�er. Further, some of OpenGL is speci�cally concerned with frame-
bu�er manipulation.

1.3 Programmer's View of OpenGL

To the programmer, OpenGL is a set of commands that allow the speci�-
cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebu�er.
For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebu�er into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others a�ect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user's
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to e�ect direct control of the framebu�er, such as reading and
writing pixels.

1.4 Implementor's View of OpenGL

To the implementor, OpenGL is a set of commands that a�ect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebu�er, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-
dimensional lines and polygons to sophisticated oating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor's task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebu�er. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the e�ect it has on what is
drawn. One of the main goals of this speci�cation is to make OpenGL state

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

1.5. OUR VIEW 3

information explicit, to elucidate how it changes, and to indicate what its
e�ects are.

1.5 Our View

We view OpenGL as a state machine that controls a set of speci�c draw-
ing operations. This model should engender a speci�cation that satis�es
the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the speci�ed methods, but
there may be ways to carry out a particular computation that are more
e�cient than the one speci�ed.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the \GL") is concerned only with rendering into a
framebu�er (and reading values stored in that framebu�er). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode
may be changed independently; the setting of one does not a�ect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebu�er). Modes are set, primitives speci�ed, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are de�ned by a group of one or more vertices. A vertex
de�nes a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive �ts within a speci�ed region; in this case vertex data may be
modi�ed and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the e�ects of a com-
mand are realized. This means, for example, that one primitive must be

4

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.1. OPENGL FUNDAMENTALS 5

drawn completely before any subsequent one can a�ect the framebu�er. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the e�ects of a GL command on either GL modes or the framebu�er
must be complete before any subsequent command can have any such e�ects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no e�ect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes speci�cation of such parameters as trans-
formation matrices, lighting equation coe�cients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is \network-
transparent." A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL commands when the program is not
connected to a context results in unde�ned behavior.

The e�ects of GL commands on the framebu�er are ultimately controlled
by the window system that allocates framebu�er resources. It is the window
system that determines which portions of the framebu�er the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to con�gure the
framebu�er or initialize the GL. Similarly, display of framebu�er contents
on a CRT monitor (including the transformation of individual framebu�er
values by such techniques as gamma correction) is not addressed by the GL.
Framebu�er con�guration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6 CHAPTER 2. OPENGL OPERATION

In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebu�er con�gurations.

Finally, command names, constants, and types are pre�xed in the GL
(by gl, GL , and GL, respectively in C) to reduce name clashes with other
packages. The pre�xes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of oating-point operations during the
course of its operation. We do not specify how oating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers' oating-point parts contain enough bits and that their
exponent �elds are large enough so that individual results of oating-point
operations are accurate to about 1 part in 105. The maximum representable
magnitude of a oating-point number used to represent positional or normal
coordinates must be at least 232; the maximum representable magnitude for
colors or texture coordinates must be at least 210. The maximum repre-
sentable magnitude for all other oating-point values must be at least 232.
x � 0 = 0 � x = 0 for any non-in�nite and non-NaN x. 1 � x = x � 1 = x.
x+0 = 0+x = x. 00 = 1. (Occasionally further requirements will be speci-
�ed.) Most single-precision oating-point formats meet these requirements.

Any representable oating-point value is legal as input to a GL command
that requires oating-point data. The result of providing a value that is not
a oating-point number to such a command is unspeci�ed, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL command yields
predictable results, while providing a NaN or an in�nity yields unspeci�ed
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspeci�ed result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.3. GL COMMAND SYNTAX 7

function. Although we describe the operations that the GL performs on the
framebu�er, the framebu�er is not a part of GL state.

We distinguish two types of state. The �rst type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise speci�ed, all state referred to in this document
is GL server state; GL client state is speci�cally identi�ed. Each instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL may be hardware dependent, this
discussion is independent of the speci�c hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but di�er in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The �rst character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the speci�c type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
oating-point, or double-precision oating-point. The �nal character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two speci�c
examples come from the Vertex command:

void Vertex3f(float x, float y, float z);

and

void Vertex2sv(short v[2]);

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form1

1The declarations shown in this document apply to ANSI C. Languages such as C++

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

8 CHAPTER 2. OPENGL OPERATION

Letter Corresponding GL Type

b byte

s short

i int

f float

d double

ub ubyte

us ushort

ui uint

Table 2.1: Correspondence of command su�x letters to GL argument types.
Refer to Table 2.2 for de�nitions of the GL types.

rtype Namef�1234gf� b s i f d ub us uigf�vg
([args ,] T arg1 , : : : , T argN [, args]);

rtype is the return type of the function. The braces (fg) enclose a series
of characters (or character pairs) of which one is selected. � indicates no
character. The arguments enclosed in brackets ([args ,] and [, args]) may
or may not be present. The N arguments arg1 through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments' type is given explic-
itly). If the �nal character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is �xed). If the �nal
character is v, then only arg1 is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).

For example,

void Normal3ffdg(T arg);

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3);
void Normal3d(double arg1, double arg2, double arg3);

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.4. BASIC GL OPERATION 9

void Normal3ffdgv(T arg);

means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is �xed (i.e. not indicated by a su�x on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are e�ectively sent through a processing
pipeline.

The �rst stage provides an e�cient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebu�er addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they �nally alter the framebu�er.
These operations include conditional updates into the framebu�er based
on incoming and previously stored depth values (to e�ect depth bu�ering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
bu�er; values may also be read back from the framebu�er or copied from
one portion of the framebu�er to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

10 CHAPTER 2. OPENGL OPERATION

GL Type Minimum Number of Bits Description

boolean 1 Boolean

byte 8 signed 2's complement binary inte-
ger

ubyte 8 unsigned binary integer

short 16 signed 2's complement binary inte-
ger

ushort 16 unsigned binary integer

int 32 signed 2's complement binary inte-
ger

uint 32 unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

bitfield 32 Bit �eld

float 32 Floating-point value

clampf 32 Floating-point value clamped to
[0; 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to
[0; 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,
GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct
interpretation of integer values outside the minimum range is not required,
however.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.5. GL ERRORS 11

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a
numeric code. When an error is detected, a ag is set and the code is
recorded. Further errors, if they occur, do not a�ect this recorded code.
When GetError is called, the code is returned and the ag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several ag-
code pairs. In this case, after a call to GetError returns a value other
than NO ERROR each subsequent call returns the non-zero code of a distinct
ag-code pair (in unspeci�ed order), until all non-NO ERROR codes have been

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

12 CHAPTER 2. OPENGL OPERATION

returned. When there are no more non-NO ERROR error codes, all ags are
reset. This scheme requires some positive number of pairs of a ag bit and
an integer. The initial state of all ags is cleared and the initial value of all
codes is NO ERROR.

Table 2.3 summarizes GL errors. Currently, when an error ag is set,
results of GL operation are unde�ned only if OUT OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no e�ect on GL state or framebu�er contents. If the generating command
returns a value, it returns zero. If the generating command modi�es values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those speci�ed as allowable for
that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is speci�ed, the error INVALID VALUE results. Finally,
if memory is exhausted as a side e�ect of the execution of a command, the
error OUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this speci�cation.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is speci�ed with two, three, or four coordinates. In addi-
tion, a current normal, current texture coordinates, and current color may
be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may
be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 13

Error Description O�ending com-
mand ignored?

INVALID ENUM enum argument out of range Yes

INVALID VALUE Numeric argument out of
range

Yes

INVALID OPERATION Operation illegal in current
state

Yes

STACK OVERFLOW Command would cause a stack
overow

Yes

STACK UNDERFLOW Command would cause a stack
underow

Yes

OUT OF MEMORY Not enough memory left to ex-
ecute command

Unknown

TABLE TOO LARGE The speci�ed table is too large Yes

Table 2.3: Summary of GL errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.
Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to
produce a processed vertex.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be a�ected or replaced by lighting, and texture coordi-
nates are transformed and possibly a�ected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the current texture coordinates. Because color assignment is done vertex-
by-vertex, a processed vertex comprises the vertex's coordinates, its edge
ag, its assigned colors, and its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

14 CHAPTER 2. OPENGL OPERATION

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Current
Texture
Coords

texgen texture
matrix

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 15

tive is formed, it is clipped to a viewing volume. This may alter the primitive
by altering vertex coordinates, texture coordinates, and colors. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices de�ning a primitive to be rasterized have texture coordinates
and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be speci�ed between
a Begin and an End.

Points. A series of individual points may be speci�ed by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is speci�ed
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE STRIP. In this case, the �rst vertex speci�es
the �rst segment's start point while the second vertex speci�es the �rst
segment's endpoint and the second segment's start point. In general, the
ith vertex (for i > 1) speci�es the beginning of the ith segment and the end
of the i� 1st. The last vertex speci�es the end of the last segment. If only
one vertex is speci�ed between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean ag indicating if the current vertex is
the �rst vertex.

Line Loops. Line loops, speci�ed with the LINE LOOP argument value to
Begin, are the same as line strips except that a �nal segment is added from
the �nal speci�ed vertex to the �rst vertex. The additional state consists of
the processed �rst vertex.

Separate Lines. Individual line segments, each speci�ed by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

16 CHAPTER 2. OPENGL OPERATION

when the value of the argument to Begin is LINES. In this case, the �rst
two vertices between a Begin and End pair de�ne the �rst segment, with
subsequent pairs of vertices each de�ning one more segment. If the number
of speci�ed vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used di�erently: a vertex holding the �rst
vertex of the current segment, and a boolean ag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are speci�ed in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or �lling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
If a speci�ed polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected
vertices de�ning its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been speci�ed. The order of the vertices is sig-
ni�cant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is speci�ed by giving a series of de�ning ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.
In this case, the �rst three vertices de�ne the �rst triangle (and their order is
signi�cant, just as for polygons). Each subsequent vertex de�nes a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE STRIP

has been supplied to Begin, produces no primitive. See Figure 2.4.
The state required to support triangle strips consists of a ag indicating

if the �rst triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin(TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the �rst vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 17

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the �rst
triangle, while in (c) the order of each triangle's edges is independent of the
other triangles.

exception: each vertex after the �rst always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are speci�ed by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 3i + 1st, 3i + 2nd, and 3i + 3rd vertices (in
that order) determine a triangle for each i = 0; 1; : : : ; n� 1, where there are
3n+k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the �nal k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i+1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin
and End are v1; : : : ; vm, where vj is the jth speci�ed vertex, then quad i has
vertices (in order) v2i, v2i+1, v2i+3, and v2i+2 with i = 0; : : : ; bm=2c. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the �rst new vertex) of
the current quad, a ag to indicate when the �rst quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

18 CHAPTER 2. OPENGL OPERATION

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices speci�ed for a quadrilateral strip between Begin and
End is odd, the �nal vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 4j+1st, the 4j+2nd, the 4j+3rd,
and the 4j + 4th, generate a single quad, for j = 0; 1; : : : ; n� 1. The total
number of vertices between Begin and End is 4n+ k, where 0 � k � 3; if
k is not zero, the �nal k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral
set, is agged as either boundary or non-boundary. These classi�cations
are used during polygon rasterization; some modes a�ect the interpreta-
tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the agging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag(boolean ag);
void EdgeFlagv(boolean *ag);

to change the value of a ag bit. If ag is zero, then the ag bit is set to
FALSE; if ag is non-zero, then the ag bit is set to TRUE.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.7. VERTEX SPECIFICATION 19

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex speci�ed within a Begin and End pair
begins an edge. If the edge ag bit is TRUE, then each speci�ed vertex begins
an edge that is agged as boundary. If the bit is FALSE, then induced edges
are agged as non-boundary.

The state required for edge agging consists of one current ag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-
dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-
Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-
ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and
the EdgeFlag command. Executing any other GL command between the
execution of Begin and the corresponding execution of End results in the
error INVALID OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION

error, as does executing End without a previous corresponding Begin.
Execution of the commands EnableClientState, Dis-

ableClientState, PushClientAttrib, PopClientAttrib, EdgeFlag-
Pointer, TexCoordPointer, ColorPointer, IndexPointer, Normal-
Pointer, VertexPointer, InterleavedArrays, and PixelStore, is not
allowed within any Begin/End pair, but an error may or may not be gen-
erated if such execution occurs. If an error is not generated, GL operation
is unde�ned. (These commands are described in sections 2.8, 3.6.1, and
Chapter 6.)

2.7 Vertex Speci�cation

Vertices are speci�ed by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertexf234gfsifdg(T coords);
void Vertexf234gfsifdgv(T coords);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

20 CHAPTER 2. OPENGL OPERATION

A call to any Vertex command speci�es four coordinates: x, y, z, and w.
The x coordinate is the �rst coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the x and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets x, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the speci�cation of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
�ned behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly,TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

The current normal is set using

void Normal3fbsifdg(T coords);
void Normal3fbsifdgv(T coords);

Byte, short, or integer values passed to Normal are converted to oating-
point values as indicated for the corresponding (signed) type in Table 2.6.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color index, and a current four-valued RGBA
color. One or the other of these is signi�cant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Colorf34gfbsifd ubusuig(T components);
void Colorf34gfbsifd ubusuigv(T components);

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to oating-point values is discussed in
section 2.13.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 21

Versions of the Color command that take oating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebu�er (see section 2.13 on colors and
coloring). Values outside [0; 1] are not clamped.

The command

void Indexfsifd ubg(T index);
void Indexfsifd ubgv(T index);

updates the current (single-valued) color index. It takes one argument, the
value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex speci�cation consists of four
oating-point numbers to store the current texture coordinates s, t, r, and
q, three oating-point numbers to store the three coordinates of the current
normal, four oating-point values to store the current RGBA color, and
one oating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial
value of q is one. The initial current normal has coordinates (0; 0; 1). The
initial RGBA color is (R;G;B;A) = (1; 1; 1; 1). The initial color index is 1.

2.8 Vertex Arrays

The vertex speci�cation commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-
ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client's address space. Blocks of data in these arrays may
then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge ags, texture coordinates, colors, color indices, normals, and
vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

22 CHAPTER 2. OPENGL OPERATION

Command Sizes Types

VertexPointer 2,3,4 short, int, float, double

NormalPointer 3 byte, short, int, float, double

ColorPointer 3,4 byte, ubyte, short, ushort, int,
uint, float, double

IndexPointer 1 ubyte, short, int, float, double

TexCoordPointer 1,2,3,4 short, int, float, double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

describe the locations and organizations of these arrays. For each com-
mand, type speci�es the data type of the values stored in the array. Because
edge ags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that
are stored in the array. Because normals are always speci�ed with three
values, NormalPointer has no size argument. Likewise, because color in-
dices and edge ags are always speci�ed with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values
BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED BYTE, UNSIGNED SHORT, and
UNSIGNED INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is speci�ed with a value other than
that indicated in the table.

The one, two, three, or four values in an array that correspond to a single
vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is speci�ed as zero, then array
elements are stored sequentially as well. Otherwise pointers to the ith and
(i+ 1)st elements of an array di�er by stride basic machine units (typically

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 23

unsigned bytes), the pointer to the (i+1)st element being greater. For each
command, pointer speci�es the location in memory of the �rst value of the
�rst element of the array being speci�ed.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to EDGE FLAG ARRAY, TEXTURE COORD ARRAY, COLOR ARRAY,
INDEX ARRAY, NORMAL ARRAY, or VERTEX ARRAY, for the edge ag, texture coor-
dinate, color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element i. For the ver-
tex array, the corresponding command isVertex[size][type]v, where size is
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,
int, float, and double respectively. The corresponding commands for
the edge ag, texture coordinate, color, color index, and normal arrays are
EdgeFlagv, TexCoord[size][type]v, Color[size][type]v, Index[type]v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex[size][type]v is executed last, after the executions of the
other corresponding commands.

Changes made to array data between the execution of Begin and the
corresponding execution of End may a�ect calls to ArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access
original data.

The command

void DrawArrays(enum mode, int �rst, sizei count);

constructs a sequence of geometric primitives using elements first through
first+count�1 of each enabled array. mode speci�es what kind of primitives
are constructed; it accepts the same token values as the mode parameter of
the Begin command. The e�ect of

DrawArrays (mode; first; count);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

24 CHAPTER 2. OPENGL OPERATION

is the same as the e�ect of the command sequence

if (mode or count is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(first+ i);

End();
g

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-
sponding to disabled arrays are not modi�ed by the execution of DrawAr-
rays.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode speci�es
what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The e�ect of

DrawElements (mode; count; type; indices);

is the same as the e�ect of the command sequence

if (mode; count; or type is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(indices[i]);
End();

g

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 25

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-
ues corresponding to disabled arrays are not modi�ed by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices
match the corresponding arguments toDrawElements, with the additional
constraint that all values in the array indices must lie between start and end
inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by callingGetIntegerv with the symbolic
constants MAX ELEMENTS VERTICES and MAX ELEMENTS INDICES. If end�start+1
is greater than the value of MAX ELEMENTS VERTICES, or if count is greater than
the value of MAX ELEMENTS INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start; end]
be referenced. However, the implementation may partially process unused
vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalidmode, count,
or type parameters generate the same errors as would the corresponding
call to DrawElements. It is an error for indices to lie outside the range
[start; end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,
void *pointer);

e�ciently initializes the six arrays and their enables to one of 14 con�gura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB V2F,
C4UB V3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F, T4F V4F, T2F C4UB V3F,
T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or T4F C4F N3F V4F.

The e�ect of

InterleavedArrays(format; stride; pointer);

is the same as the e�ect of the command sequence

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

26 CHAPTER 2. OPENGL OPERATION

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UB V2F False True False 4 2 UNSIGNED BYTE

C4UB V3F False True False 4 3 UNSIGNED BYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3

T4F V4F True False False 4 4
T2F C4UB V3F True True False 2 4 3 UNSIGNED BYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3

T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UB V2F 0 c c+ 2f
C4UB V3F 0 c c+ 3f

C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f

T4F V4F 4f 8f
T2F C4UB V3F 2f c+ 2f c+ 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f

T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f
is sizeof(FLOAT). c is 4 times sizeof(UNSIGNED BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 27

if (format or stride is invalid)
generate appropriate error

else f
int str;

set et; ec; en; st; sc; sv; tc; pc; pn; pv; and s as a function
of Table 2.5 and the value of format.

str = stride;
if (str is zero)

str = s;
DisableClientState(EDGE FLAG ARRAY);
DisableClientState(INDEX ARRAY);
if (et) f

EnableClientState(TEXTURE COORD ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

g else f
DisableClientState(TEXTURE COORD ARRAY);

g
if (ec) f

EnableClientState(COLOR ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

g else f
DisableClientState(COLOR ARRAY);

g
if (en) f

EnableClientState(NORMAL ARRAY);
NormalPointer(FLOAT, str, pointer + pn);

g else f
DisableClientState(NORMAL ARRAY);

g
EnableClientState(VERTEX ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

g

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, �ve symbolic
constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the
memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

28 CHAPTER 2. OPENGL OPERATION

2.9 Rectangles

There is a set of GL commands to support e�cient speci�cation of rectangles
as two corner vertices.

void Rectfsifdg(T x1, T y1, T x2, T y2);
void Rectfsifdgv(T v1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive
pairs of (x; y) coordinates, or two pointers to arrays each of which contains
an x value followed by a y value. The e�ect of the Rect command

Rect (x1; y1; x2; y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1; y1);
Vertex2(x2; y1);
Vertex2(x2; y2);
Vertex2(x1; y2);

End();

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebu�er. We begin
with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
yield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
�nal viewport transformation is applied to convert these coordinates into
window coordinates.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 29

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of x, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4� 4.

If a vertex in object coordinates is given by

0
BB@
xo
yo
zo
wo

1
CCA and the model-view

matrix is M , then the vertex's eye coordinates are found as

0
BB@
xe
ye
ze
we

1
CCA =M

0
BB@
xo
yo
zo
wo

1
CCA :

Similarly, if P is the projection matrix, then the vertex's clip coordinates
are 0

BB@
xc
yc
zc
wc

1
CCA = P

0
BB@
xe
ye
ze
we

1
CCA :

The vertex's normalized device coordinates are then0
@xd
yd
zd

1
A =

0
@xc=wc

yc=wc

zc=wc

1
A :

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

30 CHAPTER 2. OPENGL OPERATION

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport's width and
height in pixels, px and py, respectively, and its center (ox; oy) (also in

pixels). The vertex's window coordinates,

0
@xw
yw
zw

1
A, are given by

0
@xw
yw
zw

1
A =

0
@ (px=2)xd + ox

(py=2)yd + oy
[(f � n)=2]zd + (n+ f)=2

1
A :

The factor and o�set applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f);

Each of n and f are clamped to lie within [0; 1], as are all arguments of type
clampd or clampf. zw is taken to be represented in �xed-point with at least
as many bits as there are in the depth bu�er of the framebu�er. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are speci�ed using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport's lower-
left corner and w and h give the viewport's width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as ox = x+ w=2 and oy = y + h=2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent
maximums when speci�ed. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or h
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, w and h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. ox and oy are set to
w=2 and h=2, respectively. n and f are set to 0:0 and 1:0, respectively.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modi�ed with
a variety of commands. The a�ected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-de�ned constants TEXTURE, MODELVIEW, COLOR,
or PROJECTION as the argument value. TEXTURE is described later in sec-
tion 2.10.2, and COLORis described in section 3.6.3. If the current matrix
mode is MODELVIEW, then matrix operations apply to the model-view matrix;
if PROJECTION, then they apply to the projection matrix.

The two basic commands for a�ecting the current matrix are

void LoadMatrixffdg(T m[16]);
void MultMatrixffdg(T m[16]);

LoadMatrix takes a pointer to a 4�4 matrix stored in column-major order
as 16 consecutive oating-point values, i.e. as

0
BB@
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16

1
CCA :

(This di�ers from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The speci�ed matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as LoadMatrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C is the current matrix and M is the matrix pointed
to by MultMatrix's argument, then the resulting current matrix, C 0, is

C 0 = C �M:

The command

void LoadIdentity(void);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

32 CHAPTER 2. OPENGL OPERATION

e�ectively calls LoadMatrix with the identity matrix:

0
BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA :

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotateffdg(T �, T x, T y, T z);

� gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (x y z)T . The computed matrix is a counter-clockwise rotation about
the line through the origin with the speci�ed axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus

0
BB@

0
R 0

0
0 0 0 1

1
CCA :

Let u = v=jjvjj = (x0 y0 z0)T . If

S =

0
@ 0 �z0 y0

z0 0 �x0
�y0 x0 0

1
A

then
R = uuT + cos �(I � uuT) + sin �S:

The arguments to

void Translateffdg(T x, T y, T z);

give the coordinates of a translation vector as (x y z)T . The resulting matrix
is a translation by the speci�ed vector:0

BB@
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1
CCA :

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 33

void Scaleffdg(T x, T y, T z);

produces a general scaling along the x-, y-, and z- axes. The corresponding
matrix is 0

BB@
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

1
CCA :

For

void Frustum(double l, double r, double b, double t,
double n, double f);

the coordinates (l b � n)T and (r t � n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)T). f
gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, l is equal to r, b is equal to t, or n is equal to f ,
the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2n
r�l

0 r+l
r�l

0

0 2n
t�b

t+b
t�b

0

0 0 �f+n
f�n

� 2fn
f�n

0 0 �1 0

1
CCCA :

void Ortho(double l, double r, double b, double t,
double n, double f);

describes a matrix that produces parallel projection. (l b�n)T and (r t �n)T
specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. f gives the distance
from the eye to the far clipping plane. If l is equal to r, b is equal to t, or n
is equal to f , the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2
r�l

0 0 � r+l
r�l

0 2
t�b

0 � t+b
t�b

0 0 � 2
f�n

�f+n
f�n

0 0 0 1

1
CCCA :

There is another 4�4 matrix that is applied to texture coordinates. This
matrix is applied as

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

34 CHAPTER 2. OPENGL OPERATION

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two
4 � 4 matrices for each of COLOR, PROJECTION, and TEXTURE with associated
stack pointers, and a stack of at least 32 4� 4 matrices with an associated
stack pointer for MODELVIEW. Initially, there is only one matrix on each stack,
and all matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state
a�ect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and
normalization operations are performed on the transformed normals to make

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 35

them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target);

and

void Disable(enum target);

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M , then the normal is transformed to eye
coordinates by:

(nx
0 ny

0 nz
0 q0) = (nx ny nz q) �M�1

where, if

0
BB@
x
y
z
w

1
CCA are the associated vertex coordinates, then

q =

8>>>><
>>>>:

0; w = 0;

�(nx ny nz)

0
@x
y
z

1
A

w
; w 6= 0

(2.1)

Implementations may choose instead to transform (nx ny nz) to eye
coordinates using

(nx
0 ny

0 nz
0) = (nx ny nz) �Mu

�1

where Mu is the upper leftmost 3x3 matrix taken from M .

Rescale multiplies the transformed normals by a scale factor

(nx
00 ny

00 nz
00) = f (nx

0 ny
0 nz

0)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (mij denotes the matrix element in row i and column j of M�1,
numbering the topmost row of the matrix as row 1 and the leftmost column
as column 1)

f =
1p

m31
2 +m32

2 +m33
2

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

36 CHAPTER 2. OPENGL OPERATION

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals
unit length.

Alternatively, an implementation may chose f as

f =
1q

nx0
2 + ny 0

2 + nz 0
2

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the �nal transformed normal used in lighting, nf , is
computed as

nf = m (nx
00 ny

00 nz
00)

If normalization is disabled, then m = 1. Otherwise

m =
1q

nx00
2 + ny 00

2 + nz 00
2

Because we specify neither the oating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M . In case of an exactly
singular matrix, the transformed normal is unde�ned. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or
termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGenfifdg(enum coord, enum pname, T param);
void TexGenfifdgv(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, t, r, or q

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 37

coordinate, respectively. In the �rst form of the command, param is a sym-
bolic constant specifying a single-valued texture generation parameter; in the
second form, params is a pointer to an array of values that specify texture
generation parameters. pname must be one of the three symbolic constants
TEXTURE GEN MODE, OBJECT PLANE, or EYE PLANE. If pname is TEXTURE GEN MODE,
then either params points to or param is an integer that is one of the symbolic
constants OBJECT LINEAR, EYE LINEAR, or SPHERE MAP.

If TEXTURE GEN MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo:

xo, yo, zo, and wo are the object coordinates of the vertex. p1; : : : ; p4 are
speci�ed by calling TexGen with pname set to OBJECT PLANE in which case
params points to an array containing p1; : : : ; p4. There is a distinct group of
plane equation coe�cients for each texture coordinate; coord indicates the
coordinate to which the speci�ed coe�cients pertain.

If TEXTURE GEN MODE indicates EYE LINEAR, then the function is

g = p01xe + p02ye + p03ze + p04we

where

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

xe, ye, ze, and we are the eye coordinates of the vertex. p1; : : : ; p4 are
set by calling TexGen with pname set to EYE PLANE in correspondence with
setting the coe�cients in the OBJECT PLANE case. M is the model-view matrix
in e�ect when p1; : : : ; p4 are speci�ed. Computed texture coordinates may
be inaccurate or unde�ned if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE GEN MODE indicating SPHERE MAP can simulate the reected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n0. Let r = (rx ry rz)

T , the reection
vector, be given by

r = u� 2n0T
�
n0u

�
;

and let m = 2
q
r2x + r2y + (rz + 1)2. Then the value assigned to an s coor-

dinate (the �rst TexGen argument value is S) is s = rx=m + 1
2 ; the value

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

38 CHAPTER 2. OPENGL OPERATION

assigned to a t coordinate is t = ry=m + 1
2 . Calling TexGen with a co-

ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE GEN R, or TEXTURE GEN Q (each indicates the corresponding texture
coordinate). When enabled, the speci�ed texture coordinate is computed
according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP speci�ca-
tion, depending on the current setting of TEXTURE GEN MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coe�cients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of pi for s are all 0 except p1 which is one; for t all the pi are
zero except p2, which is 1. The values of pi for r and q are all 0. These values
of pi apply for both the EYE LINEAR and OBJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view
volume is de�ned by

�wc � xc � wc

�wc � yc � wc

�wc � zc � wc

:

This view volume may be further restricted by as many as n client-de�ned
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Each client-de�ned plane speci�es a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-de�ned clip planes are enabled, the clip
volume is the view volume).

A client-de�ned clip plane is speci�ed with

void ClipPlane(enum p, double eqn[4]);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.11. CLIPPING 39

The value of the �rst argument, p, is a symbolic constant, CLIP PLANEi, where
i is an integer between 0 and n � 1, indicating one of n client-de�ned clip
planes. eqn is an array of four double-precision oating-point values. These
are the coe�cients of a plane equation in object coordinates: p1, p2, p3, and
p4 (in that order). The inverse of the current model-view matrix is applied
to these coe�cients, at the time they are speci�ed, yielding

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

(where M is the current model-view matrix; the resulting plane equation is
unde�ned ifM is singular and may be inaccurate ifM is poorly-conditioned)
to obtain the plane equation coe�cients in eye coordinates. All points with
eye coordinates (xe ye ze we)

T that satisfy

(p01 p02 p03 p04)

0
BB@
xe
ye
ze
we

1
CCA � 0

lie in the half-space de�ned by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-de�ned clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP PLANEi where i is an integer between 0 and n;
specifying a value of i enables or disables the plane equation with index i.
The constants obey CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 � t � 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices' coordinates
are P1 and P2, then t is given by

P = tP1 + (1� t)P2:

The value of t is used in color and texture coordinate clipping (sec-
tion 2.13.8).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

40 CHAPTER 2. OPENGL OPERATION

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume's boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge ags are asso-
ciated with these vertices so that edges introduced by clipping are agged
as boundary (edge ag TRUE), and so that original edges of the polygon that
become cut o� at these vertices retain their original ags.

If it happens that a polygon intersects an edge of the clip volume's
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have wc values of di�ering signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of wc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coe�cients (p01 p02 p03 p04) (or a
number of similarly speci�ed clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respeci�ed with co-
e�cients (�p01 �p02 �p03 �p04) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision oating-point coe�cients) and at least 6
corresponding bits indicating which of these client-de�ned plane equations
are enabled. In the initial state, all client-de�ned plane equation coe�cients
are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly a�ect pixels in
the framebu�er. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 41

The state required for the current raster position consists of three window
coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture
coordinates. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were speci�ed in a Vertex com-
mand. The x, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position's as-
sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-
places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the \point" is not culled, then the projection to window coor-
dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the \point" is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

42 CHAPTER 2. OPENGL OPERATION

Texture
Matrix

Rasterpos In

Current
Texture

Coordinates

Current
Normal

Lighting

Vertex/Normal
Transformation

Texgen

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Figure 2.7. The current raster position and how it is set.

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate
both primary and secondary vertex colors, which are processed in the same
fashion. See Table 2.6 for the interpretation of k.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 43

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.9. Processing of color indices. n is the number of bits in a color
index.

2.13 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color in-
dices before rasterization. Incoming colors arrive in one of several formats.
Table 2.6 summarizes the conversions that take place on R, G, B, and A com-
ponents depending on which version of the Color command was invoked to
specify the components. As a result of limited precision, some converted
values will not be represented exactly. In color index mode, a single-valued
color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and
secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and
the secondary color is (0; 0; 0; 0)). After lighting, RGBA colors are clamped
to the range [0; 1]. A color index is converted to �xed-point and then its
integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be atshaded, indicating that all vertices of the primitive
are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or
modi�ed by clipping.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

44 CHAPTER 2. OPENGL OPERATION

GL Type Conversion

ubyte c=(28 � 1)

byte (2c+ 1)=(28 � 1)

ushort c=(216 � 1)

short (2c+ 1)=(216 � 1)

uint c=(232 � 1)

int (2c+ 1)=(232 � 1)

oat c

double c

Table 2.6: Component conversions. Color, normal, and depth components,
(c), are converted to an internal oating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal oating point
format. These conversions apply to components speci�ed as parameters to
GL commands and to components in pixel data. The equations remain the
same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-
plished by applying an equation de�ned by a client-speci�ed lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
de�ning the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)

Lighting may be in one of two states:

1. Lighting O�. In this state, the current color is assigned to the vertex
primary color. The secondary color is (0; 0; 0; 0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or o� using the generic Enable orDisable commands
with the symbolic value LIGHTING.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 45

Lighting Operation

A lighting parameter is of one of �ve types: color, position, direction, real,
or boolean. A color parameter consists of four oating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the
allowable values for these parameters. A position parameter consists of four
oating-point coordinates (x, y, z, and w) that specify a position in object
coordinates (w may be zero, indicating a point at in�nity in the direction
given by x, y, and z). A direction parameter consists of three oating-point
coordinates (x, y, and z) that specify a direction in object coordinates. A
real parameter is one oating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is
unde�ned if a value for a parameter is speci�ed that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0; : : : ; n�1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for dcli and scli di�er for i = 0 and i > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If c1 and
c2 are colors without alpha where c1 = (r1; g1; b1) and c2 = (r2; g2; b2),
then de�ne c1 � c2 = (r1r2; g1g2; b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If d1 and d2 are directions, then
de�ne

d1 � d2 = maxfd1 � d2; 0g:
(Directions are taken to have three coordinates.) If P1 and P2 are (homoge-
neous, with four coordinates) points then let

���!
P1P2 be the unit vector that

points from P1 to P2. Note that if P2 has a zero w coordinate and P1 has
non-zero w coordinate, then

���!
P1P2 is the unit vector corresponding to the

direction speci�ed by the x, y, and z coordinates of P2; if P1 has a zero w
coordinate and P2 has a non-zero w coordinate then

���!
P1P2 is the unit vector

that is the negative of that corresponding to the direction speci�ed by P1.
If both P1 and P2 have zero w coordinates, then

���!
P1P2 is the unit vector

obtained by normalizing the direction corresponding to P2 �P1.
If d is an arbitrary direction, then let d̂ be the unit vector in d's direction.

Let kP1P2k be the distance between P1 and P2. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let Pe be the eyepoint ((0; 0; 0; 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color cpri and a
secondary color csec. The values of cpri and csec depend on the light model

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

46 CHAPTER 2. OPENGL OPERATION

Parameter Type Default Value Description

Material Parameters

acm color (0:2; 0:2; 0:2; 1:0) ambient color of material

dcm color (0:8; 0:8; 0:8; 1:0) di�use color of material

scm color (0:0; 0:0; 0:0; 1:0) specular color of material

ecm color (0:0; 0:0; 0:0; 1:0) emissive color of material

srm real 0.0 specular exponent (range:
[0:0; 128:0])

am real 0:0 ambient color index

dm real 1:0 di�use color index

sm real 1:0 specular color index

Light Source Parameters

acli color (0:0; 0:0; 0:0; 1:0) ambient intensity of light i

dcli(i = 0) color (1:0; 1:0; 1:0; 1:0) di�use intensity of light 0
dcli(i > 0) color (0:0; 0:0; 0:0; 1:0) di�use intensity of light i

scli(i = 0) color (1:0; 1:0; 1:0; 1:0) specular intensity of light 0
scli(i > 0) color (0:0; 0:0; 0:0; 1:0) specular intensity of light i

Ppli position (0:0; 0:0; 1:0; 0:0) position of light i

sdli direction (0:0; 0:0;�1:0) direction of spotlight for light
i

srli real 0.0 spotlight exponent for light i
(range: [0:0; 128:0])

crli real 180.0 spotlight cuto� angle for
light i (range: [0:0; 90:0],
180:0)

k0i real 1.0 constant attenuation factor
for light i (range: [0:0;1))

k1i real 0.0 linear attenuation factor for
light i (range: [0:0;1))

k2i real 0.0 quadratic attenuation factor
for light i (range: [0:0;1))

Lighting Model Parameters

acs color (0:2; 0:2; 0:2; 1:0) ambient color of scene

vbs boolean FALSE viewer assumed to be at
(0; 0; 0) in eye coordinates
(TRUE) or (0; 0;1) (FALSE)

ces enum SINGLE COLOR controls computation of col-
ors

tbs boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (�1;+1).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 47

color control, ces. If ces = SINGLE COLOR, then the equations to compute cpri
and csec are

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n ���!VPpli)dcm � dcli
+ (fi)(n� ĥi)srmscm � scli]

csec = (0; 0; 0; 0)

If ces = SEPARATE SPECULAR COLOR, then

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n���!VPpli)dcm � dcli]

csec =
n�1X
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm � scli

where

fi =

(
1; n���!VPpli 6= 0;
0; otherwise,

(2.2)

hi =

(��!
VPpli +

��!
VPe; vbs = TRUE;��!

VPpli + (0 0 1)T ; vbs = FALSE;
(2.3)

atti =

8><
>:

1
k0i + k1ikVPplik + k2ikVPplik2

; if Ppli's w 6= 0,

1:0; otherwise.

(2.4)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

48 CHAPTER 2. OPENGL OPERATION

spoti =

8><
>:

(
���!
PpliV � ŝdli)srli ; crli 6= 180:0;

���!
PpliV � ŝdli � cos(crli);

0:0; crli 6= 180:0;
���!
PpliV � ŝdli < cos(crli);

1:0; crli = 180:0:

(2.5)

(2.6)

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
dcm. A is always associated with the primary color cpri; the alpha compo-
nent of csec is 0. Results of lighting are unde�ned if the we coordinate (w
in eye coordinates) of V is zero.

Lighting may operate in two-sided mode (tbs = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with �n. If tbs = FALSE,
then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon's signed
area computed in window coordinates. One way to compute this area is

a =
1

2

n�1X
i=0

xiwy
i�1
w � xi�1w yiw (2.7)

where xiw and yiw are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and i� 1 is (i+1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if a � 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if a > 0, then the front color is selected. If dir is CW, then
a is replaced by �a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 49

2.13.2 Lighting Parameter Speci�cation

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets
of lighting parameters are speci�ed with

void Materialfifg(enum face, enum pname, T param);
void Materialfifgv(enum face, enum pname, T params);
void Lightfifg(enum light, enum pname, T param);
void Lightfifgv(enum light, enum pname, T params);
void LightModelfifg(enum pname, T param);
void LightModelfifgv(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHTi, indicating that light i is to have the
speci�ed parameter set. The constants obey LIGHTi = LIGHT0+ i.

Table 2.8 gives, for each of the three parameter groups, the correspon-
dence between the pre-de�ned constant names and their names in the light-
ing equations, along with the number of values that must be speci�ed with
each. Color parameters speci�ed with Material and Light are converted
to oating-point values (if speci�ed as integers) as indicated in Table 2.6
for signed integers. The error INVALID VALUE occurs if a speci�ed lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol \1" indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is speci�ed.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is speci�ed using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if Mu is the
upper left 3x3 matrix taken from the current model-view matrix M , then

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

50 CHAPTER 2. OPENGL OPERATION

Parameter Name Number of values

Material Parameters (Material)

acm AMBIENT 4

dcm DIFFUSE 4

acm;dcm AMBIENT AND DIFFUSE 4

scm SPECULAR 4

ecm EMISSION 4

srm SHININESS 1

am; dm; sm COLOR INDEXES 3

Light Source Parameters (Light)

acli AMBIENT 4

dcli DIFFUSE 4

scli SPECULAR 4

Ppli POSITION 4

sdli SPOT DIRECTION 3

srli SPOT EXPONENT 1

crli SPOT CUTOFF 1

k0 CONSTANT ATTENUATION 1

k1 LINEAR ATTENUATION 1

k2 QUADRATIC ATTENUATION 1

Lighting Model Parameters (LightModel)

acs LIGHT MODEL AMBIENT 4

vbs LIGHT MODEL LOCAL VIEWER 1

tbs LIGHT MODEL TWO SIDE 1

ces LIGHT MODEL COLOR CONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to names.
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 51

the spotlight direction 0
@ dx
dy
dz

1
A

is transformed to 0
@ d0x
d0y
d0z

1
A =Mu

0
@ dx
dy
dz

1
A :

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHTi (i is in the range 0 to n� 1, where n is the
implementation-dependent number of lights). If light i is disabled, the ith
term in the lighting equation is e�ectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color,
so that they continuously track its component values. This behavior is
enabled and disabled by calling Enable or Disable with the symbolic value
COLOR MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating whether the front
material, back material, or both are a�ected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
speci�es which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm,
acm, dcm or scm, respectively, will track the current color. If mode is
AMBIENT AND DIFFUSE, both acm and dcm track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial(FRONT, AMBIENT)

while COLOR MATERIAL is enabled sets the front material acm to the value of
the current color.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

52 CHAPTER 2. OPENGL OPERATION

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
�gure. The back material properties are treated identically, except that face
must be BACK or FRONT AND BACK.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 53

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a �ve-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT AND BACK and AMBIENT AND DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simpli�ed lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA
material parameters. First, the RGBA di�use and specular intensities of
light i (dcli and scli, respectively) determine color index di�use and specular
light intensities, dli and sli from

dli = (:30)R(dcli) + (:59)G(dcli) + (:11)B(dcli)

and
sli = (:30)R(scli) + (:59)G(scli) + (:11)B(scli):

R(x) indicates the R component of the color x and similarly for G(x) and
B(x).

Next, let

s =
nX
i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.4 and 2.5, respectively, and fi
and ĥi are given by equations 2.2 and 2.3, respectively. Let s0 = minfs; 1g.
Finally, let

d =
nX
i=0

(atti)(spoti)(dli)(n���!VPpli):

Then color index lighting produces a value c, given by

c = am + d(1� s0)(dm � am) + s0(sm � am):

The �nal color index is
c0 = minfc; smg:

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

54 CHAPTER 2. OPENGL OPERATION

The values am, dm and sm are material properties described in Tables 2.7
and 2.8. Any ambient light intensities are incorporated into am. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of tbs and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values am, dm, and sm are set with Material using a pname of
COLOR INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three oating-point values. These values have no
e�ect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and
secondary colors are clamped to the range [0; 1].

For a color index, the index is �rst converted to �xed-point with an
unspeci�ed number of bits to the right of the binary point; the nearest
�xed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with
2n � 1, where n is the number of bits in a color in the color index bu�er
(bu�ers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be atshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.
These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they
are the colors of the second (�nal) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.

Flatshading is controlled by

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, atshading is turned on. ShadeModel thus requires one bit of state.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 55

Primitive type of polygon i Vertex

single polygon (i � 1) 1

triangle strip i+ 2

triangle fan i+ 2

independent triangle 3i

quad strip 2i+ 2

independent quad 4i

Table 2.9: Polygon atshading color selection. The colors used for atshad-
ing the ith polygon generated by the indicatedBegin/End type are derived
from the current color (if lighting is disabled) in e�ect when the indicated
vertex is speci�ed. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the
number of vertices between the Begin/End pair.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible atshading, colors are
clipped. Those colors associated with a vertex that lies within the clip
volume are una�ected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.

Let the colors assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c = tc1 + (1� t)c2:

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated
in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume's boundary. This situation is handled by noting that
polygon clipping proceeds by clipping against one plane of the clip volume's
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already
clipped) with the clip volume's boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

56 CHAPTER 2. OPENGL OPERATION

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0; 1]) is converted
(by rounding to nearest) to a �xed-point value with m bits. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebu�er. m must be at least 2 for A if
the framebu�er does not contain an A component, or if there is only 1 bit
of A in the framebu�er. A color index is converted (by rounding to nearest)
to a �xed-point value with at least as many bits as there are in the color
index portion of the framebu�er.

Because a number of the form k=(2m�1) may not be represented exactly
as a limited-precision oating-point quantity, we place a further requirement
on the �xed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satis�ed, an RGBA component must convert to a value
that matches the component as speci�ed in the Color command: ifm is less
than the number of bits b with which the component was speci�ed, then the
converted value must equal the most signi�cantm bits of the speci�ed value;
otherwise, the most signi�cant b bits of the converted value must equal the
speci�ed value.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
�rst is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebu�er. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment's associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment's center, which is o�set by (1=2; 1=2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not a�ected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simpli�es antialiasing and texturing.

Several factors a�ect rasterization. Lines and polygons may be stippled.
Points may be given di�ering diameters and line segments di�ering widths.
A point, line segment, or polygon may be antialiased.

57

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

58 CHAPTER 3. RASTERIZATION

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

From
Primitive
Assembly

Pixel
Rectangle

Rasterization

Bitmap
RasterizationBitmap

DrawPixels

Texturing

Color Sum

Fog

Fragments

Figure 3.1. Rasterization.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.1. INVARIANCE 59

3.1 Invariance

Consider a primitive p0 obtained by translating a primitive p through an
o�set (x; y) in window coordinates, where x and y are integers. As long
as neither p0 nor p is clipped, it must be the case that each fragment f 0

produced from p0 is identical to a corresponding fragment f from p except
that the center of f 0 is o�set by (x; y) from the center of f .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is e�ected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left una�ected, but the A value is multiplied by a oating-point value in
the range [0; 1] that describes a fragment's screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebu�er.

In color index mode, the least signi�cant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = minf4;mg, where
m is the number of bits in the color index portion of the framebu�er. The
antialiasing process sets these b bits based on the fragment's coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are di�cult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebu�er are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive's relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment's grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (x; y) and upper right corner (x + 1; y + 1). We recognize

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

60 CHAPTER 3. RASTERIZATION

that this simple box �lter may not produce the most favorable antialiasing
results, but it provides a simple, well-de�ned model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some
primitive is a subset of the corresponding portion of f2 covered by
the primitive, then the coverage computed for f1 must be less than or
equal to that computed for f2.

2. The coverage computation for a fragment f must be local: it may
depend only on f 's relationship to the boundary of the primitive being
rasterized. It may not depend on f 's x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeo�.

3.3 Points

The rasterization of points is controlled with

void PointSize(float size);

size speci�es the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its xw and yw
coordinates (recall that the subscripts indicate that these are x and y window
coordinates) to integers. This (x; y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a
single fragment to the per-fragment stage of the GL.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.3. POINTS 61

The e�ect of a point width other than 1:0 depends on the state of point
antialiasing. If antialiasing is disabled, the actual width is determined by
rounding the supplied width to the nearest integer, then clamping it to
the implementation-dependent maximum non-antialiased point width. This
implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer
value, and in any event no less than 1. If rounding the speci�ed width results
in the value 0, then it is as if the value were 1. If the resulting width is odd,
then the point

(x; y) = (bxwc+ 1

2
; bywc+ 1

2
)

is computed from the vertex's xw and yw, and a square grid of the odd width
centered at (x; y) de�nes the centers of the rasterized fragments (recall that
fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(x; y) = (bxw +
1

2
c; byw +

1

2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (x; y). See �gure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point's
(xw; yw) (�gure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and
used in the �nal step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

Not all widths need be supported when point antialiasing is on, but
the width 1:0 must be provided. If an unsupported width is requested, the
nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation
dependent. The range and gradations may be obtained using the query

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

62 CHAPTER 3. RASTERIZATION

000
000
000

000
000
000

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0:1; 0:2; : : : ; 1:9; 2:0
are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the oating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive oating-point width, controls the width of ras-
terized line segments. The default width is 1:0. Values less than or equal

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 63

333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the speci�ed width.
The X marks indicate those fragment centers produced by rasterization. A
fragment's computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

64 CHAPTER 3. RASTERIZATION

to 0:0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
x-major or y-major. x-major line segments have slope in the closed inter-
val [�1; 1]; all other line segments are y-major (slope is determined by the
segment's endpoints). We shall specify rasterization only for x-major seg-
ments except in cases where the modi�cations for y-major segments are not
self-evident.

Ideally, the GL uses a \diamond-exit" rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates xf and yf , de�ne a diamond-shaped region
that is the intersection of four half planes:

Rf = f (x; y) j jx� xf j+ jy � yf j < 1=2:g
Essentially, a line segment starting at pa and ending at pb produces those

fragments f for which the segment intersects Rf , except if pb is contained
in Rf . See �gure 3.4.

To avoid di�culties when an endpoint lies on a boundary of Rf we (in
principle) perturb the supplied endpoints by a tiny amount. Let pa and
pb have window coordinates (xa; ya) and (xb; yb), respectively. Obtain the
perturbed endpoints p0a given by (xa; ya)� (�; �2) and p0b given by (xb; yb)�
(�; �2). Rasterizing the line segment starting at pa and ending at pb produces
those fragments f for which the segment starting at p0a and ending on p0b
intersects Rf , except if p

0
b is contained in Rf . � is chosen to be so small

that rasterizing the line segment produces the same fragments when � is
substituted for � for any 0 < � � �.

When pa and pb lie on fragment centers, this characterization of frag-
ments reduces to Bresenham's algorithm with one modi�cation: lines pro-
duced in this description are \half-open," meaning that the �nal fragment
(corresponding to pb) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham's algorithm).

Because the initial and �nal conditions of the diamond-exit rule may
be di�cult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 65

00

00000
00000
00000
00000
0000000000

00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

Figure 3.4. Visualization of Bresenham's algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may di�er
from that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either x-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by pr = (xd; yd) and let pa = (xa; ya) and pb = (xb; yb). Set

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

66 CHAPTER 3. RASTERIZATION

t =
(pr � pa) � (pb � pa)

kpb � pak2
: (3.1)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, t, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

f =
(1� t)fa=wa + tfb=wb

(1� t)�a=wa + t�b=wb

(3.2)

where fa and fb are the data associated with the starting and ending end-
points of the segment, respectively; wa and wb are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. �a = �b = 1
for all data except texture coordinates, in which case �a = qa and �b = qb
(qa and qb are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are unde�ned if either of these is less
than or equal to 0). Note that linear interpolation would use

f = (1� t)fa=�a + tfb=�b: (3.3)

The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to �nd the corresponding value when
interpolated in clip space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion e�ects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFF16. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 67

de�nes a line stipple. pattern is an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the e�ective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1; 256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b = bs=rc mod 16;
Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least signi�cant and
15 being the most signi�cant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as speci�ed when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the sup-
plied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased line width. This implementation-
dependent value must be no less than the implementation-dependent max-
imum antialiased line width, rounded to the nearest integer value, and in
any event no less than 1. If rounding the speci�ed width results in the value
0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized
by o�setting them in the minor direction (for an x-major line, the minor
direction is y, and for a y-major line, the minor direction is x) and replicating
fragments in the minor direction (see �gure 3.5). Let w be the width rounded
to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (x0; y0) and (x1; y1) in window coordinates, the segment
with endpoints (x0; y0� (w�1)=2) and (x1; y1� (w�1)=2) is rasterized, but

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

68 CHAPTER 3. RASTERIZATION

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiasedwide lines. x-major line segments
are shown. The heavy line segment is the one speci�ed to be rasterized; the
light segment is the o�set segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each x (y for
y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modi�ed
coordinates. The whole column is not produced if the stipple bit for the
column's x location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges
are parallel to the speci�ed line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.
The other two edges pass through the line endpoints and are perpendicular
to the direction of the speci�ed line segment. Coverage values are computed
for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see �gure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;
equation 3.1 is used to �nd the value of t for each fragment whose square
is intersected by the line segment's rectangle. Not all widths need be sup-

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 69

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 3.6. The region used in rasterizing and �nding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

ported for line segment antialiasing, but width 1:0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where \fragment" is replaced
with \rectangle." Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the oating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or o�. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1:0. The initial value of the line stipple is FFFF16 (a
stipple of all ones). The initial value of the line stipple repeat count is one.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

70 CHAPTER 3. RASTERIZATION

The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The �rst step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.7 of section 2.13.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the x and y window coordinates of the polygon's vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either
side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 71

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. De�ne barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and c, each in the range [0; 1],
with a + b + c = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle's boundary as

p = apa + bpb + cpc;

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found
as

a =
A(ppbpc)

A(papbpc)
; b =

A(ppapc)

A(papbpc)
; c =

A(ppapb)

A(papbpc)
;

where A(lmn) denotes the area in window coordinates of the triangle with
vertices l, m, and n.

Denote a datum at pa, pb, or pc as fa, fb, or fc, respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given
by

f =
afa=wa + bfb=wb + cfc=wc

a�a=wa + b�b=wb + c�c=wc
(3.4)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data
are produced. �a = �b = �c = 1 except for texture s, t, and r coordinates,
for which �a = qa, �b = qb, and �c = qc (if any of qa, qb, or qc are less
than or equal to zero, results are unde�ned). a, b, and c must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment's center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa=�a + bfb=�b + cfc=�c;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion e�ects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon's vertices can be used
to obtain the value assigned to each fragment produced by the rasterization

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

72 CHAPTER 3. RASTERIZATION

algorithm. That is, it must be the case that at every fragment

f =
nX
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at
vertex i; for each i 0 � ai � 1 and

Pn
i=1 ai = 1. The values of the ai may

di�er from fragment to fragment, but at vertex i, aj = 0; j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a

polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satis�es the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32 � 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR INDEX. The unpacked values (before any conversion or arithmetic
would have been performed) form a stipple pattern of zeros and ones.

If xw and yw are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (xw mod 32; yw mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment's square. A coverage

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 73

value is computed at each such fragment, and this value is saved to be applied
as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum's value over the region of the intersection of the
fragment square with the polygon's interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment's center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule de�ned in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
beginning of the �rst rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
a�ect only the �nal rasterization of polygons: in particular, a polygon's
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-
tively, apply.

3.5.5 Depth O�set

The depth values of all fragments generated by the rasterization of a polygon
may be o�set by a single value that is computed for that polygon. The

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

74 CHAPTER 3. RASTERIZATION

function that determines this value is speci�ed by calling

void PolygonO�set(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth bu�er. The resulting values are summed to produce the polygon
o�set value. Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

s�
@zw
@xw

�2
+

�
@zw
@yw

�2
(3.5)

where (xw; yw; zw) is a point on the triangle. m may be approximated as

m = max

�����@zw@xw

���� ;
����@zw@yw

����
�
: (3.6)

If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,max],
wheremin and max are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex
combinations.

The minimum resolvable di�erence r is an implementation constant. It
is the smallest di�erence in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth bu�er.
All pairs of fragments generated by the rasterization of two polygons with
otherwise identical vertices, but zw values that di�er by r, will have distinct
depth values.

The o�set value o for a polygon is

o = m � factor + r � units: (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON OFFSET POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable
and Disable. If POLYGON OFFSET POINT is enabled, o is added to the depth
value of each fragment produced by the rasterization of a polygon in POINT

mode. Likewise, if POLYGON OFFSET LINE or POLYGON OFFSET FILL is enabled, o

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 75

is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after o�set addition is performed (preferred), or by clamping the
vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode
setting for each of front and back facing polygons, whether point, line, and
�ll mode polygon o�sets are enabled or disabled, and the factor and bias
values of the polygon o�set equation. The initial stipple pattern is all ones;
initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and
back facing polygons. The initial polygon o�set factor and bias values are
both 0; initially polygon o�set is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).
Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the
framebu�er) and CopyPixels (used to copy pixels from one framebu�er
location to another); the discussion of ReadPixels and CopyPixels, how-
ever, is deferred until Chapter 4 after the framebu�er has been discussed
in detail. Nevertheless, we note in this section when parameters and state
pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebu�er (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes a�ect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

76 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

UNPACK SWAP BYTES boolean FALSE TRUE/FALSE

UNPACK LSB FIRST boolean FALSE TRUE/FALSE

UNPACK ROW LENGTH integer 0 [0;1)

UNPACK SKIP ROWS integer 0 [0;1)

UNPACK SKIP PIXELS integer 0 [0;1)

UNPACK ALIGNMENT integer 4 1,2,4,8

UNPACK IMAGE HEIGHT integer 0 [0;1)

UNPACK SKIP IMAGES integer 0 [0;1)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImage1D, TexImage2D, and TexImage3D.

these commands is issued. This may di�er from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStorefifg(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a oating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0:0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a oating-
point value, then the passed value is converted to oating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in
GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed
as parameters to existing commands. If the subset is supported, all of these

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 77

calls and enumerants must be implemented as described later in the GL spec-
i�cation. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumerants
generates the error INVALID ENUM.

The individual operations available only in the imaging subset are de-
scribed in section 3.6.3, except for blending features, which are described in
chapter 4. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in
subsections Color Table Speci�cation, Alternate Color Table
Speci�cation Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,
and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in
subsections Convolution Filter Speci�cation, Alternate Con-
volution Filter Speci�cation Commands, and Convolution, as
well as the query commands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in
subsectionsColor Matrix Speci�cation andColor Matrix Trans-
formation, as well as the simple query commands described in sec-
tion 6.1.6.

4. Histogram and minmax, including all commands and enumerants de-
scribed in subsectionsHistogram Table Speci�cation, Histogram
State and Proxy State, Histogram, Minmax Table Speci�ca-
tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

5. The subset of blending features described by Blend-
Equation, BlendColor, and the BlendFunc modes
CONSTANT COLOR, ONE MINUS CONSTANT COLOR, CONSTANT ALPHA, and
ONE MINUS CONSTANT ALPHA. These are described separately in sec-
tion 4.1.6.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "ARB imaging". Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

78 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

MAP COLOR boolean FALSE TRUE/FALSE

MAP STENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (�1;1)

INDEX OFFSET integer 0 (�1;1)

x SCALE oat 1.0 (�1;1)

DEPTH SCALE oat 1.0 (�1;1)

x BIAS oat 0.0 (�1;1)

DEPTH BIAS oat 0.0 (�1;1)

POST CONVOLUTION x SCALE oat 1.0 (�1;1)

POST CONVOLUTION x BIAS oat 0.0 (�1;1)

POST COLOR MATRIX x SCALE oat 1.0 (�1;1)

POST COLOR MATRIX x BIAS oat 0.0 (�1;1)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

3.6.3 Pixel Transfer Modes

Pixel transfer modes a�ect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time
when one of these commands is executed (which may di�er from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransferfifg(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.

The pixel map lookup tables are set with

void PixelMapfui us fgv(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and values is a pointer to an array of size map values.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 79

Map Name Address Value Init. Size Init. Value

PIXEL MAP I TO I color idx color idx 1 0.0

PIXEL MAP S TO S stencil idx stencil idx 1 0

PIXEL MAP I TO R color idx R 1 0.0

PIXEL MAP I TO G color idx G 1 0.0

PIXEL MAP I TO B color idx B 1 0.0

PIXEL MAP I TO A color idx A 1 0.0

PIXEL MAP R TO R R R 1 0.0

PIXEL MAP G TO G G G 1 0.0

PIXEL MAP B TO B B B 1 0.0

PIXEL MAP A TO A A A 1 0.0

Table 3.3: PixelMap parameters.

The entries of a table may be speci�ed using one of three types: single-
precision oating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is speci�ed. An entry giving a
color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to oating-point. An entry giving a stencil index is converted from
single-precision oating-point to an integer by rounding to nearest. The
various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have size = 2n or the error
INVALID VALUE results. The maximum allowable size of each table is speci�ed
by the implementation dependent value MAX PIXEL MAP TABLE, but must be at
least 32 (a single maximum applies to all tables). The error INVALID VALUE

is generated if a size larger than the implemented maximum, or less than
one, is given to PixelMap.

Color Table Speci�cation

Color lookup tables are speci�ed with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to
de�ne the table. A proxy table name is a special case discussed later in

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

80 CHAPTER 3. RASTERIZATION

Table Name Type

COLOR TABLE regular
POST CONVOLUTION COLOR TABLE

POST COLOR MATRIX COLOR TABLE

PROXY COLOR TABLE proxy
PROXY POST CONVOLUTION COLOR TABLE

PROXY POST COLOR MATRIX COLOR TABLE

Table 3.4: Color table names. Regular tables have associated image data.
Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and data specify an image in memory with
the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The maximum
allowable width of a table is implementation-dependent, but must be at least
32. The formats COLOR INDEX, DEPTH COMPONENT, and STENCIL INDEX and the
type BITMAP are not allowed.

The speci�ed image is taken from memory and processed just as if
DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the
four COLOR TABLE SCALE parameters, biased by the four COLOR TABLE BIAS pa-
rameters, and clamped to [0; 1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is rede�ned to have width entries, each with the
speci�ed internal format. The table is formed with indices 0 through width�
1. Table location i is speci�ed by the ith image pixel, counting from zero.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE TOO LARGE is generated if the speci�ed color
lookup table is too large for the implementation.

The scale and bias parameters for a table are speci�ed by calling

void ColorTableParameterfifgv(enum target,
enum pname, T params);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 81

target must be a regular color table name. pname is one of COLOR TABLE SCALE

or COLOR TABLE BIAS. params points to an array of four values: red, green,
blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be
made each time a color table is speci�ed with the same parameter values.
These allocation rules also apply to proxy color tables, which are described
later in this section.

Alternate Color Table Speci�cation Commands

Color tables may also be speci�ed using image data taken directly from the
framebu�er, and portions of existing tables may be respeci�ed.

The command

void CopyColorTable(enum target, enum internalformat,
int x, int y, sizei width);

de�nes a color table in exactly the manner of ColorTable, except that table
data are taken from the framebu�er, rather than from client memory. target
must be a regular color table name. x, y, and width correspond precisely to
the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image's width and the lower left (x; y) coordinates of the frame-
bu�er region to be copied. The image is taken from the framebu�er exactly
as if these arguments were passed to CopyPixels with argument type set
to COLOR and height set to 1, stopping after the �nal expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR TABLE SCALE. Parameters target, internalfor-
mat and width are speci�ed using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start,
sizei count, enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start,
int x, int y, sizei count);

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the speci�ed color table, nor is any

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

82 CHAPTER 3. RASTERIZATION

change made to table entries outside the speci�ed portion. target must be a
regular color table name.

ColorSubTable arguments format, type, and data match the corre-
sponding arguments to ColorTable, meaning that they are speci�ed using
the same values, and have the same meanings. Likewise, CopyColorSub-
Table arguments x, y, and count match the x, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and
process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to
the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-
Table specify a subregion of the color table starting at index start and
ending at index start+ count� 1. Counting from zero, the nth pixel group
is assigned to the table entry with index count+n. The error INVALID VALUE

is generated if start+ count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For
each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six
integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
oating-point numbers to store the table scale and bias. Each initial array
is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the
bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color
lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-
nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-
orTable is executed with target speci�ed as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy
format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-
sponding regular table name (COLOR TABLE is the regular name corresponding
to PROXY COLOR TABLE, for example), the proxy state values are set exactly as

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 83

though the regular table were being speci�ed. Calling ColorTable with a
proxy target has no e�ect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They can-
not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Speci�cation

A two-dimensional convolution �lter image is speci�ed by calling

void ConvolutionFilter2D(enum target,
enum internalformat, sizei width, sizei height,
enum format, enum type, void *data);

target must be CONVOLUTION 2D. width, height, format, type, and data spec-
ify an image in memory with the same meaning and allowed values as
the corresponding parameters to DrawPixels. The formats COLOR INDEX,
DEPTH COMPONENT, and STENCIL INDEX and the type BITMAP are not allowed.

The speci�ed image is extracted from memory and processed just as
if DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four
two-dimensional CONVOLUTION FILTER SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-
ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The red, green, blue, alpha, luminance, and/or intensity components of
the pixels are stored in oating point, rather than integer format. They form
a two-dimensional image indexed with coordinates i; j such that i increases
from left to right, starting at zero, and j increases from bottom to top, also
starting at zero. Image location i; j is speci�ed by the Nth pixel, counting
from zero, where

N = i+ j � width
The error INVALID VALUE is generated if width or height is greater than

the maximum supported value. These values are queried with GetCon-
volutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX CONVOLUTION WIDTH or MAX CONVOLUTION HEIGHT, respectively.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

84 CHAPTER 3. RASTERIZATION

The scale and bias parameters for a two-dimensional �lter are speci�ed
by calling

void ConvolutionParameterfifgv(enum target,
enum pname, T params);

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution �lter is de�ned using

void ConvolutionFilter1D(enum target,
enum internalformat, sizei width, enum format,
enum type, void *data);

target must be CONVOLUTION 1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional
counterparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if Con-
volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are speci�ed ex-
actly as the two-dimensional parameters, except that ConvolutionParam-
eterfv is called with target CONVOLUTION 1D.

The image is formed with coordinates i such that i increases from left to
right, starting at zero. Image location i is speci�ed by the ith pixel, counting
from zero.

The error INVALID VALUE is generated if width is greater than the
maximum supported value. This value is queried using GetConvo-
lutionParameteriv, setting target to CONVOLUTION 1D and pname to
MAX CONVOLUTION WIDTH.

Special facilities are provided for the de�nition of two-dimensional sep-
arable �lters { �lters whose image can be represented as the product of
two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution �lter is speci�ed with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 85

target must be SEPARABLE 2D. internalformat speci�es the formats of the table
entries of the two one-dimensional images that will be retained. row points
to a width pixel wide image of the speci�ed format and type. column points
to a height pixel high image, also of the speci�ed format and type.

The two images are extracted from memory and processed as if
ConvolutionFilter1D were called separately for each, except that
each image is scaled and biased by the two-dimensional separable
CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS parameters. These
parameters are speci�ed exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target
SEPARABLE 2D.

Alternate Convolution Filter Speci�cation Commands

One and two-dimensional �lters may also be speci�ed using image data taken
directly from the framebu�er.

The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

de�nes a two-dimensional �lter in exactly the manner of ConvolutionFil-
ter2D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 2D. x, y, width, and height
correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image's width and height, and the lower left
(x; y) coordinates of the framebu�er region to be copied. The image is taken
from the framebu�er exactly as if these arguments were passed to CopyP-
ixels with argument type set to COLOR, stopping after the �nal expansion to
RGBA.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, width, and height are speci�ed using the same values,
with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, int y, sizei width);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

86 CHAPTER 3. RASTERIZATION

de�nes a one-dimensional �lter in exactly the manner of ConvolutionFil-
ter1D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 1D. x, y, and width cor-
respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image's width and the lower left (x; y) co-
ordinates of the framebu�er region to be copied. The image is taken from
the framebu�er exactly as if these arguments were passed to CopyPixels
with argument type set to COLOR and height set to 1, stopping after the �nal
expansion to RGBA.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are speci�ed using the same values, with
the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution �lters includes a one-dimensional image
array, two one-dimensional image arrays for the separable �lter, and a two-
dimensional image array. The two-dimensional array has associated with
it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity
components of the table. Each �lter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of
four oating-point numbers to store the �lter scale and bias.

Each initial convolution �lter is null (zero width and height, internal
format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Speci�cation

Setting the matrix mode to COLOR causes the matrix operations described
in section 2.10.2 to apply to the top matrix on the color matrix stack. All
matrix operations have the same e�ect on the color matrix as they do on
the other matrices.

Histogram Table Speci�cation

The histogram table is speci�ed with

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 87

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be speci�ed. target
value PROXY HISTOGRAM is a special case discussed later in this section. width
speci�es the number of entries in the histogram table, and internalformat
speci�es the format of each table entry. The maximum allowable width of the
histogram table is implementation-dependent, but must be at least 32. sink
speci�es whether pixel groups will be consumed by the histogram operation
(TRUE) or passed on to the minmax operation (FALSE).

If no error results from the execution of Histogram, the speci�ed his-
togram table is rede�ned to have width entries, each with the speci�ed inter-
nal format. The entries are indexed 0 through width � 1. Each component
in each entry is set to zero. The values in the previous histogram table, if
any, are lost.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of 2. The error TABLE TOO LARGE is generated if the speci�ed histogram
table is too large for the implementation. The error INVALID ENUM is gener-
ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITY8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation
must be made each time a histogram is speci�ed with the same parameter
values. These allocation rules also apply to the proxy histogram, which is
described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which
is associated a width, an integer describing the internal format of the his-
togram, �ve integer values describing the resolutions of each of the red,
green, blue, alpha, and luminance components of the table, and a ag in-
dicating whether or not pixel groups are consumed by the operation. The
initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the ag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

88 CHAPTER 3. RASTERIZATION

green, blue, alpha, and luminance component resolutions. The proxy table
does not include image data or the ag. When Histogram is executed
with target set to PROXY HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but
the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target
set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being speci�ed. Calling Histogram with target
PROXY HISTOGRAM has no e�ect on the actual histogram table.

There is no image associated with PROXY HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The
error INVALID ENUM results if this is attempted.

Minmax Table Speci�cation

The minmax table is speci�ed with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat speci�es the format of the table en-
tries. sink speci�es whether pixel groups will be consumed by the minmax
operation (TRUE) or passed on to �nal conversion (FALSE).

The error INVALID ENUM is generated if internalformat is not one of the
values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16. The
resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two el-
ements (the �rst element stores the minimum values, the second stores the
maximum values), an integer describing the internal format of the table, and
a ag indicating whether or not pixel groups are consumed by the operation.
The initial state is a minimum table entry set to the maximum representable
value and a maximum table entry set to the minimum representable value.
Internal format is set to RGBA and the initial value of the ag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
�gure 3.7. We describe the stages of this process in the order in which they
occur.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 89

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, or float pixel
data stream (index or component)

color
index

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

90 CHAPTER 3. RASTERIZATION

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, speci�ed by type.
The correspondence between the twenty type token values and the GL data
types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT,
then the error INVALID OPERATION occurs. If type is BITMAP and format is
not COLOR INDEX or STENCIL INDEX then the error INVALID ENUM occurs. Some
additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or oating point values (GL data type float). These elements
are grouped into sets of one, two, three, or four values, depending on the
format, to form a group. Table 3.6 summarizes the format of groups obtained
from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be speci�ed in the language of the client's GL binding. If UNPACK SWAP BYTES

is enabled, however, then the values are interpreted with the bit orderings
modi�ed as per table 3.7. The modi�ed bit orderings are de�ned only if the
GL data type ubyte has eight bits, and then for each speci�c GL data type
only if that type is represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the �rst element of the �rst group
of the �rst row pointed to by the pointer passed to DrawPixels. If the
value of UNPACK ROW LENGTH is not positive, then the number of groups in
a row is width; otherwise the number of groups is UNPACK ROW LENGTH. If p
indicates the location in memory of the �rst element of the �rst row, then
the �rst element of the Nth row is indicated by

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 91

type Parameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNED BYTE ubyte No

BITMAP ubyte Yes

BYTE byte No

UNSIGNED SHORT ushort No

SHORT short No

UNSIGNED INT uint No

INT int No

FLOAT float No

UNSIGNED BYTE 3 3 2 ubyte Yes

UNSIGNED BYTE 2 3 3 REV ubyte Yes

UNSIGNED SHORT 5 6 5 ushort Yes

UNSIGNED SHORT 5 6 5 REV ushort Yes

UNSIGNED SHORT 4 4 4 4 ushort Yes

UNSIGNED SHORT 4 4 4 4 REV ushort Yes

UNSIGNED SHORT 5 5 5 1 ushort Yes

UNSIGNED SHORT 1 5 5 5 REV ushort Yes

UNSIGNED INT 8 8 8 8 uint Yes

UNSIGNED INT 8 8 8 8 REV uint Yes

UNSIGNED INT 10 10 10 2 uint Yes

UNSIGNED INT 2 10 10 10 REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for de�nitions of GL data
types. Special interpretations are described near the end of section 3.6.4.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

92 CHAPTER 3. RASTERIZATION

Format Name Element Meaning and Order Target Bu�er

COLOR INDEX Color Index Color

STENCIL INDEX Stencil Index Stencil

DEPTH COMPONENT Depth Depth

RED R Color

GREEN G Color

BLUE B Color

ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color

BGR B, G, R Color

BGRA B, G, R, A Color

LUMINANCE Luminance Color

LUMINANCE ALPHA Luminance, A Color

Table 3.6: DrawPixels andReadPixels formats. The second column gives
a description of and the number and order of elements in a group. Unless
speci�ed as an index, formats yield components.

Element Size Default Bit Ordering Modi�ed Bit Ordering

8 bit [7::0] [7::0]

16 bit [15::0] [7::0][15::8]

32 bit [31::0] [7::0][15::8][23::16][31::24]

Table 3.7: Bit ordering modi�cation of elements when UNPACK SWAP BYTES is
enabled. These reorderings are de�ned only when GL data type ubyte has
8 bits, and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the
least signi�cant.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 93

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter
names are pre�xed by UNPACK for DrawPixels and by PACK for ReadPix-
els.

p+Nk (3.8)

where N is the row number (counting from zero) and k is de�ned as

k =

(
nl s � a;
a=s dsnl=ae s < a

(3.9)

where n is the number of elements in a group, l is the number of groups
in the row, a is the value of UNPACK ALIGNMENT, and s is the size, in units of
GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK ROW LENGTH, UNPACK SKIP ROWS, and UNPACK SKIP PIXELS. Before
obtaining the �rst group from memory, the pointer supplied to DrawPixels
is e�ectively advanced by (UNPACK SKIP PIXELS)n+ (UNPACK SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by k
elements. height sets of width groups of values are obtained this way. See
�gure 3.8.

Calling DrawPixels with a type of UNSIGNED BYTE 3 3 2,
UNSIGNED BYTE 2 3 3 REV, UNSIGNED SHORT 5 6 5, UNSIGNED SHORT 5 6 5 REV,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

94 CHAPTER 3. RASTERIZATION

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats

UNSIGNED BYTE 3 3 2 ubyte 3 RGB

UNSIGNED BYTE 2 3 3 REV ubyte 3 RGB

UNSIGNED SHORT 5 6 5 ushort 3 RGB

UNSIGNED SHORT 5 6 5 REV ushort 3 RGB

UNSIGNED SHORT 4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNED SHORT 4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNED SHORT 5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNED SHORT 1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNED INT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNED INT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNED SHORT 4 4 4 4, UNSIGNED SHORT 4 4 4 4 REV, UNSIGNED SHORT 5 5 5 1,
UNSIGNED SHORT 1 5 5 5 REV, UNSIGNED INT 8 8 8 8, UNSIGNED INT 8 8 8 8 REV,
UNSIGNED INT 10 10 10 2, or UNSIGNED INT 2 10 10 10 REV is a special case in
which all the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is �xed by the type, and must match the num-
ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel
data using type and format parameters to de�ne the type and format of that
data.

Bit�eld locations of the �rst, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each
bit�eld is interpreted as an unsigned integer value. If the base GL type is
supported with more than the minimum precision (e.g. a 9-bit byte) the
packed components are right-justi�ed in the pixel.

Components are normally packed with the �rst component in the most
signi�cant bits of the bit�eld, and successive component occupying progres-
sively less signi�cant locations. Types whose token names end with REV

reverse the component packing order from least to most signi�cant loca-
tions. In all cases, the most signi�cant bit of each component is packed in

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 95

the most signi�cant bit location of its location in the bit�eld.

UNSIGNED BYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-
ponent.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

96 CHAPTER 3. RASTERIZATION

UNSIGNED SHORT 5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED SHORT 5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED SHORT 4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED SHORT 5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED SHORT formats

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 97

UNSIGNED INT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED INT formats

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

98 CHAPTER 3. RASTERIZATION

Format First Second Third Fourth
Component Component Component Component

RGB red green blue

RGBA red green blue alpha

BGRA blue green red alpha

Table 3.12: Packed pixel �eld assignments

The assignment of component to �elds in the packed pixel is as described
in table 3.12

Byte swapping, if enabled, is performed before the component are ex-
tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if \group" is substituted for \compo-
nent" and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value speci�es 8 1-bit ele-
ments with its 8 least-signi�cant bits. The 8 single-bit elements are ordered
from most signi�cant to least signi�cant if the value of UNPACK LSB FIRST is
FALSE; otherwise, the ordering is from least signi�cant to most signi�cant.
The values of bits other than the 8 least signi�cant in each ubyte are not
signi�cant.

The �rst element of the �rst row is the �rst bit (as de�ned above) of the
ubyte pointed to by the pointer passed to DrawPixels. The �rst element
of the second row is the �rst bit (again as de�ned above) of the ubyte at
location p+ k, where k is computed as

k = a

�
l

8a

�
(3.10)

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the �rst element from mem-
ory, the pointer supplied to DrawPixels is e�ectively advanced by
UNPACK SKIP ROWS � k ubytes. Then UNPACK SKIP PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-
vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 99

Conversion to oating-point

This step applies only to groups of components. It is not performed on in-
dices. Each element in a group is converted to a oating-point value accord-
ing to the appropriate formula in table 2.6 (section 2.13). For packed pixel
types, each element in the group is converted by computing c = (2N � 1),
where c is the unsigned integer value of the bit�eld containing the element
and N is the number of bits in the bit�eld.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the �rst original element into each of the �rst three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-
tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the speci�cation of texture images (either from memory or
from the framebu�er), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed
as described in the following sections.

Final Conversion

For a color index, �nal conversion consists of masking the bits of the index
to the left of the binary point by 2n� 1, where n is the number of bits in an
index bu�er. For RGBA components, each element is clamped to [0; 1]. The

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

100 CHAPTER 3. RASTERIZATION

resulting values are converted to �xed-point according to the rules given in
section 2.13.9 (Final Color Processing).

For a depth component, an element is �rst clamped to [0; 1] and then
converted to �xed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2n � 1, where n is the number of bits in
the stencil bu�er.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy);

Let (xrp; yrp) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored; pixel transfer opera-
tions do not update the histogram or minmax tables, and no fragments are
generated. However, the histogram and minmax tables are updated even if
the corresponding fragments are later rejected by the pixel ownership (sec-
tion 4.1.1) or scissor (section 4.1.2) tests.) If a particular group (index or
components) is the nth in a row and belongs to the mth row, consider the
region in window coordinates bounded by the rectangle with corners

(xrp + zxn; yrp + zym) and (xrp + zx(n+ 1); yrp + zy(m+ 1))

(either zx or zy may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position's associated data. A frag-
ment arising from a depth component takes the component's depth value;
the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, t, and r are re-
placed with s=q, t=q, and r=q, respectively. If q is less than or equal to zero,
the results are unde�ned. Groups arising from DrawPixels with a format
of STENCIL INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL de�nes four kinds of pixel groups:

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 101

1. RGBA component: Each group comprises four color components: red,
green, blue, and alpha.

2. Depth component: Each group comprises a single depth component.

3. Color index: Each group comprises a single color index.

4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of
certain kinds; if an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.
Each component is multiplied by an appropriate signed scale factor:
RED SCALE for an R component, GREEN SCALE for a G component, BLUE SCALE

for a B component, and ALPHA SCALE for an A component, or DEPTH SCALE

for a depth component. Then the result is added to the appropriate signed
bias: RED BIAS, GREEN BIAS, BLUE BIAS, ALPHA BIAS, or DEPTH BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the in-
dex is a oating-point value, it is converted to �xed-point, with an un-
speci�ed number of bits to the right of the binary point and at least
dlog2(MAX PIXEL MAP TABLE)e bits to the left of the binary point. Indices that
are already integers remain so; any fraction bits in the resulting �xed-point
value are zero.

The �xed-point index is then shifted by jINDEX SHIFTj bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-�lled.
Then, the signed integer o�set INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP COLOR is FALSE. First, each component is clamped to the range [0; 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R TO R for R, PIXEL MAP G TO G for G, PIXEL MAP B TO B

for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

102 CHAPTER 3. RASTERIZATION

address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that
invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA
component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL MAP I TO R,
PIXEL MAP I TO G, PIXEL MAP I TO B, and PIXEL MAP I TO A. Each of these ta-
bles must have 2n entries for some integer value of n (n may be di�erent
for each table). For each table, the index is �rst rounded to the nearest
integer; the result is ANDed with 2n� 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,
as appropriate. The group of four elements so obtained replaces the index,
changing the group's type to RGBA component.

If RGBA component groups are not required, and if MAP COLOR is enabled,
then the index is looked up in the PIXEL MAP I TO I table (otherwise, the
index is not looked up). Again, the table must have 2n entries for some
integer n. The index is �rst rounded to the nearest integer; the result is
ANDed with 2n � 1, and the resulting value used as an address into the
table. The value in the table replaces the index. The oating-point table
value is �rst rounded to a �xed-point value with unspeci�ed precision. The
group's type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP STENCIL is enabled,
then the index is looked up in the PIXEL MAP S TO S table (otherwise, the
index is not looked up). The table must have 2n entries for some integer n.
The integer index is ANDed with 2n� 1, and the resulting value used as an
address into the table. The integer value in the table replaces the index.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 103

Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table
values that are assigned to pixel components R, G, B, and A depending on
the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is
only done if COLOR TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced
are converted to indices by clamping to [0; 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is
enabled, the one-dimensional convolution �lter is applied only to the one-
dimensional texture images passed to TexImage1D, TexSubImage1D,
CopyTexImage1D, and CopyTexSubImage1D, and returned by Get-
TexImage (see section 6.1.4) with target TEXTURE 1D. If CONVOLUTION 2D

is enabled, the two-dimensional convolution �lter is applied only to the
two-dimensional images passed to DrawPixels, CopyPixels, ReadPix-
els, TexImage2D, TexSubImage2D, CopyTexImage2D, CopyTex-
SubImage2D, and CopyTexSubImage3D, and returned byGetTexIm-
age with target TEXTURE 2D. If SEPARABLE 2D is enabled, and CONVOLUTION 2D

is disabled, the separable two-dimensional convolution �lter is instead ap-

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

104 CHAPTER 3. RASTERIZATION

Base Filter Format R G B A

ALPHA Rs Gs Bs As �Af

LUMINANCE Rs � Lf Gs � Lf Bs � Lf As

LUMINANCE ALPHA Rs � Lf Gs � Lf Bs � Lf As �Af

INTENSITY Rs � If Gs � If Bs � If As � If
RGB Rs �Rf Gs �Gf Bs � Bf As

RGBA Rs �Rf Gs �Gf Bs � Bf As �Af

Table 3.14: Computation of �ltered color components depending on �lter
image format. C � F indicates the convolution of image component C with
�lter F .

plied these images.

The convolution operation is a sum of products of source image pixels and
convolution �lter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs,
and As. Filter pixels may be stored in one of �ve formats, with 1, 2, 3, or
4 components. These components are denoted as Rf , Gf , Bf , Af , Lf , and
If in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the �lter, individual
color components of each source image pixel are convolved with one �lter
component, or are passed unmodi�ed. The rules for this are de�ned in
table 3.14.

The convolution operation is de�ned di�erently for each of the three
convolution �lters. The variables Wf and Hf refer to the dimensions of the
convolution �lter. The variables Ws and Hs refer to the dimensions of the
source pixel image.

The convolution equations are de�ned as follows, where C refers to the
�ltered result, Cf refers to the one- or two-dimensional convolution �lter,
and Crow and Ccolumn refer to the two one-dimensional �lters comprising
the two-dimensional separable �lter. C 0

s depends on the source image color
Cs and the convolution border mode as described below. Cr, the �ltered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the
Convolution Filter Speci�cation subsection of section 3.6.3.

One-dimensional �lter:

C[i0] =

Wf�1X
n=0

C 0
s[i
0 + n] � Cf [n]

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 105

Two-dimensional �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Cf [n;m]

Two-dimensional separable �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Crow[n] � Ccolumn[m]

If Wf of a one-dimensional �lter is zero, then C[i] is always set to zero.
Likewise, if either Wf or Hf of a two-dimensional �lter is zero, then C[i; j]
is always set to zero.

The convolution border mode for a speci�c convolution �lter is speci�ed
by calling

void ConvolutionParameterfifg(enum target,
enum pname, T param);

where target is the name of the �lter, pname is CONVOLUTION BORDER MODE,
and param is one of REDUCE, CONSTANT BORDER or REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE

are reduced by Wf � 1 and Hf � 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the
image that results from a convolution with border mode REDUCE are zero
through Ws �Wf in width, and zero through Hs �Hf in height. In cases
where errors can result from the speci�cation of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the
source image. (A speci�c example is TexImage1D and TexImage2D,
which specify constraints for image dimensions. Even if TexImage1D or
TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of
the speci�ed image).

When the border mode is REDUCE, C 0
s equals the source image color Cs

and Cr equals the �ltered result C.
For the remaining border modes, de�ne Cw = bWf=2c and Ch = bHf=2c.

The coordinates (Cw; Ch) de�ne the center of the convolution �lter.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

106 CHAPTER 3. RASTERIZATION

Border Mode CONSTANT BORDER

If the convolution border mode is CONSTANT BORDER, the output image has
the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same
color as the current convolution border color. Whenever the convolution �l-
ter extends beyond one of the edges of the source image, the constant-color
border pixels are used as input to the �lter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-
eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.
Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. Floating
point color components are not clamped when they are speci�ed.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] =

(
Cs[i

0]; 0 � i0 < Ws

Cc; otherwise

and Cc is the convolution border color.

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] =

(
Cs[i

0; j0]; 0 � i0 < Ws; 0 � j0 < Hs

Cc; otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of
this mode is identical to that of the CONSTANT BORDER mode except for the
treatment of pixel locations where the convolution �lter extends beyond the
edge of the source image. For these locations, it is as if the outermost one-
pixel border of the source image was replicated. Conceptually, each pixel in

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 107

the leftmost one-pixel column of the source image is replicated Cw times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated Cw times to provide additional image data
along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create Ch rows of image data along the top and bottom
edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] = Cs[clamp(i

0;Ws)]

and the clamping function clamp(val;max) is de�ned as

clamp(val;max) =

8><
>:

0; val < 0
val; 0 � val < max
max� 1; val >= max

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] = Cs[clamp(i

0;Ws); clamp(j
0;Hs)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST CONVOLUTION RED SCALE

for an R component, POST CONVOLUTION GREEN SCALE for a G com-
ponent, POST CONVOLUTION BLUE SCALE for a B component, and
POST CONVOLUTION ALPHA SCALE for an A component. The result
is added to the corresponding bias: POST CONVOLUTION RED BIAS,
POST CONVOLUTION GREEN BIAS, POST CONVOLUTION BLUE BIAS, or
POST CONVOLUTION ALPHA BIAS.

The required state is three bits indicating whether each of one-
dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border
mode, and four oating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode
is REDUCE, and the border color is (0; 0; 0; 0).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

108 CHAPTER 3. RASTERIZATION

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST CONVOLUTION COLOR TABLE. The post convo-
lution table is de�ned by calling ColorTable with a target argument of
POST CONVOLUTION COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned earlier in section 3.6.5.

The required state is one bit indicating whether post convolution table
lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST COLOR MATRIX RED SCALE

for an R component, POST COLOR MATRIX GREEN SCALE for a G com-
ponent, POST COLOR MATRIX BLUE SCALE for a B component, and
POST COLOR MATRIX ALPHA SCALE for an A component. The result is added to
a signed bias: POST COLOR MATRIX RED BIAS, POST COLOR MATRIX GREEN BIAS,
POST COLOR MATRIX BLUE BIAS, or POST COLOR MATRIX ALPHA BIAS. The result-
ing components replace each component of the original group.

That is, if Mc is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then
the components

0
BB@
R
G
B
A

1
CCA

are transformed to

0
BB@
R0

G0

B0

A0

1
CCA =

0
BB@
Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

1
CCAMc

0
BB@
R
G
B
A

1
CCA+

0
BB@
Rb

Gb

Bb

Ab

1
CCA :

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 109

with the symbolic constant POST COLOR MATRIX COLOR TABLE. The post color
matrix table is de�ned by calling ColorTable with a target argument of
POST COLOR MATRIX COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup
is enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai

are derived from the red, green, blue, and alpha components of each pixel
group (without modifying these components) by clamping each component
to [0; 1] , multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes
red or luminance, the red or luminance component of histogram entry Ri

is incremented by one. If the format of the HISTOGRAM table includes green,
the green component of histogram entry Gi is incremented by one. The blue
and alpha components of histogram entries Bi and Ai are incremented in
the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes unde�ned; this is not an error.

If the Histogram sink parameter is FALSE, histogram operation has no
e�ect on the stream of pixel groups being processed. Otherwise, all RGBA
pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture
memory contents, and no pixel values are returned. However, texture object
state is modi�ed whether or not pixel groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant MINMAX.

If the format of the minmax table includes red or luminance, the red
component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format
includes red or luminance and the red component of the group is greater

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

110 CHAPTER 3. RASTERIZATION

than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-
mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-
spectively. The blue and alpha group components are similarly tested and
replaced, if the table format includes blue and/or alpha. The internal type
of the minimum and maximum component values is oating point, with at
least the same representable range as a oating point number used to repre-
sent colors (section 2.1.1). There are no semantics de�ned for the treatment
of group component values that are outside the representable range.

If theMinmax sink parameter is FALSE, minmax operation has no e�ect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.
No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned. However, texture object state is
modi�ed whether or not pixel groups are discarded.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of
fragments to be produced. Each of these fragments has the same associated
data. These data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (xbo; ybo) gives the oating-point x and y values of the bitmap's
origin. (xbi; ybi) gives the oating-point x and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according
to the procedure given in section 3.6.4 for DrawPixels; it is as if the width
and height passed to that command were equal to w and h, respectively, the
type were BITMAP, and the format were COLOR INDEX. The unpacked values
(before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones. See �gure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 111

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333
333
333

333
333
333

333
333
333333
333
333

333
333
333333

333
333

333
333
333333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333 333

333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not
shown.

Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(xll; yll) = (bxrp � xboc; byrp � yboc)
and upper right corner at (xll+w; yll+h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if
the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster
position, with texture coordinates s, t, and r replaced with s=q, t=q, and r=q,
respectively. If q is less than or equal to zero, the results are unde�ned. Once
the fragments have been produced, the current raster position is updated:

(xrp; yrp) (xrp + xbi; yrp + ybi):

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a speci�ed image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

112 CHAPTER 3. RASTERIZATION

an image at the location indicated by a fragment's (s; t; r) coordinates to
modify the fragment's primary RGBA color. Texturing does not a�ect the
secondary color.

Texturing is speci�ed only for RGBA mode; its use in color index mode
is unde�ned.

The GL provides a means to specify the details of how texturing of a
primitive is e�ected. These details include speci�cation of the image to be
texture mapped, the means by which the image is �ltered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Speci�cation

The command

void TexImage3D(enum target, int level,
int internalformat, sizei width, sizei height,
sizei depth, int border, enum format, enum type,
void *data);

is used to specify a three-dimensional texture image. target must be either
TEXTURE 3D, or PROXY TEXTURE 3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. The formats
STENCIL INDEX and DEPTH COMPONENT are not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are speci�ed by the width and height parameters to TexIm-
age3D. The values of UNPACK ROW LENGTH and UNPACK ALIGNMENT control the
row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK IMAGE HEIGHT is not positive, then
the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK IMAGE HEIGHT. Each two-dimensional image com-
prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image
relies on the integer parameter UNPACK SKIP IMAGES. If UNPACK SKIP IMAGES is
positive, the pointer is advanced by UNPACK SKIP IMAGES times the number of
elements in one two-dimensional image before obtaining the �rst group from

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 113

memory. Then depth two-dimensional images are processed, each having a
subimage extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping
just before �nal conversion. Each R, G, B, and A value so generated is
clamped to [0; 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format speci�ed by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format
of the texture image. internalformat may be speci�ed as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. internalformat may
(for backwards compatibility with the 1.0 version of the GL) also take on
the integer values 1, 2, 3, and 4, which are equivalent to symbolic constants
LUMINANCE, LUMINANCE ALPHA, RGB, and RGBA respectively. Specifying a value
for internalformat that is not one of the above values generates the error
INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is speci�ed as a base in-
ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is speci�ed, the
mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format's components, as
speci�ed in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The de�nition of closely is left up to the implementation. Im-
plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-
age1D (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.
Allocations must be invariant; the same allocation must be made each time a
texture image is speci�ed with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.7.

The image itself (pointed to by data) is a sequence of groups of values.
The �rst group is the lower left back corner of the texture image. Subse-
quent groups �ll out rows of width width from left to right; height rows are
stacked from bottom to top forming a single two-dimensional image slice;
and depth slices are stacked from back to front. When the �nal R, G, B,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

114 CHAPTER 3. RASTERIZATION

Base Internal Format RGBA Values Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE ALPHA R,A L,A

INTENSITY R I

RGB R,G,B R,G,B

RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or �lter components. See section 3.8.9 for a description of the texture
components R, G, B, A, L, and I.

and A components have been computed for a group, they are assigned to
components of a texel as described by table 3.15. Counting from zero, each
resulting Nth texel is assigned internal integer coordinates (i; j; k), where

i = (N mod width)� bs

j = (b N

width
c mod height) � bs

k = (b N

width � height
c mod depth) � bs

and bs is the speci�ed border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a �xed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the �xed-point repre-
sentation used represents each value k=(2n�1), where k 2 f0; 1; : : : ; 2n�1g,
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, underMipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero is
speci�ed, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signi�-
cance of borders is described below. The border width a�ects the required
dimensions of the texture image: it must be the case that

ws = 2n + 2bs (3.11)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 115

Sized Base R G B A L I
Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4

ALPHA8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16

LUMINANCE4 LUMINANCE 4

LUMINANCE8 LUMINANCE 8

LUMINANCE12 LUMINANCE 12

LUMINANCE16 LUMINANCE 16

LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4

LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6

LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8

LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12

LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12

LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16

INTENSITY4 INTENSITY 4

INTENSITY8 INTENSITY 8

INTENSITY12 INTENSITY 12

INTENSITY16 INTENSITY 16

R3 G3 B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGB8 RGB 8 8 8

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5 A1 RGBA 5 5 5 1

RGBA8 RGBA 8 8 8 8

RGB10 A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

116 CHAPTER 3. RASTERIZATION

hs = 2m + 2bs (3.12)

ds = 2l + 2bs (3.13)

for some integers n, m, and l, where ws, hs, and ds are the speci�ed image
width, height, and depth. If any one of these relationships cannot be satis�ed,
then the error INVALID VALUE is generated.

Currently, the maximum border width bt is 1. If bs is less than zero, or
greater than bt, then the error INVALID VALUE is generated.

The maximum allowable width, height, or depth of a three-dimensional
texture image is an implementation dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k�lod+
2bt for image arrays of level-of-detail 0 through k, where k is the log base
2 of MAX 3D TEXTURE SIZE, lod is the level-of-detail of the image array, and
bt is the maximum border width. It may be zero for image arrays of any
level-of-detail greater than k. The error INVALID VALUE is generated if the
speci�ed image is too large to be stored under any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least 2k�lod+2bt for image arrays of
level 0 through k, where k is the log base 2 of MAX TEXTURE SIZE.

Furthermore, an implementation may allow a one-, two-, or three-
dimensional image array of level 1 or greater to be created only if a complete1

set of image arrays consistent with the requested array can be supported.
Likewise, an implementation may allow an image array of level 0 to be cre-
ated only if that single image array can be supported.

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE 2D, or PROXY TEXTURE 2D in the special case discussed in sec-
tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D.

1For this purpose the de�nition of \complete", as provided underMipmapping, is aug-
mented as follows: 1) it is as though TEXTURE BASE LEVEL is 0 and TEXTURE MAX LEVEL

is 1000. 2) Excluding borders, the dimensions of the next lower numbered array are all
understood to be twice the corresponding dimensions of the speci�ed array.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 117

For the purposes of decoding the texture image, TexImage2D is equiv-
alent to calling TexImage3D with corresponding arguments and depth of
1, except that

� The depth of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

� UNPACK SKIP IMAGES is ignored.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

is used to specify a one-dimensional texture image. target must be ei-
ther TEXTURE 1D, or PROXY TEXTURE 1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImage1D is equiv-
alent to calling TexImage2D with corresponding arguments and height of
1, except that

� The height of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION 1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D
only), or depth (TexImage3D only) indicates the null texture. If the null
texture is speci�ed for the level-of-detail speci�ed by TEXTURE BASE LEVEL, it
is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL's internal memory. This copying e�ectively places the
decoded image inside a border of the maximum allowable width bt whether
or not a border has been speci�ed (see �gure 3.10) 2. If no border or a
border smaller than the maximum allowable width has been speci�ed, then
the image is still stored as if it were surrounded by a border of the maximum
possible width. Any excess border (which surrounds the speci�ed image,

2Figure 3.10 needs to show a three-dimensional texture image.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

118 CHAPTER 3. RASTERIZATION

including any border) is assigned unspeci�ed values. A two-dimensional
texture has a border only at its left, right, top, and bottom ends, and a
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A three-dimensional texture array has width, height, and
depth

wt = 2n + 2bt

ht = 2m + 2bt

dt = 2l + 2bt

where bt is the maximum allowable border width and n, m, and l are de�ned
in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
dt = 1, with height ht and width wt as above, and a one-dimensional texture
array has depth dt = 1, height ht = 1, and width wt as above.

An element (i; j; k) of the texture array is called a texel (for a two-
dimensional texture, k is irrelevant; for a one-dimensional texture, j and
k are both irrelevant). The texture value used in texturing a fragment is
determined by that fragment's associated (s; t; r) coordinates, but may not
correspond to any actual texel. See �gure 3.10.

If the data argument of TexImage1D, TexImage2D, or TexImage3D
is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the speci�ed target,
level, internalformat, width, height, and depth, but with unspeci�ed image
contents. In this case no pixel values are accessed in client memory, and
no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Speci�cation Commands

Two-dimensional and one-dimensional texture images may also be speci-
�ed using image data taken directly from the framebu�er, and rectangular
subregions of existing texture images may be respeci�ed.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 119

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. � and �, values used in blending
adjacent texels to obtain a texture value, are also shown.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

120 CHAPTER 3. RASTERIZATION

de�nes a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebu�er rather
than from client memory. Currently, target must be TEXTURE 2D. x, y, width,
and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image's width and height,
and the lower left (x; y) coordinates of the framebu�er region to be copied.
The image is taken from the framebu�er exactly as if these arguments were
passed to CopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that
described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,
and border are speci�ed using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be speci�ed as 1, 2, 3, or 4. An invalid value speci�ed for internalfor-
mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

de�nes a one-dimensional texture array in exactly the manner of TexIm-
age1D, except that the image data are taken from the framebu�er, rather
than from client memory. Currently, target must be TEXTURE 1D. For the
purposes of decoding the texture image, CopyTexImage1D is equivalent
to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value
of border. level, internalformat, and border are speci�ed using the same val-
ues, with the same meanings, as the equivalent arguments of TexImage1D,
except that internalformat may not be speci�ed as 1, 2, 3, or 4. The con-
straints on width and border are exactly those of the equivalent arguments
of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xo�set,
int yo�set, int zo�set, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSubImage2D(enum target, int level, int xo�set,
int yo�set, sizei width, sizei height, enum format,
enum type, void *data);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 121

void TexSubImage1D(enum target, int level, int xo�set,
sizei width, enum format, enum type, void *data);

void CopyTexSubImage3D(enum target, int level,
int xo�set, int yo�set, int zo�set, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xo�set, int yo�set, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xo�set, int x, int y, sizei width);

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-
rameters of the speci�ed texture array, nor is any change made to texel
values outside the speci�ed subregion. Currently the target arguments of
TexSubImage1D and CopyTexSubImage1D must be TEXTURE 1D, the
target arguments of TexSubImage2D and CopyTexSubImage2D must
be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE 3D. The level parameter of each com-
mand speci�es the level of the texture array that is modi�ed. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that
they are speci�ed using the same values, and have the same meanings. Like-
wise, TexSubImage2D arguments width, height, format, type, and data
match the corresponding arguments to TexImage2D, and TexSubIm-
age1D arguments width, format, type, and data match the corresponding
arguments to TexImage1D.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y,
width, and height match the corresponding arguments to CopyTexIm-
age2D3. CopyTexSubImage1D arguments x, y, and width match the cor-
responding arguments to CopyTexImage1D. Each of the TexSubImage
commands interprets and processes pixel groups in exactly the manner of its
TexImage counterpart, except that the assignment of R, G, B, and A pixel
group values to the texture components is controlled by the internalformat
of the texture array, not by an argument to the command.

3Because the framebu�er is inherently two-dimensional, there is no CopyTexIm-

age3D command.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

122 CHAPTER 3. RASTERIZATION

Arguments xo�set, yo�set, and zo�set of TexSubImage3D and Copy-
TexSubImage3D specify the lower left texel coordinates of a width-wide by
height-high by depth-deep rectangular subregion of the texture array. The
depth argument associated with CopyTexSubImage3D is always 1, be-
cause framebu�er memory is two-dimensional - only a portion of a single s; t
slice of a three-dimensional texture is replaced by CopyTexSubImage3D.

Negative values of xo�set, yo�set, and zo�set correspond to the coor-
dinates of border texels, addressed as in �gure 3.10. Taking ws, hs, ds,
and bs to be the speci�ed width, height, depth, and border width of the
texture array, (not the actual array dimensions wt, ht, dt, and bt), and tak-
ing x, y, z, w, h, and d to be the xo�set, yo�set, zo�set, width, height, and
depth argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

z < �bs
z + d > ds � bs

(Recall that ds, ws, and hs include twice the speci�ed border width bs.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i; j; k], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width � height c mod d

Arguments xo�set and yo�set of TexSubImage2D and CopyTex-
SubImage2D specify the lower left texel coordinates of a width-wide by
height-high rectangular subregion of the texture array. Negative values of
xo�set and yo�set correspond to the coordinates of border texels, addressed
as in �gure 3.10. Taking ws, hs, and bs to be the speci�ed width, height,
and border width of the texture array, (not the actual array dimensions wt,
ht, and bt), and taking x, y, w, and h to be the xo�set, yo�set, width, and

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 123

height argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

(Recall that ws and hs include twice the speci�ed border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i; j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

The xo�set argument of TexSubImage1D and CopyTexSubIm-
age1D speci�es the left texel coordinate of a width-wide subregion of the
texture array. Negative values of xo�set correspond to the coordinates of
border texels. Taking ws and bs to be the speci�ed width and border width
of the texture array, and x and w to be the xo�set and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

x < �bs
x+ w > ws � bs

Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i], where

i = x+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied
to a fragment. Each parameter is set by calling

void TexParameterfifg(enum target, enum pname,
T param);

void TexParameterfifgv(enum target, enum pname,
T params);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

124 CHAPTER 3. RASTERIZATION

Name Type Legal Values

TEXTURE WRAP S integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP T integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP R integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE MIN FILTER integer NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,
LINEAR

TEXTURE BORDER COLOR 4 oats any 4 values in [0; 1]

TEXTURE PRIORITY oat any value in [0; 1]

TEXTURE MIN LOD oat any value

TEXTURE MAX LOD oat any value

TEXTURE BASE LEVEL integer any non-negative integer

TEXTURE MAX LEVEL integer any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. pname is
a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the
�rst form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-
rameters whose type depends on the parameter being set. If the values for
TEXTURE BORDER COLOR are speci�ed as integers, the conversion for signed in-
tegers from table 2.6 is applied to convert the values to oating-point. Each
of the four values set by TEXTURE BORDER COLOR is clamped to lie in [0; 1].

3.8.4 Texture Wrap Modes

If TEXTURE WRAP S, TEXTURE WRAP T, or TEXTURE WRAP R is set to REPEAT, then
the GL ignores the integer part of s, t, or r coordinates, respectively, using
only the fractional part. (For a number f , the fractional part is f � bfc,
regardless of the sign of f ; recall that the oor function truncates towards
�1.) CLAMP causes s, t, or r coordinates to be clamped to the range [0; 1].

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 125

The initial state is for all of s, t, and r behavior to be that given by REPEAT.

CLAMP TO EDGE clamps texture coordinates at all mipmap levels such that
the texture �lter never samples a border texel. The color returned when
clamping is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min;max]. The mini-
mum value is de�ned as

min =
1

2N

where N is the size of the one-, two-, or three-dimensional texture image in
the direction of clamping. The maximum value is de�ned as

max = 1�min

so that clamping is always symmetric about the [0; 1] mapped range of a
texture coordinate.

3.8.5 Texture Mini�cation

Applying a texture to a primitive implies a mapping from texture image
space to framebu�er image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebu�er space, then a �ltering, followed �-
nally by a resampling of the �ltered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple �ltering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebu�er space is deemed to
magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor �(x; y) and the level of detail pa-
rameter �(x; y), de�ned as

�0(x; y) = log2[�(x; y)]

� =

8>>><
>>>:

TEXTURE MAX LOD; �0 > TEXTURE MAX LOD

�0; TEXTURE MIN LOD � �0 � TEXTURE MAX LOD

TEXTURE MIN LOD; �0 < TEXTURE MIN LOD

undefined; TEXTURE MIN LOD > TEXTURE MAX LOD

(3.14)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

126 CHAPTER 3. RASTERIZATION

If �(x; y) is less than or equal to the constant c (described below in
section 3.8.6) the texture is said to be magni�ed; if it is greater, the texture
is mini�ed.

The initial values of TEXTURE MIN LOD and TEXTURE MAX LOD are chosen so
as to never clamp the normal range of �. They may be respeci�ed for a
speci�c texture by calling TexParameter[if].

Let s(x; y) be the function that associates an s texture coordinate with
each set of window coordinates (x; y) that lie within a primitive; de�ne
t(x; y) and r(x; y) analogously. Let u(x; y) = 2ns(x; y), v(x; y) = 2mt(x; y),
and w(x; y) = 2lr(x; y), where n, m, and l are as de�ned by equations 3.11,
3.12, and 3.13 with ws, hs, and ds equal to the width, height, and depth
of the image array whose level is TEXTURE BASE LEVEL. For a one-dimensional
texture, de�ne v(x; y) � 0 and w(x; y) � 0; for a two-dimensional texture,
de�ne w(x; y) � 0. For a polygon, � is given at a fragment with window
coordinates (x; y) by

� = max

8<
:
s�

@u

@x

�2
+

�
@v

@x

�2
+

�
@w

@x

�2
;

s�
@u

@y

�2
+

�
@v

@y

�2
+

�
@w

@y

�29=
;

(3.15)
where @u=@x indicates the derivative of u with respect to window x, and
similarly for the other derivatives.

For a line, the formula is

� =

s�
@u

@x
�x+

@u

@y
�y

�2
+

�
@v

@x
�x+

@v

@y
�y

�2
+

�
@w

@x
�x+

@w

@y
�y

�2�
l;

(3.16)
where �x = x2 � x1 and �y = y2 � y1 with (x1; y1) and (x2; y2) being the
segment's window coordinate endpoints and l =

p
�x2 +�y2. For a point,

pixel rectangle, or bitmap, � � 1.
While it is generally agreed that equations 3.15 and 3.16 give the best

results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal � with a function f(x; y)
subject to these conditions:

1. f(x; y) is continuous and monotonically increasing in each of j@u=@xj,
j@u=@yj, j@v=@xj, j@v=@yj, j@w=@xj, and j@w=@yj

2. Let

mu = max

�����@u@x
���� ;
����@u@y

����
�

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 127

mv = max

�����@v@x
���� ;
����@v@y

����
�

mw = max

�����@w@x
���� ;
����@w@y

����
�
:

Then maxfmu;mv;mwg � f(x; y) � mu +mv +mw.

When � indicates mini�cation, the value assigned to TEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected.
When TEXTURE MIN FILTER is NEAREST, the texel in the image array of level
TEXTURE BASE LEVEL that is nearest (in Manhattan distance) to that speci�ed
by (s; t; r) is obtained. This means the texel at location (i; j; k) becomes the
texture value, with i given by

i =

(
buc; s < 1
2n � 1; s = 1

(3.17)

(Recall that if TEXTURE WRAP S is REPEAT, then 0 � s < 1.) Similarly, j is
found as

j =

(
bvc; t < 1
2m � 1; t = 1

(3.18)

and k is found as

k =

(
bwc; r < 1
2l � 1; r = 1

(3.19)

For a one-dimensional texture, j and k are irrelevant; the texel at location
i becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (i; j) becomes the texture value.

When TEXTURE MIN FILTER is LINEAR, a 2 � 2 � 2 cube of texels in the
image array of level TEXTURE BASE LEVEL is selected. This cube is obtained by
�rst clamping texture coordinates as described above under Texture Wrap
Modes (if the wrap mode for a coordinate is CLAMP or CLAMP TO EDGE) and
computing

i0 =

(
bu� 1=2c mod 2n; TEXTURE WRAP S is REPEAT
bu� 1=2c; otherwise

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

128 CHAPTER 3. RASTERIZATION

j0 =

(
bv � 1=2c mod 2m; TEXTURE WRAP T is REPEAT
bv � 1=2c; otherwise

and

k0 =

(
bw � 1=2c mod 2l; TEXTURE WRAP R is REPEAT
bw � 1=2c; otherwise

Then

i1 =

(
(i0 + 1) mod 2n; TEXTURE WRAP S is REPEAT
i0 + 1; otherwise

j1 =

(
(j0 + 1) mod 2m; TEXTURE WRAP T is REPEAT
j0 + 1; otherwise

and

k1 =

(
(k0 + 1) mod 2l; TEXTURE WRAP R is REPEAT
k0 + 1; otherwise

Let

� = frac(u� 1=2)

� = frac(v � 1=2)

 = frac(w � 1=2)

where frac(x) denotes the fractional part of x.

For a three-dimensional texture, the texture value � is found as

� = (1� �)(1 � �)(1 �)�i0j0k0 + �(1 � �)(1�)�i1j0k0
+ (1� �)�(1 �)�i0j1k0 + ��(1 �)�i1j1k0

+ (1� �)(1 � �)�i0j0k1 + �(1� �)�i1j0k1

+ (1� �)��i0j1k1 + ���i1j1k1

where �ijk is the texel at location (i; j; k) in the three-dimensional texture
image.

For a two-dimensional texture,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 129

� = (1� �)(1� �)�i0j0 + �(1� �)�i1j0 + (1� �)��i0j1 + ���i1j1 (3.20)

where �ij is the texel at location (i; j) in the two-dimensional texture image.
And for a one-dimensional texture,

� = (1� �)�i0 + ��i1

where �i is the texel at location i in the one-dimensional texture.
If any of the selected �ijk, �ij , or �i in the above equations refer to a

border texel with i < �bs, j < �bs, k < �bs, i � ws � bs, j � hs � bs,
or j � ds � bs, then the border color given by the current setting of
TEXTURE BORDER COLOR is used instead of the unspeci�ed value or values. The
RGBA values of the TEXTURE BORDER COLOR are interpreted to match the tex-
ture's internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a
mipmap. A mipmap is an ordered set of arrays representing the same image;
each array has a resolution lower than the previous one. If the image array of
level TEXTURE BASE LEVEL, excluding its border, has dimensions 2n� 2m� 2l,
then there are maxfn;m; lg + 1 image arrays in the mipmap. Each array
subsequent to the array of level TEXTURE BASE LEVEL has dimensions

�(i� 1)� �(j � 1)� �(k � 1)

where the dimensions of the previous array are

�(i) � �(j) � �(k)

and

�(x) =

(
2x x > 0
1 x � 0

until the last array is reached with dimension 1� 1� 1.
Each array in a mipmap is de�ned using TexImage3D, TexImage2D,

CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

130 CHAPTER 3. RASTERIZATION

through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase
indicating an array of half the dimensions of the previous one as already
described. If texturing is enabled (and TEXTURE MIN FILTER is one that re-
quires a mipmap) at the time a primitive is rasterized and if the set of
arrays TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incom-
plete, then it is as if texture mapping were disabled. The set of arrays
TEXTURE BASE LEVEL through q is incomplete if the internal formats of all
the mipmap arrays were not speci�ed with the same symbolic constant, if
the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL may be re-
speci�ed for a speci�c texture by calling TexParameter[if]. The error
INVALID VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approxi-
mate the application of an appropriately �ltered texture to a fragment. Let
c be the value of � at which the transition from mini�cation to magni�cation
occurs (since this discussion pertains to mini�cation, we are concerned only
with values of � where � > c). In the following equations, let

b = TEXTURE BASE LEVEL

For mipmap �lters NEAREST MIPMAP NEAREST and LINEAR MIPMAP NEAREST,
the dth mipmap array is selected, where

d =

8><
>:

b; � � 1
2

db+ �+ 1
2e � 1; � > 1

2 ; b+ � � q + 1
2

q; � > 1
2 ; b+ � > q + 1

2

(3.21)

The rules for NEAREST or LINEAR �ltering are then applied to the selected
array.

For mipmap �lters NEAREST MIPMAP LINEAR and LINEAR MIPMAP LINEAR, the
level d1 and d2 mipmap arrays are selected, where

d1 =

(
q; b+ � � q
bb+ �c; otherwise

(3.22)

d2 =

(
q; b+ � � q
d1 + 1; otherwise

(3.23)

The rules for NEAREST or LINEAR �ltering are then applied to each of the
selected arrays, yielding two corresponding texture values �1 and �2. The
�nal texture value is then found as

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 131

� = [1� frac(�)]�1 + frac(�)�2:

3.8.6 Texture Magni�cation

When � indicates magni�cation, the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained. There are two possible val-
ues for TEXTURE MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is
used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magni�cation.

Finally, there is the choice of c, the mini�cation vs. magni�cation switch-
over point. If the magni�cation �lter is given by LINEAR and the mini�cation
�lter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then c =
0:5. This is done to ensure that a mini�ed texture does not appear \sharper"
than a magni�ed texture. Otherwise c = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)
and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border
width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the image. Each initial texture
array is null (zero width, height, and depth, zero border width, internal
format 1, with zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected mini�cation and magni�-
cation �lters, the wrap modes for s, t (two- and three-dimensional only),
and r (three-dimensional only), the TEXTURE BORDER COLOR, two integers de-
scribing the minimum and maximum level of detail, two integers describing
the base and maximum mipmap array, a boolean ag indicating whether
the texture is resident and the priority associated with each set of prop-
erties. The value of the resident ag is determined by the GL and may
change as a result of other GL operations. The ag may only be queried,
not set, by applications. See section 3.8.8). In the initial state, the value
assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the value for
TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes are all set to REPEAT.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

132 CHAPTER 3. RASTERIZATION

The values of TEXTURE MIN LOD and TEXTURE MAX LOD are -1000 and 1000 re-
spectively. The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL are 0
and 1000 respectively. TEXTURE PRIORITY is 1.0, and TEXTURE BORDER COLOR is
(0,0,0,0). The initial value of TEXTURE RESIDENT is determined by the GL.

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one-, two-, and three-dimensional sets of proxy
image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),
border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.
When TexImage3D is executed with target speci�ed as PROXY TEXTURE 3D,
the three-dimensional proxy state values of the speci�ed level-of-detail are
recomputed and updated. If the image array would not be supported by
TexImage3D called with target set to TEXTURE 3D, no error is generated,
but the proxy width, height, depth, border width, and component resolu-
tions are set to zero. If the image array would be supported by such a call to
TexImage3D, the proxy state values are set exactly as though the actual
image array were being speci�ed. No pixel data are transferred or processed
in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImage1D is executed with target speci�ed as PROXY TEXTURE 1D,
or TexImage2D is executed with target speci�ed as PROXY TEXTURE 2D.

There is no image associated with any of the proxy textures. Therefore
PROXY TEXTURE 1D, PROXY TEXTURE 2D, and PROXY TEXTURE 3D cannot be used
as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there
is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy
texture target. The error INVALID ENUM is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D

named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,
with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D. The binding is e�ected by calling

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 133

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused
name. The resulting texture object is a new state vector, comprising all
the state values listed in section 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D

respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to
either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. The error INVALID OPERATION

is generated if an attempt is made to bind a texture object of di�erent
dimensionality than the speci�ed target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which
it is bound a�ect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the
dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D have one-,
two-, and three-dimensional texture state vectors associated with them. In
order that access to these initial textures not be lost, they are treated as
texture objects all of whose names are 0. The initial one-, two-, or three-
dimensional texture is therefore operated upon, queried, and applied as
TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture
object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in textures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

134 CHAPTER 3. RASTERIZATION

returns n previously unused texture object names in textures. These names
are marked as used, for the purposes ofGenTextures only, but they acquire
texture state and a dimensionality only when they are �rst bound, just as
if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.
A texture object that is currently part of the working set is said to be
resident. The command

boolean AreTexturesResident(sizei n, uint *textures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident,
or if the implementation does not distinguish a working set. If at least one
of the texture objects named in textures is not resident, then FALSE is re-
turned, and the residence of each texture object is returned in residences.
Otherwise the contents of residences are not changed. If any of the names in
textures are unused or are zero, FALSE is returned, the error INVALID VALUE is
generated, and the contents of residences are indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-
TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on �rst use, for
example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture
object. The command

void PrioritizeTextures(sizei n, uint *textures,
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is
assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be
changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture
object is bound, pname set to TEXTURE PRIORITY, and param or params

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 135

specifying the new priority value (which is clamped to the range [0,1] before
being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

3.8.9 Texture Environments and Texture Functions

The command

void TexEnvfifg(enum target, enum pname, T param);
void TexEnvfifgv(enum target, enum pname, T params);

sets parameters of the texture environment that speci�es how texture values
are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the
parameter to be set. In the �rst form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a
pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE ENV MODE and TEXTURE ENV COLOR.
TEXTURE ENV MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND;
TEXTURE ENV COLOR is set to an RGBA color by providing four single-precision
oating-point values in the range [0; 1] (values outside this range are clamped
to it). If integers are provided for TEXTURE ENV COLOR, then they are converted
to oating-point as speci�ed in table 2.6 for signed integers.

The value of TEXTURE ENV MODE speci�es a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the
texture arrays that were last speci�ed. In the following two tables, Rf , Gf ,
Bf , and Af are the primary color components of the incoming fragment;
Rt, Gt, Bt, At, Lt, and It are the �ltered texture values; Rc, Gc, Bc, and Ac

are the texture environment color values; and Rv, Gv, Bv, and Av are the
primary color components computed by the texture function. All of these
color values are in the range [0; 1]. The REPLACE and MODULATE texture func-
tions are speci�ed in table 3.18, and the DECAL and BLEND texture functions
are speci�ed in table 3.19.

The state required for the current texture environment consists of the
four-valued integer indicating the texture function and four oating-point
TEXTURE ENV COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE ENV COLOR is (0; 0; 0; 0).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

136 CHAPTER 3. RASTERIZATION

Base REPLACE MODULATE

Internal Format Texture Function Texture Function

ALPHA Rv = Rf Rv = Rf

Gv = Gf Gv = Gf

Bv = Bf Bv = Bf

Av = At Av = AfAt

LUMINANCE Rv = Lt Rv = RfLt

(or 1) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = Af Av = Af

LUMINANCE ALPHA Rv = Lt Rv = RfLt

(or 2) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = At Av = AfAt

INTENSITY Rv = It Rv = RfIt
Gv = It Gv = GfIt
Bv = It Bv = BfIt
Av = It Av = AfIt

RGB Rv = Rt Rv = RfRt

(or 3) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = Af Av = Af

RGBA Rv = Rt Rv = RfRt

(or 4) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = At Av = AfAt

Table 3.18: Replace and modulate texture functions.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 137

Base DECAL BLEND

Internal Format Texture Function Texture Function

ALPHA unde�ned Rv = Rf

Gv = Gf

Bv = Bf

Av = AfAt

LUMINANCE unde�ned Rv = Rf (1� Lt) +RcLt

(or 1) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = Af

LUMINANCE ALPHA unde�ned Rv = Rf (1� Lt) +RcLt

(or 2) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = AfAt

INTENSITY unde�ned Rv = Rf (1� It) +RcIt
Gv = Gf (1� It) +GcIt
Bv = Bf (1� It) +BcIt
Av = Af (1� It) +AcIt

RGB Rv = Rt Rv = Rf (1�Rt) +RcRt

(or 3) Gv = Gt Gv = Gf (1�Gt) +GcGt

Bv = Bt Bv = Bf (1�Bt) +BcBt

Av = Af Av = Af

RGBA Rv = Rf (1�At) +RtAt Rv = Rf (1�Rt) +RcRt

(or 4) Gv = Gf (1�At) +GtAt Gv = Gf (1�Gt) +GcGt

Bv = Bf (1�At) +BtAt Bv = Bf (1�Bt) +BcBt

Av = Af Av = AfAt

Table 3.19: Decal and blend texture functions.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

138 CHAPTER 3. RASTERIZATION

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable andDisable com-
mands, respectively, with the symbolic constants TEXTURE 1D, TEXTURE 2D, or
TEXTURE 3D to enable the one-, two-, or three-dimensional texture, respec-
tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the
two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment's primary R, G, B, and A values.
These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the
texture coordinates may be discarded.

The required state is three bits indicating whether each of one-, two-, or
three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color cpri (which texturing, if enabled, may have modi�ed) and a secondary
color csec. The components of these two colors are summed to produce a
single post-texturing RGBA color c. The components of c are then clamped
to the range [0; 1].

Color sum has no e�ect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment's post-texturing
color using a blending factor f . Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(�d � z); (3.24)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

3.10. FOG 139

f = exp(�(d � z)2); or (3.25)

f =
e� z

e� s
(3.26)

(z is the eye-coordinate distance from the eye, (0; 0; 0; 1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
speci�ed with

void Fogfifg(enum pname, T param);
void Fogfifgv(enum pname, T params);

If pname is FOG MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.24, 3.25, or 3.26, respectively, is selected for the fog calculation (if,
when 3.26 is selected, e = s, results are unde�ned). If pname is FOG DENSITY,
FOG START, or FOG END, then param is or params points to a value that is d,
s, or e, respectively. If d is speci�ed less than zero, the error INVALID VALUE

results.
An implementation may choose to approximate the eye-coordinate dis-

tance from the eye to each fragment center by jzej. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f , the
result is clamped to [0; 1] to obtain the �nal f .

f is used di�erently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if Cr represents a rasterized fragment's R, G,
or B value, then the corresponding value produced by fog is

C = fCr + (1� f)Cf :

(The rasterized fragment's A value is not changed by fog blending.) The R,
G, B, and A values of Cf are speci�ed by calling Fog with pname equal to
FOG COLOR; in this case params points to four values comprising Cf . If these
are not oating-point values, then they are converted to oating-point using
the conversion given in table 2.6 for signed integers. Each component of Cf

is clamped to [0; 1] when speci�ed.
In color index mode, the formula for fog blending is

I = ir + (1� f)if

where ir is the rasterized fragment's color index and if is a single-precision
oating-point value. (1 � f)if is rounded to the nearest �xed-point value

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

140 CHAPTER 3. RASTERIZATION

with the same number of bits to the right of the binary point as ir, and the
integer portion of I is masked (bitwise ANDed) with 2n � 1, where n is the
number of bits in a color in the color index bu�er (bu�ers are discussed in
chapter 4). The value of if is set by calling Fog with pname set to FOG INDEX

and param being or params pointing to a single value for the fog index. The
integer part of if is masked with 2n � 1.

The state required for fog consists of a three valued integer to select the
fog equation, three oating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, FOG MODE is EXP, d = 1:0, e = 1:0, and
s = 0:0; Cf = (0; 0; 0; 0) and if = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment's alpha
(A) value to yield a �nal alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 4

Per-Fragment Operations

and the Framebu�er

The framebu�er consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebu�er is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or
context.

Corresponding bits from each pixel in the framebu�er are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical bu�ers. These are the color,
depth, stencil, and accumulation bu�ers. The color bu�er actually consists
of a number of bu�ers: the front left bu�er, the front right bu�er, the back
left bu�er, the back right bu�er, and some number of auxiliary bu�ers. Typ-
ically the contents of the front bu�ers are displayed on a color monitor while
the contents of the back bu�ers are invisible. (Monoscopic contexts display
only the front left bu�er; stereoscopic contexts display both the front left
and the front right bu�ers.) The contents of the auxiliary bu�ers are never
visible. All color bu�ers must have the same number of bitplanes, although
an implementation or context may choose not to provide right bu�ers, back
bu�ers, or auxiliary bu�ers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation bu�ers.

Color bu�ers consist of either unsigned integer color indices or R, G, B,
and, optionally, A unsigned integer values. The number of bitplanes in each
of the color bu�ers, the depth bu�er, the stencil bu�er, and the accumulation
bu�er is �xed and window dependent. If an accumulation bu�er is provided,

141

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

142CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

it must have at least as many bitplanes per R, G, and B color component
as do the color bu�ers.

The initial state of all provided bitplanes is unde�ned.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw; yw)
modi�es the pixel in the framebu�er at that location based on a number of
parameters and conditions. We describe these modi�cations and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modi�cations and tests.

4.1.1 Pixel Ownership Test

The �rst test is to determine if the pixel at location (xw; yw) in the frame-
bu�er is currently owned by the GL (more precisely, by this GL context). If
it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 143

allows the window system to control the GL's behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (xw; yw) lies within the scissor rectangle de�ned
by four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left � xw < left + width and bottom � yw < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment's alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a refer-
ence value. ref is clamped to lie in [0; 1], and then converted to a �xed-point
value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment's alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
pass the fragment never, always, if the fragment's alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

144CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The required state consists of the oating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil bu�er at location (xw; yw) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with the Enable andDisable commands, us-
ing the symbolic constant STENCIL TEST. When disabled, the stencil test and
associated modi�cations are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0; 2s � 1], where s is the number of bits
in the stencil bu�er. func is a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil bu�er. The s least signi�cant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth bu�er
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 145

In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil bu�er, no
stencil modi�cation can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth bu�er test

The depth bu�er test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth bu�er
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modi�ed as indicated below as if the depth bu�er
test passed. If enabled, the comparison takes place and the depth bu�er and
stencil value may subsequently be modi�ed.

The comparison is speci�ed with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth bu�er test
passes never, always, if the incoming fragment's zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment's
(xw; yw) coordinates.

If the depth bu�er test fails, the incoming fragment is discarded. The
stencil value at the fragment's (xw; yw) coordinates is updated according to
the function currently in e�ect for depth bu�er test failure. Otherwise, the
fragment continues to the next operation and the value of the depth bu�er
at the fragment's (xw; yw) location is set to the fragment's zw value. In this
case the stencil value is updated according to the function currently in e�ect
for depth bu�er test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth bu�ering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth bu�er, it is as if the depth bu�er test always passes.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

146CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

4.1.6 Blending

Blending combines the incoming fragment's R, G, B, and A values with the
R, G, B, and A values stored in the framebu�er at the incoming fragment's
(xw; yw) location.

This blending is dependent on the incoming fragment's alpha value and
that of the corresponding currently stored pixel. Blending applies only in
RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),
proceed to the next stage.

In the following discussion, Cs refers to the source color for an incoming
fragment, Cd refers to the destination color at the corresponding framebu�er
location, and Cc refers to a constant color in the GL state. Individual
RGBA components of these colors are denoted by subscripts of s, d, and c
respectively.

Destination (framebu�er) components are taken to be �xed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-
cessing), as are source (fragment) components. Constant color components
are taken to be oating point values.

Prior to blending, each �xed-point color component undergoes an implied
conversion to oating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in oating
point.

The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

void BlendEquation(enum mode);

void BlendFunc(enum src, enum dst);

Using BlendColor

The constant color Cc to be used in blending is speci�ed with BlendColor.
The four parameters are clamped to the range [0; 1] before being stored.
The constant color can be used in both the source and destination blending
factors.

BlendColor is an imaging subset feature (see section 3.6.2), and is only
allowed when the imaging subset is supported.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 147

Using BlendEquation

Blending capability is de�ned by the blend equation. BlendEquation mode
FUNC ADD de�nes the blending equation as

C = CsS + CdD

where Cs and Cd are the source and destination colors, and S and D are
quadruplets of weighting factors as speci�ed by BlendFunc.

If mode is FUNC SUBTRACT, the blending equation is de�ned as

C = CsS � CdD

If mode is FUNC REVERSE SUBTRACT, the blending equation is de�ned as

C = CdD � CsS

If mode is MIN, the blending equation is de�ned as

C =min(Cs; Cd)

Finally, if mode is MAX, the blending equation is de�ned as

C = max(Cs; Cd)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending
equation FUNC ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while
dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-
marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied
to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination
blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed using the blend equation speci�ed by BlendEquation. Each

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

148CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Value Blend Factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

DST COLOR (Rd; Gd; Bd; Ad)

ONE MINUS DST COLOR (1; 1; 1; 1) � (Rd; Gd; Bd; Ad)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

SRC ALPHA SATURATE (f; f; f; 1)

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(As; 1 �Ad).

Value Blend factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

SRC COLOR (Rs; Gs; Bs; As)

ONE MINUS SRC COLOR (1; 1; 1; 1) � (Rs; Gs; Bs; As)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 149

oating-point value in this quadruplet is clamped to [0; 1] and converted
back to a �xed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.

BlendFunc arguments CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA are imaging subset features
(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-
tion, two integers indicating the source and destination blending functions,
four oating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC ADD. The initial blending functions are ONE for the source
function and ZERO for the destination function. The initial constant blend
color is (R;G;B;A) = (0; 0; 0; 0). Initially, blending is disabled.

Blending occurs once for each color bu�er currently enabled for writing
(section 4.2.1) using each bu�er's color for Cd. If a color bu�er has no A
value, then Ad is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a �xed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebu�er; call each such value c. For each c,
dithering selects a value c1 such that c1 2 fmaxf0; dce � 1g; dceg (after this
selection, treat c1 as a �xed point value in [0,1] with m bits). This selec-
tion may depend on the xw and yw coordinates of the pixel. In color index
mode, the same rule applies with c being a single color index. c must not be
larger than the maximum value representable in the framebu�er for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment's x
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a �xed-point value with as many bits as there are in the
corresponding component in the framebu�er; a color index is rounded to the
nearest integer representable in the color index portion of the framebu�er.

Dithering is enabled with Enable and disabled with Disable using the

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

150CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment's color
or index values and the color or index values stored at the corresponding
location in the framebu�er. The result replaces the values in the framebu�er
at the fragment's (x; y) coordinates. The logical operation on color indices
is enabled or disabled with Enable or Disable using the symbolic constant
INDEX LOGIC OP. (For compatibility with GL version 1.0, the symbolic con-
stant LOGIC OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant
COLOR LOGIC OP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.

The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming
fragment and d is the value stored in the framebu�er. The numeric values
assigned to the symbolic constants are the same as those assigned to the
corresponding symbolic values in the X window system.

Logical operations are performed independently for each color index
bu�er that is selected for writing, or for each red, green, blue, and alpha
value of each color bu�er that is selected for writing. The required state is
an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic
operation to be given by COPY, and to be disabled.

4.2 Whole Framebu�er Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebu�er. This section describes operations
that control or a�ect the whole framebu�er.

4.2.1 Selecting a Bu�er for Writing

The �rst such operation is controlling the bu�er into which color values are
written. This is accomplished with

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 151

Argument value Operation

CLEAR 0
AND s ^ d
AND REVERSE s ^ :d
COPY s
AND INVERTED :s ^ d
NOOP d
XOR s xor d
OR s _ d
NOR :(s _ d)
EQUIV :(s xor d)
INVERT :d
OR REVERSE s _ :d
COPY INVERTED :s
OR INVERTED :s _ d
NAND :(s ^ d)
SET all 1's

Table 4.3: Arguments to LogicOp and their corresponding operations.

void DrawBu�er(enum buf);

buf is a symbolic constant specifying zero, one, two, or four bu�ers for writ-
ing. The constants are NONE, FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT AND BACK, and AUX0 through AUXn, where n+1
is the number of available auxiliary bu�ers.

The constants refer to the four potentially visible bu�ers front left,
front right, back left, and back right, and to the auxiliary bu�ers. Argu-
ments other than AUXi that omit reference to LEFT or RIGHT refer to both left
and right bu�ers. Arguments other than AUXi that omit reference to FRONT

or BACK refer to both front and back bu�ers. AUXi enables drawing only to
auxiliary bu�er i. Each AUXi adheres to AUXi = AUX0+ i. The constants and
the bu�ers they indicate are summarized in Table 4.4. If DrawBu�er is
is supplied with a constant (other than NONE) that does not indicate any of
the color bu�ers allocated to the GL context, the error INVALID OPERATION

results.

Indicating a bu�er or bu�ers usingDrawBu�er causes subsequent pixel
color value writes to a�ect the indicated bu�ers. If more than one color
bu�er is selected for drawing, blending and logical operations are computed

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

152CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic front front back back aux
constant left right left right i

NONE

FRONT LEFT �
FRONT RIGHT �
BACK LEFT �
BACK RIGHT �
FRONT � �
BACK � �
LEFT � �
RIGHT � �
FRONT AND BACK � � � �
AUXi �

Table 4.4: Arguments to DrawBu�er and the bu�ers that they indicate.

and applied independently for each bu�er. Calling DrawBu�er with a
value of NONE inhibits the writing of color values to any bu�er.

Monoscopic contexts include only left bu�ers, while stereoscopic contexts
include both left and right bu�ers. Likewise, single bu�ered contexts include
only front bu�ers, while double bu�ered contexts include both front and back
bu�ers. The type of context is selected at GL initialization.

The state required to handle bu�er selection is a set of up to 4 + n bits.
4 bits indicate if the front left bu�er, the front right bu�er, the back left
bu�er, or the back right bu�er, are enabled for color writing. The other n
bits indicate which of the auxiliary bu�ers is enabled for color writing. In
the initial state, the front bu�er or bu�ers are enabled if there are no back
bu�ers; otherwise, only the back bu�er or bu�ers are enabled.

4.2.2 Fine Control of Bu�er Updates

Four commands are used to mask the writing of bits to each of the logical
framebu�ers after all per-fragment operations have been performed. The
commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,

boolean a);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 153

control the color bu�er or bu�ers (depending on which bu�ers are currently
indicated for writing). The least signi�cant n bits of mask, where n is the
number of bits in a color index bu�er, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index bu�er (or bu�ers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color bu�er or bu�ers. r, g, b, and a indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth bu�er can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth bu�er is enabled for writing; otherwise, it is
disabled. In the initial state, the depth bu�er is enabled for writing.

The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least
signi�cant s bits of mask comprise an integer mask (s is the number of bits
in the stencil bu�er), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Bu�ers

The GL provides a means for setting portions of every pixel in a particular
bu�er to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which bu�ers
are to be cleared. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

154CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the bu�ers currently
enabled for color writing, the depth bu�er, the stencil bu�er, and the accu-
mulation bu�er (see below), respectively. The value to which each bu�er is
cleared depends on the setting of the clear value for that bu�er. If the mask
is not a bitwise OR of the speci�ed values, then the error INVALID VALUE is
generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for the color bu�ers in RGBA mode. Each of the speci�ed
components is clamped to [0; 1] and converted to �xed-point according to
the rules of section 2.13.9.

void ClearIndex(float index);

sets the clear color index. index is converted to a �xed-point value with
unspeci�ed precision to the left of the binary point; the integer part of this
value is then masked with 2m � 1, where m is the number of bits in a color
index value stored in the framebu�er.

void ClearDepth(clampd d);

takes a oating-point value that is clamped to the range [0; 1] and con-
verted to �xed-point according to the rules for a window z value given in
section 2.10.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil
bu�er. s is masked to the number of bitplanes in the stencil bu�er.

void ClearAccum(float r, float g, float b, float a);

takes four oating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation bu�er (see the next
section). These values are clamped to the range [�1; 1] when they are spec-
i�ed.

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also e�ective. If
a bu�er is not present, then a Clear directed at that bu�er has no e�ect.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 155

The state required for clearing is a clear value for each of the color bu�er,
the depth bu�er, the stencil bu�er, and the accumulation bu�er. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil bu�er and accumulation bu�er clear values are all 0. The depth
bu�er clear value is initially 1.0.

4.2.4 The Accumulation Bu�er

Each portion of a pixel in the accumulation bu�er consists of four values: one
for each of R, G, B, and A. The accumulation bu�er is controlled exclusively
through the use of

void Accum(enum op, float value);

(except for clearing it). op is a symbolic constant indicating an accumula-
tion bu�er operation, and value is a oating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pix-
els within the current scissor box are updated by any Accum operation;
otherwise, all pixels in the window are updated. The accumulation bu�er
operations apply identically to every a�ected pixel, so we describe the e�ect
of each operation on an individual pixel. Accumulation bu�er values are
taken to be signed values in the range [�1; 1]. Using ACCUM obtains R, G,
B, and A components from the bu�er currently selected for reading (sec-
tion 4.3.2). Each component, considered as a �xed-point value in [0; 1]. (see
section 2.13.9), is converted to oating-point. Each result is then multiplied
by value. The results of this multiplication are then added to the corre-
sponding color component currently in the accumulation bu�er, and the
resulting color value replaces the current accumulation bu�er color value.

The LOAD operation has the same e�ect as ACCUM, but the computed values
replace the corresponding accumulation bu�er components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
bu�er, multiplies each of the R, G, B, and A components by value, and
clamps the results to the range [0; 1] The resulting color value is placed
in the bu�ers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations
that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2)
is also applied.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

156CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The MULT operation multiplies each R, G, B, and A in the accumulation
bu�er by value and then returns the scaled color components to their corre-
sponding accumulation bu�er locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only if
the operation is RETURN. In this case, a value sent to the enabled color bu�ers
is �rst clamped to [0; 1]. Otherwise, results are unde�ned if the result of an
operation on a color component is out of the range [�1; 1]. If there is no
accumulation bu�er, or if the GL is in color index mode, Accum generates
the error INVALID OPERATION.

No state (beyond the accumulation bu�er itself) is required for accumu-
lation bu�ering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebu�er using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebu�er to another.

4.3.1 Writing to the Stencil Bu�er

The operation of DrawPixels was described in section 3.6.4, except if the
format argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (x; y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Each coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebu�er, subject
to the current setting of StencilMask.

The error INVALID OPERATION results if there is no stencil bu�er.

4.3.2 Reading Pixels

The method for reading pixels from the framebu�er and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Pixels are read using

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 157

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, or float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth
and stencil pixel paths are not shown.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

158CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Parameter Name Type Initial Value Valid Range

PACK SWAP BYTES boolean FALSE TRUE/FALSE

PACK LSB FIRST boolean FALSE TRUE/FALSE

PACK ROW LENGTH integer 0 [0;1)

PACK SKIP ROWS integer 0 [0;1)

PACK SKIP PIXELS integer 0 [0;1)

PACK ALIGNMENT integer 4 1,2,4,8

PACK IMAGE HEIGHT integer 0 [0;1)

PACK SKIP IMAGES integer 0 [0;1)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
Image1D, GetTexImage2D, GetTexImage3D, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-
Minmax.

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels correspond to those of Draw-
Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebu�er

If the format is DEPTH COMPONENT, then values are obtained from the depth
bu�er. If there is no depth bu�er, the error INVALID OPERATION occurs.

If the format is STENCIL INDEX, then values are taken from the stencil
bu�er; again, if there is no stencil bu�er, the error INVALID OPERATION occurs.

For all other formats, the bu�er from which values are obtained is one of
the color bu�ers; the selection of color bu�er is controlled withReadBu�er.

The command

void ReadBu�er(enum src);

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT RIGHT, BACK LEFT, BACK RIGHT, FRONT, BACK, LEFT, RIGHT, and AUX0

through AUXn. FRONT and LEFT refer to the front left bu�er, BACK refers
to the back left bu�er, and RIGHT refers to the front right bu�er. The other
constants correspond directly to the bu�ers that they name. If the requested

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 159

bu�er is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBu�er is FRONT if there is no back bu�er and BACK

otherwise.

ReadPixels obtains values from the selected bu�er from each pixel with
lower left hand corner at (x + i; y + j) for 0 � i < width and 0 � j <
height; this pixel is said to be the ith pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are unde�ned. Results are also unde�ned
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected bu�er, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green, blue,
and alpha values are obtained from the selected bu�er at each pixel location.
If the framebu�er does not support alpha values then the A that is obtained
is 1.0. If format is COLOR INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH COMPONENT or STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL INDEX nor DEPTH COMPONENT. The R, G, B, and A values
form a group of elements. Each element is taken to be a �xed-point value in
[0; 1] with m bits, where m is the number of bits in the corresponding color
component of the selected bu�er (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT. An element is taken to
be a �xed-point value in [0,1] with m bits, where m is the number of bits in
the depth bu�er (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in
section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

160CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

type Parameter Index Mask

UNSIGNED BYTE 28 � 1

BITMAP 1

BYTE 27 � 1

UNSIGNED SHORT 216 � 1

SHORT 215 � 1

UNSIGNED INT 232 � 1

INT 231 � 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L = R+G+B

where R, G, and B are the values of the R, G, and B components. The
single computed L component replaces the R, G, and B components in the
group.

Final Conversion

For an index, if the type is not FLOAT, �nal conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the
integer index is converted to a GL oat data value.

For an RGBA color, each component is �rst clamped to [0; 1]. Then the
appropriate conversion formula from table 4.7 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ith group
of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only di�erence is that the storage mode parameters
whose names begin with PACK are used instead of those whose names be-
gin with UNPACK . If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 161

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED BYTE ubyte c = (28 � 1)f

BYTE byte c = [(28 � 1)f � 1]=2

UNSIGNED SHORT ushort c = (216 � 1)f

SHORT short c = [(216 � 1)f � 1]=2

UNSIGNED INT uint c = (232 � 1)f

INT int c = [(232 � 1)f � 1]=2

FLOAT float c = f

UNSIGNED BYTE 3 3 2 ubyte c = (2N � 1)f

UNSIGNED BYTE 2 3 3 REV ubyte c = (2N � 1)f

UNSIGNED SHORT 5 6 5 ushort c = (2N � 1)f

UNSIGNED SHORT 5 6 5 REV ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 REV ushort c = (2N � 1)f

UNSIGNED SHORT 5 5 5 1 ushort c = (2N � 1)f

UNSIGNED SHORT 1 5 5 5 REV ushort c = (2N � 1)f

UNSIGNED INT 8 8 8 8 uint c = (2N � 1)f

UNSIGNED INT 8 8 8 8 REV uint c = (2N � 1)f

UNSIGNED INT 10 10 10 2 uint c = (2N � 1)f

UNSIGNED INT 2 10 10 10 REV uint c = (2N � 1)f

Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth components
are converted from the internal oating-point representation (f) to a datum
of the speci�ed GL data type (c) using the equations in this table. All arith-
metic is done in the internal oating point format. These conversions apply
to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-
mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bit�eld of the packed data type, with N set to the
number of bits in the bit�eld.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

162CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

only the corresponding single element is written. Likewise if the format is
LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebu�er to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The �rst four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebu�er, converted (if appropriate),
then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL INDEX or DEPTH COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL
is in color index mode, it is as if the format were COLOR INDEX.

The groups of elements so obtained are then written to the framebu�er
just as if DrawPixels had been given width and height, beginning with
�nal conversion of elements. The e�ective format is the same as that already
described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are
set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of ReadBu�er,
an integer, is also required, along with the current raster position (sec-
tion 2.12). State set with PixelStore is GL client state.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 163

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuffer

color index pixel
data from framebuffer

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not �t easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), ushing and �nishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not a�ected by the use
of evaluators.

Consider the Rk-valued polynomial p(u) de�ned by

p(u) =
nX
i=0

Bn
i (u)Ri (5.1)

with Ri 2 Rk and

Bn
i (u) =

n

i

!
ui(1� u)n�i;

the ith Bernstein polynomial of degree n (recall that 00 � 1 and
�n
0

� � 1).
Each Ri is a control point. The relevant command is

164

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 165

target k Values

MAP1 VERTEX 3 3 x, y, z vertex coordinates

MAP1 VERTEX 4 4 x, y, z, w vertex coordinates

MAP1 INDEX 1 color index

MAP1 COLOR 4 4 R, G, B, A

MAP1 NORMAL 3 x, y, z normal coordinates

MAP1 TEXTURE COORD 1 1 s texture coordinate

MAP1 TEXTURE COORD 2 2 s, t texture coordinates

MAP1 TEXTURE COORD 3 3 s, t, r texture coordinates

MAP1 TEXTURE COORD 4 4 s, t, r, q texture coordinates

Table 5.1: Values speci�ed by the target to Map1. Values are given in the
order in which they are taken.

void Map1ffdg(enum type, T u1, T u2, int stride,
int order, T points);

type is a symbolic constant indicating the range of the de�ned polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n+ 1; The error INVALID VALUE is generated
if order is less than one or greater than MAX EVAL ORDER. points is a pointer
to a set of n+1 blocks of storage. Each block begins with k single-precision
oating-point or double-precision oating-point values, respectively. The
rest of the block may be �lled with arbitrary data. Table 5.1 indicates how
k depends on type and what the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

u1 and u2 give two oating-point values that de�ne the endpoints of the
pre-image of the map. When a value u0 is presented for evaluation, the
formula used is

p0(u0) = p(
u0 � u1
u2 � u1

):

The error INVALID VALUE results if u1 = u2.

Map2 is analogous to Map1, except that it describes bivariate polyno-

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

166 CHAPTER 5. SPECIAL FUNCTIONS

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

mials of the form

p(u; v) =
nX
i=0

mX
j=0

Bn
i (u)B

m
j (v)Rij :

The form of the Map2 command is

void Map2ffdg(enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Map1,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n+ 1)(m + 1) blocks of storage (uorder = n+ 1 and vorder = m+ 1; the
error INVALID VALUE is generated if either uorder or vorder is less than one
or greater than MAX EVAL ORDER). The values comprising Rij are located

(ustride)i+ (vstride)j

values (either single- or double-precision oating-point, as appropriate) past
the �rst value pointed to by points. u1, u2, v1, and v2 de�ne the pre-image
rectangle of the map; a domain point (u0; v0) is evaluated as

p0(u0; v0) = p(
u0 � u1
u2 � u1

;
v0 � v1
v2 � v1

):

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2.

Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is e�ected in one of two ways. The �rst way is to use

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 167

void EvalCoordf12gffdg(T arg);
void EvalCoordf12gffdgv(T arg);

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The
argument is the value (or a pointer to the value) that is the domain coor-
dinate, u0. EvalCoord2 causes evaluation of the enabled two-dimensional
maps. The two values specify the two domain coordinates, u0 and v0, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important di�erence. The di�erence is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the e�ective commands is immaterial, except that
Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no e�ect on the current color, normal, or texture coordinates. If
ColorMaterial is enabled, evaluated color values a�ect the result of the
lighting equation as if the current color was being modi�ed, but no change
is made to the tracking lighting parameters or to the current color.

No command is e�ectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1 TEXTURE COORD 1 and MAP1 TEXTURE COORD 2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2 VERTEX 3 or MAP2 VERTEX 4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero, is one method which may be used. If auto-
matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-
ation is controlled with Enable and Disable with symbolic the constant
AUTO NORMAL. If automatic normal generation is disabled, then a correspond-
ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent
with a vertex resulting from an evaluation (the e�ect is that the current
normal is used).

For MAP VERTEX 3, let q = p. For MAP VERTEX 4, let q = (x=w; y=w; z=w),
where (x; y; z; w) = p. Then let

m =
@q

@u
� @q

@v
:

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

168 CHAPTER 5. SPECIAL FUNCTIONS

Then the generated analytic normal, n, is given by n =m=kmk.
The second way to carry out evaluations is to use a set of commands

that provide for e�cient speci�cation of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The �rst step is to de�ne
a grid in the domain. This is done using

void MapGrid1ffdg(int n, T u01, T u02);

for a one-dimensional map or

void MapGrid2ffdg(int nu, T u01, T u02, int nv, T v01,
T v02);

for a two-dimensional map. In the case of MapGrid1 u01 and u02 describe
an interval, while n describes the number of partitions of the interval. The
error INVALID VALUE results if n � 0. For MapGrid2, (u01; v

0
1) speci�es one

two-dimensional point and (u02; v
0
2) speci�es another. nu gives the number of

partitions between u01 and u
0
2, and nv gives the number of partitions between

v01 and v02. If either nu � 0 or nv � 0, then the error INVALID VALUE occurs.

Once a grid is de�ned, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMesh1(enum mode, int p1, int p2);

mode is either POINT or LINE. The e�ect is the same as performing the fol-
lowing code fragment, with �u0 = (u02 � u01)=n:

Begin(type);
for i = p1 to p2 step 1:0

EvalCoord1(i * �u0 + u01);
End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE STRIP. The one requirement is that if either i = 0 or i = n, then the
value computed from i ��u0 + u01 is precisely u

0
1 or u

0
2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,
int q2);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 169

modemust be FILL, LINE, or POINT. Whenmode is FILL, then these commands
are equivalent to the following, with �u0 = (u02 � u01)=n and �v0 = (v02 �
v01)=m:

for i = q1 to q2 � 1 step 1:0
Begin(QUAD STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);
EvalCoord2(j * �u0 + u01 , (i+ 1) * �v0 + v01);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1:0
Begin(LINE STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();;
for i = p1 to p2 step 1:0

Begin(LINE STRIP);

for j = q1 to q2 step 1:0
EvalCoord2(i * �u0 + u01 , j * �v0 + v01);

End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step 1:0

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();

Again, in all three cases, there is the requirement that 0 � �u0 + u01 = u01,
n ��u0 + u01 = u02, 0 ��v0 + v01 = v01, and m ��v0 + v01 = v02.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p);

Calling it is equivalent to the command

EvalCoord1(p * �u0 + u01);

with �u0 and u01 de�ned as above.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

170 CHAPTER 5. SPECIAL FUNCTIONS

void EvalPoint2(int p, int q);

is equivalent to the command

EvalCoord2(p * �u0 + u01 , q * �v0 + v01);

The state required for evaluators potentially consists of 9 one-
dimensional map speci�cations and 9 two-dimensional map speci�cations,
as well as corresponding ags for each speci�cation indicating which are en-
abled. Each map speci�cation consists of one or two orders, an appropriately
sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent
(one maximum applies to both u and v), but must be at least 8. Each con-
trol point consists of between one and four oating-point values (depending
on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0; 0; 0; 1)
(or the appropriate subset); all normal coordinate maps produce (0; 0; 1);
RGBA maps produce (1; 1; 1; 1); color index maps produce 1.0; texture co-
ordinate maps produce (0; 0; 0; 1); In the initial state, all maps are disabled.
A ag indicates whether or not automatic normal generation is enabled for
two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two oating-point values and an integer number
of grid divisions for the one-dimensional grid speci�cation and four oating-
point values and two integer grid divisions for the two-dimensional grid
speci�cation. In the initial state, the bounds of the domain interval for 1-D
is 0 and 1:0, respectively; for 2-D, they are (0; 0) and (1:0; 1:0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If
any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is de�ned by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.2. SELECTION 171

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name
o� the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name o� of an empty stack generates
STACK UNDERFLOW; pushing a name onto a full stack generates STACK OVERFLOW.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebu�er. The
GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT

speci�es selection mode, and FEEDBACK speci�es feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no e�ect.

Selection is controlled using

void SelectBu�er(sizei n, uint *bu�er);

bu�er is a pointer to an array of unsigned integers (called the selection
array) to be potentially �lled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before SelectBu�er has been called results in an error of
INVALID OPERATION as does calling SelectBu�er while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

172 CHAPTER 5. SPECIAL FUNCTIONS

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack
with the bottommost element �rst. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0; 1]) are each multiplied by
232 � 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth o�set arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as �ts in the array is written and an overow ag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBu�er pointer to its last speci�ed value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overow ag was set, then RenderMode
returns �1 and clears the overow ag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several ags. One ag indicates
the currentRenderMode value. In the initial state, the GL is in the RENDER
mode. Another ag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This ag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
�nal ag is required to indicate whether the maximum number of copied
names would have been exceeded. This ag is reset upon entering selection
mode. This ag, the address of the selection array, and its maximum size
are GL client state.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.3. FEEDBACK 173

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling
RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-
ments are written to the framebu�er. Instead, information about primitives
that would have been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBu�er(sizei n, enum type, float *bu�er);

bu�er is a pointer to an array of oating-point values into which feedback in-
formation will be placed, and n is a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBu�er has been made, or if a call to FeedbackBu�er
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to �ll the array (if there is any room left at
all). The �rst block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive's vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). x, y, and z
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. No depth o�set arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position.

The texture coordinates and colors returned are these resulting from the
clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its e�ects on both GL

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

174 CHAPTER 5. SPECIAL FUNCTIONS

Type coordinates color texture total values

2D x, y { { 2

3D x, y, z { { 3

3D COLOR x, y, z k { 3 + k

3D COLOR TEXTURE x, y, z k 4 7 + k

4D COLOR TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.
k is 1 in color index mode and 4 in RGBA mode.

state and the values to be written to the feedback bu�er completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,
RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be bu�er. The return value never
exceeds the maximum number of values passed to FeedbackBu�er.

If writing a value to the feedback bu�er would cause more values to be
written than the speci�ed maximum number of values, then the value is not
written and an overow ag is set. In this case, RenderMode returns �1
when it is called, after which the overow ag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback bu�er before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of oating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback bu�er and the number of values returned for each vertex.

The command

void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive speci�cation is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no e�ect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 175

An overow ag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this ag is cleared.
These state variables are GL client state. Feedback also relies on the same
mode ag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely speci�es it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in e�ect at that time applies to the command. Only server state
is a�ected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-
rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE AND EXECUTE then
commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state.
It is only whenEndList occurs that the speci�ed display list is actually asso-
ciated with the index indicated withNewList. The error INVALID OPERATION

is generated if EndList is called without a previous matching NewList,

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

176 CHAPTER 5. SPECIAL FUNCTIONS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKEN vertex

line-segment:
LINE TOKEN vertex vertex
LINE RESET TOKEN vertex vertex

polygon:
POLYGON TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKEN vertex

pixel-rectangle:
DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough:
PASS THROUGH TOKEN f

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLOR TEXTURE:

f f f color tex
4D COLOR TEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax. f is a oating-point number. n is a oating-
point integer giving the number of vertices in a polygon. The symbols
ending with TOKEN are symbolic oating-point constants. The labels under
the \vertex" rule show the di�erent data returned for vertices depending
on the feedback type. LINE TOKEN and LINE RESET TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line
segment.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 177

or if NewList is called a second time before calling EndList. The error
OUT OF MEMORY is generated if EndList is called and the speci�ed display list
cannot be stored because insu�cient memory is available. In this case GL
implementations of revision 1.1 or greater insure that no change is made to
the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL
commands when the display list mode is COMPILE AND EXECUTE.

Once de�ned, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If n = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists);

provides an e�cient means for executing a number of display lists. n is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of o�sets. Each o�set is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED BYTE, SHORT, UNSIGNED SHORT, INT, UNSIGNED INT, or FLOAT indicating
that the array pointed to by lists is an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or oats, respectively. In this
case each o�set is found by simply converting each array element to an
integer (oating point values are truncated). Further, type may be one of
2 BYTES, 3 BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer o�set is constructed
according to the following algorithm:

offset 0
for i = 1 to b

offset offset shifted left 8 bits
offset offset+ byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed o�sets is taken in order and added to a display

list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

178 CHAPTER 5. SPECIAL FUNCTIONS

void ListBase(uint base);

to specify the o�set.
Indicating a display list index that does not correspond to any display

list has no e�ect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE AND EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists'
constituent commands, is placed in the list under construction.) To avoid
the possibility of in�nite recursion resulting from display lists calling one
another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n; : : : ; n + s � 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the e�ect of creating an empty display list for each of
the indices n; : : : ; n+s�1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the �rst display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:
IsList, GenLists, DeleteLists, FeedbackBu�er, SelectBu�er, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, InterleavedArrays,
EnableClientState, DisableClientState, PushClientAttrib, Pop-
ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-
tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

5.5. FLUSH AND FINISH 179

TexImage3D, TexImage2D, TexImage1D, Histogram,
and ColorTable are executed immediately when called
with the corresponding proxy arguments PROXY TEXTURE 3D,
PROXY TEXTURE 2D, PROXY TEXTURE 1D, PROXY HISTOGRAM, and
PROXY COLOR TABLE, PROXY POST CONVOLUTION COLOR TABLE, or
PROXY POST COLOR MATRIX COLOR TABLE.

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
de�ned. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish

The command

void Flush(void);

indicates that all commands that have previously been sent to the GL must
complete in �nite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until
all e�ects from previously issued commands on GL client and server state
and the framebu�er are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is speci�ed using

void Hint(enum target, enum hint);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

180 CHAPTER 5. SPECIAL FUNCTIONS

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT SMOOTH HINT, indicating the desired
sampling quality of points; LINE SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOG HINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
e�cient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.

The initial value of all hints is DONT CARE.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can
be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identi�ed by symbolic constants. The
values of these state variables can be obtained using a set ofGet commands.
There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, oating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to
return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or
disabled.

181

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

182 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types di�erent from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a oating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a oating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth bu�er clear value, or a normal coordinate. In these cases, the Get
command converts the oating-point value to an integer according the INT
entry of Table 4.7; a value not in [�1; 1] converts to an unde�ned value.
If GetFloatv is called, a boolean value is interpreted as either 1:0 or 0:0,
an integer is coerced to oating-point, and a double-precision oating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed toMap1. Map2
returns Rij in the [(uorder)i + j]th block of values (see page 166 for i, j,
uorder, and Rij).

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identi�ed by a
category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqn[4]);
void GetLightfifgv(enum light, enum value, T data);
void GetMaterialfifgv(enum face, enum value, T data);
void GetTexEnvfifgv(enum env, enum value, T data);
void GetTexGenfifgv(enum coord, enum value, T data);
void GetTexParameterfifgv(enum target, enum value,

T data);
void GetTexLevelParameterfifgv(enum target, int lod,

enum value, T data);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 183

void GetPixelMapfui us fgv(enum map, T data);
void GetMapfifdgv(enum map, enum value, T data);

GetClipPlane always returns four double-precision values in eqn; these
are the coe�cients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was speci�ed).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was speci�ed).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar toGetLight, placing information about value for the target indi-
cated by their �rst argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coe�cients are returned in the eye coordinates that
were computed when the plane was speci�ed; OBJECT LINEAR coe�cients are
returned in object coordinates.

GetTexParameter and GetTexLevelParameter parameter target
may be one of TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D, indicating the
currently bound one-, two-, or three-dimensional texture object. For
GetTexLevelParameter, target may also be one of PROXY TEXTURE 1D,
PROXY TEXTURE 2D, or PROXY TEXTURE 3D, indicating the one-, two-, or three-
dimensional proxy state vector. value is a symbolic value indicat-
ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail's state is re-
turned. If the lod argument is less than zero or if it is larger than
the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED SIZE, TEXTURE GREEN SIZE, TEXTURE BLUE SIZE,
TEXTURE ALPHA SIZE, TEXTURE LUMINANCE SIZE, and TEXTURE INTENSITY SIZE

return the actual resolutions of the stored image array components, not
the resolutions speci�ed when the image array was de�ned. Queries of
TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH, and TEXTURE BORDER return
the width, height, depth, and border as speci�ed when the image ar-
ray was created. The internal format of the image array is queried as
TEXTURE INTERNAL FORMAT, or as TEXTURE COMPONENTS for compatibility with
GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

184 CHAPTER 6. STATE AND STATE REQUESTS

value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat di�erent from the other get
commands; tex is a symbolic value indicating which texture is to be obtained.
TEXTURE 1D indicates a one-dimensional texture, TEXTURE 2D indicates a two-
dimensional texture, and TEXTURE 3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type
is a pixel type from Table 3.5, and img is a pointer to a block of memory.

GetTexImage obtains component groups from a texture image with
the indicated level-of-detail. The components are assigned among R, G, B,
and A according to Table 6.1, starting with the �rst group in the �rst row,
and continuing by obtaining groups in order from each row and proceeding
from the �rst row to the last, and from the �rst image to the last for three-
dimensional textures. These groups are then packed and placed in client
memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage
state values PACK IMAGE HEIGHT and PACK SKIP IMAGES are applied. The cor-
respondence of texels to memory locations is as de�ned for TexImage3D
in section 3.8.1.

The row length, number of rows, image depth, and number of images
are determined by the size of the texture image (including any borders).
Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . CallingGetTexImage with
format of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT causes the error
INVALID ENUM.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is
a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,
but not yet bound, is not the name of a texture object.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 185

Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1

LUMINANCE ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1

RGB (or 3) Ri Gi Bi 1

RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and �lter return values. Ri, Gi, Bi, Ai, Li, and Ii
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,
the speci�ed constant value is used.

6.1.5 Stipple Query

The command

void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried usingGetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is
returned by GetFloatv called with pname set to COLOR MATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,
are queried with GetIntegerv, setting pname to COLOR MATRIX STACK DEPTH

and MAX COLOR MATRIX STACK DEPTH respectively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

186 CHAPTER 6. STATE AND STATE REQUESTS

target must be one of the regular color table names listed in table 3.4. format
and type accept the same values as do the corresponding parameters of
GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the speci�ed format,
but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the
components requested by format are described in Table 6.1.

The functions

void GetColorTableParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query.

target must be one of the regular or proxy color table names listed
in table 3.4. pname is one of COLOR TABLE SCALE, COLOR TABLE BIAS,
COLOR TABLE FORMAT, COLOR TABLE WIDTH, COLOR TABLE RED SIZE,
COLOR TABLE GREEN SIZE, COLOR TABLE BLUE SIZE, COLOR TABLE ALPHA SIZE,
COLOR TABLE LUMINANCE SIZE, or COLOR TABLE INTENSITY SIZE. The value of
the speci�ed parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution �lter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION 1D or CONVOLUTION 2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The
one-dimensional or two-dimensional images is returned to client memory
starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable �lter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 187

target must be SEPARABLE 2D. format and type accept the same values as
do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must
be CONVOLUTION 1D, CONVOLUTION 2D, or SEPARABLE 2D. pname
is one of CONVOLUTION BORDER COLOR, CONVOLUTION BORDER MODE,
CONVOLUTION FILTER SCALE, CONVOLUTION FILTER BIAS, CONVOLUTION FORMAT,
CONVOLUTION WIDTH, CONVOLUTION HEIGHT, MAX CONVOLUTION WIDTH, or
MAX CONVOLUTION HEIGHT. The value of the speci�ed parameter is returned in
params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. type and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-
togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, then all counters of all elements of the histogram are
reset to zero. Counters are reset whether returned or not.

No counters are modi�ed if reset is FALSE.
Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must
be HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with
zero entries.

The functions

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

188 CHAPTER 6. STATE AND STATE REQUESTS

void GetHistogramParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be HISTOGRAM or
PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED SIZE, HISTOGRAM GREEN SIZE, HISTOGRAM BLUE SIZE,
HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE. pname may be
HISTOGRAM SINK only for target HISTOGRAM. The value of the speci�ed
parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset,
enum format, enum type, void* values);

target must be MINMAX. type and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of
width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum rep-
resentable value, and each maximum value is reset to the minimum repre-
sentable value. All values are reset, whether returned or not.

No values are modi�ed if reset is FALSE.

Calling

void ResetMinmax(enum target);

resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be MINMAX. pname
is MINMAX FORMAT or MINMAX SINK. The value of the speci�ed parameter is
returned in params.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 189

6.1.11 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array
params. The possible values for pname are SELECTION BUFFER POINTER,
FEEDBACK BUFFER POINTER, VERTEX ARRAY POINTER, NORMAL ARRAY POINTER,
COLOR ARRAY POINTER, INDEX ARRAY POINTER, TEXTURE COORD ARRAY POINTER,
and EDGE FLAG ARRAY POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the RENDERER and VERSION strings is imple-
mentation dependent. The EXTENSIONS string contains a space separated list
of extension names (The extension names themselves do not contain any
spaces); the VERSION string is laid out as follows:

<version number><space><vendor-speci�c information>

The version number is either of the form major number.minor number or
major number.minor number.release number, where the numbers all have
one or more digits. The vendor speci�c information is optional. However, if
it is present then it pertains to the server and the format and contents are
implementation dependent.

GetString returns the version number (returned in the VERSION string)
and the extension names (returned in the EXTENSIONS string) that can be
supported on the connection. Thus, if the client and server support di�erent
versions and/or extensions, a compatible version and list of extensions is
returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. ThePushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands
are used for this purpose. The commands

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

190 CHAPTER 6. STATE AND STATE REQUESTS

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClientAttrib uses a client attribute stack. Each
constant refers to a group of state variables. The classi�cation of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClientAttrib is
executed while the corresponding stack depth is MAX ATTRIB STACK DEPTH or
MAX CLIENT ATTRIB STACK DEPTH respectively. The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain
unchanged. The error STACK UNDERFLOW is generated if PopAttrib or Pop-
ClientAttrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border
colors, �lter modes, and wrap modes of the currently bound texture objects,
as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)
When an attribute set that includes texture information is popped, the
bindings and enables are �rst restored to their pushed values, then the bound
texture objects' priorities, border colors, �lter modes, and wrap modes are
restored to their pushed values.

The depth of each attribute stack is implementation dependent but must
be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables
are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3
explains these types. The type actually identi�es all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 191

Stack Attribute Constant

server accum-bu�er ACCUM BUFFER BIT

server color-bu�er COLOR BUFFER BIT

server current CURRENT BIT

server depth-bu�er DEPTH BUFFER BIT

server enable ENABLE BIT

server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server pixel PIXEL MODE BIT

server point POINT BIT

server polygon POLYGON BIT

server polygon-stipple POLYGON STIPPLE BIT

server scissor SCISSOR BIT

server stencil-bu�er STENCIL BUFFER BIT

server texture TEXTURE BIT

server transform TRANSFORM BIT

server viewport VIEWPORT BIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEX ARRAY BIT

client pixel-store CLIENT PIXEL STORE BIT

client select can't be pushed or pop'd

client feedback can't be pushed or pop'd

client ALL CLIENT ATTRIB BITS

Table 6.2: Attribute groups

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

192 CHAPTER 6. STATE AND STATE REQUESTS

Type code Explanation

B Boolean

C Color (oating-point R, G, B, and A values)

CI Color index (oating-point index value)

T Texture coordinates (oating-point s, t, r, q
values)

N Normal coordinates (oating-point x, y, z val-
ues)

V Vertex, including associated data

Z Integer

Z+ Non-negative integer

Zk, Zk� k-valued integer (k� indicates k is minimum)

R Floating-point number

R+ Non-negative oating-point number

R[a;b] Floating-point number in the range [a; b]

Rk k-tuple of oating-point numbers

P Position (x, y, z, w oating-point coordinates)

D Direction (x, y, z oating-point coordinates)

M4 4� 4 oating-point matrix

I Image

A Attribute stack entry, including mask

Y Pointer (data type unspeci�ed)

n� type n copies of type type (n� indicates n is mini-
mum)

Table 6.3: State variable types

to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a \{" in the attribute column
indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the max-
imum and minimum possible representable values, respectively.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 193

6.2 State Tables

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands { the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see
section 3.6.2) are typeset against a gray background .

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

194 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

{

Z
1
1

{

0

W
h
en
6=
0
,
in
d
ic
a
te
s

b
e
g
in
/
e
n
d
o
b
je
ct

2
.6
.1

{

{

V

{

{

P
re
v
io
u
s
v
er
te
x
in

B
e
g
in
/
E
n
d
li
n
e

2
.6
.1

{

{

B

{

{

In
d
ic
a
te
s
if
li
n
e-
ve
rt
ex

is
th
e
�
rs
t

2
.6
.1

{

{

V

{

{

F
ir
st
v
er
te
x
o
f
a

B
e
g
in
/
E
n
d
li
n
e
lo
o
p

2
.6
.1

{

{

Z
+

{

{

L
in
e
st
ip
p
le
co
u
n
te
r

3
.4

{

{

n
�
V

{

{

V
er
ti
ce
s
in
si
d
e
o
f

B
e
g
in
/
E
n
d
p
o
ly
g
o
n

2
.6
.1

{

{

Z
+

{

{

N
u
m
b
er
o
f

po
ly
go
n
-v
er
ti
ce
s

2
.6
.1

{

{

2
�
V

{

{

P
re
v
io
u
s
tw
o
v
er
ti
ce
s

in
a
B
e
g
in
/
E
n
d

tr
ia
n
g
le
st
ri
p

2
.6
.1

{

{

Z
3

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
tr
ia
n
g
le
st
ri
p
:
0
,

1
,
o
r
m
o
re

2
.6
.1

{

{

Z
2

{

{

T
ri
a
n
g
le
st
ri
p
A
/
B

v
er
te
x
p
o
in
te
r

2
.6
.1

{

{

3
�
V

{

{

V
er
ti
ce
s
o
f
th
e
q
u
a
d

u
n
d
er
co
n
st
ru
ct
io
n

2
.6
.1

{

{

Z
4

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
q
u
a
d
st
ri
p
:
0
,
1
,

2
,
o
r
m
o
re

2
.6
.1

{

Table 6.4. GL Internal begin-end state variables (inaccessible)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 195

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
U
R
R
E
N
T

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
u
rr
en
t
co
lo
r

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
u
rr
en
t
co
lo
r
in
d
ex

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
te
x
tu
re

co
o
rd
in
a
te
s

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

N
O
R
M
A
L

N

G
e
tF
lo
a
tv

0
,0
,1

C
u
rr
en
t
n
o
rm
a
l

2
.7

cu
rr
en
t

{

C

{

-

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

la
st
v
er
te
x

2
.6

{

{

C
I

{

-

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
la
st
v
er
te
x

2
.6

{

{

T

{

-

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
la
st

v
er
te
x

2
.6

{

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

R
4

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

D
IS
T
A
N
C
E

R
+

G
e
tF
lo
a
tv

0

C
u
rr
en
t
ra
st
er
d
is
ta
n
ce

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
ra
st
er

p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

V
A
L
ID

B

G
e
tB
o
o
le
a
n
v

T
ru
e

R
a
st
er
p
o
si
ti
o
n
va
li
d

b
it

2
.1
2

cu
rr
en
t

E
D
G
E

F
L
A
G

B

G
e
tB
o
o
le
a
n
v

T
ru
e

E
d
g
e

a
g

2
.6
.2

cu
rr
en
t

Table 6.5. Current Values and Associated Data

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

196 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

V
E
R
T
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

V
er
te
x
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
v
er
te
x
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
v
er
ti
ce
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
v
er
te
x
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

N
o
rm
a
l
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
n
o
rm
a
l
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
n
o
rm
a
ls

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
n
o
rm
a
l
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
lo
rs
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

T
Y
P
E

Z
8

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
co
lo
r
co
m
p
o
n
en
ts

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
co
lo
rs

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
co
lo
r
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
in
d
ex
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
o
rd
in
a
te
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
el
em
en
t

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
te
x
tu
re
co
o
rd
in
a
te

a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

E
d
g
e

a
g
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
ed
g
e

a
g
s

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
ed
g
e

a
g
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

Table 6.6. Vertex Array Data

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 197

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
L
O
R

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

C
o
lo
r
m
a
tr
ix
st
a
ck

3
.6
.3

{

M
O
D
E
L
V
IE
W

M
A
T
R
IX

3
2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

T
E
X
T
U
R
E

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
a
tr
ix
st
a
ck

2
.1
0
.2

{

V
IE
W
P
O
R
T

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

V
ie
w
p
o
rt
o
ri
g
in
&

ex
te
n
t

2
.1
0
.1

v
ie
w
p
o
rt

D
E
P
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

0
,1

D
ep
th
ra
n
g
e
n
ea
r
&

fa
r

2
.1
0
.1

v
ie
w
p
o
rt

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

C
o
lo
r
m
a
tr
ix
st
a
ck

p
o
in
te
r

3
.6
.3

{

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
a
tr
ix
st
a
ck

p
o
in
te
r

2
.1
0
.2

{

M
A
T
R
IX

M
O
D
E

Z
4

G
e
tI
n
te
g
e
rv

M
O
D
E
L
V
I
E
W

C
u
rr
en
t
m
a
tr
ix
m
o
d
e

2
.1
0
.2

tr
a
n
sf
o
rm

N
O
R
M
A
L
IZ
E

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

n
o
rm
a
li
za
ti
o
n
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

R
E
S
C
A
L
E

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

re
sc
a
li
n
g
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

C
L
IP

P
L
A
N
E
i

6
�
�
R
4

G
e
tC
li
p
P
la
n
e

0
,0
,0
,0

U
se
r
cl
ip
p
in
g
p
la
n
e

co
e�
ci
en
ts

2
.1
1

tr
a
n
sf
o
rm

C
L
IP

P
L
A
N
E
i

6
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

it
h
u
se
r
cl
ip
p
in
g
p
la
n
e

en
a
b
le
d

2
.1
1

tr
a
n
sf
o
rm
/
en
a
b
le

Table 6.7. Transformation state

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

198 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

F
O
G

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

F
o
g
co
lo
r

3
.1
0

fo
g

F
O
G

IN
D
E
X

C
I

G
e
tF
lo
a
tv

0

F
o
g
in
d
ex

3
.1
0

fo
g

F
O
G

D
E
N
S
IT
Y

R

G
e
tF
lo
a
tv

1
.0

E
x
p
o
n
en
ti
a
l
fo
g

d
en
si
ty

3
.1
0

fo
g

F
O
G

S
T
A
R
T

R

G
e
tF
lo
a
tv

0
.0

L
in
ea
r
fo
g
st
a
rt

3
.1
0

fo
g

F
O
G

E
N
D

R

G
e
tF
lo
a
tv

1
.0

L
in
ea
r
fo
g
en
d

3
.1
0

fo
g

F
O
G

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

E
X
P

F
o
g
m
o
d
e

3
.1
0

fo
g

F
O
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
fo
g
en
a
b
le
d

3
.1
0

fo
g
/
en
a
b
le

S
H
A
D
E
M
O
D
E
L

Z
+

G
e
tI
n
te
g
e
rv

S
M
O
O
T
H

S
h
a
d
e
M
o
d
e
l
se
tt
in
g

2
.1
3
.7

li
g
h
ti
n
g

Table 6.8. Coloring

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 199

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IG
H
T
IN
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
ti
n
g

is
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r

tr
a
ck
in
g
is

en
a
b
le
d

2
.1
3
.3

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L
P
A
R
A
M
E
T
E
R

Z
5

G
e
tI
n
te
g
e
rv

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
a
te
ri
a
l

p
ro
p
er
ti
es

tr
a
ck
in
g
cu
rr
en
t

co
lo
r

2
.1
3
.3

li
g
h
ti
n
g

C
O
L
O
R

M
A
T
E
R
IA
L
F
A
C
E

Z
3

G
e
tI
n
te
g
e
rv

F
R
O
N
T
A
N
D
B
A
C
K

F
a
ce
(s
)
a
�
ec
te
d

b
y
co
lo
r

tr
a
ck
in
g

2
.1
3
.3

li
g
h
ti
n
g

A
M
B
IE
N
T

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.8
,0
.8
,0
.8
,1
.0
)

D
i�
u
se
m
a
te
ri
a
l

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

S
p
ec
u
la
r

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

E
M
IS
S
IO
N

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

E
m
is
si
v
e
m
a
t.

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
H
IN
IN
E
S
S

2
�
R

G
e
tM
a
te
ri
a
lf
v

0
.0

S
p
ec
u
la
r

ex
p
o
n
en
t
o
f

m
a
te
ri
a
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
A
M
B
IE
N
T

C

G
e
tF
lo
a
tv

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t
sc
en
e

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
L
O
C
A
L
V
IE
W
E
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
ie
w
er
is
lo
ca
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
T
W
O

S
ID
E

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

U
se
tw
o
-s
id
ed

li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
C
O
L
O
R

C
O
N
T
R
O
L

Z
2

G
e
tI
n
te
g
e
rv

S
I
N
G
L
E
C
O
L
O
R

C
o
lo
r
co
n
tr
o
l

2
.1
3
.1

li
g
h
ti
n
g

Table 6.9. Lighting (see also Table 2.7 for defaults)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

200 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
M
B
IE
N
T

8
�
�
C

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

A
m
b
ie
n
t
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

D
i�
u
se
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

S
p
ec
u
la
r
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

P
O
S
IT
IO
N

8
�
�
P

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,1
.0
,0
.0
)

P
o
si
ti
o
n
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

C
O
N
S
T
A
N
T

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
.0

C
o
n
st
a
n
t
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

L
IN
E
A
R

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

L
in
ea
r
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

Q
U
A
D
R
A
T
IC

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

Q
u
a
d
ra
ti
c
a
tt
en
.

fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

D
IR
E
C
T
IO
N

8
�
�
D

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,-
1
.0
)

S
p
o
tl
ig
h
t
d
ir
ec
ti
o
n
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

E
X
P
O
N
E
N
T

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

S
p
o
tl
ig
h
t
ex
p
o
n
en
t
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

C
U
T
O
F
F

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
8
0
.0

S
p
o
t.
a
n
g
le
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T
i

8
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
t
i
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

IN
D
E
X
E
S

2
�
3
�
R

G
e
tM
a
te
ri
a
lf
v

0
,1
,1

a
m
,
d
m

,
a
n
d
s
m

fo
r

co
lo
r
in
d
ex
li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

Table 6.10. Lighting (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 201

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
IN
T

S
IZ
E

R
+

G
e
tF
lo
a
tv

1
.0

P
o
in
t
si
ze

3
.3

p
o
in
t

P
O
IN
T

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
in
t
a
n
ti
a
li
a
si
n
g
o
n

3
.3

p
o
in
t/
en
a
b
le

L
IN
E

W
ID
T
H

R
+

G
e
tF
lo
a
tv

1
.0

L
in
e
w
id
th

3
.4

li
n
e

L
IN
E

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
a
n
ti
a
li
a
si
n
g
o
n

3
.4

li
n
e/
en
a
b
le

L
IN
E
S
T
IP
P
L
E

P
A
T
T
E
R
N

Z
+

G
e
tI
n
te
g
e
rv

1
's

L
in
e
st
ip
p
le

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E
R
E
P
E
A
T

Z
+

G
e
tI
n
te
g
e
rv

1

L
in
e
st
ip
p
le
re
p
ea
t

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
st
ip
p
le
en
a
b
le

3
.4
.2

li
n
e/
en
a
b
le

C
U
L
L
F
A
C
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
cu
ll
in
g

en
a
b
le
d

3
.5
.1

p
o
ly
g
o
n
/
en
a
b
le

C
U
L
L
F
A
C
E

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

B
A
C
K

C
u
ll
fr
o
n
t/
b
a
ck
fa
ci
n
g

p
o
ly
g
o
n
s

3
.5
.1

p
o
ly
g
o
n

F
R
O
N
T

F
A
C
E

Z
2

G
e
tI
n
te
g
e
rv

C
C
W

P
o
ly
g
o
n
fr
o
n
tf
a
ce

C
W
/
C
C
W

in
d
ic
a
to
r

3
.5
.1

p
o
ly
g
o
n

P
O
L
Y
G
O
N

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
a
n
ti
a
li
a
si
n
g

o
n

3
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

M
O
D
E

2
�
Z
3

G
e
tI
n
te
g
e
rv

F
I
L
L

P
o
ly
g
o
n
ra
st
er
iz
a
ti
o
n

m
o
d
e
(f
ro
n
t
&
b
a
ck
)

3
.5
.4

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
A
C
T
O
R

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
fa
ct
o
r

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

U
N
IT
S

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
b
ia
s

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

P
O
IN
T

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
P
O
I
N
T
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

L
IN
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
L
I
N
E
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
IL
L

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
F
I
L
L
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

{

I

G
e
tP
o
ly
g
o
n
S
ti
p
p
le

1
's

P
o
ly
g
o
n
st
ip
p
le

3
.5

p
o
ly
g
o
n
-s
ti
p
p
le

P
O
L
Y
G
O
N

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
st
ip
p
le
en
a
b
le

3
.5
.2

p
o
ly
g
o
n
/
en
a
b
le

Table 6.11. Rasterization

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

202 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

x
D

3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g
is

en
a
b
le
d
;
x
is
1
,
2
,
o
r
3

3
.8
.1
0

te
x
tu
re
/
en
a
b
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
o
b
je
ct
b
o
u
n
d

to
T
E
X
T
U
R
E
x
D

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

x
D

n
�
I

G
e
tT
e
x
Im
a
g
e

se
e
3
.8

x
D
te
x
tu
re
im
a
g
e
a
t

l.
o
.d
.
i

3
.8

{

T
E
X
T
U
R
E

W
ID
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
w
id
th

3
.8

{

T
E
X
T
U
R
E

H
E
IG
H
T

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

2
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
h
ei
g
h
t

3
.8

{

T
E
X
T
U
R
E

D
E
P
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

3
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
d
ep
th

3
.8

{

T
E
X
T
U
R
E

B
O
R
D
E
R

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
b
o
rd
er
w
id
th

3
.8

{

T
E
X
T
U
R
E

IN
T
E
R
N
A
L
F
O
R
M
A
T

(T
E
X
T
U
R
E

C
O
M
P
O
N
E
N
T
S
)

n
�
Z
4
2

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

1

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
rn
a
l
im
a
g
e
fo
rm
a
t

3
.8

{

T
E
X
T
U
R
E

R
E
D

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

re
d
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

G
R
E
E
N

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

g
re
en
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

B
L
U
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

b
lu
e
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

A
L
P
H
A

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

a
lp
h
a
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

L
U
M
IN
A
N
C
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

lu
m
in
a
n
ce
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

IN
T
E
N
S
IT
Y

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
n
si
ty
re
so
lu
ti
o
n

3
.8

{

Table 6.12. Texture Objects

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 203

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

B
O
R
D
E
R

C
O
L
O
R

2
+
�
C

G
e
tT
e
x
P
a
ra
m
e
te
r

0
,0
,0
,0

T
ex
tu
re
b
o
rd
er
co
lo
r

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

F
IL
T
E
R

2
+
�
Z
6

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
in
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.5

te
x
tu
re

T
E
X
T
U
R
E

M
A
G

F
IL
T
E
R

2
+
�
Z
2

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
a
g
n
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.6

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

S

3
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
S

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

T

2
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
T

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

R

1
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
R

3
.8

te
x
tu
re

T
E
X
T
U
R
E

P
R
IO
R
IT
Y

2
+
�
R
[0
;1
]

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1

T
ex
tu
re
o
b
je
ct
p
ri
o
ri
ty

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

R
E
S
ID
E
N
T

2
+
�
B

G
e
tT
e
x
P
a
ra
m
e
te
ri
v

se
e
3
.8
.8

T
ex
tu
re
re
si
d
en
cy

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

-1
0
0
0

M
in
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

B
A
S
E

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

0

B
a
se
te
x
tu
re
a
rr
ay

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
te
x
tu
re

a
rr
ay
le
v
el

3
.8

te
x
tu
re

Table 6.13. Texture Objects (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

204 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

E
N
V

M
O
D
E

Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
a
p
p
li
ca
ti
o
n

fu
n
ct
io
n

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

C

G
e
tT
e
x
E
n
v
fv

0
,0
,0
,0

T
ex
tu
re
en
v
ir
o
n
m
en
t

co
lo
r

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
g
en
en
a
b
le
d
(x
is

S
,
T
,
R
,
o
r
Q
)

2
.1
0
.4

te
x
tu
re
/
en
a
b
le

E
Y
E

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
p
la
n
e
eq
u
a
ti
o
n

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
o
b
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
g
en
(f
o
r
S
,
T
,
R
,

a
n
d
Q

2
.1
0
.4

te
x
tu
re

Table 6.14. Texture Environment and Generation

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 205

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

S
C
IS
S
O
R

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
ci
ss
o
ri
n
g
en
a
b
le
d

4
.1
.2

sc
is
so
r/
en
a
b
le

S
C
IS
S
O
R

B
O
X

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
4
.1
.2

S
ci
ss
o
r
b
ox

4
.1
.2

sc
is
so
r

A
L
P
H
A

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

A
lp
h
a
te
st
en
a
b
le
d

4
.1
.3

co
lo
r-
b
u
�
er
/
en
a
b
le

A
L
P
H
A

T
E
S
T

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

A
lp
h
a
te
st
fu
n
ct
io
n

4
.1
.3

co
lo
r-
b
u
�
er

A
L
P
H
A

T
E
S
T

R
E
F

R
+

G
e
tI
n
te
g
e
rv

0

A
lp
h
a
te
st
re
fe
re
n
ce

va
lu
e

4
.1
.3

co
lo
r-
b
u
�
er

S
T
E
N
C
IL
T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
te
n
ci
li
n
g
en
a
b
le
d

4
.1
.4

st
en
ci
l-
b
u
�
er
/
en
a
b
le

S
T
E
N
C
IL
F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

S
te
n
ci
l
fu
n
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
V
A
L
U
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
m
a
sk

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
R
E
F

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
re
fe
re
n
ce
va
lu
e

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

P
A
S
S

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

p
a
ss
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

D
E
P
T
H

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

D
ep
th
b
u
�
er
en
a
b
le
d

4
.1
.5

d
ep
th
-b
u
�
er
/
en
a
b
le

D
E
P
T
H

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

L
E
S
S

D
ep
th
b
u
�
er
te
st

fu
n
ct
io
n

4
.1
.5

d
ep
th
-b
u
�
er

B
L
E
N
D

B

Is
E
n
a
b
le
d

F
a
ls
e

B
le
n
d
in
g
en
a
b
le
d

4
.1
.6

co
lo
r-
b
u
�
er
/
en
a
b
le

B
L
E
N
D

S
R
C

Z
1
3

G
e
tI
n
te
g
e
rv

O
N
E

B
le
n
d
in
g
so
u
rc
e

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

D
S
T

Z
1
2

G
e
tI
n
te
g
e
rv

Z
E
R
O

B
le
n
d
in
g
d
es
ti
n
a
ti
o
n

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

E
Q
U
A
T
IO
N

Z
5

G
e
tI
n
te
g
e
rv

F
U
N
C
A
D
D

B
le
n
d
in
g
eq
u
a
ti
o
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
n
st
a
n
t
b
le
n
d
co
lo
r

4
.1
.6

co
lo
r-
b
u
�
er

D
IT
H
E
R

B

Is
E
n
a
b
le
d

T
ru
e

D
it
h
er
in
g
en
a
b
le
d

4
.1
.7

co
lo
r-
b
u
�
er
/
en
a
b
le

IN
D
E
X

L
O
G
IC

O
P
(v
1
.0
:
G
L
L
O
G
IC

O
P
)

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

C
O
L
O
R

L
O
G
IC

O
P

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

L
O
G
IC

O
P

M
O
D
E

Z
1
6

G
e
tI
n
te
g
e
rv

C
O
P
Y

L
o
g
ic
o
p
fu
n
ct
io
n

4
.1
.8

co
lo
r-
b
u
�
er

Table 6.15. Pixel Operations

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

206 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

D
R
A
W

B
U
F
F
E
R

Z
1
0
�

G
e
tI
n
te
g
e
rv

se
e
4
.2
.1

B
u
�
er
s
se
le
ct
ed
fo
r

d
ra
w
in
g

4
.2
.1

co
lo
r-
b
u
�
er

IN
D
E
X

W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

C
o
lo
r
in
d
ex
w
ri
te
m
a
sk

4
.2
.2

co
lo
r-
b
u
�
er

C
O
L
O
R

W
R
IT
E
M
A
S
K

4
�
B

G
e
tB
o
o
le
a
n
v

T
ru
e

C
o
lo
r
w
ri
te
en
a
b
le
s;
R
,

G
,
B
,
o
r
A

4
.2
.2

co
lo
r-
b
u
�
er

D
E
P
T
H

W
R
IT
E
M
A
S
K

B

G
e
tB
o
o
le
a
n
v

T
ru
e

D
ep
th
b
u
�
er
en
a
b
le
d

fo
r
w
ri
ti
n
g

4
.2
.2

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
b
u
�
er

w
ri
te
m
a
sk

4
.2
.2

st
en
ci
l-
b
u
�
er

C
O
L
O
R

C
L
E
A
R

V
A
L
U
E

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
lo
r
b
u
�
er
cl
ea
r

va
lu
e
(R
G
B
A
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

IN
D
E
X

C
L
E
A
R

V
A
L
U
E

C
I

G
e
tF
lo
a
tv

0

C
o
lo
r
b
u
�
er
cl
ea
r
va
lu
e

(c
o
lo
r
in
d
ex
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

D
E
P
T
H

C
L
E
A
R

V
A
L
U
E

R
+

G
e
tI
n
te
g
e
rv

1

D
ep
th
b
u
�
er
cl
ea
r

va
lu
e

4
.2
.3

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
C
L
E
A
R

V
A
L
U
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
cl
ea
r
va
lu
e

4
.2
.3

st
en
ci
l-
b
u
�
er

A
C
C
U
M

C
L
E
A
R

V
A
L
U
E

4
�
R
+

G
e
tF
lo
a
tv

0

A
cc
u
m
u
la
ti
o
n
b
u
�
er

cl
ea
r
va
lu
e

4
.2
.3

a
cc
u
m
-b
u
�
er

Table 6.16. Framebu�er Control

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 207

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

U
N
P
A
C
K

S
W
A
P
B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

Table 6.17. Pixels

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

208 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
P

C
O
L
O
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
co
lo
rs
a
re

m
a
p
p
ed

4
.3

p
ix
el

M
A
P

S
T
E
N
C
IL

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
st
en
ci
l
va
lu
es

a
re
m
a
p
p
ed

4
.3

p
ix
el

IN
D
E
X

S
H
IF
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
S
H
I
F
T

4
.3

p
ix
el

IN
D
E
X

O
F
F
S
E
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
O
F
F
S
E
T

4
.3

p
ix
el

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

V
a
lu
e
o
f
x
S
C
A
L
E
;
x
is

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

x
B
IA
S

R

G
e
tF
lo
a
tv

0

V
a
lu
e
o
f
x
B
I
A
S
;
x
is

o
n
e
o
f
R
E
D
,
G
R
E
E
N
,

B
L
U
E
,
A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st

co
n
v
o
lu
ti
o
n
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st
co
lo
r

m
a
tr
ix
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
L
O
R

T
A
B
L
E

3
�
I

G
e
tC
o
lo
rT
a
b
le

em
p
ty

C
o
lo
r
ta
b
le
s

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

F
O
R
M
A
T

2
�
3
�
Z
4
2

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
lo
r
ta
b
le
s'
in
te
rn
a
l

im
a
g
e
fo
rm
a
t

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

W
ID
T
H

2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
s'
sp
ec
i�
ed

w
id
th

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

x
S
IZ
E

6
�
2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
co
m
p
o
n
en
t

re
so
lu
ti
o
n
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
A
L
P
H
A
,

L
U
M
I
N
A
N
C
E
,
o
r

I
N
T
E
N
S
I
T
Y

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

S
C
A
L
E

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B
IA
S

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

Table 6.18. Pixels (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 209

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
N
V
O
L
U
T
IO
N

1
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
1
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
2
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

S
E
P
A
R
A
B
L
E
2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
se
p
a
ra
b
le
2
D

co
n
v
o
lu
ti
o
n
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tC
o
n
v
o
lu
ti
o
n
-

F
il
te
r

em
p
ty

C
o
n
v
o
lu
ti
o
n
�
lt
er
s

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tS
e
p
a
ra
b
le
-

F
il
te
r

em
p
ty

S
ep
a
ra
b
le
co
n
v
o
lu
ti
o
n

�
lt
er

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

C
O
L
O
R

3
�
C

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

co
lo
r

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

M
O
D
E

3
�
Z
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
E
D
U
C
E

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

m
o
d
e

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

S
C
A
L
E

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

B
IA
S

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
O
R
M
A
T

3
�
Z
4
2

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
n
v
o
lu
ti
o
n
�
lt
er

in
te
rn
a
l
fo
rm
a
t

4
.3

{

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

w
id
th

4
.3

{

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

h
ei
g
h
t

4
.3

{

Table 6.19. Pixels (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

210 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

H
IS
T
O
G
R
A
M

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

is
en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

H
IS
T
O
G
R
A
M

I

G
e
tH
is
to
g
ra
m

em
p
ty

H
is
to
g
ra
m
ta
b
le

3
.6
.3

{

H
IS
T
O
G
R
A
M

W
ID
T
H

2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le
w
id
th

3
.6
.3

{

H
IS
T
O
G
R
A
M

F
O
R
M
A
T

2
�
Z
4
2

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

R
G
B
A

H
is
to
g
ra
m
ta
b
le

in
te
rn
a
l
fo
rm
a
t

3
.6
.3

{

H
IS
T
O
G
R
A
M

x
S
IZ
E

5
�
2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le

co
m
p
o
n
en
t
re
so
lu
ti
o
n
;

x
is
R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
L
U
M
I
N
A
N
C
E

3
.6
.3

{

H
IS
T
O
G
R
A
M

S
IN
K

B

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Table 6.20. Pixels (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 211

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
IN
M
A
X

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
m
in
m
a
x
is

en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

M
IN
M
A
X

R
n

G
e
tM
in
m
a
x

(M
,M
,M
,M
),
(m
,m
,m
,m
)

M
in
m
a
x
ta
b
le

3
.6
.3

{

M
IN
M
A
X

F
O
R
M
A
T

Z
4
2

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

R
G
B
A

M
in
m
a
x
ta
b
le
in
te
rn
a
l

fo
rm
a
t

3
.6
.3

{

M
IN
M
A
X

S
IN
K

B

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
m
in
m
a
x

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Z
O
O
M

X

R

G
e
tF
lo
a
tv

1
.0

x
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

Z
O
O
M

Y

R

G
e
tF
lo
a
tv

1
.0

y
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

x

8
�
3
2
�
�
R

G
e
tP
ix
e
lM
a
p

0
's

R
G
B
A
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x

2
�
3
2
�
�
Z

G
e
tP
ix
e
lM
a
p

0
's

In
d
ex
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x
S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1

S
iz
e
o
f
ta
b
le
x

4
.3

{

R
E
A
D

B
U
F
F
E
R

Z
3

G
e
tI
n
te
g
e
rv

se
e
4
.3
.2

R
ea
d
so
u
rc
e
b
u
�
er

4
.3

p
ix
el

Table 6.21. Pixels (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

212 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

O
R
D
E
R

9
�
Z
8
�

G
e
tM
a
p
iv

1

1
d
m
a
p
o
rd
er

5
.1

{

O
R
D
E
R

9
�
2
�
Z
8
�

G
e
tM
a
p
iv

1
,1

2
d
m
a
p
o
rd
er
s

5
.1

{

C
O
E
F
F

9
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

1
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

C
O
E
F
F

9
�
8
�
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

2
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
2
�
R

G
e
tM
a
p
fv

se
e
5
.1

1
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
4
�
R

G
e
tM
a
p
fv

se
e
5
.1

2
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

M
A
P
1
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

1
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
2
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

2
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
1
G
R
ID

D
O
M
A
IN

2
�
R

G
e
tF
lo
a
tv

0
,1

1
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
2
G
R
ID

D
O
M
A
IN

4
�
R

G
e
tF
lo
a
tv

0
,1
;0
,1

2
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
1
G
R
ID

S
E
G
M
E
N
T
S

Z
+

G
e
tF
lo
a
tv

1

1
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

M
A
P
2
G
R
ID

S
E
G
M
E
N
T
S

2
�
Z
+

G
e
tF
lo
a
tv

1
,1

2
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

A
U
T
O

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
a
u
to
m
a
ti
c

n
o
rm
a
l
g
en
er
a
ti
o
n

en
a
b
le
d

5
.1

ev
a
l/
en
a
b
le

Table 6.22. Evaluators (GetMap takes a map name)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 213

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
E
R
S
P
E
C
T
IV
E

C
O
R
R
E
C
T
IO
N

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
er
sp
ec
ti
v
e
co
rr
ec
ti
o
n

h
in
t

5
.6

h
in
t

P
O
IN
T

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
in
t
sm
o
o
th
h
in
t

5
.6

h
in
t

L
IN
E

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

L
in
e
sm
o
o
th
h
in
t

5
.6

h
in
t

P
O
L
Y
G
O
N

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
ly
g
o
n
sm
o
o
th
h
in
t

5
.6

h
in
t

F
O
G

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

F
o
g
h
in
t

5
.6

h
in
t

Table 6.23. Hints

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

214 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
X

L
IG
H
T
S

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
n
u
m
b
er
o
f

li
g
h
ts

2
.1
3
.1

{

M
A
X

C
L
IP

P
L
A
N
E
S

Z
+

G
e
tI
n
te
g
e
rv

6

M
a
x
im
u
m
n
u
m
b
er
o
f

u
se
r
cl
ip
p
in
g
p
la
n
es

2
.1
1

{

M
A
X

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
co
lo
r
m
a
tr
ix

st
a
ck
d
ep
th

3
.6
.3

{

M
A
X

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
m
o
d
el
-v
ie
w

st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
p
ro
je
ct
io
n

m
a
tr
ix
st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
n
u
m
b
er

d
ep
th
o
f
te
x
tu
re

m
a
tr
ix
st
a
ck

2
.1
0
.2

{

S
U
B
P
IX
E
L
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

4

N
u
m
b
er
o
f
b
it
s
o
f

su
b
p
ix
el
p
re
ci
si
o
n
in

sc
re
en
x
w

a
n
d
y
w

3

{

M
A
X

3
D

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1
6

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

6
4

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

P
IX
E
L
M
A
P

T
A
B
L
E

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
si
ze
o
f
a

P
ix
e
lM
a
p
tr
a
n
sl
a
ti
o
n

ta
b
le

3
.6
.3

{

M
A
X

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
se
le
ct
io
n

n
a
m
e
st
a
ck
d
ep
th

5
.2

{

M
A
X

L
IS
T

N
E
S
T
IN
G

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
d
is
p
la
y
li
st

ca
ll
n
es
ti
n
g

5
.4

{

M
A
X

E
V
A
L
O
R
D
E
R

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
ev
a
lu
a
to
r

p
o
ly
n
o
m
ia
l
o
rd
er

5
.1

{

M
A
X

V
IE
W
P
O
R
T

D
IM
S

2
�
Z
+

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

M
a
x
im
u
m
v
ie
w
p
o
rt

d
im
en
si
o
n
s

2
.1
0
.1

{

M
A
X

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

se
rv
er
a
tt
ri
b
u
te
st
a
ck

6

{

M
A
X

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

cl
ie
n
t
a
tt
ri
b
u
te
st
a
ck

6

{

{

3
�
Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
a

co
lo
r
ta
b
le

3
.6
.3

{

{

Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
th
e

h
is
to
g
ra
m
ta
b
le

3
.6
.3

{

Table 6.24. Implementation Dependent Values

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 215

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
U
X

B
U
F
F
E
R
S

Z
+

G
e
tI
n
te
g
e
rv

0

N
u
m
b
er
o
f
a
u
x
il
ia
ry

b
u
�
er
s

4
.2
.1

{

R
G
B
A

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
rg
b
a

2
.7

{

IN
D
E
X

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
in
d
ex
es

2
.7

{

D
O
U
B
L
E
B
U
F
F
E
R

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
fr
o
n
t
&
b
a
ck

b
u
�
er
s
ex
is
t

4
.2
.1

{

S
T
E
R
E
O

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
le
ft
&
ri
g
h
t

b
u
�
er
s
ex
is
t

6

{

A
L
IA
S
E
D

P
O
IN
T

S
IZ
E

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

R
A
N
G
E

(v
1
.1
:
P
O
IN
T

S
IZ
E

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
p
o
in
t
si
ze

g
ra
n
u
la
ri
ty

3
.3

{

A
L
IA
S
E
D

L
IN
E

W
ID
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

R
A
N
G
E

(v
1
.1
:
L
IN
E

W
ID
T
H

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
li
n
e
w
id
th

g
ra
n
u
la
ri
ty

3
.4

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
w
id
th
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
h
ei
g
h
t
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

E
L
E
M
E
N
T
S
IN
D
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
in
d
ic
es

2
.8

{

M
A
X

E
L
E
M
E
N
T
S
V
E
R
T
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
v
er
ti
ce
s

2
.8

{

Table 6.25. More Implementation Dependent Values

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

216 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

co
lo
r
b
u
�
er

co
m
p
o
n
en
t;
x
is
o
n
e
o
f

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
I
N
D
E
X

4

{

D
E
P
T
H

B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
d
ep
th

b
u
�
er
p
la
n
es

4

{

S
T
E
N
C
IL
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
st
en
ci
l

p
la
n
es

4

{

A
C
C
U
M

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

a
cc
u
m
u
la
ti
o
n
b
u
�
er

co
m
p
o
n
en
t
(x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

4

{

Table 6.26. Implementation Dependent Pixel Depths

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 217

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IS
T

B
A
S
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
et
ti
n
g
o
f
L
is
tB
a
se

5
.4

li
st

L
IS
T

IN
D
E
X

Z
+

G
e
tI
n
te
g
e
rv

0

n
u
m
b
er
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;
0

if
n
o
n
e

5
.4

{

L
IS
T

M
O
D
E

Z
+

G
e
tI
n
te
g
e
rv

0

M
o
d
e
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;

u
n
d
e�
n
ed
if
n
o
n
e

5
.4

{

{

1
6
�
�
A

{

em
p
ty

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

6

{

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

{

1
6
�
�
A

{

em
p
ty

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

6

{

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

N
a
m
e
st
a
ck
d
ep
th

5
.2

{

R
E
N
D
E
R

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

R
E
N
D
E
R

R
e
n
d
e
rM
o
d
e
se
tt
in
g

5
.2

{

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

S
el
ec
ti
o
n
b
u
�
er

p
o
in
te
r

5
.2

se
le
ct

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
el
ec
ti
o
n
b
u
�
er
si
ze

5
.2

se
le
ct

F
E
E
D
B
A
C
K

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

F
ee
d
b
a
ck
b
u
�
er

p
o
in
te
r

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

F
ee
d
b
a
ck
b
u
�
er
si
ze

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

2
D

F
ee
d
b
a
ck
ty
p
e

5
.3

fe
ed
b
a
ck

{

n
�
Z
8

G
e
tE
rr
o
r

0

C
u
rr
en
t
er
ro
r
co
d
e(
s)

2
.5

{

{

n
�
B

{

F
a
ls
e

T
ru
e
if
th
er
e
is
a

co
rr
es
p
o
n
d
in
g
er
ro
r

2
.5

{

Table 6.27. Miscellaneous

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix A

Invariance

The OpenGL speci�cation is not pixel exact. It therefore does not guarantee
an exact match between images produced by di�erent GL implementations.
However, the speci�cation does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justi�cation for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebu�er state vector, and for
any GL command, the resulting GL and framebu�er state must be identical
whenever the command is executed on that initial GL and framebu�er state.

One purpose of repeatability is avoidance of visual artifacts when a
double-bu�ered scene is redrawn. If rendering is not repeatable, swapping
between two bu�ers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might di�er at every pixel. Such a di�erence, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

218

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

A.2. MULTI-PASS ALGORITHMS 219

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a di�erent GL mode vec-
tor, to eventually produce a result in the framebu�er. Examples of these
algorithms include:

� \Erasing" a primitive from the framebu�er by redrawing it, either in
a di�erent color or using the XOR logical operation.

� Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement signi�cantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very di�cult to achieve (for example, if the hardware does
oating-point operations with di�erent precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebu�er state vector, and for any given
GL command, the resulting GL and framebu�er state must be identical each
time the command is executed on that initial GL and framebu�er state.

Rule 2 Changes to the following state values have no side e�ects (the use
of any other state value is not a�ected by the change):

Required:

� Framebu�er contents (all bitplanes)

� The color bu�ers enabled for writing

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

220 APPENDIX A. INVARIANCE

� The values of matrices other than the top-of-stack matrices

� Scissor parameters (other than enable)

� Writemasks (color, index, depth, stencil)

� Clear values (color, index, depth, stencil, accumulation)

� Current values (color, index, normal, texture coords, edgeag)

� Current raster color, index and texture coordinates.

� Material properties (ambient, di�use, specular, emission, shini-
ness)

Strongly suggested:

� Matrix mode

� Matrix stack depths

� Alpha test parameters (other than enable)

� Stencil parameters (other than enable)

� Depth test parameters (other than enable)

� Blend parameters (other than enable)

� Logical operation parameters (other than enable)

� Pixel storage and transfer state

� Evaluator state (except as it a�ects the vertex data generated by
the evaluators)

� Polygon o�set parameters (other than enables, and except as they
a�ect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-
ues marked with � in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments
are also invariant with respect to

Required:

� Current values (color, color index, normal, texture coords, edge-
ag)

� Current raster color, color index, and texture coordinates

� Material properties (ambient, di�use, specular, emission, shini-
ness)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

A.4. WHAT ALL THIS MEANS 221

Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into di�erent color bu�ers sharing the same
framebu�er, either simultaneously or separately using the same command
sequence, are pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because oating point values may be represented using di�erent formats
in di�erent renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the speci�cation. Absence of an observation from this list in no
way impugns its veracity.

1. The CURRENT RASTER TEXTURE COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and
when the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are
always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may
change. Otherwise, only additions can be made to upward compat-
ible revisions.

4. GL query commands are not required to satisfy the semantics of the
Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands.

5. Application speci�ed point size and line width must be returned as
speci�ed when queried. Implementation dependent clamping a�ects
the values only while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask speci�ed as the third argument to StencilFunc a�ects the
operands of the stencil comparison function, but has no direct e�ect on

222

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

223

the update of the stencil bu�er. The mask speci�ed by StencilMask
has no e�ect on the stencil comparison function; it limits the e�ect of
the update of the stencil bu�er.

8. Polygon shading is completed before the polygon mode is interpreted.
If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

9. A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

10. RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

11. A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no e�ect.

12. Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material
can be used to modify the color index material properties, even in an
RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILLmode, and the fragments generated by the rasterization
of \narrow" polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

224 APPENDIX B. COROLLARIES

is less than the far value for DepthRange. If these conditions are all
satis�ed, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

16. ColorMaterial has no e�ect on color index lighting.

17. (No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are speci�ed). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

18. OpenGL state continues to be modi�ed in FEEDBACK mode and in
SELECT mode. The contents of the framebu�er are not modi�ed.

19. The current raster position, the user de�ned clip planes, the spot direc-
tions and the light positions for LIGHTi, and the eye planes for texgen
are transformed when they are speci�ed. They are not transformed
during a PopAttrib, or when copying a context.

20. Dithering algorithms may be di�erent for di�erent components. In
particular, alpha may be dithered di�erently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

21. For any GL and framebu�er state, and for any group of GL commands
and arguments, the resulting GL and framebu�er state is identical
whether the GL commands and arguments are executed normally or
from a display list.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix C

Version 1.1

OpenGL version 1.1 is the �rst revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,
meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made
to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each
addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-
mands than were previously necessary. Six arrays are de�ned, one each
storing vertex positions, normal coordinates, colors, color indices, texture
coordinates, and edge ags. The arrays may be speci�ed and enabled inde-
pendently, or one of the pre-de�ned con�gurations may be selected with a
single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was
to improve the e�ciency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to e�ect the transfer. The additions
match those of the EXT vertex array extension, except that static array data
are not supported (because they complicated the interface, and were not
being used), and the pre-de�ned con�gurations are added (both to reduce
subroutine count even further, and to allow for e�cient transfer of array
data).

225

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

226 APPENDIX C. VERSION 1.1

C.2 Polygon O�set

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an a�ne function of the window
coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth bu�er
artifacts. They may also be used by future shadow generation algorithms.

The additions match those of the EXT polygon offset extension, with two
exceptions. First, the o�set is enabled separately for POINT, LINE, and FILL

rasterization modes, all sharing a single a�ne function de�nition. (Shifting
the depth values of the outline fragments, instead of the �ll fragments, allows
the contents of the depth bu�er to be maintained correctly.) Second, the
o�set bias is speci�ed in units of depth bu�er resolution, rather than in the
[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
bu�er using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely
desired, because many systems could not support it, and to match the se-
mantics of the EXT blend logic op extension, on which this addition is loosely
based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image
data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format speci�cation to suggest the
desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions
match those of a subset of the EXT texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be speci�ed only indirectly

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

C.6. TEXTURE PROXIES 227

in GL version 1.0, which required that client speci�ed \white" geometry
be modulated by a texture. GL version 1.1 allows such replacement to be
speci�ed explicitly, possibly improving performance. These additions match
those of a subset of the EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise di�erent maximum
texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism
to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-
face. These additions match those of a subset of the EXT texture extension,
except that implementations return allocation information consistent with
support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be speci�ed from framebu�er memory, as well as
from client memory, and rectangular subregions of texture arrays can be
rede�ned either from client or framebu�er memory. These additions match
those de�ned by the EXT copy texture and EXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a
single object. Such treatment allows for greater implementation e�ciency
when multiple arrays are used. In conjunction with the subtexture capabil-
ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely rede�ning them. These additions match those of the
EXT texture object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be speci�ed as unsigned bytes.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

228 APPENDIX C. VERSION 1.1

2. Texture coordinates s, t, and r are divided by q during the rasterization
of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

3. The line rasterization algorithm was changed so that vertical lines on
pixel borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were
combined into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspeci�ed in the 1.0 version,
and was incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if
ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs
Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D'Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM
Phil Huxley, 3Dlabs

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

C.10. ACKNOWLEDGEMENTS 229

Dale Kirkland, Intergraph
Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM
Tim Misner, SunSoft
Jeremy Morris, 3Dlabs
Israel Pinkas, Intel
Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel
Je� Stevenson, Hewlett Packard
Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs
Linas Vepstas, IBM
Andy Vesper, Digital Equipment
Henri Warren, Megatek
Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since
the original version 1.0. Version 1.2 is upward compatible with version 1.1,
meaning that any program that runs with a 1.1 GL implementation will also
run unchanged with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions
of each addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be de�ned and used. In-memory formats
for three-dimensional images, and pixel storage modes to support them, are
also de�ned. The additions match those of the EXT texture3D extension.

One important application of three-dimensional textures is rendering
volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Speci�cally, it pro-
vides a component order matching �le and framebu�er formats common on
Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The �elds with the packed pixel

230

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

D.4. NORMAL RESCALING 231

are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.

The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modi�ed to produce a primary color consisting of
emissive, ambient and di�use terms of the usual GL lighting equation, and
a secondary color consisting of the specular term. Only the primary color
is modi�ed by the texture environment; the secondary color is added to
the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather
than surface properties.

The additions match those of the EXT separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly
the range [0; 1]. When a texture coordinate is clamped using this algorithm,
the texture sampling �lter straddles the edge of the texture image, taking
half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without
requiring a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP TO EDGE, clamps texture coor-
dinates at all mipmap levels such that the texture �lter never samples a
border texel. The color returned when clamping is derived only from texels
at the edge of the texture image.

The additions match those of the SGIS texture edge clamp extension.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

232 APPENDIX D. VERSION 1.2

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter � are added.
One constraint clamps � to a speci�ed oating point range. The other limits
the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more
resolution is desired or available. Image array speci�cation is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping
of the � parameter, it is possible to avoid "popping" artifacts when higher
resolution images are provided.

The additions match those of the SGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the
range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.

The additions match those of the EXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.
The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is de�ned in the pixel trans-
fer process, providing additional lookup capabilities beyond the existing
lookup. The key di�erence is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-
volution �lter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-
mat ALPHA modi�es only the A component of each pixel group, leaving the
R, G, and B components unmodi�ed.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

D.9. IMAGING SUBSET 233

Three independent lookups may be performed: prior to convolution;
after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebu�er, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be rede�ned without reinitializing
the entire table. The a�ected portions may be speci�ed either from host
memory or from the framebu�er.

The additions match those of the EXT color table and
EXT color subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
�rst color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be
loaded from application memory or from the framebu�er.

The convolution framework is designed to accommodate three-
dimensional convolution, but that API is left for a future extension.

The additions match those of the EXT convolution and
HP convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the
equation

C 0 =MC;

where

C =

0
BB@
R
G
B
A

1
CCA

andM is the 4�4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased
by a programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components.
It can also be used to implement simple color space conversions.

The additions match those of the SGI color matrix extension.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

234 APPENDIX D. VERSION 1.2

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of speci�c color component values
(histogram) and that track the minimum and maximum color component
values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or
minmax operations are completed. Otherwise the pixel data continues on
to the next operation una�ected.

The additions match those of the EXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to de�ne blend weighting factors may be
de�ned. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-
tination components may be used.

Two of the new equations produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the di�erence of its left and right hand sides, rather than the
sum. Image di�erences are useful in many image processing applications.

The additions match those of the EXT blend minmax and
EXT blend subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 235

Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft
David Blythe, Silicon Graphics
Jon Brewster, Hewlett Packard
Dan Brokenshire, IBM
Pat Brown, IBM
Newton Cheung, S3
Bill Cli�ord, Digital
Jim Cobb, Parametric Technology
Bruce D'Amora, IBM
Kevin Dallas, Microsoft
Mahesh Dandapani, Rendition
Daniel Daum, AccelGraphics
Suzy De�eyes, IBM
Peter Doyle, Intel
Jay Duluk, Raycer
Craig Dunwoody, Silicon Graphics
Dave Erb, IBM
Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI
Ken Garnett, NCD
Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link
Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics
Paul Ho, Silicon Graphics
Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel
Phil Huxley, 3Dlabs
Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx
Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics
Tim Kelley, Real3D
Jon Khazam, Intel
Louis Khouw, Sun
Dale Kirkland, Intergraph
Chris Kitrick, Raycer

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

236 APPENDIX D. VERSION 1.2

Don Kuo, S3
Herb Kuta, Quantum 3D
Phil Lacroute, Silicon Graphics
Prakash Ladia, S3
Jon Leech, Silicon Graphics
Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics
Kent Lin, S3
Dan McCabe, S3
Jack Middleton, Sun
Tim Misner, Intel
Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs
Gene Munce, Intel
William Newhall, Real3D
Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter P�ster, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel
Rob Putney, IBM
Mike Quinlan, Real3D
Nate Robins, University of Utah
Detlef Roettger, Elsa
Randi Rost, Hewlett Packard
Kevin Rushforth, Sun
Richard S. Wright, Real3D
Hock San Lee, Microsoft
John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA
Mark Segal, Silicon Graphics
Bob Seitsinger, S3
Min-Zhi Shao, S3
Colin Sharp, Rendition
Igor Sinyak, Intel
Bill Sweeney, Sun
William Sweeney, Sun
Nathan Tuck, Raycer
Doug Twillenger, Sun
John Tynefeld, 3dfx

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 237

Kartik Venkataraman, Intel
Andy Vesper, Digital Equipment
Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics
Steve Wright, Microsoft
David Yu, Silicon Graphics
Randy Zhao, S3

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB ex-
tensions (see Appendix F). The only ARB extension de�ned in this version
is multitexture, allowing application of multiple textures to a fragment in
one rendering pass. Multitexture is based on the SGIS multitexture exten-
sion, simpli�ed by removing the ability to route texture coordinate sets to
arbitrary texture units.

A new corollary discussing display list and immediate mode invariance
was added to Appendix B on April 1, 1999.

238

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Appendix F

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural
Review Board (ARB) are described in this chapter. These extensions are
not required to be supported by a conformant OpenGL implementation, but
are expected to be widely available; they de�ne functionality that is likely
to move into the required feature set in a future revision of the speci�cation.

In order not to compromise the readability of the core speci�cation,
ARB extensions are not integrated into the core language; instead, they are
presented in this chapter, as changes to the core.

F.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
speci�c extensions, the following naming conventions are used:

� A unique name string of the form "GL ARB name" is associated with
each extension. If the extension is supported by an implementation,
this string will be present in the EXTENSIONS string described in sec-
tion 6.1.11.

� All functions de�ned by the extension will have names of the form
FunctionARB

� All enumerants de�ned by the extension will have names of the form
NAME ARB.

239

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

240 APPENDIX F. ARB EXTENSIONS

F.2 Multitexture

Multitexture adds support for multiple texture units. The capabilities of
the multiple texture units are identical, except that evaluation and feedback
are supported only for texture unit 0. Each texture unit has its own state
vector which includes texture vertex array speci�cation, texture image and
�ltering parameters, and texture environment application.

The texture environments of the texture units are applied in a pipelined
fashion whereby the output of one texture environment is used as the input
fragment color for the next texture environment. Changes to texture client
state and texture server state are each routed through one of two selectors
which control which instance of texture state is a�ected.

The speci�cation is written using four texture units though the actual
number supported is implementation dependent and can be larger or smaller
than four.

The name string for multitexture is GL ARB multitexture.

F.2.1 Dependencies

Multitexture requires features of OpenGL 1.1.

F.2.2 Issues

The extension currently requires a separate texture coordinate input for each
texture unit. Modi�cation to allow routing and/or broadcasting texcoords
and TexGen output would be useful, possibly as a future extension layered
on multitexture.

F.2.3 Changes to Section 2.6 (Begin/End Paradigm)

Amend paragraphs 2 and 3
Each vertex is speci�ed with two, three, or four coordinates. In addition,

a current normal, multiple current texture coordinate sets, and current color
may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that
may be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive. Multiple sets
of texture coordinates may be used to specify how multiple texture images
are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least one. The number of active
textures supported can be queried with the state MAX TEXTURE UNITS ARB.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 241

Primary and secondary colors are associated with each vertex (see sec-
tion 3.9). These associated colors are either based on the current color or
produced by lighting, depending on whether or not lighting is enabled. Tex-
ture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure F.1 summa-
rizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.
Amend paragraph 6

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the multiple current texture coordinate sets. Because color assignment is
done vertex-by-vertex, a processed vertex comprises the vertex's coordinates,
its edge ag, its assigned colors, and its multiple texture coordinate sets.

F.2.4 Changes to Section 2.7 (Vertex Speci�cation)

Amend paragraph 2
Current values are used in associating auxiliary data with a vertex as

described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly, TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

Implementations may support more than one texture unit, and thus more
than one set of texture coordinates. The commands

void MultiTexCoordf1234gfsifdgARB(enum texture,T
coords)

void MultiTexCoordf1234gfsifdgvARB(enum texture,T
coords)

take the coordinate set to be modi�ed as the texture parameter. texture
is a symbolic constant of the form TEXTUREi ARB, indicating that texture
coordinate set i is to be modi�ed. The constants obey TEXTUREi ARB =

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

242 APPENDIX F. ARB EXTENSIONS

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

texgen texture
matrix 4

Current
Texture

Coord Set 4

Figure F.1. Association of current values with a vertex. The heavy lined
boxes represent GL state. Four texture units are shown; however, multitex-
turing may support a di�erent number of units depending on the implemen-
tation.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 243

TEXTURE0 ARB+ i (i is in the range 0 to k�1, where k is the implementation-
dependent number of texture units de�ned by MAX TEXTURE UNITS ARB).

The TexCoord commands are exactly equivalent to the corresponding
MultiTexCoordARB commands with texture set to TEXTURE0 ARB.

Gets of CURRENT TEXTURE COORDS return the texture coordinate set de�ned
by the value of ACTIVE TEXTURE ARB.

Specifying an invalid texture coordinate set for the texture argument of
MultiTexCoordARB results in unde�ned behavior.

F.2.5 Changes to Section 2.8 (Vertex Arrays)

Amend paragraph 1

The vertex speci�cation commands described in section 2.7 accept data
in almost any format, but their use requires many command executions to
specify even simple geometry. Vertex data may also be placed into arrays
that are stored in the client's address space. Blocks of data in these arrays
may then be used to specify multiple geometric primitives through the ex-
ecution of a single GL command. The client may specify up to 5 plus the
value of MAX TEXTURE UNITS ARB arrays: one each to store vertex coordinates,
edge ags, colors, color indices, normals, and one or more texture coordinate
sets. The commands . . .

Insert between paragraph 2 and 3

In implementations which support more than one texture unit, the com-
mand

void ClientActiveTextureARB(enum texture);

is used to select the vertex array client state parameters to
be modi�ed by the TexCoordPointer command and the array af-
fected by EnableClientState and DisableClientState with parame-
ter TEXTURE COORD ARRAY. This command sets the client state variable
CLIENT ACTIVE TEXTURE ARB. Each texture unit has a client state vector which
is selected when this command is invoked. This state vector includes the
vertex array state. This call also selects which texture units' client state
vector is used for queries of client state.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

Amend �nal paragraph

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

244 APPENDIX F. ARB EXTENSIONS

If the number of supported texture units (the value of
MAX TEXTURE UNITS ARB) is k, then the client state required to imple-
ment vertex arrays consists of 5 + k boolean values, 5 + k memory pointers,
5 + k integer stride values, 4 + k symbolic constants representing array
types, and 3 + k integers representing values per element. In the initial
state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are each FLOAT, and the
integers representing values per element are each four.

F.2.6 Changes to Section 2.10.2 (Matrices)

Amend paragraph 8

For each texture unit, a 4 � 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is also a corresponding texture matrix stack for each texture unit.
To change the stack a�ected by matrix operations, set the active texture
unit selector by calling

void ActiveTextureARB(enum texture);

The selector also a�ects calls modifying texture environment state, texture
coordinate generation state, texture binding state, and queries of all these
state values as well as current texture coordinates and current raster texture
coordinates.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

The active texture unit selector may be queried by callingGetIntegerv
with pname set to ACTIVE TEXTURE ARB.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 245

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode,
the stack depth is at least 32 (that is, there is a stack of at least 32 model-
view matrices). For the other modes, the depth is at least 2. Texture matrix
stacks for all texture units have the same depth. The current matrix in any
mode is the matrix on the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

When the current matrix mode is TEXTURE, the texture matrix stack of
the active texture unit is pushed or popped.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, one stack of at least
two 4�4 matrices for each of COLOR, PROJECTION, each texture unit, TEXTURE,
and a stack of at least 32 4 � 4 matrices for MODELVIEW. Each matrix stack
has an associated stack pointer. Initially, there is only one matrix on each
stack, and all matrices are set to the identity. The initial matrix mode is
MODELVIEW. The initial value of ACTIVE TEXTURE ARB is TEXTURE0 ARB.

F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-
dinates)

Amend paragraph 4
The state required for texture coordinate generation for each texture

unit comprises a three-valued integer for each coordinate indicating coor-
dinate generation mode, and a bit for each coordinate to indicate whether
texture coordinate generation is enabled or disabled. In addition, four co-
e�cients are required for the four coordinates for each of EYE LINEAR and
OBJECT LINEAR. The initial state has the texture generation function dis-
abled for all texture coordinates. The initial values of pi for s are all 0
except p1 which is one; for t all the pi are zero except p2, which is 1.
The values of pi for r and q are all 0. These values of pi apply for both

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

246 APPENDIX F. ARB EXTENSIONS

the EYE LINEAR and OBJECT LINEAR versions. Initially all texture generation
modes are EYE LINEAR.

For implementations which support more than one texture unit, there is
texture coordinate generation state for each unit. The texture coordinate
generation state which is a�ected by the TexGen, Enable, and Disable
operations is set with ActiveTextureARB.

F.2.8 Changes to Section 2.12 (Current Raster Position)

Amend paragraph 2
The state required for the current raster position consists of three window

coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and multiple
texture coordinate sets. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT RASTER TEXTURE COORDS are a�ected by the setting of the
state ACTIVE TEXTURE ARB.
Modify �gure 2.7
Amend paragraph 5

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for each texture unit. In the initial state,
the coordinates and texture coordinates are all (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

F.2.9 Changes to Section 3.8 (Texturing)

Amend paragraphs 1 and 2
Texturing maps a portion of one or more speci�ed images onto each

primitive for which texturing is enabled. This mapping is accomplished by
using the color of an image at the location indicated by a fragment's (s; t; r)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 247

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure F.2. The current raster position and how it is set. Four texture units
are shown; however, multitexturing may support a di�erent number of units
depending on the implementation.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

248 APPENDIX F. ARB EXTENSIONS

coordinates to modify the fragment's primary RGBA color. Texturing does
not a�ect the secondary color.

An implementation may support texturing using more than one image at
a time. In this case the fragment carries multiple sets of texture coordinates
(s; t; r) which are used to index separate images to produce color values
which are collectively used to modify the fragment's RGBA color. Texturing
is speci�ed only for RGBA mode; its use in color index mode is unde�ned.
The following subsections (up to and including Section 3.8.5) specify the
GL operation with a single texture and Section 3.8.10 speci�es the details
of how multiple texture units interact.

F.2.10 Changes to Section 3.8.5 (Texture Mini�cation)

Amend second paragraph under the Mipmapping subheading

Each array in a mipmap is de�ned using TexImage3D, TexImage2D,
CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array
through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase in-
dicating an array of half the dimensions of the previous one as already de-
scribed. If texturing is enabled (and TEXTURE MIN FILTER is one that requires
a mipmap) at the time a primitive is rasterized and if the set of arrays
TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incomplete,
then it is as if texture mapping were disabled for that texture unit. The set
of arrays TEXTURE BASE LEVEL through q is incomplete if the internal formats
of all the mipmap arrays were not speci�ed with the same symbolic constant,
if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

F.2.11 Changes to Section 3.8.8 (Texture Objects)

Insert following the last paragraph

The texture object name space, including the initial one-, two-, and
three-dimensional texture objects, is shared among all texture units. A
texture object may be bound to more than one texture unit simultaneously.
After a texture object is bound, any GL operations on that target object
a�ect any other texture units to which the same texture object is bound.

Texture binding is a�ected by the setting of the state ACTIVE TEXTURE ARB.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 249

If a texture object is deleted, it as if all texture units which are bound
to that texture object are rebound to texture object zero.

F.2.12 Changes to Section 3.8.10 (Texture Application)

Amend second paragraph

Each texture unit is enabled and bound to texture objects independently
from the other texture units. Each texture unit follows the precendence
rules for one-, two-, and three-dimensional textures. Thus texture units can
be performing texture mapping of di�erent dimensionalities simultaneously.
Each unit has its own enable and binding states.

Each texture unit is paired with an environment function, as shown
in �gure F.3. The second texture function is computed using the texture
value from the second texture, the fragment resulting from the �rst texture
function computation and the second texture unit's environment function.
If there is a third texture, the fragment resulting from the second texture
function is combined with the third texture value using the third texture
unit's environment function and so on. The texture unit selected by Ac-
tiveTextureARB determines which texture unit's environment is modi�ed
by TexEnv calls.

Texturing is enabled and disabled individually for each texture unit. If
texturing is disabled for one of the units, then the fragment resulting from
the previous unit, is passed unaltered to the following unit.

The required state, per texture unit, is three bits indicating whether
each of one-, two-, or three-dimensional texturing is enabled or disabled. In
the intial state, all texturing is disabled for all texture units.

F.2.13 Changes to Section 5.1 (Evaluators)

Amend paragraph 7

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The evaluator map generates only coordinates for texture unit TEXTURE0 ARB.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2. If the value of ACTIVE TEXTURE ARB

is not TEXTURE0 ARB, callingMap[12] generates the error INVALID OPERATION.

F.2.14 Changes to Section 5.3 (Feedback)

Amend paragraph 4

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

250 APPENDIX F. ARB EXTENSIONS

TE0

TE1

TE2

TE3

Cf

CT0

CT1

CT2

CT3

C’f

CTi = texture color from texture lookup i

Cf = fragment color input to texturing

C’f = fragment color output from texturing

TEi = texture environment i

Figure F.3. Multitexture pipeline. Four texture units are shown; however,
multitexturing may support a di�erent number of units depending on the
implementation. The input fragment color is successively combined with each
texture according to the state of the corresponding texture environment, and
the resulting fragment color passed as input to the next texture unit in the
pipeline.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 251

The texture coordinates and colors returned are those resulting from the
clipping operations described in Section 2.13.8. Only coordinates for tex-
ture unit TEXTURE0 ARB are returned even for implementations which support
multiple texture units. The colors returned are the primary colors.

F.2.15 Changes to Section 6.1.2 (Data Conversions)

Insert following the last paragraph

Most texture state variables are quali�ed by the
value of ACTIVE TEXTURE ARB to determine which server texture state vector
is queried. Client texture state variables such as texture coordinate array
pointers are quali�ed by the value of CLIENT ACTIVE TEXTURE ARB. Tables 6.5,
6.6, 6.7, 6.12, 6.14, and 6.25 indicate those state variables which are quali�ed
by ACTIVE TEXTURE ARB or CLIENT ACTIVE TEXTURE ARB during state queries.

F.2.16 Changes to Section 6.1.12 (Saving and Restoring
State)

Insert following paragraph 3

Operations on groups containing replicated texture state push or pop
texture state within that group for all texture units. When state for a
group is pushed, all state corresponding to TEXTURE0 ARB is pushed �rst,
followed by state corresponding to TEXTURE1 ARB, and so on up to and in-
cluding the state corresponding to TEXTUREk ARB where k + 1 is the value of
MAX TEXTURE UNITS ARB. When state for a group is popped, the replicated tex-
ture state is restored in the opposite order that it was pushed, starting with
state corresponding to TEXTUREk ARB and ending with TEXTURE0 ARB. Identical
rules are observed for client texture state push and pop operations. Matrix
stacks are never pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib.

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

252 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
5

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

C
u
rr
en
t
te
x
tu
re

co
or
d
in
at
es

2.
7

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

T
ex
tu
re
co
or
d
in
at
es

as
so
ci
at
ed
w
it
h

ra
st
er
p
os
it
io
n

2.
12

cu
rr
en
t

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
6

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

1
��
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
or
d
in
at
e

ar
ra
y
en
ab
le

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

4

C
o
or
d
in
at
es
p
er

el
em
en
t

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

1
��
Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
of
te
x
tu
re

co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n

te
x
tu
re
co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

1
��
Y

G
e
tP
o
in
te
rv

0

P
oi
n
te
r
to
th
e

te
x
tu
re
co
or
d
in
at
e

ar
ra
y

2.
8

ve
rt
ex
-a
rr
ay

Table F.1. Changes to State Tables

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 253

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
7

T
E
X
T
U
R
E

M
A
T
R
IX

1
��
2
��
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
at
ri
x
st
ac
k

2.
10
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

1
��
Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
at
ri
x
st
ac
k

p
oi
n
te
r

2.
10
.2

{

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
12

T
E
X
T
U
R
E

x
D

1
��
3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g

is
en
ab
le
d
;
x
is
1
,
2
,

or
3

3.
8.
10

te
x
tu
re
/e
n
ab
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

1
��
3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
ob
je
ct

b
ou
n
d
to
T
E
X
T
U
R
E
x
D

3.
8.
8

te
x
tu
re

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
14

T
E
X
T
U
R
E

E
N
V

M
O
D
E

1
��
Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
ap
p
li
ca
ti
on

fu
n
ct
io
n

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

1
��
C

G
e
tT
e
x
E
n
v
fv

0,
0,
0,
0

T
ex
tu
re
en
v
ir
on
m
en
t

co
lo
r

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

1
��
4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
ge
n
en
ab
le
d
(x
is

S
,
T
,
R
,
or
Q
)

2.
10
.4

te
x
tu
re
/e
n
ab
le

E
Y
E

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
p
la
n
e

eq
u
at
io
n
co
e�
ci
en
ts

(f
or
S
,
T
,
R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
ob
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
or
S
,
T
,

R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

1
��
4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
ge
n
(f
or
S
,
T
,
R
,

an
d
Q

2.
10
.4

te
x
tu
re

Table F.2. Changes to State Tables (cont.)

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

254 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
6

C
L
IE
N
T

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

C
li
en
t
ac
ti
ve
te
x
tu
re

u
n
it
se
le
ct
or

2.
7

ve
rt
ex
-a
rr
ay

A
d
d
ed
to
ta
b
le
6.
14

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

A
ct
iv
e
te
x
tu
re
u
n
it

se
le
ct
or

2.
7

te
x
tu
re

Table F.3. New State Introduced by Multitexture

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 255

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
25

M
A
X

T
E
X
T
U
R
E

U
N
IT
S
A
R
B

Z
+

G
e
tI
n
te
g
e
rv

1

N
u
m
b
er
of
te
x
tu
re

u
n
it
s
(n
ot
to
ex
ce
ed

32
)

2.
6

{

Table F.4. New Implementation-Dependent Values Introduced by Multitexture

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

Index of OpenGL Commands

x BIAS, 78, 208
x SCALE, 78, 208
2D, 174, 176, 217
2 BYTES, 177
3D, 174, 176
3D COLOR, 174, 176
3D COLOR TEXTURE, 174, 176
3 BYTES, 177
4D COLOR TEXTURE, 174, 176
4 BYTES, 177

1, 113, 120, 131, 136, 137, 185, 202,
253

2, 113, 120, 136, 137, 185, 202, 253
3, 113, 120, 136, 137, 185, 202, 253
4, 113, 120, 136, 137, 185

ACCUM, 155
Accum, 155, 156
ACCUM BUFFER BIT, 154, 191
ACTIVE TEXTURE ARB, 243{246,

248, 249, 251
ActiveTextureARB, 244, 246, 249
ADD, 155, 156
ALL ATTRIB BITS, 191
ALL CLIENT ATTRIB BITS, 191
ALPHA, 78, 92, 103, 104, 114, 115,

136, 137, 159, 160, 185, 208,
210, 216, 226, 232

ALPHA12, 115
ALPHA16, 115
ALPHA4, 115
ALPHA8, 115
ALPHA BIAS, 101
ALPHA SCALE, 101
ALPHA TEST, 143

AlphaFunc, 143
ALWAYS, 143{145, 205
AMBIENT, 50, 51
AMBIENT AND DIFFUSE, 50, 51,

53
AND, 151
AND INVERTED, 151
AND REVERSE, 151
AreTexturesResident, 134, 178
ArrayElement, 19, 23, 24, 175
AUTO NORMAL, 167
AUXi, 151, 152
AUXn, 151, 158
AUX0, 151, 158

BACK, 49, 51, 52, 70, 73, 151, 152,
158, 159, 183, 201

BACK LEFT, 151, 152, 158
BACK RIGHT, 151, 152, 158
Begin, 12, 15{20, 23, 24, 28, 55, 62,

67, 70, 73, 168, 169, 174
BGR, 92, 159, 162
BGRA, 92, 94, 98, 159, 230
BindTexture, 133
BITMAP, 72, 80, 83, 90, 91, 98, 110,

160, 185
Bitmap, 110
BITMAP TOKEN, 176
BLEND, 135, 137, 146, 150
BlendColor, 77, 146
BlendEquation, 77, 146, 147
BlendFunc, 77, 146, 147, 149
BLUE, 78, 92, 159, 160, 208, 210, 216
BLUE BIAS, 101
BLUE SCALE, 101
BYTE, 22, 91, 160, 161, 177

256

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

INDEX 257

C3F V3F, 25, 26
C4F N3F V3F, 25, 26
C4UB V2F, 25, 26
C4UB V3F, 25, 26
CallList, 19, 177, 178
CallLists, 19, 177, 178
CCW, 48, 201
CLAMP, 124, 127
CLAMP TO EDGE, 124, 125, 127,

231
CLEAR, 151
Clear, 153, 154
ClearAccum, 154
ClearColor, 154
ClearDepth, 154
ClearIndex, 154
ClearStencil, 154
CLIENT ACTIVE TEXTURE

ARB, 243, 251
CLIENT PIXEL STORE BIT, 191
CLIENT VERTEX ARRAY BIT,

191
ClientActiveTextureARB, 243
CLIP PLANEi, 39
CLIP PLANE0, 39
ClipPlane, 38
COEFF, 184
COLOR, 31, 34, 81, 85, 86, 120, 162,

245
Color, 19{21, 43, 56
Color3, 20
Color4, 20
COLOR ARRAY, 23, 27
COLOR ARRAY POINTER, 189
COLOR BUFFER BIT, 153, 191
COLOR INDEX, 72, 80, 83, 90, 92,

102, 110, 159, 162, 184, 185
COLOR INDEXES, 50, 54
COLOR LOGIC OP, 150
COLOR MATERIAL, 51, 53
COLOR MATRIX, 185
COLOR MATRIX STACK DEPTH,

185
COLOR TABLE, 80, 82, 103
COLOR TABLE ALPHA SIZE, 186

COLOR TABLE BIAS, 80, 81, 186
COLOR TABLE BLUE SIZE, 186
COLOR TABLE FORMAT, 186
COLOR TABLE GREEN SIZE, 186
COLOR TABLE INTENSITY

SIZE, 186
COLOR TABLE LUMINANCE

SIZE, 186
COLOR TABLE RED SIZE, 186
COLOR TABLE SCALE, 80, 81, 186
COLOR TABLE WIDTH, 186
ColorMask, 152, 153
ColorMaterial, 51{53, 167, 223, 228
ColorPointer, 19, 21, 22, 27, 178
ColorSubTable, 81, 82
ColorTable, 79, 81{83, 108, 109, 179
ColorTableParameter, 80
ColorTableParameterfv, 80
Colorub, 56
Colorui, 56
Colorus, 56
COMPILE, 175, 223
COMPILE AND EXECUTE, 175,

177, 178
CONSTANT ALPHA, 77, 148, 149
CONSTANT ATTENUATION, 50
CONSTANT BORDER, 105, 106
CONSTANT COLOR, 77, 148, 149
CONVOLUTION 1D, 84, 86, 103,

117, 186, 187
CONVOLUTION 2D, 83{85, 103,

117, 186, 187
CONVOLUTION BORDER

COLOR, 106, 187
CONVOLUTION BORDER

MODE, 105, 187
CONVOLUTION FILTER BIAS,

83{85, 187
CONVOLUTION FILTER SCALE,

83{86, 187
CONVOLUTION FORMAT, 187
CONVOLUTION HEIGHT, 187
CONVOLUTION WIDTH, 187
ConvolutionFilter1D, 84{86
ConvolutionFilter2D, 83{86

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

258 INDEX

ConvolutionParameter, 84, 105
ConvolutionParameterfv, 83, 84, 106
ConvolutionParameteriv, 85, 106
COPY, 150, 151, 205
COPY INVERTED, 151
COPY PIXEL TOKEN, 176
CopyColorSubTable, 81, 82
CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85
CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,

120, 156, 162, 163, 173
CopyTexImage1D, 103, 120, 121, 129,

248
CopyTexImage2D, 103, 118, 120, 121,

129, 248
CopyTexImage3D, 121
CopyTexSubImage1D, 103, 121, 123
CopyTexSubImage2D, 103, 121, 122
CopyTexSubImage3D, 103, 121, 122
CULL FACE, 70
CullFace, 70
CURRENT BIT, 191
CURRENT RASTER

TEXTURE COORDS, 222,
246

CURRENT TEXTURE COORDS,
243

CW, 48

DECAL, 135, 137
DECR, 144
DeleteLists, 178
DeleteTextures, 133, 178
DEPTH, 162, 208
DEPTH BIAS, 78, 101
DEPTH BUFFER BIT, 153, 191
DEPTH COMPONENT, 80, 83, 90,

92, 112, 158, 159, 162, 184
DEPTH SCALE, 78, 101
DEPTH TEST, 145
DepthFunc, 145
DepthMask, 153
DepthRange, 30, 182, 224
DIFFUSE, 50, 51

Disable, 35, 38, 39, 44, 51, 60, 64,
67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
246, 249

DisableClientState, 19, 23, 27, 178,
243

DITHER, 150
DOMAIN, 184
DONT CARE, 180, 213
DOUBLE, 22
DRAW PIXEL TOKEN, 176
DrawArrays, 23, 24, 175
DrawBu�er, 151, 152
DrawElements, 24, 25, 175, 232
DrawPixels, 72, 75, 76, 78, 80, 83, 89{

93, 98, 100, 103, 110, 112,
113, 156, 158, 160, 162, 173

DrawRangeElements, 25, 215
DST ALPHA, 148
DST COLOR, 148

EDGE FLAG ARRAY, 23, 27
EDGE FLAG ARRAY POINTER,

189
EdgeFlag, 18, 19
EdgeFlagPointer, 19, 21, 22, 178
EdgeFlagv, 18
EMISSION, 50, 51
Enable, 35, 38, 39, 44, 51, 60, 64,

67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
181, 246, 249

ENABLE BIT, 191
EnableClientState, 19, 23, 27, 178,

243
End, 12, 15{20, 23, 24, 28, 55, 62, 70,

73, 168, 169, 174
EndList, 175, 177
EQUAL, 143{145
EQUIV, 151
EVAL BIT, 191
EvalCoord, 19, 167
EvalCoord1, 167{169
EvalCoord1d, 168
EvalCoord1f, 168

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

INDEX 259

EvalCoord2, 167, 169, 170
EvalMesh1, 168
EvalMesh2, 168, 169
EvalPoint, 19
EvalPoint1, 169
EvalPoint2, 170
EXP, 139, 140, 198
EXP2, 139
EXT bgra, 230
EXT blend color, 234
EXT blend logic op, 226
EXT blend minmax, 234
EXT blend subtract, 234
EXT color subtable, 233
EXT color table, 233
EXT convolution, 233
EXT copy texture, 227
EXT draw range elements, 232
EXT histogram, 234
EXT packed pixels, 231
EXT polygon o�set, 226
EXT rescale normal, 231
EXT separate specular color, 231
EXT subtexture, 227
EXT texture, 226, 227
EXT texture3D, 230
EXT texture object, 227
EXT vertex array, 225
EXTENSIONS, 77, 189, 239
EYE LINEAR, 37, 38, 183, 204, 245,

246, 253
EYE PLANE, 37

FALSE, 18, 19, 46{48, 76, 78, 87, 88,
98, 101, 109, 110, 134, 158,
182, 184, 187, 188

FASTEST, 180
FEEDBACK, 171, 173, 174, 224
FEEDBACK BUFFER POINTER,

189
FeedbackBu�er, 173, 174, 178
FILL, 73{75, 169, 201, 223, 226
Finish, 178, 179, 222
FLAT, 54, 223

FLOAT, 22, 26, 27, 91, 160, 161, 177,
196, 244, 252

Flush, 178, 179, 222
FOG, 138
Fog, 139, 140
FOG BIT, 191
FOG COLOR, 139
FOG DENSITY, 139
FOG END, 139
FOG HINT, 180
FOG INDEX, 140
FOG MODE, 139, 140
FOG START, 139
FRONT, 49, 51, 70, 73, 151, 152, 158,

159, 183
FRONT AND BACK, 49, 51{53, 70,

73, 151, 152
FRONT LEFT, 151, 152, 158
FRONT RIGHT, 151, 152, 158
FrontFace, 48, 70
Frustum, 32, 33, 223
FUNC ADD, 147, 149, 205
FUNC REVERSE SUBTRACT, 147
FUNC SUBTRACT, 147

GenLists, 178
GenTextures, 133, 134, 178, 184
GEQUAL, 143{145
Get, 30, 178, 181, 182, 243, 246
GetBooleanv, 181, 182, 193
GetClipPlane, 182, 183
GetColorTable, 83, 158, 185
GetColorTableParameter, 186
GetConvolutionFilter, 158, 186
GetConvolutionParameter, 187
GetConvolutionParameteriv, 83, 84
GetDoublev, 181, 182, 193
GetError, 11
GetFloatv, 181, 182, 185, 193
GetHistogram, 88, 158, 187
GetHistogramParameter, 188
GetIntegerv, 25, 181, 182, 185, 193,

244
GetLight, 182, 183
GetMap, 183

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

260 INDEX

GetMaterial, 182, 183
GetMinmax, 158, 188
GetMinmaxParameter, 188
GetPixelMap, 183
GetPointerv, 189
GetPolygonStipple, 185
GetSeparableFilter, 158, 186
GetString, 189
GetTexEnv, 182, 183
GetTexGen, 182, 183
GetTexImage, 103, 132, 184, 186{188
GetTexImage1D, 158
GetTexImage2D, 158
GetTexImage3D, 158
GetTexLevelParameter, 182, 183
GetTexParameter, 182, 183
GetTexParameterfv, 132, 134
GetTexParameteriv, 132, 134
GL ARB multitexture, 240
GREATER, 143{145
GREEN, 78, 92, 159, 160, 208, 210,

216
GREEN BIAS, 101
GREEN SCALE, 101

Hint, 179
HINT BIT, 191
HISTOGRAM, 87, 88, 109, 187, 188
Histogram, 87, 88, 109, 179
HISTOGRAM ALPHA SIZE, 188
HISTOGRAM BLUE SIZE, 188
HISTOGRAM FORMAT, 188
HISTOGRAM GREEN SIZE, 188
HISTOGRAM LUMINANCE SIZE,

188
HISTOGRAM RED SIZE, 188
HISTOGRAM SINK, 188
HISTOGRAM WIDTH, 188
HP convolution border modes, 233

INCR, 144
INDEX, 216
Index, 19, 21
INDEX ARRAY, 23, 27
INDEX ARRAY POINTER, 189

INDEX LOGIC OP, 150
INDEX OFFSET, 78, 101, 208
INDEX SHIFT, 78, 101, 208
IndexMask, 152, 153
IndexPointer, 19, 22, 178
InitNames, 171
INT, 22, 91, 160, 161, 177
INTENSITY, 87, 88, 103, 104, 114,

115, 136, 137, 185, 208, 226
INTENSITY12, 87, 88, 115
INTENSITY16, 87, 88, 115
INTENSITY4, 87, 88, 115
INTENSITY8, 87, 88, 115
InterleavedArrays, 19, 25, 26, 178
INVALID ENUM, 12, 13, 38, 49, 77,

83, 87, 88, 90, 120, 132, 184,
243, 244

INVALID OPERATION, 13, 19, 77,
90, 94, 133, 151, 156, 158,
159, 171, 173, 175, 249

INVALID VALUE, 12, 13, 22, 25, 30,
33, 49, 60, 64, 76, 78{80, 82{
84, 87, 113, 114, 116, 121{
123, 130, 134, 139, 143, 154,
165, 166, 168, 175, 177, 183,
184, 249

INVERT, 144, 151
IsEnabled, 178, 181, 193
IsList, 178
IsTexture, 178, 184

KEEP, 144, 145, 205

LEFT, 151, 152, 158
LEQUAL, 143{145
LESS, 143{145, 205
Light, 49, 50
LIGHTi, 49, 51, 224
LIGHT0, 49
LIGHT MODEL AMBIENT, 50
LIGHT MODEL COLOR

CONTROL, 50
LIGHT MODEL LOCAL VIEWER,

50
LIGHT MODEL TWO SIDE, 50

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

INDEX 261

LIGHTING, 44
LIGHTING BIT, 191
LightModel, 49, 50
LINE, 73{75, 168, 169, 201, 226
LINE BIT, 191
LINE LOOP, 15
LINE RESET TOKEN, 176
LINE SMOOTH, 64
LINE SMOOTH HINT, 180
LINE STIPPLE, 67
LINE STRIP, 15, 168
LINE TOKEN, 176
LINEAR, 124, 127, 130, 131, 139
LINEAR ATTENUATION, 50
LINEAR MIPMAP LINEAR, 124,

129, 130
LINEAR MIPMAP NEAREST, 124,

129, 130
LINES, 16, 67
LineStipple, 66
LineWidth, 62
LIST BIT, 191
ListBase, 178, 179
LOAD, 155
LoadIdentity, 31
LoadMatrix, 31, 32
LoadName, 171
LOGIC OP, 150
LogicOp, 150, 151
LUMINANCE, 92, 99, 103, 104, 113{

115, 136, 137, 159, 160, 185,
208, 210, 226

LUMINANCE12, 115
LUMINANCE12 ALPHA12, 115
LUMINANCE12 ALPHA4, 115
LUMINANCE16, 115
LUMINANCE16 ALPHA16, 115
LUMINANCE4, 115
LUMINANCE4 ALPHA4, 115
LUMINANCE6 ALPHA2, 115
LUMINANCE8, 115
LUMINANCE8 ALPHA8, 115
LUMINANCE ALPHA, 92, 99, 103,

104, 113{115, 136, 137, 159,
160, 162, 185

Map1, 165, 166, 182
MAP1 COLOR 4, 165
MAP1 INDEX, 165
MAP1 NORMAL, 165
MAP1 TEXTURE COORD 1, 165,

167
MAP1 TEXTURE COORD 2, 165,

167
MAP1 TEXTURE COORD 3, 165
MAP1 TEXTURE COORD 4, 165
MAP1 VERTEX 3, 165
MAP1 VERTEX 4, 165
Map2, 165, 166, 182
MAP2 VERTEX 3, 167
MAP2 VERTEX 4, 167
Map[12], 249
MAP COLOR, 78, 101, 102
MAP STENCIL, 78, 102
MAP VERTEX 3, 167
MAP VERTEX 4, 167
MapGrid1, 168
MapGrid2, 168
Material, 19, 49, 50, 54, 223
MatrixMode, 31
MAX, 147
MAX 3D TEXTURE SIZE, 116
MAX ATTRIB STACK DEPTH,

190
MAX CLIENT ATTRIB STACK

DEPTH, 190
MAX COLOR MATRIX STACK

DEPTH, 185
MAX CONVOLUTION HEIGHT,

83, 187
MAX CONVOLUTION WIDTH,

83, 84, 187
MAX ELEMENTS INDICES, 25
MAX ELEMENTS VERTICES, 25
MAX EVAL ORDER, 165, 166
MAX PIXEL MAP TABLE, 79, 101
MAX TEXTURE SIZE, 116
MAX TEXTURE UNITS ARB, 240,

243, 244, 251
MIN, 147
MINMAX, 88, 109, 188

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

262 INDEX

Minmax, 88, 110
MINMAX FORMAT, 188
MINMAX SINK, 188
MODELVIEW, 31, 34, 245
MODULATE, 135, 136
MULT, 155, 156
MultiTexCoord, 241
MultiTexCoordARB, 243, 244
MultMatrix, 31, 32

N3F V3F, 25, 26
NAND, 151
NEAREST, 124, 127, 130, 131
NEAREST MIPMAP LINEAR, 124,

129{131
NEAREST MIPMAP NEAREST,

124, 129{131
NEVER, 143{145
NewList, 175, 177, 178
NICEST, 180
NO ERROR, 11, 12
NONE, 151, 152
NOOP, 151
NOR, 151
Normal, 19, 20
Normal3, 8, 9, 20
Normal3d, 8
Normal3dv, 9
Normal3f, 8
Normal3fv, 9
NORMAL ARRAY, 23, 27
NORMAL ARRAY POINTER, 189
NORMALIZE, 35
NormalPointer, 19, 22, 27, 178
NOTEQUAL, 143{145

OBJECT LINEAR, 37, 38, 183, 245,
246

OBJECT PLANE, 37
ONE, 148, 149, 205
ONE MINUS CONSTANT ALPHA,

77, 148, 149
ONE MINUS CONSTANT COLOR,

77, 148, 149
ONE MINUS DST ALPHA, 148

ONE MINUS DST COLOR, 148
ONE MINUS SRC ALPHA, 148
ONE MINUS SRC COLOR, 148
OR, 151
OR INVERTED, 151
OR REVERSE, 151
ORDER, 184
Ortho, 32, 33, 223
OUT OF MEMORY, 12, 13, 177

PACK ALIGNMENT, 158, 207
PACK IMAGE HEIGHT, 158, 184,

207
PACK LSB FIRST, 158, 207
PACK ROW LENGTH, 158, 207
PACK SKIP IMAGES, 158, 184, 207
PACK SKIP PIXELS, 158, 207
PACK SKIP ROWS, 158, 207
PACK SWAP BYTES, 158, 207
PASS THROUGH TOKEN, 176
PassThrough, 174
PERSPECTIVE CORRECTION

HINT, 180
PIXEL MAP A TO A, 79, 101
PIXEL MAP B TO B, 79, 101
PIXEL MAP G TO G, 79, 101
PIXEL MAP I TO A, 79, 102
PIXEL MAP I TO B, 79, 102
PIXEL MAP I TO G, 79, 102
PIXEL MAP I TO I, 79, 102
PIXEL MAP I TO R, 79, 102
PIXEL MAP R TO R, 79, 101
PIXEL MAP S TO S, 79, 102
PIXEL MODE BIT, 191
PixelMap, 75, 78, 79, 162
PixelStore, 19, 75, 76, 78, 158, 162,

178
PixelTransfer, 75, 78, 107, 162
PixelZoom, 100
POINT, 73, 74, 168, 169, 201, 226
POINT BIT, 191
POINT SMOOTH, 60
POINT SMOOTH HINT, 180
POINT TOKEN, 176
POINTS, 15, 168

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

INDEX 263

PointSize, 60
POLYGON, 16, 19
POLYGON BIT, 191
POLYGON OFFSET FILL, 74
POLYGON OFFSET LINE, 74
POLYGON OFFSET POINT, 74
POLYGON SMOOTH, 70
POLYGON SMOOTH HINT, 180
POLYGON STIPPLE, 72
POLYGON STIPPLE BIT, 191
POLYGON TOKEN, 176
PolygonMode, 69, 73, 75, 171, 173
PolygonO�set, 74
PolygonStipple, 72
PopAttrib, 189, 190, 192, 224, 251
PopClientAttrib, 19, 178, 189, 190,

192, 251
PopMatrix, 34, 245
PopName, 171
POSITION, 50, 183
POST COLOR MATRIX x BIAS,

78
POST COLOR MATRIX x SCALE,

78
POST COLOR MATRIX ALPHA

BIAS, 108
POST COLOR MATRIX ALPHA

SCALE, 108
POST COLOR MATRIX BLUE

BIAS, 108
POST COLOR MATRIX BLUE

SCALE, 108
POST COLOR MATRIX COLOR

TABLE, 80, 109
POST COLOR MATRIX GREEN

BIAS, 108
POST COLOR MATRIX GREEN

SCALE, 108
POST COLOR MATRIX RED

BIAS, 108
POST COLOR MATRIX RED

SCALE, 108
POST CONVOLUTION x BIAS, 78
POST CONVOLUTION x SCALE,

78

POST CONVOLUTION ALPHA
BIAS, 107

POST CONVOLUTION ALPHA
SCALE, 107

POST CONVOLUTION BLUE
BIAS, 107

POST CONVOLUTION BLUE
SCALE, 107

POST CONVOLUTION COLOR
TABLE, 80, 108

POST CONVOLUTION GREEN
BIAS, 107

POST CONVOLUTION GREEN
SCALE, 107

POST CONVOLUTION RED
BIAS, 107

POST CONVOLUTION RED
SCALE, 107

PrioritizeTextures, 134, 135
PROJECTION, 31, 34, 245
PROXY COLOR TABLE, 80, 82,

179
PROXY HISTOGRAM, 87, 88, 179,

188
PROXY POST COLOR MATRIX

COLOR TABLE, 80, 179
PROXY POST CONVOLUTION

COLOR TABLE, 80, 179
PROXY TEXTURE 1D, 117, 132,

179, 183
PROXY TEXTURE 2D, 116, 132,

179, 183
PROXY TEXTURE 3D, 112, 132,

179, 183
PushAttrib, 189, 190, 192, 251
PushClientAttrib, 19, 178, 189, 190,

192, 251
PushMatrix, 34, 245
PushName, 171

Q, 36, 38, 183
QUAD STRIP, 17
QUADRATIC ATTENUATION, 50
QUADS, 18, 19

R, 36, 38, 183

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

264 INDEX

R3 G3 B2, 115
RasterPos, 41, 171, 223, 246
RasterPos2, 41, 246
RasterPos3, 41, 246
RasterPos4, 41, 246
ReadBu�er, 158, 159, 162
ReadPixels, 75, 78, 91{93, 103, 156{

160, 162, 178, 184{186
Rect, 28, 70
RED, 78, 92, 159, 160, 208, 210, 216
RED BIAS, 101
RED SCALE, 101
REDUCE, 105, 107, 209
RENDER, 171, 172, 217
RENDERER, 189
RenderMode, 171{174, 178
REPEAT, 124, 125, 127, 128, 131,

203
REPLACE, 135, 136, 144
REPLICATE BORDER, 105, 106
RESCALE NORMAL, 35
ResetHistogram, 187
ResetMinmax, 188
RETURN, 155, 156
RGB, 92, 94, 98, 103, 104, 113{115,

136, 137, 159, 162, 185, 226
RGB10, 115
RGB10 A2, 115
RGB12, 115
RGB16, 115
RGB4, 115
RGB5, 115
RGB5 A1, 115
RGB8, 115
RGBA, 81, 82, 85{88, 92, 94, 98, 103,

104, 113{115, 136, 137, 159,
162, 185, 208{211

RGBA12, 115
RGBA16, 115
RGBA2, 115
RGBA4, 115
RGBA8, 115
RIGHT, 151, 152, 158
Rotate, 32, 223

S, 36, 37, 183
Scale, 32, 33, 223
Scissor, 143
SCISSOR BIT, 191
SCISSOR TEST, 143
SELECT, 171, 172, 224
SelectBu�er, 171, 172, 178
SELECTION BUFFER POINTER,

189
SEPARABLE 2D, 85, 103, 117, 187
SeparableFilter2D, 84
SEPARATE SPECULAR COLOR,

47
SET, 151
SGI color matrix, 233
SGIS multitexture, 238
SGIS texture edge clamp, 231
SGIS texture lod, 232
ShadeModel, 54
SHININESS, 50
SHORT, 22, 91, 160, 161, 177
SINGLE COLOR, 46, 47, 199
SMOOTH, 54, 198
SPECULAR, 50, 51
SPHERE MAP, 37, 38
SPOT CUTOFF, 50
SPOT DIRECTION, 50, 183
SPOT EXPONENT, 50
SRC ALPHA, 148
SRC ALPHA SATURATE, 148
SRC COLOR, 148
STACK OVERFLOW, 13, 34, 171,

190, 245
STACK UNDERFLOW, 13, 34, 171,

190, 245
STENCIL, 162
STENCIL BUFFER BIT, 154, 191
STENCIL INDEX, 80, 83, 90, 92,

100, 112, 156, 158, 159, 162,
184

STENCIL TEST, 144
StencilFunc, 144, 222
StencilMask, 153, 156, 223
StencilOp, 144, 145

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

INDEX 265

T, 36, 183
T2F C3F V3F, 25, 26
T2F C4F N3F V3F, 25, 26
T2F C4UB V3F, 25, 26
T2F N3F V3F, 25, 26
T2F V3F, 25, 26
T4F C4F N3F V4F, 25, 26
T4F V4F, 25, 26
TABLE TOO LARGE, 13, 80, 87
TexCoord, 19, 20, 241, 243
TexCoord1, 20, 241
TexCoord2, 20, 241
TexCoord3, 20, 241
TexCoord4, 20, 241
TexCoordPointer, 19, 21, 22, 27, 178,

243
TexEnv, 135, 249
TexGen, 36{38, 240, 246
TexImage, 121
TexImage1D, 76, 103, 105, 113, 117,

118, 120, 121, 129, 132, 179,
248

TexImage2D, 76, 87, 88, 103, 105,
113, 116{118, 120, 121, 129,
132, 179, 248

TexImage3D, 76, 112{114, 116{118,
121, 129, 132, 178, 184, 248

TexParameter, 123
TexParameter[if], 126, 130
TexParameterf, 134
TexParameterfv, 134
TexParameteri, 134
TexParameteriv, 134
TexSubImage, 121
TexSubImage1D, 103, 121, 123
TexSubImage2D, 103, 120{122
TexSubImage3D, 120{122
TEXTURE, 31, 34, 244, 245
TEXTUREi ARB, 241
TEXTURE0 ARB, 243, 245, 249,

251, 254
TEXTURE1 ARB, 251
TEXTURE xD, 202, 253
TEXTURE 1D, 103, 117, 120, 121,

124, 132, 133, 138, 183, 184

TEXTURE 2D, 103, 116, 120, 121,
124, 132, 133, 138, 183, 184

TEXTURE 3D, 112, 121, 124, 132,
133, 138, 183, 184

TEXTURE ALPHA SIZE, 183
TEXTURE BASE LEVEL, 116, 117,

124, 126, 127, 129{132, 248
TEXTURE BIT, 190, 191
TEXTURE BLUE SIZE, 183
TEXTURE BORDER, 183
TEXTURE BORDER COLOR, 124,

129, 131, 132
TEXTURE COMPONENTS, 183
TEXTURE COORD ARRAY, 23,

27, 243
TEXTURE COORD ARRAY

POINTER, 189
TEXTURE DEPTH, 183
TEXTURE ENV, 135, 183
TEXTURE ENV COLOR, 135
TEXTURE ENV MODE, 135
TEXTURE GEN MODE, 37, 38
TEXTURE GEN Q, 38
TEXTURE GEN R, 38
TEXTURE GEN S, 38
TEXTURE GEN T, 38
TEXTURE GREEN SIZE, 183
TEXTURE HEIGHT, 183
TEXTURE INTENSITY SIZE, 183
TEXTURE INTERNAL FORMAT,

183
TEXTURE LUMINANCE SIZE,

183
TEXTURE MAG FILTER, 124, 131
TEXTURE MAX LEVEL, 116, 124,

130, 132, 248
TEXTURE MAX LOD, 124{126,

132
TEXTURE MIN FILTER, 124, 127,

129{131, 248
TEXTURE MIN LOD, 124{126, 132
TEXTURE PRIORITY, 124, 132,

134
TEXTURE RED SIZE, 183
TEXTURE RESIDENT, 132, 134

APPENDIX T

Microsoft et al. Exhibit 1005

Version 1.2.1 - April 1, 1999

266 INDEX

TEXTURE WIDTH, 183
TEXTURE WRAP R, 124, 128
TEXTURE WRAP S, 124, 127, 128
TEXTURE WRAP T, 124, 128
TRANSFORM BIT, 191
Translate, 32, 223
TRIANGLE FAN, 17
TRIANGLE STRIP, 16
TRIANGLES, 17, 19
TRUE, 18, 19, 40, 46{48, 76, 78, 87,

88, 134, 153, 158, 178, 182,
184, 187, 188

UNPACK ALIGNMENT, 76, 93,
112, 207

UNPACK IMAGE HEIGHT, 76,
112, 207

UNPACK LSB FIRST, 76, 98, 207
UNPACK ROW LENGTH, 76, 90,

93, 112, 207
UNPACK SKIP IMAGES, 76, 112,

117, 207
UNPACK SKIP PIXELS, 76, 93, 98,

207
UNPACK SKIP ROWS, 76, 93, 98,

207
UNPACK SWAP BYTES, 76, 90, 92,

207
UNSIGNED BYTE, 22, 24, 26, 91,

95, 160, 161, 177
UNSIGNED BYTE 2 3 3 REV, 91,

93{95, 161
UNSIGNED BYTE 3 3 2, 91, 93{95,

161
UNSIGNED INT, 22, 24, 91, 97, 160,

161, 177
UNSIGNED INT 10 10 10 2, 91, 94,

97, 161
UNSIGNED INT 2 10 10 10 REV,

91, 94, 97, 161
UNSIGNED INT 8 8 8 8, 91, 94, 97,

161
UNSIGNED INT 8 8 8 8 REV, 91,

94, 97, 161

UNSIGNED SHORT, 22, 24, 91, 96,
160, 161, 177

UNSIGNED SHORT 1 5 5 5 REV,
91, 94, 96, 161

UNSIGNED SHORT 4 4 4 4, 91, 94,
96, 161

UNSIGNED SHORT 4 4 4 4 REV,
91, 94, 96, 161

UNSIGNED SHORT 5 5 5 1, 91, 94,
96, 161

UNSIGNED SHORT 5 6 5, 91, 93,
94, 96, 161

UNSIGNED SHORT 5 6 5 REV, 91,
93, 94, 96, 161

V2F, 25, 26
V3F, 25, 26
VENDOR, 189
VERSION, 189
Vertex, 7, 19, 20, 41, 167
Vertex2, 20, 28
Vertex2sv, 7
Vertex3, 20
Vertex3f, 7
Vertex4, 20
VERTEX ARRAY, 23, 27
VERTEX ARRAY POINTER, 189
VertexPointer, 19, 22, 27, 178
Viewport, 30
VIEWPORT BIT, 191

XOR, 151

ZERO, 144, 148, 149, 205

APPENDIX T

Microsoft et al. Exhibit 1005

The Challenges of
Mobile Computing
George H. Forman and John Zahorjan
University of Washington

ecent advances in technology have provided portable computers with wire-
less interfaces that allow networked communication even while a user is mo-
bile. Whereas today’s first-generation notebook computers and personal

digital assistants (PDAs) are self-contained, networked mobile computers are part of
a greater computing infrastructure. Mobile computing - the use of a portable com-
puter capable of wireless networking - will very likely revolutionize the way we use
computers.

Wireless networking greatly enhances the utility of a portable computing device.
It allows mobile users versatile communication with other people and expedient no-
tification of important events, yet with much more flexibility than with cellular phones
or pagers. It also permits continuous access to the services and resources of land-
based networks. The combination of networking and mobility will engender new ap-
plications and services, such as collaborative software to support impromptu meet-
ings, electronic bulletin boards whose contents adapt to the current viewers, lighting
and heating that adjust to the needs of those present, and navigation software to
guide users in unfamiliar places and on tours.’

The technical challenges that mobile computing must surmount to achieve this po-
tential are hardly trivial, however. Some of the challenges in designing software for
mobile computing systems are quite different from those involved in the design of soft-
ware for today’s stationary networked systems. In this article we focus on the issues
pertinent to software designers without delving into the lower level details of the
hardware realization of mobile computers. We look at some promising approaches
under investigation and also consider their limitations.

The many issues to be dealt with stem from three essential properties of mobile
computing: communication, mobility, and portability. Of course, special-purpose
systems may avoid some design pressures by doing without certain desirable prop-
erties. For instance, portability would be less of a concern for mobile computers
installed in the dashboards of cars than with hand-held mobile computers. However, we
concentrate on the goal of large-scale, hand-held mobile computing as a way to reveal
a wide assortment of issues.

0018-91621 $4.00 D 1994 IEEE COMPUTER

APPENDIX X

Microsoft et al. Exhibit 1005

Wireless
communication

Mobile computers require wireless net-
work access, although sometimes -
when in meeting rooms or at a user’s desk
- they may remain stationary long
enough to be physically attached to the
network for a better or cheaper connec-
tion.

Wireless networks communicate by
modulating radio waves or pulsing in-
frared light. Wireless communication is
linked to the wired network infrastruc-
ture by stationary transceivers. The area
covered by an individual transceiver’s
signal is known as a cell. Cell sizes vary
widely; for example, an infrared trans-
ceiver can cover a small meeting room, a
cellular telephone transceiver has a range
of a few miles, and a satellite beam can
cover an area more than 400 miles in di-
ameter.

Wireless communication faces more
obstacles than wired communication be-
cause the surrounding environment in-
teracts with the signal, blocking signal
paths and introducing noise and echoes.
As a result, wireless communication is
characterized by lower bandwidths,
higher error rates, and more frequent
spurious disconnections. These factors
can in turn increase communication la-
tency resulting from retransmissions, re-
transmission time-out delays, error-con-
trol protocol processing, and short
disconnections.

Mobility can also cause wireless con-
nections to be lost or degraded. Users
may travel beyond the coverage of net-
work transceivers or enter areas of high
interference. Unlike typical wired net-
works, the number of devices in a net-
work cell varies dynamically, and large
concentrations of mobile users, say, at
conventions and public events, may over-
load network capacity.

The need for wireless communication
leads to design challenges in several areas.

Disconnection. Today’s computer sys-
tems often depend heavily on a network
and may cease to function during net-
work failures. For example, distributed
file systems may lock up waiting for other
servers, and application processes may

fail altogether if the network stays down
too long.

Network failure is a greater concern in
mobile computing than in traditional
computing because wireless communica-
tion is so susceptible to disconnection.
Designers must decide whether to spend
available resources on the network, try-
ing to prevent disconnections, or to spend
them trying to enable systems to cope
with disconnections more gracefully and
work around them where possible.

The more autonomous a mobile com-
puter, the better it can tolerate network
disconnection. For example, certain ap-
plications can reduce communication by
running entirely locally on the mobile
unit rather than by splitting the applica-
tion and the user interface across the net-
work. In environments with frequent dis-
connections, it is better for a mobile
device to operate as a stand-alone com-
puter than as a portable terminal.

In some cases, both round-trip latency
and short disconnections can be hidden by
asynchronous operation. The X11 Win-
dow System uses this technique to achieve
good performance. With the synchronous
remote procedure call paradigm, the client
waits for a reply after each request; in asyn-
chronous operation, a client sends multiple
requests before asking for acknowledg-
ment. Similarly, prefetching and delayed
write-back also decouple the act of com-

munication from the actual time a program
consumes or produces data, allowing it to
proceed during network disconnections.
These techniques, therefore, have the po-
tential to mask some network failures.

The Coda file system provides a good
example of how to handle network dis-
connections, although it is designed for
today’s notebook computers in which
disconnections may be less frequent,
more predictable, and longer lasting than
in mobile computing.2 Information from
the user’s profile helps in keeping the
best selection of files in an on-board
cache. It is important to cache whole files
rather than blocks of files so that entire
files can be read during a disconnection.
When the network reconnects, Coda at-
tempts to reconcile the cache with the
replicated master repository.

With Coda, files can be modified even
during disconnections. More conserva-
tive file systems disallow this to prevent
multiple users from making inconsistent
changes. Coda’s optimism is justified by
studies showing that only rarely are files
actually shared in a distributed system;
fewer than 1 percent of all writes are fol-
lowed by a write from a different user.2
If strong consistency guarantees are
needed, clients can ask for them explic-
itly. Hence, providing flexible consistency
semantics can allow greater autonomy.

Of course, not all network disconnec-

April 1994 39

APPENDIX X

Microsoft et al. Exhibit 1005

Figure 1. Application bandwidth requirements in bits per second. The vertical
dashed lines show the bandwidth capability of certain network technologies. Cellu-
lar modems are becoming fast enough for mobile users’ everyday information
needs, such as e-mail, and someday may be able to support remote file systems.

tions can be masked. In these cases, good
user interfaces can help by providing feed-
back about which operations are unavail-
able because of network disconnections.

Low bandwidth. Mobile computing de-
signs need to reflect a greater concern for
bandwidth consumption and constraints
than do designs for stationary comput-
ing. Wireless networks deliver lower
bandwidth than wired networks: Cutting-
edge products for portable wireless com-
munications achieve only 1 megabit per
second for infrared communication, 2
Mbps for radio communication, and 9-14
kilobits per second for cellular telephony,
while Ethernet provides 10 Mbps, fast
Ethernet and FDDI 100 Mbps, and ATM
(asynchronous transfer mode) 155 Mbps
(see Figure 1). Even nonportable wire-
less networks, such as the Motorola Al-
tair, barely achieve 5.7 Mbps.

Network bandwidth is divided among

the users sharing a cell. The deliverable
bandwidth per user, therefore, is an im-
portant measure of network capacity in
addition to the raw transmission band-
width. But because this measure depends
on the size and distribution of a user pop-
ulation, Weiser and others recommend
measuring a wireless network’s capacity
by its bandwidth per cubic meter.’

Improving network capacity means in-
stalling more wireless cells to service a user
population. There are two ways to do this:
Overlap cells on different wavelengths, or
reduce transmission ranges so that more
cells fit in a given area (see Figure 2).

The scalability of the first technique is
limited because the electromagnetic
spectrum available for public consump-
tion is scarce. This technique is more flex-
ible, however, because it allows (in fact,
requires) software to allocate bandwidth
among users.

The second technique is generally pre-

ferred. It is arguably simpler, reduces
power requirements, and may decrease
signal corruption because there are fewer
objects in the environment to interact
with. Also, it involves a hardware trade-
off between bandwidth and coverage
area: Transceivers covering less area can
achieve higher bandwidths.

Certain software techniques can also
help cope with the low bandwidth of
wireless links. Modems typically use com-
pression to increase their effective band-
width, sometimes almost doubling
throughput. Because bulk operations are
usually more efficient than many short
transfers, buffering can improve band-
width usage by making large requests out
of many short ones. Buffering in con-
junction with compression can further
improve throughput because larger
blocks compress better.

Certain software techniques for cop-
ing with disconnection can also help cope
with low bandwidth. Network usage typ-
ically occurs in bursts, and disconnections
are similar to bursts in that demand tem-
porarily exceeds available bandwidth.
For example, delayed write-back and
prefetching use the periods of low net-
work activity to reduce demand at the
peaks. Delayed write-back can even re-
duce overall communication if the data
to be transmitted is further mutated or
deleted before it is transmitted. Prefetch-
ing involves knowing or guessing which
files will be needed soon and download-
ing them over the network before they
are demanded.3 Bad guesses can waste
network bandwidth, however.

System performance can be improved
by scheduling communication intelli-
gently. When available bandwidth does
not satisfy the demand, processes the user
is waiting for should be given priority.
Backups should be performed only with
“leftover” bandwidth. Mail can be trickle
fed onto the mobile computer slowly be-
fore the user is notified. Although these
techniques do not increase effective
bandwidth, they improve user satisfac-
tion just the same.

High bandwidth variability. Mobile
computing designs also contend with
much greater variation in network band-
width than do traditional designs. Band-

40 COMPUTER

APPENDIX X

Microsoft et al. Exhibit 1005

Cell area covered by frequency 1. Mobile computer using frequency 1.

Cell area covered by frequency 2. Mobile computer using frequency 2.

I I

Figure 2. Suppose that a single frequency provides only enough wireless bandwidth for two users. Then two frequencies can
support (a) four users with two large coincident cells or (h) eight users with four small noninterfering cells that use the same
frequency in nonadjacent cells. The latter scheme requires more transceivers and installation effort but is more scalable and
allows higher bandwidth technology and lower transmission power.

width can shift one to four orders of mag-
nitude, depending on whether the system
is plugged in or using wireless access.
Fluctuant traffic load seldom causes this
much variation in available bandwidth on
today's networks.

An application can approach this vari-
ability in one of three ways: It can assume
high-bandwidth connections and operate
only while plugged in, it can assume low-
bandwidth connections and not take ad-
vantage of higher bandwidth when it is
available, or it can adapt to currently avail-
able resources, providing the user with a
variable level of detail or quality. For ex-
ample, a video-conferencing application
could display only the current speaker or
all the participants, depending on the
available bandwidth. Different choices
make sense for different applications.

Heterogeneous network. In contrast to
most stationary computers, which stay
comected to a single network, mobile
computers encounter more heteroge-
neous network connections in several
ways. First, as they leave the range of one

network transceiver and switch to an-
other, they may also need to change
transmission speeds and protocols. Sec-
ond, in some situations a mobile com-
puter may have access to several network
connections at once, for example, where
adjacent cells overlap or where it can be
plugged in for concurrent wired access.

Also, mobile computers may need to
switch interfaces, for example, when go-
ing between indoors and outdoors. In-
frared interfaces cannot be used outside
because sunlight drowns out the signal.
Even with radio frequency transmission,
the interface may still need to change ac-
cess protocols for different networks, for
example, when switching from cellular
coverage in a city to satellite coverage in
the country. This heterogeneity makes
mobile networking more complex than
traditional networking.

Security risks. Precisely because con-
nection to a wireless link is so easy, the se-
curity of wireless communication can be
compromised much more easily than that
of wired communication, especially if

transmission extends over a large area.
This increases pressure on mobile com-
puting software designers to include se-
curity measures.

Security is further complicated if users
are allowed to cross security domains.
For example, a hospital may allow pa-
tients with mobile computers to use
nearby printers but prohibit access to dis-
tant printers and resources designated for
hospital personnel only.

Secure communication over insecure
channels is accomplished by encryption,
which can be done in software or, more
quickly, by specialized hardware such as
the recently proposed Clipper chip. Se-
curity depends on a secret encryption key
known only to the authorized parties.
Managing these keys securely is difficult,
but it can be automated by software such
as the Massachusetts Institute of Tech-
nology's K e r b e r ~ s . ~

Kerberos provides secure authentica-
tion services, as long as the Kerberos
server itself is trusted. It authenticates
users without exposing their passwords
on the network and generates secret en-

April 1994 41

APPENDIX X

Microsoft et al. Exhibit 1005

cryption keys that can be selectively
shared between mutually suspicious par-
ties. It also allows mobile units to au-
thenticate themselves in domains where
they are unknown, thus enhancing the
scale of mobility. Methods have also been
devised to use Kerberos for authoriza-
tion control and accounting. Its security
is limited, however. For example, the cur-
rent version is susceptible to off-line
password-guessing attacks and to replay
attacks for a limited time window.

Mobility
The ability to change locations while

connected to the network increases the
volatility of some information. Certain
data considered static for stationary com-
puting becomes dynamic for mobile com-
puting. For example, a stationary com-
puter can be configured statically to
prefer the nearest server, but a mobile
computer needs a mechanism for deter-
mining which server to use.

As volatility increases, cost-benefit
trade-off points shift, calling for appro-
priate modifications in the design. For ex-
ample, a highly volatile data object has
fewer uses per modification. For such ob-
jects it makes little sense to cache the
data. As another example, consider static
information, which is often managed by
hand; to handle higher rates of change,
automated methods are required. How-
ever, even where such methods exist,
they may be ill-suited for the dynamism
of mobile computing.

Mobility introduces several problems:
A mobile computer’s network address
changes dynamically, its current location
affects configuration parameters as well
as answers to user queries, and the com-
munication path grows as it wanders
away from a nearby server.

Address migration. As people move,
their mobile computers will use different
network access points, or “addresses.”
Today’s networking is not designed for
dynamically changing addresses. Active
network connections usually cannot be
moved to a new address. Once an address
for a host name is known to a system, it is
typically cached with a long expiration

time and with no way to invalidate out-of-
date entries. In the Internet Protocol, for
example, a host IP name is inextricably
bound with its network address; moving
to a new location means acquiring a new
IP name. Human intervention is com-
monly required to coordinate the use of
addresses.

To communicate with a mobile com-
puter, messages must be sent to its most
recent address. Four basic mechanisms
determine a mobile computer’s current
address: broadcast,5,6 central services,’
home base,8 and forwarding p0inters.j

As people move, their
mobile computers will
use different network

access points, or
“addresses.”

These are the building blocks of the
current proposals for “mobile-IP”
schemes.

Selective broadcast. With the broadcast
method, a message is sent to all network
cells asking the mobile computer sought
to reply with its current address. This be-
comes too expensive for frequent use in
a large network, but if the mobile com-
puter is known to be in some small set of
cells, selectively broadcasting in just
those cells is workable. Hence, the meth-
ods described below can use selective
broadcast to obtain the current address
when only approximate location infor-
mation is known. For example, a slightly
out-of-date cell address may suffice if ad-
jacent cells are known.

Central services. With the central ser-
vice method, the current address for each
mobile computer is maintained in a logi-
cally centralized database. Each time a
mobile computer changes its address, it
sends a message to update the database.
Even with the database’s centralized lo-
cation, the common techniques of distri-

bution, replication, and caching can be
used to improve availability and response
time.

H o m e bases. The home base method
is essentially the limiting case of dis-
tributing a central service; that is, the lo-
cation of a given mobile computer is
known by a single server. This aggressive
distribution without replication can lead
to low availability of information. For ex-
ample, if a home base is down or inac-
cessible, the mobile computers it tracks
cannot be contacted. If users sometimes
change home bases, the address migra-
tion problem arises again, albeit with
much lower volatility.

Forwarding pointers. With the for-
warding pointer method, each time a mo-
bile computer changes its address, a copy
of the new address is deposited at the old
location. Each message is forwarded
along the chain of pointers until it reaches
the mobile computer. To avoid the inef-
ficient routing that can result from long
chains, pointers at message forwarders
can be updated gradually to reflect more
recent addresses.

Although the forwarding pointer
method is among the fastest, it is prone to
failures anywhere along the trail of point-
ers, and in its simplest form it does not
allow forwarding pointers to be deleted
unless all possible message sources have
been updated. Hence, forwarding point-
ers are often used only to speed the com-
mon case, and another method is used to
fall back on for failures and to allow
reclamation of old pointers.

The forwarding pointer method re-
quires an active entity at the old address
to receive and forward messages. This
does not fit standard networking models,
where either a network address is a pas-
sive entity, such as an Ethernet cable, or
it’s specific to the mobile computer,
which cannot remain to forward its own
messages. This mismatch introduces sub-
tle difficulties in implementing forward-
ing efficiently (for example, with intra-
cell traffic or when multiple gateways are
attached to a network address).

Location-dependent information. Be-
cause traditional computers do not move,

42 COMPUTER

APPENDIX X

Microsoft et al. Exhibit 1005

information that depends on location,
such as the local name server, available
printers, and the time zone, is typically
configured statically. One challenge for
mobile computing is to factor out this in-
formation intelligently and provide
mechanisms for obtaining configuration
data appropriate to each location. Addi-
tionally, a mobile computer carried with
a user is likely to be used in a wide vari-
ety of administrative domains. Dealing
with the multitude of conventions that
current computing systems rely on is an-
other challenge to building mobile sys-
tems.

Besides this dynamic configuration
problem, mobile computers need access
to more location-sensitive information
than stationary computers do. If they are
to serve as guides in places unfamiliar to
their users, mobile computers may need
to answer queries such as “where is the
fiction section (in this particular li-
brary)?” or “where is the nearest open
gas station heading north?”

Queries of this sort require static loca-
tion information about the world. Other
information needs can be even more
complex: Badrinath and Imielinski are
studying a related class of queries that
depend on the dynamic locations of other
mobile objects, for example, the location
of the nearest taxi.6

Privacy. Answering dynamic location
queries requires knowing the location
of another mobile user. In some cases
this may be sensitive information, more
so if given at a fine resolution. Even
where it is not particularly sensitive,
such information should be protected
against misuse; for example, we do not
want a burglar to be able to determine
when the inhabitants of a house are far
away.

Privacy can be ensured by denying
users the ability to know another’s loca-
tion. The challenge for mobile comput-
ing is to allow more flexible access to this
information without violating privacy.
Legitimate uses of location information
include contacting colleagues, routing
telephone calls, logging meetings in per-
sonal diaries, and tailoring the content of
electronic announcement displays to the
current viewers.’

Migrating locality. Mobile computing
engenders a new kind of locality that mi-
grates as users move. Even if a mobile
computer is equipped to find the nearest
server for a given service, over time mi-
gration may alter this condition. Because
the physical distance between two points
does not necessarily reflect the network
distance, the communication path can
grow disproportionately to actual move-
ment. For example, a small movement
can result in a much longer path when
crossing network administrative bound-
aries, and a longer network path means

Mobile computers need
access to more

location-sensitive
information than do

stationary computers.

communication traverses more interme-
diaries, resulting in longer latency and
greater risk of disconnection. A longer
communication path also consumes more
network capacity, even though the band-
width between the mobile unit and the
server may not degrade.

To avoid these disadvantages, service
connections may be dynamically trans-
ferred to servers that are c10ser.~ When
many mobile units converge, during
meetings, for example, load-balancing
concerns may outweigh the importance
of communication locality.

Portability
Today’s desktop computers are not

meant to be carried, so designers take a
liberal approach to space, power, cabling,
and heat dissipation. In contrast, design-
ers of hand-held mobile computers
should strive for the properties of a wrist-
watch: small, light, durable, operational
under wide environmental conditions,
and requiring minimal power usage for
long battery life. Concessions can be

made in each of these areas to enhance
functionality, but ultimately the user
must receive value that exceeds the trou-
ble of carrying the device. Similarly, any
specialized hardware to offload such
tasks as data compression or encryption
from the CPU should justify its con-
sumption of power and space.

Below, we describe the design pres-
sures caused by portability constraints.
These pressures are evident in the de-
signs of the recent PDA products listed in
Table 1.

Low power. Batteries are the largest
single source of weight in a portable com-
puter. While reducing battery weight is
important, too small a battery can un-
dermine the value of portability by caus-
ing users to recharge frequently, carry
spare batteries, or use their mobile com-
puters less. Minimizing power consump-
tion can improve portability by reducing
battery weight and lengthening the life
of a charge.

Power consumption of dynamic com-
ponents is proportional to CV2F, where
Cis the capacitance of the circuit, Vis the
voltage swing, and F is the clock fre-
quency. This function suggests three ways
to save power:

(1) Capacitance can be reduced by
greater levels of VLSI integration
and multichip module technology.

(2) Voltage can be reduced by re-
designing chips to operate at lower
voltages. Historically, chips operate
at 5 volts, but some, like those in the
Apple Messagepad, save power by
operating at 3 volts. Manufacturers
are rapidly developing a line of low-
power chip sets for 2.5V and 3.3V
operation.

(3) Clock frequency can be reduced,
thereby trading computational
speed for power savings. PDA prod-
ucts have adopted this concession,
as shown in Table 1. In some note-
book computers, the clock fre-
quency can be changed dynamically,
providing a flexible trade-off; for ex-
ample, the Sharp PC 6785 can save
power by dynamically shifting its
clock from 25 MHz to 10 MHz or
even 5 MHz, as shown in Table 2. To

April 1994 43

APPENDIX X

Microsoft et al. Exhibit 1005

Table 1. Characteristics of personal digital assistant products and the AT&T EO tablet computer. Each has a pen interface and
a black-and-white reflective LCD screen. The portable PC is included for comparison.

Product RAM MHz CPU Batteries Weight Display
(No. hours) (type) (lbs.) (pixels) (sq. in.)

Amstrad Pen 128 Kbytes
Pad PDA600

Apple Newton 640 Kbytes
MessagePad

Apple Newton 1 Mbyte
MessagePad 110

Casio 2-7000 PDA 1 Mbyte

Sharp Expert Pad 640 Kbytes

Tandy Z-550 1 Mbyte
Zoomer PDA

AT&T EO 440 4-12 Mbytes
Personal
Communicator

Portable PC 4-16
Mbytes

*Advanced RISC microprocessor

20 2-80

20 ARM*

20 ARM*

7.4 8086

20 ARM*

8 8086

20 Hobbit

33-66 486

40 3AA’s

6-8 4AAA’s

50 4AA‘s

100 3AA’s

20 4AAA’s

100 3AA’s

1-6 NiCad

1-6 NiCad

0.9 240 x 320 10.4

0.9 240 x 336 11.2

1.25 240 x 320 11.8

1.0 320 x 256 12.4

0.9 240 x 336 11.2

1 .o 320 x 256 12.4

2.2 640 x 480 25.7

5-10 64Ox480to 40
1,024 x 768
(color)

retain more computational power at
lower frequencies, processors are
being designed that perform more
work on each clock cycle.1°

Power can be conserved not only by
the design but also by efficient operation.
Power management software can power
down individual components when they
are idle, for example, spinning down the
internal disk or turning off screen light-
ing. Recently, Li et al. determined that
for today’s notebook computing it is
worthwhile to spin down the internal disk
drive after it has been idle for just a few
seconds.ll

Applications can conserve power by
reducing their appetite for computation,
communication, and memory, and by
performing their periodic operations in-
frequently to amortize the start-up over-

head. Since radio modem transmission
typically requires about 10 times as much
power as reception, power can be saved
by trading transmission for reception. For
example, base stations might periodically
broadcast information that otherwise
would have to be requested frequently.
In this way, mobile computers can obtain
this information without expending
power to transmit a request.

The potential savings of these tech-
niques can be evaluated using Tables 2
and 3, which break down power con-
sumption in notebook computers by
component and subsystem, respectively.
Although screen lighting consumes a
large amount of power, it has been
found to greatly improve readability; for
example, on EO models it enhances con-
trast from 6:l to 13:l. Nevertheless,
PDA products have elected to omit

screen lighting in favor of longer battery
life.

Risks to data. Making computers
portable increases the risk of physical
damage, unauthorized access, loss, and
theft. Breaches of privacy or total loss of
data become more likely. These risks can
be reduced by minimizing the essential
data kept on board. Obviously, a mobile
device that serves only as a portable ter-
minal is less prone to data loss than a
stand-alone computer. This is the ap-
proach taken for Xerox PARC’s Tabs
and the portable multimedia terminal
project at the University of California,
Berkeley.lo

To help prevent unauthorized disclo-
sure of information, data stored on disks
and removable memory cards can be en-
crypted. For this to be effective, users

44 COMPUTER

APPENDIX X

Microsoft et al. Exhibit 1005

must not leave authenti-
cated sessions (logins)
unattended.

Keeping a copy that
does not reside on the
portable unit can safe-
guard against data loss.
However, users often ne-
glect to make backup
copies, and even when
they do, data modified
between backups is not
protected. With the addi-
tion of wireless networks
to portable computers,
new or modified data can
be copied immediately to
secure, remote media.
This can be accomplished
with replicated file sys-
tems such as Echo and
Coda.2

Display edge-light 35
CPU/memory 31
Hard disk 10
Floppy disk 8
Display 5
Keyboard 1

~

*Data was obtained from the Compaq LTE
386/s20 manual.

Small user interface.
Size constraints on a
portable computer re-
quire a small user inter-
face. Desktop windowing
environments may be
sufficient for today’s note-
book computers, but for
smaller, more portable de-
vices, current windowing
technology is inadequate.
On small displays it is im-
practical to have several
windows open at a time
regardless of screen res-
olution, and it can be dif-
ficult to locate windows
or icons deeply stacked
one on another. Also,
window title bars and
borders either consume

Table 2. Power consumption of portable-computer components
and accessories.*

Device Power (watts)

Base system (2 Mbytes, 25-MHz CPU)
Base system (2 Mbytes, 10-MHz CPU)
Base system (2 Mbytes, 5-MHz CPU)
Screen backlight
Hard drive motor
Math coprocessor
Floppy drive
External keyboard
LCD screen
Hard drive active (head seeks)
IC card slot
Additional memory (per Mbyte)
Parallel port
Serial port

Accessories

1.8-inch PCMCIA hard drive
Cellular telephone (active)
Cellular telephone (standby)
Infrared network, 1 Mbit per second**
PCMCIA modem, 14,400 bits per second
PCMCIA modem, 9,600 bits per second
PCMCIA modem, 2,400 bits per second
Global positioning receiver**

3.650
3.150
2.800
1.425
1.100
0.650
0.500
0.490
0.315
0.125
0.100
0.050
0.035
0.030

0.7-3.0
5.400
0.300
0.250
1.365
0.625
0.565
0.670

*Data for computer components was derived from the Sharp PC 6785
manual; data for accessories was obtained from the manufacturers.
**Estimate for soon-to-he-released product.

I

significant portions of screen space or, if
reduced, become difficult to operate with
the pointing device.

Duchamp, Feiner, and Maguire inves-
tigated the use of head-mounted virtual
reality displays for portable computer^.^
As the user’s head turns, the image dis-
played to the eye shifts to give the sensa-
tion of a surrounding screen. This effec-
tively increases the screen area available
for windowing systems; however, wear-
ing head gear is cumbersome, resolution

is low (one-tenth that of conventional dis-
plays), eyes succumb to fatigue, and dim
lighting is required.

Buttons versus analog ircput. The short-
age of surface area on a small computer
leads designers to sacrifice buttons in fa-
vor of analog input devices for communi-
cating user commands. These communi-
cation mechanisms include handwriting
recognition, gesture recognition, and
voice recognition. Although on average

handwriting is about three
times slower than typing, it al-
lows the keyboard to be elim-
inated, thus reducing size and
improving durability. This ap-
proach has been adopted by
all the PDA products listed in
Table 1.

Handwriting recognition
rates for high-end systems are
typically 96-98 percent accu-
rate when trained to a specific
user.12 With context informa-
tion, recognition rates can be
enhanced effectively to 100
percent, but context con-
straints do not help for all
kinds of input, for example,
when entering words that are
not in the on-line dictionary.
The Apple Newton’s hand-
writing recognition, while
among the best of the PDAs,
is nevertheless reputedly a
source of frustration. Recog-
nizing a user’s intention in a
general setting is inherently
hard because the interpreta-
tion of pen strokes is ambigu-
ous. For example, a user
drawing a circle may intend to
select an object or an area, or
write a zero, a degree sign, or
the letter o.

Speech generation and rec-

Table 3. Power consumption
of the major components in
a portable compnter.*

System Power
(percent)

April 1994 45

APPENDIX X

Microsoft et al. Exhibit 1005

ognition seem an ideal user interface for a
mobile computer in that they require no
surface area and allow hands-free and
even eye-free operation. The voice-com-
manded VCR programmer by Voice Pow-
ered Technology demonstrates the feasi-
bility of speech input to a hand-held device
for a narrow domain. The Sphinx research
project at Carnegie Mellon University has
reported speaker-independent recogni-
tion rates of nearly 96 percent, and 98 per-
cent for speaker-trained recognition.
However, general-purpose speech input
and output places substantial storage and
processing demands on a mobile device.
Also, speech may often be inappropriate:
It disturbs others in quiet environments, it
cannot be recognized clearly in noisy en-
vironments, and it can compromise pri-
vacy. Finally, because of its sequential na-
ture, speech is ill-suited for skimming data.

Pointing devices. The mouse is the
standard pointing device for desktop
computers, but it doesn’t suit mobile
computers. Pens have become the stan-
dard input device for PDAs because of
their ease of use while mobile, their ver-
satility, and their ability to supplant the
keyboard.

Switching to pens requires changing
both the user interface and the software
interface because a mouse and a pen are
really quite different.9 Users can jump to
absolute screen positions and enter path
information more easily with a pen than
with a mouse, and it is nearly impossible
to write with a mouse. Pen-positioning
resolution on current tablet computers is
several times more accurate than screen
resolution; for example, pen resolution
on the EO is 0.10 mm, while screen reso-
lution is 0.23-0.30 mm. Also, parallax be-
tween the pen tip and the screen image
can mislead when pointing; with a mouse
there is no parallax because the mouse
cursor provides feedback in the image
plane. Finally, the mouse cursor obscures
much less of the screen than the user’s
hand does when writing with a pen.

Small storage capacity. Storage space
on a portable computer is limited by
physical size and power requirements.
Traditionally, disks provide large amounts
of nonvolatile storage. In a mobile com-

puter, however, disk drives are a liabil-
ity. They consume more power than
memory chips, except when off line, and
they may not really be nonvolatile when
subject to the indelicate treatment a
portable device receives. Hence, none of
the PDA products have disk drives.

Coping with limited storage is not a
new problem. Solutions include com-
pressing files automatically, accessing re-
mote storage over the network, sharing
code libraries, and compressing virtual
memory pages. Although today’s net-
worked computers have had great success
with distributed file systems and remote
paging, mobile computers that regularly
encounter network disconnections are
less capable of relying on a network.

A novel approach to reducing the size
of program code is to interpret script lan-
guages instead of executing compiled ob-
ject codes, which are typically many times
larger than the source code. This ap-
proach is embodied by General Magic’s
Telescript and Apple Technology Group’s
Dylan and Newtonscript. An equally im-
portant goal of such languages is to en-
hance portability by supporting a com-
mon programming model across different
machines.

M obile computing is a technol-
ogy that enables access to dig-
ital resources at any time,

from any location. From a narrow view-
point, mobile computing represents a
convenient addition to wire-based local
area distributed systems. Taken more
broadly, mobile computing represents
the elimination of time-and-place re-
strictions imposed by desktop computers
and wired networks.

In forecasting the impact of mobile
technology, we would do well to observe
recent trends in the use of the wired in-
frastructure, in particular, the Internet.
In the past year, the advent of convenient
mechanisms for browsing Internet re-
sources has engendered an explosive
growth in the use of those resources. The
ability to access them at all times through
mobile computing will allow their use to
be integrated into all aspects of life and
will accelerate the demand for network
services. The challenge for computing de-

signers is to adapt the system structures
that have worked well for traditional
computing so that mobile computing can
be integrated as well. W

Acknowledgments
Support for this work was provided in part by

the National Science Foundation (grants CCR-
9123308 and CCR-9200832), Tektronix Inc. (a
graduate fellowship), the Washington Tech-
nology Center, and Digital Equipment Corp.
(Systems Research Center and External Re-
search Program). We thank Robert Bedichek,
Brian Bershad, Blake Hannaford, Marc Fi-
uczynski, Brian Pinkerton, and Steian Savage
for helpful pointers and clanfying discussions
that significantly improved this article.

References
1. M. Weiser, “Some Computer Science Is-

sues in Ubiquitous Computing,” Comm.
ACM, Vol. 36, NO. 7, July 1993, pp. 75-84.

2. J.J. Kistler and M. Satyanarayanan, “Dis-
connected Operation in the Coda File Sys-
tem,” ACM Trans. Computer Systems,
Vol. 10, No. 1, Feb. 1992, pp. 3-25.

3. C.D. Tait and D. Duchamp, “Detection
and Exploitation of File Working Sets,”
Proc. 11th Int’l Conf Distributed Comput-
ing Systems, IEEE CS Press, Los Alami-
tos, Calif., Order No. 2144,1991, pp. 2-9.

4. B.C. Neuman, “Protection and Security Is-
sues for Future Systems,” in Workshop on
Operating Systems of the 90s and Beyond,
Lecture Notes in Computer Science #563,
Springer-Verlag, New York, 1991, pp. 184-
201.

5. J. Ioannisdis, D. Duchamp, and G.Q.
Maguire Jr., “IP-Based Protocols for Mo-
bile Internetworking,” Proc. SIGComm 91
Symp., ACM,New York, 1991, pp. 235-245.

6. T. Imielinski and B.R. Badrinath, “Data
Management for Mobile Computing,”
SIGMOD Record, Vol. 22, No. 1, Mar.
1993, pp. 34-39.

7. C. Ma, “On Building Very Large Naming
Systems,” Proc. Fifth ACM SIGOPS
Workshop Models and Paradigms for Dis-
tributed Systems Structuring, ACM, New
York, 1992,5 pp.

8. F. Teraoka and M. Tokoro, “Host Migra-
tion Transparency in IP Networks: The
VIP Approach,” Computer Comm. Rev.,
Vol. 23, No. 1, Jan. 1993, pp. 45-65.

46 COMPUTER

APPENDIX X

Microsoft et al. Exhibit 1005

9. D. Duchamp, S.K. Feiner, and G.Q. Maguire Jr., “Software Tech-
nology for Wireless Mobile Computing,” IEEE Network Maga-
zine, Vol. 5, No. 6, Nov. 1991, pp. 12-18.

IO. A. Chandrakasan, S. Sheng, and R.W. Brodersen, “Design Con-
siderations for a Future Portable Multimedia Terminal,” in Third-
Generation Wireless Information Networks, S. Nanda and D.J.
Goodman, eds., Kluwer Academic Publishers, Hingham, Mass.,
1992, pp. 75-97.

I I . K. Li et al., “A Quantitative Analysis of Disk Drive Power Man-
agement in Portable Computers,” tech. report, Computer Science
Division, University of California, Berkeley, Calif., 1993.

12. C.C. Tappert, C.Y. Suen, and T. Wakahara, “On-Line Handwriting
Recognition - A Survey,’’ Proc. Ninth Int’l Con5 Pattern Recog-
nition, Vol. 2, IEEE CS Press, Los Alamitos, Calif., Order No. 878.
1988, pp. 1,123 ,132.

George Forman is a PhD candidate in the Department of Computer Sci-
ence and Engineering at the University of Washington. His research in-
terests include mobile computing and compilers for parallel computers.

Forman received his BA in mathematics from Pomona College, Cal-
ifornia, in 1988. The following year he received a Fulbright fellowship
for study at the Swiss Federal Institute of Technology, Zurich. He is a
member of Sigma Xi and Phi Beta Kappa.

John Zahorjan is a professor of computer science and engineering at the
University of Washington. His research interests include performance
modeling and experimental evaluations, as well as issues in mobile
computing, runtime support for parallel computing, and resource
scheduling for continuous-media applications.

Zahorjan received an ScB in applied mathematics from Brown Uni-
versity in 1975 and MSc and PhD degrees in computer science from the
liniversity of Toronto in 1976 and 1980, respectively. In 1984 he re-
ceived a Presidential Young Investigator Award from the National Sci-
ence Foundation. He is a member of the IEEE Computer Society.

The authors can be contacted at the Department of Computer Sci-
cnce and Engineering, FR-35, University of Washington, Seattle, WA
981 95, e-mail (forman, zahorjan)@cs.washington.edu.

April 1994

R I D T ’ 9 4

RASTER
IMAGING

&
DIGITAL

TYPOGRAPHY

Darmstadt, Germany
11-14 April, 1994

S e s s i o n s

Font modeling, parametrisation of fonts
Variables width splines, digital halftoning

Readibility, symbols for displays
Intelligent outline-fonts
Optical font recognition

Constraints, string matching techniques

T u t o r i a l s
Desktop colour reproduction, colorimetry

Modeling human vision
Typography and Multimedia

G u e s t s p e a k e r s

Chuck Bigelow

Hermann Zapf

I n f o r m a t i o n
Jacques Andre

INRIA-Rennes, campus de Beaulieu
F-35042 Rennes cedex, France

Fax: +33 99 38 38 32
email: ridt94dirisa.fr

APPENDIX X

Microsoft et al. Exhibit 1005

mailto:zahorjan)@cs.washington.edu
http://ridt94dirisa.fr

A Network Architecture for Mobile Computing�

Kevin Brown

Dept� of Computer Science

Univ� of South Carolina

Columbia� SC �����

kbrown�cs�sc�edu

Suresh Singh

Dept� of Computer Science

Univ� of South Carolina

Columbia� SC �����

singh�cs�sc�edu

September �� 	��

Submitted for publication

Abstract

In this paper we report on an ongoing project to design and build the network and transport

layers for mobile networking� The network architecture used is unique in that it separates the

mobile network�s� from �xed networks and provides connectivity between the two via special

gateways� These gateways provide QOS guarantees to mobile users for all their open connec�

tions� We provide summaries of all the protocols we are implementing �or have implemented�

and discuss possible improvements�

Technical area : Wireless Networks and
 Protocols

Corresponding author: Suresh Singh

Telephone: (803)777-2596
 Fax: (803)777-3767

� Introduction

Mobile computing is an emerging new computing environment incorporating both wireless and

high�speed networking technologies� Users equipped with personal digital assistants or PDAs

�Funding for this work was provided by the NSF under grant number NCR�������	

�

APPENDIX Y

Microsoft et al. Exhibit 1005

�palm�top computers� will have access to a wide variety of services that will be made available

over national and international communication networks� Mobile users will be able to access

their data and other services such as electronic mail� electronic news� yellow pages� map services�

electronic banking and videotelephony services while on the move� To receive these services�

mobile users will be connected to �xed networks via wireless networks �or mobile networks��

The goal of this paper is to present a comprehensive solution to the problem of wireless

networking for mobile computing� We propose a mobile network architecture� network layer

design and transport protocols that� we believe� will make it possible to o	er all of the above

services in an integrated manner� Such a system is currently being built at University of S�

Carolina and� in this paper� we discuss the design in detail�

��� Challenges in Mobile Networking

Providing the type of services discussed above to mobile users requires high data rates on the

wireless link and several authors �see for example Goodman
�� � Joseph
��� have proposed an

average data rate of between ���Mbps per mobile user� The third generation cellular system

being developed in Europe �UMTS � Universal Mobile Communication System�� for instance�

also propose bandwidth in the same range �see DaSilva
��� In order to support such high data

rates� a microcellular network architecture has been proposed� see Goodman
� and Duchamp
��

Here� a geographical region such as a campus is divided into microcells with a diameter of the

order of hundreds of meters� All mobile users within a microcell communicate with a central host

machine within that cell who serves as a gateway to the wired networks� this machine is called a

mobile support station �MSS��

What are some of the networking issues we need to address in order to provide the di	erent

types of service discussed above� Two broad issues that need to be considered are the following�

� Design of an e�cient network architecture to support mobility and corresponding network

layer protocols� The problems here include�

� Tracking mobile users as they roam�

� Routing messages and forwarding them to the current location of the mobile user�

� Providing �ow�control and bu	ering for open connections�

� Developing transport layer protocols that mesh easily with protocols that will be made

available over high�speed networks� Some requirements here include�

� Developing mobile network analogues of commonly used protocols such as TCP and

UDP�

� Developing protocols that support real�time applications such as voice and video or

on�line data services�

�

APPENDIX Y

Microsoft et al. Exhibit 1005

� Maintaining quality of service guarantees for applications even in the presence of mo�

bility�

Some of the problems mentioned above have been addressed by other researchers as we discuss

below�

Routing in Mobile Networks� In mobile networks� since the hosts are mobile� routing is a

problem� Ioanidis
� proposes a solution called the IPIP ��IP�within�IP�� protocol� Here every

MH has a unique IP address called its �home address�� To deliver a packet to a remote MH� the

source MSS �rst broadcasts an ARP to all other MSS nodes to locate the MH� Eventually some

MSS responds� The source MSS then encapsulates each packet from the source MH within another

packet containing the IP address of the MSS in whose cell the destination MH is located� Upon

receiving this packet the destination MSS extracts the original packet and attempts to deliver it

to the destination MH� If the MH has moved away� the destination MSS attempts to locate it by

broadcasting an ARP request� As discussed in Teraoka
�� this method is not easily scalable�

Teraoka
�� proposes a more �exible solution to the problem called � the Virtual Internet

Protocol orVIP� Here every host has a virtual network address �VIP address� that is unchanging�

In addition� hosts have associated physical network addresses �traditional IP addresses� that may

change as the host moves around� At the transport layer� the target node is always speci�ed by

its VIP address only� The address resolution from the VIP address to the IP address takes place

at either the network layer of the same machine or at a gateway� Both� the host machines and

gateways� maintain a cache of VIP to IP mappings with associated time stamps� This information

is in the form of a table and is called AMT �or address mapping table�� Routing is achieved by

referring to these AMT tables�

Transport Protocols for Mobile Networks� Since mobile hosts will expect the same services that

are o	ered to �xed hosts� it is necessary to implement transport services in the mobile domain

that are similar to those o	ered in the �xed networks� TCP is one such protocol� If we use TCP

without any modi�cation in mobile networks we have a serious problem of e�ciency� This is

because in TCP the sender begins retransmission of packets if they are not acknowledged within

a short amount of time �hundreds of milliseconds�� In a mobile environment� as a user moves

between cells� there is a brief blackout period while the mobile unit performs a �handshake� with

the new MSS� These blackout periods may also be caused by physical obstacles in the environment

that interfere with radio signals� These periods can be of the order of � second thus delaying the

transmission of acknowledgements for packets received� This results in the TCP sender timing

out and retransmitting the unacknowledged packets thus greatly reducing the e�ciency of the

connection� A solution to this problem is the I�TCP protocol �Indirect�TCP�� implemented at

Rutgers University as part of the DataMan project �see Barke
��� that provides e�cient reliable

communication for the wireless environment� A bene�t of the above implementation is that it

allows mobile hosts to be connected over the Internet� We examine the I�TCP protocol in more

�

APPENDIX Y

Microsoft et al. Exhibit 1005

detail in section ����� where we compare it against our own proposal�

��� Summary of Paper

We are currently building a mobile network from the ground up and this paper discusses our

design and initial experience� Speci�cally� we propose a design for the network layer and transport

layers for �rd generation wireless systems and provide arguments in support of this design� The

implementation of the protocol stack is been done under Unix �we use NetBSD� running on

Pentium PCs�

� In section � we discuss our architecture for the mobile subnetwork that� we feel� best ad�

dresses the various issues raised in section ����

� Our network layer design is presented in section ���� The sketch of our transport layer is

presented in section ���� We also address management and control questions speci�c to the

mobile environment �e�g�� feedback of dynamic bandwidth changes to applications� etc���

Special protocols for noti�cation applications �e�g�� pager service� and continuous media are

also incorporated�

� Overview of our Proposed Architecture

The solutions discussed in section ��� use a microcellular architecture where the base station for

each cell is a node on the internet� The solutions proposed for routing and TCP implementations

thus assume that the underlying subnetwork is a datagram network� We believe that this as�

sumption has only one justi�cation � compatibility with existing technology � which� in our view�

is insu�cient� Some of the problems with this approach are�

� The base stations �or MSSs� are responsible for tracking mobile users and forwarding packets

to their new locations� This adds to the cost and complexity of the base stations and since we

expect cell sizes to be small ����m�� in order to accommodate high�bandwidth applications�

the total cost of a mobile network will be very high�

� As a user roams between cells� the bandwidth available in each cell may also vary� If the

user has open connections� it will have to renegotiate QOS parameters frequently� This is

clearly an undesirable situation�

� Cell latency times �staying time in a cell� are typically small �several seconds�� This exac�

erbates both of the above problems�

Our architecture is discussed in detail in Singh
��� We summarize the main points in this

section� Our architecture may be viewed as a three�level hierarchy �see Figure ��� At the lowest

level are the mobile hosts �MH� who communicate with MSS nodes in each cell� Several MSSs are

�

APPENDIX Y

Microsoft et al. Exhibit 1005

controlled by a machine called the Supervisor Host �SH�� The SH is connected to the wired network

and it handles most of the routing and other protocol details for the mobile users� In addition

it maintains connections for mobile users� handles �ow�control and is responsible for maintaining

the negotiated quality of service� A single SH may thus control all MSS nodes within a small

building� Our architecture separates the mobile network from the high�speed wired network and

provides connectivity between the two via supervisor hosts �SHs� who serve the function of a

gateway�

SH
SH

Supervisor Host
Mobile Support
Station (MSS)

Cells

Cells shared by both
supervisor hosts

High-speed Network

Mobile Host
(MH)

Figure �� Proposed Architecture�

A mobile user may set up connections where the other end�point is either another mobile

user or a �xed host �e�g�� a service�provider� in the �xed network� In either case the connection

is managed by the current SH of the mobile host�s� �see Figure ��� The reason for splitting the

connection between the MH and the service�provider is to shield �xed nodes from the idiosyncrasies

of the mobile environment� Thus� the service�provider sets up a connection with the SH assuming

the SH is the other end�point of the connection� The SH sets up another connection to the MH�

Thus for everyMH � service�provider connection the QOS parameters are de�ned separately

for theMH � SH part and for the SH � service�provider part of the connection� Connections

between two MHs are broken in three �if the two MHs are controlled by di	erent SHs� �MH� �

SH�� SH� � SH� and SH� � MH�� Note that the SH�SH part of any connection is established

over the �xed network� The bene�ts of our architecture� thus� are�

� The MSSs are simple and cheap devices because they merely serve as a point of attachment

for MHs�

� Since several MSSs are controlled by a single SH� the roaming MH remains within the

domain of the same SH for long time periods�� This makes it easier to guarantee QOS

�e
g
� a MH may roam frequently between rooms in an o�ce building but remain for many hours within the

building each room is a cell and all cells in the building are controlled by one SH

�

APPENDIX Y

Microsoft et al. Exhibit 1005

MH

Fixed Network

Mobile Network

SH

MSSMSSMSS

Service
Provider

SH to Service Provider
part of the connection

MH to SH part
of the connection

(a) Connection between MH and service provider

MH1

Fixed Network

Mobile Network

SH1

MSSMSSMSS

MH to SH part
of the connection SH2

MH2

SH to SH part of
the connection

(b) Connection between two MH nodes

Figure �� Connections for MHs are managed by SHs�

parameters for MH connections�

� Network and Transport Layer Protocols

Our view of the mobile network in relation to �xed wired networks is illustrated in Figure �� The

mobile network is actually composed of many sub�networks each of which is connected to the �xed

networks via a SH node� SH nodes communicate with one another over the �xed network� Each

SH controls several MSS nodes� Physical communication between a SH node and its MSS nodes

is accomplished either over a dedicated network consisting of dedicated wiring �perhaps several

MSSs are connected via twisted�pair to a hub and several hubs are connected directly to the SH�

or over the �xed network itself � i�e�� the MSS nodes are regular hosts on the �xed network and

�

APPENDIX Y

Microsoft et al. Exhibit 1005

can be addressed with IP addresses� The latter is a cheaper solution and provides a migration

path to having dedicated mobile networks�

Fixed Network

SH

SHSH

Mobile
Networks

Figure �� Relationship of mobile networks to �xed networks�

��� Network Layer Design

����� Routing and Tracking

Recall that all connections set up by a MH pass through its SH� For instance� a connection between

MH M� and M� located within the same mobile network �i�e�� same SH S� is set up as M��S�

M�� If the two MHs are in di	erent mobile networks S� and S� the connection is M��S��S��M��

The S��S� portion of the connection passes over the �xed network� A connection from M� to a

�xed host F is set up as� M��S�F �� In all of these cases� notice that routing consists of two

components � routing within a given mobile network from the SH to the MH and routing over

the �xed network between SHs or between SHs and �xed hosts� Let us consider each of these two

components separately�

In our design we implement virtual circuits at the network layer in each mobile sub�network�

This means that the network layer will deliver all packets in order to the current MSS of the MH�

Thus even if the MH moves between cells� so long as the MH remains within the same mobile

sub�network� all packets will be delivered to its MSS in order� It is important to observe that the

network layer does not guarantee delivery of packets to the MH� it only guarantees delivery to

the MSS� This is because the wireless link is very unreliable and error recovery is best left to the

transport layer which is responsible for implementing service guarantees� We discuss this point

in greater detail in section ���� Moreover� if the MH moves into the domain of another SH� there

are no guarantees made regarding the delivery of packets in transit�

To route within one mobile sub�network �i�e�� within the domain of one SH�� the network

layer at the SH maintains a location table consisting of entries for each MH currently within

its domain and the location of the MH �i�e�� the identity of its MSS�� This table is updated via

control messages passed between the MSS and SH every time a MH moves� If the MSS nodes are

�The reason for routing all connections through a SH is that the SH can provide network level bu�ering and

�ow�control
 If we set up a connection directly between two MHs� for instance� �ow�control and retransmission of

lost packets will require an exchange of control messages between the MHs consuming scarce wireless bandwidth

�

APPENDIX Y

Microsoft et al. Exhibit 1005

connected via dedicated links to the SH� there is no need for them to have IP numbers� The SH

simply transmits on the appropriate port� If the MSS nodes are nodes on the �xed network� then

the SH needs to route messages to the MSS nodes on the �xed network� In our implementation

all MH nodes have unique IP addresses �with some �home� network as part of the address�� Here

the SH nodes route messages to the MH by using the IP loose source routing option �following

the work of Johnson
���� The destination address in the header is set to the IP address of the

MSS and the MH IP address is contained as the �rst IP address in the option part of the header�

The MSS examines the datagram and delivers it to the MH �if it is present in its cell�� If it has

moved away� the MSS discards the datagram�

To implement reliable delivery �in the sense discussed earlier�� every datagram is given a

sequence number� A MSS sends an ACK for each datagram transmitted to the MH �note that

the datagram may not be received by the MH because of fading or other interference�� Until a

datagram is ACKed� it is bu	ered at the network layer of the SH� If a MH moves away from its

current MSS to a new MSS� the old MSS discards all messages but simultaneously informs the

SH of the sequence numbers of these discarded messages� These messages are then retransmitted

to the new location of the MH� A detailed protocol is presented in Gahi
� �though our current

implementation contains many changes��

For routing over the �xed network �e�g�� between SHs or between an SH and a service provider��

the existing routing protocol provided over the �xed network is used� Thus the network layer

shown in Figure � is local to the mobile sub�networks only� The network layer shown in Figure

� consists of two sub�layers � a tracking and VC maintenance sub�layer sitting on top of IP� The

tracking sub�layer is responsible for maintaining location information for each MH currently in

that mobile sub�network� VC maintenance refers to the task of guaranteeing reliable delivery of

datagrams� It is noteworthy that we currently use IP for routing purposes� This choice is dictated

more by budgetary constraints than scienti�c ones�

Local Tracking, VC Setup
and Maintenance

Transport Layer

IP

Figure �� Network Layer�

�

APPENDIX Y

Microsoft et al. Exhibit 1005

��� Transport Layer Design

When developing transport layer protocols for the mobile environment� it is important to keep

the following constraints in mind�

� The wireless link is very fragile and error�prone� This means that any reliable protocol must

perform a signi�cant amount of error�recovery�

� The bandwidth of the wireless link will always be a limited resource� Thus� all protocols

need to be �lean�� For instance� in the case of TCP�like protocols� it is not a good idea

to have end�to�end �ow control �where one end is mobile� because of the high number of

control messages that will be sent�

� Available bandwidth within a cell may change dynamically �because it is impossible to

control the number of users per cell�� This leads to all kinds of problems in guaranteeing

QOS parameters such as delay bounds and bandwidth guarantees�

� Mobile hosts frequently encounter extended periods of disconnection �caused due to hand�

shake or due to physical interference with the signal� and this will result in signi�cant losses

of data for UDP�like protocols� We need to rede�ne best�e	ort service for such cases�

� Mobile hosts may move between SHs after opening transport connections� Should the old

SH continue to be responsible for these connections or should control be transferred to the

new SH�

All of the above issues can be summarized in the form of two questions� The answer to these

questions will determine the transport layer design�

��	 Should the transport layer be aware of the mobility of MHs

��	 Should the transport layer be aware of bandwidth �uctuations at the

wireless link

If we were to strictly follow the layering idea of the OSI hierarchy� mobility and bandwidth

�uctuations will have to be concealed from the transport layer� For mobile networks� however�

even though we can adhere to this philosophy� it will result in degraded performance and increased

message overhead� To see why this is the case� let us consider two scenarios that will be com�

monplace in a mobile environment� In the �rst� a MH with open data connection�s� moves into

a cell where there are many other MHs� It is likely that the negotiated QOS for the connections

of this MH can no longer be satis�ed and will have to be renegotiated� Since renegotiation of

QOS parameters involves the transport layer �and the network layer�� it is not possible to conceal

bandwidth �uctuations from the transport layer� We discuss this problem further in section ������

�

APPENDIX Y

Microsoft et al. Exhibit 1005

For the second scenario� consider what happens if a MH with an open TCP connection moves

from its current SH �where the TCP connection was established� to another SH� In this case

it is not necessary to re�establish the TCP connection �because the network layer can forward

datagrams from the old SH to the new SH�� However� the e�ciency of the TCP connection will be

degraded for reasons discussed in section ��� �recall that I�TCP attempts to alleviate this e�ciency

problem by breaking the TCP connection in two�� In our architecture� as we discuss in section

����� and section �� since we perform a great deal of bandwidth management within each mobile

sub�network �controlled by a single SH�� it becomes necessary to re�establish connections when a

MH moves from the sub�network of one SH into the sub�network of another� Thus� we believe�

the transport layer will need to be aware of the mobility of MHs and bandwidth �uctuations for

each open connection�

Our view for the transport layer of the mobile sub�network is shown in Figure �� The pre�x

M stands for �mobile�� Thus we have a version of mobile�TCP and mobile�UDP� M�CM refers

to the mobile�continuous media protocol and is useful for implementing real�time services such

as voice or video� It is loosely based on the continuous media protocol of Moran
��� The

mobility management module deals with the problems of mobility �i�e�� re�establishing transport

connections when a MH moves between sub�networks and renegotiating QOS parameters��

LPTSL

M-UDP M-CM
M-TCP

Application Layer

Network Layer

Transport Layer

RAFT

Notify

Mobility Management Module

Figure �� Transport Layer�

��

APPENDIX Y

Microsoft et al. Exhibit 1005

����� M�TCP

In section ��� we touched upon the problems associated with providing TCP�like service over

mobile networks� Speci�cally� if the receiver is a MH� the TCP sender times out frequently because

of the �blackout� periods in mobile networks� The solution of Barke
� breaks the connection in

two �similar to our idea with the di	erence that they consider mobile networks to be part of the

internet� � from the �xed host to the MSS and from the MSS to the MH� The MSS e	ectively

serves as the TCP connection end�point from the point of view of the �xed host� The MSS

is then responsible for forwarding all data reliably to the MH� Note that the semantics of this

implementation di	er from TCP semantics � it is possible for the sender to think that all data has

been correctly delivered to the MH �since the MSS has sent ACKs� even if this is not the case�

In our design� the TCP connection is broken in two � �xed host to SH and SH to MH� The �xed

host to SH part of the connection uses regular TCP while M�TCP is used for the SH to MH part

of the connection� Since M�TCP is layered on top of a reliable virtual circuit connection �reliable

within one mobile sub�network�� its design is relatively simpli�ed� Even though this design looks

similar to I�TCP� unlike Brake
�� we implement almost TCP�like semantics that make it easier

for the sending application to recover from the type of error described above� The TCP client

on the SH always ACKs all but the last byte of data received from the sender� The last byte is

ACKed only after it has been successfully sent to the MH by M�TCP at the SH� In this scenario�

if the MH disconnects before receiving all data from the SH� the sender will never receive an ACK

for the last byte� Thus� the sending application will know that the connection has failed and can

take remedial action� In addition to the above change� we ensure that the bu	ers at the SH are

not exhausted �which can happen� for instance� if the MH has been temporarily disconnected� by

linking bu	er availability �i�e�� receiver window size� to the available bandwidth on the wireless

link� This causes the TCP client to automatically choke the sender when the MH is in a crowded

cell� This linkage between expected wireless bandwidth and TCP bu	ers is another unique feature

of our design�

It is important to note� however� that M�TCP semantics are still slightly di	erent from TCP

semantics� This is best illustrated by considering a talk application� The application displays

data on the user screen as and when it is received over the TCP connection� If the SH crashes� it

is possible for the sender to think that almost all the lines it has typed thus far have appeared on

the receiver�s screen �because ACKs have been received for all but the last byte� even though this

may not be the case �i�e�� the SH crashed before that data was sent to the MH�� This situation

is not completely hopeless� however� because the sender will eventually realize that the SH has

crashed and it can then take remedial action�

What happens when a MH moves from the sub�network of one SH into the sub�network

of another� In our implementation this is handled in a manner similar to I�TCP� The old SH

transfers TCP state to the new SH after it has been informed by the mobility management module

about the move �recall that whenever a MH enters a new cell� it performs a handshake procedure

��

APPENDIX Y

Microsoft et al. Exhibit 1005

with the new MSS� The information exchanged during this handshake includes the identity of the

previous SH and information about all open connections� see Ghai
��� Meanwhile all datagrams

arriving at the old SH are sent on to the new SH via IP loose source routing�

In our implementation� we require the MH to maintain the identity of the original SH �who

�rst set up the TCP connection�� If the MH moves from SHoriginal to SH� to SH�� after SH�

has transferred TCP�state to SH�� SHoriginal is given the IP address of SH� so that it can route

datagrams directly to SH� without going through SH� �rst� This method keeps the cost of

forwarding datagrams small� In the future� if IP is replaced by a protocol like VIP� we will not

have to worry about this particular problem� This is because the intermediate routers in the �xed

network will automatically associate the IP address of SH� with the VIP address of the MH �see

Singh
�� for more details� and route datagrams accordingly�

����� M�UDP

If we were to implement UDP in the mobile network without any changes� the performance seen

by a MH would be very poor� This is because packets transmitted while the MH is moving

between cells or is blocked by some physical obstruction are lost �note that in TCP these packets

would be retransmitted�� Only a small percentage of loss is due to lack of bandwidth� A high�level

view of our M�UDP protocol as implemented is the following �a detailed protocol may be found

in Brown
���

� Every UDP packet is bu	ered at the SH�

� The SH discards a packet if it has run out of bu	er space or if it has been transmitted n

times to the MSS�

The semantics of M�UDP are almost identical to UDP in the sense that delivery is not guar�

anteed� However� M�UDP attempts a �best e	ort� service that is constrained only by bu	er space

availability at the SH and by bandwidth availability on the wireless link� In our experiments we

observed a � to � fold improvement in the number of packets delivered by M�UDP in comparison

to UDP �for mobile hosts��

����� M�CM

A large percentage of future applications will require transmission of data at regular intervals�

This kind of data is referred to as continuous media and some examples include voice communi�

cation� video communication� etc� Continuous media applications have severe time deadlines and

bandwidth requirements and thus cannot be implemented on top of message�based transport pro�

tocols such as M�TCP or M�UDP� Following Moran
�� we propose a separate transport protocol

suite called M�CM �mobile�continuous media� that will provide the functionality required by such

applications� Unfortunately� however� the protocols proposed in Moran
�� and other solutions

��

APPENDIX Y

Microsoft et al. Exhibit 1005

proposed for the high�speed network domain cannot be adapted to the mobile networks because

of two reasons�

� bandwidth availability varies in an unpredictable manner as hosts roam�

� fading and hando	 cause periods of disconnection�

All proposals for CM�type protocols require the network layer to provide strict guarantees regard�

ing bandwidth availability and delay bounds for each connection� Because of the above reasons�

however� this is not possible in the mobile domain�

Our approach is to provide a �best�possible� service to M�CM connections� Intuitively� this

means that the SH will arbitrate between various MH connections to determine how much band�

width must be allocated to each open connection� Thus� if a MH has an open ftp connection �via

M�TCP� and an open video connection �via M�CM�� a scheduler process �CS process� see section

�� will starve the ftp connection in favor of the video connection if the available bandwidth� within

the current cell of the MH� gets reduced� The scheduler also interfaces with LPTSL in case some

fraction of data along the M�CM connection�s� need to be discarded� This M�CM protocol has

not yet been fully speci�ed�

����� LPTSL �Loss Pro�le Transport Sub�Layer	

Future applications to be provided to mobile users will include audio �e�g�� telephone� audio

conferencing� etc�� and video applications �e�g�� map information� viewing movies� etc��� These

applications have real�time constraints and therefore need to be implemented over M�CM� How�

ever� we have a unique problem of dynamic bandwidth changes during the lifetime of a connection

caused due to the unpredictable mobility of mobile hosts�

To illustrate a consequence of this unpredictable mobility� consider a situation where several

mobile users have opened high�bandwidth connections� When these connections are set up� the

network ensures that the users receive some guaranteed bandwidth� Since these users are all

mobile� it is possible that many of them could move into the same cell� In such a situation� it is

very likely that the requested bandwidth of the cell will exceed available bandwidth resulting in

the original QOS �quality of service� parameters being violated� This situation does not arise in

high�speed networks because users are not mobile during the life�time of a connection�

To deal with this situation� we propose that most open connections� than can tolerate losses�

within the choked cell be penalized �either equally or di	erentially� based on some need�based

policy�� Thus� a penalized connection will see a x reduction in available bandwidth� The

question now is � does the MH renegotiate the QOS parameters to force the sender to reduce the

connection bandwidth �e�g�� use a higher compression ratio for a video connection� or is data for

that connection discarded by the SH� The �rst option sounds attractive but is not necessarily the

right choice for the following reasons�

��

APPENDIX Y

Microsoft et al. Exhibit 1005

� The bandwidth crunch is probably temporary and will be alleviated as soon as a MH roams

out of the cell� When this happens� the QOS parameters will have to be renegotiated�

� The cell latency of a MH is of the order of several seconds� The end�to�end renegotiation

process is time consuming and thus the bandwidth available may change even before this

renegotiation is completed�

� While the renegotiation is going on� data will continue to be sent at the old rate� Since the

wireless bandwidth is small� the bu	ers at the SH will possibly over�ow�

We propose that the SH judiciously discard data for each penalized connection� Since the SH

operates at the transport layer �it is a gateway�� it can do this� Note� however� that indiscriminate

discarding of data may result in garbage at the MH �e�g�� if data is randomly thrown out of a

compressed video stream� no video can be reconstructed�� To solve this problem� we have proposed

a new sub�layer called the Loss Pro�le Transport Sub�Layer� The sending application puts �ags

in the data stream by making calls to LPTSL� All data between a pair of �ags represents a logical

segment �e�g�� one logical segment may be a single compressed frame in JPEG�video�� The LPTSL

at the SH discards entire logical segments in the event of a bandwidth crunch to ensure a x

reduction in bandwidth �note that the application at the MH can be informed of the location of

the discarded segments in case that information is required � as in MPEG�� video�� A detailed

protocol is presented in Seal
��� See Figure � for an explanation of the operation of this layer�

Here the data stream at the sender is broken into data segments �logical segments� separated

by special �ags� These �ags are inserted by the LPTSL layer at the sender� The LPTSL layer

at the SH is informed of the available bandwidth in the current cell of the MH and determines

if any data needs to be discarded� If so� it discards entire logical segments �all data between

consecutive �ags�� The LPTSL at the MH passes up the arriving data to its receiving application

and indicates the location and size of the discarded segments�

A reason for discarding data at the LPTSL is because LPTSL provides di	erent discarding

functions� When a connection is set up� a QOS parameter negotiated is the discarding function�s�

to be used in the event of a bandwidth crunch� For instance� if the connection is an audio

connection� the user may prefer uniform random loss as opposed to bursty loss� On the other

hand� if the data is compressed video� random loss will prove to be disastrous� In this case the

user may opt for bursty loss �i�e�� discard entire frames rather than random bytes from several

frames�� These discarding functions are provided in the form of a indexed library of sub�routines

at the LPTSL layer of the SH�

���� RAFT �Repetitive Almost�reliable Fast Transport	

In addition to applications discussed in section �� PDAs will be used as devices whereby critical

data can be transmitted to the user quickly � much like today�s pagers or beepers but with a

��

APPENDIX Y

Microsoft et al. Exhibit 1005

Application

LPTSL

Transport

underlying network

Service
provider SH MH

data stream data stream

Application

LPTSL

Transport

Application

LPTSL

Transport

Discarded data
segments

flags

data segments

Figure �� Loss Pro�le Transport Sub�Layer�

greater degree of sophistication� These type of noti�cation applications need to be able to transmit

data quickly and reliably to the mobile user� To facilitate the development of such applications we

propose a transport sub�layer called RAFT that is built on top of M�UDP� The approach we use

is the following � RAFT at the SH sends data several times� When the MH eventually receives

all data correctly it sends a shut o� message to RAFT at the SH� RAFT data takes precedence

over all other connections�

� Management and Control

In Figure �� we show the transport and network layer control and management functions at the SH�

The SH needs to ensure that QOS parameters for open connections are maintained� This implies

appropriate bandwidth management within each cell and bu	er allocation for each connection at

the SH� In Figure � the management and control functions of the protocol stack for the mobile

sub�network is shown in detail� The di	erent arrows indicate control paths� management paths�

data paths and QOS negotiation paths�

At the network layer we have a process �CBM� that monitors the bandwidth utilization within

each cell controlled by the SH and passes this information up to a transport layer process �CS�

via a management path� The CS process arbitrates bandwidth within each cell between all open

connections� Thus� if there is a real�time connection �e�g�� audio� and a data connection into

a cell� the CS may choose to starve the data connection in order to ensure the delay bounds

for the real�time connection are met� Another control process at the network layer �NL QOS�

monitors the QOS being delivered to each VC and sends this information to the CS as well� This

management path is required to ensure that QOS parameters �such as bandwidth usage or delays�

for M�CM connections are met� If some M�CM connection has not been receiving its negotiated

QOS� the CS process allocates more bandwidth to that connection�

CS is the process which is responsible for maintaining QOS for all M�CM connections and

ensuring that data connections �M�UDP or M�TCP� do not get starved in the process� The CS

��

APPENDIX Y

Microsoft et al. Exhibit 1005

receives information for each M�CM connection�s QOS contract� Note that this contract may be

renegotiated during the lifetime of the connection and thus CS needs to be informed of this change

via the management path� M�UDP connections are subject to data discarding �via LPTSL� in

the event of a bandwidth crunch� Thus� we assume that some QOS negotiation also takes place

for UDP connections and this information is passed on to the CS process as well� CS periodically

informs M�CM� M�UDP and M�TCP of the available bandwidth for each connection via control

paths� It is up to these protocols to ensure that they control each open connection �either choke

the sender as in M�TCP� or discard data via LPTSL as in M�CM� adequately�

QOS negotiations take place between M�CM�s QOS process� NL QOS and possibly the QOS

process on the �xed network �in case the connection is to a �xed host� via QOS negotiation paths�

QOS control information is also exchanged between LPTSL and the QOS processes of M�UDP

and M�CM� Finally� the bu	er manager processes at both� the network layer and the transport

layer� are responsible for bu	er allocation to di	erent connections� The data paths followed for

some typical connections are illustrated in the �gure as well�

Buffer
Manager

Cell-by-cell
Scheduler

Cell-by-cell
bandwidth
monitor

LPTSL RAFT

M-UDP
M-TCP

M-CM

QOS QOS

Network
Layer QOS

CM

TCP

UDP

Mobile
Transport
Layer

Network
Layer

Fixed
network
Transport
Layer

Fixed network
Network Layer

Control Paths

Management Paths

Data Paths

QOS Negotiation

Transport
protocols
in fixed
network QOS

Buffer
Manager

CBM
NL_QOS

CS

Figure �� Management and Data �ow at the transport and network layers of the SH�

� Conclusions

In this paper we have proposed a complete design of the network layer and transport layer in

a manner that best addresses the problems of the mobile environment� Our design is a radical

departure from other researchers in that we propose that mobile networks be viewed as separate

��

APPENDIX Y

Microsoft et al. Exhibit 1005

from wired networks with connectivity being provided by special gateway nodes� These nodes

provide a variety of transport level services that best meet the constraints of the mobile environ�

ment� A complete implementation of this architecture is underway and Figure � indicates the

current status of this implementation�

IP

Transport

Network

Key

Implementation
done

Implementation
in progress

Yet to be
specified

Figure �� Current status of implementation�

References

� A� Bakre and B� R� Badrinath��I�TCP� Indirect TCP for Mobile Hosts�� Technical Report

DCS�TR����� Rutgers University� Piscataway� NJ ������

� K� Brown and S� Singh��M�UDP� Mobile UDP�� Manuscript�

� I� Arieh Cimet� �How to Assign Service Areas in a Cellular Mobile Telephone System�� IEEE

ICC���� pp� �������� May �����

� J� S� DaSilva and B� E� Fernandes��The European Research Program for Advanced Mobile

Systems�� IEEE Personal Communications Magazine� February ����� pp� ������

� D� Duchamp� Steven K� Feiner and G� Q� Maguire� �Software technology for wireless Mobile

computing� IEEE Network Mag	� pp ������ November �����

� R� Ghai and S� Singh��An Architecture and Communication Protocol for Picocellular Net�

works��IEEE Personal Communications Magazine� Vol� ����� ����� pp� ������

� David J� Goodman� �Cellular Packet Communications�� IEEE Trans	 on Comm	� vol� ���

no� �� pp ���������� August �����

� David J� Goodman� �Trends in Cellular and Cordless Communications��IEEE Communica�

tions Magazine� pp ������ June �����

� J� Ioanidis� D� Duchamp and G� Q� Maguire� �IP�based protocols for mobile internetworking�

Proc	 of ACM SIGCOMM��
� pp �������� September �����

��

APPENDIX Y

Microsoft et al. Exhibit 1005

�� D� B� Johnson��Mobile Host Internetworking Using IP Loose Source Routing�� Technical

Report CMU�CS�������� Carnegie Mellon University� Pittsburgh� PA ������ �����

�� C�S� Joseph� et al� �Propagation Measurement to Support Third Generation Mobile Radio

Network Planning�� ��rd IEEE Vehicular Tech	 Conf	� May ����� pp� ������

�� M� Moran and B� Wol�nger��Design of a Continuous Media Data Transport Service and

Protocol�� Technical Report TR�������� Computer Science Division� University of California

Berkeley� April �����

�� K� Seal and S� Singh��Loss Pro�les� A Quality of Service Measure in Mobile Computing�� J	

Wireless Networks� �submitted��

�� S� Singh��Quality of Service Guarantees in Mobile Computing�� Journal Computer Commu�

nications� �to appear��

�� F� Teraoka and M� Tokoro� �Host Migration Transparency in IP Networks� The VIP Ap�

proach�� SIGCOMM� Vol� ��� No� �� Jan ����� pp� ������

��

APPENDIX Y

Microsoft et al. Exhibit 1005

Abstract
The ongoing European ACTS project OnTheMove provides support services for distributed mobile multimedia applications. The project defines,
implements, and demonstrates a mobile middleware called a Mobile Application Support Environment (MASE) which is based on UMTS con-

cepts. The mobile application programming interface (mobile M I) of MASE, which will be submitted for standardization, allows common access
to the underlying operating systems and network infrastructure, and facilitates the development of new, mobile-aware, multimedia applications.

BIRGIT KRELLER, SIEMENS AG

UM PARK AND J E N S MEGGERS, AACHEN NIVERSITY OF

TECHNOLOGY
GUNNAR FORSGREN, ERICSSON RADIO SYSTEMS AB

OVACS AND MICHAEL ROSINUS, SONY INTERNATIONAL (EUROPE) GM

I ny information at m v time. i t
- . I

any place, in any form. This promise of mobile multimedia
will be realized through third-generation mobile communica-
tion networks, which will offer high-bit-rate data services,
guaranteed on-demand bandwidth, and low delays. The Euro-
pean Telecommunication Standards Institute (ETSI) is work-
ing on the Universal Mobile Telecommunications System
(UMTS) [l, 21, which belongs to the family of similar or com-
patible standards developed within the International Telecom-
munication Union (ITU) called International Mobile
Telecommunication in the year 2000 (IMT-2000) [3].

Today, mobile users already utilize a wide variety of
mobile terminals ranging from simple mobile phones and per-
sonal digital assistants (PDA) to high-end multimedia note-
books. UMTS and the Mobile Broadband System (MBS) will
offer suitable bandwidth and global connectivity to enable
true mobile multimedia. As an early contribution to the
UMTS service specifications, and in order to provide a
smooth evolution path from second- to third-generation com-
munication systems, the Advanced Communications Tech-
nologies and Services (ACTS) project OnTheMove has
developed a mobile middleware system called the Mobile
Application Support Environment (MASE). Along with the
MASE, an application programming interface (API) has been
defined that allows applications to access the MASE compo-
nents. This API, called the mobile AH, will be submitted for
standardization. The purpose of the MASE middleware is to
ease the development of mobile-aware applications by provid-
ing a common underlying platform. Furthermore, the middle-
ware approach enables a smooth transition from current
wireless networks, such as Global System for Mobile Commu-
nications (GSM) and Digital European Cordless Telecommu-
nications (DECT) to future UMTS networks. Instead of
directly accessing the operating system, mobile-aware applica-
tions make use of the mobile API and benefit from simple
access to MASE services, which hide the complexity of het-
erogeneous networks and operating systems from the applica-
tions. Thus, MASE simplifies the development of
mobile-aware applications and frees them from the complex

processing caused by additional needs when accessing hetero-
geneous networks and running on mobile devices. Further-
more, MASE eases the evolution of multimedia applications
toward UTMS [4] and enables legacy applications to benefit
from a subset of its functionality.

In this article we focus on the services provided by MASE
and their relation to UMTS. We demonstrate the intenvork-
ing between different parts of MASE through a typical
mobile-aware application, the CityGuide. The CityGuide
uses geographical information provided by the MASE Loca-
tion Manager module to display a map of the current geo-
graphical surroundings of the mobile user. Several different
layers of interesting places (e.g., public transportation,
administration buildings, accommodation, restaurants, and
much more) are shown on the map and are linked to corre-
sponding Web pages.

We will first elaborate on the generic MASE architecture.
We will outline a possible scenario for the ongoing UMTS
service definitions and then explain, step by step, the MASE
components accessed by the CityGuide implementation.

MASE
The Mobile Application Support Environment is a distributed
system that runs on both the mobile device and the so-called
mobility gateway. The latter acts as a mediator between the
wireless and fixed network infrastructures. I t works as an
agent for mobile clients which are typically connected over
unreliable wireless access networks with low bandwidth.
MASE enables access to the UMTS adaptation layer (UAL,),
which provides applications and middleware components uni-
fied access to all possible underlying networks. An additional
general support layer provides the functionality required for
distributed systems. On top of both layers several manager
components are installed, providing different dedicated ser-
vices. Figure 1 shows the overall MASE architecture with its
corresponding building blocks. All the components shown
have been implemented.

MASE is built around the concepts of awareness, adapta-

32 1070-9916/98/$10.00 0 1998 IEEE IEEE Personal Communications April 1998

APPENDIX Z

Microsoft et al. Exhibit 1005

up the challenges of mobile multimedia
and prepares for UMTS.

The CitvGuide
A p p Zica tioh Scenario

H Figure 1 . Overall architecture of MASE.

tion, and abstraction. MASE applications are aware of the
current network quality of service (QoS) through sophisticat-
ed monitoring and management facilities which are provided
by the UAL. The UAL hides network specific details by
selecting the appropriate bearer service and protocol stack
according to the requested QoS. The general functional fea-
tures of the UAL are:

Selecting appropriate transport protocols and configuring them
for efficient use (e.g., adjusting packet size and timers to the
bearer service parameters)
Selecting and configuring an appropriate bearer service
Managing roaming between different networks and bearer
services as well as bearer service switching
Details of the UAL have been published elsewhere (e.g.,

[5]). The General support layer implements object storing and
caching as well as event handling and security services. These
services will also not be described in detail here.

Awareness - End terminal characteristics and user pref-
erences are stored in profiles. They are managed by the
Profile Manager, a part of the System Adaptability Manag-
er (SAM), and are available on demand at all nodes of the
system.

Adaptation - Profile information and monitored QoS are
used by the MASE communication facilities to adapt their
usage to the current QoS situation and user requirements.
This adaptation is transparent to the application.

Abstraction - The MASE provides high-level abstrac-
tions, for example, an alerting function or location manage-
ment. An alert is an abstraction of an important short
message which has to be sent to the user. Depending on the
current network situation, the alert manager

The CityGuide is part of a set of
mobile-aware applications (Fig. 2) . It is
a typical mobile user application pro-
viding access to a map of the surround-
ings of the mobile user. This map
displays several information layers, such
as hotels, restaurants, automated teller
machines, bus stops, and phone booths.
These information sources are linked to
Web pages to allow instant access to
further information about a particular
location.

The CityGuide runs as a Java applet
within a Web browser and provides access to maps describing
the current surroundings. This application uses the mobile
API to ask the MASE Location Manager for the actual coor-
dinates (longitude and latitude) of the user. This information
will be checked against the coordinates stored in the server.
The most suitable map and the associated geographical
objects will be loaded using HTTP. Since the browser is a
legacy application and normal HTTP is not well suited to
mobile communication, the MASE integrates these calls using
an HTTP proxy system. In the following we describe the
MASE components participating in this process.

location Manager
The Location Manager (LM) helps users navigate in new
environments. It enables applications and other MASE com-
ponents to determine the parameters of the current geograph-
ical position of a mobile device as well as the accuracy of
these values. This is another example of the abstractions pro-
vided by MASE because the geographical information is
accessible through a simple uniform API and independent of
the mechanism used by the LM to gather location data. A
subset of the LM API calls is shown in Table 1.

The current LM implementation supports the Global Posi-
tioning System (GPS), a satellite-based radio navigation sys-
tem developed and operated by the U.S. Department of
Defense [6], and uses WaveLAN (a wireless LAN device from
Lucent Technology [7]) cell identifier information. GPS pro-
vides latitude and longitude coordinates, velocity, and the
user’s moving direction with an accuracy of about 10-300 m.

maps an alert to different network services. If
the user is connected to the network over
TCP/IP, the message will be delivered directly
to an alert server on the mobile device messag-
ing service, or as a GSM short message service
(SMS) notification if no such connection is
available. The final version of MASE will deal
with adaptation to varying degrees of QoS,
robustness in the face of disconnected links,
roaming between different operators and net-
work types, personalized information filtering,
and location-aware applications using various
location trackers.

MASE also integrates legacy communication
applications and improves communication over

location information
.

wireless networks. In this way, the MASE takes Table 1. A subset of the Location ManagerAPI.

IEEE Personal Communications April 1998 33

APPENDIX Z

Microsoft et al. Exhibit 1005

Figure 2. OnTheMove desktop and mobile-aware applications.

In wireless communication systems cell identifiers can help
determine the position of the mobile device. The accuracy
depends on the network cell size and varies from about 30 m
(wireless LAN) up to a few kilometers using GSM. A table
lookup maps these cell identifiers to the physical position of
the terminal. A central LM process communicates with the
available location information sources. The retrieved values
are made available to MASE-aware applications and other
MASE components by stub interfaces to the central process.
This architecture is shown in Fig. 3.

Communication Manager
The Communication Manager (CM) of the MASE architec-
ture supports HTTP and e-mail communication, HTTP pre-
fetching, alerting, messaging, and disconnected operations. In
the following we will focus on the HTTP proxy. The HTTP
proxy system improves the performance and usability of
HTTP over low-bandwidth network connections (cellular,
radio LAN, modem). Requested multimedia objects can be
processedlconverted by MASE to match the current network
bandwidth, terminal characteristics (display capability, storage
capacity, etc.), and user requirements. This adaptation is per-
formed at the mobility gateway before transmitting the data to
the mobile terminal. The distribution of the HTTP proxy
functionality is shown in Fig. 4.

Multiple users simultaneously access Web-based informa-
tion using the HTTP protocol. Each mobile terminal runs a
client-side HTTP proxy (CSP) that requests Web objects from
the server-side HTTP proxy (SSP). SSP can serve multiple
client connections in parallel, with each connection being han-
dled by a separate connection handler thread. Each such han-
dler communicates with a peer process on the CSP over a
multiplexed logical communication session. Multiple sessions

run on top of a single TCP/IP connection between a mobile
terminal and the mobility gateway. The multiplexing scheme
allows data transfer for all logical sessions from one terminal
to be transmitted in parallel over a single full-duplex TCP/IP
connection.

In a typical scenario, an HTTP client on the mobile termi-
nal (such as the CityGuide application) will request HTML
pages and related graphic objects from a remote HTTP serv-
er. The HTTP Proxy system intercepts these calls and commu-
nicates with the SAM to adapt the requested objects to the
current QoS and user requirements. The application (in this
case the browser) is configured to use the CSP as an HTTP
proxy server.

As shown in Fig. 4, for each HTTP request the client will

Figure 3. Location Manager architecture.

34 IEEE Personal Communications April 1998

APPENDIX Z

Microsoft et al. Exhibit 1005

establish a TCP/IP connection to the CSP 0 .
The CSP checks whether the requested object is
available locally by calling the checkcache ()
methods of the SAM 0 . See Table 2 for the
description of the SAM API. If the SAM indi-
cates local availability, the object will be returned
by the CSP to the requesting client.

Otherwise, the CSP will create a logical com-
munication session to the SSP side and will pass
the HTTP request to the SSP 0. Another
c h e c k c a c h e () call @ checks whether the
requested object is available on the Mobility

W Table 3. Profile values.

Profile Manager
The terminal characteristics of the mobile device are stored in
a terminal profile. The network characteristics of the mobile
device’s current (wireless) connections are stored in the net-
workprofile. The network profile is constantly updated by the
UAL. User-specific preferences are stored in a userprofile. A
profile generally contains a hierarchical tree of properties
(namehahe pairs), each describing a certain property. Pro-
files are replicated on demand and stored persistently through-
out the MASE system.

A MASE-aware application can access the profile values at
either the mobile device or the mobility gateway. Consistency
can be enforced independently at every host and for each node
to reduce the communication overhead. Table 3 shows exam-
ples of profile values for the user, system and network tree.

QoS Trader
The QoS trader adapts the MASE communication services
according to the user’s preferences and the current

terminallnetwork situation as reflected in the
profile. Instead of transmitting multimedia
objects directly to the mobile client, the HTTP
proxy calls the QoS Trader to perform a trad-
ing process. This process consists of the steps
illustrated in Fig. 5 .

During the QoS gathering phase the QoS
trader accesses the current terminal and net-
work QoS which are stored in the profile. The
profile also contains the user’s preferences,
which are later used to compute filters and
preferences for the planning process. It further
examines the properties of the current multi-
media object, and then enters the planning
phase, during which it decides about the actions
to perform on the current multimedia object.
This process generates a “new” plan from a
knowledge base (plan generation) and the gath-
ered QoS parameters.

A plan consists of one or more compression,
conversion or reduction steps. During the plan W Figure 4. Thepartitioning of the HTTPproq.

W Table 2. A subset of the QoS traderAPI.
Gateway. If not, the object is fetched from thk
HTTP server 0 and inserted into the local cache
using the c r e a t e M M O () method. The SSP now calls the
trade () method to adapt the multimedia object. This trading
process is described in the next section. The SAM creates a
variant of the original object and inserts it into the family of
related objects managed by the local cache. The variant
together with instructions for the post trading phase (e.g.,
which decompression method to use) is returned and trans-
ferred to the CSP. Here a post trading phase is initiated and
the resulting object passed to the requesting client.

System Adaptability Manager
The System Adaptability Manager (SAM) is responsible for
the provision of optimized and personalized mobile services.
User-, network-, and terminal-specific QoS parameters are
managed in profiles handled by the Profile Manager. These
profiles a re used to compute the best adaptation of the
MASE communication services, taking into account the cur-
rent network and end system QoS parameters as well as to the
user’s personal preferences. The S A M has several adaptation
possibilities:

It can make a choice between different available networks
based on the available bandwidth, bandwidth guarantees,
and cost.
It can compress, convert, transcode, or reduce the multime-
dia objects prior to transmission.
For example, an image is supposed to be transmitted to a

terminal with a black and white screen. In this case color infor-
mation can be eliminated by the mobility gateway. Other rea-
sons for adaptation can arise, for example, from the available
network bandwidth and the cost involved. These decisions are
made by the QoS trader within the SAM.

IEEE Personal Communications April 1998 35

APPENDIX Z

Microsoft et al. Exhibit 1005

filtering phase the static properties of t he new plan a re
matched against the user preferences and terminal require-
ments. Small devices, for instance, might have implemented
only one or two decompression methods. The plan filtering
phase will only select plans suitable for this particular device.

Subsequently, the QoS trader predicts the prospective out-
come of the current plan using knowledge provided by the
multimedia conversion (MMC) routines. MMC works online.
It offers lookup functions that enable it to estimate conversion
time, and execute conversions if appropriate. MMC provides
some general-purpose methods for image manipulation, such
as conversion of images to other image formats by means of
scaling, graining, and color reductions.

Two methods that support the QoS prediction and filtering
phases of the QoS trader, by estimating the required conver-
sion time and the size of the reduced objects, are important
for the SAM, which checks whether varying the reduction R
of an object x can fulfill Eq. 1.

TT,,,(x$?) is the transmission time of an object x at band-
width B (b/s), T R ~ ~ , ~ ~ (X , R) is the estimated reduction time of
the original object x at reduction R. Tseek(x) is the time used
to estimate the reduction time of an object x to the requested
file size (planning process). T M ~ ~ ~ ~ ~ ~ (stored in the profile
under u s e r . image .maxWaitTime) is a user preference
parameter which defines the maximal time the mobile client
wants to wait for an image. If T M ~ w ~ ~ ~ > T T ~ ~ ~ ~ (x ~ ~ ~ , B) , there
is no need to reduce the file size, and the SAM transmits the
original image.

A set of suitable conversion commands have been select-
ed for our purpose. For images we use scaling, reducing col-
ors, dithering, and converting to black and white to reduce
image sizes. Some formats like JPEG allow conversion by
scaling and reducing the overall quality. All those com-
mands are “lossy”; they reduce the quality of an image and
hence reduce the file size. To obtain a table of relative val-

Figure 5. The QoS tradingprocess.

ues for conversion predictions we have measured a set of
images with all available conversion commands.

Using this knowledge the trader can estimate the QoS
parameters resulting from converting and transmitting the
converted multimedia object (e.g., the overall processing
time). These predicted QoS parameters are matched against
the filters derived from the profile setting. During the plan
selection phase a preference index is computed for each plan
which has passed the filters. The used preference function is
selected according to a user-defined criterion (e.g., the
smallest resulting object size, the shortest time required for
converting and transmitting the result, the best quality
remaining).

When the planning is finished, the best plan with the high-
est preference index is executed. The resulting object is either
returned to the application (local trading) or stored locally
and will be marshaled for transmission.

Table 4. Subset of multimedia object conversion API

Example - The plan generation phase generated
the plan “SCF(0.5); TRA; SCF(2),” which defines
a scaling operation by the factor of 0.5, the trans-
fer of the image, and the rescaling of the image
to the original size during the pos tTrad ing ()
call on the mobile terminal. During the plan filter-
ing phase this plan is compared with user prefer-
ences stored in the profile. For example, the
parameter user.image.reso1utionReduction
defines whether or not the user accepts resolu-
tion reductions (scaling). If the user does not
allow scaling, the filter derived from that value
will prevent the above plan to be selected.

During the QoS prediction phase, the time
required to execute the above plan will be com-
puted by predicting the time required for the
conversion SCF (0.5), for the transmission of the
reduced image, and for the reconversion (SCF
(2)) on the mobile device. The time and resulting
image size for both conversions are computed by
using average results derived from former conver-
sions which were initially performed offline. Fur-
thermore, the computing power of the mobile
device is taken into account by using relative
computing indices from the terminal profile for
this device. In addition, the time to transfer the
original image and a user-specific quality factor
are computed.

During the QoS filtering phase, these results
are used in Eq. 1 to check whether the user’s

36 IEEE Personal Communications April 1998

APPENDIX Z

Microsoft et al. Exhibit 1005

Figure 6. Measurements of a MASE-supported browser over GSM.

requirement maxTransmissionTime is fulfilled and whether
the reduction will result in a faster transmission. If the plan is
still valid, a preference index will be computed. Several pref-
erence functions are possible, ranging from a selection based
purely on the processing time to a mixture of processing time
and the quality of the reduced image. Finally, the plan with
the best preference index will be executed.

Figure 6 shows the achieved measurements over the
actual cellular system, GSM, that has data transport capabil-
ities of up to 9600 bls. The results show the advantage of
the QoS trading and multimedia conversion. Depending on
the automatically chosen conversion method the interaction
of CM, SAM, and UAL achieve up to 70 percent accelera-
tion of the HTTP transmission time. Table 4 represents a
small subset of the SAM API that application programmers
may use to realize conversions offline, or even during online
connections.

Future Work
Future work will deal with the downsizing of the current
architecture and implementation to fit the requirements of
small mobile devices (e.g., PDAs and PICs), which usually
have only limited memory and CPU power. The implementa-
tion of the Location Manager will be extended by supporting
more input devices, such as an interface to a DECT system
which holds information concerning the actual intenvorking
unit. Further development will be done on a Session Manager
that provides a higher abstraction of connections than TCP/IP
does. The Session Manager controls the ongoing communica-

tion sessions and allows scheduling of different MASE opera-
tions like prefetching and caching. Results of the project’s
field trials will be used to improve the current status.

Conclusions
The data services of future third-generation mobile telecommu-
nication systems play a critical role in facilitating new and inno-
vative mobile-aware applications and services. UMTS will define
a set of services enabling seamless roaming between different
networks, QoS monitoring, and bandwidth on demand. In this
article we have introduced the OnTheMove approach, which
employs middleware to support the special needs of mobile-
aware applications. This middleware not only allows the devel-
opment of mobile-aware applications in an easy way, it also
shields today’s application developer from the ongoing devel-
opments toward UMTS. The MASE mobile middleware will
pave the road to future mobile telecommunication systems.

Acknowledgments
The authors would like to acknowledge all contributing part-
ners of the OnTheMove project [SI which is sponsored par-
tially by the European Commission in the ACTS program
under contract AC034. The project participants are Ericsson
Radio Systems AB, T-Mobil GmbH, Ericsson Eurolab GmbH,
Siemens AG, Rheinisch-Westfalische Technische Hochschule
Aachen (RWTH), IBM France, Tecsi, BT, Bonnier Business
Press, Royal Institute of Technology (KTH), Sony Interna-
tional (Europe) GmbH, Burda Com Media Solutions GmbH,
Centre for Wireless Communications (CWC), and Iona.

IEEE Personal Communications April 1998 37

APPENDIX Z

Microsoft et al. Exhibit 1005

References
[I] EC DG XIII/B (1/3/96), "UMTS Task Force Final Report," Brussels,Belgium, ACTS

InfoWin, http://www.infowin,org/ACTS/.
[2] J. Schwarz da Silva e t al., "Evolut ion Towards UMTS," ACTS

InfoWin,http://www.infowin.org/ACTS/IENM/CONCERTATlON/MOBl LITY/
umts0.htm.

[31 M. H. Callendar, Ed., /€E€ Pers. Commun., Special Issue on International
Mobile Telecommunications-2000: Standards Efforts o f the ITU, vol. 4,
no. 4, Aug. 1997.

[4] J. Meggers and A. S . Park, "Mobile Middleware: Additional Functionality
t o Cover Wireless Terminals," froc. 3rd /nt% Wkshp. Mobile Multimedia
Commun. (MoMuC-3), Princeton, NJ, Sept. 1996; D. J. Goodman and D.
Raychaudhuri, Eds., Mobile Multimedia Communications, Plenum, 1997,

[51 J. Meggers, A. S. Park, and R. Ludwig, "Roaming between GSM and
Wireless LAN," ACTS Mobile Commun. Summit, Granada, Spain, Nov.

161 U.S. Coast Guard Navigation center, "GPS, DGPS, LORAN, OMEGA, LNM,"

171 WaveLAN Wireless Computing, http://www.wavelan.com.
[SI OnTheMove home page, http://www.sics.se/-onthemove.

pp. 151-57.

1996, pp. 828-34.

http://www.navcen.uscg.mil/gps/gps.htm.

Bioqraphies - .
BIRGIT KRELLER (birgit.kreller@mchp.siemens.de) received her Dipl.-Inform.
(Master's in computer science) from the University of Magdeburg, Ger-
many, in 1996 on the subject o f mobile agents for load balancing in large
telecommunication systems. She joined the Siemens Corporate Research
and Development Department in March 1996, where she is working in the
ACTS project OnTheMove. Her current research interests include mobile
computing architectures, wireless networks, geographical positioning sys-
tems for mobile devices, and mobile agents.

ANTHONY SANG-BUM PARK received his Dipl.-Inform. from Aachen University of
Technology (RWTH), Germany, in 1995, previously studying at the University
of Koblenz. From 1989 t o 1992 he was with Philips Communication Industry

AG in quality control, and with Parsytec Computer GmbH focusing on mas-
sive parallel computing. Since 1995 he has been a researcher and Ph.D. can-
didate at RWTH, Department o f Computer Science, responsible for agent
technology research projects and working in ACTS projects. Research topics
are mobile computing and personal multimedia communications. Activities
concerning distributed systems and middleware architectures are mainly in
the area of mobile agent technology.

JENS MEGGERS received his Dipl.-Inform. i computer science from RWTH,
Germany, in 1995. He joined the D e p a r t A n t o f Computer Science of the
same university as a Ph.D. candidate in computer science in 1995. He par-
ticipates in various internal and external research activities, including the
ACTS project OnTheMove. His main research focus lies in QoS supporting
network and transport protocols for mobile multimedia communications.

GUNNAR FORSGREN received his 6.S.E.E degree from Harnosand Gymnasium,
Sweden, in 1978 and has been with Ericsson in various R&D positions since
1980. His research interests include information/communication services on
wireless devices and their interaction with agent services.

ERNO KOVACS received his Dipl.-lnform.from the University of Kaiserslautern,
Germany in 1991. During 1986-1990 he worked at IBM's European Network-
ing Centre (ENC) in various research projects concerning multimedia e-mail,
multimedia documents, and distributed hypermedia systems. From 1991 t o
1996 he worked at the Institute of Parallel and Distributed High-Performance
Systems (IPVR) of the University of Stuttgart. He conducted several projects in
the area of middleware for distributed systems. In 1997 he joined Sony's
Research and Development Department in Stuttgart and worked in the ACTS
project OnTheMove. His current research interests include mobile multimedia,
quality-of-service trading, and mobile agent systems.

MICHAEL ROSINUS received his Dipl.-Inform. at the Universitat des Saarlandes,
Germany, in 1996 and worked at the German Research Center for Artificial
Intelligence (DFKI) in the area of intelligent agents. In May 1996 he joined
the Sony Research and Development Department where he i s working in
the OnTheMove project. His current research interests include mobile and
intelligent agents, multimedia data processing, and wireless networks.

38 IEEE Personal Communications * April 1998

APPENDIX Z

Microsoft et al. Exhibit 1005

http://www.infowin,org/ACTS
http://www.wavelan.com
http://www.sics.se/-onthemove
http://www.navcen.uscg.mil/gps/gps.htm

Real-time synthetic vision cockpit display for general aviation

Andrew J. Hansen, W. Garth Smith, and Richard M. Rybacki

MetaVR, Inc.
http://www.metavr.com1

ABSTRACT
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic
vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual
image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area
Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline
GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically
specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95%positioning, sub degree pointing),
high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational
awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight.

This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the
navigation/display interface, real-time 60Hz rendering of terrain with multiple levels of detail under demand paging, and
construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings
ofthe navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as
well as synchronized multiple display channels with different views from the same flight. PC-based solutions which
integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general
aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

Keywords: situational awareness, real-time visualization, correlated terrain databases, geographically specific satellite
imagery

1. JNrRODUCTION
A remarkable transition in state-of-the-art image generation is taking place as single purpose, specialized rendering hardware
is being replaced with off the shelf components driven by PC-based processors. The dramatic performance improvements
realized by the PC graphics industry in the last two years has leveraged the broad base of innovation across the industry. The
rich mix of focused development efforts in chip design, bus architecture, software driver standards, and processor technology
feeds the continuous improvement in PC graphics capability that is reaching the upper echelons of visualization-simulation
(VizSim) performance standards. This paper focuses on the underlying capabilities needed to render the virtual environment
in a mobile platform such as an aircraft. Primarily these are the image generator hardware and software implementation and
the generation ofa three-dimensional database ofthe environment including terrain, aircraft, and cultural features. It does not
address symbology and information content that should be displayed and interested readers are referred to [1,2].

These low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering both
moving map displays and synthetic out-the-window views of a moving vehicle with an extremely high degree of realism. By
coupling with a GPS navigation/attitude payload the virtual image can be fully correlated to the physical world in real time.
In particular, differential GPS services such as the FAA's Wide Area Augmentation System (WAAS) [4] will provide users
with highly accurate 3D navigation information. The WAAS position solution is specified to have accuracy better than 7.5m
95% and a guaranteed (99.99999%) confidence interval [5]. Prototype implementations of WAAS are achieving nominal
accuracy of about 1-2m 1-sigma in all three dimensions [6]. Carrier phase GPS based attitude heading references system
(AHRS) prototypes are also being implemented [7,8,9] which can provide sub degree accuracy in all three axes,
roll/pitch/yaw. Integration of accurate positionlvelocity/attitude state information and a highly capable rendering engine
enables synthetic image generation of the physical scene.

1
Correspondence: Email: {ahansen,wgsmith,rmrybacki}metavr.com; Telephone: (617)739-2667

Part of the SPIE Conference on Enhanced and Synthetic Vision 1999

70 Orlando, Florida • April 1999 SPIE Vol. 3691 • 0277-786X199/$1O.0O

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

The underlying resource that ties these two pieces together is an accurate and reliable geographic database that describes the
physical environment. It must be accessed efficiently to serve the real time application but also have the fidelity to enhance
rather than detract from the pilot's situational awareness. Our solution incorporates geographically specific satellite imagery
and cultural features into an efficient terrain database. The satellite imagery provides contextual information for situational
awareness while specific cultural features such as runways can be inserted as additional objects with higher resolution and
special properties. For run time flexibility, the resulting database can be stored in memory or demand paged off of a storage
device using a "look ahead" algorithm.. Real time performance for extremely high-resolution terrain (lOOm post) and
imagery (5m) is supported using hierarchical level of detail switching. In addition the render engine has variable field of
view and far horizon clipping plane parameters so that the necessary display refresh rates can be maintained. The solution
we describe below borrows heavily from the visual simulation concepts developed in distributed interactive simulation (DIS)
research with the new twist that high fidelity high performance can be achieved on PC platforms. The economies of scale in
this arena provide low cost systems and the impetus to move toward embedded solutions. While all of the features currently
supported by 3D VizSim applications may not be appropriate in the cockpit, we identify them here as candidates for use and
leave their designation to the community at large.

The remainder of this paper first touches briefly on the linkage of positionlvelocity/attitude state information and the virtual
environment in the computer. We then focus on the visualization hardware and the innovations in the graphics industry
which now provide the power to render one or more 3D out-the-window scenes or 2D top down moving maps (so called plan
view displays). The next section focuses on our database construction process, database storage requirements, and its
correlation to truth. We close with some comments on the opportunity to extend the cockpit display to a networked solution
where, given a low bandwidth communication channel, information from multiple entities could be included in the display.
In this mode the display could provide additional situational awareness vis-a-vis TCAS I/Il systems that have a cockpit
display oftraffic information (CDTI).

2. LINKING AfflCRAIT STATE TO VIRTUAL ENVIRONMENT

2.1 Navigation: Position, Velocity, and Attitude
In order to place the virtual aircraft at the appropriate position and orientation in the virtual environment, sensor system
outputs of the aircraft's position, velocity, and attitude must be available to the graphical render engine in real time.
Differential GPS navigation and attitude determination is a low cost option for obtaining these states in the aircraft. The
geographical extents covered in aviation applications are well served by wide area differential GPS (WADGPS) systems for
real time positioning. Likewise the global coverage of GPS allows a user with multiple antennas to compute an attitude
solution at any position within aviation capability.

The FAA is specifically developing the Wide Area Augmentation System (WAAS) for seamless, high integrity navigation in
all phases of flight. Successful prototype signal-in-space flight tests have already been implemented and carried out by the
FAA Technical Center with Stanford Telecommunications [13] and Stanford University [5]. The WAAS uses a
geosynchronous satellite broadcast channel for continental scale coverage and high data link availability. In cooperation with
the FAA and industrial representatives, RTCA, Inc. has written the WAAS Minimum Operational Performance Standards
[12] (WAAS MOPS) to specify the WAAS signal structure and the application of the differential corrections to stand alone
GPS measurements. The WAAS navigation payload includes a GPS receiver capable of receiving an additional 250 bps
WAAS data stream from a geosynchronous satellite. The WAAS message stream is unpacked to form differential
corrections for satellite clock and ephemeris errors as well as a differential ionospheric correction. These corrections are then
applied to the standard GPS measurements for each satellite in view. The differentially corrected signals form the basis for
the navigation solution and its associated confidence interval. This navigation solution, which contains both position and
velocity, is fed directly to the image generator in the form ofWGS84 coordinates.

Synthetic vision applications are very sensitive to errors in attitude determination because the entire field of view is
controlled by the orientation of the viewpoint. Low cost Al-IRS based on carrier phase GPS are now incorporating rate or
inertial aiding [7,8] to provide the accuracy and noise performance necessary to drive cockpit displays. Strapdown AHRSs
are also shrinking the antenna baselines needed to achieve sub degree accuracy in all three directions [9]. The resulting
attitude solution in body coordinates can be input directly to the image generator. Adequate systems require an update rate
on navigation and attitude of at least 10 Hz [1] in order to reach suspension of disbelief for the operator. Of course the faster
the better, but in any case if the sensor inputs do not update at the frame rate of the display system a model of theaircraft is
propagated forward to update the synthetic vision viewpoint to maintain the 60 Hz visual update rate.

71

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

72

In flight, updating the aircraft model which must reside in the same coordinate system as the terrain database requires a
transformation of the navigation solution from WGS84 coordinates to the local coordinates of the database. This does
require some additional but necessary computation. The virtual environment database needs sufficient fidelity to fully

correlate the sensor states with the terrain in the rendered image. Spheroidal coordinate systems such as WGS84 cannot
provide that level of fidelity and the database must use local coordinate system based on a geoid.

2.1 Distributed Interactive Simulation Protocol
As briefly mentioned above the sensor states may need to be propagated forward some number of epochs as the render engine
my update faster than the navigation and attitude updates are available. Our implementation abstracts the input linkage from
the sensor systems to the render engine. We utilize the IEEE standardized [14} Distributed Interactive Simulation (DIS)
protocol for inserting new sensor updates into the virtual environment. This DIS protocol exists at the application layer of
the communications stack. It is built upon User Datagram Protocol (UDP) packets called Protocol Data Units (PDUs).
These PDUs are well defined in the DIS standard and include necessary elements such as kinematic model parameters as well
as graphical information in the form oftexture and polygonal models.

One added benefit to the DIS approach is that multiple views from the same entity can be added simply by plugging in
another render engine. Mother, and we believe more powerful benefit, is that multiple entities can appear in the same virtual
environment exactly as they do in the physical environment. An entire suite of functionality including multicasting, loss
tolerance, forward state prediction, and communication protocol is already defined and implemented by the VizSim
community. DIS is abstracted from the physical layer so that the network could be a high speed wired intranet or just as
easily a low bandwidth wireless LAN so far as the application is concerned. In fact, DIS is expressly designed for a
heterogeneous network where some paths have much greater bandwidth than others. This flexibility has direct benefits for
future applications that include multiple entities (other air traffic).

An additional feature ofthe DIS network solution is the ability to log PDU packets being transmitted. By logging the state
information in PDU form, the entire flight can be captured for playback. This is particularly useful for experimental or

Synthetic image (jenerator
- DIS Networked interface
- LOD Switching
- Demand Paging

Sateilite imagery

Flat Panel Screen

3D Out-the-window
or

21) Plan View Display

Figure 1. The image generator ingests the 3D-database and real time data from position/attitude sensors to
determine the viewpoint for the synthetic scene and pushed onto graphics card for rendering.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

testing purposes in early development of operational systems to replay and view from any vantage point using a six-degree-
of-freedom pointing device.

3. IMAGE GENERATION
The image generator is the core of the cockpit display. As shown in Figure 1 it ingests the terrain database and aircraft
models and accepts input from the navigation and attitude payloads. One or more graphics engines slaved to the image
generator can then render images to the screen with one viewpoint for each engine. The baseline mode is a single 3D out-the-
window view out the front ofthe aircraft showing the terrain and cultural features in the environment. Adding an additional
graphics engine or switching modes to the plan view display provides the pilot with a top down moving map. This approach
is very appealing as it can immediately utilize advances in hardware performance offered by the industry as it continues to
improve.

The image generator is currently hosted on a PC platform. It requires a graphics card that supports the DirectX API and can
utilize either the PCI or AGP bus as the graphics pipeline. A host platform consisting of a 450MHz Pentium II processor
with 512Mb of RAM and a Canopus Spectra 2500 with 16Mb of VRAM consistently maintains 60Hz frame rates for fields
of view covering a 50 km radius at velocities up to Mach 3. Note that these frame rates are significantly higher than the
update rates that the navigationlattitude sensors support. An important consideration in the software development of the
image generator was the graceful degradation in performance as either the host platform is scaled back or the fidelity of the
database is scaled up. We have already implemented laptop PCs rendering 3D out-the-window views ofthe virtual world.

DirectX and OpenGL capable graphics cards are designed to render polygonal shapes as triangular patches in hardware.
Textures may also be stored in memory and applied to these polygons as part of the hardware processing of the render
engine. The image generator is responsible for pushing the textures up into video memory and then pipelining the polygonal
shapes from the terrain database up to the graphics card using in our case either the PCI or AGP bus under the DirectX
protocol. As such there is a balance that needs to be struck to ensure that the central processor and the graphics chip set are
reasonably well matched in performance. The CPU must index and arrange the terrain polygons based on the current aircraft
state and the graphics card is responsible for rendering the textured polygons.

The importance of the level of detail (LOD) switching and demand paging now becomes clear. LOD switching aids in
balancing the load between the CPU and graphics card. If the current field of view has too many textured polygons for the
graphics card to handle then the CPU can switch some of the far field regions to lower resolution and thereby reduce the
number of polygons being rendered. This LOD switching is an improvement over the simplest form of switching which is
the insertion of a clipping plane that limits the field of view. To accomplish LOD switching the image generator and
database must be intimately coupled as not only does the polygon resolution switch but also the textures applied to them. For
platforms that have memory limitations the image generator can invoke demand paging of regions of the database that are
coming into the field of view. Knowing velocity states allows the image generator to look ahead in the database to see if
upcoming regions are loaded into memory and ingest them in the event that they are not.

The core process in the image generator is to continuously update the viewpoint of the virtual aircraft at each epoch. Under
the DIS paradigm the aircraft state is propagated forward from the last PDU update. In the host platform this is nominally
never longer than 20 msec. The local region of the terrain database which is stored in memory is then interrogated to
assemble the textured polygons for pipelining up to the graphics renderer. If other entities besides the host aircraft are in
view they are also updated and their virtual representation is pushed up the graphics pipeline.

There are many other features available from ViZSim applications that are probably not useful in the cockpit such as variable
visible spectrum, DirectSound output, atmospheric emulation of fog and clouds, and six degree of freedom input device
compatibility. However, the existence of these features demonstrates the head room available in this implementation which
can be converted into other more pertinent features such as situational awareness symbology, tunnel-in-the-sky guidance [2],
and traffic information.

Neglecting the navigation and attitude platforms, the hardware necessary for the image generator is currently on the order of
$4000. Once available, projections for WAAS and AHRS system prices are in the ones of thousands of dollars. This places
hardware costs for first generation integrated cockpit displays at around $lO-15k plus installation. Our expectation on cost
trends is that they would follow the precedence set in the rest of the ViZSim market: continual improvement in the
price/performance point at market. There are also certification and recurring costs associated with any avionics systems
which we do not have sufficient experience to comment on with the exception of generating and updating the 3D databases.

73

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

Because of the proliferation of the underlying resources (elevation data and satellite imagery) and competing utilities for
database construction we also expect the database generation costs to decline. The ultimate goal for a cockpit display is the
integration ofthe attitude/navigation/renderer into a single embedded system which could drive a flat panel display

4. TERRAIN AND IMAGERY RESOURCES
Terrain information is typically available in raw form as digital elevation maps (DEMs) or digital terrain elevation data
(DTED) at various levels of resolution. In order to create a terrain database that can be rendered on a computer this
information must be converted into polygonal surfaces that represent the surface of the terrain. These polygonal elements are
well suited to image generation as the industry has optimized graphics chip sets to handle them in hardware. This optimized
hardware is now readily available on PC platforms. One of the most important considerations in this conversion is the need
for extreme efficiency in both the size and accessibility of the resulting database so that the image generator can ingest and
render the virtual scene. For even medium fidelity terrain information, say 125m, post, and a reasonable coverage area for
aviation, say 5° x 5° cells, the raw data for elevation information alone can run into the hundreds of megabytes in size. We
defer the discussion of our conversion process and the resulting database to the next section.

Mother important part of generating a convincing image for the user is the texture overlay on the terrain surface. Our
approach is to apply geographically specific satellite imagery on the terrain polygons. By overlaying real imagery that is
coordinated directly to the terrain data, the scene that is eventually rendered by the visualization engine has a very high
degree ofrealism. The sources for satellite imagery are increasing rapidly and we anticipate that the vast majority ifnot all of
the national air space (NAS) will be covered and in fact frequently and continuously renewed with world wide coverage soon
to follow. Even at this time custom imagery for any particular location can be ordered directly off of the World Wide Web
from commercial vendors.

Our secondary approach to overlays follows the standard approach of texture mapping each surface. Here synthetic textures
are created and used in place of the satellite imagery where it is not available. In either case, real imagery or synthetic
textures, rendering of terrain polygons is treated exactly the same by the render engine as the database is responsible for
arbitrating the virtual world including the overlays.

There are several sources ofelevation maps in digital form. NIMA outputs Digital Terrain Elevation Data (DIED) at various
levels of resolution, typically only the lowest level is openly available. The USGS supplies elevation data in the form of
Digital Elevation Maps (DEMs) which can be purchased on the web. ERDAS Imagine, CTDB, and other formats commonly
used for GIS applications are also available commercially. We utilize primarily DIED, CTDB, and soon DEM data formats
as the raw elevation resource for constructing the terrain database.

Satellite an aerial imagery is the other commodity we rely on for generating high fidelity databases. The commercial
availability ofhigh-resolution geographically specific imagery is growing. Individual providers are already offering photo to
order imagery purchases over the web. We have already worked with products from hnageLinks in the lO-50m range.
Although not openiy available classified customers also have access to high resolution (im) satellite imagery from NIMA.
The important and necessary condition of the imagery is that it be geographically specific, that is ortho-rectified and pin-
pointed to a reference in a standard coordinate system. This real imagery can then be draped onto the terrain surface and
replace older approaches using synthetic textures.

For application specific information such as that needed for aviation, cultural features may be inserted into the database as
explicit objects. An example is the runway and markings at a specific airport. These types of features can be created in a
number of different formats. The industry standard is the OpenFlight format from MultiGen, Inc. but many other new and
heritage formats such as VMAP, AGRD formats. The importance ofthe OpenFlight format is that it also supports models for
dynamic entities such as aircraft. We invoke the OpenFlight format to ingest cultural features generated from graphics and
modeling tools available in the industry as well as the ARDG format for cultural features on the plan view display. Although
some models are already available commercially, most of the creation of cultural features and object models is carried out on
a specific project basis. We see this approach eventually converging to a pool of models openly available to the community.

74

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

5. DATABASE CONSTRUCTION
The elegance of our terrain database construction which uses geographically specific imagery is that it provides a real world
source for constructing cultural features such as buildings, road networks, vegetation, bridges, even power grids if the image
resolution is high enough. We are currently developing a palette base utility for constructing 3D terrain databases that
integrate these three elements, digital elevation maps, geographically specific imagery, and automated cultural feature
generation into one umbrella application. This utility will be capable of directly feeding the image generator during database
design for viewing the construction on the fly. As such it 'will provide a suitable facility for mission planning, mission
briefing, and mission rehearsal. The current database construction utility functions as a wizard type application which allows
the user to enter raw data resource file names and then automatically generates the resulting database.

The three ftindamental components of our database construction are the ingest of the digital elevation information, ingest of
bitmap based geographically specific imagery, recognition and conversion of imagery details into cultural features (not yet
available), and export to any of four database formats: MDB, MDX (both MetaVR specific), CTDB, and OpenFlight. To
support the highest levels of image rendering, the MDX database format supports hierarchical levels of detail with switching
controlled by range thresholds on both terrain and textures. This allows the central processor in the image generator to match
the rendering capabilities of the highest end graphics cards that have l8OMpixel fill rates. The database format also allows
terrain information to be loaded by the render engine incrementally using look-ahead demand paging.

The most important consideration is full correlation between entity state coordinates and the terrain database. As noted by
Barrows [2] and Ourston [10], lack of correlation in some current implementations is unacceptable, particularly in exercises
as the virtual scene is not convincing and detracts heavily from the qualitative performance of the simulation. MetaVR's

75

Figure 2. The database construction process assembles a 3D environmental database suitable for input to the image
generator from three basic resources: digital elevation data, geospecific imagery, and designated cultural features.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

76

MDB and MDX database formats are fully correlated terrain databases that eliminate any such anomalous behavior. By
using a local geoid coordinate system and transforming the WGS84 coordinate aircraft states in the image generator the
entities are guaranteed to be consistent with the terrain. This of course does not mitigate errors due to the level of resolution
for the terrain elevation data.

The raw elevation data is tessellated into triangular patches [11] using a Delaunay triangulation where the vertices of the
triangluation are the locations of the elevation data in the local coordinate system. This is a fast routine and is computed
repeatedly on sub sampled intervals to generate various levels of detail. The geographically specific imagery is then cut into
patches corresponding to the levels and indexed to the appropriate triangular surfaces.

The incorporation ofcultural features is currently supported on an internal format (MetaVR CLT). Development of a VMAP
capable module is in process to support interoperable ingest/export of cultural features. This will provide a clear path for an
imagery to cultural feature format that is sharable. We envision the downstream capability, given adequate imagery, to
professionally construct and modify scenarios for training and planning.

The 3D virtual environment database also contains the models of physical entities, e.g. aircraft. These are critical for the
image generator as they provide the mechanism by which the virtual scene can be propagated at very high rates (60 Hz) for
rendering to the screen. At each epoch, if new state information is not available from the navigation or attitude subsystem,
the states are propagated according to the properties specified in the aircraft model. This of course leads to models which are
specific to the type of aircraft being simulated, e.g. Cessna 152 versus Boeing 737, in order to capture the pertinent physical
properties. The inclusion of such models is particularly important if one desires to render other aircraft in the virtual scene
as we describe in the next section.

The following four figures depict the underlying terrain database and its full rendering with the satellite imagery overlay.
Figures 3 and 4 show a relatively flat region with the satellite imagery capturing the road network and surrounding buildings.
The contextual information in the satellite imagery proiides very strong situational awareness that is not available in texture
mapping and extremely user intensive to design by hand in graphical models. The pair of images in Figure 5 is the wire frame
and full imagery of a coastal region in Alaska, Prince William Sound, and demonstrate the LOD capability. The
geographically specific satellite imagery is 25m at highest resolution. Figure 6 is a screen capture of the 2D plan view
display mode ofthe graphical render engine. It is most useful in applications that require a moving map display with a great
deal ofcultural information and possibly other traffic information for situational awareness.

6. POTENTIAL FORCOLLISION AVOIDANCE APPLICATIONS
The network capable image generator described in Sections 3 and 4 provides the possibility ofdisplaying other entities on the
cockpit display to realize a CDTI. That is, given a low bandwidth communications channel upon which other aircraft could
transmit time tagged state information the display could render those aircraft on the display. The DIS protocol mentioned
above is well suited for such an application because it codifies the packet format and content necessary to propagate entities
in the virtual environment. Indeed this was its designated purpose in simulated training applications for the U.S. military
where it originated.

In the current application each aircraft would broadcast its identity, type, and state information over a given communication
channel, eventually say the automatic dependent surveillance ADS-B data link. Gazit [1 1] gives general overview of this
type of improved aircraft tracking and avoidance as well as the data link implications. The image generator would have an
internal model of all other aircraft types or at least the capability to request and incorporate such a model. An instantiation of
any one of these models may be propagated by the image generator for each unique aircraft broadcasting state information
intermittently in the local region. The high level offidelity already available in aircraft models reduces the bandwidth burden
ofupdating other entities in the virtual environment. Unlike the host aircraft whose state information must be tightly coupled
to the image generator, other traffic would require much lower update rates to realistically render their modeled entities.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

Figure 4. Geographically specific satellite imagery is applied to the terrain polygons in patches. Multiple patch sizes
are encoded into the database for varvng levels of detaiL This image is a BIWscreen capture from the real time
image generator.

77

Figure 3. The wire frame image of the underlying terrain polygons shows the varying levels of detail that are stored
within the virtual environment database. This image is a screen capture from the real time image generator.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

78

Figure 5. Terrain with extreme amounts of structure can be accommodated with high fidelity. The bottom
graphic is a wire frame image of the Alaskan coastline. On the top is the fully rendered scene with imagery.

St S..

55

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

7. CONCLUSIONS
The integration of fully capable low-cost image generators, high fidelity terrain databases, and differential GPS
navigation/attitude determination provides a viable path to the production of 3D glass cockpit displays for aviation
applications, and general aviation in particular. The end goal of such a system is ultimately to aid the pilot by providing
enhanced situational awareness. We have described here the basic components of the underlying system: low cost/high
accuracy navigation and attitude sensors that are reliable, ftilly capable image generators that degrade gracefully, and high
fidelity virtual environment databases that have complete correlation with the navigation system.

In the fullness of time the FAA's WAAS will provide high accuracy navigation solution with integrity to all equipped
aircraft. The continuous, incremental improvement in PC graphics capability will, we predict, push this type of prototype
implementation into the realm of an embedded system. At that point the economies of scale would again dramatically reduce
the cost of an integrated solution.

79

Figure 6. Top down views of additional cultural features are also possible using the plan view display mode. This
image displays a moving map that is shifting underneath the aircraft's viewpoint.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

08

c661 'UJ 'sJu!&Ia 3LUoipo!1 pu IEO!Jp31a
Jo 'U!1'I 'E8LI PP"S HE1II '?°!P'd UOUJ3U11A4 S3JX[SKI,, '331 c1

9661 ItU3dS '96 SdD NOl 'H1SN tJ SjflSJ ISO1 WS jIUB 14!iL, 'i 3 'S '3j.IOOd N
L661 JIUAON '.3111 'VDflI ' UI4D 6Z-OUN3flI 'uo•qvJuauL8nvaI ap,uaisefg U!UOiJ!SOj

vqo Xuis juawLjnb auJoq4JoJspJvpuvJg aauvuuoftaj puozw.iadrj wnuizuzpty '6cr I!3dS VJflI I 9661 'Ic!s13A!un p1oJus 's!s3t11 U4d SdrD XULS[) adUVP!0tV UOZSZflO3 put, /bJJZJ/ ')J 'IZ j . 1661 '# 'I' 'aJVeKJfOg U! SUV4p/ 'UOI3JU 4SUI iU1Wj3J &IUIJOJUO3 11(3,, 'UA31 d P' 'V 11
8661 4°W1 'doqspo AjiqJ3doiq

uop,tjnuq 'suqwoj IP!A!PtI I'WA IEP!Jp.Iv pU A!1 UEJUJ q3iM AjOAU SflSSJ,, '33O)J pu UOSJfl(ØJ
8661 °"S '86SdD

NOT 'SWSAS pni upsq .IO14S Enjn JoJ sJoJJ sqd iuuu jo uoiqj ui jj,, 'jpMo I ')J 'pmMA}j 6
866T judy '86 SMV1d EI3I uo!3giAg

(SIF{Y) wsAs uijai &upq opn Jp.uySd9 SO3-MOj y,, 'jIMod pu 'pitr 'j 'j 'ioqqrnz-oiq
6661 judy 'uoS!A !4W'S PU 'I69 'E1MSfi su;po.ij

'SUOi3!jdd AS/AR OJ (siiiv) uis&s ouaijai &npq pu pnp IP"/SdD SO3-MO',, 'H ''°I L
8661 iU1dS '86SdD NOl 'SdOV1 SVVM 0J UOi1Enb p2iu psodoid y,, 'usuj y pu 'u d 'L ''4iM 9

8661 t1S '86SdD NOl 'E)IsBW "! '!P"I P l4OBOJddE JEiOJ! SVVA J UO!t1JSUOUIU,, 'I i 'D 'dwoj ç
9661 '8# 'I'S 'i?I at Jo suzpaaaoj 'W.4S &RUO!VSOd jEOj) O!{1JO UOLWV1LU1W P!M 'i i 'd 'U •j7

'866! LtUdS '86SdO NO! 'U!I.1
SflOUiEUflOtU U UOflIA jwu8 ioj sjdsip !dpoo ci-,, 'II9MOd U PU 'O&I['d 'S&qUUOf '3 'SMOi1 ' ')I '11V 'E

'966! ciW3dS '96 SdO NO! 'JWJ iqq pioquo
su Ajds!p U-E :s3qoto1dd1 p3ss!ui pu s3qooJdd 9A1T1 uIAjd,, '!IMod 'f pui 'uosuDpBd a '&a d 'y 'SM0JJEH

L66! UIS 'L6SdO NO! 'J31I 4Jj 1OJ 1jdsip js-q!-u!
-JOUUfl4 01 S1UUIA0JdUII Pug t12P jU0!NJd,, 'IjOMOd 'f j)U 'U0Sw)1md 'H '3&I['d '101jv '{ "y 'SMOJJI3H

saaiaia'a 8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

APPENDIX BB

Microsoft et al. Exhibit 1005

This report appeared in a special issue of the International Journal of Geographic Information
Sciences, issue 4 of volume 13, in 1999.

A Commentary on GeoVRML: A Tool for 3D
Representation of GeoReferenced Data on the

Web
Theresa-Marie Rhyne

ACM SIGGRAPH Director at Large
Lockheed Martin Technical Services

US EPA Scientific Visualization Center
86 Alexander Drive

Research Triangle Park, North Carolina 27711
(trhyne@vislab.epa.gov)

Abstract:

GeoVRML techniques have the potential to provide functional and transparent communication
between geographic information and 3D Web visualization tools. This report outlines recommended
practices and modifications to the VRML 97 standard to consider pre-existing cartographic
projections and georeferenced data. The concepts outlined for incorporating georeferenced coordinate
systems in VRML worlds have generic applicability to 3D Web technologies like MPEG-4, Java3D
and Chrome.

Introduction:

The interactive three dimensional (3D) representation of georeferenced data on the World Wide Web
(Web) is achieved with tools like the Virtual Reality Modeling Language (VRML). VRML97 is the
approved International Standard (ISO/IEC 14772) file format for describing interactive multimedia on
the Internet. In general, a VRML file is also called a "world". Users explore these "worlds" with Web
browsers that support the viewing of VRML files. More information on VRML can be found at the
Web3D Consortium Web pages, see: (http://www.web3d.org).

The VRML97 standard was designed primarily by the computer graphics community. Typical
computer graphics imagery focuses on locally bounded regions and small screen sizes where
maximum pixel ranges are approximately 1600 by 1280 pixels. As a result, VRML97 relies on single-
precision (32 bit) IEEE floating point data values. The coordinate system for VRML97 is based on the
simple Cartesian local (X,Y,Z) coordinate system with the orgin being at (0,0,0) and Y representing
up. This coordinate system is often sufficient for many computer graphics problems.

These two parameters of the VRML 97 standard provide limitations for the representation of
geographic and cartographic data as well as georeferenced computational modeling simulations in
VRML. For example, since the earth's diameter approximates 12 million meters, it is not possible to
present geographic data resolutions greater than 10 to 100 meters with single-precision data values.
This means that data obtained from global positioning systems (GPS) with absolute locations within 1

Page 1 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

meter resolution cannot be accurately presented in VRML97. The heavy reliance on Cartesian
coordinates also poses difficulties with data in Geodetic (GDC or lattitude/longitude), Universal
Transverse Mercator (UTM), Lambert Conformal Conic (LCC) or other pre-existing cartographic
projections. In February 1998, the VRML Consortium approved the formation of the GeoVRML
Working Group to discuss and develop tools, recommended practices and standards necessary to
generate, display and exchange georeferenced data in VRML, (Iverson & GeoVRML, 1998). In
December 1998, the VRML Consortium expanded its charter and renamed itself as the "Web 3D
Consortium".

This report reviews the major recommended practices and modifications to the VRML standard under
consideration and development by the GeoVRML Working Group. Additional emerging 3D Web
technologies and their relation to geospatial data visualization will also be highlighted. GeoVRML
techniques have the potential to provide functional and transparent communication between
geographic information and 3D visualization tools, (Rhyne, 1997).

Figure #1: Example VRML world with a TIFF image of a USGS map drapped over the 3D surface is
shown on the left. On the right is a similar image made with a visualization toolkit package. Notice
how the map is inverted in the VRML browser. We hope to improve this situation with GeoVRML
Coordinate systems. Images developed by Theresa-Marie Rhyne and Thomas Fowler of Lockheed
Martin Technical Services at the United States Environmental Protection Agency's Scientific
Visualization Center. See: (http://www.epa.gov/gisvis).

Moving towards GeoVRML Coordinate Systems:

The geographic information systems, cartographic and military simulation communities have
developed a number of standards for the representation of geospatial information and georeferencing
of arbitrary data, (Rhyne, 1998). The Open GIS Consortium is presently moving forward with efforts
to support the full integration of geospatial data into mainstream computing and the widespread usage
of interoperable commercial geoprocessing software, see: (http://www.opengis.org/). There are also
International Organization for Standardization (ISO) efforts in the Geographic information/Geomatics
arenas, see: (http://www.iso.ch/meme/TC211.html).

In order to attempt to include a methodology for supporting georeferenced data in the upcoming
(1999) revision to the VRML97 standard, the GeoVRML Working Group decided to base its efforts
on a currently existing reference model and software package entitled the SEDRIS Geographic

Page 2 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

Reference Model (GRM). The Synthetic Environment Data Representation & Interchange
Specification (SEDRIS) is a project funded by the United States' Defense Modeling and Simulation
Office. The SEDRIS GRM supports twelve different coordinate systems and provides tools to
automatically convert reference marks between them. The software source for GRM is publically
available and is currently implemented in the C programming language. More information on the
SEDRIS GRM can be found on the SEDRIS Web site at: (http://www.sedris.org/).

The GeoVRML Working Group is thus recommending a Level 1 practice whereby geographical
coordinates based on the SEDRIS GRM are converted into a local Cartesian coordinate system for
improved level of detail in GeoVRML visualizations. The GeoVRML Working Group is also
exploring a Level 2 practice whereby geo-referenced data is transparently and seamlessly converted
from a wider and multiple variety of sources, (Iverson & GeoVRML, 1998).

Researchers at the SRI International - Artificial Intelligence Center, have recently developed, for
public release, the GeoTransform Java class file hierarchy based on the SEDRIS GRM. With the
GeoTransform Java package, it is possible to perform efficient and accurate geographic coordinate
transformations for the Geodetic Coordinate System (GDC), GeoCentric Coordinate System (GCC),
and Universal Transverse Mercator (UTM) System. GeoTransform allows for authoring VRML
worlds that read coordinates in any of these systems and tranparently convert the geographic data into
Cartesian Coordinates for display in a VRML browser. More information on the GeoTranform Java
package can be found at: (http://www.ai.sri.com/~reddy/geovrml/geotransform/) .

Defining the GeoOrigin Node:

In order to build a georeferenced VRML world, a GeoOrigin node is defined in the VRML file. This
GeoOrigin allows for converting coordinates from cartographic earth-based coordinate systems into
the existing VRML97 Cartesian reference frame, (Iverson & GeoVRML, 1998). A single GeoOrigin
node, representing a single georeferenced point, becomes the reference frame identified with the
VRML world's zero-based (0,0,0) origin.

GeoOrigin

 EXTERNPROTO GeoOrigin [
 field MFString geoSystem ["GDC"]
 field SFString geoCoords ""
] "urn:geovrml:protos#GeoOrigin"

The geoSystem field selects a geographic reference system from the naming conventions based on the
SEDRIS GRM. Some of these georeference coordinate systems require additional arguments to fully
designate the coordinates. As an example, the Geodetic (GDC) system involves the selection of
ellipsoid, geoid, and datum references. Additional strings in the geoSystem field support this
requirement.

The geoCoords field is a sequence of 64-bit precision values seperated by spaces that define an
absolute location using the coordinate system selected in the geoSystem field. Optional strings in the
geoSystem field determine the interpretation of the geoCoords field. As an example, "DMS" can
specify that the geoCoords string will include degree, minute and second fields for each latitute and
longitude value in a GDC coordinate. Every geospatial location determined by a geoSystem and
geoCoords pair defines an implicit orthogonal Cartesian reference frame indexed by x,y,z in meters

Page 3 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

with the designated geospatial location at the origin and with y being the up direction. This allows for
conformance with the VRML97 standard.

A more detailed discussion about the GeoOrigin node can be found in the Request for Comment
document on GeoVRML Coordinate Systems. This discussion is located at the GeoVRML Working
Group's Web site at: (http://www.ai.sri.com/~leei/geovrml/).

During the past year, SRI International developed a series of VRML97 nodes for improved support of
terrain visualization. These contributions were developed as part of the GeoVRML Working Group
and are in the public domain. A comprehensive discussion of these efforts can be found in the SRI
International - Artificial Intelligence Center Report No. 559, which is cited the the references below,
(Reddy, et. al., 1998). These new GeoVRML nodes can be accessed on the Web at:
(http://www.ai.sri.com/geovrml/protos) .

Integrating Spatial Data Repositories and GeoVRML Visualizations:

There are a number of efforts underway to examine the use of the Virtual Reality Modeling Language
(VRML) for the interactive exploration of geospatial data repositories (Rhyne & Fowler, 1996). In the
United States, some of this work is being done in conjunction with the Federal Geographic Data
Committee (FGDC) 's National Geospatial Data Clearinghouse (see: (http://fgdc.er.usgs.gov/)). In
addition to the use of intelligent agents, data mining techniques are being employed to assist with the
retrieval of spatial data. The development of GeoOrgin nodes in VRML will support the use of agent
and data mining technology for rapid creation of interactive web-based visualizations. This will
greatly facilitate visual information retrieval of geospatial data.

Reaching out to other Interactive 3D Web Technologies:

In addition to VRML, there are other 3D Web technologies under development. Three examples
include (a) the development of the MPEG-4 standard; (b) Java 3D and (c) Chrome. In early 1998, the
International Organization for Standardization (ISO) announced that it will use Apple Computer's
QuickTime file format as the basis for a unified digital media storage format for the MPEG-4 standard
for graphics content on the Web. The VRML Consortium has established a Working Group to
examine MPEG-4 and VRML integration. Java3D, from Sun Microsystems, supports the
development of 3D computer graphics applications in the Java programming language. This includes
the development of VRML browsers with Java 3D. Another emerging 3D Web technology is Chrome
from Microsoft Corporation. Chrome is a Windows 98 add-on that uses the Extensible Markup
Language (XML) to access Windows 98 multimedia capabilities for creating 3D content on the Web.
The concepts outlined above for incorporating georeferenced coordinate systems in VRML worlds
have generic applicability to 3D Web technologies like MPEG-4, Java3D and Chrome. Details about
the QuickTime file format and its adoption by ISO as the starting point for MPEG-4 can be found at
the Apple Computer web site, see: (http://www.apple.com/quicktime/). More information on Java and
Java 3D can be found at the Javasoft Web site, see: (http://www.javasoft.com/products/java-
media/3D/). Additional information on Chrome can be found by searching the Microsoft web site at:
(http://www.microsoft.com).

Concluding Remarks:

The use of VRML for cartographic and geographic presentation is currently being examined by
research groups participating in the International Cartographic Association's Commission on
Visualization, (Fairburn and Parsley, 1997). Preliminary definitions of the needs for geofunctions in

Page 4 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

virtual reality and VRML were done at Leicester University in July 1997, (Moore, et. al.). The
Commission has also explored other multimedia and web-based technologies for developing mapping
products, (Cartwright, 1998) and (Andrienko & Andrienko, 1998). The Association for Computing
Machinery's Special Interest Group on Graphics (ACM - SIGGRAPH)'s collaboration with the ICA
Commission on Visualization has attempted to examine how computer graphics technology can be
effectively adapted to meet cartographic needs and requirements. This project, entitled the ACM
SIGGRAPH Carto Project, is pleased that the VRML Consortium chose to create the GeoVRML
Working Group to actualize effective exchange of georeferenced data in VRML. We anticipate
GeoVRML techniques expanding to address many 3D Web Technologies as the VRML Consortium
redefines itself as the Web 3D Consortium. The issues discussed here are important steps toward
functional integration of geographic information and 3D visualization tools. We hope similar efforts
will continue to emerge in the future.

Acknowledgements:

We would like to acknowledge the efforts of Lee Iverson, founding Chair of the GeoVRML Working
Group of the Web 3D Consortium, Don Brutzman, Vice President for Technology of the Web 3D
Consortium, and Martin Reddy (who built many of the new GeoVRML nodes for VRML97). We are
also appreciative to Judy Brown, Past Chair of Special Projects for ACM SIGGRAPH, for all the
encouragement she provided during the first two years of the ACM SIGGRAPH Carto Project.

References:

ACM SIGGRAPH Carto Project Web Site: (http://www.siggraph.org/~rhyne/carto/).

Andrienko & Andrienko. 1998, Descartes -Intelligent Mapping and Visual Data Exploration on the
Internet, Proceedings of the 1998 Polish Spatial Information Association Conference, May 1998,
Warsaw Poland, : 339 - 340.

Cartwright, W. 1997. New media and their application to the production of map products. Computers
&; Geosciences, special issue on Exploratory Cartographic Visualization 23(4) : 447-456.

Fairbairn, D. and Parsley, S. 1997. The use of VRML for cartographic presentation. Computers &;
Geosciences, special issue on Exploratory Cartographic Visualization 23(4): 475-482.

GeoVRML Working Group of the VRML Consortium Web Site: (http://www.ai.sri.com/geovrml/).

Iverson, Lee & the GeoVRML Working Group of the VRML Consortium. 1998, GeoVRML RFC1:
Coordinate Systems, (http://www.ai.sri.com/geovrml/rfc1.html).

ICA Commission on Visualization Web Site: (http://www.geog.psu.edu/ica/ICAvis.html).

Moore, K., Dykes, J., Wood, J., Bastin, L., Fisher, P. 1997, VR Geofunctions,
(http://www.geog.le.ac.uk/mek/VRGeoFunctions.html).

Reddy, M., Leclerc, Y. G., Iverson, L., Bletter, N., and Vidimce, K. 1998, Modeling the Digital Earth
in VRML, AIC Technical Report No. 559. SRI International, Menlo Park, CA. November 1998.

Rhyne, T.-M. and Fowler, T. 1996, Examining Dynamically Linked Geographic Visualization,
Proceedings of the 1996 Computing in Environmental Resource Management Speciality Conference

Page 5 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

sponsored by the Air & Waste Management Association, Dec. 1996, Research Triangle Park, North
Carolina (USA), : 571 - 573.

Rhyne, T.-M. 1997. Going virtual with geographic information and scientific visualization.
Computers & Geosciences, special issue on Exploratory Cartographic Visualization 23(4): 489-492.

Rhyne, T.-M. 1998, Open Spatial Data Standards for the Information Highway (Examining
Dynamically Linked Geographic Visualization), Proceedings of the 1998 Polish Spatial Information
Association Conference, May 1998, Warsaw Poland, : 297 - 299.

Biography of the Author:

Theresa-Marie Rhyne is a Director at Large of the ACM SIGGRAPH Executive Committee and is the
Project Director of the ACM SIGGRAPH Carto Project. She is a lead scientific visualization
researcher for Lockheed Martin Technical Services at the United States Environmental Protection
Agency's Scientific Visualization Center.

--

Page 6 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX EE

Microsoft et al. Exhibit 1005

GeoTIFF Format Specification

GeoTIFF Revision 1.0
+---+

 Specification Version: 1.8.1
 Last Modified: 31 October, 1995

Authors:

 Niles Ritter, Jet Propulsion Laboratory
 Cartographic Applications Group
 4800 Oak Grove Dr.
 Pasadena, CA 91109
 email:ndr@tazboy.jpl.nasa.gov

 Mike Ruth, SPOT Image Corp
 Product Development Group
 1897 Preston White Dr.
 Reston, VA 22091
 email:ruth@spot.com

Acknowledgments:

GeoTIFF Working Group:
 Mike Ruth, Niles Ritter, Ed Grissom, Brett Borup, George Galang,
 John Haller, Gary Stephenson, Steve Covington, Tim Nagy,
 Jamie Moyers, Jim Stickley,Joe Messina, Yves Somer.

Additional advice from discussions with Tom Lane, Sam Leffler regarding
TIFF implementations.

Roger Lott, Fredrik Lundh, and Jarle Land provided valuable information
regarding projections, projection code databases and geodetics.

GeoTIFF Mailing list:
 Posting: geotiff@tazboy.jpl.nasa.gov
 Subscription: geotiff-request@tazboy.jpl.nasa.gov
 (send message "subscribe geotiff your-name-here").

Disclaimers and Notes for This Version:

This proposal has not been approved by SPOT, JPL, or any other organization. This
represents a proposal, which derives from many discussions between an international
body of TIFF users and developers.

APPENDIX GG

Microsoft et al. Exhibit 1005

The authors and their sponsors assume no liability for any special, incidental,
indirect or consequences of any kind, or any damages whatsoever resulting from loss
of use, data or profits, whether or not advised of the possibility of damage, and
on any theory of liability, arising out of or in connection with the use of this
specification.

Copyright

Portions of this specification are copyrighted by Niles Ritter and Mike Ruth.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct or commercial advantage and
this copyright notice appears.

Licenses and Trademarks

Aldus and Adobe are registered trademarks, and TIFF is a registered trademark of
Aldus Corp., now owned by Adobe. SPOT Image, ESRI, ERDAS, ARC/Info, Intergraph and
Softdesk are registered trademarks.

Concurrence

 The following members of the GeoTIFF working group have reviewed and approved
of this revision.

 Name Organization Representing
 -------------------- ----------------------- ------------
 Niles Ritter Jet Propulsion Labs JPL Carto Group
 Mike Ruth SPOT Image Corp. (USA) SPOT Image Corp. (USA)

+--+

Table of Contents
+--+

+--+

1 Introduction
+--+

+----------------------------------+

1.1 About this Specification

APPENDIX GG

Microsoft et al. Exhibit 1005

This is a description of a proposal to specify the content and structure of a group
of industry-standard tag sets for the management of georeference or geocoded raster
imagery using Aldus-Adobe's public domain Tagged-Image File Format (TIFF).

This specification closely follows the organization and structure of the TIFF
specification document.

+----------------------------------+

1.1.1 Background

TIFF has emerged as one of the world's most popular raster file formats. But TIFF
remains limited in cartographic applications, since no publicly available, stable
structure for conveying geographic information presently exists in the public
domain.

Several private solutions exist for recording cartographic information in TIFF
tags. Intergraph has a mature and sophisticated geotie tag implementation, but this
remains within the private TIFF tagset registered exclusively to Intergraph. Other
companies (such as ESRI, and Island Graphics) have geographic solutions which are
also proprietary or limited by specific application to their software's
architecture.

Many GIS companies, raster data providers, and their clients have requested that
the companies concerned with delivery and exploitation of raster geographic imagery
develop a publicly available, platform interoperable standard for the support of
geographic TIFF imagery. Such TIFF imagery would originate from satellite imaging
platforms, aerial platforms, scans of aerial photography or paper maps, or as a
result of geographic analysis. TIFF images which were supported by the public
"geotie" tagset would be able to be read and positioned correctly in any GIS or
digital mapping system which supports the "GeoTIFF" standard, as proposed in this
document.

The savings to the users and providers of raster data and exploitation softwares
are potentially significant. With a platform interoperable GeoTIFF file, companies
could stop spending excessive development resource in support of any and all
proprietary formats which are invented. Data providers may be able to produce
off-the-shelf imagery products which can be delivered in the "generic" TIFF format
quickly and possibly at lower cost. End-users will have the advantage of developed
software that exploits the GeoTIFF tags transparently. Most importantly, the same
raster TIFF image which can be read and modified in one GIS environment may be
equally exploitable in another GIS environment without requiring any file
duplication or import/export operation.

+----------------------------------+

1.1.2 History

The initial efforts to define a TIFF "geotie" specification began under the
leadership of Ed Grissom at Intergraph, and others in the early 1990's. In 1994
a formal GeoTIFF mailing-list was created and maintained by Niles Ritter at JPL,
which quickly grew to over 140 subscribers from government and industry. The purpose
of the list is to discuss common goals and interests in developing an industry-wide
GeoTIFF standard, and culminated in a conference in March of 1995 hosted by SPOT
Image, with representatives from USGS, Intergraph, ESRI, ERDAS, SoftDesk, MapInfo,
NASA/JPL, and others, in which the current working proposal for GeoTIFF was

APPENDIX GG

Microsoft et al. Exhibit 1005

outlined. The outline was condensed into a prerelease GeoTIFF specification
document by Niles Ritter, and Mike Ruth of SPOT Image.

Following discussions with Dr. Roger Lott of the European Petroleum Survey Group
(EPSG), the GeoTIFF projection parametrization method was extensively modified,
and brought into compatibility with both the POSC Epicentre model, and the Federal
Geographic Data Committee (FGDC) metadata approaches.

+----------------------------------+

1.1.3 Scope

The GeoTIFF spec defines a set of TIFF tags provided to describe all "Cartographic"
information associated with TIFF imagery that originates from satellite imaging
systems, scanned aerial photography, scanned maps, digital elevation models, or
as a result of geographic analyses. Its aim is to allow means for tying a raster
image to a known model space or map projection, and for describing those
projections.

GeoTIFF does not intend to become a replacement for existing geographic data
interchange standards, such as the USGS SDTS standard or the FGDC metadata standard.
Rather, it aims to augment an existing popular raster-data format to support
georeferencing and geocoding information.

The tags documented in this spec are to be considered completely orthogonal to the
raster-data descriptions of the TIFF spec, and impose no restrictions on how the
standard TIFF tags are to be interpreted, which color spaces or compression types
are to be used, etc.

+----------------------------------+

1.1.4 Features

GeoTIFF fully complies with the TIFF 6.0 specifications, and its extensions do not
in any way go against the TIFF recommendations, nor do they limit the scope of raster
data supported by TIFF.

GeoTIFF uses a small set of reserved TIFF tags to store a broad range of
georeferencing information, catering to geographic as well as projected coordinate
systems needs. Projections include UTM, US State Plane and National Grids, as well
as the underlying projection types such as Transverse Mercator, Lambert Conformal
Conic, etc. No information is stored in private structures, IFD's or other
mechanisms which would hide information from naive TIFF reading software.

GeoTIFF uses a "MetaTag" (GeoKey) approach to encode dozens of information elements
into just 6 tags, taking advantage of TIFF platform-independent data format
representation to avoid cross-platform interchange difficulties. These keys are
designed in a manner parallel to standard TIFF tags, and closely follow the TIFF
discipline in their structure and layout. New keys may be defined as needs arise,
within the current framework, and without requiring the allocation of new tags from
Aldus/Adobe.

GeoTIFF uses numerical codes to describe projection types, coordinate systems,
datums, ellipsoids, etc. The projection, datums and ellipsoid codes are derived

APPENDIX GG

Microsoft et al. Exhibit 1005

from the EPSG list compiled by the Petrotechnical Open Software Corporation (POSC),
and mechanisms for adding further international projections, datums and ellipsoids
has been established. The GeoTIFF information content is designed to be compatible
with the data decomposition approach used by the National Spatial Data
Infrastructure (NSDI) of the U.S. Federal Geographic Data Committee (FGDC).

While GeoTIFF provides a robust framework for specifying a broad class of existing
Projected coordinate systems, it is also fully extensible, permitting internal,
private or proprietary information storage. However, since this standard arose from
the need to avoid multiple proprietary encoding systems, use of private
implementations is to be discouraged.

+----------------------------------+

1.2 Revision Notes

This is the final release of GeoTIFF Revision 1.0, supporting the new EPSG 2.x codes.

Changes from 1.8 document: minor spelling and typo corrections.

+----------------------------------+

1.2.1 Revision Nomenclature
A Revision of GeoTIFF specifications will be denoted by two integers separated by
a decimal, indicating the Major and Minor revision numbers. GeoTIFF stores most
of its information using a "Key-Code" pairing system; the Major revision number
will only be incremented when a substantial addition or modification is made to
the list of information Keys, while the Minor Revision number permits incremental
augmentation of the list of valid codes.

+----------------------------------+

1.2.2 New Features

Revision 1.0 New Transformation Matrix Tag.

Index Table added in Section 6.4 to assist in looking up geodesy codes.

+----------------------------------+

1.2.3 Clarifications
Revision 1.0:

 o The former ModelTransformationTag (33920) conflicts with
 an internal Intergraph implementation and is being deprecated,
 in favor of a new tag (34264, registered to JPL).

 o The "Origin" keys have been renamed with "Natural" or "Nat"
 prefixes, to distinguish from "False" origins, and to have
 a closer match to EPSG/POSC terminology. All Revision 0.2
 names shall be recognized in a backward-compatible fashion.

 o The GeoTIFF/Cartlab web page addresses have been moved out
 of the author's ~ndr/ personal directory, and may now be found at:

APPENDIX GG

Microsoft et al. Exhibit 1005

 http://www-mipl.jpl.nasa.gov/cartlab/geotiff/geotiff.html

Revision 0.2:

 o South Oriented Gauss Conformal is Transverse Mercator with South
 pointing up, and so has been given a distinct code, rather than
 aliased to Transverse Mercator.

Revision 0.1:

 o GeoTIFF-writers shall store the GeoKey entries in key-sorted order
 within the GeoKeyDirectoryTag. This is a change from preliminary
 discussions which permitted arbitrary order, and more closely follows
 the TIFF discipline.

 o The third value "ScaleZ" in ModelPixelScaleTag = (ScaleX, ScaleY,
 ScaleZ) shall by default be set to 0, not 1, as suggested in preliminary
 discussions. This is because most standard model spaces are
 2-dimensional (flat), and therefore its vertical shape is
 independent of the pixel-value.

 o The code 32767 shall be used to imply "user-defined", rather than
 16384. This avoids breaking up the reserved public GeoKey code space
 into two discontiguous ranges, 0-16383 and 16385-32767.

 o If a GeoKey is coded "undefined", then it is exactly that; no
 parameters should be provided (e.g. EllipsoidSemiMajorAxis, etc).
 To provide parameters for a non-coded attribute, use "user-defined".

+----------------------------------+

1.2.4 Organizational changes

None.

+----------------------------------+

1.2.5 Changes in Requirements
 Changes to this preliminary revision:

 o Support for new transformation matrix tag (34264) required.

+----------------------------------+

1.2.6 Agenda for Future Development

Revision 1.0, which is the first true "Baseline" revision, is proposed to support
well-documented, public, relatively simple Projected Coordinate Systems (PCS),
including most commonly used and supported in the international public domains
today, together with their underlying map-projection systems. Following the
critiques of the 0.x Revision phase, the 1.0 Revision spec is hereby released in
Sept '95.

In the coming year, incremental 1.x augmentations to the "codes" list will be
established, as well as discussions regarding the future "2.0" requirements.

APPENDIX GG

Microsoft et al. Exhibit 1005

The Revision 2.0 phase is proposed to extend the capability of the GeoTIFF tagsets
beyond PCS projections into more complex map projection geometries, including
single-project, single-vendor, or proprietary cartographic solutions.

TBD: Sounding Datums and related parameters for Digital Elevation Models (DEM's)
and bathymetry -- Revision 2?

+----------------------------------+

1.3 Administration
+----------------------------------+

1.3.1 Information and Support:
The most recent version of the GeoTIFF spec, EPSG/POSC tables, and source code is
available via anonymous FTP at:

 ftp://mtritter.jpl.nasa.gov/pub/tiff/geotiff/

and is mirrored at the USGS:

 ftp://ftpmcmc.cr.usgs.gov/release/geotiff/jpl_mirror/

 There are several subdirectories called spec/ tables/ and code/.

 The USGS also has an archive of prototype GeoTIFF images at:

 ftp://ftpmcmc.cr.usgs.gov/release/geotiff/images/

Information and a hypertext version of the GeoTIFF spec is available via WWW at
the following site:

 http://www-mipl.jpl.nasa.gov/cartlab/geotiff/geotiff.html

A mailing-list is currently active to discuss the on-going development of this
standard. To subscribe to this list, send e-mail to:

 GeoTIFF-request@tazboy.jpl.nasa.gov

with no subject and the body of the message reading:

 subscribe geotiff your-name-here

To post inquiries directly to the list, send email to:

 geotiff@tazboy.jpl.nasa.gov

+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

1.3.2 Private Keys and Codes:
As with TIFF, in GeoTIFF private "GeoKeys" and codes may be used, starting with
32768 and above. Unlike the TIFF spec, however, these private key-spaces will not
be reserved, and are only to be used for private, internal purposes.

+----------------------------------+

1.3.3 Proposed Revisions to GeoTIFF
Should a feature arise which is not currently supported, it should be formally
proposed for addition to the GeoTIFF spec, through the official mailing-list.

The current maintainer of the GeoTIFF specification is Niles Ritter, though this
may change at a later time. Projection codes are maintained through EPSG/POSC, and
a mechanism for change/additions will be established through the GeoTIFF mailing
list.

+--+

2 Baseline GeoTIFF
+--+

+----------------------------------+

2.1 Notation
This spec follows the notation remarks of the TIFF 6.0 spec, regarding "is",
"shall", "should", and "may"; the first two indicate mandatory requirements,
"should" indicates a strong recommendation, while "may" indicates an option.

+----------------------------------+

2.2 GeoTIFF Design Considerations
Every effort has been made to adhere to the philosophy of TIFF data abstraction.
The GeoTIFF tags conform to a hierarchical data structure of tags and keys, similar
to the tags which have been implemented in the "basic" and "extended" TIFF tags
already supported in TIFF Version 6 specification. The following are some points
considered in the design of GeoTIFF:

o Private binary structures, while permitted under the TIFF spec, are in general
difficult to maintain, and are intrinsically platform- dependent. Whenever
possible, information should be sorted into their intrinsic data-types, and placed
into appropriately named tags. Also, implementors of TIFF readers would be more
willing to honor a new tag specification if it does not require parsing novel binary
structures.

o Any Tag value which is to be used as a "keyword" switch or modifier should be
a SHORT type, rather than an ASCII string. This avoids common mistakes of
mis-spelling a keyword, as well as facilitating an implementation in code using
the "switch/case" features of most languages. In general, scanning ASCII strings
for keywords (CaseINSensitiVE?) is a hazardous (not to mention slower and more
complex) operation.

APPENDIX GG

Microsoft et al. Exhibit 1005

o True "Extensibility" strongly suggests that the Tags defined have a sufficiently
abstract definition so that the same tag and its values may be used and interpreted
in different ways as more complex information spaces are developed. For example,
the old SubFileType tag (255) had to be obsoleted and replaced with a NewSubFileType
tag, because images began appearing which could not fit into the narrowly defined
classes for that Tag. Conversely, the YCbCrSubsampling Tag has taken on new meaning
and importance as the JPEG compression standard for TIFF becomes finalized.

+----------------------------------+

2.3 GeoTIFF Software Requirements
GeoTIFF requires support for all documented TIFF 6.0 tag data-types, and in
particular requires the IEEE double-precision floating point "DOUBLE" type tag.
Most of the parameters for georeferencing will not have sufficient accuracy with
single-precision IEEE, nor with RATIONAL format storage. The only other alternative
for storing high-precision values would be to encode as ASCII, but this does not
conform to TIFF recommendations for data encoding.

It is worth emphasizing here that the TIFF spec indicates that TIFF-compliant
readers shall honor the 'byte-order' indicator, meaning that 4-byte integers from
files created on opposite order machines will be swapped in software, and that
8-byte DOUBLE's will be 8-byte swapped.

A GeoTIFF reader/writer, in addition to supporting the standard TIFF tag types,
must also have an additional module which can parse the "Geokey" MetaTag
information. A public-domain software package for performing this function is now
available; see the "References" in section 5 for the location.

+----------------------------------+

2.4 GeoTIFF File and "Key" Structure

This section describes the abstract file-format and "GeoKey" data storage mechanism
used in GeoTIFF. Uses of this mechanism for implementing georeferencing and
geocoding is detailed in section 2.6 and section 2.7 .

A GeoTIFF file is a TIFF 6.0 file, and inherits the file structure as described
in the corresponding portion of the TIFF spec. All GeoTIFF specific information
is encoded in several additional reserved TIFF tags, and contains no private Image
File Directories (IFD's), binary structures or other private information invisible
to standard TIFF readers.

The number and type of parameters that would be required to describe most popular
projection types would, if implemented as separate TIFF tags, likely require dozens
or even hundred of tags, exhausting the limited resources of the TIFF tag-space.
On the other hand, a private IFD, while providing thousands of free tags, is limited
in that its tag-values are invisible to non-savvy TIFF readers (which don't know
that the IFD_OFFSET tag value points to a private IFD).

To avoid these problems, a GeoTIFF file stores projection parameters in a set of
"Keys" which are virtually identical in function to a "Tag", but has one more level
of abstraction above TIFF. Effectively, it is a sort of "Meta-Tag". A Key works
with formatted tag-values of a TIFF file the way that a TIFF file deals with the
raw bytes of a data file. Like a tag, a Key has an ID number ranging from 0 to 65535,

APPENDIX GG

Microsoft et al. Exhibit 1005

but unlike TIFF tags, all key ID's are available for use in GeoTIFF parameter
definitions.

The Keys in GeoTIFF (also call "GeoKeys") are all referenced from the
GeoKeyDirectoryTag, which defined as follows:

GeoKeyDirectoryTag:
 Tag = 34735 (87AF.H)
 Type = SHORT (2-byte unsigned short)
 N = variable, >= 4
 Alias: ProjectionInfoTag, CoordSystemInfoTag
 Owner: SPOT Image, Inc.

This tag may be used to store the GeoKey Directory, which defines and references
the "GeoKeys", as described below.

The tag is an array of unsigned SHORT values, which are primarily grouped into blocks
of 4. The first 4 values are special, and contain GeoKey directory header
information. The header values consist of the following information, in order:

 Header={KeyDirectoryVersion, KeyRevision, MinorRevision, NumberOfKeys}

 where

 "KeyDirectoryVersion" indicates the current version of Key
 implementation, and will only change if this Tag's Key
 structure is changed. (Similar to the TIFFVersion (42)).
 The current DirectoryVersion number is 1. This value will
 most likely never change, and may be used to ensure that
 this is a valid Key-implementation.

 "KeyRevision" indicates what revision of Key-Sets are used.

 "MinorRevision" indicates what set of Key-codes are used. The
 complete revision number is denoted <KeyRevision>.<MinorRevision>

 "NumberOfKeys" indicates how many Keys are defined by the rest
 of this Tag.

This header is immediately followed by a collection of <NumberOfKeys> KeyEntry
sets, each of which is also 4-SHORTS long. Each KeyEntry is modeled on the
"TIFFEntry" format of the TIFF directory header, and is of the form:

 KeyEntry = { KeyID, TIFFTagLocation, Count, Value_Offset }

 where

 "KeyID" gives the key-ID value of the Key (identical in function
 to TIFF tag ID, but completely independent of TIFF tag-space),

 "TIFFTagLocation" indicates which TIFF tag contains the value(s)
 of the Key: if TIFFTagLocation is 0, then the value is SHORT,
 and is contained in the "Value_Offset" entry. Otherwise, the type
 (format) of the value is implied by the TIFF-Type of the tag
 containing the value.

 "Count" indicates the number of values in this key.

APPENDIX GG

Microsoft et al. Exhibit 1005

 "Value_Offset" Value_Offset indicates the index-
 offset *into* the TagArray indicated by TIFFTagLocation, if
 it is nonzero. If TIFFTagLocation=0, then Value_Offset
 contains the actual (SHORT) value of the Key, and
 Count=1 is implied. Note that the offset is not a byte-offset,
 but rather an index based on the natural data type of the
 specified tag array.

Following the KeyEntry definitions, the KeyDirectory tag may also contain
additional values. For example, if a Key requires multiple SHORT values, they shall
be placed at the end of this tag, and the KeyEntry will set
TIFFTagLocation=GeoKeyDirectoryTag, with the Value_Offset pointing to the
location of the value(s).

All key-values which are not of type SHORT are to be stored in one of the following
two tags, based on their format:

GeoDoubleParamsTag:
 Tag = 34736 (87BO.H)
 Type = DOUBLE (IEEE Double precision)
 N = variable
 Owner: SPOT Image, Inc.

This tag is used to store all of the DOUBLE valued GeoKeys, referenced by the
GeoKeyDirectoryTag. The meaning of any value of this double array is determined
from the GeoKeyDirectoryTag reference pointing to it. FLOAT values should first
be converted to DOUBLE and stored here.

GeoAsciiParamsTag:
 Tag = 34737 (87B1.H)
 Type = ASCII
 Owner: SPOT Image, Inc.
 N = variable

This tag is used to store all of the ASCII valued GeoKeys, referenced by the
GeoKeyDirectoryTag. Since keys use offsets into tags, any special comments may be
placed at the beginning of this tag. For the most part, the only keys that are ASCII
valued are "Citation" keys, giving documentation and references for obscure
projections, datums, etc.

Note on ASCII Keys:

Special handling is required for ASCII-valued keys. While it is true that TIFF 6.0
permits multiple NULL-delimited strings within a single ASCII tag, the secondary
strings might not appear in the output of naive "tiffdump" programs. For this
reason, the null delimiter of each ASCII Key value shall be converted to a "|" (pipe)
character before being installed back into the ASCII holding tag, so that a dump
of the tag will look like this.

 AsciiTag="first_value|second_value|etc...last_value|"

A baseline GeoTIFF-reader must check for and convert the final "|" pipe character
of a key back into a NULL before returning it to the client software.

GeoKey Sort Order:

APPENDIX GG

Microsoft et al. Exhibit 1005

In the TIFF spec it is required that TIFF tags be written out to the file in tag-ID
sorted order. This is done to avoid forcing software to perform N-squared sort
operations when reading and writing tags.

To follow the TIFF philosophy, GeoTIFF-writers shall store the GeoKey entries in
key-sorted order within the CoordSystemInfoTag.

Example:

 GeoKeyDirectoryTag=(1, 1, 2, 6,
 1024, 0, 1, 2,
 1026, 34737,12, 0,
 2048, 0, 1, 32767,
 2049, 34737,14, 12,
 2050, 0, 1, 6,
 2051, 34736, 1, 0)
 GeoDoubleParamsTag(34736)=(1.5)
 GeoAsciiParamsTag(34737)=("Custom File|My Geographic|")

The first line indicates that this is a Version 1 GeoTIFF GeoKey directory, the
keys are Rev. 1.2, and there are 6 Keys defined in this tag.

The next line indicates that the first Key (ID=1024 = GTModelTypeGeoKey) has the
value 2 (Geographic), explicitly placed in the entry list (since
TIFFTagLocation=0). The next line indicates that the Key 1026 (the
GTCitationGeoKey) is listed in the GeoAsciiParamsTag (34737) array, starting at
offset 0 (the first in array), and running for 12 bytes and so has the value "Custom
File" (the "|" is converted to a null delimiter at the end). Going further down
the list, the Key 2051 (GeogLinearUnitSizeGeoKey) is located in the
GeoDoubleParamsTag (34736), at offset 0 and has the value 1.5; the value of key
2049 (GeogCitationGeoKey) is "My Geographic".

The TIFF layer handles all the problems of data structure, platform independence,
format types, etc, by specifying byte-offsets, byte-order format and count, while
the Key describes its key values at the TIFF level by specifying Tag number,
array-index, and count. Since all TIFF information occurs in TIFF arrays of some
sort, we have a robust method for storing anything in a Key that would occur in
a Tag.

With this Key-value approach, there are 65536 Keys which have all the flexibility
of TIFF tag, with the added advantage that a TIFF dump will provide all the
information that exists in the GeoTIFF implementation.

This GeoKey mechanism will be used extensively in section 2.7, where the numerous
parameters for defining Coordinate Systems and their underlying projections are
defined.

+----------------------------------+

2.5 Coordinate Systems in GeoTIFF
Geotiff has been designed so that standard map coordinate system definitions can
be readily stored in a single registered TIFF tag. It has also been designed to
allow the description of coordinate system definitions which are non-standard, and
for the description of transformations between coordinate systems, through the use
of three or four additional TIFF tags.

APPENDIX GG

Microsoft et al. Exhibit 1005

However, in order for the information to be correctly exchanged between various
clients and providers of GeoTIFF, it is important to establish a common system for
describing map projections.

In the TIFF/GeoTIFF framework, there are essentially three different spaces upon
which coordinate systems may be defined. The spaces are:

 1) The raster space (Image space) R, used to reference the pixel values
 in an image,
 2) The Device space D, and
 3) The Model space, M, used to reference points on the earth.

In the sections that follow we shall discuss the relevance and use of each of these
spaces, and their corresponding coordinate systems, from the standpoint of GeoTIFF.

+----------------------------------+

2.5.1 Device Space and GeoTIFF

In standard TIFF 6.0 there are tags which relate raster space R with device space
D, such as monitor, scanner or printer. The list of such tags consists of the
following:

 ResolutionUnit (296)
 XResolution (282)
 YResolution (283)
 Orientation (274)
 XPosition (286)
 YPosition (287)

In Geotiff, provision is made to identify earth-referenced coordinate systems
(model space M) and to relate M space with R space. This provision is independent
of and can co-exist with the relationship between raster and device spaces. To
emphasize the distinction, this spec shall not refer to "X" and "Y" raster
coordinates, but rather to raster space "J" (row) and "I" (column) coordinate
variables instead, as defined in section 2.5.2.2.

+----------------------------------+

2.5.2 Raster Coordinate Systems
+----------------------------------+

2.5.2.1 Raster Data

Raster data consists of spatially coherent, digitally stored numerical data,
collected from sensors, scanners, or in other ways numerically derived. The manner
in which this storage is implemented in a TIFF file is described in the standard
TIFF specification.

Raster data values, as read in from a file, are organized by software into two
dimensional arrays, the indices of the arrays being used as coordinates. There may

APPENDIX GG

Microsoft et al. Exhibit 1005

also be additional indices for multispectral data, but these indices do not refer
to spatial coordinates but spectral, and so of not of concern here.

Many different types of raster data may be georeferenced, and there may be subtle
ways in which the nature of the data itself influences how the coordinate system
(Raster Space) is defined for raster data. For example, pixel data derived from
imaging devices and sensors represent aggregate values collected over a small,
finite, geographic area, and so it is natural to define coordinate systems in which
the pixel value is thought of as filling an area. On the other hand, digital
elevations models may consist of discrete "postings", which may best be considered
as point measurements at the vertices of a grid, and not in the interior of a cell.

2.5.2.2 Raster Space

The choice of origin for raster space is not entirely arbitrary, and depends upon
the nature of the data collected. Raster space coordinates shall be referred to
by their pixel types, i.e., as "PixelIsArea" or "PixelIsPoint".

Note: For simplicity, both raster spaces documented below use a fixed pixel size
and spacing of 1. Information regarding the visual representation of this data,
such as pixels with non-unit aspect ratios, scales, orientations, etc, are best
communicated with the TIFF 6.0 standard tags.

+----------------------------------+

"PixelIsArea" Raster Space

The "PixelIsArea" raster grid space R, which is the default, uses coordinates I
and J, with (0,0) denoting the upper-left corner of the image, and increasing I
to the right, increasing J down. The first pixel-value fills the square grid cell
with the bounds:

 top-left = (0,0), bottom-right = (1,1)

and so on; by extension this one-by-one grid cell is also referred to as a pixel.
An N by M pixel image covers an are with the mathematically defined bounds
(0,0),(N,M).

 (0,0)
 +---+---+-> I
 | * | * |
 +---+---+ Standard (PixelIsArea) TIFF Raster space R,
 | (1,1) (2,1) showing the areas (*) of several pixels.
 |
 J

+----------------------------------+

"PixelIsPoint" Raster Space

APPENDIX GG

Microsoft et al. Exhibit 1005

The PixelIsPoint raster grid space R uses the same coordinate axis names as used
in PixelIsArea Raster space, with increasing I to the right, increasing J down.
The first pixel-value however, is realized as a point value located at (0,0). An
N by M pixel image consists of points which fill the mathematically defined bounds
(0,0),(N-1,M-1).

 (0,0) (1,0)
 -------------> I
 | |
 | | PixelIsPoint TIFF Raster space R,
 ------- showing the location (*) of several pixels.
 | (1,1)
 J

If a point-pixel image were to be displayed on a display device with pixel cells
having the same size as the raster spacing, then the upper-left corner of the
displayed image would be located in raster space at (-0.5, -0.5).

+----------------------------------+

2.5.3 Model Coordinate Systems

The following methods of describing spatial model locations (as opposed to raster)
are recognized in Geotiff:

 Geographic coordinates
 Geocentric coordinates
 Projected coordinates
 Vertical coordinates

Geographic, geocentric and projected coordinates are all imposed on models of the
earth. To describe a location uniquely, a coordinate set must be referenced to an
adequately defined coordinate system. If a coordinate system is from the Geotiff
standard definitions, the only reference required is the standard coordinate system
code/name. If the coordinate system is non-standard, it must be defined. The
required definitions are described below.

Projected coordinates, local grid coordinates, and (usually) geographical
coordinates, form two dimensional horizontal coordinate systems (i.e., horizontal
with respect to the earth's surface). Height is not part of these systems. To
describe a position in three dimensions it is necessary to consider height as a
second one dimensional vertical coordinate system.

To georeference an image in GeoTIFF, you must specify a Raster Space coordinate
system, choose a horizontal model coordinate system, and a transformation between
these two, as will be described in section 2.6

+----------------------------------+

2.5.3.1 Geographic Coordinate Systems

Geographic Coordinate Systems are those that relate angular latitude and longitude
(and optionally geodetic height) to an actual point on the earth. The process by

APPENDIX GG

Microsoft et al. Exhibit 1005

which this is accomplished is rather complex, and so we describe the components
of the process in detail here.

+----------------------------------+

Ellipsoidal Models of the Earth

The geoid - the earth stripped of all topography - forms a reference surface for
the earth. However, because it is related to the earth's gravity field, the geoid
is a very complex surface; indeed, at a detailed level its description is not well
known. The geoid is therefore not used in practical mapping.

It has been found that an oblate ellipsoid (an ellipse rotated about its minor axis)
is a good approximation to the geoid and therefore a good model of the earth. Many
approximations exist: several hundred ellipsoids have been defined for scientific
purposes and about 30 are in day to day use for mapping. The size and shape of these
ellipsoids can be defined through two parameters. Geotiff requires one of these
to be

 the semi-major axis (a),

and the second to be either

 the inverse flattening (1/f)
or

 the semi-minor axis (b).

Historical models exist which use a spherical approximation; such models are not
recommended for modern applications, but if needed the size of a model sphere may
be defined by specifying identical values for the semimajor and semiminor axes;
the inverse flattening cannot be used as it becomes infinite for perfect spheres.

Other ellipsoid parameters needed for mapping applications, for example the square
of the eccentricity, can easily be calculated by an application from the two
defining parameters. Note that Geotiff uses the modern geodesy convention for the
symbol (b) for the semi-minor axis. No provision is made for mapping other planets
in which a tri-dimensional (triaxial) ellipsoid might be required, where (b) would
represent the semi-median axis and (c) the semi-minor axis.

Numeric codes for ellipsoids regularly used for earth-mapping are included in the
Geotiff reference lists.

+----------------------------------+

Latitude and Longitude

The coordinate axes of the system referencing points on an ellipsoid are called
latitude and longitude. More precisely, geodetic latitude and longitude are
required in this Geotiff standard. A discussion of the several other types of
latitude and longitude is beyond the scope of this document as they are not required
for conventional mapping.

Latitude is defined to be the angle subtended with the ellipsoid's equatorial plane
by a perpendicular through the surface of the ellipsoid from a point. Latitude is
positive if north of the equator, negative if south.

APPENDIX GG

Microsoft et al. Exhibit 1005

Longitude is defined to be the angle measured about the minor (polar) axis of the
ellipsoid from a prime meridian (see below) to the meridian through a point,
positive if east of the prime meridian and negative if west. Unlike latitude which
has a natural origin at the equator, there is no feature on the ellipsoid which
forms a natural origin for the measurement of longitude. The zero longitude can
be any defined meridian. Historically, nations have used the meridian through their
national astronomical observatories, giving rise to several prime meridians. By
international convention, the meridian through Greenwich, England is the standard
prime meridian. Longitude is only unambiguous if the longitude of its prime meridian
relative to Greenwich is given. Prime meridians other than Greenwich which are
sometimes used for earth mapping are included in the Geotiff reference lists.

+----------------------------------+

Geodetic Datums

As well as there being several ellipsoids in use to model the earth, any one
particular ellipsoid can have its location and orientation relative to the earth
defined in different ways. If the relationship between the ellipsoid and the earth
is changed, then the geographical coordinates of a point will change.

Conversely, for geographical coordinates to uniquely describe a location the
relationship between the earth and the ellipsoid must be defined. This
relationship is described by a geodetic datum. An exact geodetic definition of
geodetic datums is beyond the current scope of Geotiff. However the Geotiff standard
requires that the geodetic datum being utilized be identified by numerical code.
If required, defining parameters for the geodetic datum can be included as a
citation.

+----------------------------------+

Defining Geographic Coordinate Systems

In summary, geographic coordinates are only unique if qualified by the code of the
geographic coordinate system to which they belong. A geographic coordinate system
has two axes, latitude and longitude, which are only unambiguous when both of the
related prime meridian and geodetic datum are given, and in turn the geodetic datum
definition includes the definition of an ellipsoid. The Geotiff standard includes
a list of frequently used geographic coordinate systems and their component
ellipsoids, geodetic datums and prime meridians. Within the Geotiff standard a
geographic coordinate system can be identified either by

 the code of a standard geographic coordinate system
or by

 a user-defined system.

The user is expected to provide geographic coordinate system code/name, geodetic
datum code/name, ellipsoid code (if in standard) or ellipsoid name and two defining
parameters (a) and either (1/f) or (b), and prime meridian code (if in standard)
or name and longitude relative to Greenwich.

+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

2.5.3.2 Geocentric Coordinate Systems

A geocentric coordinate system is a 3-dimensional coordinate system with its origin
at or near the center of the earth and with 3 orthogonal axes. The Z-axis is in
or parallel to the earth's axis of rotation (or to the axis around which the
rotational axis precesses). The X-axis is in or parallel to the plane of the equator
and passes through its intersection with the Greenwich meridian, and the Y-axis
is in the plane of the equator forming a right-handed coordinate system with the
X and Z axes.

Geocentric coordinate systems are not frequently used for describing locations,
but they are often utilized as an intermediate step when transforming between
geographic coordinate systems. (Coordinate system transformations are described
in section 2.6 below).

In the Geotiff standard, a geocentric coordinate system can be identified, either

 through the geographic code (which in turn implies a datum),
 or

 through a user-defined name.

+----------------------------------+

2.5.3.3 Projected Coordinate Systems

Although a geographical coordinate system is mathematically two dimensional, it
describes a three dimensional object and cannot be represented on a plane surface
without distortion. Map projections are transformations of geographical
coordinates to plane coordinates in which the characteristics of the distortions
are controlled. A map projection consists of a coordinate system transformation
method and a set of defining parameters. A projected coordinate system (PCS) is
a two dimensional (horizontal) coordinate set which, for a specific map projection,
has a single and unambiguous transformation to a geographic coordinate system.

In GeoTIFF PCS's are defined using the POSC/EPSG system, in which the PCS planar
coordinate system, the Geographic coordinate system, and the transformation
between them, are broken down into simpler logical components. Here are schematic
formulas showing how the Projected Coordinate Systems and Geographic Coordinates
Systems are encoded:

 Projected_CS = Geographic_CS + Projection
 Geographic_CS = Angular_Unit + Geodetic_Datum + Prime_Meridian
 Projection = Linear Unit + Coord_Transf_Method + CT_Parameters
 Coord_Transf_Method = { TransverseMercator | LambertCC | ...}
 CT_Parameters = {OriginLatitude + StandardParallel+...}

(See also the Reference Parameters documentation in section 2.5.4).

Notice that "Transverse Mercator" is not referred to as a "Projection", but rather
as a "Coordinate Transformation Method"; in GeoTIFF, as in EPSG/POSC, the word
"Projection" is reserved for particular, well-defined systems in which both the
coordinate transformation method, its defining parameters, and their linear units
are established.

APPENDIX GG

Microsoft et al. Exhibit 1005

Several tens of coordinate transformation methods have been developed. Many are
very similar and for practical purposes can be considered to give identical results.
For example in the Geotiff standard Gauss-Kruger and Gauss-Boaga projection types
are considered to be of the type Transverse Mercator. Geotiff includes a listing
of commonly used projection defining parameters.

Different algorithms require different defining parameters. A future version of
Geotiff will include formulas for specific map projection algorithms recommended
for use with listed projection parameters.

To limit the magnitude of distortions of projected coordinate systems, the
boundaries of usage are sometimes restricted. To cover more extensive areas, two
or more projected coordinate systems may be required. In some cases many of the
defining parameters of a set of projected coordinate systems will be held constant.

The Geotiff standard does not impose a strict hierarchy onto such zoned systems
such as US State Plane or UTM, but considers each zone to be a discrete projected
coordinate system; the ProjectedCSTypeGeoKey code value alone is sufficient to
identify the standard coordinate systems.

Within the Geotiff standard a projected coordinate system can be identified either
by

 the code of a standard projected coordinate system
or by

 a user-defined system.

User-define projected coordinate systems may be defined by defining the Geographic
Coordinate System, the coordinate transformation method and its associated
parameters, as well as the planar system's linear units.

2.5.3.4 Vertical Coordinate Systems

Many uses of Geotiff will be limited to a two-dimensional, horizontal, description
of location for which geographic coordinate systems and projected coordinate
systems are adequate. If a three-dimensional description of location is required
Geotiff allows this either through the use of a geocentric coordinate system or
by defining a vertical coordinate system and using this together with a geographic
or projected coordinate system.

In general usage, elevations and depths are referenced to a surface at or close
to the geoid. Through increasing use of satellite positioning systems the ellipsoid
is increasingly being used as a vertical reference surface. The relationship
between the geoid and an ellipsoid is in general not well known, but is required
when coordinate system transformations are to be executed.

+----------------------------------+

2.5.4 Reference Parameters

APPENDIX GG

Microsoft et al. Exhibit 1005

Most of the numerical coding systems and coordinate system definitions are based
on the hierarchical system developed by EPSG/POSC. The complete set of EPSG tables
used in GeoTIFF is available at:

 ftp://ftpmcmc.cr.usgs.gov/release/geotiff/jpl-mirror/tables

or:

 ftp://mtritter.jpl.nasa.gov/pub/tiff/geotiff/tables

Appended below is the README.TXT file that accompanies the tables of defining
parameters for those codes:

 +-----------------------------------+
 | EPSG Geodesy Parameters |
 | version 2.1, 2nd June 1995. |
 +-----------------------------------+

 The European Petroleum Survey Group (EPSG) has compiled and is
 distributing this set of parameters defining various geodetic
 and cartographic coordinate systems to encourage
 standardisation across the Exploration and Production segment
 of the oil industry. The data is included as reference data
 in the Geotiff data exchange specification, in Iris21 the
 Petroconsultants data model, and in Epicentre, the POSC data
 model. Parameters map directly to the POSC Epicentre model
 v2.0, except for data item codes which are included in the
 files for data management purposes. Geodetic datum parameters
 are embedded within the geographic coordinate system file.
 This has been done to ease parameter maintenance as there is a
 high correlation between geodetic datum names and geographic
 coordinate system names. The Projected Coordinate System v2.0
 tabulation consists of systems associated with locally used
 projections. Systems utilising the popular UTM grid system
 have also been included.

 Criteria used for material in these lists include:
 - information must be in the public domain: "private" data
 is not included.
 - data must be in current use.
 - parameters are given to a precision consistent with
 coordinates being to a precision of one centimetre.

 The user assumes the entire risk as to the accuracy and the
 use of this data. The data may be copied and distributed
 subject to the following conditions:

 1) All data must then be copied without modification
 and all pages must be included;

 2) All components of this data set must be distributed
 together;

 3) The data may not be distributed for profit by any
 third party; and

 4) Acknowledgement to the original source must be
 given.

 INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS"
 WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES

APPENDIX GG

Microsoft et al. Exhibit 1005

 OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

 Data is distributed on MS-DOS formatted diskette in comma-
 separated record format. Additional copies may be obtained
 from Jean-Patrick Girbig at the address below at a cost of
 US$100 to cover media and shipping, payment to be made in
 favour of Petroconsultants S.A at Union Banque Suisses,
 1211 Geneve 11, Switzerland (compte number 403 458 60 K).

 The data is to be made available on a bulletin board shortly.

 Shipping List

 This data set consists of 8 files:

 PROJCS.CSV Tabulation of Projected Coordinate Systems to
 which map grid coordinates may be referenced.

 GEOGCS.CSV Tabulation of Geographic Coordinate Systems to
 which latitude and longitude coordinates may be
 referenced. This table includes the equivalent
 geocentric coordinate systems and also the
 geodetic datum, reference to which allows latitude
 and longitude or geocentric XYZ to uniquely
 describe a location on the earth.

 VERTCS.CSV Tabulation of Vertical Coordinate Systems to
 which heights or depths may be referenced. This
 table is currently in an early form.

 PROJ.CSV Tabulation of transformation methods and
 parameters through which Projected Coordinate
 Systems are defined and related to Geographic
 Coordinate Systems.

 ELLIPS.CSV Tabulation of reference ellipsoids upon which
 geodetic datums are based.

 PMERID.CSV Tabulation of prime meridians upon which geodetic
 datums are based.

 UNITS.CSV Tabulation of length units used in Projected and
 Vertical Coordinate Systems and angle units used
 in Geographic Coordinate Systems.

 README.TXT This file.

+---+

2.6 Coordinate Transformations
The purpose of Geotiff is to allow the definitive identification of georeferenced
locations within a raster dataset. This is generally accomplished through tying
raster space coordinates to a model space coordinate system, when no further
information is required. In the GeoTIFF nomenclature, "georeferencing" refers to

APPENDIX GG

Microsoft et al. Exhibit 1005

tying raster space to a model space M, while "geocoding" refers to defining how
the model space M assigns coordinates to points on the earth.

The three tags defined below may be used for defining the relationship between R
and M, and the relationship may be diagrammed as:

 ModelPixelScaleTag
 ModelTiepointTag
 R ------------ OR --------------> M
 (I,J,K) ModelTransformationTag (X,Y,Z)

The next section describes these Baseline georeferencing tags in detail.

+----------------------------------+

2.6.1 GeoTIFF Tags for Coordinate Transformations
For most common applications, the transformation between raster and model space
may be defined with a set of raster-to-model tiepoints and scaling parameters. The
following two tags may be used for this purpose:

ModelTiepointTag:
 Tag = 33922 (8482.H)
 Type = DOUBLE (IEEE Double precision)
 N = 6*K, K = number of tiepoints
 Alias: GeoreferenceTag
 Owner: Intergraph

This tag stores raster->model tiepoint pairs in the order

 ModelTiepointTag = (...,I,J,K, X,Y,Z...),

where (I,J,K) is the point at location (I,J) in raster space with pixel-value K,
and (X,Y,Z) is a vector in model space. In most cases the model space is only
two-dimensional, in which case both K and Z should be set to zero; this third
dimension is provided in anticipation of future support for 3D digital elevation
models and vertical coordinate systems.

A raster image may be georeferenced simply by specifying its location, size and
orientation in the model coordinate space M. This may be done by specifying the
location of three of the four bounding corner points. However, tiepoints are only
to be considered exact at the points specified; thus defining such a set of bounding
tiepoints does not imply that the model space locations of the interior of the image
may be exactly computed by a linear interpolation of these tiepoints.

However, since the relationship between the Raster space and the model space will
often be an exact, affine transformation, this relationship can be defined using
one set of tiepoints and the "ModelPixelScaleTag", described below, which gives
the vertical and horizontal raster grid cell size, specified in model units.

If possible, the first tiepoint placed in this tag shall be the one establishing
the location of the point (0,0) in raster space. However, if this is not possible
(for example, if (0,0) is goes to a part of model space in which the projection

APPENDIX GG

Microsoft et al. Exhibit 1005

is ill-defined), then there is no particular order in which the tiepoints need be
listed.

For orthorectification or mosaicking applications a large number of tiepoints may
be specified on a mesh over the raster image. However, the definition of associated
grid interpolation methods is not in the scope of the current GeoTIFF spec.

Remark: As mentioned in section 2.5.1, all GeoTIFF information is independent of
the XPosition, YPosition, and Orientation tags of the standard TIFF 6.0 spec.

The next two tags are optional tags provided for defining exact affine
transformations between raster and model space; baseline GeoTIFF files may use
either, but shall never use both within the same TIFF image directory.

ModelPixelScaleTag:
 Tag = 33550
 Type = DOUBLE (IEEE Double precision)
 N = 3
 Owner: SoftDesk

This tag may be used to specify the size of raster pixel spacing in the model space
units, when the raster space can be embedded in the model space coordinate system
without rotation, and consists of the following 3 values:

 ModelPixelScaleTag = (ScaleX, ScaleY, ScaleZ)

where ScaleX and ScaleY give the horizontal and vertical spacing of raster pixels.
The ScaleZ is primarily used to map the pixel value of a digital elevation model
into the correct Z-scale, and so for most other purposes this value should be zero
(since most model spaces are 2-D, with Z=0).

A single tiepoint in the ModelTiepointTag, together with this tag, completely
determine the relationship between raster and model space; thus they comprise the
two tags which Baseline GeoTIFF files most often will use to place a raster image
into a "standard position" in model space.

Like the Tiepoint tag, this tag information is independent of the XPosition,
YPosition, Resolution and Orientation tags of the standard TIFF 6.0 spec. However,
simple reversals of orientation between raster and model space (e.g. horizontal
or vertical flips) may be indicated by reversal of sign in the corresponding
component of the ModelPixelScaleTag. GeoTIFF compliant readers must honor this
sign-reversal convention.

This tag must not be used if the raster image requires rotation or shearing to place
it into the standard model space. In such cases the transformation shall be defined
with the more general ModelTransformationTag, defined below.

ModelTransformationTag
 Tag = 34264 (85D8.H)
 Type = DOUBLE
 N = 16
 Owner: JPL Cartographic Applications Group

APPENDIX GG

Microsoft et al. Exhibit 1005

This tag may be used to specify the transformation matrix between the raster space
(and its dependent pixel-value space) and the (possibly 3D) model space. If
specified, the tag shall have the following organization:

 ModelTransformationTag = (a,b,c,d,e....m,n,o,p).

where

 model image
 coords = matrix * coords

 |- -| |- -| |- -|
 | X | | a b c d | | I |
 | | | | | |
 | Y | | e f g h | | J |
 | | = | | | |
 | Z | | i j k l | | K |
 | | | | | |
 | 1 | | m n o p | | 1 |
 |- -| |- -| |- -|

By convention, and without loss of generality, the following parameters are
currently hard-coded and will always be the same (but must be specified
nonetheless):

 m = n = o = 0, p = 1.

For Baseline GeoTIFF, the model space is always 2-D, and so the matrix will have
the more limited form:

 |- -| |- -| |- -|
 | X | | a b 0 d | | I |
 | | | | | |
 | Y | | e f 0 h | | J |
 | | = | | | |
 | Z | | 0 0 0 0 | | K |
 | | | | | |
 | 1 | | 0 0 0 1 | | 1 |
 |- -| |- -| |- -|

Values "d" and "h" will often be used to represent translations in X and Y, and
so will not necessarily be zero. All 16 values should be specified, in all cases.
Only the raster-to-model transformation is defined; if the inverse transformation
is required it must be computed by the client, to the desired accuracy.

This matrix tag should not be used if the ModelTiepointTag and the
ModelPixelScaleTag are already defined. If only a single tiepoint (I,J,K,X,Y,Z)
is specified, and the ModelPixelScale = (Sx, Sy, Sz) is specified, then the
corresponding transformation matrix may be computed from them as:

 |- -|
 | Sx 0.0 0.0 Tx |

APPENDIX GG

Microsoft et al. Exhibit 1005

 | | Tx = X - I/Sx
 | 0.0 -Sy 0.0 Ty | Ty = Y + J/Sy
 | | Tz = Z - K/Sz (if not 0)
 | 0.0 0.0 Sz Tz |
 | |
 | 0.0 0.0 0.0 1.0 |
 |- -|

where the -Sy is due the reversal of direction from J increasing- down in raster
space to Y increasing-up in model space.

Like the Tiepoint tag, this tag information is independent of the XPosition,
YPosition, and Orientation tags of the standard TIFF 6.0 spec.

Note: In Revision 0.2 and earlier, another tag was used for this matrix, which has
been renamed as follows:

IntergraphMatrixTag
 Tag = 33920 (8480.H)
 Type = DOUBLE
 N = 17 (Intergraph implementation) or 16 (GeoTIFF 0.2 impl.)
 Owner: Intergraph

This tag conflicts with an internal software implementation at Intergraph, and so
its use is no longer encouraged. A GeoTIFF reader should look first for the new
tag, and only if it is not found should it check for this older tag. If found, it
should only consider it to be contain valid GeoTIFF matrix information if the
tag-count is 16; the Intergraph version uses 17 values.

+----------------------------------+

2.6.2 Coordinate Transformation Data Flow

The dataflow of the various GeoTIFF parameter datasets is based upon the EPSG/POSC
configuration. Here is the text of the description accompanying the EPSG parameter
tables:

The data files (.CSV) have a hierarchical structure:

 +---------------------------+ +----------------------------+
 | VERTCS | | PROJCS |
 +---------------------------+ +----------------------------+
 |Vertical Coordinate Systems| |Projected Coordinate Systems|
 +-------------+-------------+ +------------+---------------+
 | |
 +--------+ |
 | |
 | +--------------------------+
 | | |
 | | +-------------+---------------+
 | | | GEOGCS |
 | | +-----------------------------+
 | | |Geographic Coordinate Systems|
 | | |Geocentric Coordinate Systems|
 | | +-----------------------------+
 | | | Geodetic Datums |
 | | +-------------+---------------+
 | | |
 | | +--------+-------+

APPENDIX GG

Microsoft et al. Exhibit 1005

 | | | |
 | +------+-----+ +------+-----+ +------+-------+
 | | PROJ | | ELLIPS | | PMERID |
 | +------------+ +------------+ +--------------+
 | | Projection | | Ellipsoid | |Prime Meridian|
 | | Parameters | | Parameters | | Parameters |
 | +------+-----+ +------+-----+ +------+-------+
 | | | |
 +------------+-----------+-----+----------------+
 |
 +-------------+------------+
 | UNITS |
 +--------------------------+
 | Linear and Angular Units |
 +--------------------------+

 The parameter listings are "living documents" and will be
 updated by the EPSG from time to time. Any comment or
 suggestions for improvements should be directed to:

 Jean-Patrick Girbig, or Roger Lott,
 Manager Cartography, Head of Survey,
 Petroconsultants S.A., BP Exploration,
 PO Box 152, Uxbridge One,
 24 Chemin de la Marie, Harefield Road,
 1258 Perly-Geneva, Uxbridge,
 Switzerland. Middlesex UB8 1PD,
 England.

 Internet:
 lottrj@txpcap.hou.xwh.bp.com

 Requests for the inclusion of new data should include supporting
 documentation. Requests for changing existing data should include
 reference to both the name and code of the item.

+----------------------------------+

2.6.3 Cookbook for Defining Transformations

Here is a 4-step guide to producing a set of Baseline GeoTIFF tags for defining
coordinate transformation information of a raster dataset.

 Step 1: Establish the Raster Space coordinate system used:
 RasterPixelIsArea or RasterPixelIsPoint.

 Step 2: Establish/define the model space Type in which the image is
 to be georeferenced. Usually this will be a Projected
 Coordinate system (PCS). If you are geocoding this data
 set, then the model space is defined to be the corresponding
 geographic, geocentric or Projected coordinate system (skip
 to the "Cookbook" section 2.7.3 first to do determine this).

 Step 3: Identify the nature of the transformations needed to tie
 the raster data down to the model space coordinate system:

 Case 1: The model-location of a raster point (x,y) is known, but not
 the scale or orientations:

 Use the ModelTiepointTag to define the (X,Y,Z) coordinates

APPENDIX GG

Microsoft et al. Exhibit 1005

 of the known raster point.

 Case 2: The location of three non-collinear raster points are known
 exactly, but the linearity of the transformation is not known.

 Use the ModelTiepointTag to define the (X,Y,Z) coordinates
 of all three known raster points. Do not compute or define the
 ModelPixelScale or ModelTransformation tag.

 Case 3: The position and scale of the data is known exactly, and
 no rotation or shearing is needed to fit into the model space.

 Use the ModelTiepointTag to define the (X,Y,Z) coordinates
 of the known raster point, and the ModelPixelScaleTag to
 specify the scale.

 Case 4: The raster data requires rotation and/or lateral shearing to
 fit into the defined model space:

 Use the ModelTransformation matrix to define the transformation.

 Case 5: The raster data cannot be fit into the model space with a
 simple affine transformation (rubber-sheeting required).

 Use only the ModelTiepoint tag, and specify as many
 tiepoints as your application requires. Note, however, that
 this is not a Baseline GeoTIFF implementation, and should
 not be used for interchange; it is recommended that the image be
 geometrically rectified first, and put into a standard projected
 coordinate system.

 Step 4: Install the defined tag values in the TIFF file and close it.

+----------------------------------+

2.7 Geocoding Raster Data
+----------------------------------+

2.7.1 General Approach
A geocoded image is a georeferenced image as described in section 2.6, which also
specifies a model space coordinate system (CS) between the model space M (to which
the raster space has been tied) and the earth. The relationship can be diagrammed,
including the associated TIFF tags, as follows:

 ModelPixelScaleTag
 ModelTiepointTag GeoKeyDirectoryTag CS
 R -------- OR ---------------> M --------- AND -----------> Earth
 ModelTransformationTag GeoDoubleParamsTag
 GeoAsciiParamsTag

The geocoding coordinate system is defined by the GeoKeyDirectoryTag, while the
Georeferencing information (T) is defined by the ModelTiepointTag and the
ModelPixelScale, or ModelTransformationTag. Since these two systems are
independent of each other, the tags used to store the parameters are separated from
each other in the GeoTIFF file to emphasize the orthogonality.

+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

2.7.2 GeoTIFF GeoKeys for Geocoding
As mentioned above, all information regarding the Model Coordinate System used in
the raster data is referenced from the GeoKeyDirectoryTag, which stores all of the
GeoKey entries. In the Appendix, section 6.2 summarizes all of the GeoKeys defined
for baseline GeoTIFF, and their corresponding codes are documented in section 6.3.
Only the Keys themselves are documented here.

+----------------------------------+

Common Features
+----------------------------------+

Public and Private Key and Code Ranges

GeoTIFF GeoKey ID's may take any value between 0 and 65535. Following TIFF general
approach, the GeoKey ID's from 32768 and above are available for private
implementations. However, no registry will be established for these keys or codes,
so developers are warned to use them at their own risk.

The Key ID's from 0 to 32767 are reserved for use by the official GeoTIFF spec,
and are broken down into the following sub-domains:

 [0, 1023] Reserved
 [1024, 2047] GeoTIFF Configuration Keys
 [2048, 3071] Geographic/Geocentric CS Parameter Keys
 [3072, 4095] Projected CS Parameter Keys
 [4096, 5119] Vertical CS Parameter Keys
 [5120, 32767] Reserved
 [32768, 65535] Private use

GeoKey codes, like keys and tags, also range from 0 to 65535. Following the TIFF
approach, all codes from 32768 and above are available for private user
implementation. There will be no registry for these codes, however, and so
developers must be sure that these tags will only be used internally. Use private
codes at your own risk.

The codes from 0 to 32767 for all public GeoKeys are reserved by this GeoTIFF
specification.

Common Public Code Values

For consistency, several key codes have the same meaning in all implemented GeoKeys
possessing a SHORT numerical coding system:

 0 = undefined
 32767 = user-defined

APPENDIX GG

Microsoft et al. Exhibit 1005

The "undefined" code means that this parameter is intentionally omitted, for
whatever reason. For example, the datum used for a given map may be unknown, or
the accuracy of a aerial photo is so low that to specify a particular datum would
imply a higher accuracy than is in the data.

The "user-defined" code means that a feature is not among the standard list, and
is being explicitly defined. In cases where this is meaningful, Geokey parameters
have been supplied for the user to define this feature.

"User-Defined" requirements: In each section below a specification of the
additional GeoKeys required for the "user-defined" option is given. In all cases
the corresponding "Citation" key is strongly recommended, as per the FGDC Metadata
standard regarding "local" types.

+----------------------------------+

GeoTIFF Configuration GeoKeys
+----------------------------------+

These keys are to be used to establish the general configuration of this file's
coordinate system, including the types of raster coordinate systems, model
coordinate systems, and citations if any.

+---+

GTModelTypeGeoKey
Key ID = 1024
Type: SHORT (code)
Values: Section 6.3.1.1 Codes

This GeoKey defines the general type of model Coordinate system used, and to which
the raster space will be transformed:unknown, Geocentric (rarely used),
Geographic, Projected Coordinate System, or user-defined. If the coordinate system
is a PCS, then only the PCS code need be specified. If the coordinate system does
not fit into one of the standard registered PCS'S, but it uses one of the standard
projections and datums, then its should be documented as a PCS model with
"user-defined" type, requiring the specification of projection parameters, etc.

GeoKey requirements for User-Defined Model Type (not advisable):

 GTCitationGeoKey

+---+

GTRasterTypeGeoKey
Key ID = 1025
Type = Section 6.3.1.2 codes

This establishes the Raster Space coordinate system used; there are currently only
two, namely RasterPixelIsPoint and RasterPixelIsArea. No user-defined raster

APPENDIX GG

Microsoft et al. Exhibit 1005

spaces are currently supported. For variance in imaging display parameters, such
as pixel aspect-ratios, use the standard TIFF 6.0 device-space tags instead.

+---+

GTCitationGeoKey
Key ID = 1026
Type = ASCII

As with all the "Citation" GeoKeys, this is provided to give an ASCII reference
to published documentation on the overall configuration of this GeoTIFF file.

+---+

+----------------------------------+

Geographic CS Parameter GeoKeys
+----------------------------------+

+---+

In general, the geographic coordinate system used will be implied by the projected
coordinate system code. If however, this is a user-defined PCS, or the ModelType
was chosen to be Geographic, then the system must be explicitly defined here, using
the Horizontal datum code.

+---+

GeographicTypeGeoKey
Key ID = 2048
Type = SHORT (code)
Values = Section 6.3.2.1 Codes

This key may be used to specify the code for the geographic coordinate system used
to map lat-long to a specific ellipsoid over the earth.

GeoKey Requirements for User-Defined geographic CS:

 GeogCitationGeoKey
 GeogGeodeticDatumGeoKey
 GeogAngularUnitsGeoKey (if not degrees)
 GeogPrimeMeridianGeoKey (if not Greenwich)

+---+

GeogCitationGeoKey
Key ID = 2049
Type = ASCII
Values = text

General citation and reference for all Geographic CS parameters.

+---+

GeogGeodeticDatumGeoKey
Key ID = 2050
Type = SHORT (code)
Values = Section 6.3.2.2 Codes

APPENDIX GG

Microsoft et al. Exhibit 1005

This key may be used to specify the horizontal datum, defining the size, position
and orientation of the reference ellipsoid used in user-defined geographic
coordinate systems.

GeoKey Requirements for User-Defined Horizontal Datum:
 GeogCitationGeoKey
 GeogEllipsoidGeoKey

+---+

GeogPrimeMeridianGeoKey
Key ID = 2051
Type = SHORT (code)
Units: Section 6.3.2.4 code

Allows specification of the location of the Prime meridian for user-defined
geographic coordinate systems. The default standard is Greenwich, England.

+---+

GeogPrimeMeridianLongGeoKey
Key ID = 2061
Type = DOUBLE
Units = GeogAngularUnits

This key allows definition of user-defined Prime Meridians, the location of which is
defined by its longitude relative to Greenwich.

+---+

GeogLinearUnitsGeoKey
Key ID = 2052
Type = DOUBLE
Values: Section 6.3.1.3 Codes

Allows the definition of geocentric CS linear units for user-defined GCS.

+---+

GeogLinearUnitSizeGeoKey
Key ID = 2053
Type = DOUBLE
Units: meters

Allows the definition of user-defined linear geocentric units, as measured in
meters.

+---+

GeogAngularUnitsGeoKey
Key ID = 2054
Type = SHORT (code)
Values = Section 6.3.1.4 Codes

Allows the definition of geocentric CS Linear units for user-defined GCS and for
ellipsoids.

GeoKey Requirements for "user-defined" units:
 GeogCitationGeoKey

APPENDIX GG

Microsoft et al. Exhibit 1005

 GeogAngularUnitSizeGeoKey
+---+

GeogAngularUnitSizeGeoKey
Key ID = 2055
Type = DOUBLE
Units: radians

Allows the definition of user-defined angular geographic units, as measured in
radians.

+---+

GeogEllipsoidGeoKey
Key ID = 2056
Type = SHORT (code)
Values = Section 6.3.2.3 Codes

This key may be used to specify the coded ellipsoid used in the geodetic datum of
the Geographic Coordinate System.

GeoKey Requirements for User-Defined Ellipsoid:

 GeogCitationGeoKey
 [GeogSemiMajorAxisGeoKey,
 [GeogSemiMinorAxisGeoKey | GeogInvFlatteningGeoKey]]

+---+

GeogSemiMajorAxisGeoKey
Key ID = 2057
Type = DOUBLE
Units: Geocentric CS Linear Units

Allows the specification of user-defined Ellipsoid Semi-Major Axis (a).

+---+

GeogSemiMinorAxisGeoKey
Key ID = 2058
Type = DOUBLE
Units: Geocentric CS Linear Units

Allows the specification of user-defined Ellipsoid Semi-Minor Axis (b).

+---+

GeogInvFlatteningGeoKey
Key ID = 2059
Type = DOUBLE
Units: none.

Allows the specification of the inverse of user-defined Ellipsoid's flattening
parameter (f). The eccentricity-squared e^2 of the ellipsoid is related to the
non-inverted f by:

 e^2 = 2*f - f^2

APPENDIX GG

Microsoft et al. Exhibit 1005

 Note: if the ellipsoid is spherical the inverse-flattening
 becomes infinite; use the GeogSemiMinorAxisGeoKey instead, and
 set it equal to the semi-major axis length.

+---+

GeogAzimuthUnitsGeoKey
Key ID = 2060
Type = SHORT (code)
Values = Section 6.3.1.4 Codes

This key may be used to specify the angular units of measurement used to defining
azimuths, in geographic coordinate systems. These may be used for defining
azimuthal parameters for some projection algorithms, and may not necessarily be
the same angular units used for lat-long.

+---+

+----------------------------------+

Projected CS Parameter GeoKeys
+----------------------------------+

The PCS range of GeoKeys includes the projection and coordinate transformation keys
as well. The projection keys are included in this block since they can only be used
to define projected coordinate systems.

+---+

ProjectedCSTypeGeoKey
Key ID = 3072
Type = SHORT (codes)
Values: Section 6.3.3.1 codes

This code is provided to specify the projected coordinate system.

GeoKey requirements for "user-defined" PCS families:
 PCSCitationGeoKey
 ProjectionGeoKey

 +---+

PCSCitationGeoKey
Key ID = 3073
Type = ASCII

As with all the "Citation" GeoKeys, this is provided to give an ASCII reference
to published documentation on the Projected Coordinate System particularly if
this is a "user-defined" PCS.

+---+

+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

Projection Definition GeoKeys
+----------------------------------+

+---+

With the exception of the first two keys, these are mostly projection-specific
parameters, and only a few will be required for any particular projection type.
Projected coordinate systems automatically imply a specific projection type, as
well as specific parameters for that projection, and so the keys below will only
be necessary for user-defined projected coordinate systems.

+---+

ProjectionGeoKey
Key ID = 3074
Type = SHORT (code)
Values: Section 6.3.3.2 codes

Allows specification of the coordinate transformation method and projection zone
parameters. Note : when associated with an appropriate Geographic Coordinate
System, this forms a Projected Coordinate System.

GeoKeys Required for "user-defined" Projections:

 PCSCitationGeoKey
 ProjCoordTransGeoKey
 ProjLinearUnitsGeoKey
 (additional parameters depending on ProjCoordTransGeoKey).

+---+

ProjCoordTransGeoKey
Key ID = 3075
Type = SHORT (code)
Values: Section 6.3.3.3 codes

Allows specification of the coordinate transformation method used. Note: this does
not include the definition of the corresponding Geographic Coordinate System to
which the projected CS is related; only the transformation method is defined here.

GeoKeys Required for "user-defined" Coordinate Transformations:

 PCSCitationGeoKey
 <additional parameter geokeys depending on the Coord. Trans. specified).

+---+

ProjLinearUnitsGeoKey
Key ID = 3076
Type = SHORT (code)
Values: Section 6.3.1.3 codes

Defines linear units used by this projection.

+---+

APPENDIX GG

Microsoft et al. Exhibit 1005

ProjLinearUnitSizeGeoKey
Key ID = 3077
Type = DOUBLE
Units: meters

Defines size of user-defined linear units in meters.

+---+

ProjStdParallel1GeoKey
Key ID = 3078
Type = DOUBLE
Units: GeogAngularUnit
Alias: ProjStdParallelGeoKey (from Rev 0.2)

Latitude of primary Standard Parallel.

+---+

ProjStdParallel2GeoKey
Key ID = 3079
Type = DOUBLE
Units: GeogAngularUnit

Latitude of second Standard Parallel.

+---+

ProjNatOriginLongGeoKey
Key ID = 3080
Type = DOUBLE
Units: GeogAngularUnit
Alias: ProjOriginLongGeoKey

Longitude of map-projection Natural origin.

+---+

ProjNatOriginLatGeoKey
Key ID = 3081
Type = DOUBLE
Units: GeogAngularUnit
Alias: ProjOriginLatGeoKey

Latitude of map-projection Natural origin.

+---+

ProjFalseEastingGeoKey
Key ID = 3082
Type = DOUBLE
Units: ProjLinearUnit

Gives the easting coordinate of the map projection Natural origin.

+---+

ProjFalseNorthingGeoKey
Key ID = 3083
Type = DOUBLE

APPENDIX GG

Microsoft et al. Exhibit 1005

Units: ProjLinearUnit

Gives the northing coordinate of the map projection Natural origin.

+---+

ProjFalseOriginLongGeoKey
Key ID = 3084
Type = DOUBLE
Units: GeogAngularUnit

Gives the longitude of the False origin.

+---+

ProjFalseOriginLatGeoKey
Key ID = 3085
Type = DOUBLE
Units: GeogAngularUnit

Gives the latitude of the False origin.

+---+

ProjFalseOriginEastingGeoKey
Key ID = 3086
Type = DOUBLE
Units: ProjLinearUnit

Gives the easting coordinate of the false origin. This is NOT the False Easting,
which is the easting attached to the Natural origin.

+---+

ProjFalseOriginNorthingGeoKey
Key ID = 3087
Type = DOUBLE
Units: ProjLinearUnit

Gives the northing coordinate of the False origin. This is NOT the False Northing,
which is the northing attached to the Natural origin.

+---+

ProjCenterLongGeoKey
Key ID = 3088
Type = DOUBLE
Units: GeogAngularUnit

Longitude of Center of Projection. Note that this is not necessarily the origin
of the projection.

+---+

ProjCenterLatGeoKey
Key ID = 3089
Type = DOUBLE
Units: GeogAngularUnit

APPENDIX GG

Microsoft et al. Exhibit 1005

Latitude of Center of Projection. Note that this is not necessarily the origin of
the projection.

+---+

ProjCenterEastingGeoKey
Key ID = 3090
Type = DOUBLE
Units: ProjLinearUnit

Gives the easting coordinate of the center. This is NOT the False Easting.

+---+

ProjFalseOriginNorthingGeoKey
Key ID = 3091
Type = DOUBLE
Units: ProjLinearUnit

Gives the northing coordinate of the center. This is NOT the False Northing.

+---+

ProjScaleAtNatOriginGeoKey
Key ID = 3092
Type = DOUBLE
Units: none
Alias: ProjScaleAtOriginGeoKey (Rev. 0.2)

Scale at Natural Origin. This is a ratio, so no units are required.

+---+

ProjScaleAtCenterGeoKey
Key ID = 3093
Type = DOUBLE
Units: none

Scale at Center. This is a ratio, so no units are required.

+---+

ProjAzimuthAngleGeoKey
Key ID = 3094
Type = DOUBLE
Units: GeogAzimuthUnit

Azimuth angle east of true north of the central line passing through the projection
center (for elliptical (Hotine) Oblique Mercator). Note that this is the standard
method of measuring azimuth, but is opposite the usual mathematical convention of
positive indicating counter-clockwise.

+---+

ProjStraightVertPoleLongGeoKey
Key ID = 3095
Type = DOUBLE
Units: GeogAngularUnit

Longitude at Straight Vertical Pole. For polar stereographic.

APPENDIX GG

Microsoft et al. Exhibit 1005

+---+

GeogAzimuthUnitsGeoKey
Key ID = 2060
Type = SHORT (code)
Values = Section 6.3.1.4 Codes

This key is actually part of the "Geographic CS Parameter Keys" section, but is
mentioned here as it is useful for defining units used in the azimuthal projection
parameters.

+---+

+----------------------------------+

Vertical CS Parameter Keys
+----------------------------------+

Note: Vertical coordinate systems are not yet implemented. These sections are
provided for future development, and any vertical coordinate systems in the current
revision must be defined using the VerticalCitationGeoKey.

+---+

VerticalCSTypeGeoKey
Key ID = 4096
Type = SHORT (code)
Values = Section 6.3.4.1 Codes

This key may be used to specify the vertical coordinate system.

+---+

VerticalCitationGeoKey
Key ID = 4097
Type = ASCII
Values = text

This key may be used to document the vertical coordinate system used, and its
parameters.

+---+

VerticalDatumGeoKey
Key ID = 4098
Type = SHORT (code)
Values = Section 6.3.4.2 codes

This key may be used to specify the vertical datum for the vertical coordinate
system.

+---+

VerticalUnitsGeoKey
Key ID = 4099
Type = SHORT (code)
Values = Section 6.3.1.3 Codes

APPENDIX GG

Microsoft et al. Exhibit 1005

This key may be used to specify the vertical units of measurement used in the
geographic coordinate system, in cases where geographic CS's need to reference the
vertical coordinate. This, together with the Citation key, comprise the only fully
implemented keys in this section, at present.

+----------------------------------+

2.7.3 Cookbook for Geocoding Data

Step 1: Determine the Coordinate system type of the raster data, based on
 the nature of the data: pixels derived from scanners or other
 optical devices represent areas, and most commonly will use the
 RasterPixelIsArea coordinate system. Pixel data such as digital
 elevation models represent points, and will probably use
 RasterPixelIsPoint coordinates.

 Store in: GTRasterTypeGeoKey

Step 2: Determine which class of model space coordinates are most natural
 for this dataset:Geographic, Geocentric, or Projected Coordinate
 System. Usually this will be PCS.

 Store in: GTModelTypeGeoKey

Step 3: This step depends on the GTModelType:

 case PCS: Determine the PCS projection system. Most of the
 PCS's used in standard State Plane and national grid systems
 are defined, so check this list first; the EPSG index in
 section 6.4 may be useful for this purpose.

 Store in: ProjectedCSTypeGeoKey, ProjectedCSTypeGeoKey

 If coded, it will not be necessary to specify the Projection
 datum, etc for this case, since all of those parameters
 are determined by the ProjectedCSTypeGeoKey code. Skip to
 step 4 from here.

 If none of the coded PCS's match your system, then this is a
 user-defined PCS. Use the Projection code list to check for
 standard projection systems.

 Store in: ProjectionGeoKey and skip to Geographic CS case.

 If none of the Projection codes match your system, then this
 is a user-defined projection. Use the ProjCoordTransGeoKey to
 specify the coordinate transformation method (e.g. Transverse
 Mercator), and all of the associated parameters of that method.
 Also define the linear units used in the planar coordinate
 system.

 Store in: ProjCoordTransGeoKey, ProjLinearUnitsGeoKey
 <and other CT related parameter keys>

 Now continue on to define the Geographic CS, below.

 case GEOCENTRIC:

APPENDIX GG

Microsoft et al. Exhibit 1005

 case GEOGRAPHIC: Check the list of standard GCS's and use the
 corresponding code. To use a code both the Datum, Prime
 Meridian, and angular units must match those of the code.

 Store in: GeographicTypeGeoKey and skip to Step 4.

 If none of the coded GCS's match exactly, then this is a
 user-defined GCS. Check the list of standard datums,
 Prime Meridians, and angular units to define your system.

 Store in: GeogGeodeticDatumGeoKey, GeogAngularUnitsGeoKey,
 GeogPrimeMeridianGeoKey and skip to Step 4.

 If none of the datums match your system, you have a
 user-defined datum, which is an odd system, indeed. Use
 the GeogEllipsoidGeoKey to select the appropriate ellipsoid
 or use the GeogSemiMajorAxisGeoKey, GeogInvFlatteningGeoKey to
 define, and give a reference using the GeogCitationGeoKey.

 Store in: GeogEllipsoidGeoKey, etc. and go to Step 4.

Step 4: Install the GeoKeys/codes into the GeoKeyDirectoryTag, and the
 DOUBLE and ASCII key values into the corresponding value-tags.

Step 5: Having completely defined the Raster & Model coordinate system,
 go to Cookbook section 2.6.2 and use the Georeferencing Tags
 to tie the raster image down onto the Model space.

+----------------------------------+

3 Examples
+----------------------------------+

Here are some examples of how GeoTIFF may be implemented at the Tag and GeoKey
level, following the general "Cookbook" approach above.

+----------------------------------+

3.1 Common Examples

+----------------------------------+

3.1.1. UTM Projected Aerial Photo

We have an aerial photo which has been orthorectified and resampled to a UTM grid,
zone 60, using WGS84 datum; the coordinates of the upper-left corner of the image
is are given in easting/northing, as 350807.4m, 5316081.3m. The scanned map pixel
scale is 100 meters/pixels (the actual dpi scanning ratio is irrelevant).

 ModelTiepointTag = (0, 0, 0, 350807.4, 5316081.3, 0.0)
 ModelPixelScaleTag = (100.0, 100.0, 0.0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 1 (ModelTypeProjected)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)

APPENDIX GG

Microsoft et al. Exhibit 1005

 ProjectedCSTypeGeoKey = 32660 (PCS_WGS84_UTM_zone_60N)
 PCSCitationGeoKey = "UTM Zone 60 N with WGS84"

 Notes:

 1) We did not need to specify the GCS lat-long, since the
 PCS_WGS84_UTM_zone_60N codes implies particular
 GCS and units already (WGS_84 and meters). The citation
 was added just for documentation.

 2) The "GeoKeyDirectoryTag" is expressed using the "GeoKey"
 structure defined above. At the TIFF level the tags look like
 this:

 GeoKeyDirectoryTag=(1, 0, 2, 4,
 1024, 0, 1, 1,
 1025, 0, 1, 1,
 3072, 0, 1, 32660,
 3073, 34737, 25, 0)
 GeoAsciiParamsTag(34737)=("UTM Zone 60 N with WGS84|")

 For the rest of these examples we will only show the GeoKey-level
 dump, with the understanding that the actual TIFF-level tag
 representation can be determined from the documentation.

+----------------------------------+

3.1.2. Standard State Plane

We have a USGS State Plane Map of Texas, Central Zone, using NAD83, correctly
oriented. The map resolution is 1000 meters/pixel, at origin. There is a grid
intersection line in the image at pixel location (50,100), and corresponds to the
projected coordinate system easting/northing of (949465.0, 3070309.1).

 ModelTiepointTag = (50, 100, 0, 949465.0, 3070309.1, 0)
 ModelPixelScaleTag = (1000, 1000, 0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 1 (ModelTypeProjected)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)
 ProjectedCSTypeGeoKey = 32139 (PCS_NAD83_Texas_Central)

 Notice that in this case, since the PCS is a standard code, we
 do not need to define the GCS, datum, etc, since those are implied
 by the PCS code. Also, since this is NAD83, meters are used rather
 than US Survey feet (as in NAD 27).

+----------------------------------+

3.1.3. Lambert Conformal Conic Aeronautical Chart

We have a 500 x 500 scanned aeronautical chart of Seattle, WA, using Lambert
Conformal Conic projection, correctly oriented. The central meridian is at 120
degrees west. The map resolution is 1000 meters/pixel, at origin, and uses NAD27
datum. The standard parallels of the projection are at 41d20m N and 48d40m N. The
latitude of the origin is at 45 degrees North, and occurs in the image at the raster

APPENDIX GG

Microsoft et al. Exhibit 1005

coordinates (80,100). The origin is given a false easting and northing of 200000m,
1500000m.

 ModelTiepointTag = (80, 100, 0, 200000, 1500000, 0)
 ModelPixelScaleTag = (1000, 1000, 0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 1 (ModelTypeProjected)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)
 GeographicTypeGeoKey = 4267 (GCS_NAD27)
 ProjectedCSTypeGeoKey = 32767 (user-defined)
 ProjectionGeoKey = 32767 (user-defined)
 ProjLinearUnitsGeoKey = 9001 (Linear_Meter)
 ProjCoordTransGeoKey = 8 (CT_LambertConfConic_2SP)
 ProjStdParallel1GeoKey = 41.333
 ProjStdParallel2GeoKey = 48.666
 ProjCenterLongGeoKey =-120.0
 ProjNatOriginLatGeoKey = 45.0
 ProjFalseEastingGeoKey, = 200000.0
 ProjFalseNorthingGeoKey, = 1500000.0

 Notice that the Tiepoint takes the false easting and northing into
 account when tying the raster point (50,100) to the projection origin.

+--+

3.1.4. DMA ADRG Raster Graphic Map

The U.S. Defense Mapping Agency produces ARC digitized raster graphics datasets
by scanning maps and geometrically resampling them into an equirectangular
projection, so that they may be directly indexed with WGS84 geographic coordinates.
The scale for one map is 0.2 degrees per pixel horizontally, 0.1 degrees per pixel
vertically. If stored in a GeoTIFF file it contains the following information:

 ModelTiepointTag=(0.0, 0.0, 0.0, -120.0, 32.0, 0.0)
 ModelPixelScale = (0.2, 0.1, 0.0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 2 (ModelTypeGeographic)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)
 GeographicTypeGeoKey = 4326 (GCS_WGS_84)

+----------------------------------+

3.2 Less Common Examples

+----------------------------------+

3.2.1. Unrectified Aerial photo, known tiepoints, in degrees.

We have an aerial photo, and know only the WGS84 GPS location of several points
in the scene: the upper left corner is 120 degrees West, 32 degrees North, the
lower-left corner is at 120 degrees West, 30 degrees 20 minutes North, and the
lower-right hand corner of the image is at 116 degrees 40 minutes West, 30 degrees
20 minutes North. The photo is not geometrically corrected, however, and the
complete projection is therefore not known.

APPENDIX GG

Microsoft et al. Exhibit 1005

 ModelTiepointTag=(0.0, 0.0, 0.0, -120.0, 32.0, 0.0,
 0.0, 1000.0, 0.0, -120.0, 30.33333, 0.0,
 1000.0, 1000.0, 0.0, -116.6666667, 30.33333, 0.0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 1 (ModelTypeGeographic)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)
 GeographicTypeGeoKey = 4326 (GCS_WGS_84)

 Remark: Since we have not specified the ModelPixelScaleTag, clients
 reading this GeoTIFF file are not permitted to infer that there
 is a simple linear relationship between the raster data and the
 geographic model coordinate space. The only points that are know
 to be exact are the ones specified in the tiepoint tag.

+----------------------------------+

3.2.2. Rotated Scanned Map

We have a scanned standard British National Grid, covering the 100km grid zone NZ.
Consulting documentation for BNG we find that the southwest corner of the NZ zone
has an easting,northing of 400000m, 500000m, relative to the BNG standard false
origin. This scanned map has a resolution of 100 meter pixels, and was rotated 90
degrees to fit onto the scanner, so that the southwest corner is now the northwest
corner. In this case we must use the ModelTransformation tag rather than the
tiepoint/scale pair to map the raster data into model space:

 ModelTransformationTag = (0, 100.0, 0, 400000.0,
 100.0, 0, 0, 500000.0,
 0, 0, 0, 0,
 0, 0, 0, 1)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 1 (ModelTypeProjected)
 GTRasterTypeGeoKey = 1 (RasterPixelIsArea)
 ProjectedCSTypeGeoKey = 27700 (PCS_British_National_Grid)
 PCSCitationGeoKey = "British National Grid, Zone NZ"

Remark: the matrix has 100.0 in the off-diagonals due to the 90 degree rotation;
increasing I points north, and increasing J points east.

+----------------------------------+

3.2.3. Digital Elevation Model
The DMA stores digital elevation models using an equirectangular projection, so
that it may be indexed with WGS84 geographic coordinates. Since elevation postings
are point-values, the pixels should not be considered as filling areas, but as
point-values at grid vertices. To accommodate the base elevation of the Angeles
Crest forest, the pixel value of 0 corresponds to an elevation of 1000 meters
relative to WGS84 reference ellipsoid. The upper left corner is at 120 degrees West,
32 degrees North, and has a pixel scale of 0.2 degrees/pixel longitude, 0.1
degrees/pixel latitude.

 ModelTiepointTag=(0.0, 0.0, 0.0, -120.0, 32.0, 1000.0)
 ModelPixelScale = (0.2, 0.1, 1.0)
 GeoKeyDirectoryTag:
 GTModelTypeGeoKey = 2 (ModelTypeGeographic)
 GTRasterTypeGeoKey = 2 (RasterPixelIsPoint)

APPENDIX GG

Microsoft et al. Exhibit 1005

 GeographicTypeGeoKey = 4326 (GCS_WGS_84)
 VerticalCSTypeGeoKey = 5030 (VertCS_WGS_84_ellipsoid)
 VerticalCitationGeoKey = "WGS 84 Ellipsoid"
 VerticalUnitsGeoKey = 9001 (Linear_Meter)

 Remarks:
 1) Note the "RasterPixelIsPoint" raster space, indicating that
 the DEM posting of the first pixel is at the raster point
 (0,0,0), and therefore corresponds to 120W,32N exactly.
 2) The third value of the "PixelScale" is 1.0 to indicate
 that a single pixel-value unit corresponds to 1 meter,
 and the last tiepoint value indicates that base value
 zero indicates 1000m above the reference surface.

+----------------------------------+

4 Extended GeoTIFF
+--+

This section is for future development TBD.

Possible additional GeoKeys for Revision 2.0:

 PerspectHeightGeoKey (General Vertical Nearsided Perspective)
 SOMInclinAngleGeoKey (SOM)
 SOMAscendLongGeoKey (SOM)
 SOMRevPeriodGeoKey (SOM)
 SOMEndOfPathGeoKey (SOM) ? is this needed ? SHORT
 SOMRatioGeoKey (SOM)
 SOMPathNumGeoKey (SOM) SHORT
 SOMSatelliteNumGeoKey (SOM) SHORT
 OEAShapeMGeoKey (Oblated Equal Area)
 OEAShapeNGeoKey (Oblated Equal Area)
 OEARotationAngleGeoKey (Oblated Equal Area)

Other items for consideration:

o Digital Elevation Model information, such as Vertical Datums, Sounding Datums.

o Accuracy Keys for linear, circular, and spherical errors, etc.

o Source information, such as details of an original coordinate system
 and of transformations between it and the coordinate system in which
 data is being exchanged.

+--+

5 References
+--+

 1. EPSG/POSC Projection Coding System Tables. Available via FTP to:

 ftp://mtritter.jpl.nasa.gov/pub/tiff/geotiff/tables

 or its USGS mirror site:

 ftp://ftpmcmc.cr.usgs.gov/release/geotiff/jpl-mirror/tables

APPENDIX GG

Microsoft et al. Exhibit 1005

 2. TIFF Revision 6.0 Specification: A PDF formatted version
 is available via FTP to:

ftp://ftp.adobe.com/pub/adobe/DeveloperSupport/TechNotes/PDFfiles/TIFF6.pdf

 PostScript formatted text versions available at:.

 ftp://sgi.com/graphics/tiff/TIFF6.ps.Z (compressed)
 ftp://sgi.com/graphics/tiff/TIFF6.ps (uncompressed)

 3. LIBGEOTIFF -- Public Domain GeoTIFF library, available via anonymous
 FTP to:

 ftp://mtritter.jpl.nasa.gov/pub/tiff/geotiff/code

 or its USGS mirror site:

 ftp://ftpmcmc.cr.usgs.gov/release/geotiff/jpl-mirror/code

 4. LIBTIFF -- Public Domain TIFF library, available via anonymous
 FTP to:

 ftp://sgi.com/graphics/tiff/

 5. Spatial Data Transfer Standard (SDTS) of the USGS.
 (Federal Information Processing Standard (FIPS) 173):

 ftp://sdts.er.usgs.gov/pub/sdts/

 SDTS Task Force
 U.S. Geological Survey
 526 National Center
 Reston, VA 22092

 E-mail: sdts@usgs.gov

 6. Map use: reading, analysis, interpretation.
 Muehrcke, Phillip C. 1986. Madison, WI: JP Publications.

 7. Map projections: a working manual. Snyder, John P. 1987.
 USGS Professional Paper 1395.
 Washington, DC: United States Government Printing Office.

 8. Notes for GIS and The Geographer's Craft at U. Texas, on the
 World Wide Web (WWW) (current as of 10 April 1995):

 http://wwwhost.cc.utexas.edu/ftp/pub/grg/gcraft/notes/notes.html

 9. Digital Geographic Information Exchange Standard (DIGEST).
 Allied Geographic Publication No 3, Edition 1.2 (AGeoP-3)
 (NATO Unclassified).

10. POSC Petrotechnical Open Software Corporation Web site:

 http://www.posc.org/

APPENDIX GG

Microsoft et al. Exhibit 1005

+--+

6 Appendices
+--+

+----------------------------------+

6.1 Tag ID Summary

Here are all of the TIFF tags (and their owners) that are used to store GeoTIFF
information of any type. It is very unlikely that any other tags will be necessary
in the future (since most additional information will be encoded as a GeoKey).

 ModelPixelScaleTag = 33550 (SoftDesk)
 ModelTransformationTag = 34264 (JPL Carto Group)
 ModelTiepointTag = 33922 (Intergraph)
 GeoKeyDirectoryTag = 34735 (SPOT)
 GeoDoubleParamsTag = 34736 (SPOT)
 GeoAsciiParamsTag = 34737 (SPOT)

 Obsoleted Implementation:

 IntergraphMatrixTag = 33920 (Intergraph) -- Use ModelTransformationTag.

+----------------------------------+

6.2 Key ID Summary
+----------------------------------+

+----------------------------------+

6.2.1 GeoTIFF Configuration Keys

 GTModelTypeGeoKey = 1024 /* Section 6.3.1.1 Codes */
 GTRasterTypeGeoKey = 1025 /* Section 6.3.1.2 Codes */
 GTCitationGeoKey = 1026 /* documentation */

+----------------------------------+

6.2.2 Geographic CS Parameter Keys
 GeographicTypeGeoKey = 2048 /* Section 6.3.2.1 Codes */
 GeogCitationGeoKey = 2049 /* documentation */
 GeogGeodeticDatumGeoKey = 2050 /* Section 6.3.2.2 Codes */
 GeogPrimeMeridianGeoKey = 2051 /* Section 6.3.2.4 codes */
 GeogLinearUnitsGeoKey = 2052 /* Section 6.3.1.3 Codes */
 GeogLinearUnitSizeGeoKey = 2053 /* meters */
 GeogAngularUnitsGeoKey = 2054 /* Section 6.3.1.4 Codes */
 GeogAngularUnitSizeGeoKey = 2055 /* radians */
 GeogEllipsoidGeoKey = 2056 /* Section 6.3.2.3 Codes */
 GeogSemiMajorAxisGeoKey = 2057 /* GeogLinearUnits */
 GeogSemiMinorAxisGeoKey = 2058 /* GeogLinearUnits */
 GeogInvFlatteningGeoKey = 2059 /* ratio */

APPENDIX GG

Microsoft et al. Exhibit 1005

 GeogAzimuthUnitsGeoKey = 2060 /* Section 6.3.1.4 Codes */
 GeogPrimeMeridianLongGeoKey = 2061 /* GeogAngularUnit */

+----------------------------------+

6.2.3 Projected CS Parameter Keys

 ProjectedCSTypeGeoKey = 3072 /* Section 6.3.3.1 codes */
 PCSCitationGeoKey = 3073 /* documentation */
 ProjectionGeoKey = 3074 /* Section 6.3.3.2 codes */
 ProjCoordTransGeoKey = 3075 /* Section 6.3.3.3 codes */
 ProjLinearUnitsGeoKey = 3076 /* Section 6.3.1.3 codes */
 ProjLinearUnitSizeGeoKey = 3077 /* meters */
 ProjStdParallel1GeoKey = 3078 /* GeogAngularUnit */
 ProjStdParallel2GeoKey = 3079 /* GeogAngularUnit */
 ProjNatOriginLongGeoKey = 3080 /* GeogAngularUnit */
 ProjNatOriginLatGeoKey = 3081 /* GeogAngularUnit */
 ProjFalseEastingGeoKey = 3082 /* ProjLinearUnits */
 ProjFalseNorthingGeoKey = 3083 /* ProjLinearUnits */
 ProjFalseOriginLongGeoKey = 3084 /* GeogAngularUnit */
 ProjFalseOriginLatGeoKey = 3085 /* GeogAngularUnit */
 ProjFalseOriginEastingGeoKey = 3086 /* ProjLinearUnits */
 ProjFalseOriginNorthingGeoKey = 3087 /* ProjLinearUnits */
 ProjCenterLongGeoKey = 3088 /* GeogAngularUnit */
 ProjCenterLatGeoKey = 3089 /* GeogAngularUnit */
 ProjCenterEastingGeoKey = 3090 /* ProjLinearUnits */
 ProjCenterNorthingGeoKey = 3091 /* ProjLinearUnits */
 ProjScaleAtNatOriginGeoKey = 3092 /* ratio */
 ProjScaleAtCenterGeoKey = 3093 /* ratio */
 ProjAzimuthAngleGeoKey = 3094 /* GeogAzimuthUnit */
 ProjStraightVertPoleLongGeoKey = 3095 /* GeogAngularUnit */

Aliases:

 ProjStdParallelGeoKey = ProjStdParallel1GeoKey
 ProjOriginLongGeoKey = ProjNatOriginLongGeoKey
 ProjOriginLatGeoKey = ProjNatOriginLatGeoKey
 ProjScaleAtOriginGeoKey = ProjScaleAtNatOriginGeoKey

+----------------------------------+

6.2.4 Vertical CS Keys

 VerticalCSTypeGeoKey = 4096 /* Section 6.3.4.1 codes */
 VerticalCitationGeoKey = 4097 /* documentation */
 VerticalDatumGeoKey = 4098 /* Section 6.3.4.2 codes */
 VerticalUnitsGeoKey = 4099 /* Section 6.3.1.3 codes */

+---+
+----------------------------------+

6.3 Key Code Summary
+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

6.3.1 GeoTIFF General Codes
This section includes the general "Configuration" key codes, as well as general
codes which are used by more than one key (e.g. units codes).

+----------------------------------+

6.3.1.1 Model Type Codes

Ranges:

 0 = undefined
 [1, 32766] = GeoTIFF Reserved Codes
 32767 = user-defined
 [32768, 65535] = Private User Implementations

GeoTIFF defined CS Model Type Codes:

 ModelTypeProjected = 1 /* Projection Coordinate System */
 ModelTypeGeographic = 2 /* Geographic latitude-longitude System */
 ModelTypeGeocentric = 3 /* Geocentric (X,Y,Z) Coordinate System */

Notes:

 1. ModelTypeGeographic and ModelTypeProjected
 correspond to the FGDC metadata Geographic and
 Planar-Projected coordinate system types.

+----------------------------------+

6.3.1.2 Raster Type Codes
Ranges:

 0 = undefined
 [1, 1023] = Raster Type Codes (GeoTIFF Defined)
 [1024, 32766] = Reserved
 32767 = user-defined
 [32768, 65535]= Private User Implementations

Values:
 RasterPixelIsArea = 1
 RasterPixelIsPoint = 2

Note: Use of "user-defined" or "undefined" raster codes is not recommended.

+----------------------------------+

6.3.1.3 Linear Units Codes

There are several different kinds of units that may be used in geographically
related raster data: linear units, angular units, units of time (e.g. for
radar-return), CCD-voltages, etc. For this reason there will be a single, unique
range for each kind of unit, broken down into the following currently defined
ranges:

Ranges:

APPENDIX GG

Microsoft et al. Exhibit 1005

 0 = undefined
 [1, 2000] = Obsolete GeoTIFF codes
 [2001, 8999] = Reserved by GeoTIFF
 [9000, 9099] = EPSG Linear Units.
 [9100, 9199] = EPSG Angular Units.
 32767 = user-defined unit
 [32768, 65535]= Private User Implementations

Linear Unit Values (See the ESPG/POSC tables for definition):

 Linear_Meter = 9001
 Linear_Foot = 9002
 Linear_Foot_US_Survey = 9003
 Linear_Foot_Modified_American = 9004
 Linear_Foot_Clarke = 9005
 Linear_Foot_Indian = 9006
 Linear_Link = 9007
 Linear_Link_Benoit = 9008
 Linear_Link_Sears = 9009
 Linear_Chain_Benoit = 9010
 Linear_Chain_Sears = 9011
 Linear_Yard_Sears = 9012
 Linear_Yard_Indian = 9013
 Linear_Fathom = 9014
 Linear_Mile_International_Nautical = 9015

+----------------------------------+

6.3.1.4 Angular Units Codes
These codes shall be used for any key that requires specification of an angular
unit of measurement.

Angular Units

 Angular_Radian = 9101
 Angular_Degree = 9102
 Angular_Arc_Minute = 9103
 Angular_Arc_Second = 9104
 Angular_Grad = 9105
 Angular_Gon = 9106
 Angular_DMS = 9107
 Angular_DMS_Hemisphere = 9108

+----------------------------------+

6.3.2 Geographic CS Codes

+----------------------------------+

6.3.2.1 Geographic CS Type Codes

Note: A Geographic coordinate system consists of both a datum and a Prime Meridian.
Some of the names are very similar, and differ only in the Prime Meridian, so be

APPENDIX GG

Microsoft et al. Exhibit 1005

sure to use the correct one. The codes beginning with GCSE_xxx are unspecified GCS
which use ellipsoid (xxx); it is recommended that only the codes beginning with
GCS_ be used if possible.

Ranges:

 0 = undefined
 [1, 1000] = Obsolete EPSG/POSC Geographic Codes
 [1001, 3999] = Reserved by GeoTIFF
 [4000, 4199] = EPSG GCS Based on Ellipsoid only
 [4200, 4999] = EPSG GCS Based on EPSG Datum
 [5000, 32766] = Reserved by GeoTIFF
 32767 = user-defined GCS
 [32768, 65535] = Private User Implementations

Values:

 Note: Geodetic datum using Greenwich PM have codes equal to
 the corresponding Datum code - 2000.

 GCS_Adindan = 4201
 GCS_AGD66 = 4202
 GCS_AGD84 = 4203
 GCS_Ain_el_Abd = 4204
 GCS_Afgooye = 4205
 GCS_Agadez = 4206
 GCS_Lisbon = 4207
 GCS_Aratu = 4208
 GCS_Arc_1950 = 4209
 GCS_Arc_1960 = 4210
 GCS_Batavia = 4211
 GCS_Barbados = 4212
 GCS_Beduaram = 4213
 GCS_Beijing_1954 = 4214
 GCS_Belge_1950 = 4215
 GCS_Bermuda_1957 = 4216
 GCS_Bern_1898 = 4217
 GCS_Bogota = 4218
 GCS_Bukit_Rimpah = 4219
 GCS_Camacupa = 4220
 GCS_Campo_Inchauspe = 4221
 GCS_Cape = 4222
 GCS_Carthage = 4223
 GCS_Chua = 4224
 GCS_Corrego_Alegre = 4225
 GCS_Cote_d_Ivoire = 4226
 GCS_Deir_ez_Zor = 4227
 GCS_Douala = 4228
 GCS_Egypt_1907 = 4229
 GCS_ED50 = 4230
 GCS_ED87 = 4231
 GCS_Fahud = 4232
 GCS_Gandajika_1970 = 4233
 GCS_Garoua = 4234
 GCS_Guyane_Francaise = 4235
 GCS_Hu_Tzu_Shan = 4236
 GCS_HD72 = 4237
 GCS_ID74 = 4238
 GCS_Indian_1954 = 4239
 GCS_Indian_1975 = 4240
 GCS_Jamaica_1875 = 4241
 GCS_JAD69 = 4242
 GCS_Kalianpur = 4243
 GCS_Kandawala = 4244
 GCS_Kertau = 4245

APPENDIX GG

Microsoft et al. Exhibit 1005

 GCS_KOC = 4246
 GCS_La_Canoa = 4247
 GCS_PSAD56 = 4248
 GCS_Lake = 4249
 GCS_Leigon = 4250
 GCS_Liberia_1964 = 4251
 GCS_Lome = 4252
 GCS_Luzon_1911 = 4253
 GCS_Hito_XVIII_1963 = 4254
 GCS_Herat_North = 4255
 GCS_Mahe_1971 = 4256
 GCS_Makassar = 4257
 GCS_EUREF89 = 4258
 GCS_Malongo_1987 = 4259
 GCS_Manoca = 4260
 GCS_Merchich = 4261
 GCS_Massawa = 4262
 GCS_Minna = 4263
 GCS_Mhast = 4264
 GCS_Monte_Mario = 4265
 GCS_M_poraloko = 4266
 GCS_NAD27 = 4267
 GCS_NAD_Michigan = 4268
 GCS_NAD83 = 4269
 GCS_Nahrwan_1967 = 4270
 GCS_Naparima_1972 = 4271
 GCS_GD49 = 4272
 GCS_NGO_1948 = 4273
 GCS_Datum_73 = 4274
 GCS_NTF = 4275
 GCS_NSWC_9Z_2 = 4276
 GCS_OSGB_1936 = 4277
 GCS_OSGB70 = 4278
 GCS_OS_SN80 = 4279
 GCS_Padang = 4280
 GCS_Palestine_1923 = 4281
 GCS_Pointe_Noire = 4282
 GCS_GDA94 = 4283
 GCS_Pulkovo_1942 = 4284
 GCS_Qatar = 4285
 GCS_Qatar_1948 = 4286
 GCS_Qornoq = 4287
 GCS_Loma_Quintana = 4288
 GCS_Amersfoort = 4289
 GCS_RT38 = 4290
 GCS_SAD69 = 4291
 GCS_Sapper_Hill_1943 = 4292
 GCS_Schwarzeck = 4293
 GCS_Segora = 4294
 GCS_Serindung = 4295
 GCS_Sudan = 4296
 GCS_Tananarive = 4297
 GCS_Timbalai_1948 = 4298
 GCS_TM65 = 4299
 GCS_TM75 = 4300
 GCS_Tokyo = 4301
 GCS_Trinidad_1903 = 4302
 GCS_TC_1948 = 4303
 GCS_Voirol_1875 = 4304
 GCS_Voirol_Unifie = 4305
 GCS_Bern_1938 = 4306
 GCS_Nord_Sahara_1959 = 4307
 GCS_Stockholm_1938 = 4308
 GCS_Yacare = 4309

APPENDIX GG

Microsoft et al. Exhibit 1005

 GCS_Yoff = 4310
 GCS_Zanderij = 4311
 GCS_MGI = 4312
 GCS_Belge_1972 = 4313
 GCS_DHDN = 4314
 GCS_Conakry_1905 = 4315
 GCS_WGS_72 = 4322
 GCS_WGS_72BE = 4324
 GCS_WGS_84 = 4326
 GCS_Bern_1898_Bern = 4801
 GCS_Bogota_Bogota = 4802
 GCS_Lisbon_Lisbon = 4803
 GCS_Makassar_Jakarta = 4804
 GCS_MGI_Ferro = 4805
 GCS_Monte_Mario_Rome = 4806
 GCS_NTF_Paris = 4807
 GCS_Padang_Jakarta = 4808
 GCS_Belge_1950_Brussels = 4809
 GCS_Tananarive_Paris = 4810
 GCS_Voirol_1875_Paris = 4811
 GCS_Voirol_Unifie_Paris = 4812
 GCS_Batavia_Jakarta = 4813
 GCS_ATF_Paris = 4901
 GCS_NDG_Paris = 4902

Ellipsoid-Only GCS:

 Note: the numeric code is equal to the code of the correspoding
 EPSG ellipsoid, minus 3000.

 GCSE_Airy1830 = 4001
 GCSE_AiryModified1849 = 4002
 GCSE_AustralianNationalSpheroid =4003
 GCSE_Bessel1841 = 4004
 GCSE_BesselModified = 4005
 GCSE_BesselNamibia = 4006
 GCSE_Clarke1858 = 4007
 GCSE_Clarke1866 = 4008
 GCSE_Clarke1866Michigan = 4009
 GCSE_Clarke1880_Benoit = 4010
 GCSE_Clarke1880_IGN = 4011
 GCSE_Clarke1880_RGS = 4012
 GCSE_Clarke1880_Arc = 4013
 GCSE_Clarke1880_SGA1922 = 4014
 GCSE_Everest1830_1937Adjustment =4015
 GCSE_Everest1830_1967Definition =4016
 GCSE_Everest1830_1975Definition =4017
 GCSE_Everest1830Modified =4018
 GCSE_GRS1980 = 4019
 GCSE_Helmert1906 = 4020
 GCSE_IndonesianNationalSpheroid =4021
 GCSE_International1924 = 4022
 GCSE_International1967 = 4023
 GCSE_Krassowsky1940 = 4024
 GCSE_NWL9D = 4025
 GCSE_NWL10D = 4026
 GCSE_Plessis1817 = 4027
 GCSE_Struve1860 = 4028
 GCSE_WarOffice = 4029
 GCSE_WGS84 = 4030
 GCSE_GEM10C = 4031
 GCSE_OSU86F = 4032
 GCSE_OSU91A = 4033
 GCSE_Clarke1880 = 4034

APPENDIX GG

Microsoft et al. Exhibit 1005

 GCSE_Sphere = 4035

+----------------------------------+

6.3.2.2 Geodetic Datum Codes
Note: these codes do not include the Prime Meridian; if possible use the GCS codes
above if the datum and Prime Meridian are on the list. Also, as with the GCS codes,
the codes beginning with DatumE_xxx refer only to the specified ellipsoid (xxx);
if possible use instead the named datums beginning with Datum_xxx

Ranges:,

 0 = undefined
 [1, 1000] = Obsolete EPSG/POSC Datum Codes
 [1001, 5999] = Reserved by GeoTIFF
 [6000, 6199] = EPSG Datum Based on Ellipsoid only
 [6200, 6999] = EPSG Datum Based on EPSG Datum
 [6322, 6327] = WGS Datum
 [6900, 6999] = Archaic Datum
 [7000, 32766] = Reserved by GeoTIFF
 32767 = user-defined GCS
 [32768, 65535] = Private User Implementations

Values:

 Datum_Adindan = 6201
 Datum_Australian_Geodetic_Datum_1966 = 6202
 Datum_Australian_Geodetic_Datum_1984 = 6203
 Datum_Ain_el_Abd_1970 = 6204
 Datum_Afgooye = 6205
 Datum_Agadez = 6206
 Datum_Lisbon = 6207
 Datum_Aratu = 6208
 Datum_Arc_1950 = 6209
 Datum_Arc_1960 = 6210
 Datum_Batavia = 6211
 Datum_Barbados = 6212
 Datum_Beduaram = 6213
 Datum_Beijing_1954 = 6214
 Datum_Reseau_National_Belge_1950 = 6215
 Datum_Bermuda_1957 = 6216
 Datum_Bern_1898 = 6217
 Datum_Bogota = 6218
 Datum_Bukit_Rimpah = 6219
 Datum_Camacupa = 6220
 Datum_Campo_Inchauspe = 6221
 Datum_Cape = 6222
 Datum_Carthage = 6223
 Datum_Chua = 6224
 Datum_Corrego_Alegre = 6225
 Datum_Cote_d_Ivoire = 6226
 Datum_Deir_ez_Zor = 6227
 Datum_Douala = 6228
 Datum_Egypt_1907 = 6229
 Datum_European_Datum_1950 = 6230
 Datum_European_Datum_1987 = 6231
 Datum_Fahud = 6232
 Datum_Gandajika_1970 = 6233
 Datum_Garoua = 6234
 Datum_Guyane_Francaise = 6235
 Datum_Hu_Tzu_Shan = 6236
 Datum_Hungarian_Datum_1972 = 6237

APPENDIX GG

Microsoft et al. Exhibit 1005

 Datum_Indonesian_Datum_1974 = 6238
 Datum_Indian_1954 = 6239
 Datum_Indian_1975 = 6240
 Datum_Jamaica_1875 = 6241
 Datum_Jamaica_1969 = 6242
 Datum_Kalianpur = 6243
 Datum_Kandawala = 6244
 Datum_Kertau = 6245
 Datum_Kuwait_Oil_Company =6246
 Datum_La_Canoa = 6247
 Datum_Provisional_S_American_Datum_1956 = 6248
 Datum_Lake = 6249
 Datum_Leigon = 6250
 Datum_Liberia_1964 = 6251
 Datum_Lome = 6252
 Datum_Luzon_1911 = 6253
 Datum_Hito_XVIII_1963 = 6254
 Datum_Herat_North = 6255
 Datum_Mahe_1971 = 6256
 Datum_Makassar = 6257
 Datum_European_Reference_System_1989 = 6258
 Datum_Malongo_1987 = 6259
 Datum_Manoca = 6260
 Datum_Merchich = 6261
 Datum_Massawa = 6262
 Datum_Minna = 6263
 Datum_Mhast = 6264
 Datum_Monte_Mario = 6265
 Datum_M_poraloko = 6266
 Datum_North_American_Datum_1927 =6267
 Datum_NAD_Michigan = 6268
 Datum_North_American_Datum_1983 =6269
 Datum_Nahrwan_1967 = 6270
 Datum_Naparima_1972 = 6271
 Datum_New_Zealand_Geodetic_Datum_1949 = 6272
 Datum_NGO_1948 = 6273
 Datum_Datum_73 = 6274
 Datum_Nouvelle_Triangulation_Francaise = 6275
 Datum_NSWC_9Z_2 = 6276
 Datum_OSGB_1936 = 6277
 Datum_OSGB_1970_SN = 6278
 Datum_OS_SN_1980 = 6279
 Datum_Padang_1884 = 6280
 Datum_Palestine_1923 = 6281
 Datum_Pointe_Noire = 6282
 Datum_Geocentric_Datum_of_Australia_1994 = 6283
 Datum_Pulkovo_1942 = 6284
 Datum_Qatar = 6285
 Datum_Qatar_1948 = 6286
 Datum_Qornoq = 6287
 Datum_Loma_Quintana = 6288
 Datum_Amersfoort = 6289
 Datum_RT38 = 6290
 Datum_South_American_Datum_1969 =6291
 Datum_Sapper_Hill_1943 = 6292
 Datum_Schwarzeck = 6293
 Datum_Segora = 6294
 Datum_Serindung = 6295
 Datum_Sudan = 6296
 Datum_Tananarive_1925 = 6297
 Datum_Timbalai_1948 = 6298
 Datum_TM65 = 6299
 Datum_TM75 = 6300
 Datum_Tokyo = 6301

APPENDIX GG

Microsoft et al. Exhibit 1005

 Datum_Trinidad_1903 = 6302
 Datum_Trucial_Coast_1948 =6303
 Datum_Voirol_1875 = 6304
 Datum_Voirol_Unifie_1960 =6305
 Datum_Bern_1938 = 6306
 Datum_Nord_Sahara_1959 = 6307
 Datum_Stockholm_1938 = 6308
 Datum_Yacare = 6309
 Datum_Yoff = 6310
 Datum_Zanderij = 6311
 Datum_Militar_Geographische_Institut = 6312
 Datum_Reseau_National_Belge_1972 = 6313
 Datum_Deutsche_Hauptdreiecksnetz = 6314
 Datum_Conakry_1905 = 6315
 Datum_WGS72 = 6322
 Datum_WGS72_Transit_Broadcast_Ephemeris = 6324
 Datum_WGS84 = 6326
 Datum_Ancienne_Triangulation_Francaise = 6901
 Datum_Nord_de_Guerre = 6902

Ellipsoid-Only Datum:

 Note: the numeric code is equal to the corresponding ellipsoid
 code, minus 1000.

 DatumE_Airy1830 = 6001
 DatumE_AiryModified1849 = 6002
 DatumE_AustralianNationalSpheroid = 6003
 DatumE_Bessel1841 = 6004
 DatumE_BesselModified = 6005
 DatumE_BesselNamibia = 6006
 DatumE_Clarke1858 = 6007
 DatumE_Clarke1866 = 6008
 DatumE_Clarke1866Michigan = 6009
 DatumE_Clarke1880_Benoit =6010
 DatumE_Clarke1880_IGN = 6011
 DatumE_Clarke1880_RGS = 6012
 DatumE_Clarke1880_Arc = 6013
 DatumE_Clarke1880_SGA1922 = 6014
 DatumE_Everest1830_1937Adjustment = 6015
 DatumE_Everest1830_1967Definition = 6016
 DatumE_Everest1830_1975Definition = 6017
 DatumE_Everest1830Modified = 6018
 DatumE_GRS1980 = 6019
 DatumE_Helmert1906 = 6020
 DatumE_IndonesianNationalSpheroid = 6021
 DatumE_International1924 =6022
 DatumE_International1967 =6023
 DatumE_Krassowsky1960 = 6024
 DatumE_NWL9D = 6025
 DatumE_NWL10D = 6026
 DatumE_Plessis1817 = 6027
 DatumE_Struve1860 = 6028
 DatumE_WarOffice = 6029
 DatumE_WGS84 = 6030
 DatumE_GEM10C = 6031
 DatumE_OSU86F = 6032
 DatumE_OSU91A = 6033
 DatumE_Clarke1880 = 6034
 DatumE_Sphere = 6035

+----------------------------------+

APPENDIX GG

Microsoft et al. Exhibit 1005

6.3.2.3 Ellipsoid Codes

Ranges:

 0 = undefined
 [1, 1000] = Obsolete EPSG/POSC Ellipsoid codes
 [1001, 6999] = Reserved by GeoTIFF
 [7000, 7999] = EPSG Ellipsoid codes
 [8000, 32766] = Reserved by GeoTIFF
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Values:

 Ellipse_Airy_1830 = 7001
 Ellipse_Airy_Modified_1849 = 7002
 Ellipse_Australian_National_Spheroid = 7003
 Ellipse_Bessel_1841 = 7004
 Ellipse_Bessel_Modified = 7005
 Ellipse_Bessel_Namibia = 7006
 Ellipse_Clarke_1858 = 7007
 Ellipse_Clarke_1866 = 7008
 Ellipse_Clarke_1866_Michigan = 7009
 Ellipse_Clarke_1880_Benoit = 7010
 Ellipse_Clarke_1880_IGN = 7011
 Ellipse_Clarke_1880_RGS = 7012
 Ellipse_Clarke_1880_Arc = 7013
 Ellipse_Clarke_1880_SGA_1922 = 7014
 Ellipse_Everest_1830_1937_Adjustment = 7015
 Ellipse_Everest_1830_1967_Definition = 7016
 Ellipse_Everest_1830_1975_Definition = 7017
 Ellipse_Everest_1830_Modified = 7018
 Ellipse_GRS_1980 = 7019
 Ellipse_Helmert_1906 = 7020
 Ellipse_Indonesian_National_Spheroid = 7021
 Ellipse_International_1924 = 7022
 Ellipse_International_1967 = 7023
 Ellipse_Krassowsky_1940 = 7024
 Ellipse_NWL_9D = 7025
 Ellipse_NWL_10D = 7026
 Ellipse_Plessis_1817 = 7027
 Ellipse_Struve_1860 = 7028
 Ellipse_War_Office = 7029
 Ellipse_WGS_84 = 7030
 Ellipse_GEM_10C = 7031
 Ellipse_OSU86F = 7032
 Ellipse_OSU91A = 7033
 Ellipse_Clarke_1880 = 7034
 Ellipse_Sphere = 7035

+----------------------------------+

6.3.2.4 Prime Meridian Codes
Ranges:

 0 = undefined
 [1, 100] = Obsolete EPSG/POSC Prime Meridian codes
 [101, 7999] = Reserved by GeoTIFF

APPENDIX GG

Microsoft et al. Exhibit 1005

 [8000, 8999] = EPSG Prime Meridian Codes
 [9000, 32766] = Reserved by GeoTIFF
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Values:

 PM_Greenwich = 8901
 PM_Lisbon = 8902
 PM_Paris = 8903
 PM_Bogota = 8904
 PM_Madrid = 8905
 PM_Rome = 8906
 PM_Bern = 8907
 PM_Jakarta = 8908
 PM_Ferro = 8909
 PM_Brussels = 8910
 PM_Stockholm = 8911

+----------------------------------+

6.3.3 Projected CS Codes
+----------------------------------+

6.3.3.1 Projected CS Type Codes
Ranges:

 [1, 1000] = Obsolete EPSG/POSC Projection System Codes
 [20000, 32760] = EPSG Projection System codes
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Special Ranges:

1. For PCS utilising GeogCS with code in range 4201 through 4321
(i.e. geodetic datum code 6201 through 6319): As far as is possible
 the PCS code will be of the format gggzz where ggg is (geodetic
datum code -2000) and zz is zone.

2. For PCS utilising GeogCS with code out of range 4201 through 4321
(i.e. geodetic datum code 6201 through 6319). PCS code 20xxx where
xxx is a sequential number.

3. Other:
 WGS72 / UTM northern hemisphere: 322zz where zz is UTM zone number
 WGS72 / UTM southern hemisphere: 323zz where zz is UTM zone number
 WGS72BE / UTM northern hemisphere: 324zz where zz is UTM zone number
 WGS72BE / UTM southern hemisphere: 325zz where zz is UTM zone number
 WGS84 / UTM northern hemisphere: 326zz where zz is UTM zone number
 WGS84 / UTM southern hemisphere: 327zz where zz is UTM zone number
 US State Plane (NAD27): 267xx/320xx
 US State Plane (NAD83): 269xx/321xx

Values:

 PCS_Adindan_UTM_zone_37N =20137
 PCS_Adindan_UTM_zone_38N =20138
 PCS_AGD66_AMG_zone_48 = 20248

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_AGD66_AMG_zone_49 = 20249
 PCS_AGD66_AMG_zone_50 = 20250
 PCS_AGD66_AMG_zone_51 = 20251
 PCS_AGD66_AMG_zone_52 = 20252
 PCS_AGD66_AMG_zone_53 = 20253
 PCS_AGD66_AMG_zone_54 = 20254
 PCS_AGD66_AMG_zone_55 = 20255
 PCS_AGD66_AMG_zone_56 = 20256
 PCS_AGD66_AMG_zone_57 = 20257
 PCS_AGD66_AMG_zone_58 = 20258
 PCS_AGD84_AMG_zone_48 = 20348
 PCS_AGD84_AMG_zone_49 = 20349
 PCS_AGD84_AMG_zone_50 = 20350
 PCS_AGD84_AMG_zone_51 = 20351
 PCS_AGD84_AMG_zone_52 = 20352
 PCS_AGD84_AMG_zone_53 = 20353
 PCS_AGD84_AMG_zone_54 = 20354
 PCS_AGD84_AMG_zone_55 = 20355
 PCS_AGD84_AMG_zone_56 = 20356
 PCS_AGD84_AMG_zone_57 = 20357
 PCS_AGD84_AMG_zone_58 = 20358
 PCS_Ain_el_Abd_UTM_zone_37N = 20437
 PCS_Ain_el_Abd_UTM_zone_38N = 20438
 PCS_Ain_el_Abd_UTM_zone_39N = 20439
 PCS_Ain_el_Abd_Bahrain_Grid = 20499
 PCS_Afgooye_UTM_zone_38N =20538
 PCS_Afgooye_UTM_zone_39N =20539
 PCS_Lisbon_Portugese_Grid = 20700
 PCS_Aratu_UTM_zone_22S = 20822
 PCS_Aratu_UTM_zone_23S = 20823
 PCS_Aratu_UTM_zone_24S = 20824
 PCS_Arc_1950_Lo13 = 20973
 PCS_Arc_1950_Lo15 = 20975
 PCS_Arc_1950_Lo17 = 20977
 PCS_Arc_1950_Lo19 = 20979
 PCS_Arc_1950_Lo21 = 20981
 PCS_Arc_1950_Lo23 = 20983
 PCS_Arc_1950_Lo25 = 20985
 PCS_Arc_1950_Lo27 = 20987
 PCS_Arc_1950_Lo29 = 20989
 PCS_Arc_1950_Lo31 = 20991
 PCS_Arc_1950_Lo33 = 20993
 PCS_Arc_1950_Lo35 = 20995
 PCS_Batavia_NEIEZ = 21100
 PCS_Batavia_UTM_zone_48S =21148
 PCS_Batavia_UTM_zone_49S =21149
 PCS_Batavia_UTM_zone_50S =21150
 PCS_Beijing_Gauss_zone_13 = 21413
 PCS_Beijing_Gauss_zone_14 = 21414
 PCS_Beijing_Gauss_zone_15 = 21415
 PCS_Beijing_Gauss_zone_16 = 21416
 PCS_Beijing_Gauss_zone_17 = 21417
 PCS_Beijing_Gauss_zone_18 = 21418
 PCS_Beijing_Gauss_zone_19 = 21419
 PCS_Beijing_Gauss_zone_20 = 21420
 PCS_Beijing_Gauss_zone_21 = 21421
 PCS_Beijing_Gauss_zone_22 = 21422
 PCS_Beijing_Gauss_zone_23 = 21423
 PCS_Beijing_Gauss_13N = 21473
 PCS_Beijing_Gauss_14N = 21474
 PCS_Beijing_Gauss_15N = 21475
 PCS_Beijing_Gauss_16N = 21476
 PCS_Beijing_Gauss_17N = 21477
 PCS_Beijing_Gauss_18N = 21478

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_Beijing_Gauss_19N = 21479
 PCS_Beijing_Gauss_20N = 21480
 PCS_Beijing_Gauss_21N = 21481
 PCS_Beijing_Gauss_22N = 21482
 PCS_Beijing_Gauss_23N = 21483
 PCS_Belge_Lambert_50 = 21500
 PCS_Bern_1898_Swiss_Old = 21790
 PCS_Bogota_UTM_zone_17N = 21817
 PCS_Bogota_UTM_zone_18N = 21818
 PCS_Bogota_Colombia_3W = 21891
 PCS_Bogota_Colombia_Bogota = 21892
 PCS_Bogota_Colombia_3E = 21893
 PCS_Bogota_Colombia_6E = 21894
 PCS_Camacupa_UTM_32S = 22032
 PCS_Camacupa_UTM_33S = 22033
 PCS_C_Inchauspe_Argentina_1 = 22191
 PCS_C_Inchauspe_Argentina_2 = 22192
 PCS_C_Inchauspe_Argentina_3 = 22193
 PCS_C_Inchauspe_Argentina_4 = 22194
 PCS_C_Inchauspe_Argentina_5 = 22195
 PCS_C_Inchauspe_Argentina_6 = 22196
 PCS_C_Inchauspe_Argentina_7 = 22197
 PCS_Carthage_UTM_zone_32N = 22332
 PCS_Carthage_Nord_Tunisie = 22391
 PCS_Carthage_Sud_Tunisie =22392
 PCS_Corrego_Alegre_UTM_23S = 22523
 PCS_Corrego_Alegre_UTM_24S = 22524
 PCS_Douala_UTM_zone_32N = 22832
 PCS_Egypt_1907_Red_Belt = 22992
 PCS_Egypt_1907_Purple_Belt = 22993
 PCS_Egypt_1907_Ext_Purple = 22994
 PCS_ED50_UTM_zone_28N = 23028
 PCS_ED50_UTM_zone_29N = 23029
 PCS_ED50_UTM_zone_30N = 23030
 PCS_ED50_UTM_zone_31N = 23031
 PCS_ED50_UTM_zone_32N = 23032
 PCS_ED50_UTM_zone_33N = 23033
 PCS_ED50_UTM_zone_34N = 23034
 PCS_ED50_UTM_zone_35N = 23035
 PCS_ED50_UTM_zone_36N = 23036
 PCS_ED50_UTM_zone_37N = 23037
 PCS_ED50_UTM_zone_38N = 23038
 PCS_Fahud_UTM_zone_39N = 23239
 PCS_Fahud_UTM_zone_40N = 23240
 PCS_Garoua_UTM_zone_33N = 23433
 PCS_ID74_UTM_zone_46N = 23846
 PCS_ID74_UTM_zone_47N = 23847
 PCS_ID74_UTM_zone_48N = 23848
 PCS_ID74_UTM_zone_49N = 23849
 PCS_ID74_UTM_zone_50N = 23850
 PCS_ID74_UTM_zone_51N = 23851
 PCS_ID74_UTM_zone_52N = 23852
 PCS_ID74_UTM_zone_53N = 23853
 PCS_ID74_UTM_zone_46S = 23886
 PCS_ID74_UTM_zone_47S = 23887
 PCS_ID74_UTM_zone_48S = 23888
 PCS_ID74_UTM_zone_49S = 23889
 PCS_ID74_UTM_zone_50S = 23890
 PCS_ID74_UTM_zone_51S = 23891
 PCS_ID74_UTM_zone_52S = 23892
 PCS_ID74_UTM_zone_53S = 23893
 PCS_ID74_UTM_zone_54S = 23894
 PCS_Indian_1954_UTM_47N = 23947
 PCS_Indian_1954_UTM_48N = 23948

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_Indian_1975_UTM_47N = 24047
 PCS_Indian_1975_UTM_48N = 24048
 PCS_Jamaica_1875_Old_Grid = 24100
 PCS_JAD69_Jamaica_Grid = 24200
 PCS_Kalianpur_India_0 = 24370
 PCS_Kalianpur_India_I = 24371
 PCS_Kalianpur_India_IIa = 24372
 PCS_Kalianpur_India_IIIa =24373
 PCS_Kalianpur_India_IVa = 24374
 PCS_Kalianpur_India_IIb = 24382
 PCS_Kalianpur_India_IIIb =24383
 PCS_Kalianpur_India_IVb = 24384
 PCS_Kertau_Singapore_Grid = 24500
 PCS_Kertau_UTM_zone_47N = 24547
 PCS_Kertau_UTM_zone_48N = 24548
 PCS_La_Canoa_UTM_zone_20N = 24720
 PCS_La_Canoa_UTM_zone_21N = 24721
 PCS_PSAD56_UTM_zone_18N = 24818
 PCS_PSAD56_UTM_zone_19N = 24819
 PCS_PSAD56_UTM_zone_20N = 24820
 PCS_PSAD56_UTM_zone_21N = 24821
 PCS_PSAD56_UTM_zone_17S = 24877
 PCS_PSAD56_UTM_zone_18S = 24878
 PCS_PSAD56_UTM_zone_19S = 24879
 PCS_PSAD56_UTM_zone_20S = 24880
 PCS_PSAD56_Peru_west_zone = 24891
 PCS_PSAD56_Peru_central = 24892
 PCS_PSAD56_Peru_east_zone = 24893
 PCS_Leigon_Ghana_Grid = 25000
 PCS_Lome_UTM_zone_31N = 25231
 PCS_Luzon_Philippines_I = 25391
 PCS_Luzon_Philippines_II =25392
 PCS_Luzon_Philippines_III = 25393
 PCS_Luzon_Philippines_IV =25394
 PCS_Luzon_Philippines_V = 25395
 PCS_Makassar_NEIEZ = 25700
 PCS_Malongo_1987_UTM_32S =25932
 PCS_Merchich_Nord_Maroc = 26191
 PCS_Merchich_Sud_Maroc = 26192
 PCS_Merchich_Sahara = 26193
 PCS_Massawa_UTM_zone_37N =26237
 PCS_Minna_UTM_zone_31N = 26331
 PCS_Minna_UTM_zone_32N = 26332
 PCS_Minna_Nigeria_West = 26391
 PCS_Minna_Nigeria_Mid_Belt = 26392
 PCS_Minna_Nigeria_East = 26393
 PCS_Mhast_UTM_zone_32S = 26432
 PCS_Monte_Mario_Italy_1 = 26591
 PCS_Monte_Mario_Italy_2 = 26592
 PCS_M_poraloko_UTM_32N = 26632
 PCS_M_poraloko_UTM_32S = 26692
 PCS_NAD27_UTM_zone_3N = 26703
 PCS_NAD27_UTM_zone_4N = 26704
 PCS_NAD27_UTM_zone_5N = 26705
 PCS_NAD27_UTM_zone_6N = 26706
 PCS_NAD27_UTM_zone_7N = 26707
 PCS_NAD27_UTM_zone_8N = 26708
 PCS_NAD27_UTM_zone_9N = 26709
 PCS_NAD27_UTM_zone_10N = 26710
 PCS_NAD27_UTM_zone_11N = 26711
 PCS_NAD27_UTM_zone_12N = 26712
 PCS_NAD27_UTM_zone_13N = 26713
 PCS_NAD27_UTM_zone_14N = 26714
 PCS_NAD27_UTM_zone_15N = 26715

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_NAD27_UTM_zone_16N = 26716
 PCS_NAD27_UTM_zone_17N = 26717
 PCS_NAD27_UTM_zone_18N = 26718
 PCS_NAD27_UTM_zone_19N = 26719
 PCS_NAD27_UTM_zone_20N = 26720
 PCS_NAD27_UTM_zone_21N = 26721
 PCS_NAD27_UTM_zone_22N = 26722
 PCS_NAD27_Alabama_East = 26729
 PCS_NAD27_Alabama_West = 26730
 PCS_NAD27_Alaska_zone_1 = 26731
 PCS_NAD27_Alaska_zone_2 = 26732
 PCS_NAD27_Alaska_zone_3 = 26733
 PCS_NAD27_Alaska_zone_4 = 26734
 PCS_NAD27_Alaska_zone_5 = 26735
 PCS_NAD27_Alaska_zone_6 = 26736
 PCS_NAD27_Alaska_zone_7 = 26737
 PCS_NAD27_Alaska_zone_8 = 26738
 PCS_NAD27_Alaska_zone_9 = 26739
 PCS_NAD27_Alaska_zone_10 =26740
 PCS_NAD27_California_I = 26741
 PCS_NAD27_California_II = 26742
 PCS_NAD27_California_III =26743
 PCS_NAD27_California_IV = 26744
 PCS_NAD27_California_V = 26745
 PCS_NAD27_California_VI = 26746
 PCS_NAD27_California_VII =26747
 PCS_NAD27_Arizona_East = 26748
 PCS_NAD27_Arizona_Central = 26749
 PCS_NAD27_Arizona_West = 26750
 PCS_NAD27_Arkansas_North =26751
 PCS_NAD27_Arkansas_South =26752
 PCS_NAD27_Colorado_North =26753
 PCS_NAD27_Colorado_Central = 26754
 PCS_NAD27_Colorado_South =26755
 PCS_NAD27_Connecticut = 26756
 PCS_NAD27_Delaware = 26757
 PCS_NAD27_Florida_East = 26758
 PCS_NAD27_Florida_West = 26759
 PCS_NAD27_Florida_North = 26760
 PCS_NAD27_Hawaii_zone_1 = 26761
 PCS_NAD27_Hawaii_zone_2 = 26762
 PCS_NAD27_Hawaii_zone_3 = 26763
 PCS_NAD27_Hawaii_zone_4 = 26764
 PCS_NAD27_Hawaii_zone_5 = 26765
 PCS_NAD27_Georgia_East = 26766
 PCS_NAD27_Georgia_West = 26767
 PCS_NAD27_Idaho_East = 26768
 PCS_NAD27_Idaho_Central = 26769
 PCS_NAD27_Idaho_West = 26770
 PCS_NAD27_Illinois_East = 26771
 PCS_NAD27_Illinois_West = 26772
 PCS_NAD27_Indiana_East = 26773
 PCS_NAD27_BLM_14N_feet = 26774
 PCS_NAD27_Indiana_West = 26774
 PCS_NAD27_BLM_15N_feet = 26775
 PCS_NAD27_Iowa_North = 26775
 PCS_NAD27_BLM_16N_feet = 26776
 PCS_NAD27_Iowa_South = 26776
 PCS_NAD27_BLM_17N_feet = 26777
 PCS_NAD27_Kansas_North = 26777
 PCS_NAD27_Kansas_South = 26778
 PCS_NAD27_Kentucky_North =26779
 PCS_NAD27_Kentucky_South =26780
 PCS_NAD27_Louisiana_North = 26781

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_NAD27_Louisiana_South = 26782
 PCS_NAD27_Maine_East = 26783
 PCS_NAD27_Maine_West = 26784
 PCS_NAD27_Maryland = 26785
 PCS_NAD27_Massachusetts = 26786
 PCS_NAD27_Massachusetts_Is = 26787
 PCS_NAD27_Michigan_North =26788
 PCS_NAD27_Michigan_Central = 26789
 PCS_NAD27_Michigan_South =26790
 PCS_NAD27_Minnesota_North = 26791
 PCS_NAD27_Minnesota_Cent =26792
 PCS_NAD27_Minnesota_South = 26793
 PCS_NAD27_Mississippi_East = 26794
 PCS_NAD27_Mississippi_West = 26795
 PCS_NAD27_Missouri_East = 26796
 PCS_NAD27_Missouri_Central = 26797
 PCS_NAD27_Missouri_West = 26798
 PCS_NAD_Michigan_Michigan_East = 26801
 PCS_NAD_Michigan_Michigan_Old_Central = 26802
 PCS_NAD_Michigan_Michigan_West = 26803
 PCS_NAD83_UTM_zone_3N = 26903
 PCS_NAD83_UTM_zone_4N = 26904
 PCS_NAD83_UTM_zone_5N = 26905
 PCS_NAD83_UTM_zone_6N = 26906
 PCS_NAD83_UTM_zone_7N = 26907
 PCS_NAD83_UTM_zone_8N = 26908
 PCS_NAD83_UTM_zone_9N = 26909
 PCS_NAD83_UTM_zone_10N = 26910
 PCS_NAD83_UTM_zone_11N = 26911
 PCS_NAD83_UTM_zone_12N = 26912
 PCS_NAD83_UTM_zone_13N = 26913
 PCS_NAD83_UTM_zone_14N = 26914
 PCS_NAD83_UTM_zone_15N = 26915
 PCS_NAD83_UTM_zone_16N = 26916
 PCS_NAD83_UTM_zone_17N = 26917
 PCS_NAD83_UTM_zone_18N = 26918
 PCS_NAD83_UTM_zone_19N = 26919
 PCS_NAD83_UTM_zone_20N = 26920
 PCS_NAD83_UTM_zone_21N = 26921
 PCS_NAD83_UTM_zone_22N = 26922
 PCS_NAD83_UTM_zone_23N = 26923
 PCS_NAD83_Alabama_East = 26929
 PCS_NAD83_Alabama_West = 26930
 PCS_NAD83_Alaska_zone_1 = 26931
 PCS_NAD83_Alaska_zone_2 = 26932
 PCS_NAD83_Alaska_zone_3 = 26933
 PCS_NAD83_Alaska_zone_4 = 26934
 PCS_NAD83_Alaska_zone_5 = 26935
 PCS_NAD83_Alaska_zone_6 = 26936
 PCS_NAD83_Alaska_zone_7 = 26937
 PCS_NAD83_Alaska_zone_8 = 26938
 PCS_NAD83_Alaska_zone_9 = 26939
 PCS_NAD83_Alaska_zone_10 =26940
 PCS_NAD83_California_1 = 26941
 PCS_NAD83_California_2 = 26942
 PCS_NAD83_California_3 = 26943
 PCS_NAD83_California_4 = 26944
 PCS_NAD83_California_5 = 26945
 PCS_NAD83_California_6 = 26946
 PCS_NAD83_Arizona_East = 26948
 PCS_NAD83_Arizona_Central = 26949
 PCS_NAD83_Arizona_West = 26950
 PCS_NAD83_Arkansas_North =26951
 PCS_NAD83_Arkansas_South =26952

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_NAD83_Colorado_North =26953
 PCS_NAD83_Colorado_Central = 26954
 PCS_NAD83_Colorado_South =26955
 PCS_NAD83_Connecticut = 26956
 PCS_NAD83_Delaware = 26957
 PCS_NAD83_Florida_East = 26958
 PCS_NAD83_Florida_West = 26959
 PCS_NAD83_Florida_North = 26960
 PCS_NAD83_Hawaii_zone_1 = 26961
 PCS_NAD83_Hawaii_zone_2 = 26962
 PCS_NAD83_Hawaii_zone_3 = 26963
 PCS_NAD83_Hawaii_zone_4 = 26964
 PCS_NAD83_Hawaii_zone_5 = 26965
 PCS_NAD83_Georgia_East = 26966
 PCS_NAD83_Georgia_West = 26967
 PCS_NAD83_Idaho_East = 26968
 PCS_NAD83_Idaho_Central = 26969
 PCS_NAD83_Idaho_West = 26970
 PCS_NAD83_Illinois_East = 26971
 PCS_NAD83_Illinois_West = 26972
 PCS_NAD83_Indiana_East = 26973
 PCS_NAD83_Indiana_West = 26974
 PCS_NAD83_Iowa_North = 26975
 PCS_NAD83_Iowa_South = 26976
 PCS_NAD83_Kansas_North = 26977
 PCS_NAD83_Kansas_South = 26978
 PCS_NAD83_Kentucky_North =26979
 PCS_NAD83_Kentucky_South =26980
 PCS_NAD83_Louisiana_North = 26981
 PCS_NAD83_Louisiana_South = 26982
 PCS_NAD83_Maine_East = 26983
 PCS_NAD83_Maine_West = 26984
 PCS_NAD83_Maryland = 26985
 PCS_NAD83_Massachusetts = 26986
 PCS_NAD83_Massachusetts_Is = 26987
 PCS_NAD83_Michigan_North =26988
 PCS_NAD83_Michigan_Central = 26989
 PCS_NAD83_Michigan_South =26990
 PCS_NAD83_Minnesota_North = 26991
 PCS_NAD83_Minnesota_Cent =26992
 PCS_NAD83_Minnesota_South = 26993
 PCS_NAD83_Mississippi_East = 26994
 PCS_NAD83_Mississippi_West = 26995
 PCS_NAD83_Missouri_East = 26996
 PCS_NAD83_Missouri_Central = 26997
 PCS_NAD83_Missouri_West = 26998
 PCS_Nahrwan_1967_UTM_38N =27038
 PCS_Nahrwan_1967_UTM_39N =27039
 PCS_Nahrwan_1967_UTM_40N =27040
 PCS_Naparima_UTM_20N = 27120
 PCS_GD49_NZ_Map_Grid = 27200
 PCS_GD49_North_Island_Grid = 27291
 PCS_GD49_South_Island_Grid = 27292
 PCS_Datum_73_UTM_zone_29N = 27429
 PCS_ATF_Nord_de_Guerre = 27500
 PCS_NTF_France_I = 27581
 PCS_NTF_France_II = 27582
 PCS_NTF_France_III = 27583
 PCS_NTF_Nord_France = 27591
 PCS_NTF_Centre_France = 27592
 PCS_NTF_Sud_France = 27593
 PCS_British_National_Grid = 27700
 PCS_Point_Noire_UTM_32S = 28232
 PCS_GDA94_MGA_zone_48 = 28348

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_GDA94_MGA_zone_49 = 28349
 PCS_GDA94_MGA_zone_50 = 28350
 PCS_GDA94_MGA_zone_51 = 28351
 PCS_GDA94_MGA_zone_52 = 28352
 PCS_GDA94_MGA_zone_53 = 28353
 PCS_GDA94_MGA_zone_54 = 28354
 PCS_GDA94_MGA_zone_55 = 28355
 PCS_GDA94_MGA_zone_56 = 28356
 PCS_GDA94_MGA_zone_57 = 28357
 PCS_GDA94_MGA_zone_58 = 28358
 PCS_Pulkovo_Gauss_zone_4 =28404
 PCS_Pulkovo_Gauss_zone_5 =28405
 PCS_Pulkovo_Gauss_zone_6 =28406
 PCS_Pulkovo_Gauss_zone_7 =28407
 PCS_Pulkovo_Gauss_zone_8 =28408
 PCS_Pulkovo_Gauss_zone_9 =28409
 PCS_Pulkovo_Gauss_zone_10 = 28410
 PCS_Pulkovo_Gauss_zone_11 = 28411
 PCS_Pulkovo_Gauss_zone_12 = 28412
 PCS_Pulkovo_Gauss_zone_13 = 28413
 PCS_Pulkovo_Gauss_zone_14 = 28414
 PCS_Pulkovo_Gauss_zone_15 = 28415
 PCS_Pulkovo_Gauss_zone_16 = 28416
 PCS_Pulkovo_Gauss_zone_17 = 28417
 PCS_Pulkovo_Gauss_zone_18 = 28418
 PCS_Pulkovo_Gauss_zone_19 = 28419
 PCS_Pulkovo_Gauss_zone_20 = 28420
 PCS_Pulkovo_Gauss_zone_21 = 28421
 PCS_Pulkovo_Gauss_zone_22 = 28422
 PCS_Pulkovo_Gauss_zone_23 = 28423
 PCS_Pulkovo_Gauss_zone_24 = 28424
 PCS_Pulkovo_Gauss_zone_25 = 28425
 PCS_Pulkovo_Gauss_zone_26 = 28426
 PCS_Pulkovo_Gauss_zone_27 = 28427
 PCS_Pulkovo_Gauss_zone_28 = 28428
 PCS_Pulkovo_Gauss_zone_29 = 28429
 PCS_Pulkovo_Gauss_zone_30 = 28430
 PCS_Pulkovo_Gauss_zone_31 = 28431
 PCS_Pulkovo_Gauss_zone_32 = 28432
 PCS_Pulkovo_Gauss_4N = 28464
 PCS_Pulkovo_Gauss_5N = 28465
 PCS_Pulkovo_Gauss_6N = 28466
 PCS_Pulkovo_Gauss_7N = 28467
 PCS_Pulkovo_Gauss_8N = 28468
 PCS_Pulkovo_Gauss_9N = 28469
 PCS_Pulkovo_Gauss_10N = 28470
 PCS_Pulkovo_Gauss_11N = 28471
 PCS_Pulkovo_Gauss_12N = 28472
 PCS_Pulkovo_Gauss_13N = 28473
 PCS_Pulkovo_Gauss_14N = 28474
 PCS_Pulkovo_Gauss_15N = 28475
 PCS_Pulkovo_Gauss_16N = 28476
 PCS_Pulkovo_Gauss_17N = 28477
 PCS_Pulkovo_Gauss_18N = 28478
 PCS_Pulkovo_Gauss_19N = 28479
 PCS_Pulkovo_Gauss_20N = 28480
 PCS_Pulkovo_Gauss_21N = 28481
 PCS_Pulkovo_Gauss_22N = 28482
 PCS_Pulkovo_Gauss_23N = 28483
 PCS_Pulkovo_Gauss_24N = 28484
 PCS_Pulkovo_Gauss_25N = 28485
 PCS_Pulkovo_Gauss_26N = 28486
 PCS_Pulkovo_Gauss_27N = 28487
 PCS_Pulkovo_Gauss_28N = 28488

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_Pulkovo_Gauss_29N = 28489
 PCS_Pulkovo_Gauss_30N = 28490
 PCS_Pulkovo_Gauss_31N = 28491
 PCS_Pulkovo_Gauss_32N = 28492
 PCS_Qatar_National_Grid = 28600
 PCS_RD_Netherlands_Old = 28991
 PCS_RD_Netherlands_New = 28992
 PCS_SAD69_UTM_zone_18N = 29118
 PCS_SAD69_UTM_zone_19N = 29119
 PCS_SAD69_UTM_zone_20N = 29120
 PCS_SAD69_UTM_zone_21N = 29121
 PCS_SAD69_UTM_zone_22N = 29122
 PCS_SAD69_UTM_zone_17S = 29177
 PCS_SAD69_UTM_zone_18S = 29178
 PCS_SAD69_UTM_zone_19S = 29179
 PCS_SAD69_UTM_zone_20S = 29180
 PCS_SAD69_UTM_zone_21S = 29181
 PCS_SAD69_UTM_zone_22S = 29182
 PCS_SAD69_UTM_zone_23S = 29183
 PCS_SAD69_UTM_zone_24S = 29184
 PCS_SAD69_UTM_zone_25S = 29185
 PCS_Sapper_Hill_UTM_20S = 29220
 PCS_Sapper_Hill_UTM_21S = 29221
 PCS_Schwarzeck_UTM_33S = 29333
 PCS_Sudan_UTM_zone_35N = 29635
 PCS_Sudan_UTM_zone_36N = 29636
 PCS_Tananarive_Laborde = 29700
 PCS_Tananarive_UTM_38S = 29738
 PCS_Tananarive_UTM_39S = 29739
 PCS_Timbalai_1948_Borneo =29800
 PCS_Timbalai_1948_UTM_49N = 29849
 PCS_Timbalai_1948_UTM_50N = 29850
 PCS_TM65_Irish_Nat_Grid = 29900
 PCS_Trinidad_1903_Trinidad = 30200
 PCS_TC_1948_UTM_zone_39N =30339
 PCS_TC_1948_UTM_zone_40N =30340
 PCS_Voirol_N_Algerie_ancien = 30491
 PCS_Voirol_S_Algerie_ancien = 30492
 PCS_Voirol_Unifie_N_Algerie = 30591
 PCS_Voirol_Unifie_S_Algerie = 30592
 PCS_Bern_1938_Swiss_New = 30600
 PCS_Nord_Sahara_UTM_29N = 30729
 PCS_Nord_Sahara_UTM_30N = 30730
 PCS_Nord_Sahara_UTM_31N = 30731
 PCS_Nord_Sahara_UTM_32N = 30732
 PCS_Yoff_UTM_zone_28N = 31028
 PCS_Zanderij_UTM_zone_21N = 31121
 PCS_MGI_Austria_West = 31291
 PCS_MGI_Austria_Central = 31292
 PCS_MGI_Austria_East = 31293
 PCS_Belge_Lambert_72 = 31300
 PCS_DHDN_Germany_zone_1 = 31491
 PCS_DHDN_Germany_zone_2 = 31492
 PCS_DHDN_Germany_zone_3 = 31493
 PCS_DHDN_Germany_zone_4 = 31494
 PCS_DHDN_Germany_zone_5 = 31495
 PCS_NAD27_Montana_North = 32001
 PCS_NAD27_Montana_Central = 32002
 PCS_NAD27_Montana_South = 32003
 PCS_NAD27_Nebraska_North =32005
 PCS_NAD27_Nebraska_South =32006
 PCS_NAD27_Nevada_East = 32007
 PCS_NAD27_Nevada_Central =32008
 PCS_NAD27_Nevada_West = 32009

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_NAD27_New_Hampshire = 32010
 PCS_NAD27_New_Jersey = 32011
 PCS_NAD27_New_Mexico_East = 32012
 PCS_NAD27_New_Mexico_Cent = 32013
 PCS_NAD27_New_Mexico_West = 32014
 PCS_NAD27_New_York_East = 32015
 PCS_NAD27_New_York_Central = 32016
 PCS_NAD27_New_York_West = 32017
 PCS_NAD27_New_York_Long_Is = 32018
 PCS_NAD27_North_Carolina =32019
 PCS_NAD27_North_Dakota_N =32020
 PCS_NAD27_North_Dakota_S =32021
 PCS_NAD27_Ohio_North = 32022
 PCS_NAD27_Ohio_South = 32023
 PCS_NAD27_Oklahoma_North =32024
 PCS_NAD27_Oklahoma_South =32025
 PCS_NAD27_Oregon_North = 32026
 PCS_NAD27_Oregon_South = 32027
 PCS_NAD27_Pennsylvania_N =32028
 PCS_NAD27_Pennsylvania_S =32029
 PCS_NAD27_Rhode_Island = 32030
 PCS_NAD27_South_Carolina_N = 32031
 PCS_NAD27_South_Carolina_S = 32033
 PCS_NAD27_South_Dakota_N =32034
 PCS_NAD27_South_Dakota_S =32035
 PCS_NAD27_Tennessee = 32036
 PCS_NAD27_Texas_North = 32037
 PCS_NAD27_Texas_North_Cen = 32038
 PCS_NAD27_Texas_Central = 32039
 PCS_NAD27_Texas_South_Cen = 32040
 PCS_NAD27_Texas_South = 32041
 PCS_NAD27_Utah_North = 32042
 PCS_NAD27_Utah_Central = 32043
 PCS_NAD27_Utah_South = 32044
 PCS_NAD27_Vermont = 32045
 PCS_NAD27_Virginia_North =32046
 PCS_NAD27_Virginia_South =32047
 PCS_NAD27_Washington_North = 32048
 PCS_NAD27_Washington_South = 32049
 PCS_NAD27_West_Virginia_N = 32050
 PCS_NAD27_West_Virginia_S = 32051
 PCS_NAD27_Wisconsin_North = 32052
 PCS_NAD27_Wisconsin_Cen = 32053
 PCS_NAD27_Wisconsin_South = 32054
 PCS_NAD27_Wyoming_East = 32055
 PCS_NAD27_Wyoming_E_Cen = 32056
 PCS_NAD27_Wyoming_W_Cen = 32057
 PCS_NAD27_Wyoming_West = 32058
 PCS_NAD27_Puerto_Rico = 32059
 PCS_NAD27_St_Croix = 32060
 PCS_NAD83_Montana = 32100
 PCS_NAD83_Nebraska = 32104
 PCS_NAD83_Nevada_East = 32107
 PCS_NAD83_Nevada_Central =32108
 PCS_NAD83_Nevada_West = 32109
 PCS_NAD83_New_Hampshire = 32110
 PCS_NAD83_New_Jersey = 32111
 PCS_NAD83_New_Mexico_East = 32112
 PCS_NAD83_New_Mexico_Cent = 32113
 PCS_NAD83_New_Mexico_West = 32114
 PCS_NAD83_New_York_East = 32115
 PCS_NAD83_New_York_Central = 32116
 PCS_NAD83_New_York_West = 32117
 PCS_NAD83_New_York_Long_Is = 32118

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_NAD83_North_Carolina =32119
 PCS_NAD83_North_Dakota_N =32120
 PCS_NAD83_North_Dakota_S =32121
 PCS_NAD83_Ohio_North = 32122
 PCS_NAD83_Ohio_South = 32123
 PCS_NAD83_Oklahoma_North =32124
 PCS_NAD83_Oklahoma_South =32125
 PCS_NAD83_Oregon_North = 32126
 PCS_NAD83_Oregon_South = 32127
 PCS_NAD83_Pennsylvania_N =32128
 PCS_NAD83_Pennsylvania_S =32129
 PCS_NAD83_Rhode_Island = 32130
 PCS_NAD83_South_Carolina =32133
 PCS_NAD83_South_Dakota_N =32134
 PCS_NAD83_South_Dakota_S =32135
 PCS_NAD83_Tennessee = 32136
 PCS_NAD83_Texas_North = 32137
 PCS_NAD83_Texas_North_Cen = 32138
 PCS_NAD83_Texas_Central = 32139
 PCS_NAD83_Texas_South_Cen = 32140
 PCS_NAD83_Texas_South = 32141
 PCS_NAD83_Utah_North = 32142
 PCS_NAD83_Utah_Central = 32143
 PCS_NAD83_Utah_South = 32144
 PCS_NAD83_Vermont = 32145
 PCS_NAD83_Virginia_North =32146
 PCS_NAD83_Virginia_South =32147
 PCS_NAD83_Washington_North = 32148
 PCS_NAD83_Washington_South = 32149
 PCS_NAD83_West_Virginia_N = 32150
 PCS_NAD83_West_Virginia_S = 32151
 PCS_NAD83_Wisconsin_North = 32152
 PCS_NAD83_Wisconsin_Cen = 32153
 PCS_NAD83_Wisconsin_South = 32154
 PCS_NAD83_Wyoming_East = 32155
 PCS_NAD83_Wyoming_E_Cen = 32156
 PCS_NAD83_Wyoming_W_Cen = 32157
 PCS_NAD83_Wyoming_West = 32158
 PCS_NAD83_Puerto_Rico_Virgin_Is =32161
 PCS_WGS72_UTM_zone_1N = 32201
 PCS_WGS72_UTM_zone_2N = 32202
 PCS_WGS72_UTM_zone_3N = 32203
 PCS_WGS72_UTM_zone_4N = 32204
 PCS_WGS72_UTM_zone_5N = 32205
 PCS_WGS72_UTM_zone_6N = 32206
 PCS_WGS72_UTM_zone_7N = 32207
 PCS_WGS72_UTM_zone_8N = 32208
 PCS_WGS72_UTM_zone_9N = 32209
 PCS_WGS72_UTM_zone_10N = 32210
 PCS_WGS72_UTM_zone_11N = 32211
 PCS_WGS72_UTM_zone_12N = 32212
 PCS_WGS72_UTM_zone_13N = 32213
 PCS_WGS72_UTM_zone_14N = 32214
 PCS_WGS72_UTM_zone_15N = 32215
 PCS_WGS72_UTM_zone_16N = 32216
 PCS_WGS72_UTM_zone_17N = 32217
 PCS_WGS72_UTM_zone_18N = 32218
 PCS_WGS72_UTM_zone_19N = 32219
 PCS_WGS72_UTM_zone_20N = 32220
 PCS_WGS72_UTM_zone_21N = 32221
 PCS_WGS72_UTM_zone_22N = 32222
 PCS_WGS72_UTM_zone_23N = 32223
 PCS_WGS72_UTM_zone_24N = 32224
 PCS_WGS72_UTM_zone_25N = 32225

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS72_UTM_zone_26N = 32226
 PCS_WGS72_UTM_zone_27N = 32227
 PCS_WGS72_UTM_zone_28N = 32228
 PCS_WGS72_UTM_zone_29N = 32229
 PCS_WGS72_UTM_zone_30N = 32230
 PCS_WGS72_UTM_zone_31N = 32231
 PCS_WGS72_UTM_zone_32N = 32232
 PCS_WGS72_UTM_zone_33N = 32233
 PCS_WGS72_UTM_zone_34N = 32234
 PCS_WGS72_UTM_zone_35N = 32235
 PCS_WGS72_UTM_zone_36N = 32236
 PCS_WGS72_UTM_zone_37N = 32237
 PCS_WGS72_UTM_zone_38N = 32238
 PCS_WGS72_UTM_zone_39N = 32239
 PCS_WGS72_UTM_zone_40N = 32240
 PCS_WGS72_UTM_zone_41N = 32241
 PCS_WGS72_UTM_zone_42N = 32242
 PCS_WGS72_UTM_zone_43N = 32243
 PCS_WGS72_UTM_zone_44N = 32244
 PCS_WGS72_UTM_zone_45N = 32245
 PCS_WGS72_UTM_zone_46N = 32246
 PCS_WGS72_UTM_zone_47N = 32247
 PCS_WGS72_UTM_zone_48N = 32248
 PCS_WGS72_UTM_zone_49N = 32249
 PCS_WGS72_UTM_zone_50N = 32250
 PCS_WGS72_UTM_zone_51N = 32251
 PCS_WGS72_UTM_zone_52N = 32252
 PCS_WGS72_UTM_zone_53N = 32253
 PCS_WGS72_UTM_zone_54N = 32254
 PCS_WGS72_UTM_zone_55N = 32255
 PCS_WGS72_UTM_zone_56N = 32256
 PCS_WGS72_UTM_zone_57N = 32257
 PCS_WGS72_UTM_zone_58N = 32258
 PCS_WGS72_UTM_zone_59N = 32259
 PCS_WGS72_UTM_zone_60N = 32260
 PCS_WGS72_UTM_zone_1S = 32301
 PCS_WGS72_UTM_zone_2S = 32302
 PCS_WGS72_UTM_zone_3S = 32303
 PCS_WGS72_UTM_zone_4S = 32304
 PCS_WGS72_UTM_zone_5S = 32305
 PCS_WGS72_UTM_zone_6S = 32306
 PCS_WGS72_UTM_zone_7S = 32307
 PCS_WGS72_UTM_zone_8S = 32308
 PCS_WGS72_UTM_zone_9S = 32309
 PCS_WGS72_UTM_zone_10S = 32310
 PCS_WGS72_UTM_zone_11S = 32311
 PCS_WGS72_UTM_zone_12S = 32312
 PCS_WGS72_UTM_zone_13S = 32313
 PCS_WGS72_UTM_zone_14S = 32314
 PCS_WGS72_UTM_zone_15S = 32315
 PCS_WGS72_UTM_zone_16S = 32316
 PCS_WGS72_UTM_zone_17S = 32317
 PCS_WGS72_UTM_zone_18S = 32318
 PCS_WGS72_UTM_zone_19S = 32319
 PCS_WGS72_UTM_zone_20S = 32320
 PCS_WGS72_UTM_zone_21S = 32321
 PCS_WGS72_UTM_zone_22S = 32322
 PCS_WGS72_UTM_zone_23S = 32323
 PCS_WGS72_UTM_zone_24S = 32324
 PCS_WGS72_UTM_zone_25S = 32325
 PCS_WGS72_UTM_zone_26S = 32326
 PCS_WGS72_UTM_zone_27S = 32327
 PCS_WGS72_UTM_zone_28S = 32328
 PCS_WGS72_UTM_zone_29S = 32329

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS72_UTM_zone_30S = 32330
 PCS_WGS72_UTM_zone_31S = 32331
 PCS_WGS72_UTM_zone_32S = 32332
 PCS_WGS72_UTM_zone_33S = 32333
 PCS_WGS72_UTM_zone_34S = 32334
 PCS_WGS72_UTM_zone_35S = 32335
 PCS_WGS72_UTM_zone_36S = 32336
 PCS_WGS72_UTM_zone_37S = 32337
 PCS_WGS72_UTM_zone_38S = 32338
 PCS_WGS72_UTM_zone_39S = 32339
 PCS_WGS72_UTM_zone_40S = 32340
 PCS_WGS72_UTM_zone_41S = 32341
 PCS_WGS72_UTM_zone_42S = 32342
 PCS_WGS72_UTM_zone_43S = 32343
 PCS_WGS72_UTM_zone_44S = 32344
 PCS_WGS72_UTM_zone_45S = 32345
 PCS_WGS72_UTM_zone_46S = 32346
 PCS_WGS72_UTM_zone_47S = 32347
 PCS_WGS72_UTM_zone_48S = 32348
 PCS_WGS72_UTM_zone_49S = 32349
 PCS_WGS72_UTM_zone_50S = 32350
 PCS_WGS72_UTM_zone_51S = 32351
 PCS_WGS72_UTM_zone_52S = 32352
 PCS_WGS72_UTM_zone_53S = 32353
 PCS_WGS72_UTM_zone_54S = 32354
 PCS_WGS72_UTM_zone_55S = 32355
 PCS_WGS72_UTM_zone_56S = 32356
 PCS_WGS72_UTM_zone_57S = 32357
 PCS_WGS72_UTM_zone_58S = 32358
 PCS_WGS72_UTM_zone_59S = 32359
 PCS_WGS72_UTM_zone_60S = 32360
 PCS_WGS72BE_UTM_zone_1N = 32401
 PCS_WGS72BE_UTM_zone_2N = 32402
 PCS_WGS72BE_UTM_zone_3N = 32403
 PCS_WGS72BE_UTM_zone_4N = 32404
 PCS_WGS72BE_UTM_zone_5N = 32405
 PCS_WGS72BE_UTM_zone_6N = 32406
 PCS_WGS72BE_UTM_zone_7N = 32407
 PCS_WGS72BE_UTM_zone_8N = 32408
 PCS_WGS72BE_UTM_zone_9N = 32409
 PCS_WGS72BE_UTM_zone_10N =32410
 PCS_WGS72BE_UTM_zone_11N =32411
 PCS_WGS72BE_UTM_zone_12N =32412
 PCS_WGS72BE_UTM_zone_13N =32413
 PCS_WGS72BE_UTM_zone_14N =32414
 PCS_WGS72BE_UTM_zone_15N =32415
 PCS_WGS72BE_UTM_zone_16N =32416
 PCS_WGS72BE_UTM_zone_17N =32417
 PCS_WGS72BE_UTM_zone_18N =32418
 PCS_WGS72BE_UTM_zone_19N =32419
 PCS_WGS72BE_UTM_zone_20N =32420
 PCS_WGS72BE_UTM_zone_21N =32421
 PCS_WGS72BE_UTM_zone_22N =32422
 PCS_WGS72BE_UTM_zone_23N =32423
 PCS_WGS72BE_UTM_zone_24N =32424
 PCS_WGS72BE_UTM_zone_25N =32425
 PCS_WGS72BE_UTM_zone_26N =32426
 PCS_WGS72BE_UTM_zone_27N =32427
 PCS_WGS72BE_UTM_zone_28N =32428
 PCS_WGS72BE_UTM_zone_29N =32429
 PCS_WGS72BE_UTM_zone_30N =32430
 PCS_WGS72BE_UTM_zone_31N =32431
 PCS_WGS72BE_UTM_zone_32N =32432
 PCS_WGS72BE_UTM_zone_33N =32433

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS72BE_UTM_zone_34N =32434
 PCS_WGS72BE_UTM_zone_35N =32435
 PCS_WGS72BE_UTM_zone_36N =32436
 PCS_WGS72BE_UTM_zone_37N =32437
 PCS_WGS72BE_UTM_zone_38N =32438
 PCS_WGS72BE_UTM_zone_39N =32439
 PCS_WGS72BE_UTM_zone_40N =32440
 PCS_WGS72BE_UTM_zone_41N =32441
 PCS_WGS72BE_UTM_zone_42N =32442
 PCS_WGS72BE_UTM_zone_43N =32443
 PCS_WGS72BE_UTM_zone_44N =32444
 PCS_WGS72BE_UTM_zone_45N =32445
 PCS_WGS72BE_UTM_zone_46N =32446
 PCS_WGS72BE_UTM_zone_47N =32447
 PCS_WGS72BE_UTM_zone_48N =32448
 PCS_WGS72BE_UTM_zone_49N =32449
 PCS_WGS72BE_UTM_zone_50N =32450
 PCS_WGS72BE_UTM_zone_51N =32451
 PCS_WGS72BE_UTM_zone_52N =32452
 PCS_WGS72BE_UTM_zone_53N =32453
 PCS_WGS72BE_UTM_zone_54N =32454
 PCS_WGS72BE_UTM_zone_55N =32455
 PCS_WGS72BE_UTM_zone_56N =32456
 PCS_WGS72BE_UTM_zone_57N =32457
 PCS_WGS72BE_UTM_zone_58N =32458
 PCS_WGS72BE_UTM_zone_59N =32459
 PCS_WGS72BE_UTM_zone_60N =32460
 PCS_WGS72BE_UTM_zone_1S = 32501
 PCS_WGS72BE_UTM_zone_2S = 32502
 PCS_WGS72BE_UTM_zone_3S = 32503
 PCS_WGS72BE_UTM_zone_4S = 32504
 PCS_WGS72BE_UTM_zone_5S = 32505
 PCS_WGS72BE_UTM_zone_6S = 32506
 PCS_WGS72BE_UTM_zone_7S = 32507
 PCS_WGS72BE_UTM_zone_8S = 32508
 PCS_WGS72BE_UTM_zone_9S = 32509
 PCS_WGS72BE_UTM_zone_10S =32510
 PCS_WGS72BE_UTM_zone_11S =32511
 PCS_WGS72BE_UTM_zone_12S =32512
 PCS_WGS72BE_UTM_zone_13S =32513
 PCS_WGS72BE_UTM_zone_14S =32514
 PCS_WGS72BE_UTM_zone_15S =32515
 PCS_WGS72BE_UTM_zone_16S =32516
 PCS_WGS72BE_UTM_zone_17S =32517
 PCS_WGS72BE_UTM_zone_18S =32518
 PCS_WGS72BE_UTM_zone_19S =32519
 PCS_WGS72BE_UTM_zone_20S =32520
 PCS_WGS72BE_UTM_zone_21S =32521
 PCS_WGS72BE_UTM_zone_22S =32522
 PCS_WGS72BE_UTM_zone_23S =32523
 PCS_WGS72BE_UTM_zone_24S =32524
 PCS_WGS72BE_UTM_zone_25S =32525
 PCS_WGS72BE_UTM_zone_26S =32526
 PCS_WGS72BE_UTM_zone_27S =32527
 PCS_WGS72BE_UTM_zone_28S =32528
 PCS_WGS72BE_UTM_zone_29S =32529
 PCS_WGS72BE_UTM_zone_30S =32530
 PCS_WGS72BE_UTM_zone_31S =32531
 PCS_WGS72BE_UTM_zone_32S =32532
 PCS_WGS72BE_UTM_zone_33S =32533
 PCS_WGS72BE_UTM_zone_34S =32534
 PCS_WGS72BE_UTM_zone_35S =32535
 PCS_WGS72BE_UTM_zone_36S =32536
 PCS_WGS72BE_UTM_zone_37S =32537

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS72BE_UTM_zone_38S =32538
 PCS_WGS72BE_UTM_zone_39S =32539
 PCS_WGS72BE_UTM_zone_40S =32540
 PCS_WGS72BE_UTM_zone_41S =32541
 PCS_WGS72BE_UTM_zone_42S =32542
 PCS_WGS72BE_UTM_zone_43S =32543
 PCS_WGS72BE_UTM_zone_44S =32544
 PCS_WGS72BE_UTM_zone_45S =32545
 PCS_WGS72BE_UTM_zone_46S =32546
 PCS_WGS72BE_UTM_zone_47S =32547
 PCS_WGS72BE_UTM_zone_48S =32548
 PCS_WGS72BE_UTM_zone_49S =32549
 PCS_WGS72BE_UTM_zone_50S =32550
 PCS_WGS72BE_UTM_zone_51S =32551
 PCS_WGS72BE_UTM_zone_52S =32552
 PCS_WGS72BE_UTM_zone_53S =32553
 PCS_WGS72BE_UTM_zone_54S =32554
 PCS_WGS72BE_UTM_zone_55S =32555
 PCS_WGS72BE_UTM_zone_56S =32556
 PCS_WGS72BE_UTM_zone_57S =32557
 PCS_WGS72BE_UTM_zone_58S =32558
 PCS_WGS72BE_UTM_zone_59S =32559
 PCS_WGS72BE_UTM_zone_60S =32560
 PCS_WGS84_UTM_zone_1N = 32601
 PCS_WGS84_UTM_zone_2N = 32602
 PCS_WGS84_UTM_zone_3N = 32603
 PCS_WGS84_UTM_zone_4N = 32604
 PCS_WGS84_UTM_zone_5N = 32605
 PCS_WGS84_UTM_zone_6N = 32606
 PCS_WGS84_UTM_zone_7N = 32607
 PCS_WGS84_UTM_zone_8N = 32608
 PCS_WGS84_UTM_zone_9N = 32609
 PCS_WGS84_UTM_zone_10N = 32610
 PCS_WGS84_UTM_zone_11N = 32611
 PCS_WGS84_UTM_zone_12N = 32612
 PCS_WGS84_UTM_zone_13N = 32613
 PCS_WGS84_UTM_zone_14N = 32614
 PCS_WGS84_UTM_zone_15N = 32615
 PCS_WGS84_UTM_zone_16N = 32616
 PCS_WGS84_UTM_zone_17N = 32617
 PCS_WGS84_UTM_zone_18N = 32618
 PCS_WGS84_UTM_zone_19N = 32619
 PCS_WGS84_UTM_zone_20N = 32620
 PCS_WGS84_UTM_zone_21N = 32621
 PCS_WGS84_UTM_zone_22N = 32622
 PCS_WGS84_UTM_zone_23N = 32623
 PCS_WGS84_UTM_zone_24N = 32624
 PCS_WGS84_UTM_zone_25N = 32625
 PCS_WGS84_UTM_zone_26N = 32626
 PCS_WGS84_UTM_zone_27N = 32627
 PCS_WGS84_UTM_zone_28N = 32628
 PCS_WGS84_UTM_zone_29N = 32629
 PCS_WGS84_UTM_zone_30N = 32630
 PCS_WGS84_UTM_zone_31N = 32631
 PCS_WGS84_UTM_zone_32N = 32632
 PCS_WGS84_UTM_zone_33N = 32633
 PCS_WGS84_UTM_zone_34N = 32634
 PCS_WGS84_UTM_zone_35N = 32635
 PCS_WGS84_UTM_zone_36N = 32636
 PCS_WGS84_UTM_zone_37N = 32637
 PCS_WGS84_UTM_zone_38N = 32638
 PCS_WGS84_UTM_zone_39N = 32639
 PCS_WGS84_UTM_zone_40N = 32640
 PCS_WGS84_UTM_zone_41N = 32641

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS84_UTM_zone_42N = 32642
 PCS_WGS84_UTM_zone_43N = 32643
 PCS_WGS84_UTM_zone_44N = 32644
 PCS_WGS84_UTM_zone_45N = 32645
 PCS_WGS84_UTM_zone_46N = 32646
 PCS_WGS84_UTM_zone_47N = 32647
 PCS_WGS84_UTM_zone_48N = 32648
 PCS_WGS84_UTM_zone_49N = 32649
 PCS_WGS84_UTM_zone_50N = 32650
 PCS_WGS84_UTM_zone_51N = 32651
 PCS_WGS84_UTM_zone_52N = 32652
 PCS_WGS84_UTM_zone_53N = 32653
 PCS_WGS84_UTM_zone_54N = 32654
 PCS_WGS84_UTM_zone_55N = 32655
 PCS_WGS84_UTM_zone_56N = 32656
 PCS_WGS84_UTM_zone_57N = 32657
 PCS_WGS84_UTM_zone_58N = 32658
 PCS_WGS84_UTM_zone_59N = 32659
 PCS_WGS84_UTM_zone_60N = 32660
 PCS_WGS84_UTM_zone_1S = 32701
 PCS_WGS84_UTM_zone_2S = 32702
 PCS_WGS84_UTM_zone_3S = 32703
 PCS_WGS84_UTM_zone_4S = 32704
 PCS_WGS84_UTM_zone_5S = 32705
 PCS_WGS84_UTM_zone_6S = 32706
 PCS_WGS84_UTM_zone_7S = 32707
 PCS_WGS84_UTM_zone_8S = 32708
 PCS_WGS84_UTM_zone_9S = 32709
 PCS_WGS84_UTM_zone_10S = 32710
 PCS_WGS84_UTM_zone_11S = 32711
 PCS_WGS84_UTM_zone_12S = 32712
 PCS_WGS84_UTM_zone_13S = 32713
 PCS_WGS84_UTM_zone_14S = 32714
 PCS_WGS84_UTM_zone_15S = 32715
 PCS_WGS84_UTM_zone_16S = 32716
 PCS_WGS84_UTM_zone_17S = 32717
 PCS_WGS84_UTM_zone_18S = 32718
 PCS_WGS84_UTM_zone_19S = 32719
 PCS_WGS84_UTM_zone_20S = 32720
 PCS_WGS84_UTM_zone_21S = 32721
 PCS_WGS84_UTM_zone_22S = 32722
 PCS_WGS84_UTM_zone_23S = 32723
 PCS_WGS84_UTM_zone_24S = 32724
 PCS_WGS84_UTM_zone_25S = 32725
 PCS_WGS84_UTM_zone_26S = 32726
 PCS_WGS84_UTM_zone_27S = 32727
 PCS_WGS84_UTM_zone_28S = 32728
 PCS_WGS84_UTM_zone_29S = 32729
 PCS_WGS84_UTM_zone_30S = 32730
 PCS_WGS84_UTM_zone_31S = 32731
 PCS_WGS84_UTM_zone_32S = 32732
 PCS_WGS84_UTM_zone_33S = 32733
 PCS_WGS84_UTM_zone_34S = 32734
 PCS_WGS84_UTM_zone_35S = 32735
 PCS_WGS84_UTM_zone_36S = 32736
 PCS_WGS84_UTM_zone_37S = 32737
 PCS_WGS84_UTM_zone_38S = 32738
 PCS_WGS84_UTM_zone_39S = 32739
 PCS_WGS84_UTM_zone_40S = 32740
 PCS_WGS84_UTM_zone_41S = 32741
 PCS_WGS84_UTM_zone_42S = 32742
 PCS_WGS84_UTM_zone_43S = 32743
 PCS_WGS84_UTM_zone_44S = 32744
 PCS_WGS84_UTM_zone_45S = 32745

APPENDIX GG

Microsoft et al. Exhibit 1005

 PCS_WGS84_UTM_zone_46S = 32746
 PCS_WGS84_UTM_zone_47S = 32747
 PCS_WGS84_UTM_zone_48S = 32748
 PCS_WGS84_UTM_zone_49S = 32749
 PCS_WGS84_UTM_zone_50S = 32750
 PCS_WGS84_UTM_zone_51S = 32751
 PCS_WGS84_UTM_zone_52S = 32752
 PCS_WGS84_UTM_zone_53S = 32753
 PCS_WGS84_UTM_zone_54S = 32754
 PCS_WGS84_UTM_zone_55S = 32755
 PCS_WGS84_UTM_zone_56S = 32756
 PCS_WGS84_UTM_zone_57S = 32757
 PCS_WGS84_UTM_zone_58S = 32758
 PCS_WGS84_UTM_zone_59S = 32759
 PCS_WGS84_UTM_zone_60S = 32760

+----------------------------------+

6.3.3.2 Projection Codes
Note: Projections do not include GCS or PCS definitions. If possible, use the PCS
code for standard projected coordinate systems, and use this code only if
nonstandard datums are required.

Ranges:

 0 = undefined
 [1, 9999] = Obsolete EPSG/POSC Projection codes
 [10000, 19999] = EPSG/POSC Projection codes
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Special Ranges:

 US State Plane Format: 1sszz
 where ss is USC&GS State code
 zz is USC&GS zone code for NAD27 zones
 zz is (USC&GS zone code + 30) for NAD83 zones

 Larger zoned systems (16000-17999)
 UTM (North) Format: 160zz
 UTM (South) Format: 161zz
 zoned Universal Gauss-Kruger Format: 162zz
 Universal Gauss-Kruger (unzoned) Format: 163zz
 Australian Map Grid Format: 174zz
 Southern African STM Format: 175zz

 Smaller zoned systems: Format: 18ssz
 where ss is sequential system number
 z is zone code

 Single zone projections Format: 199ss
 where ss is sequential system number

Values:

 Proj_Alabama_CS27_East = 10101
 Proj_Alabama_CS27_West = 10102
 Proj_Alabama_CS83_East = 10131
 Proj_Alabama_CS83_West = 10132
 Proj_Arizona_Coordinate_System_east = 10201
 Proj_Arizona_Coordinate_System_Central = 10202
 Proj_Arizona_Coordinate_System_west = 10203

APPENDIX GG

Microsoft et al. Exhibit 1005

 Proj_Arizona_CS83_east = 10231
 Proj_Arizona_CS83_Central = 10232
 Proj_Arizona_CS83_west = 10233
 Proj_Arkansas_CS27_North =10301
 Proj_Arkansas_CS27_South =10302
 Proj_Arkansas_CS83_North =10331
 Proj_Arkansas_CS83_South =10332
 Proj_California_CS27_I = 10401
 Proj_California_CS27_II = 10402
 Proj_California_CS27_III =10403
 Proj_California_CS27_IV = 10404
 Proj_California_CS27_V = 10405
 Proj_California_CS27_VI = 10406
 Proj_California_CS27_VII =10407
 Proj_California_CS83_1 = 10431
 Proj_California_CS83_2 = 10432
 Proj_California_CS83_3 = 10433
 Proj_California_CS83_4 = 10434
 Proj_California_CS83_5 = 10435
 Proj_California_CS83_6 = 10436
 Proj_Colorado_CS27_North =10501
 Proj_Colorado_CS27_Central = 10502
 Proj_Colorado_CS27_South =10503
 Proj_Colorado_CS83_North =10531
 Proj_Colorado_CS83_Central = 10532
 Proj_Colorado_CS83_South =10533
 Proj_Connecticut_CS27 = 10600
 Proj_Connecticut_CS83 = 10630
 Proj_Delaware_CS27 = 10700
 Proj_Delaware_CS83 = 10730
 Proj_Florida_CS27_East = 10901
 Proj_Florida_CS27_West = 10902
 Proj_Florida_CS27_North = 10903
 Proj_Florida_CS83_East = 10931
 Proj_Florida_CS83_West = 10932
 Proj_Florida_CS83_North = 10933
 Proj_Georgia_CS27_East = 11001
 Proj_Georgia_CS27_West = 11002
 Proj_Georgia_CS83_East = 11031
 Proj_Georgia_CS83_West = 11032
 Proj_Idaho_CS27_East = 11101
 Proj_Idaho_CS27_Central = 11102
 Proj_Idaho_CS27_West = 11103
 Proj_Idaho_CS83_East = 11131
 Proj_Idaho_CS83_Central = 11132
 Proj_Idaho_CS83_West = 11133
 Proj_Illinois_CS27_East = 11201
 Proj_Illinois_CS27_West = 11202
 Proj_Illinois_CS83_East = 11231
 Proj_Illinois_CS83_West = 11232
 Proj_Indiana_CS27_East = 11301
 Proj_Indiana_CS27_West = 11302
 Proj_Indiana_CS83_East = 11331
 Proj_Indiana_CS83_West = 11332
 Proj_Iowa_CS27_North = 11401
 Proj_Iowa_CS27_South = 11402
 Proj_Iowa_CS83_North = 11431
 Proj_Iowa_CS83_South = 11432
 Proj_Kansas_CS27_North = 11501
 Proj_Kansas_CS27_South = 11502
 Proj_Kansas_CS83_North = 11531
 Proj_Kansas_CS83_South = 11532
 Proj_Kentucky_CS27_North =11601
 Proj_Kentucky_CS27_South =11602

APPENDIX GG

Microsoft et al. Exhibit 1005

 Proj_Kentucky_CS83_North =11631
 Proj_Kentucky_CS83_South =11632
 Proj_Louisiana_CS27_North = 11701
 Proj_Louisiana_CS27_South = 11702
 Proj_Louisiana_CS83_North = 11731
 Proj_Louisiana_CS83_South = 11732
 Proj_Maine_CS27_East = 11801
 Proj_Maine_CS27_West = 11802
 Proj_Maine_CS83_East = 11831
 Proj_Maine_CS83_West = 11832
 Proj_Maryland_CS27 = 11900
 Proj_Maryland_CS83 = 11930
 Proj_Massachusetts_CS27_Mainland = 12001
 Proj_Massachusetts_CS27_Island = 12002
 Proj_Massachusetts_CS83_Mainland = 12031
 Proj_Massachusetts_CS83_Island = 12032
 Proj_Michigan_State_Plane_East = 12101
 Proj_Michigan_State_Plane_Old_Central = 12102
 Proj_Michigan_State_Plane_West = 12103
 Proj_Michigan_CS27_North =12111
 Proj_Michigan_CS27_Central = 12112
 Proj_Michigan_CS27_South =12113
 Proj_Michigan_CS83_North =12141
 Proj_Michigan_CS83_Central = 12142
 Proj_Michigan_CS83_South =12143
 Proj_Minnesota_CS27_North = 12201
 Proj_Minnesota_CS27_Central = 12202
 Proj_Minnesota_CS27_South = 12203
 Proj_Minnesota_CS83_North = 12231
 Proj_Minnesota_CS83_Central = 12232
 Proj_Minnesota_CS83_South = 12233
 Proj_Mississippi_CS27_East = 12301
 Proj_Mississippi_CS27_West = 12302
 Proj_Mississippi_CS83_East = 12331
 Proj_Mississippi_CS83_West = 12332
 Proj_Missouri_CS27_East = 12401
 Proj_Missouri_CS27_Central = 12402
 Proj_Missouri_CS27_West = 12403
 Proj_Missouri_CS83_East = 12431
 Proj_Missouri_CS83_Central = 12432
 Proj_Missouri_CS83_West = 12433
 Proj_Montana_CS27_North = 12501
 Proj_Montana_CS27_Central = 12502
 Proj_Montana_CS27_South = 12503
 Proj_Montana_CS83 = 12530
 Proj_Nebraska_CS27_North =12601
 Proj_Nebraska_CS27_South =12602
 Proj_Nebraska_CS83 = 12630
 Proj_Nevada_CS27_East = 12701
 Proj_Nevada_CS27_Central =12702
 Proj_Nevada_CS27_West = 12703
 Proj_Nevada_CS83_East = 12731
 Proj_Nevada_CS83_Central =12732
 Proj_Nevada_CS83_West = 12733
 Proj_New_Hampshire_CS27 = 12800
 Proj_New_Hampshire_CS83 = 12830
 Proj_New_Jersey_CS27 = 12900
 Proj_New_Jersey_CS83 = 12930
 Proj_New_Mexico_CS27_East = 13001
 Proj_New_Mexico_CS27_Central = 13002
 Proj_New_Mexico_CS27_West = 13003
 Proj_New_Mexico_CS83_East = 13031
 Proj_New_Mexico_CS83_Central = 13032
 Proj_New_Mexico_CS83_West = 13033

APPENDIX GG

Microsoft et al. Exhibit 1005

 Proj_New_York_CS27_East = 13101
 Proj_New_York_CS27_Central = 13102
 Proj_New_York_CS27_West = 13103
 Proj_New_York_CS27_Long_Island = 13104
 Proj_New_York_CS83_East = 13131
 Proj_New_York_CS83_Central = 13132
 Proj_New_York_CS83_West = 13133
 Proj_New_York_CS83_Long_Island = 13134
 Proj_North_Carolina_CS27 =13200
 Proj_North_Carolina_CS83 =13230
 Proj_North_Dakota_CS27_North = 13301
 Proj_North_Dakota_CS27_South = 13302
 Proj_North_Dakota_CS83_North = 13331
 Proj_North_Dakota_CS83_South = 13332
 Proj_Ohio_CS27_North = 13401
 Proj_Ohio_CS27_South = 13402
 Proj_Ohio_CS83_North = 13431
 Proj_Ohio_CS83_South = 13432
 Proj_Oklahoma_CS27_North =13501
 Proj_Oklahoma_CS27_South =13502
 Proj_Oklahoma_CS83_North =13531
 Proj_Oklahoma_CS83_South =13532
 Proj_Oregon_CS27_North = 13601
 Proj_Oregon_CS27_South = 13602
 Proj_Oregon_CS83_North = 13631
 Proj_Oregon_CS83_South = 13632
 Proj_Pennsylvania_CS27_North = 13701
 Proj_Pennsylvania_CS27_South = 13702
 Proj_Pennsylvania_CS83_North = 13731
 Proj_Pennsylvania_CS83_South = 13732
 Proj_Rhode_Island_CS27 = 13800
 Proj_Rhode_Island_CS83 = 13830
 Proj_South_Carolina_CS27_North = 13901
 Proj_South_Carolina_CS27_South = 13902
 Proj_South_Carolina_CS83 =13930
 Proj_South_Dakota_CS27_North = 14001
 Proj_South_Dakota_CS27_South = 14002
 Proj_South_Dakota_CS83_North = 14031
 Proj_South_Dakota_CS83_South = 14032
 Proj_Tennessee_CS27 = 14100
 Proj_Tennessee_CS83 = 14130
 Proj_Texas_CS27_North = 14201
 Proj_Texas_CS27_North_Central = 14202
 Proj_Texas_CS27_Central = 14203
 Proj_Texas_CS27_South_Central = 14204
 Proj_Texas_CS27_South = 14205
 Proj_Texas_CS83_North = 14231
 Proj_Texas_CS83_North_Central = 14232
 Proj_Texas_CS83_Central = 14233
 Proj_Texas_CS83_South_Central = 14234
 Proj_Texas_CS83_South = 14235
 Proj_Utah_CS27_North = 14301
 Proj_Utah_CS27_Central = 14302
 Proj_Utah_CS27_South = 14303
 Proj_Utah_CS83_North = 14331
 Proj_Utah_CS83_Central = 14332
 Proj_Utah_CS83_South = 14333
 Proj_Vermont_CS27 = 14400
 Proj_Vermont_CS83 = 14430
 Proj_Virginia_CS27_North =14501
 Proj_Virginia_CS27_South =14502
 Proj_Virginia_CS83_North =14531
 Proj_Virginia_CS83_South =14532
 Proj_Washington_CS27_North = 14601

APPENDIX GG

Microsoft et al. Exhibit 1005

 Proj_Washington_CS27_South = 14602
 Proj_Washington_CS83_North = 14631
 Proj_Washington_CS83_South = 14632
 Proj_West_Virginia_CS27_North = 14701
 Proj_West_Virginia_CS27_South = 14702
 Proj_West_Virginia_CS83_North = 14731
 Proj_West_Virginia_CS83_South = 14732
 Proj_Wisconsin_CS27_North = 14801
 Proj_Wisconsin_CS27_Central = 14802
 Proj_Wisconsin_CS27_South = 14803
 Proj_Wisconsin_CS83_North = 14831
 Proj_Wisconsin_CS83_Central = 14832
 Proj_Wisconsin_CS83_South = 14833
 Proj_Wyoming_CS27_East = 14901
 Proj_Wyoming_CS27_East_Central = 14902
 Proj_Wyoming_CS27_West_Central = 14903
 Proj_Wyoming_CS27_West = 14904
 Proj_Wyoming_CS83_East = 14931
 Proj_Wyoming_CS83_East_Central = 14932
 Proj_Wyoming_CS83_West_Central = 14933
 Proj_Wyoming_CS83_West = 14934
 Proj_Alaska_CS27_1 = 15001
 Proj_Alaska_CS27_2 = 15002
 Proj_Alaska_CS27_3 = 15003
 Proj_Alaska_CS27_4 = 15004
 Proj_Alaska_CS27_5 = 15005
 Proj_Alaska_CS27_6 = 15006
 Proj_Alaska_CS27_7 = 15007
 Proj_Alaska_CS27_8 = 15008
 Proj_Alaska_CS27_9 = 15009
 Proj_Alaska_CS27_10 = 15010
 Proj_Alaska_CS83_1 = 15031
 Proj_Alaska_CS83_2 = 15032
 Proj_Alaska_CS83_3 = 15033
 Proj_Alaska_CS83_4 = 15034
 Proj_Alaska_CS83_5 = 15035
 Proj_Alaska_CS83_6 = 15036
 Proj_Alaska_CS83_7 = 15037
 Proj_Alaska_CS83_8 = 15038
 Proj_Alaska_CS83_9 = 15039
 Proj_Alaska_CS83_10 = 15040
 Proj_Hawaii_CS27_1 = 15101
 Proj_Hawaii_CS27_2 = 15102
 Proj_Hawaii_CS27_3 = 15103
 Proj_Hawaii_CS27_4 = 15104
 Proj_Hawaii_CS27_5 = 15105
 Proj_Hawaii_CS83_1 = 15131
 Proj_Hawaii_CS83_2 = 15132
 Proj_Hawaii_CS83_3 = 15133
 Proj_Hawaii_CS83_4 = 15134
 Proj_Hawaii_CS83_5 = 15135
 Proj_Puerto_Rico_CS27 = 15201
 Proj_St_Croix = 15202
 Proj_Puerto_Rico_Virgin_Is = 15230
 Proj_BLM_14N_feet = 15914
 Proj_BLM_15N_feet = 15915
 Proj_BLM_16N_feet = 15916
 Proj_BLM_17N_feet = 15917
 Proj_Map_Grid_of_Australia_48 = 17348
 Proj_Map_Grid_of_Australia_49 = 17349
 Proj_Map_Grid_of_Australia_50 = 17350
 Proj_Map_Grid_of_Australia_51 = 17351
 Proj_Map_Grid_of_Australia_52 = 17352
 Proj_Map_Grid_of_Australia_53 = 17353

APPENDIX GG

Microsoft et al. Exhibit 1005

 Proj_Map_Grid_of_Australia_54 = 17354
 Proj_Map_Grid_of_Australia_55 = 17355
 Proj_Map_Grid_of_Australia_56 = 17356
 Proj_Map_Grid_of_Australia_57 = 17357
 Proj_Map_Grid_of_Australia_58 = 17358
 Proj_Australian_Map_Grid_48 = 17448
 Proj_Australian_Map_Grid_49 = 17449
 Proj_Australian_Map_Grid_50 = 17450
 Proj_Australian_Map_Grid_51 = 17451
 Proj_Australian_Map_Grid_52 = 17452
 Proj_Australian_Map_Grid_53 = 17453
 Proj_Australian_Map_Grid_54 = 17454
 Proj_Australian_Map_Grid_55 = 17455
 Proj_Australian_Map_Grid_56 = 17456
 Proj_Australian_Map_Grid_57 = 17457
 Proj_Australian_Map_Grid_58 = 17458
 Proj_Argentina_1 = 18031
 Proj_Argentina_2 = 18032
 Proj_Argentina_3 = 18033
 Proj_Argentina_4 = 18034
 Proj_Argentina_5 = 18035
 Proj_Argentina_6 = 18036
 Proj_Argentina_7 = 18037
 Proj_Colombia_3W = 18051
 Proj_Colombia_Bogota = 18052
 Proj_Colombia_3E = 18053
 Proj_Colombia_6E = 18054
 Proj_Egypt_Red_Belt = 18072
 Proj_Egypt_Purple_Belt = 18073
 Proj_Extended_Purple_Belt = 18074
 Proj_New_Zealand_North_Island_Nat_Grid = 18141
 Proj_New_Zealand_South_Island_Nat_Grid = 18142
 Proj_Bahrain_Grid = 19900
 Proj_Netherlands_E_Indies_Equatorial = 19905
 Proj_RSO_Borneo = 19912

+----------------------------------+

6.3.3.3 Coordinate Transformation Codes

Ranges:

 0 = undefined
 [1, 16383] = GeoTIFF Coordinate Transformation codes
 [16384, 32766] = Reserved by GeoTIFF
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Values:

 CT_TransverseMercator = 1
 CT_TransvMercator_Modified_Alaska = 2
 CT_ObliqueMercator = 3
 CT_ObliqueMercator_Laborde = 4
 CT_ObliqueMercator_Rosenmund = 5
 CT_ObliqueMercator_Spherical = 6
 CT_Mercator = 7
 CT_LambertConfConic_2SP = 8
 CT_LambertConfConic_Helmert = 9
 CT_LambertAzimEqualArea = 10
 CT_AlbersEqualArea = 11

APPENDIX GG

Microsoft et al. Exhibit 1005

 CT_AzimuthalEquidistant = 12
 CT_EquidistantConic = 13
 CT_Stereographic = 14
 CT_PolarStereographic = 15
 CT_ObliqueStereographic = 16
 CT_Equirectangular = 17
 CT_CassiniSoldner = 18
 CT_Gnomonic = 19
 CT_MillerCylindrical = 20
 CT_Orthographic = 21
 CT_Polyconic = 22
 CT_Robinson = 23
 CT_Sinusoidal = 24
 CT_VanDerGrinten = 25
 CT_NewZealandMapGrid = 26
 CT_TransvMercator_SouthOriented= 27

Aliases:

 CT_AlaskaConformal = CT_TransvMercator_Modified_Alaska
 CT_TransvEquidistCylindrical = CT_CassiniSoldner
 CT_ObliqueMercator_Hotine = CT_ObliqueMercator
 CT_SwissObliqueCylindrical = CT_ObliqueMercator_Rosenmund
 CT_GaussBoaga = CT_TransverseMercator
 CT_GaussKruger = CT_TransverseMercator
 CT_LambertConfConic = CT_LambertConfConic_2SP
 CT_LambertConfConic_Helmert = CT_LambertConfConic_1SP
 CT_SouthOrientedGaussConformal = CT_TransvMercator_SouthOriented

+----------------------------------+

6.3.4 Vertical CS Codes
+----------------------------------+

6.3.4.1 Vertical CS Type Codes
Ranges:

 0 = undefined
 [1, 4999] = Reserved
 [5000, 5099] = EPSG Ellipsoid Vertical CS Codes
 [5100, 5199] = EPSG Orthometric Vertical CS Codes
 [5200, 5999] = Reserved EPSG
 [6000, 32766] = Reserved
 32767 = user-defined
 [32768, 65535] = Private User Implementations

Values:

 VertCS_Airy_1830_ellipsoid = 5001
 VertCS_Airy_Modified_1849_ellipsoid = 5002
 VertCS_ANS_ellipsoid = 5003
 VertCS_Bessel_1841_ellipsoid = 5004
 VertCS_Bessel_Modified_ellipsoid = 5005
 VertCS_Bessel_Namibia_ellipsoid =5006
 VertCS_Clarke_1858_ellipsoid = 5007
 VertCS_Clarke_1866_ellipsoid = 5008
 VertCS_Clarke_1880_Benoit_ellipsoid = 5010
 VertCS_Clarke_1880_IGN_ellipsoid = 5011
 VertCS_Clarke_1880_RGS_ellipsoid = 5012
 VertCS_Clarke_1880_Arc_ellipsoid = 5013
 VertCS_Clarke_1880_SGA_1922_ellipsoid = 5014

APPENDIX GG

Microsoft et al. Exhibit 1005

 VertCS_Everest_1830_1937_Adjustment_ellipsoid = 5015
 VertCS_Everest_1830_1967_Definition_ellipsoid = 5016
 VertCS_Everest_1830_1975_Definition_ellipsoid = 5017
 VertCS_Everest_1830_Modified_ellipsoid = 5018
 VertCS_GRS_1980_ellipsoid = 5019
 VertCS_Helmert_1906_ellipsoid = 5020
 VertCS_INS_ellipsoid = 5021
 VertCS_International_1924_ellipsoid = 5022
 VertCS_International_1967_ellipsoid = 5023
 VertCS_Krassowsky_1940_ellipsoid = 5024
 VertCS_NWL_9D_ellipsoid = 5025
 VertCS_NWL_10D_ellipsoid =5026
 VertCS_Plessis_1817_ellipsoid = 5027
 VertCS_Struve_1860_ellipsoid = 5028
 VertCS_War_Office_ellipsoid = 5029
 VertCS_WGS_84_ellipsoid = 5030
 VertCS_GEM_10C_ellipsoid =5031
 VertCS_OSU86F_ellipsoid = 5032
 VertCS_OSU91A_ellipsoid = 5033

 Orthometric Vertical CS;

 VertCS_Newlyn = 5101
 VertCS_North_American_Vertical_Datum_1929 = 5102
 VertCS_North_American_Vertical_Datum_1988 = 5103
 VertCS_Yellow_Sea_1956 = 5104
 VertCS_Baltic_Sea = 5105
 VertCS_Caspian_Sea = 5106

+----------------------------------+

6.3.4.2 Vertical CS Datum Codes
Ranges:

 0 = undefined
 [1, 16383] = Vertical Datum Codes
 [16384, 32766] = Reserved
 32767 = user-defined
 [32768, 65535] = Private User Implementations

No vertical datum codes are currently defined, other than those implied by
the corrsponding Vertical CS code.

+--+

+----------------------------------+

6.4 EPSG Geodesy Parameter Index
+----------------------------------+

Here is a summary of the index ranges for the various coding systems used by EPSG
in their tables. A copy of this index may be acquired at the FTP sites mentioned
in the references in section 5. The "value" table entries below describe how values
from one table are related to codes from another table.

Summary

APPENDIX GG

Microsoft et al. Exhibit 1005

 Entity digit Range
 ---------------------------- ------- --------------
 Prime Meridian 8 8000 thru 8999
 Ellipsoid 7 7000 thru 7999
 Geodetic Datum 6 6000 thru 6999
 Vertical datum 5 5000 thru 5999
 Geographic Coordinate System 4 4000 thru 4999
 Projected Coordinate Systems 2 or 3 20000 thru 32760
 Map Projection 1 10000 - 19999

Geodetic Datum Codes

 Datum Type Value Range Currently Defined
 -------------------------- --------- -------------- -----------------
 Unspecified Geodetic Datum [EC-1000] 6000 thru 6099 6001 thru 6035
 Geodetic Datum 6100 thru 6321 6200 thru 6315
 WGS 72; WGS 72BE and WGS84 6322 thru 6327 6322 thru 6327
 Geodetic Datum (ancient) 6900 thru 6999 6901 thru 6902

 Note for Values: EC = corresponding Ellipsoid Code.

Vertical Datum Codes

 Datum Type Value Range Currently Defined
 -------------------------- --------- -------------- -----------------
 Ellipsoidal [EC-1000] 5000 thru 5099 5001 thru 5035
 Orthometric 5100 thru 5899 5101 thru 5106

 Note for Values: EC = corresponding Ellipsoid Code.

Geographic Coordinate System Codes

 GCS Type Value Range Currently Defined
 ----------------------- ---------- -------------- -----------------
 Unknown geodetic datum [GDC-2000] 4000 thru 4099 4001 thru 4045
 Known datum (Greenwich) [GDC-2000] 4100 thru 4321 4200 thru 4315
 WGS 72; WGS 72BE and WGS84 4322 thru 4327 4322 thru 4327
 Known datum (not Greenwich) 4800 thru 4899 4801 thru 4812
 Known datum (ancient) [GDC-2000] 4900 thru 4999 4901 thru 4902

 Note for Values: GDC = corresponding Geodetic Datum Code

Map Projection System Codes

 US State Plane (10000-15999)
 Format: 1sszz
 where ss is USC&GS State code 01 thru 59
 zz is (USC&GS zone code) for NAD27 zones
 zz is (USC&GS zone code + 30) for NAD83 zones

 Larger zoned systems (16000-17999)
 System Format zz Range
 -------------------------------- ------- -------
 UTM (North) 160zz 01 60
 UTM (South) 161zz 01 60
 zoned Universal Gauss-Kruger 162zz 04 32

APPENDIX GG

Microsoft et al. Exhibit 1005

 Universal Gauss-Kruger (unzoned) 163zz 04 3
 Australian Map Grid 174zz 48 58
 Southern African STM 175zz 13 35

 Smaller zoned systems (18000-18999)
 Format: 18ssz
 where ss is sequential system number 01 18
 z is zone code

 Single zone projections (19900-19999)
 Format: 199ss
 where ss is sequential system number 00 25

Projected Coordinate Systems

For PCS utilising GeogCS with code in range 4201 through 4321
(i.e. geodetic datum code 6201 through 6319):

 As far as is possible the PCS code will be of the format
 gggzz where ggg is (geodetic datum code -6000) and zz is zone.

For PCS utilising GeogCS with code out of range 4201 through 4321
(i.e.geodetic datum code 6201 through 6319):
 PCS code 20xxx where xxx is a sequential number

WGS72 / UTM North 322zz where zz is UTM zone number 32201 32260
WGS72 / UTM South 323zz where zz is UTM zone number 32301 32360
WGS72BE / UTM North 324zz where zz is UTM zone number 32401 32460
WGS72BE / UTM South 325zz where zz is UTM zone number 32501 32560
WGS84 / UTM North 326zz where zz is UTM zone number 32601 32660
WGS84 / UTM South 327zz where zz is UTM zone number 32701 32760
US State Plane (NAD27) 267xx or 320xx where xx is a sequential number
US State Plane (NAD83) 269xx or 321xx where xx is a sequential number

+--+

7 Glossary
 +--+

ASCII: [American Standard Code for Information Interchange]
The predominant character set encoding of present-day
computers.

Cell: A rectangular area in Raster space, in which a single
pixel value is filled.

Code: In GeoTIFF, a code is a value assigned to a GeoKey,
and has one of 65536 possible values.

APPENDIX GG

Microsoft et al. Exhibit 1005

Coordinate System: A systematic way of assigning real (x,y,z..) coordinates
to a surface or volume. In Geodetics the surface is an
ellipsoid used to model the earth.

Datum: a mathematical approximation to all or part of the
earth's surface. Defining a datum requires the definition
of an ellipsoid, its location and orientation, as well as
the area for which the datum is valid.

Device Space A coordinate space referencing scanner, printers and
display devices.

DOUBLE: 8-byte IEEE double precision floating point.

Ellipsoid: A mathematically defined quadratic surface used to
model the earth.

EPSG: European Petroleum Survey Group.

Flattening: For an ellipsoid with major and minor axis lengths
(a,b), the flattening is defined by:,

 f = (a - b)/a

 For the earth, the value of f is approximately 1/298.3

Geocoding: An image is geocoded if a precise algorithm for
determining the earth-location of each point in the
image is defined.

Geographic Coordinate System: A Geographic CS consists of a well-defined ellipsoidal
datum, a Prime Meridian, and an angular unit, allowing
the assignment of a Latitude-Longitude (and optionally,
geodetic height) vector to a location on earth.

GeoKey In GeoTIFF, a GeoKey is equivalent in function to a
TIFF tag, but uses a different storage mechanism.

APPENDIX GG

Microsoft et al. Exhibit 1005

Georeferencing: An image is georeferenced if the location of its pixels in
some model space is defined, but the transformation
tying model space to the earth is not known.

GeoTIFF: A standard for storing georeference and geocoding
information in a TIFF 6.0 compliant raster file.

Grid A coordinate mesh upon which pixels are placed

IEEE Institute of Electrical and Electronics Engineers, Inc.

IFD: In TIFF format, an Image File Directory, containing all
the TIFF tags for one image in the file (there may be
more than one).

Meridian: Arc of constant longitude, passing through the poles.

Model Space A flat geometrical space used to model a portion of the
earth.

Parallel: Lines of constant latitude, parallel to the equator.

Pixel: A dimensionless point-measurement, stored in a raster
file.

POSC: Petrotechnical Open Software Corporation.

Prime Meridian: An arbitrarily chosen meridian, used as reference for all
others, and defined as 0 degrees longitude.

Projection A projection in GeoTIFF consists of a linear (X,Y)
coordinate system, and a coordinate transformation
method (such as Transverse Mercator) to tie this system
to an unspecified Geographic CS..

APPENDIX GG

Microsoft et al. Exhibit 1005

Projected Coordinate System The result of the application of a projection
transformation of a Geographic coordinate system

 Raster Space: A continuous planar space in which pixel values are
visually realized.

RATIONAL: In TIFF format, a RATIONAL value is a fractional
value represented by the ratio of two unsigned 4-byte
integers.

SDTS The USGS Spatial Data Transmission Standard.

Tag: In TIFF format, a tag is packet of numerical or ASCII
values, which have a numerical "Tag" ID indicating
their information content.

TIFF: Acronym for Tagged Image File Format; a
platform-independent, extensive specification for
storing raster data and ancillary information in a single
file.

USGS US Geological Survey

+---+,

 END OF SPECIFICATION
+---+

APPENDIX GG

Microsoft et al. Exhibit 1005

TIFF-
Revision 6.0

Final - June 3, 1992

Adobe Developers Association

Adobe Sysiems lncorPorated
1585 Charleston Road
P.O. Box 7900
Mountain View, CA 94039-7900

E-Mail: devsup-person@adobe.com

A copy of this specification can be found in

http://www.adobe.com/Su pporl/TechNotes.html

and

ft p://ft p.adobe.com/pub/adobe/DeveloperSupporV
TechNotes/PDFfiles

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Copyright
@ 1986-1988, 1992by Adobe Systerns Incorpolated. Permission to copywithout

fee all or patt of this material is granted plovided that the copies are not llade or

distributed for dir.ect colllmercial advantage and the Adobe copyright notice ap-

pears. If the majority of the docuurent is copied or ledistributed, it must be distrib-

uted ver-batim, without repagination or reforuratting. To copy othetwise requires

specif,rc penlission from the Adobe Systems Incorporated'

Licenses and Trademarks

PostScript is a tradernark of Adobe Systems Incorporated. All instances of the

naûre PostScript in the text are references to the PostScript language as defined by

Adobe Systems Incotporated unless otherwise stated. The name PostSclipt also is

used as a plodttct tradetnark for Adobe Systems' implernentation of the PostScript

language intetpreter.

Any leferences to a "PostScript printer," a "PostSclipt fiIe," or a "PostScript

driver" refer to pr.inters, files, and driver prograrns (respectively) which are writ-

ten in or support the PostSclipt language. The sentences in this specification that

use "Postscript language" as an adjective phtase are so constt-ucted to reinforce

that the name r-efers to the standat'd langrrage definition as set forlh by Adobe

Systems Incotporated.

PostSclipt, the Postscript logo, Display Postscript, Adobe, the Adobe logo,

Adobe Iilustlator, Aldus, PageMaker, TIFF, OPI, TrapWise, Tran-Scr-ipt, Cafta,

and Sonata are tradeuatks of Adobe Systenrs Incotporated or its s¡bsidiaries, and

may be registered in some jurisdictions'

Apple, LaserWriter, and Macintosh are registered trademarks and Finder and

System T are tradetnarks of Apple, Computer, Inc. Microsoft and MS-DOS are

registered tradernarks and windows is a traden.rark of Microsoft cotporation.

LINIX is a registered tradenrark of IINIX System Laboratories, Inc., a wholly

owned subsicliary of Novell, Inc. All other tradetnarks are the property of their

respective owners.

Production Notes

This docurlent was created electronically using Adobe PageMaker@ 6.0

2

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6,0 Specification

Contents

lntroduction ... 4

4

6

I
I
I
o

o

o

Part 1: Baseline TlFF....

Part2: TIFF Extensions

Abo ut th is S pe cifi cati on

Revision Notes

TIFF Administration
I nform atio n and S u P Po rt
Private Fields and Values

Submitting a ProPosal

The TIFF Advisory Committee .."'.......
Other TIFF Extensions

......11

Section 1: Notation """"""""12
Section 2: T\FF Structure """13
Section 3: Bilevet lmages """17
Section 4: Grayscale lmages

Section 5: Palette-color lmages

Section 6: RGB Full Color lmages

Section 7: Additional Baseline TIFF Requirements

Section 8: Baseline Field Reference Guide

Section 9 : PackBits Com pression ... "........'..,

Section 1 0: Modified Huffman Compression....""""""'

..........48

Section 11: CCITT Bilevel Encodings

Section 12: Document Storage and Retrieval'."""'

Section 13: LZW Compression '....'....'...".
Section 1 4: Differencing Predictor

22

23

24

26

28

42

43

49

55

57

64

Section 15: Tited lmages """'66
Section 16: CMYK lmages 69

Section 1 7: HalftoneHints 72

Section 18: Associated Alpha Handling 77

Section 19: Data Sampte Format """""""80
Section 20: RGB lmage Colorimetry """"82
Section 21: YCbCr Images -......'.. """""""89
Section 22: JPEG ComPression 95

Section 23: CIE L*a*b* lmages """"""""110

Appendix A: T\FF Tags Sorted by Number. """""""' 117

Appendix B: Operating System Considerations 119

Part 3: Appendices...

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

lntroduction

About this Spec¡fication

This docgment describes TIFF, a tag-based file format for storing and intet'chang-

ing raster images.

t ,' t - _,ntstory

The f,irst version of the TIFF specification was published by Aldus Corporation in

the fall of 1986, after a set'ies of meetings with various scanner manufacturers and

software developers. It did not have a revision nnmber but should have been la-

beled Revision 3.0 since there were two major earlier draft releases'

Revision 4.0 contained mostly minor enhancellents and was released in April

1987. Revision 5.0, released in October 1988, added support for palette color

irnagcs and LZW cottrPression.

Scope

TIFF describes image data that typically comes frol'n scannels, frame grabbers,

and paint- and photo-retouching plograms.

TIFF is not a printer language or page description language. The purpose ofTTFF

is to desclibe and store raster itlage data'

A primary goal of TIFF is to provide a rlch envllomnent within which applica-

iiñ;' ¿-òhánÈe iinàee ¿âtt. This ¡iðhness i¡ ièquiied to take ádVáütáge ôf the

varying capabilities ofscanners and other irnaging devices'

Though TIFF is a rich fonllat, it can easily be used for simple scanners and appli-

cations as well becanse the nutnber of required fields is small'

TIFF will be enhanced on a continuing basis as new imaging needs arise. A high

priority has been given to structnring TIFF so that future enhancelnents can be

added without causing unnecessary hardship to developels'

4

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Features

TIFF is capable of desclibing bilevel, gr:ayscale, palette-color, and ful1-color

image data in several color spaces.

TIFF includes a number ofcourpression schenres that allow developers to

choose the best space or tilne tradeofffor their applications'

TIFF is not tied to specifrc scanners, printers, or conlputel display hardware.

TIFF is por.table. It does not favor particulal opelating systel1ls, frle systems,

compilers, or processors.

TIFF is <lesigned to be extensible--to evolve graceftllly as new needs arise.

TIFF allows the inclusion of an unlimited amount of private or special-purpose

infol'mation.

5

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Revision Notes

Minor changes to TIFF 6.0, March 1995

Updated contacr inJorntation and TIFF administration policies, sÌnce Aldus Cor-

poration mergecl wiÍ.h Adobe Systems Incorporated on September I , I 994 '

The technical content and pagination are unchanged /'rom fhe origfual June 3,

1992 release.

I lt-t- 5,u to t IFr o.u

This levision replaces TIFF Revision 5.0.

In the main body of the clocurnent, paraglaphs that contain new or substantially-

changed information are shown in italics.

New Features in Revision 6'0

Major enhanccments to TIFF 6'0 ale described in Parl 2 They include

. CMYI(irnage definition

. A reviscd RGB Colorirnetry scction.

. YCbCl image definition

. CIE L)taxb* image definition

. Tiled irnage definition

. JPEG cotlpression

Clarifications
. The LZW compression section more clearly explains when to switch the cod-

ing bit length.

. The interaction between Colnpression:2 (CCITT Huffinan) and

Photometliclntetpretati on was clarifi ed

. The data organizatLon of uncotnplessed data (Compression:1) when

BitsPer.sample is greater than 8 was cladfied. see the cotnpt'ession field de-

scription.

. The discussion of ccITT Group 3 and Group 4 bilevel irnage encodings was

clar.ified and expandecl, and Group3Options and Group4options fields were

lenamed T4Options and T6Options. See Section 1 1'

6

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6,0 Specification

O rg an izati o n al C hanges

To make the or.ganization lnore consistent and expandable, appendices were

transfonned into numbered sections'

The document was divided into fwo parts- Baseline and Extensions-to help

developers rnake better and more çonsistent irnplemcntation choices. Patl 1,

the Baseline section, describes those feaftrres that all general-purposc TIFF

readers should support . Part2, the Extensions section, desclibes a nutnber of

features that can be used by special or advanced applications

An index and table of contents were added'

Changes in Requirements

To illustrate a Baseline TIFF file earlief in the document, the material frot.n

Appendix G (,.TIFF Classes") in Revision 5 was integrated into the r.nain body

of the specifrcation . As part of this integration, the TIFF Classes tern.rinology

was teplaced by the rnore monolithic Baseline TIFF tenÎinology. The intent

was to fuflher encourage all rnainstrear.n TIFF readers to suppoft the Baseline

TIFF requireûrents for bilevel, grayscale, RGB, and palette-color in-rages'

Due to licensing issues, LZW complession snppotl was moved out of the "Pafi

l: Baseline TIFF" and into "Part 2: Extensions'"

Baseline TIFF requirernents for bit depths in palette-color images were weak-

ened a bit.

Changes in Terminology

In previous versions ofthe specification, the tenn "tag" reffered both to the identi-

fuing nrur.rber of a TIFF field and to the entire field. In this version, the tenn "tag"

LLfeÃ onty to the identifliing numbet'. The tenn "field" refers to the entire field'

including the value.

CompatibilitY

Evety attempt has been made to add functionality in such a way as to rninir.nize

cornpatibilìry problerns with files and software that were based on earlier versions

of the TIFF specification, The goal is that TIFF files should never become obso-

lete and that TIFF software should not have to be levised tlore frequently than

absolutely necessary. In pafticular, Baseline TIFF 6.0 files will generally be read-

able even by older applications that assrule TIFF 5,0 or an earlier version ofthe

specification.

However, TIFF 6.0 files that use one of the rnajor new extensions, such as a new

compression scheme or color space, will not be successfully read by oldel soft-

ware. In such cases, the older applications must gracefully give up and refuse to

import the image, providing the user with a reasonably infonlative lnessage.

7

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

TIFF Administration

lnformation and SuPPort

The rnost recent version of the TIFF specif,rcation is available in PDF fonnat on

the Adobe WWW and ftp servers See the covel page of the specification for the

rcquired addresses.

Because of the widespreaduse of TIFF for in mauy environments, Adobe is un-

able to provide a general consulting service for TIFF implementors. TIFF devel-

opers are encoru.aged to study sample TIFF frles, r'ead TIFF docurnentation
r r --.^--!, --.:+L l^.,^l^-^-^ ^{-^rL^*^*^r1,,¡tc thol arn irnnnffqnl fn r¡nlt

tnorougllly, allu wutK wltlluçvçruPLtù vr uLr¡vr P¡vu!¡w!Ú

If your TIFF question specifically concer.lls cornpatibility with an Adobe Systetns

product, please contact Adobe Developel Supporl at devsup-pelson@adobe.cotÎ.

Most cotnpanies that use TIFF can answel qttestions about suppott for TIFF in

their.ptoducts. Contact the applopriate product t1lanager or developet suppoft

service gloup.

Private Fields and Values

A¡ organization n-right wish to store infolmatjon meaningflll to only that organi-

zation in a TIFF file . Tags numbere d327 68 or higher, sotletitnes called private

tags, are resetved for that putpose'

Upon reqnest, the TIFF adrninistrator (send euail to devsnp-person@adobe corn)

will allocate and ¡egister one or 1noÍe plivate tags fol an organization, to avoid

i"::ì::ff:*::"îJilH ;::1iïiäï:,ii;ffi ::ï:s;î:"li'l;J'åïh''
other developers to avoid some duplication of effolt. We will likely make the tag

database Public at sonre Point.

private enumerated values can be accotntlodated in a sillilar fashion. For ex-

arnple, yon may wish to experirnent with a new cotnptession scherne within TIFF.

Enumeration constants ntunbered 327 68 or higher are reseled for private usage.

Upon request, the administrator will allocate and legister one or lrore enumerated

válues for a particular field (Compression, in our example), to avoid possible

conflicts.

Tags and values allocated in the private nrunber range are not prohibited from

being included in a future revision of this specihcation. Several such instances

exist iu the cument TIFF specification'

Do not choose your own tag numbers. Doing so could cause serious compatibility

probleps in the futLrre. However, if there is little ol no chance that your TiFF files

ï*n,j;,;|,"ffi
:""åîï::î:i::f ï::ff ì:T:;äî¡#nii:ïiH-

8

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

If you nee<i mofe tha11 10 tags, we suggest that you reserue a single pf ivate tag'

clefine it as a LONG TIFF data type, and use its value as a pointet (offset) to a

pr.ivate IFD or other data struchrre of your choosing. within that IFD, you can use

whatevel tags you want, since no one else will know that it is an IFD unless you

tell them.

Submitting a ProPosal

Any person of group that wants to propose a change or addition to the TIFF speci-

ficati,on shoÙld prepar.e a proposal that includes the following information:

. Name of thc person or group making the request, and your affiliation.

. The reason fol the request

. A list of changes exactly as you plopose that they appear in the specification.

Use inserts, callouts, or other obvions editorial techniques to indicate areas of

cliange, and nutnber each change

. Discussion of the potential irnpact on the installed base

. A list of contacts outside yonr colnpany that support your position. Include

their afflrliation.

Please send your proposal to devsup-person@adobe'cotr.r'

The TIFF Advisory Committee

The TIFF Advisory Cornmittee is a working gloup of TIFF expefts from a nrurhet'

of hardware and software manufacturers. It was fonned in the spring of 1991 to

provide a forum for debating and refining proposals for the 6.0 release of the TIFF

specifrcation.

If you are a TIFF expert and think you have the time and interest to work on this

cornmittee, contact devsnp-person@adobe.col.n for fllilhel information' For the

TIFF 6.0 release, the gr-oup met every fwo or three nronths, usually on the west

of the U.S via Intemet email is a requiretnent for membelship,

since that has proven to be an invaluable

meetlngs

Other TIFF Extensions
(new location is undel

construction; check the Adobe www home page (http://www.adobe.com) for

futur.e developements) will contain proposed TIFF extensions from other compa-

nies that are not approved by Adobe as part ofBaseline TIFF'

These proposals typically fepresent specialized uses ofTIFF that do not fall

withinìhe,do'rain ofp'blishing or general graphics or picture interchange. Gen-

erally, these feaftires will not be widely supporled. If you do write files that incor-

poraie these extensions, be sure to eithel not call then.r TIFF files or tna¡k thern in

,o-. *uy so that they will not be confused with tnainstreatn TIFF files.

o

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

If you have snch a document, send it to devsup-person@adobe.corn. All submls-

sions must be PDF docutnents or simple text. Be snre to includc contact infonna-

tion-at least an er.r-rail address.

'10

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3,'1992TIFF 6.0 Specification

Part 1: Basel¡ne TIFF

The TIFF specification is divided into two parts. Pa[t I describes Baseline TIFF.

Baseline TIFF is the core of TIFF, the essentials that all mainstreall TIFF devel-

opers should suppolt in their products.

11

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 1: Notation

Decimal and Hexadecimal

Unless otherwise noted, all numeric values in this doculrrent at'e expressed in

decimal. (".H" is appended to hexidecimal values.)

Compliance

Is and shall indicate mandatoty requirements. Aii cornpiiant writers anci reaciers

must tneet the sPecifrcation.

Sh ou I d indicates a reconlmendation.

May indicates an oPtion.

Featttres tlesignated 'not recommettded,for general data interchange' are consid-

ered extensions Ío Baseline TIFF. Fites that use mch features shall be designated
,,Extended TIFF 6.0" Jìles, and the particular extensions ttsed should be docu'

mentecl. A Baseline TIFF 6.0 reader is not required Ío support any extensiotts

12

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Section 2: TIFF Structure

TIFF is an image hle format. In this clocument,af le is defined to be a sequence of

8-bit bytes, wher.e the bytes are numbered from 0 to N. The largest possible TIFF

file is 2**32 bytes in length.

A TIFF file begins with an 8-byte irnage./ìle header thatpoints to an imageJile

clirectoty (1FD). An image file directory contains infonlation about the image, as

well as pointers to the achral irnage data.

The following paragraphs desclibe the image file header and IFD in more detail.

See Figule 1.

lmage File Header

Bytes 0- 1 :

Bytes 2-3

- Bytes 4-7

A TIFF file begins with an 8-byte image file header, containing the following

infonnatiou:

The byte order used within the file. Legal values are:

"rr" (4949.H)

"MM" (4D4D.H)

In the "II" fonlat, byte order is always from the least signif,rcant byte to the most

significant byte, for both 1 6-bit and 32-bit integels This is called /ittle-endianbyte

order. In the "MM" format, byte older is always frot1-l most significant to least

signifrcant, for. both 1 6-bit and 32-bit integers. This is called big-endian byte

otder.

An arbitrary but calefully chosen nurlber (42) that ftri'thef identifies the file as a

TIFF file.

The byte older depends on the value ofBytes 0- I

The offset (inby,tes).of thefilst IFD. Thc directory-uial be 4-!4qy loc4!!on in the

file after. the header but must begin on a word boundary.In particular, an Image

File Directory rnay follow the image data it describes. Readers rnust follow the

pointers wherevel'they may lead.

The ternr byte ollset is always used in this document to Ïefet'to a location with

l.espect to the bèginning of the TIFF file. The f,rlst byte of the file has an offset of

0.

13

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Header

B

Figure I

Byte Order

42

Ofset of oth IFD

Number of DirectorY Entries

Directory Entry 0

Dìrectory Entry 1

Directory Entry 2

Ofset of next IFD

Direclory Entry

X

Vâlue or Offset

Value

Tâg

Type

Count

0

x+2

x+4

X+8

A+2

A+26

{"

,i

V

A+2+B'12

Image File Directory

Ln ltnage File DireclorY (IFD) consists of a 2-byïe connt of the nullber of direc-

toqr entr.ios (i. e''the.nutnber o f fields), followed by- a soquQn-c-.e

cntries, followed by a -byte offset of the

wlite the 4 bytes of 0 aftel the last IFD)

next IFD (or 0 ifnone). (Do not folget to

There mnst be at least 1 IFD in a TIFF file and each IFD must have at least one

entry.

SeeFigure 1.

IFD Entry

Each l2-byte IFD entry has the following format:

Bytes 0-1 The Tag that identifies the held'

Bytes 2-3 The held TYPe.

Bytes 4-7 The number of values, Count of the indicated Type'

14

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Bytes 8-l I The Value Offset, the file offset (in bytes) of the Value for the held'

The Value is expected to begin on a word boundary; the con'espond-

ing Value Offset will thus be an even number. This f,rle offset may

point anyr;vhere in the file, even after the image data.

IFD Terminology

t\ TIFF /ìetd is a logical entity consisting of TIFF tag and its value. This logical

concept is inrplemented as an IFD Enlry, plus the actual value if it doesn't frt into

the valne/offset parl, the last 4 bytes of the IFD Entry, The terns TIFF./ield and

IFD entry ale interchangeable in most contexts.

Sort Order

The entries in an IFD urust be sorted in ascending order by Tag. Note that this is

not the order in which the fields are described ìn this docurnent. The Values to

which directory entries point need not be in any palticulal order in the hle.

Value/Offset

To save time and space the Val¡e Offset contains the Value instead of pointing to

the value if and only if the value fits into 4 bytes. If the value is sholter than 4

bytes, it is left-justified within the 4-byte value offset, i.e., stored in the lower-

niunbered bytes. whether the value fits within 4 bytes is detennined by the Type

and Count ofthe ficld.

Count

Count-callecl Lengfh in previous versions of the specifrcation-is the nutlber of

values. Note that Count is not the total nttmbet' of bytes. For example, a single 16-

bit word (SHORT) has a Count of l;not2.

Tyþéis

The field types and their sizes are:

i = BYTE 8-bit unsigned integer.

2:ASCrr
:;:ii:,iillå:iiï::,1,'irASCIIcode;therastbvte

3 : SHORT 16-bit (2-byte) unsigned integer'

4: LONG 32-bÍ(4-byte) unsigned integer'

5 : RATIONAL Two LONGs: the first represents the numerator of a

fraction; the second, the denorninator'

The value of the Count paft of an ASCII field entry includes the NUL. If padding

is necessary, the Count does not include the pad byte. Note that there is no initial

"count byte" as in Pascal-style strings'

15

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Any ASCII field can contain ntultiple strings, each Íemlinated wÌlh a NUL. A

siigte striig is pret'e*ed whenet,er possible. The Count,for multi-sn'ingJields is

thinrnrber oJ'bytes in all the strings in that /ield plus lheir term¡na¡ng NUL

bytes. Only one NUL is allowed betweett strings, so that the strings.following the

.first string will ofien hegin on an odd byle

The reader mnst check the type to verifu that it contains an expected value TIFF

currently allows lnore than I valid type for sol11e fields. For exatlple, ImageWidth

and Imagelength are usually specified as having type SHORT. But irnages with

more than 64I(rows or cohunns must use the LONG field type'

TIFF readers should accepr BYTE, SHOIIT, or L)NG values.for any unsigned

ínteger./ield. This allows a single procedure lo relrieve any integer value, ntalces

reading more robLtsÍ, and 'saves disk space in some situations

In TIFF 6.0, *6¡n¿ nsv,.lield types have been delined:

6: SBYTE An 8-bit signcci (twos-compiement) integer'

7 : LTNDEFINED An 8-bit byte that may contain anything, depending on

the definition of the field.

g: ssHoRT A 16-bit (2-byte) signed (twos-cornplernent) integer.

g: sLoNG A 32-bit (4-byte) signed (twos-complement) integer.

10 : SRATIONAL Two SLONG',s: the frrst represents the ntunerator of a

fi'action, the second the denotninator.

1 I : FLOAT Single precision (4-byte) IEEE fonnat'

12: DOUBLE Double precision (8-byte) IEEE fonlat

These newjìeld types are also governed by the byte order (ll or Mdtt) in lhe TIFF

header.

VI/arning: It is possihle that other TIFF Jìeld types will be added in the future'
Readers sltottld skip over Jìekls contøinit,g an unexpected Jield type'

Fields are arrays

Each TIFF /ield has an associated Count This nteans lhat all /ields

one-dimensional arrays, et,en though rnostJields contaìn onll' a single value'
are actually

For example, to store a complicaÍed data struclLtre in ø single privale/ield, use

rhe 1NDEFINEDJìeld type ctnd set the cotott to the nwnber oJ'bytes reEtired to

hold the data struclure

Multiple Images per TIFF File

There rnay be more than one IFD in a TIFF file. Each IFD defines asub/ìle. One

potential usc ofsubfiles is to describe related images, such as the pages ofa fac-

.simile tr.ansmission. A Baseline TIFF reader is not required to read any IFDs

beyond the hrst one.

16

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 3: Bilevel lmages

Now that the ovelall TIFF stnrcture has been described, we can lnove on to frlling

the stntctule with actual frelds (tags and values) that describe raster image data

To make all of this clearer', the discgssion will be organized according to the four

Baseline TIFF irnage fypes: bilevel, grayscale, palette-color, and ftill-color im-

ages. This section describes bilevel images.

Fields required to describe bilevel images are introduced and desclibed briefly

here. Full descriptìons ofeach field can be found in Section 8'

l^aI.¡nvattvt

A bilevel irnage contains two colors-black and white. TIFF allows an applica-

tion to wlite out bilevel data in either a white-is-zero or black-is-zelo fonlat The

field that records this infoft1.lation is called Photometriclnterpretation.

P h oto m etri cl nte rP retati o n

Tag :262 (106.H)

Type :SHORT

Values:

0: WhitelsZero. For bilevel and grayscale itnages: 0 is imaged as white The maxi-

murn value is irnaged as black. This is the normal value for Cotlpression:2'

1 : BlacklsZero. For bilevel and grayscale images: 0 is imaged as black' The rnaxi-

mnrn valne is imaged as white. If this valge is specifìed for cotnpression:2,the

irlage should display and print reversed.

Compression

Data can be stored either complessed or uncompressed'

Compression
Tas :259 (103.H)

Type - SHORT

Values:

I : No compression, but pack data into bytes as tightly as possible, leaving no unused

bits (except at the end ofa row). The component values are stored as an array of

type BYTE. Each scan line (row) is padded to the next BYTE boundary'

2: CCITT Group 3 1-Dimensional Modified Huffman run length encoding. See

17

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

Rows and Columns

F¡nal-June 3, 1992

Section 10 fol a description of Modified Huffinan Compression'

32113: PackBits cotlpression, a silnple byte-oriented n-rn length schetne. See the

PackBits section for details.

Data compression applies or.rly to laster image data. All other TIFF fields ale

unaffected.

Baseline T'IFF readers must handle all three compression schentes'

An image is or.ganized as a rectangular anay of pixels. The dimensions of this

all'ay are stored in the following fields:

ImageLength
Tag :257 (101.H)

Type :SHORToTLONG

The nutnber of lows (sometimes described as ,scanlines) in the image

ImageWidth
Tas :256 (100.H)

Type =SHORToTLONG

The number of columns ìn the image, i.e., the number of pixels per scanline.

Physical Dimensions

1:

J-

Applications often want to know the size of the pichlre l'epresented by an image'

Thils information-can be calcnLated fìom-ImageVlidth and-hnagelength given the

following resolution data:

ResolutionUnit
Tag :296 (128.H)

Type :SHORT

Values:

No absolutc unit of rlcasurclnent. Used for intages that ln;y have a non-sqrtarc

aspect ratio but no meaningful absoh-rte ditlensions.

Inch.

Centirneter.

Default: 2 (inch).

1B

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

XResolution
Tag :282 (t lA.H)

Type : RATIONAL

The nurnber.of pixels per ResolutionUnit in the hnageWidth (typically, horizontal

- see Orientation) dilection.

YResolution
Tag :283 (1 lB.H)

Type : RATION,\L

The number.of pixels per Resolutionunit in the Imagelength (rypically, verlical)

directiou.

Location of the Data

cornpressed of unconpressed image data can be stored almost anywhere in a

TIFF file. TIFF also snpports breaking an image into separate strips for increased

editing flexibility and efficient I/O buffering. The location and size ofeach strip is

given by the following fields:

RowsPerStriP
Tag :278 (116.H)

Type :SHORToTLONG

The number of rows in each stlip (except possibly thc last strip)

For exarnple, if Imagelength is 24, and RowsPerStlip is 1 0, then there are 3

str ips, with 1 0 rows in the hrst strip, l0 rows in the second strip, and 4 rows in the

third strip. (The data in the last strip is not padded with 6 extra rows of dummy

data.)

StripOffsets
Tag :273 (1ll .H)

Type =SHORToTLONG

For each strip, the byte offset ofthat strip'

StripByteCounts
Tag :279 (lI1.H)

Type =SHORToTLONG

For each strip, the number ofbytes in that strip aJier any conrpression

19

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Putting it all together' (along with a conple of less-important fields that are dis-

cussed later.), a sarnple bilevel irnage file might contain the following fields:

A Sample BilevelTlFF File

ValueOffset Description
(hex) (numcric values are exp resscd in hexadccimal notation)

Header:

0000 Byte Order

0002 42

0004 lstIFD offset

IFD:
rr-.--^1^^-- ^f, n:-^^+^.-, D-r-;^-uul+ l\ttlllugl ul ullLvlury LrrtrrLù

0016 NewSubfileTYPe

0022 ImageWidth

0028 Imagelength
0034 Compression

0046 Phototletriclnterpretation

0052 Stripoffsets

005E RowsPerStlip

0064 StripBytecounts

00'76 XResolution

0082 YResolution

008E Software

0094 DateTime

0046 Ncxt IFD offset

Values longer thøn 4 bYtes:

0086 StripOffsets

0346 StripBytecounts

0696 XResolution

0698 YResolution

4D4D
0024.
000000 1 4

000c
OOFE

01 00

0101

0103

01 06

0111

0116

0117

0t 1A

0118

0131

0132
00000000

0004

0004

0004

0003

0003

0004

0004

0003

0005

0005

0002

0002

00000001 00000000

00000001 000007D0

0000000i 00000888
00000001 8005 0000

00000001 0001 0000

0000008C 00000086

00000001 00000010

0000008C 000003,4.6

00000001 00000696

00000001 0000069E

0000000E 00000646

00000014 00000686

Offset0, Offsetl, ... Offset187

Cor"rnt0, Countl, .,. Countl87

000001 2c 00000001

0000012c 00000001
'"PageMaker'4:0tt- -..' .'-

0686 DateTime

Image Dato:
00000700

XXXXXXXX

XXXXXXXX

XXXXXXXX

Erul of exørnple

"1988:02:18 13:59:59"

Cornpressed data for striP 10

Complessed data for striP 179

Compressed data for striP 53

Compressed data for striP 160

20

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Comments on the Bilevel lmage Example

The IFD in this exarnple stafis at 14h. It could have started anywhere in the flrle

providing the offset was an even nurnbel greater than or equal to 8 (since the

TIFF header is always the first 8 bytes of a TIFF f,rle).

With i 6 rows pel' strip, there are 1 88 stt'ips in all.

The exan-rple uses a number of optional f,relds such as DateTime. TIFF leaders

must safely skip over these fields if they do not understand or do not wish to

use the information. Baseline TIFF leaders must not require that such fields be

present.

To make a point, this example has highly-fi'agmented irnage data. The strips of

the irnage are not in sequential order. The point of this example is to illustrate

that strip offsets must not be ignofed. Never assume that strip N+ I follows

str-ip N on disk. It is not 1'equil'ed that the image data follow the IFD infonna-

tion.

Required Fields for Bilevel lmages

Here is a list of fequired frelds for Baseline TIFF bilevel images' The helds are

listed in nnmelical order', as they would appear in the IFD. Note that the previous

example ornits sotne of these fields. This is pel'rnitted because the fields that were

omitted each have a default and the default is appropriate for this file.

TagNalne Decimal Hex TyPe Vah¡e

256 100 SHORT oTLONG

257 101 SI{ORT or LONG

259 103 SHORT 1,2 ot 32'1'73

262 106 SHORT 0 ot'I

273 111 SHORToTLONG

278 116 SHORToTLONG

219 111 LONG or SHORT

t'i 11À RÃTIoNAI -

283 i 18 RATIONAL

296 128 SHORT 1,2 or3

ImageWidth

InrageLength

Compression

Photonlctricl nterPretati on

StripOfßets

RowsPerStrip

StripBytecounts

iRéioiüii"n
YResolution

ResolutionUnit

Baseline TIFF bilevel irnages were called TIFF Class B images in earlier verstons

of the TIFF specification.

a1

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Section 4: Grayscale lmages

Grayscale inrages ate a genenlization of bilevel images. Bilevel irnages can stole

only black and white iurage data, but grayscale itlages can also store shades of

gray.

To describe such irnages, you must add or change the following fields. The other

required fields are the same as those leqttired for bilevel images'

Differences from Bilevel lmages

compression :1 or 32773 (PackBits).In Baseline TIFF, glayscale images can

eitheibe stored as uncotlpressed data or collpressed with the PackBits algorithm'

Caution: PackBits is often ineffective on continuous tone ilnages, including lnany

grayscale images. In snch cases, it is better tct leave the image uncompressed'

BitsPerSample
Tag :258 (102.I{)

Typc :SHORT

The nnmber of bits per component.

Allowable values for Baseline TIFF grayscale images are 4 and 8, allowing either

16 or 256 distinct shades ofglaY.

Required Fietds for GraYscale lmages

These al.e the requir-ed f,relds for grayscale images (in numet'ical order'):

Decirnal Hex Value

LnageWidth

Imagelength

BitsPerSarnple

Compression

PhotometriclnterPretation

StlipOffsets

RowsPerStrip

StripByteCounts

XResolution

YResolution

ResolutionUnit

SHORT or LONG

SHORT oTLONG

SHORT

SHORT

SHORT

SHORT oTLONG

SHORToTLONG

LONG or SÉIORT

RATIONAL

RATIONAL

SHORT

256

257

258

259

262

213

278

219

282

283

296

100

101

102

103

106

i11

116

11'.7

114

118

128

4or8
I ot 32'773

0or1

1 or 2 or'3

Baseline TIFF grayscale images were caìled TIFF Class G ir.nages in eat'lier ver-

sions of the TIFF specification.

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Section 5: Palette'color lmages

palette-color images are sitllilar to grayscale images. They still have one colllpo-

nent per pixel, but the cotlponent value is used as an index into a full RGB-looktrp

table. Todescribe such irnages, you ueed to add or change the following fields.

The other tequircd fields are the same as those for glayscale images'

Differences from Grayscale lmages

Photometriclnterpretation : 3 (Palette Color).

e obrMap
Tas = 320 (140.H)

Type : SHORT

N :3 I (2**BitsPerSamPle)

This freld defines a Recl-Green-Blue color map (often called a lookup table) for

palette colol images. In a palette-color image, a pixel valne is used to index into an

itcB-look rp table. Fot example, a palette-color pixcl having a valtte of 0 would

be displayed according to the Oth Red, Gleen, Blue triplet'

In a TIFF ColorMap, all the Red values collle f,rrst, followed by the Green values,

then the Blue values. In the colorMap, black is represented by 0,0,0 and white is

represented by 65535, 65535, 65535'

Required Fietds for Palette Color lmages

These are the required fields for palette-colol images (in numerical order)

Value

IrnageWidth 256 100 SHORT or LONG

Imagelength 257 10 1 SHORT or LONG

BitsPersarnpl e 258 102 SHORT 4 or 8

Cornpression 259 103 SHORT I or32713

PhotonretriclnTerpretation 262 106 SHORT 3

StlipOffsets 213 1 1i SHORT or LONG

RowsPerStrip 278 I 16 SHORT or LONG

SffipÈyteCounts 279 ll7 LONG or SHORT

XResolution 282 114 RATIONAL

YResolution 283 1lB RATIONAL

ResolutionUn it 296 128 SHORT I or 2 or 3

CololMap 320 140 SHORT

Baseline TIFF palette-color it11ages were called TIFF Class P images in earlier

versions of the TIFF specification'

23

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

In an RGB it11age, each pixel is nade llp of three colnponents: red, gt'een, and

blue. There is no ColorMap.

To describe an RGB image, you need to add or change the following fields and

values. The othcr lequiled fielcls are the satle as those leqgired fol palette-colot'

images.

Section 6: RGB Full Golor lmages

Differences from Palette Color lmages

BitsperSample = 8,8,8. Each component is 8 bits deep in a Baseline TIFF RGB

lmage.

Photometriclnterpretation : 2 (RGB).

There is no ColorMaP.

SamplesPerPixel
Tag :217 (Ils.H)

Type :SHORT

The number of cotnponents per pixel. This nrunber is 3 for RGB irnages, unless

extra samples are pfesent. See the Extrasarnples field for fuithel infonnation.

Required Fields for RGB Images

These are the lequired fields for RGB images (in nurnerical ordcr'):

Decimal Hex Type ValueTagName

imageWidth

ImageLength

BitsPerSample

Compression

PhotometriclnterPretation

StripOffsets

SamplesPerPixel

RowsPerStrip

StlipByteCounts

XResolution

YResolution

ResolutionUnit

SHORT oTLONG

SHORToTLONG

SHORT

SHORT

SHORT

SHORToTLONG

SHORT

SHORToTLONG

LONG or SHORT

RATIONAL

RATIONAL

SHORT

256

257

258

259

262

213

271

218

219

282

283

296

100

101

102

103

r06

111

115

116

tIl
11A'

l18
128

8,8,8

I or32113

2

3 ol more

24

1,2 or 3

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The BitsPerSample values listed above apply only to the rnaitt image data. If
ExtraSamples a1.e present, the appropriate BitsPerSaûrple values for those

sarnples must also be inctuded.

Baseline TIFF RGB itnages were called TIFF Class R irnages in eallier versions

of the TIFF specification.

25

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Sectio n 7: Additional Baseline TIFF
Requirements

This section describes chalacteristics required ofall Baseline TIFF files

General Requirements

Options. Wher-e there are options, TIFF writers can use whichever they want,

Baseline TIFF readers tnust be able to handle all of thetl.

Defaults. TIFF wr.iters may, but are not requiled to, write out a field that has a

default value, if the default value is the one desired. TIFF readers must be pre-

pared to handle either situation.

Other fields. TIFF readers ngst be prepared to encottnter fields other than those

r.equired in TIFF hles. TIFF wliters are allowed to write optional fields such as

Make, Model, and DateTiure, and TIFF leaders l]1ay use such fields if they exist.

TIFF readers must not, however, refuse to read the file if such optional fields do

not exist. TIFF readers tnttst also be prepared to encounter and ignore private

fields not desuibed in the TIFF specificatiort'

,MM' and ,II, byte order. TIFF readers must be able to handle both byte orders.

TIFF writels cau clo whichevet'is most convenient or efficient'

Multiple subfilcs. TIFF readers must be prepaled for multiple images (subf,rles)

per TIÈF file, altho'gh they are not req'ired to do anything with irnages after the

hrst one, TIFF writers are required to wlite a long word of 0 after the last IFD (to

signal that this is the last IFD), as described earlier in this specif,rcation.

If multiple subfiles are written, the first one mnst be the fllll-resolution image.

Subseqirent irnages, sr,rch as rednced-resolution itllages, rnay be in any order in the

TIFF file. If a r.eader wants to use such images, it mttst scan the corresponding

IFD's before deciding how to proceed.

TIFF Editors. Eclitors-applications that modiff TIFF files-have a few addi-

tional requiretnents:

. TIFF editors must be especially caleful about subfiles. If a TIFF editor edits a

ftlll-resolution subfile, br.lt does not update an accompanying redttced-l'esolu-

tion subfile, a reader that uses the redr¡ced-resolution subfile for screen display

will display the wrong thing. So TIFF editors tnust either create a new reduced-

resoh.rti,on subfile when they alter a flill-resolution subfile or they must delete

any subfiles that they aren't prepared to deal with'

. A sirnilar situation arises with the fields in an IFD. It is unnecessary-and

possibly dangerous--for an editor to copy fields it does not understand be-

cause the editor might alter the file in a way that is incornpatible with the un-

known fields.

No Dr.rylicate Pointers. No data should he referencedfrom more than one place'

TIFF ieaders and editors are under no obligation to detecl this condítion and

handle it properly. This wottkl not be a problem d'TIFF /ìles were reød-only enti'

zo

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

ties, but they are not. This warning covers hoth TIFF /ield value offsets and./ìelds

that are de/ined as ofJ.sets, such as Stt"ipof/iets.

Poinl to real rluta, All strip olfsels rnusl reJërence valid locations. (It is not legal to

use an of.fset of'0 lo tnean sornething special')

Beware of extra cotnponents. Some TIFFJiles ntay have more componenls per

pixel than you thinlc. A Baseline TIFF reader must slcip over lhem graceJully,

using the valttes of the samplesPerPixel and BitsPersample./ields. For example,

Ìt is possible that the dala will have a PhotometriclnterpretaÍion of RGB but have

4 S amp I es P erP i xel. S ee Extr aS an pl es J'o r./u rth er d et a il s.

Beware of netvJield types. Be prepared Ío handle unexpected./ield 4tpes such as

,floa1i.ng-point data. A Baseline TIFF reader must slcip ot,er such./ìelds grace/ully.

Do not expect that BYTE, ASCII, SHORT, LONG, and RATIONALwiII always be

a complete list o/ /ield lYPes.

Beware oinctv pixel Íypcs. Some TIFF jìtes ntu¡, lruve píxcl data lli1l consi'tl'î of
sontething other lhan tmsigned integers. If'the SampleFormal/ield is present and

the t,alue is not I, a Baseline TIFF reader that cannot handle the SantpleFormat

vahte tnnst tenninate the import process gracefully'

Notes on Required Fields

ImageWidth, Imagelength. Both,.SHoRT,' and..LoNG'' TIFF field types afe

allowed an¿ must be handled proper:ly by readels. TIFF writers can use either

type. TIFF readers are not required to read arbitrarily large files however. Some

readers will give up if the entile irnage cannot fit iuto available lne1roly. (In such

cases the reader should infon,r the user about the ploblem,) Othcrs will probably

not be able to handle ImageWidth greatel than 65535'

RowsperStrip. SHORT or LONG. Readers must be able to handle any value

between I and2**32-L However, some readers tnay try to read an entire strip

into me¡rory at one time. If the entire image is one strip, the application may mn

out of rnemory. Recornmendation: Set RowsPerStrip such that the size of each

strip is about 8I(bytes. Do this even for uncompressed data because it is easy for

resolution images may have rows larger than 8K bytes; in this case, RowsPerStrip

should be l, and the strip will be lalger than 8K'

StripOffsets. SHORT or LONG'

StripByteCounts' SHORT or LONG.

XResolution, YResolution. RATIONAL. Note that the X and Y resolutions may

be unequal. A TIFF reader must be able to handle this case. Typically, TIFF pixel-

editors do not care about the lcsolution, but applications (such as page layout

progratns) do care.

ResolutionUnit. SHORT. TIFF readers must be prepared to handle all three

values for ResolutionUnit'

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Section 8: Baseline Field Reference Guide

This section contains detailed inforrnation about all the Baseline helds def,rned in

this version of TIFF. A Baseline.field is any field cotnmonly found in a Baseline

TIFF file, whether required or not'

For convenience, frelds that were defined in earlier versions ofthe TIFF specifica-

tion b¡t ale no longer generally recomtlended have also been included in this

section,

New fields that are associated with optional features are not listed in this section

See Part 2 for descriptions ofthese new frelds, There is a complete list ofall f,relds

descr.ibed in this specihcation in Appendix A, and there are entries for all TIFF

fields in the index.

Mor.e fields rnay be added in ftiture versions. Whenever possible they will be

added in a way that allows old TIFF readers to read newer TIFF files.

The docnllentation for each f,reld contains:

' the nalle of the field

' the Tag number

' the field TYPe

' the lequiledNumber of Values (|J); i e., the Connt

' comûìents describing the field

' the default, ifanY

If the field does not exist, readels must assume the default value for the held.

Most of the fields described in this paft of the doculent are not required or are

required only for particular types ofTIFF files. See the preceding sections for lists

oflequired fields'

Before defining the fields, yor"r must unclerstand these basic concepts: A Baseline

TIFF intage is defir.red to be a two-diurensional atay of pixels, each of which

co¡sists of one or tnore color contponenls. Monocht'ollatic data has one color

The Fields

Artist
Person who created the image.

Tag :315 (138.H)

Type : ASCII

Note: some older TIFF files used this tag for storing copyright infonr,ation

28

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specificatìon Final-June 3, 1992

BitsPerSample
Numbel of bits per component.

Tas :258 (102.H)

Type :SHORT

N : SarnplesPerPixel

Note that this field allows a different nuubel ofbits per cotnpouetlt for each

component cottespotrding to a pixel For exaurple, RGB color data could use a

differeut number ofbits pel cornpolteut for each ofthe th|ee colol planes Most RGB

hles will hate the sarne nL¡mbeL ofBitsPerSanrple fot each cotnponent, Even in this

case, the writer must write all thl ee value s

Default: 1. See also SamplesPer?ixel.

CellLength
The length of the dithering of halftoning mahix used to create a dithered or'

halftoned bilevel fi1e.

Tas :26s (109.H)

Type :SHORT

N :1

This field should only be present if Threshholding:2

No default. See also Threshholding.

CellWidth
The width of the dithering or halttoning matrix nsed to create a dithered or

halftoned bilevel f,ile.Tag :264 (108.H)

Type :SHORT

N :1

No default. See also Threshholding

ColorMap
A color map for palette color itlages

Tag :320(140.H)

Typc : SHORT

N =3*(2*+BitsPelSarnple)

This field deflnes a Red-Green-Blue color tnap (often called a lookup table) for

palette-color irlages. In a palette-color image, a pixel value is used to index into

àn RGB lookr,rp table. For example, a palette-color pixel having a value of 0

would be displayed according to the Oth Red' Green' Blue triplet'

29

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

In a TIFF ColorMap, all the Red valnes come first, followed by the Green values,

then the Blue values. The number of valttes for each color is 2**BitsPerSarnple.

Therefore, the ColorMap field fol an 8-bit palette-color in'rage would h ave 3 * 256

values.

The width of each value is 16 bits, as implied by the rype of SHORT. 0 reptesents

the rninimum intensify, and 65535 lepresents the maximum intensity. Black is

replesented by 0,0,0, and white by 65535, 65535, 65535.

See also Photornetriclnterpretation-- palette color.

No default. ColorMap must be included in all palette-color images'

Compression
Compression schene used on the irnage data

Tag :259 (103.H)

Type :SHORT

N :i

No cot]]pression, bnt pack data into bytes as tightly as possible leaving no unused

bits except at the ettd of a row.

If Then the sample values are stored as an ara]¡ of type:

BitsPerSample: 16 for all samples SHORT

BitsPersanrpl e:32fot all samples LONG

Otherwise BYTE

Each row is padded to the next BYTE/SHORT/LONG boundary, consistenl with

Íhe preceding BiÍsPerSample rule.

If the image data is stored as an atray of SHORTs or LONGs, the byte ofdefing

mnst be consistent with that specihed in bytes 0 and I of the TIFF file header'

Therefore, Iittle-endian forrnat frles will have the least significant bytes preceding

the rnost significant bytes, while big-endian format frles will have the opposite

1:

ofdef.

Ilthe nt¡tnbet ofbits per colnponent is not a power of2, and yotl are willing to give up

soule space fot better pel folmance, use thc next highcl power of 2 For example' if

your data can be repr.esented in 6 bits, set BitsPersaniple to 8 instead of 6, and then

convert the tange ofthe values froln [0,63] to [0,255]'

Rows must begin on byte boundaries. (sHoRT boundaries if the data is stored as

SHORTs, LONG boundaries if the data is stored as LONGs)'

Some graphics systems require image data rows to be word-aligned ol double-word-

aligned, and padcìed to word-boundaries or clouble-word boundaries, uncompressed

TIFF r.ows will neecl to be copied into rvord-aligned ot double-word-aligned row

buffels before beirlg passed to the graphics routines in these envitontrents'

2- CCITT Group 3 1-Dimensional Modihed Huffinan run-length encoding. See

Section 1 0. BitsPerSample mnst be 1 , since this type of complession is defined

only for bilevel irnages.

30

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

32i73: PackBits cornpression, a simple byte-oriented run-length scheme. See Section 9

for details.

Data compression applies only to the image data, pointed to by Shipoffsets.

Default : i.

Copyright
Copyright notice.

Tag :33432 (8298.H)

Type : A,SCII

Copyright notice of the persou or organization that claims the copyright to the

image. The cor.nplete copyright staternent shonld be listed in this field including

any dates and stateilents of ciaims. For exampie, "CopyÍight, iohn Smith, 19xx.

All rights reserved."

DateTime

Date and title of image ct'eation.

Tag :306 (132.H)

Type : ASCII

N :20

The fonlat is: ,.YYYY:MM:DD HH:MM:SS", with hours like those on a 24-hour

clock, and one space chalacter between the date and the time. The length ofthe

stling, including the tenninating NUL, is 20 bytes

ExtraSamPIes

DescriPtion of extra components.

--** --'.Tag -338 (152't{)

Type :SHORT

N

Specifies that each pixel has m extÍa conlponents whose interpretation is defined

by one of the values listed below. when this freld is used, the SamplesPer?ixel

field has a value greater than the Photometriclnterpretation held suggests.

Fol example, full-color RGB data normally has SamplesPerPixcl:3' If
San.rplesPerPixel is greater than 3, then the ExtraSamplcs field describes the

rneaning of the extra samples. If San-rplesPerPixel is, say, 5 then Extrasarnples

will contain 2 values, one for each extra satnple

ExtraSan.rples is typically used to inclucle non-color infoulation, such as opacity,

in an image. The possible values for each item in the field's value are:

Unspecified data

Associated alpha data (with pre-rnultiplied colof

0=

l-

31

APPENDIX HH

Microsoft et al. Exhibit 1005

Fìnal-June 3, 1992TIFF 6.0 Specification

2: Unassociated alpha data

Associated alpha clata is opacity infotmation; it is fully described in Section 21.

Unassociated alpha data is transparency infonnation that logically exists indepen-

dent of an image; it is comrnonly called a soÍì llatte. Note that including both

unassociated and associated alpha is undefined because associated alpha specifies

that color components are pre-multiplied by the alpha component, while

unassociated alpha specifies the opposite

By convention, extra components that are pfesent must be stored as the "last com-

ponents" in each pixel. FoI exat,l1ple, if SarnplesPelPixel is 4 and thele is I extra

ion1ponent, then it is located in the last conlponent locatìon (SamplesPerPixel- 1)

in each pixel.

Cor.nponents designated as "extra" ale just like other cor.uponents in a pixel. In

particular', the size of such components is defìned by the value of the

BitsPcrSarnplc field.

With the introcluction of this field, TIFF Íeadels nust not assllme a pafiicular

SarnplesPelPixel value based on the value of the Phototnetriclnterpretation field.

For example, if the file is an RGB file, SamplesPerPixel rnay be greater than 3'

The default is no extra samples. This field rlust be present if there are extra

samples.

See also SamplesPerPixel, AssociatedAlpha

FillOrder
The logical order of bits within a byte

Tag :266 (104.H)

Type :SHORT

N =1

1 : pixels ar.e arrangecl within a byte such that pixels with lower colutln values are

stoled in the higher-older bits ofthe byte'

of byte 0, pixel 1 is stored in the next-highest bit, ..., pixel 7 is stoled in the low-

older bit ofbyte 0, pixel 8 is stored in the high-oldel bit ofbyte 1, and so on.

CCITT 1-bit cornpressed data example: The high-orderbit of the fit'st compres-

sion code is stored in the high-order bit of byte 0, the next-highest bit of the fir'st

co¡rpression code is stored in the next-highest bit ofbyte 0, and so on.

Z: pixels are arranged within a byte such that pixels with lower column values are

stored in the lower-order bits of the byte'

We recommend that FillOrder:2 be used only in special-putpose applications, It

is easy and inexpensive for writers to l'evefse bit order by using a 256-byte lookup

table. FiltOrder : 2 should be used only when BitsPerSantple : I and the data is

îIí;#i:#'.;;ïi;;::#!,i:::;:,::*r
cctrr ID or 2D compression'

'îo

Suppoft for FillOr.der:2 is not required in a Baseline TIFF cornpliant reader

Default is FillOrder: I .

32

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification
Final-June 3, 1992

FreeByteCounts
For each string of contiguous unused bytes in a TIFF frle, the nullber of bytes in

the stling.

Tag :289 (lzLH)

Type =LONG

Not recommended fol genelal interchange.

See also FreeOffsets.

FreeOffsets

For each str.ing of contiguons unnsed bytes in a TIFF file, the byte offset of the

stling.

Tag :288 (120.H)

Type :LONG

Not recotnmended for general interchange.

See also FreeByteCounts.

GrayResponsecurve
For grayscale data, the optical density ofeach possible pixel value'

Tag :291(t23.H)

Type :SHORT

N = 2**BitsPerSample

The Oth value of GrayResponseCurve cotTesponds to the optical density of a pixel

having a value of0, and so on.

This freld rnay provide useful information for sophisticated applications, but it is

, ç1try-ej1-tly

See also GrayResponseUnit, Photometriclnterpretation'

GrayResponseunit
The precision of the information contained in the GlayResponsecnrue.

Tag :290 (122.H)

Type :SHORT

N =l
Becanse optical density is specified in tenns of fi'actional nutnbets, this field is

necessary to interpret the stored integer infonlation For example, if
GrayScaleResponseUnits is set to 4 (ten-thousandths of a unit), and a

GrayScaleResponsecule ntunbeÏ for gray level 4 is 3455, then the resulting

achral value is 0.3455.

optical densitomcters typically lrìeasure densities within the range of 0 0 to 2 0.

JJ

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Number represents tenths of a unit.

Nurnber represents hundredths of a unit.

Nunrber represents thousandths ofa unit.

Number represents ten-thousandths of a unit.

Numbel t'epresents hundred-thousandths of a unit

Modi hes GrayResponseCurve.

See also GrayResponseCtuve.

For historical reasons, the clefault is 2. However, for greatet'accuracy' 3 is recom-

rnended.

Llrte.Í1r¡rnnt tÍpr

The cornpnter and/or operating system in use at the time of image creation

Tag : 316 (13C.H)

Type : ASCII

See also Make, Model, Softwale.

ImageDescription
A stling that describes the subject of the image.

Tag :270 (10E.H)

Type : ASCII

For.example, a nser may wish to attach a conlment such as "1988 cornpany pic-

nic" to an image.

ImageLength

l-

a-

J-

4:
5:

The number of rows of pixels in the itnage

Tag :257 (101.H)

Type = SI-IORT oTLONG

N :I

No default. See also ImageWidth.

lmageWidth
The number of columns in the image, i'e', the nurnber of pixels per row

Tas :256 (100.H)

Type : SIIORT oILONG

N :1

No default. See also Itnagelength'

34

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Make
The scannet' manufachtrer.

Tag :271 (10F.H)

Type : ASCII

Manufacturer of the scanner, video digitizer, or other type of equipt11ent nsed to

generate the image. Synthetic images should not include this fteld.

Sce also Model, Software.

MaxSampleValue

The maxitnutn component valne used.

Tag :28i (i i9.H)

Type :SHORT

N : SamplesPelPixel

This field is not to bc used to allcct thc visual appcarancc olan irnagc when it is

displayed or pr.iuted. Nor should this field affect the interpretation of any othel'

field; it is used only for statistical pulposes

Defar¡lt is 2**(BitsPerSarnple) - 1.

MinSampleValue

The lniniu-tun cotnponent value used

Tag :280 (118.H)

Type :SHORT

N : SarnplesPerfixel

See also MaxSarnPleValue.

Default is 0.

Model
The scanner model name or ntulber.

Tag :212 (Il0.H)

Type : ASCII

The nrodel name or number of the scanner, video digitizer, or olhe¡ type of equip-

lnent used to gcncralc the irnage.

See also Make, Soffware.

JC

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specificatìon Final-June 3, 1992

NewSubfileTYPe

A genelal indication ofthe kind ofdata contained in this subf,rle'

Tag:254 (FE.H)

Type: LONG

N:1
Replaces the old SubfileType freld, due to lirnitations in the dehnition of that fìeld'

NewS¡bfileType is mainly useful when there ate n.rultiple subfiles in a single

TIFF file.

This field is made up of a set of 32 flagbits. lJnused bits are expected to be 0. B jt 0

is the low-order bit,

Culrently dehned values are:

Bit 0 is I if the irnage is a reduced-resolution velsion of another iurage in this TIFF file;

else the bit is 0.

Bit 1 is I if the image is a single page of a multi-page image (see the PageNrurrber field

description); else the bit is 0.

Bit2 is I if the image dcfines a transpafoncy mask for another irnage in this TIFF file.

The Photornetriclnterpretation value must be 4, designating a transparency mask'

These values are defined as bit flags beçause they ale independent ofeach other.

Default is 0,

Orientation
The orientation of the image with respect to the rows and columns

Tag :214 (Ilz.H)

Type :SHORT

N :I

1 : The Oth row represents the visual top ófthe ìinãge; áIid the Oth öölünin iepi'esents--

the visual left-hand side.

2-- The Oth row represents the visual top of the image, and the Oth cohuln represents

the visual light-hand side.

3 = The Oth row represents the visual bottoll of the image, and the Oth column repre-

sents the visual righthand side.

4 = The Oth row represents the visual bottom of the image, and the O,th column repre-

sents the visual lefrhand side.

5 = The 0{h row reprcsents the visual lcft-hand side of the image, and thò Oth colunrn

represents the visual toP.

6 = The Oth row replesents the visual righrhand side of the image, and the Oth column

represents the visual toP.

j : The Oth row represents the visual right-hand side of the image, and the Oth column

represents the visual bottoll.

36

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Finaì-June 3, 1992

8 : The Oth row fepresents the visual left-hand side of the image, and the Oth column

represents the visual bottom.

Default is 1.

strpporl.for orientations other than I is not a Baseline TIFF requirentent.

P h oto m etri c I nte rP retati o n

The color space of the illage data.

Tag :262 (106.H)

Type :SHORT

N :1

0: WhitelsZero. Fcr bi!e'''el and grayscale it.t1ages: 0 is in,aged as white'

2**BitsPersatnple- 1 is imaged as black. This is the normal ralue for compres-

sion:2.

I : BlacklsZero. For bilevel and grayscale images: 0 is imaged as black.

2**BitsPersample-1 is imaged as white. If this value is specihed for Compres-

sion:2, the in.rage should display and print reversed'

2: RGB. In the RGB model, a color is described as a cornbination of the three pri-

mary colors of light (red, green, and blue) in particular concentlations. For each of

the three co¡rponents, 0 represents minilrlutn intcnsity, and 2**BitsPerSarnple - I

replesents maxiruuln intensity. Thus an RGB value of (0,0,0) t'epresents black,

and(255,255,255) r'epresents white, assuming 8-bit components For

PlanarConfiguration: 1, the cotnponents ale stored in the indicated order: first

Red, then Green, then Blue. For Planatconfiguration:2,the stripoffsets fof the

cornponent planes are stored in the indicated order: frrst the Red cornponent plane

StripOfßets, then the Green plane Stfipoffsets, then the Blue plane StripOffsets.

3: Palette color. In this model, a color is described with a single cotnponent. The

value ofthe component is used as an index into the red, green and blue curves in

the colorMap field to retrieve an RGB triplet that defines the color. when

Photometriclnterpletation:3 is used, ColorMap n.rust be present and
- - SanrplesPerPixel'mustbe'l :--'"-' -'

4: Transparency Mask.

This rneans that the i¡rage is used to define an irregularly shaped region ofanother

image in the same TIFF frle. SamplesPefPixel and BitsPerSalnple must be 1.

PackBits compression is recomlnended. The 1-bits define the interior of the re-

gion; the 0-bits define the extet'ior of the region.

A reader application can use the rnask to determine which parls of the irnage to

display. Main image pixels that correspond to 1-bits in the transparency tnask are

imaged to the screen or printer, but main image pixels that coüespond to 0-bits in

the mask are not displayed or pl'inted.

The ùnage mask is rypically al a higher resolutiott than the main intage, ifthe

rnain image is grayscale or color so lhat lhe edges can be sharp'

There is no defar.rlt for Photometriclnterpretation, and it is reqttired. Do not rely

on applications defaulting to what you want.

37

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

PlanarConfiguration
How the components of each pixel are stored.

Tag :284 (1lC.H)

Type :SHORT

N :1

I : Chunky fotr.nat. The component values fol' each pixel are stored contiguously

The order of the components within the pixel is specificd by

Photometriclnterpretation. For example, for RGB data, the data is stored as

RGBRGBRGB...

2: planar fortnat The components are stored in sepat'ate "component planes." The

values in Str.ipOffsets ancl StlipByteCounts al'e then arranged as a 2-dimensional

array, with SamplesPeÍPixel t'ows and StripsPerlmage columns. (All of the col-

urnns for row 0 are stot'ed fltrst, followed by the colru]lns of row 1, and so on)

Photouetriclntelpretation describes the fype of data stored in each component

plane. For.example, RGB data is stored with the Red components in one compo-

nent plane, the Green in another, and the Blue in another'

PlanarConJìguration:2 Ìs not currently inwidespread use and it is not recom-

mended/or general interchange. It is used as an exlensìon and Baseline TIFF

readers øre not required lo support ít

If SamplesPer?ixel is 1 , PlanalConfrguration is itrelevant, and need not be in-

cluded.

Ifa rorv interleave effect is clesired, a writer tnight rvrite out the datâ as

PlanaLCorrfigul.ation:2-sepat.atesatrrpleplanes-butbreakuptheplanesinto

rurultiple strips (one row pet strip, pelhaps) and interlcave the stlips'

Default is 1. See also BitsPersample, SarnplesPelPixel'

ResolutionUnit
The unit of measuretnent fol XResolution and YResoh'rtion

Tag :296 (r28.H)

Type :SHORT

N :1

To be used with XResolution and YResolution.

1 : No absolute unit of measurernent. Used for images that may have a non-square

aspect ratio, but no rneaningful absolute dimensions'

The cù.awback of ResolutionUnipl is that diffelent applications will iniport the image

at differcnt sizes; Even ifthe decision is albitraly, it might be better to use dots pel.

inch or. dots per. celìtilìletel., and to pick XResolution and YResolution so that the

aspcctfatioiscorLectandthemaxitrrumdit¡ensionoftheimageisaboutfourinches

(tlie "four'" is ar-bitrarY.)

3=

Inch.

Centimeter,

Default is 2.

3B

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

RowsPerStrip
The nuuber of rows Per striP.

Tag :278 (116.H)

Type =SHORToTLONG

N :I

TIFF image data is organized into strips for faster randolll access and effrcient I/O

br"rffering.

Rowspcrstrip and Imagelength together tell us the numbetof stlips irl the entire

irnage. The equation is:

StripsPcrllnage = floor ((lnagelength + RowsPerstrip - 1) / RowsPerstrip)'

str.ipsPer.Iniage is nol a lield, It is urerely a value that a TIFF leadel will want to

coutputc because it specilìes the nr¡rnbel olstripollscis art<i Siii¡iBytccounts lol lhe

image.

Note that either sHoRT or LONG values can be used to specify RowsPelStrip.

SHORT values may be used for srriall TIFF files. It should be noted, however' that

carliel TIFF specification revisions required LONG values aud that some softyare

nìay rìot accept SHORT valucs

The default is 2**32 - 1, which is effective ly infinity. That is, the entire irnage is

one strip.

Useofasinglestripisnotreconllrretrded'ChooseRowsPerstr'ipsuchtliateachstripis

about 8K bytes, even ifthe data is not col]]ptessed, since it nrakes bufleling sirnplel

fol readels, The "8K" value is failly arbitrary, br¡t seelns to wolk well'

See also Imagelength, Shipoffsets, StripByteCounts' TileWidth, Tilelength'

TileOffsets, TileBYteCounts'

SamplesPerPixel
The nutnber of cotnponents per pixel

Tag

Type

N

:2',/7 (tls.H)

: SHORT

1

-t

SanrplesPerPi xel is usually 1 for bilevel, grayscale, and palette-color images.

SamplesPerPixel is usually 3 fol RGB images'

Defar.rlt = 1. See also BitsPerSarnple, Photoqretriclnterpretation, ExtraSamples

Software
Name and version number of the software package(s) ì,lsed to cleate thc image.

Tag : 305 (i31.H)

Type = ASCII

See also Make, Model.

20

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specìfication
Final-June 3, 1992

StripByteCounts
Fol each strip, the number of bytes in the stlip after cornpression'

Tas :219 (111.H)

Type : SI{ORT oTLONG

N : StripsPerlnage for Planat'Configuration equal to 1'

= SamplesPerPixel * StripsPerlttrage for PlanarConfiguration equal to 2

This tag is reqtrired for Baseline TIFF./iles'

No default.

See also S tripOffsets, RowsPetStrip, TileOffsets, Ti leByteCounts'

StripOffsets
For each strip, the byte offset ofthat strip.

Tag :213 (Irl.H)

Type :SHORToTLONG

N = StripsPerlmage for PlanarConfiguration equal to 1'

: SamplesPerPixel I StripsPerlmage for PlanatConfrguration equal to 2

The offset is specifred with respect to the beginning of the TIFF file. Note that this

i¡rplies that each strip has a location independent ofthe locations ofother strips'

Thìs feature rnay be useftll for editing applications. This required field is the only

way for a reader to frnd the it.nage data. (unless TileolJsets is used; see

TileOffsets.)

Note that either SHORT or LONG valttes may be used to speciff the strip offsets'

sHoRT values may be used for small TIFF files. It should be noted, however, that

earlier TIFF specifrcations required LONG strip offsets and that solne software

may not accePt SHORT values

For ntaximum compatibiliÍywith operating syslents such as MS-DOS and I4/in-

and the strips themselt,es, in boÍh compressed and uncompressedJbrms, .should

not be larger than 64K bYtes.

No default. See also StripByteCounts' RowsPerStlip, TileOffsets,

TileByteCounts.

SubfileType
A general indieation ofthe kind ofdata contained in this subfile'

Tag :255 (FF.H)

Type :SHORT

N :1

40

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3,'1992

Currently defined values are:

fl¡ll-resolution irnage data

reduced-resolution image data

a single page of a multi-page image (see the PageNumbel'field description).

Note that sever.al image fypes rnay be found in a single TIFF file, with each,subfile

described by its own IFD.

No default.

This fielcl is cleprecated. The NewSubfileType field should be used instead.

Threshholding
For l)lack and white TIFF frles that represent shades of gray, the technique used to

convert from gray to black and white pixels.

Tas :263 (107.H)

Type :SHORT

N =1

No dithering or halftoning has been applied to the ir,rage data'

An ordered dither or halftone technique has been applied to the il]tage data.

A randomized pfocess such as er:ror diffusiou has been applied to the irnage data

Default is Threshholding: l. See also CellWidth, Celllength'

XResolution
The nurnber of pixels per Resolutionunit in the Imagewidth direction

Tag :282 (114,H)

Type : RATIONAL

l=

3:

a-

)-

N :1
It is not mandatofy that the inrage be actually displayed or printed at the size implied

by this parameter'. It is up to the application to use this infornration as it u'ishcs

No default. See also YResolution, ResolutionUnit'

YResolution
The number of pixels per Resolutionunit in the Imagelength direction

Tag :283 (118.H)

Type : RATIONAL

N :1

No default. See also XResolution, ResolutionUnit'

41

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

Section 9: PackBits GomPression

Final-June 3, 1992

This section describes TIFF compression type 32173, a simple byte-oliented run-

length schetle.

Description

In choosing a simple byte-oriented run-length cotlpression scheme, we arbitrarily

chose the Apple Macintosh PackBits schelne. It has a good worst case behavior

(at most 1 extra byte fol every 128 input bytes). For Macintosh users, the toolbox

utilities PackBits and UnPackBits will do the work for you, but it is easy to imple-

lììenl voul own f()(tuilçis.

¿. pr*¿o code fragment to unpack might look like this:

Loop unLil you get the nunber of unpacked bytes you are expecting:

Read the next. source bYte inLo n,

Ifnisbetween0andl2Tinclusive,copythenextn+lbyt,esliterally.
ELse íf n is between -12? and -l- inclusive, copy the nexL byle -n+1

t imes .

EIse if n is -128, nooP'

Endloop

In the inverse routine, it is best to encode a2-bytercpeat lun as a replicate run

except when preceded and followed by a literal nrn. In that case, it is best to merge

the three ntns into one literal run. Always encode 3-byte repeats as replicate tlns'

That is the essence of the algorithm. Here are solîe additional rules:

. Pack each row separately. Do not compress across row boundaries'

. The nurnber of uncompressed bytes pel row is defined to be (ImageWidth + 7)

/ 8, If the uncompressed bitmap is required to have an even number of bytes per

row, decotnpress into wold-aligned buffers.

. If a run is larger than 128 bytes, encode the remainder of the nrn as one of l]1ole

additional replicate utns.

When PackBits data is decompfessed, the result should be interpreted as per co1ll-

plession rype I (no compression).

42

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Section 10: Modified Huffman Gompression

This section descl'ibes TIFF compÏession scheme 2, a method for compressing

bilevel data based on the CCITT Gr:oup 3 1D facsimile cotnptession scheme.

References
. ,'standardization of Group 3 facsimile appalatus for document transmission,"

Recommendation T.4, Volume vII, Fascicle vII.3, Tenlinal Equipment and

Protocols for Teletlatic Services, The International Telegraph and Telephone

Consultative Cornmittee (CCITT), Geneva, 1985, pages 16 thlough 31'

. ,'Faosimile Coding Scheüres and Coding Control Functions for Group 4 Fac-

simile Apparatus," Recomrnendation T.6, Volume VII, Fascicle VII.3, Temti-

nal Equipment and Protocols for Teletr, atic Sewices, The International

Telegraph and Telephone consultative cornrnittee (ccITT), Geneva, 1 985,

pages 40 thlough 48,

Vy'e do not believe that these documents are necessaly in order to implement Com-

pr.ession:2. We have included (vefbatim in most places) all the pertinent infonna-

iion in this section. However, if you wish to order the documents, you can write to

ANSI, Attention: Sales, 1430 Broadway, New YoÏk, N'Y', 1 001 S Ask fof the

publication listed above--it contains both Recol.l1tr,endation T.4 and T.6.

Relationship to the CCITT SPecifications

The CCITT Gloup 3 and Group 4 specifications describe comnrunications proto-

cols for a paÏticulal class ofdevices. They are not by themselves suff,rcient to

describe a disk data format. Fortunately, however, the ccITT coding schemes can

be readily adapted to this different environment. The following is one such adap-

tation. Most of the language is copied directly frotn the ccITT specif,rcations.

See

Coding Scheme

A line (row) of data is composed of a series of variable length code words. Each

code word represents a nrn length of all white or all black. (Actually, more than

one code word may be required to code a given run, in a manner described below.)

White nrns and black t'uns altetnate.

To ensure that the receiver (decompressor) rnaintains color synchronization, all

data lines begin with a white run-length code word set. If the actual scan line

begins with a black run, a white ntn-length of zero is sent (wfitten). Black or white

nrn-lengths ar.e defined by the code words in Tables 1 and 2. The code words are

of two types: TeilIinating code woÏds and Make-up code words. Each run-length

is represented by zero or lrore Make-up code words followed by exactly one

Terrninating code word.

4ó

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Run lengths in the range of 0 to 63 pels (pixels) are encoded with their appropriate

Ten.uinating code word. Note that thele is a different list of code words for black

and white run-lengths.

Rnn lengrhs in the range of 64 to 2623 (2560+63) pels are encoded first by the

Make-up code word representing the run-length that is nearest to, not longer than,

that required. This is then followed by the Ten1rinating code word replesenting

the difference between the required run-length and the run-length represented by

the Make-up code.

Run lengths in the range oflengths longer than or equal to2624 pels are coded

fir-st by the Make-up code of 2560. If the rellaining part of the run (after the first

Make-up code of 2560) is 2560 pels or greater, additional Make-up code(s) of

2560 areissued until the r.emaining palt of the run becomes less than 2560 pels.

Then the r-ernaining part of the r-un is encoded by Terminating code or by Make-up

code plus Tenlinating code, according to the tange rnentioned above

It is consiciered an ttnrecoverable error if the sum of the run-lengths for a line does

not equal the value of the In-rageWidth field

New rows always begin on the next available byte boundary'

No EOL code words are used. No fill bits are ttsed, except fol the ignored bits at

the end of the last byte of a row. RTC is not ttsed.

An encoded ccITT srring is sel,f-photontetric, defined in terms ofwhite and black

runs, Yet TIFF de/ines a tag called Pholotnetriclnterpretation that also purports

to de/ìnewhat is white and wltat is blaclc. Somewhat arbilrarily, we adopt lhe

./ò llowin g convenlion :

The "norntal" PhotomeîriclnterpretationJor bilevel CCITT compressed data is

whiÍelszero. In this case, the ccITT "white" runs are to be inÍerpretal.ed as

white, and the CCITT "blaclc" runs are to be interpreted as blaclc' IIowever, if'lhe

PhotonteÍriclnterpretation is BlackIsZero, the TIFF reader must reverse lhe

nteaning ofwhite and blaclcwhen displaying and printing the image'

44

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Tabte 1/7.4 Terminating codes

white
run Code
Iength word

Black
run Code

length word

0

1

2

3

4

5

6

7

8

9

10
11
L2
13
L4
15
I6
L1
18
t_9

20
2I
22
23
24
1tr

26
27
28
29
30
31

00r10101
000111
0111
1000
1011
1100
l-110
111 1
10011
10100
00111
01000
001000
000011
l-10100
110101
101010
101011
010 0111
0001100
0001000
0010111
0000011
0000100
0101000
01010l^ 1

0010011
0100100
0011000
00000010
00000011-
0 0 011010

0 0 0 0110111
010
11
10
011
0 011
001_0

00011
000101
000100
0000100
0000101
0000111
00000100
00000111
000011000
0000010111
0000011000
0000001000
00001100111
00001101000
0000L101100
00000110111
00000101000
00000010111
00000011000
000011001010
000011001011
000011001100
000011001101
000001101000
000001101001

0

1

2

3

4

6

7

I
9

10
11
12
13
14
15
16
I7
18
19
20
2L
))
23
24
25
26
21
28
29
30
3t-

33
34
35
36
37
JÕ

39
40

44
45
46
47
48
49
50
51

4I

00001101010

33
34
35
36

38
39
40
4t
42

44
45
46
47
4g
49

' 50
51

0 0 010 010
0001-0011
00010100
0 0 010101
0001-01r-0
00010111
0 01010 0 0

0 01010 01

00101010
0 0101011
00101100
0 0101 10 1

00000100
00000101
0000101-0
0 0 0 01011
01010010
01010 011
01010100

.. 43

0000011-01011
000011010010
000011010011
000011010100
000011010101
000011010110
000011010111
000001101100
000001101101
000011011010
00001101-1011
000001010100
000001010101
000001010110
000001010111
000001100100
000001100101
00000101001-0
000001010011

45

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specificatìon

!ùhite
run Code
length word

Black
run

length
Code
word

q?

53
54
55
56
57
58
59
60
6L
62
63

52
tr1

54
55
56
57
58
59
60
6T
62
63

01010101
00L00100
00100101
01011000
01011001
01011010
0101101-1
01001010
01001011
0011001-0
00110011
00110100

000000100100
000000110111
00000011r000
000000100111
000000101000
000001011000
00000101-1001
000000101011
000000101100
0000010110L0
000001100110
000001100111

Table 2/T.4 Make-uP codes

white
run Code
lenqth word

Black
run Code

length word

64
128
r92
256
320
384
448
5L2
576
640
'7 04
768
832

- ''-- ----960.--.-- -.'
1,024
1088
1-L52

L21-6

1280
]-344
1_408

I4'7 2

1536
1600
L664
7728

EOL

11011 64 0000001111
1OO1O 1-28 000011001000
010111 L92 000011001001
0110111 256 000001011-011

00110110 320 00000011001'1

00110111 384 000000110100
O11OO1OO 448 000000110101
01100101 5r2 0000001101100

O11O1OOO 5'76 000000110110L

01100111 640 0000001001010
O11OO11O0 104 0000001001011

O11OO11O1 168 0000001001100
O11O1O01O 832 0000001001101-

O11O1OO11 896 00000011L0010

o11Ol-O1oI ro24 0000001110100
O11O1O11O 1088 0000001110101
011-010111 rr52 0000001110110
O11O11OO0 !2L6 0000001110111
O11O11OO1 r2BO 0000001010010
011011010 L344 0000001010011
01l-011011 1408 0000001010100
010011000 1-4'72 0000001010101

010011001 L536 0000001011'010

o1oo11o1o l-600 0000001011011
011OOO L664 000000L1o0100

o1oo1Lo11 L'728 00000011^00101

oo000o0oooo1 EOL 00000000000

46

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

White
and
BIack
run
length

Additional make-u7 codes

Make-up
code
word

17 92
1856
r920
L984
2048
2II2
2r7 6

2240
2304
2368
2432
2496
2560

00000001000
00000001100
0000000r101
00000001001-0
000000010011
000000010100
000000010101
00000001011-0
000000010111
0000000111-00
000000011101
000000011110
000000011111

47

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specifìcation Final-June 3, 1992

Part 2 contains extensions to Baseline TIFF. TIFF Extensions arc TIFF features

that tnay not be suppolted by all TIFF Íeaders. TIFF creators who use these fea-

tures will have to wofk closely with TIFF feaders in their parl of the industry to

ensul'e successflil intelchange.

The features described in this part were either contained in earliet'versions of the

specification, or have been approved by the TIFF Advisory collmittee.

Part 2= TIFF Extensions

48

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specificatìon Final-June 3, 1992

The following fields are used when storing binary pixel aüays using one of the

encodings adopted for raster-graphic interchange in nutnerous ccITT and ISO

(International Organization for Standards) recotl-tmendations and standards. These

encodings are often spoken ofas "Group III compÍession" and "Group IV coln-

pr.ession" because their application in facsimile transmission is the most widely

known.

For. the specialized use of these encodings in storing facsitlrile-transrnission images,

firr.ther. guidelines can be obtained f|om the TIFF Class F docutnent, available on-line

in the same locations as this specification. This document is adniinistered by another

organization; paper copies are not available fror¡ Adobe.

Compressíon
Tas = 2s9 (103.H)

Type :SHORT

N :1

3: T4-encoding: CCITT T.4 bi-level encoding as specified in section 4, Coding, of

CCITT Recomtlendation T.4: "standaldization of Group 3 Facsilnile apparatus

for docnrnent transmission." International Telephone and Telegraph Consultative

Cornmittee (CCITT, Geneva: I988).

See the T4Options field for.T4-encoding options such as 1D vs 2D coding.

4 = T6-encocling: CCITT T.6 bi-level encoding as specified in section 2 of CCITT

Reco¡rrnendation T.6: "Facsimile coding schemes and coding control fllnctions

for.Group 4 facsirnile apparatus." International Telephone and Teleg|aph Consul-

tative Committee (CCITT, Geneva: 1988).

See the T6Options field for T6-encoding options such as escape into

. . u.n-c-o,.r.,11p.-(,e.-S-s-Cd $o-dç !9 avoid cases

Application in Image Interchange

ccITT Recomtlendations T.4 and T.6 are specified in tetms of the serial birby-

bit creation and processing ofa variable-length binary string that encodes bi-level

(black and white) pixels of a rectangular image an ay. Generally, the encoding

schem"s are described in tertrs of bit-serial cotnmunication procedules and the

énd-to-end coordination that is required to gain reliable delivery over inherently

unreliablc data links. The Group 4 procedures, with -their
T6-encoding¡ represgnt a

signihcant simplification because it is assurned that a reliable communication

,.tt.di.u.t-t is employed, whether ISDN ot X.25 of some other tmstwotthy transpotl

vehicle. Because irnagc-stol'age systems and computers achieve data integrity and

communication reliability in other ways, the T6-encoding tends to be prefered for

imaging applications. When computel'stol'age and retrieval and interchange of

facsirnile rnaterial are of interest, the T4-encodings provide a bettel'match to the

Section 11: GCITT Bilevel Encodings

49

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification
Final-June 3, 1992

current generation of Group 3 facsimile products and their defenses against data

corruption as the result of tlansmission defects'

Whichever fo¡¡ of encoding is preferable for a given application, there are a

number of adjustments that need to be made to account for the captur'e of the

CCITT binary-encodi¡g strings as part of electlonically-stored material and digi-

tal-in, age interchange.

photometrichtterpretation. An encoded CCITT string is self-photornetric, de-

finedintermsofwhiteandblackruns.YetTIFFdefinesatagcalled
photometticlnterpretation that also putpofts to define what is white and what is

black.Somewhatarbitlarily,weadoptthefollowingconvention:

The ,,nor.mal" Photornetriclnterpretation for bilevel CCITT complessed data is

WhitelsZer.o. In this case, the CCITT "white" nlns are to be interpretated as white,

anil the ccITT "black" runs are to be interpreted as black. However, if the

photometriclnterpretation is BlacklsZero, the TIFF reader tnttst teverse the tnean-

ing of white and black when displaying and plinting the irnage'

FillOrder. When CCITT encodings are used directly over a typical serial comtnu-

nication link, the order ofthe bits in the encoded string is the sequential ordel of

the string, bit-by-bit, fi.on¡ beginning to end. This poses the following question: In

which order shonld consecutive blocks of eight bits be asset.t.rblcd into octets

(standard data bytes) for use within a computer systetn? The answer differs de-

pending on wheiher we ale concerned about preserving the selial-transtnission

sequence or pr.eserving only the fonnat of byte-otganized seqllences in tnelnory

and in stol'ed files'

From the perspective ofelectronic interchange, as long as a leceiver's reassetnbly

of bits into byies pr.operly mirrors the way in which the bytes were disassembled

by the ttansmittei, no one cares which order is seen ou the transmission link be-

cattse each mttltiple of 8 bits is transparently tlansmitted'

Common plactice is to record afbitrary binary strings into stolage sequences such

thatthefir.stseqrrcntialbitofthestringisfoundinthehigh-orderbitofthef,rrst
octet ofthe stored byte sequence. This is the standard case specihed by TIFF

FillOrder: l, used in most bitrnap interchange and the only case requited in

Baseline TIFF. This is also the approach used for the octets of standard 8-bit char-

communication transmit and leassemble individual 8-bit fiarnes with the low-

older-bit hrst!

For.bit-serial transr]-rission to a distant unit whose approach to assernbling bits into

bytes is unknown and supposed to be irrelevant, it is necessary to satisfu the ex-

pecte<l sequencing of bits over the transrrission link. This is the no¡nal case for

commnnication between facsimile units and also for computels and l]lodems

er.nulating standard Gr.oup 3 facsimile units. In this case, if the ccITT

capturedàirectly off of the link via standard comlnunication adapters,

FillOrder : 2 will usually apply to th4t storqd data form'

encoding is

TIFF

consequently, different TIFF Fillorder cases lnay arise when ccITT encodings

are obtåinedty synthesis within a computer (including Group 4 transmission'

which is treated urore like cornputer data) instead ofby capture from a Group 3

facsimile unit.

Because this is such a subtle situation, with surprisingly disruptive conseqtlences

for Fillor.der mismatches, the following practice is urged whenever ccITT bi-

level encodings are used:

50

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

a. TIFF FillOrder (tag266) should always be explicitly specif,red'

b. FillOrder: 1 should be ernployed whelevel possible in persistent material

that is intencled for interchange. This is the only reliable case for widespread

interchange alrong cotllputer systems, and it is important to explicitly con-

f,trn.r the honoring of standard assutnptions.

c. Fillorder:2 should occur only in highly-localized and preferably-tfansient

material, as in a facsimile server supporting group 3 facsllnile equiprnent.

The tag should be present as a safeguard against the ccITT encoding "leak-

ing,' into an nnsuspecting application, allowing reader-s to detect and warn

against the occurence.

There are interchange situations where fill order is not distinguished, as when

f,rltering the CCITT encoding into a PostScfipt level 2 inage opefation. In this

case, as in most other cases ofcomputer-based infonnation interchange,

FillOr.der:1 is assruned, and any padding to a multiple of 8 bits is accornplished

by adding a sufficient nurber of0-bits to the end ofthe sequence'

strips anrl Tites. when ccITT bi-level encoding is ernployed, interaction with

stlipping (Section 3) and tiling (Section 15) is as follows:

a. Decou1pose the image into segments--individual pixel arrays t'epresenting

the desired strip or tile configuration. The ccITT encoding procedures are

applied nrost flexibly if the segments eachhave a rnultiple of 4 lines.

b'IndivicluallyencodeeachsegnrentaccordingtothespecifiedCCITTbi-
level encoding, as if each segment is a separate raster-graphic it.nage.

The reason for this general nrle is that ccITT bi-level encodings are generally

progressive. That is, the initial line ofpixels is encoded, and then snbsequent lines,

àccãrOing to a variety ofoptions, are encoded in terms ofchanges that need to be

made to the preceding (unencoded) line. For strips and tiles to be individually

usable, they mr,rst each statt as fi'esh, independent encodings'

facsimile and non-facsit1tile applications of the encoded raster-graphic images

Further considerations for fill sequences, end-of-line flags, retum-to-contfol (end-

of-block) sequences and byte padding are introduced in discussion ofthe indi-

vidual encoding oPtions

T4Options
iue :2s2 (124.H)

Type :LONG

N :1

see conqtression:3. This freld is made up of a set of 32 flag bits. unused bits

must be set to 0. Bit 0 is the low-ordel bit.

Bit 0 is I for 2-dimensional coding (otherwise I -dirnensional is assurned). For

2-D coding, if more than one strip is specifred, each strip must begin with a I -

51

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

dimensionally coded line. That is, RowsPerStlip should be a rnultiple of "Palarn-

eter K," as documented in the CCITT specification.

Bit I is I if uncompressed mode is used

Bit2 is I if fill bits have been added as necessary before EoL codes such that

EOL always ends on a byte boundary, thns ensuring an Eol-sequence of i byte

preceded by a zero nibble: xxxx-0000 0000-000 I .

Default is 0, for basic 1-dirnensional coding' See also Cotlplession'

T60ptions
Tag : 293 (125.H)

Type :LONG

N =1

See Compression : 4. This field is rnade np of a set of 32 flag bits. Unused bits

rnust be set to 0. Bit 0 is the low-older bit. The default value is 0 (all bits 0).

bit 0 is uuttsed and alwaYs 0'

bit I is I if uncomprcssed tlode is allowed in the encoding'

In earlier versions of TIFF, this tag was named Group4Options. The signifrcance

has not changed and the present definition is cornpatible. The narne ofthe tag has

been changeã to be consistent with the nomenclature of other T.6-encoding appli-

cations.

Readers should honor this option tag, and only this option tag, whenever T.6-

Encoding is specified for Cornpression.

For T.6-Encoding, each segment (strip or tile) is encoded as if it were a sepafate

irnage. The encoded string fi'om each segtlent starts a fresh byte'

There are no one-diruensional line encodings in T.6-Encoding' Instead' even the

fir.st row of the segment's pixel anay is encoded two-dimensionally by always

assulrlng an invisible preceding r.ow of all-white pixels. The 2-dimensional pro-

cerfirre for enç-adluc 1b-e--b,e-dy-ef !¡dty!ùd¡.or¡/-s 1q thg 94re ql.t!gt1199 fot 2-

dimensional T.4-encoding and is described fully in the ccITT specifications

The beginning ofthe encoding for each row of a strip or tile is conducted as if
ther.e is an irnaginary preceding (O-width) white pixel, that is as if a fresh run of

white pixels has just cotrt-l1enced. The completion of each line is encoded as if
there are imaginary pixels beyond the end of the current line, and of the preceding

line, in effect, of colors chosen such that the line is exactly completable by a code

word, making the imaginary next pixel a changing element that's not actually

used.

- - . The encodings of suceessive lines follow contiguously in the binaly T.6-EncOding .

stream with no special initiation or separation codewords. There are no provisions

for fill codes or explicit encl-of-line indicators. The encoding ofthe last line ofthe

pixel arr.ay is followed immediately, in place of any additional line encodings, by

a 24-bitBnd-of-Facsirnile Block (EOFB).

00000000000 1 000000000001 .8.

F'

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, '1992

The EOFB sequence is immediately followed by enough O-bit padding to fit the

entire stream into a sequence of 8-bit bytes.

General Application. Becavse of the single unifonn encoding procedure, without

disnrptions by end-of-line codes and shifts into one-diurensional encodings, T.6-

encoding is very popular for compression of bi-level irnages in document imaging

systenls. T.6-encoding trades off redr.rndancy for minitnum encoded size, r'elying

on the under.lying stor.age and transtlission systems fol reliable retention and

communication of the encoded stream.

TIFF readers will operate rnost smoothly by always ignoring bits beyond the

EOFB. Some writers rnay produce additional bytes of pad bits beyond the byte

containing the frnal bit of the EOFB. Robttst teaders will not be disturbed by this

prospect.

It is not possible to correctly decode a T.6-Encoding without knowledge of the

exact nntlber of pixels in ea,ch line of the pixel alTay. ImageWidth (or TileWidth,

if used) must be stated exactly and accurately. If an image or segtnent is

overscanned, producing extraneous pixels at the beginning or ending of lines,

these pixels must be counted. Any cropping must be accomplished by other

-.un.. It is not possible to recover fi'om a pixel-count deviation, even when one is

detected. Failure of any t'ow to be completed as expected is cause for abandoning

ftiither clecoding of the entire segment. Thele is no requirement that ImageWidth

be a multiple ofeight, ofcoulse, and readers t11nst be prepared to pad the final

octet bytes of decoded bitmap rows with additional bits'

If a TII-F t'eader encottnters EOFB before the expected nutnber of lines has been

extracted, it is appropriate to assume that the missing rows consist entirely of

white pixels. Cautious readers might produce an unobtrusive warning if such an

EOFB is followed by anything other than pad bits'

Readers that successflllly decode the RowsPerstrip (or TileLength or tesidual

Imagelength) nulrrber of lines are not reqttired to verifli that an EOFB follows

fhai is, it is generally appropriate to stop decoding when the expected lines are

decoded or the EOFB is detected, whichever occnrs f,trst. Whether erol indica-

tions or warnings afe also appropliate depends upon the application and whether

mote precise troubleshooting of encoding deviations is impoftant

proper EOFB immediately following in the encoding. Padding should be by the

ieast nur1lbe1. of O-bits needed for the T.6-encoding to exactly occupy a rnultiple of

8 bits. Only 0-bits should be used for padding, and StripByteCount (or

TileByteCã'nt) should not extend to any bytes not containing p'operly-fon'ed

T.6-encoding. In addition, even though not required by T.6-encoding ntles, suc-

cessftil interchange with a large variety of leaders and applications will be en-

hanced if writers can arrange for the nurnber of pixels per line and the n¡mber of

lines per str ip to be rntrltiples olcight.

. . .(Jncompressed Mode- Although T.6.encodings of si¡nple bi-lwel !qrag-9q reqqlt

in data compressions of 10: I and better, some pixel-array patterns have T.6-

encodings that require more bits than their simple bi-level bitmaps. vy'hen such

.ur.. u." detected by encoding procedures, there is an optional extension for'

shifting to a fonn of uncornpressed coding within the T.6-encoding string.

Uncotnpressed lnode is not well-specihed and rnany applications discograge its

usage, prefer.ing altematives such as different comptessions on a segment-by-

segment (stfip or tile) basis, or by simply leaving the it1lage uncompressed in its

E2

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

entil.efy. The main complication for readel's is in properly restoring T'6-encoding

after the uncourpressed sequence is laid down in the current row'

Reader.s that have no provision for uncompt'essed llode will generally reject any

case in which the flag is set. Readers that are able to process uncompressed-mode

content within T.6-encoding strings can safely ignore this flag and simply process

any uncompressed¡lode occllrences correctly.

Writers that are unable to guarantee the absence of uncompressed-mode material

in any of the T.6-encoded segments lnust set the flag. The flag should be cleared

(or dàfaulted) only when absence of uncompressed-mode t1.laterial is assttred.

Wliters that ale able to inhibit the generation of uncompressed-tlode extensions

are encouraged to do so in order to maximize the acceptability of their T.6-encod-

ing strings in interchange sifuations.

Because unconpressed¡node is not cotnmonly used, the following descliption is

best taken as suggestive of the general machinety' Interpolation of fine details can

easily vary bctwcen iruplcrnentations

Uncornpressed mode is signalled by the occurence of the IO-bit extension code

string

0000001 i I 1.8

outside of any mn-length make-up code or extension. Original unencoded it'nage

infomation follows. In this unencoded infomration, a O-bit evidently signifies a

white pixel, a I -bit signifies a black pixel, and the TIFF Photornetriclnterpretation

will influence how these bits are r.r.rapped into any final uncompressed biûnap for

use. The only modification made to the unencoded infotÎration is insertion of a 1-

bit after every block of ftve consecutive O-bits fi'om the original irnage infonna-

tion. This is a transparency device that allows longer sequencences ofO-bits to be

reserved for control conditions, especially ending the uncompressed-tllode se-

quence. when it is tirne to retum to cornpressed mode, the 8-bit exit sequcnce

0000001t.8

white be assumed for.the O-width pixel on the left of the edge between the last

ttncompressed pixel and the resumed 2-dimensional scan'

Writers should confine uncompressed-tnode sequences to the interiors of indi-

vi¿ual rows, never atternpting to "wrap" froln one row to the next. Readers must

opel.ateproperlywhentheonlyencodingforasinglerowconsistsofan
un.oropi.rr"d-mode escape, a complete row of (pfoper l-inserted) uncompressed

infomration, and the extension exit. Technically, the exit pixel, 't,' should prob-

ably then be the opposite color of the last tnre pixel of the row, but readers should

bc gencrous in this case.

In handling these complex encoclings, the encounter of rnatelial from a defective

source or a co¡upted file is parlicularly unsettling and mystelious. Robust readers

will do well to defend against falling off the end of the wofld; e.g., unexpected

EOFB seq¡ences should be handled, and attempted access to data bytes that are

not within the bounds of the pfesent scgment (or the TIFF hle itself) should be

avoided.

54

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 12: Document Storage and Retrieval

These f,relds may be useflll for docut11ent storage and retrieval applications. They

will very likely be ignored by other applications.

DocumentName

The name of the docurnent ftoll which this image was scanned'

Tag :269 (1OD.H)

Type : ASCII

See also PageName.

PageName

The name of the page from which this image was scanned'

Tag :285 (1lD.H)

Type : ASCII

Sce also DocrttnentNatne.

No default.

PageNumber
The page nntnber of the page from which this inage was scanned'

Tas :297 (129.H)

Type :SHORT

N:2
This field is used to specifo page nurnbers of a rnultiple page (e.g. facsimile) docu-

ment. PageNÛmberl0] is the page nun-rber; PageNumberf1] is the total number of

pages in the doculnent. If PageNumberf1] is 0, the total number of pages in the

docnurent is not available.

Pages need not appear in nutnerical order

The first page is nutnbered 0 (zero)'

No delault.

XPosition
X position of the image

Tag :286 (11E.H)

Type : RATIONAL

N :I

55

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The X offset in ResolutionUnits of the left side of the irnage, with respect to the

left side ofthe page.

No dcfault. See also YPosition.

YPosition
Y position of the image.

Tag :287 (11F.H)

Type : RATIONAL

N :1

The Y offset in Resolutionunits of the top of the i[rage, with respect to the top of

the page. In the TIFF coordinate schet11e, the positive Y dir-ection is down, so that

YPosition is always positive.

No delault, Sce also XPosition.

56

APPENDIX HH

Microsoft et al. Exhibit 1005

Section 13: LZW Gompression

TIFF 6.0 Specification

Restrictions

Final-June 3, 1992

This section describes TIFF complession scheure 5, an adaptive compression

scheme fot raster images.

When LZW cornpfession was added to the TIFF specifrcation, in Revision 5.0, it

was thought to be public domain' This is, apparently, not the case'

The following paragraph has been approved by the Unisys Corporation:

,,The LZW co[rpression method is said to be the subject of Unitcd States patent

ntrnrber 4,558 ,302 andcorresponding foreign patents owned by the Unisys Cor-

poration. Software and hardware developers rnay be required to license this patent

in order to develop and Drarket products using the TIFF LZW compression option

Unisys has agreed that developers tnay obtain sttch a license on reasonable, non-

discri¡rinatory terms and con<litions. Further infounation can be obtained from:

welch Licensing Departrnent, office of the General counsel, M/s cl swi9,
Unisys Corpolation, Blue Bell, Pcnnsylvania, 19424;'

Reportedly, there are also other companies with patents that may allectLZW

in'rplementors.

Reference

Terry A. Welch, "A Technique for High Perfonrance Data Cornpression", IEEE

Computer, vol. 17 no, 6 (June 1984). Desclibes the basic Lempel-Ziv & Welch

(Lzry)algorithnr in very general tenrrs. The author's goal is to describe a hard-

ware-based compressor that could be br.rilt into a disk controller or database en-

gine and ¡sed on all types ofdata. There is no specific discussion ofraster images'

Characteristics

LZW compression has the following chat'acteristics:

. LZW works for images of various bit depths'

. LZW has a reasonable worst-case behavior'

p LZW handles a wide vadely of rcpetitive p-4tternq welt'

.LZwisreasonablyfastforbothconrpressionanddecorrrpression.

' LZW cloes not require floating point software or hardware'

ta

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

LZW is lossless. All information is preserved. But if noise o[infofmation is

l.elnoved from an inrage, perhaps by smoothing or zefoing some low-order

bitplanes, LZW cornpresses images to a sllaller size. Thtts, 5-bit, 6-bit, or 7-bit

daia r11asquerading as 8-bit data compresses better than true 8-bit data. Stl]ooth

it1.Iages also compress better than noisy irnages, and sirnple images colllpless

better than cotnplex itlages.

LZW wor.ks quite well on bilevel images, too. on our test images, it almost

always beat PackBits and generally tied ccITT 1D (Modified Huffiran) com-

pression. LZW also handles halftoned data better than most bilevel cotlples-

sion schemes.

The Algorithm

Each strip is cotrrpressed independently. we strongly recomtrrend that

RowsPerstfip be chosen such that each strip contains about 8K bytes before com-

pression. We want to keep the strips srnall enough so that the compressed and

uncor.r-rpr.essed velsions of the strip can be kept entirely in tnemory, even on surall

machines, but are lalge enough to maintain nearly optimal cornpression ratios'

TheLZW algor.ithm is based on a translation table, oI sfing table, that rnaps

strings of input charactels into codes. The TIFF impletnentation uses variable-

Iengih codes, with a maxin.rum code length of 12 bits. This string table is different

for every strip and does not need to be reatained for the decornpressor. The trick is

to make the decompressor autotlatically build the satrre table as is built when the

data is cotr.rpressed. We use a C-like pse¡docode to describe the coding schetne:

Init íalizeStringTable () ;

i,lritecode (clearcode) ;

O = the empty string;
for each character in the striP {

K = GetNextCharacter0;

if O+K is in the string uable {

O = O+K; /* string concaLenation */

) else {

AddTabIeEntry (0+K) ;

O=K;

)

) /* end of for loop */

I4ritecode (CodeFromstring (Q)) ;

14riteCode (EndOf Informalion) ;

That's it. The scheme is sit-nple, although it is challenging to implernent effi.

clenllV¡ Bu! we need a few explanatlons before we go on to deconlression

The ,,characters,, that make up the LZW strings are bytes containing TIFF

uncompressed (Coûrpression:1) image ciata, in oul implementation. For example,

if BitsPersample is 4, each 8-bit LZW character will contain two 4-bit pixels' If
BitsPersample is 16, each 16-bit pixel will span two 8-bit LZW characters.

It is also possible to implement a version of LZW in which theLZW character

depth eqqals BitsPersample, as described inDtaft2 of Revision 5.0 But there is a

major problem with this approach. If BitsPerSample is greater than 1 i
'
we can not

58

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

use l2-bit-maximnm codes and the l'esulting LZW table is unacceptably lalge'

Fortunately, due to the adaptive nature of LZW, we do not pay a significant com-

pression ratio penalty for cornbining several pixels into one byte before compress-

ing. For
"*arÌ]ple,

our 4-bit sample itnages compressed about 3 percent worse, and

our. 1-bit in.rages compressed about 5 percent better. And it is easier to write an

LZW compressor that always llses the same charactef depth than it is to write one

that handlcs varying dePths.

we can now describe sonte of the routine and val'iable refcrences in our

pseudocode:

InitializeStringTableO initializes the string table to contain all possible single-

character strings. There are 256 of thern, numbeled 0 through 255, since out chal'-

acters are bYtes.

WriteCodeo writes a code to the outpr.rt strcam. The f,rrst code written is a

ClearCode, which is defined to be code #256.

f) is out'"prefix string."

GetNextCharacter0 retrieves the next character value froln the input strear,r. This

will be a nunber between 0 and 255 because our characters are bytes.

The "+" signs indicate string concatenation.

AddTableEntry0 adds a table entry. flnitializestfingTable0 has already put 256

entries in our table. Each entry consists of a single-character string, and its associ-

ated code value, which, in our application, is identical to the character itself. That

is, the Oth entry in our table consists of the string <0>, with a cotresponding code

value of <0>, the 1 st entry in the table consists of the string < 1 >, with a coffe-

sponding çode value of<1 > and the 255th entry in our table consists ofthe string

<255>,with a cor.responding code value of <255>.) So, the first entry that added

to our.str.ing table will be at position 256,right? well, not qnite, because we re-

serve code #256 fol a special "clear" code. we also t'esele code#25'7 for a spe-

cial "EndOflnfonnation" code that we wlite out at the end of the strip. So the fir'st

tr1ultiple-charactef entry added to the string table will be at position 258.

For example, suppose we have input data that looks like this:

Pixel 0:<7>

Pixel 1:<7>

Pixel 2:<7>

Pixel 3:<8>

Pixel 4:<8>

Pixel 5:<7>

Pixel 6:<7>

Piiel 7:<Þ'

Pixel 8:<6>

First, we r.ead Pixel 0 into I(. oK is then simply <7>, because Q is an empty string

at this point. Is the string <7> already in the string table? Of course, becausc all

single character strings were put in the table by InitializestringTableo. So set e)

equal to <7>, and then go to the top of the loop'

59

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Read Pixel I into K. Does oI((<7><7>) exist in the string table? No, so we wlite

the code associated with f) to output (write <7> to output) and add Ç)K (<7><'.7>)

to the table as entry 258. Store K (<7>) into f). Note that although we have added

the string consisting of Pixel 0 and Pixel i to the table, we "re-use" Pixel 1 as the

beginning of the next string.

Back at the top of the loop, we read Pixel 2 into I(. Does Ç)K (<l><1>) exist in the

string table? ies, the entry we just added, entry 258, contains exactly <7><7>. So

we add K to the end of Q so that O is now <7><7>.

Back at the top of the loop, we read Pixel 3 into K. Does QI((<7><7><8>) exist

iu the string table? No, so we write the code associated with O (<258>) to output

and then add OK to the table as entry 259. Store I((<8>) into O'

Back at the top of the loop, we read Pixel 4 into K. Does oI((<8><8>) exist in the

stt.ing table? No, so we write the code associated with C¿ (<8>) to output and then

add f)K- to the table as entry 260. Stole K (<8>) into O'

Continuing, we get the following results:

After We write to And add table

Pixel 0

Pixel 1

Pixel 2

Pixel 3

Pixel 4

Pixel 5

Pixel6

Pixel 7

Pixel8

<7>

<8>

258: <7><7>

259: <'7><1><8>

260:<8><8>

261: <8><7>

262"<7><l><6>

263 <6><6>

<258>

<8>

<258>

<6>

WriteCode0 also requires sotne explanation. In our example, the output code

stfeam, <7><258><8><8><258><6> should be written using as few bits as pos-

sible. when we are just starting out, we can use 9-bit codes, since our new string

table entries afe greater than255 but less than 512. After ødding table entry 5l I,

switch to l7-bit iodes (i.e., entry 5 I 2 should be a I1-bít code.) Likewise, switch to

will ar.bitr.ar.ily limit ourselves to 12-bit codes, so that our table can have at most

4096 entries. The table should not be any larger'

I|/henever you atld a code to the output stream, it "counls" toward the decision

about bumping the code bit length. This is imporlant whenwriting the la'st code

wordbeforeanEolcodeorClearCode'toavoÌdcodelengtherrors,

what happens if we nrn out of rootÌì in our string table? This is whele the

clearcode comes in. As soon as we use entry 4094,we write out a (12-biÐ

ClearCode. (If we w-ait any longot to- writq thq ClealCode, tþ9 decomple¡sor

might try to interpret the clearcode as a 13-bit code.) At this point, the compres-

sor r.einitializes the sh'ing table and then writes out 9-bit codes again.

Note that whenever you write a code and add a table entry, f) is not left empty' It

contains exactly one character. Be careful not to lose it when you write an end-of-

table ClearCode. You can either write it ottt as a |2-bit code before writing the

ClearCode, in which case you need to do it right after adding table entry 4093, or

bU

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

you can write it as a 9-bit code after the ClearCode . Decompt'ession gives the

sar.ne result in either case.

To make things a little simpler for the decornpressor, we will require that each

str-ip begins with a ClearCode and ends with an EndOflnfounation code' Evety

LZW-cornpressed str-ip must begin on a byte borndary. It need not begin on a

wor.d boundary. LZW complession codes are stor-ed into bytes in high-to-low-

order fashion, i.e., FillOrder is assttmed to be 1. The cotlpresscd codes are witten

as bytes (not words) so that the con]pfessed data will be identical whether it is an

'II' or''MM' file.

Note that theLZW string table is a continuously updated history of the strings that

have been encolrntered in the data, Thus, it reflects the characteristics ofthe data,

providing a high deglee ofadaptability'

LZW Ðecoding

The procedure fot'decompression is a little more complicated:

white ((code = GetNextcode0) I= Eoicode) {

if (Code == clearCode) {

Initial-izeTable () ;

Code = cetNextCode0;

if (Code == ¡oiCode)

break;

l4rit.eString (StringFromCode (Code)) ;

OldCode = Code;

) /* end of ClearCode case */

else t

if (IsInTable(Code)) (

Writestring (SLringFromCode (code)) ;

AddstringToTable (SLringFromcode (0ldCode

) +FirstChar (StringFromcode (code))) ;

OldCode = Code;

,l else t

Outstring = StringFromCode (OldCode) +

Firstchar (StríngFromCode (OldCode)) ;

t4ritestring (Outstring) ;

AddStringToTabIe (Outstring) ;

OldCode = Code;

)

) /* end of not-Clearcode case */

) /* end of whil-e loop */

The Íùnctíon GetNextCode0'retrieves the next code frorn the tZrw-coded data, It

must keep track of bit bonndaries. It knows that the frrst code that it gets will be a

9-bit code. we add a table entry each time we get a code. So, GetNextCode0 must

switch ove1. to I O-bit codes as soon as string #5 I 0 is stored into the table' Simi-

larly, the sv,itch is mctde to I I -bit codes aJ'ter #1022 and to I 2-bit codes after

#2046.

61

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The flinction StringFrornCode0 gets the string associated with a par-ticular code

from the string table.

The ftinction AddstringToTable0 adds a shjng to the string table. The "+" sign

joining the two parts of the afgrunent to AddStringToTable indicates stling con-

catenation.

StringFrornCodeQ looks up the string associated with a given code'

WritesttingQ adds a string to the ontput stream.

When SamplesPerPixel Is Greater Than 1

So far, we have described the cotnpression scheme as if SamplesPerPixel were

always 1, as is the case with palette-color and grayscale itnages. But what do we

do with RGB inage data?

Tests on our sarnple images indicate that the LZW compression ratio is nearly

identical whether PlanarConfigulation:1 ol'PlanarConfigttration:2, for RGB

itnages. So, use whichever configuration you plefer and simply cotnpress the

bytes in the stlip.

Note: Compr.ession ratios on oru'test RGB irnages were disappointingly low:

between 1 . 1 to 1 ancl 1 .5 to 1, depending on the iu1age. Vendors are urged to do

what they can to l'emove as much noise as possible from theif irnages. Preliminary

tests indicatc that significantly bettet'compression ratios are possible with less-

noisy images. Even something as simple as zeroing-ottt one or two least-signifi-

cant bitplanes can be effective, producing little or no perceptible irnage

degradation.

lmplementation

The exact stmcture of the string table and the method used to cletermine if a stling

is a¡.eady in the table are probably the rnost significant design decisions in the

g.rt.d ur a useftll technique for the compressor. We have chosen a tree-based

ápproa"h, with good results. The decornpressot is ntore straightforward and faster

bLcause no search is involvecl-stlings can be accessed directly by code value.

LZW Extensions

Some images compress better using LZW coding if they are f,n'st subjected to a

process wherein each pixel value is rcplapsd by thq diffqrqnce between the

ancl the preceding pixel. See the following Section'

o¿

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specificatìon

Acknowledgments

See the frrst page ofthis section for the LZW reference.

The use of ClearCode as a tcchnique for handling overflow was borrowed from

the compression scheme used by the Glaphics Interchange Format (GIF), a small-

color-paint-ir',,age-file folrnat used by cot1]puServe that also Llses an adaptation of

theLZW technique.

trJ

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Fìnal-June 3, 1992

This section defines a Predictor that greatly improves colnpression ratios for solrre

images.

Predictor
Tas :317 (l3D.H)

Type :SHORT

N :1

Section 14: Differencing Predictor

A predictor is a tnathematical operator that is applied to the image data before an

enòoding scheme is applied. Cu'ently this field is used only with LZW (Com-

pr.ession:5) encoding because LZW is probably the only TIFF encoding scheme

that benefits signifrcantly frorn a predictol' step. See Section 1 3 '

1=

The possible values are:

No plediction scheme used before coding.

Holizontal differencing.

Default is 1.

The algorithm

Make use of the fact that many continuous-tone images rarely vaty rnuch in pixel

value fi.otI one pixel to the next. In stlch images, if we replace the pixel values by

differences between consecutive pixels, many of the differences shogld be 0, plus

or minus 1, and so on. This rednces the apparent information content and allows

LZW to encode the data more cornpactly,

C might

look solnething like this:

char imagel I I J;

int row, col;

/* take horizontal differences:

for (row = 0; row < nrows; row++)

for (col = ncols - 1; col >= 1; col--)
imagelrowl lcol] -= image lrowl lcol-1];

If we don't have 8-bit components, we nee d to work a little hal'der to tnake better

nse of the alchitecture of most CPUs. Suppose we have 4-bit components pacl<ed

ffio per byte in the normal TIFF uncornpressed (i.e., compression:1) fashion. To

fincl differences, we want to hfst expand each 4-bit component into an 8-bit byte,

so that we have one component pet' byte, low-ordcr justif,red. We then perfom the

hor.izontal diffelencing illustfated in the exar.nple above. Once the differencing

has been completed, we then repack the 4-bit differences two to a byte, in the

normal TIFF uncomplessed fashion.

64

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

If the components are gl'eater than 8 bits deep, expanding the components into 16-

bit words instead of 8-bit bytes seetns like the best way to pelfonn the subtlaction

on most conlputers.

Note that we have not lost any data up to this point, nor will we lose any data later

on. It might seenl at first that out'differencing might nrm 8-bit components into 9-

bit differences, 4-bit components into 5-bit differences, and so on. But it turns ont

that we can completely ignore the "overflow" bits caused by subtracting a.larger

number fiour a snraller nrulber and still reverse the process without enor' Nonlal

two's completnent arithmetic does just what we want. Try att example by hand if
you need tlore convincing.

Up to this point we have implicitly assumed that we are col]1plessing bilevel or

grayscale images. An additional consideration arises in the case of color images.

If PlanarConfiguration is 2, thele is no probletl. Differencing wo¡ks the satne as it

does for glayscale data.

If Planar-Configuration is 1, howevet, things get a little tÍickier. If we didn't do

anything special, we would sribtract red component valnes fi'om gleen component

valnes, green component values frorn blue component values, and blue collìpo-

nent values from red component values. This would not give the LZW coding

stage much redundancy to work with. So, we will do our horizontal differences

with an offset of SamplesPerPixel (3, in the RGB case). In otherwords, we will

subtract red frorn red, gleen frotn green, and blue fionr blue. The LZW coding

stage is identical to the SamplesPerPixel:1 case. We require that BitsPefSample

be the satle for all 3 components'

Resu/fs and Guidelines

LZW without differencing wofks well for i-bit irnages, 4-bit grayscale images,

and rrany palette-colof images. Bttt nahrral 24-bit color images and some 8-bit

grayscale images do rnuch bettel with differencing'

Although the cornbination of LZW coding with hofizontal differencing does not

result in any loss of data, it may be worthwhile in sorne siluations to give np sorne

doing the differencing, especially with 8-bit cornponents, The simplest way to get

rid oinoise is to rnask off one or two low-ordei'bits of each 8-bit coûrponent' On

our 24-bit test images, LZW with holizontal differencing yielded an average

cornpression ratio of 1.4 to 1. When the low-order bit was llasked from each

col.nponent, the compression ratio climbed to 1.8 to 1; the compression ratio was

2,4 tn I when masking two bits, and3.4 to 1 when masking three bits. of coulse,

the rlore yon llask, the tlore you risk losing useful infonnation along with the

noise. We encourage you to experiment to frnd the best compromise foryour

device. For sotle it may be useful to let the user make the frnal deci-

ston.

Incidentally, \¡/e tried taking both horizontal and veltical differences, but the extra

cornplexity of fwo-dimensional differencing did not appeal'to pay off for rnost of

our lest images. About one third of the images cotnpressed slightly better with

two-dirnensional differencing, abo¡t one third compressed slightly worse, and the

rest were about the same,

65

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 15: Tiled lmages

Introduction

Motivation
This section describes how to organize images into tiles instead of strips.

For. low-resolution to medium-resolution images, the standar-d TIFF method of

breaking the image into strips is adequate. However high-resolution itnages can

be accessed more eff,rciently-and cotlpt'ession teuds to work better-if the im-

age is broken into roughly sqnare tiles instead of horizontally-wide but vertically-

narrow strips.

Relationship to existing fields

When the tiling fields described bclow are used, they replace the

stripoffsets, stripByteCounts, and RowsPerStrip ficlds. use of tiles will

theråfore cause older TIFF readers to give up because they will have no way of

knowing wherc the image data is or how it is organized. Do not use both strip-

oriented and tile-oriented helds in the same TIFF file.

Padding
Tile size is defrned by TileWidth and Tilelength, All tiles in an image are the

same size; that is, they have the same pixel dimensions'

Boundary tiles are padded to the tile boundaries. For example, if Tilewidth is 64

and Lnagewidth is 129, then the image is 3 tiles wide and 63 pixels of padding

and Imagelength. It doesn't matter what value is used for padding, because good

TIFF readers display only the pixels defined by LnageWidth and Lnagelength

and ignore any padded pixels. Some compression schemes work best if the pad-

cling is accompLished by replicating the last column and last row instead of pad-

ding with 0's.

The price for padding the iurage out to tile boundaries is that sotne space is

wasted. But compression usually shrinks the padded areas to ahnost nothing.

Even ifdata is not compressed, renìérnber that tiling is intended for large inrages,

wasted space will be very srnall, genelally on the order of a few percent or less'

The advantages of padding an irnage to the tile boundaries are that itlpletnenta-

tions can be simpler and faster and that it is more coupatible with tile-oriented

compression schemes stlch as JPEG' See Section 22'

Tiles are cornpressed individually, just as strips ale cotxpressed. That is, each row

of rlata in a tile is treated as a separate "scanline" when compressing. Cotnpres-

bb

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Fields

sion includes any padded areas ofthe fightmost and bottom tiles so that all the

tiles in an image are the satne size when uncompressed.

All of the following fields are requiled for tiled irnages:

TileWidth

Tag :322 (142.H)

Type :SHORToTLONG

N :1

The tile width in pixels. This is the number of colutnns in each tile'

Assutling integer arithmetic, three computed values that are useflil in the follow-

ing field descliptions are:

TilesAcross: (ImageWidth + TileWidth - 1) / TileWidth

TilesDown: (Imagelength + Tilelength - 1) / Tilelength

TilesPerlrnage : TilesAcross * TilesDown

These computed values are not TIFF frelds; they are simply values detennined by

the ImageWidth, Tilewidth, Imagelength, and Tilelength fields'

TileWidth and ImageWidth together deten.nine the nrunber of tiles that span the

width of the image (TilesAcross). Tilelength and Imagelength together deter-

l¡ine the nurnber of tiles that span the length of the irnage (TilesDown).

We recornmend choosing TileWidth and Tilelength such that the resulting tiles

are about 4I(to 32K bytes before cotnpression. This seems to be a reasonable

value for tlost applications and cotnpression schetnes,

TileWidth rnust be a multiple of 16. This t'estriction improves perfomrance in

--,sorne-graphics envi¡onments-and.enhances conpatibilif,y with.comprc-s-slo!, -*
schctnes such as JPEG.

Tiles need not be square.

Note that hnageWidth can be less than TileWidth, although this tneans that the

tiles are too large or that you are nsing tiling on really small images, neither of

which is recomt1,tended, The same observation holds for Imagelength and

Tilelength.

No defâhlt. See also Tilelength, TileOffsets, TileByteCounts'

TileLength
Tag :323 (143.H)

Type :SHORToTLONG

N :1

ot

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The tile length (height) in pixels. This is the numbelof rows in each tile'

Tilelength tnust be a n.rultiple of 16 for compatibility with cornpression schctnes

such as JPEG.

Replaces RowsPelstrip in tiled TIFF files.

No default. See also TileWidth, TileOffsets, TileByteCounts.

TileOffsets
:324 (t44.H)

:LONG

: TilesPerlmage for PlanarConhguration: i

: SamplesPerPixel * TilesPelImage for PlanarConfigulation: 2

For each tile, the byte offset ofthat tile, as cornpressed and stored on disk' The

offset is specifred with respect to the beginning of the TIFF file. Note that this

implies that each tile has a location independent ofthe locations ofother tiles.

Offsets are ordered left-to-right and top-to-botton. For PlanarConfigtrration = 2,

the offsets fol the fir'st component plalle afe stored first, followed by all the offsets

fol the second component plane, and so on

No default. See also TileWidth, Tilel-ength, TileByteCounts'

TileByteCounts
Tag :325 (145.H)

Type :SHORToTLONG

N : TilesPerlmage for PlanarConf,rguration: I

: SamplesPerPixel * TilesPerhnage for PlanarConf,r guration : 2

Fol each tile, the number of (cornpressed) bytes in that tile'

See ordered.

No default. See also TileWidth, Tilelength, TileOffsets

Tag

Type

N

68

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TìFF 6,0 Specification

Section 16: CMYK lmages

Motivation

This section descfibes how to store separated (usually CMYK) image data in a

TIFF file.

In a separated image, each pixel consists of N components. Each component

represènts the amount of a pat'ticular ink that is to be used to lepresent the image at

that location, typically using a halftoning technique.

For exarnple, in a CMYK in-rage, each pixcl consists of 4 components. Each corn-

ponent repl.esents the amount of cyan, magenta, yellow, or black process ink that

is to be used to represent the image at that location.

The helds described in this section can be used for rnore than simple 4-color pro-

cess (cMYK) printing. They can also be used for desclibing an image made up of

more than 4 inks, such an image made up of a cyan, magenta, yellow, red, gleen,

blue, and black inks. Such an itl1age is solletimes called a high-fidelify image and

has the advantage of slightly extending the printed color gamut'

Since separated irnages are quite device-specific and are festricted to colot'pre-

pr... .rr., they should not be used for general image data interchange. Separated

imug.r ar.e to be used only for prepÏess applications in which the imagesetter,

paper, ink, and printing pless characteristics are known by the creator ofthe sepa-

lated image,

Note: there is no single method of converling RGB data to CMYK data and back.

In a perfect world, sornething close to cyan : 25 5 -red, magenta : 25 5 -green, and

yellów = 255-blue should work; but characteristics of printing inks and printing

pr.rr.r, economics, and the fact that the ureaning ofRGB itselfdepends on other

parameters cornbine to spoil this simplicity.

Requirements

In addition to satisf,iing the nonnal Baseline TIFF requirements, a separated TIFF

file must have the following characteristics:

. SamplesPerPixel = N. SHORT. The nrunber of inks. (For example, N:4 for

cvryr, because we have one component each for cyan, magenta, yellow, and

black,)

BitsPerSample :8,8,8,8 (for CMYK). SHORT. For now, only 8-bit compo-

nents are Íâ1ùè "8" is reÞeâted SamplesPerPixel tirnes.

Photomctriclnterpretation : 5 (Separated - usually CMYK)' SHORT'

The components lepresent the desirecl percent dot coverage ofeach ink, where

the larger component values represent a higher percentage of ink dot coverage

and smaller valnes represent less coverage.

69

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Fields

In addition, thete are solne new fields, all of which are optional'

lnkSet
Tag :332 (I C.H)

Type =SHORT

N :1

The set of inks used in a separ.ated (Photometriclntetpretation=5) image.

I = CMYK. The order of the cornponents is cyan, tlagenta, yellow, black usually, a

value of 0 represents 0% ink coverage and a value of 2 5 5 represents 1 00% ink

covefage for that component, but see DotRange below. The InkNames field

should not exist when InkSet= I '

2: not cMYI(. See the InkNames field for a description of the inks to be used.

Default is I (CMYK).

NumberOflnks
Tas :334 (148.H)

Type =SHORT

N :I

The nurnber of inks. Usually equal to SamplesPelPixel, unless there ate extra

sarnples.

See also ExtraSamPles.

Default is 4.

lnkNames
Tas :333 (14D H)

Type : ASCII

N = total number of characters in all the ink name strings, including the

NULs.

The name of each inkused in a separated (Photometriclntelpretation:5) irnage,

wr.itten as a list of concatenated, NUl-tenlinated ASCII stl'ings. The number of

stîings 11]ust be-equal to NurnberOflnks;

The sarnples are in the same oLder as the ink nan'ìes'

See also InkSet, NumberOflnks'

No default.

70

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

DotRange

Tag :336 (150.H)

Type : BYTE or SIfORT

N :2, or 2*SatnplesPerPixel

The conrponent values that correspon dto a0"/o dot and 100% dot. DotRange[O]

couesponds to a 0o/o dot, and DotRangel I] cotresponds to a 1 00% dot'

If a DotRange pail is included for each component, the values foÍ each conlponent

are stored together, so that the pair for Cyan would be first, followed by the pair

for Magenta, and so on. Use ofmultiple dot ranges is, however, stt'ongly discour-

agerl in the interests o.f sintplicity and contpatibitity with ANSI IT8 standards.

A nnnrber of pr.epress systet11s like to keep sot1le "headroot11" and "footroom" on

both ends of the fange. What to do with conlponents that are less than the 0% airn

point or greater than the I 00% aim point is not specifred and is application-depen-

dent.

It is strongly recommended that a CMYI(TIFF writer not attempt to use this field

to reverse the sense of the pixel values so that stnaller values mean more ink in-

stead of less ink. That is, DotRange[O] should be less than DotRange[1]'

DotRangel0l and DotRange[1] rnust be within the range [0, (2**BitsPerSample) -

11.

Default: a component value of 0 corresponds to a00/o dot, and a cotnponent value

of 255 (assuming 8-bit pixels) corresponds To a l00Yo dot. That is, DotRange[0] =

0 and DotRange[i] : (2**BitsPerSample) - 1.

TargetPrinter
Tag : 337 (151.H)

Type : ASCII

N :anY

History

This Section has been expanded frorn earliet'drafts, with the addition of the

InkSet, InkNames, NumbcrOflnks, DotRange, and TargetPrinter, but is

backward-cotnpatible wilh earl icr draft vcrsions.

Possible ftiture enhancements: dehnition of the characterization infonrration so

that the 6e ietàrþetèd tô à diffefènf þiinting envirónlnent ard so

that display on a CRT or ploofing device can more accurately represent the color

ANSI IT8 is working on such a proposal.

71

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, '1992
TIFF 6.0 Specification

Section 17
=
HalftoneHints

Introduction

This section describes a scheme for properly placing highlights and shadows in

halftoned images.

The single most easily recognized failing of continuous tone images is the incor-

rect plaõement of highlight and shadow. It is critical that a halftone process be

capable of printing the lightest areas of the image as the smallest halftone spot

capable of the orúput device, at the specified plinter resolution and screen ruling.

Specular highlights (srnall ultfa-white aleas) as well as the shadow aleas sliould

bc printable as paper onlY.

Consistency in highlight and shadow placement allows the user to obtain predict-

able results on a wide valiety of halftone oqtput dcvices. Proper implementation

of theHalftoneHints field will provide a significant step toward device indepen-

dent irnaging, such that low cost printers may to be used as effective pl'oofing

devices for irnages which will latel be halftoned on a high-resolution imagesettet'

The HalftoneHints Field

HalftoneHints
Tas :321 (141.H)

Type :SHORT

N:2
- ^--The-purpose of.the HalftoneHints field is.to conv,ey.to -thç halftpne -fungfial the

.ungl oig.uy levels within a colorimetrically-specified i'rage that should retain

tooãl d.tuil. The field contains two values of sixteen bits each and, therefol'e' is

contained wholly within the field itself; no offset is required. The first word speci-

fres the highlight gray level which shor-rld be halftoned at the lightest printable tint

ofthe final output device. The second word specifies the shadow gfay level which

should be halftoned at the darkest printable tint ofthe frnal output device. Porlions

of the image which are whiter than the highlight gray level will quickly, if not

immediately, fade to specular: highlights. There is no default value specified, since

the highlight and shadow gray levels are a function of the subject matter of a par-

-..- - - ticrilai'itnage.--

Appropr.iate values may be derived algorithmically or rnay be spccif,red by the

tuser, either directly or indirectly.

The HalftoneHints field, as defined here, defines an achromatic ftlnction. It can be

used just as effectively with color itnages as with tlonochrome images. When

used with opponent color spaces such as CIE L*a*b* or YCbCr, it refefs to the

achromatic conlponent only; L* in the case of cIELab, and Y in the case of

72

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

YCbCr. When used with tri-stimulus spaces such as RGB, it suggests to letain

tonal detail for all colors with an NTSC gray component within the bounds of the

R:G:B:Hi ghlight to R:G:B:Shadow range'

Comments for TIFF Writers

TIFF wr.iters are encoulaged to include the HalftoneHints field in all colof or

grayscale irnages where BitsPerSample >1. Although no default value is speci-

fied, pr-ior to the intloduction of this field it has been common practice to implic-

itly specifu the highlight and shadow gray levels as 1 and 2*+BitsperSarnple-2

and manipulate the image data to this dehnition. There are sotne disadvantages to

this technique, and it is not feasible fof a fixed gamnt colorimetric il11age type.

Appropriate values may be derived algorithDrically or may be specified by the

r.rser clirectly ol indirectly. Autotnatic algorithlls exist for analyzing the histogratn

of the achromatic intensity of an image and def,rning the minimurn and maxillnm

values as the highlight and shadow settings such that tonal detail is retained

thr.oughout the image. This kind of algorithm may try to itlpose a highlight ot'

shadow where none really exists in the image, which rnay reqttire user controls to

override the autornatic scttirlg.

It should be noted that the choice of the highlight and shadow values is somewhat

output dependent. For instance, in situations where the dynamic range of the

ouþut medium is very limited (as in newsprint and, to a lesser degree, laser out-

putj, it may be desirable for the usel'to clip some of the lightest or darkest tones to

àvoid the reduced contrast resulting froll compressing the tone of the entire iln-

age. Different settings rnightbe chosen for 15O-line halftone printed on coated

siock. I(eep in mind that these values rnay be adjusted later'(which might not be

possible unless the irnage is stored as a colorimetric, fixed, full-ga¡rut irnage), and

ihut r.,.,or. sophisticated page-layout applications rnay be capable of presenting a

user interface to consider these decisions at a point where the halftone process is

well understood.

It should be noted that although CCDs are linear intensity detectors, TIFF writers

may choose to rnaniPulate the image to store gatlllna-compensated data. Gatntna-

. ..Çolxp en sa!-e-d data is more efhcient at encoding an image than is lineal intensify

data becanse it requires fewer BitsPerPixel to eliminate banding in the darker

tones. It also has the advantage ofbeing closer to the tone response ofthe display

or printer.and is, therefore, less likely to produce poor resttlts from applications

that are not rigorous about their treatment of iDrages, Be awat'e that the

photo¡retriclnterp¡etation value of0 or 1 (grayscale) implies linear data because

no gamma is specified. The Photometriclnterpretation value of 2 (RGB data)

,p".ift". the NTSC galrma of 2.2 as a default. If data is written as sotnething

oiher than the default, then a GfayResponseCurve field or a TransferFunction

field must be present io deirne ttre deviaiion. For graysòálé datá, bé suie ihat the

'-'-densities in the GrayResponseCurve are consistent with the ' '

Photometriclnterpretation field and the HalftoneHints freld'

IJ

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Comments for TIFF Readers

TIFF readers that send a glayscale ilnage to a halftone output device, whether it is

a binary laset printer ol a PostScript imagesetter should rnake an effolt to maintain

the highlight and shadow placement. This lequires two steps First, detenr.rine the

highlight and shadow gray level of a pafticular image. Second, comlunicate that

information to the halftone engine.

To determine the highlight and shadow glay levels, begin by looking for a

HalftoneHints field. If it exists, it takes precedence. The first word represents the

gray level ofthe highlight and the second word repfesents the gray level ofthe

shadow. If the image is a cololimetric image (i.e. it has a GrayResponsecurue

field or a TransferFunction held) but does not contain a HalftoneHints f,reld, then

the ga¡rut napping techniques desclibed earlier should be used to detennine the

trigtrtignt and shadow values. If neither of these conditions are t1ue, then the file

snãut¿ Ue treated as if a HalftoneHints freld had indicated a highlight at gray level

1 and a shadow at gray level 2* sBitsPelPixel-2 (or vice-versa depending on the

Photometriclnterpretation field). Once the highlight and shadow gray levels have

been determined, the next step is to cormlunicate this infonlation to the halftone

module. The halftone moclule tnay exist within the satle application as the TIFF

r.eader, it may exist within a separate printer driver, or it may exist within the

Raster Image Processor (RIP) of the plinter itself. Whether the halftone process is

a simple dithel pattern or a general pulpose spot ftinction, it has sotne gray level at

whici the lightest pdntable tint will be fendered. The HalftoneHint concept is best

i¡rplemented in an environment where this lightest printable tint is easily and

consistently specified.

There are several ways in which an application can communicate the highlight

and shadow to the halftone function. Some environments may allow the applica-

tion to pass the highlight and shadow to the halftone module explicitly along with

the image. This is the best approach, but rnany environuents do not yet provide

this capãbility. Other environlnents may plovide fixed gray levels at which the

highlight and shadow will be rendered. For these cases, the application should

build a tone map that matches the highlight and shadow specifred in the image to

the highlight and shadow glay level ofthe halftone module. This approach re-

...-quit:-e--s-.nor-ç-rvo,úþy-thg?pp-liSa'.t.lC1l software, but will provide excellent results'

Some environments will not have any consistent concept ofhighlight and shadow

at all. In these envil'onments, the best an application can do is chaructørize each of

the supported printers and save the observed highlight and shadow gray levels.

The application can then use these valttes to achieve the desired results, providing

the environment doesn't change.

Once the highlight and shadow aleas ale selected, care should be taken to appro-

priately map intermediate gray levels to those expected by the halftone engine,

which may or may not be linear Reflectance. Note that although CCDs are linear

intensify detectofs and rnany TIFF files are stored as linear intensity, most output

devices require called gaiÍlna 001aec-

tion) to correctly display or plint linear data. Be aware that the

Photometriclnterpletation value of 0, 1 implies linear data because no gatntna is

specified. The Photometriclnterpfetation value of 2 (RGB data) specihes the

NTSC gamma o12.2 as a default. If a GrayResponseCnrve field or a

TransfeiFqnction fielcl is present, it inay defrne sornething other than the default'

74

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

Some Background on the Halftone Process

To obtain the best results when printing a continuous-tone raster image, it is sel-

dom desirable to sir.nply reproduce the tones ofthe original on the printed page.

Most often there is sotne gallut tnapping required. Often this is because the tonal

range of the odginal extends beyond the tonal tange of the output medium. In

solne cases, the tone range of the original is within the gamut of the outp¡t me-

dirun, but it may be more pleasing to expand the tone of the irnage to frll the range

of the output. Given that the tone of the oliginal is to be adjusted, there is a whole

r-ange of possibilities fol the level of sophistication that rnay be underlaken by a

software application.

Printing rnonochrome output is far less sophisticated than printing color output.

For monochl'ome output the hrst pt'iority is to control the placellent of the high-

light and the shadow. Ideally, a quality halftone will have sufficient levels of gÍay

so that a standard observer cannot distinguish the interface between any two adja-

cent levels ofgray, In practice, however, there is often a signihcant step between

the tone of the paper and the tone of the lightest printable tint. Although usually

Iess severe, the problem is similar between solid ink and the darkest printable tint'

Since the dynamic range between the lightest printable tint and the darkest print-

able tint is usually less than one would like, it is colllmon to maxitlrize the tone of

the image within these bounds. Not all it11ages will have a highlight (an area of the

image which is desirable to print as light as possible while still retaining tonaL

detaìl). If one exists, it should be carefully controlled to print at the lightest print-

able tint of the output medium. Similarly, the darkest areas of the image to retain

tonal detail should be printed as the darkest printable tint of the output medir.rrn.

Tones lighter or darker than these rnay be clipped at the lir¡its of the paper and

ink. Satisfactory results may be obtainecl in monoçht'otne work by doing nothing

mor.e than a percephlally-linear mapping of the image between these rigorously

controlled endpoints. This level of sophistication is suffrcient for many mid-range

applications, although the results oÍÌen appear flatter (i.e. lower in contrast) than

desired.

The next step is to increase contrast slightly in the tonal range of the image that

contains the rnost imPottant subject tnatter. To perfonn this step well requires

image and about the press. To know

where to add contrast, the algorithm mnst have access to first the keyness ofthe

irnage; the tone range which the user considers lnost important. To know how

much contrast to add, the algorithm must have access to the absolute tone of the

original and the dynamic range of the output device so that it may calculate the

amòunt of tone cotlpression to which the illage is acfllally subjected'

Most images are called nonlal key. The itnportant subject areas ofa nonnal key

image are in the uridtones. These images do well when a so-called "sympathetic

curve" is applied, which increases the confi'ast in midtones slightly at the expense

ofcontrast in the lighter and darker tones. White china on a white tablecloth is an

example of a high Èéyimágä High kôy iiùáþés 6ðñêfii fi'ôin liishef cöltìã'st

lighter tones, with less contrast needed in the n.ridtones and darker tones' Low key

images have itnPortant sndect rnatter in the darker tones and benefit fi'our increas-

ing the contrast in the darker tones. Specifuing the keyness of an irnage might be

attempted by automatic techniques , but it will likely fail without user input. For

example, a photo of a bdde in a white

75

wedding dress it may be a high key image if

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

you are selling wedding dresses, but rnay be a normal key image if you are the

paÌents ofthe bride and are lrore interested in her snrile'

Sophisticated color reproduction employs all ofthese plinciples, and then applies

them in three dimensions. The mapping of the highlight and shadow becolÌes

only one s¡.rall, albeit critical, portion of the total issue of t.napping colors that are

too saturated fol the output rnedirul. Here again, automatic techniques Ínay be

employed as a hrst pass, with the user becorning involved in the clip or compress

mapping decision. The HalftoneHints held is still useful in communicating which

portions of the intensity of the image ûrust be letained and which may be clipped.

Àgain, a sophisticated application may overide these settings if later user input is

received.

76

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 18: Associated Alpha Handling

This section desclibes a schetne for handling itlages with alpha data'

lntroduction

A common technique in computer graphics is to assetlble an irnage fi'om one or

tloLe eletnents that are rendered separate ly. When elements are cotlbined using

compositing techniques, matte or coverage infonnation must be plesent for each

pixel to create a properly anti-aliased accutlulation of the full irnage [Porter84].

This matting info¡nation is an exallple of additional per-pixel data that lnqst be

maintainecl with an image. This section dcscribes how to use the ExtraSamples

field to store the requisite rnatting infonlation, commonly called the associated

alpha or just alpha. This scheme enables efficient manipulation of image data

during compositing oPerations.

Images with rnatting infolmation are stored in theil natural forrnat but with an

additional cornponent per pixel. The ExtraSample field is included with the irnage

to indicate that an extra cotlponent ofeach pixel contains associated alpha data' In

addition, when associated alpha data are included with RGB data, the RGB cottl-

ponents must be stored pretnultiplied by the associated alpha component and

"ompon.nt
uulues in the range [0,2**BitsPcrSar.nple-1] are irnplicitly mapped

ontothe [0,1] interval. That is, for each pixel (r,g,b) and opacity A, where r, g, b,

and A are in the range 10,1], (A+r,A*g,A*b,A) must be stored in the file. If A is

zero, then the color components should be interpreted as zero. Stoling data in this

pre-mr"rltiplied format, allows coûrpositing operations to be implernented urost

ãfnci.ntty. In addition, storing pre-multiplied data ûrakes it possible to specify

colors with components outside the norural [0,1] interval. The latter is useful for

defrning ceftain operations that effect only the luminescence [Porter84].

Fields

ExtraSamples
Tag : 338 (152.H)

Type : SFIORT

N -l
This-field ïnrr$Ìiave a value-of 1 (associated alpha data'with pre-nrultiplicd color. '

components). The associated alpha data stored in component SamplesPer?ixel-1

of each pixel contains the opacity of that pixel, and the mlor infonnation is pre-

rnultiplied by alpha.

77

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Comments

Associated alpha data isjust another component added to each pixel. Thus, for

exanrple, its size is defined by the value of the BitsPerSample freld

Note that since data is stored with RGB cornponents already multiplied by alpha,

naive applications that want to display an RGBA itnage on a display can do so

sirnply by displaying the RGB component values. This works because it is effec-

tively the same as merging the image with a black background. That is, to melge

one irnage with another, the color of resultant pixels are calculated as:

c, : c,,,", * Ao,,o, * c**h,* (l A^*,)

since the,,under image" is a black background, this equation reduces to

c, : c,,,",* 4.,,",

which is exactly the pre-multiplied color'; i.e. what is stored in the image.

on the other hand, to print an RGBA image, one mnst cotnposite the irnage ovet'a

suitable backgror"rnd page color. For a white background, this is easily done by

adding I - A to each color component. For an arbitrary background color cr,.o' the

printed color ofeach Pixel is

Cu,,u, : Cr*,r"+ Cb,,"k* (l-4,,,,,,r)

(since Cu,,*, is pre+rultiPlied).

Since the ExtraSamples field is independent of othel frelds, this scheme pern.rits

alpha infonnation to be stoled in whatever olganization is appropriate. In particu-

lar, components can be stored packed (PlanarConfrguration:l); this is itlpol'tant

for good I/o perfonnance and for good mernoty access perfonnance on tnachines

that ar.e sensitive to data locatity. However, if this scheme is used, TIFF readers

must not derive the SamplesPerPixel fi'om the value of the

Phototnetriclnterpretation helcl (e'g.' if RGB' then SarnplesPerPixel is 3)'

In addition to being independent ofdata storage-related fields, the field is also

independent of the Photonretriclnterpretation f,reld. This lneans, for exarnple, that

it is easy to use this held to specifu grayscale data and associated matte informa-

ated will not have the

colonlap indices pre-multiplied; rather, the RGB colormap values will be pre-

rnultiplied.

IJnassociated AlPha and TransParency Masks

Some it1lage manipulation applications support notions of transparency tnasks

and soft-edgé máSkS. The associátcd alpha inforrnation described in this section is

tantlY:

. Associated alpha describes opacity 01'covefage at each pixel, while clipping-

related alpha infonnation describes a boolean relationship. That is, associated

alpha can specifu fractlonal covelage at a pixel, while masks speci$' either 0 or

1 00 Percent coverage'

. Once defined, associated alpha is not intended to be removed or edited, except

as a result of compositing the irnage; it is an integral part of an irnage.

7B

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

unassociated alpha, on the other hand, is designed as an ancillaly piece of

infonlation

References

Iporter84]
,.Compositing Digital Images". Thomas Potter, Tom Duff; Lucasfilm

Lt¿. ACV SIGGRAPHProceedingsVolume lS,Ntttnber3 July, 1984'

ao

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 19: Data Sample Format

This section describes a scheme for specifuing data sarnple type infomration'

TIFF irlplicitly types all data samples as unsigned integer values' Certain applica-

tions, however, requile the ability to store image-related data in other formats

such as floating polnt. This section ptesents a scheue for describing a variety of

data sample fonlats.

Fields

SampleFormat
Tag :339 (153.H)

Type :SHORT

N : SamplesPerPixel

This field specifres how to interpret each data sample in a pixel Possible values

are:

1 : unsigned integel data

2-- fwo's completnent signed ilrteger data

3 : IEEE floating Point data IIEEE]

4= undefined data format

Note that the SampleFonlat freld does not speciñ7 the size of data sal]1ples; this is

still done by the BitsPersarnple field.

A field value of "undef,rned" is a statement by the writer that it did not know how

to interpret the data samples; for example, if it were copying an existing image. A
-----Íeâdêf wõlild rypreallytreat'an'image with''undefîned¿data-as-ifthe'f{eld were- '--'*

notpresent (i.e. as unsigned integer data)'

Default is l, unsigned integer data.

SMinSampleValue
Tag =340(1541-Ð

Type : the field fype that best matches the sample data

N : SarnplesPerPixel

This field specifies the minitnul11 sat1-lple value. Note that a value should be given

for each daia sar-nple. That is, if the irnage has 3 SamplesPerPixel, 3 values must

be specified.

The default for SMinSampleValue and SMaxSampleValue is the full l'ange of the

data type.

80

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

SMaxSampleValue

Tag :341 (155.H)

Type : the field type that best matches the sample data

N : SarnplesPerfixel

This new field specifies the maximun satnple value.

Comments

The SarnpleFo¡nat freld allows llot'e general imaging (such as image processi¡g)

applications to employ TIFF as a valid file fonlat

sMinSampleValue and SMaxSamplevalue becoue more tneaningflil when im-

age data is typed. The pr.esence of these fields makes it possible for readers to

assurne that data sarnples are bound to the range [SMinSampleValue,
SMaxSampleValue] without scanning the image data.

References

UEEEI "IEEE Standard 754 for Binary Floating-point Arithmetic"

81

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

without additional information, RGB data is device-specific; that is, without an

absolnte color meaniug. This section describes a schetle for describing and char-

acterizing RGB image data.

Section 20: RGB lmage Colorimetry

Introduction

Color printers, displays, and scanners continue to improve in quality and avail-

abilirywhile they drop in price. Now the problem is to display color images so

that they appear to be identical on different hardware.

The key to r.ept'oducing the same color on diffelent dcvices is to use the CIE 193 I

XYZ color.-matching ftlnctions, the international standard for color comparison.

Using CIE XYZ, an tmage's colorirnetty infolmation can ftilly describe its color

interpretation. The approach taken here is essentially calibrated RGB. It implies a

transfonnation froln the RGB color space of the pixels to cIE l93l XYZ.

The appearance of a color depends not only on its absolute tristirnulus values, but

also on-the conditions under which it is viewed, including the nature of the sul'-

round and the adaptation state of the viewer. Colors having the same absolute

tristirnulus values appeal the same in identical viewing conditions. The more

coDrplex issue ofcolor appearance under different viewing conditions is ad-

dr.essed by [a]. The colorirnetry infonnation plesented hefe plays an impofiant

role in colol appearance under different viewing conditions'

Assul¡ing identical viewing conditions, an application gsing the tags described

below can display an image on different hardware and achieve colorimetrically

identical results. The process of using this colorimetry infonlation for displaying

an irlage is straightforward on a color monitor but it is nrore complex for color

printers. Also, the results will be limited by the color gamttt and other characteris-

tics ofthe display or printing device'

The following fields describe the iûrage cololimetry infonnation of a TIFF image

WhitePoint chrornaticity of the white point of the image

PrimaryChrotnaticities ,chromaticities
of the pritnaries of the image

TransJèrFunction transfer function for the pixel data

Trans'þrRange extends the range of the transfer function

Re/ëienòeBtacliI4/hitè pixel componenthêâdfoomandfootfoomparameters

'l he TraiiäféfFunetiön; TfânsferRange; and'ReferenceBlack'Vy'-hite fields-have

defaults based on industry standards. An image has a colorimetric interpretation if
and only if both the whitePoint and Primarychromaticities fields are present. An

irnage without these colorimetry fields will be displayed in an application and

hardware dependent lranner.

Note: In the following defrnitions, BitsPe[sarnple is r¡sed as if it were a single

nntnber when in fact it is an anay of SarnplesPerf ixel nutnbers The elements of

82

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

this anay n'ray not always be equal, for exarnple: 5/6/5 16-bit pixels

BitsPelsample should be interpreted as the BitsPerSallple value associated with a

par.ticular component. In the case of unequal BitsPerSarnple values, the dcfini-

tions below can be extended in a straightfolwal'd lranner.

This section has the following differences with Appendix H in TIFF 5 0:

. rernoved the use of image colorimetry defaults

. renatned the ColorResponseCurves f,reld as TransferFunction

. optionally allowed a single TransferFunction table to describe all three chan-

nels

. described the use of the TlansferFunction field for YCbCr, Palette'

WhitelsZero and BlacklsZero Photolletriclntelpretation types

. added the TransferRange tag to expand the range ofthe TransfelFunction

below black and above white

. added the ReferenceBlackWhite field

. addressed the issne of colol appeal'ance

Colorimetry Field Definitions

WhitePoint
Tag : 318 (13E.H)

Type :RATIONAL

N:2
The chrornaticity of the white point of the image. This is the chlomaticity when

each of the primaries has its ReferenceWhite value. The value is described using

the 193 1 CIE xy chrorr.raticity diagram and only the chromaticity is specified'

This value can correspond to the chrornaticity of the alignment white of a tnonitor,

the filtel set and light source colnbination of a sÇannel or the irnaging model of a

-"'r'endering package:-The'oldering is white[x];white[y] - -

For example, the cIE standard Illuminant D65 used by ccIR Recommendation

709 and l(odak PhotoYCC is:

3 i 27l1 0000,3290/1 0000

No default.

Tag

Type

N

:319 (l3F.H)

:RATIONAL

:6

o1

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The chron.raticities of the plimafies of the image. This is the chromaticity for each

of the pr.imaries when it has its ReferenceWhite value and the other primaries

have their ReferenceBlack values. These values aIe described tlsing the 193 1 CIE

xy chromaticity diagratrl and only the chlomaticities are specifred. These valnes

can conespond to the chromaticities of the phosphot's of a rnonitor, the filtel set

and light source corlbination of a scannel' or the irnaging model of a Íendering

package. The ordeling is red[x], red[y], gleenfx], gleen[y]' bluefx], and bluefy]'

For example the CCIR Recommendation 709 primaries arc:

640/1 000,330/1 000,

300/1000,600i 1000,

150/1000,60/1000

No default.

TransferFunction
Tag :301 (12D.H)

Type :SHORT

N : {1or 3} * (1<<BitsPerSarnPle)

Describes a transfer function for the irnage in tabular style. Pixel components can

be gamma-compensated, cornpanded, non-unifonnly quantized, or coded in some

othãr way. The TransferFunction maps the pixel cotlponents frotn a non-linear

BitsPersarnple (e.g. 8-bit) fon11 into a 16-bit linear fornr without a perceptible loss

of accuracy.

If N: 1 << BitsPersample, the transfer flinction is the same fol each channel and

all channels share a single table. Ofcourse, this assutnes that each channel has the

sarre BitsPelSample value.

IfN:3*(1 << BitsPersample), there are three tables, and the ordering is the

same as it is for pixel components ofthe Photornetriclnterpretation field' These

tables are separate and not interleaved. For example, with RGB irnages all red

entfles o-lÙe-entries. -- --

The length of each component table is I << BitsPersample. The width of each

entry is 16 bits as implied by the type sHoRT. Normally the value 0 represents

the minimum intensity and 65535 replesents the maxitnum intensity and the val-

ues [0, 0, 0] represent black and [65535,65535, 65535] represent white' Ifthe

TransferRangã tag is present then it is usecl to determine the minitnutn and maxi-

rnum values, and a scaling nomalization.

The TianÀferFunction can be applied to i1nâges with a Photometliclntetpretation

vahre of RGB. Palette. YCbCq, ![þ{9!s!-91o, 3pd B,!a9\-!qze¡o, Jhe
TransferFnnction is not used with other Photometriclnterpretation types.

For RGB Photonretriclnterpretation, ReferenceBlackWhite expands the coding

range, TransferRange expands the range ofthe TransferFnnction, and the

Transfer.Function tables decornpand the RGB value. The whitePoint and

PrimaryChrornaticities ftirthel describe the RGB colorilnetry'

84

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

For Palette color.Photometliclnterpretation, the Colonnap lnaps the pixel into

three 16-bit values that when scaled to BitsPersample-bits serve as indices into

the TransferFunction tables which decompand the RGB value. The whitePoint

and Primarychrollaticities fuither describe the underlying RGB colorirnetry.

A Palette value can be scaled into a Transferfunction index by:

index: (value + ((1 << BitsPerSample) - 1)) / 65535;

A TransferFunction index can be scaled into a Palette color value by:

uulus= (index * 65535L) / ((1 <'BitsPerSample) - 1);

Be careflll if you intend to create Palette images with a TransferFunction. If the

Colonlap tag is directly converted from a haldware colonnap, it may have a

device gatnma already incorporated into the DAC values.

For YCbCt Photometriclntelpretation, RefelenceBlackWhite expands the coding

range, the YCbCrCoefficients describe the decoding matrix to tratisfomr YCbCr

into RGB, Tr.ansfelRange expands the range of the TfansferFunction, and the

TransferFunction tables decompand the RGB value. The whitePoint and

PrimaryChromaticities fields provide ftlrther descÍiption of the underlying RGB

colorimetry.

After coding range expansion by ReferenceBlackWhite and TlansfelFunction

expansion by TransferRange, RGB values rnay be outside the dornain of the

TransferFunction. Also, the display device matt'ix can transform RGB values into

display device RGB values outside the dornain of the device. These values are

handled in an application-dependent 1l1anner.

For RGB images with non-default ReferenceBlackwhite coding range expansion

and for YCbCr images, the resolution of the Transfetfttnction rnay be insuffr-

cient. For exat11ple, aftet the YCbCr transfomration matrix, the decoded RGB

values tnust be rounded to in<lex into the TransferFunction tables. Applications

needing the extfa accuracy should interpolate between the elements of the

TransferFunction tables. Linear intelpolation is lecomtnended'

For WhitelsZero and BlacklsZero Photolleh'iclnterpretation, the

TransferFunction decompands the grayscale pixel value to a linear 16-bit fotm'

Note that a TransferFunction value of0 represents black and 65535 represents

ages is intended to replace the GrayResponseCurve held'

The TlansferFunction does not describe a transfer characteristic outside ofthe

lange for Refer enceBlackWhite.

Default is a single table corresponding to the NTSC standard garnma value of 2.2.

this aábie is u.ied foi èach channel. It cán be $enerated by:

for (TF[O]= 0, i = 1; i < NValues; í++)

TFlil= ftoor(pow(i / (iwalues - 1.0) , 2.2) * 65535 + 0'5);

B5

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

TransferRange
Tag :342 (156.H)

Type :SHORT

N :6

Expands the range of the T[ansferFunction. The f,rlst value within a pair is assocl-

ated with Tr.ansferBlack and the second is associated with Transferwhite. The

oldering of pairs is the same as for pixel components of the

Photometriclnterpretation type. By default, theTransferFunction is defined over a

range from a minil'lum intensity, 0 or nominal black, to a maximum intensify,(l

<< BitsPerSample) - 1 or.nominal white. I(odak PhotoYCC uses an extended

range TransferFunction in order to describe highlights, sahtrated colors and

shadow detail beyond this range. The TransferRange expands the

TransferFunction to support these values. It is defrned only for RGB and YCbcr

Photometri clntetPretati ons.

After ReferenceBlackwhite and/or YCbcr decoding has taken place, an RGB

value can be tepresented as a real number. It is then rounded to cl'eate an index

into the Transfer.Functiontable. In the absence of a TlansfefRange tag, or if the

tag has the defaglt values, the rounded value is an index and the nonnalized inten-

siry valuc is:

index = (int) (value + (value < 0.0? -0.5 : 0.5));

intensity = trlindexl I essls¡

If the Tr.ansferRange tag is pt'esent and has non-defattlt values, it provides an

offset to be used with the rounded index. It also describes a scaling. The norrnal-

ized intensity valtte is:

index = (int) (value + (value < 0.0? -0.5 : 0'5));

intensily = (TF Iindex + TransferRange [Black] I -

TF lTransferRange [BlackJ ì)

/ (T¡ ltransferRange lWhiteJ] - TF lTransferRange fBlackì J) ;

An application can write a Transfet'Function with a non-defaultTransferRange as

follows:

black-of fset = scal.e-factor * Transf er (-Transf erRange lBlack] ar /
-ir¡áñ;ièlRàñtjê It,tñì ÈeI- :- î¡áls feiRángeIBIãeklJl ¡----

for (i = 0; i < (1 << BitsPersampl¿1; i++)

TFtil = floor(0.5 - black-offset + scale-factor
* Transfer((i - TransferRangelBlackl)

/ (TransferRange ll4hite] - TransferRange l¡]ackl))) ;

The TIFF writer chooses scale factor snch that the TransferFunction fits into a

16-bit ¡nsigned short, and chooses the TransferRange so that the most impoftant

part ofthe TransferFunction fits into the table'

ReferenceBlackWhite
Tas :532 (214.H)

Type : RATIONAL

N:6

86

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specìfication Fìnal-June 3, 1992

Specifies a pair ofheadroom and footroom itnage data values (codes) for each

pixel component. The first cornponent code within a pair is associated with

ReferenceBlack, and the second is associated with Referencewhite. The oldering

of pairs is the same as those for pixel components of the Photolletriclntelpretation

type. ReferenceBlackWhite can be applied to images with a

Photometriclnterpretation value of RGB or YCbCr. ReferenceBlackWhite is not

used with other Photometriclnterpretation values'

computer graphics commonly places black and white at the extremities of the

binary representation of image data; fof exatnple, black at code 0 and white at

"o¿.
zs s. In other. disciplines, snch as printing, film, and video, there are practical

reasons to pr.ovide footroorr codes below ReferenceBlack and headroom codes

above Refet'enceWhite.

In film applications, they coüespond to the densities Dlnax and Dmin. In video

applications, ReferenceBlack coresponds to 7.5 IRE and 0 IRE in systerns with

and without setup respective iy, and RefelenceWhiie conesponds to 100 IRE

units.

Using YCbCr (See Section 21) and the CCIR Recommendation 601 1 video stan-

dar<l as an example, code 1 6 represents ReferenceBlack, and code235 replesents

ReferenceWhite for the lutrrinance col.llponent (Y). FoL the chlominance co1l'ìpo-

nents, cb ancl cr, code 128 repfesents RefefenceBlack, and code240 repfesents

ReferenceWhite. With Cb and Cr', the ReferenceWhite value is used to code

refelençe blue and reference red respectively.

The full range component value is convefted from the code by:

FullRangeValu¿= (code - ReferenceBlack) * god'nnOunn'

/ (ReferencewhiLe - ReferenceBlack) ;

The code is converted from the full-range component value by:

sefls = (FullRangevalue * (Referencewhite - ReferenceBlack)

/ CodingRange) + ReferenceBlack;

For RGB images and the Y cornponent of YCbcr itrragcs, codingRange is de-

fined as:

CodingRange = 2 ** BitsPerSample - 1;

CodingRange = 127;

For.RGB inrages, in the default special case of no headrootn or footroom, this

conversion can be skipped because the scaling multiplier equals 1.0 and the value

eqnals the code.

For YCbcl images, in the case of no headroom or footroom, the conversion for Y

can be skipped because the valne equals the code. For Cb and cr, ReferenceBlack

tr,rust still be s¡btracted ftom the code. In the general case, the scaling multiplica-

tion for the Cb and Cr component codes can be factored into the YCbCr transfonn

matrtx.

Useful ReferenceBlack'White values for YCbCr images are:

l0 I 1, 25 5 I 1,128 I l, 255 I I, l28l 1, 255 I ll
no headloonVfootroom

ll 5 I 1, 235 I 1, l28l l, 2401 1, l28l 1, 240 I ll
CCIR Recornmendation 601. I headroom/footrooll

87

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

useful Refer.enceBlackwhite values for BitsPersample: 8,8,8 Class R inages

are:

l0l 1, 2s5l t,0l 1, 2s5l r, 0l t, zss t tl

no headroonVfootroon.t

lr6ll,23511 , 16ll,2351l , r6ll ,235Il)

CCIR Recon-rtlendation 601 . I headroonVfootrooll

Defaulr is [0/,NV/ 1, 0/1, NV/I, 0/ 1, NV/ 1] where NV : 2 * * BitsPerSample - I

References

t1l The Reproduction of colour ín Photography, Prínling and Televísion, R.

W. G. Hunt, Fonntain Press, Tolworth, England, 1987'

12] Principles oJ Color Technology,Bilhneyer and Saltzman, Wiley-

Interscience, New Yolk, 1981.

t3] colorintetríc Properties of video Dßplays,william cowan, university of

Waterloo, Waterloo, Canada, 1989'

t4] TIFF Cotor Appearance Guidelines,Dave Farber, Easttnan Kodak com-

pany, Rochester, New Yolk.

88

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Section 21 : YG'G, lmages

Introduction

Digitizers of video sotrfces that create RGB data are becoming more capable and

less expensive. The RGB color space is adeqttate for this pulpose. However', for

both digital video and irnage compression applications a color difference color

space is needcd. The television industry depends on YCbC, for digital video For

image compression, subsampling the chrominance components allows for greater

"o,.n-pression.
TIFF YCbC, (which we shall call Class Y) suppofts these irnages and

applications.

Class Y is based on CCIR Recomurendation 601 - 1 , "Encoding Parameters of

Digital Television for Studios." Class Y also has pal'alnetels that allow the de-

scrìption of lelated standards such as CCIR Recomr1.rendation 709 and technologi-

cal variations such as cotnponent-sample positioning'

YCbC, is a distinct Photometliclnterpretation fype. RGB pixels are convefted to

and ftom YC'C, for storage and display

Class Y defines the following fields:

YCnC.Coefficients transfonlation from RGB to YC'C.

YC'C,SubSampling subsamplingofthechrominancecomponents

YC,,C,Positioning positioningofchrominancecomponentsamplesrelative
to the luminance samPles

In addition, IìeferenceBlackwhite, which specihes coding range expansion, is

requirecl by Class Y. See Section 20

Class Y YC'C, irnages have three cotnponents: Y, the luminance cotnponent, and

Cn and C', two chrotlinance conlponents. Class Y uses the intelnational standard

notation YC'C, for color-diffelence component coding. This is often incorrectlY

The transformations between YCbC, and RGB are linear transformations of

uninterpr.eted RGB sat1]ple data, typically ga1lìlÎa-conected values. The

YCnC,Coeffìcients freld descl'ibes the pafatneters of this transfonnation.

Another feature of class Y comes fi'om subsatnpling the chrominance colllpo-

nents. A Class Y irnage can be compressed by reducing the spatial resolution of

chronrinance components. This takes advantage ofthe relative insensitivify ofthe

hiunan visual systern to chiominance detail. The YCnC,SubSarnpling field de-

called YUV, which plopelly applies only to

sclibes the deøree qf çuþsampling yþ!ch,h4q ¡a\.¡ plu99,

When a Class Y irnage is subsampled, each Cn and C, satnple is associated with a

group of luminance samples. The YCnC,Positioning field describes the position of

the chrotninance corllponent samples relative to the group of luminance satnples:

centered or cosited.

class Y requires use of the ReferenceBlack'white field. This field expands the

coding range by describing the reference black and white valnes for the different

.o.pãn.ni. thàt allow headroorn and footroom for digital video ilnages Since the

89

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specificatìon Final-June 3, 1992

clefault for.ReferenceBlackWhite is inappropÍiate fol Class Y, it must be used

explicitly.

At first, it might seern that the infonr.ration conveyed by class Y and the RGB

Colorimetry section is redundant. However, decoding YCbC.to RGB prirnaries

r.equires the YC,,C, frelds, and interpretation of the resulting RGB ptimaries re-

quiles the colorimetry and transfer flinction infonr.ration. See the RGB Coloriln-

etry section fol details.

Extensions to Existing Fields

class Y irr.rages use a distinct Photometriclnterpretation Field value:

P h otom etri c I nte rP retati o n

Tag = 262 (106.'')

Type :SHORT

N =l
This Field indicates the colol space of the image. The new value is:

6-- YCbC,

A value of 6 indicates that the iurage data is in the YCbC, color space. TIFF uses

the international standald notation YCbC, for color-difference sample coding' Y is

the luminance component. co and c, are the two chrominance cornponents. RGB

pixels are convefted to and from YC,C, fonn for stolage and display'

Fietds Defined in Class Y

eoefficients
b r

Tas = 529 (ztr.H)

Type :RATIONAL

N:3
The transfonnation from RGB to YCbC. image data. The transfortnation is speci-

fied as three rational values that repreient the coefficients used to cornpute huni-

nance, Y.

theproportionsofr.ed,green,andbltrerespectivelyinlrrrninance,Y'

y, Co, and C, may be computed fi'orn RGB using the luminance coefficients

sPecif,red bY this field as follows:

Y = (LutnaRed* R+ LumaGreen * G t- LutnaBlue * B)

Cb : (B -Y)/(2 -2* LumaBlue)

90

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

C, : (R- Y)l (2-2* LumaRed)

R, G, and B may be computed fi'om YC.C'as follows:

R : C,* (2-2* LumaRed)+Y
G : (Y - LuntaBlue* B - LutnaRed* R) I LumaGreen

B : Co* (2-2* LuntaBlue)+Y
In disciplines such as printing, film, and video, there are practical reasons to plo-

vide footroom codes below the ReferenceBlack code and headroom codes above

ReferenceWhite code. In such cases the values of the transfomation matrix used

to convelt fiorn YCbC, to RGB must be rnultiplied by a scale factor to pt'oduce

flill-range RGB valuei. These scale factors depend on the leference ranges speci-

fied by the ReferenceBlackwhite freld. See the ReferenceBlackwhite and

TransfelFunction fields for more details

The values coded by this freld will fypically reflect the transfortnation specif,red

by a standard for YCbC, encoding. The following table contains exat11ples of cou-

monly used values.

Standald LumaRed LumaGreen LumaBlue

CCIR Recommendation 601 -1

CCiR Recommendation 709
299 I t000 587 / 1000

2r2s I 10000 7154 / 10000
1 14 / 1000
'/21110000

The defar"rlt values for this field are those defined by CCIR Recorntlendation 60 1-

I:29911000,587/1000 and 1 1411000, fot LtunaRed, LumaGreen andLunaBlue,

lespectively.

YC oC,SubSamPling
Tag

Type

N

: s30 (2r2.H)

: SHORT

respectivelY.

The two fields of this field are dehned as follows:

Shor t 0: YC,,C,Su bsamP leH oriz:

I : hnageWidth of this chroma image is equal to the ImageWidth of the associated

lutna itnage.

2: ImageWidth of this chrorna inage is halfthe ImageWidth of the associated luma

ilage.

4: ImageWidth of this chron-ra irnage is one-quafter the ImageWidth of the associ-

ated luma image.

Short 1 : YC,,C,SubsantPleVert:

I : hnagelength (height) of this chroma irnage is equal to the Lnagelength of the

associated lurna image.

91

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, '1992

Z = Imagelength (height) of this chroma image is half the hnagelength of the associ-

ated luma irnage.

4: Imagelength(height)ofthischlollaimageisone-quarlerthelmagelengthofthe
associated lurna image.

Both Cn and C, have the same subsaÛrpling 1atio. Also, YC ,,C ,strbsampleVert shall

always'be less than or equal to YC,,C ,SubsampleÍloriz'

Imagewidth and Imagelength are constrained to be integer multiples of

YC,,C,SubsampleÍIorÌzandYC,,C,$trbsampleZerlrespectivelyTileWidthand
filËLLngth have the same constraints. RowsPel'Strip nust be an integer multiple

of YC,,C,SubsantP leVert'

The default values of this field ale 12,2I'

YC oC !ositioning
Tag

Type

N

: s3 1 (213.H)

: SHORT

:1

Specifies the positioning of subsampled chrot1linance components relative to

luminance sarnples.

Specification of the spatial positioning of pixel sarnples relative to the other

sá'rples is necessary for propel'irnage post processing and accurate i'rage presen-

tation. In Class Y files, the position of the subsampled chrotlinance components

ar.e defined with respect to the luminance component. Because components must

be saûrpled orlhogonally (along rows and colutlns), the spatial position of the

sa,]rples in a given subsampled cornponent may be deterrnined by speciffing the

horizontal and vertical offsets of the fir'st sarnple (i.e, the sample in the upper-left

corner) with respect to the lutltinance conlponent. The horizontal and verlical

offsets of the first chrominance sample ale denoted Xoffset[0,0] and Yoffset[0,0]

respectively. Xoffset[O,0] and Yoffset[O,O] afe defined in tenns of the number of

samples in the lutlinance component.

Tag value YC6C¡ Positioning X and Y offsets of fir'st chrominance sat¡ple

1 centered

2 cosited Xoffsetl0,Ol :0
Yoffsct[O,O] :0

dar.ds such as Postscript Level 2 and QuickTime. Field value 2 (cosited) l11ust be

specified for cornpatibility with most digital video standards, such as ccIR Rec-

ommendation 601- 1 .

As an exampl e, for- chrontasubsarnpleÍloriz : 4 and chrotnasubsamplevert : 2,

the centers of the samples are positioned as ilh'rstrated below:

Xoffset[O,0] : Chrontasul:san'tpleHoriz I 2 - 0 5

Yoflset[0,O] = ChromasubsampleVert I 2 - 0'5

92

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

YCoC,Positioning: 1

XXX

Final-June 3, 1992

YC'C,Positioning = 2

Axx XX

X XX X

X

X

X Luntinancc samPlcs

Chromìnance samplcs

XXXX

XXX

a

X

XXXX

XX X

Proper subsampling of the chrominance components incorporates an anti-aliasing

filtár that reduces the spectral bandwidth of the ftlll-resolution sallples' The type

of filter usecl for subsarnpling detenlines the value of the YCbC,Positioning field'

ForYCbC,Positioning:1(center.ed),subsamplingofthechrominancecollìpo-
nents can easily be accotnplished using a syrntnetrical digital filter with an even

nurnber of tapi (coefficients). A comrnonly used hlter for 2:1 subsampling utilizes

two taps (112,112).

For YCoC.Positioning:2 (cosited), subsampling of the chrorninance components

"un
.u.ily'b. accornplished using a sytntnetrical digital filter with an odd numbel

of taps. Á cornrnonly used frltel for 2:l subsarnpling utilizes three taps (Il4,1l2,ll4)'

The default value of this field is 1.

Ordering of Component SamPles

This section defines the ordering convention used for Y, co, and c, cotnponent

samples when the Planarconhguration held value: I (interleaving). For

planarconfigruation:2, cornponent sarnples are stored as 3 separate planes, and

the ordering is the same as that used for other Photometriclnterpretation held

valnes.

. one or more Y samPlcs

. a Cnsample

. a C, sarnple

The Y samples within a data unit are specified as a two-dimensional array having

Chroma Subs ampleVert rows of Chroma Subs ampl eHoriz samples'

93

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specificatìon
Final-June 3, 1992

Expanding on the example in the pfevious section, consider a YCbC, image having

ChromaSttbsamp\eHoriz : 4 and ChrontaSubsampleVert = 2:

Y component Cb component Cr componelìt

Yoo Yol Y02 Y03 Yo4 Yos

Ylo Yl1 Yt2 Yr3

cb00 Cr00

For PlanarConfiguration : l, the sample order is:

Y00, Y0r, Yu, Yo' Yro,Yr,, Y¡r, Y,3, Cboo, Croo, Y04, Y.s '

Minimum Requirements for YCbCr lmages

In addition to satisfying the general Baseline TIFF requirements, a YCbCr hle

mr¡st have the following characteristics:

. sarnplesPerPixel: 3. SHORT. Three courponents replesenting Y, cb and cr

. BitsPersarnple: 8,8,8. SHORT.

. Conrpression: none (l),LZW (5) or JPEG (6)' SHORT'

. Photometriclnterpretation : YC.C,(6)' SHORT'

. ReferenceBlackwhite: 6 RATIONALS. Specify the reference values for

black and white.

If the conver.sion fi'om RGB is not accor<ling to ccIR Recomllendation 60i-1,

code YC.C, Coeffrcients.

94

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Secti on 22: JPEG Gompression

Introduction

Image cotnptession reduces the storage leq¡irements of pictorial data. In addition,

it reãuces the time required for access to, courtnnnication with, and display of
images. To address the standaldization of compression techniques an intemational

shnãards group was fon'ed: the Joint Photog'aphic Experls Group (JPEG). JPEG

has as its objective to create a joint ISo/ccITT standard for continuous tone

image cotlpression (color and grayscale)'

JPEG decided that because ofthe broad scope ofthe standard, no one algorithnric

procedure was able to satisñ7 the lequirements of all applications. It was deci<led

io specify different algorithn'ric processes, where each process is targeted to sat-

isfythe requiretnents of a class of applications. Thus, the JPEG standard becalle a

,'toolkit" whereby the parliculal algorithrnic "tools" al'e selected according to the

needs of the application environment.

The algorithtnic processes fall into two classes: lossy and lossless. Those based on

the Discrete Cosine Transfonn (DCT) ate lossy and typically provide for substan-

tial complession without significant degradation of the reconstructed irnage with

respect to the sottrce image.

The simplest DCT-based coding process is the baseline process. It provides a

capabiliiy that is sufficient for most applications. There are additional DCT-based

prà..r.., that extend the baseline pl'ocess to a broader range ofapplications.

The second class ofcoding processes is targeted for those applications requiring

lossless cotlpression. The lossless pfocesses are not DCT-based and are utilized

independently of any of the DCT-based processes.

This Section describes the JPEG baseline, the JPEG lossless processes, and the

extensions to TIFF defined to supporl JPEG compression'

JPEG Baseline Process

The baseline process is a DCT-based algorithrn that compresses images having 8

bits per component. The baseline plocess opefates only in sequential mode. In

sequential mode, the image is processed fi'om left to right and top to bottom in a

single pass by compressing the frlst row of data, followed by the second row, and

.onlinuing.rntil the end of irnage is reached. Sequential operation has minirnal
....--buf.fer.ing requirements and-thus pem,rits inexpensive.implernentations. ,. .

The JPEG baseline process is an algorithm which inhelently introduces error into

the reconstnrcted irnage and cannot be utilized for lossless cotnpression. The

algorithm accepts as input only those images having 8 bits per component. Itnages

with fewer than 8 bits per conlponent may be conrpressed using the baseline pro-

cess algor.ithm by left justifying each input component within a byte before com-

pression.

ÕÂ

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

lnput Picture Output Picture

Figure 1. Baseline Process Encoder and Decoder

A ftinctional block diagram ofthe Baseline encoding and decoding processes is

contained in Figure 1. Encoder operation consists ofdividing each component of

the input image into 8x8 blocks, performing the two-dimensional DCT on each

block, qr.rantizing each DCT coefficient unifon,rly, subtracting the quantized DC

coefficient from the conesponding ten.n in the pÍevious block, and then entropy

coding the quantized coeff,rcients using variable length codes (VLCÐ' Decoding

is per.ionned by inverting each ofthe encoder operations in the reverse order.

The DCT

Before perfonning the foward DCT, input pixels are level-shifted so that they

range fiorn -128 to +127. Blocks of 8x8 pixels ate transfomredwith the ¡¡¡o-

diurensional 8x8 DCT:

t -- x(2x+ I)u r(2Y+ I)v
F(u,v) : V

Ctu)C(v) ZLl6,Ð cos : *- cos-fi-

Invcrsc 'l râns[orilt

8r8 2-D II)Cl'
liorrtrÌ(l'l'rânsfoÌtrt

Srti 2-D DCI'

Invers€ Quântizllion
lleceivcs 4 lììbles

Unit0rm Quliltizâtion
h4Quânt. lablcs

l-D DC l'r'cdiclionlJ) l)C Ilrediction

llntropy Deco(ling

Ilcc€ivcs 2+2 'l åbles

Dntropy Co(ling

2 DC ân(¡
^C

l'åble$

and blocks are inverse transformed by the decoder with the Inverse DCT:

Ì - - tt(2x+ I)u t(2Y+ l)v
f(x,y) : V 2 2 c¡u¡c(v) F(u'v) c'os-Li 6- cos-fi-

with ¡.r, v,x,!=0,1,2, '..'7

the domain

ø, v: coordinates in the transfonl domain

C(u),C(v) : 1/sqt(2)

I

for u,v:0
otherwise

96

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

Although the exact method fol computation of the DCT and IDCT is not subject

to standar.dization and will not be specified by JPEG, it is probable that JPEG will

adopt DCT-confonnance specifications that designate the accuracy to which the

DCî must be computed. The DCT-confonnance specihcations will assure that

any two JPEG implernentations will produce visually-sirnilar t'econstructed im-

ages.

Quantization
The coefficients of the DCT are quantized to rednce their magnitude and increase

the number of zero-value coefficients. The DCT coefficients are independently

qr"rantized by unifonn quantizers. A unifonl quantizer divides the real nulnber

line into steps of equal size, as shown in Figure 2. The qÙantization step-sìze

applied to each coeffrcient is detemrined from the contents of a 64-element quan-

tization table.

C (u,v)
H

H

H

F (u,v)

-1 '2Q -1 Q

H

H

rQ 2Q 3

-t

-3H
Figure 2. Unifonn Quantization

The baseline process provides for up to 4 different quantization tables to be de-

fined and assigned to separate interleaved corîponents within a single scan of the

input image. Although the values of each quantization table should ideally be

detennined through rigorous subjective testing which estin,ates the human

psycho-visual thresholds for each DCT coefficient and fol each color conrponent

coefficient". After the DCT

of the input image, JPEG has

CCIR 601 resolution irnages

of the proposed standard.

developed
and has published these in the infonnational section

DC Prediction
The DCT coefficient located in the upper-left comer of the transforr¡ed block

represénts thê áverâge spatial intensity of the block and is refened to as the "DC

coefficients are quantized, but before they are entropy

coded, DC prediction is perfonned. DC prediòtiòn siiìpli meâris that the DC

ofthe previous block is subtracted from the DC tenn of the current block prior to

encoding.

97

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Zig-Zag Scan

Prior.to entropy coding, the DCT coeffrcients are oldered into a one-dirnensional

sequence according to a"zig-zag" scan. The DC coeffrcient is coded first, fol-

lowed by AC coefficient coding, ploceeding in the order illustrated in Figule 3.

7 7 7
(,/t

V)
(,/t
V)
(,/l
V)
I I I I

Figure 3. Zig-ZagScan of DCT Coefficients

Entropy Coding
The quautized DCT coefficients ale fuither compressed using entropy coding.

The baseline process perfoms enftopy coding using variable length codes (VLCs)

and variable length integers (VLIs).

VLCs, cornmonly known as Huffrnan codes, compress data symbols by creating

shofier codes to represent frequently-occurring syrnbols and longer codes for

occasionally-occuiTing syrnbols. One reason for using VLCs is that they are easily

impler.nented by lneans of lookup tables

Separate code tables are provided for the coding ofDC and AC coefficients. The

foúowing paragr.aphs describe the respective coding rnethods used for coding DC

and AC coefficients.

DC Coefficient Coding

--- - - 0--

DC pr.ediction produces a "differential DC coefficient" that is typically small ln

magnitnde due to the high correlation of neighboring DC coefficients. Each djf-

ferential DC coefficient is encoded by a VLC which represents the number of

signihcant bits in the DC tenr.r followed by a VLI representing the value itself.

Tñe VLC is coded by first detennining the numbe¡ of signihcant bits, SSSS, in the

differential DC coeff,rcient through the following table:

SSSS Differential DC Value

-'0- -.--
-1,1

_1 i)7
1

2

J

4

5

-1..-4,4..7

- 1 5..-8, 8.. 1 s

-31..-16,16..31

98

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specification

6

7

8

9

l0
u
l2

l5

-63..-32,32..63

-127..-64,64..121

-255..-t28,128,.255

-511 ..-256,256..51I

-1023 .. - 5 12, 5 12..1 023

-204'7 ..- 1024, | 024..204',1

-409 5..-2048, 2048..409 5

sSSS is then coded from the selected DC VLC table. The vLC is followed by a

VLI having SSSS bits that repfesents the value of the differential DC coefficient

itself. If the coefficient is positive, the vLI is simply the low-order bits of the

coefhcient. If the coefficient is negative, then the VLI is the low-order bits of the

coeffrcient-1.

AC Coefficient Coding

In a similar fashion, AC coeffrcients are coded with alternating VLC and VLI

codes. The vLC table, however, ìs a two-dimensional table that is indexed by a

composite 8-bit value. The lower 4 bits of the 8-bit value, i e. the column index, is

the nurnber of signifrcant bits, SSSS, of a non-zero AC coefficient. SSSS is com-

puted through the same table as that used for coding the DC coefficient. The
^¡,igh.r-ord.i.+

bits, the row index, is the number of zero coefficients, NNNN, that

põ"ede the non-zero AC coefficient. The first colulnn of the two-dimensional

coding table contains codes that represent control flmctions. Figure 4 illgstrates

the general strì¡cture of the AC coding table'

SSSS - Size of Non-Zero AC Coefs

01 2... 10 1I...15

NNNN

LeÌgth

of

ZeÍo

Run

0

Figure 4. 2-D Run-Size Value Anay for AC Coefs

The shaded portions are undehned in the baseline process

The flow charl in Figure 5 specifies the AC coefficient coding plocedure, AC

coefficients are coded by traversing the block inthe zig-zagsequence and count-

EOB

ztÀl,

99

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

ing the nurnbel ofzero coefficients until a non-zelo AC coefficient is encountered'

Ifthe count of consecutive zel o coefficients exceeds 1 5, then a ZRL code is coded

and the zero mn-length count is leset.'when a non-zero Ac coefficient is found,

the nulnber of significant bits in the non-zero coefficient, SSSS, is collbined with

the zero r-un-length that precedes the coefficient, NNNN, to fonlt an index into the

two-dimensional VLC table. The selected VLC is then coded. The VLC is fol-

lowed by a vLI that r.epresents the value of the AC coefficient. This process is

repeated until the end ofthe block is reached. Ifthe last AC coefflcient is zero,

then an End of Block (EOB) VLC is encoded.

Figure 5. Encoding Procedure fol AC Coefs

Y

Start

K=0
R=0

R= R+1K= K+1

K= 63?=0?

Code (ZRL)

R=R-16
R >'15 ?

Code R,Coef (K)

R=0
Code (EOB)

K= 63?

Done

JPEG Loss/es s Processes

The JpEG lossless coding processes r¡tilize a spatial-prediction algorithm based

upon a two-dimensional Differential Pulse Code Modulation (DPCM) technique.

They are cornpatible with a widel range of inputpixel precision than the DCT-

based algorithms (2 to 16 bits per cornponent). Although the primary tnotivation

JPEG allows for quantization of the input data, resulting in lossy cornpression and

higher comPression rates

Although JpEG provides for use of either the Huffinan or Arithrnetic entropy-

codingìlodels by the processes for lossless coding, only the Huffinan coding

¡rodeiis supportLd bythis version of TIFF. The following is a brief ovelview of

the lossless pl'ocess with Huffllan coding'

100

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Control Structure
Much of the oontrol structure developed for the sequential DCT procednres is also

used for sequential lossless coding. Eithef interleaved or non-interleaved data

ordering may be ttsed.

Coding Model

The coding rnodel developed for coding the DC coeffrcients of the DCT is ex-

tended to allow a number of one-dillensional and two-dimensional pledictors for'

the lossless coding function. Each colllponent uses an independent predictol'.

Prediction
Figur.e 6 shows the relationship befween the neighboÏing values used foÍ predic-

tion and the sample being coded.

Figure 6. Relationship between sample and prediction samples

Y is the sar.l-lple to be coded and A, B, and C are the samples imrnediately to the

left, imrnediately above, and diagonally to the left and above'

The allowed predictors are listed in the following table'

BC

YA

Selection-value Prediction

0 no prediction (differential coding)

1A
2B
3C
4 A+B_C

s A+((B-cy2)

6 B+((A-Cy2)

A+B)12

Selection-value 0 shall only be used fol diffeÍential coding in the hieral'chical

rnode. Selections l, 2 and 3 are one-dimensional predictors and selections 4, 5, 6,

andl aretwo clirnensional predictors. The divide by 2 in the prediction equations

is done by a arithrnetic-right-shift of the integel values'

- -'v-

101

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

The diffelence between the prediction value and the input is calculated modulo

2**16. Therefore,thepredictioncanalsobetreatedasalnodttlo2**l6value. In

the decoder the difference is decoded and added, modulo 2t* 16,to the prediction

Huffman Coding of the Prediction Error

The H¡ffinan coding p¡ocedr¡res defined for coding the DC coefficients ate used

to code the rnodr¡lo 2* * 1 6 differ-ences. The table for DC coding is extended to l7

entries that allows for coding of the modulo 2+ * 16 differences.

Point Transformation Prior to Lossless Coding

For the lossless pl.ocesses only, the input image data may optionally be scaled

(qr.rantized) prior to coding by specifliing a nonzelo value in the point transfonla-

tiån par.ameter.. Point transformation is defined to be division by a powef of 2'

Ifthe point transfonnation field is nonzero for a component, a point transfonna-

tion oi the input is pelfonned prior to the lossless coding. The input is divided by

2**Pt, wher.e Pt is the value of the point transfonn signaling held. The output of

the decoder is rescaled to the input Ïange by multiplying by 2* *Pt. Note that the

scaling of input and output can be perfomred by alithn-retic shifts'

Overuiew of the JPEG Extension to TIFF

. JPEG is effective only on continnous-tone color spaces

Glayscale (Photometric lnterpretation : 1)

In extending the TIFF definition to include JPEG complessed data, it is necessary

to note the following:

cM\.I((Photometric Interpretation:5) (see the CMYK Images section')

ycbc, (Photometric Interyretation: 6) (See the YCbcr images section.)

Color conver.sion to YCbC, is often used as part of the cotrlpression process

because the chlominance components can be subsarnpled and compressed to a

greatef degree without significant visual loss ofquality. Fields are defined to

ãeSCrìbe how this conversion has taken place and the degfee of subsarnpling

employed (see the YCbCr Itnages section).

New fields have been defined to specify the JPEG parameters used for com-

pression and to allow quantization tables and Huffinan code tables to be incor-

poratcd into thc TIFF filc.

102

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

TIFF is compatible with cornpressed image data that confonns to the syntax of

the JPEG interchange fonr-rat for colllplessed image data. Fields are defined

that rnay be utilized to facilitate conversion fi'om TIFF to intefchange fonnat.

The PlanarConhguration Field is used to specify whether or not the com-

plessed data is interleaved as defrned by JPEG. For any of the JPEG DCT-

based processes, the interleaved data units are coded 8x8 blocks rathel than

component samPIes.

Although JPEG codes consecutive irnage blocks in a single contiguous

bitstrear¡, it is extrernely useftll to employ the concept of tiles in an image. The

TIFF Tiles section defines some new f,relds for tiles. These fields should be

stor.ed in place of the older fields fol strips, The concept of tiling an itr]age in

both dimensions is important because JPEG hardware rnay be limited in the

size ofeach block that is handled

Note that the nomenclature used in the TIFF specification is different from the

JPEG Draft Intemarional Standardittee Draft (ISO DIS 1 09 I 8- 1) in sotne

fespects. The following terms should be equated when leading this Section:

TIFF naure JPEG DIS name

ImageWidth

Imagelength

SamplesPer?ixel

JPEGQTabIe

JPEGDCTabIe

JPEGACTabIe

Nunrber of Pixels

Number of Lines

Nurnber of Cornponents

Quantization Table

Huffilan Table fol DC coefficients

Huffinan Table for AC coeffiçients

Strips and Tiles

The JPEG extension to TIFF has been designed to be consistent with the existing

TIFF strip and tile structwes and to allow quick convet'sion to and fror.n the

stream-ot'iented cornpressed image format defined by JPEG'

Cor.npressed images confotrning to the syntax of the JIEG interchange fotmat can

be converled to TIFF simply by defining a single strip or tile for the entire image

and then concatenating the TIFF image description fields to the JPEG compressed

irnage data. The strip or tile offset field points directly to the start ofthe entropy

coded data (not to a JPEG rnarker)'

Mn JPECiompfêSSéd iniãges-ilsing restatt -

market's. Restafi mat'kers, inserted periodically into the compressed irnage data,

delineate image segments known as restart intelals. At the stafi of each restafi

interual, the cãding state is reset to default values, allowing every restarl interval

to be clecoded independently ofpreviously decoded data. TIFF strip and tile off-

sets shall always point to the start of a restafi interval. Equivalently, each strip or'

103

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, '1992

tile contains an integral nulnbel'of restalt intervals. Restart markers need not be

pl.esent in a TIFF file; they are irnplicitly coded at the staÚ of every strip or tile.

To maxirnize interchangeability of TIFF frles with other fot'mats, a restf iction is

placed on tile height fol frles containing JPEG-cornpressed image data confonl-

ing to the JPEG intefchange fonlat syntax. The restriction, imposed only when

the tile width is shorter than the image width and when the

JPEGlnterchangeFonnat Field is present and non-zero, states that the tile height

n]ust be equal ro the height of one JPEG Minimurn coded unit (MCU). This

restriction ensufes that TIFF f,tles may be convefted to JPEG interchange fonnat

without undergoing decotrrpression,

Extensions to Existing Fields

Compression
Tag :259 (103.H)

Type :SHORT

N :1

This Field indicates the type of compression used. The new valtte is

6: JPEG

JPEG Fields

JPEGPToc

Tas :5t2(200'H)

..-."^'-.- " -T¡rpe---: SHORT

N :1

This Field indicates the JPEG plocess used to produce the cornpressed data. The

values for this field are defined to be consistent with the numbering convention

used in ISO DIS 10918-2. Two valttes are defined at this time'

1: Baseline sequential process

14: Lossless process with Huffilan coding

..-When. the lossless.pr:ocess.with Huffman.codin€ i,s- s-eleeied þy thjs Fig!{, !þ9

Huffman tables used to encode the inage are specified

field, and the JPEGACTables field is not nsed.

by the JPEGDCTables

values indicating JPEG processes other than those specified above will be de-

fined in the future.

104

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Not all of the fields describecl in this section are lelevant to the JPEG plocess

selected by this Field. The following table specifies the frelds that are applicable

to each value defined by this Field.

JPEGPToc:1 JPEGPIoc:14

JPEGlnterchan geFonnat

JPEGlnterchangeFonlatlength

JPEGRestart Interval

JPEGLosslessPredictors

JPEGPointTransfonls

JPEGQTables

JPEGDCTables

JPEGACTables

J P EG I nterch a n ge F o rm at

Tag :513(201.H)

Type :LONG

N =i
This Field indicates whether a JPEG interchange fonnat bitstream is present in the

TIFF file. If a JPEG interchange foilIat bitstrearn is present, then this Field points

to the Start of Image (SOI) marker code.

Ifthis Field is zero or not present, a JPEG interchange fonnat bitstreanr is not

plesent.

J P E G I nte rc h a n g e F o rm atLe n gth

X

X
X

X
X
X

X
X
X
X
X

X

This Field is mandatory whenever the Compression Field is JPEG (no default)'

... -,.,..Tag , ,-:-5la,@02.fÐ ,

Type :LONG

N :1

This Field indicates the length in bytes of the JPEG interchange format bitstrealn.

This Field is useful for extlacting the JPEG interchange fotmat bitstrear¡ without

parsing the bitstream.

This Fjcld is relevant orrly if the JPEGlnterchargeFormat Field is present and is

non-zero.

JPEGRestartlnterval
Tas =sl5(203.H)

Typ" :SHORT

N :I

105

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specìfication Final-June 3, 1992

This Field indicates the lcngth of the restart interval used in the cotnpressed itnage

data. The restar.t interval is defined as the nurnber of Minin,um Coded Units

(MCUÐ between l'estart t¡arkers.

Restart intervals are nsed in JPEG compressed irnages to provide support for

multiple stlips or tiles. At the start of each restafi intel'val, the coding state is reset

to cieiault values, allowing every restafi interval to be decoded independently of

pr.eviously decoded data. TIFF strip and tile offsets shall always point to the start

of a restart interval. Equivalently, each stlip or tile contains an integral number of

restart interyals. Restalt markers need r.rot be plesent in a TIFF file; they are im-

plicitly coded at the stalt ofevery strip ol tile.

Sec the JPEG Draft Intemational Standard (ISO DIS 10918- I) for mot'e infonla-

tion about the restart interval and restart mal'kets.

Ifthis Field is zero or is not present, the cotnpressed data does not contain restart

markers.

J P E G L o ss/essPre d i cto rs

Tag :517 (205.H)

Type =SHORT

N : SamplesPer?ixel

This Field points to a list of lossless predictor-selection values, one pe1' co1Ì1po-

nent.

The allowed predictors are listed in the following table

Selection-value Prediction

B+(A-C)/2)

(A+B)/2

A, B, and C are the sarnples immediately to the left, immediately above, and

diagonally to the left and above the sarnple to be coded, r'espectively

see the JPEG Dr.aft Intemational Standard (ISO DIS 1 09 1 8- 1) for more details'

This Field is mandatory whenever the JPEGPToc Field specifres one of the

JPEGPointTransforms
Tag : 518 (206.H)

Typc : SHORT

N : SarnplesPerPixel

A
B

C

A

1

2

3

4 +B-C

6

7

losslcss processes 1no default)

106

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification
Final-June 3, 1992

This Field points to a list of point tlansfom values, one per colllponent. This Field

is relevant only for lossless p1'ocesses.

If the point transformation value is nonzero for a colnponent, a point tlansfonna-

tion oithe input is perfoÍmed priol to the lossless coding. The input is divided by

2**Pt, wher'é Pt is the point tr-ansfonn valne. The output of the decoder is fescaled

to the input r.ange by multiplying by 2x*Pt. Note that the scaling of input and

ontput can be performed by arithmetic shifts,

See the JPEG Draft Intemational Standard (ISO DIS 1 09 1 8- 1) for more details'

The default value of this Field is 0 for each component (no scaling)

JPEGQTables

Tas :519 (207.H)

Type :LONG

N : SamplesPelPixel

This Field points to a list of offsets to the quantization tables, one per component.

Each table consists of 64 BYTES (one for each DCT coefhcient in the 8x8 block)'

The quantization tables are stored in zigzag otdet '

See the JPEG Dr-aft Intemational Standard (ISO DIS 1091 8- I) for r.uore details'

It is strongly recomrnendecl that, within the TIFF frle, each component be assigned

separate tables. This Field is mandatory whellevet'the JPEGPT-oc Field specif,res a

DCT-based process (no default).

JPEGDCTables
Tas :520 (208.H)

Type :LONG

N = SamplesPer?ixel

This Field points to a list of offsets to the DC Huffman tables or the lossless

Huffilan tables, one per component.

The fonlat of each table is as follows:

I6BYTESof..BITS'''indicatingthentulberofcodesoflengthsltol6;

UptolTBYTESof..VALUES,,'indicatingthevaluesassociatedwith
those codes, in order oflength'

S ee the JPE G Draft Intemational Standard 0SO DIS 1 09 1 8 I) for more details

It is str.ongly recormnended that, within the TIFF file, each component be assigned

JPEGACTa6les

Tag :521 (209.H)

Type :LONG

N : SarnplesPer?ixel

107

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

This Field points to a list of offsets to the Huffinan AC tables, one per conlponent.

The format of each table is as follows:

l6BYTESof"BITS",indicatingthenumbelofcodesoflengthsltol6;

Upto256BYTESof"VALUES",indicatingthevaluesassociatedwith
those codes, in order of length.

See rhe JPEG Draft Intemational Standard (ISO DIS 1 09 I 8- 1) for more details.

It is str.ongly recomrnended that, within the TIFF ftle, each component be assigned

separate tãbles. This Field is ¡randatory whenever the JPEGPToç Field specifies a

DCT-based process (no default).

108

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specification

Minimum Requirements for TIFF with JPEG Compression

The table on the followillg page shows the minimum requirements of a TIFF file

that uses tiling and contains JPEG data collpressed with the Baseline process.

NevsubFileTyPe (254)

1

0

Tåg

t

Tag = lnageLêngth (25?)

LoDg

3 : üonochrome
8,8,S I RGB

8,8,3 : YCbC¡

T.f BitsPersamPlê {258)
Type = sho¡E
Length = sãnPlesPetPixeì

Tag : comPres

2

t
6

RCB
PhotometliclnLë¡P:e!ation (262)

t | üoDochronê
l:RCB

4 CltY(

T.r ¡amplesPerPixel {2?l)

=1

Tâ9

1

1 Æ lnterleãved
2 : NoL inLerleaved

rs!Tag

,1

129Tag
Type

Length

TiÌ
Tvpe

-t

Tå9

Lê¡gth
Lon9
Nnmber of Liles

Tag

I : Baselinê ProcêssTà9
TvPe
Length =1

offseLs to rables{519)

Length = SamplesPêrÞixeì

Ta9

Long
sâmples Pe¡PirelLength

offsêts Lô tables
Tð9
Type = Lo¡rg

Lèr9Lh - SamPlesPerPrreì

References

[1] Wallace, G., ,,overview of the JPEG Still Pictufe compression Algorithm",

Electronic hnaging East '90.

[2] f SO/IEC DIS 1 09 1 8- 1 , "Digital Compression and Coding of Continuous-tone

Still Images", Sept. 1991.

109

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6,0 Specificatìon

Secti on 23: CIE L*a*b* lmages

What is CIE L*a*b*?

CIE La*b+ is a color space that is colorimeú'ic, has separate lightness and chrotrra

channels, and is approxi¡rately pelceptr.rally uniform. It has excellent applicability

for device-independent tnanipulation of continuous tone irnages. These attlibtttes

rnake it an excellent choice for tnany irnage editing flinctions'

1976 CIEL*a*b* is represented as a Euclidean space with the following three

quantitiesploltedalongaxesatlightangles:I*representinglightncss, a*repre-

senting thé red/green axìs, and ö * representing the yellow/blne axis. The fonnulas

for 1976 CIE L*a*b* follow:

L*:116(Y/Y,,)t/3-r6 for Y/Y,,> 0.008856

L*:g03'3(Y/Yn) fot Y/Y,r<:0 008856 tsee note below'

ct * = 5 o ol(x /x,,¡t r t - g t r,¡t r zl

b + :20 }l(Y /Y,,)t t 3 - (Z / Z,)1
t 31.

whereX,,,Y,,,andZ,,atethe CIE,I Y,andZrristimulus vahtes of anappropriate

referencä *nit.. nTto, if any of the ratiosX/X,,,Y/Y,,,or Z/Z,,is equal to or less than

0.008856, it is replaced in the formulas with

'7 .78'7F + 161116,

where F is X/X,,, Y/Y,,, or Z/2,,, as appropriate (note: these low-light conditions are

of no relevance for most document-imaging applications). Tiff is defined such

ranges to +l- 127 allows encoding in 8 bits without elirninating any bnt the most

satr-trated self-lqtninous colors. It is anticipated that the rare specialized applica-

tions requiring support of these extreme cases would be unlikely to use CIELAB

uny*uy. ,Llt object colors, in fact all colors within the theoretical MacAdam lirn-

its, fall within the+l- 127 a*/b* range'

110

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992
TIFF 6.0 Specificat¡on

The TIFF CIELAB Fields

P h oto m etri c I nte rP retati o n

Tas :262(106.H)

Type :SHORT

N :1

8: l9l6ClEL*a*b+

IJsage of other Fields.

BitsPerSanple: 8

satÎplesPerPixel - ExtraSamples: 3 for I *ø+å *, 1 irnplies I * only, for mono-

chrome data.

compression: same as other multi-bit formats. JPEG comptession applies.

planarconfrguration: both chunky and planar data could be suppolted.

WhitePoint: does not aPPIY

PrirnaryChrornaticities: does not apply.

TransferFunction: does not aPPIY

Alpha Channel inforrnation will follow the lead of other data types'

The reference white for this data type is the perJëcl reflecting dilfuser (100Yo

difflise reflectance at all visible wavelengths). The Z * range is frorn 0 (perfect

absorbing black) to 100 (perfect reflecting diffuse white). The ø * and ó * ranges

will be represented as signed 8 bit values having the range -127 to +12'7 '

Converting between RGB and CIELAB, a Caveat

The above CIELAB fonnulae are derived lromclvXYZ. Convefting from

CIELAB to RGB requires an additional set of fornrnlae for converting between

RGB and XYZ. For standard NTSC primaries these are:

0.60700.17400.2000 R X

0.29900.58700.1140 ; G : Y

0.00000.06601 .1 I l0 B z

Generally, D65 illumination is used and a perfect reflecting diffuser is ¡sed for the

refelence white.

Since CIELAB is not a directly displayable fomrat, some conveLsion to RGB will

be required. while look-up table accelerated GIELAB to RGB conversion is

certainly possible and fast, TIFF wliters may choose to include a low lesolution

RGB subfile as an integral paft of TIFF CIELAB.

111

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Cotor Difference Measurements in CIELAB

The differences belween two colors in L*, a*, and ó* are denoted by DL*,Da*,

and Då+, respectively, with the total (3-dimensional) colol difference represented

as:

Â_E+ u5
:

f lnrx ¡
z+im *¡z ¡ 1¡6

+'¡z)t r z

This color difference can also be expressed in tenns ofl, *, C1 and a tleasttre of
hne. In this case, h,,ris not usedbecause it is an angr.rlaf l1leasule and cannot be

cotlbined with I * ánd c* dilectly. A linear'-distance fonn of hue is used instead:

CIE l9'76 a,b hue-di//erence, L,ll* oo

LH*,, 6
: l(¡¿*)t-(¡¿ *

)2 - (LC \}fi tz

where DC* is the chroma difference between the two colors. The total color dif-

ference expression using this hr.re-difference is:

AE* u6
: [1u * ;z+14ø

*¡z ¡ ç¡6'r¡zlt
tz

It is important to retnetnber that color difference is 3-dirnensional: mnch ûlol'e can

be leamed fror¡ a DL*a*b* triplet than fi'om a single DE value The DL*C*H*

fon.u is often the tnost useful since it gives the etror infonnation in a form that has

rnore farniliar perception correlates. Caution is in order, however, when ttsing

DH* for large hue differences since it is a straight-line approxirnation of a cttwed

hue distance.

The Merits of CIELAB

Colorimetric.
First and foremost, CIELAB is colorilnetric. It is traceable to the intetnationally-

recognized standard CIE 1 93 1 Standard Observer. This insrues that it encodes

colol in a manner that is accurately rnodeled after the hnman vision system. Col-

ors seen as matching are encoded identically, and colors seen as not tnatching are

encoded differently. CIELAB provides an unatnbiguous definition of color with-

out thç necessity of additional infonnation such as with RGB (plirnary

chromaticities, white point, and gamtna curves),

Device Independent.

unlike RGB spaces which associate closely with physical phosphor colors,

CIELAB contains no device association. CIEL,AB is not tail0red for one device or

device fype at the expense ofall others'

112

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6,0 Specification Final-June 3, 1992

Full Color Gamut.

Any one image or imaging device usr"rally encounters a vely limited subset of the

entire range of hur.nanly-perceptible color. Collectively, however, these images

and devices span a much larger gamut of color, A tr-uly versatile exchange color

space should encolrpass all ofthese colofs, ideally providing support for all vis-

ible color.. RGB, PhotoYCC, YCbCr, and other display spaces suffer frotr gatnut

limitations that exclude significant regions of easily printable colors. CIELAB is

defined for all visible color.

Efficiency
A good exchange space will tnaximize acculacy of translations between itself and

other spaces. It will represent colors compactly for a given accuracy. These at-

tributes are pt'ovided through visual unifonlily. One of the greatest disadvantages

of the classic cIE system (and RGB systems as well) is that colors within it are not

equally spaced visually. Encoding fllll-color images in a linear-intensify space,

snch as the typical RGB space or , especially, the XYZ space, reqnires a very large

range (greater than 8-bits/primary) to eliminate banding artifacts. Adoptinganon-

linear RGB space irnproves the efficiency bttt not nearly to the extent as with a

percephrally r,rnifonl space where these problelns are nearly eliminated, A uni-

fonn space is also more efficiently compressed (see below).

Pubtic Domain / Single Standard

CIELAB maintains no preferential attachments to any private organization lts

existence as a single standard leaves no room for ambiguity. Since i976, CIELAB

has continr¡ally gained pop¡larify as a widely-accepted and heavily-used standard.

Lu m í n an ce/C h rom i n an ce Separatio n'

The advantages for image size compression llade possible by having a separate

lightness or luminance channel are immense. Many such spaces exist. The degree

irnpofiant consideration. Recent studies (Kasson and Plouffe of IBM) suppolt

CIÈLAB as a leading candidate placing it above CIELIJV, YIQ, \'UV, YCC, and

XYZ.

other advantages suppoft aseparate lightness or lutninance channel. Tone and

contrast editing and detail enhancement are most easily accomplished with such a

channel. Conversion to a black and white representation is also easiest with this

type ofsPacc.

When the chrominance channels are encoded as opponents as with CIELAB,

vantages.

113

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

C ompress i b i I ity (D ata).

opponent spaces such as CIELAB are inherenfly more colllplessible than

tristimulus spaces such as RGB. The chrorna content of an image can be com-

pressed to a gfeater extent, without objectionable loss, than can the lightness con-

tent. The opponent arfangerrent of CIELAB allows for spatial subsampling and

effrcent compt'ession ttsing JPEG.

Com pressi b i I itY (Gam ut).

Adjusting the color t'ange of an irnage to lnatch the capabilities of the intended

output device is a critical ftinction within computational colot reproduction. Lu-

rninance/chtominance sepaÏation, especially when provided in a polar fou].l, is

desirable for facilitating gallut compression. Accurate gatnut compression in a

tli-linear color space is difficr.rlt.

CIELAB has a polar fotrn(ntetric hue angle, andtnefric chroma, described be-

low) that serves colnpression needs fairly well. Because CIELAB is not perfectly

unifonn, pr.oblerns can arise when cotnpressing along constant hue lines' Notice-

able hue enors are sotletimes introdr.rced. This problem is no less severe with

other contending color sPaces.

This polar fonn also provides advantages for local color editing ofimages. The

polar foul is not proposed as paft ofthe TIFF addition'

Getting the Most from CIELAB

Image Editors
The advantages of ir.nage editing within a perceptLrally unifonn polar color space

are tremenclous. A detailed description ofthese advantages is beyond the scope of

this section. As Previ ously mentioned, many Qolllmon tonal rnanipulation tasks

is affected. Edge en-

hancet-¡ent, contrast adjnstuent, and general tone-culve lnanlpulatlon all tdeally

affect only the lightness conponent of an image.

A perceptual polar space wot'ks excellently fot specifying a color range for tnask-

ing purposes. For exat11ple, a red shirl can be quickly changed to a green shirl

*ittto.,i ¿tu*ing an outline mask. The operation can be performed with a loosely,

quickly-drawn rnask region combined with a hue (and perhaps chrorna) range that

.n.o-pu.r.. the shirt's colors. The hue corlponent ofthe shirt can then be ad-

justed, leaving the lightness and chrorna detail in place,

-'- Color:-cast.adjusfinenl, is of the chlorna

channels ovef the entire image or blending them over the region of interest.

Converting from CIELAB to a device specific space

For fast conversion to an RGB display, CIELAB can be decoded using 3x3

matrixing followed by gamlna corection. The computational complexity required

114

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specifìcation Final-June 3, 1992

for accur.ate CRT display is the same with CIELAB as with extended luminance-

chlominance spaces.

Converling CIELAB for accurate plinting on CMYI(devices requires con.lputa-

tional conrplexity no greatef than with accurate conversion frotn any other cololi-

r.netric space. Gan-rut compression becomes one of the more signifìcant tasks for

any such conversion.

r15

APPENDIX HH

Microsoft et al. Exhibit 1005

Final-June 3, 1992TIFF 6.0 Specification

Part 3: Appendices
Part 3 contains additional infolrnation that is not part of the TIFF specification,

but may be ofuse to developers.

116

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Number of values

Appendix A: TIFF Tags Sorted by Number

TagName Decimal Hex Tvpe

NewSubfileType

SubfileType
InTageWidth

ImageLength

BitsPerSar.nple

Compression

Uncotnpressed

CCITT 1D

Gloup 3 Fax

Gtoup 4 Fax

LZW
JPEG

PackBits

Photometl. iclnterpletation

WhitelsZero

BlacklsZero

RGB
RGB Palette

Transparency mask

CMYI(
YCbCr
CIELab

Threshholding
CellWidth
CellLength

FillOlder
DocmnentNattre

ImageDescription
Make

254

255

256

25'Ì

258
2s9

FE

FF

100

101

r02
103

LONG
SHORT
SHORToTLONG
SHORT oTLONG

SHORT
SHORT

SamplesPerf ixel

I
2

3

4

5

6

32113

262

0

I

2

3

4

5

6

8

263

264

265

266

269

270

271

107

108

109

10A

10D

10E

10F

106 SHORT

SHORT
SHORT

SHORT

SHORT

ASCII
ASCII
ASCII

Model
StripOffsets

Orientatioll

SamplesPerPixel

RowsPerStrip

SÍipByteCounts
MinSampleValue

MaxSampleVahle

ASCII
SHORToTLONG
SHORT

SHORT
SHORToILONG
LONG or SHORT

SHORT
SHORT
RATIONAL

StripsPerlmage

1

1

1

StripsPerlmage

SamplesPerPixel

SarnplesPerPixel

1

212

273

2',74

2',77

218

2',t9

280

281

282

110

111

112

i15
116

rt'7
118

119

11AXRes olution
YResolution

PlanarConfiguration

PageName

XPosition
YPosition

FreeOffsets

FreeByteCounts

GrayResponseUnit

283

284

285

286

281

288

289

290

118

1lC
1lD
1iE
ilF
120

12r

r22

RATIONAL
SHORT

ASCII
RATIONAL
RATIONAL
LONG
LONG
SHORT

117

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

GrayResponseCurve

T4Options

T6Options
ResolutionUnit

PageNumber'

TransferFnuction

NrulberOflnks
DotRange

TargetPrinter

ExtraSamples

SampleForn-rat

SMinSarnpleValue
SMax
TransferRange

JPEGPToc

JPEGIntelchan geForrnat

JPEGInterchan geFormatln gth

JPEGRestaltlnterval

JPEGLosslessPledictors

JPEGPointTransfol'tìrs

JPEGQTables

JPEGACTables

YCbCrCoefficients

YCbCrSubSampling

YCbCrPositioning

ReferenceBlackWhite
Copyt'ight

334
336

151

152

339
340

153

154

20

I
2

6

3 + (2t*BitsPerSarnple)

2

I

1

TilesPerlmage
TilesPerlmage
1

total number of charac

ters in all ink natne

strings, including zeros

I

2, or 2*
NumberOflnks

ASCII any

BYrE
T:ï$::iîifa

compo-

SHORT SamplesPerPixel

Any Sarr-rplesPerPixel
-Any---' -- *----------SamplesPerP-ixel-'--'.--

Final-June 3, 1992

2* *BitsPerSarnple

I
1

I
2

{1or
SamplesPerfixel)*

2** BitsPerSarnple

6

1

1

1

1

SarnplesPerPixel

SaurplesPcrPixel

SamplesPerPixel

SamplesPerPixel

SarnplesPelPixel

J

2

1

2* SarnplesPerPixel

Any

291

292

293
296

29',l

301

305

306

315

316

311

318

319

320

321

322

323

324

325

332
JJJ

t23
r24
t25
t28
129

12D

131

132

138

13C

i3D
138

13F

140

t41
t42
r43
144

145

t4c
t4D

t4E
150

JJ/

338

342

512

513

5r4
515

5t'7

518

519

s20"^-
521

529

530

531

532

33432

SHORT

LONG
LONG
SHORT

SHORT

SHORT

SHORT

SHORT

LONG
LONG
SHORT

SHORT

SHORT

LONG

Softwale
DateTime

Arlist
HostComputer

Predictor

WhitePoint
PlirnaryChlomaticities

ColorMap

HalftoneHints

Tilewidth
TileLength
TileOffsets
TileByteCounts

InkSet

InkNames

,i\SCII
ASCII
ASCII
ASCII
SHORT
RATIONAL
RA'TIONAL
SHORT

SHORT

SHORT or LONG

SHORT or LONG
LONG
SHORToILONG
SHORT
ÄSCII

SHORT
BYTE or SHORT

156

200

201

202

203

205

206

207

JPEGDCTábIeS - - ..208.. ---.- toNG
209 LONG

RATIONAL
SHORT

SHORT
LONG
ASCII

118

2tI
2t2
2).3

214

8298

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification Final-June 3, 1992

Appendix B: Operating System
Gonsiderations

Extensions and F iletyPes

The reconrmended MS-DOS, tiNIX, and OS/2 file extension for TIFF files is

".TIF".

On an Apple Macintosh coûlputer, the recomlnended Filetype is "TIFF". It is a

good idea to also nalle TIFF f,rles with a ".TIF" extension so that they can easily

irnported if transfered to a different operating system.

119

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

Symbols

42 13

A

Adobe Developer Support I
alpha data 31

associated 77
ANSI IT8 71

Appendices 'l '16

Artist 28
ASCil 15

B

Baseline TIFF 11

big-endian 13

BitsPerSample 22, 29
BlacklsZero 17, 37
BYTE data type 15

c

lndex

Final-June 3, 1992

il 13

image 28
image file directory 13, 14

image file header 13

lmageDescription 34
lmageLength 18, 27, 34
lmageWidth 18, 27, 34
lnkNames 70
lnkSet 70

J

JPEG compression 95
baseline 95
discrete cosine trans-
form 95
entropy coding 98
lossless processes 100
quantization 97

JPEGACTables 107
JPEGDCTables 107
JPEGlnterchangeFormat 105

JPEGlnterdrangeFormatlength 105

JPEGLosslessPredictors 106

JPEGPointTransforms 106

JPEGPToc 104
JPEGQTables 107
JPEGRestartlnterval 105

K

no entries

L

little-endian 13

LONG data type 15

LZW compression 57

M

Make 35

CCITT 49
JPEG 95
LZW 57
Modified Huffman 43
PackBits 42

Copyright 31

Count 14, 15, 16

D

DateTime 31

default values 28
Differencing Predictor 64
DocumentName 55
DotRange 71

DOUBLE ,I6

Duff, Tom 79

E

ExtraSamples 31, 77

F

Facsimile 49
file extension 119
filetype 119
FillOrder 32
FLOAT 16

FreeByteCounts 33
FreeOffsets 33

cclTT 17, 30, 49
CellLength 29
CellWidth 29
chunky format 38
CIELAB images 110

clarifications 6

Class B 21

Class P 23 G

Class R 25
Classes T GrayResponseCurve 33' 73' 85

CMYK lmages 69 GrayResponseUnit 33

ColorMaP 23, 29 GrouP 3 17' 30

colorResponsecurves. see 3:::3Î3[li:H ?;
TransferFunction

ComPatibilitY 7 ¿
compliance 12

compositing. See alpha data: Hexadecimal 12

associated high fidelitY color 69

comPression 17, 30 HostComPuter 34

I

lFD. See image file directorY

matting. See alpha data: associ-
ated

MaxComponentValue 35

MaxSampleValue. See
MaxComponentValue

MinComponentValue 35
MinSampleValue. See

120

APPENDIX HH

Microsoft et al. Exhibit 1005

TIFF 6.0 Specification

MinComponentvalue
MM 13

Model 35
Modified H uffman compres-

sion 17, 30, 43
multi-page TIFF files 36
multiple strips 39

N

Final-June 3, 1992

NewSubfileType
NumberOflnks

separated images 66
SHORT data type 15
SLONG ,16

Software 39
SRATIONAL 16

SSHORT 16

StripByteCounts 19, 27, 40
StripOffsets 19, 27, 40
StripsPerlmage 39
subfile 16

SubfileType 40. See also
NewSubfileType

T

WhitelsZero 17, 37
WhitePoint 83

X

XPosition 55
XResolution 19, 27, 41

Y

YCbCr images 87, 89
YCbCrCoefficients 90
YCbCrPositioning 92
YCbCrSubSampling 91

YPosition 56
YResolution 19, 41

z
no entries

36
70

o
Offset 15
Orientation 36

P

PackBitscompression 42
PageName 55
PageNumber 55
palette color 23, 29, 37
Photometiclnterpretation 17, 32, 37

pixel 28
planar format 38
PlanarConfiguration 3B

Porter, Thomas 79
Predictor 64
PrimaryChromaticities 83
private tags I
proposals

submitting I
o
no entries

T4Options 5'l
T60ptions 52
tag 14

TargetPrinter 71

Threshholding 41

TIFF
administration I
Baseline 11

Class P 23
Class R 24
Classes 17
consulting I
extensions 48
history 4
other extensions I
sample Files 20
scope 4
structure 'l 3

tags - sorted 117

TIFF Advisory Committee 9
TileByteCounts 6B

leLength 67
R

RATIONAL data type 15
reduced resolution 36
ReferenceBlackWhite 86
ResolutionUnit 18, 27, 38
revision notes 4
RGB images 37
row interleave 38
RowsPerStriP 15, 27, 39, 68 U

S UNDEFINED 16

samPle. See comPonent V
SampleFormat 80
SamplesPerPixel 39 no entries

SBYTE 16 w

TileOffsets 68
Tiles 66
TilesPerlmage 67, 68
TileWidth 67
TransferFunction 84
TransferRange 86
transparency mask 36, 37

type of a field 14

121

APPENDIX HH

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

0

FlashPix Format
Specification

Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

ii © 1996 Eastman Kodak Company Version 1.0

© 1996

Eastman Kodak Company

Portions copyright

Hewlett-Packard Company

, 1996

All rights reserved. No parts of this document may be reproduced, in whatever form,
without express and written permission of

Kodak

.

The information in this document is believed to be accurate as of the date of publication.
However,

Kodak

 will not be liable for any damages, including indirect or consequential,
from use of this document.

The

FlashPix

TM

 format is defined in a specification and a test suite, developed and published
by

Eastman Kodak Company

 in collaboration with

Hewlett-Packard Company, Live Picture
Inc.

 and

Microsoft Corporation

. Only products that meet the specification and pass the test
suite may use the

FlashPix

 file format name.

For change requests, please send e-mail to “format_change_request@kodak.com”

A public listserver has been established for interested parties to share information and
ideas regarding the

 FlashPix

 format. To subscribe to this listserver do the following:

1. Compose an e-mail message to “maillist@pixel.kodak.com”

2. The note should not contain a subject line and should have only one line in the body
as follows:

subscribe FORMAT firstname lastname (i.e. subscribe FORMAT John Doe)

3. Whatever address you send this note from will be the address all listserver messages
are sent to (i.e. john_doe@kodak.com)

4. A confirmation message will be sent back to you containing instructions on how to
communicate with the listserver.

APPENDIX II

Microsoft et al. Exhibit 1005

Version 1.0 © 1996 Eastman Kodak Company

iii

0

Contents

SECTION 1 Introduction 1

1.1 Purpose 1

1.2 Specification Organization 1

1.3 Conventions 2

1.4 Structured Storage 2
1.4.1 Property Sets 3
1.4.2 Summary Information Property Set 4
1.4.3 File identification 7
1.4.4 OS-level file treatment in Windows or with OLE 7
1.4.5 FlashPix Streams 8
1.4.6 String and Character Representation 8

1.4.6.1 Storage and Stream Names 8
1.4.6.2 Property Set Code Page and Strings 9

1.5 Format Compliance 10

1.6 FlashPix File Overview 11
1.6.1 Extension management 13

SECTION 2 Image Data Representation 15

2.1 Coordinate systems 15
2.1.1 Resolution-Independent Coordinates 15
2.1.2 Resolution-Dependent Coordinates 16

2.2 Multiple resolutions 17
2.2.1 Resolution sizes 18
2.2.2 Non-Hierarchical FlashPix Images 19

2.3 Tiling 19
2.3.1 Breaking an Image into Tiles 19

SECTION 3 The FlashPix Image Object 23

3.1 FlashPix Image Object Structure 23
3.1.1 Resolution Storages 24
3.1.2 Summary Info Property Set (required) 25
3.1.3 CompObj Stream (required) 25
3.1.4 Image Info Property Set (optional) 26
3.1.5 Image Contents Property Set (required) 26

APPENDIX II

Microsoft et al. Exhibit 1005

iv © 1996 Eastman Kodak Company Version 1.0

3.1.5.1 Primary description group 26
3.1.5.2 Resolution Description Groups 27
3.1.5.3 Compression Description Group 33

3.1.6 ICC Profile (optional) 34
3.1.7 Extension List Property Set (optional) 34

SECTION 4 Image Data Format 41

4.1 The Subimage Header Stream 41
4.1.1 Subimage Header Stream Data 42
4.1.2 Tile header table 43

4.2 The Subimage Data Stream 47
4.2.1 Channel Ordering 47
4.2.2 Tile Data Format 47

4.2.2.1 Uncompressed 47
4.2.2.2 Single Color Compressed 47
4.2.2.3 JPEG Compressed 47

SECTION 5 Color Space Specifications 49

5.1 Introduction 49

5.2 PhotoYCC and NIF RGB Reference Viewing Environments 50
5.2.1 PhotoYCC Reference Viewing Environment 50
5.2.2 NIF RGB Reference Viewing Environment 50

5.3 Colorimetric Definitions and Digital Encodings 51
5.3.1 PhotoYCC Colorimetric Definition and Digital Encoding 51
5.3.2 NIFRGB Colorimetric Definition and Digital Encoding 54

5.4 Monochrome Encoding Definition 56

SECTION 6 Image Info Property Set 57

6.1 Informational Groups 57

6.2 File Source Group 58

6.3 Intellectual Property Group 60

6.4 Content Description Group 61

6.5 Camera Information Group 63

6.6 Per Picture Camera Settings Group 63

6.7 Digital Camera Characterization Group 69

6.8 Film Description Group 74

APPENDIX II

Microsoft et al. Exhibit 1005

Version 1.0 © 1996 Eastman Kodak Company

v

6.9 Original Document Scan Description Group 75

6.10 Scan Device Property Group 77

SECTION 7 FlashPix Image View Object 79

7.1 FlashPix Image View Object 79
7.1.1 CompObj Stream (required) 81
7.1.2 Source and Result FlashPix Image Objects 81
7.1.3 Source and Result Description Property Sets 82
7.1.4 Transform Property Set (optional) 85
7.1.5 Operation Property Set (optional) 89
7.1.6 Global Info Property Set (required) 89
7.1.7 Extension List Property Set (optional) 91

7.2 Viewing Transform Parameters 97
7.2.1 Selection via Rectangle of Interest 97
7.2.2 Filtering 98

7.2.2.1 The Measure 98
7.2.2.2 Subsystem information 99
7.2.2.3 User Sharpening Adjustment 99

7.2.3 Spatial Orientation 100
7.2.4 Tone and Color Corrections 100

7.2.4.1 Color Images 101
7.2.4.2 Monochrome Images 101

7.2.5 Contrast adjustments 101

7.3 Sequence of Viewing Parameters 103
7.3.1 Coordinate System 104
7.3.2 Image Size and Limits 104

APPENDIX A Structured Storage 105

APPENDIX II

Microsoft et al. Exhibit 1005

vi © 1996 Eastman Kodak Company Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

Version 1.0 © 1996 Eastman Kodak Company vii

List of figures

FIGURE 1.1 Conventions for storages and streams in illustrations 3
FIGURE 1.2 FlashPix image view object 12
FIGURE 1.3 FlashPix image object 12
FIGURE 1.4 Contents of a resolution storage 13
FIGURE 2.1 Resolution-independent coordinates 16
FIGURE 2.2 Resolution-dependent coordinates 17
FIGURE 2.3 Sample resolution hierarchy 18
FIGURE 2.4 A tiled image 20
FIGURE 3.1 FlashPix image object storages and streams 24
FIGURE 3.2 Contents of a resolution storage 24
FIGURE 3.3 Example of pixel-centered alignment between adjacent resolutions 31
FIGURE 3.4 Frequency response curve and error bounds 32
FIGURE 5.1 Spectral responsivities of the Reference Image-Capture Device 52
FIGURE 7.1 FlashPix image view storages and streams 80

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

viii © 1996 Eastman Kodak Company Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

Version 1.0 © 1996 Eastman Kodak Company ix

List of tables

TABLE 1.1 Valid properties of the summary information property set 5
TABLE 3.1 Valid properties in the primary description group 26
TABLE 3.2 Legal display height/width units property values 27
TABLE 3.3 Valid properties in a resolution description group 27
TABLE 3.4 Format and fields of the subimage color property 28
TABLE 3.5 Valid color space subfield values 28
TABLE 3.6 Valid color subfield values 29
TABLE 3.7 Legal subimage color values 30
TABLE 3.8 Valid properties in the compression information properties group 33
TABLE 3.9 Format and entries of a JPEG abbreviated header table 33
TABLE 3.10 Valid properties for the extension list property set 36
TABLE 3.11 Legal values of the existence persistence property 37
TABLE 3.12 Example values of FlashPix stream identification 38
TABLE 3.13 Example values of property set identification 40
TABLE 3.14 Example of subimage identification 40
TABLE 4.1 Format and fields of the subimage header stream 42
TABLE 4.2 Format and fields in the tile header table 43
TABLE 4.3 Format and fields of a tile header 43
TABLE 4.4 Valid compression type values 44
TABLE 4.5 Format and entries of the compression subtype field for JPEG compressed

tiles 45
TABLE 4.6 Format and entries of a JPEG abbreviated format stream for tile data 48
TABLE 5.1 Comparison of PhotoYCC and NIF RGB viewing environments 50
TABLE 5.2 CIE chromaticities for CCIR-709 reference primaries and CIE standard

illuminant 52
TABLE 6.1 Properties in the file source group 58
TABLE 6.2 Valid file source property values 59
TABLE 6.3 Valid scene type property values 59
TABLE 6.4 Properties in the intellectual property group 61
TABLE 6.5 Properties in the content description group 62
TABLE 6.6 Valid test target in the image property values 62
TABLE 6.7 Properties in the camera information group 63
TABLE 6.8 Properties in the per picture camera settings group 64
TABLE 6.9 Valid exposure program property values 65
TABLE 6.10 Valid metering mode property values 66
TABLE 6.11 Valid scene illuminant property values 67
TABLE 6.12 Valid flash property values 67
TABLE 6.13 Valid flash return property values 67
TABLE 6.14 Valid back light property values 68
TABLE 6.15 Valid special effects optical filter property values 69
TABLE 6.16 Properties in the digital camera characterization group 69
TABLE 6.17 Valid sensing method property values 70
TABLE 6.18 Valid focal plane resolution unit property values 70
TABLE 6.19 Sample frequency response 71
TABLE 6.20 Structure and entries of spatial frequency response VT_VARIANT |

VT_VECTOR block 71
TABLE 6.21 Valid CFA pattern property values 72

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

x © 1996 Eastman Kodak Company Version 1.0

TABLE 6.22 Structure and entries of CFA pattern VT_VARIANT | VT_VECTOR block 72
TABLE 6.23 An example of measured OECF data 73
TABLE 6.24 Structure and entries of OECF VT_VARIANT | VT_VECTOR block 73
TABLE 6.25 Properties in the film description group 74
TABLE 6.26 Valid film category property values 74
TABLE 6.27 Structure and entries of original scanned image size VT_VARIANT |

VT_VECTOR block 75
TABLE 6.28 Properties in the original document scan description group 75
TABLE 6.29 Structure and entries of original scanned image size VT_VARIANT |

VT_VECTOR block 76
TABLE 6.30 Valid original medium property values 76
TABLE 6.31 Valid type of reflection original property values 77
TABLE 6.32 Properties in the scan device property group 77
TABLE 7.1 Valid properties for the source and result description property sets 83
TABLE 7.2 Structure and entries of the status property 84
TABLE 7.3 Valid status property values of the existence/location field 84
TABLE 7.4 Valid status property permissions field values 84
TABLE 7.5 Valid properties for the transform property set 86
TABLE 7.6 Format and fields of the rectangle of interest property 88
TABLE 7.7 Valid properties for the operation property set 89
TABLE 7.8 Valid properties in the global info property set 90
TABLE 7.9 Valid properties for the extension property list property set 92
TABLE 7.10 Legal values of the existence persistence property 94
TABLE 7.11 Example values of FlashPix stream identification 95
TABLE 7.12 Example values of property set identification 97

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

1

I

 S E C T I O N

1

1

Introduction

1.1 Purpose

This document is the technical specification that defines the image file format for Flash-
Pix images. The effort to define the FlashPix format is a cooperative endeavor that
includes the Eastman Kodak Company, Microsoft Corporation, the Hewlett-Packard
Company, and Live Picture, Inc. The FlashPix format builds on the best features of
existing formats (Kodak Image Pac, Live Picture IVUE, Hewlett-Packard JPEG, TIFF,
TIFF/EP, and so on), and combines these features with an object orientation and other
powerful new capabilities.The FlashPix format enables the industry to deliver desktop
computer solutions that make it easy, enjoyable, and commonplace to use digital color
photographic images in offices and homes.

1.2 Specification Organization

This document is divided into several sections, each isolating one aspect of the FlashPix
specification. The sections are as follows:

■ Section 1: Introduction defines structured storage.

■ Section 2: Image Data Representation describes the resolution hierarchy and the
organization of image data into tiles.

■ Section 3: The FlashPix Image Object describes the format, in terms of Structured
Storage, of the FlashPix image object.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

2 © 1996 Eastman Kodak Company Version 1.0

■

Section 4: Image Data Format

 describes the format of the individual streams used to
store the actual image data.

■

Section 5: Color Space Specifications

 defines the PhotoYCC and NIF RGB color
spaces.

■

Section 6: Image Info Property Set

 describes the non-image information in a

Flash-
Pix

 image.

■

Section 7: FlashPix Image View Object

 defines the

FlashPix

 image view object. This
object allows a default view (including orientation, crop and color adjustment) to be
specified for a

FlashPix

 image without modifying pixel values.

■

Appendix A: Structured Storage

 defines the binary format of structured storage files
and relevant data structures.

1.3 Conventions

The following conventions are used in this document.

■ All numbers starting with a “0x” are in hexadecimal.

■ Special characters in strings are indicated using the octal format, where any three
digit number preceded by a “\” represents the ASCII value of the character in octal.
For example, a newline character would be represented by “\012.”

■ Spaces in strings are explicitly indicated using their octal representation, “\040.”

■ Stream and storage names are specified in standard C language “printf” syntax.

1.4 Structured Storage

The FlashPix format is based on a compound object storage model called structured
storage. A file in structured storage format contains two types of objects: storages and
streams. Storages are analogous to directories in a file system; streams are analogous to
files. A storage may contain both zero or more additional storages and zero or more
streams. The streams and storages in a FlashPix file are individually addressable.
Figure 1.1 shows the convention used in this document to illustrate storages and
streams.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 3

FIGURE 1.1 Conventions for storages and streams in illustrations

The entire structured storage file appears in the host file system as one file. In this exam-
ple, storage 1 represents the root storage. It is the highest level storage of the file and is
the entity that is visible in the host file system. It contains two storages (2 and 3) and one
stream (1). Storage 2 contains one empty storage (4). Storage 3 contains two streams (2
and 3).

All entities in a FlashPix file have a class ID that identifies the type of the object. Class
IDs are defined as globally unique identifiers (GUID’s). They are represented as 128 bit
numbers that are considered impossible to duplicate. GUID’s are generated using the
algorithm specified for the generation of universal unique identifiers for remote proce-
dure calls[17].

1.4.1 Property Sets
Structured storage defines property sets as a stream for storing tagged data. The Flash-
Pix format uses this mechanism extensively for storing data other than actual pixel val-
ues.

As defined, property sets are very flexible. All property sets must be in Windows For-
mat. Windows format is indicated in the property set header by setting the wByteOrder
field to 0xFFFE and the wFormat field to 0x0. Furthermore, the codepage must be writ-
ten into the requisite property (PID = 1) in each and every FlashPix property set as
described below. A binary specification of property sets is include in this specification
in Section A.2.

With the sole exception of the OLE standard Summary Information Property Set each
and every FlashPix property set must be in the Unicode (1200) codepage, and all strings
in that set must be stored as wide 16-bit characters (LPWSTR). Due to its origin and
use in non-FlashPix applications, the Summary Information Property set has different
conditions than all other property sets. This property set must be in the Western Euro-
pean ANSI (1252) code page, and all strings in it must be stored as 8-bit characters
(LPSTR). For legacy reasons, all FlashPix property set readers must be able to handle a
1200 codepage in the Summary Information Property set as if it was 1252. (Note - this

Storage 1

Stream 2

Storage 4Storage 2

Storage 3

Stream 1

Stream 3

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

4 © 1996 Eastman Kodak Company Version 1.0

last restriction will not introduce any character shifts since the 8-bit subsection of the
Unicode codepage is exactly the 1252 codepage.)

The properties defined for each property set are listed in the property set definition. All
property ID codes not explicitly listed for the property set are reserved for registered
extensions. Where valid property values are listed, those not explicitly listed are
reserved for registered extensions.

1.4.2 Summary Information Property Set

Stream name:

\005

SummaryInformation
Class ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9
Format ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9

Structured storage defines one property set that can be found in every

FlashPix

 object to
provide a basic level of information about the object. This summary information prop-
erty set is used in

FlashPix

 image objects and

FlashPix

 image view objects. This prop-
erty set is in general use in OLE. It must be in the Western European ANSI (1252)
codepage. Because of this restriction, this property set is not truly internationalizable in
version 1.0 of the

FlashPix

 specification.

The property set must also have at least one section that has a format ID the same as the
class ID. The properties of the summary information property set are listed in Table 1.1.

Title property (optional)

This property is available for the application to record the object title.

Subject property (optional)

This property is available for the application to record the subject of the object.

Author property (optional)

This property is available for the application to record the author of the object.

Keywords property (optional)

This property is available for the application to record keywords about the object.

Comments property (optional)

This property is available for the application to record comments about the object.

Template property (optional)

This property is not used with

FlashPix

 objects.

Last saved by property (optional)

This property is available for the application to record the name of the user who last
saved the object.

Revision number property (optional)

This property is available for the application to record the number of times the object
has been saved.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 5

Total editing time property (optional)

This property is available for the application to record the duration of an object editing
session.

Last printed property (optional)

This property is available for the application to record when the object was last printed.

Create date/time property (optional)

This property is available for the application to record the creation date and time for the
object. This value should not be updated after it is initially written.

Last saved date/time property (optional)

This property is available for the application to record the date and time that the object is
saved. It is strongly recommended that this property be used in

FlashPix

 objects.

Number of pages property (optional)

This property is not used in

FlashPix

 objects.

Number of words property (optional)

This property is not used in

FlashPix

 objects.

TABLE 1.1 Valid properties of the summary information property set

Property Name ID Code Type

Title 0x00000002 VT_LPSTR

Subject 0x00000003 VT_LPSTR

Author 0x00000004 VT_LPSTR

Keywords 0x00000005 VT_LPSTR

Comments 0x00000006 VT_LPSTR

Template 0x00000007 VT_LPSTR

Last saved by 0x00000008 VT_LPSTR

Revision number 0x00000009 VT_LPSTR

Total editing time 0x0000000A VT_FILETIME

Last printed 0x0000000B VT_FILETIME

Create time/date 0x0000000C VT_FILETIME

Last saved time/date 0x0000000D VT_FILETIME

Number of pages 0x0000000E VT_I4

Number of words 0x0000000F VT_I4

Number of characters 0x00000010 VT_I4

Thumbnail 0x00000011 VT_CF

Name of creating application 0x00000012 VT_LPSTR

Security 0x00000013 VT_I4

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

6 © 1996 Eastman Kodak Company Version 1.0

Number of characters property (optional)

This property is not used in

FlashPix

 objects.

Thumbnail property (required in some situations)

This property is available for the application to record a small bitmap representation of
the

FlashPix

 object. For the

FlashPix

 image view object, the thumbnail property is
optional for the summary information property set if this

FlashPix

 image view points to
a non-hierarchical source image object written in an embedded capture environment.
The thumbnail is otherwise required for

FlashPix

 image view objects. The thumbnail is
optional for the source and result

FlashPix

 image objects.

■

Thumbnail data should reflect image contents within the thumbnail format lim-
its and must be oriented the same way as the object it is contained in. Refer to
Sections 3.1.2 and 7.1 for additional information about how the thumbnail
property is used.

■

The thumbnail image is stored in CF_DIB format which is a simple rectangular
array of pixels with a small header as defined in [23].

■

For single channel images (including opacity only images), treat them as
monochrome without an opacity channel for purposes of the thumbnail.

■

For multicolored images, all pixels are stored in 24 bit (bi.BitCount = 24) BGR
format (in the NIF RGB color space). For single channel images, all pixels are
stored in 8 bit (bi.BitCount = 8) format.

■

Palettized color representations are not allowed for 24 bit DIB’s. However, for
single channel thumbnails, a palette entry must be provided which serves as the
8 to 24 bit identity lookup table. It is highly suggested that this palette be a
pure grayscale ramp of exactly 256 RGBQUAD elements (e.g. biClrUsed = 0)
running from black to white. The palette should consist of a sequence of 256
32-bit RGBQUAD structures [x,x,x,0] for all x running from 0 to 255. Note
that DIB palettes require the fourth (reserved) channel to be identically zero as
defined in [23].

■

The thumbnail image data is stored uncompressed.

■

For images with an opacity channel in addition to image data channels, the
thumbnail should be stored as if it had been composited on a fully opaque
white background.

■

The larger of the thumbnail stored height and width must be 96 pixels. The
image should be resized to this dimension instead of padding a smaller image.
It is not required to pad the smaller dimension to 96 pixels.

Name of creating application property (optional)

This property is available to the application to record the name of the application that
created the object. It is strongly recommended that this property be used in

FlashPix

objects.

Security property (optional)

This property is not used in

FlashPix

 objects.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 7

1.4.3 File identification

A

FlashPix

 file must be an image view object and its object type class ID must be stored
in the root storage header. Many object based systems (e.g. OLE) will use the class ID
found in the header of the root storage as a key for launching an application. In this way
an application can be designated to handle all files of this object type by default, regard-
less of their creator.

The

FlashPix

 image view object and

FlashPix

 image object storages are required to
have a CompObj type stream. Their object type class ID is required to be stored in the
clipboard format field of that stream as well as in the header of the storage. The clip-
board format field is what should be used to determine the class ID of these objects.

In non-OLE environments,

 FlashPix

 format files are identified by other means; includ-
ing file name extensions and file types.

Macintosh systems use a file type designation to identify file content [24]. The file type
is a 4-character code stored with each file. For example, the code 'TEXT' indicates that
the file contains ASCII text. The Macintosh also associates a "file creator" with each file.
This is also a 4-character code. It identifies the application that created the file.

These two codes are stored in the Finder Desktop Database [24]. When a file is double-
clicked, the Finder uses the file's creator ID to determine its associated application. On
the Macintosh,

FlashPix

 files have been registered with a file type of "FPix" (Hex)
46506978.

On platforms (e.g., UNIX) that do not support GUIDs or file types as a means of associ-
ating files and applications/components, file extensions should be used. These are speci-
fied by the user as a period (".") followed by up to 3 letters. For example, an extension of
(".FPX") can be used to indicate that the file contains a

FlashPix

 file.

1.4.4 OS-level file treatment in Windows or with OLE

It is recommended that in Windows or OLE-enabled environments, core

FlashPix

 files
be managed independent of their creating application and that the user receives some
control over which

FlashPix

 reader becomes the server for

FlashPix

 files.

The former can be accomplished by writing and saving core

FlashPix

 files using the
class ID of the

FlashPix

 object type in the header portion of the root storage. Such files
should also use a ‘.FPX’ extension. Cases where it is more appropriate to use the creat-
ing application’s class ID as the root storage class ID include: images with significant
use of an application’s extensions, user approval via explicit prompting or preference
setting, or for images used in a closed system.

In OLE-enabled environments, core

FlashPix

 reader applications should be able to reg-
ister as the server application for the

FlashPix

 image view object class ID. If all core

FlashPix

 readers did this, the last installed application would become the default server
application. Due to the confusion this can cause the user, it is strongly recommended

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

8 © 1996 Eastman Kodak Company Version 1.0

that the installation procedure for a core

FlashPix

 reader application offer it as the
default

FlashPix

 application. The installation would not insert the new application as the
server of the

FlashPix

 image view object class ID unless the user agreed. Whenever
possible, the installation procedure would also register the application as serving the
.FPX extension.

1.4.5

FlashPix

 Streams

FlashPix

 class IDs are used to identify the type of an entity. Unfortunately, standard
structured storage streams do not have a class ID. To deal with this problem a

FlashPix

stream differs from an OLE stream in that the first 28 bytes of the actual stream contain
header information, part of which is the class ID of the stream. These bytes are not
counted when determining offsets into the stream nor when determining the stream
length. For example, the first byte of data in a

FlashPix

 stream is stored in byte 28 of the
actual stream (the first byte is byte 0). These 28 bytes are in the format of a property set
header, as defined in Section A.2.1.1.

Note that property sets, on the other hand, do have a class ID field, and thus do not need
modification. Property sets in the

FlashPix

 format are not stored as

FlashPix

 streams,
but as standard streams. However, the header of a

FlashPix

 stream is the same as the
header of a property set.

1.4.6 String and Character Representation

There are numerous fields in the

FlashPix

 format that contain character strings. These
may be broken down into two general classes: structured storage related names such as
stream and storage pathnames, and descriptive strings stored in property sets such as
image title, film type and keywords.

To promote the ability to transfer

FlashPix

 images internationally, nearly all strings in
the

FlashPix

 format are stored in the Unicode format. However, to promote the ability to
transfer

FlashPix

 files among different operating systems, all structured storage related
names are required to be in the 7-bit ASCII compatible part of Unicode. Descriptive
strings are allowed a much wider range, since they can be ignored outside the language
they were generated in.

1.4.6.1 Storage and Stream Names

The

FlashPix

 file is built on top of structured storage files, which in turn are built on top
of the host file system. Hence, it must follow the conventions placed on stream and stor-
age names, and the file system names.

Each structured storage file has a single root storage. The name of the file root storage
may be any valid storage name. However, it is recommended that the file name in the
host file system be used.

Names of

FlashPix

 streams contained within storage objects are managed by the imple-
mentation of the particular storage object in question. Names are stored case-preserving,

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 9

but are compared case-insensitive. As a result, all

FlashPix

 writers which define storage
and stream names must choose names which will work in either situation.

FlashPix

streams and storage names may be up to 31 characters in length.

Although storage and stream names are actually stored as 16-bit Unicode characters, the
characters must be within the lower 7-bit ASCII range with the following additional
restrictions:

■

The names “.” and “..” are reserved for future use.

■

The four characters “\”, “/”, “:”, or “!” are not allowed.

Restricting such string names to 7-bit ASCII greatly promotes interoperability across
different platforms without significantly impacting internationalization, as these stream
and storage names are rarely exposed to the user.

In addition, the name space in a storage is partitioned into different areas of ownership.
Different pieces of code have the right to create elements in each area of the name
space:

■

Storage and stream names beginning with characters “

\001

” through “

\004

” are
reserved for OLE.

■

Property set names must begin with the “

\005

” character.

■

Storage and stream names beginning with character “

\006

” through “

\037

” are
reserved for OLE or for future use.

■

Any other character may be used to begin a storage or stream name.

1.4.6.2 Property Set Code Page and Strings

The other major area string names kept in the

FlashPix

 format are in property sets.
Property sets are defined with a “code page” specifying the type of characters allowed,
and numerous strings. All strings in the property set share the same code page.

All property sets in the

FlashPix

 format must belong to the Unicode code page, as spec-
ified in Section 1.4.1. The code page ID must be stored in property ID 0x00000001 in
all

FlashPix

 property sets. These property sets are defined in the rest of this document.
Hence it is an error to not specify the code page, or to specify it with any other value
than 0x04B0, in any property set in a

FlashPix

 file, as described in Section A.2.2.2.
However, applications may write application specific property sets in a

FlashPix

 file.
Only the stream names for the private extensions are not required to be in the Unicode
code page, although this is strongly recommended. Note that the count at the start of
VT_LPWSTR is to be interpreted as a character count, not a byte count. The count
includes the null character at the end of the string.

Descriptive strings such as names, camera types, and subjects are not required to be
within the 7-bit ASCII subset of Unicode. They are more often displayed and manipu-
lated by the user, and it is a requirement that the storage of the full character set is sup-
ported.

However, it is not required that a non-internationalized application be able to display
and manipulate characters outside the ASCII and local character set. It is perfectly

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

10 © 1996 Eastman Kodak Company Version 1.0

acceptable for a German

FlashPix

 reader/writer, for instance, to display question marks
or similar symbols if passed Kanji characters. However, it is required that all Unicode
characters be preserved on copying. If that string was not modified by the German user,
it must remain readable under a Japanese version of the application.

String properties may be stored as either 8-bit strings (VT_LPSTR) or 16-bit strings
(VT_LPWSTR). Note because of Unicode compatibility, the upper 128 elements in an
8-bit string fall into the Western-European 8-bit character range in the Unicode code
page[20]. Hence, strings in those languages may be adequately stored as 8-bit strings.
Characters from other languages (Greek, Russian, Japanese, for example) must be
stored in 16-bit strings.

All

FlashPix

 property set readers must be able to read either 8 or 16 bit (Unicode)
strings for any property. This imposes a requirement that all property set readers be able
to convert 8 or 16 bit strings into the desired internal format for the application. It is
advised that 16-bit strings be utilized whenever possible.

1.5 Format Compliance

The FlashPix image format has a core definition and defined extensions. FlashPix files,
reader software, and writer software must be compliant with the core definition and may
optionally support one or more extensions.

The core FlashPix format definition specifies the required and optional data elements
and allowed data values that compose FlashPix files and default actions of FlashPix
reader software:

■ Core FlashPix files must contain all required core FlashPix data elements and any of
the core FlashPix optional data elements using only those values enumerated in the
core FlashPix definition.

■ Core FlashPix reader software must read all valid core FlashPix file permutations
and take all default actions defined in the core FlashPix specification.

■ Core FlashPix writer software must write at least one valid core FlashPix file per-
mutation.

Extensions to the core FlashPix format may be defined to add features that are not sup-
ported in the core FlashPix definition. Each extension must be defined in a way which
does not prevent core FlashPix reader software from productively interpreting FlashPix
files with the extension present. Core FlashPix reader software that doesn’t support a
particular extension will ignore its added data elements and will resort to default actions
when non-core values are present in core data elements.

Extensions to the FlashPix format are characterized by the feature capability being
added and defined by the required and optional data elements and values associated with
the feature. An extended FlashPix file meets the definition of core FlashPix files, but
has additional data elements for the extensions present in the file. Extended FlashPix

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 11

reader software is core

FlashPix

 reader software with additional capability to produc-
tively interpret one or more defined

FlashPix

 extensions. Extended

FlashPix

 writer soft-
ware is core

FlashPix

 writer software with additional capability to create the data
elements associated with one or more defined

FlashPix

 extensions.

FlashPix

 extensions may either be registered or private. Registered extensions are col-
laboratively defined via the the

FlashPix

 format Advisory Council and published pub-
licly as separate documents from the core

FlashPix

 format specification. Private
extensions are defined by any interested party and shared at their discretion.

1.6 FlashPix File Overview

A core FlashPix file is composed of a FlashPix image view object which contains
scriptable image transforms, a source FlashPix image object, and, optionally, a result
FlashPix image object containing the result of applying the transforms to the source
FlashPix image object. The FlashPix image object is defined in Section 3: The FlashPix
Image Object and the remainder of the FlashPix image view object is defined in
Section 7: FlashPix Image View Object. Those storages and streams in italics are
optional or optional under specific circumstances.

Figure 1.2 is an overview of a FlashPix file, a FlashPix image view object. Figure 1.3
describes the content of each FlashPix image object in the FlashPix image view object
and Figure 1.4 describes the content of each resolution storage in the FlashPix image
objects.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

12 © 1996 Eastman Kodak Company Version 1.0

FIGURE 1.2 FlashPix image view object

FIGURE 1.3 FlashPix image object

Global info.
property set

Source desc.CompObj
stream

Extension list
property set

FlashPix

 image
 view object root

Source

FlashPix
image object

Result FlashPix
image object

Summary info.
property set

Transform

Operation

property set

property set

property set

Result desc.
property set

Resolution 0

Resolution 1

Resolution

n

…

CompObj
stream

Image info.
property set

Image contents
property set

ICC profile

FlashPix

 image
 object

Summary info.
property set

Extension list
property set

APPENDIX II

Microsoft et al. Exhibit 1005

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 13

FIGURE 1.4 Contents of a resolution storage

1.6.1 Extension management
Both the FlashPix image view object and the FlashPix image objects may be indepen-
dently extended. The extensions associated with each object are recorded in that object’s
extension list property set. Extensions to the FlashPix image view object may be located
anywhere within the FlashPix file, even within a FlashPix image object. It is, however,
not recommended that a FlashPix image view object extension place all of its data ele-
ments within a FlashPix image object. Extensions to a FlashPix image object must be
entirely within the FlashPix image object.

FlashPix reader software must be able to interpret the extension list property sets and
may also be an extended reader with the capability to interpret specific extensions which
may be present in extended objects.

A particular FlashPix extension may not be valid if the core FlashPix data elements are
edited. Each extension must have its persistence defined by the authoring application.
The extension is marked as either: valid independent of any edits, invalid upon edits, or
potentially invalid upon edits.

When opening a FlashPix file, the reader software should determine if there are any
extensions present in the file which it does not support and which will become invalid or
potentially invalid upon editing. If there are such extensions in the file, the user should
be informed that the file is extended and that edits to the file may cause the loss of some
of the extensions. For each extension that the reader software supports and which is
marked as potentially invalid upon edits, the modification date of the extended object (in
its summary info property set) must be compared to the extension modification date. If
the extended object’s modification date is more recent than that of the extension, the
reader must determine if the extension is still valid. If it is not, it must either be updated
or all of its data elements listed in the extension list property set must be deleted.

Subimage
header

Subimage
data

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

14 © 1996 Eastman Kodak Company Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

15

2

 S E C T I O N

2

2

Image Data
Representation

2.1 Coordinate systems

FlashPix files store image data in a hierarchy of resolutions from the highest available
for an image down to the lowest defined in the format. Image editing operations need to
be supported within an individual resolution, but must also be applied to all other reso-
lutions.

Therefore, two different coordinate systems are defined: resolution-independent and
resolution-dependent.

2.1.1 Resolution-Independent Coordinates
In some situations, the image must be described by a coordinate system independent of
the pixel.

Figure 2.1 shows a resolution-independent coordinate system. The image is described in
a Cartesian system, with the X-axis horizontal and pointing to the right, the Y-axis verti-
cal and pointing downward, and the origin at the upper left corner. The scale is such that
the height of the image is normalized to 1.0. To keep the scale of the X-axis and the Y-
axis the same, the image width is its aspect ratio (width/height). Thus, a square part of
any image has equal width and height in this coordinate system.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

16 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.1 Resolution-independent coordinates

2.1.2 Resolution-Dependent Coordinates
At a given resolution, the normalized coordinate system described above must be con-
verted to a set of discrete pixels. Then the continuous resolution-dependent coordinate
system in Figure 2.2 is used. This is simply a scaled version of the previous coordinates.
The values (x, y) in this coordinate system are still real (floating point) numbers.

To define the actual pixels of the image, an integer grid is overlaid on the coordinate sys-
tem. The discrete pixel referred to by (i, j), where i and j are integers, is centered at loca-
tion (i+0.5, j+0.5). The half-unit shift makes the conversion between discrete and
continuous descriptions simple. The point (x, y) falls in the unit square labelled (,

) and containing the pixel at (+0.5, +0.5). No rounding is required.

X

Y

(0,0)

(R, 1)

(R, 0)

(0,1)

R
W
H
-----=

x
y x y

APPENDIX II

Microsoft et al. Exhibit 1005

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 17

FIGURE 2.2 Resolution-dependent coordinates

2.2 Multiple resolutions

A FlashPix file must contain either a single resolution or the entire multi-resolution
hierarchy. Each resolution in the full hierarchy is separated from the next higher resolu-
tion version by a spatial factor of 2

× in both the x and y directions.

The series of resolutions continues until both the width and height of the smallest reso-
lution are less than or equal to the width and height of a tile, 64 pixels. In the Figure 2.3
example, the tile width is smaller than R/4 but no smaller than R/8.

In Figure 2.3, the full resolution image is R rows × C columns. The actual spatial resolu-
tion (in pixels per inch, for example) is irrelevant, since neither the desired output size
nor the output resolution is known. Each successively smaller resolution has half the
number of rows and columns as the previous resolution. In this example, the second res-
olution is R/2 rows × C/2 columns.

Note that the FlashPix format uses centered subsampling. The pixels in resolution i-1
fall between the pixels in resolution i.

X

Y

(0,0) (W,0)

(W,H)(

H,0)

1 2

1
2

…

…

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

18 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.3 Sample resolution hierarchy

2.2.1 Resolution sizes
The size of a decimated image is determined from equation 2.1, where (w0,h0) is the
width and height of the larger resolution and (w1,h1) are the width and height of the
smaller resolution:

(2.1)

Note that this rounding affects the size of the image in resolution independent coordi-
nates. The height of the largest resolution image is defined to be 1.0. Using the rounding
method in Equation 2.1, the height of one resolution given the height of the next largest
resolution can be determined as follows, where h0 is the height of the larger resolution
in resolution independent coordinates, p0 is the height of the larger resolution in pixels,
h1 is the height of the next smaller resolution in resolution independent coordinates, and
p1 is the height of the next smaller resolution in pixels, as defined by Equation 2.1:

(2.2)

Failing to make this correction to the height and width of the image (in resolution inde-
pendent coordinates) when dealing with resolutions other than the largest resolution
may cause slight errors in the alignment of the multiple resolutions of the image.

R/8

C/8

R/4

C/4

R/2

C/2

R

C

w1 h1,() w0 1+()
2

h0 1+()

2
-------------------,

=

h

1

2 p1

p0
--------- h0

×=

APPENDIX II

Microsoft et al. Exhibit 1005

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 19

2.2.2 Non-Hierarchical

FlashPix

 Images

This specification also defines a non-hierarchical version of

FlashPix

 images. In some
cases, such as in the case of a digital camera, the system has neither the computing
power to generate the full hierarchy nor the space to store the additional resolutions. In
these cases, only the full-resolution image is stored. However, when this image can be
used in an interactive manner, the full hierarchy must be constructed. This may happen
in an acquire module accessing the device, in a separate converter program, or when an
interactive core reader application opens the image and finds that it’s hierarchy does not
exist. A result image object, as defined in Section 7.1, also must be hierarchical when
used in an interactive environment.

Non-hierarchical

FlashPix

 images differ from fully hierarchical

FlashPix

 images in that
there is only one resolution. This distinction is specified in Section 3.1.5.1.

2.3 Tiling

In addition to providing the image at several resolutions, each resolution image is orga-
nized into tiles to provide more efficient access to any portion of the image.

2.3.1 Breaking an Image into Tiles
Figure 2.4 shows an image divided into tiles.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

20 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.4 A tiled image

The example image is Ri rows × Ci columns, organized into Rt row × Ct column tiles.
For any image, the number of tiles per row (NR) and the number of tiles per column (NC)
are:

(2.3)

For the image shown in Figure 2.4, NR = 4 and NC = 6.

However, it is unlikely that the image size will be a multiple of the tile size. As illus-
trated in Figure 2.4, the tiles on the right and bottom of the image will only partially
contain valid image data. Since only full tiles can be stored in a FlashPix image, incom-
plete tiles must be padded to the full tile width and height. Tiles should be padded with
values extruded from the image itself. For example, pixels to the right of the image
should be padded with the value of the rightmost pixel in each row. Pixels specifying
opacity data should be padded just as if they were image data, as the actual image size is
specified by the actual width and height, not by the opacity data.

To access a particular pixel, the tile containing that pixel must first be located. To calcu-
late the tile, described by the coordinate pair (TC, TR), where the upper left tile is (0, 0)
and the lower right tile is (NC - 1, NR - 1), containing the pixel (c+0.5, r+0.5), use the
following formulas:

(2.4)

Ci

Ri

Rt

Ct

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

N

R
Ri

Rt
-----= NC

Ci

Ct
-----=

T

R
r

RT
------= TC

c
CT
------=

APPENDIX II

Microsoft et al. Exhibit 1005

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 21

The tiles are numbered sequentially, starting at the upper left tile and proceeding from
left to right and top to bottom. The number of the tile (

T

C

,

T

R

),

T

, is given by the follow-
ing formula:

(2.5)

Once the correct tile has been located, the location (

c

',

r

') of the unit square containing
the desired pixel, with respect to the tile, can be determined:

(2.6)

where ‘%’ represents the modulus operator.

T T

R NC TC

+×

=

r

' r RT%= c' c CT

%=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

22 © 1996 Eastman Kodak Company Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

23

3

 S E C T I O N

3

3

The FlashPix Image
Object

3.1

FlashPix

 Image Object
Structure

The FlashPix image object is a storage whose contents are together treated as an image
in the FlashPix format. Figure 3.1 shows the storages and streams in a FlashPix image
object.

Storage name: Data\040Object\040Store\040%06d
Class ID: 56616000-C154-11CE-8553-00AA00A1F95B

The single numeric parameter in the storage name represents the index of the image as
described in Section 7.1.2. This class ID is to be used for all FlashPix image objects
whether or not they contain any extensions.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

24 © 1996 Eastman Kodak Company Version 1.0

FIGURE 3.1 FlashPix image object storages and streams

3.1.1 Resolution Storages

Storage name: Resolution\040%04d
Class ID: 56616100-C154-11CE-8553-00AA00A1F95B

The decimal parameter in the storage name is the resolution number. Resolutions are
numbered in sequence starting at 0, which is the lowest resolution.

FIGURE 3.2 Contents of a resolution storage

This series of storages contains the image data for each resolution. Storage contents are
the same for every resolution, as implied by the connection point in Figure 3.1 and
Figure 3.2.

Resolution 0

Resolution 1

Resolution

n

…

CompObj
stream

Image info.
property set

Image contents
property set

ICC profile

FlashPix

 image
 object

Summary info.
property set

Extension list
property set

Subimage
header

Subimage
data

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 25

Future extensions to the

FlashPix

 format may include additional subimages, but in the
core definition, only one subimage is allowed. The format includes provisions for multi-
ple subimages, which is accomplished by treating the one subimage in the core defini-
tion as subimage 0.

Each resolution storage contains a header stream and a data stream that contain all the
image data for that resolution. (

Section 4: Image Data Format

describes the format of
the header and data streams.) The subimage must be in the same color space and numer-
ical format for all resolutions.

3.1.2 Summary Info Property Set (required)

This property set is an instance of the standard Summary Information property set, as
described in Section 1.4.2. This property set must adhere to the definition specified in
Section 1.4.1.

The thumbnail property value, if defined, must be representative of the image. There-
fore, in the result instance of the image object, the thumbnail must have had all trans-
forms applied to it.

3.1.3 CompObj Stream (required)

The CompObj stream is a standard Structured Storage stream and is not a

FlashPix

stream. The header of the stream is not extended for storage of a stream class ID. This
stream is required and is defined in Section A.3. The Unicode versions of the CompObj
stream fields are required.

The CompObj stream Clipboard Format field is used to store the class ID of the

Flash-
Pix

 image object. The

FlashPix

 image object class ID is converted to a string for storage
in the Clipboard Format field and must be bracketed by the bracket characters ‘{‘ and
‘}’ just as returned by the OLE function StringFromGUID2.

The CompObj stream User Type field is generally used to store the User Type informa-
tion from the OLE registry for the class ID. In OLE-enabled environments, the string
contents should be retrieved from the OLE registry. In non-OLE-enabled environments,
a string which is a user-understandable brief description of the object contents should be
used.

The CompObj stream ProgID field is generally used to store the ProgID information
from the OLE registry for the class ID. In OLE-enabled environments, the string con-
tents should be retrieved from the OLE registry. In non-OLE-enabled environments, a
string which identifies the program associated with the class ID should be used. This
string cannot contain any spaces.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

26 © 1996 Eastman Kodak Company Version 1.0

3.1.4 Image Info Property Set (optional)

Stream name:

\005

Image

\040

Info
Class ID: 56616500-C154-11CE-8553-00AA00A1F95B
Format ID: 56616500-C154-11CE-8553-00AA00A1F95B

The image info property set contains properties that describe the actual image. (See

Section 6: Image Info Property Set

 for a definition of this property set.)

3.1.5 Image Contents Property Set (required)

Stream name:

\005

Image

\040

Contents
Class ID: 56616400-C154-11CE-8553-00AA00A1F95B
Format ID: 56616400-C154-11CE-8553-00AA00A1F95B

The image contents property set contains properties that describe how the image data is
stored. The properties may appear in any order, but they are conceptually divided into
three groups. The

primary description group

 describes the

FlashPix

 image as a whole,
specifying the number of resolutions, the size of the largest resolution, etc. The

resolu-
tion description group

describes the subimage at each resolution. The

compression
description group

contains image compression information.

The image contents property set is stored in standard property set format, adhering to
the restrictions in Section 1.4.1. All property ID codes not explicitly listed are reserved
for registered extensions.

3.1.5.1 Primary description group

This group contains properties (Table 3.1) describing the

FlashPix

 image object as a
whole.

Number of resolutions property (required)

This property specifies the number of resolutions contained in the

FlashPix

 image. This
property is required. The value must be the number of resolutions in the fully populated
hierarchy or one for a non-hierarchical

FlashPix

 image. That single stored resolution
must be the highest resolution image. Its resolution number must be the number that
would be assigned to the highest resolution image if the hierarchy were fully populated

TABLE 3.1 Valid properties in the primary description group

Property name ID Code Type

Number of resolutions 0x01000000 VT_UI4

Highest resolution width 0x01000002 VT_UI4

Highest resolution height 0x01000003 VT_UI4

Default display height 0x01000004 VT_R4

Default display width 0x01000005 VT_R4

Display height/width units 0x01000006 VT_UI4

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 27

(number of resolutions property value - 1 since lowest resolution is stored as resolution
0). The number of resolutions stored for a fully populated hierarchy can be calculated as
shown in Equation 3.1, where tile size is 64.

(3.1)

Highest resolution width and height properties (required)

These properties specify in pixels the height and width of the highest resolution image.
Values do not include the padded area if the image data is padded to tile boundaries.

Default display height and width properties (optional)

These properties specify the default height and width for displaying the image.

Display height/width units property (optional)

If the default display height and width properties are present, this property is used to
define their unit of measurement. Legal values are listed in Table 3.2. If this property is
not present,

FlashPix

 reader software must treat the image as though the value were
Inches (0x0).

3.1.5.2 Resolution Description Groups

These groups, one for each stored resolution, contain properties to describe the subim-
age at that resolution. Table 3.3 lists the properties, where “

ii

” in the ID code is the reso-
lution number.

TABLE 3.2 Legal display height/width units property values

Value Meaning

0x0 Inches

0x1 Meters

0x2 Centimeters

0x3 Millimeters

TABLE 3.3 Valid properties in a resolution description group

Property name ID code Type

Subimage width 0x02ii0000 VT_UI4

Subimage height 0x02ii0001 VT_UI4

Subimage color 0x02ii0002 VT_BLOB

Subimage numerical format 0x02ii0003 VT_UI4 | VT_VECTOR

Decimation method 0x02ii0004 VT_I4

Decimation prefilter width 0x02ii0005 VT_R4

Subimage ICC profile 0x02ii0007 VT_UI2 | VT_VECTOR

log2
max width height,()

TileSize
--

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

28 © 1996 Eastman Kodak Company Version 1.0

Subimage width and height properties (required)

These properties specify the width and height of subimage in pixels. Values do not
include the padded area if the image data is padded to tile boundaries.

Subimage color property (required)

This property specifies the color of the subimage channels at this resolution. The format
of the data portion of the VT_BLOB is shown in Table 3.4.

Each color code is divided into two sections: the color space and the color. The upper 16
bits of the field specify the color space. The lower 16 bits specify the color.

Valid values for each of the color space subfields are shown in Table 3.5. If the most sig-

nificant bit of the color space subfield is not set, then the image is calibrated to the color
space as defined in

Section 5: Color Space Specifications.

 If the most significant bit of
the color space subfield is set, then the image channel definitions are that of the color
space, but the image is not calibrated. Core reader software should provide a means for
warning the application user that the image color is non-standard and unpredictable
color results may occur.

Each color space is defined in

 Section 5: Color Space Specifications

.

All the channels in the subimage must have the same color space value, including the
most significant bit. It is not legal to create the subimage with a PhotoYCC luminance
channel and a NIF RGB green channel. Core reader software must verify that the entire
subimage color property value is the same for each resolution of the

FlashPix

 image
object.

TABLE 3.4 Format and fields of the subimage color property

Field name Length Byte(s)

Number of subimages 4 0-3

Number of channels of subimage 4 4-7

Color of channel 0 of subimage 4 8-11

…

Color of channel last of subimage 4 variable

TABLE 3.5 Valid color space subfield values

Value Meaning

0x0 Colorless (CL)

0x1 Monochrome (M)

0x2 PhotoYCC (YCC)

0x3 NIF RGB (NRGB)

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 29

If the subimage contains an opacity channel in addition to other color channels, the
opacity channel color space codes should be that of the other channels in the subimage.
For example, if an opacity channel is placed in the subimage with NIF RGB data, the
complete color code for the opacity channel should be 0x00037FFE. If the subimage
contains only an opacity channel, the color space should be colorless (0x0000). For
example, an opacity channel alone in the subimage should have a complete color code
of 0x00007FFE.

Valid values for each of the color subfields are shown in Table 3.6.

If the most significant bit of the color subfield (0x8000) is set, that channel is part of a
subimage containing opacity data, which, in addition to being included as an additional
channel, has been premultiplied into the color channels. If one color channel has been
premultiplied, all channels except the opacity channel must be premultiplied. An opac-
ity channel may never have the premultiplied flag set. In color character codes (such as
R-NRGB), a lowercase “a” at the beginning of the character code indicates a channel
with premultiplied opacity (for example, aR-NRGB). If the primary subimage contains
an opacity channel, it must be premultiplied into the other channels.

TABLE 3.6 Valid color subfield values

Color Value Allowed color spaces

Monochrome (M) 0x0 M

Red (R) 0x0 NRGB

Green (G) 0x1 NRGB

Blue (B) 0x2 NRGB

PhotoYCC luminance (Y) 0x0 YCC

PhotoYCC chrominance1 (C1) 0x1 YCC

PhotoYCC chrominance2 (C2) 0x2 YCC

Opacity (A) 0x7FFE all

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

30 © 1996 Eastman Kodak Company Version 1.0

Table 3.7 shows the valid subimage color value combinations. The channel color defini-

tions are expected to appear in the order in which they are listed under Color codes in
the table.

Subimage numerical format property (required)

This property specifies the numerical formats of the image data at this resolution. The
value and the image data may only be of the type VT_UI1 (8-bit unsigned integer). All
channels in the subimage must have the same numerical format. Core readers must ver-
ify that the same subimage numerical format value is given for all channels of each res-
olution of each subimage.

Decimation method property (required)

This property characterizes the quality of the decimation performed to create the images
at this resolution from the next higher resolution. If the value is 0x7FFFFFFF, this reso-
lution was decimated from the next larger resolution using the following 8-point deci-
mation prefilter:

(-0.046734,-0.059009,0.156544,0.449199,0.449199,0.156544,-0.059009,-0.046734).

Other values indicate the number of elements in the prefilter. For example, if a 6-point
filter was used to prefilter the image before decimation, this value would be 6. If this res-
olution is the full resolution image, the decimation method should have a value of zero.

If this resolution was artificially created by interpolating from a smaller resolution (it is
not recommended for images to be interchanged with other applications), the value of
the decimation method property should be negative. The absolute value is the width of
the filter applied to sharpen the image prior to interpolating the data. Then -1 indicates a
simple interpolation without sharpening.

Correct decimation filter design depends on the choice of pixel location (Figure 3.3).
The

FlashPix

 format convention requires that the positions of pixels in a resolution
layer (except for the full resolution layer) are offset by one half a pixel unit with respect
to the resolution layer above. This can be obtained by using an even-width symmetric
filter to prefilter the image before decimating. Note that most convolution code places
the center of the filter at the location of the filtered pixel and that a nearest neighbor dec-

TABLE 3.7 Legal subimage color values

Description Color codes

PhotoYCC Y-YCC, C1-YCC, C2-YCC

PhotoYCC with premultiplied opacity aY-YCC, aC1-YCC, aC2-YCC, A-YCC

NIF RGB R-NRGB, G-NRGB, B-NRGB

NIF RGB with premultiplied opacity aR-NRGB, aG-NRGB, aB-NRGB, A-NRGB

Monochrome M-M

Monochrome with premultiplied opacity aM-M, A-M

Opacity A-CL

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 31

imation (such as the Windows StretchBlt function) produces incorrect pixel alignment
and should not be used.

FIGURE 3.3 Example of pixel-centered alignment between adjacent resolutions

A developer may choose to design their own decimation prefilter. The filter must be a
finite impulse response filter (FIR) and should be designed according to the aim fre-
quency response curve and error bounds shown in Figure 3.4. The filter design process
should achieve a prefilter frequency response curve which approximates the aim curve
without ever entering the shaded region shown in the figure. A reader should assume
that the image was decimated by a filter approximating this frequency response; and a
writer should use a filter having the same aim frequency response.

Resolution i pixels Resolution i-1 pixels

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

32 © 1996 Eastman Kodak Company Version 1.0

FIGURE 3.4 Frequency response curve and error bounds

Decimation prefilter width property (optional)
To perform resolution-independent image filtering, the algorithm must know the deci-
mation prefilter degree of blurring, which is expressed as the effective filter width, q.
This property specifies the value q.

The procedure is as follows: Approximate the prefilter MTF by the form , where q
is the width and s is the spatial frequency measured in cycles per pixel of the image
before filtering. If the MTF is far from a Gaussian form, fit the low-frequency portion
best. If this property is not found, it is assumed that the prefilter used had an aim fre-
quency response as specified in the decimation method property.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Aim Curve8 Point FIR

Rela t ive Frequency (cyc les /p ixe l)

F
il

te
r

R
e

s
p

o
n

s
e

e qs
2–

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 33

Subimage ICC profile property (optional)

This property specifies an optional ICC profile for the subimage. It is a 1-element array
whose value must be 1. The existence of this property indicates that an ICC profile
exists in the

FlashPix

 image object. The profile specifies the conversion of the subimage
into the ICC-PCS (Profile Connection Space). If an ICC profile is identified for the sub-
image, the same profile must be associated with the subimage at all resolutions and core
reader software must verify that this is the case.

3.1.5.3 Compression Description Group

This group of the image contents property set contains compression header information.
Only those properties that contain valid data must be present.

Table 3.8 specifies the properties in the compression description group. In the table, “

ii

”
in the ID code is the index of a JPEG table set selection.

JPEG tables property (optional)

This property (as specified in Table 3.8) contains the JPEG quantization tables and the
JPEG Huffman tables used across all resolutions of the

FlashPix

 image. The format of
the data in each of these properties should conform to the JPEG abbreviated format for
table specification data, consisting of JPEG markers surrounding the actual table data,
per the JPEG specification[9] Annex B.5 and Annex C. Note that it is possible to use
quantizers or Huffman tables not defined here by including them in the JPEG data
stream for the tile in which to apply them (as described in Section 4.1.2). The format of
a JPEG abbreviated header table is shown in Table 3.9.

Each

FlashPix

 image tile using JPEG compression must define at least one quantization
table and two Huffman tables. A typical JPEG abbreviated table stream includes two
quantization tables (numbered 0 and 1) for the luminance and chrominance components,
and two Huffman tables (numbered 0 and 1) for the DC and AC entropy coder. The stan-

TABLE 3.8 Valid properties in the compression information properties group

Property name ID code Type

JPEG tables 0x03ii0001 VT_BLOB

Maximum JPEG table index 0x03000002 VT_UI4

TABLE 3.9 Format and entries of a JPEG abbreviated header table

Field name Length Byte(s) Value

Start of image marker (SOI) 2 0-1 0xFFD8

Define quantization table segment marker (DQT) 2 2-3 0xFFDB

Quantization table data variable 4-variable variable

Define Huffman table segment marker (DHT) 2 variable 0xFFC4

Huffman table data variable variable variable

End of image marker (EOI) 2 variable 0xFFD9

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

34 © 1996 Eastman Kodak Company Version 1.0

dard JPEG table specification syntax allows the definition of up to four quantization
tables and four Huffman tables.

By storing multiple JPEG abbreviated header tables (each in a uniquely identified prop-
erty), different sets of tables can be used by different tiles and multiple tiles can utilize
the same table. Up to 255 table streams, with indices ranging from 1 to 255, may be
defined in the compression property group.

Maximum JPEG table index property (optional)

This field specifies the maximum JPEG table index for the JPEG table properties. This
property is optional, but must exist if there are any JPEG table properties in this

Flash-
Pix

 image object. It is recommended that when a JPEG table property is added that the
index used be this property’s value + 1. When a JPEG table property is added, the maxi-
mum JPEG table index property must be adjusted if the new index value in use is greater
than the current property value.

3.1.6 ICC Profile (optional)

Stream name: ICC

\040

Profile

\040

0001
Class ID: 56616600-C154-11CE-8553-00AA00A1F95B

This stream contains an ICC profile describing the conversion between the

FlashPix

image color space and the ICC PCS. The data portion of the

FlashPix

 stream is stored in
standard ICC profile format[8]. The ICC profile may contain only standard PhotoYCC
to PCS or NIF RGB to PCS transforms.

3.1.7 Extension List Property Set (optional)

Stream name:

\005

Extension

\040

List
Class ID: 56616010-C154-11CE-8553-00AA00A1F95B
Format ID: 56616010-C154-11CE-8553-00AA00A1F95B

This property set identifies extensions present in the

FlashPix

 image object by class ID,
name, and description as well as the data elements changed or added by each extension.
The property set is optional, however, if the

FlashPix

 image object contains any exten-
sions, the extension list property set must be present and all extension, registered and
private, in the

FlashPix

 image object must be described.

The way in which the data associated with an extension is structured can take one or
more of the following forms:

■

New storage(s) may be added

■

New stream(s) may be added

■

New

FlashPix

 stream(s) may be added

■

New subimage(s) may be added to a

FlashPix

 image object

■

New property set(s) may be added

■

New property(s) may be added to an existing property set section

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 35

■

Element(s) may be added to core

FlashPix

 property set vector properties that are
defined as variable length

■

Value of a core

FlashPix

 stream field may be changed

■

Value of a core property set property may be changed

There are five restrictions to structuring the data elements of an extension. First, new
fields may not be added to existing

FlashPix

 streams. Second, due to the inability to
independently ensure property ID code uniqueness, only registered extensions may add
properties to an existing property set section. Third, private extensions may not change
the value of a core

FlashPix

 stream field or a core property set property. Fourth, exten-
sions can only add vector elements that are not already used by core or other extensions
present in the file. Upon removal of an extension, the vector element values associated
with the extension must be replaced with NULL and the vector must not be reordered.
Fifth, only registered extensions can add elements to core property set vector properties.

Although there are a few practical examples where reasonable core reader actions could
be defined for when an extension has changed the value of a core

FlashPix

 stream field
or a core property set property, these core reader actions must be considered in defining
the core

FlashPix

 specification. It is impractical to expect all core reader software to be
updated to incorporate default actions identified in the course of developing new exten-
sions. The definition of extensions must not impact the core definition unless some com-
pelling feature set is identified which the

FlashPix

 format Advisory Council agrees to
include in a revised definition of the core

FlashPix

 format. Therefore, efforts to define
public extensions will avoid impacting core

FlashPix

 stream field and core property set
property values.

The valid properties of the extension list property set are listed in Table 3.10. The
extensions present in the

FlashPix

 image object are numbered for the convenience of
grouping the descriptive information about each extension. Property ID codes
0xiiiixxxx describe the extension numbered 0x

iiii

.

Used extension numbers property (required)

This property lists all extension numbers iiii used in the extension list property set for
the

FlashPix

 image object. The property value is an unordered array of iiii values.

All applications must update this property each time an extension is added to or
removed from a

FlashPix

 image object.

Extension name property (required)

This property identifies the name of the extension. If the extension is registered, the
name used must be that which is published in the official

FlashPix

 Extension Specifica-
tion. For private extensions, the name is the whatever short, descriptive label the author-
ing application chooses.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

36 © 1996 Eastman Kodak Company Version 1.0

Extension class ID property (required)

This property identifies a unique class ID for the extension. If the extension is regis-
tered, the class ID must be that which is published in the official

FlashPix

 Extension
Specification. For private extensions, the class ID is assigned by the authoring applica-
tion.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

 Extension persistence property (required)

This property identifies the persistence of the extension with respect to edits to the core
data elements of the

FlashPix

 image object. The legal values for the extension persis-
tence property are defined in Table 3.11.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

It is the responsibility of the reader/writer application upon save or copy functions to
retain the extension data elements by default, or in accordance with the extension persis-
tence property.

TABLE 3.10 Valid properties for the extension list property set

Property name ID code Type

Used extension numbers 0x10000000 VT_UI2 | VT_VECTOR

Extension name 0xiiii0001 VT_LPWSTR

Extension class ID 0xiiii0002 VT_CLSID

Extension persistence 0xiiii0003 VT_UI2

Extension creation date 0xiiii0004 VT_FILETIME

Extension modification date 0xiiii0005 VT_FILETIME

Creating application 0xiiii0006 VT_LPWSTR

Extension description 0xiiii0007 VT_LPWSTR

Storage / stream pathname 0xiiii1000 VT_LPWSTR | VT_VECTOR

FlashPix stream pathname 0xiiii2000 VT_LPWSTR | VT_VECTOR

FlashPix stream field offset 0xiiii2001 VT_UI4 | VT_VECTOR

Property set pathname 0xiiii3000 VT_LPWSTR | VT_VECTOR

Property set ID codes 0xiiii3jj1 VT_LPWSTR | VT_VECTOR

Property vector elements 0xiiii3jj2 VT_LPWSTR | VT_VECTOR

Subimage number/resolution 0xiiii4000 VT_LPWSTR | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 37

Extension creation date property (optional unless extension persistence property
is 0x2)

This property specifies the time and date the authoring application added the extension
to the

FlashPix

 image object. If the property exists, all applications must retain it upon
save or copy functions by default, or in accordance with the extension persistence value.

Extension modification date property (optional unless extension persistence
property is 0x2)

This property specifies the time and date of the last modification to the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Creating application property (optional)

This property specifies the name of the application that authored the extension in the
file. If the property exists, any application editing the extension must update the value
and all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence value.

Extension description property (optional)

The description property is a short (<80 character) description of the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Storage/stream pathname property (optional)

This property lists the full storage or non-

FlashPix

 stream name, including the path in
the structured storage file from the

FlashPix

 image object storage, for each storage or
non-

FlashPix

 stream the extension added to the

FlashPix

 image object. The path is
specified using the standard Unix file specification tokens: "/" represents a directory
separator and must be the first character of the property value. Wildcard characters “*”
and “?” (where “*” matches any 0 or more characters and “?” matches any 1 character)
are permitted in the path portion of the property value. If a storage is listed in the exten-
sion list property set, its contents should not also be listed as they are assumed to also be
associated with that extension. If this property is omitted it is assumed that no storages
are added to the

FlashPix

 image object for the extension. If the property exists, all appli-
cations must retain it upon save or copy functions by default, or in accordance with the
extension persistence property value.

FlashPix

 stream pathname property (optional)

This property lists the full

FlashPix

 stream name, including the path from the

FlashPix

image object storage, for each

FlashPix

 stream the extension added to or modified in the

TABLE 3.11 Legal values of the existence persistence property

Value Meaning

0x0 Extension is valid independent of core element modifications

0x1 Extension is invalid upon core element modifications

0x2 Extension is potentially invalid upon core element modifications

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

38 © 1996 Eastman Kodak Company Version 1.0

FlashPix

 image object. The path is specified using the standard Unix file specification
tokens: "/" represents a directory separator and must be the first character of the prop-
erty value. Wildcard characters “*” and “?” (where “*” matches any 0 or more charac-
ters and “?” matches any 1 character) are permitted in the path portion of the property
value. The array of values for the

FlashPix

 stream pathname property and the

FlashPix

stream field offset property array of values for extension iiii are associated as described
in Table 3.12. If this property is omitted it is assumed that no

FlashPix

 streams are
added to or modified in the

FlashPix

 image object for the extension. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

FlashPix

 stream field offset property (optional)

This property lists the byte offsets (after the header) into the

FlashPix

 stream identified
with the

FlashPix

 stream pathname property array of fields modified by the extension.
The array of values for the

FlashPix

 stream field offset property and the

FlashPix

stream pathname property array of values for extension 0xiiii are associated as
described in Table 3.12. This property is required only if the

FlashPix

 stream pathname
property exists. If this property exists, all applications must retain it upon save or copy
functions by default, or in accordance with the extension persistence property value.

In the Table 3.12 example, there are two

FlashPix

 stream data elements associated with
extension 0x17. The first, at Index = 0, is an added

FlashPix

 stream as there is a

Flash-
Pix

 stream pathname value but the

FlashPix

 stream field offset is 0xFFFFFFFF. The
second, at index 0xjj = 1, is a field in a core

FlashPix

 stream who's value is not among
those defined in core the

FlashPix

 format. This is indicated by the presence of a non-
0xFFFFFFFF

FlashPix

 stream field offset value in addition to a

FlashPix

 stream path-
name value.

Property set pathname property (optional)

This property is an array that lists the full property set name, including the path from the

FlashPix

 image object storage, for each property set the extension 0xiiii added, added
to, or modified in the

FlashPix

 image object. The path is specified using the standard
Unix file specification tokens: "/" represents a directory separator and must be the first
character of the property value. Wildcard characters "*" and "?" (where "*" matches any
0 or more characters and "?" matches any 1 character) are permitted in the path portion
of the property value. Table 3.13 shows an example of how the property set pathname,
property set ID codes, and property set vector elements for extension 0xiiii are associ-
ated. The array index of the property set pathname property corresponds to 0xjj in the
properties 0xiiii3jj1 and 0xiiii3jj2.

This property set is optional and if omitted it is assumed that no property sets are added,
added to, or modified in the

FlashPix

 image object for the extensions. If the property

TABLE 3.12 Example values of FlashPix stream identification

Property Index = 0 Index = 1

0x00172000 stream x pathname stream y pathname

0x00172001 0xFFFFFFFF 64

APPENDIX II

Microsoft et al. Exhibit 1005

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 39

exists all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

Property set ID codes property (optional)

This property lists the ID codes of properties which have been added to a core property
set, or defined with non-core values by an extension to the

FlashPix

 image object. The
value of each array posistion of the property is a VT_LPWSTR that may be composed
of comma separated values each of which are either an individual property ID code or
hyphen-separated pair of property ID codes. The array of values for the property set ID
codes and the property vector elements for particular property set 0xjj and extension
0xiiii are associated as described in Table 3.13. When a new property set is added by an
extension, the property set ID codes property is not required. This property is required
if an extension adds properties to a core property set or modifies core property set prop-
erties. If the property exists, all applications must retain it upon save or copy functions
by default, or in accordance with the extension persistence property value.

Property vector elements property (optional)

Extensions can add vector elements to core properties that are defined as variable length
vectors. This property lists the vector index for the values added to a particular vector
property. The value of each array posistion of the property is a VT_LPWSTR that may
be composed of comma separated values each of which are either an individual vector
element or hyphen-separated pair of vector elements. The array of values for the prop-
erty vector elements and the property set ID codes for a particual property set 0xjj and
extension 0xiiii are associated as described in Table 3.13. This property is only
required when an extension adds vector elements to a core property set property. If the
vector elements property is present, and vector elements have not been added to its asso-
ciated property set ID code(s), then the value of this property must be NULL . If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence property value.

In the Table 3.13 example, there are three property sets associated with extension 0x19.
The first index of the property 0x000193000, which corresponds to 0xjj=00, is a new
property set being added by the extension as there is a property set pathname value, but
the property set ID codes and property vector element properties for 0xjj=00 are not
listed. The second index of the property 0x00193000, which corresponds to 0xjj=01, is a
core property set in which property ID Codes 0x00011001-0x00011005 and
0x00001200 are being added by the extension. The third index of the property
0x00193000, which corresponds to 0xjj=02, is a core property set in which property ID
code 0x00033000 is of type VT_VECTOR and the extension has added values in ele-
ments 3,4, and 5 of that vector. Property ID codes $00044001-$00044004 are new ID
codes being added to the property set by the extension as well. In this case since the
property ID codes are new, the value of 0x00193022 for this array posistion is assigned

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

40 © 1996 Eastman Kodak Company Version 1.0

to NULL. This example also shows that the extension has added a value in element 2 of
both the vectors defined by existing property ID codes, 0x00055000 and 0x00066000.

Subimage number/resolution property (optional)

This property is used to indicate that an extension has added new subimages to a

Flash-
Pix

 image object. It must be not used to indicate that an extension has modified core

FlashPix

 subimage 0. The value of each array position is a VT_LPWSTR that is com-
posed of comma-separate values each of which is either an individual subimage number
or a hyphen-separated pair of subimage numbers. The array element position indicates
the resolution indices to which the particular subimage(s) are added. If subimages are
not added to a particular resolution, the value of the corresponding array element must
be set to NULL.

The extension list must also list any additional storages, streams, property sets and prop-
erties added by the extension to store the subimage. This property is required if an
extension adds a subimage to a

FlashPix

 image object. All applications must retain this
property upon a save or copy function by default, or in accordance with the extension
persistence. Table 3.14 is an example of an extension that adds subimages to the

Flash-
Pix

 image object.This example shows that extension 0x49 has added subimages to reso-
lution 0, 1, and 2 of the core

FlashPix

 image object. The first element, at index 0xjj=0,
shows that subimages 1 and 3 have been added to resolution 0x00. No subimages have
been added to resolution 0x01. The third element, at index 0xjj=2, shows that the exten-
sion has added subimages 1, 3, and 4 through 6 to resolution 0x02.

TABLE 3.13 Example values of property set identification

Property Index=0 Index=1 Index=2

000193000 PS x pathname
(0xjj=00)

PS y pathname
(0xjj=01)

PS z pathname
(0xjj=02)

000193011 $000011001-$000011005,
$000012000

000193021 $000033000 $000044001-
$000044004

$000055000,
$000066000

000193022 3,4,5 NULL 2

TABLE 3.14 Example of subimage identification

Property 0xjj=0 0xjj=1 0xjj=2

0x00494000 1,3 NULL 1,3,4-6

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

41

IV

 S E C T I O N

4

4

Image Data Format

The subimage is stored as a separate entity within the

FlashPix

 image object. This chap-
ter specifies the format of the subimage, as described in Section 3.1.1.

The subimage is stored in two

FlashPix

 streams: a header stream and a data stream.

4.1 The Subimage Header Stream

Stream name: Subimage\0400000\040Header
Class ID: 00010000-C154-11CE-8553-00AA00A1F95B

The subimage header stream determines image data location in the data stream and con-
tains information for decoding the data stream into uncompressed pixel values. Values
are stored in little endian byte order.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

42 © 1996 Eastman Kodak Company Version 1.0

4.1.1 Subimage Header Stream Data

The format of the data portion of the subimage header stream is given in Table 4.1.

Length of header stream header field

This field specifies the length of the header stream header (from the beginning of the
length field to the end of the length of tile header entry field) in bytes.

Image width and height field

These fields specify the width and height of the subimage in pixels. These values do not
include any padding at the right or bottom of the image to fill partial tiles. The values of
these fields must be the same as the values of the subimage width and height in the pri-
mary description group of the image contents stream (Section 3.1.5.1, Table 3.1).

Number of tiles field

This field specifies the number of tiles in the subimage.

Tile width field

This field specifies the width of a tile in pixels. The tile width must be 64 pixels.

Tile height field

This field specifies the height of a tile in pixels. The tile height must be 64 pixels.

Number of channels field

This field specifies the number of channels in the subimage. This value is also specified
in the image contents property set (Section 3.1.5, Table 3.4).

Offset to tile header table field

This field specifies the offset in bytes from the beginning of the data portion of the

FlashPix

 stream to the tile header table (Section 4.1.2).

TABLE 4.1 Format and fields of the subimage header stream

Field name Length Byte(s)

Length of header stream header 4 0-3

Image width 4 4-7

Image height 4 8-11

Number of tiles 4 12-15

Tile width 4 16-19

Tile height 4 20-23

Number of channels 4 24-27

Offset to tile header table 4 28-31

Length of tile header entry 4 32-35

Tile header table variable variable

APPENDIX II

Microsoft et al. Exhibit 1005

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 43

Length of a tile header entry field

This field specifies the length of a single entry in the tile header table (Section 4.1.2).

Tile header table field

This field specifies the header data for each tile. The format of a tile header table is spec-
ified in Section 4.1.2.

4.1.2 Tile header table

The format of the tile header table is given in Table 4.2.

Tile header 0-

last

These fields specify the location and encoded form of the image data tiles. Tiles are
ordered from top to bottom, left to right, in row major order. The tile containing pixel
(0, 0) is first, followed by the tile containing pixel (

tile width

, 0). This order continues
across the row, through the tile containing pixel (

width

 -

tile width

, 0). Subsequent rows
of tiles follow in the same order. Table 4.3 specifies the format of a tile header.

Tile offset field

This field specifies the offset of the tile data from the beginning of data portion of the
subimage data

FlashPix

 stream in bytes. This value is zero if the compression algorithm
requires no data other than the compression type and compression subtype fields.

Tile size field

This field specifies the size of the tile data for this tile, in bytes. This value is zero if the
compression algorithm requires no data other than the compression type and compres-
sion subtype fields.

TABLE 4.2 Format and fields in the tile header table

Field Name Length Byte(s)

Tile header 0 16 0-15

…

Tile header last 16 variable

TABLE 4.3 Format and fields of a tile header

Field name Length Byte(s)

Tile offset 4 0-3

Tile size 4 4-7

Compression type 4 8-11

Compression subtype 4 12-15

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

44 © 1996 Eastman Kodak Company Version 1.0

Compression type field

This field specifies the compression algorithm used to encode the data for this tile. Valid
compression type values are given in Table 4.4.

The invalid tile compression type may be used to temporarily indicate that the tile has
no valid data. Situations where marking a tile as invalid may be useful are during resolu-
tion hierarchy regeneration or during a partial resynchronize operation between resolu-
tions. Images with invalid tiles should not be saved permanently.

Images with any tile having the invalid tile compression type are considered to be
invalid. If reader software encounters the invalid tile compression type when preparing
to access a tile, it has no responsibility to attempt to create usable image data from
higher resolutions. It is permitted to respond as though a read error occurred.

Compression subtype field

This field specifies compression algorithm information for this tile. The format of this
field depends on the value of the compression type field. The different formats are
described below.

If the compression type is set to uncompressed data (0x0) or invalid tile (0xFFFFFFFF),
the compression subtype is unused and must be set to 0x0.

If the compression type is set to single color compression (0x1), the compression sub-
type identifies the actual color value of all pixels in the tile. Individual channel values
are stored in little endian format, in the same order and bit depth as specified by the sub-
image color and subimage numerical format properties (Section 3.1.5.3), aligned at the
0th bit of the field.

TABLE 4.4 Valid compression type values

Value Meaning

0x0 Uncompressed data

0x1 Single color compression (4-byte)

0x2 JPEG (8-bit)

0xFFFFFFFF Invalid tile

APPENDIX II

Microsoft et al. Exhibit 1005

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 45

If the compression type is set to JPEG compression (0x2), the compression subtype field

will contain additional information needed by the reader to process the JPEG com-
pressed data. The format of the compression subtype subfields is shown in Table 4.5.

Interleave type subfield

This field specifies the interleaving of the data within the JPEG data stream. If the value
is 0x0, all channels in the tile are stored in a single scan with the 8

×

8 blocks for each
channel interleaved. If the value is 0x1, each channel is stored as a separate scan. All
other values are illegal. In either case, the channels are found in the same order as spec-
ified by the subimage color property of the image contents property set.

Chroma subsampling subfield

This field specifies the amount of subsampling performed on chroma components of the
image (either the native components of some YCrCb image or those generated by rotat-
ing some RGB image through the standard JPEG CCIR 601 RGB to YCrCb conver-
sion). The most significant nibble of the field indicates the horizontal subsampling ratio.
The least significant nibble of the field indicates the vertical subsampling ratio. Legal
values of the subsampling fields are 1 and 2.

Both the values for horizontal and vertical subsampling must be either 1 or 2, and if hor-
izontal subsampling is 1, then vertical subsampling must also be 1. The specific hori-
zontal and vertical subsampling pairs (h.v) allowed are (2,2), (2,1), and (1,1).
Subsampling in the horizontal direction by 2x and the vertical direction by 1x is allowed
for compatibility with digital video standards.

Under no circumstances should an Opacity channel be subsampled.

Internal color conversion subfield

This field specifies whether a color conversion was performed in the JPEG compression
process. Valid values are 0x0 and 0x1. All other values are illegal.

If the value is 0x0, no color conversion was performed and the pixel values output from
the JPEG decoder are in the color space specified by the subimage color value from the
Image Contents property set. If the field value is 0x1, the effect of this field is depen-
dent on the existence of an Opacity channel as described below.

TABLE 4.5 Format and entries of the compression subtype field for JPEG compressed tiles

Field name Length Byte(s)

Interleave type 1 0

Chroma subsampling 1 1

Internal color conversion 1 2

JPEG tables selector 1 3

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

46 © 1996 Eastman Kodak Company Version 1.0

For NIF RGB subimage color value:

If the color space specified by the subimage color value (Table 3.7) is NIF RGB
(whether calibrated or not calibrated), i.e. NIF RGB with no opacity channel, then the
following standard RGB to YCrCb conversion (or an equivalent integer implementation)
is performed on the input data in the JPEG encoding process:

Y = 0.29900*R + 0.58700*G + 0.11400*B (4.1)

Cb = (B - Y)/1.772 + 0.5 = -0.16874*R - 0.33126*G + 0.50000*B + 0.5 (4.2)

Cr = (R - Y)/1.402 + 0.5 = 0.50000*R - 0.41869*G - 0.08131*B + 0.5 (4.3)

where R, G, B, Y, Cb and Cr values are in the 0 ... 1 range.

When decoding, the inverse transformation from YCrCb to RGB is done according to
the following equations (or an equivalent integer implementation):

R = Y + 1.40200*Cr - 0.70100 (4.4)

G = Y - 0.34414*Cb - 0.71414*Cr + 0.52914 (4.5)

B = Y + 1.77200*Cb - 0.88600 (4.6)

For NIF RGB with premultiplied opacity subimage color value:

If the value is 0x1 and the color space specified by the subimage color value is NIF RGB
with premultiplied opacity (whether calibrated or not calibrated), then to retain interop-
erability with early

FlashPix

 applications, the RGB input was 'inverted' before the stan-
dard RGB to YCbCr transform was applied. Please note that the opacity channel is not
affected by this operation and must not be inverted or color converted. The sequence of
conversion steps is:

(a) Invert the RGB values, i.e., for RGB encoded with 8 bits calculate new color values
R' = (255-R), G'= (255-G) and B'= (255-B).

(b) Transform R'G'B' to the new space Y'Cb'Cr' using equations (4.1), (4.2), (4.3).

Compression is done in the Y'Cb'Cr' space. On the decoder side, the inverse transforma-
tion should take place, i.e.,

(c) Transform Y'Cb'Cr' to R'G'B' using equations (4.4), (4.5), (4.6).

(d) Transform R'G'B' to RGB, e.g., R = (255-R').

Please note that the current requirement for this legacy 'inversion' results in minor differ-
ences when compared to compression done to RGB without opacity channels, but may
preclude the use of some kinds of hardware acceleration.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 47

JPEG tables selector subfield

This byte selects a set of quantizer and Huffman tables to use to decompress this tile. If
the index is 0x0, the tables are included at the beginning of the tile data stream and it is
not necessary to load a separate tile stream into the JPEG decompressor to decompress
the tile. A value from 1 to 255 indicates that this tile uses a set of tables stored in one of
the JPEG tables properties in the compression property group (Section 3.1.5.3). Specifi-
cally, if the value is 0x

ii

, a

FlashPix

 reader should load the value of property 0x03ii0001
into the JPEG decompressor.

4.2 The Subimage Data Stream

Stream name: Subimage\0400000\040Data
Class ID: 00010100-C154-11CE-8553-00AA00A1F95B

The subimage data stream contains the data referenced by the tile headers in the header
stream.

4.2.1 Channel Ordering
The channels of multi-channel tiles are ordered as specified in the color space property
in the image contents property set (Section 3.1.5.2).

4.2.2 Tile Data Format

4.2.2.1 Uncompressed
Data in uncompressed tiles is stored in row major order in a pixel interleaved fashion.
Pixel channels are ordered as specified by the color space property in the image contents
property set. Pixel values are stored in little endian format in the type specified by the
numerical format property.

4.2.2.2 Single Color Compressed
No tile data is needed for single-color compressed tiles. Both the tile data offset and tile
size in the tile header table must be set to zero.

4.2.2.3 JPEG Compressed
The format of compressed tile data conforms to the “Abbreviated Format for Com-
pressed Image Data” described in Annex B, Section B.4 of the ISO JPEG Specifications
[9]. At a minimum, this format contains the following JPEG markers and marker seg-
ments, as well as the entropy-coded data for the tile (Table 4.6).

Quantizer tables and Huffman table marker segments are not required, but may be
included to force a decoder to use tables other than those defined in Section 3.1.5.3.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

48 © 1996 Eastman Kodak Company Version 1.0

Note that some JPEG CODECS may identify the encoded color space through JPEG
specific markers. The

FlashPix

 format provides other mechanisms for identifying color
in the Image Contents property set which are the subimage color property and the color
space subfield value. No other mechanism or values, besides those found in the Image
Contents property set, can be utilized to make any decisions about what color space is
intended for a given

FlashPix

 file.

TABLE 4.6 Format and entries of a JPEG abbreviated format stream for tile data

Field name Length Byte(s) Value

Start of image marker (SOI) 2 0-1 0xFFD8

Start of frame marker (SOF) 2 2-3 0xFFC0

Frame header variable 4-variable variable

Start of scan marker (SOS) 0 2 variable 0xFFDA

Scan header 0 variable variable variable

Entropy coded data 0 variable variable variable

…

Start of scan marker (SOS) last 2 variable 0xFFDA

Scan header last variable variable variable

Entropy coded data last variable variable variable

End of image marker (EOI) 2 variable 0xFFD9

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

49

V

 S E C T I O N

5

5

Color Space
Specifications

5.1 Introduction

The method of encoding for color imagery is critical to how consistently the colors in an
image will be reproduced across different systems and different media types. The Flash-
Pix format defines two colorspaces, PhotoYCC and NIF RGB, along with respective
reference viewing environments for the flexible and unambiguous encoding. The Flash-
Pix format also provides a well-defined monochrome encoding space for the storage of
greyscale imagery and optional support for InterColor Consortium(ICC) color manage-
ment used in conjunction with the FlashPix color encoding.

PhotoYCC and NIF RGB color values represent color appearance with respect to a
defined reference viewing environment. For color stimuli that are meant to be viewed in
the reference viewing environment, PhotoYCC and NIF RGB values are computed by a
series of simple mathematical operations from standard CIE colorimetric values. For
color stimuli that are meant to be viewed in an actual viewing environment that is differ-
ent from the reference environment, it is necessary to include appropriate colorimetric
transformations to determine visually corresponding CIE colorimetric values for the ref-
erence environment (the corresponding CIE colorimetric values define a stimulus that, if
viewed in the reference viewing environment, would produce the same color appearance
as the actual stimulus viewed in the actual environment). These transformations account
for differences in the amount of viewing flare in the actual and reference environments,
as well as for alterations in observer perception that would be induced by the differences
in the environments. The corresponding CIE colorimetric values resulting from these
transformations are then encoded in terms of PhotoYCC or encoded in terms of NIF
RGB.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

50 © 1996 Eastman Kodak Company Version 1.0

5.2 PhotoYCC and NIF RGB Reference
Viewing Environments

Reference viewing environments are defined for both PhotoYCC and NIF RGB in
Table 5.1. The reference viewing environments are provided to give a single aim for
each color space to allow for the unambiguous definition of color for use in interchange.
The two definitions serve different purposes, yet with proper colorimetric and color
appearance transformations, it is possible to encode values in one space which were
originally encoded in the other.

5.2.1 PhotoYCC Reference Viewing Environment
The PhotoYCC reference viewing environment corresponds to conditions typical of out-
door scenes.

■ Viewing flare is specified as “none.” Any flare light in an original-scene environment
is part of the scene itself.

■ The image surround is defined as “average.” Scene objects typically are surrounded
by other similarly illuminated objects.

■ The illuminance level is representative of typical daylight levels. Note that the illu-
minance is at least an order of magnitude higher than average indoor levels.

■ The chromaticities of the adaptive white are those of CIE D65. An adaptive white is
defined here as a color stimulus that an observer would judge as perfectly achro-
matic, with a luminance corresponding to that of a perfect white diffuser. While the
chromaticities of the adaptive white will most often be those of the scene illuminant,
they may, in certain cases, also be quite different. For example, the observer may be
only partially adapted to the illuminant. The adaptive white therefore defines only
the chromatic adaptive state of the observer. The adaptive white does not define the
chromaticities or the spectral power distribution of the scene illuminant.

5.2.2 NIF RGB Reference Viewing Environment
The NIF RGB reference viewing environment corresponds to conditions typical of
indoor viewing of computer CRT monitors.

TABLE 5.1 Comparison of PhotoYCC and NIF RGB viewing environments

Condition PhotoYCC NIF RGB

Viewing flare None 1.0%

Image surround Average 20%

Illuminance level/Luminance level > 5,000 lux 80 cd/m2

Adaptive white x = 0.3127, y = 0.3290 x = 0.3127, y = 0.3290

APPENDIX II

Microsoft et al. Exhibit 1005

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 51

■

Viewing flare

 is specified to be 1.0% of the maximum white-luminance level.

■

The

image surround

 is defined as “20%” of the maximum white luminance. This is
close to a CIELAB L* value of 50, while maintaining computational simplicity. The
areas surrounding the image being viewed are similar in luminance and chrominance
to the image itself. This surround condition would correspond, for example, to an
image displayed on a computer monitor where the image on the CRT screen is sur-
rounded by a gray background equivalent to twenty percent of the maximum white.

■

The

luminance level

 is representative of typical CRT display levels. Note that the
illuminance is at least an order of magnitude lower than average outdoor levels.

■

The chromaticities of the

adaptive white

 are those of CIE D65. An adaptive white is
defined here as a color stimulus that an observer would judge as perfectly achro-
matic, with a luminance corresponding to that of a perfect white diffuser. While the
chromaticities of the adaptive white will most often be those of the viewing illumi-
nant, they may also, in certain cases, be quite different. For example, the observer
may be only partially adapted to the illuminant. The adaptive white therefore defines
only the chromatic adaptive state of the observer. It does

not

 define the chromatici-
ties or the spectral power distribution of the viewing illuminant.

5.3 Colorimetric Definitions and Digital
Encodings

PhotoYCC and NIF RGB in combination with their reference viewing environments can
be defined from standard CIE colorimetric values through simple mathematical transfor-
mations. Resulting colorimetric values can then be encoded in terms of digital code val-
ues for storage in a FlashPix Image.

While NIF RGB and PhotoYCC encode colors using similar standards and equations,
the definitions presented in this specification do not constitute a means of conversion
between the two color spaces. The conversions are an implementation topic.

5.3.1 PhotoYCC Colorimetric Definition and Digital
Encoding

PhotoYCC is defined from standard CIE colorimetric values and the PhotoYCC refer-
ence viewing environment which corresponds to daylight-illuminated outdoor scenes.
This definition describes the encoding of a daylight-illuminated scene, captured using a
Photo CD Reference Image-Capture Device, when the observer adaptive white corre-
sponds to D65 chromaticities. Examples of the encoding of colors not represented by
this definition are given in the FlashPix Implementation Guide.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

52 © 1996 Eastman Kodak Company Version 1.0

The red, green, and blue spectral responsivities of the Reference Image-Capture Device
in Figure 5.1 correspond to the color-matching functions for the reference primaries
defined in CCIR Recommendation 709[1]. The CIE chromaticities for the red, green,
and blue CCIR-709 reference primaries, and for CIE Standard Illuminant D65, are given
in Table 5.2.

FIGURE 5.1 Spectral responsivities of the Reference Image-Capture Device

TABLE 5.2 CIE chromaticities for CCIR-709 reference primaries and CIE standard illuminant

Red Green Blue D65

x 0.6400 0.3000 0.1500 0.3127

y 0.3300 0.6000 0.0600 0.3290

z 0.0300 0.1000 0.7900 0.3583

u' 0.4507 0.1250 0.1754 0.1978

v' 0.5229 0.5625 0.1579 0.4683

-1

0

1

2

3

400 450 500 550 600 650 700

R
el

at
iv

e
re

sp
on

si
vi

ty

Wavelength (nm)

rλ

gλ

bλ

APPENDIX II

Microsoft et al. Exhibit 1005

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 53

Reference Image-Capture Device RGB

709

 tristimulus values for the illuminated objects
of the scene can be calculated using the spectral responsivities of the Reference Image-
Capture Device:

(5.1)

where

P

λ

 is the spectral power of the scene illuminant at each wavelength

λ

;

R

λ

 is the
spectral reflectance or transmittance of a scene object; and , , and are the spec-
tral responsivities of the Reference Image-Capture Device. Normalizing factors

k

r

,

k

g

,
and

k

b

 are determined such that

R

,

G

, and

B

 tristimulus values of 1.00 will result for a
perfect white diffuser. It is assumed that the reference image capture device produces
flareless measurements; it is therefore unnecessary to adjust the resulting RGB values
for instrument flare.

Since the spectral responsivities of the Reference Image-Capture Device are simply lin-
ear combinations of the 1931 CIE color-matching functions, , and [3] its

RGB

tristimulus values can also be computed using the following relationship:

(5.2)

where

(5.3)

In the PhotoYCC encoding process, negative RGB

709

 tristimulus values, and RGB

709

tristimulus values greater than 1.00 are retained. The luminance dynamic range and the
color gamut defined by the RGB tristimulus values of the Reference Image-Capture
Device are therefore unlimited.

Reference Image-Capture Device RGB

709

 tristimulus values are next transformed to
nonlinear R'G'B'

709

 values as follows:

R709 kr PλRλrλ
λ
∑

=

G709 kg PλRλgλ
λ

∑=

B709 kb PλRλbλ
λ

∑=

rλ gλ bλ

xλ yλ zλ

R709

G709

B709

3.2410 1.5374– 0.4986–

0.9692– 1.8760 0.0416

0.0556 0.2040– 1.0570

Xscene

Yscene

Zscene

=

X

scene kr PλRλxλ
λ

∑

=

Y

scene kg PλRλyλ
λ

∑=

Z

scene kb PλRλzλ
λ

∑=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

54 © 1996 Eastman Kodak Company Version 1.0

For

R

709

,

G

709

,

B

709

≥

 0.018:

(5.4a)

For

R

709

,

G

709

,

B

709

≤

 -0.018:

(5.4b)

For –0.018 <

R

709

,

G

709

,

B

709

 < 0.018:

(5.4c)

For PhotoYCC, the nonlinear R'G'B'

709

 values are rotated to luma and chromas as in
Equation 5.5:

(5.5)

For PhotoYCC, luma/chroma signals are converted to digital values. For 24-bit (8-
bits/channel) encoding, PhotoYCC values are formed according to Equation 5.6:

(5.6)

5.3.2 NIFRGB Colorimetric Definition and Digital Encoding

NIFRGB is defined from standard CIE colorimetric values and the NIFRGB reference
viewing environment which corresponds to indoor viewing of computer CRT displays.
This definition describes the encoding of the appearance of the colors displayed on a
reference monitor based on the reference primaries and transfer function implied in

R'709 1.099 R709
0.45 0.099–

×=

G'709 1.099 G709
0.45 0.099–

×=

B'709 1.099 B709
0.45 0.099–

×=

R'709 1.099 R709
0.45 0.099+

×–=

G'709 1.099 G709
0.45 0.099+

×–=

B'709 1.099 B709
0.45 0.099+

×–=

R'709 4.50 R709×=

G'709 4.50 G709

×=

B'709 4.50 B709×=

Luma

Chroma1

Chroma2

0.299 0.587 0.114

0.299– 0.587– 0.886

0.701 0.587– 0.114–

R'709

G'709

B'709

=

Y 255 1.402⁄()

Luma×

=

C1 111.40 Chroma1 156+

×=

C2 135.64 Chroma2 137+

×=

APPENDIX II

Microsoft et al. Exhibit 1005

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 55

CCIR Recommendation 709[1] when the observer adaptive white corresponds to D65
chromaticities. This transfer function is consistent with a large variety of legacy images
including video and Microsoft Windows based imagery.

The CIE chromaticities for the red, green, and blue CCIR-709 reference primaries, and
for CIE Standard Illuminant D65[2], are given in Table 5.2.

For NIFRGB, the goal is to communicate the appearance of the presentation of the
appearance of the colors as displayed on a reference monitor in terms of 8-bit digital
code values. Given the CIE XYZ

D65

tristimulus values for the colors represented on the
monitor, a transformation can be made to reference monitor RGB

NIF

tristimulus values.

(5.7)

In the NIFRGB encoding process, RGB

NIF

 values between 0.0 and 1.0 are encoded,
while values outside that range are clipped and not retained. Therefore the luminance
dynamic range and color gamut defined by the RGB tristimulus values of the reference
monitor are limited.

Reference monitor RGB

NIF

 tristimulus values are next transformed to nonlinear
RGB’

NIF

 values as follows:

For

R

NIF

,

G

NIF

,

B

NIF

≥

 0.00304:

(5.8a)

For 0.0 <

R

709

,

G

709

,

B

709

 < 0.00304:

(5.8b)

For NIF RGB, the nonlinear R'G'B'

NIF

 values are converted to digital code values. For
24-bit (8-bits/channel) encoding, NIF RGB values are formed according to the follow-
ing Equation 5.9:

(5.9)

RNIF

GNIF

BNIF

3.2410 1.5374– 0.4986–

0.9692– 1.8760 0.0416

0.0556 0.2040– 1.0570

XD65

YD65

ZD65

=

R'NIF 1.055 RNIF
0.42 0.055–×=

G'NIF 1.055 GNIF
0.42 0.055–×=

B'NIF 1.055 BNIF
0.42 0.055–×=

R'NIF 12.92 RNIF×=

G'NIF 12.92 GNIF×=

B'NIF 12.92 BNIF×=

R8bit 255.0 R ′NIF×=

G8bit 255.0 G ′NIF×=

B8bit 255.0 B ′NIF×=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

56 © 1996 Eastman Kodak Company Version 1.0

5.4 Monochrome Encoding Definition

The FlashPix format supports the encoding and storage of 8-bit monochrome imagery.
NIF monochrome is defined in terms of luminance, LumaNIF, and is the defined in terms
of luminance, LumaNIF, and is designed to encode the appearance of a monochrome
image on a reference monitor based on the primaries and tone transfer function defined
in CCIR Recommendation 709.

Section 2.1 of CCIR Recommendation 601-4 defines a relationship between an analog
luminance signal, E’y and red, green, and blue analog color signals (E’R, E’G, E’B) and
that relationship is given here as Equation 5.10.

(5.10)

The definition of NIF monochrome uses this relationship, however, the definitions and
values of E’y, E’R, E’G, E’B are not used from CCIR Recommendation 601-4. Instead,
NIF monochrome is defined in terms of a luminance, LumaNIF, and builds from the non-
linear, R’NIF, G’NIF, and B’NIF signals given in Equation 5.8a and Equation 5.8b of the
definitions of NIFRGB. The relationship is given in Equation 5.11.

(5.11)

The 8-bit digital encoding of Luma for NIF Monochrome is given in Equation 5.12.

(5.12)

E'y 0.299E'R 0.587E'G 0.114E'B+ +=

LumaNIF 0.299R'NIF 0.587G'NIF 0.114B'NIF+ +=

YNIF 255.0 LumaNIF×=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

57

VI

 S E C T I O N

6

6

Image Info Property Set

In addition to image data, a

FlashPix

 image object also contains information to enhance
the use of the image (information, for example, about the image itself, as well as how it
was captured and how it might be used). This non-image data is stored in the image info
property set in the

FlashPix

 image object storage.

Stream name:

\005

Image

\040

Info
Class ID: 56616500-C154-11CE-8553-00AA00A1F95B
Format ID: 56616500-C154-11CE-8553-00AA00A1F95B

6.1 Informational Groups

Though the properties may appear in any order, the property set is divided into several
conceptual groups, each describing a different aspect of the image. The property groups
are:

■ File source

■ Intellectual property

■ Content description

■ Camera information

■ Per picture camera settings

■ Digital camera characterization

■ Film description

■ Original document scan description

■ Scan device

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

58 © 1996 Eastman Kodak Company Version 1.0

The information in these groups provides the framework to document facts about image
capture, intellectual property concerns, and descriptive information about the image
itself. With some images, users need to know who is in the picture, where and when it
was taken, and so on, to understand the significance of the image.

For instance, a photograph of an automobile accident is useless to an insurance com-
pany unless it is known to which accident the picture applies. Similarly, an old family
picture is far more interesting if it is known which ancestor is in the picture, and when
and where it was taken. One problem with traditional methods of dealing with images is
that it is easy for this data to become separated from the images, greatly diminishing the
value of the images.

A fundamental concept of the

FlashPix

 format is that an image should be as self-
describing as possible. As an image moves across a network, or is written to various
types of media, the self-describing data should move with the image.

Any property may be omitted. If omitted, that property should be treated as if the value
is unknown. All property ID codes not explicitly listed are reserved for registered exten-
sions.

6.2 File Source Group

This group of properties specify how the image was created. Table 6.1 lists the proper-
ties in this group:

File source property (optional)
This property specifies the device source of the digital file, such as a film scanner, reflec-
tion print scanner, or digital camera. Possible values are listed in Table 6.2. Values
greater than 0x5 must be handled by core reader software as though they were Unidenti-
fied (0x0).

TABLE 6.1 Properties in the file source group

Property name ID code Type

File source 0x21000000 VT_UI4

Scene type 0x21000001 VT_UI4

Creation path vector 0x21000002 VT_UI4 | VT_VECTOR

Software Name/Manufacturer/Release 0x21000003 VT_LPWSTR

User defined ID 0x21000004 VT_LPWSTR

Sharpness approximation 0x21000005 VT_R4

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 59

Scene type property (optional)

This property specifies the type of scene that was captured. It differentiates “original
scenes” (direct capture of real-world scenes) from “second generation scenes” (images
captured from pre-existing hardcopy images). It provides further differentiation for
scenes that are digitally composed. Values greater than 0x3must be handled by core
reader software as though they were Unidentified (0x0). Possible values are listed in
Table 6.3.

Creation path vector property (optional)

This property encodes the conversion path that an image takes as defined by both analog
and digital capture processes. Each element of the vector is a property ID that corre-
sponds to a property in the non-image data

FlashPix

 properties. The first element of the
vector is the

last

capture of the scene, corresponding to the property for File Source.
Some examples are as follows.

A reflection print from an original scene would be listed as “File source, Type of reflec-
tion original, Film type, Camera model name, Scene type.”

A reflection print from a second generation scene would be listed as “File source, Type
of reflection original, Film type, Camera model name, Original medium, Scene type.”

Film from the original scene would be listed as “File source, Film type, Camera model
name, Scene type.”

Film from a second generation scene would be listed as “File source, Film type, Camera
model name, Original medium, Scene type.”

TABLE 6.2 Valid file source property values

Value Meaning

0x0 Unidentified

0x1 Film scanner

0x2 Reflection print scanner

0x3 Digital camera

0x4 Still from video

0x5 Computer graphics

TABLE 6.3 Valid scene type property values

Value Meaning

0x0 Unidentified

0x1 Original scene

0x2 Second generation scene

0x3 Digital scene generation

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

60 © 1996 Eastman Kodak Company Version 1.0

An image from a digital camera capture of the original scene would be listed as “File
source, Camera model name, Scene type.”

An image from a digital camera capture of a second generation scene would be listed as
“File source, Camera model name, Original medium, Scene type.”

A still from a video camera would be listed as “File source, Camera model name, Scene
type.”

A computer generated image would be listed as “File source, Software name/manufac-
turer/release.”

Software name/release property (optional)

This property encodes the name of the software, its manufacturer’s name, and the ver-
sion of the software used to create the

FlashPix

 image.

User defined ID property (optional)

This property encodes the values of an identification system assigned to an image by the
user. This property is useful when users have their

own

 filing or accounting scheme with
an identification system already in place, and enables users to cross-reference their digi-
tal files to a pre-existing analog one.

Sharpness approximation property (optional)

To perform image filtering in a resolution independent manner (Section 7.3.2), the algo-
rithm must have information on the degree of blurring introduced by the system compo-
nents which generated the digital image (digital camera, scanner, etc.). This is expressed
as the effective filter width,

q

. Approximate the total capture MTF by the form ,
where

q

 is the width and

s

 is the spatial frequency measured in cycles per pixel at the
captured resolution delivered by the input device. If the MTF is far from Gaussian form,
fit the low-frequency portion best. This property specifies the value

q

.

6.3 Intellectual Property Group

The intellectual property group contains information about the ownership and copyright
status of the image. Rights for an original artifact may be stated, along with the rights
for the digital file. Table 6.4 lists the properties in this group.

Copyright message property (optional)
This property encodes the copyright notice of the Legal Broker for the digital file. The
complete copyright statement should be listed in this field, including any dates and
statements of claims. If desired, this property can also list details concerning the Legal
Broker.

e qs
2–

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 61

Legal broker for the original image property (optional)

This property encodes the name of the person or organization that holds the legal right
to grant permissions or restrict use of the original image. The original image is either the
analog source scanned to create the digital file or the original digital capture of a scene.

Legal broker for the digital image property (optional)

This property encodes the name of the person or organization that holds the legal right
to grant permissions or restrict use of the digital file.

Authorship property (optional)

This property encodes the name of the camera owner, photographer or image creator.

Intellectual property notes property (optional)

This property encodes additional information beyond the scope of other properties in
this group.

6.4 Content Description Group

These properties describe the content of the image. Typically it is text that the user
enters, either when the pictures are taken or later in the process. Table 6.5 lists the prop-
erties in this group.

Test target in the image property (optional)
This property encodes information about the type of scale or test target that is captured
within the image frame. The values are in Table 6.6.

Group caption property (optional)
This property is text that describes the subject or purpose of a group of images (e.g., a
roll of film). The image in the digital file is one member of the “group.”

Caption text property (optional)
This property is text that describes the subject or purpose of the image. It may be addi-
tionally used to provide any other type of information related to the image.

TABLE 6.4 Properties in the intellectual property group

Property name ID code Type

Copyright message 0x22000000 VT_LPWSTR

Legal broker for the original image 0x22000001 VT_LPWSTR

Legal broker for the digital image 0x22000002 VT_LPWSTR

Authorship 0x22000003 VT_LPWSTR

Intellectual property notes 0x22000004 VT_LPWSTR

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

62 © 1996 Eastman Kodak Company Version 1.0

People in the image property (optional)

This property encodes the personal or “role” names of people in the image. Personal
names are any variation of FirstName, Initial, LastName, Titles of Address denotations
(for example, Dr. Jane Smith). Roles may be occupational or situational denotations (for
example, doctor). Multiple entries are allowed.

Things in the image property (optional)

This property encodes the names of tangible objects depicted in the image, (Washington
Monument, for example). Multiple entries are allowed.

Date of the original image property (optional)

This property encodes the date and time the image was originally captured. In the case
of a scanned photograph, this would be the date and time of the original photograph, not
the date and time it was scanned. The date and time the digital file was created is stored
in the property Scan Date. In the case of other printed materials, this would be the date
the item was originally published.

TABLE 6.5 Properties in the content description group

Property name ID code Type

Test target in the image 0x23000000 VT_UI4

Group caption 0x23000002 VT_LPWSTR

Caption text 0x23000003 VT_LPWSTR

People in the image 0x23000004 VT_LPWSTR | VT_VECTOR

Things in the image 0x23000007 VT_LPWSTR | VT_VECTOR

Date of the original image 0x2300000A VT_FILETIME

Events in the image 0x2300000B VT_LPWSTR | VT_VECTOR

Places in the image 0x2300000C VT_LPWSTR | VT_VECTOR

Content description notes 0x2300000F VT_LPWSTR

TABLE 6.6 Valid test target in the image property values

Value Meaning

0x0 Unidentified

0x1 Color chart

0x2 Grey card

0x3 Greyscale

0x4 Resolution chart

0x5 Inch scale

0x6 Centimeter scale

0x7 Millimeter scale

0x8 Micrometer scale

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 63

Events in the image property (optional)

This property encodes the events depicted in the image. Events may be personal or soci-
etal (e.g., birthday, anniversary, New Year’s Eve). Editorial applications may use this
property to describe historical, political, or natural events (e.g., a coronation, the
Crimean War, Hurricane Andrew).

Places in the image property (optional)

This property encodes the place depicted in the image (Chicago, Illinois). Multiple
entries are allowed (e.g., the image may contain a map or an aerial view of a region).

Content description notes property (optional)

This property encodes additional user/application defined information beyond the scope
of other properties in this group.

6.5 Camera Information Group

This group of properties describes the camera used to take a photograph. Table 6.7 lists
the properties in this group.

Camera manufacturer name property (optional)
This property encodes the name of the manufacturer or vendor of the camera or origi-
nal-scene capture device.

Camera model name property (optional)
This property encodes the model name or number of the camera, and can include the
serial number of the camera.

Camera serial number property (optional)
This property encodes the manufacturer’s serial number of the camera as a text string.

6.6 Per Picture Camera Settings Group

This group of properties describes the camera settings used when the image was cap-
tured.

TABLE 6.7 Properties in the camera information group

Property name ID code Type

Camera manufacturer name 0x24000000 VT_LPWSTR

Camera model name 0x24000001 VT_LPWSTR

Camera serial number 0x24000002 VT_LPWSTR

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

64 © 1996 Eastman Kodak Company Version 1.0

New generations of digital and film cameras make it possible to capture more informa-
tion about the conditions under which a picture was taken. This may include informa-
tion about the lens aperture and exposure time, whether a flash was used, which lens
was used, etc. This technical information is useful to professional and serious amateur
photographers. In addition, some of these properties are useful to image database appli-
cations for populating values useful to image analysis and retrieval. Table 6.8 lists the
properties in this group.

Capture date property (optional)

This property encodes the date and time the image was captured.

Exposure time property (optional)

This property encodes the exposure time used when the image was captured. The units
are seconds.

F-number property (optional)

This property encodes the lens f-number (ratio of lens aperture to focal length) used
when the image was captured.

TABLE 6.8 Properties in the per picture camera settings group

Property name ID code Type

Capture date 0x25000000 VT_FILETIME

Exposure time 0x25000001 VT_R4

F-number 0x25000002 VT_R4

Exposure program 0x25000003 VT_UI4

Brightness value 0x25000004 VT_R4 | VT_VECTOR

Exposure bias value 0x25000005 VT_R4

Subject distance 0x25000006 VT_R4 | VT_VECTOR

Metering mode 0x25000007 VT_UI4

Scene illuminant 0x25000008 VT_UI4

Focal length 0x25000009 VT_R4

Maximum aperture value 0x2500000A VT_R4

Flash 0x2500000B VT_UI4

Flash energy 0x2500000C VT_R4

Flash return 0x2500000D VT_UI4

Back light 0x2500000E VT_UI4

Subject location 0x2500000F VT_R4 | VT_VECTOR

Exposure index 0x25000010 VT_R4

Special effects optical filter 0x25000011 VT_UI4 | VT_VECTOR

Per picture notes 0x25000012 VT_LPWSTR

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 65

Exposure program property (optional)

This property encodes the class of exposure program that the camera used at the time
the image was captured. Typical exposure programs include normal-program (general-
purpose auto-exposure), aperture-priority (user sets aperture, camera selects shutter
speed to properly expose), shutter-priority (user sets shutter speed, camera selects aper-
ture to properly expose), etc. Values greater than 0x8 must be handled by core reader
software as though they were Unidentified (0x0). Possible values are listed in Table 6.9.

Brightness value property (optional)

This property encodes the Brightness Value (BV) measured when the image was cap-
tured, using APEX units. The expected maximum value is approximately 13.00 corre-
sponding to a picture taken of a snow scene on a sunny day, and the expected minimum
value is approximately -3.00 corresponding to a night scene.

If the value supplied by the capture device represents a range of values rather than a sin-
gle value, it is encoded as a VT_VECTOR of two VT_R4 real numbers. The first value
represents the lower value of the range, and the second represents the higher value. If
the capture device supplies an exact value, it is encoded as a VT_VECTOR with a single
VT_R4 value in the vector.

Exposure bias value property (optional)

This property encodes the actual exposure bias (the amount of over- or under-exposure
relative to a normal exposure, as determined by the camera’s exposure system) used
when capturing the image, using APEX units. The range is between -99.99 and 99.99.

The value is the number of exposure values (stops). For example, -1.00 indicates 1 eV (1
stop) underexposure, or half the normal exposure.

Subject distance property (optional)

This property encodes the distance (in meters) between the front nodal plane of the lens
and the position at which the camera was focusing when the image was captured. Note
that the camera may have focused on a subject within the scene which may not have
been the primary subject.

TABLE 6.9 Valid exposure program property values

Value Meaning

0x0 Unidentified

0x1 Manual

0x2 Program normal

0x3 Aperture priority

0x4 Shutter priority

0x5 Program creative (biased toward greater depth of field)

0x6 Program action (biased toward faster shutter speed)

0x7 Portrait mode (intended for close-up photos with the background out of focus)

0x8 Landscape mode (intended for landscapes with the background in good focus)

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

66 © 1996 Eastman Kodak Company Version 1.0

If the value supplied by the capture device represents a range of values rather than a sin-
gle value, it is encoded as a VT_VECTOR of two VT_R4 real numbers. The first value
represents the lower value of the range, and the second represents the higher value. If
the capture device supplies an exact value, it is encoded as a VT_VECTOR with a single
VT_R4 value in the vector. Focus at infinity is encoded as -1.

Metering mode property (optional)

This property encodes the metering mode (the camera’s method of spatially weighting
the scene luminance values to determine the sensor exposure) used when capturing the
image. Values greater than 0x4 must be handled by core reader software as though they
were Unidentified (0x0). Possible values are listed in Table 6.10.

Scene illuminant property (optional)

This property encodes the light source (scene illuminant) that was present when the
image was captured. Values between 0xB and 0x7FFF must be handled by core reader
software as though they were Unidentified (0x0).

Note: Bit 15 of this 16-bit word is used as the key to whether or not a color temperature
value is being stored. If bit 15 is 0, the value described within bits 0-14 will provide one
of the prescribed color values depicted within the table below. If bit 15 is 1, bits 0-14
contain the actual color temperature value stored in units of Kelvin. In this case, color
temperatures are limited to values in the range of 0 to 32767 Kelvin. Valid values are
listed in Table 6.11. Values between 0xB and 0x7FFF must be handled by core reader
software as though they were Unidentified (0x0).

Focal length property (optional)

This property encodes the lens focal length (in millimeters) used to capture the image.

Max aperture value property (optional)

This property encodes the maximum possible aperture opening (minimum lens f-num-
ber) of the camera or image capturing device, using APEX units. The allowed range is
1.00 to 99.99.

Flash property (optional)

This property encodes whether flash was used. Possible values are listed in Table 6.12.
Values greater than 0x2 must be handled by core reader software as though they were
Unidentified (0x0).

TABLE 6.10 Valid metering mode property values

Value Meaning

0x0 Unidentified

0x1 Average

0x2 Center weighted average

0x3 Spot

0x4 Multi-spot

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 67

Flash energy property (optional)

This property encodes the amount of flash energy that was used. The measurement units
are Beam Candle Power Seconds (BCPS).

Flash return property (optional)

This property encodes whether the camera judged that the flash was not effective at the
time of exposure. Values greater than 0x2 must be handled by core reader software as
though they were Unidentified (0x0). Possible values are listed in Table 6.13.

TABLE 6.11 Valid scene illuminant property values

Value Meaning

0x0 Unidentified

0x1 Daylight

0x2 Fluorescent light

0x3 Tungsten lamp

0x4 Flash

0x5 Standard illuminant A

0x6 Standard illuminant B

0x7 Standard illuminant C

0x8 D55 illuminant

0x9 D65 illuminant

0xA D75 illuminant

> 0x7FFF The encoded actual temperature

TABLE 6.12 Valid flash property values

Value Meaning

0x0 Unidentified

0x1 No flash used

0x2 Flash used

TABLE 6.13 Valid flash return property values

Value Meaning

0x0 Unidentified

0x1 Subject outside flash range

0x2 Subject inside flash range

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

68 © 1996 Eastman Kodak Company Version 1.0

Back light property (optional)

This property encodes the camera's evaluation of the lighting conditions at the time of
exposure. The definitions of the conditions are:

■

Front lit: the subject is illuminated from the front side.

■

Back lit 1: The brightness value difference between the subject center and the sur-
rounding area is greater than one full step (APEX). The frame is exposed for the sub-
ject center.

■

Back lit 2: The brightness value difference between the subject center and the sur-
rounding area is greater than one full step (APEX). The frame is exposed for the sur-
rounding area.

Values greater than 0x3 must be handled by core reader software as though they were
Unidentified (0x0). Possible values are listed in Table 6.14.

Subject location property (optional)

This property identifies the approximate location of the subject in the scene. It provides
an X column number and Y row number that corresponds to the center of the subject
location. It is stored as a VT_VECTOR of two VT_R4 values, where the first value of
the vector is the X location and the second value of the vector is the Y location, in reso-
lution-independent coordinates where the height of the image is 1.0 and the width is the
aspect ratio.

Exposure index property (optional)

This property encodes the exposure index setting the camera selected.

Special effects optical filter property (optional)

This property encodes the type of filter used. The property contains an array of filter val-
ues, where the order of the elements in the array indicates the stacking order of the fil-
ters. The first value in the array is the filter closest to the original scene. Possible values
are listed in Table 6.15. Values greater than 0x7 must be handled by core reader software
as though they were Unidentified (0x0).

Per picture camera settings notes property (optional)

This property encodes additional information not provided by the other properties. Both
professional and amateur photographers may want to keep track of a variety of miscella-
neous technical information, such as the use of extension tubes, bellows, close-up
lenses, and other specialized accessories.

TABLE 6.14 Valid back light property values

Value Meaning

0x0 Unidentified

0x1 Front lit

0x2 Back lit 1

0x3 Back lit 2

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 69

6.7 Digital Camera Characterization
Group

This group of properties stores technical data specific to digital cameras. Table 6.16 lists
the properties in the group.

Sensing method property (optional)
This property encodes the type of image sensor used in the camera or image capturing
device. Possible values are listed in Table 6.17. Values greater than 0x8 must be handled
by core reader software as though they were Unidentified (0x0).

TABLE 6.15 Valid special effects optical filter property values

Value Meaning

0x0 Unidentified

0x1 None

0x2 Colored

0x3 Diffusion

0x4 Multi-image

0x5 Polarizing

0x6 Split-field

0x7 Star

TABLE 6.16 Properties in the digital camera characterization group

Property name ID code Type

Sensing method 0x26000000 VT_UI4

Focal plane X resolution 0x26000001 VT_R4

Focal plane Y resolution 0x26000002 VT_R4

Focal plane resolution unit 0x26000003 VT_UI4

Spatial frequency response 0x26000004 VT_VARIANT | VT_VECTOR

CFA pattern 0x26000005 VT_VARIANT | VT_VECTOR

Spectral sensitivity 0x26000006 VT_LPWSTR

ISO speed ratings 0x26000007 VT_UI2 | VT_VECTOR

OECF 0x26000008 VT_VARIANT | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

70 © 1996 Eastman Kodak Company Version 1.0

Focal plane X resolution property (optional)

This property encodes the number of pixels per

FocalPlaneResolutionUnit

in the
ImageWidth direction for the main image. This property specifies the actual

FocalPlan-
eXResolution

 at the focal plane of the camera. If this property is stored, the Focal length
property in the per picture camera settings group must also be stored.

Focal plane Y resolution property (optional)

This property encodes the number of pixels per

FocalPlaneResolutionUnit

in the
ImageLength direction for the main image. This property specifies the actual

FocalPlaneYResolution

 at the focal plane of the camera. If this property is stored, the
Focal length property in the per picture camera settings group must also be stored.

Focal plane resolution unit property (optional)

This property encodes the unit of measurement for the

FocalPlaneXResolution

 and

FocalPlaneYResolution

. This property is mandatory if

FocalPlaneXResolution

 or

FocalPlaneYResolution

 exist. If this property is stored, the Focal length property in the
per picture camera settings group must also be stored. Values other than those explicitly
listed in Table 6.18 are not supported.

TABLE 6.17 Valid sensing method property values

Value Meaning

0x0 Undefined

0x1 Monochrome area sensor

0x2 One-chip color area sensor

0x3 Two-chip color area sensor

0x4 Three-chip color area sensor

0x5 Color sequential area sensor

0x6 Monochrome linear sensor

0x7 Trilinear sensor

0x8 Color sequential linear sensor

TABLE 6.18 Valid focal plane resolution unit property values

Value Meaning

0x0 Inches

0x1 Meters

0x2 Centimeters

0x3 Millimeters

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 71

Spatial frequency response property (optional)

This property encodes the spatial frequency response (SFR) of the camera or image cap-
turing device. The camera measured SFR data, described in ISO/TC42/WG18 Work
Item [188] Working Draft 6.0, “Photography - Electronic still picture cameras - Resolu-
tion measurements,” can be stored as a table of spatial frequencies, horizontal SFR val-
ues, vertical SFR values, and diagonal SFR values. The following is a simple example
of measured SFR data table (Table 6.19):

The spatial frequency response is stored as a VT_VARIANT | VT_VECTOR in the for-
mat shown in Table 6.20.

The number of entries in the column headings vector is the same as the number of col-
umns, and the number of entries in the data field is the product of the number of rows
and columns. Data entries are stored in row major order.

CFA pattern property (optional)

This property encodes the actual color filter array (CFA) geometric pattern of the image
sensor used to capture a single-sensor color image. It is not relevant for all sensing
methods.

The first value,

CFARepeatRows

, encodes the number of rows in the vertical direction
needed to uniquely define the repeat pattern of the CFA. The second value,

CFARepeat-
Cols

, encodes the number of columns in the horizontal direction that are needed to
uniquely define the repeat pattern of the CFA. These two values are followed by a list of
integer values of length (

CFARepeatRows

 x

CFARepeatCols

) that define the color filter
pattern, using the integers given in Table 6.21.

a. line widths per picture height

TABLE 6.19 Sample frequency response

Spatial frequency (lw/pha) Horizontal SFR Vertical SFR

0.1 1.00 1.00

0.2 0.90 0.95

0.3 0.80 0.85

TABLE 6.20 Structure and entries of spatial frequency response VT_VARIANT | VT_VECTOR
block

Field Type

Number of columns VT_UI4

Number of rows VT_UI4

Column headings VT_LPWSTR | VT_VECTOR

Data VT_R4 | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

72 © 1996 Eastman Kodak Company Version 1.0

This property is stored in the form of a VT_VARIANT | VT_VECTOR, as shown in
Table 6.20.

where

CFARepeatRows

 and

CFARepeatCols

 are the minimum number of rows and col-
umns, respectively, needed to uniquely define the CFA pattern, and where

CFAArray

 is a
list of unsigned 1 byte integers, in row major order that define the pattern. For example,
the property:

CFARepeatRow

= 2

CFARepeatCol

= 2

CFAArray

= 1 0 2 1

corresponds to the Bayer CFA pattern shown below:

Line 0 = G R G R G R …
Line 1 = B G B G B G …
Line 2 = G R G R G R …
Line 1 = B G B G B G …

Spectral sensitivity property (optional)

This property field can be used to describe the spectral sensitivity of each channel of the
camera used to capture the image. It is useful for certain scientific applications.

The property field is an ASCII string compatible with the “New Standard Practice for
the Electronic Interchange of Color and Appearance Data” being developed within an
ASTM Technical Committee. The ASCII string consists of a mandatory keyword list

TABLE 6.21 Valid CFA pattern property values

Value Meaning

0x0 Red

0x1 Green

0x2 Blue

0x3 Cyan

0x4 Magenta

0x5 Yellow

0x6 White

TABLE 6.22 Structure and entries of CFA pattern VT_VARIANT | VT_VECTOR block

Field Type

CFARepeatRows VT_UI2

CFARepeatCols VT_UI2

CFAArray VT_UI1 | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 73

followed by the associated data values. Mandatory keywords include
NUMBER_OF_FIELDS, which equals the number of channels (spectral bands) + 1,
and NUMBER_OF_SETS, which specifies the number of spectral frequency (wave-
length) entries.

ISO speed ratings property (optional)

The property field is a VT_VECTOR of two VT_UI2 values. The first value is the ISO
saturation speed rating classification and the second value is the ISO noise-based speed
rating classification as defined in [21] tables 1 and 2.

OECF property (optional)

This property encodes the “Opto-Electronic Conversion Function” (OECF). The OECF
is the relationship between the optical input and the image file code value outputs of an
electronic camera. The property allows OECF values defined in [22] to be stored as a
table of values. Table 6.23 shows a simple example of measured OECF data.

The OECF is stored as a VT_VARIANT | VT_VECTOR in the following format
(Table 6.20).

The number of entries in the column headings vector is the same as the number of col-
umns, and the number of entries in the data field is the product of the number of rows
and columns. Data entries are stored in row major order.

TABLE 6.23 An example of measured OECF data

Log exposure Red output level Green output level Blue output level

-3.0 10.2 12.5 8.9

-2.0 48.1 47.5 48.3

-1.0 150.2 152.0 149.8

TABLE 6.24 Structure and entries of OECF VT_VARIANT | VT_VECTOR block

Field Type

Number of columns VT_UI2

Number of rows VT_UI2

Column headings VT_LPWSTR |
VT_VECTOR

Data VT_R4 | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

74 © 1996 Eastman Kodak Company Version 1.0

6.8 Film Description Group

This group of properties is used for images originating on photographic film. Table 6.25
lists the properties in the group.

Film brand property (optional)
This property encodes the name of the film manufacturer, the brand name, product code
and generation code (for example, Kodak Gold100, Kodak Aerial 100).

Film category property (optional)
This property encodes the category of film used. Legal values are listed in Table 6.26.

Values greater than 0x7 must be handled by core reader software as though they were
Unidentified (0x0).

Note: Chromagenic refers to B/W negative film that is developed with a C41 process
(i.e., color negative chemistry).

Film size property (optional)
This property encodes the size of the X and Y dimension of the film used, and the unit of
measurement. These properties are encoded as VT_VARIANT | VT_VECTOR, and

TABLE 6.25 Properties in the film description group

Property name ID code Type

Film brand 0x27000000 VT_LPWSTR

Film category 0x27000001 VT_UI4

Film size 0x27000002 VT_VARIANT | VT_VECTOR

Film roll number 0x27000003 VT_UI4

Film frame number 0x27000004 VT_UI4

TABLE 6.26 Valid film category property values

Value Meaning

0x0 Unidentified

0x1 Negative B/W

0x2 Negative color

0x3 Reversal B/W

0x4 Reversal color

0x5 Chromagenic

0x6 Internegative B/W

0x7 Internegative color

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 75

internally consists of two VT_R4 dimensions and one VT_UI2 unit value indicator as
shown in Table 6.27.

Film size X and Y are the width and height of the original film used, respectively, repre-
sented in the unit specified by Film size unit. Film size unit has the same values as the
focal plane resolution unit (Table 6.18).

Film roll number property (optional)

This property encodes the roll number of the film. For some film, this number is
encoded on the film cartridge as a bar code.

Film frame number property (optional)

This property encodes the frame number from the roll of film.

6.9 Original Document Scan
Description Group

This group of properties is used for images originating as documents or prints.
Table 6.28 lists the properties in the group.

Original scanned image size property (optional)
This property encodes the lengths of the X and Y dimension of the scanned area, and the
unit of measurement. These properties are encoded as VT_VARIANT | VT_VECTOR,
and internally consists of two VT_R4 dimensions and one VT_UI2 unit value indicator
as shown in Table 6.29.

TABLE 6.27 Structure and entries of original scanned image size VT_VARIANT | VT_VECTOR
block

Field Type

Film size X VT_R4

Film size Y VT_R4

Film size unit VT_UI2

TABLE 6.28 Properties in the original document scan description group

Property name ID code Type

Original scanned image size 0x29000000 VT_VARIANT | VT_VECTOR

Original document size 0x29000001 VT_VARIANT | VT_VECTOR

Original medium 0x29000002 VT_UI4

Type of original 0x29000003 VT_UI4

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

76 © 1996 Eastman Kodak Company Version 1.0

Original size X and Y are the width and height of the original scanned image, respec-
tively, represented in the unit specified by Original size unit. Original size unit has the
same values as the focal plane resolution unit (Table 6.18).

Original document size property (optional)

This property encodes the lengths of the X and Y dimension of the original photograph
or document, and the unit of measurement. These values are encoded as VT_VARIANT
| VT_VECTOR, and internally consist of two VT_R4 dimensions and one VT_UI2 unit
value indicator. It has the same format as the original scanned image size property
(Table 6.29).

Original medium property (optional)

This property encodes the medium of the original photograph, document, or artifact.
Possible values are shown in Table 6.30.

TABLE 6.29 Structure and entries of original scanned image size VT_VARIANT | VT_VECTOR
block

Field Type

Original size X VT_R4

Original size Y VT_R4

Original size unit VT_UI2

TABLE 6.30 Valid original medium property values

Value Meaning

0x0 Unidentified

0x1 Continuous tone image

0x2 Halftone image

0x3 Line art

APPENDIX II

Microsoft et al. Exhibit 1005

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 77

Type of reflection original property (optional)

This property encodes the type of the original document or photographic print. Possible
values are shown in Table 6.31.

6.10 Scan Device Property Group

This group of properties is used for images scanned from reflection prints, documents,
photographic slides, or negatives. It contains the properties listed in Table 6.32.

Scanner manufacturer name property (optional)
This property encodes the manufacturer or vendor of the scanner.

Scanner model name property (optional)
This property encodes model name or number of the scanner. It can also include the
serial number of the scanner.

TABLE 6.31 Valid type of reflection original property values

Value Meaning

0x0 Unidentified

0x1 B/W print

0x2 Color print

0x3 B/W document

0x4 Color document

TABLE 6.32 Properties in the scan device property group

Property name ID code Type

Scanner manufacturer name 0x28000000 VT_LPWSTR

Scanner model name 0x28000001 VT_LPWSTR

Scanner serial number 0x28000002 VT_LPWSTR

Scan software 0x28000003 VT_LPWSTR

Scan software revision date 0x28000004 VT_DATE

Service bureau/organization name 0x28000005 VT_LPWSTR

Scan operator ID 0x28000006 VT_LPWSTR

Scan date 0x28000008 VT_FILETIME

Last modified date 0x28000009 VT_FILETIME

Scanner pixel size 0x2800000A VT_R4

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

78 © 1996 Eastman Kodak Company Version 1.0

Scanner serial number property (optional)

This property encodes the manufacturer’s serial number of the scanner as a text string.

Scan software property (optional)

This property encodes the name and version of the scanner software or firmware.

Scan software revision date property (optional)

This property encodes the revision date of the scanner software or firmware. The date
should be in GMT.

Service bureau/organization name property (optional)

This property encodes the name of the service bureau, photofinisher, or organization
performing the scan.

Scan operator ID property (optional)

This property encodes a name or ID for the person operating the scanner.

Scan date property (optional)

This property encodes the date and time the image was originally captured and digi-
tized. This property should never be changed after it is written in the image capture
device.

Last modified date property (optional)

This property encodes the last modification date of the scanned data.

Scanner pixel size property (optional)

This property specifies the pixel size, in micrometers, of the scanner.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

79

VII

 S E C T I O N

7

7

FlashPix Image View
Object

7.1 FlashPix Image View Object

The FlashPix format allows the specification of a viewing transform through a FlashPix
image view object which references a FlashPix image. The viewing transform enables
applications to represent a set of simple edits as a list of “commands” which are applied
to the image in real time without altering the original image.

Storage name: Any valid storage name (recommend the file name in host file system)
Class ID: 56616700-C154-11CE-8553-00AA00A1F95B

This class ID is to be used for all FlashPix image view objects whether or not they con-
tain any extensions. Figure 7.1 shows the storages and streams in a FlashPix image
view. Those streams and storages in italics are optional or optional under certain cir-
cumstances.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

80 © 1996 Eastman Kodak Company Version 1.0

FIGURE 7.1 FlashPix image view storages and streams

A FlashPix image view object contains the following storages and streams which are
defined in more detail in subsequent sections. All property sets must abide by the
restrictions specified in Section 1.4.1.

Source FlashPix image (required)
This storage is an instance of a FlashPix image object as defined in Section 3: The
FlashPix Image Object. Transforms may be applied to the source (original) image to
produce the result image (below).

Result FlashPix image (optional)
This storage is an instance of a FlashPix image object as defined in Section 3: The
FlashPix Image Object. Transforms may be applied to the source image (above) to pro-
duce the result image.

Summary info property set (required)
This property set is an instance of the standard Summary Information property set, as
described in Section 1.4.2. The viewing transform must be applied in creating the
thumbnail image which is optional if the FlashPix file is authored with a non-hierarchi-
cal source image object in an embedded capture environment. It is otherwise required.

CompObj stream (required)
This stream contains the class ID of the FlashPix image view object.

Global info property set (required)
This property set contains generic information about the image view.

Global info.
property set

Source desc.CompObj
stream

Extension list
property set

FlashPix

 image
 view object root

Source

FlashPix
image object

Result FlashPix
image object

Summary info.
property set

Transform

Operation

property set

property set

property set

Result desc.
property set

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 81

Source description property set (required)

This property set describes location and type of the source

FlashPix

 image.

Result description property set (optional)

This property set describes the location and type of the result

FlashPix

 images. It is
required if the result

FlashPix

 image object exists or if there is a viewing transform
specified.

Transform property set (optional)

This property set describes the viewing transform specified for this image view.

Operation property set (optional)

This property set describes the actual view transform operation.

Extension list property set (optional)

This property set identifies extensions present in the

FlashPix

 image view object includ-
ing the data structures modified or added by each extension.

7.1.1 CompObj Stream (required)

The CompObj stream is a standard Structured Storage stream and is not a

FlashPix

stream. The header of the stream is not extended for storage of a stream class ID. This
stream is required and is defined in Section A.3. The unicode versions of the CompObj
stream fields are required.

The CompObj stream Clipboard Format field is used to store the class ID of the

Flash-
Pix

 image view object. The

FlashPix

 image view object class ID is converted to a string
for storage in the Clipboard Format field and must be bracketed by the bracket charac-
ters ‘{‘and ‘}’ just as returned by the OLE function StringFromGUID2.

The CompObj stream User Type field is generally used to store the User Type informa-
tion from the OLE registry for the class ID. In OLE-enabled environments, the string
contents should be retrieved from the OLE registry. In non-OLE-enabled environments,
a string which is a user-understandable brief description of the object contents should be
used.

The CompObj stream ProgID field is generally used to store the ProgID information
from the OLE registry for the class ID. In OLE-enabled environments, the string con-
tents should be retrieved from the OLE registry. In non-OLE-enabled environments, a
string which identifies the program associated with the class ID should be used. This
string cannot contain any spaces.

7.1.2 Source and Result

FlashPix

 Image Objects

Names: Data

\040

Object

\040

Store

\040

%06d
Class ID: 56616000-C154-11CE-8553-00AA00A1F95B

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

82 © 1996 Eastman Kodak Company Version 1.0

The source and result

FlashPix

 image objects are instances of the

FlashPix

 image object
as defined in

Section 3: The FlashPix Image Object

. The source

FlashPix

 image object
is required and the result

FlashPix

 image object is optional. The single numeric parame-
ter in the name represents the index of the source and result image objects. Upon cre-
ation, the index used must be unique in the

FlashPix

 image view object. The maximum
image index property of the global info property set must always be the maximum

FlashPix

 image object index in the

FlashPix

 image view.

The source image object represents the image to be processed through the viewing
transform. For example, it may be an image that needs to be cropped and rotated or its
color balance adjusted. The result image object is the image generated by applying the
viewing transform to the source image object. The result image object cannot exist
unless the

FlashPix

 image view contains a viewing transform.

7.1.3 Source and Result Description Property Sets

Name:

\005

Data

\040

Object

\040

%06d
Class ID (for both): 56616080-C154-11CE-8553-00AA00A1F95B
Format ID: 56616080-C154-11CE-8553-00AA00A1F95B

These property sets have only one section, which has a format ID that is the same as the
property set class ID.

These property sets are associated with the source and result image objects in this image
view object. This association is indicated by matching index values in the

FlashPix

image object storage and description property set names.

Source description properties describe the source image object. Result description prop-
erties describe the result image object. Both property sets have the same format, as
described below.

If the

FlashPix

 image view does not contain a viewing transform, the result description
property set is unused and may not exist.

The

FlashPix

 image object to be used as the input to the image view must be character-
ized in the source description property set. After applying the viewing transform to the
source image object, an actual

FlashPix

 image may be stored in a result

FlashPix

 image
object. Even if the result image object is not stored, the result description property set
must exist if there is a viewing transform to specify how the result is created.

The valid properties for these property sets are shown in Table 7.1.

Data object ID property (required)

This property specifies a unique ID used to identify the associated

FlashPix

 image
object. These values may be used, for example, in a networked system, to determine if a
local copy of the images exist or if they must be pulled across the network.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 83

Locked property list property (optional)

This property specifies a list of properties that are locked. Each value in the list is taken
as a property ID of a property found in this instance of the property set. If an editing
application finds a property which is also found in the locked property list, it may not
modify the value of the property. If the value of a locked property is modified, the
results of rendering the

FlashPix

 image view from another application will be unde-
fined. If this property exists, it may not be deleted. This property is used to provide guid-
ance to an editing application in situations where the

FlashPix

 image view is a template
to be “filled out” by the user.

Data object title (optional)

This property specifies a title for the associated image object. If this property exists, an
editing application must keep the value updated.

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of the associated
image object. If this property exists, an editing application must keep the value updated.

Revision number property (optional)

This property specifies the number of times the associated image object has been modi-
fied since its creation. If this property exists, an editing application must keep the value
updated.

Creation time and date property (optional)

This property specifies the time and date of creation of the associated image object. If
this property exists, an editing application must keep the value updated.

TABLE 7.1 Valid properties for the source and result description property sets

Property name ID code Type

Data object ID 0x00010000 VT_CLSID

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Data object title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Revision number 0x00010005 VT_UI4

Creation time and date 0x00010006 VT_FILETIME

Modification time and date 0x00010007 VT_FILETIME

Creating application 0x00010008 VT_LPWSTR

Status 0x00010100 VT_UI4

Creator 0x00010101 VT_UI4

Users 0x00010102 VT_UI4 | VT_VECTOR

Cached image height 0x10000000 VT_UI4

Cached image width 0x10000001 VT_UI4

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

84 © 1996 Eastman Kodak Company Version 1.0

Modification time and date property (optional)

This property specifies the time and date of the last modification to the associated image
object. If this property exists, an editing application must keep the value updated.

Creating application property (optional)

This property specifies the name of the application that created the associated image
object. If this property exists, an editing application may not delete it.

Status property (required)

This property (Table 7.2) indicates the status of the value of the associated image. Possi-

ble values of existence/location field are shown in Table 7.3.

The existence field indicates whether the associated image object exists or is stored for
direct application access. If the existence field is 0x0 (not cached), the permissions field
is ignored. The source image object must be cached (the value of the existence field
must be 0x1). The result image object may or may not be cached, at the discretion of the
writer. Possible values of the permissions field are shown in Table 7.4.

If the associated image object is marked purgeable, a clean-up utility may delete the
image object to recover storage space if it can be recreated from a source transform.
Therefore, the source image object must be set to not purgeable (0x1). The result image
object should be set to purgeable (0x0).

TABLE 7.2 Structure and entries of the status property

Field name Length Byte(s)

Existence data 2 0-1

Permissions set for data 2 2-3

TABLE 7.3 Valid status property values of the existence/location field

Value Meaning

0x0 The data object associated with this property set does not exist.

0x1 The data object associated with this property set does exist.

TABLE 7.4 Valid status property permissions field values

Value Meaning

0x0 The data object is purgeable

0x1 The data object is not purgeable

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 85

Creator property (required)

This property specifies the number of the transform node that created the image object.
For the source image object, the creator should be set to zero (NULL). For the result
image object, the creator should be set to the index of the viewing transform.

Users property (required)

This property specifies a list of transforms that take this image object as an input. Each
entry in the list specifies the index of a transform. The array is unordered. If the associ-
ated image object is not used by any transforms, the number of elements in the array
should be zero. Therefore, the users property must be zero for the result image object.

In the source description property set, the users property must be an array with one and
only one element, the index used to name the transform property set. For the result
description, a

FlashPix

 image view writer should write an array with zero elements.

Cached image height and width properties (required if associated image exists)

These properties specify the height and width, respectively, of the image cached in the
associated

FlashPix

 image object. These properties are the height and width of the larg-
est resolution in the associated

FlashPix

 image object. These properties are required if
the status property existence flag is set to cached (0x1). If the status property existence
flag is set to not cached (0x0), these properties may not exist. Note that the height prop-
erty precedes the width property contrary to other height and width property pairs in the
format. Note also that the cached image height and width properties for the result

Flash-
Pix

 image object take precedence over the rectangle of interest and result aspect ratio
properties should they exist in the transform property set.

7.1.4 Transform Property Set (optional)

Name:

\005

Transform

\040

%06d
Class ID: 56616A00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616A00-C154-11CE-8553-00AA00A1F95B

This property set describes the viewing transform specified for the image view. The sin-
gle numeric parameter in the name represents the index of the transform. In a

FlashPix

image view, this array has only one element, the viewing transform. Upon creation, the
index used must be unique in the

FlashPix

 image view object. The maximum transform
index property of the global info property set must always be the maximum transform
index in use in the

FlashPix

 image view object. The index is referenced by both the cre-
ator property of the result description property set and the users property of the source
description property set, which must both have the same value. The transform property
set is unused and must not exist if the

FlashPix

 image view does not contain a viewing
transform. Table 7.5 lists the possible properties of the transform list property set.

Transform node ID property (required)

This property specifies a unique ID used to identify the viewing transform. Note that
this identifies the transform itself, not the value of the parameters. For example, this ID
specifies that this transform node is performing the viewing transform on a particular

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

86 © 1996 Eastman Kodak Company Version 1.0

source image. This ID does not change if the actual viewing parameters change (the
transform is reexecuted).

Operation class ID property (required)

This property specifies the class ID of the operation to be performed by this transform
node. This property (along with the class ID of this stream) specifies the code that actu-
ally executes the viewing transform. This property must have the value 56616A00-
C154-11CE-8553-00AA00A1F95B.

Locked property list property (optional)

This property specifies a list of properties that are locked for the viewing transform.
Each value in the list is a property ID of a property found in the transform property set.
Editing applications may not modify the value of properties found in the locked prop-
erty list. If the value of a locked property is modified, the results of rendering the

Flash-
Pix

 image view from another application will be undefined. If this property exists, it
may not be deleted. This property is used to provide guidance to an editing application
in situations where the

FlashPix

 image view is a template to be “filled out” by the user.

Transform title property (optional)

This property specifies a title for the viewing transform. If this property exists, an edit-
ing application must keep the value updated.

TABLE 7.5 Valid properties for the transform property set

Property name ID code Type

Transform node ID 0x00010000 VT_CLSID

Operation Class ID 0x00010001 VT_CLSID

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Transform title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Revision number 0x00010005 VT_UI4

Creation time and date 0x00010006 VT_FILETIME

Modification time and date 0x00010007 VT_FILETIME

Creating application 0x00010008 VT_LPWSTR

Input data object list 0x00010100 VT_UI4 | VT_VECTOR

Output data object list 0x00010101 VT_UI4 | VT_VECTOR

Operation number 0x00010102 VT_UI4

Result aspect ratio 0x10000000 VT_R4

Rectangle of interest 0x10000001 VT_R4 | VT_VECTOR

Filtering 0x10000002 VT_R4

Spatial orientation 0x10000003 VT_R4 | VT_VECTOR

Colortwist matrix 0x10000004 VT_R4 | VT_VECTOR

Contrast adjustment 0x10000005 VT_R4

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 87

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of the viewing trans-
form. If this property exists, an editing application must keep the value updated.

Revision number property (optional)

This property specifies the number of times the viewing transform has been modified
since its creation. If this property exists, an editing application must keep the value
updated.

Creation time and date property (optional)

This property specifies the time and date of creation of the viewing transform. If this
property exists, an editing application may not delete it.

Modification time and date property (optional)

This property specifies the time and date of the last modification to the viewing trans-
form. If this property exists, an editing application must keep the value updated.

Creating application property (optional)

This property specifies the index of the application that created the viewing transform. If
this property exists, an editing application must keep the value updated.

Input data object list property (required)

This property specifies the index used in naming the source

FlashPix

 image that is input
to the viewing transform. There may be only one element in the array.

Output data object list property (required)

This property specifies the index of the result image (in the sparse array of images).
There may be only one element in the array.

Operation number property (required)

This property specifies the index used in naming the viewing operation.

Result aspect ratio property (optional)

The result aspect ratio property allows applications to specify the desired aspect ratio
for image output. The value is an IEEE 4-byte floating point number.

The value (R) defines a rectangle with the top-left corner at (0,0) and the bottom-right
corner at (R,1). The result aspect ratio must be applied to the output of the spatial orien-
tation matrix as a cropping function. Pixels outside the rectangle are cropped and 100%
transparent. If the property is not present, applications must operate as though the result
aspect ratio is the same as the raw image aspect ratio. Note that the cached image height
and width properties in the result

FlashPix

 image object result description property set
take precedence over the rectangle of interest and result aspect ratio properties.

Rectangle of interest property (optional)

The rectangle of interest property lets applications select part of the image. Only a rect-
angular region with sides parallel to the edges of the image can be specified. Each ele-
ment of the rectangle of interest property array is an IEEE 4-byte floating point number.
The format of the rectangle of interest property is given in Table 7.6. It is discussed in

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

88 © 1996 Eastman Kodak Company Version 1.0

more detail in Section 7.2.1. Applications must operate as though this property is
defined with the array values (0,0,R,1) if the property is not present. This indicates that
the entire image is selected. Note that the cached image height and width properties in

the result

FlashPix

 image object result description property set take precedence over the
rectangle of interest and result aspect ratio properties.

Filtering property (optional)

The filtering property specifies the degree of filtering (sharpening / blurring) applied to
the raw image data. The value is an IEEE 4-byte floating point number. The interpreta-
tion of the value is discussed in Section 7.2.2. Applications must operate as though this
property has a zero value if it is not present to indicate that the raw image is not filtered.

Spatial orientation property (optional)

The spatial orientation property allows applications to rotate, flip, stretch, and shear an
image. The value is an array of 16 IEEE 4-byte floating point numbers, with the first
number starting at vector element 0. The position of the sixteen elements is as follows:

(7.1)

The interpretation of the value is discussed in Section 7.2.3. Applications must operate
as though this property is defined with the array value (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) if
the property is not present. This indicates that there is no spatial transformation applied
to the raw image.

Colortwist matrix property (optional)

The colortwist matrix property allows applications to make minor changes to the tone
and color of a raw image. It is not intended to support correcting faults in the imaging
chain. The value is an array of 16 IEEE 4-byte floating point numbers, with the first
number starting at vector element 0. The position of the sixteen elements is as follows:

(7.2)

The interpretation of the value is discussed in Section 7.2.4. Applications must operate
as though this property is defined with the array value (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) if

TABLE 7.6 Format and fields of the rectangle of interest property

Field Length Vector Element

left edge (x) 4 0

top edge (y) 4 1

width (w) 4 2

height (h) 4 3

aij ARRAY k[]≡

k i 1–() 4 j 1–+×=

aij ARRAY k[]≡

k i 1–() 4 j 1–+×=

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 89

the property is not present. This indicates that there is no tone or color correction
applied to the raw image.

Contrast adjustment property (optional)

The contrast adjustment property allows applications to modify the contrast of a raw
image. The value is an IEEE 4-byte floating point number. The interpretation of the
value is discussed in Section 7.2.5. Applications must operate as though this property
has a value of 1.0 if the property is not present. This indicates that there is no contrast
adjustment applied to the raw image.

7.1.5 Operation Property Set (optional)

Name:

\005

Operation

\040

%06d
Class ID: 56616E00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616E00-C154-11CE-8553-00AA00A1F95B

The operation property set specifies the software to execute the viewing transform. The
single numeric parameter in the name represents the index of the operations in a sparse
array. Upon creation, the index used must be greater than the maximum operation index
property of the Global Info property set. In a

FlashPix

 image view, the array has only
one element, the viewing operation. The index is referenced by the operation number
property in the transform property set.

If this

FlashPix

 image view does not contain a viewing transform, the operation prop-
erty set is unused and may not exist. Table 7.7 lists the possible properties for the opera-
tion property set.

Operation ID property (required)

This property specifies the class ID of the viewing operation. This value is used by
either the

FlashPix

 reader, an OLE server or an OpenDoc part to identify the actual soft-
ware to implement the viewing transform. For a

FlashPix

 image view, the value of this
property must be 56616A00-C154-11CE-8553-00AA00A1F95B. This value specifies
the actual code that executes the viewing transform.

7.1.6 Global Info Property Set (required)

Stream name:

\005

Global

\040

Info
Class ID: 56616F00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616F00-C154-11CE-8553-00AA00A1F95B

TABLE 7.7 Valid properties for the operation property set

Property name ID code Type

Operation ID 0x00010000 VT_CLSID

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

90 © 1996 Eastman Kodak Company Version 1.0

This property set provides global information about the image view. Table 7.8 lists the
possible properties for the global info property set.

Locked property list property (optional)

This property specifies a list of properties that are locked for this property set. Each
value in the list is a property ID of a property found in this property set. Editing applica-
tions may not modify the value of properties found in the locked property list. If the
value of a locked property is modified, the results of rendering the

FlashPix

 image view
from another application will be undefined. If this property exists, it may not be deleted.
This property is used to provide guidance to an editing application in situations where
the

FlashPix

 image view is a template to be “filled out” by the user.

Transformed image title property (optional)

This property specifies a title for the viewing transform. If this property exists, an edit-
ing application must keep the value updated.

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of this

FlashPix

image view. If this property exists, an editing application must keep the value updated.

Visible outputs property (required)

This property specifies the output of the image view. The value of this property indicates
the image that is to be considered the output of this file. There may be only one value in
this array. If the

FlashPix

 image view contains a viewing transform, this value must be
the index used to name the result image. If a viewing transform is not specified, this
value must be the index used to name the source image.

Maximum image, transform node, and operation index properties (required)

These properties specify the highest index in use for data objects, transforms, and oper-
ations. When an application creates a new entity, it is recommended that it use the value
of the appropriate of these index properties + 1 as the index value for that entity. Then
the appropriate index property must be updated if necessary so that it is the maximum of
the indices in use for the type of entity. The values of these properties are 0 prior to cre-
ating any image, transform, and operation entities.

TABLE 7.8 Valid properties in the global info property set

Property name ID code Type

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Transformed image title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Visible outputs 0x00010100 VT_UI4 | VT_VECTOR

Maximum image index 0x00010101 VT_UI4

Maximum transform index 0x00010102 VT_UI4

Maximum operation index 0x00010103 VT_UI4

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 91

7.1.7 Extension List Property Set (optional)

Stream name:

\005

Image

\040

Contents
Class ID: 56616010-C154-11CE-8553-00AA00A1F95B
Format ID: 56616010-C154-11CE-8553-00AA00A1F95B

This property set identifies extensions present in the

FlashPix

 image view object by
class ID, name, and description as well as the data elements changed or added by each
extension. The property set is optional, however, if the

FlashPix

 image view object con-
tains any extensions, the extension list property set must be present and all extensions,
registered and private, in the

FlashPix

 image view object must be described. The way in
which the data associated with an extension is structured can take one or more of the
following forms:

■

New storage(s) may be added

■

New stream(s) may be added

■

New

FlashPix

 stream(s) may be added

■

New subimage(s) may be added to a

FlashPix

 image object

■

New property set(s) may be added

■

New property(s) may be added to an existing property set section

■

Element(s) may be added to core

FlashPix

 property set vector properties that are
defined as variable length

■

Value of a core

FlashPix

 stream field may be changed

■

Value of a core property set property may be changed

There are five restrictions to structuring the data elements of an extension. First, new
fields may not be added to existing

FlashPix

 streams. Second, due to the inability to
independently ensure property ID code uniqueness, only registered extensions may add
properties to an existing property set section. Third, private extensions may not change
the value of a core

FlashPix

 stream field or a core property set property. Fourth, exten-
sions can only add vector elements that are not already used by core or other extensions
present in the file. Upon removal of an extension, the vector element values associated
with the extension must be replaced with NULL and the vector must not be reordered.
Fifth, only registered extensions can add elements to core property set vector properties.

Although there are a few practical examples where reasonable core reader actions could
be defined for when an extension has changed the value of a core

FlashPix

 stream field
or a core property set property, these core reader actions must be considered in defining
the core

FlashPix

 specification. It is impractical to expect all core reader software to be
updated to incorporate default actions identified in the course of developing new exten-
sions. The definition of extensions must not impact the core definition unless some com-
pelling feature set is identified which the

FlashPix

 format Advisory Council agrees to
include in a revised definition of the core

FlashPix

 format. Therefore, efforts to define
public extensions will avoid impacting core

FlashPix

 stream field and core property set
property values.

If the

FlashPix

 image view object contains an extended

FlashPix

 image object, the
extended

FlashPix

 image object must be listed in the extension list of the

FlashPix

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

92 © 1996 Eastman Kodak Company Version 1.0

image view object. The details of how the

FlashPix

 image object is extended are left to
the extension list property set of the

FlashPix

 image object itself. The extension list
entry for the extended

FlashPix

 image object must use the

FlashPix

 image object class
ID as the extension ID and the

FlashPix

 image object storage name as the extension
description.

If an extension is present in the

FlashPix

 image view object which affects the output
image appearance, an intermediate core

FlashPix

 data object must be created as an
intermediate source image object for core reader use. The creator transform of this
source image object may not be a core viewing transform so it is clear to a core reader
that this image object is truly its source and it will not attempt to resolve the creating
transform. The intermediate source image object must be hierarchical, but is not
required to be at the full resolution potential of images from which it is created. The
extended authoring application may choose the resolution to make available. As core
reader software cannot access data of a higher resolution than provided in the intermedi-
ate source image object, it is strongly recommended that data corresponding to at least
200dpi is provided. Further, the intermediate source image object does not have to be an
exact representation of the output that is created from a reader supporting the extension.
That may not be possible. Although the image content of the intermediate source image
is also at the discretion of the authoring application, it is recommended that the closest
feasible representation is provided.

The valid properties of the extension list property set are listed in Table 7.9. The

extensions present in the

FlashPix

 image view object are numbered for the convenience
of grouping the descriptive information about each extension. Property ID codes

TABLE 7.9 Valid properties for the extension property list property set

Property name ID code Type

Used extension numbers 0x10000000 VT_UI2 | VT_VECTOR

Extension name 0xiiii0001 VT_LPWSTR

Extension class ID 0xiiii0002 VT_CLSID

Extension persistence 0xiiii0003 VT_UI2

Extension creation date 0xiiii0004 VT_FILETIME

Extension modification date 0xiiii0005 VT_FILETIME

Creating application 0xiiii0006 VT_LPWSTR

Extension description 0xiiii0007 VT_LPWSTR

Storage / stream pathname 0xiiii1000 VT_LPWSTR | VT_VECTOR

FlashPix stream pathname 0xiiii2000 VT_LPWSTR | VT_VECTOR

FlashPix stream field offset 0xiiii2001 VT_UI4 | VT_VECTOR

Property set pathname 0xiiii3000 VT_LPWSTR | VT_VECTOR

Property set ID codes 0xiiii3jj1 VT_LPWSTR | VT_VECTOR

Property vector elements 0xiiii3jj2 VT_LPWSTR | VT_VECTOR

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 93

0xiiiixxxx describe the extension numbered 0x

iiii

.

Used extension numbers property (required)

This property lists all extension numbers

0xiiii

 used in the extension list property set for
the

FlashPix

 image view object. The property value is an unordered array of

0xiiii

val-
ues.

All applications must update this property each time an extension is added to or
removed from a

FlashPix

 image view object.

Extension name property (required)

This property identifies the name of the extension. If the extension is registered, the
name used must be that which is published in the official

FlashPix

 Extension Specifica-
tion. For private extensions, the name is the whatever short, descriptive label the author-
ing application chooses.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

Extension class ID property (required)

This property identifies a unique class ID for the extension. If the extension is regis-
tered, the class ID must be that which is published in the official

FlashPix

 Extension
Specification. For private extensions, the class ID is assigned by the authoring applica-
tion.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

 Extension persistence property (required)

This property identifies the persistence of the extension with respect to edits to the core
data elements of the

FlashPix

 image view object. The legal values for the extension per-
sistence property are defined in Table 7.10.

It is the responsibility of the reader/writer application upon save or copy functions to
retain the extension data elements by default, or in accordance with the extension persis-
tence property.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

Extension creation date property (optional unless extension persistence property
is 0x2)

This property specifies the time and date the authoring application added the extension
to the

FlashPix

 image view object. If the property exists, all applications must retain it
upon save or copy functions by default, or in accordance with the extension persistence
value.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

94 © 1996 Eastman Kodak Company Version 1.0

Extension modification date property (optional unless extension persistence
property is 0x2)

This property specifies the time and date of the last modification to the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Creating application property (optional)

This property specifies the name of the application that authored the extension in the
file. If the property exists, any application editing the extension must update the value
and all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence value.

Extension description property (optional)

The description property is a short (<80 character) description of the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Storage/stream pathname property (optional)

This property lists the full storage or non-

FlashPix

 stream name, including the path in
the structured storage file from the

FlashPix

 image view object storage, for each storage
or non-

FlashPix

 stream the extension added to the

FlashPix

 image view object. The
path is specified using the standard Unix file specification tokens: "/" represents a direc-
tory separator and must be the first character of the property value. Wildcard characters
“*” and “?” (where “*” matches any 0 or more characters and “?” matches any 1 charac-
ter) are permitted in the path portion of the property value. If a storage is listed in the
extension list property set, its contents should not also be listed as they are assumed to
also be associated with that extension. If this property is omitted it is assumed that no
storages are added to the

FlashPix

 image view object for the extension. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

FlashPix

 stream pathname property (optional)

This property lists the full

FlashPix

 stream name, including the path from the

FlashPix

image view object storage, for each

FlashPix

 stream the extension added to or modified
in the

FlashPix

 image view object. The path is specified using the standard Unix file
specification tokens: "/" represents a directory separator and must be the first character
of the property value. Wildcard characters “*” and “?” (where “*” matches any 0 or
more characters and “?” matches any 1 character) are permitted in the path portion of

TABLE 7.10 Legal values of the existence persistence property

Value Meaning

0x0 Extension is valid independent of core element edits

0x1 Extension is invalid upon core element edits

0x2 Extension is potentially invalid upon core element edits

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 95

the property value. The array of values for the

FlashPix

 stream pathname property and
the

FlashPix

 stream field offset property array of values for extension

iiii

are associated
as described in Table 7.11. If this property is omitted it is assumed that no

FlashPix

streams are added to or modified in the

FlashPix

 image view object for the extension. If
the property exists, all applications must retain it upon save or copy functions by
default, or in accordance with the extension persistence property value.

FlashPix

 stream field offset property (optional)

This property lists the byte offsets (after the header) into the

FlashPix

 stream identified
with the

FlashPix

 stream pathname property array of fields modified by the extension.
The array of values for the

FlashPix

 stream field offset property and the

FlashPix

stream pathname property array of values for extension

0xiiii

 are associated as described
in Table 7.11. This property is required only if the

FlashPix

 stream pathname property
exists. If this property exists, all applications must retain it upon save or copy functions
by default, or in accordance with the extension persistence property value.

 In the Table 7.11 example, there are two

FlashPix

 stream data elements associated with

extension 0x17. The first, at Index = 0, is an added

FlashPix

 stream as there is a

Flash-
Pix

 stream pathname value but the

FlashPix

 stream field offset is

0xFFFFFFFF

. The sec-
ond, at index 0xjj = 1, is a field in a core

FlashPix

 stream who's value is not among
those defined in the core

FlashPix

format. This is indicated by the presence of a non-

0xFFFFFFFF

FlashPix

 stream field offset value in addition to a

FlashPix

 stream path-
name value.

Property set pathname property (optional)

This property is an array that lists the full property set name, including the path from the

FlashPix

 image object storage, for each property set the extension 0xiiii added, added
to, or modified in the

FlashPix

 image object. The path is specified using the standard
Unix file specification tokens: "/" represents a directory separator and must be the first
character of the property value. Wildcard characters "*" and "?" (where "*" matches any
0 or more characters and "?" matches any 1 character) are permitted in the path portion
of the property value. Table 7.12 shows an example of how the property set pathname,
property set ID codes, and property set vector elements for extension 0xiiii are associ-
ated. The array index of the property set pathname property corresponds to 0xjj in the
properties 0xiiii3jj1 and 0xiiii3jj2.

This property set is optional and if omitted it is assumed that no property sets are added,
added to, or modified in the

FlashPix

 image object for the extensions. If the property
exists all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

TABLE 7.11 Example values of FlashPix stream identification

Property Index = 0 Index = 1

0x00172000 stream x pathname stream y pathname

0x00172001 0xFFFFFFFF 64

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

96 © 1996 Eastman Kodak Company Version 1.0

Property set ID codes property (optional)

This property lists the ID codes of properties which have been added to a core property
set, or defined with non-core values by an extension to the

FlashPix

 image object. The
value of each array position of the property is a VT_LPWSTR that may be composed of
comma separated values each of which are either an individual property ID code or
hyphen-separated pair of property ID codes. The array of values for the property set ID
codes and the property vector elements for particular property set 0xjj and extension
0xiiii are associated as described in Table 7.12. When a new property set is added by an
extension, the property set ID codes property is not required. This property is required if
an extension adds properties to a core property set or modifies core property set proper-
ties. If the property exists, all applications must retain it upon save or copy functions by
default, or in accordance with the extension persistence property value.

Property vector elements property (optional)

Extensions can add vector elements to core properties that are defined as variable length
vectors. This property lists the vector index for the values added to a particular vector
property. The value of each array position of the property is a VT_LPWSTR that may be
composed of comma separated values each of which are either an individual vector ele-
ment or hyphen-separated pair of vector elements. The array of values for the property
vector elements and the property set ID codes for a particular property set 0xjj and
extension 0xiiii are associated as described in Table 7.12. This property is only required
when an extension adds vector elements to a core property set property. If the vector ele-
ments property is present, and vector elements have not been added to its associated
property set ID code(s), then the value of this property must be NULL. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

In the Table 7.12 example, there are three property sets associated with extension 0x19.
The first index of the property 0x000193000, which corresponds to 0xjj=00, is a new
property set being added by the extension as there is a property set pathname value, but
the property set ID codes and property vector element properties for 0xjj=00 are not
listed. The second index of the property 0x00193000, which corresponds to 0xjj=01, is
a core property set in which property ID Codes 0x00011001-0x00011005 and
0x00001200 are being added by the extension. The third index of the property
0x00193000, which corresponds to 0xjj=02, is a core property set in which property ID
code 0x00033000 is of type VT_VECTOR and the extension has added values in ele-
ments 3,4, and 5 of that vector. Property ID codes $00044001-$00044004 are new ID
codes being added to the property set by the extension as well. In this case since the
property ID codes are new, the value of 0x00193022 for this array position is assigned

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 97

to NULL. This example also shows that the extension has added a value in element 2 of
both the vectors defined by existing property ID codes, 0x00055000 and 0x00066000.

7.2 Viewing Transform Parameters

The viewing transform parameters allow a view other than the raw image data itself.
There are four classes of viewing parameters: selection, filtering, spatial orientation, and
color reproduction. The application must provide a user interface that will help users
work with and preview the viewing parameters.

7.2.1 Selection via Rectangle of Interest
The rectangle of interest property lets applications specify which part of the image to
retain. Only a rectangular region with sides applications specify parallel to the edges of
the image can be specified.

The rectangle of interest is specified in the rectangle of interest property in the transform
property set as a horizontal, rectangular box. Four values are needed to specify the rect-
angle: left edge (x), top edge (y), width (w), and height (h). Each of these values is spec-
ified as a floating point number in the resolution-independent coordinate system
described in Section 2.1.1.

The rectangle of interest is always interpreted in the context of a specific resolution
layer. For example, if the layer has N pixels across (in x), numbered 0 to N-1, the range
of columns is given by:

(7.3)

Note that while pixel locations should be used to identify a pixel neighborhood for spa-
tial operations, the rectangle of interest box should run from the left edge of the unit
square surrounding the first pixel to the right edge of the unit square surrounding the last
pixel. This combination of parameters provides a rectangle of interest which is robust to

TABLE 7.12 Example values of property set identification

Property Index=0 Index=1 Index=2

000193000 PS x pathname
(0xjj=00)

PS y pathname
(0xjj=01)

PS z pathname
(0xjj=02)

000193011 $000011001-$000011005,
$000012000

000193021 $000033000 $000044001-
$000044004

$000055000,
$000066000

000193022 3,4,5 NULL 2

N x 0.5+×

columns N x w+()

0.5+×≤ ≤

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

98 © 1996 Eastman Kodak Company Version 1.0

resolution changes. If the user selects a region manually at a specific resolution, the rect-
angle parameters should be calculated as follows, using the left edge as an example: cal-
culate the location of the leftmost pixel in the continuous, resolution-dependent
coordinate system described in Section 2.1.2. Scale this value to the resolution-indepen-
dent system described inSection 2.1.1. This process will provide a stable description of
the region when it is expressed at a higher or lower resolution.

The rectangle of interest does not imply any scaling or shifting into a “standard coordi-
nate space.” The rectangle only specifies that pixels outside the rectangle should be con-
sidered fully transparent. If the user desires that the area inside the rectangle of interest
be displayed as “the whole image,” the spatial orientation matrix (described in
Section 7.2.3) should map the top-left corner of the rectangle to (0,0) and the bottom-
right of the rectangle to (

w/h

,1).

7.2.2 Filtering

The

FlashPix

 format viewing parameter that sharpens or blurs the image is referred to
as image filtering. The degree of filtering is controlled by the filtering property in the
transform property set. Positive values produce a sharper image; negative values pro-
duce a smoother, more blurry image, with less detail. A value of 0 leaves the image
unchanged. Control is scaled so that one unit of filtering makes a just-noticeable change.
Values between -20 and 20 may be expected to produce reasonable results. The default
value of the filtering parameter is zero. It is stored as an IEEE 4-byte floating point num-
ber.

The influence of the filtering control is independent of image resolution. Proper opera-
tion of image filtering is closely tied to the resolution-independent rendering algorithms
of the

FlashPix

 format. When a reader requests actual

FlashPix

 image data, it selects
the best resolution layer to build the data from, and creates a digital filter to apply the
requested degree of sharpening or blurring to that data.

To provide a degree of filtering independent of resolution, a reader also needs informa-
tion about the imaging capabilities of the physical subsystems that generated the digital
image and the subsystem that will be used to print the image. If this information is not
available, a reader will use defaults that will yield good results in non-critical situations.
Peripheral manufacturers could add value to systems that use the

FlashPix

 format by
providing this information with their devices (as part of their device driver or profiles).

7.2.2.1 The Measure

Filtering is defined as the change in the acutance of the complete imaging system. Acu-
tance is a “one number” description of system sharpness. A number of definitions have
been used, but in general acutance is a measure of the degree of blur introduced by all
the elements of an imaging system, including the human eye that views the image. The
only element missing from acutance is the degree of detail in the scene itself. Most mod-
ern measures of acutance are based on some integral of the overall MTF (modulation
transfer function) of the system, including some eye MTF, scaled so that one unit of
acutance change is a just-noticeable difference. Higher acutances are associated with

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 99

sharper imaging systems. A specific definition of acutance has been adopted for the

FlashPix

 format.

The digital image is an intermediate result in the imaging chain that starts with image
capture and ends with physical reproduction. Acutance is a measure of the ability of the
chain to produce a sharp image. The customer can specify an increase or decrease in the
acutance of this system. This will determine the digital filter used to increase or decrease
the sharpness of the image.

7.2.2.2 Subsystem information

To precisely calculate the change in acutance of the system, some information about real
devices is required. In particular, a reader requires an estimate of the capability of the
input and output devices to reproduce fine image details. It also helps to have some esti-
mate of how large the image will appear to the viewer, since the human eye is the final
element in the imaging system.

Information on device sharpness is not generally available on the desktop today, even
though manufacturers have measured it. An estimate of relative image size can often be
made based on how the image is being used in a composition. In any case, the system is
relatively insensitive to these factors, and the internal default values generally give good
results.

Accurate information passed to a reader will improve the predictability and reliability of
filtering as a change in acutance. Knowledge of these parameters also may permit a
reader to work from a lower resolution level of the hierarchy, enabling faster rendering
with no loss in image quality.

Four pieces of information may be utilized by a reader to determine acutance:

■

A number describing the MTF (sharpness capability) of the capture operation
sequence (stored in the sharpness approximation property of the file source group of
the image info property set, Section 6.2)

■

A number describing the MTF (sharpness capability) of the printer

■

A number describing the MTF (blurring) of the prefilter used in building the

Flash-
Pix

 format hierarchy (stored for each resolution in the decimation prefilter width
property of the resolution description groups of the image contents property set,
Section 3.1.5.2).

■

A number describing the relative size of the image as used by the customer

7.2.2.3 User Sharpening Adjustment

One challenge with providing image sharpening on the desktop is the difficulty novice
users have in selecting the correct value. Generally, some sharpening is required to cor-
rect for the input/output devices, and some is added by the user for artistic effect. (A
reader does not automatically add sharpening to correct for input and output devices,
even when it has that information, but an application could do so, for example, by sug-
gesting a filtering parameter setting.)

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

100 © 1996 Eastman Kodak Company Version 1.0

Handling sharpening adjustment for artistic effect is more difficult. However, the

Flash-
Pix

 filtering system can enable a very simple means for users to preview the sharpening
effects if the subsystem information listed above is known. Specifically, numbers
describing the MTFs of the printer and the monitor must be available.

7.2.3 Spatial Orientation

The

FlashPix

 format provides spatial orientation parameters to rotate, scale, shear, and
translate an image. These parameters are stated in terms of a 4

×

4 matrix, which maps
image points from the displayed form of the image to the original image. In this form,
the source points for resampling can be directly calculated.

Two-dimensional affine transformations are used to implement the spatial changes
needed for image viewing. The general transform requires interpolation of the image
data. A subset of the operations can be executed much faster because there is no change
in the definition of the pixels (they only move around). It is the responsibility of the
viewing engine to recognize these operations and to execute them efficiently.

The spatial orientation viewing parameters are specified by a 4

×

4 matrix as described by
Equation 7.4:

(7.4)

Each parameter is a floating point number. The 2-D affine transformations that map
from the displayed form of the image to the original image are encoded in the six matrix
elements a

11,

a

12

, a

14

, a

21

, a

22

, a

24

In general, applying the affine transformations to the image will require resampling of
the image. Note that the offset parameters

a

14

 and

a

24

 do matter for rotations and flips.
In particular, rapid execution of these operations depends on certain values of the off-
sets.

The 4x4 matrix is stored, in the spatial orientation property of the Transform Property
Set (Section 7.1.4), as an array of 16 IEEE 4-byte floating point numbers.

7.2.4 Tone and Color Corrections

The

FlashPix

 format provides a colortwist matrix property in the transform property set
to allow users to make small changes to the tone and color of an image. The changes are
not designed to correct specific faults in the imaging chain, but to provide the user a
simple way to specify common color corrections.

x'

y'

1

1

a11 a12 a13 a14

a21 a22 a23 a24

0 0 1 0

0 0 0 1

x

y

1

1

=

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 101

7.2.4.1 Color Images

Tone and color changes are applied in two ways. First, an affine matrix (colortwist
matrix) on the vector (

Luma

,

Chroma

1

,

Chroma

2

, 1) of normalized PhotoYCC values is
used to adjust lightness, saturation, and color balance. Many other kinds of simple
changes can be effected with this matrix. The use of a matrix for this operation makes it
easy to combine color operations done at different levels of an image composite. The
matrix elements may be identified as follows:

 (7.5)

Each element of the matrix is a floating point number. No limitation is placed on the
matrix elements except for the left most three elements on the bottom row, which should
all be zero. The input data to and the output data from the colortwist matrix MUST be
normalized PhotoYCC. Although matrices for conversion into and out of normalized
PhotoYCC may be concatenated with the colortwist matrix for efficiency, the colortwist
matrix stored in the

FlashPix

 image view object must NOT contain the matrix compo-
nent for those conversions.The terms of the vector resulting from the matrix multiplica-
tion should be clipped to the correct limits for the desired output color space.

The values in the matrix are defined in terms of modifications to normalized PhotoYCC.
Note that the tone and color correction matrix maps the source image to the destination
image, which is different than the spatial orientation affine matrix.

7.2.4.2 Monochrome Images

Monochrome images should be treated as NIF RGB images where

R

 =

G

 =

B

 =

X

. This
allows a “tint” to be applied to a monochrome image using the viewing parameters,
without requiring multichannel data to be stored in the

FlashPix

 image.

7.2.5 Contrast adjustments

Contrast adjustments are controlled by the contrast adjustment property in the transform
property set. It specifies a function through which the image data is passed. This opera-
tion may be implemented as a 1D lookup table or an equation applied to the image data
once transformed to the proper color representation. The contrast change must be per-
formed on an RGB representation of the image data which depends on the implementa-
tion method chosen. Additional (fixed) matrix operations (aside from the colortwist
matrix) will be required to convert to and from the RGB values used in the contrast
adjustment.

The first matrix implements the conversion from the input color space to normalized
PhotoYCC where the colortwist matrix is applied. The matrices following the colortwist
converts normalized PhotoYCC data to the proper RGB representation for application

Luma'

Chroma'1
Chroma'2

bYY bYC1
bYC2

bYoff

bC1Y bC1C1
bC1C2

bC1off

bC2Y bC2C1
bC2C2

bC2off

0 0 0 boff

Luma

Chroma1

Chroma2

1

=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

102 © 1996 Eastman Kodak Company Version 1.0

of the contrast parameters. The choice of RGB representations includes normalized
RGB(

rgb

) and a greater than 8 bit integer RGB

m

 representation. Once applied, some
additional matrices are required to return the image data back to its pre-color/tone cor-
rection representation which can then be converted to a different output color space if
desired.

The color and tone corrections can be applied to both NIFRGB and PhotoYCC data.
While the colortwist matrix is applied to a normalized PhotoYCC data representation
and contrast is applied in one of two RGB data representations, the matrices provided to
do these conversions alone are not sufficient to convert from the NIFRGB color space to
the PhotoYCC space or visa versa. They are sufficient to do the metric conversions
required for the tone and color corrections, but are not for color space transformations.
Therefore when the tone and color corrections are applied, the modified image data
should be in the same color space as the original input color space at which point addi-
tional processing can be performed to convert the color space if needed. It may be pos-
sible, however, to concatenate some of the additional color space transformation
processing with the color and tone correction matrices and LUTs to simplify the pro-
cessing.

The desired contrast is specified by a single floating point number. A value of 1.0 indi-
cates no contrast change; values greater than 1 provide higher contrast.

The contrast adjustment is stored as an IEEE 4-byte floating point number. Its default
value is 1.0.

If the contrast parameter is other than 1.0 and the equation method for contrast is used,
the procedure for implementing tone and color viewing parameters is as follows:

1.

Combine a normalized PhotoYCC

→

normalized RGB conversion matrix with the
given colortwist matrix and the input

→

normalized PhotoYCC matrix, producing a
new matrix

M

'

.

2.

Pass the image data through

M

'

3.

Apply the contrast modification through equation (7.6) to the image data resulting
from

M

'.

4.

Pass the contrast modified data through a series of matrices to convert the contrast
modified normalized RGB back to the original color space which can then be con-
verted to a different output space if needed.

If the contrast parameter is other than 1.0 and the LUT method for contrast is used, the
procedure for implementing tone and color viewing parameters is as follows:

1.

Combine a normalized PhotoYCC

→

normalized RGB conversion matrix and a nor-
malized RGB

→

RGB

m

with the given colortwist matrix and the input

→

normalized
PhotoYCC matrix, producing a new matrix

M

'.

2.

Pass the image data through

M

' limiting the RGB

m

 values to the range 0<=X<2M.

3.

Create the LUT,

K

LUT

, using equation (7.7). The output of

K

LUT

 is normalized RGB.
If the RGB

m

 representation is preferred, cascade equation (7.8) with equation (7.7)
to create

K

'

LUT

.

4.

Apply the contrast modification through either

K

LUT

 or

K

'

LUT

.

APPENDIX II

Microsoft et al. Exhibit 1005

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 103

5.

Pass the contrast modified data through a series of matrices to convert the contrast
modified normalized RGB or RGB

m

 data back to the original color space which can
then be converted to a different output space if needed.

For example, to increase the contrast by 20%,

K

 = 1.2, where

K

 is the contrast parame-
ter. The following equations specify the contrast modification function,

f

K

, to be applied
to

rgb

 data:

(7.6)

If the contrast modification is to be applied as a LUT, the input data must be converted
to

RGB

m

 space. The following equation can then be used to generate the LUT,

K

LUT

,
where

j

' is the input pixel value in

RGB

m

 space, where

M

 = 2

k

-1

:

(7.7)

The output of

K

LUT

 is

rgb

 space. If

RGB

m

 space is desired, the following equation can
be cascaded with the equation for

K

LUT

, creating

K

'

LUT

:

(7.8)

Note that if the “nine LUT method” is used for executing matrix multiplications, the 1D
LUT and the final matrix can be combined into a single step.

7.3 Sequence of Viewing Parameters

The viewing parameters are not commutative. They must be applied in the following
order: selection, filtering, spatial orientation, specification of result aspect ratio. The
tone and color operation can be applied at any stage after the filtering step.

p 0.43=

f K K j,()

j 0< p–
j–

p

 K

×

j 0= 0

0 j< p
j
p

 K

×

=

KLUT j'[] f K K
j' M

2
-----–

M
--------------,

=

K'LUT j'[] KLUT j'[] M
M
2
-----+×=

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

104 © 1996 Eastman Kodak Company Version 1.0

An application must carefully record edits to the image once it has been loaded. If the
application wishes to modify the viewing parameters of the original image to reflect the
edits, it must determine how to express the changes in terms of the allowed parameters.

7.3.1 Coordinate System

Both the selection and spatial orientation operations require clear specification of a
coordinate system for the image. A

FlashPix

 image can have any size, but the viewing
parameters have no knowledge of the number of pixels in the image. The image is stored
with an implicit orientation. The upper-left hand corner of the image has the coordinates
(0, 0). The height of the image is 1.0, so that the lower-left corner has the coordinates (0,
1.0). The lower-right corner has the coordinates (

R

, 1.0), where

R

 is the aspect ratio of
the image.

The pixel locations are specified exactly for spatial operations: in a layer with

N

 pixels
in the x direction, the first pixel is centered at 0.5/

N

, the second is centered at 1.5/

N

, etc.

The affine spatial transform may rotate and shift the image data. Still, the coordinates
implied by the specification of the result aspect ratio refer to the original coordinate sys-
tem of the image.

For each pixel in the result rectangle (specified by the result aspect ratio), apply the
affine transform to identify the corresponding location in the original image.

IF this point falls within the rectangle of interest,

THEN: This point will probably not fall in the middle of an original pixel. Use an inter-
polation scheme to calculate the values for the new pixel. Map these values through the
tone and color transform to get the final image values.

ELSE: The point is outside of the defined image area. In the context of a viewer, nothing
should be displayed—the viewer must define its background level. In the context of
compositing, this pixel has 100% transparency.

7.3.2 Image Size and Limits

The

FlashPix

 format is a resolution-independent format. There is no implicit scale to the
image. The image should be displayed fully at whatever size and resolution suits the
viewing device.

After a spatial orientation change leaves the image tilted or sheared, the resulting image
is defined to be the area in the rectangle (0,0) to (

R

result

,1), even though there may be
legitimate image data outside this region. If the application wants the image to be
rotated and displayed in its entirety, the affine matrix must also perform a scale to shrink
the image such that it fits entirely inside the output rectangle.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996

Version 1.0 © 1992-1996 Microsoft Corporation

105

A

 A P P E N D I X

A

A

Structured Storage

Note: This document is meant to accompany the Microsoft OLE Structured Storage
Reference Implementation, hereafter referred to as the ‘Software’. If this document
and functionality of the Software conflict, the actual functionality of the Software rep-
resents the correct functionality. Microst assumes no responsibility for any damages
that might occur either directly or indirectly from these discrepancies or inaccuracies.
Microsoft may have trademarks, copyrights, patents or pending patent applications,
or other intellectual property rights covering subject matter in this document and in the
Software. The furnishing of this document does not give you a license to these trade-
marks, copyrights, patents, or other intellectual property rights and any license rights
granted are limited to those set forth in the End User License Agreement accompa-
nying this document.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

106 © 1992-1996 Microsoft Corporation Version 1.0

A.1 Compound File Binary Format

A.1.0 Overview

A Compound File is made up of a number of

virtual streams

. These are collections of data that behave
as a linear stream, although their on-disk format may be fragmented. Virtual streams can be user data,
or they can be control structures used to maintain the file. Note that the file itself can also be considered
a virtual stream.

All allocations of space within a Compound File are done in units called

sectors

. The size of a sector is
definable at creation time of a Compound File, but for the purposes of this document will be 512 bytes.
A virtual stream is made up of a sequence of sectors.

The Compound File uses several different types of sector:

Fat

,

Directory

,

Minifat

,

DIF

, and

Storage

. A
separate type of 'sector' is a

Header

, the primary difference being that a Header is always 512 bytes long
(regardless of the sector size of the rest of the file) and is always located at offset zero (0). With the ex-
ception of the header, sectors of any type can be placed anywhere within the file. The function of the
various sector types is discussed below.

In the discussion below, the term

SECT

 is used to describe the location of a sector within a virtual stream
(in most cases this virtual stream is the file itself). Internally, a

SECT

 is represented as a

ULONG

.

A.1.1 Sector Types

[4 bytes] typedef unsigned long ULONG;
[2 bytes] typedef unsigned short USHORT;
[2 bytes] typedef short

OFFSET

;
[4 bytes] typedef ULONG

SECT

;
[4 bytes] typedef ULONG

FSINDEX

;
[2 bytes] typedef USHORT

FSOFFSET

;
[4 bytes] typedef ULONG

DFSIGNATURE

;
[1 byte] typedef unsigned char BYTE;
[2 bytes] typedef unsigned short WORD;
[4 bytes] typedef unsigned long DWORD;
[2 bytes] typedef WORD

DFPROPTYPE

;
[4 bytes] typedef ULONG

SID

;
[16 bytes] typedef CLSID GUID;

[8 bytes] typedef struct tagFILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
 } FILETIME, TIME_T;

[4 bytes] const SECT

DIFSECT

= 0xFFFFFFFC;
[4 bytes] const SECT

FATSECT

= 0xFFFFFFFD;
[4 bytes] const SECT

ENDOFCHAIN

= 0xFFFFFFFE;
[4 bytes] const SECT

FREESECT

= 0xFFFFFFFF;

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 107

A.1.1.1 Header

struct StructuredStorageHeader{

// [offset from start in bytes, length
// in bytes]

BYTE _abSig[8];

// [000H,08] {0xd0, 0xcf, 0x11, 0xe0,
// 0xa1, 0xb1, 0x1a, 0xe1} for current
// version, was {0x0e, 0x11, 0xfc,
// 0x0d, 0xd0, 0xcf, 0x11, 0xe0} on old,
// beta 2 files (late ’92) which are also
// supported by the reference
// implementation

CLSID _clid;

// [008H,16] class id (set with
// WriteClassStg, retrieved with
// GetClassFile/ReadClassStg)

USHORT _uMinorVersion;

// [018H,02] minor version of the
// format: 33 is written by reference
// implementation

USHORT _uDllVersion;

// [01AH,02] major version of the dll/
// format: 3 is written by reference
// implementation

USHORT _uByteOrder;

// [01CH,02] 0xFFFE: indicates Intel
// byte-ordering

USHORT _uSectorShift;

// [01EH,02] size of sectors in power-
// of-two (typically 9, indicating 512-
// byte sectors)

USHORT _uMiniSectorShift;

// [020H,02] size of mini-sectors
// in power-of-two (typically 6,
// indicating 64-byte mini-sectors)

USHORT _usReserved;

// [022H,02] reserved, must be zero

ULONG _ulReserved1;

// [024H,04] reserved, must be zero

ULONG _ulReserved2;

// [028H,04] reserved, must be zero

FSINDEX _csectFat;

// [02CH,04] number of SECTs in the FAT
// chain

SECT _sectDirStart;

// [030H,04] first SECT in the FAT
// Directory chain

DFSIGNATURE_signature;

// [034H,04] signature used for transac
// tioning must be zero. The reference
// implementation does not support
// transactioning

ULONG _ulMiniSectorCutoff;

// [038H,04] maximum size for
// mini-streams: typically 4096 bytes

SECT _sectMiniFatStart;

// [03CH,04] first SECT in the
// mini-FAT chain

FSINDEX _csectMiniFat;

// [040H,04] number of SECTs in the
// mini-FAT chain

SECT _sectDifStart;

// [044H,04] first SECT in the DIF
// chain

FSINDEX _csectDif;

// [048H,04] number of SECTs in the DIF
// chain

SECT _sectFat[109];

// [04CH,436] the SECTs of the first
// 109 FAT sectors

};

The

Header

 contains vital information for the instantiation of a Compound File. Its total length is 512
bytes. There is exactly one

Header

in any Compound File, and it is always located beginning at offset
zero in the file.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

108 © 1992-1996 Microsoft Corporation Version 1.0

A.1.1.2 Fat Sectors

The

Fat

 is the main allocator for space within a Compound File. Every sector in the file is represented
within the Fat in some fashion, including those sectors that are unallocated (free). The Fat is a virtual
stream made up of one or more Fat Sectors.

Fat sectors are arrays of

SECT

s that represent the allocation of space within the file. Each stream is rep-
resented in the Fat by a

chain

, in much the same fashion as a

DOS

 file-allocation-table (FAT). To elab-
orate, the set of Fat Sectors can be considered together to be a single array -- each cell in that array
contains the

SECT

 of the next sector in the chain, and this SECT can be used as an index into the Fat array
to continue along the chain. Special values are reserved for chain terminators (

ENDOFCHAIN =
0xFFFFFFFE

), free sectors (

FREESECT = 0xFFFFFFFF

), and sectors that contain storage for Fat Sectors
(

FATSECT = 0xFFFFFFFD

) or DIF Sectors (

DIFSECT = 0xFFFFFFC

), which are not chained in the same way
as the others.

The locations of Fat Sectors are read from the DIF (Double-indirect Fat), which is described below. The
Fat is represented in itself, but not by a chain – a special reserved

SECT

 value (

FATSECT = 0xFFFFFFFD

)
is used to mark sectors allocated to the Fat.

A

SECT

 can be converted into a byte offset into the file by using the following formula:

SECT << sshead-
er._uSectorShift + sizeof(ssheader)

. This implies that sector 0 of the file begins at byte offset 512, not at 0.

A.1.1.3 MiniFat Sectors

Since space for streams is always allocated in sector-sized blocks, there can be considerable waste when
storing objects much smaller than sectors (typically 512 bytes). As a solution to this problem, we intro-
duced the concept of the

MiniFat

. The MiniFat is structurally equivalent to the Fat, but is used in a dif-
ferent way. The virtual sector size for objects represented in the Minifat is

1 << ssheader._uMiniSectorShift

(typically 64 bytes) instead of

1 << ssheader._uSectorShift

 (typically 512 bytes). The storage for these ob-
jects comes from a virtual stream within the Multistream (called the

Ministream

).

The locations for MiniFat sectors are stored in a standard chain in the Fat, with the beginning of the chain
stored in the header.

A Minifat sector number can be converted into a byte offset into the ministream by using the following
formula:

SECT << ssheader._uMiniSectorShift

. (This formula is different from the formula used to convert
a SECT into a byte offset in the file, since no header is stored in the Ministream)

The Ministream is chained within the Fat in exactly the same fashion as any normal stream. It is refer-
enced by the first Directory Entry (

SID

 0).

3 5 E 1

Chaining

Pointer in from
directory

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 109

A.1.1.4 DIF Sectors

The

Double-Indirect Fat

 is used to represent storage of the Fat. The DIF is also represented by an array
of

SECT

s, and is chained by the terminating cell in each sector array (see the diagram above). As an op-
timization, the first 109 Fat Sectors are represented within the header itself, so no DIF sectors will be
found in a small (< 7 MB) Compound File.

The DIF represents the Fat in a different manner than the Fat represents a chain. A given index into the
DIF will contain the

SECT

of the Fat Sector found at that offset in the Fat virtual stream. For instance,
index 3 in the DIF would contain the

SECT

for Sector #3 of the Fat.

The storage for DIF Sectors is reserved in the Fat, but is not chained there (space for it is reserved by a
special

SECT

 value ,

DIFSECT=0xFFFFFFFC

). The location of the first DIF sector is stored in the header.

A value of

ENDOFCHAIN=0xFFFFFFFE

 is stored in the pointer to the next DIF sector of the last DIF sector.

A.1.1.5 Directory Sectors

typedef enum tagSTGTY {
STGTY_INVALID= 0,
STGTY_STORAGE= 1,
STGTY_STREAM= 2,
STGTY_LOCKBYTES= 3,
STGTY_PROPERTY= 4,
STGTY_ROOT= 5,

} STGTY;

typedef enum tagDECOLOR {
DE_RED= 0,
DE_BLACK= 1,

} DECOLOR;

struct StructuredStorageDirectoryEntry {

// [offset from start in bytes,
// length in bytes]

BYTE _ab[32*sizeof(WCHAR)];

//

[000H,64]

64 bytes. The

// Element name in Unicode,
// padded with zeros to fill
// this byte array

WORD _cb;

// [040H,02] Length of the
// Element name in characters,
// not bytes

BYTE _mse;

// [042H,01] Type of object:

DIF Sector

Pointers to FAT sectors

Pointer to next DIF sector

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

110 © 1992-1996 Microsoft Corporation Version 1.0

// value taken from the STGTY
// enumeration

BYTE _bflags;

// [043H,01] Value taken from
// DECOLOR enumeration.

SID _sidLeftSib;

// [044H,04] SID of the left-
// sibling of this entry in the
// directory tree

SID _sidRightSib;

// [048H,04] SID of the right-
// sibling of this entry in the
// directory tree

SID _sidChild;

// [04CH,04] SID of the first
// child acting as the root of
// all the children of this el-
// ement(if_mse=STGTY_STORAGE)

GUID _clsId;

// [050H,16]CLSID of this stor-
// age (if_mse=STGTY_STORAGE)

DWORD _dwUserFlags;

// [060H,04] User flags of this
// storage
// (if_mse=STGTY_STORAGE)

TIME _T_time[2];

// [064H,16] Create/Modify
// time-stamps
// (if_mse=STGTY_STORAGE)

SECT _sectStart;

// [074H,04] starting SECT of
// the stream
// (if_mse=STGTY_STREAM)

ULONG _ulSize;

// [078H,04] size of stream in
// bytes (if_mse=STGTY_STREAM)

DFPROPTYPE _dptPropType;

// [07CH,02] Reserved for fu
// ture use. Must be zero.

};

The

Directory

 is a structure used to contain per-stream information about the streams in a Compound
File, as well as to maintain a tree-styled containment structure. It is a virtual stream made up of one or
more Directory Sectors. The Directory is represented as a standard chain of sectors within the Fat. The
first sector of the Directory chain (the Root Directory Entry)

Each level of the containment hierarchy (i.e. each set of siblings) is represented as a red-black tree. The
parent of this set of sibilings will have a pointer to the top of this tree. This red-black tree must maintain
the following conditions in order for it to be valid:

1. The root node must always be black.

2. No two consecutive nodes may both be red.

3. The left child must always be less than the right child. This relationship is defined as:

■

A node with a shorter name is less than a node with a longer name (i.e. compare the length of
the name)

■

For nodes with the same length names, compare the two names.

The simplest implementation of the above invariants would be to mark every node as black, in which
case the tree is simply a binary tree.

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 111

A Directory Sector is an array of Directory Entries, a structure represented in the diagram below. Each
user stream within a Compound File is represented by a single Directory Entry. The Directory is con-
sidered as a large array of Directory Entries. It is useful to note that the Directory Entry for a stream
remains at the same index in the Directory array for the life of the stream – thus, this index (called an

SID

) can be used to readily identify a given stream.

The directory entry is then padded out with zeros to make a total size of 128 bytes.

Directory entries are grouped into blocks of four to form Directory Sectors.

A.1.1.5.1 Root Directory Entry

The first sector of the Directory chain (also referred to as the first element of the Directory array, or

SID

0) is known as the

Root Directory Entry

 and is reserved for two purposes: First, it provides a root parent
for all objects stationed at the root of the multi-stream. Second, its function is overloaded to store the
size and starting sector for the Mini-stream.

The Root Directory Entry behaves as both a stream and a storage. All of the fields in the Directory Entry
are valid for the root. The Root Directory Entry’s Name field typically contains the string “RootEntry”
in Unicode, although some versions of structured storage (particularly the preliminary reference imple-
mentation and the Macintosh version) store only the first letter of this string, “R” in the name. This string
is always ignored, since the Root Directory Entry is known by its position at

SID

 0 rather than by its name,
and its name is not otherwise used. New implementations should write “RootEntry” properly in the Root
Directory Entry for consistency and support manipulating files created with only the “R” name.

A.1.1.5.2 Other Directory Entries

Non-root directory entries are marked as either stream (

STGTY_STREAM

) or storage (

STGTY_STORAGE

)
elements. Storage elements have a

_clsid

,

_time[]

, and

_sidChild

 values; stream elements may not. Stream
elements have valid

_sectStart

 and

_ulSize

 members, whereas these fields are set to zero for storage ele-
ments (except as noted above for the Root Directory Entry).

To determine the physical file location of actual stream data from a stream directory entry, it is necessary
to determine which FAT (normal or mini) the stream exists within. Streams whose

_ulSize

 member is less
than the

_ulMiniSectorCutoff

 value for the file exist in the ministream, and so the

_startSect

 is used as an
index into the MiniFat (which starts at

_sectMiniFatStart

) to track the chain of mini-sectors through the
mini-stream (which is, as noted earlier, the standard (non-mini) stream referred to by the Root Directory
Entry’s

_sectStart

 value). Streams whose

_ulSize

 member is greater than the

_ulMiniSectorCutoff

 value for
the file exist as standard streams – their

_sectStart

 value is used as an index into the standard FAT which
describes the chain of full sectors containing their data).

A.1.1.6 Storage Sectors

Storage sectors are simply collections of arbitrary bytes. They are the building blocks of user streams,
and no restrictions are imposed on their contents. Storage sectors are represented as chains in the Fat,
and each storage chain (stream) will have a single Directory Entry associated with it.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

112 © 1992-1996 Microsoft Corporation Version 1.0

A.1.2 Examples

This section contains a hexadecimal dump of an example structured storage file to clarify the binary file
format.

A.1.2.1 Sector 0: Header

_abSig = DOCF 11E0 A1B1 1AE1
_clid = 0000 0000 0000 0000 0000 0000 0000 0000
_uMinorVersion= 003B
_uDllVersion= 3
_uByteOrder= FFFE (Intel byte order)
_uSectorShift= 9 (512 bytes)
_uMiniSectorShift= 6 (64 bytes)
_usReserved= 0000
_ulReserved1= 00000000
_ulReserved2= 00000000
_csectFat = 00000001
_sectDirStart= 00000001
_signature = 00000000
_ulMiniSectorCutoff= 00001000 (4096 bytes)
_sectMiniFatStart= 00000002
_csectMiniFat= 00000001
_sectDifStart= FFFFFFFE (no DIF, file is < 7Mb)
_csectDIF = 00000000
_sectFat[] = 00000000 FFFFFFFF...(continues with FFFFFFFF)

000000: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000010: 0000 0000 0000 0000 3B00 0300 FEFF 0900
000020: 0600 0000 0000 0000 0000 0000 0100 0000
000030: 0100 0000 0000 0000 0010 0000 0200 0000
000040: 0100 0000 FEFF FFFF 0000 0000 0000 0000
000050: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0001F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

A.1.2.2 SECT 0: First (Only) FAT Sector

SECT 0: FFFFFFFD = FATSECT: marks this sector as a FAT sector.
Referred to in header by _sectFat[0]

SECT 1: FFFFFFFE = ENDOFCHAIN: marks the end of the directory chain,
referred to in header by _sectDirStart

SECT 2: FFFFFFFE = ENDOFCHAIN: marks the end of the mini-fat, re
ferred to in header by _sectMiniFatStart

SECT 3: 00000004 = pointer to the next sector in the “Stream 1” data.
This sector is the first sector of “Stream 1”, it is re
ferred to by the Directory Entry

SECT 4: ENDOFCHAIN (0xFFFFFFFE): marks the end of the “Stream 1”
stream data. Further Entries are empty (FREESECT =
0xFFFFFFFF)

000200: FDFF FFFF FEFF FFFF FEFF FFFF 0400 0000
000210: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0003F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 113

A.1.2.3 SECT 1: First (Only) Directory Sector

SID 0: Root SID: Root Name = "R"
SID 1: Element 1 SID: Name = "Storage 1"
SID 2: Element 2 SID: Name = "Stream 1"
SID 3: Unused

A.1.2.3.1 SID 0: Root Directory Entry

_ab = ("R")(this should be “Root Entry”)
_cb = 00042(42 bytes,does not include double-null termi
nator)
_mse = 05 (STGTY_ROOT)
_bflags = 00 (DE_RED)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = 00000001 (SID 1: “Storage 1”)
_clsid = 0067 6156 54C1 CE11 8553 00AA 00A1 F95B
_dwUserFlags= 00000000 (n/a for STGTY_ROOT)
_time[0] = CreateTime = 0000 0000 0000 0000 (none set)
_time[1] = ModifyTime = 801E 9213 4BB4 BA01 (??)
_sectStart = 00000003 (starting sector of MiniStream)
_ulSize = 00000240 (length of MiniStream in bytes)
_dptPropType= 0000 (n/a)

000400: 0052 0000 0000 0000 0000 0000 0000 0000 .R..............
000410: 0000 0000 0000 0000 0000 0000 0000 0000
000420: 0000 0000 0000 0000 0000 0000 0000 0000
000430: 0000 0000 0000 0000 0000 0000 0000 0000
000440: 04200 0500 FFFF FFFF FFFF FFFF 0100 0000
000450: 0067 6156 54C1 CE11 8553 00AA 00A1 F95B .gaVT....S.....[
000460: 0000 0000 0000 0000 0000 0000 801E 9213
000470: 4BB4 BA01 0300 0000 4002 0000 0000 0000 K.......@.......

A.1.2.3.2 SID 1: “Storage 1”

_ab = ("Storage 1")
_cb = 0014 (20 bytes, including double-null terminator)
_mse = 01 (STGTY_STORAGE)
_bflags = 01 (DE_BLACK)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = 00000002 (SID 2: “Stream 1”)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (none set)
_dwUserFlags= 00000000 (none set)
_time[0] = CreateTime = 00000000 00000000 (none set)
_time[1] = ModifyTime = 00000000 00000000 (none set)
_sectStart = 00000000 (n/a)
_ulSize = 00000000 (n/a)
_dptPropType= 0000 (n/a)

000480: 5300 7400 6F00 7200 6100 6700 6500 2000 S.t.o.r.a.g.e. .
000490: 3100 0000 0000 0000 0000 0000 0000 0000 1...............
0004A0: 0000 0000 0000 0000 0000 0000 0000 0000
0004B0: 0000 0000 0000 0000 0000 0000 0000 0000
0004C0: 1400 0101 FFFF FFFF FFFF FFFF 0200 0000
0004D0: 0061 6156 54C1 CE11 8553 00AA 00A1 F95B .aaVT....S.....[
0004E0: 0000 0000 0088 F912 4BB4 BA01 801E 9213 K.......
0004F0: 4BB4 BA01 0000 0000 0000 0000 0000 0000 K...............

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

114 © 1992-1996 Microsoft Corporation Version 1.0

A.1.2.3.3SID 2: “Stream 1”

_ab = ("Stream 1")
_cb = 0012 (18 bytes, including double-null terminator)
_mse = 02 (STGTY_STREAM)
_bflags = 01 (DE_BLACK)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = FFFFFFFF (n/a for STGTY_STREAM)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (n/a)
_dwUserFlags= 00000000 (n/a)
_time[0] = CreateTime = 00000000 00000000 (n/a)
_time[1] = ModifyTime = 00000000 00000000 (n/a)
_startSect = 00000000 (SECT in mini-fat, since _ulSize is
smaller than _ulMiniSectorCutoff)
_ulSize = 00000220 (< ssheader._ulMiniSectorCutoff, so
_sectStart is in Mini)
_dptPropType= 0000 (n/a)

000500: 5300 7400 7200 6500 6100 6D00 2000 3100 S.t.r.e.a.m. .1.
000510: 0000 0000 0000 0000 0000 0000 0000 0000
000520: 0000 0000 0000 0000 0000 0000 0000 0000
000530: 0000 0000 0000 0000 0000 0000 0000 0000
000540: 1200 0201 FFFF FFFF FFFF FFFF FFFF FFFF
000550: 0000 0000 0000 0000 0000 0000 0000 0000
000560: 0000 0000 0000 0000 0000 0000 0000 0000
000570: 0000 0000 0000 0000 2002 0000 0000 0000
000580: 0000 0000 0000 0000 0000 0000 0000 0000

A.1.2.3.4 SID 3: Unused

000590: 0000 0000 0000 0000 0000 0000 0000 0000
0005A0: 0000 0000 0000 0000 0000 0000 0000 0000
0005B0: 0000 0000 0000 0000 0000 0000 0000 0000
0005C0: 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF
0005D0: 0000 0000 0000 0000 0000 0000 0000 0000
0005E0: 0000 0000 0000 0000 0000 0000 0000 0000
0005F0: 0000 0000 0000 0000 0000 0000 0000 0000

A.1.2.4 SECT 3: MiniFat Sector

SECT 0: 00000001: pointer to the second sector in the “Stream 1”
data. This sector is the first sector of “Stream 1”,
it is referred to by _sectStart of SID 2
SECT 1: 00000002: pointer to the third sector in the “Stream 1”
data. This sector is the second sector of “Stream 1”,
it is referred to in MiniFat SECT 0, above.

...
SECT 8: FFFFFFFE = ENDOFCHAIN: marks the end of the “Stream 1”
data.

Further Entries are empty (FREESECT = 0xFFFFFFFF)

000600: 0100 0000 0200 0000 0300 0000 0400 0000
000610: 0500 0000 0600 0000 0700 0000 0800 0000
000620: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0007F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 115

A.1.2.5 SECT 4: MiniStream (Data of “Stream 1”)

// referred to by SECTs in MiniFat of SECT 3, above

000800: 4461 7461 2066 6F72 2073 7472 6561 6D20 Data for stream
000810: 3144 6174 6120 666F 7220 7374 7265 616D 1Data for stream
000820: 2031 4461 7461 2066 6F72 2073 7472 6561 1Data for strea
...
000A00: 7461 2066 6F72 2073 7472 6561 6D20 3144 ta for stream 1D
000A10: 6174 6120 666F 7220 7374 7265 616D 2031 ata for stream 1

// data ends at 000A1F, MiniSector is filled to the end with known data
// (a copy of the header or FFFFFFF to prevent random disk or memory
// contents from contaminating the file on-disk.

000A20: 0000 0000 0000 0000 3B00 03FF FE00 0900 ;.......
000A30: 0600 0000 0000 0000 0000 0000 0000 0100
000A40: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000A50: 0000 0000 0000 0000 003B 0003 FFFE 0009 ;......
000A60: 0006 0000 0000 0000 0000 0000 0000 0001
000A70: 0000 0001 0000 0000 0000 1000 0000 0002
000A80: 0000 0001 FFFF FFFE 0000 0000 0000 0000
000A90: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
000BF0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

116 © 1992-1996 Microsoft Corporation Version 1.0

A.2 OLE Property Set Binary Format

A.2.0 Document Properties in Storage

In an

IStorage

, a serialized property set is stored in either a single stream or in a nested

IStorage

instance.
In the latter case, the contained stream named “Contents” is the primary stream containing property val-
ues. The format of the primary stream, the same in either case, is described in the next section below.
None of the property types

VT_STREAM

,

VT_STORAGE

,

VT_STREAMED_OBJECT

, or

VT_STORED_OBJECT

may be used in a stream-based property set; these types may only be used in storage-based sets. It is the
person who invents / defines a new property set who gets to choose whether the set is always stream-
based, is always storage-based, or at times can be either.

Names in an

IStorage

that begin with the value

'\0x05'

 are reserved exclusively for the storage of property
sets. Streams or storages that begin with

'\0x05'

 must therefore be in the format described below; storages

so named must contain a

“Contents”

 stream in the format.

1

 One of the things that a person who invents a
new standard property set does is specify the standard string name under which instances of that type are
stored. For example, the summary information property set defined by OLE2 is always found under the
name

“\005SummaryInformation".

 OLE2 provided no conventions for choosing this name; however, a con-
vention for choosing such names is now strongly recommended below.

*Offset in bytes from the start of the stream to the start of the section
**Offset in bytes from the start of the section to the start of the type/value pair

Figure 1. Stream containing a serialized property set

1. Properties may of course be stored in streams or storages that do not begin with '\0x05', but such properties are completely private to the application

manipulating the storage; there is little reason to do this.

Byte Order Indicator
(WORD)

Format Version
(WORD)

Originating OS Version
(DWORD)

Class Identifier
(CLSID)

Reserved
(DWORD)

Property Set Header

FMTID/Offset Pair

FMTID (16 bytes) Offset* (DWORD)

Section

Section Header

Size of Section (DWORD) Count of Properties, m (DWORD)

Property ID/Offset Pairs

Property ID for Property 1 (DWORD) Offset** (DWORD)
Property ID for Property 2 (DWORD) Offset** (DWORD)

Property ID for Property m (DWORD) Offset** (DWORD)

Properties (Type/Value Pairs)

Type Indicator 1 (DWORD) Property Value 1 (Variable Length)
Type Indicator 2 (DWORD) Property Value 2 (Variable Length)

Type Indicator m (DWORD) Property Value m (Variable Length)

Primary stream of a serialized property set

m entries

m entries

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 117

A.2.1 Format of the primary property set stream

The overall structure of a stream containing a serialized property set is as illustrated in Figure 2. The for-
mat consists of a property set header, a sequence of size exactly one of format id / offset pair, and a cor-

responding sequence of sections containing the actual property values.

1

Absolutely all the fields of a serialized property set specified here are

always

 stored in storage in little-

endian (Intel) byte order.

2

The overall length of this property set stream is limited to 256k bytes.

A.2.1.1 Property Set Header

At the beginning of the property set stream is a header. The following structure illustrates the header:

 typedef struct PROPERTYSETHEADER {
WORD wByteOrder;// Always 0xFFFE
WORD wFormat;// Should be 0
DWORD dwOSVer;// System version
CLSID clsid; // Application CLSID
DWORD reserved;// Should be 1

}

PROPERTYSETHEADER

;

The definition of the members of this structure as as follows.

Member Meaning

wByteOrder

The byte-order indicator is a

WORD

 and should always hold the value

0xFFFE

. This
is the same as the Unicode© byte-order indicator. When written in little-endian
(Intel) byte order, as is always done, this appears in the stream as

0xFE

,

0xFF

.

wFormat

The format version is a

WORD

 and indicates the format version of this stream.
Property set writers should write zero for this value. Property set readers should
check this value; if it is non-zero, then they should refuse to read the set, for it is
in a format that they don’t in fact understand.

dwOSVer

The OS version number is encoded as OS kind in the high order word (0 for Win-
dows on DOS, 1 for Macintosh, 2 for Windows 32-bit, 3 for UNIX) and the OS-
supplied version number in the low order word. For Windows on DOS and Win-
dows 32-bit, the latter is the low order word of the result of

GetVersion()

.

clsid

The class identifier is the

CLSID

of a class that can display and/or provide program-
matic access to the property values. If there is no such class, it is recommended
that the Format ID be used (see below), though a value of all zeros is also accept-
able; the former simply allows for greater future extensibility.

reserved

Reserved for future use. A writer of a property set should write the value one here;
a reader of a property set should only however check that the value is at least one.

1. The original OLE2 format allowed for more than one section, but use of that functionality is discourarged and no longer supported.

2. Notwithstanding the fact that there is a byte-order tag of 0xFFFE at the start of the format. This tag was intended to allow for future extensibility that

has been subsequently determined to be very unlikely to be done.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

118 © 1992-1996 Microsoft Corporation Version 1.0

A.2.1.2 Format ID / Offset Pairs

This part of the serialized property set indicates two things: the

FMTID

that scopes the property values
contained in the set, and the location within the stream at which those values are stored.

typedef struct FORMATIDOFFSET {
FMTID fmtid; // semantic name of a section
DWORD dwOffset;// offset from start of whole

//property set stream to the
//section

}

FORMATIDOFFSET

;

The offset is the distance of bytes from the start of the whole stream to where the section begins. The
format id (

FMTID

) is the semantic name of its corresponding section, telling how to interpret the property
values therein.

A.2.1.3 Sections

Each section is made of up a property section header followed by an array that locates each property val-
ue within the section. It is specifically

not

 the case that the properties in this array are sorted in any par-
ticular order Offsets within this array are the distance from the start of the section to the start of the
property (type, value) pair. This allows entire sections to be copied as an array of bytes without any trans-
lation of internal structure.

typedef struct

PROPERTYSECTIONHEADER

{
DWORD cbSection;// size of section in

//bytes, which is

//inclusive

 of the byte
//count itself

DWORD cProperties;// count of properties
//in section

PROPERTYIDOFFSETrgprop[];// array of
//property
//locations

}

PROPERTYSECTIONHEADER

;

typedef struct PROPERTYIDOFFSET {
DWORD propid;// name of a property
DWORD dwOffset;// offset from the start

//of the section to that
//property

}

PROPERTYIDOFFSET

;

Each property value contains a type tag followed by the bytes of the actual property value (at last!). All
type/value pairs begin on a 32-bit boundary. Thus values may be followed with null bytes to align the
subsequent pair on a 32-bit boundary (note though that there is no guarantee that property values are in
fact as tightly packed in a section as this restriction permits; that is, there may be additional gratuitous
padding).

typedef struct SERIALIZEDPROPERTYVALUE {
DWORD dwType;// type tag
BYTE rgb[]; // the actual property

//value
}

SERIALIZEDPROPERTYVALUE

;

A consequence of these rules is that the smallest legal section, one containing zero properties, contains
the following eight bytes:

08 00 00 00 00 00 00 00

.

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 119

A.2.2 Special property ids

A couple of property ids have special significance in all property sets.

A.2.2.1 Property Id zero: Dictionary of property names

To enable users of property sets to attach meaning to properties beyond those provided by the type indi-
cator, property id zero is reserved in all property sets for an optional dictionary giving human readable
names for the properties in the set and for the property set itself. The value will be an array of (property
id, string) pairs.

The value of property id zero is an array of propid / string pairs. Entries in the array are the ids and cor-
responding names of the properties; these are not in any particular order with respect to their property
ids. Not all of the names of the properties in the set need appear in the dictionary: the dictionary may omit
entries for properties that are assumed to be universally known by clients that manipulate the property
set. Typically names for the base property sets for widely accepted standards will be omitted.

Property names that begin with the binary Unicode characters

0x0001

 through

0x001F

 are reserved for fu-
ture use.

The name indicated as corresponding to property id zero is to be interpreted as the human readable name
of the property set itself; like all property names, this may or may not be present.

The dictionary is stored as a list of Property ID/string pairs; the code page for the strings involved is as
indicated in property id one. This can be illustrated using the following pseudo-structure definition for a
dictionary entry (it's a pseudo-structure because the

sz[]

 member is variable size).

 typedef struct tagENTRY {
DWORD propid; // Property ID
DWORD cb; // Count of bytes in the string,

//including the null at the end
tchar tsz[cb]; // Zero-terminated string. Code

//page as indicated by property id
//one.

}

ENTRY

;

typedef struct tagDICTIONARY {
DWORD cEntries; // Count of entries in the list
ENTRY rgEntry[cEntries];

}

DICTIONARY

;

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

120 © 1992-1996 Microsoft Corporation Version 1.0

Note the following:

■

Property ID zero does not have a type indicator. The

DWORD

 that indicates the count of entries
sits in the usual type indicator position.

■

The count of bytes in the string (

cb

) includes the zero character that terminates the string.

■

If the code page indicator is not

1200

 (Unicode), there is no padding between entries to achieve
reasonable alignment (sigh). However, if the code page indicator is Unicode, then each entry
should be aligned on a

DWORD

 boundary.

■

If the code page indicator is not

1200

 (Unicode), property names are stored dbcs strings. If the
code page indicator does indicate Unicode, property name strings are stored as Unicode.

■

Property name strings are restricted in length to

 128

 characters including the

NULL

 terminating
character.

A.2.2.2 Property Id One: Code Page Indicator

Property id one (1) is reserved as an indicator of which code page or script any not-always-Unicode
strings in the property set originated from (code pages are used in Windows and scripts are from the Mac-
intosh world). All such string values in the entire property set, such as

VT_LPSTRs

,

VT_BSTRs

, and the
names in the property name dictionary found in code page zero use characters from this one code page.
If the code page indicator is not present, the prevailing code page on the reader's machine must be as-
sumed. If an application cannot understand the indicated code page, it should not try to modify strings
stored in the property set.

When an application that is not the author of a property set changes a property of type string in the set,
it should examine the code page indicator and take one of the following courses of action:

1. Write the new value using the code page found in the code page indicator.

2. Rewrite all string values in the property set using the new code page (including the new value), and
modify the code page indicator to reflect the new code page.

Possible values for the code page indicator are given in the Win32 API reference (see the NLSAPI func-
tions, and specifically the

GetACP

 function) and Inside Macintosh Volume VI, §14-111. For example, the
code page US ANSI is represented by 0x04e4 (or 1252 in decimal); the code page for Unicode is 1200.
Whether a Windows code page or a Macintosh script is found in property id one is determinted by the
“originating OS version” (

PROPERTYSETHEADER::dwOSVer

) of the property set as a whole. Note that
there exist Windows code page equivalents for the Macintosh scripts numbers (Windows code page
10000, for example, is the Macintosh Roman script).

By far, if it is at all possible, it is recommended that the Unicode code page (1200) be used. This is the
only practical way to in fact achieve worldwide interoperable property sets. In code page 1200, note es-
pecially that the count at the start of a

VT_LPSTR

or

VT_BSTR

is to be interpreted as a

byte

 count, not a
character count. The byte count includes the two zero bytes at the end of the string.

Property id one is of type

VT_I2

, and therefore consists of a

DWORD

 containing

VT_I2

 followed by a

USH-
ORT

 indicating the code page. For example, the type/value pair for property ID one representing the US
ANSI code page is the following six bytes:

 02 00 00 00 e4 04

plus any necessary padding.

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 121

A.2.2.3 Property Id 0x80000000: Locale Indicator

Property Id 0x80000000 (PID_LOCALE) is reserved as an indication of which locale the property set
was written in. The default locale for a property set, in the event that PID_LOCALE does not exist in
the property set will be the system’s default locale (LOCALE_SYSTEM_DEFAULT).

Applications can choose to support locale or just get the default behaviour. Applications that allow users
to specify a working locale should write that locale identifier to this property. Applications that use the
user’s default locale (LOCALE_USER_DEFAULT) should write the user’s default locale identifier.

Applications should be concerned with the possibility of getting information from a property set which
is of a different locale than the app's locale or the user's or the system's (i.e. a foreign object).

There is no provision in the OLE Property Set interfaces defined above to specifically read and write
PID_LOCALE; in other words this property can be treated just like any property. Likewise the system
will not attempt to automatically add or modify this property.

Property Id PID_LOCALE is of type VT_U4, and therefore consists of a DWORD containing VT_U4
followed by a DWORD containing the Locale Identifier (LCID) as defined by Appendix C of the Win32
SDK.

A.2.2.4 Reserved property ids

Property ids with the high bit set (that is, which are negative) are reserved for future definition by Mi-
crosoft.

A.2.3 Property Type Representations

A property (type, value) pair is a

DWORD

 type indicator, followed by a value whose representation de-
pends on the type. The serialized representations of each of the different types of values are as follows:

Type indicator Value Representation

VT_EMPTY no bytes

VT_NULL no bytes

VT_I2 2 byte signed integer

VT_I4 4 byte signed integer

VT_R4 32bit IEEE Floating point value

VT_R8 64bit IEEE Floating point value

VT_CY 8 byte two's complement integer (scaled by 10,000)

VT_DATE A 64bit floating point number representing the number of days (not sec-
onds) since December 31, 1899 (thus, January 1, 1900 is 2.0, January 2,
1900 is 3.0, and so on). This is stored in the same representation as

VT_R8.

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

122 © 1992-1996 Microsoft Corporation Version 1.0

VT_BSTR Counted, null terminated binary string; represented as a

DWORD

 byte
count of the number of bytes in the string (including the terminating null)
followed by the bytes of the string. Character set is as indicated by the
code page indicator.

VT_ERROR A

DWORD

 containing a status code.

VT_BOOL Boolean value, a

WORD

 containing 0 (false) or -1 (true).

VT_VARIANT A type indicator (a

DWORD

) followed by the corresponding value.

VT_VARIANT

 is only used in conjunction with

VT_VECTOR

: see below.

VT_UI1 1 byte unsigned integer

VT_UI2 2 byte unsigned integer

VT_UI4 4 byte unsigned integer

VT_I8 8 byte signed integer

VT_UI8 8 byte unsigned integer

VT_LPSTR This is the representation of many strings. Stored in the same representa-
tion as

VT_BSTR

. Note therefore that the serialized representation of

VT_LPSTR

in fact has a preceding byte count, whereas the in-memory
representation does not. Character set is as indicated by the code page in-
dicator.

VT_LPWSTR A counted and null terminated Unicode string; a

DWORD

 character count
(where the count includes the terminating null) followed by that many
Unicode (16bit) characters. Note that the count is a character count, not
a byte count.

VT_FILETIME 64bit FILETIME structure as defined by Win32

VT_BLOB A

DWORD

count of bytes, followed by that many bytes of data; the byte
count does not include the four bytes for the length of the count itself: an
empty blob would have a count of zero, followed by zero bytes. Thus, the
serialized representation of a

VT_BLOB

 is similar to that of a

VT_BSTR

but
does not guarantee a null byte at the end of the data.

VT_STREAM Indicates the value is stored in a stream which is sibling to the “Contents”
stream. Following this type indicator is data in the format of a serialized

VT_LPSTR

which names the stream containing the data.

VT_STORAGE Indicates the value is stored in an IStorage which is sibling to the “Con-
tents” stream. Following this type indicator is data in the format of a se-
rialized

VT_LPSTR

which names the

IStorage

 containing the data.

VT_STREAMED_OBJECT As in

VT_STREAM

but indicates that the stream contains a serialized ob-
ject, which is a class id followed by initialization data for the class.

VT_STORED_OBJECT As in

VT_STORAGE

but indicates that the designated

IStorage

contains a
loadable object.

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 123

VT_BLOB_OBJECT A

BLOB

 containing a serialized object in the same representation as
would appear in a

VT_STREAMED_OBJECT

. That is, following the

VT_BLOB_OBJECT

 tag is a DWORD byte count of the remaining data
(where the byte count does not include the size of itself) which is in the
format of a class id followed by initialization data for that class.

The only significant difference between

VT_BLOB_OBJECT

and

VT_STREAMED_OBJECT

is that the former does not have the system-level
storage overhead that the latter would have, and is therefore more suit-
able for scenarios involving numbers of small objects.

VT_CF A

BLOB

 containing a clipboard format identifier followed by the data in
that format. That is, following the

VT_CF

 tag is data in the format of a

VT_BLOB

: a

DWORD

 count of bytes, followed by that many bytes of data
in the format of a packed

VTCFREP

described just below, followed imme-
diately by an array of bytes as appropriate for data in the clipboard format
format (text, metafile, or whatever).

VT_CLSID A class ID (or other GUID).

VT_VECTOR If the type indicator is one of the above values with this bit on in addition,
then the value is a

DWORD

count of elements, followed by that many rep-
etitions of the value.

As an example, a type indicator of

VT_LPSTR|VT_VECTOR

has a

DWORD

element count, a

DWORD

byte count, the first string data, a

DWORD

byte
count, the second string data, and so on.

Clipboard format identifiers, stored with the tag

VT_CF

, use one of five different representations:

typedef struct VTCFREP {
LONG lTag;
BYTE rgb[];
}

VTCFREP

;

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

124 © 1992-1996 Microsoft Corporation Version 1.0

The values for

rgb

are determined by the different values for

lTag

:

lTag Value rgb value

-1L a

DWORD

containing a built-in Windows clipboard format value.

-2L a

DWORD

containing a Macintosh clipboard format value.

-3L a

GUID

containging a format identifier (this is in little usage).

any positive value a null-terminated string containing a Windows clipboard format name, one suit-
able for passing to

RegisterClipboardFormat

. The code page used for characters in
the string is per the code page indicator. The “positive value” here is the length of
the string, including the null byte at the end.

0L no data (very rare usage)

As was mentioned above, all type/value pairs begin on a 32-bit boundary. It follows that in turn, the type
indicators and values of a type value pair are so aligned. This means that values may be necessarily fol-
lowed by null bytes to align a subsequent type/value pair.

However,

within

a vector of values, each repetition of a value is to be aligned with its

natural

alignment
rather than with 32-bit alignment. In practice, this is only significant for types

VT_I2

 and

VT_BOOL

 (which
have 2-byte natural alignment); all other types have 4-byte natural alignment. Therefore, a value with
type tag

VT_I2 | VT_VECTOR

 would be

■

a

DWORD

 element count, followed by

■

an sequence of packed 2-byte integers with

no

 padding between them, whereas a value of with
type tag

VT_LPSTR | VT_VECTOR

 would be a DWORD element count, followed by

■

a sequence of (

DWORD cch

,

char rgch[]

) strings, each of which may be followed by null padding to
round to a 32-bit boundary.

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 125

A.3 ‘CompObj’ Stream Binary Format

A.3.0 Overview

The ‘CompObj’ stream in a storage object provides generic information regarding the native data con-
tained in this storage object. This generic information is manipulated through the OLE API functions
WriteFmtUserTypeStg and ReadFmtUserTypeStg and includes:

■

User Type: a user readable string that indicates the type of the object.

■

Clipboard Format: implies the names and structure of streams and sub-storages.

This document exposes the binary format of the data written by WriteFmtUserTypeStg and interpreted
by ReadFmtUserTypeStg.

A.3.1 Format

The format consists of three basic parts, that represent versions of the stream written by different versions
of the OLE2 libraries:

■

Header, User Type (ANSI), Clipboard format (ANSI)

■

ProgID (ANSI): optional, if not present, not Unicode information may follow

■

Unicode versions of User Type, Clipboard format and ProgID: optional, if any Unicode informa-
tion is present all three items have to be valid. Presence of the Unicode information is indicated
by a “magic DWORD” value following the ANSI ProgID.

The following is a detailed description of the format using a pseudo C++ syntax where applicable.

A.3.1.1 Mandatory part

A.3.1.1.1 Stream name

 // Stream name: L”\1CompObj”

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

126 © 1992-1996 Microsoft Corporation Version 1.0

A.3.1.1.2 Header

struct CompObjHdr// The leading data in the CompObj stream
{
DWORDdwVersionAndByteOrder;// First DWORD: LOWORD Ver

sion=0x0001, HIWORD=FFFE (ignored by
reader!)

DWORDdwFormat = 0x00000a03; // OS Version: always Win 3.1
DWORDunused=-1L; // Always a -1L in the stream

CLSIDclsidClass; // Class ID of this object, identical
to the CLSID in the parent storage of
the stream

};

A.3.1.1.3 User Type

struct ANSIUserType
{
DWORDdwLenBytes;// length of User Type string in bytes

including terminating 0
charszUserType[dwLenBytes];// User Type string (ANSI) terminated

with ‘\0’
}

A.3.1.1.4 Clipboard Format (ANSI)

LONGdwCFLen;// Length of clipboard format name
// special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
//follows:
//DWORD cfStdWin;
// -2 DWORD with standard Apple Mac
//intosh CF follows:
//DWORD cfStdMac;
// >0 Length in bytes of clipboard
//format name including terminating 0

char szCFName[dwCFLen]; // Clipboard Format Name (ANSI) te
 // minated with ‘\0’

A.3.1.2 Optional: ProgID (ANSI)

The stream may end at this point. Versions of OLE before 2.01 provided only the data described in sec-
tion 2.1.

If more data follows it is to be interpreted as follows:

struct ANSIProgID
{
DWORDdwLenBytes;// length of ProgID stream in bytes.

 // dwLenBytes<=40
charszProgID[dwLenBytes];// ProgID string (ANSI) terminated with ‘\0’
}

A.3.1.3 Optional: Unicode versions

Only if a ANSI ProgID was provided (possibly with ANSIProgID::dwLenBytes=0), the following data
may follow:

APPENDIX II

Microsoft et al. Exhibit 1005

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 127

A.3.1.3.1 Magic Number

DWORD dwMagicNumber =0x71B239F4; // indicates Unicode UserType, CF
// and ProgID follow (all three!)

A.3.1.3.2 User Type (Unicode)

struct UNICODEUserType
{
DWORD dwLenBytes;// Size of Unicode User

Type in bytes (not cha
acters!) including te
minating 0.

WCHARwszUserType[dwLenBytes/sizeof(WCHAR)];// Unicode User Type
//string,terminated with
// ‘\0’.

};

A.3.1.3.3 Clipboard Format (Unicode)

LONGdwUnicodeCFLen;// Length of Unicode clipboard format
name in bytes
// special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
//follows:
//DWORD cfStdWin;
// -2 DWORD with standard Apple Mac
//intosh CF follows:
//DWORD cfStdMac;
// >0 Length in bytes of clipboard
//format name including terminating 0

WCHARszCFName[dwUnicodeCFLen/sizeof(WCHAR)]; // Clipboard Format
//Name (Unicode) terminated with ‘\0’

A.3.1.3.4 ProgID (Unicode)

struct UNICODEProgID
{
DWORD dwLenBytes;// Size of Unicode ProgID in bytes (not characters!) including

// terminating ‘\’0.
WCHARwszProgID[dwLenBytes/sizeof(WCHAR)];// Unicode ProgID string, terminated

// with ‘\’0.
};

APPENDIX II

Microsoft et al. Exhibit 1005

September 11, 1996 FlashPix Format Specification

128 © 1992-1996 Microsoft Corporation Version 1.0

APPENDIX II

Microsoft et al. Exhibit 1005

Version 1.0 © 1996 Eastman Kodak Company 129

References

1. CCIR Recommendation 709, Basic Parameter Values for the HDTV Standard for the
Studio and for International Programme Exchange

2. Hunt, R.W.G. “Measuring Color”, Ellis Harwood Limited, Chichester, England,
1987

3. CIE Publication 15.2 “Colorimetry” second edition, CIE, Vienna, 1986

4. CCIR Recommendation 601–1, Encoding Parameters of Digital Television for Stu-
dios

5. ISO/TC 130/WG2 N438, International Color Profile format, March 26, 1995

6. OLE 2 Programmers Reference, Volume One Microsoft Press (1994)

7. Brockschmidt, Kraig. Inside OLE2, Microsoft Press (1994)

8. ICC Profile Format Specification version 3.2, International Color Consortium (1995)

9. ISO/IEC 10918-1 / ITU-T Recommendation T.81 “Information technology - Digital
compression and coding of continuous-tone still images - Requirements and guide-
lines

10.Computer graphics: principles and practice, James D. Foley et al., 2nd ed. 1992,
Addison-Wesley Systems programming series

11.PostScript language reference manual, Adobe Systems, Inc., 2nd ed., 1990, Addi-
son-Wesley Publishing Company, Inc.

12.Programmer’s Guide to the IVUE toolkit, FITS Imaging, Copyright © 1993-1994,
FITS Imaging

13.The Unicode Standard, The Unicode Consortium, 1991, Addison-Wesley.

14.Porter, T., and T. Duff. Compositing digital images, ACM Computer Graphics (SIG-
GRAPH), 1984, 18(3), 253-259, SIGGRAPH '84 Conference Proceedings.

15.Thompson, Kelvin. Alpha Blending, Graphic Gems. (1990) Academic Press, Inc.
210-211

16.Goldman, R. “Decomposing projective transformations,” Graphics Gems 3, 1992,
Academic Press, pp 98-107.

17.Miller, Steven. DEC/HP, Network Computing Architecture, Remote Procedure Call
Run Time Extensions Specification, Version OSF TX1.0.11, July 23, 1992, Appendix
A “Universal Unique Indentifiers,” http://www.osf.org/dce.

18.Blinn, James F. Jim Blinn’s Corner: Compositing Part 1: Theory, IEEE Computer
Graphics & Applications, September 1994, pp. 83-87. Compositing Part 2: Practice,
IEEE Computer Graphics & Applications, November 1994, pp. 78-82.

19.“Storage naming conventions,” OLE 2 Programmer’s reference. Volume 1,
Microsoft Press, 1995, pp. 596-596.

20.Kano, Nadine and A. Freytag. “The international character set conundrum: ANSI
Unicode, and Microsoft Windows,” Microsoft Systems Journal, 1994 Volum 9,
November 1994.

21.Photography - Electronic still picture cameras - determination of ISO speed (Work-
ing draft #6).

22. ISO 14524, Photography - Electronic still picture cameras - Methods for measuring
the opto-electronic conversion functions (Working draft 4.0).

APPENDIX II

Microsoft et al. Exhibit 1005

September 10, 1996 FlashPix Format Specification

130 © 1996 Eastman Kodak Company Version 1.0

23.

Programming Windows, Charles Petzold, 1990, Microsoft Press.

24.

Inside Macintosh: Files, Addison-Wesley Publishing Co. (1992)

APPENDIX II

Microsoft et al. Exhibit 1005

The

Virtual

Reality

Modeling

Language

International Standard ISO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright Information

Copyright Information
Copyright © 1997 The VRML Consortium Incorporated. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice,
this paragraph and the title, URL, and authors of the Document as referenced below are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the VRML Consortium, except as needed for the purpose
of developing VRML standards in which case the procedures for copyrights defined in the VRML
Consortium standards process must be followed.

TITLE: ISO/IEC 14772-1:1997 Virtual Reality Modeling Language (VRML97)
URL: http://www.vrml.org/Specifications/VRML97
AUTHORS: Rikk Carey, Gavin Bell, Chris Marrin

The limited permissions granted above are perpetual and will not be revoked by the VRML Consortium or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE VRML
CONSORTIUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as contained in this notice, the name of the VRML Consortium shall not be used in advertising or to
otherwise promote the sale, use or other dealings of this document without prior written authorization from
the VRML Consortium.

INTELLECTUAL PROPERTY NOTICE
The VRML Consortium takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights. Information on the VRML
Consortium's procedures with respect to rights in standards-track documents can be found in the VRML
Consortium's Intellectual Property Rights Statement. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the VRML Consortium Executive Director.

The VRML Consortium invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be required to practice
this standard. Please address the information to the VRML Consortium Executive Director.

Other copyrights and trademarks
All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

APPENDIX KK

Microsoft et al. Exhibit 1005

Acknowledgements
The VRML Consortium gratefully acknowledges the authors, Rikk Carey, Gavin Bell, and Chris Marrin,
whose valuable efforts produced the VRML standard.

We would like to give special thanks to Steve Carson, chair of the ISO/IEC JTC 1/SC 24, Computer
Graphics and Image Processing subcommittee, and to Dick Puk, liaison between the VRML Consortium
and SC 24, for guiding the standards process as well as their significant contributions to the document
itself. Also, thanks to all the members of ISO who participated in the review and editing of ISO/IEC 14772.

Special thanks to Kouichi Matsuda and the Sony VRML team for their work on the Java annex and to Jan
Hardenbergh for his work on the ECMAScript annex. Thanks to Curtis Beason, Chris Fouts, John
Gebhardt, Rich Gossweiler, Paul Isaacs, and Daniel Woods for writing key sections. Thanks to Justin
Couch and the Script Working Group for drafting several improvements to the scripting sections. Thanks to
all the others who drafted text for the standard, too numerous to name them all.

Thanks to Mark Pesce, Tony Parisi, Mitra, Brian Behlendorf, and Dave Raggett for their early pioneering
work and continued efforts on VRML.

Thanks to the hundreds of participants who contributed ideas, reviews, and feedback on the VRML
standard.

Thanks to Kevin Hughes for the VRML logo artwork.

And, last but not least, thanks to the members of the VRML community for their support, passion, and hard
work that has made VRML into an International Standard.

APPENDIX KK

Microsoft et al. Exhibit 1005

The Virtual Reality Modeling Language
International Standard ISO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.

This document is part 1 of ISO/IEC 14772-1:1997, the Virtual Reality Modeling Language (VRML), also referred to
as "VRML97". The full title of this part of the International Standard is: Information technology -- Computer
graphics and image processing -- The Virtual Reality Modeling Language (VRML) -- Part 1: Functional
specification and UTF-8 encoding.

Background Clauses Annexes

 Foreword ii 1 Scope 1 A Grammar 141

 Introduction iii 2 Normative references 3 B Java platform 148

3 Definitions 6 C ECMAScript 185

 4 Concepts 19 D Examples 209

 5 Field and event reference 62 E Bibliography 233

 6 Node reference 67 F Extensions 235

 7 Conformance 132

The Foreword provides background on the standards process for VRML. The Introduction describes the purpose,
design criteria, and characteristics of VRML. The following clauses define part 1 of ISO/IEC 14772:

a. Scope defines the problem area that VRML addresses.

b. Normative references lists the normative standards referenced in this part of ISO/IEC 14772.

c. Definitions contains the glossary of terminology used in this part of ISO/IEC 14772.

d. Concepts describes various fundamentals of VRML.

e. Field and event reference specifies the datatypes used by nodes.

f. Node reference defines the syntax and semantics of VRML nodes.

g. Conformance and minimum support requirements describes the conformance requirements for VRML
implementations.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

There are several annexes included in the specification:

A. Grammar definition presents the grammar for the VRML file format.

B. Java platform scripting reference describes how VRML scripting integrates with the Java platform.

C. ECMAScript scripting reference describes how VRML scripting integrates with ECMAScript.

D. Examples includes a variety of VRML example files.

E. Bibliography lists the informative, non-standard topics referenced in this part of ISO/IEC 14772.

F. Recommendations for non-normative extensions lists informative recommendations for extensions to
VRML.

Questions or comments should be sent to rikk@wasabisoft.com.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

ii

Foreword

Foreword
ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form a specialized system for worldwide standardization.
National bodies that are members of ISO or IEC participate in the development of
International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. See http://www.iso.ch for information on ISO and
http://www.iec.ch for information on IEC.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote. See
http://www.iso.ch/meme/JTC1.html for information on JTC 1.

International Standard ISO/IEC 14772 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee 24, Computer graphics and
image processing, in collaboration with The VRML Consortium, Inc.
(http://www.vrml.org) and the VRML moderated email list (www-
vrml@vrml.org).

ISO/IEC 14772 consists of the following part, under the general title Information
technology -- Computer graphics and image processing -- The Virtual Reality Modeling
Language:

Part 1: Functional specification and UTF-8 encoding.

Further parts will follow.

Annexes A to C form an integral part of this part of ISO/IEC 14772. Annexes D to F are
for information only.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

iii

Introduction

Purpose

The Virtual Reality Modeling Language (VRML) is a file format for describing
interactive 3D objects and worlds. VRML is designed to be used on the Internet,
intranets, and local client systems. VRML is also intended to be a universal interchange
format for integrated 3D graphics and multimedia. VRML may be used in a variety of
application areas such as engineering and scientific visualization, multimedia
presentations, entertainment and educational titles, web pages, and shared virtual worlds.

Design Criteria

VRML has been designed to fulfill the following requirements:

Authorability

Enable the development of computer programs capable of creating, editing, and
maintaining VRML files, as well as automatic translation programs for converting
other commonly used 3D file formats into VRML files.

Composability

Provide the ability to use and combine dynamic 3D objects within a VRML world
and thus allow re-usability.

Extensibility

Provide the ability to add new object types not explicitly defined in VRML.

Be capable of implementation

Capable of implementation on a wide range of systems.

Performance

Emphasize scalable, interactive performance on a wide variety of computing
platforms.

Scalability

Enable arbitrarily large dynamic 3D worlds.

Characteristics of VRML

VRML is capable of representing static and animated dynamic 3D and multimedia
objects with hyperlinks to other media such as text, sounds, movies, and images. VRML
browsers, as well as authoring tools for the creation of VRML files, are widely available
for many different platforms.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

iv

VRML supports an extensibility model that allows new dynamic 3D objects to be defined
allowing application communities to develop interoperable extensions to the base
standard. There are mappings between VRML objects and commonly used 3D
application programmer interface (API) features.

APPENDIX KK

Microsoft et al. Exhibit 1005

1

Information technology --
Computer graphics and image processing --
The Virtual Reality Modeling Language --

Part 1: Functional specification and UTF-8 encoding

1 Scope

ISO/IEC 14772, the Virtual Reality Modeling Language (VRML), defines a file format that integrates 3D graphics
and multimedia. Conceptually, each VRML file is a 3D time-based space that contains graphic and aural objects that
can be dynamically modified through a variety of mechanisms. This part of ISO/IEC 14772 defines a primary set of
objects and mechanisms that encourage composition, encapsulation, and extension.

The semantics of VRML describe an abstract functional behaviour of time-based, interactive 3D, multimedia
information. ISO/IEC 14772 does not define physical devices or any other implementation-dependent concepts (e.g.,
screen resolution and input devices). ISO/IEC 14772 is intended for a wide variety of devices and applications, and
provides wide latitude in interpretation and implementation of the functionality. For example, ISO/IEC 14772 does
not assume the existence of a mouse or 2D display device.

Each VRML file:

a. implicitly establishes a world coordinate space for all objects defined in the file, as well as all objects
included by the file;

b. explicitly defines and composes a set of 3D and multimedia objects;

c. can specify hyperlinks to other files and applications;

d. can define object behaviours.

An important characteristic of VRML files is the ability to compose files together through inclusion and to relate
files together through hyperlinking. For example, consider the file earth.wrl which specifies a world that contains a
sphere representing the earth. This file may also contain references to a variety of other VRML files representing
cities on the earth (e.g., file paris.wrl). The enclosing file, earth.wrl, defines the coordinate system that all the cities
reside in. Each city file defines the world coordinate system that the city resides in but that becomes a local
coordinate system when contained by the earth file.

Hierarchical file inclusion enables the creation of arbitrarily large, dynamic worlds. Therefore, VRML ensures that
each file is completely described by the objects contained within it.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

2

Another essential characteristic of VRML is that it is intended to be used in a distributed environment such as the
World Wide Web. There are various objects and mechanisms built into the language that support multiple
distributed files, including:

g. in-lining of other VRML files;

h. hyperlinking to other files;

i. using established Internet and ISO standards for other file formats;

j. defining a compact syntax.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this part of ISO/IEC 14772. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14772 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

Annex E, Bibliography, contains a list of informative documents and technology.

Identifier Reference

1766
IETF RFC 1766, Tags for the Identification of Languages, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1766.txt

CGM
ISO/IEC 8632:1992 (all parts) Information technology -- Computer graphics -- Metafile for the
storage and transfer of picture description information.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8632

ESCR

ISO/IEC DIS 16262 Information technology -- ECMAScript: A general purpose, cross-platform
programming language.
http://www.ecma.ch
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=16262

HTML
HTML 3.2 Reference Specification.
http://www.w3.org/TR/REC-html32.html

I639
ISO 639:1988 Code for the representation of names of languages.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumber,
http://www.chemie.fu-berlin.de/diverse/doc/ISO_639.html

I3166
ISO 3166:1997 (all parts) Codes for the representation of names of countries
and their subdivisions. http://www.iso.ch/isob/switch-engine-
cate.pl?searchtype=refnumber&KEYWORDS=3166

 I8859
ISO/IEC 8859-1:1987 Information technology -- 8-bit single-byte coded graphic character sets --
Part 1: Latin alphabet No. 1.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8859

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4

ISOC
ISO/IEC 9899:1990 Programming languages -- C.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=9899

ISOG
ISO/IEC 10641:1993 Information technology -- Computer graphics and image processing --
Conformance testing of implementations of graphics standards.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10641&searchtype=refnumber

JAVA

"The Java Language Specification" by James Gosling, Bill Joy and Guy Steele, Addison
Wesley, Reading Massachusetts, 1996, ISBN 0-201-63451-1.
http://java.sun.com/docs/books/jls/index.html

"The Java Virtual Machine Specification" by Tim Lindhold and Frank Yellin, Addison Wesley,
Reading Massachusetts, 1996, ISBN 0-201-63452-X.
http://java.sun.com/docs/books/vmspec/index.html

JPEG

"JPEG File Interchange Format," JFIF, Version 1.02, 1992.
http://www.w3.org/pub/WWW/Graphics/JPEG/jfif.txt

ISO/IEC 10918-1:1994 Information technology -- Digital compression and coding of
continuous-tone still images: Requirements and guidelines.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumber

MIDI
Complete MIDI 1.0 Detailed Specification, MIDI Manufacturers Association,
P.O. Box 3173, La Habra, CA 90632 USA 1996.
http://www.midi.org

MPEG
ISO/IEC 11172-1:1993 Information technology -- Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s -- Part 1: Systems.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=11172

PNG
PNG (Portable Network Graphics), Specification Version 1.0, W3C Recommendation, 1
October 1996.
http://www.w3.org/pub/WWW/TR/REC-png-multi.html

RURL
IETF RFC 1808 Relative Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1808.txt

URL
IETF RFC 1738 Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1738.txt

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

5

UTF8

ISO/IEC 10646-1:1993 Information technology -- Universal Multiple-Octet Coded Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane, Internet standards track protocol.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=10646,
http://ds.internic.net/rfc/rfc2044.txt

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

6

3 Definitions

For the purposes of this part of ISO/IEC 14722, the following definitions apply.

3.1 activate

To cause a sensor node to generate an "isActive" event. The various types of sensor nodes are "activated" by user
interactions, the passage of time, or other events. Only active sensor nodes affect the user’s experience. A Script
node is activated when it receives an event. A pointing device such as a mouse is activated when one of its buttons is
depressed by a user. See 4.12.2, Script execution, for details.

3.2 ancestor

A node which is an antecedent of another node in the transformation hierarchy.

3.3 author

A person or agent that creates VRML files. Authors typically use generators to assist them.

3.4 authoring tool

See generator.

3.5 avatar

The abstract representation of the user in a VRML world. The physical dimensions of the avatar are used for
collision detection and terrain following. See 6.29, NavigationInfo, for details.

3.6 bearing

A straight line passing through the pointer location in the direction of the pointer. If multiple sensors' geometry
intersect this line, only the sensor nearest the viewer will be eligible to generate events regardless of material and
texture properties (e.g., transparency).

3.7 bindable node

A node that may have many instances in a scene graph, but only one instance may be active at any instant of time. A
node of type Background, Fog, NavigationInfo, or Viewpoint. See 4.6.10, Bindable children nodes, for details.

3.8 browser

A computer program that interprets VRML files, presents their content to a user on a display device, and allows the
user to interact with worlds defined by VRML files by means of a user interface.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

7

3.9 browser extension

Nodes defined using the prototyping mechanism that are understood only by certain browsers. See
4.9.3, Browser extensions, for details.

3.10 built-in node

A node of a type explicitly defined in this part of ISO/IEC 14772.

3.11 callback

A function defined in a scripting language to which events are passed. See 4.12.8, EventIn handling, for details.

3.12 candidate

One of potentially several choices. The user or the browser will select none or one of the choices when all
candidates are identified. See 4.6.10, Bindable children nodes, and 6.2, Anchor, for details.

3.13 child

An instance of a children node.

3.14 children node

One of a set of node types, instances of which can be collected in a group to share specific properties dependent on
the type of the grouping node. See 4.6.5, Grouping and children nodes, for a list of allowable children nodes.

3.15 client system

A computer system, attached to a network, that relies on another computer (the server) for essential processing
functions. Many client systems also function as stand-alone computers.

3.16 collision proxy

A node used as a substitute for all of a Collision node's children during collision detection. See 6.8, Collision, for
details.

3.17 colour model

Characterization of a colour space in terms of explicit parameters. ISO/IEC 14772 allows colours to be defined only
with the RGB colour model. However, colour interpolation is performed in the HSV colour space.

3.18 culling

The process of identifying objects or parts of objects which do not need to be processed further by the browser in
order to produce the desired view of a world.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

8

3.19 descendant

A node which descends from another node in the transformation hierarchy. A children node.

3.20 display device

A graphics device on which VRML worlds may be rendered.

3.21 drag sensor

A pointing device sensor that causes events to be generated in response to sensor-dependent pointer motions. For
example, the SphereSensor generates spherical rotation events. A node of type CylinderSensor, PlaneSensor, or
SphereSensor. See 4.6.7, Sensor nodes, and 4.6.7.4, Drag sensors, for details.

3.22 environmental sensor

A sensor node that generates events based on the location of the viewpoint in the world or in relation to objects in
the world. The TimeSensor node generates events at regular intervals in time. A node of type Collision,
ProximitySensor, TimeSensor, or VisibilitySensor. See 4.6.7.2, Environmental sensors, for details.

3.23 event

A message sent from one node to another as defined by a route. Events signal external stimuli, changes to field
values, and interactions between nodes. An event consists of a timestamp and a field value.

3.24 event cascade

A sequence of events initiated by a script or sensor event and propagated from node to node along one or more
routes. All events in an event cascade are considered to have occurred simultaneously. See 4.10.3, Execution model,
for details.

3.25 eventIn

A logical receptor attached to a node which receives events.

3.26 eventOut

A logical output terminal attached to a node from which events are sent. The eventOut also stores the event most
recently sent.

3.27 execution model

The rules governing how events are processed by browsers and scripts.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

9

3.28 exposed field

A field that is capable of receiving events via an eventIn to change its value(s), and generating events via an
eventOut when its value(s) change.

3.29 external prototype

A prototype defined in an external file and referenced by a URL.

3.30 field

A property or attribute of a node. Each node type has a fixed set of fields. Fields may contain various kinds of data
and one or many values. Each field has a default value.

3.31 field name

The identifier of a field. Field names are unique within the scope of the node.

3.32 file

A collection of related data. A file may be stored on physical media or may exist as a data stream or as data within a
computer program.

3.33 frame

A single rendering of a world on a display device or a single time-step in a simulation.

3.34 generator

A computer program which creates VRML files. A generator may be used by a person or operate automatically.
Synonymous with authoring tool.

3.35 geometric property node

A node defining the properties of a specific geometry node. A node of type Color, Coordinate, Normal, or
TextureCoordinate. See 4.6.3.2, Geometric property nodes, for details.

3.36 geometric sensor node

A node that generates events based on user actions, such as a mouse click or navigating close to a particular object.
A node of type CylinderSensor, PlaneSensor, ProximitySensor, SphereSensor, TouchSensor, VisibilitySensor, or
Collision. See 4.6.7.1, Introduction to sensors, for details.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

10

3.37 geometry node

A node containing mathematical descriptions of three-dimensional (3D) points, lines, surfaces, text strings and
solids. A node of type Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet, PointSet,
Sphere, or Text. See 4.6.3, Shapes and geometry, for details.

3.38 grab

To receive events from activated pointing devices (e.g., mouse or wand). A pointing device sensor becomes the
exclusive recipient of pointing device events when one or more pointing devices are activated simultaneously.

3.39 gravity

In the context of ISO/IEC 14772, gravity may be simulated by constraining the motion of the viewpoint to the
lowest possible path (smallest Y-coordinate in the local coordinate system of the viewpoint) consistent with
following the surface of encountered objects. See 6.29, NavigationInfo, for details.

3.40 grouping node

One of a set of node types which include a list of nodes, referred to as its children nodes. These children nodes are
collected together to share specific properties dependent on the type of the grouping node. Each grouping node
defines a coordinate space for its children relative to its own coordinate space. The children may themselves be
instances of grouping nodes, thus forming a transformation hierarchy. See 4.6.5, Grouping and children nodes, for
details.

3.41 HSV

Hue, Saturation, and Value colour model. See E.[FOLE].

3.42 HTML

HyperText Markup Language. See 2.[HTML] .

3.43 hyperlink

A reference to a URL that is associated with an Anchor node. See 6.2, Anchor, for details.

3.44 ideal VRML implementation

An implementation of VRML that presents all objects and simulates movement without approximation. Not
realizable in practice.

3.45 IEC

International Electrotechnical Commission. See http://www.iec.ch.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

11

3.46 IETF

Internet Engineering Task Force. The organization which develops Internet standards. See
http://www.ietf.org/overview.html.

3.47 image

A two-dimensional (2D) rectangular array of pixel values. Pixel values may have from one to four components. See
5.5, SFImage, for details.

3.48 in-lining

The mechanism by which one VRML file is hierarchically included in another.

3.49 Internet

The world-wide named network of computers which communicate with each other using a common set of
communication protocols known as TCP/IP. See IETF. The World Wide Web is implemented on the Internet.

3.50 instance

A reference to a previously defined and named node. Nodes are named by means of the DEF syntax and reference
by USE syntax (see 4.6.2, DEF/USE semantics). Instances of nodes may be used in any context in which the
defining node may be used.

3.51 interpolator node

A node that defines a piece-wise linear interpolation. A node of type ColorInterpolator, CoordinateInterpolator,
NormalInterpolator, OrientationInterpolator, PositionInterpolator, or ScalarInterpolator. See 4.6.8, Interpolator
nodes, for details.

3.52 intranet

A private network that uses the same protocols and standards as the Internet.

3.53 ISO

International Organization for Standardization. See http://www.iso.ch/infoe/intro.html.

3.54 JPEG

Joint Photographic Experts Group. See 2.[JPEG].

3.55 JTC 1

ISO/IEC Joint Technical Committee 1. See http://www.iso.ch/meme/JTC1.html.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

12

3.56 level of detail

The amount of detail or complexity which is displayed at any particular time for any particular object. The level of
detail for an object is controllable as a function of the distance of the object from the viewer. See 6.26, LOD, for
details. (Abbreviated LOD)

3.57 line terminator

A linefeed character (0x0A) or a carriage return character (0x0D).

3.58 loop

A sequence of events which would result in a specific eventOut sending more than one event with the same
timestamp.

3.59 message

A data string sent between nodes upon the occurrence of an event. See 4.10, Event processing, for details.

3.60 MIDI

Musical Instrument Digital Interface. A standard for digital music representation. See 2.[MIDI] .

3.61 MIME

Multipurpose Internet Mail Extension. Used to specify filetyping rules for Internet applications, including browsers.
See 4.5.1, File extension and MIME types, for details. See also E.[MIME] .

3.62 mouse

A pointing device that moves in two dimensions and that enables a user to move a cursor on a display device in
order to point at displayed objects. One or more push buttons on the mouse allow the user to indicate to the
computer program that some action is to be taken.

3.63 MPEG

Moving Picture Experts Group. See http://drogo.cselt.stet.it/mpeg/.

3.64 multimedia

An integrated presentation, typically on a computer, of content of various types, such as computer graphics, audio,
and video.

3.65 network

Set of interconnected computers.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

13

3.66 node

The fundamental component of a scene graph in ISO/IEC 14772. Nodes are abstractions of various real-world
objects and concepts. Examples include spheres, lights, and material descriptions. Nodes contain fields and events.
Messages may be sent between nodes along routes.

3.67 node type

A characteristic of each node that describes, in general, its particular semantics. For example, Box, Group, Sound,
and SpotLight are node types. See 4.6, Node semantics, and 6, Node reference, for details.

3.68 now

The present time as perceived by the user.

3.69 object

A collection of data and procedures, packaged according to the rules and syntax defined in ISO/IEC 14772. "Object"
is usually synonymous with node.

3.70 object space

The coordinate system in which an object is defined.

3.71 panorama

A background texture that is placed behind all geometry in the scene and in front of the ground and sky. See 6.5,
Background, for details.

3.72 parent

A node which is an instance of a grouping node.

3.73 PNG

Portable Network Graphics. A specification for representing two-dimensional images in files. See 2.[PNG].

3.74 pointer

A location and direction in the virtual world defined by the pointing device which the user is currently using to
interact with the virtual world.

3.75 pointing device

A hardware device connected to the user’s computer by which the user directly controls the location and direction of
the pointer. Pointing devices may be either two-dimensional or three-dimensional and may have one or more control
buttons. See 4.6.7.5, Activating and manipulating sensors, for details.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

14

3.76 pointing device sensor

A sensor node that generates events based on user actions, such as pointing device motions or button activations. A
node of type Anchor, CylinderSensor, PlaneSensor, SphereSensor, or TouchSensor. See
4.6.7.3, Pointing device sensors, for details.

3.77 polyline

A sequence of straight line segments where the end point of the first segment is coincident with the start point of the
second segment, the endpoint of the second segment is coincident with the start point of the third segment, and so
on. A piecewise linear curve.

3.78 profile

A named collection of criteria for functionality and conformance that defines an implementable subset of a standard.

3.79 prototype

The definition of a new node type in terms of the nodes defined in this part of ISO/IEC 14772.
See 4.8, Prototype semantics, for details.

3.80 prototyping

The mechanism for extending the set of node types from within a VRML file.

3.81 public interface

The formal definition of a node type in this part of ISO/IEC 14772.

3.82 RGB

The colour model used within ISO/IEC 14772 for the specification of colours. Each colour is represented as a
combination of the three primary colours red, green, and blue. See E.[FOLE].

3.83 route

The connection between a node generating an event and a node receiving the event. See 4.3.9, Route statement
syntax, and 4.10.2, Route semantics, for details.

3.84 route graph

The set of connections between eventOuts and eventIns formed by ROUTE statements or addRoute method
invocations.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

15

3.85 run-time name scope

The extent to which a name defined within a VRML file applies and is visible. Several different run-time name
scopes are recognized and are defined in 4.4.6, Run-time name scope.

3.86 RURL

Relative Uniform Resource Locator. See 2.[RURL].

3.87 scene graph

An ordered collection of grouping nodes and other nodes. Grouping nodes, (such as LOD, Switch, and Transform
nodes) may have children nodes. See 4.2.3, Scene graph, and 4.4.2, Scene graph hierarchy, for details.

3.88 script

A set of procedural functions normally executed as part of an event cascade (see 6.40, Script). A script function may
also be executed asynchronously (see 4.12.6, Asynchronous scripts).

3.89 scripting

The process of creating or referring to a script.

3.90 scripting language

A system of syntactical and semantic constructs used to define and automate procedures and processes on a
computer. Typically, scripting languages are interpreted and executed sequentially on a statement-by-statement basis
whereas programming languages are generally compiled prior to execution.

3.91 sensor node

A node that enables the user to interact with the world in the scene graph hierarchy. Sensor nodes respond to user
interaction with geometric objects in the world, the movement of the user through the world, or the passage of time.
See 4.6.7, Sensor nodes, for details.

3.92 separator character

A UTF-8 character used to separate syntactical entities in a VRML file. Specifically, commas, spaces, tabs, linefeeds,
and carriage-returns are separator characters wherever they appear outside of string fields. See
4.3.1, Clear text (UTF-8) encoding, for details.

3.93 sibling

A node which shares a parent with other nodes.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

16

3.94 simulation tick

The smallest time unit capable of being identified in a digital simulation of analog time. Time in the context of
ISO/IEC 14772 is conceptually analog but is realized by an implementation as a digital simulation of abstract analog
time. See 4.11, Time, for details.

3.95 special group node

A grouping node that exhibits special behaviour. Examples of such special behaviour include selecting one of many
children nodes to be rendered based on a dynamically changing parameter value and dynamically loading children
nodes from an external file. A node of type Inline, LOD (level of detail), or Switch. See
4.6.5, Grouping and children nodes, for details.

3.96 texture

An image used in a texture map to create visual appearance effects when applied to geometry nodes.

3.97 texture coordinates

The set of two-dimensional coordinates used by some vertex-based geometry nodes (e.g., IndexedFaceSet and
ElevationGrid) and specified in the TextureCoordinate node to map textures to the vertices of those nodes. Texture
coordinates range from 0 to 1 across each axis of the texture image. See 4.6.11, Texture maps, and
6.48, TextureCoordinate, for details.

3.98 texture map

A texture plus the general parameters necessary for mapping the texture to geometry.

3.99 time

A monotonically increasing value generated by a node. Time (0.0) starts at 00:00:00 GMT January 1, 1970. See
4.11, Time, for details.

3.100 timestamp

The part of a message that describes the time the event occurred and that caused the message to be sent. See
4.11, Time, for details.

3.101 transformation hierarchy

The subset of the scene graph consisting of nodes that have well-defined coordinate systems. The transformation
hierarchy excludes nodes that are not descendants of the scene graph root nodes and nodes in SFNode or MFNode
fields of Script nodes.

3.102 transparency chunk

A section of a PNG file containing transparency information (derived from 2.[PNG]).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

17

3.103 traverse

To process the nodes in a scene graph in the correct order.

3.104 UCS

Universal multiple-octet coded Character Set. See 2.[UTF8].

3.105 URL

Uniform Resource Locator. See 2.[URL].

3.106 URN

Universal Resource Name. See E.[URN].

3.107 UTF-8

The character set used to encode VRML files. The 8-bit UCS Transformation Format. See 2.[UTF8].

3.108 user

A person or agent who uses and interacts with VRML files by means of a browser.

3.109 viewer

A location, direction, and viewing angle in a virtual world that determines the portion of the virtual world presented
by the browser to the user.

3.110 virtual world

See world.

3.111 VRML browser

See browser.

3.112 VRML document server

A computer program that locates and transmits VRML files and supporting files in response to requests from
browsers.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

18

3.113 VRML file

A set of VRML nodes and statements as defined in this part of ISO/IEC 14772. This set of VRML nodes and
statements may be in the form of a file, a data stream, or an in-line sequence of VRML information as defined by a
particular VRML encoding.

3.114 wand

A pointing device that moves in three dimensions and that enables a user to indicate a position in the three-
dimensional coordinate system of a world in order to point at displayed objects. One or more push buttons on the
wand allow the user to indicate to the computer program that some action is to be taken.

3.115 white space

One or more consecutive occurrences of a separator character. See 4.3.1, Clear text (UTF-8) encoding, for details.

3.116 world

A collection of one or more VRML files and other multimedia content that, when interpreted by a VRML browser,
presents an interactive experience to the user consistent with the author’s intent.

3.117 world coordinate space

The coordinate system in which each VRML world is defined. The world coordinate space is an orthogonal right-
handed Cartesian coordinate system. The units of length are metres.

3.118 World Wide Web

The collection of documents, data, and content typically encoded in HTML pages and accessible via the Internet
using the HTTP protocol.

3.119 XY plane

The plane perpendicular to the Z-axis that passes through the point Z = 0.0.

3.120 YZ plane

The plane perpendicular to the X-axis that passes through the point X = 0.0.

3.121 ZX plane

The plane perpendicular to the Y-axis that passes through the point Y = 0.0.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

19

4 Concepts

4.1 Introduction and table of contents

4.1.1 Introduction

This clause describes key concepts in ISO/IEC 14772. This includes how nodes are combined into scene graphs,
how nodes receive and generate events, how to create node types using prototypes, how to add node types to VRML
and export them for use by others, how to incorporate scripts into a VRML file, and various general topics on nodes.

4.1.2 Table of contents

See Table 4.1 for the table of contents for this clause.

Table 4.1 -- Table of contents, Concepts

4.1 Introduction and table of contents
 4.1.1 Introduction
 4.1.2 Table of contents
 4.1.3 Conventions used

4.2 Overview
 4.2.1 The structure of a VRML file
 4.2.2 Header
 4.2.3 Scene graph
 4.2.4 Prototypes
 4.2.5 Event routing
 4.2.6 Generating VRML files
 4.2.7 Presentation and interaction
 4.2.8 Profiles

4.3 UTF-8 file syntax
 4.3.1 Clear text (UTF-8) encoding
 4.3.2 Statements
 4.3.3 Node statement syntax
 4.3.4 Field statement syntax
 4.3.5 PROTO statement syntax
 4.3.6 IS statement syntax
 4.3.7 EXTERNPROTO statement syntax
 4.3.8 USE statement syntax
 4.3.9 ROUTE statement syntax

4.4 Scene graph structure
 4.4.1 Root nodes
 4.4.2 Scene graph hierarchy
 4.4.3 Descendant and ancestor nodes
 4.4.4 Transformation hierarchy

4.7 Field, eventIn, and eventOut semantics

4.8 Prototype semantics
 4.8.1 Introduction
 4.8.2 PROTO interface declaration semantics
 4.8.3 PROTO definition semantics
 4.8.4 Prototype scoping rules

4.9 External prototype semantics
 4.9.1 Introduction
 4.9.2 EXTERNPROTO interface semantics
 4.9.3 EXTERNPROTO URL semantics

4.10 Event processing
 4.10.1 Introduction
 4.10.2 Route semantics
 4.10.3 Execution model
 4.10.4 Loops
 4.10.5 Fan-in and fan-out

4.11 Time
 4.11.1 Introduction
 4.11.2 Time origin
 4.11.3 Discrete and continuous changes

4.12 Scripting
 4.12.1 Introduction
 4.12.2 Script execution
 4.12.3 Initialize() and shutdown()
 4.12.4 eventsProcessed()
 4.12.5 Scripts with direct outputs
 4.12.6 Asynchronous scripts

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

20

 4.4.5 Standard units and coordinate system
 4.4.6 Run-time name scope

4.5 VRML and the World Wide Web
 4.5.1 File extension and MIME type
 4.5.2 URLs
 4.5.3 Relative URLs
 4.5.4 Scripting language protocols

4.6 Node semantics
 4.6.1 Introduction
 4.6.2 DEF/USE semantics
 4.6.3 Shapes and geometry
 4.6.4 Bounding boxes
 4.6.5 Grouping and children nodes
 4.6.6 Light sources
 4.6.7 Sensor nodes
 4.6.8 Interpolator nodes
 4.6.9 Time-dependent nodes
 4.6.10 Bindable children nodes
 4.6.11 Texture maps

 4.12.7 Script languages
 4.12.8 EventIn handling
 4.12.9 Accessing fields and events
 4.12.10 Browser script interface

4.13 Navigation
 4.13.1 Introduction
 4.13.2 Navigation paradigms
 4.13.3 Viewing model
 4.13.4 Collision detection and terrain following

4.14 Lighting model
 4.14.1 Introduction
 4.14.2 Lighting 'off'
 4.14.3 Lighting 'on'
 4.14.4 Lighting equations
 4.14.5 References

4.1.3 Conventions used

The following conventions are used throughout this part of ISO/IEC 14772:

Italics are used for event and field names, and are also used when new terms are introduced and equation variables
are referenced.

A fixed-space font is used for URL addresses and source code examples. ISO/IEC 14772 UTF-8 encoding
examples appear in bold, fixed-space font.

Node type names are appropriately capitalized (e.g., "The Billboard node is a grouping node..."). However, the
concept of the node is often referred to in lower case in order to refer to the semantics of the node, not the node itself
(e.g., "To rotate the billboard...").

The form "0xhh" expresses a byte as a hexadecimal number representing the bit configuration for that byte.

Throughout this part of ISO/IEC 14772, references are denoted using the "x.[ABCD]" notation, where "x" denotes
which clause or annex the reference is described in and "[ABCD]" is an abbreviation of the reference title. For
example, 2.[ABCD] refers to a reference described in clause 2 and E.[ABCD] refers to a reference described in
annex E.

4.2 Overview

4.2.1 The structure of a VRML file

A VRML file consists of the following major functional components: the header, the scene graph, the prototypes,
and event routing. The contents of this file are processed for presentation and interaction by a program known as a
browser.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

21

4.2.2 Header

For easy identification of VRML files, every VRML file shall begin with:

#VRML V2.0 <encoding type> [optional comment] <line terminator>

The header is a single line of UTF-8 text identifying the file as a VRML file and identifying the encoding type of the
file. It may also contain additional semantic information. There shall be exactly one space separating "#VRML" from
"V2.0" and "V2.0" from "<encoding type>". Also, the "<encoding type>" shall be followed by a
linefeed (0x0a) or carriage-return (0x0d) character, or by one or more space (0x20) or tab (0x09) characters
followed by any other characters, which are treated as a comment, and terminated by a linefeed or carriage-return
character.

The <encoding type> is either "utf8" or any other authorized values defined in other parts of ISO/IEC 14772.
The identifier "utf8" indicates a clear text encoding that allows for international characters to be displayed in
ISO/IEC 14772 using the UTF-8 encoding defined in ISO/IEC 10646-1 (otherwise known as Unicode); see
2.[UTF8]. The usage of UTF-8 is detailed in 6.47, Text, node. The header for a UTF-8 encoded VRML file is

#VRML V2.0 utf8 [optional comment] <line terminator>

Any characters after the <encoding type> on the first line may be ignored by a browser. The header line ends
at the occurrence of a <line terminator>. A <line terminator> is a linefeed character (0x0a) or a
carriage-return character (0x0d) .

4.2.3 Scene graph

The scene graph contains nodes which describe objects and their properties. It contains hierarchically grouped
geometry to provide an audio-visual representation of objects, as well as nodes that participate in the event
generation and routing mechanism.

4.2.4 Prototypes

Prototypes allow the set of VRML node types to be extended by the user. Prototype definitions can be included in
the file in which they are used or defined externally. Prototypes may be defined in terms of other VRML nodes or
may be defined using a browser-specific extension mechanism. While ISO/IEC 14772 has a standard format for
identifying such extensions, their implementation is browser-dependent.

4.2.5 Event routing

Some VRML nodes generate events in response to environmental changes or user interaction. Event routing gives
authors a mechanism, separate from the scene graph hierarchy, through which these events can be propagated to
effect changes in other nodes. Once generated, events are sent to their routed destinations in time order and
processed by the receiving node. This processing can change the state of the node, generate additional events, or
change the structure of the scene graph.

Script nodes allow arbitrary, author-defined event processing. An event received by a Script node causes the
execution of a function within a script which has the ability to send events through the normal event routing
mechanism, or bypass this mechanism and send events directly to any node to which the Script node has a reference.
Scripts can also dynamically add or delete routes and thereby changing the event-routing topology.

The ideal event model processes all events instantaneously in the order that they are generated. A timestamp serves
two purposes. First, it is a conceptual device used to describe the chronological flow of the event mechanism. It
ensures that deterministic results can be achieved by real-world implementations that address processing delays and
asynchronous interaction with external devices. Second, timestamps are also made available to Script nodes to allow
events to be processed based on the order of user actions or the elapsed time between events.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

22

4.2.6 Generating VRML files

A generator is a human or computerized creator of VRML files. It is the responsibility of the generator to ensure the
correctness of the VRML file and the availability of supporting assets (e.g., images, audio clips, other VRML files)
referenced therein.

4.2.7 Presentation and interaction

The interpretation, execution, and presentation of VRML files will typically be undertaken by a mechanism known
as a browser, which displays the shapes and sounds in the scene graph. This presentation is known as a virtual world
and is navigated in the browser by a human or mechanical entity, known as a user. The world is displayed as if
experienced from a particular location; that position and orientation in the world is known as the viewer. The
browser provides navigation paradigms (such as walking or flying) that enable the user to move the viewer through
the virtual world.

In addition to navigation, the browser provides a mechanism allowing the user to interact with the world through
sensor nodes in the scene graph hierarchy. Sensors respond to user interaction with geometric objects in the world,
the movement of the user through the world, or the passage of time.

The visual presentation of geometric objects in a VRML world follows a conceptual model designed to resemble the
physical characteristics of light. The VRML lighting model describes how appearance properties and lights in the
world are combined to produce displayed colours (see 4.14, Lighting Model, for details).

Figure 4.1 illustrates a conceptual model of a VRML browser. The browser is portrayed as a presentation application
that accepts user input in the forms of file selection (explicit and implicit) and user interface gestures
(e.g., manipulation and navigation using an input device). The three main components of the browser are: Parser,
Scene Graph, and Audio/Visual Presentation. The Parser component reads the VRML file and creates the Scene
Graph. The Scene Graph component consists of the Transformation Hierarchy (the nodes) and the Route Graph. The
Scene Graph also includes the Execution Engine that processes events, reads and edits the Route Graph, and makes
changes to the Transform Hierarchy (nodes). User input generally affects sensors and navigation, and thus is wired
to the Route Graph component (sensors) and the Audio/Visual Presentation component (navigation). The
Audio/Visual Presentation component performs the graphics and audio rendering of the Transform Hierarchy that
feeds back to the user.

4.2.8 Profiles

ISO/IEC 14772 supports the concept of profiles. A profile is a named collection of functionality and requirements
which shall be supported in order for an implementation to conform to that profile. Only one profile is defined in
this part of ISO/IEC 14772. The functionality and minimum support requirements described in ISO/IEC 14772-1
form the Base profile. Additional profiles may be defined in other parts of ISO/IEC 14772. Such profiles shall
incorporate the entirety of the Base profile.

4.3 UTF-8 file syntax

4.3.1 Clear text (UTF-8) encoding

This section describes the syntax of UTF-8-encoded, human-readable VRML files. A more formal description of the
syntax may be found in annex A, Grammar definition. The semantics of VRML in terms of the UTF-8 encoding are

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

23

presented in this part of ISO/IEC 14772. Other encodings may be defined in other parts of ISO/IEC 14772. Such
encodings shall describe how to map the UTF-8 descriptions to and from the corresponding encoding elements.

For the UTF-8 encoding, the # character begins a comment. The first line of the file, the header, also starts with a
"#" character. Otherwise, all characters following a "#", until the next line terminator, are ignored. The only
exception is within double-quoted SFString and MFString fields where the "#" character is defined to be part of the
string.

Figure 4.1 -- Conceptual model of a VRML browser

Commas, spaces, tabs, linefeeds, and carriage-returns are separator characters wherever they appear outside of string
fields. Separator characters and comments are collectively termed whitespace.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

24

A VRML document server may strip comments and extra separators including the comment portion of the header
line from a VRML file before transmitting it. WorldInfo nodes should be used for persistent information such as
copyrights or author information.

Field, event, PROTO, EXTERNPROTO, and node names shall not contain control characters (0x0-0x1f, 0x7f),
space (0x20), double or single quotes (0x22: ", 0x27: '), sharp (0x23: #), comma (0x2c: ,), period (0x2e: .), brackets
(0x5b, 0x5d: []), backslash (0x5c: \) or braces (0x7b, 0x7d: {}). Further, their first character shall not be a digit
(0x30-0x39), plus (0x2b: +), or minus (0x2d: -) character. Otherwise, names may contain any ISO 10646 character
encoded using UTF-8. VRML is case-sensitive; "Sphere" is different from "sphere" and "BEGIN" is different from
"begin."

The following reserved keywords shall not be used for field, event, PROTO, EXTERNPROTO, or node names:

• DEF

• EXTERNPROTO

• FALSE

• IS

• NULL

• PROTO

• ROUTE

• TO

• TRUE

• USE

• eventIn

• eventOut

• exposedField

• field

4.3.2 Statements

After the required header, a VRML file may contain any combination of the following:

a. Any number of PROTO or EXTERNPROTO statements (see 4.8, Prototype semantics);

b. Any number of root node statements (see 4.4.1, Root nodes);

c. Any number of USE statements (see 4.6.2, DEF/USE semantics);

d. Any number of ROUTE statements (see 4.10.2, Route semantics).

4.3.3 Node statement syntax

A node statement consists of an optional name for the node followed by the node's type and then the body of the
node. A node is given a name using the keyword DEF followed by the name of the node. The node's body is
enclosed in matching braces ("{ }"). Whitespace shall separate the DEF, name of the node, and node type, but is not
required before or after the curly braces that enclose the node's body. See A.3, Nodes, for details on node grammar
rules.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

25

[DEF <name>] <nodeType> { <body> }

A node's body consists of any number of field statements, IS statements, ROUTE statements, PROTO statements or
EXTERNPROTO statements, in any order.

See 4.6.2, DEF/USE, sematnics for more details on node naming. See 4.3.4, Field statement syntax, for a description
of field statement syntax and 4.7, Field, eventIn, and eventOut semantics, for a description of field statement
semantics. See 4.6, Node semantics, for a description of node statement semantics.

4.3.4 Field statement syntax

A field statement consists of the name of the field followed by the field's value(s). The following illustrates the
syntax for a single-valued field:

<fieldName> <fieldValue>

The following illustrates the syntax for a multiple-valued field:

<fieldName> [<fieldValues>]

See A.4, Fields, for details on field statement grammar rules.

Each node type defines the names and types of the fields that each node of that type contains. The same field name
may be used by multiple node types. See 5, Field and event reference, for the definition and syntax of specific field
types.

See 4.7, Field, eventIn, and eventOut semantics, for a description of field statement semantics.

4.3.5 PROTO statement syntax

A PROTO statement consists of the PROTO keyword, followed in order by the prototype name, prototype interface
declaration, and prototype definition:

PROTO <name> [<declaration>] { <definition> }

See A.2, General, for details on prototype statement grammar rules.

A prototype interface declaration consists of eventIn, eventOut, field, and exposedField declarations (see 4.7, Field,
eventIn, and eventOut semantics) enclosed in square brackets. Whitespace is not required before or after the
brackets.

EventIn declarations consist of the keyword "eventIn" followed by an event type and a name:

eventIn <eventType> <name>

EventOut declarations consist of the keyword "eventOut" followed by an event type and a name:

eventOut <eventType> <name>

Field and exposedField declarations consist of either the keyword "field" or "exposedField" followed by a field type,
a name, and an initial field value of the given field type.

field <fieldType> <name> <initial field value>

exposedField <fieldType> <name> <initial field value>

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

26

Field, eventIn, eventOut, and exposedField names shall be unique in each PROTO statement, but are not required to
be unique between different PROTO statements. If a PROTO statement contains an exposedField with a given name
(e.g., zzz), it shall not contain eventIns or eventOuts with the prefix set_ or the suffix _changed and the given name
(e.g., set_zzz or zzz_changed).

A prototype definition consists of at least one node statement and any number of ROUTE statements, PROTO
statements, and EXTERNPROTO statements in any order.

See 4.8, Prototype semantics, for a description of prototype semantics.

4.3.6 IS statement syntax

The body of a node statement that is inside a prototype definition may contain IS statements. An IS statement
consists of the name of a field, exposedField, eventIn or eventOut from the node's public interface followed by the
keyword IS followed by the name of a field, exposedField, eventIn or eventOut from the prototype's interface
declaration:

<field/eventName> IS <field/eventName>

See A.3, Nodes, for details on prototype node body grammar rules. See 4.8, Prototype semantics, for a description of
IS statement semantics.

4.3.7 EXTERNPROTO statement syntax

An EXTERNPROTO statement consists of the EXTERNPROTO keyword followed in order by the prototype's
name, its interface declaration, and a list (possibly empty) of double-quoted strings enclosed in square brackets. If
there is only one member of the list, the brackets are optional.

EXTERNPROTO <name> [<external declaration>] URL or [URLs]

See A.2, General, for details on external prototype statement grammar rules.

An EXTERNPROTO interface declaration is the same as a PROTO interface declaration, with the exception that
field and exposedField initial values are not specified and the prototype definition is specified in a separate VRML
file to which the URL(s) refer.

4.3.8 USE statement syntax

A USE statement consists of the USE keyword followed by a node name:

USE <name>

See A.2, General, for details on USE statement grammar rules.

4.3.9 ROUTE statement syntax

A ROUTE statement consists of the ROUTE keyword followed in order by a node name, a period character, a field
name, the TO keyword, a node name, a period character, and a field name. Whitespace is allowed but not required
before or after the period characters:

ROUTE <name>.<field/eventName> TO <name>.<field/eventName>

See A.2, General, for details on ROUTE statement grammar rules.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

27

4.4 Scene graph structure

4.4.1 Root nodes

A VRML file contains zero or more root nodes. The root nodes for a VRML file are those nodes defined by the node
statements or USE statements that are not contained in other node or PROTO statements. Root nodes shall be
children nodes (see 4.6.5, Grouping and children nodes).

4.4.2 Scene graph hierarchy

A VRML file contains a directed acyclic graph. Node statements can contain SFNode or MFNode field statements
that, in turn, contain node (or USE) statements. This hierarchy of nodes is called the scene graph. Each arc in the
graph from A to B means that node A has an SFNode or MFNode field whose value directly contains node B. See
E.[FOLE] for details on hierarchical scene graphs.

4.4.3 Descendant and ancestor nodes

The descendants of a node are all of the nodes in its SFNode or MFNode fields, as well as all of those nodes'
descendants. The ancestors of a node are all of the nodes that have the node as a descendant.

4.4.4 Transformation hierarchy

The transformation hierarchy includes all of the root nodes and root node descendants that are considered to have
one or more particular locations in the virtual world. VRML includes the notion of local coordinate systems, defined
in terms of transformations from ancestor coordinate systems (using Transform or Billboard nodes). The coordinate
system in which the root nodes are displayed is called the world coordinate system.

A VRML browser's task is to present a VRML file to the user; it does this by presenting the transformation
hierarchy to the user. The transformation hierarchy describes the directly perceptible parts of the virtual world.

The following node types are in the scene graph but not affected by the transformation hierarchy: ColorInterpolator,
CoordinateInterpolator, NavigationInfo, NormalInterpolator, OrientationInterpolator, PositionInterpolator, Script,
ScalarInterpolator, TimeSensor, and WorldInfo. Of these, only Script nodes may have descendants. A descendant of
a Script node is not part of the transformation hierarchy unless it is also the descendant of another node that is part
of the transformation hierarchy or is a root node.

Nodes that are descendants of LOD or Switch nodes are affected by the transformation hierarchy, even if the settings
of a Switch node's whichChoice field or the position of the viewer with respect to a LOD node makes them
imperceptible.

The transformation hierarchy shall be a directed acyclic graph; results are undefined if a node in the transformation
hierarchy is its own ancestor.

4.4.5 Standard units and coordinate system

ISO/IEC 14772 defines the unit of measure of the world coordinate system to be metres. All other coordinate
systems are built from transformations based from the world coordinate system. Table 4.2 lists standard units for
ISO/IEC 14772.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

28

Table 4.2 -- Standard units

Category Unit

Linear distance Metres

Angles Radians

Time Seconds

Colour space RGB ([0.,1.], [0.,1.], [0., 1.])

ISO/IEC 14772 uses a Cartesian, right-handed, three-dimensional coordinate system. By default, the viewer is on the
Z-axis looking down the -Z-axis toward the origin with +X to the right and +Y straight up. A modelling
transformation (see 6.52, Transform, and 6.6, Billboard) or viewing transformation (see 6.53, Viewpoint) can be
used to alter this default projection.

4.4.6 Run-time name scope

Each VRML file defines a run-time name scope that contains all of the root nodes of the file and all of the
descendent nodes of the root nodes, with the exception of:

a. descendent nodes that are inside Inline nodes;

b. descendent nodes that are inside a prototype instance and are not part of the prototype's interface (i.e., are
not in an SF/MFNode field or eventOut of the prototype).

Each Inline node and prototype instance also defines a run-time name scope, consisting of all of the root nodes of
the file referred to by the Inline node or all of the root nodes of the prototype definition, restricted as above.

Nodes created dynamically (using a Script node invoking the Browser.createVrml methods) are not part of any name
scope, until they are added to the scene graph, at which point they become part of the same name scope of their
parent node(s). A node may be part of more than one run-time name scope. A node shall be removed from a name
scope when it is removed from the scene graph.

4.5 VRML and the World Wide Web

4.5.1 File extension and MIME types

The file extension for VRML files is .wrl (for world).

The official MIME type for VRML files is defined as:

model/vrml

where the MIME major type for 3D data descriptions is model, and the minor type for VRML documents is
vrml.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

29

For compatibility with earlier versions of VRML, the following MIME type shall also be supported:

x-world/x-vrml

where the MIME major type is x-world, and the minor type for VRML documents is x-vrml.

See E.[MIME] for details.

4.5.2 URLs

A URL (Uniform Resource Locator), described in 2.[URL], specifies a file located on a particular server and
accessed through a specified protocol (e.g., http). In ISO/IEC 14772, the upper-case term URL refers to a Uniform
Resource Locator, while the italicized lower-case version url refers to a field which may contain URLs or in-line
encoded data.

All url fields are of type MFString. The strings in these fields indicate multiple locations to search for data in
decreasing order of preference. If the browser cannot locate or interpret the data specified by the first location, it
shall try the second and subsequent locations in order until a URL containing interpretable data is encountered. If no
interpretable URL's are located, the node type defines the resultant default behaviour. The url field entries are
delimited by double quotation marks " ". Due to 4.5.4, Scripting language protocols, url fields use a superset of the
standard URL syntax defined in 2.[URL]. Details on the string field are located in 5.9, SFString and MFString.

More general information on URLs is described in 2.[URL].

4.5.3 Relative URLs

Relative URLs are handled as described in 2.[RURL]. The base document for EXTERNPROTO statements or nodes
that contain URL fields is:

a. The VRML file in which the prototype is instantiated, if the statement is part of a prototype definition.

b. The file containing the script code, if the statement is part of a string passed to the createVrmlFromURL()
or createVrmlFromString() browser calls in a Script node.

c. Otherwise, the VRML file from which the statement is read, in which case the RURL information provides
the data itself.

4.5.4 Scripting language protocols

The Script node's url field may also support custom protocols for the various scripting languages. For example, a
script url prefixed with javascript: shall contain ECMAScript source, with line terminators allowed in the string.
The details of each language protocol are defined in the annex for each language. Browsers are not required to
support any specific scripting language. However, browsers shall adhere to the protocol defined in the corresponding
annex of ISO/IEC 14772 for any scripting language which is supported. The following example illustrates the use of
mixing custom protocols and standard protocols in a single url field (order of precedence determines priority):

 #VRML V2.0 utf8
 Script {
 url ["javascript: ...", # custom protocol ECMAScript
 "http://bar.com/foo.js", # std protocol ECMAScript
 "http://bar.com/foo.class"] # std protocol Java platform bytecode
 }

In the example above, the "..." represents in-line ECMAScript source code.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

30

4.6 Node semantics

4.6.1 Introduction

Each node has the following characteristics:

a. A type name. Examples include Box, Color, Group, Sphere, Sound, or SpotLight.

b. Zero or more fields that define how each node differs from other nodes of the same type. Field values
are stored in the VRML file along with the nodes, and encode the state of the virtual world.

c. A set of events that it can receive and send. Each node may receive zero or more different kinds of events
which will result in some change to the node's state. Each node may also generate zero or more different
kinds of events to report changes in the node's state.

d. An implementation. The implementation of each node defines how it reacts to events it can receive, when
it generates events, and its visual or auditory appearance in the virtual world (if any). The VRML standard
defines the semantics of built-in nodes (i.e., nodes with implementations that are provided by the VRML
browser). The PROTO statement may be used to define new types of nodes, with behaviours defined in
terms of the behaviours of other nodes.

e. A name. Nodes can be named. This is used by other statements to reference a specific instantiation of a
node.

4.6.2 DEF/USE semantics

A node given a name using the DEF keyword may be referenced by name later in the same file with USE or
ROUTE statements. The USE statement does not create a copy of the node. Instead, the same node is inserted into
the scene graph a second time, resulting in the node having multiple parents. Using an instance of a node multiple
times is called instantiation.

Node names are limited in scope to a single VRML file, prototype definition, or string submitted to either the
CreateVrmlFromString browser extension or a construction mechanism for SFNodes within a script. Given a node
named "NewNode" (i.e., DEF NewNode), any "USE NewNode" statements in SFNode or MFNode fields inside
NewNode's scope refer to NewNode (see 4.4.4, Transformation hierarchy, for restrictions on self-referential nodes).

If multiple nodes are given the same name, each USE statement refers to the closest node with the given name
preceding it in either the VRML file or prototype definition.

4.6.3 Shapes and geometry

4.6.3.1 Introduction

The Shape node associates a geometry node with nodes that define that geometry's appearance. Shape nodes shall be
part of the transformation hierarchy to have any visible result, and the transformation hierarchy shall contain Shape
nodes for any geometry to be visible (the only nodes that render visible results are Shape nodes and the Background
node). A Shape node contains exactly one geometry node in its geometry field. The following node types are
geometry nodes:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

31

• Box

• Cone

• Cylinder

• ElevationGrid

• Extrusion

• IndexedFaceSet

• IndexedLineSet

• PointSet

• Sphere

• Text

4.6.3.2 Geometric property nodes

Several geometry nodes contain Coordinate, Color, Normal, and TextureCoordinate as geometric property nodes.
The geometric property nodes are defined as individual nodes so that instancing and sharing is possible between
different geometry nodes.

4.6.3.3 Appearance nodes

Shape nodes may specify an Appearance node that describes the appearance properties (material and texture) to be
applied to the Shape's geometry. Nodes of the following type may be specified in the material field of the
Appearance node:

• Material

Nodes of the following types may be specified by the texture field of the Appearance node:

• ImageTexture

• PixelTexture

• MovieTexture

Nodes of the following types may be specified in the textureTransform field of the Appearance node:

• TextureTransform

The interaction between such appearance nodes and the Color node is described in 4.14, Lighting Model.

4.6.3.4 Shape hint fields

The Extrusion and IndexedFaceSet nodes each have three SFBool fields that provide hints about the geometry.
These hints specify the vertex ordering, if the shape is solid, and if the shape contains convex faces. These fields are
ccw, solid, and convex, respectively. The ElevationGrid node has the ccw and solid fields.

The ccw field defines the ordering of the vertex coordinates of the geometry with respect to user-given or
automatically generated normal vectors used in the lighting model equations. If ccw is TRUE, the normals shall
follow the right hand rule; the orientation of each normal with respect to the vertices (taken in order) shall be such
that the vertices appear to be oriented in a counterclockwise order when the vertices are viewed (in the local
coordinate system of the Shape) from the opposite direction as the normal. If ccw is FALSE, the normals shall be
oriented in the opposite direction. If normals are not generated but are supplied using a Normal node, and the
orientation of the normals does not match the setting of the ccw field, results are undefined.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

32

The solid field determines whether one or both sides of each polygon shall be displayed. If solid is FALSE, each
polygon shall be visible regardless of the viewing direction (i.e., no backface culling shall be done, and two-sided
lighting shall be performed to illuminate both sides of lit surfaces). If solid is TRUE, the visibility of each polygon
shall be determined as follows: Let V be the position of the viewer in the local coordinate system of the geometry.
Let N be the geometric normal vector of the polygon, and let P be any point (besides the local origin) in the plane
defined by the polygon's vertices. Then if (V dot N) - (N dot P) is greater than zero, the polygon shall be visible; if it
is less than or equal to zero, the polygon shall be invisible (backface culled).

The convex field indicates whether all polygons in the shape are convex (TRUE). A polygon is convex if it is planar,
does not intersect itself, and all of the interior angles at its vertices are less than 180 degrees. Non-planar and self-
intersecting polygons may produce undefined results even if the convex field is FALSE.

4.6.3.5 Crease angle field

The creaseAngle field, used by the ElevationGrid, Extrusion, and IndexedFaceSet nodes, affects how default
normals are generated. If the angle between the geometric normals of two adjacent faces is less than the crease
angle, normals shall be calculated so that the faces are smooth-shaded across the edge; otherwise, normals shall be
calculated so that a lighting discontinuity across the edge is produced. For example, a crease angle of 0.5 radians
means that an edge between two adjacent polygonal faces will be smooth shaded if the geometric normals of the two
faces form an angle that is less than 0.5 radians. Otherwise, the faces will appear faceted. Crease angles shall be
greater than or equal to 0.0.

4.6.4 Bounding boxes

Several of the nodes include a bounding box specification comprised of two fields, bboxSize and bboxCenter. A
bounding box is a rectangular parallelepiped of dimension bboxSize centred on the location bboxCenter in the local
coordinate system. This is typically used by grouping nodes to provide a hint to the browser on the group's
approximate size for culling optimizations. The default size for bounding boxes (-1, -1, -1) indicates that the user did
not specify the bounding box and the effect shall be as if the bounding box were infinitely large. A bboxSize value of
(0, 0, 0) is valid and represents a point in space (i.e., an infinitely small box). Specified bboxSize field values shall be
>= 0.0 or equal to (-1, -1, -1). The bboxCenter fields specify a position offset from the local coordinate system.

The bboxCenter and bboxSize fields may be used to specify a maximum possible bounding box for the objects inside
a grouping node (e.g., Transform). These are used as hints to optimize certain operations such as determining
whether or not the group needs to be drawn. The bounding box shall be large enough at all times to enclose the
union of the group's children's bounding boxes; it shall not include any transformations performed by the group
itself (i.e., the bounding box is defined in the local coordinate system of the children). Results are undefined if the
specified bounding box is smaller than the true bounding box of the group.

4.6.5 Grouping and children nodes

Grouping nodes have a field that contains a list of children nodes. Each grouping node defines a coordinate space for
its children. This coordinate space is relative to the coordinate space of the node of which the group node is a child.
Such a node is called a parent node. This means that transformations accumulate down the scene graph hierarchy.

The following node types are grouping nodes:

• Anchor

• Billboard

• Collision

• Group

• Inline

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

33

• LOD

• Switch

• Transform

The following node types are children nodes:

• Anchor

• Background

• Billboard

• Collision

• ColorInterpolator

• CoordinateInterpolator

• CylinderSensor

• DirectionalLight

• Fog

• Group

• Inline

• LOD

• NavigationInfo

• NormalInterpolator

• OrientationInterpolator

• PlaneSensor

• PointLight

• PositionInterpolator

• ProximitySensor

• ScalarInterpolator

• Script

• Shape

• Sound

• SpotLight

• SphereSensor

• Switch

• TimeSensor

• TouchSensor

• Transform

• Viewpoint

• VisibilitySensor

• WorldInfo

The following node types are not valid as children nodes:

• Appearance

• AudioClip

• Box

• Color

• Cone

• Coordinate

• Cylinder

• ElevationGrid

• Extrusion

• ImageTexture

• IndexedFaceSet

• IndexedLineSet

• Material

• MovieTexture

• Normal

• PointSet

• Sphere

• Text

• TextureCoordinate

• TextureTransform

All grouping nodes except Inline, LOD, and Switch also have addChildren and removeChildren eventIn definitions.
The addChildren event appends nodes to the grouping node's children field. Any nodes passed to the addChildren
event that are already in the group's children list are ignored. For example, if the children field contains the nodes Q,
L and S (in order) and the group receives an addChildren eventIn containing (in order) nodes A, L, and Z, the result
is a children field containing (in order) nodes Q, L, S, A, and Z.

The removeChildren event removes nodes from the grouping node's children field. Any nodes in the
removeChildren event that are not in the grouping node's children list are ignored. If the children field contains the
nodes Q, L, S, A and Z and it receives a removeChildren eventIn containing nodes A, L, and Z, the result is Q, S.

Note that a variety of node types reference other node types through fields. Some of these are parent-child
relationships, while others are not (there are node-specific semantics). Table 4.3 lists all node types that reference
other nodes through fields.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

34

Table 4.3 -- Nodes with SFNode or MFNode fields

Node Type Field Valid Node Types for Field

Anchor children Valid children nodes

Appearance material Material

texture ImageTexture, MovieTexture, Pixel Texture

Billboard children Valid children nodes

Collision children Valid children nodes

ElevationGrid color Color

normal Normal

texCoord TextureCoordinate

Group children Valid children nodes

IndexedFaceSet color Color

coord Coordinate

normal Normal

texCoord TextureCoordinate

IndexedLineSet color Color

coord Coordinate

LOD level Valid children nodes

Shape appearance Appearance

geometry Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere, Text

Sound source AudioClip, MovieTexture

Switch choice Valid children nodes

Text fontStyle FontStyle

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

35

Transform children Valid children nodes

4.6.6 Light sources

Shape nodes are illuminated by the sum of all of the lights in the world that affect them. This includes the
contribution of both the direct and ambient illumination from light sources. Ambient illumination results from the
scattering and reflection of light originally emitted directly by light sources. The amount of ambient light is
associated with the individual lights in the scene. This is a gross approximation to how ambient reflection actually
occurs in nature.

The following node types are light source nodes:

• DirectionalLight

• PointLight

• SpotLight

All light source nodes contain an intensity, a color, and an ambientIntensity field. The intensity field specifies the
brightness of the direct emission from the light, and the ambientIntensity specifies the intensity of the ambient
emission from the light. Light intensity may range from 0.0 (no light emission) to 1.0 (full intensity). The color field
specifies the spectral colour properties of both the direct and ambient light emission as an RGB value.

PointLight and SpotLight illuminate all objects in the world that fall within their volume of lighting influence
regardless of location within the transformation hierarchy. PointLight defines this volume of influence as a sphere
centred at the light (defined by a radius). SpotLight defines the volume of influence as a solid angle defined by a
radius and a cutoff angle. DirectionalLight nodes illuminate only the objects descended from the light's parent
grouping node, including any descendent children of the parent grouping nodes.

4.6.7 Sensor nodes

4.6.7.1 Introduction to sensors

The following node types are sensor nodes:

• Anchor

• Collision

• CylinderSensor

• PlaneSensor

• ProximitySensor

• SphereSensor

• TimeSensor

• TouchSensor

• VisibilitySensor

Sensors are children nodes in the hierarchy and therefore may be parented by grouping nodes as described in
4.6.5, Grouping and children nodes.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

36

Each type of sensor defines when an event is generated. The state of the scene graph after several sensors have
generated events shall be as if each event is processed separately, in order. If sensors generate events at the same
time, the state of the scene graph will be undefined if the results depend on the ordering of the events.

It is possible to create dependencies between various types of sensors. For example, a TouchSensor may result in a
change to a VisibilitySensor node's transformation, which in turn may cause the VisibilitySensor node's visibility
status to change.

The following two sections classify sensors into two categories: environmental sensors and pointing-device sensors.

4.6.7.2 Environmental sensors

The following node types are environmental sensors:

• Collision

• ProximitySensor

• TimeSensor

• VisibilitySensor

The ProximitySensor detects when the user navigates into a specified region in the world. The ProximitySensor
itself is not visible. The TimeSensor is a clock that has no geometry or location associated with it; it is used to start
and stop time-based nodes such as interpolators. The VisibilitySensor detects when a specific part of the world
becomes visible to the user. The Collision grouping node detects when the user collides with objects in the virtual
world. Proximity, time, collision, and visibility sensors are each processed independently of whether others exist or
overlap.

When environmental sensors are inserted into the transformation hierarchy and before the presentation is updated
(i.e., read from file or created by a script), they shall generate events indicating any conditions which the sensor is
intended to detect (see 4.10.3, Execution model). The conditions for individual sensor types to generate these initial
events are defined in the individual node specifications in 6, Node reference.

4.6.7.3 Pointing-device sensors

Pointing-device sensors detect user pointing events such as the user clicking on a piece of geometry
(i.e., TouchSensor). The following node types are pointing-device sensors:

• Anchor

• CylinderSensor

• PlaneSensor

• SphereSensor

• TouchSensor

A pointing-device sensor is activated when the user locates the pointing device over geometry that is influenced by
that specific pointing-device sensor. Pointing-device sensors have influence over all geometry that is descended
from the sensor's parent groups. In the case of the Anchor node, the Anchor node itself is considered to be the parent
group. Typically, the pointing-device sensor is a sibling to the geometry that it influences. In other cases, the sensor
is a sibling to groups which contain geometry (i.e., are influenced by the pointing-device sensor).

The appearance properties of the geometry do not affect activation of the sensor. In particular, transparent materials
or textures shall be treated as opaque with respect to activation of pointing-device sensors.

For a given user activation, the lowest enabled pointing-device sensor in the hierarchy is activated. All other
pointing-device sensors above the lowest enabled pointing-device sensor are ignored. The hierarchy is defined by

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

37

the geometry node over which the pointing-device sensor is located and the entire hierarchy upward. If there are
multiple pointing-device sensors tied for lowest, each of these is activated simultaneously and independently,
possibly resulting in multiple sensors activating and generating output simultaneously. This feature allows
combinations of pointing-device sensors (e.g., TouchSensor and PlaneSensor). If a pointing-device sensor appears in
the transformation hierarchy multiple times (DEF/USE), it shall be tested for activation in all of the coordinate
systems in which it appears.

If a pointing-device sensor is not enabled when the pointing-device button is activated, it will not generate events
related to the pointing device until after the pointing device is deactivated and the sensor is enabled (i.e., enabling a
sensor in the middle of dragging does not result in the sensor activating immediately).

The Anchor node is considered to be a pointing-device sensor when trying to determine which sensor (or Anchor
node) to activate. For example, a click on Shape3 is handled by SensorD, a click on Shape2 is handled by SensorC
and the AnchorA, and a click on Shape1 is handled by SensorA and SensorB:

 Group {
 children [
 DEF Shape1 Shape { ... }
 DEF SensorA TouchSensor { ... }
 DEF SensorB PlaneSensor { ... }
 DEF AnchorA Anchor {
 url "..."
 children [
 DEF Shape2 Shape { ... }
 DEF SensorC TouchSensor { ... }
 Group {
 children [
 DEF Shape3 Shape { ... }
 DEF SensorD TouchSensor { ... }
]
 }
]
 }
]
 }

4.6.7.4 Drag sensors

Drag sensors are a subset of pointing-device sensors. There are three types of drag sensors: CylinderSensor,
PlaneSensor, and SphereSensor. Drag sensors have two eventOuts in common, trackPoint_changed and
<value>_changed. These eventOuts send events for each movement of the activated pointing device according to
their "virtual geometry" (e.g., cylinder for CylinderSensor). The trackPoint_changed eventOut sends the intersection
point of the bearing with the drag sensor's virtual geometry. The <value>_changed eventOut sends the sum of the
relative change since activation plus the sensor's offset field. The type and name of <value>_changed depends on
the drag sensor type: rotation_changed for CylinderSensor, translation_changed for PlaneSensor, and
rotation_changed for SphereSensor.

To simplify the application of these sensors, each node has an offset and an autoOffset exposed field. When the
sensor generates events as a response to the activated pointing device motion, <value>_changed sends the sum of
the relative change since the initial activation plus the offset field value. If autoOffset is TRUE when the pointing-
device is deactivated, the offset field is set to the sensor's last <value>_changed value and offset sends an
offset_changed eventOut. This enables subsequent grabbing operations to accumulate the changes. If autoOffset is
FALSE, the sensor does not set the offset field value at deactivation (or any other time).

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

38

4.6.7.5 Activating and manipulating sensors

The pointing device controls a pointer in the virtual world. While activated by the pointing device, a sensor will
generate events as the pointer moves. Typically the pointing device may be categorized as either 2D (e.g.,
conventional mouse) or 3D (e.g., wand). It is suggested that the pointer controlled by a 2D device is mapped onto a
plane a fixed distance from the viewer and perpendicular to the line of sight. The mapping of a 3D device may
describe a 1:1 relationship between movement of the pointing device and movement of the pointer.

The position of the pointer defines a bearing which is used to determine which geometry is being indicated. When
implementing a 2D pointing device it is suggested that the bearing is defined by the vector from the viewer position
through the location of the pointer. When implementing a 3D pointing device it is suggested that the bearing is
defined by extending a vector from the current position of the pointer in the direction indicated by the pointer.

In all cases the pointer is considered to be indicating a specific geometry when that geometry is intersected by the
bearing. If the bearing intersects multiple sensors' geometries, only the sensor nearest to the pointer will be eligible
for activation.

4.6.8 Interpolator nodes

Interpolator nodes are designed for linear keyframed animation. An interpolator node defines a piecewise-linear
function, f(t), on the interval (-infinity, +infinity). The piecewise-linear function is defined by n values of t, called
key, and the n corresponding values of f(t), called keyValue. The keys shall be monotonically non-decreasing,
otherwise the results are undefined. The keys are not restricted to any interval.

An interpolator node evaluates f(t) given any value of t (via the set_fraction eventIn) as follows: Let the n keys t0,
t1, t2, ..., tn-1 partition the domain (-infinity, +infinity) into the n+1 subintervals given by (-infinity, t0), [t0, t1), [t1, t2),
... , [tn-1, +infinity). Also, let the n values v0, v1, v2, ..., vn-1 be the values of f(t) at the associated key values. The
piecewise-linear interpolating function, f(t), is defined to be

 f(t) = v0, if t <= t0,
 = vn-1, if t >= tn-1,
 = linterp(t, vi, vi+1), if ti <= t <= ti+1

 where linterp(t,x,y) is the linear interpolant,
i belongs to {0,1,..., n-2}.

The third conditional value of f(t) allows the defining of multiple values for a single key, (i.e., limits from both the
left and right at a discontinuity in f(t)). The first specified value is used as the limit of f(t) from the left, and the last
specified value is used as the limit of f(t) from the right. The value of f(t) at a multiply defined key is indeterminate,
but should be one of the associated limit values.

The following node types are interpolator nodes, each based on the type of value that is interpolated:

• ColorInterpolator

• CoordinateInterpolator

• NormalInterpolator

• OrientationInterpolator

• PositionInterpolator

• ScalarInterpolator

All interpolator nodes share a common set of fields and semantics:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

39

 eventIn SFFloat set_fraction
 exposedField MFFloat key [...]
 exposedField MF<type> keyValue [...]
 eventOut [S|M]F<type> value_changed

The type of the keyValue field is dependent on the type of the interpolator (e.g., the ColorInterpolator's keyValue
field is of type MFColor).

The set_fraction eventIn receives an SFFloat event and causes the interpolator function to evaluate, resulting in a
value_changed eventOut with the same timestamp as the set_fraction event.

ColorInterpolator, OrientationInterpolator, PositionInterpolator, and ScalarInterpolator output a single-value field to
value_changed. Each value in the keyValue field corresponds in order to the parameter value in the key field. Results
are undefined if the number of values in the key field of an interpolator is not the same as the number of values in
the keyValue field.

CoordinateInterpolator and NormalInterpolator send multiple-value results to value_changed. In this case, the
keyValue field is an n x m array of values, where n is the number of values in the key field and m is the number of
values at each keyframe. Each m values in the keyValue field correspond, in order, to a parameter value in the key
field. Each value_changed event shall contain m interpolated values. Results are undefined if the number of values
in the keyValue field divided by the number of values in the key field is not a positive integer.

If an interpolator node's value eventOut is read before it receives any inputs, keyValue[0] is returned if keyValue is
not empty. If keyValue is empty (i.e., []), the initial value for the eventOut type is returned (e.g., (0, 0, 0) for
SFVec3f); see 5, Field and event reference, for initial event values.

The location of an interpolator node in the transformation hierarchy has no effect on its operation. For example, if a
parent of an interpolator node is a Switch node with whichChoice set to -1 (i.e., ignore its children), the interpolator
continues to operate as specified (receives and sends events).

4.6.9 Time-dependent nodes

AudioClip, MovieTexture, and TimeSensor are time-dependent nodes that activate and deactivate themselves at
specified times. Each of these nodes contains the exposedFields: startTime, stopTime, and loop, and the eventOut:
isActive. The values of the exposedFields are used to determine when the node becomes active or inactive Also,
under certain conditions, these nodes ignore events to some of their exposedFields. A node ignores an eventIn by not
accepting the new value and not generating an eventOut_changed event. In this subclause, an abstract time-
dependent node can be any one of AudioClip, MovieTexture, or TimeSensor.

Time-dependent nodes can execute for 0 or more cycles. A cycle is defined by field data within the node. If, at the
end of a cycle, the value of loop is FALSE, execution is terminated (see below for events at termination).
Conversely, if loop is TRUE at the end of a cycle, a time-dependent node continues execution into the next cycle. A
time-dependent node with loop TRUE at the end of every cycle continues cycling forever if startTime >= stopTime,
or until stopTime if startTime < stopTime.

A time-dependent node generates an isActive TRUE event when it becomes active and generates an isActive FALSE
event when it becomes inactive. These are the only times at which an isActive event is generated. In particular,
isActive events are not sent at each tick of a simulation.

A time-dependent node is inactive until its startTime is reached. When time now becomes greater than or equal to
startTime, an isActive TRUE event is generated and the time-dependent node becomes active (now refers to the time
at which the browser is simulating and displaying the virtual world). When a time-dependent node is read from a
VRML file and the ROUTEs specified within the VRML file have been established, the node should determine if it
is active and, if so, generate an isActive TRUE event and begin generating any other necessary events. However, if a
node would have become inactive at any time before the reading of the VRML file, no events are generated upon the
completion of the read.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

40

An active time-dependent node will become inactive when stopTime is reached if stopTime > startTime. The value
of stopTime is ignored if stopTime <= startTime. Also, an active time-dependent node will become inactive at the
end of the current cycle if loop is FALSE. If an active time-dependent node receives a set_loop FALSE event,
execution continues until the end of the current cycle or until stopTime (if stopTime > startTime), whichever occurs
first. The termination at the end of cycle can be overridden by a subsequent set_loop TRUE event.

Any set_startTime events to an active time-dependent node are ignored. Any set_stopTime event where stopTime <=
startTime sent to an active time-dependent node is also ignored. A set_stopTime event where
startTime < stopTime <= now sent to an active time-dependent node results in events being generated as if stopTime
has just been reached. That is, final events, including an isActive FALSE, are generated and the node becomes
inactive. The stopTime_changed event will have the set_stopTime value. Other final events are node-dependent
(c.f., TimeSensor).

A time-dependent node may be restarted while it is active by sending a set_stopTime event equal to the current time
(which will cause the node to become inactive) and a set_startTime event, setting it to the current time or any time in
the future. These events will have the same time stamp and should be processed as set_stopTime, then set_startTime
to produce the correct behaviour.

The default values for each of the time-dependent nodes are specified such that any node with default values is
already inactive (and, therefore, will generate no events upon loading). A time-dependent node can be defined such
that it will be active upon reading by specifying loop TRUE. This use of a non-terminating time-dependent node
should be used with caution since it incurs continuous overhead on the simulation.

Figure 4.2 illustrates the behavior of several common cases of time-dependent nodes. In each case, the initial
conditions of startTime, stopTime, loop, and the time-dependent node's cycle interval are labelled, the red region
denotes the time period during which the time-dependent node is active, the arrows represent eventIns received by
and eventOuts sent by the time-dependent node, and the horizontal axis represents time.

4.6.10 Bindable children nodes

The Background, Fog, NavigationInfo, and Viewpoint nodes have the unique behaviour that only one of each type
can be bound (i.e., affecting the user's experience) at any instant in time. The browser shall maintain an independent,
separate stack for each type of bindable node. Each of these nodes includes a set_bind eventIn and an isBound
eventOut. The set_bind eventIn is used to move a given node to and from its respective top of stack. A TRUE value
sent to the set_bind eventIn moves the node to the top of the stack; sending a FALSE value removes it from the
stack. The isBound event is output when a given node is:

a. moved to the top of the stack;

b. removed from the top of the stack;

c. pushed down from the top of the stack by another node being placed on top.

That is, isBound events are sent when a given node becomes, or ceases to be, the active node. The node at the top of
stack, (the most recently bound node), is the active node for its type and is used by the browser to set the world state.
If the stack is empty (i.e., either the VRML file has no bindable nodes for a given type or the stack has been popped
until empty), the default field values for that node type are used to set world state. The results are undefined if a
multiply instanced (DEF/USE) bindable node is bound.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

41

Figure 4.2 -- Examples of time-dependent node execution

The following rules describe the behaviour of the binding stack for a node of type <bindable node>, (Background,
Fog, NavigationInfo, or Viewpoint):

a. During read, the first encountered <bindable node> is bound by pushing it to the top of the <bindable
node> stack. Nodes contained within Inlines, within the strings passed to the
Browser.createVrmlFromString() method, or within VRML files passed to the
Browser.createVrmlFromURL() method (see 4.12.10, Browser script interface)are not candidates for the
first encountered <bindable node>. The first node within a prototype instance is a valid candidate for the
first encountered <bindable node>. The first encountered <bindable node> sends an isBound TRUE event.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

42

b. When a set_bind TRUE event is received by a <bindable node>,

1. If it is not on the top of the stack: the current top of stack node sends an isBound FALSE event.
The new node is moved to the top of the stack and becomes the currently bound <bindable node>.
The new <bindable node> (top of stack) sends an isBound TRUE event.

2. If the node is already at the top of the stack, this event has no effect.

c. When a set_bind FALSE event is received by a <bindable node> in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends an isBound FALSE event;

2. the next node in the stack becomes the currently bound <bindable node> (i.e., pop) and issues an
isBound TRUE event.

d. If a set_bind FALSE event is received by a node not in the stack, the event is ignored and isBound events
are not sent.

e. When a node replaces another node at the top of the stack, the isBound TRUE and FALSE eventOuts from
the two nodes are sent simultaneously (i.e., with identical timestamps).

f. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see f above).

4.6.11 Texture maps

4.6.11.1 Texture map formats

Four node types specify texture maps: Background, ImageTexture, MovieTexture, and PixelTexture. In all cases,
texture maps are defined by 2D images that contain an array of colour values describing the texture. The texture map
values are interpreted differently depending on the number of components in the texture map and the specifics of the
image format. In general, texture maps may be described using one of the following forms:

a. Intensity textures (one-component)

b. Intensity plus alpha opacity textures (two-component)

c. Full RGB textures (three-component)

d. Full RGB plus alpha opacity textures (four-component)

Note that most image formats specify an alpha opacity, not transparency (where alpha = 1 - transparency).

See Table 4.5 and Table 4.6 for a description of how the various texture types are applied.

4.6.11.2 Texture map image formats

Texture nodes that require support for the PNG (see 2.[PNG]) image format (6.5, Background, and
6.22, ImageTexture) shall interpret the PNG pixel formats in the following way:

a. Greyscale pixels without alpha or simple transparency are treated as intensity textures.

b. Greyscale pixels with alpha or simple transparency are treated as intensity plus alpha textures.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

43

c. RGB pixels without alpha channel or simple transparency are treated as full RGB textures.

d. RGB pixels with alpha channel or simple transparency are treated as full RGB plus alpha textures.

If the image specifies colours as indexed-colour (i.e., palettes or colourmaps), the following semantics should be
used (note that `greyscale' refers to a palette entry with equal red, green, and blue values):

a. If all the colours in the palette are greyscale and there is no transparency chunk, it is treated as an intensity
texture.

b. If all the colours in the palette are greyscale and there is a transparency chunk, it is treated as an intensity
plus opacity texture.

c. If any colour in the palette is not grey and there is no transparency chunk, it is treated as a full RGB texture.

d. If any colour in the palette is not grey and there is a transparency chunk, it is treated as a full RGB plus
alpha texture.

Texture nodes that require support for JPEG files (see 2.[JPEG], 6.5, Background, and 6.22, ImageTexture) shall
interpret JPEG files as follows:

i. Greyscale files (number of components equals 1) are treated as intensity textures.

j. YCbCr files are treated as full RGB textures.

k. No other JPEG file types are required. It is recommended that other JPEG files are treated as a full RGB
textures.

Texture nodes that support MPEG files (see 2.[MPEG] and 6.28, MovieTexture) shall treat MPEG files as full RGB
textures.

Texture nodes that recommend support for GIF files (see E.[GIF], 6.5, Background, and 6.22, ImageTexture) shall
follow the applicable semantics described above for the PNG format.

4.7 Field, eventIn, and eventOut semantics
Fields are placed inside node statements in a VRML file, and define the persistent state of the virtual world. Results
are undefined if multiple values for the same field in the same node (e.g., Sphere { radius 1.0 radius
2.0 }) are declared.

EventIns and eventOuts define the types and names of events that each type of node may receive or generate. Events
are transient and event values are not written to VRML files. Each node interprets the values of the events sent to it
or generated by it according to its implementation.

Field, eventIn, and eventOut types, and field encoding syntax, are described in 5, Field and event reference.

An exposedField can receive events like an eventIn, can generate events like an eventOut, and can be stored in
VRML files like a field. An exposedField named zzz can be referred to as 'set_zzz' and treated as an eventIn, and can
be referred to as 'zzz_changed' and treated as an eventOut. The initial value of an exposedField is its value in the
VRML file, or the default value for the node in which it is contained, if a value is not specified. When an
exposedField receives an event it shall generate an event with the same value and timestamp. The following sources,
in precedence order, shall be used to determine the initial value of the exposedField:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

44

a. the user-defined value in the instantiation (if one is specified);

b. the default value for that field as specified in the node or prototype definition.

The rules for naming fields, exposedFields, eventOuts, and eventIns for the built-in nodes are as follows:

c. All names containing multiple words start with a lower case letter, and the first letter of all subsequent
words is capitalized (e.g., addChildren), with the exception of set_ and _changed, as described below.

d. All eventIns have the prefix "set_", with the exception of the addChildren and removeChildren eventIns.

e. Certain eventIns and eventOuts of type SFTime do not use the "set_" prefix or "_changed" suffix.

f. All other eventOuts have the suffix "_changed" appended, with the exception of eventOuts of type SFBool.
Boolean eventOuts begin with the word "is" (e.g., isFoo) for better readability.

4.8 Prototype semantics

4.8.1 Introduction

The PROTO statement defines a new node type in terms of already defined (built-in or prototyped) node types. Once
defined, prototyped node types may be instantiated in the scene graph exactly like the built-in node types.

Node type names shall be unique in each VRML file. The results are undefined if a prototype is given the same
name as a built-in node type or a previously defined prototype in the same scope.

4.8.2 PROTO interface declaration semantics

The prototype interface defines the fields, eventIns, and eventOuts for the new node type. The interface declaration
includes the types and names for the eventIns and eventOuts of the prototype, as well as the types, names, and
default values for the prototype's fields.

The interface declaration may contain exposedField declarations, which are a convenient way of defining a field,
eventIn, and eventOut at the same time. If an exposedField named zzz is declared, it is equivalent to declaring a field
named zzz, an eventIn named set_zzz, and an eventOut named zzz_changed.

Each prototype instance can be considered to be a complete copy of the prototype, with its own fields, events, and
copy of the prototype definition. A prototyped node type is instantiated using standard node syntax. For example,
the following prototype (which has an empty interface declaration):

PROTO Cube [] { Box { } }

may be instantiated as follows:

Shape { geometry Cube { } }

It is recommended that user-defined field or event names defined in PROTO interface declarations statements follow
the naming conventions described in 4.7, Field, eventIn, and eventOut semantics.

If an eventOut in the prototype declaration is associated with an exposedField in the prototype definition, the initial
value of the eventOut shall be the initial value of the exposedField. If the eventOut is associated with multiple
exposedFields, the results are undefined.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

45

4.8.3 PROTO definition semantics

A prototype definition consists of one or more nodes, nested PROTO statements, and ROUTE statements. The first
node type determines how instantiations of the prototype can be used in a VRML file. An instantiation is created by
filling in the parameters of the prototype declaration and inserting copies of the first node (and its scene graph)
wherever the prototype instantiation occurs. For example, if the first node in the prototype definition is a Material
node, instantiations of the prototype can be used wherever a Material node can be used. Any other nodes and
accompanying scene graphs are not part of the transformation hierarchy, but may be referenced by ROUTE
statements or Script nodes in the prototype definition.

Nodes in the prototype definition may have their fields, eventIns, or eventOuts associated with the fields, eventIns,
and eventOuts of the prototype interface declaration. This is accomplished using IS statements in the body of the
node. When prototype instances are read from a VRML file, field values for the fields of the prototype interface may
be given. If given, the field values are used for all nodes in the prototype definition that have IS statements for those
fields. Similarly, when a prototype instance is sent an event, the event is delivered to all nodes that have IS
statements for that event. When a node in a prototype instance generates an event that has an IS statement, the event
is sent to any eventIns connected (via ROUTE) to the prototype instance's eventOut.

IS statements may appear inside the prototype definition wherever fields may appear. IS statements shall refer to
fields or events defined in the prototype declaration. Results are undefined if an IS statement refers to a non-existent
declaration. Results are undefined if the type of the field or event being associated by the IS statement does not
match the type declared in the prototype's interface declaration. For example, it is illegal to associate an SFColor
with an SFVec3f. It is also illegal to associate an SFColor with an MFColor or vice versa.

Results are undefined if an IS statement:

• eventIn is associated with a field or an eventOut;

• eventOut is associated with a field or eventIn;

• field is associated with an eventIn or eventOut.

An exposedField in the prototype interface may be associated only with an exposedField in the prototype definition,
but an exposedField in the prototype definition may be associated with either a field, eventIn, eventOut or
exposedField in the prototype interface. When associating an exposedField in a prototype definition with an eventIn
or eventOut in the prototype declaration, it is valid to use either the shorthand exposedField name (e.g., translation)
or the explicit event name (e.g., set_translation or translation_changed). Table 4.4 defines the rules for mapping
between the prototype declarations and the primary scene graph's nodes (yes denotes a legal mapping, no denotes an
error).

Table 4.4 -- Rules for mapping PROTOTYPE declarations to node instances

 Prototype declaration

exposedField field eventIn eventOut

exposedField yes yes yes yes

field no yes no no

eventIn no no yes no

Prototype

definition

eventOut no no no yes

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

46

Results are undefined if a field, eventIn, or eventOut of a node in the prototype definition is associated with more
than one field, eventIn, or eventOut in the prototype's interface (i.e., multiple IS statements for a field, eventIn, and
eventOut in a node in the prototype definition), but multiple IS statements for the fields, eventIns, and eventOuts in
the prototype interface declaration is valid. Results are undefined if a field of a node in a prototype definition is both
defined with initial values (i.e., field statement) and associated by an IS statement with a field in the prototype's
interface. If a prototype interface has an eventOut E associated with multiple eventOuts in the prototype definition
ED i , the value of E is the value of the eventOut that generated the event with the greatest timestamp. If two or more
of the eventOuts generated events with identical timestamps, results are undefined.

4.8.4 Prototype scoping rules

Prototype definitions appearing inside a prototype definition (i.e., nested) are local to the enclosing prototype. IS
statements inside a nested prototype's implementation may refer to the prototype declarations of the innermost
prototype.

A PROTO statement establishes a DEF/USE name scope separate from the rest of the scene and separate from any
nested PROTO statements. Nodes given a name by a DEF construct inside the prototype may not be referenced in a
USE construct outside of the prototype's scope. Nodes given a name by a DEF construct outside the prototype scope
may not be referenced in a USE construct inside the prototype scope.

A prototype may be instantiated in a file anywhere after the completion of the prototype definition. A prototype may
not be instantiated inside its own implementation (i.e., recursive prototypes are illegal).

4.9 External prototype semantics

4.9.1 Introduction

The EXTERNPROTO statement defines a new node type. It is equivalent to the PROTO statement, with two
exceptions. First, the implementation of the node type is stored externally, either in a VRML file containing an
appropriate PROTO statement or using some other implementation-dependent mechanism. Second, default values
for fields are not given since the implementation will define appropriate defaults.

4.9.2 EXTERNPROTO interface semantics

The semantics of the EXTERNPROTO are exactly the same as for a PROTO statement, except that default field and
exposedField values are not specified locally. In addition, events sent to an instance of an externally prototyped node
may be ignored until the implementation of the node is found.

Until the definition has been loaded, the browser shall determine the initial value of exposedFields using the
following rules (in order of precedence):

a. the user-defined value in the instantiation (if one is specified);

b. the default value for that field type.

For eventOuts, the initial value on startup will be the default value for that field type. During the loading of an
EXTERNPROTO, if an initial value of an eventOut is found, that value is applied to the eventOut and no event is
generated.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

47

The names and types of the fields, exposedFields, eventIns, and eventOuts of the interface declaration shall be a
subset of those defined in the implementation. Declaring a field or event with a non-matching name is an error, as is
declaring a field or event with a matching name but a different type.

It is recommended that user-defined field or event names defined in EXTERNPROTO interface statements follow
the naming conventions described in 4.7, Field, eventIn, and eventOut semantics.

4.9.3 EXTERNPROTO URL semantics

The string or strings specified after the interface declaration give the location of the prototype's implementation. If
multiple strings are specified, the browser searches in the order of preference (see 4.5.2, URLs).

If a URL in an EXTERNPROTO statement refers to a VRML file, the first PROTO statement found in the VRML
file (excluding EXTERNPROTOs) is used to define the external prototype's definition. The name of that prototype
does not need to match the name given in the EXTERNPROTO statement. Results are undefined if a URL in an
EXTERNPROTO statement refers to a non-VRML file

To enable the creation of libraries of reusable PROTO definitions, browsers shall recognize EXTERNPROTO URLs
that end with "#name" to mean the PROTO statement for "name" in the given VRML file. For example, a library of
standard materials might be stored in a VRML file called "materials.wrl" that looks like:

 #VRML V2.0 utf8
 PROTO Gold [] { Material { ... } }
 PROTO Silver [] { Material { ... } }
 ...etc.

A material from this library could be used as follows:

 #VRML V2.0 utf8
 EXTERNPROTO GoldFromLibrary [] "http://.../materials.wrl#Gold"
 ...
 Shape {
 appearance Appearance { material GoldFromLibrary {} }
 geometry ...
 }
 ...

4.10 Event processing

4.10.1 Introduction

Most node types have at least one eventIn definition and thus can receive events. Incoming events are data messages
sent by other nodes to change some state within the receiving node. Some nodes also have eventOut definitions.
These are used to send data messages to destination nodes that some state has changed within the source node.

If an eventOut is read before it has sent any events, the initial value as specified in 5, Field and event reference, for
each field/event type is returned.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

48

4.10.2 Route semantics

The connection between the node generating the event and the node receiving the event is called a route. Routes are
not nodes. The ROUTE statement is a construct for establishing event paths between nodes. ROUTE statements may
either appear at the top level of a VRML file, in a prototype definition, or inside a node wherever fields may appear.
Nodes referenced in a ROUTE statement shall be defined before the ROUTE statement.

The types of the eventIn and the eventOut shall match exactly. For example, it is illegal to route from an SFFloat to
an SFInt32 or from an SFFloat to an MFFloat.

Routes may be established only from eventOuts to eventIns. For convenience, when routing to or from an eventIn or
eventOut (or the eventIn or eventOut part of an exposedField), the set_ or _changed part of the event's name is
optional. If the browser is trying to establish a ROUTE to an eventIn named zzz and an eventIn of that name is not
found, the browser shall then try to establish the ROUTE to the eventIn named set_zzz. Similarly, if establishing a
ROUTE from an eventOut named zzz and an eventOut of that name is not found, the browser shall try to establish
the ROUTE from zzz_changed.

Redundant routing is ignored. If a VRML file repeats a routing path, the second and subsequent identical routes are
ignored. This also applies for routes created dynamically via a scripting language supported by the browser.

4.10.3 Execution model

Once a sensor or Script has generated an initial event, the event is propagated from the eventOut producing the event
along any ROUTEs to other nodes. These other nodes may respond by generating additional events, continuing until
all routes have been honoured. This process is called an event cascade. All events generated during a given event
cascade are assigned the same timestamp as the initial event, since all are considered to happen instantaneously.

Some sensors generate multiple events simultaneously. Similarly, it is possible that asynchronously generated events
could arrive at the identical time as one or more sensor generated event. In these cases, all events generated are part
of the same initial event cascade and each event has the same timestamp.

After all events of the initial event cascade are honored, post-event processing performs actions stimulated by the
event cascade. The entire sequence of events occuring in a single timestamp are:

a. Perform event cascade evaluation.

b. Call shutdown() on scripts that have received set_url events or are being removed from the scene.

c. Send final events from environmental sensors being removed from the transformation hierarchy.

d. Add or remove routes specified in addRoute() or deleteRoute() from any script execution in the
preceeding event cascade.

e. Call eventsProcessed() for scripts that have sent events in the just ended event cascade.

f. Send initial events from any dynamically created environmental sensors.

g. Call initialize() of newly loaded script code.

h. If any events were generated from steps 2 through 7, go to step 2 and continue.

Figure 4.3 provides a conceptual illustration of the execution model.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

49

Figure 4.3 -- Conceptual execution model

Nodes that contain eventOuts or exposedFields shall produce at most one event per timestamp. If a field is
connected to another field via a ROUTE, an implementation shall send only one event per ROUTE per timestamp.
This also applies to scripts where the rules for determining the appropriate action for sending eventOuts are defined
in 4.12.9.3, Sending eventOuts.

D.19, Execution model, provides an example that demonstrates the execution model. Figure 4.4 illustrates event
processing for a single timestamp in example in D.19, Execution model:

Figure 4.4 -- Example D.19, event processing order

In Figure 4.4, arrows coming out of a script at ep are events generated during the eventsProcessed() call for the
script. The other arrows are events sent during an eventIn method. One possible compliant order of execution is as
follows:

i. User activates TouchSensor

j. Run initial event cascade (step 1)

1. Script 1 runs, generates an event for Script 2

2. Script 2 runs

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

50

3. end of initial event cascade

k. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 1 runs, sends event to Script 3

2. Script 3 runs, generates events for Script 5

3. Script 5 runs

4. eventsProcessed for Script 2 runs, sends events to Script 4

5. Script 4 runs

6. end of eventsProcessed processing

l. Go to step 2 for generated events (step 8)

m. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 3 runs, sends event to Script 6

2. Script 6 runs, sends event to Script 7

3. Script 7 runs

4. eventsProcessed for Script 4 runs, does not generate any events

5. eventsProcessed for Script 5 runs, does not generate any events

6. end of eventsProcessed processing

n. Go to step 2 for generated events (step 8)

o. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 6 runs, does not generate any events

2. eventsProcessed for Script 7 runs, does not generate any events

3. end of eventsProcessed processing

p. No more events to handle.

The above is not the only possible compliant order of execution. If multiple eventsProcessed() methods are pending
when step 4 is executed, the order in which these methods is called is not defined. For instance, in the third step of
the example, the eventsProcessed method is pending for both Script 1 and Script 2. The order of execution in this
case is not defined, so executing the eventsProcessed method of Script 2 before that of Script 1 would have been
compliant. However, executing the eventsProcessed method for Script 3 before that of Script 2 would not have
been compliant because any methods made pending during processing must wait until the next iteration of the event
cascade for execution.

4.10.4 Loops

Event cascades may contain loops where an event E is routed to a node that generates an event that eventually
results in E being generated again. See 4.10.3, Execution model, for the loop breaking rule that limits each eventOut
to one event per timestamp. This rule shall also be used to break loops created by cyclic dependencies between
different sensor nodes.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

51

4.10.5 Fan-in and fan-out

Fan-in occurs when two or more routes write to the same eventIn. Events coming into an eventIn from different
eventOuts with the same timestamp shall be processed, but the order of evaluation is implementation dependent.

Fan-out occurs when one eventOut routes to two or more eventIns. This results in sending any event generated by
the eventOut to all of the eventIns.

4.11 Time

4.11.1 Introduction

The browser controls the passage of time in a world by causing TimeSensors to generate events as time passes.
Specialized browsers or authoring applications may cause time to pass more quickly or slowly than in the real world,
but typically the times generated by TimeSensors will approximate "real" time. A world's creator should make no
assumptions about how often a TimeSensor will generate events but can safely assume that each time event
generated will have a timestamp greater than any previous time event.

4.11.2 Time origin

Time (0.0) is equivalent to 00:00:00 GMT January 1, 1970. Absolute times are specified in SFTime or MFTime
fields as double-precision floating point numbers representing seconds. Negative absolute times are interpreted as
happening before 1970.

Processing an event with timestamp t may only result in generating events with timestamps greater than or equal to
t.

4.11.3 Discrete and continuous changes

ISO/IEC 14772 does not distinguish between discrete events (such as those generated by a TouchSensor) and events
that are the result of sampling a conceptually continuous set of changes (such as the fraction events generated by a
TimeSensor). An ideal VRML implementation would generate an infinite number of samples for continuous
changes, each of which would be processed infinitely quickly.

Before processing a discrete event, all continuous changes that are occurring at the discrete event's timestamp shall
behave as if they generate events at that same timestamp.

Beyond the requirements that continuous changes be up-to-date during the processing of discrete changes, the
sampling frequency of continuous changes is implementation dependent. Typically a TimeSensor affecting a visible
(or otherwise perceptible) portion of the world will generate events once per frame, where a frame is a single
rendering of the world or one time-step in a simulation.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

52

4.12 Scripting

4.12.1 Introduction

Authors often require that VRML worlds change dynamically in response to user inputs, external events, and the
current state of the world. The proposition "if the vault is currently closed AND the correct combination is entered,
open the vault" illustrates the type of problem which may need addressing. These kinds of decisions are expressed as
Script nodes (see 6.40, Script) that receive events from other nodes, process them, and send events to other nodes. A
Script node can also keep track of information between subsequent executions (i.e., retaining internal state over
time).

This subclause describes the general mechanisms and semantics of all scripting language access protocols. Note that
no scripting language is required by ISO/IEC 14772. Details for two scripting languages are in
annex B, Java platform scripting reference, and annex C, ECMAScript scripting reference, respectively. If either of
these scripting languages are implemented, the Script node implementation shall conform with the definition
described in the corresponding annex.

Event processing is performed by a program or script contained in (or referenced by) the Script node's url field. This
program or script may be written in any programming language that the browser supports.

4.12.2 Script execution

A Script node is activated when it receives an event. The browser shall then execute the program in the Script node's
url field (passing the program to an external interpreter if necessary). The program can perform a wide variety of
actions including sending out events (and thereby changing the scene), performing calculations, and communicating
with servers elsewhere on the Internet. A detailed description of the ordering of event processing is contained in
4.10, Event processing.

Script nodes may also be executed after they are created (see 4.12.3, Initialize() and shutdown()). Some scripting
languages may allow the creation of separate processes from scripts, resulting in continuous execution (see 4.12.6,
Asynchronous scripts).

Script nodes receive events in timestamp order. Any events generated as a result of processing an event are given
timestamps corresponding to the event that generated them. Conceptually, it takes no time for a Script node to
receive and process an event, even though in practice it does take some amount of time to execute a Script.

When a set_url event is received by a Script node that contains a script that has been previously initialized for a
different URL, the shutdown() method of the current script is called (see 4.12.3, Initialize() and shutdown()). Until
the new script becomes available, the script shall behave as though it has no executable content. When the new
script becomes available, the Initialize() method is invoked as defined in 4.10.3, Execution model. The limiting case
is when the URL contains inline code that can be immediately executed upon receipt of the set_url event
(e.g., javascript: protocol). In this case, it can be assumed that the old code is unloaded and the new code loaded
instantaneously, after any dynamic route requests have been performed.

4.12.3 Initialize() and shutdown()

The scripting language binding may define an initialize() method. This method shall be invoked before the browser
presents the world to the user and before any events are processed by any nodes in the same VRML file as the Script
node containing this script. Events generated by the initialize() method shall have timestamps less than any other

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

53

events generated by the Script node. This allows script initialization tasks to be performed prior to the user
interacting with the world.

Likewise, the scripting language binding may define a shutdown() method. This method shall be invoked when the
corresponding Script node is deleted or the world containing the Script node is unloaded or replaced by another
world. This method may be used as a clean-up operation, such as informing external mechanisms to remove
temporary files. No other methods of the script may be invoked after the shutdown() method has completed, though
the shutdown() method may invoke methods or send events while shutting down. Events generated by the
shutdown() method that are routed to nodes that are being deleted by the same action that caused the shutdown()
method to execute will not be delivered. The deletion of the Script node containing the shutdown() method is not
complete until the execution of its shutdown() method is complete.

4.12.4 EventsProcessed()

The scripting language binding may define an eventsProcessed() method that is called after one or more events are
received. This method allows Scripts that do not rely on the order of events received to generate fewer events than
an equivalent Script that generates events whenever events are received. If it is used in some other time-dependent
way, eventsProcessed() may be nondeterministic, since different browser implementations may call
eventsProcessed() at different times.

For a single event cascade, a given Script node's eventsProcessed method shall be called at most once. Events
generated from an eventsProcessed() method are given the timestamp of the last event processed.

4.12.5 Scripts with direct outputs

Scripts that have access to other nodes (via SFNode/MFNode fields or eventIns) and that have their directOutput
field set to TRUE may directly post eventIns to those nodes. They may also read the last value sent from any of the
node's eventOuts.

When setting a value in another node, implementations are free to either immediately set the value or to defer setting
the value until the Script is finished. When getting a value from another node, the value returned shall be up-to-date;
that is, it shall be the value immediately before the time of the current timestamp (the current timestamp returned is
the timestamp of the event that caused the Script node to execute).

If multiple directOutput Scripts read from and/or write to the same node, the results are undefined.

4.12.6 Asynchronous scripts

Some languages supported by VRML browsers may allow Script nodes to spontaneously generate events, allowing
users to create Script nodes that function like new Sensor nodes. In these cases, the Script is generating the initial
events that causes the event cascade, and the scripting language and/or the browser shall determine an appropriate
timestamp for that initial event. Such events are then sorted into the event stream and processed like any other event,
following all of the same rules including those for looping.

4.12.7 Script languages

The Script node's url field may specify a URL which refers to a file (e.g., using protocol http:) or incorporates
scripting language code directly in-line. The MIME-type of the returned data defines the language type.
Additionally, instructions can be included in-line using 4.5.4, Scripting language protocol, defined for the specific
language (from which the language type is inferred).

For example, the following Script node has one eventIn field named start and three different URL values specified
in the url field: Java, ECMAScript, and inline ECMAScript:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

54

 Script {
 eventIn SFBool start
 url ["http://foo.com/fooBar.class",
 "http://foo.com/fooBar.js",
 "javascript:function start(value, timestamp) { ... }"
]
 }

In the above example when a start eventIn is received by the Script node, one of the scripts found in the url field is
executed. The Java platform bytecode is the first choice, the ECMAScript code is the second choice, and the inline
ECMAScript code the third choice. A description of order of preference for multiple valued URL fields may be
found in 4.5.2, URLs.

4.12.8 EventIn handling

Events received by the Script node are passed to the appropriate scripting language method in the script. The
method's name depends on the language type used. In some cases, it is identical to the name of the eventIn; in
others, it is a general callback method for all eventIns (see the scripting language annexes for details). The method is
passed two arguments: the event value and the event timestamp.

4.12.9 Accessing fields and events

The fields, eventIns, and eventOuts of a Script node are accessible from scripting language methods. Events can be
routed to eventIns of Script nodes and the eventOuts of Script nodes can be routed to eventIns of other nodes.
Another Script node with access to this node can access the eventIns and eventOuts just like any other node (see
4.12.5, Scripts with direct outputs).

It is recommended that user-defined field or event names defined in Script nodes follow the naming conventions
described in 4.7, Field, eventIn, and eventOut semantics.

4.12.9.1 Accessing fields and eventOuts of the script

Fields defined in the Script node are available to the script through a language-specific mechanism (e.g., a variable
is automatically defined for each field and event of the Script node). The field values can be read or written and are
persistent across method calls. EventOuts defined in the Script node may also be read; the returned value is the last
value sent to that eventOut.

4.12.9.2 Accessing eventIns and eventOuts of other nodes

The script can access any eventIn or eventOut of any node to which it has access. The syntax of this mechanism is
language dependent. The following example illustrates how a Script node accesses and modifies an exposed field of
another node (i.e., sends a set_translation eventIn to the Transform node) using ECMAScript:

 DEF SomeNode Transform { }
 Script {
 field SFNode tnode USE SomeNode
 eventIn SFVec3f pos
 directOutput TRUE
 url "javascript:
 function pos(value, timestamp) {
 tnode.set_translation = value;
 }"
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

55

The language-dependent mechanism for accessing eventIns or eventOuts (or the eventIn or eventOut part of an
exposedField) shall support accessing them without their "set_" or "_changed" prefix or suffix, to match the
ROUTE statement semantics. When accessing an eventIn named "zzz" and an eventIn of that name is not found, the
browser shall try to access the eventIn named "set_zzz". Similarly, if accessing an eventOut named "zzz" and an
eventOut of that name is not found, the browser shall try to access the eventOut named "zzz_changed".

4.12.9.3 Sending eventOuts

Each scripting language provides a mechanism for allowing scripts to send a value through an eventOut defined by
the Script node. For example, one scripting language may define an explicit method for sending each eventOut,
while another language may use assignment statements to automatically defined eventOut variables to implicitly
send the eventOut. Sending multiple values through an eventOut during a single script execution will result in the
"last" event being sent, where "last" is determined by the semantics of the scripting language being used.

4.12.10 Browser script interface

4.12.10.1 Introduction

The browser interface provides a mechanism for scripts contained by Script nodes to get and set browser state
(e.g., the URL of the current world). This subclause describes the semantics of methods that the browser interface
supports. An arbitrary syntax is used to define the type of parameters and returned values. The specific annex for a
language contains the actual syntax required. In this abstract syntax, types are given as VRML field types. Mapping
of these types into those of the underlying language (as well as any type conversion needed) is described in the
appropriate language annex.

4.12.10.2 SFString getName() and SFString getVersion()

The getName() and getVersion() methods return a string representing the "name" and "version" of the browser
currently in use. These values are defined by the browser writer, and identify the browser in some (unspecified) way.
They are not guaranteed to be unique or to adhere to any particular format and are for information only. If the
information is unavailable these methods return empty strings.

4.12.10.3 SFFloat getCurrentSpeed()

The getCurrentSpeed() method returns the average navigation speed for the currently bound NavigationInfo node
in meters per second, in the coordinate system of the currently bound Viewpoint node. If speed of motion is not
meaningful in the current navigation type, or if the speed cannot be determined for some other reason, 0.0 is
returned.

4.12.10.4 SFFloat getCurrentFrameRate()

The getCurrentFrameRate() method returns the current frame rate in frames per second. The way in which frame
rate is measured and whether or not it is supported at all is browser dependent. If frame rate measurement is not
supported or cannot be determined, 0.0 is returned.

4.12.10.5 SFString getWorldURL()

The getWorldURL() method returns the URL for the root of the currently loaded world.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

56

4.12.10.6 void replaceWorld(MFNode nodes)

The replaceWorld() method replaces the current world with the world represented by the passed nodes. An
invocation of this method will usually not return since the world containing the running script is being replaced.
Scripts that may call this method shall have mustEvaluate set to TRUE.

4.12.10.7 void loadURL(MFString url, MFString parameter)

The loadURL() method loads the first recognized URL from the specified url field with the passed parameters. The
parameter and url arguments are treated identically to the Anchor node's parameter and url fields (see 6.2, Anchor).
This method returns immediately. However, if the URL is loaded into this browser window (e.g., there is no
TARGET parameter to redirect it to another frame), the current world will be terminated and replaced with the data
from the specified URL at some time in the future. Scripts that may call this method shall set mustEvaluate to
TRUE. If loadUrl() is invoked with a URL of the form "#name", the Viewpoint node with the given name ("name")
in the Script' node's run-time name scope(s) shall be bound. However, if the Script node containing the script that
invokes loadURL("#name") is not part of any run-time name scope or is part of more than one run-time name
scope, results are undefined. See 4.4.6, Run-time name scope, for a description of run-time name scope.

4.12.10.8 void setDescription(SFString description)

The setDescription() method sets the passed string as the current description. This message is displayed in a
browser dependent manner. An empty string clears the current description. Scripts that call this method shall have
mustEvaluate set to TRUE.

4.12.10.9 MFNode createVrmlFromString(SFString vrmlSyntax)

The createVrmlFromString() method parses a string consisting of VRML statements, establishes any PROTO and
EXTERNPROTO declarations and routes, and returns an MFNode value containing the set of nodes in those
statements. The string shall be self-contained (i.e., USE statements inside the string may refer only to nodes DEF'ed
in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or PROTO
statements inside the string).

4.12.10.10 void createVrmlFromURL(MFString url, SFNode node, SFString event)

The createVrmlFromURL() instructs the browser to load a VRML scene description from the given URL or URLs.
The VRML file referred to shall be self-contained (i.e., USE statements inside the string may refer only to nodes
DEF'ed in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or
PROTO statements inside the string). After the scene is loaded, event is sent to the passed node returning the root
nodes of the corresponding VRML scene. The event parameter contains a string naming an MFNode eventIn on the
passed node.

4.12.10.11 void addRoute(...) and void deleteRoute(...)

void addRoute(SFNode fromNode, SFString fromEventOut,
 SFNode toNode, SFString toEventIn);

void deleteRoute(SFNode fromNode, SFString fromEventOut,
 SFNode toNode, SFString toEventIn);

These methods respectively add and delete a route between the given event names for the given nodes. Scripts that
call this method shall have directOutput set to TRUE. Routes that are added and deleted shall obey the execution
order defined in 4.10.3, Execution model.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

57

4.13 Navigation

4.13.1 Introduction

Conceptually speaking, every VRML world contains a viewpoint from which the world is currently being viewed.
Navigation is the action taken by the user to change the position and/or orientation of this viewpoint thereby
changing the user's view. This allows the user to move through a world or examine an object. The NavigationInfo
node (see 6.29, NavigationInfo) specifies the characteristics of the desired navigation behaviour, but the exact user
interface is browser-dependent. The Viewpoint node (see 6.53, Viewpoint) specifies key locations and orientations
in the world to which the user may be moved via scripts or browser-specific user interfaces.

4.13.2 Navigation paradigms

The browser may allow the user to modify the location and orientation of the viewer in the virtual world using a
navigation paradigm. Many different navigation paradigms are possible, depending on the nature of the virtual world
and the task the user wishes to perform. For instance, a walking paradigm would be appropriate in an architectural
walkthrough application, while a flying paradigm might be better in an application exploring interstellar space.
Examination is another common use for VRML, where the world is considered to be a single object which the user
wishes to view from many angles and distances.

The NavigationInfo node has a type field that specifies the navigation paradigm for this world. The actual user
interface provided to accomplish this navigation is browser-dependent. See 6.29, NavigationInfo, for details.

4.13.3 Viewing model

The browser controls the location and orientation of the viewer in the world, based on input from the user (using the
browser-provided navigation paradigm) and the motion of the currently bound Viewpoint node (and its coordinate
system). The VRML author can place any number of viewpoints in the world at important places from which the
user might wish to view the world. Each viewpoint is described by a Viewpoint node. Viewpoint nodes exist in their
parent's coordinate system, and both the viewpoint and the coordinate system may be changed to affect the view of
the world presented by the browser. Only one viewpoint is bound at a time. A detailed description of how the
Viewpoint node operates is described in 4.6.10, Bindable children nodes, and 6.53, Viewpoint.

Navigation is performed relative to the Viewpoint's location and does not affect the location and orientation values
of a Viewpoint node. The location of the viewer may be determined with a ProximitySensor node (see
6.38, ProximitySensor).

4.13.4 Collision detection and terrain following

A VRML file can contain Collision nodes (see 6.8, Collision) and NavigationInfo nodes that influence the browser's
navigation paradigm. The browser is responsible for detecting collisions between the viewer and the objects in the
virtual world, and is also responsible for adjusting the viewer's location when a collision occurs. Browsers shall not
disable collision detection except for the special cases listed below. Collision nodes can be used to generate events
when viewer and objects collide, and can be used to designate that certain objects should be treated as transparent to
collisions. Support for inter-object collision is not specified. The NavigationInfo types of WALK, FLY, and NONE
shall strictly support collision detection. However, the NavigationInfo types ANY and EXAMINE may temporarily
disable collision detection during navigation, but shall not disable collision detection during the normal execution of
the world. See 6.29, NavigationInfo, for details on the various navigation types.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

58

NavigationInfo nodes can be used to specify certain parameters often used by browser navigation paradigms. The
size and shape of the viewer's avatar determines how close the avatar may be to an object before a collision is
considered to take place. These parameters can also be used to implement terrain following by keeping the avatar a
certain distance above the ground. They can additionally be used to determine how short an object must be for the
viewer to automatically step up onto it instead of colliding with it.

4.14 Lighting model

4.14.1 Introduction

The VRML lighting model provides detailed equations which define the colours to apply to each geometric object.
For each object, the values of the Material node, Color node and texture currently being applied to the object are
combined with the lights illuminating the object and the currently bound Fog node. These equations are designed to
simulate the physical properties of light striking a surface.

4.14.2 Lighting ’off’

A Shape node is unlit if either of the following is true:

a. The shape's appearance field is NULL (default).

b. The material field in the Appearance node is NULL (default).

×Note the special cases of geometry nodes that do not support lighting (see 6.24, IndexedLineSet, and
6.36, PointSet, for details).

If the shape is unlit, the colour (Irgb) and alpha (A, 1-transparency) of the shape at each point on the shape's geometry
is given in Table 4.5.

Table 4.5 -- Unlit colour and alpha mapping

Texture type Colour per-vertex
 or per-face

Colour NULL

No texture Irgb= ICrgb

A = 1
Irgb= (1, 1, 1)

A = 1

Intensity
(one-component)

Irgb= IT × ICrgb

A = 1
Irgb = (IT,IT,IT)

A = 1

Intensity+Alpha
(two-component)

Irgb= I T × ICrgb

A = AT

Irgb= (IT,IT,IT)
A = AT

RGB
(three-component)

Irgb= ITrgb

A = 1
Irgb= ITrgb

A = 1

RGBA
(four-component)

Irgb= ITrgb

A = AT

Irgb= ITrgb

A = AT

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

59

where:

AT = normalized [0, 1] alpha value from 2 or 4 component texture image
ICrgb = interpolated per-vertex colour, or per-face colour, from Color node
IT = normalized [0, 1] intensity from 1 or 2 component texture image
ITrgb= colour from 3-4 component texture image

4.14.3 Lighting ’on’

If the shape is lit (i.e., a Material and an Appearance node are specified for the Shape), the Color and Texture nodes
determine the diffuse colour for the lighting equation as specified in Table 4.6.

Table 4.6 -- Lit colour and alpha mapping

Texture type Colour per-vertex
 or per-face

Color node NULL

No texture ODrgb = ICrgb

A = 1-TM

ODrgb = IDrgb

A = 1-TM

Intensity texture
(one-component)

ODrgb = IT × ICrgb

A = 1-TM

ODrgb = IT × IDrgb

A = 1-TM

Intensity+Alpha texture
(two-component)

ODrgb = IT × ICrgb

A = AT

ODrgb = IT × IDrgb

A = AT

RGB texture
(three-component)

ODrgb = ITrgb

A = 1-TM

ODrgb = ITrgb

A = 1-TM

RGBA texture
(four-component)

ODrgb = ITrgb

A = AT

ODrgb = ITrgb

A = AT

where:

IDrgb = material diffuseColor
ODrgb = diffuse factor, used in lighting equations below
TM = material transparency

All other terms are as defined in 4.14.2, Lighting `off'.

4.14.4 Lighting equations

An ideal VRML implementation will evaluate the following lighting equation at each point on a lit surface. RGB
intensities at each point on a geometry (Irgb) are given by:

Irgb = IFrgb × (1 -f0) + f0 × (OErgb + SUM(oni × attenuationi × spoti × ILrgb

 × (ambienti + diffusei + specular i)))

where:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

60

attenuationi = 1 / max(c1 + c2 × dL + c3 × dL
² , 1)

ambienti = Iia × ODrgb × Oa

diffusei = Ii × ODrgb × (N • L)
specular i = Ii × OSrgb × (N • ((L + V) / |L + V|))shininess × 128

and:

• = modified vector dot product: if dot product < 0, then 0.0, otherwise, dot product

c1 , c2, c 3 = light i attenuation
dV = distance from point on geometry to viewer’s position, in coordinate system of current fog node
dL = distance from light to point on geometry, in light’s coordinate system
f0 = Fog interpolant, see Table 4.8 for calculation
IFrgb = currently bound fog’s color
I Lrgb = light i color

Ii = light i intensity
Iia = light i ambientIntensity
L = (Point/SpotLight) normalized vector from point on geometry to light source i position

L = (DirectionalLight) -direction of light source i
N = normalized normal vector at this point on geometry (interpolated from vertex normals specified in Normal
node or calculated by browser)
Oa = Material ambientIntensity
ODrgb = diffuse colour, from Material node, Color node, and/or texture node
OErgb = Material emissiveColor
OSrgb = Material specularColor
on i = 1, if light source i affects this point on the geometry,

0, if light source i does not affect this geometry (if farther away than radius for PointLight or SpotLight, outside
of enclosing Group/Transform for DirectionalLights, or on field is FALSE)

shininess = Material shininess

spotAngle = acos(-L • spotDiri)
spot BW = SpotLight i beamWidth
spot CO = SpotLight i cutOffAngle
spot i = spotlight factor, see Table 4.7 for calculation
spotDiri = normalized SpotLight i direction
SUM: sum over all light sources i
V = normalized vector from point on geometry to viewer’s position

Table 4.7 -- Calculation of the spotlight factor

Condition (in order) spoti =

lighti is PointLight or DirectionalLight 1

spotAngle >= spotCO 0

spotAngle <= spotBW 1

spotBW < spotAngle < spot CO (spotAngle - spotCO) / (spotBW-spotCO)

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

61

Table 4.8 -- Calculation of the fog interpolant

Condition f0 =

no fog 1

fogType "LINEAR", dV < fogVisibility (fogVisibility-dV) / fogVisibility

fogType "LINEAR", dV > fogVisibility 0

fogType "EXPONENTIAL", dV < fogVisibility exp(-dV / (fogVisibility-dV))

fogType "EXPONENTIAL", dV > fogVisibility 0

4.14.5 References

The VRML lighting equations are based on the simple illumination equations given in E.[FOLE] and E.[OPEN].

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

62

5 Field and event reference

5.1 Introduction

5.1.1 Table of contents

5.1 Introduction
 5.1.1 Table of contents
 5.1.2 Description
5.2 SFBool
5.3 SFColor and MFColor
5.4 SFFloat and MFFloat
5.5 SFImage
5.6 SFInt32 and MFInt32
5.7 SFNode and MFNode
5.8 SFRotation and MFRotation
5.9 SFString and MFString
5.10 SFTime and MFTime
5.11 SFVec2f and MFVec2f
5.12 SFVec3f and MFVec3f

5.1.2 Description

This clause describes the syntax and general semantics of fields and events, the elemental data types used by VRML
nodes to define objects (see 6, Node reference). Nodes are composed of fields and events (see 4, Concepts). The
types defined in this annex are used by both fields and events.

There are two general classes of fields and events: fields and events that contain a single value (where a value may
be a single number, a vector, or even an image), and fields and events that contain an ordered list of multiple values.
Single-valued fields and events have names that begin with SF.Multiple-valued fields and events have names that
begin with MF.

Multiple-valued fields/events are written as an ordered list of values enclosed in square brackets and separated by
whitespace. If the field or event has zero values, only the square brackets ("[]") are written. The last value may
optionally be followed by whitespace. If the field has exactly one value, the brackets may be omitted. For example,
all of the following are valid for a multiple-valued MFInt32 field named foo containing the single integer value 1:

 foo 1
 foo [1,]
 foo [1]

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

63

5.2 SFBool
The SFBool field or event specifies a single boolean value. SFBools are written as TRUE or FALSE. For example,

fooBool FALSE

is an SFBool field, fooBool, defining a FALSE value.

The initial value of an SFBool eventOut is FALSE.

5.3 SFColor and MFColor
The SFColor field or event specifies one RGB (red-green-blue) colour triple. MFColor specifies zero or more RGB
triples. Each colour is written to the VRML file as an RGB triple of floating point numbers in ISO C floating point
format (see 2.[ISOC]) in the range 0.0 to 1.0. For example:

fooColor [1.0 0. 0.0, 0 1 0, 0 0 1]

is an MFColor field, fooColor, containing the three primary colours red, green, and blue.

The initial value of an SFColor eventOut is (0 0 0). The initial value of an MFColor eventOut is [].

5.4 SFFloat and MFFloat
The SFFloat field or event specifies one single-precision floating point number. MFFloat specifies zero or more
single-precision floating point numbers. SFFloats and MFFloats are written to the VRML file in ISO C floating
point format (see 2.[ISOC]). For example:

fooFloat [3.1415926, 12.5e-3, .0001]

is an MFFloat field, fooFloat, containing three floating point values.

The initial value of an SFFloat eventOut is 0.0. The initial value of an MFFloat eventOut is [].

5.5 SFImage
The SFImage field or event specifies a single uncompressed 2-dimensional pixel image. SFImage fields and events
are written to the VRML file as three integers representing the width, height and number of components in the
image, followed by width*height hexadecimal or integer values representing the pixels in the image, separated by
whitespace:

fooImage <width> <height> <num components> <pixels values>

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

64

Pixel values are limited to 256 levels of intensity (i.e., 0-255 decimal or 0x00-0xFF hexadecimal). A one-component
image specifies one-byte hexadecimal or integer values representing the intensity of the image. For example, 0xFF
is full intensity in hexadecimal (255 in decimal), 0x00 is no intensity (0 in decimal). A two-component image
specifies the intensity in the first (high) byte and the alpha opacity in the second (low) byte. Pixels in a three-
component image specify the red component in the first (high) byte, followed by the green and blue components
(e.g., 0xFF0000 is red, 0x00FF00 is green, 0x0000FF is blue). Four-component images specify the alpha
opacity byte after red/green/blue (e.g., 0x0000FF80 is semi-transparent blue). A value of 0x00 is completely
transparent, 0xFF is completely opaque. Note that alpha equals (1.0 - transparency), if alpha and transparency range
from 0.0 to 1.0.

Each pixel is read as a single unsigned number. For example, a 3-component pixel with value 0x0000FF may also
be written as 0xFF (hexadecimal) or 255 (decimal). Pixels are specified from left to right, bottom to top. The first
hexadecimal value is the lower left pixel and the last value is the upper right pixel.

For example,

fooImage 1 2 1 0xFF 0x00

is a 1 pixel wide by 2 pixel high one-component (i.e., greyscale) image, with the bottom pixel white and the top
pixel black. As another example,

fooImage 2 4 3 0xFF0000 0xFF00 0 0 0 0 0xFFFFFF 0xFFFF00

 # red green black.. white yellow

is a 2 pixel wide by 4 pixel high RGB image, with the bottom left pixel red, the bottom right pixel green, the two
middle rows of pixels black, the top left pixel white, and the top right pixel yellow.

The initial value of an SFImage eventOut is (0 0 0).

5.6 SFInt32 and MFInt32
The SFInt32 field and event specifies one 32-bit integer. The MFInt32 field and event specifies zero or more 32-bit
integers. SFInt32 and MFInt32 fields and events are written to the VRML file as an integer in decimal or
hexadecimal (beginning with '0x') format. For example:

fooInt32 [17, -0xE20, -518820]

is an MFInt32 field containing three values.

The initial value of an SFInt32 eventOut is 0. The initial value of an MFInt32 eventOut is [].

5.7 SFNode and MFNode
The SFNode field and event specifies a VRML node. The MFNode field and event specifies zero or more nodes.
The following example illustrates valid syntax for an MFNode field, fooNode, defining four nodes:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

65

 fooNode [Transform { translation 1 0 0 }
 DEF CUBE Box { }
 USE CUBE
 USE SOME_OTHER_NODE]

The SFNode field and event may contain the keyword NULL to indicate that it is empty.

The initial value of an SFNode eventOut is NULL. The initial value of an MFNode eventOut is [].

5.8 SFRotation and MFRotation
The SFRotation field and event specifies one arbitrary rotation. The MFRotation field and event specifies zero or
more arbitrary rotations. An SFRotation is written to the VRML file as four ISO C floating point values (see
2.[ISOC]) separated by whitespace. The first three values specify a normalized rotation axis vector about which the
rotation takes place. The fourth value specifies the amount of right-handed rotation about that axis in radians. For
example, an SFRotation containing a PI radians rotation about the Y axis is:

fooRot 0.0 1.0 0.0 3.14159265

The 3x3 matrix representation of a rotation (x y z a) is

 [tx2+c txy+sz txz-sy
 txy-sz ty2+c tyz+sx
 txz+sy tyz-sx tz2+c]

 where c = cos(a), s = sin(a), and t = 1-c

The initial value of an SFRotation eventOut is (0 0 1 0). The initial value of an MFRotation eventOut is [].

5.9 SFString and MFString
The SFString and MFString fields and events contain strings formatted with the UTF-8 universal character set (see
2.[UTF8]). SFString specifies a single string. The MFString specifies zero or more strings. Strings are written to the
VRML file as a sequence of UTF-8 octets enclosed in double quotes (e.g., "string").

Any characters (including linefeeds and '#') may appear within the quotes. A double quote character within the string
is preceded with a backslash. A backslash character within the string is also preceded with a backslash forming two
backslashes. For example:

fooString ["One, Two, Three", "He said, \"Immel did it!\""]

is an MFString field, fooString, with two valid strings.

The initial value of an SFString eventOut is "" (the empty string). The initial value of an MFString eventOut is [].

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

66

5.10 SFTime and MFTime
The SFTime field or event specifies a single time value. The MFTime field or event specifies zero or more time
values. Time values are written to the VRML file as a double-precision floating point number in ISO C floating
point format (see 2.[ISOC]). Time values are specified as the number of seconds from a specific time origin.
Typically, SFTime fields and events represent the number of seconds since Jan 1, 1970, 00:00:00 GMT. For
example:

fooTime 0.0

is an SFTime field, fooTime, representing a time of 0.0 seconds.

The initial value of an SFTime eventOut is -1. The initial value of an MFTime eventOut is [].

5.11 SFVec2f and MFVec2f
The SFVec2f field or event specifies a two-dimensional (2D) vector. An MFVec2f field or event specifies zero or
more 2D vectors. SFVec2f's and MFVec2f's are written to the VRML file as a pair of ISO C floating point values
(see 2.[ISOC]) separated by whitespace. For example:

fooVec2f [42 666, 7 94]

is an MFVec2f field, fooVec2f, with two valid vectors.

The initial value of an SFVec2f eventOut is (0 0). The initial value of an MFVec2f eventOut is [].

5.12 SFVec3f and MFVec3f
The SFVec3f field or event specifies a three-dimensional (3D) vector. An MFVec3f field or event specifies zero or
more 3D vectors. SFVec3f's and MFVec3f's are written to the VRML file as three ISO C floating point values (see
2.[ISOC]) separated by whitespace. For example:

fooVec3f [1 42 666, 7 94 0]

is an MFVec3f field, fooVec3f, with two valid vectors.

The initial value of an SFVec3f eventOut is (0 0 0). The initial value of an MFVec3f eventOut is [].

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

67

6 Node reference

6.1 Introduction
This clause provides a detailed definition of the syntax and semantics of each node in this part of ISO/IEC 14772.
Table 6.1 lists the topics in this clause.

Table 6.1 -- Table of contents

6.1 Introduction
6.2 Anchor
6.3 Appearance
6.4 AudioClip
6.5 Background
6.6 Billboard
6.7 Box
6.8 Collision
6.9 Color
6.10 ColorInterpolator
6.11 Cone
6.12 Coordinate
6.13 CoordinateInterpolator
6.14 Cylinder
6.15 CylinderSensor
6.16 DirectionalLight
6.17 ElevationGrid
6.18 Extrusion
6.19 Fog

6.20 FontStyle
6.21 Group
6.22 ImageTexture
6.23 IndexedFaceSet
6.24 IndexedLineSet
6.25 Inline
6.26 LOD
6.27 Material
6.28 MovieTexture
6.29 NavigationInfo
6.30 Normal
6.31 NormalInterpolator
6.32 OrientationInterpolator
6.33 PixelTexture
6.34 PlaneSensor
6.35 PointLight
6.36 PointSet
6.37 PositionInterpolator
6.38 ProximitySensor

6.39 ScalarInterpolator
6.40 Script
6.41 Shape
6.42 Sound
6.43 Sphere
6.44 SphereSensor
6.45 SpotLight
6.46 Switch
6.47 Text
6.48 TextureCoordinate
6.49 TextureTransform
6.50 TimeSensor
6.51 TouchSensor
6.52 Transform
6.53 Viewpoint
6.54 VisibilitySensor
6.55 WorldInfo

In this clause, the first item in each subclause presents the public declaration for the node. This syntax is not the
actual UTF-8 encoding syntax. The parts of the interface that are identical to the UTF-8 encoding syntax are in bold.
The node declaration defines the names and types of the fields and events for the node, as well as the default values
for the fields.

The node declarations also include value ranges for the node's fields and exposedFields (where appropriate).
Parentheses imply that the range bound is exclusive, while brackets imply that the range value is inclusive. For
example, a range of (-∞, 1] defines the lower bound as -∞ exclusively and the upper bound as 1 inclusively.

For example, the following defines the Collision node declaration:

Collision {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFBool collide TRUE

 field SFVec3f bboxCenter 0 0 0 # (-∞, ∞)
 field SFVec3f bboxSize -1 -1 -1 # (0, ∞) or -1,-1,-1
 field SFNode proxy NULL
 eventOut SFTime collideTime
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

68

The fields and events contained within the node declarations are ordered as follows:

e. eventIns, in alphabetical order;

f. exposedFields, in alphabetical order;

g. fields, in alphabetical order;

h. eventOuts, in alphabetical order.

6.2 Anchor

Anchor {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFString description ""
 exposedField MFString parameter []
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Anchor grouping node retrieves the content of a URL when the user activates (e.g., clicks) some geometry
contained within the Anchor node's children. If the URL points to a valid VRML file, that world replaces the world
of which the Anchor node is a part (except when the parameter field, described below, alters this behaviour). If non-
VRML data is retrieved, the browser shall determine how to handle that data; typically, it will be passed to an
appropriate non-VRML browser.

Exactly how a user activates geometry contained by the Anchor node depends on the pointing device and is
determined by the VRML browser. Typically, clicking with the pointing device will result in the new scene
replacing the current scene. An Anchor node with an empty url does nothing when its children are chosen. A
description of how multiple Anchors and pointing-device sensors are resolved on activation is contained in
4.6.7, Sensor nodes.

More details on the children, addChildren, and removeChildren fields and eventIns can be found in 4.6.5, Grouping
and children nodes.

The description field in the Anchor node specifies a textual description of the Anchor node. This may be used by
browser-specific user interfaces that wish to present users with more detailed information about the Anchor.

The parameter exposed field may be used to supply any additional information to be interpreted by the browser.
Each string shall consist of "keyword=value" pairs. For example, some browsers allow the specification of a 'target'
for a link to display a link in another part of an HTML document. The parameter field is then:

Anchor {
 parameter ["target=name_of_frame"]
 ...
}

An Anchor node may be used to bind the initial Viewpoint node in a world by specifying a URL ending with
"#ViewpointName" where "ViewpointName" is the name of a viewpoint defined in the VRML file. For example:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

69

Anchor {
 url "http://www.school.edu/vrml/someScene.wrl#OverView"
 children Shape { geometry Box {} }
}

specifies an anchor that loads the VRML file "someScene.wrl" and binds the initial user view to the Viewpoint node
named "OverView" when the Anchor node's geometry (Box) is activated. If the named Viewpoint node is not found
in the VRML file, the VRML file is loaded using the default Viewpoint node binding stack rules (see 6.53,
Viewpoint).

If the url field is specified in the form "#ViewpointName" (i.e. no file name), the Viewpoint node with the given
name ("ViewpointName") in the Anchor's run-time name scope(s) shall be bound (set_bind TRUE). The results are
undefined if there are multiple Viewpoints with the same name in the Anchor's run-time name scope(s). The results
are undefined if the Anchor node is not part of any run-time name scope or is part of more than one run-time name
scope. See 4.4.6, Run-time name scope, for a description of run-time name scopes. See 6.53, Viewpoint, for the
Viewpoint transition rules that specify how browsers shall interpret the transition from the old Viewpoint node to the
new one. For example:

Anchor {
 url "#Doorway"
 children Shape { geometry Sphere {} }
}

binds the viewer to the viewpoint defined by the "Doorway" viewpoint in the current world when the sphere is
activated. In this case, if the Viewpoint is not found, no action occurs on activation.

More details on the url field are contained in 4.5, VRML and the World Wide Web.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Anchor's children. This is a hint that
may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than the
actual bounding box of the children at any time. The default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and if needed shall be calculated by the browser. More details on the bboxCenter and bboxSize
fields can be found in 4.6.4, Bounding boxes.

6.3 Appearance

Appearance {
 exposedField SFNode material NULL
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
}

The Appearance node specifies the visual properties of geometry. The value for each of the fields in this node may
be NULL. However, if the field is non-NULL, it shall contain one node of the appropriate type.

The material field, if specified, shall contain a Material node. If the material field is NULL or unspecified, lighting
is off (all lights are ignored during rendering of the object that references this Appearance) and the unlit object
colour is (1, 1, 1). Details of the VRML lighting model are in 4.14, Lighting model.

The texture field, if specified, shall contain one of the various types of texture nodes (ImageTexture, MovieTexture,
or PixelTexture). If the texture node is NULL or the texture field is unspecified, the object that references this
Appearance is not textured.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

70

The textureTransform field, if specified, shall contain a TextureTransform node. If the textureTransform is NULL or
unspecified, the textureTransform field has no effect.

6.4 AudioClip

AudioClip {
 exposedField SFString description ""
 exposedField SFBool loop FALSE
 exposedField SFFloat pitch 1.0 # (0,∞)
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 exposedField MFString url []
 eventOut SFTime duration_changed
 eventOut SFBool isActive
}

An AudioClip node specifies audio data that can be referenced by Sound nodes.

The description field specifies a textual description of the audio source. A browser is not required to display the
description field but may choose to do so in addition to playing the sound.

The url field specifies the URL from which the sound is loaded. Browsers shall support at least the wavefile format
in uncompressed PCM format (see E.[WAV]). It is recommended that browsers also support the MIDI file type 1
sound format (see 2.[MIDI]); MIDI files are presumed to use the General MIDI patch set. Subclause
4.5, VRML and the World Wide Web, contains details on the url field. The results are undefined when no URLs
refer to supported data types

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the AudioClip
node, are discussed in detail in 4.6.9, Time-dependent nodes. The "cycle" of an AudioClip is the length of time in
seconds for one playing of the audio at the specified pitch.

The pitch field specifies a multiplier for the rate at which sampled sound is played. Values for the pitch field shall be
greater than zero. Changing the pitch field affects both the pitch and playback speed of a sound. A set_pitch event to
an active AudioClip is ignored and no pitch_changed eventOut is generated. If pitch is set to 2.0, the sound shall be
played one octave higher than normal and played twice as fast. For a sampled sound, the pitch field alters the
sampling rate at which the sound is played. The proper implementation of pitch control for MIDI (or other note
sequence sound clips) is to multiply the tempo of the playback by the pitch value and adjust the MIDI Coarse Tune
and Fine Tune controls to achieve the proper pitch change.

A duration_changed event is sent whenever there is a new value for the "normal" duration of the clip. Typically, this
will only occur when the current url in use changes and the sound data has been loaded, indicating that the clip is
playing a different sound source. The duration is the length of time in seconds for one cycle of the audio for a pitch
set to 1.0. Changing the pitch field will not trigger a duration_changed event. A duration value of "-1" implies that
the sound data has not yet loaded or the value is unavailable for some reason. A duration_changed event shall be
generated if the AudioClip node is loaded when the VRML file is read or the AudioClip node is added to the scene
graph.

The isActive eventOut may be used by other nodes to determine if the clip is currently active. If an AudioClip is
active, it shall be playing the sound corresponding to the sound time (i.e., in the sound's local time system with
sample 0 at time 0):

 t = (now - startTime) modulo (duration / pitch)

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

71

6.5 Background

Background {
 eventIn SFBool set_bind
 exposedField MFFloat groundAngle [] # [0,π/2]
 exposedField MFColor groundColor [] # [0,1]
 exposedField MFString backUrl []
 exposedField MFString bottomUrl []
 exposedField MFString frontUrl []
 exposedField MFString leftUrl []
 exposedField MFString rightUrl []
 exposedField MFString topUrl []
 exposedField MFFloat skyAngle [] # [0,π]
 exposedField MFColor skyColor 0 0 0 # [0,1]
 eventOut SFBool isBound
}

The Background node is used to specify a colour backdrop that simulates ground and sky, as well as a background
texture, or panorama, that is placed behind all geometry in the scene and in front of the ground and sky. Background
nodes are specified in the local coordinate system and are affected by the accumulated rotation of their ancestors as
described below.

Background nodes are bindable nodes as described in 4.6.10, Bindable children nodes. There exists a Background
stack, in which the top-most Background on the stack is the currently active Background. To move a Background to
the top of the stack, a TRUE value is sent to the set_bind eventIn. Once active, the Background is then bound to the
browsers view. A FALSE value sent to set_bind removes the Background from the stack and unbinds it from the
browser's view. More detail on the bind stack is described in 4.6.10, Bindable children nodes.

The backdrop is conceptually a partial sphere (the ground) enclosed inside of a full sphere (the sky) in the local
coordinate system with the viewer placed at the centre of the spheres. Both spheres have infinite radius and each is
painted with concentric circles of interpolated colour perpendicular to the local Y-axis of the sphere. The
Background node is subject to the accumulated rotations of its ancestors' transformations. Scaling and translation
transformations are ignored. The sky sphere is always slightly farther away from the viewer than the ground partial
sphere causing the ground to appear in front of the sky where they overlap.

The skyColor field specifies the colour of the sky at various angles on the sky sphere. The first value of the skyColor
field specifies the colour of the sky at 0.0 radians representing the zenith (i.e., straight up from the viewer). The
skyAngle field specifies the angles from the zenith in which concentric circles of colour appear. The zenith of the
sphere is implicitly defined to be 0.0 radians, the natural horizon is at π/2 radians, and the nadir (i.e., straight down
from the viewer) is at π radians. skyAngle is restricted to non-decreasing values in the range [0.0,π]. There shall be
one more skyColor value than there are skyAngle values. The first colour value is the colour at the zenith, which is
not specified in the skyAngle field. If the last skyAngle is less than pi, then the colour band between the last skyAngle
and the nadir is clamped to the last skyColor. The sky colour is linearly interpolated between the specified skyColor
values.

The groundColor field specifies the colour of the ground at the various angles on the ground partial sphere. The first
value of the groundColor field specifies the colour of the ground at 0.0 radians representing the nadir (i.e., straight
down from the user). The groundAngle field specifies the angles from the nadir that the concentric circles of colour
appear. The nadir of the sphere is implicitly defined at 0.0 radians. groundAngle is restricted to non-decreasing
values in the range [0.0, π/2]. There shall be one more groundColor value than there are groundAngle values. The
first colour value is for the nadir which is not specified in the groundAngle field. If the last groundAngle is less than
π/2, the region between the last groundAngle and the equator is non-existant. The ground colour is linearly
interpolated between the specified groundColor values.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

72

The backUrl, bottomUrl, frontUrl, leftUrl, rightUrl, and topUrl fields specify a set of images that define a
background panorama between the ground/sky backdrop and the scene's geometry. The panorama consists of six
images, each of which is mapped onto a face of an infinitely large cube contained within the backdrop spheres and
centred in the local coordinate system. The images are applied individually to each face of the cube. On the front,
back, right, and left faces of the cube, when viewed from the origin looking down the negative Z-axis with the Y-
axis as the view up direction, each image is mapped onto the corresponding face with the same orientation as if the
image were displayed normally in 2D (backUrl to back face, frontUrl to front face, leftUrl to left face, and rightUrl
to right face). On the top face of the cube, when viewed from the origin looking along the +Y-axis with the +Z-axis
as the view up direction, the topUrl image is mapped onto the face with the same orientation as if the image were
displayed normally in 2D. On the bottom face of the box, when viewed from the origin along the negative Y-axis
with the negative Z-axis as the view up direction, the bottomUrl image is mapped onto the face with the same
orientation as if the image were displayed normally in 2D.

Figure 6.1 illustrates the Background node backdrop and background textures.

Alpha values in the panorama images (i.e., two or four component images) specify that the panorama is semi-
transparent or transparent in regions, allowing the groundColor and skyColor to be visible.

See 4.6.11, Texture maps, for a general description of texture maps.

Often, the bottomUrl and topUrl images will not be specified, to allow sky and ground to show. The other four
images may depict surrounding mountains or other distant scenery. Browsers shall support the JPEG (see 2.[JPEG])
and PNG (see 2.[PNG]) image file formats, and in addition, may support any other image format (e.g., CGM) that
can be rendered into a 2D image. Support for the GIF (see E.[GIF]) format is recommended (including transparency)
. More detail on the url fields can be found in 4.5, VRML and the World Wide Web.

Figure 6.1 -- Background node

Panorama images may be one component (greyscale), two component (greyscale plus alpha), three component (full
RGB colour), or four-component (full RGB colour plus alpha).

Ground colours, sky colours, and panoramic images do not translate with respect to the viewer, though they do
rotate with respect to the viewer. That is, the viewer can never get any closer to the background, but can turn to
examine all sides of the panorama cube, and can look up and down to see the concentric rings of ground and sky (if
visible).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

73

Background nodes are not affected by Fog nodes. Therefore, if a Background node is active (i.e., bound) while a
Fog node is active, then the Background node will be displayed with no fogging effects. It is the author's
responsibility to set the Background values to match the Fog values (e.g., ground colours fade to fog colour with
distance and panorama images tinted with fog colour). Background nodes are not affected by light sources.

6.6 Billboard

Billboard {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField SFVec3f axisOfRotation 0 1 0 # (-∞,∞)
 exposedField MFNode children []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Billboard node is a grouping node which modifies its coordinate system so that the Billboard node's local Z-axis
turns to point at the viewer. The Billboard node has children which may be other children nodes.

The axisOfRotation field specifies which axis to use to perform the rotation. This axis is defined in the local
coordinate system.

When the axisOfRotation field is not (0, 0, 0), the following steps describe how to rotate the billboard to face the
viewer:

a. Compute the vector from the Billboard node's origin to the viewer's position. This vector is called the
billboard-to-viewer vector.

b. Compute the plane defined by the axisOfRotation and the billboard-to-viewer vector.

c. Rotate the local Z-axis of the billboard into the plane from b., pivoting around the axisOfRotation.

When the axisOfRotation field is set to (0, 0, 0), the special case of viewer-alignment is indicated. In this case, the
object rotates to keep the billboard's local Y-axis parallel with the Y-axis of the viewer. This special case is
distinguished by setting the axisOfRotation to (0, 0, 0). The following steps describe how to align the billboard's Y-
axis to the Y-axis of the viewer:

d. Compute the billboard-to-viewer vector.

e. Rotate the Z-axis of the billboard to be collinear with the billboard-to-viewer vector and pointing towards
the viewer's position.

f. Rotate the Y-axis of the billboard to be parallel and oriented in the same direction as the Y-axis of the
viewer.

If the axisOfRotation and the billboard-to-viewer line are coincident, the plane cannot be established and the
resulting rotation of the billboard is undefined. For example, if the axisOfRotation is set to (0,1,0) (Y-axis) and the
viewer flies over the billboard and peers directly down the Y-axis, the results are undefined.

Multiple instances of Billboard nodes (DEF/USE) operate as expected: each instance rotates in its unique coordinate
system to face the viewer.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

74

Subclause 4.6.5, Grouping and children nodes, provides a description of the children, addChildren, and
removeChildren fields and eventIns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Billboard node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller
than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. A description of the bboxCenter and
bboxSize fields is contained in 4.6.4, Bounding boxes.

6.7 Box

Box {
 field SFVec3f size 2 2 2 # (0,∞)
}

The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and
aligned with the local coordinate axes. By default, the box measures 2 units in each dimension, from -1 to +1. The
size field specifies the extents of the box along the X-, Y-, and Z-axes respectively and each component value shall
be greater than zero. Figure 6.2 illustrates the Box node.

Figure 6.2 -- Box node

Textures are applied individually to each face of the box. On the front (+Z), back (-Z), right (+X), and left (-X) faces
of the box, when viewed from the outside with the +Y-axis up, the texture is mapped onto each face with the same
orientation as if the image were displayed normally in 2D. On the top face of the box (+Y), when viewed from
above and looking down the Y-axis toward the origin with the -Z-axis as the view up direction, the texture is
mapped onto the face with the same orientation as if the image were displayed normally in 2D. On the bottom face
of the box (-Y), when viewed from below looking up the Y-axis toward the origin with the +Z-axis as the view up
direction, the texture is mapped onto the face with the same orientation as if the image were displayed normally in
2D. TextureTransform affects the texture coordinates of the Box.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

75

The Box node's geometry requires outside faces only. When viewed from the inside the results are undefined.

6.8 Collision

Collision {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFBool collide TRUE
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
 field SFNode proxy NULL
 eventOut SFTime collideTime
}

The Collision node is a grouping node that specifies the collision detection properties for its children (and their
descendants), specifies surrogate objects that replace its children during collision detection, and sends events
signalling that a collision has occurred between the avatar and the Collision node's geometry or surrogate. By
default, all geometric nodes in the scene are collidable with the viewer except IndexedLineSet, PointSet, and Text.
Browsers shall detect geometric collisions between the avatar (see 6.29, NavigationInfo) and the scene's geometry
and prevent the avatar from 'entering' the geometry. See 4.13.4, Collision detection and terrain following, for general
information on collision detection.

If there are no Collision nodes specified in a VRML file, browsers shall detect collisions between the avatar and all
objects during navigation.

Subclause 4.6.5, Grouping and children nodes, contains a description of the children, addChildren, and
removeChildren fields and eventIns.

The Collision node's collide field enables and disables collision detection. If collide is set to FALSE, the children
and all descendants of the Collision node shall not be checked for collision, even though they are drawn. This
includes any descendent Collision nodes that have collide set to TRUE (i.e., setting collide to FALSE turns collision
off for every node below it).

Collision nodes with the collide field set to TRUE detect the nearest collision with their descendent geometry (or
proxies). When the nearest collision is detected, the collided Collision node sends the time of the collision through
its collideTime eventOut. If a Collision node contains a child, descendant, or proxy (see below) that is a Collision
node, and both Collision nodes detect that a collision has occurred, both send a collideTime event at the same time.
A collideTime event shall be generated if the avatar is colliding with collidable geometry when the Collision node is
read from a VRML file or inserted into the transformation hierarchy.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Collision node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller
than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. More details on the bboxCenter and
bboxSize fields can be found in 4.6.4, Bounding boxes.

The collision proxy, defined in the proxy field, is any legal children node as described in 4.6.5, Grouping and
children nodes, that is used as a substitute for the Collision node's children during collision detection. The proxy is
used strictly for collision detection; it is not drawn.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

76

If the value of the collide field is TRUE and the proxy field is non-NULL, the proxy field defines the scene on which
collision detection is performed. If the proxy value is NULL, collision detection is performed against the children of
the Collision node.

If proxy is specified, any descendent children of the Collision node are ignored during collision detection. If children
is empty, collide is TRUE, and proxy is specified, collision detection is performed against the proxy but nothing is
displayed. In this manner, invisible collision objects may be supported.

The collideTime eventOut generates an event specifying the time when the avatar (see 6.29, NavigationInfo) makes
contact with the collidable children or proxy of the Collision node. An ideal implementation computes the exact
time of collision. Implementations may approximate the ideal by sampling the positions of collidable objects and the
user. The NavigationInfo node contains additional information for parameters that control the avatar size.

6.9 Color

Color {
 exposedField MFColor color [] # [0,1]
}

This node defines a set of RGB colours to be used in the fields of another node.

Color nodes are only used to specify multiple colours for a single geometric shape, such as colours for the faces or
vertices of an IndexedFaceSet. A Material node is used to specify the overall material parameters of lit geometry. If
both a Material node and a Color node are specified for a geometric shape, the colours shall replace the diffuse
component of the material.

RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA texture and a Color node
for geometric shape will result in the Color node being ignored. Details on lighting equations can be found in 4.14,
Lighting model.

6.10 ColorInterpolator

ColorInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFColor keyValue [] # [0,1]
 eventOut SFColor value_changed
}

This node interpolates among a list of MFColor key values to produce an SFColor (RGB) value_changed event. The
number of colours in the keyValue field shall be equal to the number of keyframes in the key field. The keyValue
field and value_changed events are defined in RGB colour space. A linear interpolation using the value of
set_fraction as input is performed in HSV space (see E.[FOLE] for description of RGB and HSV colour spaces).
The results are undefined when interpolating between two consecutive keys with complementary hues.

4.6.8, Interpolator nodes, contains a detailed discussion of interpolators.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

77

6.11 Cone

Cone {
 field SFFloat bottomRadius 1 # (0,∞)
 field SFFloat height 2 # (0,∞)
 field SFBool side TRUE
 field SFBool bottom TRUE
}

The Cone node specifies a cone which is centred in the local coordinate system and whose central axis is aligned
with the local Y-axis. The bottomRadius field specifies the radius of the cone's base, and the height field specifies
the height of the cone from the centre of the base to the apex. By default, the cone has a radius of 1.0 at the bottom
and a height of 2.0, with its apex at y = height/2 and its bottom at y = -height/2. Both bottomRadius and height shall
be greater than zero. Figure 6.3 illustrates the Cone node.

Figure 6.3 -- Cone node

The side field specifies whether sides of the cone are created and the bottom field specifies whether the bottom cap
of the cone is created. A value of TRUE specifies that this part of the cone exists, while a value of FALSE specifies
that this part does not exist (not rendered or eligible for collision or sensor intersection tests).

When a texture is applied to the sides of the cone, the texture wraps counterclockwise (from above) starting at the
back of the cone. The texture has a vertical seam at the back in the X=0 plane, from the apex (0, height/2, 0) to the
point (0, -height/2, -bottomRadius). For the bottom cap, a circle is cut out of the texture square centred at
(0,-height/2, 0) with dimensions (2 × bottomRadius) by (2 × bottomRadius). The bottom cap texture appears right

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

78

side up when the top of the cone is rotated towards the -Z-axis. TextureTransform affects the texture coordinates of
the Cone.

The Cone geometry requires outside faces only. When viewed from the inside the results are undefined.

6.12 Coordinate

Coordinate {
 exposedField MFVec3f point [] # (-∞,∞)
}

This node defines a set of 3D coordinates to be used in the coord field of vertex-based geometry nodes including
IndexedFaceSet, IndexedLineSet, and PointSet.

6.13 CoordinateInterpolator

CoordinateInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut MFVec3f value_changed
}

This node linearly interpolates among a list of MFVec3f values. The number of coordinates in the keyValue field
shall be an integer multiple of the number of keyframes in the key field. That integer multiple defines how many
coordinates will be contained in the value_changed events.

4.6.8, Interpolator nodes, contains a more detailed discussion of interpolators.

6.14 Cylinder

Cylinder {
 field SFBool bottom TRUE
 field SFFloat height 2 # (0,∞)
 field SFFloat radius 1 # (0,∞)
 field SFBool side TRUE
 field SFBool top TRUE
}

The Cylinder node specifies a capped cylinder centred at (0,0,0) in the local coordinate system and with a central
axis oriented along the local Y-axis. By default, the cylinder is sized at "-1" to "+1" in all three dimensions. The
radius field specifies the radius of the cylinder and the height field specifies the height of the cylinder along the
central axis. Both radius and height shall be greater than zero. Figure 6.4 illustrates the Cylinder node.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

79

The cylinder has three parts: the side, the top (Y = +height/2) and the bottom (Y = -height/2). Each part has an
associated SFBool field that indicates whether the part exists (TRUE) or does not exist (FALSE). Parts which do not
exist are not rendered and not eligible for intersection tests (e.g., collision detection or sensor activation).

Figure 6.4 -- Cylinder node

When a texture is applied to a cylinder, it is applied differently to the sides, top, and bottom. On the sides, the
texture wraps counterclockwise (from above) starting at the back of the cylinder. The texture has a vertical seam at
the back, intersecting the X=0 plane. For the top and bottom caps, a circle is cut out of the unit texture squares
centred at (0, +/- height/2, 0) with dimensions 2 × radius by 2 × radius. The top texture appears right side up when
the top of the cylinder is tilted toward the +Z-axis, and the bottom texture appears right side up when the top of the
cylinder is tilted toward the -Z-axis. TextureTransform affects the texture coordinates of the Cylinder node.

The Cylinder node's geometry requires outside faces only. When viewed from the inside the results are undefined.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

80

6.15 CylinderSensor

CylinderSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFFloat diskAngle 0.262 # (0,π/2)
 exposedField SFBool enabled TRUE
 exposedField SFFloat maxAngle -1 # [-2π,2π]
 exposedField SFFloat minAngle 0 # [-2π,2π]
 exposedField SFFloat offset 0 # (-∞,∞)
 eventOut SFBool isActive
 eventOut SFRotation rotation_changed
 eventOut SFVec3f trackPoint_changed
}

The CylinderSensor node maps pointer motion (e.g., a mouse or wand) into a rotation on an invisible cylinder that is
aligned with the Y-axis of the local coordinate system. The CylinderSensor uses the descendent geometry of its
parent node to determine whether it is liable to generate events.

The enabled exposed field enables and disables the CylinderSensor node. If TRUE, the sensor reacts appropriately
to user events. If FALSE, the sensor does not track user input or send events. If enabled receives a FALSE event and
isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE event. If enabled
receives a TRUE event the sensor is enabled and ready for user activation.

A CylinderSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for more
details on using the pointing device to activate the CylinderSensor.

Upon activation of the pointing device while indicating the sensor's geometry, an isActive TRUE event is sent. The
initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node determines whether
the sides of the invisible cylinder or the caps (disks) are used for manipulation. If the initial angle is less than the
diskAngle, the geometry is treated as an infinitely large disk lying in the local Y=0 plane and coincident with the
initial intersection point. Dragging motion is mapped into a rotation around the local +Y-axis vector of the sensor's
coordinate system. The perpendicular vector from the initial intersection point to the Y-axis defines zero rotation
about the Y-axis. For each subsequent position of the bearing, a rotation_changed event is sent that equals the sum
of the rotation about the +Y-axis vector (from the initial intersection to the new intersection) plus the offset value.
trackPoint_changed events reflect the unclamped drag position on the surface of this disk. When the pointing device
is deactivated and autoOffset is TRUE, offset is set to the last value of rotation_changed and an offset_changed
event is generated. See 4.6.7.4, Drag sensors, for a more general description of autoOffset and offset fields.

If the initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node is greater than
or equal to diskAngle, then the sensor behaves like a cylinder. The shortest distance between the point of intersection
(between the bearing and the sensor's geometry) and the Y-axis of the parent group's local coordinate system
determines the radius of an invisible cylinder used to map pointing device motion and marks the zero rotation value.
For each subsequent position of the bearing, a rotation_changed event is sent that equals the sum of the right-handed
rotation from the original intersection about the +Y-axis vector plus the offset value. trackPoint_changed events
reflect the unclamped drag position on the surface of the invisible cylinder. When the pointing device is deactivated
and autoOffset is TRUE, offset is set to the last rotation angle and an offset_changed event is generated. More details
are available in 4.6.7.4, Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is released and generates an isActive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device while isActive is TRUE is referred to as a "drag." If a 2D pointing device is
in use, isActive events will typically reflect the state of the primary button associated with the device (i.e., isActive is

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

81

TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., a wand) is
in use, isActive events will typically reflect whether the pointer is within or in contact with the sensor's geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events are output and are
interpreted from pointing device motion based on the sensor's local coordinate system at the time of activation.
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible cylinder or
disk. If the initial angle results in cylinder rotation (as opposed to disk behaviour) and if the pointing device is
dragged off the cylinder while activated, browsers may interpret this in a variety of ways (e.g., clamp all values to
the cylinder and continuing to rotate as the point is dragged away from the cylinder). Each movement of the pointing
device while isActive is TRUE generates trackPoint_changed and rotation_changed events.

The minAngle and maxAngle fields clamp rotation_changed events to a range of values. If minAngle is greater than
maxAngle, rotation_changed events are not clamped. The minAngle and maxAngle fields are restricted to the range
[-2π, 2π].

More information about this behaviour is described in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.16 DirectionalLight

DirectionalLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFVec3f direction 0 0 -1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFBool on TRUE
}

The DirectionalLight node defines a directional light source that illuminates along rays parallel to a given 3-
dimensional vector. A description of the ambientIntensity, color, intensity, and on fields is in 4.6.6, Light sources.

The direction field specifies the direction vector of the illumination emanating from the light source in the local
coordinate system. Light is emitted along parallel rays from an infinite distance away. A directional light source
illuminates only the objects in its enclosing parent group. The light may illuminate everything within this coordinate
system, including all children and descendants of its parent group. The accumulated transformations of the parent
nodes affect the light.

DirectionalLight nodes do not attenuate with distance. A precise description of VRML's lighting equations is
contained in 4.14, Lighting model.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

82

6.17 ElevationGrid

ElevationGrid {
 eventIn MFFloat set_height
 exposedField SFNode color NULL
 exposedField SFNode normal NULL
 exposedField SFNode texCoord NULL
 field MFFloat height [] # (-∞,∞)
 field SFBool ccw TRUE
 field SFBool colorPerVertex TRUE
 field SFFloat creaseAngle 0 # [0,∞)
 field SFBool normalPerVertex TRUE
 field SFBool solid TRUE
 field SFInt32 xDimension 0 # [0,∞)
 field SFFloat xSpacing 1.0 # [0,∞)
 field SFInt32 zDimension 0 # [0,∞)
 field SFFloat zSpacing 1.0 # [0,∞)
}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local
coordinate system. The geometry is described by a scalar array of height values that specify the height of a surface
above each point of the grid.

The xDimension and zDimension fields indicate the number of elements of the grid height array in the X and Z
directions. Both xDimension and zDimension shall be greater than or equal to zero. If either the xDimension or the
zDimension is less than two, the ElevationGrid contains no quadrilaterals. The vertex locations for the rectangles are
defined by the height field and the xSpacing and zSpacing fields:

• The height field is an xDimension by zDimension array of scalar values representing the height above the
grid for each vertex.

• The xSpacing and zSpacing fields indicate the distance between vertices in the X and Z directions
respectively, and shall be greater than zero.

Thus, the vertex corresponding to the point P[i, j] on the grid is placed at:

 P[i,j].x = xSpacing × i
 P[i,j].y = height[i + j × xDimension]
 P[i,j].z = zSpacing × j

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and P[0,0] is height[0] units above/below the origin of the local
 coordinate system

The set_height eventIn allows the height MFFloat field to be changed to support animated ElevationGrid nodes.

The color field specifies per-vertex or per-quadrilateral colours for the ElevationGrid node depending on the value
of colorPerVertex. If the color field is NULL, the ElevationGrid node is rendered with the overall attributes of the
Shape node enclosing the ElevationGrid node (see 4.14, Lighting model).

The colorPerVertex field determines whether colours specified in the color field are applied to each vertex or each
quadrilateral of the ElevationGrid node. If colorPerVertex is FALSE and the color field is not NULL, the color field

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

83

shall specify a Color node containing at least (xDimension-1) × (zDimension-1) colours; one for each quadrilateral,
ordered as follows:

 QuadColor[i,j] = Color[i + j × (xDimension-1)]

 where 0 <= i < xDimension-1 and 0 <= j < zDimension-1,
 and QuadColor[i,j] is the colour for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1)× xDimension] and height[i+(j+1)× xDimension]

If colorPerVertex is TRUE and the color field is not NULL, the color field shall specify a Color node containing at
least xDimension × zDimension colours, one for each vertex, ordered as follows:

 VertexColor[i,j] = Color[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexColor[i,j] is the colour for the vertex defined by
 height[i+j × xDimension]

The normal field specifies per-vertex or per-quadrilateral normals for the ElevationGrid node. If the normal field is
NULL, the browser shall automatically generate normals, using the creaseAngle field to determine if and how
normals are smoothed across the surface (see 4.6.3.5, Crease angle field).

The normalPerVertex field determines whether normals are applied to each vertex or each quadrilateral of the
ElevationGrid node depending on the value of normalPerVertex. If normalPerVertex is FALSE and the normal node
is not NULL, the normal field shall specify a Normal node containing at least (xDimension-1) × (zDimension-1)
normals; one for each quadrilateral, ordered as follows:

 QuadNormal[i,j] = Normal[i + j × (xDimension-1)]

 where 0 <= i < xDimension-1 and 0 <= j < zDimension-1,
 and QuadNormal[i,j] is the normal for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1)× xDimension] and height[i+(j+1)× xDimension]

If normalPerVertex is TRUE and the normal field is not NULL, the normal field shall specify a Normal node
containing at least xDimension × zDimension normals; one for each vertex, ordered as follows:

 VertexNormal[i,j] = Normal[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexNormal[i,j] is the normal for the vertex defined
 by height[i+j×xDimension]

The texCoord field specifies per-vertex texture coordinates for the ElevationGrid node. If texCoord is NULL,
default texture coordinates are applied to the geometry. The default texture coordinates range from (0,0) at the first
vertex to (1,1) at the last vertex. The S texture coordinate is aligned with the positive X-axis, and the T texture
coordinate with positive Z-axis. If texCoord is not NULL, it shall specify a TextureCoordinate node containing at
least (xDimension) × (zDimension) texture coordinates; one for each vertex, ordered as follows:

 VertexTexCoord[i,j] = TextureCoordinate[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexTexCoord[i,j] is the texture coordinate for the vertex
 defined by height[i+j × xDimension]

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

84

The ccw, solid, and creaseAngle fields are described in 4.6.3, Shapes and geometry.

By default, the quadrilaterals are defined with a counterclockwise ordering. Hence, the Y-component of the normal
is positive. Setting the ccw field to FALSE reverses the normal direction. Backface culling is enabled when the solid
field is TRUE.

See Figure 6.5 for a depiction of the ElevationGrid node.

Figure 6.5 -- ElevationGrid node

6.18 Extrusion
Extrusion {
 eventIn MFVec2f set_crossSection
 eventIn MFRotation set_orientation
 eventIn MFVec2f set_scale
 eventIn MFVec3f set_spine
 field SFBool beginCap TRUE
 field SFBool ccw TRUE
 field SFBool convex TRUE
 field SFFloat creaseAngle 0 # [0,∞)
 field MFVec2f crossSection [1 1, 1 -1, -1 -1,
 -1 1, 1 1] # (-∞,∞)
 field SFBool endCap TRUE
 field MFRotation orientation 0 0 1 0 # [-1,1],(- ∞,∞)
 field MFVec2f scale 1 1 # (0,∞)
 field SFBool solid TRUE
 field MFVec3f spine [0 0 0, 0 1 0] # (-∞,∞)
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

85

6.18.1 Introduction

The Extrusion node specifies geometric shapes based on a two dimensional cross-section extruded along a three
dimensional spine in the local coordinate system. The cross-section can be scaled and rotated at each spine point to
produce a wide variety of shapes.

An Extrusion node is defined by:

a. a 2D crossSection piecewise linear curve (described as a series of connected vertices);

b. a 3D spine piecewise linear curve (also described as a series of connected vertices);

c. a list of 2D scale parameters;

d. a list of 3D orientation parameters.

6.18.2 Algorithmic description

Shapes are constructed as follows. The cross-section curve, which starts as a curve in the Y=0 plane, is first scaled
about the origin by the first scale parameter (first value scales in X, second value scales in Z). It is then translated by
the first spine point and oriented using the first orientation parameter (as explained later). The same procedure is
followed to place a cross-section at the second spine point, using the second scale and orientation values.
Corresponding vertices of the first and second cross-sections are then connected, forming a quadrilateral polygon
between each pair of vertices. This same procedure is then repeated for the rest of the spine points, resulting in a
surface extrusion along the spine.

The final orientation of each cross-section is computed by first orienting it relative to the spine segments on either
side of point at which the cross-section is placed. This is known as the spine-aligned cross-section plane (SCP), and
is designed to provide a smooth transition from one spine segment to the next (see Figure 6.6). The SCP is then
rotated by the corresponding orientation value. This rotation is performed relative to the SCP. For example, to
impart twist in the cross-section, a rotation about the Y-axis (0 1 0) would be used. Other orientations are valid and
rotate the cross-section out of the SCP.

The SCP is computed by first computing its Y-axis and Z-axis, then taking the cross product of these to determine
the X-axis. These three axes are then used to determine the rotation value needed to rotate the Y=0 plane to the SCP.
This results in a plane that is the approximate tangent of the spine at each point, as shown in Figure 6.6. First the Y-
axis is determined, as follows:

 Let n be the number of spines and let i be the index variable satisfying 0 <= i < n:

a. For all points other than the first or last: The Y-axis for spine[i] is found by normalizing the vector defined
by (spine[i+1] - spine[i-1]).

b. If the spine curve is closed: The SCP for the first and last points is the same and is found using (spine[1] -
spine[n-2]) to compute the Y-axis.

c. If the spine curve is not closed: The Y-axis used for the first point is the vector from spine[0] to spine[1],
and for the last it is the vector from spine[n-2] to spine[n-1].

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

86

Figure 6.6 -- Spine-aligned cross-section plane at a spine point.

The Z-axis is determined as follows:

d. For all points other than the first or last: Take the following cross-product:

Z = (spine[i+1] - spine[i]) × (spine[i-1] - spine[i])

e. If the spine curve is closed: The SCP for the first and last points is the same and is found by taking the
following cross-product:

Z = (spine[1] - spine[0]) × (spine[n-2] - spine[0])

f. If the spine curve is not closed: The Z-axis used for the first spine point is the same as the Z-axis for
spine[1]. The Z-axis used for the last spine point is the same as the Z-axis for spine[n-2].

g. After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this
value is negative, the Z-axis is flipped (multiplied by -1). In most cases, this prevents small changes in the
spine segment angles from flipping the cross-section 180 degrees.

Once the Y- and Z-axes have been computed, the X-axis can be calculated as their cross-product.

6.18.3 Special cases

If the number of scale or orientation values is greater than the number of spine points, the excess values are ignored.
If they contain one value, it is applied at all spine points. The results are undefined if the number of scale or
orientation values is greater than one but less than the number of spine points. The scale values shall be positive.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

87

If the three points used in computing the Z-axis are collinear, the cross-product is zero so the value from the
previous point is used instead.

If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments are
collinear) then the Z-axis for the first spine point with a defined Z-axis is used.

If the entire spine is collinear, the SCP is computed by finding the rotation of a vector along the positive Y-axis (v1)
to the vector formed by the spine points (v2). The Y=0 plane is then rotated by this value.

If two points are coincident, they both have the same SCP. If each point has a different orientation value, then the
surface is constructed by connecting edges of the cross-sections as normal. This is useful in creating revolved
surfaces.

Note: combining coincident and non-coincident spine segments, as well as other combinations, can lead to
interpenetrating surfaces which the extrusion algorithm makes no attempt to avoid.

6.18.4 Common cases

The following common cases are among the effects which are supported by the Extrusion node:

Surfaces of revolution:

If the cross-section is an approximation of a circle and the spine is straight, the Extrusion is equivalent to a
surface of revolution, where the scale parameters define the size of the cross-section along the spine.

Uniform extrusions:

If the scale is (1, 1) and the spine is straight, the cross-section is extruded uniformly without twisting or scaling
along the spine. The result is a cylindrical shape with a uniform cross section.

Bend/twist/taper objects:

These shapes are the result of using all fields. The spine curve bends the extruded shape defined by the cross-
section, the orientation parameters (given as rotations about the Y-axis) twist it around the spine, and the scale
parameters taper it (by scaling about the spine).

6.18.5 Other fields

Extrusion has three parts: the sides, the beginCap (the surface at the initial end of the spine) and the endCap (the
surface at the final end of the spine). The caps have an associated SFBool field that indicates whether each exists
(TRUE) or doesn't exist (FALSE).

When the beginCap or endCap fields are specified as TRUE, planar cap surfaces will be generated regardless of
whether the crossSection is a closed curve. If crossSection is not a closed curve, the caps are generated by adding a
final point to crossSection that is equal to the initial point. An open surface can still have a cap, resulting (for a
simple case) in a shape analogous to a soda can sliced in half vertically. These surfaces are generated even if spine is
also a closed curve. If a field value is FALSE, the corresponding cap is not generated.

Texture coordinates are automatically generated by Extrusion nodes. Textures are mapped so that the coordinates
range in the U direction from 0 to 1 along the crossSection curve (with 0 corresponding to the first point in
crossSection and 1 to the last) and in the V direction from 0 to 1 along the spine curve (with 0 corresponding to the
first listed spine point and 1 to the last). If either the endCap or beginCap exists, the crossSection curve is uniformly
scaled and translated so that the larger dimension of the cross-section (X or Z) produces texture coordinates that
range from 0.0 to 1.0. The beginCap and endCap textures' S and T directions correspond to the X and Z directions in
which the crossSection coordinates are defined.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

88

The browser shall automatically generate normals for the Extrusion node,using the creaseAngle field to determine if
and how normals are smoothed across the surface. Normals for the caps are generated along the Y-axis of the SCP,
with the ordering determined by viewing the cross-section from above (looking along the negative Y-axis of the
SCP). By default, a beginCap with a counterclockwise ordering shall have a normal along the negative Y-axis. An
endCap with a counterclockwise ordering shall have a normal along the positive Y-axis.

Each quadrilateral making up the sides of the extrusion are ordered from the bottom cross-section (the one at the
earlier spine point) to the top. So, one quadrilateral has the points:

 spine[0](crossSection[0], crossSection[1])
 spine[1](crossSection[1], crossSection[0])

in that order. By default, normals for the sides are generated as described in 4.6.3, Shapes and geometry.

For instance, a circular crossSection with counter-clockwise ordering and the default spine form a cylinder. With
solid TRUE and ccw TRUE, the cylinder is visible from the outside. Changing ccw to FALSE makes it visible from
the inside.

The ccw, solid, convex, and creaseAngle fields are described in 4.6.3, Shapes and geometry.

6.19 Fog

Fog {
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFString fogType "LINEAR"
 exposedField SFFloat visibilityRange 0 # [0,∞)
 eventIn SFBool set_bind
 eventOut SFBool isBound
}

The Fog node provides a way to simulate atmospheric effects by blending objects with the colour specified by the
color field based on the distances of the various objects from the viewer. The distances are calculated in the
coordinate space of the Fog node. The visibilityRange specifies the distance in metres (in the local coordinate
system) at which objects are totally obscured by the fog. Objects located outside the visibilityRange from the viewer
are drawn with a constant colour of color. Objects very close to the viewer are blended very little with the fog color.
A visibilityRange of 0.0 disables the Fog node. The visibilityRange is affected by the scaling transformations of the
Fog node's parents; translations and rotations have no affect on visibilityRange. Values of the visibilityRange field
shall be in the range [0,∞).

Since Fog nodes are bindable children nodes (see 4.6.10, Bindable children nodes), a Fog node stack exists, in which
the top-most Fog node on the stack is currently active. To push a Fog node onto the top of the stack, a TRUE value
is sent to the set_bind eventIn. Once active, the Fog node is bound to the browser view. A FALSE value sent to
set_bind, pops the Fog node from the stack and unbinds it from the browser viewer. More details on the Fog node
stack can be found in 4.6.10, Bindable children nodes.

The fogType field controls how much of the fog colour is blended with the object as a function of distance. If
fogType is "LINEAR", the amount of blending is a linear function of the distance, resulting in a depth cueing effect.
If fogType is "EXPONENTIAL," an exponential increase in blending is used, resulting in a more natural fog
appearance.

The effect of fog on lighting calculations is described in 4.14, Lighting model.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

89

6.20 FontStyle

FontStyle {
 field MFString family "SERIF"
 field SFBool horizontal TRUE
 field MFString justify "BEGIN"
 field SFString language ""
 field SFBool leftToRight TRUE
 field SFFloat size 1.0 # (0,∞)
 field SFFloat spacing 1.0 # [0,∞)
 field SFString style "PLAIN"
 field SFBool topToBottom TRUE
}

6.20.1 Introduction

The FontStyle node defines the size, family, and style used for Text nodes, as well as the direction of the text strings
and any language-specific rendering techniques used for non-English text. See 6.47, Text, for a description of the
Text node.

The size field specifies the nominal height, in the local coordinate system of the Text node, of glyphs rendered and
determines the spacing of adjacent lines of text. Values of the size field shall be greater than zero.

The spacing field determines the line spacing between adjacent lines of text. The distance between the baseline of
each line of text is (spacing × size) in the appropriate direction (depending on other fields described below). The
effects of the size and spacing field are depicted in Figure 6.7 (spacing greater than 1.0). Values of the spacing field
shall be non-negative.

Figure 6.7 -- Text size and spacing fields

6.20.2 Font family and style

Font attributes are defined with the family and style fields. The browser shall map the specified font attributes to an
appropriate available font as described below.

The family field contains a case-sensitive MFString value that specifies a sequence of font family names in
preference order. The browser shall search the MFString value for the first font family name matching a supported
font family. If none of the string values matches a supported font family, the default font family "SERIF" shall be
used. All browsers shall support at least "SERIF" (the default) for a serif font such as Times Roman; "SANS" for a
sans-serif font such as Helvetica; and "TYPEWRITER" for a fixed-pitch font such as Courier. An empty family
value is identical to ["SERIF"].

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

90

The style field specifies a case-sensitive SFString value that may be "PLAIN" (the default) for default plain type;
"BOLD" for boldface type; "ITALIC" for italic type; or "BOLDITALIC" for bold and italic type. An empty
style value ("") is identical to "PLAIN".

6.20.3 Direction and justification

The horizontal, leftToRight, and topToBottom fields indicate the direction of the text. The horizontal field indicates
whether the text advances horizontally in its major direction (horizontal = TRUE, the default) or vertically in its
major direction (horizontal = FALSE). The leftToRight and topToBottom fields indicate direction of text advance in
the major (characters within a single string) and minor (successive strings) axes of layout. Which field is used for
the major direction and which is used for the minor direction is determined by the horizontal field.

For horizontal text (horizontal = TRUE), characters on each line of text advance in the positive X direction if
leftToRight is TRUE or in the negative X direction if leftToRight is FALSE. Characters are advanced according to
their natural advance width. Each line of characters is advanced in the negative Y direction if topToBottom is TRUE
or in the positive Y direction if topToBottom is FALSE. Lines are advanced by the amount of size × spacing.

For vertical text (horizontal = FALSE), characters on each line of text advance in the negative Y direction if
topToBottom is TRUE or in the positive Y direction if topToBottom is FALSE. Characters are advanced according
to their natural advance height. Each line of characters is advanced in the positive X direction if leftToRight is
TRUE or in the negative X direction if leftToRight is FALSE. Lines are advanced by the amount of size × spacing.

The justify field determines alignment of the above text layout relative to the origin of the object coordinate system.
The justify field is an MFString which can contain 2 values. The first value specifies alignment along the major axis
and the second value specifies alignment along the minor axis, as determined by the horizontal field. An empty
justify value ("") is equivalent to the default value. If the second string, minor alignment, is not specified, minor
alignment defaults to the value "FIRST". Thus, justify values of "", "BEGIN", and ["BEGIN" "FIRST"] are
equivalent.

The major alignment is along the X-axis when horizontal is TRUE and along the Y-axis when horizontal is FALSE.
The minor alignment is along the Y-axis when horizontal is TRUE and along the X-axis when horizontal is FALSE.
The possible values for each enumerant of the justify field are "FIRST", "BEGIN", "MIDDLE", and "END".
For major alignment, each line of text is positioned individually according to the major alignment enumerant. For
minor alignment, the block of text representing all lines together is positioned according to the minor alignment
enumerant. Tables 6.2-6.5 describe the behaviour in terms of which portion of the text is at the origin

Table 6.2 -- Major Alignment, horizontal = TRUE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

 FIRST Left edge of each line Right edge of each line

 BEGIN Left edge of each line Right edge of each line

 MIDDLE Centred about X-axis Centred about X-axis

 END Right edge of each line Left edge of each line

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

91

Table 6.3 -- Major Alignment, horizontal = FALSE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

 FIRST Top edge of each line Bottom edge of each line

 BEGIN Top edge of each line Bottom edge of each line

 MIDDLE Centred about Y-axis Centre about Y-axis

 END Bottom edge of each line Top edge of each line

Table 6.4 -- Minor Alignment, horizontal = TRUE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

 FIRST Baseline of first line Baseline of first line

 BEGIN Top edge of first line Bottom edge of first line

 MIDDLE Centred about Y-axis Centred about Y-axis

 END Bottom edge of last line Top edge of last line

Table 6.5 -- Minor Alignment, horizontal = FALSE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

 FIRST Left edge of first line Right edge of first line

 BEGIN Left edge of first line Right edge of first line

 MIDDLE Centred about X-axis Centred about X-axis

 END Right edge of last line Left edge of last line

The default minor alignment is "FIRST". This is a special case of minor alignment when horizontal is TRUE. Text
starts at the baseline at the Y-axis. In all other cases, "FIRST" is identical to "BEGIN". In Tables 6.6 and 6.7, each
colour-coded cross-hair indicates where the X-axis and Y-axis shall be in relation to the text. Figure 6.8 describes
the symbols used in Tables 6.6 and 6.7.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

92

Figure 6.8 -- Key for Tables 6.6 and 6.7

Table 6.6 -- horizontal = TRUE

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

93

Table 6.7 -- horizontal = FALSE

6.20.4 Language

The language field specifies the context of the language for the text string. Due to the multilingual nature of the
ISO/IEC 10646-1:1993, the language field is needed to provide a proper language attribute of the text string. The
format is based on RFC 1766: language[_territory] 2.[1766]. The value for the language tag is based on ISO
639:1988 (e.g., 'zh' for Chinese, 'jp' for Japanese, and 'sc' for Swedish.) The territory tag is based on ISO 3166:1993
country codes (e.g., 'TW' for Taiwan and 'CN' for China for the 'zh' Chinese language tag). If the language field is
empty (""), local language bindings are used.

See 2, Normative references, for more information on RFC 1766 (2.[1766]), ISO/IEC 10646:1993 (2.[UTF8]),
ISO/IEC 639:1998 (2.[I639]), and ISO 3166:1993 (2.[I3166]).

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

94

6.21 Group

Group {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

A Group node contains children nodes without introducing a new transformation. It is equivalent to a Transform
node containing an identity transform.

More details on the children, addChildren, and removeChildren fields and eventIns can be found in 4.6.5, Grouping
and children nodes.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Group node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and, if needed, is calculated by the browser. A description of the bboxCenter and bboxSize fields
is contained in 4.6.4, Bounding boxes.

6.22 ImageTexture

ImageTexture {
 exposedField MFString url []
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
}

The ImageTexture node defines a texture map by specifying an image file and general parameters for mapping to
geometry. Texture maps are defined in a 2D coordinate system (s, t) that ranges from [0.0, 1.0] in both directions.
The bottom edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds
to the T-axis of the texture map. The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of
the image corresponds to s=1, t=1. These relationships are depicted in Figure 6.9.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

95

Figure 6.9 -- Texture map coordinate system

The texture is read from the URL specified by the url field. When the url field contains no values ([]), texturing is
disabled. Browsers shall support the JPEG (see 2. [JPEG]) and PNG (see 2. [PNG]) image file formats. In addition,
browsers may support other image formats (e.g. CGM, 2. [CGM]) which can be rendered into a 2D image. Support
for the GIF format (see E. [GIF]) is also recommended (including transparency). Details on the url field can be
found in 4.5, VRML and the World Wide Web.

See 4.6.11, Texture maps, for a general description of texture maps.

See 4.14, Lighting model, for a description of lighting equations and the interaction between textures, materials, and
geometry appearance.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If repeatS is TRUE (the
default), the texture map is repeated outside the [0.0, 1.0] texture coordinate range in the S direction so that it fills
the shape. If repeatS is FALSE, the texture coordinates are clamped in the S direction to lie within the [0.0, 1.0]
range. The repeatT field is analogous to the repeatS field.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

96

6.23 IndexedFaceSet

IndexedFaceSet {
 eventIn MFInt32 set_colorIndex
 eventIn MFInt32 set_coordIndex
 eventIn MFInt32 set_normalIndex
 eventIn MFInt32 set_texCoordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 exposedField SFNode normal NULL
 exposedField SFNode texCoord NULL
 field SFBool ccw TRUE
 field MFInt32 colorIndex [] # [-1,∞)
 field SFBool colorPerVertex TRUE
 field SFBool convex TRUE
 field MFInt32 coordIndex [] # [-1,∞)
 field SFFloat creaseAngle 0 # [0,∞)
 field MFInt32 normalIndex [] # [-1,∞)
 field SFBool normalPerVertex TRUE
 field SFBool solid TRUE
 field MFInt32 texCoordIndex [] # [-1,∞)
}

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons) from vertices listed in the
coord field. The coord field contains a Coordinate node that defines the 3D vertices referenced by the coordIndex
field. IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by indexing into the
coordinates in the Coordinate node. An index of "-1" indicates that the current face has ended and the next one
begins. The last face may be (but does not have to be) followed by a "-1" index. If the greatest index in the
coordIndex field is N, the Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the
IndexedFaceSet shall have:

a. at least three non-coincident vertices;

b. vertices that define a planar polygon;

c. vertices that define a non-self-intersecting polygon.

Otherwise, The results are undefined.

The IndexedFaceSet node is specified in the local coordinate system and is affected by the transformations of its
ancestors.

Descriptions of the coord, normal, and texCoord fields are provided in the Coordinate, Normal, and
TextureCoordinate nodes, respectively.

Details on lighting equations and the interaction between color field, normal field, textures, materials, and
geometries are provided in 4.14, Lighting model.

If the color field is not NULL, it shall contain a Color node whose colours are applied to the vertices or faces of the
IndexedFaceSet as follows:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

97

d. If colorPerVertex is FALSE, colours are applied to each face, as follows:

1. If the colorIndex field is not empty, then one colour is used for each face of the IndexedFaceSet.
There shall be at least as many indices in the colorIndex field as there are faces in the
IndexedFaceSet. If the greatest index in the colorIndex field is N, then there shall be N+1 colours
in the Color node. The colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, then the colours in the Color node are applied to each face of the
IndexedFaceSet in order. There shall be at least as many colours in the Color node as there are
faces.

e. If colorPerVertex is TRUE, colours are applied to each vertex, as follows:

1. If the colorIndex field is not empty, then colours are applied to each vertex of the IndexedFaceSet
in exactly the same manner that the coordIndex field is used to choose coordinates for each vertex
from the Coordinate node. The colorIndex field shall contain at least as many indices as the
coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the
coordIndex field. If the greatest index in the colorIndex field is N, then there shall be N+1 colours
in the Color node.

2. If the colorIndex field is empty, then the coordIndex field is used to choose colours from the Color
node. If the greatest index in the coordIndex field is N, then there shall be N+1 colours in the
Color node.

If the color field is NULL, the geometry shall be rendered normally using the Material and texture defined in the
Appearance node (see 4.14, Lighting model, for details).

If the normal field is not NULL, it shall contain a Normal node whose normals are applied to the vertices or faces of
the IndexedFaceSet in a manner exactly equivalent to that described above for applying colours to vertices/faces
(where normalPerVertex corresponds to colorPerVertex and normalIndex corresponds to colorIndex). If the normal
field is NULL, the browser shall automatically generate normals, using creaseAngle to determine if and how
normals are smoothed across shared vertices (see 4.6.3.5, Crease angle field).

If the texCoord field is not NULL, it shall contain a TextureCoordinate node. The texture coordinates in that node
are applied to the vertices of the IndexedFaceSet as follows:

f. If the texCoordIndex field is not empty, then it is used to choose texture coordinates for each vertex of the
IndexedFaceSet in exactly the same manner that the coordIndex field is used to choose coordinates for each
vertex from the Coordinate node. The texCoordIndex field shall contain at least as many indices as the
coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the coordIndex
field. If the greatest index in the texCoordIndex field is N, then there shall be N+1 texture coordinates in the
TextureCoordinate node.

g. If the texCoordIndex field is empty, then the coordIndex array is used to choose texture coordinates from
the TextureCoordinate node. If the greatest index in the coordIndex field is N, then there shall be N+1
texture coordinates in the TextureCoordinate node.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local coordinate system
bounding box of the shape. The longest dimension of the bounding box defines the S coordinates, and the next
longest defines the T coordinates. If two or all three dimensions of the bounding box are equal, ties shall be broken
by choosing the X, Y, or Z dimension in that order of preference. The value of the S coordinate ranges from 0 to 1,
from one end of the bounding box to the other. The T coordinate ranges between 0 and the ratio of the second
greatest dimension of the bounding box to the greatest dimension. Figure 6.10 illustrates the default texture
coordinates for a simple box shaped IndexedFaceSet with an X dimension twice as large as the Z dimension and
four times as large as the Y dimension. Figure 6.11 illustrates the original texture image used on the IndexedFaceSet
used in Figure 6.10.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

98

Figure 6.10 -- IndexedFaceSet texture default mapping

Figure 6.11 -- ImageTexture for IndexedFaceSet in Figure 6.10

Subclause 4.6.3, Shapes and geometry, provides a description of the ccw, solid, convex, and creaseAngle fields.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

99

6.24 IndexedLineSet

IndexedLineSet {
 eventIn MFInt32 set_colorIndex
 eventIn MFInt32 set_coordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 field MFInt32 colorIndex [] # [-1,∞)
 field SFBool colorPerVertex TRUE
 field MFInt32 coordIndex [] # [-1,∞)
}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from 3D vertices specified in
the coord field. IndexedLineSet uses the indices in its coordIndex field to specify the polylines by connecting
vertices from the coord field. An index of "-1" indicates that the current polyline has ended and the next one begins.
The last polyline may be (but does not have to be) followed by a "-1". IndexedLineSet is specified in the local
coordinate system and is affected by the transformations of its ancestors.

The coord field specifies the 3D vertices of the line set and contains a Coordinate node.

Lines are not lit, are not texture-mapped, and do not participate in collision detection. The width of lines is
implementation dependent and each line segment is solid (i.e., not dashed).

If the color field is not NULL, it shall contain a Color node. The colours are applied to the line(s) as follows:

a. If colorPerVertex is FALSE:

1. If the colorIndex field is not empty, one colour is used for each polyline of the IndexedLineSet.
There shall be at least as many indices in the colorIndex field as there are polylines in the
IndexedLineSet. If the greatest index in the colorIndex field is N, there shall be N+1 colours in the
Color node. The colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, the colours from the Color node are applied to each polyline of
the IndexedLineSet in order. There shall be at least as many colours in the Color node as there are
polylines.

b. If colorPerVertex is TRUE:

1. If the colorIndex field is not empty, colours are applied to each vertex of the IndexedLineSet in
exactly the same manner that the coordIndex field is used to supply coordinates for each vertex
from the Coordinate node. The colorIndex field shall contain at least as many indices as the
coordIndex field and shall contain end-of-polyline markers (-1) in exactly the same places as the
coordIndex field. If the greatest index in the colorIndex field is N, there shall be N+1 colours in
the Color node.

2. If the colorIndex field is empty, the coordIndex field is used to choose colours from the Color
node. If the greatest index in the coordIndex field is N, there shall be N+1 colours in the Color
node.

If the color field is NULL and there is a Material defined for the Appearance affecting this IndexedLineSet, the
emissiveColor of the Material shall be used to draw the lines. Details on lighting equations as they affect
IndexedLineSet nodes are described in 4.14, Lighting model.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

100

6.25 Inline

Inline {
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Inline node is a grouping node that reads its children data from a location in the World Wide Web. Exactly
when its children are read and displayed is not defined (e.g. reading the children may be delayed until the Inline
node's bounding box is visible to the viewer). The url field specifies the URL containing the children. An Inline
node with an empty URL does nothing.

Each specified URL shall refer to a valid VRML file that contains a list of children nodes, prototypes, and routes at
the top level as described in 4.6.5, Grouping and children nodes. The results are undefined if the URL refers to a file
that is not VRML or if the VRML file contains non-children nodes at the top level.

If multiple URLs are specified, the browser may display a URL of a lower preference VRML file while it is
obtaining, or if it is unable to obtain, the higher preference VRML file. Details on the url field and preference order
can be found in 4.5, VRML and the World Wide Web.

The results are undefined if the contents of the URL change after it has been loaded.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Inline node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and if needed shall be calculated by the browser. A description of the bboxCenter and bboxSize
fields is in 4.6.4, Bounding boxes.

6.26 LOD

LOD {
 exposedField MFNode level []
 field SFVec3f center 0 0 0 # (-∞,∞)
 field MFFloat range [] # (0,∞)
}

The LOD node specifies various levels of detail or complexity for a given object, and provides hints allowing
browsers to automatically choose the appropriate version of the object based on the distance from the user. The level
field contains a list of nodes that represent the same object or objects at varying levels of detail, ordered from
highest level of detail to the lowest level of detail. The range field specifies the ideal distances at which to switch
between the levels. Subclause 4.6.5, Grouping and children nodes, contains details on the types of nodes that are
legal values for level.

The center field is a translation offset in the local coordinate system that specifies the centre of the LOD node for
distance calculations.

The number of nodes in the level field shall exceed the number of values in the range field by one (i.e., N+1 level
values for N range values). The range field contains monotonic increasing values that shall be greater than zero. In

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

101

order to calculate which level to display, first the distance is calculated from the viewer's location, transformed into
the local coordinate system of the LOD node (including any scaling transformations), to the center point of the LOD
node. Then, the LOD node evaluates the step function L(d) to choose a level for a given value of d (where d is the
distance from the viewer position to the centre of the LOD node).

Let n ranges, R0, R1, R2, ..., Rn-1, partition the domain (0, +infinity) into n+1 subintervals given by (0, R0), [R0, R1)... ,
[Rn-1, +infinity). Also, let n levels L0, L1, L2, ..., Ln-1 be the values of the step function function L(d). The level node,
L(d), for a given distance d is defined as follows:

 L(d) = L0, if d < R0,
 = Li+1, if Ri <= d < Ri+1, for -1 < i < n-1,
 = Ln-1, if d >= Rn-1.

Specifying too few levels will result in the last level being used repeatedly for the lowest levels of detail. If more
levels than ranges are specified, the extra levels are ignored. An empty range field is an exception to this rule. This
case is a hint to the browser that it may choose a level automatically to maintain a constant display rate. Each value
in the range field shall be greater than the previous value.

LOD nodes are evaluated top-down in the scene graph. Only the descendants of the currently selected level are
rendered. All nodes under an LOD node continue to receive and send events regardless of which LOD node's level is
active. For example, if an active TimeSensor node is contained within an inactive level of an LOD node, the
TimeSensor node sends events regardless of the LOD node's state.

6.27 Material

Material {
 exposedField SFFloat ambientIntensity 0.2 # [0,1]
 exposedField SFColor diffuseColor 0.8 0.8 0.8 # [0,1]
 exposedField SFColor emissiveColor 0 0 0 # [0,1]
 exposedField SFFloat shininess 0.2 # [0,1]
 exposedField SFColor specularColor 0 0 0 # [0,1]
 exposedField SFFloat transparency 0 # [0,1]
}

The Material node specifies surface material properties for associated geometry nodes and is used by the VRML
lighting equations during rendering. Subclause 4.14, Lighting model, contains a detailed description of the VRML
lighting model equations.

All of the fields in the Material node range from 0.0 to 1.0.

The fields in the Material node determine how light reflects off an object to create colour:

a. The ambientIntensity field specifies how much ambient light from light sources this surface shall reflect.
Ambient light is omnidirectional and depends only on the number of light sources, not their positions with
respect to the surface. Ambient colour is calculated as ambientIntensity × diffuseColor.

b. The diffuseColor field reflects all VRML light sources depending on the angle of the surface with respect to
the light source. The more directly the surface faces the light, the more diffuse light reflects.

c. The emissiveColor field models "glowing" objects. This can be useful for displaying pre-lit models (where
the light energy of the room is computed explicitly), or for displaying scientific data.

d. The specularColor and shininess fields determine the specular highlights (e.g., the shiny spots on an apple).
When the angle from the light to the surface is close to the angle from the surface to the viewer, the

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

102

specularColor is added to the diffuse and ambient colour calculations. Lower shininess values produce soft
glows, while higher values result in sharper, smaller highlights.

e. The transparency field specifies how "clear" an object is, with 1.0 being completely transparent, and 0.0
completely opaque.

6.28 MovieTexture

MovieTexture {
 exposedField SFBool loop FALSE
 exposedField SFFloat speed 1.0 # (-∞,∞)
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 exposedField MFString url []
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
 eventOut SFTime duration_changed
 eventOut SFBool isActive
}

The MovieTexture node defines a time dependent texture map (contained in a movie file) and parameters for
controlling the movie and the texture mapping. A MovieTexture node can also be used as the source of sound data
for a Sound node. In this special case, the MovieTexture node is not used for rendering.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bottom
edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds to the T-axis
of the texture map. The lower-left pixel of the image corresponds to s=0.0, t=0.0, and the top-right pixel of the
image corresponds to s=1.0, t=1.0. Figure 6.12 depicts the texture map coordinate system of the MovieTexture.

Figure 6.12 -- MovieTexture node coordinate system

The url field that defines the movie data shall support MPEG1-Systems (audio and video) or MPEG1-Video (video-
only) movie file formats 2.[MPEG]. Details on the url field can be found in 4.5, VRML and the World Wide Web.

MovieTexture nodes can be referenced by an Appearance node's texture field (as a movie texture) and by a Sound
node's source field (as an audio source only).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

103

See 4.6.11, Texture maps, for a general description of texture maps.

4.14, Lighting model, contains details on lighting equations and the interaction between textures, materials, and
geometries.

As soon as the movie is loaded, a duration_changed eventOut is sent. This indicates the duration of the movie in
seconds. This eventOut value can be read (for instance, by a Script node) to determine the duration of a movie. A
value of "-1" implies the movie has not yet loaded or the value is unavailable for some reason.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the MovieTexture
node, are discussed in detail in the 4.6.9, Time-dependent nodes, section. The cycle of a MovieTexture node is the
length of time in seconds for one playing of the movie at the specified speed.

The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice
as fast. The duration_changed output is not affected by the speed exposedField. set_speed events are ignored while
the movie is playing. A negative speed implies that the movie will play backwards.

If a MovieTexture node is inactive when the movie is first loaded, frame 0 of the movie texture is displayed if speed
is non-negative or the last frame of the movie texture is shown if speed is negative (see 4.11.3, Discrete and
continuous changes). A MovieTexture node shall display frame 0 if speed = 0. For positive values of speed, an
active MovieTexture node displays the frame at movie time t as follows (i.e., in the movie's local time system with
frame 0 at time 0 with speed = 1):

 t = (now - startTime) modulo (duration/speed)

If speed is negative, the MovieTexture node displays the frame at movie time:

 t = duration - ((now - startTime) modulo |duration/speed|)

When a MovieTexture node becomes inactive, the frame corresponding to the time at which the MovieTexture
became inactive will remain as the texture.

6.29 NavigationInfo

NavigationInfo {
 eventIn SFBool set_bind
 exposedField MFFloat avatarSize [0.25, 1.6, 0.75] # [0,∞)
 exposedField SFBool headlight TRUE
 exposedField SFFloat speed 1.0 # [0,∞)
 exposedField MFString type ["WALK", "ANY"]
 exposedField SFFloat visibilityLimit 0.0 # [0,∞)
 eventOut SFBool isBound
}

The NavigationInfo node contains information describing the physical characteristics of the viewer's avatar and
viewing model. NavigationInfo node is a bindable node (see 4.6.10, Bindable children nodes). Thus, there exists a
NavigationInfo node stack in which the top-most NavigationInfo node on the stack is the currently bound
NavigationInfo node. The current NavigationInfo node is considered to be a child of the current Viewpoint node
regardless of where it is initially located in the VRML file. Whenever the current Viewpoint nodes changes, the
current NavigationInfo node shall be re-parented to it by the browser. Whenever the current NavigationInfo node
changes, the new NavigationInfo node shall be re-parented to the current Viewpoint node by the browser.

If a TRUE value is sent to the set_bind eventIn of a NavigationInfo node, the node is pushed onto the top of the
NavigationInfo node stack. When a NavigationInfo node is bound, the browser uses the fields of the NavigationInfo

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

104

node to set the navigation controls of its user interface and the NavigationInfo node is conceptually re-parented
under the currently bound Viewpoint node. All subsequent scaling changes to the current Viewpoint node's
coordinate system automatically change aspects (see below) of the NavigationInfo node values used in the browser
(e.g., scale changes to any ancestors' transformations). A FALSE value sent to set_bind pops the NavigationInfo
node from the stack, results in an isBound FALSE event, and pops to the next entry in the stack which shall be re-
parented to the current Viewpoint node. 4.6.10, Bindable children nodes, has more details on binding stacks.

The type field specifies an ordered list of navigation paradigms that specify a combination of navigation types and
the initial navigation type. The navigation type of the currently bound NavigationInfo node determines the user
interface capabilities of the browser. For example, if the currently bound NavigationInfo node's type is "WALK", the
browser shall present a WALK navigation user interface paradigm (see below for description of WALK). Browsers
shall recognize and support at least the following navigation types: "ANY", "WALK", "EXAMINE", "FLY", and
"NONE".

If "ANY" does not appear in the type field list of the currently bound NavigationInfo, the browser's navigation user
interface shall be restricted to the recognized navigation types specified in the list. In this case, browsers shall not
present a user interface that allows the navigation type to be changed to a type not specified in the list. However, if
any one of the values in the type field are "ANY", the browser may provide any type of navigation interface, and
allow the user to change the navigation type dynamically. Furthermore, the first recognized type in the list shall be
the initial navigation type presented by the browser's user interface.

ANY navigation specifies that the browser may choose the navigation paradigm that best suits the content and
provide a user interface to allow the user to change the navigation paradigm dynamically. The results are undefined
if the currently bound NavigationInfo's type value is "ANY" and Viewpoint transitions (see 6.53, Viewpoint) are
triggered by the Anchor node (see 6.2, Anchor) or the loadURL()scripting method (see
4.12.10, Browser script interface).

WALK navigation is used for exploring a virtual world on foot or in a vehicle that rests on or hovers above the
ground. It is strongly recommended that WALK navigation define the up vector in the +Y direction and provide
some form of terrain following and gravity in order to produce a walking or driving experience. If the bound
NavigationInfo's type is "WALK", the browser shall strictly support collision detection (see 6.8, Collision).

FLY navigation is similar to WALK except that terrain following and gravity may be disabled or ignored. There
shall still be some notion of "up" however. If the bound NavigationInfo's type is "FLY", the browser shall strictly
support collision detection (see 6.8, Collision).

EXAMINE navigation is used for viewing individual objects and often includes (but does not require) the ability to
spin around the object and move the viewer closer or further away.

NONE navigation disables and removes all browser-specific navigation user interface forcing the user to navigate
using only mechanisms provided in the scene, such as Anchor nodes or scripts that include loadURL().

If the NavigationInfo type is "WALK", "FLY", "EXAMINE", or "NONE" or a combination of these types (i.e.,
"ANY" is not in the list), Viewpoint transitions (see 6.53, Viewpoint) triggered by the Anchor node (see
6.2, Anchor) or the loadURL()scripting method (see 4.12.10, Browser script interface) shall be implemented as a
jump cut from the old Viewpoint to the new Viewpoint with transition effects that shall not trigger events besides
the exit and enter events caused by the jump.

Browsers may create browser-specific navigation type extensions. It is recommended that extended type names
include a unique suffix (e.g., HELICOPTER_mydomain.com) to prevent conflicts. Viewpoint transitions (see
6.53, Viewpoint) triggered by the Anchor node (see 6.2, Anchor) or the loadURL()scripting method (see
4.12.10, Browser script interface) are undefined for extended navigation types. If none of the types are recognized
by the browser, the default "ANY" is used. These strings values are case sensitive ("any" is not equal to "ANY").

The speed field specifies the rate at which the viewer travels through a scene in metres per second. Since browsers
may provide mechanisms to travel faster or slower, this field specifies the default, average speed of the viewer when
the NavigationInfo node is bound. If the NavigationInfo type is EXAMINE, speed shall not affect the viewer's

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

105

rotational speed. Scaling in the transformation hierarchy of the currently bound Viewpoint node (see above) scales
the speed; parent translation and rotation transformations have no effect on speed. Speed shall be non-negative. Zero
speed indicates that the avatar's position is stationary, but its orientation and field of view may still change. If the
navigation type is "NONE", the speed field has no effect.

The avatarSize field specifies the user's physical dimensions in the world for the purpose of collision detection and
terrain following. It is a multi-value field allowing several dimensions to be specified. The first value shall be the
allowable distance between the user's position and any collision geometry (as specified by a Collision node) before
a collision is detected. The second shall be the height above the terrain at which the browser shall maintain the
viewer. The third shall be the height of the tallest object over which the viewer can move. This allows staircases to
be built with dimensions that can be ascended by viewers in all browsers. The transformation hierarchy of the
currently bound Viewpoint node scales the avatarSize. Translations and rotations have no effect on avatarSize.

For purposes of terrain following, the browser maintains a notion of the down direction (down vector), since gravity
is applied in the direction of the down vector. This down vector shall be along the negative Y-axis in the local
coordinate system of the currently bound Viewpoint node (i.e., the accumulation of the Viewpoint node's ancestors'
transformations, not including the Viewpoint node's orientation field).

Geometry beyond the visibilityLimit may not be rendered. A value of 0.0 indicates an infinite visibility limit. The
visibilityLimit field is restricted to be greater than or equal to zero.

The speed, avatarSize and visibilityLimit values are all scaled by the transformation being applied to the currently
bound Viewpoint node. If there is no currently bound Viewpoint node, the values are interpreted in the world
coordinate system. This allows these values to be automatically adjusted when binding to a Viewpoint node that has
a scaling transformation applied to it without requiring a new NavigationInfo node to be bound as well. The results
are undefined if the scale applied to the Viewpoint node is non-uniform.

The headlight field specifies whether a browser shall turn on a headlight. A headlight is a directional light that
always points in the direction the user is looking. Setting this field to TRUE allows the browser to provide a
headlight, possibly with user interface controls to turn it on and off. Scenes that enlist precomputed lighting
(e.g., radiosity solutions) can turn the headlight off. The headlight shall have intensity = 1, color = (1 1 1),
ambientIntensity = 0.0, and direction = (0 0 -1).

It is recommended that the near clipping plane be set to one-half of the collision radius as specified in the avatarSize
field (setting the near plane to this value prevents excessive clipping of objects just above the collision volume, and
also provides a region inside the collision volume for content authors to include geometry intended to remain fixed
relative to the viewer). Such geometry shall not be occluded by geometry outside of the collision volume.

6.30 Normal

Normal {
 exposedField MFVec3f vector [] # (-∞,∞)
}

This node defines a set of 3D surface normal vectors to be used in the vector field of some geometry nodes
(e.g., IndexedFaceSet and ElevationGrid). This node contains one multiple-valued field that contains the normal
vectors. Normals shall be of unit length.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

106

6.31 NormalInterpolator

NormalInterpolator {

 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut MFVec3f value_changed
}

The NormalInterpolator node interpolates among a list of normal vector sets specified by the keyValue field. The
output vector, value_changed, shall be a set of normalized vectors.

Values in the keyValue field shall be of unit length. The number of normals in the keyValue field shall be an integer
multiple of the number of keyframes in the key field. That integer multiple defines how many normals will be
contained in the value_changed events.

Normal interpolation shall be performed on the surface of the unit sphere. That is, the output values for a linear
interpolation from a point P on the unit sphere to a point Q also on the unit sphere shall lie along the shortest arc (on
the unit sphere) connecting points P and Q. Also, equally spaced input fractions shall result in arcs of equal length.
The results are undefined if P and Q are diagonally opposite.

A more detailed discussion of interpolators is provided in 4.6.8, Interpolator nodes.

6.32 OrientationInterpolator

OrientationInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFRotation keyValue [] # [-1,1], (-∞,∞)
 eventOut SFRotation value_changed
}

The OrientationInterpolator node interpolates among a list of rotation values specified in the keyValue field. These
rotations are absolute in object space and therefore are not cumulative. The keyValue field shall contain exactly as
many rotations as there are keyframes in the key field.

An orientation represents the final position of an object after a rotation has been applied. An OrientationInterpolator
interpolates between two orientations by computing the shortest path on the unit sphere between the two
orientations. The interpolation is linear in arc length along this path. The results are undefined if the two orientations
are diagonally opposite.

If two consecutive keyValue values exist such that the arc length between them is greater than π, the interpolation
will take place on the arc complement. For example, the interpolation between the orientations (0, 1, 0, 0) and (0, 1,
0, 5.0) is equivalent to the rotation between the orientations (0, 1, 0, 2π) and (0, 1, 0, 5.0).

A more detailed discussion of interpolators is contained in 4.6.8, Interpolator nodes.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

107

6.33 PixelTexture

PixelTexture {
 exposedField SFImage image 0 0 0 # see 5.5, SFImage
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
}

The PixelTexture node defines a 2D image-based texture map as an explicit array of pixel values (image field) and
parameters controlling tiling repetition of the texture onto geometry.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bottom
edge of the pixel image corresponds to the S-axis of the texture map, and left edge of the pixel image corresponds to
the T-axis of the texture map. The lower-left pixel of the pixel image corresponds to s=0.0, t=0.0, and the top-right
pixel of the image corresponds to s = 1.0, t = 1.0.

See 4.6.11, Texture maps, for a general description of texture maps. Figure 6.13 depicts an example PixelTexture.

Figure 6.13 -- PixelTexture node

See 4.14 ,Lighting model, for a description of how the texture values interact with the appearance of the geometry.
5.5, SFImage, describes the specification of an image.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If repeatS is TRUE (the
default), the texture map is repeated outside the 0-to-1 texture coordinate range in the S direction so that it fills the
shape. If repeatS is FALSE, the texture coordinates are clamped in the S direction to lie within the 0.0 to 1.0 range.
The repeatT field is analogous to the repeatS field.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

108

6.34 PlaneSensor

PlaneSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFBool enabled TRUE
 exposedField SFVec2f maxPosition -1 -1 # (-∞,∞)
 exposedField SFVec2f minPosition 0 0 # (-∞,∞)
 exposedField SFVec3f offset 0 0 0 # (-∞,∞)
 eventOut SFBool isActive
 eventOut SFVec3f trackPoint_changed
 eventOut SFVec3f translation_changed
}

The PlaneSensor node maps pointing device motion into two-dimensional translation in a plane parallel to the Z=0
plane of the local coordinate system. The PlaneSensor node uses the descendent geometry of its parent node to
determine whether it is liable to generate events.

The enabled exposedField enables and disables the PlaneSensor. If enabled is TRUE, the sensor reacts appropriately
to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled receives a
FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE
event. If enabled receives a TRUE event, the sensor is enabled and made ready for user activation.

The PlaneSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for
details on using the pointing device to activate the PlaneSensor.

Upon activation of the pointing device (e.g., mouse button down) while indicating the sensor's geometry, an isActive
TRUE event is sent. Pointer motion is mapped into relative translation in the tracking plane, (a plane parallel to the
sensor's local Z=0 plane and coincident with the initial point of intersection). For each subsequent movement of the
bearing, a translation_changed event is output which corresponds to the sum of the relative translation from the
original intersection point to the intersection point of the new bearing in the plane plus the offset value. The sign of
the translation is defined by the Z=0 plane of the sensor's coordinate system. trackPoint_changed events reflect the
unclamped drag position on the surface of this plane. When the pointing device is deactivated and autoOffset is
TRUE, offset is set to the last translation_changed value and an offset_changed event is generated. More details are
provided in 4.6.7.4, Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is deactivated and generates an isActive FALSE event. Other pointing-device sensors shall not generate events
during this time. Motion of the pointing device while isActive is TRUE is referred to as a "drag." If a 2D pointing
device is in use, isActive events typically reflect the state of the primary button associated with the device
(i.e., isActive is TRUE when the primary button is pressed, and is FALSE when it is released). If a 3D pointing
device (e.g., wand) is in use, isActive events typically reflect whether the pointer is within or in contact with the
sensor's geometry.

minPosition and maxPosition may be set to clamp translation_changed events to a range of values as measured from
the origin of the Z=0 plane. If the X or Y component of minPosition is greater than the corresponding component of
maxPosition, translation_changed events are not clamped in that dimension. If the X or Y component of
minPosition is equal to the corresponding component of maxPosition, that component is constrained to the given
value. This technique provides a way to implement a line sensor that maps dragging motion into a translation in one
dimension.

While the pointing device is activated and moved, trackPoint_changed and translation_changed events are sent.
trackPoint_changed events represent the unclamped intersection points on the surface of the tracking plane. If the

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

109

pointing device is dragged off of the tracking plane while activated (e.g., above horizon line), browsers may
interpret this in a variety ways (e.g., clamp all values to the horizon). Each movement of the pointing device, while
isActive is TRUE, generates trackPoint_changed and translation_changed events.

Further information about this behaviour can be found in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.35 PointLight

PointLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFVec3f attenuation 1 0 0 # [0,∞)
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100 # [0,∞)
}

The PointLight node specifies a point light source at a 3D location in the local coordinate system. A point light
source emits light equally in all directions; that is, it is omnidirectional. PointLight nodes are specified in the local
coordinate system and are affected by ancestor transformations.

Subclause 4.6.6, Light sources, contains a detailed description of the ambientIntensity, color, and intensity fields.

A PointLight node illuminates geometry within radius metres of its location. Both radius and location are affected
by ancestors' transformations (scales affect radius and transformations affect location). The radius field shall be
greater than or equal to zero.

PointLight node's illumination falls off with distance as specified by three attenuation coefficients. The attenuation
factor is 1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2, 1), where r is the distance from the light
to the surface being illuminated. The default is no attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0,
0). Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations is
contained in 4.14, Lighting model.

6.36 PointSet

PointSet {
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
}

The PointSet node specifies a set of 3D points, in the local coordinate system, with associated colours at each point.
The coord field specifies a Coordinate node (or instance of a Coordinate node). The results are undefined if the
coord field specifies any other type of node. PointSet uses the coordinates in order. If the coord field is NULL, the
point set is considered empty.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

110

PointSet nodes are not lit, not texture-mapped, nor do they participate in collision detection. The size of each point is
implementation-dependent.

If the color field is not NULL, it shall specify a Color node that contains at least the number of points contained in
the coord node. The results are undefined if the color field specifies any other type of node. Colours shall be applied
to each point in order. The results are undefined if the number of values in the Color node is less than the number of
values specified in the Coordinate node.

If the color field is NULL and there is a Material node defined for the Appearance node affecting this PointSet node,
the emissiveColor of the Material node shall be used to draw the points. More details on lighting equations can be
found in 4.14, Lighting model.

6.37 PositionInterpolator

PositionInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut SFVec3f value_changed
}

The PositionInterpolator node linearly interpolates among a list of 3D vectors. The keyValue field shall contain
exactly as many values as in the key field.

4.6.8, Interpolator nodes, contains a more detailed discussion of interpolators.

6.38 ProximitySensor

ProximitySensor {
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField SFVec3f size 0 0 0 # [0,∞)
 exposedField SFBool enabled TRUE
 eventOut SFBool isActive
 eventOut SFVec3f position_changed
 eventOut SFRotation orientation_changed
 eventOut SFTime enterTime
 eventOut SFTime exitTime
}

The ProximitySensor node generates events when the viewer enters, exits, and moves within a region in space
(defined by a box). A proximity sensor is enabled or disabled by sending it an enabled event with a value of TRUE
or FALSE. A disabled sensor does not send events.

A ProximitySensor node generates isActive TRUE/FALSE events as the viewer enters and exits the rectangular box
defined by its center and size fields. Browsers shall interpolate viewer positions and timestamp the isActive events
with the exact time the viewer first intersected the proximity region. The center field defines the centre point of the
proximity region in object space. The size field specifies a vector which defines the width (x), height (y), and depth

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

111

(z) of the box bounding the region. The components of the size field shall be greater than or equal to zero.
ProximitySensor nodes are affected by the hierarchical transformations of their parents.

The enterTime event is generated whenever the isActive TRUE event is generated (user enters the box), and exitTime
events are generated whenever an isActive FALSE event is generated (user exits the box).

The position_changed and orientation_changed eventOuts send events whenever the user is contained within the
proximity region and the position and orientation of the viewer changes with respect to the ProximitySensor node's
coordinate system including enter and exit times. The viewer movement may be a result of a variety of
circumstances resulting from browser navigation, ProximitySensor node's coordinate system changes, or bound
Viewpoint node's position or orientation changes.

Each ProximitySensor node behaves independently of all other ProximitySensor nodes. Every enabled
ProximitySensor node that is affected by the viewer's movement receives and sends events, possibly resulting in
multiple ProximitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there is
no notion of a ProximitySensor node lower in the scene graph "grabbing" events.

Instanced (DEF/USE) ProximitySensor nodes use the union of all the boxes to check for enter and exit. A multiply
instanced ProximitySensor node will detect enter and exit for all instances of the box and send enter/exit events
appropriately. However, the results are undefined if the any of the boxes of a multiply instanced ProximitySensor
node overlap.

A ProximitySensor node that surrounds the entire world has an enterTime equal to the time that the world was
entered and can be used to start up animations or behaviours as soon as a world is loaded. A ProximitySensor node
with a box containing zero volume (i.e., any size field element of 0.0) cannot generate events. This is equivalent to
setting the enabled field to FALSE.

A ProximitySensor read from a VRML file shall generate isActive TRUE, position_changed, orientation_changed
and enterTime events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensor
inserted into the transformation hierarchy shall generate isActive TRUE, position_changed, orientation_changed and
enterTime events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensor removed
from the transformation hierarchy shall generate isActive FALSE, position_changed, orientation_changed and
exitTime events if the sensor is enabled and the viewer is inside the proximity region.

6.39 ScalarInterpolator

ScalarInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFFloat keyValue [] # (-∞,∞)
 eventOut SFFloat value_changed
}

This node linearly interpolates among a list of SFFloat values. This interpolator is appropriate for any parameter
defined using a single floating point value. Examples include width, radius, and intensity fields. The keyValue field
shall contain exactly as many numbers as there are keyframes in the key field.

A more detailed discussion of interpolators is available in 4.6.8, Interpolator nodes.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

112

6.40 Script

Script {
 exposedField MFString url []
 field SFBool directOutput FALSE
 field SFBool mustEvaluate FALSE
 # And any number of:
 eventIn eventType eventName
 field fieldType fieldName initialValue
 eventOut eventType eventName
}

The Script node is used to program behaviour in a scene. Script nodes typically

a. signify a change or user action;

b. receive events from other nodes;

c. contain a program module that performs some computation;

d. effect change somewhere else in the scene by sending events.

Each Script node has associated programming language code, referenced by the url field, that is executed to carry
out the Script node's function. That code is referred to as the "script" in the rest of this description. Details on the url
field can be found in 4.5, VRML and the World Wide Web.

Browsers are not required to support any specific language. Detailed information on scripting languages is described
in 4.12, Scripting. Browsers supporting a scripting language for which a language binding is specified shall adhere
to that language binding.

Sometime before a script receives the first event it shall be initialized (any language-dependent or user-defined
initialize() is performed). The script is able to receive and process events that are sent to it. Each event that
can be received shall be declared in the Script node using the same syntax as is used in a prototype definition:

eventIn type name

The type can be any of the standard VRML fields (as defined in 5, Field and event reference). Name shall be an
identifier that is unique for this Script node.

The Script node is able to generate events in response to the incoming events. Each event that may be generated
shall be declared in the Script node using the following syntax:

eventOut type name

With the exception of the url field, exposedFields are not allowed in Script nodes.

If the Script node's mustEvaluate field is FALSE, the browser may delay sending input events to the script until its
outputs are needed by the browser. If the mustEvaluate field is TRUE, the browser shall send input events to the
script as soon as possible, regardless of whether the outputs are needed. The mustEvaluate field shall be set to TRUE
only if the Script node has effects that are not known to the browser (such as sending information across the
network). Otherwise, poor performance may result.

Once the script has access to a VRML node (via an SFNode or MFNode value either in one of the Script node's
fields or passed in as an eventIn), the script is able to read the contents of that node's exposed fields. If the Script
node's directOutput field is TRUE, the script may also send events directly to any node to which it has access, and

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

113

may dynamically establish or break routes. If directOutput is FALSE (the default), the script may only affect the rest
of the world via events sent through its eventOuts. The results are undefined if directOutput is FALSE and the script
sends events directly to a node to which it has access.

A script is able to communicate directly with the VRML browser to get information such as the current time and the
current world URL. This is strictly defined by the API for the specific scripting language being used.

The location of the Script node in the scene graph has no affect on its operation. For example, if a parent of a Script
node is a Switch node with whichChoice set to "-1" (i.e., ignore its children), the Script node continues to operate as
specified (i.e., it receives and sends events).

6.41 Shape
Shape {

 exposedField SFNode appearance NULL
 exposedField SFNode geometry NULL
}

The Shape node has two fields, appearance and geometry, which are used to create rendered objects in the world.
The appearance field contains an Appearance node that specifies the visual attributes (e.g., material and texture) to
be applied to the geometry. The geometry field contains a geometry node. The specified geometry node is rendered
with the specified appearance nodes applied. See 4.6.3, Shapes and geometry, and 6.3, Appearance, for more
information.

4.14, Lighting model, contains details of the VRML lighting model and the interaction between Appearance nodes
and geometry nodes.

If the geometry field is NULL, the object is not drawn.

6.42 Sound

Sound {
 exposedField SFVec3f direction 0 0 1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFFloat maxBack 10 # [0,∞)
 exposedField SFFloat maxFront 10 # [0,∞)
 exposedField SFFloat minBack 1 # [0,∞)
 exposedField SFFloat minFront 1 # [0,∞)
 exposedField SFFloat priority 0 # [0,1]
 exposedField SFNode source NULL
 field SFBool spatialize TRUE
}

The Sound node specifies the spatial presentation of a sound in a VRML scene. The sound is located at a point in the
local coordinate system and emits sound in an elliptical pattern (defined by two ellipsoids). The ellipsoids are
oriented in a direction specified by the direction field. The shape of the ellipsoids may be modified to provide more
or less directional focus from the location of the sound.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

114

The source field specifies the sound source for the Sound node. If the source field is not specified, the Sound node
will not emit audio. The source field shall specify either an AudioClip node or a MovieTexture node. If a
MovieTexture node is specified as the sound source, the MovieTexture shall refer to a movie format that supports
sound (e.g., MPEG1-Systems, see 2.[MPEG]).

The intensity field adjusts the loudness (decibels) of the sound emitted by the Sound node (note: this is different
from the traditional definition of intensity with respect to sound; see E.[SNDA]). The intensity field has a value that
ranges from 0.0 to 1.0 and specifies a factor which shall be used to scale the normalized sample data of the sound
source during playback. A Sound node with an intensity of 1.0 shall emit audio at its maximum loudness (before
attenuation), and a Sound node with an intensity of 0.0 shall emit no audio. Between these values, the loudness
should increase linearly from a -20 dB change approaching an intensity of 0.0 to a 0 dB change at an intensity of 1.0.

The priority field provides a hint for the browser to choose which sounds to play when there are more active Sound
nodes than can be played at once due to either limited system resources or system load. 7.3.4, Sound priority,
attenuation, and spatialization, describes a recommended algorithm for determining which sounds to play under such
circumstances. The priority field ranges from 0.0 to 1.0, with 1.0 being the highest priority and 0.0 the lowest
priority.

The location field determines the location of the sound emitter in the local coordinate system. A Sound node's
output is audible only if it is part of the traversed scene. Sound nodes that are descended from LOD, Switch, or any
grouping or prototype node that disables traversal (i.e., drawing) of its children are not audible unless they are
traversed. If a Sound node is disabled by a Switch or LOD node, and later it becomes part of the traversal again, the
sound shall resume where it would have been had it been playing continuously.

The Sound node has an inner ellipsoid that defines a volume of space in which the maximum level of the sound is
audible. Within this ellipsoid, the normalized sample data is scaled by the intensity field and there is no attenuation.
The inner ellipsoid is defined by extending the direction vector through the location. The minBack and minFront
fields specify distances behind and in front of the location along the direction vector respectively. The inner
ellipsoid has one of its foci at location (the second focus is implicit) and intersects the direction vector at minBack
and minFront.

The Sound node has an outer ellipsoid that defines a volume of space that bounds the audibility of the sound. No
sound can be heard outside of this outer ellipsoid. The outer ellipsoid is defined by extending the direction vector
through the location. The maxBack and maxFront fields specify distances behind and in front of the location along
the direction vector respectively. The outer ellipsoid has one of its foci at location (the second focus is implicit) and
intersects the direction vector at maxBack and maxFront.

The minFront, maxFront, minBack, and maxBack fields are defined in local coordinates, and shall be greater than or
equal to zero. The minBack field shall be less than or equal to maxBack, and minFront shall be less than or equal
to maxFront. The ellipsoid parameters are specified in the local coordinate system but the ellipsoids' geometry is
affected by ancestors' transformations.

Between the two ellipsoids, there shall be a linear attenuation ramp in loudness, from 0 dB at the minimum ellipsoid
to -20 dB at the maximum ellipsoid:

attenuation = -20 × (d’ / d")

where d' is the distance along the location-to-viewer vector, measured from the transformed minimum ellipsoid
boundary to the viewer, and d" is the distance along the location-to-viewer vector from the transformed minimum
ellipsoid boundary to the transformed maximum ellipsoid boundary (see Figure 6.14).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

115

Figure 6.14 -- Sound node geometry

The spatialize field specifies if the sound is perceived as being directionally located relative to the viewer. If the
spatialize field is TRUE and the viewer is located between the transformed inner and outer ellipsoids, the viewer's
direction and the relative location of the Sound node should be taken into account during playback. Details outlining
the minimum required spatialization functionality can be found in 7.3.4, Sound priority, attenuation, and
spatialization. If the spatialize field is FALSE, then directional effects are ignored, but the ellipsoid dimensions and
intensity will still affect the loudness of the sound. If the sound source is multi-channel (e.g., stereo), then the source
should retain its channel separation during playback.

6.43 Sphere

Sphere {
 field SFFloat radius 1 # (0,∞)
}

The Sphere node specifies a sphere centred at (0, 0, 0) in the local coordinate system. The radius field specifies the
radius of the sphere and shall be greater than zero. Figure 6.15 depicts the fields of the Sphere node.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

116

Figure 6.15 -- Sphere node

When a texture is applied to a sphere, the texture covers the entire surface, wrapping counterclockwise from the
back of the sphere (i.e., longitudinal arc intersecting the -Z-axis) when viewed from the top of the sphere. The
texture has a seam at the back where the X=0 plane intersects the sphere and Z values are negative.
TextureTransform affects the texture coordinates of the Sphere.

The Sphere node's geometry requires outside faces only. When viewed from the inside the results are undefined.

6.44 SphereSensor

SphereSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFBool enabled TRUE
 exposedField SFRotation offset 0 1 0 0 # [-1,1], (-∞,∞)
 eventOut SFBool isActive
 eventOut SFRotation rotation_changed
 eventOut SFVec3f trackPoint_changed
}

The SphereSensor node maps pointing device motion into spherical rotation about the origin of the local coordinate
system. The SphereSensor node uses the descendent geometry of its parent node to determine whether it is liable to
generate events.

The enabled exposed field enables and disables the SphereSensor node. If enabled is TRUE, the sensor reacts
appropriately to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled
receives a FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive
FALSE event. If enabled receives a TRUE event the sensor is enabled and ready for user activation.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

117

The SphereSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for
details on using the pointing device to activate the SphereSensor.

Upon activation of the pointing device (e.g., mouse button down) over the sensor's geometry, an isActive TRUE
event is sent. The vector defined by the initial point of intersection on the SphereSensor's geometry and the local
origin determines the radius of the sphere that is used to map subsequent pointing device motion while dragging.
The virtual sphere defined by this radius and the local origin at the time of activation is used to interpret subsequent
pointing device motion and is not affected by any changes to the sensor's coordinate system while the sensor is
active. For each position of the bearing, a rotation_changed event is sent which corresponds to the sum of the
relative rotation from the original intersection point plus the offset value. trackPoint_changed events reflect the
unclamped drag position on the surface of this sphere. When the pointing device is deactivated and autoOffset is
TRUE, offset is set to the last rotation_changed value and an offset_changed event is generated. See 4.6.7.4, Drag
sensors, for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is released and generates an isActive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device while isActive is TRUE is termed a "drag". If a 2D pointing device is in
use, isActive events will typically reflect the state of the primary button associated with the device (i.e., isActive is
TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., wand) is in
use, isActive events will typically reflect whether the pointer is within (or in contact with) the sensor's geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events are output.
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible sphere. If the
pointing device is dragged off the sphere while activated, browsers may interpret this in a variety of ways (e.g.,
clamp all values to the sphere or continue to rotate as the point is dragged away from the sphere). Each movement of
the pointing device while isActive is TRUE generates trackPoint_changed and rotation_changed events.

Further information about this behaviour can be found in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.45 SpotLight

SpotLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFVec3f attenuation 1 0 0 # [0,∞)
 exposedField SFFloat beamWidth 1.570796 # (0,π/2]
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFFloat cutOffAngle 0.785398 # (0,π/2]
 exposedField SFVec3f direction 0 0 -1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100 # [0,∞)
}

The SpotLight node defines a light source that emits light from a specific point along a specific direction vector and
constrained within a solid angle. Spotlights may illuminate geometry nodes that respond to light sources and
intersect the solid angle defined by the SpotLight. Spotlight nodes are specified in the local coordinate system and
are affected by ancestors' transformations.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

118

A detailed description of ambientIntensity, color, intensity, and VRML's lighting equations is provided in 4.6.6,
Light sources. More information on lighting concepts can be found in 4.14, Lighting model, including a detailed
description of the VRML lighting equations.

The location field specifies a translation offset of the centre point of the light source from the light's local coordinate
system origin. This point is the apex of the solid angle which bounds light emission from the given light source. The
direction field specifies the direction vector of the light's central axis defined in the local coordinate system.

The on field specifies whether the light source emits light. If on is TRUE, the light source is emitting light and may
illuminate geometry in the scene. If on is FALSE, the light source does not emit light and does not illuminate any
geometry.

The radius field specifies the radial extent of the solid angle and the maximum distance from location that may be
illuminated by the light source. The light source does not emit light outside this radius. The radius shall be greater
than or equal to zero.

Both radius and location are affected by ancestors' transformations (scales affect radius and transformations affect
location).

The cutOffAngle field specifies the outer bound of the solid angle. The light source does not emit light outside of this
solid angle. The beamWidth field specifies an inner solid angle in which the light source emits light at uniform full
intensity. The light source's emission intensity drops off from the inner solid angle (beamWidth) to the outer solid
angle (cutOffAngle) as described in the following equations:

 angle = the angle between the Spotlight’s direction vector
 and the vector from the Spotlight location to the point
 to be illuminated

 if (angle >= cutOffAngle):
 multiplier = 0
 else if (angle <= beamWidth):
 multiplier = 1
 else:
 multiplier = (angle - cutOffAngle) / (beamWidth - cutOffAngle)

 intensity(angle) = SpotLight.intensity × multiplier

If the beamWidth is greater than the cutOffAngle, beamWidth is defined to be equal to the cutOffAngle and the light
source emits full intensity within the entire solid angle defined by cutOffAngle. Both beamWidth and cutOffAngle
shall be greater than 0.0 and less than or equal to π/2. Figure 6.16 depicts the beamWidth, cutOffAngle, direction,
location, and radius fields of the SpotLight node.

SpotLight illumination falls off with distance as specified by three attenuation coefficients. The attenuation factor is
1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2 , 1), where r is the distance from the light to the
surface being illuminated. The default is no attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0, 0).
Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations is
contained in 4.14, Lighting model.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

119

Figure 6.16 -- SpotLight node

6.46 Switch

Switch {
 exposedField MFNode choice []
 exposedField SFInt32 whichChoice -1 # [-1,∞)
}

The Switch grouping node traverses zero or one of the nodes specified in the choice field.

4.6.5, Grouping and children nodes, describes details on the types of nodes that are legal values for choice.

The whichChoice field specifies the index of the child to traverse, with the first child having index 0. If whichChoice
is less than zero or greater than the number of nodes in the choice field, nothing is chosen.

All nodes under a Switch continue to receive and send events regardless of the value of whichChoice. For example,
if an active TimeSensor is contained within an inactive choice of an Switch, the TimeSensor sends events regardless
of the Switch's state.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

120

6.47 Text

Text {
 exposedField MFString string []
 exposedField SFNode fontStyle NULL
 exposedField MFFloat length [] # [0,∞)
 exposedField SFFloat maxExtent 0.0 # [0,∞)
}

6.47.1 Introduction

The Text node specifies a two-sided, flat text string object positioned in the Z=0 plane of the local coordinate system
based on values defined in the fontStyle field (see 6.20, FontStyle). Text nodes may contain multiple text strings
specified using the UTF-8 encoding as specified by ISO 10646-1:1993 (see 2.[UTF8]). The text strings are stored in
the order in which the text mode characters are to be produced as defined by the parameters in the FontStyle node.

The text strings are contained in the string field. The fontStyle field contains one FontStyle node that specifies the
font size, font family and style, direction of the text strings, and any specific language rendering techniques used for
the text.

The maxExtent field limits and compresses all of the text strings if the length of the maximum string is longer than
the maximum extent, as measured in the local coordinate system. If the text string with the maximum length is
shorter than the maxExtent, then there is no compressing. The maximum extent is measured horizontally for
horizontal text (FontStyle node: horizontal=TRUE) and vertically for vertical text (FontStyle node:
horizontal=FALSE). The maxExtent field shall be greater than or equal to zero.

The length field contains an MFFloat value that specifies the length of each text string in the local coordinate
system. If the string is too short, it is stretched (either by scaling the text or by adding space between the characters).
If the string is too long, it is compressed (either by scaling the text or by subtracting space between the characters).
If a length value is missing (for example, if there are four strings but only three length values), the missing values
are considered to be 0. The length field shall be greater than or equal to zero.

Specifying a value of 0 for both the maxExtent and length fields indicates that the string may be any length.

6.47.2 ISO 10646-1:1993 Character Encodings

Characters in ISO 10646 (see 2.[UTF8]) are encoded in multiple octets. Code space is divided into four units, as
follows:

+-------------+-------------+-----------+------------+
| Group-octet | Plane-octet | Row-octet | Cell-octet |
+-------------+-------------+-----------+------------+

ISO 10646-1:1993 allows two basic forms for characters:

a. UCS-2 (Universal Coded Character Set-2). This form is also known as the Basic Multilingual Plane (BMP).
Characters are encoded in the lower two octets (row and cell).

b. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four octets.

In addition, three transformation formats (UCS Transformation Format or UTF) are accepted: UTF-7, UTF-8, and
UTF-16. Each represents the nature of the transformation: 7-bit, 8-bit, or 16-bit. UTF-7 and UTF-16 are referenced
in 2.[UTF8].

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

121

UTF-8 maintains transparency for all ASCII code values (0...127). It allows ASCII text (0x0..0x7F) to appear
without any changes and encodes all characters from 0x80.. 0x7FFFFFFF into a series of six or fewer bytes.

If the most significant bit of the first character is 0, the remaining seven bits are interpreted as an ASCII character.
Otherwise, the number of leading 1 bits indicates the number of bytes following. There is always a zero bit between
the count bits and any data.

The first byte is one of the following. The X indicates bits available to encode the character:

 0XXXXXXX only one byte 0..0x7F (ASCII)
 110XXXXX two bytes Maximum character value is 0x7FF
 1110XXXX three bytes Maximum character value is 0xFFFF
 11110XXX four bytes Maximum character value is 0x1FFFFF
 111110XX five bytes Maximum character value is 0x3FFFFFF
 1111110X six bytes Maximum character value is 0x7FFFFFFF

All following bytes have the format 10XXXXXX.

As a two byte example, the symbol for a register trade mark is ® or 174 in ISO Latin-1 (see 2.[I8859]). It is
encoded as 0x00AE in UCS-2 of ISO 10646. In UTF-8, it has the following two byte encoding: 0xC2, 0xAE.

6.47.3 Appearance

Textures are applied to text as follows. The texture origin is at the origin of the first string, as determined by the
justification. The texture is scaled equally in both S and T dimensions, with the font height representing 1 unit. S
increases to the right, and T increases up.

4.14, Lighting model, has details on VRML lighting equations and how Appearance, Material and textures interact
with lighting.

The Text node does not participate in collision detection.

6.48 TextureCoordinate

TextureCoordinate {
 exposedField MFVec2f point [] # (-∞,∞)
}

The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based geometry nodes
(e.g., IndexedFaceSet and ElevationGrid) to map textures to vertices. Textures are two dimensional colour functions
that, given an (s, t) coordinate, return a colour value colour(s, t). Texture map values (ImageTexture, MovieTexture,
and PixelTexture) range from [0.0, 1.0] along the S-axis and T-axis. However, TextureCoordinate values, specified
by the point field, may be in the range (-∞,∞). Texture coordinates identify a location (and thus a colour value) in
the texture map. The horizontal coordinate s is specified first, followed by the vertical coordinate t.

If the texture map is repeated in a given direction (S-axis or T-axis), a texture coordinate C (s or t) is mapped into a
texture map that has N pixels in the given direction as follows:

Texture map location = (C - floor(C)) × N

If the texture map is not repeated, the texture coordinates are clamped to the 0.0 to 1.0 range as follows:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

122

 Texture map location = N, if C > 1.0,
 = 0.0, if C < 0.0,
 = C × N, if 0.0 <= C <= 1.0.

Details on repeating textures are specific to texture map node types described in 6.22, ImageTexture,
6.28, MovieTexture, and 6.33, PixelTexture.

6.49 TextureTransform

TextureTransform {
 exposedField SFVec2f center 0 0 # (-∞,∞)
 exposedField SFFloat rotation 0 # (-∞,∞)
 exposedField SFVec2f scale 1 1 # (-∞,∞)
 exposedField SFVec2f translation 0 0 # (-∞,∞)
}

The TextureTransform node defines a 2D transformation that is applied to texture coordinates (see
6.48, TextureCoordinate). This node affects the way textures coordinates are applied to the geometric surface. The
transformation consists of (in order):

a. a translation;

b. a rotation about the centre point;

c. a non-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on shapes. Note that these
operations appear reversed when viewed on the surface of geometry. For example, a scale value of (2 2) will scale
the texture coordinates and have the net effect of shrinking the texture size by a factor of 2 (texture coordinates are
twice as large and thus cause the texture to repeat). A translation of (0.5 0.0) translates the texture coordinates +.5
units along the S-axis and has the net effect of translating the texture -0.5 along the S-axis on the geometry's surface.
A rotation of π/2 of the texture coordinates results in a -π/2 rotation of the texture on the geometry.

The center field specifies a translation offset in texture coordinate space about which the rotation and scale fields
are applied. The scale field specifies a scaling factor in S and T of the texture coordinates about the center point.
scale values shall be in the range (-∞,∞). The rotation field specifies a rotation in radians of the texture coordinates
about the center point after the scale has been applied. A positive rotation value makes the texture coordinates rotate
counterclockwise about the centre, thereby rotating the appearance of the texture itself clockwise. The translation
field specifies a translation of the texture coordinates.

In matrix transformation notation, where Tc is the untransformed texture coordinate, Tc’ is the transformed texture
coordinate, C (center), T (translation), R (rotation), and S (scale) are the intermediate transformation matrices,

Tc’ = -C × S × R × C × T × Tc

Note that this transformation order is the reverse of the Transform node transformation order since the texture
coordinates, not the texture, are being transformed (i.e., the texture coordinate system).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

123

6.50 TimeSensor

TimeSensor {
 exposedField SFTime cycleInterval 1 # (0,∞)
 exposedField SFBool enabled TRUE
 exposedField SFBool loop FALSE
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 eventOut SFTime cycleTime
 eventOut SFFloat fraction_changed # [0, 1]
 eventOut SFBool isActive
 eventOut SFTime time
}

TimeSensor nodes generate events as time passes. TimeSensor nodes can be used for many purposes including:

a. driving continuous simulations and animations;

b. controlling periodic activities (e.g., one per minute);

c. initiating single occurrence events such as an alarm clock.

The TimeSensor node contains two discrete eventOuts: isActive and cycleTime. The isActive eventOut sends TRUE
when the TimeSensor node begins running, and FALSE when it stops running. The cycleTime eventOut sends a time
event at startTime and at the beginning of each new cycle (useful for synchronization with other time-based objects).
The remaining eventOuts generate continuous events. The fraction_changed eventOut, an SFFloat in the closed
interval [0,1], sends the completed fraction of the current cycle. The time eventOut sends the absolute time for a
given simulation tick.

If the enabled exposedField is TRUE, the TimeSensor node is enabled and may be running. If a set_enabled FALSE
event is received while the TimeSensor node is running, the sensor performs the following actions:

d. evaluates and sends all relevant outputs;

e. sends a FALSE value for isActive;

f. disables itself.

Events on the exposedFields of the TimeSensor node (e.g., set_startTime) are processed and their corresponding
eventOuts (e.g., startTime_changed) are sent regardless of the state of the enabled field. The remaining discussion
assumes enabled is TRUE.

The loop, startTime, and stopTime exposedFields and the isActive eventOut and their effects on the TimeSensor
node are discussed in detail in 4.6.9, Time-dependent nodes. The "cycle" of a TimeSensor node lasts for
cycleInterval seconds. The value of cycleInterval shall be greater than zero.

A cycleTime eventOut can be used for synchronization purposes such as sound with animation. The value of a
cycleTime eventOut will be equal to the time at the beginning of the current cycle. A cycleTime eventOut is
generated at the beginning of every cycle, including the cycle starting at startTime. The first cycleTime eventOut for
a TimeSensor node can be used as an alarm (single pulse at a specified time).

When a TimeSensor node becomes active, it generates an isActive = TRUE event and begins generating time,
fraction_changed, and cycleTime events which may be routed to other nodes to drive animation or simulated
behaviours. The behaviour at read time is described below. The time event sends the absolute time for a given tick of

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

124

the TimeSensor node (time fields and events represent the number of seconds since midnight GMT January 1,
1970).

fraction_changed events output a floating point value in the closed interval [0, 1]. At startTime the value of
fraction_changed is 0. After startTime, the value of fraction_changed in any cycle will progress through the range
(0.0, 1.0]. At startTime + N × cycleInterval, for N = 1, 2, ..., that is, at the end of every cycle, the value of
fraction_changed is 1.

Let now represent the time at the current simulation tick. Then the time and fraction_changed eventOuts can then be
computed as:

 time = now
 temp = (now - startTime) / cycleInterval
 f = fractionalPart(temp)
 if (f == 0.0 && now > startTime) fraction_changed = 1.0
 else fraction_changed = f

where fractionalPart(x) is a function that returns the fractional part, (that is, the digits to the right of the
decimal point), of a nonnegative floating point number.

A TimeSensor node can be set up to be active at read time by specifying loop TRUE (not the default) and
stopTime less than or equal to startTime (satisfied by the default values). The time events output absolute times for
each tick of the TimeSensor node simulation. The time events shall start at the first simulation tick greater than or
equal to startTime. time events end at stopTime, or at startTime + N × cycleInterval for some positive integer value
of N, or loop forever depending on the values of the other fields. An active TimeSensor node shall stop at the first
simulation tick when now >= stopTime > startTime.

No guarantees are made with respect to how often a TimeSensor node generates time events, but a TimeSensor node
shall generate events at least at every simulation tick. TimeSensor nodes are guaranteed to generate final time and
fraction_changed events. If loop is FALSE at the end of the Nth cycleInterval and was TRUE at
startTime + M × cycleInterval for all 0 < M < N, the final time event will be generated with a value of
(startTime + N × cycleInterval) or stopTime (if stopTime > startTime), whichever value is less. If loop is TRUE at
the completion of every cycle, the final event is generated as evaluated at stopTime (if stopTime > startTime) or
never.

An active TimeSensor node ignores set_cycleInterval and set_startTime events. An active TimeSensor node also
ignores set_stopTime events for set_stopTime less than or equal to startTime. For example, if a set_startTime event
is received while a TimeSensor node is active, that set_startTime event is ignored (the startTime field is not
changed, and a startTime_changed eventOut is not generated). If an active TimeSensor node receives a set_stopTime
event that is less than the current time, and greater than startTime, it behaves as if the stopTime requested is the
current time and sends the final events based on the current time (note that stopTime is set as specified in the
eventIn).

A TimeSensor read from a VRML file shall generate isActive TRUE, time and fraction_changed events if the sensor
is enabled and all conditions for a TimeSensor to be active are met.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

125

6.51 TouchSensor

TouchSensor {
 exposedField SFBool enabled TRUE
 eventOut SFVec3f hitNormal_changed
 eventOut SFVec3f hitPoint_changed
 eventOut SFVec2f hitTexCoord_changed
 eventOut SFBool isActive
 eventOut SFBool isOver
 eventOut SFTime touchTime
}

A TouchSensor node tracks the location and state of the pointing device and detects when the user points at
geometry contained by the TouchSensor node's parent group. A TouchSensor node can be enabled or disabled by
sending it an enabled event with a value of TRUE or FALSE. If the TouchSensor node is disabled, it does not track
user input or send events.

The TouchSensor generates events when the pointing device points toward any geometry nodes that are descendants
of the TouchSensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for more details on using the
pointing device to activate the TouchSensor.

The isOver eventOut reflects the state of the pointing device with regard to whether it is pointing towards the
TouchSensor node's geometry or not. When the pointing device changes state from a position such that its bearing
does not intersect any of the TouchSensor node's geometry to one in which it does intersect geometry, an isOver
TRUE event is generated. When the pointing device moves from a position such that its bearing intersects geometry
to one in which it no longer intersects the geometry, or some other geometry is obstructing the TouchSensor node's
geometry, an isOver FALSE event is generated. These events are generated only when the pointing device has
moved and changed `over' state. Events are not generated if the geometry itself is animating and moving underneath
the pointing device.

As the user moves the bearing over the TouchSensor node's geometry, the point of intersection (if any) between the
bearing and the geometry is determined. Each movement of the pointing device, while isOver is TRUE, generates
hitPoint_changed, hitNormal_changed and hitTexCoord_changed events. hitPoint_changed events contain the 3D
point on the surface of the underlying geometry, given in the TouchSensor node's coordinate system.
hitNormal_changed events contain the surface normal vector at the hitPoint. hitTexCoord_changed events contain
the texture coordinates of that surface at the hitPoint. The values of hitTexCoord_changed and hitNormal_changed
events are computed as appropriate for the associated shape.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor node to generate isActive
events (e.g., by pressing the primary mouse button). When the TouchSensor node generates an isActive TRUE event,
it grabs all further motion events from the pointing device until it is released and generates an isActive FALSE event
(other pointing-device sensors will not generate events during this time). Motion of the pointing device while
isActive is TRUE is termed a "drag." If a 2D pointing device is in use, isActive events reflect the state of the primary
button associated with the device (i.e., isActive is TRUE when the primary button is pressed and FALSE when it is
released). If a 3D pointing device is in use, isActive events will typically reflect whether the pointing device is
within (or in contact with) the TouchSensor node's geometry.

The eventOut field touchTime is generated when all three of the following conditions are true:

a. The pointing device was pointing towards the geometry when it was initially activated (isActive is TRUE).

b. The pointing device is currently pointing towards the geometry (isOver is TRUE).

c. The pointing device is deactivated (isActive FALSE event is also generated).

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

126

More information about this behaviour is described in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.52 Transform

Transform {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField MFNode children []
 exposedField SFRotation rotation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f scale 1 1 1 # (0,∞)
 exposedField SFRotation scaleOrientation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f translation 0 0 0 # (-∞,∞)
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Transform node is a grouping node that defines a coordinate system for its children that is relative to the
coordinate systems of its ancestors. See 4.4.4, Transformation hierarchy, and 4.4.5, Standard units and coordinate
system, for a description of coordinate systems and transformations.

4.6.5, Grouping and children nodes, provides a description of the children, addChildren, and removeChildren fields
and eventIns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children of the Transform node. This
is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is
smaller than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that
the bounding box is not specified and, if needed, shall be calculated by the browser. The bounding box shall be large
enough at all times to enclose the union of the group's children's bounding boxes; it shall not include any
transformations performed by the group itself (i.e., the bounding box is defined in the local coordinate system of the
children). The results are undefined if the specified bounding box is smaller than the true bounding box of the group.
A description of the bboxCenter and bboxSize fields is provided in 4.6.4, Bounding boxes.

The translation, rotation, scale, scaleOrientation and center fields define a geometric 3D transformation consisting
of (in order):

a. a (possibly) non-uniform scale about an arbitrary point;

b. a rotation about an arbitrary point and axis;

c. a translation.

The center field specifies a translation offset from the origin of the local coordinate system (0,0,0). The rotation
field specifies a rotation of the coordinate system. The scale field specifies a non-uniform scale of the coordinate
system. scale values shall be greater than zero. The scaleOrientation specifies a rotation of the coordinate system
before the scale (to specify scales in arbitrary orientations). The scaleOrientation applies only to the scale operation.
The translation field specifies a translation to the coordinate system.

Given a 3-dimensional point P and Transform node, P is transformed into point P’ in its parent's coordinate system
by a series of intermediate transformations. In matrix transformation notation, where C (center), SR
(scaleOrientation), T (translation), R (rotation), and S (scale) are the equivalent transformation matrices,

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

127

 P’ = T × C × R × SR × S × -SR × -C × P

The following Transform node:

Transform {
 center C
 rotation R
 scale S
 scaleOrientation SR
 translation T
 children [...]
}

is equivalent to the nested sequence of:

Transform {
 translation T
 children Transform {
 translation C
 children Transform {
 rotation R
 children Transform {
 rotation SR
 children Transform {
 scale S
 children Transform {
 rotation -SR
 children Transform {
 translation -C
 children [...]
}}}}}}}

6.53 Viewpoint

Viewpoint {
 eventIn SFBool set_bind
 exposedField SFFloat fieldOfView 0.785398 # (0,π)
 exposedField SFBool jump TRUE
 exposedField SFRotation orientation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f position 0 0 10 # (-∞,∞)
 field SFString description ""
 eventOut SFTime bindTime
 eventOut SFBool isBound
}

The Viewpoint node defines a specific location in the local coordinate system from which the user may view the
scene. Viewpoint nodes are bindable children nodes (see 4.6.10, Bindable children nodes) and thus there exists a
Viewpoint node stack in the browser in which the top-most Viewpoint node on the stack is the currently active
Viewpoint node. If a TRUE value is sent to the set_bind eventIn of a Viewpoint node, it is moved to the top of the
Viewpoint node stack and activated. When a Viewpoint node is at the top of the stack, the user's view is
conceptually re-parented as a child of the Viewpoint node. All subsequent changes to the Viewpoint node's
coordinate system change the user's view (e.g., changes to any ancestor transformation nodes or to the Viewpoint
node's position or orientation fields). Sending a set_bind FALSE event removes the Viewpoint node from the stack

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

128

and produces isBound FALSE and bindTime events. If the popped Viewpoint node is at the top of the viewpoint
stack, the user's view is re-parented to the next entry in the stack. More details on binding stacks can be found in
4.6.10, Bindable children nodes. When a Viewpoint node is moved to the top of the stack, the existing top of stack
Viewpoint node sends an isBound FALSE event and is pushed down the stack.

An author can automatically move the user's view through the world by binding the user to a Viewpoint node and
then animating either the Viewpoint node or the transformations above it. Browsers shall allow the user view to be
navigated relative to the coordinate system defined by the Viewpoint node (and the transformations above it) even if
the Viewpoint node or its ancestors' transformations are being animated.

The bindTime eventOut sends the time at which the Viewpoint node is bound or unbound. This can happen:

a. during loading;

b. when a set_bind event is sent to the Viewpoint node;

c. when the browser binds to the Viewpoint node through its user interface described below.

The position and orientation fields of the Viewpoint node specify relative locations in the local coordinate system.
Position is relative to the coordinate system's origin (0,0,0), while orientation specifies a rotation relative to the
default orientation. In the default position and orientation, the viewer is on the Z-axis looking down the -Z-axis
toward the origin with +X to the right and +Y straight up. Viewpoint nodes are affected by the transformation
hierarchy.

Navigation types (see 6.29, NavigationInfo) that require a definition of a down vector (e.g., terrain following) shall
use the negative Y-axis of the coordinate system of the currently bound Viewpoint node. Likewise, navigation types
that require a definition of an up vector shall use the positive Y-axis of the coordinate system of the currently bound
Viewpoint node. The orientation field of the Viewpoint node does not affect the definition of the down or up
vectors. This allows the author to separate the viewing direction from the gravity direction.

The jump field specifies whether the user's view "jumps" to the position and orientation of a bound Viewpoint node
or remains unchanged. This jump is instantaneous and discontinuous in that no collisions are performed and no
ProximitySensor nodes are checked in between the starting and ending jump points. If the user's position before the
jump is inside a ProximitySensor the exitTime of that sensor shall send the same timestamp as the bind eventIn.
Similarly, if the user's position after the jump is inside a ProximitySensor the enterTime of that sensor shall send the
same timestamp as the bind eventIn. Regardless of the value of jump at bind time, the relative viewing
transformation between the user's view and the current Viewpoint node shall be stored with the current Viewpoint
node for later use when un-jumping (i.e., popping the Viewpoint node binding stack from a Viewpoint node with
jump TRUE). The following summarizes the bind stack rules (see 4.6.10, Bindable children nodes) with additional
rules regarding Viewpoint nodes (displayed in boldface type):

d. During read, the first encountered Viewpoint node is bound by pushing it to the top of the Viewpoint node
stack. If a Viewpoint node name is specified in the URL that is being read, this named Viewpoint node is
considered to be the first encountered Viewpoint node. Nodes contained within Inline nodes, within the
strings passed to the Browser.createVrmlFromString() method, or within files passed to the
Browser.createVrmlFromURL() method (see 4.12.10, Browser script interface) are not candidates for the
first encountered Viewpoint node. The first node within a prototype instance is a valid candidate for the
first encountered Viewpoint node. The first encountered Viewpoint node sends an isBound TRUE event.

e. When a set_bind TRUE event is received by a Viewpoint node,

1. If it is not on the top of the stack: The relative transformation from the current top of stack
Viewpoint node to the user’s view is stored with the current top of stack Viewpoint node. The
current top of stack node sends an isBound FALSE event. The new node is moved to the top of the
stack and becomes the currently bound Viewpoint node. The new Viewpoint node (top of stack)
sends an isBound TRUE event. If jump is TRUE for the new Viewpoint node, the user’s view is

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

129

instantaneously "jumped" to match the values in the position and orientation fields of the
new Viewpoint node.

2. If the node is already at the top of the stack, this event has no affect.

f. When a set_bind FALSE event is received by a Viewpoint node in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends an isBound FALSE event,

2. the next node in the stack becomes the currently bound Viewpoint node (i.e., pop) and issues an
isBound TRUE event,

3. if its jump field value is TRUE, the user’s view is instantaneously "jumped" to the position
and orientation of the next Viewpoint node in the stack with the stored relative
transformation of this next Viewpoint node applied.

g. If a set_bind FALSE event is received by a node not in the stack, the event is ignored and isBound events
are not sent.

h. When a node replaces another node at the top of the stack, the isBound TRUE and FALSE events from the
two nodes are sent simultaneously (i.e., with identical timestamps).

i. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see c.).

The jump field may change after a Viewpoint node is bound. The rules described above still apply. If jump was
TRUE when the Viewpoint node is bound, but changed to FALSE before the set_bind FALSE is sent, the Viewpoint
node does not un-jump during unbind. If jump was FALSE when the Viewpoint node is bound, but changed to
TRUE before the set_bind FALSE is sent, the Viewpoint node does perform the un-jump during unbind.

Note that there are two other mechanisms that result in the binding of a new Viewpoint:

j. An Anchor node's url field specifies a "#ViewpointName".

k. A script invokes the loadURL() method and the URL argument specifies a "#ViewpointName".

Both of these mechanisms override the jump field value of the specified Viewpoint node (#ViewpointName) and
assume that jump is TRUE when binding to the new Viewpoint. The behaviour of the viewer transition to the newly
bound Viewpoint depends on the currently bound NavigationInfo node's type field value (see 6.29, NavigationInfo).

The fieldOfView field specifies a preferred minimum viewing angle from this viewpoint in radians. A small field of
view roughly corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens. The
field of view shall be greater than zero and smaller than π. The value of fieldOfView represents the minimum
viewing angle in any direction axis perpendicular to the view. For example, a browser with a rectangular viewing
projection shall have the following relationship:

 display width tan(FOVhorizontal/2)
 -------------- = -----------------
 display height tan(FOVvertical/2)

where the smaller of display width or display height determines which angle equals the fieldOfView (the larger angle
is computed using the relationship described above). The larger angle shall not exceed π and may force the smaller
angle to be less than fieldOfView in order to sustain the aspect ratio.

The description field specifies a textual description of the Viewpoint node. This may be used by browser-specific
user interfaces. If a Viewpoint's description field is empty it is recommended that the browser not present this
Viewpoint in its browser-specific user interface.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

130

The URL syntax ".../scene.wrl#ViewpointName" specifies the user's initial view when loading
"scene.wrl" to be the first Viewpoint node in the VRML file that appears as
DEF ViewpointName Viewpoint {...}. This overrides the first Viewpoint node in the VRML file as the
initial user view, and a set_bind TRUE message is sent to the Viewpoint node named "ViewpointName". If the
Viewpoint node named "ViewpointName" is not found, the browser shall use the first Viewpoint node in the VRML
file (i.e. the normal default behaviour). The URL syntax "#ViewpointName" (i.e. no file name) specifies a
viewpoint within the existing VRML file. If this URL is loaded (e.g. Anchor node's url field or loadURL()
method is invoked by a Script node), the Viewpoint node named "ViewpointName" is bound (a set_bind TRUE
event is sent to this Viewpoint node).

The results are undefined if a Viewpoint node is bound and is the child of an LOD, Switch, or any node or prototype
that disables its children. If a Viewpoint node is bound that results in collision with geometry, the browser shall
perform its self-defined navigation adjustments as if the user navigated to this point (see 6.8, Collision).

6.54 VisibilitySensor

VisibilitySensor {
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField SFBool enabled TRUE
 exposedField SFVec3f size 0 0 0 # [0,∞)
 eventOut SFTime enterTime
 eventOut SFTime exitTime
 eventOut SFBool isActive
}

The VisibilitySensor node detects visibility changes of a rectangular box as the user navigates the world.
VisibilitySensor is typically used to detect when the user can see a specific object or region in the scene in order to
activate or deactivate some behaviour or animation. The purpose is often to attract the attention of the user or to
improve performance.

The enabled field enables and disables the VisibilitySensor node. If enabled is set to FALSE, the VisibilitySensor
node does not send events. If enabled is TRUE, the VisibilitySensor node detects changes to the visibility status of
the box specified and sends events through the isActive eventOut. A TRUE event is output to isActive when any
portion of the box impacts the rendered view. A FALSE event is sent when the box has no effect on the view.
Browsers shall guarantee that, if isActive is FALSE, the box has absolutely no effect on the rendered view. Browsers
may err liberally when isActive is TRUE. For example, the box may affect the rendering.

The exposed fields center and size specify the object space location of the box centre and the extents of the box
(i.e., width, height, and depth). The VisibilitySensor node's box is affected by hierarchical transformations of its
parents. The components of the size field shall be greater than or equal to zero.

The enterTime event is generated whenever the isActive TRUE event is generated, and exitTime events are generated
whenever isActive FALSE events are generated. A VisibilitySensor read from a VRML file shall generate isActive
TRUE and enterTime events if the sensor is enabled and the visibility box is visible. A VisibilitySensor inserted into
the transformation hierarchy shall generate isActive TRUE and enterTime events if the sensor is enabled and the
visibility box is visible. A VisibilitySensor removed from the transformation hierarchy shall generate isActive
FALSE and exitTime events if the sensor is enabled and the visibility box is visible.

Each VisibilitySensor node behaves independently of all other VisibilitySensor nodes. Every enabled
VisibilitySensor node that is affected by the user's movement receives and sends events, possibly resulting in
multiple VisibilitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there is no
notion of a VisibilitySensor node lower in the scene graph "grabbing" events. Multiply instanced VisibilitySensor

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

131

nodes (i.e., DEF/USE) use the union of all the boxes defined by their instances. An instanced VisibilitySensor node
shall detect visibility changes for all instances of the box and send events appropriately.

6.55 WorldInfo

WorldInfo {
 field MFString info []
 field SFString title ""
}

The WorldInfo node contains information about the world. This node is strictly for documentation purposes and has
no effect on the visual appearance or behaviour of the world. The title field is intended to store the name or title of
the world so that browsers can present this to the user (perhaps in the window border). Any other information about
the world can be stored in the info field, such as author information, copyright, and usage instructions.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

132

7 Conformance and minimum support
requirements

7.1 Introduction

7.1.1 Table of contents

7.1 Introduction
 7.1.1 Table of contents
 7.1.2 Objectives
 7.1.3 Scope
7.2 Conformance
 7.2.1 Conformance of VRML files
 7.2.2 Conformance of VRML generators
 7.2.3 Conformance of VRML browsers
7.3 Minimum support requirements
 7.3.1 Minimum support requirements for generators
 7.3.2 Minimum support requirements for browsers
 7.3.3 VRML requirements for conforming to the base profile
 7.3.4 Sound priority, attenuation, and spatialization

7.1.2 Objectives

This clause addresses conformance of VRML files, VRML generators and VRML browsers.

The primary objectives of the specifications in this clause are:

a. to promote interoperability by eliminating arbitrary subsets of, or extensions to, ISO/IEC 14772;

b. to promote uniformity in the development of conformance tests;

c. to promote consistent results across VRML browsers;

d. to facilitate automated test generation.

7.1.3 Scope

Conformance is defined for VRML files and for VRML browsers. For VRML generators, conformance guidelines
are presented for enhancing the likelihood of successful interoperability.

A concept of base profile conformance is defined to ensure interoperability of VRML generators and VRML
browsers. Base profile conformance is based on a set of limits and minimal requirements. Base profile conformance
is intended to provide a functional level of reasonable utility for VRML generators while limiting the complexity
and resource requirements of VRML browsers. Base profile conformance may not be adequate for all uses of
VRML.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

133

This clause addresses the VRML data stream and implementation requirements. Implementation requirements
include the latitude allowed for VRML generators and VRML browsers. This clause does not directly address the
environmental, performance, or resource requirements of the generator or browser.

This clause does not define the application requirements or dictate application functional content within a VRML
file.

The scope of this clause is limited to rules for the open interchange of VRML content.

7.2 Conformance

7.2.1 Conformance of VRML files

A VRML file is syntactically correct according to ISO/IEC 14772 if the following conditions are met:

a. The VRML file contains as its first element a VRML header comment (see 4.2.2, Header).

b. All entities contained therein match the functional specification of the corresponding entities of ISO/IEC
14772-1. The VRML file shall obey the relationships defined in the formal grammar and all other syntactic
requirements.

c. The sequence of entities in the VRML file obeys the relationships specified in ISO/IEC 14772-1 producing
the structure specified in ISO/IEC 14772-1.

d. All field values in the VRML file obey the relationships specified in ISO/IEC 14772-1 producing the
structure specified in ISO/IEC 14772-1.

e. No nodes appear in the VRML file other than those specified in ISO/IEC 14772-1 unless required for the
encoding technique or those defined by the PROTO or EXTERNPROTO entities.

f. The VRML file is encoded according to the rules of ISO/IEC 14772.

g. It does not contain behaviour described as undefined elsewhere in this specification.

A VRML file conforms to the base profile if:

h. It is syntactically correct.

i. It meets the restrictions of Table 7.1.

7.2.2 Conformance of VRML generators

A VRML generator is conforming to this part of ISO/IEC 14772 if all VRML files that are generated are
syntactically correct.

A VRML generator conforms to the base profile if it can be configured such that all VRML files generated conform
to the base profile.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

134

7.2.3 Conformance of VRML browsers

A VRML browser conforms to the base profile if:

a. It is able to read any VRML file that conforms to the base profile.

b. It presents the graphical and audio characteristics of the VRML nodes in any VRML file that conforms to
the base profile, within the latitude defined in this clause.

c. It correctly handles user interaction and generation of events as specified in ISO/IEC 14772, within the
latitude defined in this clause.

d. It satisfies the requirements of 7.3.2, Minimum support requirements for browsers, as enumerated in Table
7.1.

7.3 Minimum support requirements

7.3.1 Minimum support requirements for generators

There is no minimum complexity which is required of (or appropriate for) VRML generators. Any compliant set of
nodes of arbitrary complexity may be generated, as appropriate to represent application content.

7.3.2 Minimum support requirements for browsers

This subclause defines the minimum complexity which shall be supported by a VRML browser. Browser
implementations may choose to support greater limits but may not reduce the limits described in Table 7.1. When
the VRML file contains nodes which exceed the limits implemented by the browser, the results are undefined.
Where latitude is specified in Table 7.1 for a particular node, full support is required for other aspects of that node.

7.3.3 VRML requirements for conforming to the base profile

In the following table, the first column defines the item for which conformance is being defined. In some cases,
general limits are defined but are later overridden in specific cases by more restrictive limits. The second column
defines the requirements for a VRML file conforming to the base profile; if a VRML file contains any items that
exceed these limits, it may not be possible for a VRML browser conforming to the base profile to successfully parse
that VRML file. The third column defines the minimum complexity for a VRML scene that a VRML browser
conforming to the base profile shall be able to present to the user. The word "ignore" in the minimum browser
support column refers only to the display of the item; in particular, set_ events to ignored exposedFields must still
generate corresponding _changed events.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

135

Table 7.1 -- Specifications for VRML browsers conforming to the base profile

Item VRML File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter and bboxSize.

All interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for DEF/PROTO/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.
10 URLs. URN's ignored.
Support `http', `file', and `ftp' protocols.
Support relative URLs where relevant.

PROTO/
EXTERNPROTO

30 fields, 30 eventIns,
30 eventOuts, 30
exposedFields.

30 fields, 30 eventIns, 30 eventOuts, 30 exposedFields.

 EXTERNPROTO n/a URL references VRML files conforming to the base
profile

PROTO definition nesting
depth

5 levels. 5 levels.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFFloat No restrictions. Full support.

SFImage 256 width. 256 height. 256 width. 256 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2f 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

136

MFColor 15,000 values. 15,000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10 strings.

MFTime 1,000 values. 1,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Anchor No restrictions. Ignore parameter. Ignore description.

Appearance No restrictions. Full support.

AudioClip
30 second
uncompressed PCM
WAV.

30 second uncompressed PCM WAV. Ignore
description.

Background No restrictions. One skyColor, one groundColor, panorama images as
per ImageTexture.

Billboard Restrictions as for all
groups.

Full support except as for all groups.

Box No restrictions. Full support.

Collision Restrictions as for all
groups.

Full support except as for all groups. Any navigation
behaviour acceptable when collision occurs.

Color 15,000 colours. 15,000 colours.

ColorInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

Cone No restrictions. Full support.

Coordinate 15,000 points. 15,000 points.

CoordinateInterpolator 15,000 coordinates per 15,000 coordinates per keyValue. Support as for all

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

137

keyValue. Restrictions
as for all interpolators.

interpolators.

Cylinder No restrictions. Full support.

CylinderSensor No restrictions. Full support.

DirectionalLight No restrictions. Not scoped by parent Group or Transform.

ElevationGrid 16,000 heights. 16,000 heights.

Extrusion
(#crossSection
points)*(#spine points)
<= 2,500.

(#crossSection points)*(#spine points) <= 2,500.

Fog No restrictions. "EXPONENTIAL" treated as "LINEAR"

FontStyle No restrictions.

If the values of the text aspects character set, family,
style cannot be simultaneously supported, the order of
precedence shall be: 1) character set 2) family 3) style.
Browser must display all characters in ISO 8859-1
character set 2.[I8859].

Group Restrictions as for all
groups.

Full support except as for all groups.

ImageTexture
JPEG and PNG format.
Restrictions as for
PixelTexture.

JPEG and PNG format. Support as for PixelTexture.

IndexedFaceSet
10 vertices per face.
5000 faces. Less than
15,000 indices.

10 vertices per face. 5000 faces. 15,000 indices in any
index field.

IndexedLineSet
15,000 total vertices.
15,000 indices in any
index field.

15,000 total vertices. 15,000 indices in any index field.

Inline No restrictions.
Full support except as for all groups.
url references VRML files conforming to the base
profile

LOD Restrictions as for all
groups.

At least first 4 level/range combinations interpreted, and
support as for all groups. Implementations may
disregard level distances.

Material No restrictions.
Ignore ambient intensity. Ignore specular colour. Ignore
emissive colour. One-bit transparency; transparency
values >= 0.5 transparent.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

138

MovieTexture MPEG1-Systems and
MPEG1-Video formats.

MPEG1-Systems and MPEG1-Video formats. Display
one active movie texture. Ignore speed field.

NavigationInfo No restrictions. Ignore avatarSize. Ignore visibilityLimit.

Normal 15,000 normals 15,000 normals

NormalInterpolator
15,000 normals per
keyValue. Restrictions
as for all interpolators.

15,000 normals per keyValue. Support as for all
interpolators.

OrientationInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

PixelTexture 256 width. 256 height. 256 width. 256 height. Display fully transparent and
fully opaque pixels.

PlaneSensor No restrictions. Full support.

PointLight No restrictions. Ignore radius. Linear attenuation.

PointSet 5000 points. 5000 points.

PositionInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

ProximitySensor No restrictions. Full support.

ScalarInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

Script 25 eventIns. 25
eventOuts. 25 fields.

25 eventIns. 25 eventOuts. 25 fields.
No scripting language support required.

Shape No restrictions. Full support.

Sound No restrictions. 2 active sounds. Linear distance attenuation. No
spatialization. See 7.3.4.

Sphere No restrictions. Full support.

SphereSensor No restrictions. Full support.

SpotLight No restriction Ignore beamWidth. Ignore radius. Linear attenuation.

Switch Restrictions as for all
groups.

Full support except as for all groups.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

139

Text 100 characters per
string. 100 strings.

100 characters per string. 100 strings.

TextureCoordinate 15,000 coordinates. 15,000 coordinates.

TextureTransform No restrictions. Full support.

TimeSensor No restrictions. Ignored if cycleInterval < 0.01 second.

TouchSensor No restrictions. Full support.

Transform Restrictions as for all
groups.

Full support except as for all groups.

Viewpoint No restrictions. Ignore fieldOfView. Ignore description.

VisibilitySensor No restrictions. Always visible.

WorldInfo No restrictions. Ignored.

7.3.4 Sound priority, attenuation, and spatialization

7.3.4.1 Sound priority

If the browser does not have the resources to play all of the currently active sounds, it is recommended that the
browser sort the active sounds into an ordered list using the following sort keys in the order specified:

a. decreasing priority;

b. for sounds with priority > 0.5, increasing (now-startTime);

c. decreasing intensity at viewer location (intensity × intensity attenuation);

where priority is the priority field of the Sound node, now represents the current time, startTime is the startTime
field of the audio source node specified in the source field, and intensity attenuation refers to the intensity multiplier
derived from the linear decibel attenuation ramp between inner and outer ellipsoids.

It is important that sort key 2 be used for the high priority (event and cue) sounds so that new cues will be heard
even when the browser is "full" of currently active high priority sounds. Sort key 2 should not be used for normal
priority sounds, so selection among them will be based on sort key 3 (intensity at the location of the viewer).

The browser shall play as many sounds from the beginning of this sorted list as it can given available resources and
allowable latency between rendering. On most systems, the resources available for MIDI streams are different from
those for playing sampled sounds, thus it may be beneficial to maintain a separate list to handle MIDI data.

7.3.4.2 Sound attenuation and spatialization

In order to create a linear decrease in loudness as the viewer moves from the inner to the outer ellipsoid of the
sound, the attenuation must be based on a linear decibel ramp. To make the falloff consistent across browsers, the
decibel ramp is to vary from 0 dB at the minimum ellipsoid to -20 dB at the outer ellipsoid. Sound nodes with an
outer ellipsoid that is ten times larger than the minimum will display the inverse square intensity dropoff that
approximates sound attenuation in an anechoic environment.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

140

Browsers may support spatial localization of sounds whose spatialize field is TRUE as well as their underlying
sound libraries will allow. Browsers shall at least support stereo panning of non-MIDI sounds based on the angle
between the viewer and the source. This angle is obtained by projecting the Sound location (in global space) onto
the XZ plane of the viewer. Determine the angle between the Z-axis and the vector from the viewer to the
transformed location, and assign a pan value in the range [0.0, 1.0] as depicted in Figure 7.1. Given this pan value,
left and right channel levels can be obtained using the following equations:

 leftPanFactor = 1 - pan2

 rightPanFactor = 1 - (1 - pan)2

Figure 7.1: Stereo Panning

Using this technique, the loudness of the sound is modified by the intensity field value, then distance attenuation to
obtain the unspatialized audio output. The values in the unspatialized audio output are then scaled by leftPanFactor
and rightPanFactor to determine the final left and right output signals. The use of more sophisticated localization
techniques is encouraged, but not required (see E.[SNDB]).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

141

Annex A
(normative)

Grammar definition

A.1 Table of contents and introduction

A.1.1 Table of contents

This annex provides a detailed description of the grammar for each syntactic element in this part of ISO/IEC 14772.
The following table of contents lists the topics in this clause:

A.1 Table of contents and introduction
 A.1.1 Table of contents
 A.1.2 Introduction
A.2 General
A.3 Nodes
A.4 Fields

A.1.2 Introduction

It is not possible to parse VRML files using a context-free grammar. Semantic knowledge of the names and types of
fields, eventIns, and eventOuts for each node type (either built-in or user-defined using PROTO or
EXTERNPROTO) shall be used during parsing so that the parser knows which field type is being parsed.

The '#' (0x23) character begins a comment wherever it appears outside of the first line of the VRML file or quoted
SFString or MFString fields. The '#' character and all characters until the next line terminator comprise the comment
and are treated as whitespace.

The carriage return (0x0d), linefeed (0x0a), space (0x20), tab (0x09), and comma (0x2c) characters are whitespace
characters wherever they appear outside of quoted SFString or MFString fields. Any number of whitespace
characters and comments may be used to separate the syntactic entities of a VRML file. All reserved keywords are
displayed in boldface type.

Any characters (including linefeed and '#') may appear within the quotes of SFString and MFString fields. A double
quote character within a string shall be preceded with a backslash (e.g, "Each double quotes character \"
shall have a backslash."). A backslash character within a string shall be preceded with a backslash forming two
backslashes (e.g., "One backslash \\ character").

Clause 6, Nodes reference, contains a description of the allowed fields, eventIns and eventOuts for all pre-defined
node types. The double, float, and int32 symbols are expressed using Perl regular expression syntax; see E.[PERL]
for details. The IdFirstChar, IdRestChars, and string symbols have not been formally specified; Clause 5, Fields and
events reference, contains a more complete description of their syntax.

The following conventions are used in the semi-formal grammar specified in this clause:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

142

a. Keywords and terminal symbols which appear literally in the VRML file, are specified in bold.

b. Nonterminal symbols used in the grammar are specified in italic.

c. Production rules begin with a nonterminal symbol and the sequence of characters "::=", and end with a
semi-colon (";").

d. Alternation for production rules is specified using the vertical-bar symbol ("|").

Table A.1 contains the complete list of lexical elements for the grammar in this part of ISO/IEC 14772.

Table A.1 -- VRML lexical elements

 Keywords
Terminal
symbols

Other
symbols

 DEF
 EXTERNPROTO
 FALSE
 IS
 NULL
 PROTO
 ROUTE
 TO
 TRUE
 USE
 eventIn
 eventOut
 exposedField
 field

 period (.)
 open brace ({)
 close brace (})
 open bracket ([)
 close bracket (])

 Id
 double
 fieldType
 float
 int32
 string

Terminal symbols and the string symbol may be separated by one or more whitespace characters. Keywords and the
Id, fieldType, float, int32, and double symbols shall be separated by one or more whitespace characters.

A.2 General
vrmlScene ::=

statements ;

statements ::=
statement |
statement statements |
empty ;

statement ::=
nodeStatement |
protoStatement |
routeStatement ;

nodeStatement ::=
node |
DEF nodeNameId node |
USE nodeNameId ;

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

143

rootNodeStatement ::=
node | DEF nodeNameId node ;

protoStatement ::=
proto |
externproto ;

protoStatements ::=
protoStatement |
protoStatement protoStatements |
empty ;

proto ::=
PROTO nodeTypeId [interfaceDeclarations] { protoBody } ;

protoBody ::=
protoStatements rootNodeStatement statements ;

interfaceDeclarations ::=
interfaceDeclaration |
interfaceDeclaration interfaceDeclarations |
empty ;

restrictedInterfaceDeclaration ::=
eventIn fieldType eventInId |
eventOut fieldType eventOutId |
field fieldType fieldId fieldValue ;

interfaceDeclaration ::=
restrictedInterfaceDeclaration |
exposedField fieldType fieldId fieldValue ;

externproto ::=
EXTERNPROTO nodeTypeId [externInterfaceDeclarations] URLList ;

externInterfaceDeclarations ::=
externInterfaceDeclaration |
externInterfaceDeclaration externInterfaceDeclarations |
empty ;

externInterfaceDeclaration ::=
eventIn fieldType eventInId |
eventOut fieldType eventOutId |
field fieldType fieldId |
exposedField fieldType fieldId ;

routeStatement ::=
ROUTE nodeNameId . eventOutId TO nodeNameId . eventInId ;

URLList ::=
mfstringValue ;

empty ::=
;

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

144

A.3 Nodes
node ::=

nodeTypeId { nodeBody } |
Script { scriptBody } ;

nodeBody ::=
nodeBodyElement |
nodeBodyElement nodeBody |
empty ;

scriptBody ::=
scriptBodyElement |
scriptBodyElement scriptBody |
empty ;

scriptBodyElement ::=
nodeBodyElement |
restrictedInterfaceDeclaration |
eventIn fieldType eventInId IS eventInId |
eventOut fieldType eventOutId IS eventOutId |
field fieldType fieldId IS fieldId ;

nodeBodyElement ::=
fieldId fieldValue |
fieldId IS fieldId |
eventInId IS eventInId |
eventOutId IS eventOutId |
routeStatement |
protoStatement ;

nodeNameId ::=
Id ;

nodeTypeId ::=
Id ;

fieldId ::=
Id ;

eventInId ::=
Id ;

eventOutId ::=
Id ;

Id ::=
IdFirstChar |
IdFirstChar IdRestChars ;

IdFirstChar ::=
Any ISO-10646 character encoded using UTF-8 except: 0x30-0x39, 0x0-0x20, 0x22, 0x23, 0x27, 0x2b, 0x2c,
0x2d, 0x2e, 0x5b, 0x5c, 0x5d, 0x7b, 0x7d, 0x7f ;

IdRestChars ::=
Any number of ISO-10646 characters except: 0x0-0x20, 0x22, 0x23, 0x27, 0x2c, 0x2e, 0x5b, 0x5c, 0x5d, 0x7b,
0x7d, 0x7f ;

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

145

A.4 Fields
fieldType ::=

MFColor |
MFFloat |
MFInt32 |
MFNode |
MFRotation |
MFString |
MFTime |
MFVec2f |
MFVec3f |
SFBool |
SFColor |
SFFloat |
SFImage |
SFInt32 |
SFNode |
SFRotation |
SFString |
SFTime |
SFVec2f |
SFVec3f ;

fieldValue ::=
sfboolValue |
sfcolorValue |
sffloatValue |
sfimageValue |
sfint32Value |
sfnodeValue |
sfrotationValue |
sfstringValue |
sftimeValue |
sfvec2fValue |
sfvec3fValue |
mfcolorValue |
mffloatValue |
mfint32Value |
mfnodeValue |
mfrotationValue |
mfstringValue |
mftimeValue |
mfvec2fValue |
mfvec3fValue ;

sfboolValue ::=
TRUE |
FALSE ;

sfcolorValue ::=
float float float ;

sffloatValue ::=
float ;

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

146

float ::=
([+/-]?((([0-9]+(\.)?)|([0-9]*\.[0-9]+))([eE][+\-]?[0-9]+)?)).

sfimageValue ::=
int32 int32 int32 ...

sfint32Value ::=
int32 ;

int32 ::=
([+\-]?(([0-9]+)|(0[xX][0-9a-fA-F]+)))

sfnodeValue ::=
nodeStatement |
NULL ;

sfrotationValue ::=
float float float float ;

sfstringValue ::=
string ;

string ::=
".*" ... double-quotes must be \", backslashes must be \\...

sftimeValue ::=
double ;

double ::=
([+/-]?((([0-9]+(\.)?)|([0-9]*\.[0-9]+))([eE][+\-]?[0-9]+)?))

mftimeValue ::=
sftimeValue |
[] |
[sftimeValues] ;

sftimeValues ::=
sftimeValue |
sftimeValue sftimeValues ;

sfvec2fValue ::=
float float ;

sfvec3fValue ::=
float float float ;

mfcolorValue ::=
sfcolorValue |
[] |
[sfcolorValues] ;

sfcolorValues ::=

sfcolorValue |

sfcolorValue sfcolorValues ;

mffloatValue ::=

sffloatValue |

[] |

[sffloatValues] ;

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

147

sffloatValues ::=
sffloatValue |
sffloatValue sffloatValues ;

mfint32Value ::=
sfint32Value |
[] |
[sfint32Values] ;

sfint32Values ::=
sfint32Value |
sfint32Value sfint32Values ;

mfnodeValue ::=
nodeStatement |
[] |
[nodeStatements] ;

nodeStatements ::=
nodeStatement |
nodeStatement nodeStatements ;

mfrotationValue ::=
sfrotationValue |
[] |
[sfrotationValues] ;

sfrotationValues ::=
sfrotationValue |
sfrotationValue sfrotationValues ;

mfstringValue ::=
sfstringValue |
[] |
[sfstringValues] ;

sfstringValues ::=
sfstringValue |
sfstringValue sfstringValues ;

mfvec2fValue ::=
sfvec2fValue |
[] |
[sfvec2fValues] ;

sfvec2fValues ::=
sfvec2fValue |
sfvec2fValue sfvec2fValues ;

mfvec3fValue ::=
sfvec3fValue |
[] |
[sfvec3fValues] ;

sfvec3fValues ::=

sfvec3fValue |

sfvec3fValue sfvec3fValues ;

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

148

Annex B
(normative)

Java platform scripting reference

B.1 Introduction
This annex describes the Java platform classes and methods that enable Script nodes (see 6.40, Script) to interact
with VRML scenes. See 4.12, Scripting, for a general description of scripting languages in ISO/IEC 14772. Note
that support for the Java platform is not required by ISO/IEC 14772, but any access of the Java platform from within
VRML Script nodes shall conform with the requirements specified in this annex.

B.1 Introduction
B.2 Platform
B.3 Supported protocol in the Script node's url field
 B.3.1 url field
 B.3.2 File extension
 B.3.3 MIME type
B.4 EventIn handling
 B.4.1 Description
 B.4.2 Parameter passing with event objects
 B.4.3 processEvents() and processEvent() methods
 B.4.3.1 processEvents() method
 B.4.3.2 processEvent() method
 B.4.4 eventsProcessed() method
 B.4.5 shutdown() method
 B.4.6 initialize() method
B.5 Accessing fields and events
 B.5.1 Accessing fields, eventIns and eventOuts of the script
 B.5.2 Accessing fields, eventIns and eventOuts of other nodes
 B.5.3 Sending eventOuts or eventIns
B.6 Exposed classes and methods for nodes and fields
 B.6.1 Introduction
 B.6.2 Field class and ConstField class
 B.6.3 Array handling
 B.6.3.1 Format
 B.6.3.2 Constructors and methods
 B.6.4 Node class
 B.6.5 Browser class
 B.6.6 User-defined classes and packages
 B.6.7 Standard Java platform packages
B.7 Exceptions
B.8 Examples
B.9 Class definitions
 B.9.1 Class hierarchy

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

149

 B.9.2 VRML packages
 B.9.2.1 vrml package
 B.9.2.2 vrml.field package
 B.9.2.3 vrml.node package
B.10 Example of exception class

B.2 Platform
The Javatm platform is an object-oriented, hardware and operating system independent, multi-threaded, general-
purpose application environment developed by Sun Microsystems, Inc. The Java platform consists of the language,
the virtual machine, and a set of core class libraries. A conforming Java platform implements all three components
according to their specifications. See 2.[JAVA] for a description of the language, the virtual machine, and the three
core classes java.lang, java.util, and java.io. The other core class libraries, which are not used in this annex, are
described in E.[JAPI].

B.3 Supported protocol in the script node’s url field

B.3.1 url field

The url field of the Script node may contain URL references to Java bytecode as illustrated below:

 Script {
 url "http://foo.co.jp/Example.class"
 eventIn SFBool start
 }

B.3.2 File extension

The file extension for Java bytecode is .class.

B.3.3 MIME type

The MIME type for Java bytecode is defined as follows:

 application/x-java

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

150

B.4 EventIn handling

B.4.1 Description

Events to the Script node are passed to the corresponding Java platform method (processEvents() or processEvent())
in the script. The script is specified in the url field of the Script node.

For a Java bytecode file specified in the url field, the following three conditions hold:

a. it shall contain the class definition whose name is exactly the same as the body of the file name

b. it shall be a subclass of the Script class (see B.9.2.3, vrml.node package)

c. it shall be declared as a "public" class

For example, the following Script node has one eventIn whose name is start.

 Script {
 url "http://foo.co.jp/Example1.class"
 eventIn SFBool start
 }

This node points to the script file Example1.class. Its source (Example1.java) looks like this:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example1 extends Script {
 ...
 // This method is called when any event is received
 public void processEvent(Event e){
 // ... perform some operation ...
 }
 }

In the above example, when the start eventIn is sent the processEvent() method receives the eventIn and is executed.

B.4.2 Parameter passing with Event objects

When a Script node receives an eventIn, a processEvent() or processEvents() method in the file specified in the url
field of the Script node is called, which receives the eventIn as a Java platform object (Event object, see
B.4.3, processEvents() and processEvent() methods).

The Event object has three fields of information associated with it: name, value, and timestamp, whose values are
passed by the eventIn. These can be retrieved using the corresponding method on the Event object.

 public class Event implements Cloneable {
 public String getName();
 public ConstField getValue();
 public double getTimeStamp();
 // other methods ...
 }

Suppose that the eventIn type is SFXXX and eventIn name is eventInYYY, then

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

151

a. getName() shall return the string "eventInYYY "

b. getValue() shall return ConstField containing the value of the eventIn

c. getTimeStamp() shall return a double (in seconds) containing the timestamp when the eventIn occurred
(see 4.11, Time)

In the example below, the eventIn name is start and the eventIn value is cast to ConstSFBool. Also, the timestamp
for the time when the eventIn occurred is available as a double. These are passed as an Event object to the
processEvent() method:

 public void processEvent(Event e){
 if(e.getName().equals("start")){
 ConstSFBool v = (ConstSFBool)e.getValue();
 if(v.getValue()==true){
 // ... perform some operation with e.getTimeStamp()...
 }
 }
 }

B.4.3 processEvents() and processEvent() methods

B.4.3.1 processEvents() method

Authors can define a processEvents() method within a class that is called when the script receives some set of
events. The prototype of the processEvents() method is public void processEvents(int
count, Event events[]);

count indicates the number of events delivered. events is the array of events delivered. Its default behaviour is to
iterate over each event, calling processEvent() on each one as follows:

 public void processEvents(int count, Event events[])
 {
 for (int i = 0; i < count; i++){
 processEvent(events[i]);
 }
 }

Although authors might change this operation by giving a user-defined processEvents() method, in most cases, they
only change the processEvent() method and the eventsProcessed() method as described below.

When multiple eventIns are routed from a single node to a single Script node and eventIns which have the same
timestamp are received, processEvents() receives multiple events as an event array. Otherwise, each incoming event
invokes separate processEvents().

For example, the processEvents() method receives two events in the following case, when the TouchSensor is
activated:

 Transform {
 children [
 DEF TS TouchSensor {}
 Shape { geometry Cone {} }
]
 }
 DEF SC Script {
 url "Example.class"
 eventIn SFBool isActive
 eventIn SFTime touchTime

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

152

 }
 ROUTE TS.isActive TO SC.isActive
 ROUTE TS.touchTime TO SC.touchTime

B.4.3.2 processEvent() method

Authors can define a processEvent() method within a class. The prototype of the processEvent() is
public void processEvent(Event event);

Its default behaviour is no operation.

B.4.4 eventsProcessed() method

Authors may define an eventsProcessed() method within a class that is called after some set of events has been
received. This allows Script nodes that do not rely on the ordering of events received to generate fewer events than
an equivalent Script node that generates events whenever events are received (see B.4.3.1, processEvents() method).

The prototype of the eventsProcessed() method is public void eventsProcessed();

Its default behaviour is no operation.

B.4.5 shutdown() method

Authors may define a shutdown() method within the Script class that is called when the corresponding Script node is
deleted or the world containing the Script node is unloaded or replaced by another world
(see 4.12.3, Initialize() and shutdown()).

The prototype of the shutdown() method is public void shutdown();

Its default behaviour is no operation.

B.4.6 initialize() method

Authors may define an initialize() method within the Script class that is called before the browser presents the world
to the user and before any events are processed by any nodes in the same VRML file as the Script node containing
this script (see 4.12.3, Initialize() and shutdown()). The various methods of the Script class such as getEventIn(),
getEventOut(), getExposedField(), and getField() are not guaranteed to return correct values before the initialize()
method has been executed. The initialize() method is called once during the life of the Script object.

The prototype of the initialize() method is public void initialize();

Its default behaviour is no operation. See Example2.java in B.5.1 for an example of a user-specified initialize()
method.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

153

B.5 Accessing fields and events

B.5.1 Accessing fields, eventIns and eventOuts of the script

The fields, eventIns, and eventOuts of a Script node are accessible from its corresponding Script class. Each field
defined in the Script node is available to the Script class by using its name. Its value can be read-from or written-
into. This value is persistent across function calls. EventOuts defined in the Script node can be read. EventIns
defined in the Script node can be written to.

Accessing the fields of the Script node can be done by using the following three types of Script class methods:

a. Field getField(String fieldName)
is the method to get the reference to the Script node's field whose name is fieldName. The return value can
be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).

b. Field getEventOut(String eventOutName)
is the method to get the reference to the Script node's eventOut whose name is eventOutName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class).

c. Field getEventIn(String eventInName)
is the method to get the reference to the Script node's eventIn whose name is eventInName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class). EventIn is a write-only field. When the getValue() method is
invoked on a Field object obtained by the getEventIn() method, the return value is unspecified.

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getField() method, the new value is stored in the corresponding VRML node's field (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). In the case of the set1Value(), addValue(),
insertValue() or delete() methods, all elements of the VRML node's field are retrieved, then the value specified as an
argument is set, added, inserted, deleted (as appropriate) to/from the elements, and then stored as the elements in the
corresponding VRML node's field. In the case of the clear() method, all elements of a VRML node's field are
cleared (see the definition of the clear() method).

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getEventOut() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the set1Value(), addValue(), insertValue() or delete()
methods, all elements of the VRML node's eventOut are retrieved, then the value specified as an argument is set,
added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the corresponding
VRML node's eventOut, and then the eventOut is sent. In the case of the clear() method, all elements of VRML
node's eventOut are cleared and an eventOut with zero elements is sent (see the definition of the clear() method).

When the setValue() or clear() methods are invoked on a Field object obtained by the getEventIn() method, the call
generates an eventIn to the Script node. When the set1Value(), addValue(), insertValue() or delete() methods are
invoked on a Field object obtained by the getEventIn() method, the exception (InvalidFieldChangeException) is
thrown.

For example, the following Script node (Example2) defines an eventIn start, a field state, and an eventOut on. The
method initialize() is invoked before any events are received, and the method processEvent() is invoked when start
receives an event:

 Script {

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

154

 url "Example2.class"
 eventIn SFBool start
 field SFBool state TRUE
 eventOut SFBool on
 }

Example2.java:

 // Example2 toggles a persistent field variable "state" in the VRML
 // Script node each time an eventIn "start" is received, then sets
 // eventOut "on" equal to the value of "state"
 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example2 extends Script {
 private SFBool state; // field
 private SFBool on; // eventOut

 public void initialize(){
 state = (SFBool) getField("state");
 on = (SFBool) getEventOut("on");
 }

 public void processEvent(Event e){
 if(state.getValue()==true){
 on.setValue(false); // set false to eventOut ’on’
 state.setValue(false);
 }
 else {
 on.setValue(true); // set true to eventOut ’on’
 state.setValue(true);
 }
 }
 }

B.5.2 Accessing fields, eventIns and eventOuts of other nodes

If a script program has an access to a node, any eventIn, eventOut or exposedField of that node is accessible by
using the getEventIn(), getEventOut() or getExposedField() method defined in the node's class (see B.6.4, Node
class).

The typical way for a Script node to have an access to another VRML node is to have an SFNode field which
provides a reference to the other node. The following Example3 shows how this is done:

 DEF SomeNode Transform {}
 Script {
 field SFNode node USE SomeNode # SomeNode is a Transform node
 eventIn SFVec3f pos # new value to be inserted in
 # SomeNode’s translation field
 url "Example3.class"
 }

Example3.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example3 extends Script {
 private SFNode node; // field
 private SFVec3f trans; // translation field captured from remote
 // Transform node

 public void initialize(){
 node = (SFNode) getField("node");

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

155

 }

 public void processEvent(Event e){
 // get the reference to the ’translation’ field of the Transform node
 trans = (SFVec3f)((Node) node.getValue()).getExposedField("translation");
 // reset translation to value given in Event e, which is eventIn pos
 // in the VRML Script node.
 trans.setValue((ConstSFVec3f)e.getValue());
 }
 }

B.5.3 Sending eventOuts or eventIns

Assume that the thread which executes processEvent() (or processEvents()) is called 'main' thread and any other
thread spawned by the Script, except for the 'main' thread, is called 'sub' thread. Sending eventOuts/eventIns in the
'main' thread follows the model described in 4.10.3, Execution model, and sending eventOuts/eventIns in any 'sub'
thread follows the model described in 4.12.6, Asynchronous scripts.

In the ’main’ thread: Calling one of the setValue(), set1Value, addValue(), insertValue(), clear() or delete()
methods on an eventOut/eventIn sends that event at that time. Calling the methods multiple times during one
execution of the thread still only sends one event which corresponds to the first call of the method. All other calls
are ignored. The event is assigned the same timestamp as the initial event which caused the main thread to execute.

In the ’sub’ thread: Calling one of the setValue(), set1Value, addValue(), insertValue(), clear() or delete() method
on an eventOut/eventIn sends that event at that time. Calling the methods multiple times during one execution of the
thread sends one event per call of the method. The browser assigns the timestamp to the event.

Note: sending eventIns is ordinarily performed by the VRML scene, not by Java platform scripts. Exceptions are
possible as specified in B.5.1, Accessing fields, eventIns and eventOuts of the script.

B.6 Exposed classes and methods for nodes and fields

B.6.1 Introduction

Java platform classes for VRML are defined in the packages: vrml, vrml.node and vrml.field.

The Field class extends the Java platform's Object class by default; thus, Field has the full functionality of the Object
class, including the getClass() method. The rest of the package defines a "Const" read-only class for each VRML
field type, with a getValue() method for each class; and another read/write class for each VRML field type, with
both getValue() and setValue() methods for each class. A getValue() method converts a VRML type value into a
Java platform type value. A setValue() method converts a Java platform type value into a VRML type value and sets
it to the VRML field.

Some methods are listed as "throws exception," meaning that errors are possible. It may be necessary to write
exception handlers (using the Java platform's catch() method) when those methods are used. Any method not listed
as "throws exception" is guaranteed to generate no exceptions. Each method that throws an exception includes a
prototype showing which exception(s) can be thrown.

B.6.2 Field class and ConstField class

All VRML data types have equivalent Java platform classes. The Field class is the root of all field types.

 public abstract class Field implements Cloneable {

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

156

 // methods
 }

This class has two types of subclasses: read-only classes and read/write classes

a. Read-only classes
These classes support the getValue() method. Some classes support additional convenience methods to get
value(s) from the object.

ConstSFBool, ConstSFColor, ConstMFColor, ConstSFFloat, ConstMFFloat, ConstSFImage,
ConstSFInt32, ConstMFInt32, ConstSFNode, ConstMFNode, ConstSFRotation, ConstMFRotation,
ConstSFString, ConstMFString, ConstSFVec2f, ConstMFVec2f, ConstSFVec3f, ConstMFVec3f,
ConstSFTime, ConstMFTime

b. Read/write classes
These classes support both getValue() and setValue() methods. If the class name is prefixed with MF
(meaning that it is a multiple valued field class), the class also supports the set1Value(), addValue() and
insertValue() methods. Some classes support additional convenience methods to get and set value(s) from
the object.

SFBool, SFColor, MFColor, SFFloat, MFFloat, SFImage, SFInt32, MFInt32, SFNode, MFNode,
SFRotation, MFRotation, SFString, MFString, SFVec2f, MFVec2f, SFVec3f, MFVec3f, SFTime, MFTime

The VRML Field class and its subclasses have several methods to get and set value(s): getSize(), getValue(),
get1Value(), setValue(), set1Value(), addValue(), insertValue(), clear(), delete() and toString(). In these methods,
getSize(), get1Value(), set1Value(), addValue(), insertValue(), clear() and delete() are only available for multiple
value field classes (MF classes).

c. getSize()
is the method to return the number of elements of each multiple value field class (MF class).

d. getValue()
is the method to convert a VRML type value into a Java platform type value and return it.

e. get1Value(int index)
is the method to convert a single VRML type value (index-th element of an array) and return it as a single
Java platform type value. The index of the first element is 0. Attempting to get an element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

f. setValue(value)
is the method to convert a Java platform type value into a VRML type value and copy it to the target object.

g. set1Value(int index, value)
is the method to convert from a Java platform type value to a VRML type value and copy it to the index-th
element of the target object. The index of the first element is 0. Attempting to set an element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

h. addValue(value)
is the method to convert from a Java platform type value to a VRML type value and append it to the target
object, thus adding an element.

i. insertValue(int index, value)
is the method to convert from a Java platform type value to a VRML type value and insert it as a new
element at the index-th position, thus adding an element. The index of the first element is 0. Attempting to
insert the element beyond the length of the element array throws an exception
(ArrayIndexOutOfBoundsException).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

157

j. clear()
is the method to clear all elements in the target object so that it has no more elements in it.

k. delete(int index)
is the method to delete the index-th element from the target object, thus decreasing the length of the
element array by one. The index of the first element is 0. Attempting to delete the element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

l. toString()
is the method to return a String containing the VRML utf8 encoded value (or values) of the equivalent of
the field. In the case of the SFNode(ConstSFNode) and MFNode (ConstMFNode),

• SFNode(ConstSFNode): the method returns the VRML utf8 string that, if parsed as the value of
an SFNode field, would produce this node. If the browser is unable to reproduce this node, the
name of the node followed by the open brace and close brace shall be returned. Additional
information may be included as one or more VRML comment strings.

• MFNode(ConstMFNode): the method returns the VRML utf8 string that, if parsed as the value of
a MFNode field, would produce this array of nodes. If the browser is unable to reproduce this
node, the name of the nodes followed by the open brace and close brace shall be returned.
Additional information may be included as one or more VRML comment strings

See also B.5.1, Accessing fields, eventIns and eventOuts of the Script, B.6.3, Array handling, B.6.4, Node class, and
B.9.2.1, vrml package, for each class' methods definition.

B.6.3 Array handling

B.6.3.1 Format

Some constructors and other methods of the field classes take an array as an argument.

a. A single-dimensional array

Some constructors and other methods of the following classes take a single-dimensional array as an
argument. The array is treated as follows:

1. ConstSFColor, ConstMFColor, SFColor and MFColor

float colors[]

colors[] consists of a set of three float-values (representing red, green and blue).

2. ConstSFRotation, ConstMFRotation, SFRotation and MFRotation

float rotations[]

rotations[] consists of a set of four float-values (representing axisX, axisY, axisZ and angle).

3. ConstSFVec2f, ConstMFVec2f, SFVec2f and MFVec2f

float vec2s[]

vec2s[] consists of a set of two float-values (representing x and y).

4. ConstSFVec3f, ConstMFVec3f, SFVec3f and MFVec3f

float vec3s[]

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

158

vec3s[] consists of a set of three float-values (representing x, y and z).

5. ConstSFImage and SFImage

byte pixels[]

pixels[] consists of 2-dimensional pixel image. The ordering of the individual components for an
individual pixel within the array of bytes will be as follows:

 # Comp. byte[i] byte[i + 1] byte[i + 2] byte[i + 3]
 ------- ---------- ---------- ----------- -----------
 1 intensity1 intensity2 intensity3 intensity4
 2 intensity1 alpha1 intensity2 alpha2
 3 red1 green1 blue1 red2
 4 red1 green1 blue1 alpha1

The order of pixels in the array are to follow that defined in 5.5, SFImage. byte 0 is pixel 0,
starting from the bottom left corner.

b. A single integer and a single-dimensional array

Some constructors and other methods take a single integer value (called size) and a single-dimensional
array as arguments: for example, MFFloat(int size, float values[]). The size parameter specifies the number
of valid elements in the array, from 0-th element to (size - 1)-th element, all other values are ignored. This
means that the method may be passed an array of length size or larger. The same rule for a single-
dimensional array is applied to the valid elements.

c. An array of arrays

Some constructors and other methods alternatively take an array of arrays as an argument. The array is
treated as follows:

1. ConstMFColor and MFColor

float colors[][]

colors[][] consists of an array of sets of three float-values (representing red, green and blue).

2. ConstMFRotation and MFRotation

float rotations[][]

rotations[][] consists of an array of sets of four float-values (representing axisX, axisY, axisZ and
angle).

3. ConstMFVec2f and MFVec2f

float vec2s[][]

vec2s[][] consists of an array of sets of two float-values (representing x and y).

4. ConstMFVec3f and MFVec3f

float vec3s[][]

vec3s[][] consists of an array of sets of three float-values (representing x, y and z).

B.6.3.2 Constructors and methods

The following describes how arrays are interpreted in detail for each constructor and method.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

159

Suppose NA represents the number of elements in the array specified as an argument of some constructors and other
methods, and NT represents the number of elements which the target object requires or has. For example, if the
target object is SFColor, it requires exactly 3 float values.

In the following description, suppose SF* represents subclasses of Field class, ConstSF* represents subclasses of
ConstField class, MF* represents subclasses of MField class and ConstMF* represents subclasses of ConstMField
class.

a. A single-dimensional array

In the following description, if the target object is:

• ConstSFColor and SFColor, NT is exactly 3

• ConstMFColor and MFColor, NT is a multiple of 3, and NA is rounded down to a multiple of 3

• ConstSFRotation and SFRotation, NT is exactly 4

• ConstMFRotation and MFRotation, NT is a multiple of 4, and NA is rounded down to a multiple of
4

• ConstSFVec2f and SFVec2f, NT is exactly 2

• ConstMFVec2f and MFVec2f, NT is a multiple of 2, and NA is rounded down to a multiple of 2

• ConstSFVec3f and SFVec3f, NT is exactly 3

• ConstMFVec3f and MFVec3f, NT is a multiple of 3, and NA is rounded down to a multiple of 3

• ConstSFImage and SFImage, NT is exactly width*height *components (width, height and number
of components in the image, see 5.5, SFImage)

1. For ConstSF* objects and SF* objects

For all constructors and methods which take a single-dimensional array as an argument, the
following rules are applied. NA shall be larger than or equal to NT. If NA is larger than NT, the
elements from the 0-th to the (NT - 1)-th element are used and remaining elements are ignored.
Otherwise, an exception(ArrayIndexOutOfBoundsException) is thrown.

For example, when the array is used as an argument of the setValue() for SFColor, the array shall
contain at least 3 float values. If the array contains more than 3 float values, the first 3 values are
used.

2. For ConstMF* objects and MF* objects

• For constructor.

The same rule for ConstSF* and SF* objects is applied.

For example, when the array is used as an argument of the constructor for MFColor, the
array shall contain at least 3 float values. If the array contains 3N, 3N +1 or 3N + 2 float
values, the first 3N values are used.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

160

• For setValue() method.

If NT is smaller than or equal to NA, NT is increased to NA and then all elements of the
array are copied into the target object. If NT is larger than NA, NT is decreased to NA and
then all elements of the array are copied into the target object.

• For getValue() method.

If NT is smaller than or equal to NA, all elements of the target object are copied into the
first NT elemets of the array. If NT is larger than NA, an exception
(ArrayIndexOutOfBoundsException) is thrown.

• For set1Value() method.

The target element (the index-th element) is treated as an SF* object. So the same rule for
ConstSF* and SF* objects is applied.

• For get1Value() method.

The target element (the index-th element) is treated as an SF* (or ConstSF*) object. So
the same rule for ConstSF* and SF* objects is applied.

• For addValue() and insertValue() method.

The corresponding SF* object is created using the argument, and then added to the target
object or inserted into the target object.

b. A single integer and a single-dimensional array

For all constructors and methods which take a single integer value (called size) and a single-dimensional
array as arguments, for example, MFFloat(int size, float values[]), the following rule is applied.

The size parameter specifies the number of valid elements in the array from the 0-th element to the (size -
 1)-th element; all other values are ignored. This means that the method may be passed an array of length
size or larger.

The valid elements are copied to a new array and the rules for a single-dimensional array are applied to the
new array for all methods.

c. An array of arrays

This argument is used only for MF* objects and ConstMF* objects. In the following case, suppose NA is
the number of arrays (for example float f[4][3], NA is 4) specified as an argument of some constructors and
other methods and NT is the return value of getSize() method of each object.

• For constructor.
The object which has NA elements is created.

• For setValue() method.
If NT is smaller than or equal to NA, NT is increased to NA and then all elements of the array are
copied into the target object. If NT is larger than NA, NT is decreased to NA and then all elements
of the array are copied into the target object.

• For getValue() method.
If NT is smaller than or equal to NA, all elements of the target object are copied into the array. If
NT is larger than NA, an exception(ArrayIndexOutOfBoundsException) is thrown.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

161

B.6.4 Node class

The Node class has several methods:

a. String getType()
is the method to return the type of the node.

b. ConstField getEventOut(String eventOutName)
is the method to get the reference to the node's eventOut whose name is eventOutName. The return value
can be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).

c. Field getEventIn(String eventInName)
is the method to get the reference to the node's eventIn whose name is eventInName. The return value can
be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).
EventIn is a write-only field. When the getValue() method is invoked on a Field object obtained by the
getEventIn() method, the return value is unspecified.

d. Field getExposedField(String exposedFieldName)
is the method to get the reference to the node's exposedField whose name is exposedFieldName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class).

e. Browser getBrowser()
is the method to get the browser object that this node is contained in (see B.6.5, Browser class).

f. String toString()
is the same as the toString() method of SFNode (ConstSFNode).

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getExposedField() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the set1Value(), addValue(), insertValue() or delete()
methods, all elements of the VRML node's exposedField are retrieved, then the value specified as an argument is
set, added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the corresponding
VRML node's exposedField, and then the eventOut is sent. In the case of the clear() method, all elements of VRML
node's exposedField are cleared and an eventOut with zero elements is sent (see the definition of the clear()
method).

When the setValue() or clear() methods are invoked on a Field object obtained by the getEventIn() method, the call
generates an eventIn in the VRML scene. When the set1Value(), addValue(), insertValue() or delete() methods are
invoked on the Field object, an exception (InvalidFieldChangeException) is thrown.

B.6.5 Browser class

This section lists the public Java platform interfaces to the Browser class, which allows scripts to get and set
browser information. For descriptions of the following methods, see 4.12.10, Browser script interface. Table B.1
lists the Browser class methods.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

162

Table B.1 -- Browser class methods

Return value Method name

String getName()

String getVersion()

float getCurrentSpeed()

float getCurrentFrameRate()

String getWorldURL()

void replaceWorld(BaseNode[] nodes)

BaseNode[] createVrmlFromString(String vrmlSyntax)

void
createVrmlFromURL(String[] url, BaseNode node,
 String event)

void
addRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn)

void
deleteRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn)

void loadURL(String[] url, String[] parameter)

void setDescription(String description)

See B.9.2.1, vrml package, for each method's definition.

Table B.2 contains conversions from the types used in Browser class to Java platform types.

Table B.2 -- VRML and Java platform types

VRML type Java platform type

SFString String

SFFloat float

MFString String[]

MFNode BaseNode[]

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

163

When a relative URL is specified as an argument of the loadURL() and createVrmlFromURL() method, the path is
relative to the script file containing these methods (see 4.5.3, Relative URLs).

B.6.6 User-defined classes and packages

The Java platform classes defined by a user can be used in the Java program. They are first searched from the
directories specified in the CLASSPATH environment variable and then the directory where the Java program's
class file is placed.

If the Java platform class is in a package, this package is searched from the directories specified in the
CLASSPATH environment variable and then the directory where the Java program's class file is placed.

B.6.7 Standard Java platform packages

Java programs have access to the full set of classes available in java.*. All parts of the Java platform are required
to work as "normal" for the Java platform. So all methods specified in this annex are required to be thread-safe. The
security model is browser specific.

B.7 Exceptions
Java platform methods may throw the following exceptions:

a. InvalidFieldException
is thrown at the time getField() is executed and the field name is invalid.

b. InvalidEventInException
is thrown at the time getEventIn() is executed and the eventIn name is invalid.

c. InvalidEventOutException
is thrown at the time getEventOut() is executed and the eventOut name is invalid.

d. InvalidExposedFieldException
is thrown at the time getExposedField() is executed and the exposedField name is invalid.

e. InvalidVRMLSyntaxException
is thrown at the time createVrmlFromString(), createVrmlFromURL() or loadURL() is executed and the
vrml syntax is invalid.

f. InvalidRouteException
is thrown at the time addRoute() or deleteRoute() is executed and one or more of the arguments is invalid.

g. InvalidFieldChangeException
may be thrown as a result of all sorts of illegal field changes, for example:

1. Adding a node from one World as the child of a node in another World.

2. Creating a circularity in a scene graph.

3. Setting an invalid string on enumerated fields, such as the fogType field of the Fog node.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

164

4. Calling the set1Value(), addValue() or delete() on a Field object obtained by the getEventIn()
method.

h. ArrayIndexOutOfBoundsException
is generated at the time getValue(), set1Value(), insertValue() or delete() is executed and the index is out of
bound (see B.6.2, Field class and ConstField class). This is the standard exception defined in the Java
platform Array class.

i. IllegalArgumentException
is generated at the time loadURL() or createVrmlFromURL() is executed and an error is occurred before
retrieving the content of the url (see B.6.5, Browser class). This is the standard exception defined by the
Java platform.

If exceptions are not caught by authors, a browser's behaviour is unspecified (see B.10, Example of exception class).

B.8 Examples
The following is an example of a Script node which determines whether a given color contains a lot of red. The
Script node exposes a field, an eventIn, and an eventOut:

 Script {
 field SFColor currentColor 0 0 0
 eventIn SFColor colorIn
 eventOut SFBool isRed
 url "Example4.class"
 }

The following is the source code for the Example4.java file that gets called every time an eventIn is routed to the
above Script node:

Example4.java:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class Example4 extends Script {
 // Declare field(s)
 private SFColor currentColor;

 // Declare eventOut
 private SFBool isRed;

 // buffer for SFColor.getValue().
 private float colorBuff[] = new float[3];

 public void initialize(){
 currentColor = (SFColor) getField("currentColor");
 isRed = (SFBool) getEventOut("isRed");
 }

 public void processEvent(Event e){
 // This method is called when a colorIn event is received
 currentColor.setValue((ConstSFColor)e.getValue());
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

165

 public void eventsProcessed(){
 currentColor.getValue(colorBuff);
 if (colorBuff[0] >= 0.5) // if red is at or above 50%
 isRed.setValue(true);
 }
}

Details on when the methods defined in Example4.java are called may be found in 4.10.3, Execution model.

Example5: createVrmlFromUrl()

 Script {
 url "Example5.class"
 field MFString target_url "foo.wrl"
 eventIn MFNode nodesLoaded
 eventIn SFBool trigger_event
 }

Example5.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example5 extends Script {
 private MFString target_url; // field
 private Browser browser;

 public void initialize(){
 target_url = (MFString)getField("target_url");
 browser = this.getBrowser();
 }

 public void processEvent(Event e){
 if(e.getName().equals("trigger_event")){
 // do something and then fetch values
 String[] urls;
 urls = new String[target_url.getSize()];
 target_url.getValue(urls);
 browser.createVrmlFromURL(urls, this, "nodesLoaded");
 }
 if(e.getName().equals("nodesLoaded")){
 // do something
 }
 }
 }

Example6: addRoute()

 DEF TS TouchSensor {}
 Script {
 url "Example6.class"
 field SFNode fromNode USE TS
 eventIn SFBool clicked
 eventIn SFBool trigger_event
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

166

Example6.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example6 extends Script {

 private SFNode fromNode;
 private Browser browser;

 public void initialize(){
 fromNode = (SFNode) getField("fromNode");
 browser = this.getBrowser();
 }

 public void processEvent(Event e){
 if(e.getName().equals("trigger_event")){
 // do something and then add routing
 browser.addRoute(fromNode.getValue(), "isActive", this, "clicked");
 }
 if(e.getName().equals("clicked")){
 // do something
 }
 }

 }

B.9 Class definitions

B.9.1 Class hierarchy

The classes are divided into three packages: vrml, vrml.field and vrml.node.

java.lang.Object
 |
 +- vrml.Event
 +- vrml.Browser
 +- vrml.Field
 | +- vrml.field.SFBool
 | +- vrml.field.SFColor
 | +- vrml.field.SFFloat
 | +- vrml.field.SFImage
 | +- vrml.field.SFInt32
 | +- vrml.field.SFNode
 | +- vrml.field.SFRotation
 | +- vrml.field.SFString
 | +- vrml.field.SFTime
 | +- vrml.field.SFVec2f
 | +- vrml.field.SFVec3f
 | |
 | +- vrml.MField
 | | +- vrml.field.MFColor
 | | +- vrml.field.MFFloat
 | | +- vrml.field.MFInt32
 | | +- vrml.field.MFNode

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

167

 | | +- vrml.field.MFRotation
 | | +- vrml.field.MFString
 | | +- vrml.field.MFTime
 | | +- vrml.field.MFVec2f
 | | +- vrml.field.MFVec3f
 | |
 | +- vrml.ConstField
 | +- vrml.field.ConstSFBool
 | +- vrml.field.ConstSFColor
 | +- vrml.field.ConstSFFloat
 | +- vrml.field.ConstSFImage
 | +- vrml.field.ConstSFInt32
 | +- vrml.field.ConstSFNode
 | +- vrml.field.ConstSFRotation
 | +- vrml.field.ConstSFString
 | +- vrml.field.ConstSFTime
 | +- vrml.field.ConstSFVec2f
 | +- vrml.field.ConstSFVec3f
 | |
 | +- vrml.ConstMField
 | +- vrml.field.ConstMFColor
 | +- vrml.field.ConstMFFloat
 | +- vrml.field.ConstMFInt32
 | +- vrml.field.ConstMFNode
 | +- vrml.field.ConstMFRotation
 | +- vrml.field.ConstMFString
 | +- vrml.field.ConstMFTime
 | +- vrml.field.ConstMFVec2f
 | +- vrml.field.ConstMFVec3f
 |
 +- vrml.BaseNode
 +- vrml.node.Node
 +- vrml.node.Script

java.lang.Exception
 |
 +- java.lang.RuntimeException
 | +- java.lang.IllegalArgumentException
 | +- vrml.InvalidEventInException
 | +- vrml.InvalidEventOutException
 | +- vrml.InvalidExposedFieldException
 | +- vrml.InvalidFieldChangeException
 | +- vrml.InvalidFieldException
 | +- vrml.InvalidRouteException
 |
 +- vrml.InvalidVRMLSyntaxException

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

168

B.9.2 VRML packages

B.9.2.1 vrml package

package vrml;

public class Event implements Cloneable
{
 public String getName();
 public double getTimeStamp();
 public ConstField getValue();
 public Object clone();

 public String toString(); // This overrides a method in Object
}

public class Browser
{
 private Browser();
 public String toString(); // This overrides a method in Object

 // Browser interface
 public String getName();
 public String getVersion();

 public float getCurrentSpeed();

 public float getCurrentFrameRate();

 public String getWorldURL();
 public void replaceWorld(BaseNode[] nodes);

 public BaseNode[] createVrmlFromString(String vrmlSyntax)
 throws InvalidVRMLSyntaxException;

 public void createVrmlFromURL(String[] url, BaseNode node, String event)
 throws InvalidVRMLSyntaxException;

 public void addRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn);

 public void deleteRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn);

 public void loadURL(String[] url, String[] parameter)
 throws InvalidVRMLSyntaxException;

 public void setDescription(String description);
}

public abstract class Field implements Cloneable
{
 public Object clone();
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

169

public abstract class MField extends Field
{
 public abstract int getSize();
 public abstract void clear();
 public abstract void delete(int index);
}

public abstract class ConstField extends Field
{
}

public abstract class ConstMField extends ConstField
{
 public abstract int getSize();
}

//
// This is the general BaseNode class
//
public abstract class BaseNode
{
 // Returns the type of the node. If the node is a prototype
 // it returns the name of the prototype.
 public String getType();

 // Get the Browser that this node is contained in.
 public Browser getBrowser();
}

B.9.2.2 vrml.field package

package vrml.field;

public class SFBool extends Field
{
 public SFBool();
 public SFBool(boolean value);

 public boolean getValue();

 public void setValue(boolean b);
 public void setValue(ConstSFBool b);
 public void setValue(SFBool b);

 public String toString(); // This overrides a method in Object
}

public class SFColor extends Field
{
 public SFColor();
 public SFColor(float red, float green, float blue);

 public void getValue(float colors[]);
 public float getRed();
 public float getGreen();

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

170

 public float getBlue();

 public void setValue(float colors[]);
 public void setValue(float red, float green, float blue);
 public void setValue(ConstSFColor color);
 public void setValue(SFColor color);

 public String toString(); // This overrides a method in Object
}

public class SFFloat extends Field
{
 public SFFloat();
 public SFFloat(float f);

 public float getValue();

 public void setValue(float f);
 public void setValue(ConstSFFloat f);
 public void setValue(SFFloat f);

 public String toString(); // This overrides a method in Object
}

public class SFImage extends Field
{
 public SFImage();
 public SFImage(int width, int height, int components, byte pixels[]);

 public int getWidth();
 public int getHeight();
 public int getComponents();
 public void getPixels(byte pixels[]);

 public void setValue(int width, int height, int components,
 byte pixels[]);
 public void setValue(ConstSFImage image);
 public void setValue(SFImage image);

 public String toString(); // This overrides a method in Object
}

public class SFInt32 extends Field
{
 public SFInt32();
 public SFInt32(int value);

 public int getValue();

 public void setValue(int i);
 public void setValue(ConstSFInt32 i);
 public void setValue(SFInt32 i);

 public String toString(); // This overrides a method in Object
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

171

public class SFNode extends Field
{
 public SFNode();
 public SFNode(BaseNode node);

 public BaseNode getValue();

 public void setValue(BaseNode node);
 public void setValue(ConstSFNode node);
 public void setValue(SFNode node);

 public String toString(); // This overrides a method in Object
}

public class SFRotation extends Field
{
 public SFRotation();
 public SFRotation(float axisX, float axisY, float axisZ, float angle);

 public void getValue(float rotations[]);

 public void setValue(float rotations[]);
 public void setValue(float axisX, float axisY, float axisZ,
 float angle);
 public void setValue(ConstSFRotation rotation);
 public void setValue(SFRotation rotation);

 public String toString(); // This overrides a method in Object
}

public class SFString extends Field
{
 public SFString();
 public SFString(String s);

 public String getValue();

 public void setValue(String s);
 public void setValue(ConstSFString s);
 public void setValue(SFString s);

 public String toString(); // This overrides a method in Object
}

public class SFTime extends Field
{
 public SFTime();
 public SFTime(double time);

 public double getValue();

 public void setValue(double time);
 public void setValue(ConstSFTime time);
 public void setValue(SFTime time);

 public String toString(); // This overrides a method in Object
}

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

172

public class SFVec2f extends Field
{
 public SFVec2f();
 public SFVec2f(float x, float y);

 public void getValue(float vec2s[]);
 public float getX();
 public float getY();

 public void setValue(float vec2s[]);
 public void setValue(float x, float y);
 public void setValue(ConstSFVec2f vec);
 public void setValue(SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class SFVec3f extends Field
{
 public SFVec3f();
 public SFVec3f(float x, float y, float z);

 public void getValue(float vec3s[]);
 public float getX();
 public float getY();
 public float getZ();

 public void setValue(float vec3s[]);
 public void setValue(float x, float y, float z);
 public void setValue(ConstSFVec3f vec);
 public void setValue(SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

public class MFColor extends MField
{
 public MFColor();
 public MFColor(float colors[][]);
 public MFColor(float colors[]);
 public MFColor(int size, float colors[]);

 public void getValue(float colors[][]);
 public void getValue(float colors[]);

 public void get1Value(int index, float colors[]);
 public void get1Value(int index, SFColor color);

 public void setValue(float colors[][]);
 public void setValue(float colors[]);
 public void setValue(int size, float colors[]);
 /**
 color[0] ... color[size - 1] are used as color data
 in the way that color[0], color[1], and color[2]
 represent the first color. The number of colors
 is defined as "size / 3".

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

173

 ***/
 public void setValue(MFColor colors);
 public void setValue(ConstMFColor colors);

 public void set1Value(int index, ConstSFColor color);
 public void set1Value(int index, SFColor color);
 public void set1Value(int index, float red, float green, float blue);

 public void addValue(ConstSFColor color);
 public void addValue(SFColor color);
 public void addValue(float red, float green, float blue);

 public void insertValue(int index, ConstSFColor color);
 public void insertValue(int index, SFColor color);
 public void insertValue(int index, float red, float green, float blue);

 public String toString(); // This overrides a method in Object
}

public class MFFloat extends MField
{
 public MFFloat();
 public MFFloat(int size, float values[]);
 public MFFloat(float values[]);

 public void getValue(float values[]);

 public float get1Value(int index);

 public void setValue(float values[]);
 public void setValue(int size, float values[]);
 public void setValue(MFFloat value);
 public void setValue(ConstMFFloat value);

 public void set1Value(int index, float f);
 public void set1Value(int index, ConstSFFloat f);
 public void set1Value(int index, SFFloat f);

 public void addValue(float f);
 public void addValue(ConstSFFloat f);
 public void addValue(SFFloat f);

 public void insertValue(int index, float f);
 public void insertValue(int index, ConstSFFloat f);
 public void insertValue(int index, SFFloat f);

 public String toString(); // This overrides a method in Object
}

public class MFInt32 extends MField
{
 public MFInt32();
 public MFInt32(int size, int values[]);
 public MFInt32(int values[]);

 public void getValue(int values[]);

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

174

 public int get1Value(int index);

 public void setValue(int values[]);
 public void setValue(int size, int values[]);
 public void setValue(MFInt32 value);
 public void setValue(ConstMFInt32 value);

 public void set1Value(int index, int i);
 public void set1Value(int index, ConstSFInt32 i);
 public void set1Value(int index, SFInt32 i);

 public void addValue(int i);
 public void addValue(ConstSFInt32 i);
 public void addValue(SFInt32 i);

 public void insertValue(int index, int i);
 public void insertValue(int index, ConstSFInt32 i);
 public void insertValue(int index, SFInt32 i);

 public String toString(); // This overrides a method in Object
}

public class MFNode extends MField
{
 public MFNode();
 public MFNode(int size, BaseNode node[]);
 public MFNode(BaseNode node[]);

 public void getValue(BaseNode node[]);

 public BaseNode get1Value(int index);

 public void setValue(BaseNode node[]);
 public void setValue(int size, BaseNode node[]);
 public void setValue(MFNode node);
 public void setValue(ConstMFNode node);

 public void set1Value(int index, BaseNode node);
 public void set1Value(int index, ConstSFNode node);
 public void set1Value(int index, SFNode node);

 public void addValue(BaseNode node);
 public void addValue(ConstSFNode node);
 public void addValue(SFNode node);

 public void insertValue(int index, BaseNode node);
 public void insertValue(int index, ConstSFNode node);
 public void insertValue(int index, SFNode node);

 public String toString(); // This overrides a method in Object
}

public class MFRotation extends MField
{
 public MFRotation();
 public MFRotation(float rotations[][]);

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

175

 public MFRotation(float rotations[]);
 public MFRotation(int size, float rotations[]);

 public void getValue(float rotations[][]);
 public void getValue(float rotations[]);

 public void get1Value(int index, float rotations[]);
 public void get1Value(int index, SFRotation rotation);

 public void setValue(float rotations[][]);
 public void setValue(float rotations[]);
 public void setValue(int size, float rotations[]);
 public void setValue(MFRotation rotations);
 public void setValue(ConstMFRotation rotations);

 public void set1Value(int index, ConstSFRotation rotation);
 public void set1Value(int index, SFRotation rotation);
 public void set1Value(int index, float axisX, float axisY, float axisZ,
float angle);

 public void addValue(ConstSFRotation rotation);
 public void addValue(SFRotation rotation);
 public void addValue(float axisX, float axisY, float axisZ, float angle);

 public void insertValue(int index, ConstSFRotation rotation);
 public void insertValue(int index, SFRotation rotation);
 public void insertValue(int index, float axisX, float axisY, float axisZ,
 float angle);

 public String toString(); // This overrides a method in Object
}

public class MFString extends MField
{
 public MFString();
 public MFString(int size, String s[]);
 public MFString(String s[]);

 public void getValue(String s[]);

 public String get1Value(int index);

 public void setValue(String s[]);
 public void setValue(int size, String s[]);
 public void setValue(MFString s);
 public void setValue(ConstMFString s);

 public void set1Value(int index, String s);
 public void set1Value(int index, ConstSFString s);
 public void set1Value(int index, SFString s);

 public void addValue(String s);
 public void addValue(ConstSFString s);
 public void addValue(SFString s);

 public void insertValue(int index, String s);
 public void insertValue(int index, ConstSFString s);

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

176

 public void insertValue(int index, SFString s);

 public String toString(); // This overrides a method in Object
}

public class MFTime extends MField
{
 public MFTime();
 public MFTime(int size, double times[]);
 public MFTime(double times[]);

 public void getValue(double times[]);

 public double get1Value(int index);

 public void setValue(double times[]);
 public void setValue(int size, double times[]);
 public void setValue(MFTime times);
 public void setValue(ConstMFTime times);

 public void set1Value(int index, double time);
 public void set1Value(int index, ConstSFTime time);
 public void set1Value(int index, SFTime time);

 public void addValue(double time);
 public void addValue(ConstSFTime time);
 public void addValue(SFTime time);

 public void insertValue(int index, double time);
 public void insertValue(int index, ConstSFTime time);
 public void insertValue(int index, SFTime time);

 public String toString(); // This overrides a method in Object
}

public class MFVec2f extends MField
{
 public MFVec2f();
 public MFVec2f(float vec2s[][]);
 public MFVec2f(float vec2s[]);
 public MFVec2f(int size, float vec2s[]);

 public void getValue(float vec2s[][]);
 public void getValue(float vec2s[]);

 public void get1Value(int index, float vec2s[]);
 public void get1Value(int index, SFVec2f vec);

 public void setValue(float vec2s[][]);
 public void setValue(float vec2s[]);
 public void setValue(int size, float vec2s[]);
 public void setValue(MFVec2f vecs);
 public void setValue(ConstMFVec2f vecs);

 public void set1Value(int index, float x, float y);
 public void set1Value(int index, ConstSFVec2f vec);
 public void set1Value(int index, SFVec2f vec);

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

177

 public void addValue(float x, float y);
 public void addValue(ConstSFVec2f vec);
 public void addValue(SFVec2f vec);

 public void insertValue(int index, float x, float y);
 public void insertValue(int index, ConstSFVec2f vec);
 public void insertValue(int index, SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class MFVec3f extends MField
{
 public MFVec3f();
 public MFVec3f(float vec3s[][]);
 public MFVec3f(float vec3s[]);
 public MFVec3f(int size, float vec3s[]);

 public void getValue(float vec3s[][]);
 public void getValue(float vec3s[]);

 public void get1Value(int index, float vec3s[]);
 public void get1Value(int index, SFVec3f vec);

 public void setValue(float vec3s[][]);
 public void setValue(float vec3s[]);
 public void setValue(int size, float vec3s[]);
 public void setValue(MFVec3f vecs);
 public void setValue(ConstMFVec3f vecs);

 public void set1Value(int index, float x, float y, float z);
 public void set1Value(int index, ConstSFVec3f vec);
 public void set1Value(int index, SFVec3f vec);

 public void addValue(float x, float y, float z);
 public void addValue(ConstSFVec3f vec);
 public void addValue(SFVec3f vec);

 public void insertValue(int index, float x, float y, float z);
 public void insertValue(int index, ConstSFVec3f vec);
 public void insertValue(int index, SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

public class ConstSFBool extends ConstField
{
 public ConstSFBool(boolean value);

 public boolean getValue();

 public String toString(); // This overrides a method in Object
}

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

178

public class ConstSFColor extends ConstField
{
 public ConstSFColor(float red, float green, float blue);

 public void getValue(float colors[]);
 public float getRed();
 public float getGreen();
 public float getBlue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFFloat extends ConstField
{
 public ConstSFFloat(float value);

 public float getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFImage extends ConstField
{
 public ConstSFImage(int width, int height, int components, byte pixels[]);

 public int getWidth();
 public int getHeight();
 public int getComponents();
 public void getPixels(byte pixels[]);

 public String toString(); // This overrides a method in Object
}

public class ConstSFInt32 extends ConstField
{
 public ConstSFInt32(int value);

 public int getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFNode extends ConstField
{
 public ConstSFNode(BaseNode node);

 public BaseNode getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFRotation extends ConstField
{
 public ConstSFRotation(float axisX, float axisY, float axisZ, float angle);

 public void getValue(float rotations[]);

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

179

 public String toString(); // This overrides a method in Object
}

public class ConstSFString extends ConstField
{
 public ConstSFString(String value);

 public String getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFTime extends ConstField
{
 public ConstSFTime(double time);

 public double getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFVec2f extends ConstField
{
 public ConstSFVec2f(float x, float y);

 public void getValue(float vec2s[]);
 public float getX();
 public float getY();

 public String toString(); // This overrides a method in Object
}

public class ConstSFVec3f extends ConstField
{
 public ConstSFVec3f(float x, float y, float z);

 public void getValue(float vec3s[]);
 public float getX();
 public float getY();
 public float getZ();

 public String toString(); // This overrides a method in Object
}

public class ConstMFColor extends ConstMField
{
 public ConstMFColor(float colors[][]);
 public ConstMFColor(float colors[]);
 public ConstMFColor(int size, float colors[]);

 public void getValue(float colors[][]);
 public void getValue(float colors[]);

 public void get1Value(int index, float colors[]);
 public void get1Value(int index, SFColor color);

 public String toString(); // This overrides a method in Object

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

180

}

public class ConstMFFloat extends ConstMField
{
 public ConstMFFloat(int size, float values[]);
 public ConstMFFloat(float values[]);

 public void getValue(float values[]);

 public float get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFInt32 extends ConstMField
{
 public ConstMFInt32(int size, int values[]);
 public ConstMFInt32(int values[]);

 public void getValue(int values[]);

 public int get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFNode extends ConstMField
{
 public ConstMFNode(int size, BaseNode node[]);
 public ConstMFNode(BaseNode node[]);

 public void getValue(BaseNode node[]);

 public BaseNode get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFRotation extends ConstMField
{
 public ConstMFRotation(float rotations[][]);
 public ConstMFRotation(float rotations[]);
 public ConstMFRotation(int size, float rotations[]);

 public void getValue(float rotations[][]);
 public void getValue(float rotations[]);

 public void get1Value(int index, float rotations[]);
 public void get1Value(int index, SFRotation rotation);

 public String toString(); // This overrides a method in Object
}

public class ConstMFString extends ConstMField
{
 public ConstMFString(int size, String s[]);
 public ConstMFString(String s[]);

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

181

 public void getValue(String values[]);

 public String get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFTime extends ConstMField
{
 public ConstMFTime(int size, double times[]);
 public ConstMFTime(double times[]);

 public void getValue(double times[]);

 public double get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFVec2f extends ConstMField
{
 public ConstMFVec2f(float vec2s[][]);
 public ConstMFVec2f(float vec2s[]);
 public ConstMFVec2f(int size, float vec2s[]);

 public void getValue(float vec2s[][]);
 public void getValue(float vec2s[]);

 public void get1Value(int index, float vec2s[]);
 public void get1Value(int index, SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class ConstMFVec3f extends ConstMField
{
 public ConstMFVec3f(float vec3s[][]);
 public ConstMFVec3f(float vec3s[]);
 public ConstMFVec3f(int size, float vec3s[]);

 public void getValue(float vec3s[][]);
 public void getValue(float vec3s[]);

 public void get1Value(int index, float vec3s[]);
 public void get1Value(int index, SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

182

B.9.2.3 vrml.node package

package vrml.node;

//
// This is the general Node class
//
public abstract class Node extends BaseNode
{
 // Get an EventIn by name. Return value is write-only.
 // Throws an InvalidEventInException if eventInName isn’t a valid
 // eventIn name for a node of this type.
 public final Field getEventIn(String eventInName);

 // Get an EventOut by name. Return value is read-only.
 // Throws an InvalidEventOutException if eventOutName isn’t a valid
 // eventOut name for a node of this type.
 public final ConstField getEventOut(String eventOutName);

 // Get an exposed field by name.
 // Throws an InvalidExposedFieldException if exposedFieldName isn’t a
valid
 // exposedField name for a node of this type.
 public final Field getExposedField(String exposedFieldName);

 public String toString(); // This overrides a method in Object
}

//
// This is the general Script class, to be subclassed by all scripts.
// Note that the provided methods allow the script author to explicitly
// throw tailored exceptions in case something goes wrong in the
// script.
//
public abstract class Script extends BaseNode
{
 // This method is called before any event is generated
 public void initialize();

 // Get a Field by name.
 // Throws an InvalidFieldException if fieldName isn’t a valid
 // field name for a node of this type.
 protected final Field getField(String fieldName);

 // Get an EventOut by name.
 // Throws an InvalidEventOutException if eventOutName isn’t a valid
 // eventOut name for a node of this type.
 protected final Field getEventOut(String eventOutName);

 // Get an EventIn by name.
 // Throws an InvalidEventInException if eventInName isn’t a valid
 // eventIn name for a node of this type.
 protected final Field getEventIn(String eventInName);

 // processEvents() is called automatically when the script receives

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

183

 // some set of events. It shall not be called directly except by its
 // subclass.
 // count indicates the number of events delivered.
 public void processEvents(int count, Event events[]);

 // processEvent() is called automatically when the script receives
 // an event.
 public void processEvent(Event event);

 // eventsProcessed() is called after every invocation of processEvents().
 public void eventsProcessed()

 // shutdown() is called when this Script node is deleted.
 public void shutdown();

 public String toString(); // This overrides a method in Object
}

B.10 Example of exception class
public class InvalidEventInException extends IllegalArgumentException

{
 /**
 * Constructs an InvalidEventInException with no detail message.
 */
 public InvalidEventInException(){
 super();
 }
 /**
 * Constructs an InvalidEventInException with the specified detail
 * message.
 * A detail message is a String that describes this particular exception.
 * @param s the detail message
 */
 public InvalidEventInException(String s){
 super(s);
 }
}

public class InvalidEventOutException extends IllegalArgumentException
{
 public InvalidEventOutException(){
 super();
 }
 public InvalidEventOutException(String s){
 super(s);
 }
}

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

184

public class InvalidExposedFieldException extends IllegalArgumentException
{
 public InvalidExposedFieldException(){
 super();
 }
 public InvalidExposedFieldException(String s){
 super(s);
 }
}

public class InvalidFieldChangeException extends IllegalArgumentException
{
 public InvalidFieldChangeException(){
 super();
 }
 public InvalidFieldChangeException(String s){
 super(s);
 }
}

public class InvalidFieldException extends IllegalArgumentException
{
 public InvalidFieldException(){
 super();
 }
 public InvalidFieldException(String s){
 super(s);
 }
}

public class InvalidRouteException extends IllegalArgumentException
{
 public InvalidRouteException(){
 super();
 }
 public InvalidRouteException(String s){
 super(s);
 }
}

public class InvalidVRMLSyntaxException extends Exception
{
 public InvalidVRMLSyntaxException(){
 super();
 }
 public InvalidVRMLSyntaxException(String s){
 super(s);
 }

 public String getMessage(); // This overrides a method in Exception
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

185

Annex C
(normative)

ECMAScript scripting reference

C.1 Introduction and table of contents
This annex describes the ECMAScript programming language that enables Script nodes (see 6.40, Script) to interact
with VRML scenes. See 4.12, Scripting, for a general description of scripting languages in ISO/IEC 14772. Note
that support for the ECMAScript is not required by ISO/IEC 14772, but any access of ECMAScript from within
VRML Script nodes shall conform with the requirements specified in this annex.

C.1 Introduction
C.2 Language
C.3 Supported Protocol in the Script node's url field
 C.3.1 url field
 C.3.2 File extension
 C.3.3 MIME type
C.4 eventIn handling
 C.4.1 Receiving eventIns
 C.4.2 Parameter passing and the eventIn function
 C.4.3 eventsProcessed() function
 C.4.4 initialize() function
 C.4.5 shutdown() function
C.5 Accessing fields and events
 C.5.1 Accessing fields and eventOuts of the script
 C.5.2 Accessing fields and eventOuts of other nodes
 C.5.3 Sending eventOuts
C.6 ECMAScript objects
 C.6.1 Notational conventions
 C.6.2 VRML field to ECMAScript variable conversion
 C.6.3 Browser object
 C.6.4 SFColor object
 C.6.5 SFImage object
 C.6.6 SFNode object
 C.6.7 SFRotation object
 C.6.8 SFVec2f object
 C.6.9 SFVec3f object
 C.6.10 MFColor object
 C.6.11 MFFloat object
 C.6.12 MFInt32 object
 C.6.13 MFNode object
 C.6.14 MFRotation object
 C.6.15 MFString object
 C.6.16 MFTime object
 C.6.17 MFVec2f object
 C.6.18 MFVec3f object

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

186

 C.6.19 VrmlMatrix object
C.7 Examples

C.2 Language
ECMAScript is a general purpose, cross-platform programming language that can be used with ISO/IEC 14772 to
provide scripting of events, objects, and actions. ECMAScript is fully described in 2.[ESCR]. Prior to
standardization as ECMA-262, ECMAScript was known as Netscape JavaScript. Several syntactic entities in this
annex reflect this origin.

C.3 Supported protocol in the Script node’s url field

C.3.1 url field

The url field of the Script node may contain URL references to ECMAScript code as illustrated below:

 Script { url "http://foo.com/myScript.js" }

The javascript: protocol allows the script to be placed inline as follows:

 Script { url "javascript: function foo() { ... }" }

Browsers supporting the ECMAScript scripting language shall support the javascript: protocol as well as the the
other required protocols (see 7, Conformance and minimum support requirements).

The url field may contain multiple URL's referencing either a remote file or in-line code as shown in the following
example:

 Script {
 url ["http://foo.com/myScript.js",
 "javascript: function foo() { ... }"]
 }

C.3.2 File extension

The file extension for ECMASCript source code is '.js', unless a protocol returning mime types is used (such as
HTTP). In that case, any suffix is allowed as long as the proper mime type is returned (see C.3.3, Mime type).

C.3.3 MIME type

The MIME type for ECMAScript source code is defined as follows:

 application/x-javascript

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

187

C.4 eventIn handling

C.4.1 Receiving eventIns

Events sent to the Script node are passed to the corresponding ECMAScript function in the script. The script is
specified in the url field of the Script node. The function's name is the same as the eventIn and is passed two
arguments, the event value and its timestamp (see C.4.2, Parameter passing and the eventIn function). If there is no
corresponding ECMAScript function in the script, the browser's behaviour is undefined.

For example, the following Script node has one eventIn field whose name is start:

 Script {
 eventIn SFBool start
 url "javascript: function start(value, timestamp) { ... }"
 }

In the above example, when the start eventIn is sent, the start() function is executed.

C.4.2 Parameter passing and the eventIn function

When a Script node receives an eventIn, a corresponding function in the file specified in the url field of the Script
node is called. This function has two arguments. The value of the eventIn is passed as the first argument and the
timestamp of the eventIn is passed as the second argument. The type of the value is the same as the type of the
eventIn and the type of the timestamp is SFTime. C.6.1, VRML field to ECMAScript variable conversion, provides
a description of how VRML types appear in ECMAScript. The values of the parameters have no visibility outside
the function.

C.4.3 eventsProcessed() function

Authors may define an eventsProcessed() function that is called after some set of events has been received. This
allows Script nodes that do not rely on the ordering of events received to generate fewer events than an equivalent
Script node that generates events whenever events are received (see C.4.1, Receiving eventIns).

The eventsProcessed() function takes no parameters. Events generated from it are given the timestamp of the last
event processed.

C.4.4 initialize() function

Authors may define a function named initialize() which is invoked before the browser presents the world to the user
and before any events are processed by any nodes in the same VRML file as the Script node containing this script
(see 4.12.3, Initialize() and shutdown()).

The initialize() function has no parameters. Events generated from initialize() are given the timestamp of when the
Script node was loaded.

C.4.5 shutdown() function

Authors may define a function named shutdown() which is invoked when the corresponding Script node is deleted
or when the world containing the Script node is unloaded or replaced by another world
(see 4.12.3, Initialize() and shutdown()).

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

188

The shutdown() function has no parameters. Events generated from shutdown() are given the timestamp of when
the Script node was deleted.

C.5 Accessing fields and events

C.5.1 Accessing fields and eventOuts of the Script

The fields and eventOuts of a Script node are accessible from its ECMAScript functions. As in all other nodes, the
fields are accessible only within the Script. The eventIns are not accessible. The Script node's eventIns can be routed
to and its eventOuts can be routed from. Another Script node with a reference to this node can access its eventIns
and eventOuts as for any other node.

A field defined in a Script node is available to the script by using its name. Its value can be read or written. This
value is persistent across function calls. EventOuts defined in the script node can also be read. The value is the last
value assigned.

C.5.2 Accessing fields and eventOuts of other nodes

The script can access any exposedField, eventIn or eventOut of any node to which it has access:

 DEF SomeNode Transform { }
 Script {
 field SFNode node USE SomeNode
 eventIn SFVec3f pos
 directOutput TRUE
 url "javascript:
 function pos(value) {
 node.set_translation = value;
 }"
 }

This example sends a set_translation eventIn to the Transform node. An eventIn on a passed node can appear only
on the left side of the assignment. An eventOut in the passed node can appear only on the right side, which reads the
last value sent out. Fields in the passed node cannot be accessed. However, exposedFields can either send an event
to the "set_..." eventIn or read the current value of the "..._changed" eventOut. This follows the routing model of the
rest of ISO/IEC 14772.

Events generated by setting an eventIn on a node are sent at the completion of the currently executing function. The
eventIn shall be assigned a value of the same datatype; no partial assignments are allowed. For example, it is not
possible to assign the red value of an SFColor eventIn. Since eventIns are strictly write-only, the remainder of the
partial assignment would have invalid field values. Assigning to the eventIn field multiple times during one
execution of the function still only sends one event and that event is the last value assigned.

C.5.3 Sending eventOuts

Assigning to an eventOut of a Script node, or a component of an eventOut (i.e. MF eventOut or a property of an SF
eventOut), sends an event to that eventOut. Events are sent at the end of script execution. An eventOut may be
assigned a value multiple times within the script, but the value sent shall be the last value assigned to the eventOut.
If the value of individual components of an eventOut are changed, the last value given to each component shall be
sent. Components that are not changed in the script, send their initial value determined at the beginning of the script

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

189

execution. For example, the following script segment produces an eventOut value of (4, 3, 1) for the eventOut
SFVec3f foo_changed with an initial value of (6, 6, 6):

a = foo_changed; // copy by reference a(6,6,6)
a.x = 5; // foo_changed(5,6,6)
a.z = 1; // foo_changed(5,6,1)
b = foo_changed; // copy by reference b(5,6,1)
b.x = 4; // foo_changed(4,6,1)
c = a; // copy by reference c(4,6,1)
c.y = 3; // foo_changed(4,3,1))

C.6 ECMAScript objects

C.6.1 Notational conventions

Since ECMAScript is an untyped language it has no language constructs to describe the types of parameters passed
to, or values returned from, functions. Therefore this annex uses a notational convention to describe these types.
Parameters passed are preceded by their type, and the type of any return value precedes the function name. Normally
these types correspond to VRML field types, so those names are used. In the case of no return value, the identifier
void is used. In the case of a ECMAScript numeric value or numeric array return, the identifier numeric or numeric[
] is used. In the case of a string return, the identifier String is used.

C.6.2 VRML field to ECMAScript variable conversion

ECMAScript native datatypes consist of boolean, numeric and string. The language is not typed, so datatypes are
implicit upon assignment. The VRML SFBool is mapped to the ECMAScript boolean. In addition to the
ECMAScript true and false constants, the VRML TRUE and FALSE values may be used. The VRML SFInt32,
SFFloat and SFTime fields are mapped to the numeric datatype and will be maintained in double precision accuracy.
These types are passed by value in function calls. All other VRML fields are mapped to ECMAScript objects.
ECMAScript objects are passed by reference.

The ECMAScript boolean, numeric and string are automatically converted to other datatypes when needed. See
2.[ESCR] for more details.

In ECMAScript, assigning a new value to a variable gives the variable the datatype of the new value, in addition to
the value. Scalar values (boolean and numeric) are assigned by copying the value. Other objects are assigned by
reference.

When assignments are made to eventOuts and fields, the values are converted to the VRML field type. Values
assigned are always copied. This contrasts with normal assignment in ECMAScript where all assignments except for
scalar are performed by reference.

For eventOut objects, assignment copies the value to the eventOut, which will be sent upon completion of the
current function. Assigning an eventOut to an internal variable copies by reference. Subsequent assignments to that
internal variable will behave like assignments to the eventOut (i.e., an event will be sent at the end of the function).
Field objects behave identically to eventOut objects, except that no event is sent upon completion of the function.

Assigning an element of an MF object to an internal variable creates a reference to that element. The type shall be
the corresponding SF object type. If the MF object is an eventOut and an assignment is made to the internal variable,
an event will be sent at the end of the function. Assigning an SF object to an element of an MF object which is a

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

190

field or eventOut (which shall be of the corresponding type) copies the value of the SF object into the MF object
element. If the MF object is an eventOut an event will be sent at the end of the function.

C.6.3 Browser object

This subclause lists the class static functions available in the Browser object which allow scripts to get and set
browser information. Descriptions of the functions are provided in 4.12.10, Browser script interface. The syntax for
a call is:

 mymfnode = Browser.createVrmlFromString(’Sphere {}’);

Table C.1 describes the Browser object's functions, parameters, and return values.

Table C.1 -- Browser object functions

Return value Function

String getName()

String getVersion()

numeric getCurrentSpeed()

numeric getCurrentFrameRate()

String getWorldURL()

void replaceWorld(MFNode nodes)

MFNode createVrmlFromString(String vrmlSyntax)

void createVrmlFromURL(MFString url, Node node, String event)

void addRoute(SFNode fromNode, String fromEventOut,
 SFNode toNode, String toEventIn)

void deleteRoute(SFNode fromNode, String fromEventOut,
 SFNode toNode, String toEventIn)

void loadURL(MFString url, MFString parameter)

void setDescription(String description)

C.6.4 SFColor object

C.6.4.1 Description

The SFColor object corresponds to a VRML SFColor field. All properties are accessed using the syntax
sfColorObjectName.<property>, where sfColorObjectName is an instance of an SFColor object. The properties may

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

191

also be accessed by the indices [0] for red, [1] for green and [2] blue. All functions are invoked using the syntax
sfColorObjectName.method(<argument-list>), where sfColorObjectName is an instance of an SFColor object.

C.6.4.2 Instance creation function

sfColorObjectName = new SFColor(float r, float g, float b)

where

r, g, and b are the red, green, and blue values of the colour. Missing values will be filled by 0.0.

C.6.4.3 Properties

The properties of the SFColor object are described in Table C.2.

Table C.2 -- SFColor properties

Property Description

numeric r red component of the colour

numeric g green component of the colour

numeric b blue component of the colour

C.6.4.4 Functions

The functions of the SFColor object are described in Table C.3.

Table C.3 -- SFColor functions

Function Description

void setHSV(float h, float s, float v) Sets the value of the colour by specifying the values of hue,
saturation, and value.

numeric[3] getHSV() Returns the value of the colour in a 3 element numeric array, with
hue at index 0, saturation at index 1, and value at index 2.

String toString() Returns a String containing the ISO/IEC 14772 UTF-8 encoded
value of r, g and b.

C.6.5 SFImage object

C.6.5.1 Description

The SFImage object corresponds to a VRML SFImage field.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

192

C.6.5.2 Instance creation function

sfImageObjectName = new SFImage(numeric x, numeric y, numeric comp, MFInt32 array)

where

x is the x-dimension of the image. y is the y-dimension of the image. comp is the number of components of the
image (1 for greyscale, 2 for greyscale+alpha, 3 for rgb, 4 for rgb+alpha). Array contains the x × y values for the
pixels of the image. The format of each pixel is an SFImage as in the PixelTexture node.

C.6.5.3 Properties

The properties of the SFImage object are listed in Table C.4.

Table C.4 -- SFImage properties

Property Description

numeric x x dimension of the image

numeric y y dimension of the image

numeric comp

number of components of the image:

1: greyscale

2: greyscale + alpha

3: rgb

4: rgb + alpha

MFInt32 array image data

C.6.5.4 Functions

The function of the SFImage object is described in Table C.5.

Table C.5 -- SFImage function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of x, y, comp and array.

C.6.6 SFNode object

C.6.6.1 Description

The SFNode object corresponds to a VRML SFNode field.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

193

C.6.6.2 Instance creation function

sfNodeObjectName = new SFNode(String vrmlstring)

where

vrmlstring is an ISO 10646 string containing a legal VRML string as described in 4.12.10.9, MFNode
createVrmlFromString(SFString vrmlSyntax). If the string produces other than one top-level node, the results are
undefined. The string may contain any number of ROUTE's, PROTO's, and EXTERNPROTO's in accordance with
4.12.10.9, MFNode createVrmlFromString(SFString vrmlSyntax).

C.6.6.3 Properties

Each node may assign values to its eventIns and obtain the last output values of its eventOuts using the
sfNodeObjectName.eventName syntax.

C.6.6.4 functions

The function of the SFNode object is described in Table C.6.

Table C.6 -- SFNode function

Function Description

String toString()

Returns the VRML UTF-8 string that, if parsed as the value of an SFNode field, would
produce this node. If the browser is unable to reproduce this node, the name of the node
followed by the open brace and close brace shall be returned. Additional information may be
included as one or more VRML comment strings.

C.6.7 SFRotation object

C.6.7.1 Description

The SFRotation object corresponds to a VRML SFRotation field. It has four numeric properties: x, y, z (the axis of
rotation) and angle. These may also be addressed by indices [0] through [3].

C.6.7.2 Instance creation functions

sfRotationObjectName = new SFRotation(numeric x, numeric y, numeric z, numeric angle)

where

x, y, and z are the axis of the rotation. angle is the angle of the rotation (in radians). Missing values default to 0.0,
except y, which defaults to 1.0.

sfRotationObjectName = new SFRotation(SFVec3f axis, numeric angle)

where

axis is the axis of rotation. angle is the angle of the rotation (in radians)

sfRotationObjectName = new SFRotation(SFVec3f fromVector, SFVec3f toVector)

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

194

where

fromVector and toVector are normalized and the rotation value that would rotate from the fromVector to the toVector
is stored in the object.

C.6.7.3 Properties

The properties of the SFRotation object are described in Table C.7.

Table C.7 -- SFRotation properties

Property Description

numeric x first value of the axis vector

numeric y second value of the axis vector

numeric z third value of the axis vector

numeric angle the angle of the rotation (in radians)

C.6.7.4 Functions

The functions of the SFRotation object are described in Table C.8.

Table C.8 -- SFRotation functions

Function Description

SFVec3f getAxis() Returns the axis of rotation.

SFRotation inverse() Returns the inverse of this object's rotation.

SFRotation multiply(SFRotation rot) Returns the object multiplied by the passed value.

SFVec3f multVec(SFVec3f vec) Returns the value of vec multiplied by the matrix
corresponding to this object's rotation.

void setAxis(SFVec3f vec) Sets the axis of rotation to the value passed in vec.

SFRotation slerp(SFRotation dest, numeric t)

Returns the value of the spherical linear interpolation
between this object's rotation and dest at value 0 <= t
<= 1. For t = 0, the value is this object's rotation. For t
= 1, the value is dest.

String toString() Returns a String containing the ISO/IEC 14772 UTF-
8 encoded value of x, y, z, and angle.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

195

C.6.8 SFVec2f object

C.6.8.1 Description

The SFVec2f object corresponds to a VRML SFVec2f field. Each component of the vector can be accessed using
the x and y properties or using C-style array dereferencing (i.e., sfVec2fObjectName[0] or sfVec2fObjectName[1]).

C.6.8.2 Instance creation function

sfVec2fObjectName = new SFVec2f(numeric x, numeric y)

Missing values default to 0.0.

C.6.8.3 Properties

The properties of the SFVec2f object are described in Table C.9.

Table C.9 -- SFVec2f properties

Property Description

numeric x First value of the vector.

numeric y Second value of the vector.

C.6.8.4 Functions

The functions of the SFVec2f object are described in Table C.10.

Table C.10 -- SFVec2f functions

Function Description

SFVec2f add(SFVec2f vec) Returns the value of the passed value added, component-wise, to the
object.

SFVec2f divide(numeric n) Returns the value of the object divided by the passed value.

numeric dot(SFVec2f vec) Returns the dot product of this vector and the passed value.

numeric length() Returns the geometric length of this vector.

SFVec2f multiply(numeric n) Returns the value of the object multiplied by the passed value.

SFVec2f normalize() Returns the object converted to unit length .

SFVec2f subtract(SFVec2f vec) Returns the value of the passed value subtracted, component-wise, from
the object.

String toString()
Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of
x and y.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

196

C.6.9 SFVec3f object

C.6.9.1 Description

The SFVec3f object corresponds to a VRML SFVec3f field. Each component of the vector can be accessed using
the x, y, and z properties or using C-style array dereferencing (i.e., sfVec3fObjectName[0], sfVec3fObjectName[1]
or sfVec3fObjectName[2]).

C.6.9.2 Instance creation function

sfVec3fObjectName = new SFVec3f(numeric x, numeric y, numeric z)

Missing values default to 0.0.

C.6.9.3 Properties

The properties of the SFVec3f object are described in Table C.11.

Table C.11 -- SFVec2f properties

Property Description

numeric x First value of the vector.

numeric y Second value of the vector.

numeric z Third value of the vector.

C.6.9.4 Functions

The functions of the SFVec3f object are described in Table C.12.

Table C.12 -- SFVec3f functions

Function Description

SFVec3f add(SFVec3f vec) Returns the value of the passed value added, component-
wise, to the object.

SFVec3f cross(SFVec3f vec) Returns the cross product of the object and the passed value.

SFVec3f divide(numeric n) Returns the value of the object divided by the passed value.

numeric dot(SFVec3f vec) Returns the dot product of this vector and the passed value.

numeric length() Returns the geometric length of this vector.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

197

SFVec3f multiply(numeric n) Returns the value of the object multiplied by the passed
value.

SFVec3f negate() Returns the value of the component-wise negation of the
object.

SFVec3f normalize() Returns the object converted to unit length .

SFVec3f subtract(SFVec3f vec) Returns the value of the passed value subtracted,
component-wise, from the object.

String toString() Returns a String containing the ISO/IEC 14772 UTF-8
encoded value of x, y, and z.

C.6.10 MFColor object

C.6.10.1 Description

The MFColor object corresponds to a VRML MFColor field. It is used to store a one-dimensional array of SFColor
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfColorObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFColor (0, 0, 0).

C.6.10.2 Instance creation function

mfColorObjectName = new MFColor(SFColor c1, SFColor c2, ...)

The creation function shall initialize the array using 0 or more SFColor-valued expressions passed as parameters.

C.6.10.3 Property

The property of the MFColor object is described in Table C.13.

Table C.13 -- MFColor properties

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.10.4 Function

The single function of the MFColor object is described in Table C.14.

Table C.14 -- MFColor functions

Function Description

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

198

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFColor array.

C.6.11 MFFloat object

C.6.11.1 Description

The MFFloat object corresponds to a VRML MFFloat field. It is used to store a one-dimensional array of SFFloat
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfFloatObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.11.2 Instance creation function

mfFloatObjectName = new MFFloat(numeric n1, numeric n2, ...)

where

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.11.3 Property

The property of the MFFloat object is described in Table C.15.

Table C.15 -- MFFloat properties

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.11.4 Function

The single function of the MFFloat object is described in Table C.16.

Table C.16 -- MFFloat function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFFloat array.

C.6.12 MFInt32 object

C.6.12.1 Description

The MFInt32 object corresponds to a VRML MFInt32 field. It is used to store a one-dimensional array of SFInt32
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfInt32ObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

199

the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.

C.6.12.2 Instance creation function

mfInt32ObjectName = new MFInt32(numeric n1, numeric n2, ...)

where

The creation function shall initialize the array using 0 or more integer-valued expressions passed as parameters.

C.6.12.3 Property

The property of the MFInt32 object is described in Table C.17.

Table C.17 -- MFInt32 property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.12.4 Function

The single function of the MFInt32 object is described in Table C.18.

Table C.18 -- MFInt32 function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFInt32 array.

C.6.13 MFNode object

C.6.13.1 Description

The MFNode object corresponds to a VRML MFNode field. It is used to store a one-dimensional array of SFNode
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfNodeObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to NULL.

C.6.13.2 Instance creation function

mfNodeObjectName = new MFNode(SFNode n1, SFNode n2, ...)

where

The creation function shall initialize the array using 0 or more SFNode-valued expressions passed as parameters.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

200

C.6.13.3 Property

The property of the MFNode object is described in Table C.19.

Table C.19 -- MFNode property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.13.4 Function

The single function of the MFNode object is described in Table C.20.

Table C.20 -- MFNode function

Function Description

String toS
tring()

Returns the VRML UTF-8 string that, if parsed as the value of a MFNode field, would produce this
array of nodes. If the browser is unable to reproduce this node, the name of the node followed by the
open brace and close brace shall be returned. Additional information may be included as one or more
VRML comment strings

C.6.14 MFRotation object

C.6.14.1 Description

The MFRotation object corresponds to a VRML MFRotation field. It is used to store a one-dimensional array of
SFRotation objects. Individual elements of the array can be referenced using the standard C-style dereferencing
operator (e.g., mfRotationObjectName[index], where index is an integer-valued expression with 0 <= index < length
and length is the number of elements in the array). Assigning to an element with index >= length results in the array
being dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFRotation
(0, 0, 1, 0).

C.6.14.2 Instance creation function

mfRotationObjectName = new MFRotation(SFRotation r1, SFRotation r2, ...)

where

The creation function shall initialize the array using 0 or more SFRotation-valued expressions passed as parameters.

C.6.14.3 Property

The property of the MFRotation object is described in Table C.21.

Table C.21 -- MFRotation property

Property Description

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

201

numeric length property for getting/setting the number of elements in the array.

C.6.14.4 Function

The single function of the MFRotation object is described in Table C.22.

Table C.22 -- MFRotation function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFRotation array.

C.6.15 MFString object

C.6.15.1 Description

The MFString object corresponds to a VRML 2.0 MFString field. It is used to store a one-dimensional array of
String objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfStringObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to the empty string.

C.6.15.2 Instance creation function

mfStringObjectName = new MFString(String s1, String s2, ...)

where

The creation function shall initialize the array using 0 or more String-valued expressions passed as parameters.

C.6.15.3 Property

The property of the MFString object is described in Table C.23.

Table C.23 -- MFString property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.15.4 Function

The single function of the MFString object is described in Table C.24.

Table C.24 -- MFString function

Function Description

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

202

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFString array.

C.6.16 MFTime object

C.6.16.1 Description

The MFTime object corresponds to a VRML MFTime field. It is used to store a one-dimensional array of SFTime
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfTimeObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.16.2 Instance creation function

mfTimeObjectName = new MFTime(numeric n1, numeric n2, ...)

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.16.3 Property

The property of the MFTime object is described in Table C.25.

Table C.25 -- MFTime property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.16.4 Function

The function of the MFTime object is described in Table C.26.

Table C.26 -- MFTime function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFTime array.

C.6.17 MFVec2f object

C.6.17.1 Description

The MFVec2f object corresponds to a VRML MFVec2f field. It is used to store a one-dimensional array of SFVec2f
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfVec2fObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec2f (0, 0).

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

203

C.6.17.2 Instance creation function

mfVec2fObjectName = new MFVec2f(SFVec2f v1, SFVec2f v2, ...)

The creation function shall initialize the array using 0 or more SFVec2f-valued expressions passed as parameters.

C.6.17.3 Property

The property of the MFVec2f object is described in Table C.27.

Table C.27 -- MFVec2f property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.17.4 Function

The single function of the MFVec2f object is described in Table C.28.

Table C.28 -- MFVec2f function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec2f array.

C.6.18 MFVec3f object

C.6.18.1 Description

The MFVec3f object corresponds to a VRML MFVec3f field. It is used to store a one-dimensional array of SFVec3f
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfVec3fObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec3f (0, 0, 0).

C.6.18.2 Instance creation function

mfVec3fObjectName = new MFVec3f(SFVec3f v1, SFVec3f v2,...)

where

The creation function shall initialize the array using 0 or more SFVec3f-valued expressions passed as parameters.

C.6.18.3 Property

The property of the MFVec3f object is described in Table C.29.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

204

Table C.29 -- MFVec3f property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.18.4 Function

The single function of the MFVec3f object is described in Table C.30.

Table C.30 -- MFVec3f function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec3f array.

C.6.19 VrmlMatrix object

C.6.19.1 Description

The VrmlMatrix object provides many useful functions for performing manipulations on 4x4 matrices. Each of
element of the matrix can be accessed using C-style array dereferencing (i.e., vrmlMatrixObjectName[0][1] is the
element in row 0, column 1). The results of dereferencing a VrmlMatrix object using a single index
(i.e., vrmlMatrixObjectName[0]) are undefined. The translation elements are in the fourth row. For example,
vrmlMatrixObjectName[3][0] is the X offset.

C.6.19.2 Instance creation functions

VrmlMatrixObjectName = new VrmlMatrix(
 numeric f11, numeric f12, numeric f13, numeric f14,
 numeric f21, numeric f22, numeric f23, numeric f24,
 numeric f31, numeric f32, numeric f33, numeric f34,
 numeric f41, numeric f42, numeric f43, numeric f44)

A new matrix initialized with the values in f11 through f44 is created and returned. The translation values will be
f41, f42, and f43.

VrmlMatrixObjectName = new VrmlMatrix()

A new matrix initialized with the identity matrix is created and returned.

C.6.19.3 Properties

The VRMLMatrix object has no properties.

C.6.19.4 Functions

The functions of the VRMLMatrix object are listed in Table C.31.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

205

Table C.31 -- VRMLMatrix functions

Function Description

void setTransform(SFVec3f translation,
 SFRotation rotation,
 SFVec3f scale,
 SFRotation scaleOrientation,
 SFVec3f center)

Sets the VrmlMatrix to the passed values. Any of the
rightmost parameters may be omitted. The function has 0
to 5 parameters. For example, specifying 0 parameters
results in an identity matrix while specifying 1 parameter
results in a translation and specifying 2 parameters results
in a translation and a rotation. Any unspecified parameter
is set to its default as specified for the Transform node.

void getTransform(SFVec3f translation,
 SFRotation rotation,
 SFVec3f scale)

Decomposes the VrmlMatrix and returns the components
in the passed translation, rotation, and scale objects. The
types of these passed objects is the same as the first three
arguments to setTransform. If any passed object is not
sent, or if the null object is sent for any value, that value
is not returned. Any projection or shear information in the
matrix is ignored.

VrmlMatrix inverse() Returns a VrmlMatrix whose value is the inverse of this
object.

VrmlMatrix transpose() Returns a VrmlMatrix whose value is the transpose of this
object.

VrmlMatrix multLeft(VrmlMatrix matrix) Returns a VrmlMatrix whose value is the object
multiplied by the passed matrix on the left.

VrmlMatrix multRight(VrmlMatrix matrix) Returns a VrmlMatrix whose value is the object
multiplied by the passed matrix on the right.

SfVec3f multVecMatrix(SFVec3f vec) Returns an SFVec3f whose value is the object multiplied
by the passed row vector.

SFVec3f multMatrixVec(SFVec3f vec) Returns an SFVec3f whose value is the object multiplied
by the passed column vector.

String toString() Returns a String containing the values of the VrmlMatrix.

C.7 Examples
The following is an example of a Script node which determines whether a given colour contains a lot of red. The
Script node exposes a Color field, an eventIn, and an eventOut:

DEF Example_1 Script {
 field SFColor currentColor 0 0 0
 eventIn SFColor colorIn

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

206

 eventOut SFBool isRed

 url "javascript:
 function colorIn(newColor, ts) {
 // This function is called when a colorIn event is received
 currentColor = newColor;
 }

 function eventsProcessed() {
 if (currentColor[0] >= 0.5)
 // if red is at or above 50%
 isRed = true;
 }"
}

Details on when the functions defined in Example_1 Script are called are provided in 4.12.2, Script execution.

The following example illustrate use of the createVrmlFromURL() function:

 DEF Example_2 Script {
 field SFNode myself USE Example_2
 field SFNode root USE ROOT_TRANSFORM
 field MFString url "foo.wrl"
 eventIn MFNode nodesLoaded
 eventIn SFBool trigger_event

 url "javascript:
 function trigger_event(value, ts){
 // do something and then fetch values
 Browser.createVRMLFromURL(url, myself, ’nodesLoaded’);
 }

 function nodesLoaded(value, timestamp){
 if (value.length > 5) {
 // do something more than 5 nodes in this MFNode...
 }
 root.addChildren = value;
 }"
}

The following example illustrates use of the addRoute() function:

DEF Sensor TouchSensor {}

DEF Baa Script {
 field SFNode myself USE Baa
 field SFNode fromNode USE Sensor
 eventIn SFBool clicked
 eventIn SFBool trigger_event

 url "javascript:
 function trigger_event(eventIn_value){
 // do something and then add routing
 Browser.addRoute(fromNode, ’isActive’, myself, ’clicked’);
 }

 function clicked(value){

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

207

 // do something
 }"
}

The following example illustrates assigning with references and assigning by copying:

Script {
 eventIn SFBool eI
 eventOut SFVec3f eO
 field MFVec3f f []

 url "javascript:
 function eI() {
 eO = new SFVec3f(0,1,2); // ’eO’ contains the value
 // (0,1,2) which will be sent
 // out when the function
 // is complete.
 a = eO; // ’a’ references the eventOut
 // ’e0’
 b = a; // ’a’ and ’b’ now both reference
 // ’e0’
 a.x = 3; // ’e0’ will send (3,1,2) at the
 // end of the function
 f[1] = a; // ’f[1]’ contains the value
 // (3,1,2).
 c = f[1]; // ’c’ reference the field
 // element f[1]
 f[1].y = 4; // ’f[1]’ and ’c’ both contain
 // (3,4,2)
 }"
}

The following example illustrates uses of the fields and functions of SFVec3f and MFVec3f:

DEF SCR-VEC3F Script {
 eventIn SFTime touched1
 eventIn SFTime touched2
 eventIn SFTime touched3
 eventIn SFTime touched4
 eventOut SFVec3f new_translation
 field SFInt32 count 1
 field MFVec3f verts []

 url "javascript:
 function initialize() {
 verts[0] = new SFVec3f(0, 0, 0);
 verts[1] = new SFVec3f(1, 1.732, 0);
 verts[2] = new SFVec3f(2, 0, 0);
 verts[3] = new SFVec3f(1, 0.577, 1.732);
 }

 function touched1 (value) {
 new_translation = verts[count]; // move sphere around tetra
 count++;
 if (count >= verts.length) count = 1;
 }

 function touched2 (value) {

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

208

 var tVec;
 tVec = new_translation.divide(2); // Zeno’s paradox to origin
 new_translation = new_translation.subtract(tVec);
 }

 function touched4 (value) {
 new_translation = new_translation.negate();
 }

 function touched3 (value) {
 var a;
 a = verts[1].length();
 a = verts[3].dot(verts[2].cross(verts[1]));
 a = verts[1].x;
 new_translation = verts[2].normalize();
 new_translation = new_translation.add(new_translation);
 }"
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

209

Annex D
(informative)

Examples

D.1 Introduction and table of contents
This annex provides a variety of VRML examples.

D.1 Introduction and table of contents
D.2 Simple example
D.3 Instancing (sharing)
D.4 Prototype example
D.5 Scripting example
D.6 Geometric properties
D.7 Prototypes and alternate representations
D.8 Anchor
D.9 Directional light
D.10 PointSet
D.11 Level of detail
D.12 Color interpolator
D.13 TimeSensor
 D.13.1 Introduction
 D.13.2 Click to animate
 D.13.3 Alarm clock
D.14 Shuttles and pendulums
D.15 Robot
D.16 Chopper
D.17 Guided tour
D.18 Elevator
D.19 Execution model

D.2 Simple example
This example contains a simple scene defining a view of a red sphere and a blue box, lit by a directional light:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

210

Figure D.1: Red sphere meets blue box

#VRML V2.0 utf8
Transform {
 children [
 NavigationInfo { headlight FALSE } # We’ll add our own light

 DirectionalLight { # First child
 direction 0 0 -1 # Light illuminating the scene
 }

 Transform { # Second child - a red sphere
 translation 3 0 1
 children [
 Shape {
 geometry Sphere { radius 2.3 }
 appearance Appearance {
 material Material { diffuseColor 1 0 0 } # Red
 }
 }
]
 }

 Transform { # Third child - a blue box
 translation -2.4 .2 1
 rotation 0 1 1 .9
 children [
 Shape {
 geometry Box {}
 appearance Appearance {
 material Material { diffuseColor 0 0 1 } # Blue
 }
 }
]
 }

] # end of children for world
}

Click here to view this example in a VRML browser.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

211

D.3 Instancing (sharing)
Reading the following file results in three spheres being drawn. The first sphere defines a unit sphere at the origin
named "Joe", the second sphere defines a smaller sphere translated along the +x axis, the third sphere is a reference
to the second sphere and is translated along the -x axis. If any changes occur to the second sphere (e.g. radius
changes), then the third sphere, will change too:

Figure D.2: Instancing

#VRML V2.0 utf8
Transform {
 children [
 DEF Joe Shape { geometry Sphere {} }
 Transform {
 translation 2 0 0
 children DEF Joe Shape { geometry Sphere { radius .2 } }
 }
 Transform {
 translation -2 0 0
 children USE Joe
 }

]
}

Click here to view this example in a VRML browser. (Note that the spheres are unlit because no appearance was
specified.)

D.4 Prototype example
A simple table with variable colours for the legs and top might be prototyped as:

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

212

Figure D.3: Prototype

#VRML V2.0 utf8
PROTO TwoColorTable [field SFColor legColor .8 .4 .7
 field SFColor topColor .6 .6 .1]
{
 Transform {
 children [
 Transform { # table top
 translation 0 0.6 0
 children
 Shape {
 appearance Appearance {
 material Material { diffuseColor IS topColor }
 }
 geometry Box { size 1.2 0.2 1.2 }
 }
 }

 Transform { # first table leg
 translation -.5 0 -.5
 children
 DEF Leg Shape {
 appearance Appearance {
 material Material { diffuseColor IS legColor }
 }
 geometry Cylinder { height 1 radius .1 }
 }
 }
 Transform { # another table leg
 translation .5 0 -.5
 children USE Leg
 }
 Transform { # another table leg
 translation -.5 0 .5
 children USE Leg

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

213

 }
 Transform { # another table leg
 translation .5 0 .5
 children USE Leg
 }
] # End of root Transform’s children
 } # End of root Transform
} # End of prototype

The prototype is now defined. Although it contains a
number of nodes, only the legColor and topColor fields
are public. Instead of using the default legColor and
topColor, this instance of the table has red legs and
a green top:

TwoColorTable {
 legColor 1 0 0 topColor 0 1 0
}
NavigationInfo { type "EXAMINE" } # Use the Examine viewer

Click here to view this example in a VRML browser.

D.5 Scripting example
This Script node decides whether or not to open a bank vault given openVault and combinationEntered messages.
To do this, it remembers whether or not the correct combination has been entered. The Script node combined with a
Sphere, a TouchSensor and a Sound node to show how is works. When the pointing device is over the sphere, the
combinationEntered eventIn of the Script is sent. Then, when the Sphere is touched (typically when the mouse
button is pressed) the Script is sent the openVault eventIn. This generates the vaultUnlocked eventOut which starts a
’click’ sound. Here is the example:

#VRML V2.0 utf8

DEF OpenVault Script {
 # Declarations of what’s in this Script node:
 eventIn SFTime openVault
 eventIn SFBool combinationEntered
 eventOut SFTime vaultUnlocked
 field SFBool unlocked FALSE

 # Implementation of the logic:
 url "javascript:
 function combinationEntered(value) { unlocked = value; }
 function openVault(value) {
 if (unlocked) vaultUnlocked = value;
 }"
}

Shape {
 appearance Appearance {
 material Material { diffuseColor 1 0 0 }

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

214

 }
 geometry Sphere { }
}

Sound {
 source DEF Click AudioClip {
 url "click.wav"
 stopTime 1
 }

 minFront 1000
 maxFront 1000
 minBack 1000
 maxBack 1000
}

DEF TS TouchSensor { }

ROUTE TS.isOver TO OpenVault.combinationEntered
ROUTE TS.touchTime TO OpenVault.openVault
ROUTE OpenVault.vaultUnlocked TO Click.startTime

Note that the openVault eventIn and the vaultUnlocked eventOut are of type SFTime, which allows them to be wired
directly to a TouchSensor or TimeSensor.

Click here to view this example in a VRML browser.

D.6 Geometric properties
The following IndexedFaceSet (contained in a Shape node) uses all four of the geometric property nodes to specify
vertex coordinates, colours per vertex, normals per vertex, and texture coordinates per vertex (note that the material
sets the overall transparency):

#VRML V2.0 utf8

Shape {
 geometry IndexedFaceSet {
 coordIndex [0, 1, 3, -1, 0, 2, 3, -1]
 coord Coordinate {
 point [0 0 0, 1 0 0, 1 0 -1, 0.5 1 0]
 }
 color Color {
 color [0.2 0.7 0.8, 0.5 0 0, 0.1 0.8 0.1, 0 0 0.7]
 }
 normal Normal {
 vector [0 0 1, 0 0 1, 0 0 1, 0 0 1]
 }
 texCoord TextureCoordinate {
 point [0 0, 1 0, 1 0.4, 1 1]
 }
 }
 appearance Appearance {

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

215

 material Material { transparency 0.5 }
 texture PixelTexture {
 image 2 2 1 0xFF 0x80 0x80 0xFF
 }
 }
}

Click here to view this example in a VRML browser.

D.7 Prototypes and alternate representations
VRML 2.0 has the capability to define new nodes. The following is an example of a new node RefractiveMaterial.
This node behaves as a Material node with an added field, indexOfRefraction. The list of URLs for the
EXTERNPROTO are searched in order. If the browser recognizes the URN,

urn:inet:foo.com:types:RefractiveMaterial,

it may treat it as a native type (or load the implementation). Otherwise, the URL,

http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl,

is used as a backup to ensure that the node is supported on any browsers. See below for the PROTO implementation
that treats RefractiveMaterial as a Material (and ignores the refractiveIndex field).

#VRML V2.0 utf8

external protype definition
EXTERNPROTO RefractiveMaterial [
 exposedField SFFloat ambientIntensity
 exposedField SFColor diffuseColor
 exposedField SFColor specularColor
 exposedField SFColor emissiveColor
 exposedField SFFloat shininess
 exposedField SFFloat transparency
 exposedField SFFloat indexOfRefraction]
[
 "urn:inet:foo.com:types:RefractiveMaterial",
 "http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl",
 "refractivematerial.wrl",
]

Shape {
 geometry Sphere { }
 appearance Appearance {
 # Instance of a RefractiveMaterial
 material RefractiveMaterial {
 ambientIntensity 0.2
 diffuseColor 1 0 0
 indexOfRefraction 0.3
 }
 }
}

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

216

The URL http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl contains the
following:

#VRML V2.0 utf8

PROTO RefractiveMaterial [# prototype definition
 exposedField SFFloat ambientIntensity 0
 exposedField SFColor diffuseColor 0.5 0.5 0.5
 exposedField SFColor specularColor 0 0 0
 exposedField SFColor emissiveColor 0 0 0
 exposedField SFFloat shininess 0
 exposedField SFFloat transparency 0
 exposedField SFFloat indexOfRefraction 0.1]
{
 Material {
 ambientIntensity IS ambientIntensity
 diffuseColor IS diffuseColor
 specularColor IS specularColor
 emissiveColor IS emissiveColor
 shininess IS shininess
 transparency IS transparency
 }
}

Note that the name of the new node type, RefractiveMaterial , is not used by the browser to decide if the node is
native or not; the URL/URN names determine the node’s implementation.

Click here to view this example in a VRML browser.

D.8 Anchor
The target parameter can be used by the anchor node to send a request to load a URL into another frame:

Anchor {
 url "http://somehost/somefile.html"
 parameter ["target=name_of_frame"]
 children Shape { geometry Cylinder {} }
}

An Anchor may be used to bind the viewer to a particular viewpoint in a virtual world by specifying a URL ending
with #viewpointName, where viewpointName is the DEF name of a viewpoint defined in the world. For example:

Anchor {
 url "http://www.school.edu/vrml/someScene.wrl#OverView"
 children Shape { geometry Box {} }
}

specifies an anchor that puts the viewer in the someScene world bound to the viewpoint named OverView when the
box is chosen (note that OverView is the DEF name of the viewpoint, not the value of the viewpoint’s description
field).

If no world is specified, the current scene is implied. For example:

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

217

Anchor {
 url "#Doorway"
 children Shape { geometry Sphere {} }
}

binds the user’s view to the viewpoint with the DEF name Doorway in the current scene.

D.9 Directional light
A directional light source illuminates only the objects in its enclosing grouping node. The light illuminates
everything within this coordinate system including the objects that precede it in the scene graph as shown below:

#VRML V2.0 utf8

Group {
 children [
 DEF UnlitShapeOne Transform {
 translation -3 0 0

 children Shape {
 appearance DEF App Appearance {
 material Material {
 diffuseColor 0.8 0.4 0.2
 }
 }
 geometry Box { }
 }
 }

 DEF LitParent Group {
 children [
 DEF LitShapeOne Transform {
 translation 0 2 0

 children Shape {
 appearance USE App
 geometry Sphere { }
 }
 }

 # lights the shapes under LitParent
 DirectionalLight { }
 DEF LitShapeTwo Transform {
 translation 0 -2 0

 children Shape {
 appearance USE App
 geometry Cylinder { }
 }
 }
]

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

218

 }

 DEF UnlitShapeTwo Transform {
 translation 3 0 0

 children Shape {
 appearance USE App
 geometry Cone { }
 }
 }
]
}

Click here to view this example in a VRML browser.

D.10 PointSet
This simple example defines a PointSet composed of 3 points. The first point is red (1 0 0), the second point is green
(0 1 0), and the third point is blue (0 0 1). The second PointSet instances the Coordinate node defined in the first
PointSet, but defines different colours:

#VRML V2.0 utf8

Shape {
 geometry PointSet {
 coord DEF mypts Coordinate {
 point [0 0 0, 2 2 2, 3 3 3]
 }
 color Color { color [1 0 0, 0 1 0, 0 0 1] }
 }
}

Transform {
 translation 2 0 0

 children Shape {
 geometry PointSet {
 coord USE mypts
 color Color { color [.5 .5 0, 0 .5 .5, 1 1 1] }
 }
 }
}

Click here to view this example in a VRML browser.

D.11 Level of detail
The LOD node is typically used for switching between different versions of geometry at specified distances from the
viewer. However, if the range field is left at its default value, the browser selects the most appropriate child from the

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

219

list given. It can make this selection based on performance or perceived importance of the object. Children should be
listed with most detailed version first just as for the normal case. This "performance LOD" feature can be combined
with the normal LOD function to give the browser a selection of children from which to choose at each distance.

In this example, the browser is free to choose either a detailed or a less-detailed version of the object when the
viewer is closer than 10 meters (as measured in the coordinate space of the LOD). The browser should display the
less detailed version of the object if the viewer is between 10 and 50 meters and should display nothing at all if the
viewer is farther than 50 meters. Browsers should try to honor the hints given by authors, and authors should try to
give browsers as much freedom as they can to choose levels of detail based on performance.

#VRML V2.0 utf8

LOD {
 range [10, 50]
 level [
 LOD {
 level [
 Shape { geometry Sphere { } }
 DEF LoRes Shape { geometry Box { } }
]
 }
 USE LoRes,
 Shape { } # Display nothing
]
}

For best results, ranges should be specified only where necessary and LOD nodes should be nested with and without
ranges.

Click here to view this example in a VRML browser.

D.12 Color interpolator
This example interpolates from red to green to blue in a 10 second cycle:

#VRML V2.0 utf8

DEF myColor ColorInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [1 0 0, 0 1 0, 0 0 1] # red, green, blue
}

DEF myClock TimeSensor {
 cycleInterval 10.0 # 10 second animation
 loop TRUE # infinitely cycling animation
}

Shape {
 appearance Appearance {
 material DEF myMaterial Material { }
 }
 geometry Sphere { }

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

220

}

ROUTE myClock.fraction_changed TO myColor.set_fraction
ROUTE myColor.value_changed TO myMaterial.set_diffuseColor

Click here to view this example in a VRML browser.

D.13 TimeSensor

D.13.1 Introduction

The TimeSensor is very flexible. The following are some of the many ways in which it can be used:

e. a TimeSensor can be triggered to run continuously by setting cycleInterval > 0, and loop = TRUE, and then
routing a time output from another node that triggers the loop (e.g.,, the touchTime eventOut of a
TouchSensor can be routed to the TimeSensor’s startTime to start the TimeSensor running).

f. a TimeSensor can be made to run continuously upon reading by setting cycleInterval > 0, startTime > 0,
stopTime = 0, and loop = TRUE.

D.13.2 Click to animate

The first example animates a box when the user clicks on it:

#VRML V2.0 utf8

DEF XForm Transform {
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1 0 0 }
 }
 geometry Box {}
 }
 DEF Clicker TouchSensor {}

 # Run once for 2 sec.
 DEF TimeSource TimeSensor { cycleInterval 2.0 }

 # Animate one full turn about Y axis:
 DEF Animation OrientationInterpolator {
 key [0, .33, .66, 1.0]
 keyValue [0 1 0 0, 0 1 0 2.1, 0 1 0 4.2, 0 1 0 0]
 }
]
}
ROUTE Clicker.touchTime TO TimeSource.startTime
ROUTE TimeSource.fraction_changed TO Animation.set_fraction
ROUTE Animation.value_changed TO Xform.rotation

Click here to view this example in a VRML browser.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

221

D.13.3 Alarm clock

The second example plays chimes once an hour:

#VRML V2.0 utf8

Group {
 children [
 DEF Hour TimeSensor {
 loop TRUE
 cycleInterval 3600.0 # 60*60 seconds == 1 hour
 }

 Sound {
 source DEF Sounder AudioClip {
 url "click.wav" }
 }
 }
]
}

ROUTE Hour.cycleTime TO Sounder.startTime

Click here to view this example in a VRML browser.

D.14 Shuttles and pendulums
Shuttles and pendulums are great building blocks for composing interesting animations. This shuttle translates its
children back and forth along the X axis, from -1 to 1 (by default). The distance field can be used to change this
default. The pendulum rotates its children about the Z axis, from 0 to 3.14159 radians and back again (by default).
The maxAngle field can be used to change this default.

#VRML V2.0 utf8

PROTO Shuttle [
 field SFTime rate 1
 field SFFloat distance 1
 field MFNode children []
 exposedField SFTime startTime 0
 exposedField SFTime stopTime 0
 field SFBool loop TRUE
] {
 DEF F Transform { children IS children }
 DEF T TimeSensor {
 cycleInterval IS rate
 startTime IS startTime
 stopTime IS stopTime
 loop IS loop
 }

 DEF S Script {
 field SFFloat distance IS distance

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

222

 eventOut MFVec3f position

 url "javascript:
 function initialize() {
 // constructor:setup interpolator,
 pos1 = new SFVec3f(-distance, 0, 0);
 pos2 = new SFVec3f(distance, 0, 0);
 position = new MFVec3f(pos1, pos2, pos1);
 }",
 }

 DEF I PositionInterpolator {
 key [0, 0.5, 1]
 keyValue [-1 0 0, 1 0 0, -1 0 0]
 }

 ROUTE T.fraction_changed TO I.set_fraction
 ROUTE I.value_changed TO F.set_translation
 ROUTE S.position TO I.set_keyValue
}

PROTO Pendulum [
 field SFTime rate 1
 field SFFloat maxAngle 3.14159
 field MFNode children []
 exposedField SFTime startTime 0
 exposedField SFTime stopTime 0
 field SFBool loop TRUE
] {
 DEF F Transform { children IS children }
 DEF T TimeSensor {
 cycleInterval IS rate
 startTime IS startTime
 stopTime IS stopTime
 loop IS loop
 }
 DEF S Script {
 field SFFloat maxAngle IS maxAngle
 eventOut MFRotation rotation

 url "javascript:
 function initialize() {
 // constructor:setup interpolator,
 rot1 = new SFRotation(0, 0, 1, 0);
 rot2 = new SFRotation(0, 0, 1, maxAngle/2);
 rot3 = new SFRotation(0, 0, 1, maxAngle);
 rotation = new MFRotation(rot1, rot2, rot3,
 rot2, rot1);
 }",
 }
 DEF I OrientationInterpolator {
 key [0, 0.25, 0.5, 0.75, 1]
 keyValue [0 0 1 0,
 0 0 1 1.57,
 0 0 1 3.14,
 0 0 1 1.57,
 0 0 1 0]

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

223

 }

 ROUTE T.fraction_changed TO I.set_fraction
 ROUTE I.value_changed TO F.set_rotation
 ROUTE S.rotation TO I.set_keyValue
}

Transform {
 translation -3 0 0
 children Pendulum {
 rate 3
 maxAngle 6.28
 children Shape { geometry Cylinder { height 5 } }
 }
}

Transform {
 translation 3 0 0
 children Shuttle {
 rate 2
 children Shape { geometry Sphere { } }
 }
}

Click here to view this example in a VRML browser.

These nodes can be used to do a continuous animation when loop is TRUE. When loop is FALSE they can perform
a single cycle under control of the startTime and stopTime fields. The rate field controls the speed of the animation.
The children field holds the children to be animated.

D.15 Robot
This example is a simple implementation of a robot. This robot has very simple body parts: a cube for his head, a
sphere for his body and cylinders for arms (he hovers so he has no feet!). He is something of a sentry--he walks
forward and walks back across a path. He does this whenever the viewer is near. This makes use of the Shuttle and
Pendulum of D.14.

#VRML V2.0 utf8

EXTERNPROTO Shuttle [
 field SFTime rate
 field SFFloat distance
 field MFNode children
 exposedField SFTime startTime
 exposedField SFTime stopTime
 field SFBool loop
]
"exampleD.14.wrl#Shuttle"

EXTERNPROTO Pendulum [
 field SFTime rate
 field SFFloat maxAngle
 field MFNode children

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

224

 exposedField SFTime startTime
 exposedField SFTime stopTime
 field SFBool loop
]
"exampleD.14.wrl#Pendulum"

Viewpoint {
 position 0 0 150
}

DEF Near ProximitySensor { size 200 200 200 }

DEF Walk Shuttle {
 stopTime 1
 rate 10
 distance 20

 children [
 # The Robot
 Transform {
 rotation 0 1 0 1.57

 children [
 Shape {
 appearance DEF A Appearance {
 material Material {
 diffuseColor 0 0.5 0.7
 }
 }
 geometry Box { } # head
 }
 Transform {
 scale 1 5 1
 translation 0 -5 0
 children Shape {
 appearance USE A
 geometry Sphere { }
 } # body
 }
 Transform {
 rotation 0 1 0 1.57
 translation 1.5 0 0

 children DEF Arm Pendulum {
 stopTime 1
 rate 1
 maxAngle 0.52 # 30 degrees

 children [
 Transform {
 translation 0 -3 0

 children Shape {
 appearance USE A
 geometry Cylinder {
 height 4
 radius 0.5

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

225

 }
 }
 }
]
 }
 }

 # duplicate arm on other side and flip so
 # it swings in opposition
 Transform {
 rotation 0 -1 0 1.57
 translation -1.5 0 0
 children USE Arm
 }
]
 }
]
}

ROUTE Near.enterTime TO Walk.startTime
ROUTE Near.enterTime TO Arm.startTime
ROUTE Near.exitTime TO Walk.stopTime
ROUTE Near.exitTime TO Arm.stopTime

Click here to view this example in a VRML browser.

Move closer to the robot to start the animation.

D.16 Chopper
This example of a helicopter demonstrates how to do simple animation triggered by a TouchSensor. It uses an
EXTERNPROTO to include a Rotor node from the Internet which does the actual animation.

#VRML V2.0 utf8

EXTERNPROTO Rotor [
 field SFTime rate
 field MFNode children
 exposedField SFTime startTime
 exposedField SFTime stopTime
]
"rotor.wrl"

PROTO Chopper [
 field SFTime rotorSpeed 1
] {
 Group {
 children [
 DEF Touch TouchSensor { } # Gotta get touch events
 Inline { url "chopperbody.wrl" }
 DEF Top Rotor {
 # initially, the rotor should not spin
 stopTime 1

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

226

 rate IS rotorSpeed
 children Inline { url "chopperrotor.wrl" }
 }
]
 }

 DEF RotorScript Script {
 eventIn SFTime startOrStopEngine
 eventOut SFTime startEngine
 eventOut SFTime stopEngine
 field SFBool engineStarted FALSE

 url "javascript:
 function startOrStopEngine(value) {
 // start or stop engine:
 if (!engineStarted) {
 startEngine = value;
 engineStarted = TRUE;
 }
 else {
 stopEngine = value;
 engineStarted = FALSE;
 }
 }"
 }

 ROUTE Touch.touchTime TO RotorScript.startOrStopEngine
 ROUTE RotorScript.startEngine TO Top.startTime
 ROUTE RotorScript.stopEngine TO Top.stopTime
}

Viewpoint { position 0 0 5 }
DEF MyScene Group {
 children DEF MikesChopper Chopper { }
}

Click here to view this example in a VRML browser.

D.17 Guided tour
VRML provides control of the viewer’s camera through use of a script. This is useful for things such as guided tours,
merry-go-round rides, and transportation devices such as buses and elevators. These next two examples show a
couple of ways to use this feature.

This example is a simple guided tour through the world. Upon entry, a guide orb hovers in front of the viewer. Click
on this and a tour through the world begins. The orb follows the user around on his tour. A ProximitySensor ensures
that the tour is started only if the user is close to the initial starting point. Note that this is done without scripts
thanks to the touchTime output of the TouchSensor.

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

227

#VRML V2.0 utf8

Group {
 children [
 Transform {
 translation 0 -1 0

 children Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box { size 30 0.2 30 }
 }
 }
 Transform {
 translation -1 0 0

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.5 0.8 0
 }
 }
 geometry Cone { }
 }
 }
 Transform {
 translation 1 0 0

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 0.2 0.7
 }
 }
 geometry Cylinder { }
 }
 }

 DEF GuideTransform Transform {
 children [
 DEF TourGuide Viewpoint { jump FALSE },
 DEF ProxSensor ProximitySensor { size 50 50 50 }
 DEF StartTour TouchSensor { },
 Transform {
 translation 0.6 0.4 8

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0.6 0
 }
 }
 geometry Sphere { radius 0.2 }
 } # the guide orb
 }
]

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

228

 }
]
}

DEF GuidePI PositionInterpolator {
 key [0, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
 keyValue [0 0 0, 0 0 -5,
 2 0 -5, 2 6 -15
 -4 6 -15, -4 0 -5,
 0 0 -5, 0 0 0
]
}

DEF GuideRI OrientationInterpolator {
 key [0, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
 keyValue [0 1 0 0, 0 1 0 0,
 0 1 0 1.2, 0 1 0 3,
 0 1 0 3.5, 0 1 0 5,
 0 1 0 0, 0 1 0 0,
]
}

DEF TS TimeSensor { cycleInterval 30 } # 60 second tour

ROUTE ProxSensor.isActive TO StartTour.set_enabled
ROUTE StartTour.touchTime TO TS.startTime
ROUTE TS.isActive TO TourGuide.set_bind
ROUTE TS.fraction_changed TO GuidePI.set_fraction
ROUTE TS.fraction_changed TO GuideRI.set_fraction
ROUTE GuidePI.value_changed TO GuideTransform.set_translation
ROUTE GuideRI.value_changed TO GuideTransform.set_rotation

Click here to view this example in a VRML browser.

D.18 Elevator
This is another example of animating the camera by depicting an elevator to ease access to a multi-storey building.
For this example, a 2 storey building is shown and it is assumed that the elevator is already at the ground floor. To
go up, the user just steps onto the elevator platform. A ProximitySensor fires and starts the elevator up
automatically. Additional features such as call buttons for outside the elevator, elevator doors, and floor selector
buttons could be added to make the elevator easier to use.

#VRML V2.0 utf8

Transform {
 translation 0 0 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 1 0
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

229

 }
 geometry Cone { }
 }
}

Transform {
 translation 0 4 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0 0
 }
 }
 geometry Cone { }
 }
}

Transform {
 translation 0 8 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 0 1
 }
 }
 geometry Cone { }
 }
}

Group {
 children [
 DEF ETransform Transform {
 children [
 DEF EViewpoint Viewpoint { jump FALSE }
 DEF EProximity ProximitySensor { size 2 5 5 }
 Transform {
 translation 0 -1 0

 children Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box { size 2 0.2 5 }
 }
 }
]
 }
]
}

DEF ElevatorPI PositionInterpolator {
 key [0, 1]
 keyValue [0 0 0, 0 8 0] # a floor is 4 meters high
}
DEF TS TimeSensor { cycleInterval 10 } # 10 second travel time

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

230

ROUTE EProximity.enterTime TO TS.startTime
ROUTE TS.isActive TO EViewpoint.set_bind
ROUTE TS.fraction_changed TO ElevatorPI.set_fraction
ROUTE ElevatorPI.value_changed TO ETransform.set_translation

Click here to view this example in a VRML browser.

D.19
This example illustrates the execution model example described in 4.10.3, Execution model.

#VRML V2.0 utf8
DEF TS TouchSensor { }
DEF Script1 Script {
 eventIn SFTime touchTime
 eventOut SFBool toScript2
 eventOut SFBool toScript3
 eventOut SFString string
 url "javascript:
 function touchTime() {
 toScript2 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script1.eventsProcessed’;
 toScript3 = TRUE;
 }"
}
DEF Script2 Script {
 eventIn SFBool fromScript1
 eventOut SFBool toScript4
 eventOut SFString string
 url "javascript:
 function fromScript1() {
 }
 function eventsProcessed() {
 string = ’Script2.eventsProcessed’;
 toScript4 = TRUE;
 }"
}
DEF Script3 Script {
 eventIn SFBool fromScript1
 eventOut SFBool toScript5
 eventOut SFBool toScript6
 eventOut SFString string
 url "javascript:
 function fromScript1() {
 toScript5 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script3.eventsProcessed’;
 toScript6 = TRUE;
 }"
}

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

231

DEF Script4 Script {
 eventIn SFBool fromScript2
 url "javascript:
 function fromScript2() {
 }"
}
DEF Script5 Script {
 eventIn SFBool fromScript3
 url "javascript:
 function fromScript3() {
 }"
}
DEF Script6 Script {
 eventIn SFBool fromScript3
 eventOut SFBool toScript7
 eventOut SFString string
 url "javascript:
 function fromScript3() {
 toScript7 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script6.eventsProcessed’;
 }"
}
DEF Script7 Script {
 eventIn SFBool fromScript6
 url "javascript:
 function fromScript6() {
 }"
}
ROUTE TS.touchTime TO Script1.touchTime
ROUTE Script1.toScript2 TO Script2.fromScript1
ROUTE Script1.toScript3 TO Script3.fromScript1
ROUTE Script2.toScript4 TO Script4.fromScript2
ROUTE Script3.toScript5 TO Script5.fromScript3
ROUTE Script3.toScript6 TO Script6.fromScript3
ROUTE Script6.toScript7 TO Script7.fromScript6

Display the results
DEF Collector Script {
 eventOut MFString string
 eventIn SFString fromString
 url "javascript:
 function initialize() { string[0] = ’Event Sequence:’; }
 function fromString(s) {
 i = string.length;
 string[i] = ’ ’+i+’) ’+s+’ occurred’;
 }"
}
Transform {
 translation 0 2 0
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0 0.6 0 }
 }
 geometry Sphere { }
 }

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

232

}
Shape { geometry DEF Result Text { } }
Viewpoint { position 7 -1 18 }
ROUTE Script1.string TO Collector.fromString
ROUTE Script2.string TO Collector.fromString
ROUTE Script3.string TO Collector.fromString
ROUTE Script6.string TO Collector.fromString
ROUTE Collector.string TO Result.string

Click here to view this example in a VRML browser.

Clicking on the green sphere should display a text string for each eventsProcessed event. The two possible correct
displays for this example are:

Event Sequence:
 1) Script1.eventsProcessed occurred
 2) Script2.eventsProcessed occurred
 3) Script3.eventsProcessed occurred
 4) Script6.eventsProcessed occurred

or

Event Sequence:
 1) Script2.eventsProcessed occurred
 2) Script1.eventsProcessed occurred
 3) Script3.eventsProcessed occurred
 4) Script6.eventsProcessed occurred

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

233

Annex E
(informative)

Bibliography

This annex contains the informative references in this part of ISO/IEC 14772. These are references to unofficial
standards or documents. All official standards are referenced in 2, Normative references.

Identifier Reference

DATA
"The Data: URL scheme," IETF Internet Draft working document.
http://ds.internic.net/internet-drafts/draft-masinter-url-data-03.txt

FOLE
Foley, van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, 2nd Edition,
Addison Wesley, Reading, MA, 1990.
http://www.awl.com

 GIF
"GIF™ - Graphics Interchange Format™" - A standard defining a mechanism for the storage and
transmission of raster-based graphics information, Version 89a, CompuServe.
http://www.w3.org/pub/WWW/Graphics/GIF/spec-gif89a.txt

 JAPI

"The Java™ Application Programming Interface, Volume 1 Core Packages" by James Gosling,
Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts, 1996, ISBN 0-201-
63453-8.
http://java.sun.com/docs/books/apis/index.html

"The Java™ Application Programming Interface, Volume 2 Window Toolkit and Applets" by
James Gosling, Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts,
1996, ISBN 0-201-63459-7.
http://java.sun.com/docs/books/apis/index.html

MIME
"The Model Primary Content Type for Multipurpose Internet Mail Extensions," IETF Internet
standards track protocol.
http://ds.internic.net/rfc/rfc2077.txt

OPEN
"The OpenGL Graphics System: A Specification (Version 1.1)," Silicon Graphics, Inc., 1995.
http://www.sgi.com/Technology/openGL/glspec1.1/glspec.html

PERL
"Programming Perl" by Larry Wall, Tom Christiansen and Randal L. Schwartz, O'Reilly &
Associates, Sebastapol, CA, 1996.
http://www.oreilly.com/

SNDA "Fundamentals of Computer Music", Dodge & Jerse, Shirmer Books, New York, 1985, pp 20-21.

SNDB
Spatial Audio Work in the Multimedia Computing Group, Graphics, Visualization, and Usability
Center, Georgia Institute of Technology, Atlanta, GA.
http://www.cc.gatech.edu/gvu/multimedia/spatsound/spatsound.html

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

234

URN
"Universal Resource Name," IETF Internet standards track protocol.
http://ds.internic.net/rfc/rfc2141.txt,
http://services.bunyip.com:8000/research/ietf/urn-ietf/

WAV

"Waveform Audio File Format, Multimedia Programming Interface and Data Specification v1.0",
Issued by IBM & Microsoft, 1991.
ftp://ftp.cwi.nl/pub/audio/RIFF-format,
http://keck.ucsf.edu/~jwright/RIFF-format.html,
http://www.seanet.com/HTML/Users/matts/riffmci/riffmci.htm

APPENDIX KK

Microsoft et al. Exhibit 1005

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

235

Annex F
(informative)

Recommendations for non-normative
extensions

F.1 Introduction
This annex describes recommended practice for non-normative extensions to ISO/IEC 14772.

F.1 Introduction
F.2 URNs
F.3 Browser extensions

F.2 URNs
URNs are location-independent pointers to a file or to different representations of the same content. In most ways,
URNs can be used like URLs except that, when fetched, a smart browser should fetch them from the closest source.
URN resolution over the Internet has not yet been standardized. However, URNs may be used now as persistent
unique identifiers for referenced entities such as files, EXTERNPROTOs, and textures. General information on
URNs is available at E.[URN].

URNs may be assigned by anyone with a domain name. For example, if the company Foo owns foo.com, it may
allocate URNs that begin with "urn:inet:foo.com:". An example of such usage is

"urn:inet:foo.com:texture:wood001".

See the draft specification referenced in E.[URN] for a description of the legal URN syntax.

To reference a texture, EXTERNPROTO, or other file by a URN, the URN is included in the url field of another
node. For example:

 ImageTexture {
 url ["http://www.foo.com/textures/woodblock_floor.gif",
 "urn:inet:foo.com:textures:wood001"]
 }

specifies a URL file as the first choice and a URN as the second choice.

APPENDIX KK

Microsoft et al. Exhibit 1005

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

236

F.3 Browser extensions
Browsers that wish to add functionality beyond the capabilities of ISO/IEC 14772 can do so by creating prototypes
or external prototypes. If the new node cannot be expressed using the prototyping mechanism (i.e., it cannot be
expressed in the form of a VRML scene graph), it can be defined as an external prototype with a unique URN
specification. Authors who use the extended functionality may provide multiple, alternative URLs or URNs to
represent content to ensure it is viewable on all browsers.

For example, suppose a browser wants to create a native Torus geometry node implementation:

 EXTERNPROTO Torus [field SFFloat bigR, field SFFloat smallR]
 ["urn:inet:browser.com:library:Torus",
 "http://.../proto_torus.wrl"]

This browser will recognize the URN and use the URN resource's own private implementation of the Torus node.
Other browsers may not recognize the URN, and skip to the next entry in the URL list and search for the specified
prototype file. If no URLs are found, the Torus is assumed to be an empty node.

The prototype name "Torus" in the above example has no meaning whatsoever. The URN/URL uniquely and
precisely defines the name/location of the node implementation. The prototype name is strictly a convention chosen
by the author and shall not be interpreted in any semantic manner. The following example uses both "Ring" and
"Donut" to name the torus node. However, the URN/URL pair "urn:browser.com:library:Torus,
http://.../proto_torus.wrl" specifies the actual definitions of the Torus node:

 #VRML V2.0 utf8
 EXTERNPROTO Ring [field SFFloat bigR, field SFFloat smallR]
 ["urn:browser.com:library:Torus", "http://.../proto_torus.wrl"]
 EXTERNPROTO Donut [field SFFloat bigR, field SFFloat smallR]
 ["urn:browser.com:library:Torus", "http://.../proto_torus.wrl"]

 Transform { ... children Shape { geometry Ring { } } }
 Transform { ... children Shape { geometry Donut { } } }

APPENDIX KK

Microsoft et al. Exhibit 1005

	App _A - Michalson CV
	1. Personal:
	1.1 Education
	1.2 Work experiences - Academic.
	1.3 Work experiences other than teaching (chronological).
	1.4 Consulting experiences.
	1.4.1 Law-Related
	1.4.2 Engineering Consulting

	1.5 Licenses and Certifications
	1.5.1 Commercial
	1.5.2 Amateur

	2. Courses Taught at WPI
	2.1 Course Descriptions

	3. List of Publications:
	3.1 Journal Papers
	3.2 Conference Papers
	3.3 Book Chapters
	3.4 Patents
	3.5 Professional Presentations

	4. Projects advised (undergraduate).
	4.1 Major Qualifying Projects (current)
	4.2 Major Qualifying Projects (completed)
	4.3 Graduate Theses Advised and Co-Advised
	4.3.1 MS Theses (current)
	4.3.2 MS Theses (completed)
	4.3.3 Ph. D. Dissertations (current)
	4.3.4 Ph. D. Dissertations (completed)

	5. Proposals and Funding (past 5 years):
	5.1 In Review
	5.2 Funding Received

	6. Honors, Awards, and Recognitions:
	6.1 Memberships and offices held in professional society
	6.2 Professional Service

	App _B - Samet - The Design And Analysis Of Spatial Data Structures
	App _C - DeAguiar - US5263136
	App _D - Delorme - US4972319
	App _E - Fuller - The MAGIC Project
	App _F - CCITT - ITU - Recommendation T81
	App _G - Cabeen - Image Compression and the Discrete Cosine Transform
	App _H - Antonini - Image Coding Using Wavelet Transform
	App _I - Inga - US5321520
	App _J - Yap - US6182114
	App _K - Dawson - US5179638
	App _L - Williams - Pyramidal Parametrics
	App _M - OpenGL - Mipmapping
	App _N - Hoppe - Progressive Meshes
	App _T - opengl1.2.1
	App AA - Hansen - Real-time synthetic vision cockpit display for general aviation
	App BB - Migdal - US5760783
	App GG - geotiff
	App HH - TIFF6
	App II - FPX-spec
	1.1 Purpose
	1.2 Specification Organization
	1.3 Conventions
	1.4 Structured Storage
	1.4.1 Property Sets
	1.4.2 Summary Information Property Set
	1.4.3 File identification
	1.4.4 OS-level file treatment in Windows or with O...
	1.4.5 FlashPix Streams
	1.4.6 String and Character Representation
	1.4.6.1 Storage and Stream Names
	1.4.6.2 Property Set Code Page and Strings

	1.5 Format Compliance
	1.6 FlashPix File Overview
	1.6.1 Extension management

	2.1 Coordinate systems
	2.1.1 Resolution-Independent Coordinates
	2.1.2 Resolution-Dependent Coordinates

	2.2 Multiple resolutions
	2.2.1 Resolution sizes
	2.2.2 Non-Hierarchical FlashPix Images

	2.3 Tiling
	2.3.1 Breaking an Image into Tiles

	3.1 FlashPix Image Object 3.1 Structure
	3.1.1 Resolution Storages
	3.1.2 Summary Info Property Set (required)
	3.1.3 CompObj Stream (required)
	3.1.4 Image Info Property Set (optional)
	3.1.5 Image Contents Property Set (required)
	3.1.5.1 Primary description group
	3.1.5.2 Resolution Description Groups
	3.1.5.3 Compression Description Group

	3.1.6 ICC Profile (optional)
	3.1.7 Extension List Property Set (optional)

	4.1 The Subimage Header Stream
	4.1.1 Subimage Header Stream Data
	4.1.2 Tile header table

	4.2 The Subimage Data Stream
	4.2.1 Channel Ordering
	4.2.2 Tile Data Format
	4.2.2.1 Uncompressed
	4.2.2.2 Single Color Compressed
	4.2.2.3 JPEG Compressed

	5.1 Introduction
	5.2 PhotoYCC and NIF RGB Reference 5.2 Viewing Env...
	5.2.1 PhotoYCC Reference Viewing Environment
	5.2.2 NIF RGB Reference Viewing Environment

	5.3 Colorimetric Definitions and Digital 5.3 Encod...
	5.3.1 PhotoYCC Colorimetric Definition and Digital...
	5.3.2 NIFRGB Colorimetric Definition and Digital E...

	5.4 Monochrome Encoding Definition
	6.1 Informational Groups
	6.2 File Source Group
	6.3 Intellectual Property Group
	6.4 Content Description Group
	6.5 Camera Information Group
	6.6 Per Picture Camera Settings Group
	6.7 Digital Camera Characterization 6.7 Group
	6.8 Film Description Group
	6.9 Original Document Scan 6.9 Description Group
	6.10 Scan Device Property Group
	7.1 FlashPix Image View Object
	7.1.1 CompObj Stream (required)
	7.1.2 Source and Result FlashPix Image Objects
	7.1.3 Source and Result Description Property Sets
	7.1.4 Transform Property Set (optional)
	7.1.5 Operation Property Set (optional)
	7.1.6 Global Info Property Set (required)
	7.1.7 Extension List Property Set (optional)

	7.2 Viewing Transform Parameters
	7.2.1 Selection via Rectangle of Interest
	7.2.2 Filtering
	7.2.2.1 The Measure
	7.2.2.2 Subsystem information
	7.2.2.3 User Sharpening Adjustment

	7.2.3 Spatial Orientation
	7.2.4 Tone and Color Corrections
	7.2.4.1 Color Images
	7.2.4.2 Monochrome Images

	7.2.5 Contrast adjustments

	7.3 Sequence of Viewing Parameters
	7.3.1 Coordinate System
	7.3.2 Image Size and Limits

	Structured Storage

	App KK - vrml97specification
	BinderXYZ.pdf
	App _X - Forman - The Challenges of Mobile Computing
	App _Y - Brown - A Network Architecture for Mobile Computing
	App _Z - Kreller - UMTS a middleware architecture and mobile API approach

	Binder1.pdf
	App _O - Baldwin - US5798770
	App _P - Wu - US5987256
	App _R - Rabinovich - Visualization of Large Terrains
	App _S - User Datagram Protocol (UDP) (Windows CE 5.0)

