
EXHIBIT 1004

IPR No.: IPR2016-00500
Patent No. 7,864,163

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Reification, Polymorphism and Reuse:
Three Principles for Designing Visual Interfaces

Michel Beaudouin-Lafon and Wendy E. Mackay
University of Aarhus, Department of Computer Science

Aabogade 34
DK-8200 Aarhus N - Denmark

+45 89 42 56 44 / +45 89 42 56 22

{mbl, mackay} @ daimi.au.dk

ABSTRACT
This paper presents three design principles to support the
development of large-scale applications and take advantage of
recent research in new interaction techniques: Reification turns
concepts into first class objects, p o l y m o r p h i s m permits
commands to be applied to objects of different types, and reuse
makes both user input and system output accessible for later
use. We show that the power of these principles lies in their
combination. Reification creates new objects that can be acted
upon by a small set of polymorphic commands, creating more
opportunities for reuse. The result is a simpler yet more
powerful interface.

To validate these principles, we describe their application in
the redesign of a complex interface for editing and simulating
Coloured Petri Nets. The c p n 2 0 0 0 interface integrates floating
palettes, toolglasses and marking menus in a consistent
manner with a new metaphor for managing the workspace. It
challenges traditional ideas about user interfaces, getting rid of
pul l -down menus, scrollbars, and even select ion, while
providing the same or greater functionality. Preliminary tests
with users show that they find the new system both easier to use
and more efficient.

Keywords
Design principles, reification, polymorphism, reuse, direct
manipulation, instrumental interaction, interaction model.

1. INTRODUCTION
Today's visual interfaces suffer from an overabundance of
functionality: each successive version is marketed based on the
number o f new funct ions, with l i t t le regard to the
corresponding increase in the cost of use. Simple things keep
getting harder, as users spend more and more time deciding
among an increasing variety of rarely or never-used options.
Some users are at a breaking point and are less and less able to
cope with new software releases [21]. Others have begun to

Permission to make digital or hand copie of all or part of this
work for personal or classroom use is granted without fee provi-
ded that copies are not made or distributed for profit or commer-
cial advantage, and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
AV12000, Palermo, Italy.

© 2000 ACM 1-58113-252-2/00/0005..$5.00

actively reject software upgrades and cling to older versions of
products such as Microsoft Word (survey of Microsoft users,
Business Week, 5 July, 1999).

New interaction techniques, such as toolglasses [4] and
marking menus [17], have been proposed to reduce this trade-
off between power and ease-of-use. Yet such interaction
techniques tend to be developed in isolation, as the focus of a
particular research project. While this is a critical first step, it
is also important to understand how these techniques scale
when combined with other techniques and are placed in the
context of complex real-world applications. We also need to
develop new interaction models that explain how these and
other techniques can increase the functionality available to
users without creating a corresponding increase in the cost of
use.

This paper describes how three design principles, reification,
polymorphism and reuse, have provided a f ramework for
redesigning a complex tool for editing and simulating Coloured
Petri Nets. Developed in the late 1980's, the Design/CPN tool
used a then state-of-the-art WIMP (windows, icons, menus,
pointing) user interface. The new tool, c p n 2 0 0 0 , is the result
of a participatory design process, in which users and designers
have collaborated to recreate a tool that supports "Petri-Nets-
In-Use". The goal is to provide Coloured Petri Nets developers
with greater functionality through an interface that is more
intuitive, efficient and pleasant to use; one that allows them to
think in terms of Petri nets and not the mechanics of the
interface.

We begin by descr ib ing the pr inciples of re i f icat ion,
polymorphism and reuse and then describe the interface to
cpn2000 . We explain how these principles have influenced the
design of the user interface and discuss how combining them
helps address the trade-off between power and ease-of-use. We
conclude with directions for future research.

2. DESIGN PRINCIPLES
Graphical user interfaces can be broadly defined as consisting
of graphical objects and commands. Graphical objects are
represented on the screen and commands can be applied to
create, edit and delete them. Visualization techniques describe
how to represent these objects while interaction techniques
describe how to apply commands to them. Over time, users
develop individual patterns of use that depend upon the
available objects and commands, the particular application
domain and the current context of use. The perceived "ease-of-
use" of an interface depends upon many factors, including the
effectiveness of the visual representation, the completeness of
the command set and the support for efficient patterns of use.

102

Ex_1004: Page 1 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We have developed three principles that address the issues
surrounding objects, commands and patterns of use:

• Re i f ica t ion extends the notion of what const i tutes an
objec t ;

• P o l y m o r p h i s m extends the power of commands with
respect to these objects; and

• Reuse provides a way of capturing and reusing patterns of
u s e .

2.1 Reifieation
Reification is the process by which concepts are turned into
objects. For example, in a graphical editing tool, the concept
of a circle is represented as an image of a circle in a tool palette.
Reification creates new objects that can be manipulated by the
user, thus increasing the set of objects of interest.

Instrumental Interaction [1] extends the principles of Direct
Manipula t ion [26] by reifying commands into in terac t ion
instruments. An interaction instrument is a mediator between
the user and objects of interest: the user acts on the instrument,
which in turn acts on the objects. This reflects the fact that, in
the physical world, our interaction with everyday objects is
mediated by tools and instruments such as pens, hammers or
handles. The menu items, tool buttons, manipulat ion handles
and scrollbars seen in today's user interfaces are examples of
interaction instruments. A scrollbar, for example, is both a
visible object on the screen that can be manipulated by the user
and also a command the user manipu la tes to scroll the
document.

Turning commands into objects provides potentially infinite
regression. Since instruments are objects, they can be operated
upon by (meta)-instruments, which are themselves objects, etc.
In real life, we see limited chains of regression, as we move our
focus from pencils, to pencil sharpeners that sharpen pencils to
screwdrivers that fix pencil sharpeners. In some user interfaces,
menus and toolbar buttons can be reconfigured to tailor the
in terface: they become ins t rument ob jec t s that can be
manipulated by meta-instruments.

Another example of reification is the notion of style: In a text
edi tor such as Microsoft Word, a style is a col lect ion of
attributes describing the look of a text in a paragraph, e.g., the
font and margins. The user can create and edit styles and apply
them to paragraphs. Styles thus become objects of interest for
the user.

Many graphical editors also reify a collection of objects into
the notion of a group. Since a group is itself an object, it can be
added to a group, giving way to arbitrarily large structures such
as trees and DAGs. These structuring mechanisms can be found
in a wide variety of interfaces.

2.2 Polymorphism
Polymorphism is the property that enables a single command
to be applicable to objects of different types. Polymorphism
allows us to maintain a small number of commands, even as
reification increases the number of object types. This property
is essential if we want to keep the interface s imple while
increasing its power.

Most interfaces include the polymorphic commands cut, copy
and delete, which can be applied to a wide variety of object
types, such as text, graphics, files or spreadsheet cells. Undo
and redo can also be considered polymorphic to the extent that
they can be applied to different commands.

App ly ing a c o m m a n d to a g roup o f ob jec t s i nvo lves
polymorphism at two levels. First, any command that can be
applied to an object can also be applied to a group of objects of
the same type by applying it to each object in the group.
Second, any command can be applied to a heterogeneous group
of objects, i.e. objects of d i f ferent types, as long as the
command has meaning for each of the individual object types.

2.3 Reuse
Reuse can involve previous input, previous output or both.
Input reuse makes previously-provided user input available for
reuse in the current context. For example, the redo command
lets users repeat complex input s tr ings wi thout having to
retype them. Output reuse makes the results of previous user
commands available for reuse. For example, duplicate and copy-
paste let users avoid re-creating complex objects they have just
created.

Polymorphism facili tates input reuse because a sequence of
actions can be applied in a wider range of contexts if it
involves polymorphic commands . Prototyping envi ronments
such as Self and its Morphic user interface f ramework [22],
which are based on cloning and delegation, support and even
encourage a high level of input reuse.

Reification facilitates output reuse by creating more first-class
objects in the interface which are then available for reuse. Thus,
for example a Microsoft Word user can create a new style object
by reifying the style of an existing paragraph or by duplicating
an existing style object, modifying the copy and reapplying it.
A more elaborate form of reuse obtains when new styles are
created through inher i tance from an exis t ing style, which
allows changes made in the reused object to be propagated to
the edited copies.

Macros, such as those found in Microsoft Excel, illustrate the
power of combin ing these three design principles. The user
begins by tel l ing the system to "watch" as a sequence of
commands is performed. Reification enables the user to capture
the particular pattern of use as a sequence of commands that can
be applied as a single new command to a new set of objects. A
more advanced form of reif icat ion turns each componen t
command into an object that can itself be edited, thus changing
the pattern of use to accommodate different contexts.

The next section briefly describes the c p n 2 0 0 0 interface,
which provides a testbed for exploring these three principles.

3. THE CPN2000 INTERFACE
The current c p n 2 0 0 0 interface was created over a period of ten
months by a group of ten people. We fol lowed a highly
part icipatory design process beg inn ing with observat ion of
users of an exist ing system, D o s i g n / C P N , in various work
settings. We developed scenarios to capture and articulate their
work practices and engaged in a variety of video brainstorming
and video prototyping exercises to develop the new interface.
These activit ies involved a mult idiscipl inary group of user
interface researchers, programmers and Coloured Petri Nets
developers. The first version of c p n 2 0 0 0 was presented at the
CPN International Workshop in October 1999. We also took
advantage of the CPN Workshop and an earlier retreat for the
University of Aarhus CPN group to conduct more formal studies
us ing CPN deve lope r s who were not i nvo lved in the
development of the new tool.

The fol lowing sect ions in t roduce the basic concepts and
vocabulary of Coloured Petri Nets (CPN), the basic interaction
techniques we selected and the overall design of the interface.

103

Ex_1004: Page 2 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fig. 1: A simple Petri net with three places, one
transition and four arcs. Two places have a token.

Fig. 2: The Petri net from Fig. 1 after the
transition has been fired.

3.1 Coloured Petri Nets
Both D o s i g n / C P N and its successor, c p n 2 0 0 0 , address the
application domain of editing and simulating Coloured Petri
Nets [14]. Petri nets are a graphical formalism with a strong
underlying mathematical model that extends the power of
simple finite state automata. Petri nets are particularly suited
for the modeling and analysis of parallel systems such as
communication protocols and resource allocation systems.

The graphical representation of Petri nets (Fig. 1) is a bipartite
graph where the nodes are called places (depicted as circles or
ellipses) and transitions (depicted as rectangles). Edges of the
graph are called arcs and can only connect places to transitions
and transitions to places. Each place typically represents a
possible state or resource of the system. Places hold tokens,
which represent the fact that the system is in a given state or
the number of resources that can be allocated. The rules for
simulating the net are very simple: a transition is enabled if all
the places connected to it by an input arc have a token. Firing
an enabled transition consists of removing a token from each
input place and adding a token to each output place of the
transit ion (Fig. 2). Mathematical ly , a Petri net can be
represented by a matrix and simulation of the net is equivalent
to a set of linear algebra operations. Properties of the net can
be proven, such as the fact that the net has a bounded number of
tokens or that there are no deadlocks.

A number of higher-level Petri net formalisms have been
deve loped to model complex systems. Most of these
formalisms are equivalent in power to a simple Petri net, but are
much more concise. One such extension is Coloured Petri Nets
[14]. In this model, the tokens belong to a color set equivalent
to a data type in a conventional programming language. Arcs
are labeled with pattern-matching expressions that describe
which tokens are used when a transition is fired. Typically,
colors allow a conventional Petri net to be "folded" onto itself,
making models much smaller. In addition Coloured Petri Nets
can be hierarchical. A transition can be described by a subnet,
equivalent to macro-subst i tu t ion in a textual language.
Hierarchical nets make it possible to structure a complex net
into smaller units that can be developed and tested separately.

Over the past decade, the CPN group at the University of Aarhus
has been developing an editor and simulator for Coloured Petri
Nets, called D e s i g n / C P N (Fig. 3). This tool is freely available
to the CPN community and is currently in use by over 600

li~ File Edit CPN Aux Set Makeup Page Group Text Align
Transition Text: Off Page Scale: 1005

Phone#1 I i ~ i i i i i i i i i i i i i i i i l] i l l

u Y.___._t I -u: _-" ~ " Dial ing 3 ~.j_--=

q : - - - r ; I o + :>

~f '~Connect ad~-"~ I o ~ ~ ~ I~-ii

.reak e."l b Bi

Fig. 3: Des ign /CPN, the current tool used by CPN designers.

organizations both in industry and academia. D e s i g n / C P N

users have created models with as many as 100 modules and
have run simulations lasting several days. The tool has been
used far beyond the expectations of the designers and has
reached its limits in terms of usability and complexity of
implementation. The goal of c p n 2 0 0 0 is to reimplement the
basic functionality of D e s i g n / C P N while improving the user
interface and adding new editing and simulation capabilities.
The project is a joint effort of the CPN, HCI and Beta groups at
the University of Aarhus and is funded by the Danish Center for
IT Research, Hewlett-Packard and Microsoft.

3.2 Interaction techniques
We began with two key decisions that have influenced many
aspects of the design. First, we decided to explicitly support
two-handed input, with a mouse for the dominant hand and a
trackball for the non-dominant hand. The keyboard is used only
to input text and to navigate within and across text objects. The
design of the bi-manual interaction follows Guiard's Kinematic
Chain theory [10] in which the non-dominant hand manipulates
the context (conta iner objects such as windows and
toolglasses) while the dominant hand manipulates objects
within that context. The exception is direct interaction for
zooming and resizing, which, according to Casalta et al. [6],
should give both hands symmetrical roles.

Second, we decided to incorporate a combination of new
interaction techniques, rather than using a standard W l M P
interface. Our goal is to provide c p n 2 0 0 0 users with easier yet
more powerful tools and support more effective patterns of use.
Users should be able to spend more" time on developing Petri
nets and less time on the mechanics of the interface.

The current version of c p n 2 0 0 0 incorporates four primary
interaction techniques: direct interaction, marking menus [17],
floating palettes, and toolglasses [4].

Direct interaction involves pointing directly at objects and
either cl icking on or dragging them. A direct bi-manual
interact ion, used for res iz ing and zooming, invo lves
depressing a trackball button with the non-dominant hand and
dragging the mouse with the dominant hand, as if stretching a
piece of rubber.

104

Ex_1004: Page 3 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Marking menus are radial, contextual menus that appear when
clicking the right button of the mouse. Marking menus offer
faster selection than traditional linear menus for two reasons.
First, it is easier for the human hand to move the cursor in a
given direct ion than to reach a target at a given distance.
Second, the menu does not appear when the selection gesture is
executed quickly, which supports a smooth transition between
novice and expert use. Kurtenbach and Buxton [17] have shown
that selection times can be more than three times faster than
with tradit ional menus. Hierarchical marking menus involve
more complex gestures but are still much more efficient than
their l inear counterparts.

Floating palet tes conta in tools represented by but tons.
Clicking a tool with the mouse activates this tool, i.e. the user
conceptually holds the tool in his or her hand. Clicking on an
object with the tool in hand applies the tool to that object. In
many current interfaces, after a tool is used (especial ly a
creation tool), the system automatically act ivates a "select"
tool. This supports a frequent pattern of use in which the user
wants to move or resize an object immediately after it has been
created but causes problems when the user wants to create
addit ional objects of the same type. c p n 2 0 0 0 avoids this
automatic changing of the current tool by getting rid of the
notion of selection (see below) while ensuring that the user can
always move an object, even when a tool is active, with a long
click (200ms) of the mouse. This mimics the situation in which
one continues holding a physical pen while moving an object
out of the way in order to write.

Toolglasses , like f loating palettes, conta in a set of tools
represented by buttons. Unlike floating palettes, they are semi-
transparent and are moved with the non-dominant hand. A tool
is applied to an object with a click-through action: The tool is
posi t ioned over the object of interest and the user clicks
through the tool onto the object. The toolglass disappears
when the tool requires a drag interaction, e.g., when creating an
arc. This prevents the toolglass from getting in the way and
makes it easier to pan the document with the .non-dominan t
hand when the target position is not visible. This is a case
where the two hands operate simultaneously but independently.

Since floating palettes and toolglasses both contain tools, it is
possible to turn a floating palette into a toolglass and vice
versa, using the right button of the trackball. Clicking this
button when a toolglass is active drops it, turning it into a
f loat ing palette. Cl icking this same but ton on a f loat ing
palette picks it up, turning it into a toolglass.

None of the above interaction techniques requires the concept
of selection. All are contextual, i.e. the object of interest is
specified as part of the interaction. This greatly simplifies the
appl icat ion 's conceptual model and, one hopes, the users '
menta l models . However , this also creates a p roblem.
Tradi t ional in te r faces use mult iple se lec t ion to apply a
command to a set of objects. We solve the problem by reifying
multiple selection into objects called groups (see below).

We considered several other interaction techniques including
gesture input [25], zoomable interfaces [2] and dropable tools
[3]. We selected the above set partly due to the participatory
nature of our des ign process, which led us to select the
techniques most appealing and natural for our particular set of
users. However, the techniques we chose also cover each of the
different possible syntaxes for specifying commands:

• object-then-command: point at the object of interest, then
select the command from a contextual marking menu;

• command-then-object: select a command by clicking a tool
in a floating palette, then apply the tool to one or more
objects of interest;

• command-and-object: select the command and the object
simultaneously by clicking through a toolglass or moving
it directly.

Preliminary results from our user studies [13] make it clear that
none of these techniques is always better or worse. Rather, each
emphasizes a different, but common, pattern of use. Marking
menus work well when applying multiple commands to a single
object. Floating palettes work well when applying the same
command to different objects. Toolglasses work well when the
work is driven by the structure of the application objects, such
as working around a cycle in a Petri net.

3.3 Workspaee manager
Coloured Petri Nets frequently contain a large number of
modules. In the exist ing D e s i g n / C P N tool, each module is
presented in a separate window and users spend time switching
among them. Early in the project, it became clear that we had to
design our own window manager to improve this situation: the
Workspace Manager.

The workspace occupies the whole screen (Fig. 4) and contains
window-like objects called folders. Folders contain pages, each
equivalent to a window in a traditional environment. Each page
has a tab similar to those found in tabbed dialogs. Clicking the
tab brings that page to the front of the folder. A page can be
dragged to a different folder with either hand by dragging its
tab. Dragging a page to the background creates a new folder for
it. Dragging the last page out of a folder removes the folder
from the screen. Folders reduce the number of windows on the
screen and the t ime spent organizing them. Folders also help
users organize their work by grouping related pages together
and reducing the time spent looking for hidden windows.

C p n 2 0 0 0 also supports multiple views, allowing several pages
to contain a representation of the same data. For example, the
upper-left page in Fig. 4 shows a module with s imulat ion
information, while the upper-right page shows the same module
without simulation information but at a larger scale.

The left part of the workspace is called the index and contains a
h ierarchical list of objects that can be dragged into the
workspace with e i ther hand. Objects in the index include
toolglasses, floating palettes and Petri net modules. Dragging
an entry out of the index creates a view on its contents, i.e. a
toolglass, a floating palette or a page holding a CPN module.

Pages and folders do not have scrollbars. If the contents of a
page is larger that its size, it can be panned with the left button
of the trackball, even while the dominant hand is using the
mouse to, for example, move an object or invoke a command
from a marking menu. Getting rid of scrollbars saves valuable
space but makes it harder to tell which part of the document is
currently visible. A future version will display relative position
informat ion on the borders of the page during the panning
operation in a non-intrusive and space-saving way.

Resizing a folder and zooming the contents of a page involves
direct b i -manual in teract ion (as descr ibed above). Unl ike
traditional window management techniques, using two hands
makes it possible to simultaneously resize and move a folder,
or pan and zoom the contents of a page at the same time.
Clicking the mouse on the page tab or on the folder pops up a
contextual marking menu with additional commands, such as
close, duplicate, collapse and expand.

105

Ex_1004: Page 4 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

