
EXHIBIT 1005 

IPR No.: IPR2016-00500
Patent No. 7,864,163

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

What makes a good User Interface pattern language? 

E. Todd 
e.todd@massey.ac.nz  

E. Kemp 
e.kemp@massey.ac.nz  

Institute of Information Sciences & Technology 
Massey University 
Palmerston North 

New Zealand 

C. Phillips 
c.phillips@massey.ac.nz  

 
Abstract 
A developer of user interfaces (UI) should be able to 
employ a user interface pattern language to design 
acceptable user interfaces.  But, what makes a good 
pattern language?  Three types of validation were 
identified as requiring consideration: the validity of the 
individual patterns, the internal validation of the pattern 
language and the external validation of the pattern 
language.  This paper investigates internal validity.  A set 
of six tests that a developer can use to test the internal 
validity of a pattern language has been identified.. 
Keywords:  Pattern languages, user interface design, 
pattern language validation  

1. Introduction 
When an engineer designs a solution to a well known 
problem they normally refer to standards, guidelines, or 
templates representing accepted models for solving that 
type of problem.  Civil engineers will refer to plans of 
bridges for similar foundation conditions, flood flows and 
anticipated traffic density when designing a crossing for a 
watercourse. 
Software engineers are increasingly using patterns to 
define recognised good solutions for known types of 
problem.  Patterns can present acknowledged good 
practice to guide many software engineering tasks.  Users 
of CASE tools such as Rational Rose and Model Maker 
have access to pattern templates that can be loaded 
directly into their models for modification and use.  
However, the software engineer is given little guidance 
about combinations of patterns to use together. 
Java developers identified this problem of how to use 
combinations of patterns as a major issue.  John Cruppi 
(2001) reported that the participants in a technology 
developer focus group observed  
“… that they did not have a good handle on how and 

when to use patterns together to solve a business 
problem” (p 6) 

Mullet (2002) also identified organisation as a major 
problem when using patterns to guide UI design.  The 
participants in the CHI2002 UI patterns workshop 
(McInerney, 2002) when considering pattern collection 
evaluation reported that:  

                                                           

Copyright © 2004, Australian Computer Society, Inc.  This 
paper appeared at the 5th Australasian User Interface 
Conference  (AUIC2004), Dunedin.  Conferences in Research 
and Practice in Information Technology, Vol. 28. A. Cockburn, 
Ed. Reproduction for academic, not-for profit purposes 
permitted provided this text is included  

"Collections lack guidance on how to use patterns 
together as components to solving a larger design 
problem." (p 3) 

This problem is probably generic for any user of patterns 
who is trying to solve real world design problems if the 
relationships between the patterns have not been clearly 
defined, regardless of whether the domain is software 
development, user interface development or architecture.   
Collections of related patterns, which are organised and 
linked into one or more interlocking hierarchies may be 
referred to as a pattern language.  A pattern language 
should be able to provide guidance on how to 
successfully use combinations of patterns from a 
collection. The remainder of this paper discusses one 
approach for determining the validity of the internal 
connections between patterns that make up a potential 
pattern language. 

2. Background 
Patterns and pattern language concepts are derived from 
architecture and were first proposed by Alexander, 
Ishikawa and Silverstein (1977).  Salingaros (2000) 
identifies pattern languages as useful because they are: 
“a way of understanding, and possibly controlling, a 

complex system … [they are] necessary design tools 
with which to build something that is functionally and 
structurally coherent” (p 154) 

Controlling complex systems and building a functional 
and structurally coherent system are requirements of 
software engineering, which may explain why software 
engineers were early appliers of the concept of patterns 
for use in program development (Coplien and Schmidt, 
1995).  There are also numerous books referring to 
patterns published by software engineers (Alur et al., 
2001, Gamma et al., 1995).  More recently texts 
specifically related to User Interface (UI) development 
with associated pattern languages have appeared 
(Borchers, 2001, Duyne et al., 2003).   
UI patterns became visible to the software engineering 
practitioner community when Jennifer Tidwell’s (1998) 
paper “Common Ground” became available on the web.  
But, the earliest UI related references to Alexander’s 
seminal works on patterns are in papers published in 
“User Centered System Design” (Norman and Draper, 
1986).  Since then a number of sets of UI related patterns 
have been published.  Some are referred to as ‘collections 
of patterns’, like those found in the Amsterdam collection 
(Welie, 2001), while others are described as “pattern 
languages” (Borchers, 2001, Duyne et al., 2003).  

91 Ex_1005: Page 1 of 10f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

3. Methodology 
This research is associated with the CONDUIT project; 
researching tools for aiding user interface design 
((Phillips and Kemp, 2002).  It was motivated by the 
requirement to provide guidance for user interface 
engineers when they are designing new user interfaces.  
Griffiths and Pemberton (2001) regard UI patterns as 
more useful tools than UI Standards and Guidelines.   
Some of the UI pattern collections (Duyne et al., 2003, 
Tidwell, 1998) included questions for choosing patterns 
when solving a specific problem.  These collections were 
used to analyse existing interfaces to investigate the 
usability of the resulting models. One outcome was the 
realisation that the links guiding selections of further 
patterns were confused, leading to the research question 
guiding this project; what attributes define a quality UI 
pattern language?  Few studies have considered the 
validity of a pattern language but analysis of those found 
led to the identification of potential questions for testing 
the validity of a pattern language.   
These questions were used to guide case studies 
investigating a number of existing UI pattern collections.  
An analysis of these lead to a rewording of the questions 
and an initial attempt at determining whether the tests 
posed by the questions are realistic when applied to a 
specific collection of patterns. 

4. What is a UI pattern language?   
Appleton (1997) has provided a detailed discussion of 
pattern related terminology.  He defines a pattern 
language as: 
“…a collection of such solutions [patterns] which at 

every level of scale, work together to resolve a complex 
problem into an orderly solution according to a 
predefined goal.” (p 16) 

Appleton highlights the underlying hierarchical nature of 
a pattern language based on some identifiable scale 
factors.  As well, he identifies the concept of the shared 
objective or predefined goal, which could identify a root 
for the language map.  This definition indicates that the 
links between the patterns should exhibit some 
recognisable harmony.  The definition provided by 
Salingaros (2000) also highlights these “inherent 
structures and relationships”.  He considers it is the 
connectivity rules between patterns that make a collection 
of patterns into a language: 
“A pattern is an encapsulation of forces; a general 

solution to a problem.  The ‘language’ combines the 
nodes [patterns] together into an organizational 
framework” (p 154) 

Pemberton (2000) when discussing pattern languages 
again identifies connectivity between patterns as the 
attribute that adds power to a pattern language: 
"The fact that individual patterns are integrated into 

pattern languages … enables the collection for patterns 
to operate generatively, each pattern showing the sub-
patterns required to resolve more detailed design issues, 
in the context of the larger design" (p 5) 

Borchers (2001) presents a formal definition for a pattern 
language, which emphasizes connectivity. He agrees with 
Pemberton and Salingaros with the observation that: 
“The context, together with the references, represents the 

added value that turns a loose collection of patterns into 
a pattern language.” (p 71) 

The different definitions all indicate that the linking 
between patterns on one level can form a higher-level 
pattern that includes information not available from the 
individual patterns alone.  This additional information is 
not available to the constituent patterns of the lower level.  
Grouping that links lower-level patterns to higher-level 
patterns creates a hierarchy of scale.  This implies that it 
should be possible to describe a user interface at different 
levels within a UI pattern language hierarchy.  That is, at 
different scales rather like a road map can be either low 
level showing just the main highways, or high level 
showing details of the transport network from highways 
down to walking tracks. 
Salingaros (2000) makes the comment that: “A loose 
collection of patterns is not a system, because it lacks 
connections” (p 154) implying that the quality and nature 
of the connections between patterns is what determines 
whether a collection is a language or not.  

5. Validating UI Pattern Languages 
Salingaros (2000) identifies two forms of connectivity 
when discussing pattern languages external connectivity 
and internal connectivity.  These two forms of connection 
are central to validating a pattern language.  
External validation - Considers the relationship the 

language has to human function or behaviour, or 
the “feel right” factor.   

Internal validation - Examines the connectivity between 
the levels in the language’s hierarchy to determine 
the “ability to combine” to describe higher order 
patterns.  

When discussing external validity Salingaros (2000) 
implies that the language has internal validity.  External 
validation is related to the 'Value System" identified by 
Fincher (1999), which refers to that attribute of a pattern 
language that "is reflected by, and embodied in, their 
sense of audience" (p 2).  For user interfaces there are 
two obvious audiences, UI designers and the user group 
that will work with the resulting system.  If the language 
has external validity then the reader should recognise this 
if they: Approach the language from the bottom-up; can 
progressively build up in their mind the connectivity map 
from the small to the large in a natural progression; feel a 
sense of connection with the lower order patterns, 
because these patterns relate to their own experience. 
This human dimension is a defining attribute of 
Alexander's pattern language (Alexander et al., 1977) that 
Salingaros (2000), when discussing external validation, 
highlights with the observation:   
“… what demonstrates the patterns’ inevitability is their 

connection to fundamental patterns of human behaviour 
and movement” (p 153).   

Interacting with a computer via a user interface is a 
human activity and the association identified within the 

92 Ex_1005: Page 2 of 10f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

architectural domain may also be present within the UI 
domain.  In more pragmatic terms external validation can 
be discussed in the terms identified by the CHI2002 
workshop participants as suitable for evaluating a pattern 
language: breadth, depth, applicability, clarity and 
convenience.   
Internal validation examines how related patterns are 
linked together.  A graph created by connecting up every 
pattern in a pattern language is referred to as the language 
map.  Salingaros (2000) makes the observation that a 
pattern language map is not a simple hierarchical tree 
structure as a pattern language may have more than one 
root, although he implies a sub-system within the 
language may culminate in a single root node. 
When discussing what characterises patterns and pattern 
languages have, Fincher (1999) identified five elements 
that need to be considered.  'Capture of Practice', 
'Presentation' and 'Abstraction' refer solely to patterns. 
The other two elements 'Value System' and 'Organising 
Principle’ are identified as attributes of a pattern 
language.  'The 'Organising Principle' refers to the way 
that patterns can be related to each other so that they can 
be arranged based on some recognisable scaling factor 
such as system level to widget level.  Whereas the ‘Value 
System’ relates to external validation 'The 'Organising 
Principle' relates to internal validation.  Salingaros (2000) 
confirms this relationship when he states that: 
“One of the principal methods of validating a pattern 

language is that every pattern be connected vertically to 
patterns on both higher and lower levels.” (p 156) 

Borchers (2001) when defining a pattern language 
identifies the context of a pattern as those patterns that 
reference it.  This indicates that languages defined under 
Borchers definition should have the same map for the 
context links as for the reference links.  As he says ‘the 
context is the “inverse function” of the references’ (p 72).   
This observation is consistent with the research by 
Salingaros (2000), which shows that internal validity of a 
pattern language can be established by examining the 
connectivity between patterns. He says: 
“Graph theory visually illustrates some key aspects of 

pattern languages: how patterns combine to form higher-
level patterns containing new information; how linked 
patterns exist on different levels; how to find patterns in 
a new language; and how a pattern language is validated 
through its connective structure independently of each 
individual patterns validity” (p 149) 

The Alexandrian pattern language (Alexander et al., 
1977) has different context and reference maps, which 
Borchers (2001) explains is because: 
“Alexandrian patterns are, above all, a didactic medium 

for human readers, even (and especially) for non-
architects.  To Alexander this quality has priority over a 
mathematically correct representation” (p 22) 

Salingaros (2000) does not draw attention to the 
inconsistencies in the Alexandrian pattern language but 
he does indicate that languages are developing and 
evolving and may contain inconsistencies at any point in 
time.  He discusses how languages may evolve indicating 

that as a language matures the connections within the 
levels increase and a language: 
“… develops coherence overtime [and] may also develop 

a degree of self-similar scaling as a result of the 
connections across levels” (p 159).   

He comments that:  
“The most elegant complex systems are nearly (but not 

perfectly) ordered.” (p 159) 
Using Salingaros’s implication that the richness of 
connections between levels and within levels in a pattern 
language is a factor in determining a language’s internal 
validity, by developing the map of an existing UI pattern 
collection the software engineer should get an indication 
as to the status of the collection.  It should be possible to 
organise nodes within the map into a hierarchy where the 
higher-level patterns provide a conceptual description of 
an interface but also provide the context in which the 
lower level patterns could be used.  Reading across levels 
could provide descriptions at different degrees of 
granularity.  Links within levels may indicate that a 
language is developing maturity as "[readers] can better 
understand a language if it has organisation at different 
levels" (Pemberton, 2000), p 146). 
Both Salingaros and Borchers identify spatial hierarchies 
based on size from small-scale objects up to larger-scale 
ones.  Borchers says that there are two spatial dimensions 
possibly three that need to be considered in UI pattern 
hierarchies.  Both writers identify a temporal hierarchy 
that relates patterns that follow each other in time (i.e. an 
object based on one pattern can not be accessed before an 
object based on a proceeding pattern has been accessed).  
Each of the different types of hierarchy may provide an 
alternative view of participating patterns thereby 
providing alternative views of the user interface like a 
topographical map is different from a cadastral map. 

6. Determining internal validation 
From the preceding discussion it is clear that to determine 
whether a collection of patterns is a pattern language first, 
its internal validity should be evaluated.  Six questions 
have been proposed as forming the basis of 'tests' that can 
be applied to a pattern language to determine whether a 
language has internal validity. The test questions are: 
Test 1- Do the reference and context links between the 

patterns form a map? (Borchers, Fincher, 
Pemberton, Salingaros) 

Test 2- Does the context map match the reference map? 
(Borchers, Salingaros) 

Test 3- Can the map be ordered into a hierarchy of levels? 
(Borchers, Fincher, Pemberton, Salingaros) 

Test 4- Can the levels be used to describe a user interface 
at different degrees of granularity (scale)? 
(Fincher, Pemberton, Salingaros) 

Test 5- How 'rich' are the links within each level of the 
hierarchy? (Salingaros) 

Test 6- Can the patterns be organised by different 
classification systems thereby providing 
alternative viewpoints?  (Borchers, Salingaros) 

The first four of these test questions can be used to 

93 Ex_1005: Page 3 of 10f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


 

 

determine whether a collection of patterns has developed 
sufficiently to be classed as a pattern language.  Once 
internal validation has been established then external 
validation can be investigated. 

7. Internal validation of Pattern Collections 
The six tests were used to evaluate three existing 
collections of patterns.  Two of these pattern collections 
are maintained by van Welie, the graphical user interface 
pattern collection (GUI collection) and the web 
interaction design patterns collection (WEB collection). 
The third collection is Borchers' human computer 
interface pattern collection (HCI collection).  
These collections were selected because they contain a 
manageable number of individual patterns and are 
representative of the types of user interface pattern 
collections studied so far.  van Welie's (2001) web site 
contains three related pattern collections.  These 
collections are works in progress, updated at irregular 
intervals.  Not only are new patterns added to the 
collection, the format used to describe the patterns has 
been modified over time.   Borchers’ classifies his 
collection as a pattern language but van Welie refers to 
his as pattern collections. 

7.1. Validating the GUI Pattern Collection 
The GUI collection developed by van Welie contains 
twenty-seven patterns.  These have been arranged, into 
six groups: Modes, Navigation, Guidance & Feedback, 
Presentation, Physical interaction and Selection. The 
context section of each pattern defines the functional 
situation in which the pattern can be used without 
referencing higher-level patterns.  Context and reference 
patterns are identified in the "Related patterns" section. 

Automatic 
mode switching

Modes

Helping Hands

Mode Cursor

Sheild

Guidance/
Feedback

Hinting

Warning

Progress

Undo

Grid
Layout

Presentation

Magnetism

Selection

Continuous
Filter

Contextual
Menu

Focus

Unambiguous
Format

Preview

Setting
Attributes

Command
Area

Managing
Favourites

Preferences

Wizard

Navigation

Softkeys

Navigating
Spaces

Container
Navigation

List
Browser

Like in the
real world...

Physical
interaction

Media Slot

Automatic 
mode switching

Modes

Helping Hands

Mode Cursor

Sheild

Guidance/
Feedback

Hinting

Warning

Progress

Undo

Grid
Layout

Presentation

Magnetism

Selection

Continuous
Filter

Contextual
Menu

Focus

Unambiguous
Format

Preview

Setting
Attributes

Command
Area

Managing
Favourites

Preferences

Wizard

Navigation

Softkeys

Navigating
Spaces

Container
Navigation

List
Browser

Like in the
real world...

Physical
interaction

Media Slot
 

Figure 1 – Language Map for GUI collection. 
(Website accessed – August 2003) 

A language map for the GUI patterns was created from 
the links mentioned in the context and reference sections 
(Figure 1).  There are few linkages between the individual 

patterns; therefore the collection does not pass the first 
test.  This analysis indicates that the GUI collection is, as 
the author indicates, not mature enough to be referred to 
as a pattern language. 

7.2. Validating the WEB Pattern Collection 
In the WEB collection the context links are defined in a 
section labelled "Use when" and the reference links are 
found in the section labelled "related patterns".  At the 
time the collection was accessed there were fifty-five 
defined patterns plus fifteen potential patterns that had 
not yet been defined.  The patterns were organised into 
seven groups based on functionality.  This collection was 
analysed using a similar approach to that used for the 
GUI collection.  The language map is shown in Figure 2.  
Potential patterns are represented by dashed rectangles 
with names in italics.  Nearly half of the fifty-five fully 
defined patterns are not linked into the language map; 
therefore the collection fails the first test.  
Three different types of link were identified in Figure 2 
from the context and reference links: 
1. Links just mentioned in the context section are 

shown as dotted-lines with arrows. 
2. Links just mentioned in the reference section are 

shown as dashed-line s with arrows. 
3. Links identified in both sections are shown as solid-

lines with arrows.  
All links would be represented by solid lines if the 
context map and the reference map matched, as required 
to pass Test 2.  Only two matches were found so the 
second test also failed. 
A second language map was created for this collection 
including all links mentioned in each pattern's definition 
(Figure 3).  The direction of a link was determined from 
the context within the definition.  Only six patterns 
remained unlinked on this map therefore it may pass Test 
1 if the pass condition is relaxed.  Matching the context 
and reference maps is not possible, as the current 
descriptions do not clearly identify the context and 
reference links.  Therefore Test 2 must fail. 
Examining both potential language maps for the WEB 
collection indicates that there is no one pattern that could 
become a root node for a hierarchical structure. The seven 
groups that have been used to organise the patterns may 
become recognised levels within a hierarchy but as yet 
only sub-trees and linked lists of patterns can be 
identified.  Therefore the collection does not pass Test 3 
and it follows that it is inappropriate to apply Test 4.  
The links between patterns within the classification 
groups may denote a degree of richness developing 
within levels of the collection, indicating that in the future 
Test 5 may be met.  It is also possible that the patterns 
classified as 'Site Types' could become roots of an 
interlocking set of hierarchies, which indicates that Test 
6, may eventually be passed.  
 

94 Ex_1005: Page 4 of 10f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


