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To optimize an iformat design for a particular application
program, the iformat system sclects custom templates from
operation issue statistics obtained from scheduling the pro-
gram. The iformat system then generates an iformat based
on a combination of the custom templates and an abstract
ISA specification.

The sysiem uscs a re-targetable compiler to generate the
operation issues statistics for a particular processor design.
As shown in FIG. 12, a module called the MDES exiractor
560 generates a machine description in a format called
MDES.

This machine description retargets the compiler 564 to the
processor design based on its abstract ISA specification 510
and datapath specification 514, The compiler 564 then
schedules a given application program 566 and generates
operation issue statistics 568 regarding the usage of the
operation groups in the instruction format templates. The
system then uses the frequency of use of the operations in
each teniplate by the application program to compute cus-
tomized templates as shown in step 569. The customization
process is automated in that it selects custom templates by
minimizing a cost function thal quantifies the static or
dynamic code size and the decode cosl (e.g., measured in
chip area),

The process of selecting instruction templates in the
iformat based on scheduling statistics may be conducted as
a stand-alone process, or may be conducied in conjunction
with the automated iformat design process. In the latter case,
it may be used to provide an initial input specification of the
desired ILP constraints to the aulomated iformat design
process, Additionally, it-may be used to optimize an existing
iformat design.

The system may also perform additional optimization by
using variable-length field encodings to further reduce the

instruction size. These optimized designs can lead to dra- 3

matic reductions in code size, as shown in lhe defailed
description below.

7.2 tmplementation of the Input Specification

The principal mput of the iformat design process is an
Abstract Instruction Set Architecture (ISA) specification
510. In the current implementation, the wser or another
program module may provide this specification as an Arch-
Spec in texual form.

An ArchSpec reader module converts the textual form of
the ArchSpec to an abstract ISA spec data structure, which
contaios 2 machine-readable set of tabular parameters and
consiraints, including register file entries, operation groups,
and exclusion/concurrency relatiocnships.

7.3 Instruction Syntax

VLIW processors issue instructions having multiple
instruction fields, An instruction field is a set of bit positions
intended to be interpreted as an atomic unit within some
instruction context. Familiar examples are opcode fields,
source and destination register specifier fields, and literal
fields. Bits fromn each of these ficlds flow from the instruc-
tion register (o control potts in the data path. For example,
opcode bils flow (o functional units, and source register bits
flow 10 register file read address ports. Another common
type of instruction field is a select field. Select fields encode
a choice between disjoint alternatives and comnnumicate this
context to the decoder. For example, a select bit may indicate
whether an operand field is to be interpreied as a register
specifier or as a short literal value.

An operation is the smallest unit of execution; 1t com-
prises an opeode, source operands, and destination operands.
Each operand may support one or more operand fypes. A set
of possible operand types is called an io-set. Alist of i0-sets,
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one per operand, form an operation’s jo-formal. For
example, suppose an add operation permits its left source
operand to be either an infeger register or a short hteral
value, and suppose its right source and destination operands
source and sink from integer registers. The corresponding
io-sets are {gpr, s}, {gpr}, {gpr}. The io-format is simply
this list of io-sets, which are abbreviated in shorthand
notation as follows:

gDr S, gpr : EpI

Closely related operations such as add and subtract often
have the same io-format. One reason for this is that related
operations may be implemented by a single, multi-function
unit (macro-cell). As discussed above, io simphfy the
instruction formal design process, related operations are
grouped into operation groups.

The instruction format assigns sets of op groups {called
super groups) to slots of an instruction. The processor issues
operations within an insiruction from these slots concur-
rently. To fully specify an operation, the instruction format
specifies both an ap-group and an opcode (specific to that
opgroup). In effect, this organization factors a flat opcode
name space info a multi-tier encoding. In rare cases, this
factorization may increase the encoding length by one bit
per level. However, it should be noted that this approach
does not preclude a flat encoding space: placing each
operation in its own op-group eliminates the factorization.
More importantly, hicrarchical encoding often gives the
same benefifs as variable-length field encoding, but is sim-
pler to implement. :

7.4 The Instruction Format Tree

In a flat, hotizontal instruction format, all instruction
fields are encoded in disjomt positions within a single, wide
Instruction. A hierarchical instruction format altows exclu-
sive instruction fields (those that ate not used simultanecusly
in any instruction) to be encoded in overlapping bit
positions, thereby reducing the overall instruction width. o
the instruction format design system shown in FIG. 12, the
hierarchical relationship between instruction fields is repre-
sented by an fnstruction format tree {if-tree). The leaves of
an if-tree are instruction fields; where each leaf points to a
control port in the data path, such as a register file address
port, or an opcode input of a FU,

FIG. 13 illustrates the structure of an if-tree used in the
current implementation. The overall structure of the tree
defines how cach instruction is built. Each part of the tree
represents a node, with the lowest nodes (the cut-off-box-
shaped nodes) forming the tree’s leaves. The oval-shaped
podes are “OR” nodes, while the boxed-shaped nodes are
“AND” podes. The OR nodes denote a selection between the
children of the node such that only one choice {one branch)
extends o the next level. Conversely, an AND vode allows
alt of the components of the node to form new branches.
Stated another way, cach level of the tree is either a
conjuniction {AND) or disjunction (OR) of the subtrees at the
lower level,

The root node 632 of the tree is the overall machine
instruction. This is an OR node representing a choice of
instruction templates. A template select field (template ID) is
used to identify the particular template. This select field is
illustrated as the leaf node labeled “sieer” connected to the
instruction node 632.

Individual instructions are based on instruction templates,
which are the AND-type child nodes of the root node (See,
e.g., templates 634 and 636). The templates each encode the
sets of operations that issue concurrently, Since the number
of combinations of operations that may issuc concurrently is
astronomical, it is necessary to impose some structure on the
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encoding within each template. Hence, each template is
partitioned info one or more operation issuc slots. Every
combination of operations assigned (o these slols may be
issued concurrently.

In addition, each template has a consume Lo end-of-packet
bit field (CEP) that indicates whether the next instruction
directly follows the current mstruction or it starts al the next
packet boundary. This capability is used o ahign cerlain
instructions (e.g. branch targets) lo known address bound-
anies. Each template also specifies the number of spare bits
that may be used lo encode the number of no-op cycle to
follow the current instruction. Thesc spare bits may arise due
to a need for packet alignment or quantized allocation.

The next level of the tree defines cach of the concurrent
issue slots. Each slot is an OR node supporting a set of
operation groups, called a super group (i.e., nodes 638, 640,
642), that are all mutually exclusive and have the same
concurrency pattern. A select field chooses among the vari-
ous operation groups within a super group. Again, this select
field is illustrated as the leaf node labeled “steer” connected
to super group 640.

Below each super group lie operation groups as defined in
the input specification as described above. Each operation
group (e.g., operation group 643) is an OR node that has a
sclect field {“steer”) to choose among the various operation
formats supported by operation group. FIG. 13 shows this
situation where one operation format allows a literal field on
the left port, while the other allows it on the right port.

Each operation format {e.g., IO format descriptors 644,
646) is an AND node consisting of the opeode ficld 654, the
predicate field (if any) 656, and a sequence of source and
destination field types (shown as 10 sets 648, 660, 652). The
traditional (hre¢-address operation encoding is defined at
this level. '

Each 10 set is an OR node consisting of a singleton or a
set of instruction fields that identify the exact kind and
location of the operand, 10 sets with multiple choices (e.g.,
650) have a select field to identify which instruction field is
intended. For example, one of the 1O set nodes 650 repre-
sents a selection between mstruction fields 660, 662, which
is controlled via a multiplexor select field 664. The other JO
sets each have only one kind of field, and thus, have a single
child node representing that field {nodes 658, 666). The
instruction ficlds point to the datapath control ports 668.

In implementing an instruction format, one principal
design choice is whether to use a single, fixed-length instruc-
tion format, or allow variable-length instructions. The ifor-
mat design system supports both fixed and variable length
instructions. The use of variable-length instructions pro-
duces more-compact code but increases decode complexity.
The trade-off between code size and instruction decode
complexity is a primary design consideration. A single,
fixed-length instruction format simplifies decode logic and
the data path for dispersal of operations to funchonal units,
but it often results in poor code density, since the single
format must accommedate the worst-case (longest) instruc-
tion. For example, if the longest instruction in a fixed-length
instruction formal is 128 bits long, then all of the instruc-
tions in the instruction set must be 128 hits long. In order to
maintain a constant instruction length, many instructions
will require the use of wasted bits whose sole purpose is to
fill in unused space in the instructions, These wasted bits
lead to increased code size. Conversely, variable-iength
instruclions can accommodate both wide and compact,
restricled instruction formats without wasting bits, which
results in a reduction in code size. By using variable-length
instructions, the instruction formal can accommodate the
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widest instructions where necessary, and make use of
compacl, restricted instruction formats, such as instructions
that do not encode long literals.

F1G. 14 shows the format of an instruction and its
building blocks. At the heart of the instruction is an instruc-
tion template 670. An instruction lemplate encodes sets of
operations that issuc concurrently. Each template includes
multiple concurrent slots 672, where each slot comprises a
set of exclusive operation groups 674, Since all of the
operations in an operalion group arc exclusive, all of the
operations in cach slot are also exclusive. Each template
encodes the cross-product of the operations in each of its
slots.

The length of cach tewnplate is variable, depending in part
on the length and number of the slots in the template. For
example, some templates might have two slots, while other
templates might have three or four slots. Furthermore, the
width of cach slof will depend on the width of the widest
operation group within that slot, plus overhead, as shown in
the lower portion of FIG. 14. There is considerable similarity
and overlap among the opcodes within an operation group
by construction, so very little encoding space is wasted
within the operation group. But the opcode field now rmust
be split into an operation group selection field 676 and an
opcode selection field 678 within the operation group. With
logarithmic encoding, this requires at most one additional bit
for encoding the opcode. For example, 15 opcodes may be
encoded in 4 bits, while splitting them into 3 operation
groups of 5 opcodes cach requires [log,(3)]+{log,(5)]+5
bits. In addition, every slot has a reserved no-op encoding.

In cases where an op group has alternative operation
formats, there is yet another select field to sclect the opera-
tion format.

Each instruction also includes a consume to end-of-packet
bit 680, and a template specifier 682. The template specifier
identifies the template. An instruction format having t tem-
plates will need [log2(1)] bits to encode the template speci-
fier. This template specifier is in a fixed position within every
instruction, and from its value, the instruction sequencer in
the processor’s control path determines the overall instruc-
tion length, and thus the address of the subsequent instruc-
tion.

In the current implementation, the length of the instruc-
tion is variable, but cach length is a multiple of a pre-
determined number of bits called a quantum. For instance, if
the quantum is 8 bits, the length of the instruction could be
any number equal to or above somé minimum value (say 32
bits) that is divisible by 8, such as 64 bits, 72 bits, 80 bits,
etc. One or more dnmmy bits may be placed as appropriate
within the instruction to ensure that the length of the
instruction falls on a quantum boundary.

The iformat system builds the levels of the if-trec in an
incremental fashion. 1t consiructs the top three levels, con-
sisting of the iostruction, the templates, and the super groups
from the abstract 1SA specification, and optionally, custom
templates. It constructs the middle layers, including the
operation groups, the operation formals, and the field types
from the abstract [SA specification. Finally, it constructs the
instruction fields from the contents of the various field types
in the abstract ISA specification and the individual control
ports in the datapath that each ficld is supposed to control.

7.5 Instruction Templates

A primary objective of the instruction format design
system is to produce a sel of instruction templates that
support the encoding of all of the seis of operation groups
that can be issued concurrently. To iniliate the template
design process, the instruction format design system starts
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out with the architecture specification, which defines the
exclusion and concurrency coostraints for a particular
design. In one implementation, the architecture specification
dicectly provides the exclusion relationships between opera-
tion groups. However, the iformat design process needs to
know which opcodes can be issued concurrently, ie., the
concurrency relationship, rather than which opeodes must be
exclusive.

[n such an implementation, the concurrency relationship
is faken to be the complement of the exclusion relationship.
Ouae way of determining the concurrency relation is to take
the complement of the exclusion relations among opcodes
implied by the architeclure specification and treat each set of
concurrent opeodes as a potential candidate for becoming an
instruction template. While this provides an excellent start-
ing point, it unfortunately does nol Jead to a practical
solution, since the number of combinations of operations
that may issue concurrently quickly becomes intractable.
For example, a typical VLIW machiue specification may
include 2 integer ALUs, 1 floating point ALU and 1 memory
unit, with 50 opcodes each. In such a machine the total
number of distinct 4-issue instructions is S0°x50x50=6,250,
000. Specializing instructions to 1, 2, and 3-issue templates
would add many more. It is therefore necessary to impose
some structure on the encoding within each template.

Our current implementation uses several mechanisms to
reduce the complexity of the problem. These mechanisms
represent iformat design decisions and affect the final
instruction format layout and size. In most cases there may
also be a tradeoff between the simplicity and orthogonality
of the field layout (and hence the decode hardware) and the
size of the instruction template. These tradeoffs will be
described as the design process is detailed below.

As-a first axiom, all templates must satisfy an exclusion
constraint between two opcodes, ie. these opcodes must
never occupy separate slots in any template. This is because
these opcodes may share hardware resources during
execution, and therefore, the scheduler should never put
these opcodes together within the same iostruction. On the
other hand, a concurrency constraint between two opcodes
inplies that the scheduler is free to issue these opcodes
together in a single instruction and therefore there should be
some template in which these two opcodes are allowed to
occur together. In particular, that template may contain
additional slots that can be filled with noops, if necessary.
Therefore, it is unnecessary to generate a special template
for each concurrency constraint, but rathey all that is needed
is a set of templates that can effectively cover all possible
sets of concurrently scheduled opcodes.

The problem becomes greatly simplified when the con-
currency of operation groups is considercd instead of indi-
vidual opcodes. As introduced above, operation groups are
defined as sets of opcode instances that are generally similar
m nature in terms of their latency and connectivity to
physical register files and are expecied to be mutually
exclusive with respect to operation issue. All opcodes within
an operation group must be mutually exclusive by definition.
Furthermore, the mstruction format is designed so that all
opcodes within an operation group share the same instruc-
tion fields. Thus, the operation group is an obvious choice
for the primary building black for creating templates.

Another simplification involves classifying mutually-
exclusive operation groups into equivalence classes called
super groups based on the constraints provided in the
architecture specification. FIG, 15 illusirates an example that
shows how the operation groups (shown as letters) and
exclusion relations arc used in the template selection pro-

0183

5

10

20

30

40

46

cess. The process starts with the 1LP constraints 683, which
define a set of exclusion relationships 683 between operation
groups 684. From these exclusion relationships, the iformat
design system builds a boolean exclusion matrix 686. In the
exclusion matrix 686, the rows and columans are matched up
willl respective operation groups, e.g., “A” corresponds to
the operation group A, “B” corresponds (o the operation
group B, ete. The 1’s in the matrix indicate an exclision
relationship, while a blank indicates that the corresponding
operation groups may be issued concurrently. (The blanks
are aclually 0’s in the real matrix—blanks are used here for
clarity). The system then builds a concurrency matrix 688
from the exclusion matrix 686. The concurrency matrix 688
is the complement of the exclusion matrix 686. The “7”s
along the diagonal of the concurrency matrix 688 can be
inferpreted as either a 1 or 0.

The rows in the concurrency matrix determine a set of
concurrency neighbors for each operation group. A graphical
representation of the relationships defined by the concur-
rency matrix 688 is shown in concurrency graph 692, Each
node represents an operation group, while each connecting
“edge” represents a concurrency relation. A clique is a set of
nodes from a graph where every pair of nodes is connected
by an edge. For instance, there are 16 cliques in the
concurrency graph 692.

After the concurrency matrix is generated, the system
compares the rows in the concurrency matrix o identify
equivalent operation groups. The super groups are formed
from the equivalent operation groups. Two operation groups
are said to be equivalent if they have the same set of
concurrency neighbors, Note that two mutually exclusive -
operation groups that have the same set of concurrency
neighbors can replace cach other in any template without
violating any exclusion constraint and therefore can be
treated equivalently. Similarly, two concurrent operation

s groups that have the same set of concurrency neighbors

{other than themselves) can always be placed together in a
templale without violating any exclusion constraints and
therefore can be treated equivalently.

An example of pseudocode for performing equivalence
checking and partitioning into super groups is illustrated
below.

ProcedureBindSuperGroups {BitMatrix concur)
3 7 "concur” is a (aumNodes x aumNodes) boolean matrix

-

2 {{Firel, initialize supergroup hash table and id counter

kS HashMap;BitVector, inty SGmap

4 it Sgeount = G;

$: for {i = 0 to numNodes-1) do

6: Jlextract cach node’s vector of neighbors wf and wio self
7 BitVector AND-group = concur.row(i) .pef_bit(f);

8: BilVector OR-group = concur.row(i) .reset_bit(i);

o /Check for existing AND-style supergroup for this node
10: if {SGaup(AND-group) is already bound) then

11 SGkind(i) = SG-AND;

12: SGid(1) = SGmap (AND-group);

13 {iCheck for cxisting OR-style suporgroup for this nade
14 else if (SGmap{OR-group) is already bound) then

15: SGhind(i) = SG-OR

16: SGid(i) = 5Gmuap(OR-group);

17 /I veither neighbor relalion is present, start a new

18: fsupergroup with the new neighbor relations

19: else

200 SGid(i) = SGrount;

21 SGmap(AND-group) = SGmap(OR-group) = §(count;
22: SGcount = SGeount + 1,

23: endif

24 endlor

The equivalence check and the partitioning can be per-
formed quickly by employing the pigeon-hole principle. The
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algorithm hashes each operation group using its set of
neighbors in the concurrency matrix as the key. The neigh-
bor relations (neighbor keys) for each operation group (cach
row) are converted to bitvectors. The algorithm hashes in
two ways: once by treating cach operation group as concur-
rent with itself (AND-style) thereby finding equivalent con-
current operation groups, and the sccond time by treating
cach operation group as exclusive with itself (OR-siyle)
thereby finding equivalent exclusive operation groups, This
hashing approach results in two bitvectors for each operation
group—one with the “?” entry changed to a 1 (AND-style),
and one with the “?” entry changed to a 0 (OR-style}.

Bitvectors (operation groups) that hash to the same bucket
necessarily have the same concurrency neighbors and there-
fore become part of the same super group. For example in
FIG. 15, operation groups A, B, and C have the same
copcurrency neighbors and thus form the super group {A, B,
C}. The other super groups, {P, Q}, {X, Y}, and {M, N}, are
similarly formed. The sel of all distinct super groups is
defined by all the distinct neighbor keys. This partitioning
leads to a reduced-concurrency {super group) praph 694,
comprising the super groups and their concurrency relations.
Instruction (emplates 696 are obtained from the reduced
concurrency graph, as described below.

Each operation group identifies whether it is an AND-type
or OR-type super group. This information is used in the final
templale expansion, where each operation group from an
AND-type super group is given a scparate slot, while all
operation. groups from an OR-type super group are put into
the same slot,

In the concurrency matrix 690 shown in FIG. 15, the “?”
entries of the “A”, “B”, and “C” operation group bitvectors
have been changed to 07s so that their corresponding bitvec-
tors are identical. Thus, “A”, “B”, and “C” form an OR-type
super group {A, B, C}, and each operation group is placed
in the same slot.

FIG. 16 shows a case with an AND-type and an OR-type
super group. In order to obtain identical bitvectors, the “A”,
“B”, and “C" operation groups are treated as being concur-
rent with ihemselves. As a result, they form an AND-type
super group and are placed in separate template slots. In
contrast, the “M”, “N”, “X”, and “Y” operation groups are
freated as exclusive with themselves and form two different
sets of OR-type super groups {M,N} and {X,Y}, which each
occupy a single slot.

For a homogenous VLIW-style machine with multiple,
orthogonal functional units this process yields tremendous
savings by reducing the complexity of the problem to just a
few independent super groups. The resulting instruction
templates closely match super groups to independent issue
slots for each functional unit. Por a more heterogeneous
miachine with shared resources, the resulting number of
templates may be larger and the decoding is more complex
but partitioning the operation groups into super groups still
reduces the complexity of the problem significantly.

7.6 Concurrency Cligues and Templates

Once the super groups have been determined, cach clique
in the reduced concurrency graph is a candidate for an
instruction template since it denotes a set of super groups
that may be issued in paraliel by the scheduler. A clique is
a subgraph in Which every node is a neighbor of every other
node. Clearly, enumerating all cliques would lead to a large
number of templates. On the other hand, unless the concur-
Tency among super groups is restricted in some other way,
1t is necessary to choose a sel of templates that cover all
possible cliques of the super group graph to ensure that the
scheduler is not restricted in any way other than that
specified in the ArcliSpec.
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As an example, suppose super groups A, B and C only
have pairwise concurrency constraints, Le., {AB}, {AC},
and {BC}. These pairwise concurrencies can be covered in
one of two ways. First, the pairwise concurrency constraints
can be treated as three independent templates AB, AC, and
BC, each requiring two issne slats, A second possibility is lo
treat the pairwise concucrencies as being simultancously
coneurrent, thereby requiting only one template (ABC) with
three issue slots. Strictly speaking, this allows more paral-
lelism than what was intended. 1f the compiler never sched-
uled all three operations simultancously, the second design
would end vp carrying one noop in every insiruction thereby
wasting one-third of the program space. On the other hand,
the first design requires additional decoding logic to select
among the three lemplates and more complex dispersal of
the instruction bits to the various functional units.

In the present scheme, this tradeoff is made towards
initially choosing a reduced number of possibly longer
templates, This is partly due to the fact that the ArchSpec
does not directly specify concurrency in most instances, but
rather specifies exclusion relations among operation groups
that are then complemented fo obtain concurrency relations.
During the initial template design phase, choosing the maxi-
mally concurrent templates covérs all possible concurrency
relations with as few templates as possible.

The maximally copcurrent templates may be determined
by finding the cliques of the super group graph. An example
of a simple reduced super group concurrency graph is shown
in FIG. 17. The graph comprises super groups 1-7, and their
interconnecting edges. The maximal cliques for such a
simple graph can be determined by hand by simply identi-
fying sets of nodes that are completely connected-~that is
each node in a cligue must connect to the remaining nodes
in the clique. For instance, {1, 3, 7} is a clique, while {2, 4,
5, 6} is not (nodes 5 and 6 are not connected). In the
supergraph of FI1G. 6, there are seven maximal cliques, and
thus seven maximally concurrent templates.

It is necessary to use computational means to calculate the
cliques for more complex super group graphs. The instruc-
tion format designer uses the same approach for finding
cliques as the datapath synthesizer described above.

7.7 Sei-Up of Bit Allocation Problem

Once the templates are selected, the iformat system con-
structs the lower levels of the IF tree. The templates form the
upper level of the tree. For each of the operation groups in
a femplate, the system extracts the inputs and outputs for
each aperation based on their I/O formats in the abstract ISA
specification and adds this information to the 1F tree. Using
the extracted 1/0 formats, the system enumerates the mstruc-
tion fields for each of the operation groups associated with
the templates. Next, it builds field conflicts, partitions
instruction fields into superfields, and exfracts bit width
requirements.

7.7.1 Instruction Fields

As shown in F1G. 13, the instruction fields form the leaves
of the if-tree. Each instruction field corresponds to a data-
path control port such as register file read/write address
ports, predicate and opcode ports of functional units, and
selector ports of multiplexors. Each fleld reserves a certain
oumber of instruction bits to control the corresponding
control port.

The iformat designer assigns each field to a control port
by traversing the if tree to find the operation group associ-
aied with the field, and then extracting the functional unit
assigned to the operation group in the datapath specification.

The following sub-sections describe various kinds of
instruction fields. FIG. 20 is annotated with letters S, A, L,
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op and C to illustrale examples of the information flowing
from these fields in the instruction register to the control
ports in the data path.

Select fields (S). At cach level of the if-tree that is an OR
node, there is a select ficld that chooses among the various
alternatives. The number of alternatives is given by the
number of children, n, of the OR node in the if-tree.
Assuming a simple binary encoding, the bit requirement of
the select field is then log,(n) bils.

Different select ficlds are used to control different aspects
of the datapath. The root of the if-tree has a template select
field that is routed directly to the instruction unit control
logic in order to determine the template width, It also
specifies where the supergroup select fields are positioned.
Therefore, this field must be allocated at a fixed position
wilhin the iostruction. Together with the template select
fields, the select fields at super group and operalion group
levels determine how to interpret the remaining bits of the
template and therefore are routed to the instruction decode
logic for the datapath. The sclect fields at the level of field
types (10 sets) are used to control the mmltplexors and
tristate drivers at the input and output ports of the individual
functional units to which that operation group is mapped.
These fields select among the various register and literal file
alternatives for each source or destination operand.

Register address fields (A). The read/write ports of vari-
ous register files in the datapath need to be provided address
bits to select the register to be read or written. The number
of bits needed for these fields depends on the number of
registers in the corresponding register file.

Literal fields (L). Some operation formats specify an
immediale literal operand that is encoded within the instruc-
tion. The width of these literals is specified externally in the
ArchSpec. Dense ranges of integer literals may be repre-
sented directly within the literal field, for example, an
nteger range of =512 to 511 requires a 10-bit literal field in
2’s complement representation. On the other hand, a few
individual program constants, such as 3.14159, may be
encoded in a ROM or a PLA table whose address encoding
is then provided in the literal field. In either case, the exact
set of literals and their encodings must be specified in the
ArchSpec.

Opcode fields {op). The opcode field bits are used to
provide the opcodes to the functional unit to which an
operation group is assigned. It is possible to use the internal
hardware encoding of opcodes in the fupctional unit directly
as the encoding of the opcode field, in which case the width
of the opeode field is the same as the width of the opcode
port of the corresponding functional unit and the bits are
sleered directly to it. This mechanism may be used when all
the opcodes supported by a functional unit are present i the
same operation group or the same super group.

Under some templates, however, the functional unit
assigned to a given operation group may have many more
opcodes than those present within the operation group. In
this case, opcode field bits may be saved by encoding the
hardware opcodes in a smaller set of bits determined by the
number of opcodes in that operation group and then decod-
ing these bits before supplying to the functional uait. In this
case, the template and opgroup specifier bits are used to
provide the context for the decoding logic,

Miscellaneous control fields (C). Some additional control
fields are present at the instruction level that help in proper
sequencing of instructions. These consists of the consume to
end-of-packet bit (Bop) and the field that encodes the
number of no-op cycles following the current instruction.
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7.7.2 Computing Field Conflicts
Before performing graph coloring, the system computes
the pairwise conflict relation between instruction fields,
which are represented as an undirected conflict graph.
In the if-tree, two leaf nodes (instruction fields) conflict if
and only if their least-common ancestor is an AND node,
The syslem computes pairwise conflict relations using a
bottom-up data flow analysis of the if-tree. The procedure in
the implementation maintains a field set, F, and a conflict
relation, R. Sef F,, is the set of instruction fields 1n the sublree
rooted al node n. Relation R,, is the conflict relation for the
sublree rooted at node n.
The procedure processes nedes in boltom-up order as
follows:
leaf pode: At a leaf node, /, the field set is initialized to
contain the leaf node, and the conflict relation is empty.

or-node: At an OR-node, the field sel is the union of field
sets for the node’s children. Since an OR-node creates
po new conflicts between fields, the conflict set 15 the
union of contlict sets for the node’s children.

and-node: At an AND-node, the field set is the union of
field sets for the node’s children. Au AND-node creates
a new conflict between any pair of fields for which this
node is the least-common ancestor; 1.¢. there is a pew
conflict beiween any two ficlds that come from distinct
subtrees of the AND-node. Formally,

G= ) Uk pzeCyeli j+h

JESuGe

This method can be implemented very efficiently, by
noting that the sets can be implemented as linked lists.
Because the field sets are guaranteed to be disjoint, each
union can be performed in constant time by simply linking
the children’s lists (each union is charged to the child).
Similarly, the initial union of children’s conflict scts can be
dope i constant time {charged fo each child). Finally,
forming the cross-product conflicts between fields of distinct
and-node children can be done in time proportional to the
pumber of confliets. Since sach conflict is considered only
once, the lotal cost is equal to the total number of conflicts,
which is at most n°. For an if-tree with n nodes and E
conflicts, the overall complexity is O(n+E) time.

7.7.3 Assigning Field Affinities

As introduced above, the iformat system is capable of
aligning instuction fields that correspond lo the same con-
trol port to the same bit position in a process called affinity
allocation. Such alignment may simplify ihe multiplexing
and decoding logic required to control the corresponding
datapath control ports since the same justruction bits are
used under different templaies. On the other hand, such
alignment may wasle some bits in the template thereby
increasing its width.

In order to make use of affinity allocation, the iformat
designer groups instruction fields that poiat to the same
datapath control port into a superfield. All instruction fields
within a superfield are guaranteed not to conflict with each
other since they use the same hardware resource and there-
fore must be mutually exclusive.

‘The superfield partitioning only identifies instruction
fields that should preferably share instruction bits. However,
sometimes it is deemed essential that certain instruction
flelds must share the same bits. For example, if the address
bits of a register read port are aligned to the same bit
positions under all templates, then these address bits may be
stecred direetly from the instruction register to the register
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file without requiring any control logic to select the right set
of bits. This forced sharing of bit positions can avoid the
need for a multiplexor in the critical path of reading oper-
ands out of a register file, thereby enhancing performance.
To handle such a constraint, the iformat system allows a
user or other program module to specify a subset of fields
within a superfield that must share bits. One way to specify
this is in the form of a level mask that identifies the levels
of the if-tree below which all instruction fields that are in the
same superfield must share bit positions. This mask is a
parameter to the bit allocation process described in the next
section.
7.8 Resource Allocation
Once the instruction ficlds have been assigned to the
leaves and the pairwise conflicts have been determined, we
are ready to begin allocating bit positions to the instruction
fields. 1n this problem, instruction fields are thought of as
resource requesters. Bit positions in the instruction format
are resources, which may be reused by mutually exclusive
instruction fields. Fields required concurrently in an instruc-
tion must be allocated different bit positions, and are said to
conflict. The resource allocation problem is to assign
resources to requesters using a minimum number of
resources, while guarantecing that conflicting requestors are
assigned different resources. The current implementation of
resource allocation uscs a variation of graph coloring.
.Once the if-tree and instruction field conflict graph are
built, the iformat system can allocate bit positions in the
instruction format to instruction fields. Pseudocode for the
resource allocation is shown below:
ResourceAlloc(nodeRequests, conflictGraph)
// compute resource request for each node+neighbors
foreach (node e conflictGraph)
Mark(node)=FALSE;
TotalRequest(node)=Request(node)+Request
(NeighborsOf(node));
// sort nmodes by increasing remaining total resource
request
// compute upper-bound ou resources needed by alloca-
tion resNeeded=0; Stack=EMPTY;,
for (k from 0 to NumNodes(conflictGraph))
find (minNode € unmarked nodes) such that
TotalRequest(ininNode) is minimum;
Mark(minNode)=TRUE;
push(minNode,Stack);
resNeeded=max(resNeceded, TotalRequest:
(minNode));
foreach (nhbr € NeighborsOf(minNode))
TotalRequest(nhbr) -=Request(minNode);

. . . 5
// process nodes in reverse order (i.e., decreasing total

request)
while (Stack is not EMPTY)

node=pop(Stack);

AllResources={0 . . . resNeeded-1);

// available bits are those not already allocated to any
neighbor

AvailableRes(node)=AllResources-AllocatedRes
(NeighborsOf(node));

// select requested number of bits front available posi-

tions
// according to one of several heuristics
AllocatedRes(node)=Choose Request(nodc) resources
from AvailableRes(node)
RH1: Contiguous Aflocation
RH2: Affinity Allocation
return resNeeded
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In the above pseudocode, the total resource request for a
node and its neighbors is computed by the first loop. The
beuristic repeatedly reduces the graph by eliminating the
node with the current lowest total resource request (node
plus remaining neighbors). At each reduction step, we keep
track of the worst-case resource limit needed to extend the
coloring. If the minimum total resources required exceed the
current value of k, we increase k so that the reduction
process can continue. The graph reduction is perforined by
the second loop. Nodes are pushed onto a stack as they arc
removed from the graph. Once the graph is reduced to a
single node, we begin allocating bit positions (resources) to
nodes. Nodes are processed in stack order, le. reverse
reduction order. At each step, a node is popped from the
stack and added to the current conflict graph so that it
conflicts with any neighbor from the original graph that is
present in the current conflict graph. The existing allocation
is extended by assigning bit positions to satisfy the current
node’s request, using bit positions disjoint from bit positions
assigned to the current node’s neighbors.

7.8.1 Allocation Heuristics

During bit allocation, the current node’s request can be
satisfied using any bit positions disjoint from positions
allocated to the node’s neighbors in the current conflict
graph. The current implementation applies several heuristics
to guide the selection of bits.

Left-most allocation. The number of required bit positions
computed during graph reduction is the nurber needed to
guarantee an allocation. In practice, the final allocation often
uses fewer bits. By allocating requested bits using the
left-most available positions, we can often achieve a shorter
struction format.

Contiguous allocation. Since bit positions requested by an
instruction field generally flow to a common control point in
the data path, we can simplify the interconnect layout by
allocating requested bits to contiguous positions.

Affinity allocation. Non-conflicting instruction fields may
have affinity, meaning there is an advantage to assigning
them the same bit positions. For example, consider two
non-conflicting ficlds that map to the same register file read
address port. By assigning a single set of bit positions to the
two fields, we reduce the interconnect cornplexity and avoid
muxing at the read address port. As discussed earlier, each
node has a set of affinity siblings. During allocation, we
attempt to allocate the same bit positions to affinity siblings.
This heuristic works as follows. When a node is first
allocated, its allocation is also tentatively assigned to the
node’s affinity siblings. When a tentatively allocated node is
processed, we make the tentative allocation permanent pro-
vided it does not conflict with the node’s neighbors’ allo-
cations. If the tentative allocation fails, we allocate available
bits to the current node using the previous heuristics, and we
then attempt to re-allocate all previously allocated affinity
siblings to make use of the current node’s allocated bils.
Because nodes are processed in decreasing order of conflict,
tentative allocations often succeed.

A heuristics diagram for the resource allocation is as
follows:
if node is tentatively allocated then

make tentative allocation permanent, if possible
if node is (still) not allocated then

try to use a sibling allocation
if node is (still) not allocated then {

allocate either contiguously, or left-most available

for each sibling of node {

if sibling is allocated then
try to use node’s allocation in place of existing
allocation
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eise
tentatively allocate sibling, using node’s allocation
} /i for

7.9 Template-based Assembly

Once the complete structure of the instruction templates
has been determined, we can proceed o assemble the code.
All subsequent discussion is essentially to improve the
quality of the templates, In this section, we briefly outline
the process of assembly with a given set of templates.

Aprogram that has been scheduled and register-allocated
cousists of a sequence of operations cach of which has been
assigned a time of issue. Multiple operations scheduled
within the same cycle need to be assembled into a single
instruction. Any instruction template that covers all the
operations of ap instruction may be used 1o assemble that
instruction. Clearly, the shortest template is preferred to
avoid increasing the codesize unnecessarily since longer
templates would have to be filled with noops in the slots for
which there are no operations in the current instruction.

The process of template selection for an instruction has
the following steps. First, the specific compiler-opcode of
each scheduled operation in the instruction is mapped back
{0 its operation group. Each operation group keeps a record
of the set of templates that it can be a part of. Finally, the
intersection of all such sets corresponding to the operation
groups prescnt in the current instruction pives the set of
templates thal may be used to encode the current instruction.
The shortest template from this set is chosen for assembly.
The exact opeode and register bits are determined by map-
ping the compiler mnemonics to their machine encodings by
consulting the if-tree.

7.10 Design of Application-specific Instruction Formats

As discussed above, the initial design produces a minimal
set of maximally concurrent instruction templates that cover
all possible concurrency relations imphied by the ArchSpec.
In practice, this tends to produce a few long templates since
the processor designs we are inferested in have quite a bit of
expressible instruction-level parallelism (ILP). But not all
that parallelism is used at all times by the scheduler. If we
assemble programs using only these long templates, a lot of
noops would have to be inserted in the low [LP parts of the
code.

One fix to this problem is to customize the templates (o
the program being compiled, There are several aspects to 4
such customization: ‘

(1) Identify the most frequently used combinations of
operatious in the program and design shorter templafes
for themn which allow fewer concurrent operations in
them. An extension of this view also takes into account
the most frequently used operation formats and creates
new opgroups thal incorporate just those.

(2) Use varable length encoding wherever there is a need
to select one out of many choices in the instruction
formal. We may use variable length template selection 5
bits according to the frequency of use of cach template.
Likewise, different operation groups within a slot and
different opcodes within an operation group may be
given a variable length encoding according to their

N
=]

frequency of use. There is, of course, a tradeoff 69

belween the codesize reduction and the increase in
decode complexity.

(3) Sometimes, the decode complexity may be improved
dramatically by doing affinity-based allocation of simi-

lar instruction fields across templates. This reduces the 6

degree of multiplexing needed to route the same infor-
mation represented at different positions in different
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templates. This amounts to reordering the positions of
various operation groups within these templates.

(4) The insiruction fetch and decode hardware is usually
designed with a certain quantum of iostruction infor-
mation in mind. A guantum is a unit of data (c.g., an
integer multiple of bytes) used to specify the width of
the data path in the instruction fetch and decode hard-
ware. Rounding the instruction templates up to the next
quaatum vsually frees up extra bit space. One or more
of the above strategies can then take advantage of this
extra bit space without increasing the width of the
isstruction.

7.11 Schedule-based template customization

The instruction format information is not needed until the

15 program is ready to be assembled. The compiler is driven by

a machine-description that only depends on the specified
ArchSpec and the structure of the datapath. This implies that
the exact schedule of the program may be used to customize
the various available templates. To custornize templates for
a particular application program, the iformat system uses
operation issue statistics from a scheduled version of the
program to determine the frequency of use of the various
combinations of operatiops. It then selects frequently used
combinations of operations as possible candidates for new
templates. Finally, it performs a cost/bencfit analysis to
select mew “custom” templates.

FIG. 18 is a flow diagram illustrating a process of
selecting custom templates from operation issue statistics.
The process begins by exfracting usage statistics from a
scheduled application program 760. This is done by map-
ping the scheduled opcodes of an instruction back (o their
operation groups as shown in step 702, The process then
generates a histogram of combinations of operation groups
from the program as shown in step 704,

A slatic histogram records the frequency of static occur-
rences of each combination within the program and may be
used to optimize the static codesize. A dynamic histogram
weights each operation group combination with its dynamic
exccution frequency and may be used to improve the
instruction cache performance by giving preference (o the
most frequently executed sections of the code. One imple-
mentation uses the static histogram in the optimization o
give preference to the overall stalic code size. In alternative
implementations, the dypamic histogram or both the
dynamic and static histograms may be used to optimize the
dynamic code size of the combined dynamic/static code
size, respectively.

Based on the frequency of use data in the histogram, the
customization process selects combinations of opgroups as
potential candidates for templates (706} and evaluates their
cost/benefit (708) in terms of code size/decode complexity,
which is quantified in a cost function. The process iteratively
selects a set of templates, evaluates their cost/benefit, and
ultimately refurns a set of custom templates that meet a
predetermined optimization crteria (710, 712). As noted
above, the criteria may include, for example, a minimized
static or dynamic code size or a minimized code size and
decode complexity. An example of this criteria is discussed
below. .

In the current implementation, the problem of determin-
ing custom templates is formulated as follows. Tet us
assume that Ty, . . ., T, are the instruction templates that are
required to conform with the ArchSpec. Suppese C,, ..., C,,
are distinct combinations of operation groups occurring in
the program. Let the width of each combination be w, and
its frequency of eccurrence be f. Also, in case of uvopli-
mized assembly, suppose each combination C; maps fo an
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initial terplate T; with width v;. Assuming that variable

length encoding is not used for the template selection field,
the initial size of the program is,

W= Z Ji-(vi + Pogynl)

=1

Now supposc we include C; as a custom template. This is
taken to be in addition to the initial set of teraplates since
those must be retained to cover other possible concurrency
relations of the machine as specified in the ArchSpec. The
additional template has a smaller width w, but it increases
the size of the template selection ficld (and hence the decode
logic). The other significant increase in decode cost is due to
the fact that now the same operation may be represented in
two different ways in the instruction format and hence the
instruction bits from these two positions would have to be
multiplexed based on the lemplate selected, This cost may
be partially or completely reduced by performing affinity
allocation as discussed above.

If X, represents a 1/0 varable denoting whether combi-
nation C; is included or not, the optimized length of the
program is denoted by,

3

Wz S _{;-(X;vw;+(1—X;)-v;+[logg(n+z X}

W

s

= f,~(v;-)(,>-(v.~—w;)+|’lo@(n+z X;)])

It is clear that we should customize all those operation
group combinations into additional templates that provide
the largest weighted benefit until the cost of encoding
additional templates and their decoding cost outweigh the
total benefits. One possible strategy is to pick the k most
beneficial combinations where k is a small fixed number
(e.g. k<16). The decode complexity directly impacts’ chip
arca needed for decode logic. With an increase in the number
of templates, the complexity of the decode logic lends to
grow, unless affinity constraints are used to align operation
group occurrences from different templates to the same
templale slots. The chip area occupied by selection logic
may be quantified as another component of the cost function.

7.12 Variable Length Field Encodings

Variable length ficld encoding is an important technigque
for reducing the overall instruction format bit length. The
simplest use of variable leugth fields is in encoding a
sieering field that selects one of a set of exclusive fields of
differing lengths. For example, the instruction formats have
an opgroup steering field to select ape of many epgroups
available within a single issue slot. Suppose we have 32
opgroups available within a particular issue slot, and that the
opgroups’ encodings require lengths from 12 to 29 bits. With

fixed-length encodings, we require an additional 5 bits to 3

encode (lie opgroup selection, bringing the overall size of the
issue slot to 34 bits. Using a variable-length encoding, we
can allocate short encodings to opgroups having the greatest
overall width, while using longer encodings for opgroups
having smaller width. Provided there is enough “slack” in
the shorter opgroups to accommodale longer encodings, the
overall bit requirement can be reduced significantly. In our
example, we may be able to achieve a 30 bit encoding for the
issue slot.

One approach to designing variable-length encodings
uses entropy coding, and in particular, a variant of Hunffman
encoding. Entropy coding is a coding technique typically
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used for data compression where an input symbol of some
input length in bits Is converted to a vanable length code,
with potentially a different length depending on the fre-
quency of occurrence of the input symbol. Entropy coding
assigns shorter codes to symbols that occur more frequently
and assigns longer codes to less frequent codes such that the
total space consumed of the coded symbols is less than that
of the input symbols.

Let Fbe a set of exclusive bit fields, and let w, denote the
bit length of field 1 e F. An encoding for the steering ficld for
Fis represented as a Jabeled binary tree, where each element
of Fis a tree Jeaf. The edge labels (zero or one} on the path
from the root o a leaf i denates the binary code for selecting
i. A fixed-length steering code is represented by a balanced
tree In which every leaf s at the same deplh. Variable-length
encodings are represented by asymimetric trees.

For a tree T representing a code for F, we define d(x) to
be the depth of x, i.e., the code length for choice x, The total
cost of encoding a choice x is the sum of the bit requirement
for x and the code length for x:

cost{x)=d{x)+W(x}
The overall cost for encoding the set of fields F together

wilth its stecring field is equal to the worst-case single field
cost:

C(T) = max {cosrrix)}
xed

The goal is to find a code T of minimal cost. This problem
is solved by the algorithm shown below:

Huffman {Set C, Weights W)
o N=|d
finsert elements of C into priesity queve
forxeCdo
engueue (x, Q)
endif
fori=1toun-1da
Z - new node;
x - extracl_min (Q);
y - extract_win (Q)
zleft = x; z1ight = y;
W(z) = max {W(x), W(y} } + 1
engueue {z,Q);
endif
return extract__min {(Q);

W

10:
11:
12:
13:
14:

7.13 Extracling an Abstract ISA Specification from a
Concrete ISA Specification

As oullined above, the iformat design process may be
used o generate an instruction format specification from a
datapath specification and an abstract ISA specification. In
an alternative design scenario, the iformat design process
may be used to generate optimized concrete ISA specifica-
tion programmatically from an initial concrete ISA specifi-
cation and a list of frequenily occurring combinations of
operation group occurrences and ILP constraints. The initial
concrete ISA specification includes an instruction formal
specification and a register file specification and mapping,
The register file specification and mapping provides: 1) the
register file types; 2) the mumber of registers in each file; and
3} a correspondence between each type of operand instrue-
tion field in the instruction format and a register file.

In order Lo optimize the instruction format in this scenario
(and thereby the concrete ISA specification), the iformat
design process programmatically extracts an abstract ISA
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specification from the concrete [SA specification (see step
554 in FIG. 12). It then proceeds to generate the bit
allocation problem specification, and allocate bit positions
programmatically as explained in detail above. The opera-
tion group occurrences and ILP consiraints (c.g., concur-
rency seis of the operatiou group occurrences) may be
provided as inpul from the user {e.g., starting with a custom
templale specilication at block 556 in FIG. 12), or may be
generated programmatically from operation issue statistics
568 In step 569 shown in FIG. 12 and described above.

Given a Concrete ISA Specification, this step extracts the
information corresponding to an Abstract 1SA Specification.
The Instruction Format, which is part of the Concrete ISA
Specification, consists of a set on Instruction Templates,
each of which specifies sets of mutually exclusive opcodes
that can be issued in parallel. From this information one can
define the corresponding Operation Group Occurrences and
a Concurrency Sel consisting of these Operation Group
Occurrences. All of the Instruction Templates, together,
define the opcode repertoire, the Operation Groups and the
ILP specification that form part of the Abstract ISA Speci-
fication. The Instruction Format Specification directly pro-
vides the /O Formal for each opcode as needed by the
Abstract ISA Specification. The Register File Specification
in the Concrete 1SA Specification directly provides the
Register File Specification that completes the Abstract ISA
Specification.
8.0 Overview of Control Path Design System

The control path design system is a programmatic system
that extracts values for control path parameters from an

instruction format and data path specification and creates a

control path specification in a hardware description
language, such as AIR.

FIG. 19 is a block diagram illustrating a general overview
of the control path design system. The inputs to the control
path design synthesizer (CP synthesizer) 800 include a data
path specification 802, an instruction format specification
804, and [Cache parameters 806. The CP synibesizer selects
the hardware components for the control path design from a
niacrocell database 808 that includes generic macrocells for
a sequencer, registers, multiplexors, wiring buses, etc. in
AIR format. The macrocell database also includes a machine
description of certain macrocells, referred to as mini MDES,
Tbe mini-mdes of a functional unit macrocell, for example,
includes the functional unit apcode repertoire (ie., the
opcodes executable by the functional unit and their binary
encoding), a latency specification, inlernal resource usage,
and input/oulput port usage.

Implemented as a set of program routines, the CP syn-
thesizer extracts parameters from the data path, the instruc-
tion format, and instruction cache specifications and syn-
thesizes the control path including the IUdatapath, control
logic for controlling the [Udatapath, and decode logic for
decoding the instructions in the instruction register.

The CP synthesizer builds the IUdatapath based on the 3

instruction width requirements extracted from the instruc-
tion format specification. It instantiates macrocells in the
1Udatapath by computing their paramelers from the maxi-
mum and minimum ipstruction sizes and the instruction
cache access time.

It then cobnstructs the control logic for controlling the
[Udatapathi based on the computed IUdatapath parameters
and the ICache parameters. The ICache parameters provide
basic information about the instruction cache needed ta
construct the instruction fetch logic. These paraneters
include the cache access lime and the width of the instruc-
tion packet, which is the unit of cache access.
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The control path design process synthesizes the decode
logic for decoding the instruction in the instruction register
by scanning the instruction formal and data path control
ports. It also determines the interconnect between the bit
posilions in the instruction register and the control ports in
the data path.

The CP synthesizer is programmed to optimize the design
of the instruction unit for a pre-determined control path
protocol. As part of this process, it may optimize the
instruction pipeline (the [Udatapath) by selecting macrocells
that achieve a desired instruction issue rate, such as one
instruction to the decode logic per cycle, and by minimizing
the arca occupied by the macrocells, It also minimizes the
area of the control logic, such as the area that the [U control
logic and decode logic occupies.

The output of the control path design process is a data
structure that specifies the control path hardware design in
the AIR format 810. The AIR representation of the [Udata-
path includes the macrocells for each of the components in
the IUdatapath. This may include, for example, a prefetch
buffer for covering the latency of sequential instruction
fetching, and other registers used Lo store instructions before
issuing them to the decode logic. The AIR representation
includes a macrocell representing the sequencer and the
control logic specification (e.g., a synthesizable behavioral
description, control logic tables, eic.) representing the con-
trol logic for cach of the components in the IUdatapath.
Finally, the AIR representation includes a decode logic
specification (e.g., decode logic tables) representing the
jnstruction decode logic and the interconnection of this
decode logic between the instruction register and the contral
ports enumerated in the data path specification. Conven-
tional synthesis (ools may be used to generate the physical
logic (such as a PLA, ROM or discrete logic gates) from the
control and decode logic specifications.

8.1 The Relationship between the Controf Path and the
Control Ports in (he Data Path

Before describing aspects of the control path in more
detail, it is instructive to copsider the state of the processor
design before the CP synthesizer Is executed. As noted
above, one input of the control path design process is the
data path specification. Provided in the AIR format, the data
path input 802 specifies instances of the functional unit
macrocells and register file macrocells in the data path. It
also specifies instances of the macrocells representing the
wiring that interconnects the read/wrile data ports of the
register files with input and output data ports of the func-
tional units. At this phase in the design of the processor, the
conlrol ports in the data path are enumerated, but are not
connected to other components. For example, the opcode
input of the functional npits and the address inputs of the
register files are enumerated, but are not connected to the
control path hardware,

FIG. 20 illusirales an example of a processor design,
showing the relationship between the data path (in dashed
box 820) and the contrel path. The data path includes a
register file instance, gpr, a functional unit (FU) cell
instance, and an interconnect between the gpr and fuactional
unit. The interconnect comprises data buses 822-830 that
carry data belween the FU and gpr, 4 multiplexor 832 that
selects belween input sources (e.g., gpr and literal pseudo-
register Sext), and tri-state buffer 834 that drives output data
from the FU onto a data bus 830. The data read ports of the
gpr, dr0 and dry, provide data to the data input ports of the
RU, 10 and i1, via buses 822828 and multiplexor 832. The
output port of the FU, o0, provides data to the data write
port, dwl, via tri-state buffer 834 and data bus 830.
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The conirol ports that are enumerated, yel remain uncon-
neeted before the conlrol path desigo, include the read and
write address ports of the gpr, ar0, arl and awd, and the
opcode input port, op, of the FU. Some data porls in a FU
or gprinay map o mote than one data port in the gpr or FU,
respectively. This sharing may be controlled via control
ports of a multiplexor 832 or tri-state buffer 834.

Also, a control port of the gpr or FU may map to more
than one bit position in the instruction. This type of sharing
may be controlled via coutrol ports of a multiplexor 836, for
example. Flowever, the hardware Jogic to control this shar-
ing is left to be specified in the control path design process.

The mapping between the instruction fields in an instruc-
tion and the control ports in the data path is specified in the
instruction format specification. The datapath specification
enumerates the control ports in the data path and provides
the information needed to map these control ports to the
mstruction fields. The instruction format specification speci-
fies the specific bit positions and encodings of the fields in
the instruction fields.

The following sections describe in more detail how an
implementation of the control path design process generates
the control path.

8.2 The Control Path Protocol

The control path design process synthesizes a specific
control path design based on a predefined control path
protocol. In the current implementation, the control path
protocol defines a method for fetching instructions from. an
instruction cache and dispatching them sequentially to an
instruction register that interfaces with the processor’s
decode logic. It also defines the type of macrocells that the
control path will be constructed from and epumerates their
parameters. The CP synthesizer program then selects the
macroeells and computes specific values for their parameters

based on information extracted from the instruction format

and datapath.

The example in FIG. 20 helps to illustrate the control path
protocol used in the current implementation. It is important
to note that a number of design choices are made in defining
the protocol, and these design choices will vary with the
implementation. The illustrated protocol represents only one
possible example.

To get a general understanding of the control path
protocol, consider the flow of an instruction through the
control path in FIG. 20. The sequencer 900 initiates the
fetching of instructions into the [Udatapath. The MAR 902
in the sequencer stores the address of the next ipstruction to
be fetched from the instruction cache 904, Using the con-
tents of the MAR, the sequencer initiales the fetching of
instructions from the cache for both a sequential mode and
a branch mode.

In order to specify values for the widths of components in
the 1Udatapath, the CP synthesizer extracts information
about the instruction widths from the instruction format

specification. The protocol specifies the types of parameters .

that need to be extracted from this information.

The parameters extracted from the instruction format
include:

Q, // quantum (bytes) (greatest common denominator of

all possible instruction widths, fetch widths})

Wi // minimum instruction width {(quanta)

Wimar // maxinm instruction width (quanta)

The parameter, Q,, is a unit of data used to express the
size of instruction and felch widths in an integer multiple of
bytes and is referred 1w as a quantum. This parameter is not
critical to the invention, but it does tend to simplify the
design of other components such as the aligniment network
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because it is easier to control shifting in units of quanta
rather than individual bits. The parameters to be extracted
also include, W, the minimum instruction width in
quenta, and W, the maximum instruction width in
qQuanta.

The protocol also defines parameters relating to the
instruction cache (ICache) as follows:

W, // instruction packet width {quanta) (W, ZW, ..,

W=2")

‘W, // cache line size (quanta) (W, Z W, W, =2")

T, // cache access time {cycles)

The instruction packet defines the amount of data that the
control path fetches from the ICache with each fetch opera-
tion. In the protecol of the current implementation, the size
of the instruction packet is defined to be at least as Jarge as
the widest instruction and is expressed as a number of quanta
that must be a power of two. However, the packet aced not
be that large if the widest jnstruction is infrequent. In
instruction format designs where the widest instruction is
infrequent, the size of the control path can be reduced
because the extra cycles needed to fetch instructions larger
than the packet size will rarely be incurred. The computation
of the packet size can be optimized by finding the smallest
packet size thal will provide a desired feich performance for
a particular application or a set of application programs.

The protocol specifics the method for fetching instruc-
tions from the ICache and the types of components in the
TUdatapath. In the current implementation, the protocel
includes a prefetch packet buffer, an On Deck Register
(OnDeckReg or ODR) and an instruction register (IR). As
shown in FIG. 28, the seguencer 900 is connected to the
instruction cache 904 via control lines 906. These control
lines include 1Cache address lines used to specify the next
instruction to be fetched 1ato the IUdatapath. Through these
control lines, the sequencer 900 sclects the packet and
initiates the transfer of each packet of instructions from the
instruction cache to a First-In, First-Out (FIFO) buffer 908.

The cache access time T, is an ICache parameter pro-
vided as input to the control path design process. It Is the
time taken in cycles between the point when an address is
presented to the address port of the [Cache and when the
correspouding data Is available oa its data port for reading.
The cache line size parameter defines the width of a cache
line in quanta, The control path design process selects a
cache line size that is greater or equal to the packet size and
is expressed as a number of quanta thal must be a power of
two, Although not necessary, this implies that in our current
iniplernentation a cache line contains an integral number of
instruction packets.

The IUdatapath begins at the ICache and flows into the
FIFO 908 via data lines 910. The number of data lines is
defined as the instruction packet size in quanta. The FIFO
908 temporarily stores packets of instructions on their way
to the instruction register 912, The objective in designing the
FIFO is to make it deep enough to cover the latency of
sequential instruction fetching from the instruction cache.
The control path must be able to issue jnstructions o the
instruction register to satisfy a desired performance crite-
rion. In this case, the protocol defines the performance
criterion as a rate of one instruction issue per clock cycle of
the processor. Note, one instuction may conlain several
operations that are issued concurrently.

The IU Control 903 is responsible for controlling the flow
of Instruction packets from the FIFQ 908 to a register that
holds the next packet of instructions to be issued to the
instruction register, called the ODR 914. In the example
shown in FIG. 20, the IU Control 903 controls the flow of

i
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instruction packets from the FIFO to the ODR 14 through
control lines 916 to the FIFO 908, and control lines 918 to
a multiplexor 920. The control lines 916 from the IU Control
to the FIFO are used to accept new instruction packets from

the ICache and to ipstruct the FIFQ to transfer the next s

instruction packet to the ODR via data lines 922 from the
FIFO to the multiplexor 920 and data lines 924 from the
multiplexor to the ODR. As explained above, the size of this
data path is defined via the instruction packet size parameter.

The TU Control 903 issues control signals 918 to the 4

multiplexor 920 (o select an ipstruction packet either from
the FIFO 908 or direetly from the instruction cache 904. The
data path 926 is useful in cases where the FIFO has been
cleared, such as when (he processor has executed a branch
instruction and ceeds to load the instruction packel conlain-
ing the target of the branch into the ODR as quickly as
possible.

The size of the FIFO (in packets) is another parameter in
the control path protocol. The size of the FIFO depends upon

—
[y

the maxinium and minimum instruction widths of instruc- 4

tions in the instruction format as well as the ICache access
time. The width of an instruction may be as large as the
maximum instruction width, and may be as small as the
minimum instcuction width in the instruction format speci-
fication. This constraint is merely a design choice in the
current implementation, and is nol necessary. The minimum
instruction width plays an important role in determining the
size of the FIFO because, in an extreme case, the ODR may
be filled entirely with instructions of minimum size. Ia this
case, the FIFO nceds to be large enough to be filled with 4
instruction packets already in flight from the ICaches as each
of the instructions is issued sequentially from the ODR. The
maximum instruction width also has an impact on the size of
the FIFO because, in the opposite extreme, the ODR may
contain a single instruction. In this case, the FIFO must be 4
able fo supply an instruction packet to the ODR at the
desired performance rate, namely, ouce per clock cycle,
while hiding the ICache access latency.

The parameters associated with the instruction fetch pro-
cess include the size of the FIFO and the branch latency. 4
These parameters are computed as shown below. The nec-
essary FIFO size can be computed based on [Udatapath
paramelers and the insiruction feich policy. In case the
policy does not allow for stalling the processor due (o

s
b2

miterrupts, then the FIFO size can be reduced further. 45

Ngeo // size of prefetch FIFQ (packets) (Nppp=
[T W W

Ty /f branch latency (Tp=T 0+ T4+1)

The IU Control 903 controls the transfer of cach instruc-

tion from the ODR 914 to the instruction register 912. The 350

IU Control provides control signals via contro] lines 927 to
the ODR, which in turn transfers the next instruction to the
instruction register 912 via data lines 928 and an alignment
network 930, The alignment network is responsible for
ensuring thal each instruction is left aligned in the instruc- s
tion register 912. In the example shown in FIG. 20, the
alignment network is comprised of a multiplexor for each
quantum in the instruction register. Bach of these multiplex-
ors indicates where the next quanturn of data will originate

from in the ODR 914 or the IR 912, The [U Contro] 903 so

provides multiplexor select controls via control lines 932
based on parameters fed back from the decode logic via
confrol lines 934.

The control path protocal outlines the operation of the
alignment network. There are two principle modes of opera- ¢
tion that the protocol of the alignment uetwork must address:
sequential instruction fetch inode; and branch target instruc-
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tion fetch mode. FIG. 21 illustrates the operation of the shift
nelwork protocol for sequential instruction fetching, and
FIG. 22 illustrates the operation of the shift network for
branch target instruction fetching. Before describing the
operation of the shift network in more detail, we begin by
describing the relevant parameters associated with the shift
network. The parameters in the current implementation are
as follows:

W /1 wiidth of instruction register (quanta) (W, =W}

W_,or /] widih of current instruction {quanta)

consumed ! Width of alrcady used part in ODR (guanta)

Poyryer /1 position of branch target in ODR (quanta)

As poted previously, the shift network controls where
each bit of data in the instruction register comes from. This
data may come from the IR, the ODR, or mn some cases, from
both the ODR and the lop instruction packet in the FIFO.
With each cycle, the shift nelwork ensures that the next
instruction to be execuled is left aligned in the instruction
register. In doing so, it may shift unused bits within the
instruction register itself, it may lransfer bits from the ODR,
and finally it may also transfer bits from the top of the FIFO.
In particular, if the instruction register conlains unused bits
from the previous cycle representing part of the next
instruction, it shifts these unused bits over to the left, and
then fills in the rest of the instruction register with the next
group of bits sufficient to fully load the register.

As noted above, the FIFO transfers instauctions 1o the
OnDeck register in packets. A packet remains in the ODR,
and is incrementally consumed as the alignment network
transfers portions of the bits in the ODR into the instruction
register. The JU Conirol supplies control signals via control
lines 936 to the instruction register 912 to issue the current
instruction to the decode logic, The PC 938 in the sequencer
specifies the memory address of the instruction currently
being issued for execution.

8.2.1 The Aligninent Network Protocol

FIG. 21 illustrates the two principle cases that occur in the
shift network protocol for sequential instruction fetching.
The first case is where the width of the current instruction in
the instruction register, W, , is less than the remaining,
unconsumed portion of the ODR, W, -W_,, ...s. FIG. 21
illustrates an example of this scenario by showing ihe
transition of the state of the instruction register, ODR, and
FIFO from one cycle to the next. In the first cycle 1000, the
current instruction occupies the left-most section (see sec-
tion 1002) of the instruction register, while a part of the next
instruction occupies the remaining section 1004, Also, a
portion 1006 of the ODR is already consumed, and the
remaining section 1008 contains valid data. In this case, the
shift network shifis the unused portion 1004 (o the left of the
instruction register {see section 1010 representing the trans-
fer of the bits from the right of the instruction register to the
left-most position). In addition, the shift network transfers
cnough bits to fill in the remainder of the instruction register
(see section 1012) from the left-most valid data portion 1008
in the ODR.

[n the next cycle 1014, the instruction register contains the
current instruction, aligned to the left, and a portion of the
next instruction. The length of the current instruction
becomes known only after decoding. The ODR contains a
consumed portion 1016, which includes portions that the
shift network already transferred in previous cycles. It also
confains a remaining valid data portion 1018, The FIFO
remains unchanged in this casc.

The bottom diagrams 1830, 1032 in FIG. 21 illustrate the
case where the width of the current instruction is greater than
Ihe valid data portion (W,~W _..umeq). In this case, the
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current instruction occupies a relatively larpe section 1034
of the instruction register and the remaining portion 1036
contains part of the next instruction. The consumed portion
1038 of the ODR is relatively large compared to the remain-
mg valid data portion 1040. As a result, the shift register
needs to transfer data from three sources: the unused portion
1036 of the instruction register {shown being transferred in
graphic 1042), the entire valid data portion rewnaining in the
ODR 1040 (showa being transferred in graphic 1044), and
finally, a portion in the top packet of the FIFO that is needed
to fill in the rest of the instruction register (shown being
transferred in graphic 1046). Since the ODR is fully
consumed, the top packet of the FIFO needs to be advanced
to the ODR. However, this example shows that a portion of
the packet in the top of the FIFO is already consumed when
the packet is transferred into the ODR (see section 1048
being transferred into the ODR), which leaves a consumed
portion 1050 in the OnDeck register.

FIG. 22 illustraies the two principle cases that occur in the
shift network protocol for branch target instruction fetching.
‘When the processor execntes a branch instruction, the con-
trol path should load the instruction containing the target of
the branch as quickly as possible. There are a variety of
schemes to accomplish this objective. Even within the
specific protocol described and ilfustrated thus far, there are
alternative ways to define the target fetch operation. In the
example shown in FIG. 22, the (arget of a branch is allowed
to reside anywhere in an instruction packet. This may result
in the case where the next portion of valid data to be loaded

into the instruction register (the target data) spans two 3

instruction packets. One way to avoid this case is to require
the application program compiler to align branch largets at
the beginning of instruction packets. However, the example
shown in FIG. 22 is more general and handles the case where
the target data spans instruction packets.

The top diagrams 1100, 1102 illustrate the case where the
target data is entirely within an instruction packet. This case
is defined as a packet where the width of the instruction

_register, Wig, is less than or equal (o the width of a packet,
W, less the position of the target instruction relative to the
start of the packet, P, In the first cycle 1100, the cument

instruction occupies the left-most portion 1104 of the
instruction register. In the shift operation, the entite contents
of the instruction register are considered invalid. As such,
the shift network fills the instruction register with new bits
sufficient to fill it entirely (as shown in graphic 1106. The
starting bit in the ODR for this shift operation-is identified
by Py, (s0€ invalid portion 1108 in the ODR, which has

a width P Since the width of the instruction register

plus P,

data comes from the ODR. After the shift, the consumed
porttion of the ODR occupies the left-mest portion 1110 and
some valid data for the next instruction may reside in the

remaining portion 1112,

The bottom two diagrams 1120, 1122 show the case where
the target data spans an instruction packet. This case is
defined as a packet where the width of the instruction
register, W g, is greater than the width of a packet, W, less
the width of the offset to ihe target instruction inside the
packel, Py, In the first diagram 1120, the current instruc-
tion occupics the left-most portion 1124 of the instruction
register. 1o the shilt operation, the entirc contents of the
instruction register are considered invalid. As such, the shift
network fills the instruction register with new bits sufficient
to ill it entirely, but to do so, it must take bits from the ODR
and the next packet from the 1Cache (as shown io graphics
1126 and 1128). The starting bii in the ODR for this shift
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operation is identified by P, ..
the ODR, which has a width P, ). Since the width of the
instruction register plus P, is greater than W, some of
the new data comes from the ODR and some comes from the
next packet from the ICache. To get the target data into the
instruction register, the control path may require two cycles.
The shift network transfers valid bits from the ODR (as
identified by P} to the IR and transfers the next packet
(1132) from the ICache into the ODR. 1t then transfers valid
bits from the ODR (1128) sufficient to fill the IR. This Jeaves
a portion of the bits in the ODR 1134 (Wp—(W,-P,,,.))
invalid.

The shift network protocol outlined above specifies how
the 1U Control logic controls the select ports of the multi-
plexors in the shift network in order to make the selection of
the appropriate quanta in the IR, ODR, and FIFO. Further
details about the synthesis of the shift network are provided
below.

The final aspect of the control path protocol is the decode
logic. Referring again to the example in FIG. 28, the decode
logic (e.g., decode units 940-944) interfaces with the
instruction register, decodes the current instraction, and
dispatches control signals to the control porls in the data
path. The CP synthesizer computes decode tables from the
instruction format design as explained below.

8.3 Control Path Design

FIG. 23 is a flow diagram illustrating the operation of a
software implementation of the CP synthesizer illustrated in
FIG. 19. The CP synthesizer is implemented in the C**
programming language. While the software may be ported to
a variety of computer architectures, the current implemen-
tation exccutes on a PA-RISC workstation or server running
under the HP-UX 10.20 operating system. The functions of
the CP synthesizer software itlustrated in FIG. 23 are
described in more detail below.

8.3.1 Collecting Parameter Values

The CP synthesizer begins by collecting and adjusting
input parameters, Q;, Wi Wona, Wa, Ty, and W, as
shown in step 1200. It caleulates Q) as the greatest common
denominator of all possible instruction widths and fetch
widths. It extracts W, ., W, .., from the instruction format,
and derives W, and possibly adjusts W, as defined above.
The 1Cache access time T, is one of the ICache input
parameters to the control path design.

The CP synthesizer comptites #W,,,.bits, a parameter that
defines the number of bits needed to represent the length of
the current instruction in quanta. The length of the current
instruction may be zero or as large as W, ... Therefore,
W._,,,bits is computed as Jlog,(W,,..,+1)]- The IU Control
receives W, from the decode logic (See lines 934 in FiG.
20) and uses it to compute the appropriate shift amount for
the shift and align network. The sequencer also uses this
number to update the PC with the address of the next
instruction to exccute. The CP synthesizer determines the
number of instruction register multiplexor selection bits
#IRmux,,bits as shown in step 1200, from the following
expression: #lRmux, bits=|log,(W,+W,....-W, 3] in
bits. This is the number of bits needed to sclect between
(W W, ~W, .) input quanta choices for each quantum
multiplexor placed before the instruction register.

8.3.2 Allocating the Iustruction Register and Sequencer

Next, the CP synthesizer selects an instruction register
from the macrocell databasc as shown in step 1202, and sets
the width of the instruction register equal to W, ..

The CP synthesizer also sclects a sequencer from the
macrocell database in step 1204, The sequencer includes
logic to process the branch addressing, Iogic to handle

(see invalid portion 1130 in
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interrupts and exceptions and logic to issue instruction
fetching from the ICache. The choice of the sequencer
depends on the architectural requirements specified during
the design of the datapath and the instruction format, ie.,
whether the processor needs to handle interrupts and
exceptions, branch prediction, and control and data specu-
lation. 1t is independent of the design of the instruction unit
data path itself. Therefore, we asswme that we have a set of
predesigned sequencer macrocells available in the macrocell
database from which one is selected that matches the archi-
tectural paramelers of the datapath and the instruction for-
mat.

8.3.3 Building the Ipstruction Decode Logic

The CP synthesizer generates decode logic from the
instruction format specification, which is provided in the IEF
tree 1206. This section describes how the CP synthesizer
generates the decide tables programmatically.

The CP synthesizer generates the decode logic by creating
decode tables that specify the inputs and outpuis of the
decode logic. 1n building a decode table, the CP synthesizer
specifies the input bit positions in the instruction register, the
input values for these bit positions, the corresponding con-
trol ports, and finally, the output values to be provided at
these control ports in response to the input values. There are
two general cases: 1) creating decode table entries for select
fields (e.g., bils that control multiplexors and tri-state
drivers) ; and 2) creating decode table entries for logic that
converts opeodes. ln the first case, the CP synthesizer
generales the address selection logic needed to map bit
positions in the instruction register with shared address
control ports in the data path, It also generales the appro-
priate select values based on the select field encoding in the
instruction template. In the second case, the CP synthesizer
generates the opcode input values needed to select a par-
ticular opcode in a functional unit based on the opeode field
encoding in the instruction template. Both of these cases are
described further below.

The implementation divides the decode logic into two
types of components: the template decode logic (synthesized
in step 1208) and the FU decode logic, one per FU macrocell
(synthesized in step 1210). The template decode logic is
responsible for decoding all the information thal is relevant
for the entire instruction including the template width, the
end-of-packe! bit and the position of register file address
port bits. The FU decode logic decodes all the information
that is relevant for one FU macrocell including its opcode
and the select ports of the data multiplexors and tri-state
drivers. In step 1208, the CP synthesizer constructs a decode
table for a template decode programmable logic aray
(PLA). As shown in the example FIG. 20, the template
decode PLA provides information (W.,,, and EoP parameter
values) (o the IU Control to drive the instruction shifting
network. 1t converts the template 1D into W,,,,, and feeds
this information to the IU Control. It also provides the
consure to end-of-packet (EoP) bit to the 1U Control

Based on the template ID, the template decoder also
generates the mux select inpuis in cases where instruction
fields from different templates map {o the same control ports
in the datapath. For example, it compules select values for
the mux select ports of register file address port multiplexors
(RF port addrmux_,;; see, e.g., multiplexor 836 in FIG. 20).

To illustrate decode logic generation for select fields,
consider (he exanple of the RF address port multiplexors.
The CP synthesizer builds a decode table for the address port
nuultiplexors by traversing the IF tree to find the template
specifier ficlds. The lemplate specifier in the instruction
identifies the template to the decode logic. This is significant
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because a pumber of different bit positions may map to the
same register file address port depending on the instruction
template. The Table 1 shows an example of this scenario.

TABLE 1
Tenrplate Bit Positions Mux Jnputs Mux select
T1 63 n 00
T2 i0-13 n 01
T3 1-3, 10 3 10
T4 10-13 4 11

In the example shown above, four different sets of bit
positions map to the same register fle address ports, depend-
ing on the instruction template. The decode logic, therefore,
needs (0 generate the appropriate mux select signal to map
the appropriate bit positions in the instruction to the register
file address ports depending on the template specifier bits,

For each ternplate, the CP synthesizer traverses the IF tree
to the template specifier field and adds the bit encoding to
the decode table as an input. It finds the corresponding bit
positions from differcat templates that map to the same
register file address ports and assigns them o the input ports
of a multiplexor. Finally, it assigns mux select values so that
the decode logic instructs the mux to select the appropriaie
mux inputs depending ou the template specifier.

To illustrate decode logic generation for opcode fields,
consider an example where the bits used to encode the
opcode field in the instruction do not match the number of
bits used to encode the opcode on the functional unit
macrocell. The CP synthesizer functional unit constructs the
FU decode PLA in step 1210 in a similar fashion as (he
template decode PLA. In particular, it builds 4 decode table
that maps instruction register bits to data path control ports
of the functional units in the data path. It traverses the IF tree
to find the fields for the FU opcode fields. The CP synthe-
sizer finds {he instruction register ports that these fields have
been assigned, and maps them to the opcode control ports.

The opcode field in the IF tree identifies the desired
operations in an operation group and the corresponding
functional unit to the decode logic. The opcode in the
instruction field may need to be translated into a different
form so that it selects the proper operation in the functional
unit. Table 2 shows an example of this scenario.

TABLE 2
Opecode encoding EU input
o0 4000
01 1011
10 1100
11 0010

In the above example, the instruction selects one of four
different operations to he executed on a given functional unit
in the data path. The functional unit, however, supports more
operations, and thus, uses a four bit input code to select an
operation. In this case, the CP synthesizer generales a
decode table for decode logic that will select the proper
operation based on the opeode encoding in the instruction
register. To accommplish this, it traverses the IF tree to find the
opcode field, and the corresponding bit encoding, control
port assignment, and bit position for this field. The opcode
field in the IF tree is annotated with information that maps
a bit encoding in the instruction to a particular input encod-
ing for a functional unit in the data path. The CP synthesizer
assigns thie inpuls of the decode logic to the bit positions of
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the opeade field, and assigns the outputs of the decode logic
to the apcode control ports of the functional wnit.

The FU decode legic for the control ports of the muxes
and tri-stales in the interconnect between the functional units
and register files is generated based on the select fields at the
10 set level in the IF tree in a similar fashion as described
above for the RF address MUXes.

Once the decode logic tables are created, a variety of
conventional logic synthesizer tools may be used to create

hardware specific decode logic from the decode tables which 1

is not necessarily resiricted to a PLA-based design.

8.3.4 Asscinbling the Instruction Unit

In step 1212, the CP synthesizer builds the remainder of
the instruction unit, including the [Udatapath and the control
logic between the IUdatapath and sequencer. In this step, the
CP synthesizer allocates the FIFO, ODR, and alignment
network by selecting AIR macrocells from the macrocell
database and instantiating them. It maps the control ports of
these components i the {Udatapath to the control outputs of
the 1U Control logic. The IU Control logic controls the
behavior of the 1Udalapath at each cycle by providing
specific bit values for each of the conirol pots of the
[Udatapath components. The logic may be specified as a
behavioral description of a fnite state machine (FSM). From
this description, conventional logic synthesis may be used to
generate the FSM logic that fornns the [Udatapath control
logic.

When it allocates the sequencer macrocell, the CP syn-
thesizer allocates the sequencer ports responsible for ICache
control and addressing and connects it to the corresponding
[Cache ports (sce, €.g., 906, FIG. 20). The number of address
lines depends on #W,.,.,bits, the number of [Cache
address bits. The memory address register (MAR) 902
drives the address port of the 1Cache while a fetch request
bit {(FReq) generated by the IU Control logic controls when
new instruction packet fetches are initiated.

The CP synthesizer allocates the FIFO (908, FIG. 20) by 3

computing the size of the FIFO as described above and
constructing a macrocell instance from the macrocell data-
base with Ny, packet registers of width W, and a number
of control and data ports, The data output of the [Cache is
connecled to the data input of the FIFQ. The various FIFO
control ports are driven by the corresponding ports of the [U
Control logic (916, FIG. 28).

The CP synthesizer also allocates the ODR (914, FIG. 20)
by constructing a macrocell instance of a register having a
width W, and having corresponding control and data ports.
It synihesizes the ODR’s input side multiplexor (920, FIG.
20) by constructing a multiplexor from the macrocell data-
base having a width W ,. The two inpuis of the multiplexor
920 are connected to the FIFO and the [Cache respectively.
The selection control and the ODR load control ports are
driven by the corresponding ports from the [U Control logic
(918, 926, FIG. 20).

The CP synthesizer additionally synthesizes the branch
FU conirol and address lines to interconnoect the branch
control ports of the sequencer with control ports of the
branch FU. :
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It further allocates the instruction register shift petwork
(930, FIG. 20), and connects its control ports to the [U
Control logic (932, FIG. 20). FIG, 24 illustrates aspecis of
the [Udatapath to illustrate how the CP synthesizer allocates
the shift network. In what follows, we assume that the
various quanta in the IR, the ODR, the FIFO, and the cache
are logically numbered sequentially starting from 0 as
shown in FIG. 24.

As explained above, the shift network has a multiplexor
for cach quantum in the instruction register numbered 0
through W, o~1. In the following discussion, k represents the
number of a given multiplexor (0SkEW ,-1).

Each quantum multiplexor k selects among all quanta
between the following two extremes:

1) k+W,;,, (last inst. was minimum size); and

2) ke WA+ W o1 (last ipst. was maximum size and all of

ODR W +was consumed).

The CP synthesizer creates instances for each multiplexor
with enough input ports o sclect among the number of
quanta reflected above. This mumber is (k+ W +W - 1)~(k+
Wit =W AW W

The choices for TU selection control for a quantum mux

* ks given by:
1) k+W_,,. (sequential access and k+ W, <W );
2) kW, AW imes fTom ODR/FIFO (sequential
access and k+ W, ZW,.); and :

3) kt W 4P o, from ODR/FIFO (branch target access).

The choices for IU selection control for ODR/FIFQ
quantum k is given by:

1} k+W, from FIFO (advance FIFO by a full packet);

2) (k=W ) % W, from I-Cache output (Joad directly from

1-Cache); and

3) no shift (disable ODR load/FIFO advance).

The CP Synthesizer generates the U Control logic to
control the shift network according to the constraints given
above. The design of the IU Control logic is discussed
below.

8.3.5 Building IU Control Logic

The instruction fetch protocol described above is imple-

. mented in control logic that keeps track of the packet
~ inventory—the packets in flight, packets in the prefetch

buffer, and the unconsurmed part of the ODR. It also issues
instruction cache felch requests, FIFO load and advance
requests, and an ODR load request at the appropriate times,
and provides the appropriate selection control for the shift

-and align network and other multiplexors in the instruction

pipeline. Finally, the control logic is also responsible for
flushing or stalling the pipeline upon request from the
sequencer dug to a branch or an interrupt.

The control logic is expressed in the following
pseudocode.

Pseudacode for IU Conlral Logic
Moadule [U Control (cachePkiRdy, fluskPipe, EOP; in boolcan; Wey,.: in integer)
i 11 Design time constants: pkiSize (W), invSire
(ITA* Wi WD)
2: // tnternal state: numFIFOPkis(0), numCachePkis(0),

W onsumod( W o)
3: if (oumFIFOPKis + rumCachePlts <invSize) then
4: Request [-Cache feich; flaunch felches to keep
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-continued
5: numCachePkls++; mventory constanl
6: endif
7 if {cachePktRdy) then Iipackets s1e ready T,
8: nmCachePlls--; cycles Jater
o i (Weopsumes = Wa && numFIFOPKis > 0) then
10 Load cachePlt into QDR ffput pkt directly into
11 W eonsumed = 05 ODR, if empty
12: else flotherwise, save pki in
13 Load cachePki into FIFC FIFO
14 aumFIFOPkis--;
15: endif
16:  endif
17 I (Weopmumes 2 Wa&E numFTROPKs>0) then fldraw next pki from FIFO
18: Load FIFOPK! into ODR;
19 Woonnmea~= Waj
20 advance FIRO;
21: numFIFOPKs ~;
22: endif
23 if {RushPipe) then fferanch or interrupt
24: flush f-cache and FIFO; processing
25 numCachePkts=0;
26: numFIROPkes =0;
% Weonsumes = Wa,
28:  elseif (EOF) then # skip to end-of-packet
29: Shift [R to align Lo next pack boundary;
30 Weonemed = Wai
31: clse # shift to next
32 Shift [R by W instruction
33: adjusl Wopnsumes
34 endif

The control logic is expressed as pseudocode that consists 30

of a sequence of conditions and various actions to be
performed under those conditions. The logic keeps track of
the inventory of packets internally including those io flight
in the instruction cache pipeline (numCachePkts) and those

sitting in the prefetch buffer (oumFIEOPkts). This is used to 3

issue a fetch request whenever the inventory size falls below
the threshiold (line 3). The correspondiag instruction packet
is ready to be read at the output of the cache T, cycles after
the fetch is initiated (line 7). This packet may be loaded

directly into the ODR if the rest of the pipeline is empty (line 40

9), or it may be saved in the FIFO (line 12). These packets

are later Ioaded into the ODR as needed (line 17). '
Upon encountering a taken branch signal or an intermupt

signal from the sequencer (flushPipe), the .control logic

flushes the instruction pipeline by reseting the internal state 45

(line 23). This enables the pipeline to start fetching nstruc-
tions from the new address from the next cycle. Otherwise,
the next instruction in sequence needs to be aligned into the
instruction register (line 28). If the end-of-packet (EOP) bit

is set, the current packet residing in the ODR is considered so

to be fully consumed and the IR is shifted to the next packet
available. Otherwise, the IR is shifted by the width of the
current instruction. In either case, the multiplexors of the
shift and alignment network in front of the IR are provided
with the appropriate selection control as described above,

The control logic shown above may be synthesized into a
finite-state machine (FSM) using standard synthesis tools
(hat translate a functional description such as that given
above and produce a concrete implementation in terms of
gates or PLA logic along with control registers to keep track
of the sequential state.

While we have illustrated a specific control path protocol,
it is important to note that the control path synthesizer
program can be adapted for a variety of different profocols.
Both the structural and procedural aspects of the protocol
may vary. The protocol may specify that the alignment
network is positioned between the instruction register and
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the decode logic. In this protocol, for example, the instruc-
tion register has a wider width (e.g., a width of one packet}
and the alignment network routes varying width instructions
from the instruction register to the decode logic. This
protecol is based on a procedural model of “in-place”
decoding, where instructions are not aligned in the IR, but
rather, fall into varying locations in the IR. The protocol
procedure defines a methodology to determine the start of
the next instruction to be issued from the IR,

The procedural model may be based on a statistical policy
where the width of the control path pipeline is optimized
based on the width of the templates in the instruction format.
In this approach, the control path designer minimizes the
width of the pipeline within some performance constraint.
For example, the width is allowed to be smaller than the
widest instruction or instructions as loog as the siall cycles
needed to issue these instructions do not adversely impact
overall performance. When the width of the pipeline is less
than the widest instruction, one or more stall cycles may be
necessary (o issue the instruction to the decode logic.
Performance is estimated based oo the time required to 1ssue
each instruction and the corresponding frequency of the
instruction’s issuance.

9.0 Generating a Structural Description

The system produces a structural description of the pro-
cessar hardware at the RTL-level in a standard hardware
description language such as VHDL. This description can be
linked with the respective HDIL component libraries pointed
to by the macrocell database and processed further for
hardware synthesis and simulation.

CONCLUSION

While the invention is described in the context of a
specific implementation, the scope of the inveation is not
limited o this implementation. A number of design varia-
tions are possible.

One possible variation is the manner in which the ILP
constraiuts are specified. As noted above, the ILP constraints
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may be specified as exclusion sets, concurrency sets, or
some combination of both. The form of other input data
structures, such as the register file specification and pacro-
cell library may vary as well. These data structures may be
provided in an external file form, such as a textual file (e.g.,
the ArchSpec which is i a tabular form using the HMDES
database language) or in an interpal form {e.g., a separate
user inlerface to specify register file data stuctures and a
component-level interface to the standard HDL macrocell
databascs). The above description provides 4 number of 10
constructs for specifying an opcode repertoire, the 1/0
formats of the opcodes and the desired ILP among the
operations. However, these constructs are not critical to the
implementation of the invention.

The AIR form of the datapath represents only one possible 15
way to specify lhe output of the datapath design process.
Other types of hardware description languages may be nsed
as well, such as VHDL or Verilog. Indeed, the AIR form can
be easily translated to one of these external textual formats,
The current implementation produces VHDL output. 20

In view of the many possible implementations of the
invention, it should be recognized that the implementations
described above are only examples of the invention and
should not be taken as a limitation on the scope of the
invention. Rather, the scope of the invention is defined by . %%
the following claims. We therefore claim as our invention all
that comes within the scope and spirit of these claims.

We claim:

1. A method for programmatic design of a VLIW proces-
sor from an input specification including specified processor
operations, }/O formats for the specified operations, instruc-
tion level parallelism constraints among the specified
operations, and a register file specification of the processor,
the raethod comprising:

based on the specified processor operations, and the

instruction level parallelism constraints, programmati-
cally generating a datapath description of the processor
from a macrocell library, the datapath description
including functional unit inslances, register file
instances and an intercomnect befween the functional
unit and register file instances; and

based on the datapath description, the I/O formats, and the

instruction level parallelism constraints, programmati-
cally generating an instruction format specification,
including instruction templates representing VLIW
instructions executable by the processor, instruction
fields for each of the templates, and bit positions and bit
encodings for the instruction fields.

2. The method of claim 1 further including:

programmatically extracting a machine description suit-

able to re-target a compiler from the datapath descrip-
tion and the input specification.

3. The method of claim 2 further including:

from the compiler, re-targeted using the machine descrip-

tion of the processor, generating operation issue statis-
tics for the specified operations;

using the operation issue statistics, selecting custom tem-

plates; and

using the custon templates as input to programmatically g

generale the instruclion format specification of the
PIOCESSOL.

4. The method of claim 1 wherein programmatically
generating the instruction format specification includes:

prograrmmatically constructing a bit allocation problem 5

specification identifying instruction fields that are to be
assigned to bit positions in the instruction format of the
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processor, bit width requirements of the instruction
fields, and instruction ficld conflict constraints; and

programmatically allocating bit positions in the processor
{o the instruction fields in the bit allocation problem
specification.

5. The method of claim 4 including:

programmatically extracting 2 machine description suit-
able lo re-target a compiler from the datapath descrip-
tion and the input specification;

from the compiler, re-targeted using the machine descrip-
tion of the processor, generating operation issue statis-
tics for the specified operations;

using the operation issue statistics, selecting custom tem-
plates; and

using the custom templates as input to programmatically
construct the bit ajlocation specification problem of the
Processor.

6. The method of claim 1 including:

using the instruction format specification, programmati-
cally generating a controlpath description with compo-
nents from the macrocell Hbrary, where the control path
descrption includes a bardware description of ap
instruction unit datapath for transferring instructions
from an mstruction cache to an instruction register, a
description of control logic for coupling an instruction
sequencer lo the instruction unit dala path, and a
description of decode logic for decoding instructions in
the instruction register and issuing the instructions to
control ports in the datapath.

7. A computer readable medium having software for

performing the method of claim 1.
8. An automated VLIW processor design method corn-
prising:

receiving as input a concrete instruction set architecture
specification of a processor including an instruction
formal specification, and register file specification,
wherein the instruction format specification includes
instructions, instruction fields within cach of the
instruction templates, and bit positions and encodings
for the instruction fields; and

wherein the register file specification enumerates register
files in the processor, including a number of registers in
cach of the register files, and a correspondence between
operand instruction fields in the iostruction format
specification and a register file;

progeammatically extracting an abstract instruction sct
architecture specification including specified processor
operations and mstruction level parallelism constraints
among the specified operations.

9. The method of claim 8 including:

based on the specified processor operations, and the
instruction level parallelism copstraints, programmali-
cally generating a datapath description of the processor
from a macrocell library, the datapath description
including functional unit instances, register file
instances and an interconnect befween the functional
unit and register file instances.

10. The method of claim 9 including:

programmatically extracting a machine description suit-
able to re-target a compiler from the datapath descrip-
tion and the abstract instruction set architecture speci-
fication.

11. The method of claim 9 including:

using the instruction format specification, programmati-
cally generating a controlpath description with compo-
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nents from the macrocell library, where the control path
description includes a hardware description of an
instruction unit datapath for transferring instructions
from an instruction cache (o an instruction register, a
description of control logic for coupling an instruction
sequencer to the instruction unit data path, and a
description of decode logic for decoding instructions in
the instruction register and issuing the instructions to
control ports in the datapath.
12. A computer readable medium having software for
performing the method of claim 11.
13. An automated VLIW processor design method com-
prising:
reading a datapath description of a VLIW processor in a
hardware description language, the datapath descrip-
tion including functional unit instances, register file
instances and a description of hardware components
that form an intercomnect path between the functional
unit and register file instances; and

programmatically extracting an abstract instruction sei ?

architecture specification of the VLIW processor, the
abstract instruction set architecture including processor
operations, I/0 formats for the specified operations,
instruction level parallelism constraints among the
specified operations, and a register file specification of
the processor.
14. The method of claim 13 including:
based on the datapath description, the I/O formats, and the
instruction level parallelism counstraints, programimati-
cally generating an instruction format specification,
including instruction templates representing VIIW
instructions executable by the processor, instruction
fields for each of the iemplates, and bit positions and bit
encodings for the instruction fields.
15. The method of claim 14 wherein programmatically
generating the instruction format specification includes:
programmatically constructing a bit allocation problem
specification identifying instruction fields that are to be
assigned to bit positions in the instruction format of the
processor, bit width reguirements of the instruction
fields, and instruction field conflict constraints; and

programmatically allocating bit positions in the processor
to the instruction fields in the bit allocation problem
specification.

16. The method of claim 13 including:

programinatically extracting a machine description suit-

able to re-target a compiler from the datapath descrip-
tion and the input specification.

17. The method of claim 14 including:

using the instruction format specification, programmati-

cally generating a controlpath description with compo-
nents from the macrocell library, where the control path
description includes a hardware description of an
instruction unit datapath for transferring instructions
from ap instruction cache to an instruction register, a
description of control logic for coupling an instruction
sequencer to the instruction unit data path, and a
description of decode lagic for decoding instructions in
the instruction register and issuing the instructions to
confrol ports in the datapath.

18. A computer readable medium having software for
performing the method of claim 13.

19. A system for programmatic design of a VEIW pro-
cessor from an inpul specification including specified pro-
cessor operations, 1/O formats for the specified operations,
insiruction level parallelism constraints among the specified
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operations, and a register file specification of the processor,
the systemn comprising:

a datapath synthesizer for reading the specified processor
operations, 1/O formats of the operations and the
instruction level parallelism constraints, and for gen-
erating 2 datapath description of the processor from a
macrocell library, the datapath description including
functional unit instances, register file instances and an
imterconnect between the functional unit and register
file instances; and

an instruction format designer for reading the datapath
description, the /O formats, and the instruction level
parallelism constraints, and for generating an instruc-
tion format specification, including instruction tem-
plates representing VLIW instructions executable by
the -processor, instruction fields for cach of the
templates, and bit positions and bit encodings for the
instruction fields.

20. The system of claim 19 further including:

an MDES extractor for extracting a machine description
suitable to re-target a compiler from the datapath
description and the input specification.

21. The system of claim 20 further including:

a custom template module for selecting custom templates
using operation issue statistics for an application pro-
gram. generated by the compiler, re-targeted based on
the machine description; and

wherein the custom templates are used as input to the
instruction format designer to generate the instruction
format specification of the processor.

22. The system of claim 19 wherein the instruction format

designer includes:

a modnle for constructing a bit allocation problem speci-
fication identifying instruction ficlds that are to be
assigned to bit positions in the instruction format of the
processor, bit width requirements of the instruction
fields, and instruction field conflict constraints; and

a bit allocation module for allocating bit positions in the
processor Lo the instruction fields in the bit allocation
problem specification.

23. The system of claira 22 including:

an MDES extractor for extracting a machine description
suitable to re-target a compiler from the datapath
description and the input specification; and

a custom template module for selecting custom templates
using operation issue statistics for an application pro-
gram generated by the compiler, re-targeted based on
the extracted machine description; and

wherein the custom templates are used as input to the
instruction format designer to generate the instruction
format specification of the processor.

24. The system of claim 19 including:

a contro]l path synthesizer for reading the instruction
format specification, and for generating a controlpath
description with components from the macrocell
library, where the control path description includes a
hardware description of an instruction unit datapath for
transfecring instructions from an igstruction cache (o an
instruction register, a description of control logic for
coupling an instruction sequencer to the instruction unit
data path, and a description of decode logic for decod-
ing instructions in the instruction register and issuing
the instructions to control ports in the datapath.

" * * * ¥
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A processor particularly useful in multimedia applications
such as image processing is based on a stream programming
model and has a tiered storage architecture to minimize
global bandwidth requirements. The processor has a stream
register file through which the processor’s functional units
transfer streams to exccute processor operations. Load and
store jostructions transfer streams between the stream reg-
ister file and a stream memory; send and receive instructions
transfer streams belween stream register files of different
processors; and operate instructions pass streams between
the stream register file and computational kernels. Each of
the computational kermnels is capable of. performing com-
pound vector operations. A compound vector operation
performs a sequence of arithmetic operations on data read
from the stream register file, i.c., a global storage resource,
and generales a result that is written back to the slream
register file. Each function or compound vector operation is
specified by an Instruction sequence that specifies the arith-
metic operations and data movements that are performed
each cycle to carry out the compound operation. This
sequence cap, for example, be specified using microcode.

ABSTRACT

29 Claims, 5 Drawing Sheets
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SYSTEM AND METHOD FOR PERFORMING
COMPOUND VECTOR OPERATIONS

This invention was made in conjunction with U.S. Gov-
ernmnent support under U.S. Army Grant No. DABT63-96-
C-0037.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention s directed to computer architec-
tures. More specifically, the invention is directed to pipe-
lined and parallel processing computer systems which are
designed to efficiently handle continuous streams of instruc-
tions and data.

2, Description of Related Art

Providing adequate instruciion and data bandwidth is a
key problem in modern computer systetns. In a conventional
scalar architecture, cacl arithmnelic operation, ¢.g., an addi-
Gon or multiplicalion, regnires one word of instruction
bandwidth to confrol the operation and three words of data
bandwidth to provide the input data and lo consume the
result {two words for the operands and one word for the
result). Thus, the raw bandwidth dewnand is four words per
operation. Conventional architectures use a storage hicrar-
chy consistmg of register files and cache memonies fo
provide much of this bandwidth; however, since arithmetic
bandwidth scales with advances in technology, providing
this instruction and data bandwidih at each level of the
memory hierarchy, particularly the boltom, is a challenging
problem.

Veclor archilectures have cruerged as one approach to
reducing the instruction bandwidth required for a computa-
tion, With convention vector architectures, e.g., the Cray-1,
a single instruction word specifies a scquence of arithmetic
operations, one on each element of a vector of inputs. For
example, a vector addition instruction VADD VA, VB, VC
causes cach element of au, e.g., sixty-four element vector VA
to be added to the corresponding elewment of a vector VB
with the result being placed in the corresponding element of
vector VC, Thus, to the extent thal the computation being
performed can be expressed in terms of vector operations, a
veetor architecture reduces the required instruction baud-
width by a factor of the vector length (sixty-four in the case
of the Cray-1}.

While vector architectures may alleviate some of the
instruction bandwidth requirements, data bandwidth
demands remain undiminisbed. Each arithmetic operation
still requires three words of data bandwidth from a global
storage source shared by all arithinetic units. In most vector
architectures, this global slorage resource is the vector
register file. As the number of arithmetic units is increased,
(his register file hecomes a bottleneck that limits further
improvements in machine performance.

To reduce the latency of arithmetic operations, some
vector architectures perform “chaining” of arithmetic opera-
tions. For example, consider performing the above vector
addition operation and then performing the vector multipli-
cation operation VMUL VC VD VE using the result. With
chaining, the vector mulliply iostruction consumes the ele-
menis compuied by the vector add instruction in VC as they
are produced and without waiting for the cntire vector add
insiruction to complete, Chaining, however, also does not
diminish the demand for data bandwidth—each arithmetic
operation still requires three words of bandwidth from the
veelor register file,

BRIEF SUMMARY OF THE INVENTION

In view of the above problems of the prior arl, it is an
object of the present invention to provide a data processing
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system and method which can provide a high level of
performance without a correspondingly high memory baad-
width requirement.

[t is another object of the present invention to provide a
data processing systent and method which can reduce global
storage resource bandwidth requirements relative to a con-
ventional scalar or vector processor.

It is a further object of the present invention to provide a
parallel processing system and method which minimizes the
number of extemal access operations each processor con-
ducis.

[t is yet another object of the present invention to provide
a parallel processing system and method which utilizes
gramular levels of operation of a higher order thag individual
arithmetic operations.

It is still another object of the present invention to provide
a parallel processing system and method which is capable of
simultaneously exploiling multiple levels of parallelism
within a computing process.

Itis yet a further object of the present invention to provide
a single-chip processing system which reduces the number
of off-chip memory accesses.

The above objects are achieved according to a first aspect
of the present invention by providing a processor having a
tiered slorage architecture to minimize global bandwidth
requirernents, The processor has a stream register file
through which the processor’s arithmetic units transfer
streams to execule processor operations. Load and slore
instructions transfer streams between the stream register file
and a stream memory; send and receive instructions transfer
streams between stream register files of different processors;
and operale instructions pass streams between (he stream
register file and computational kernels.

Each of the computational kernels 1s capable of perform-
ing compound vector operations. A compound vector opera-
tion performs a sequeace of arithmetic operations on data
read from the stream register file, ic., a global storape
resource, and generates a result that is writien back to the
stream register file. Each function or compound veclor
operation is specified by an instruction sequence that speci-
fies the arithmetic operations and data movewnents that are
performed each cycle to carry out the compound operation.
This sequence can, for example, be specified using micro-
code.

Because intermediate resulis are forwarded directly
between arithmetic units and not Joaded from or stored to the
stream register file, bandwidth demands on the stream
regisier file are greatly reduced and global storage band-
width requirements are minimized.

For example, consider the problem of performing a trans-
formation on a sequence of points, a key operation in mnany
graphics systems when, c.g., adjusting for perspective or
moving from a model space to a world space. [n ils most
basic form, the operation requires reading three words of
data for each point (x, y, z), performing a 4x4 vector-matrix
multiply, taking the reciprocal of a number, perfarming three
multiplies, and writing the resulting point (x, ¥, z) in the
new coordinate system. Without optimizations, the perspec-
tive transformation requires thirty-two arithmetic operations
for cach point—nineteen multiplications, twelve additiuns
and one reciprocal operation. On conventional vector
architectures, this would require ninety-six words of vector
regrister bandwidth per point.

In contrasl, a compound veclor architecture as described
in greater detail below can perform the perspective trans-
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formation in a single operation. The compound vecior
opetation requires only six words of global bandwidth
storage per point: three words to read the coordinates of the
original point (x, ¥, z) and three words 1o write the coordi-
nates of the fransformed point (X', ¥', 2'). Al of the inter-
mediate resnlis are forwarded directly between arithmeltic
units and thus do not require global storage bandwidth. This
sixteen-fold reduction in vector register bandwidth greatly
improves the scalability of the architecture. Tu effect, the
compound vector architecture moves the vector register file
access outside of a funclion such as perspective transforma-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects of the present invention will
become readily apparent when reading the following
detailed description taken in conjunction with (he appended
drawings in which:

F1G. 1is a block diagram of a graphics processor accord-
ing lo a preferred embodiment of the invention;

FIG. 2 is a diagrain of an arithmeltic cluster used in the
graphics processor;

FIG. 3 is a diagram of an arithmetic cluster having
variegated functional elements;

FIGS. 4A—4E show the structure of the instruction set of
the graphics processor; and

FIG. 5 depicis the flow of data between kernels in the

graphics proeessor when performing a triangle rendering
3

operation,

DETAILED DESCRIPTION OF PRESENTLY
PREFERRED EMBODIMENTS

First, the overall architecture of an exemplary computer
system cmploying a preferred embodiment of the present
invention will be described.

Central 1o the operation of this preferred embodiment are
the concepts of streams and kernels. A stream is a sequence
of elements made up of a collection of related data words.
A stream may be received by a computation kernel which
executes the same operation on all of the elements in the
stream to produce another stream that can be output or sent
to other kernels for further processing.

Kernels are relatively small compultational units that may
only access local variables, read input streamns and write (o
oulput streams, They cannot make arbitrary memory refer-
ences. In a preferred embodiment of the invention, the
coinputation kernels are expressed in a C-like programming

language and compiled into microcode programs that s

seguence the operation of arithmetic clusters to camry out
compound streain operalions on cach element in a stream.
The operations implemented by the kerels are called com-
pound operations because in contrast to conventional vector
or stream operations which perform only one operation on
each vector element, each Kernel performs multiple arith-
melic operations on cach stream element. A compound
stream operation is a small program that has access (o the
record at the head of each of its fuput streams and to its local
variables. The kernel reads the inpul streams and writes to
the output streams using explicil instructions. The length and
record size of each stream can be different and the number
of input and oulput streams need not be the same.

With this foundation in mind, FIG. 1 shows a preferred
embodiment of the present invention used in a high speed
graphics coprocessor. Here, a host processor 10 provides
data to the graphics coprocessor via a host interface 12. The
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data from the host processor 10 is stored in a stream register
file 14 which is the cenler of activity in the graphics
coprocessor. The host interface 12, stream memory 16,
arithimetic clusters 18, microcontroller 20 and network inter-
face 22 all interact by transferring strcams of dats and
instructions to and from the stream register file 14,

The system has a three-level storage hierarchy consisting
of the strearn memory 16 as a global storage unit, the stream
register file 14 as an intermediate storage unit, and local
register files 28 (see FIG. 2) in the arithmetic clusters 18 as
local storage unifs. The stream memory 16 holds pesistent
data; the stream regisler file 14 stores sircams as they are
passed to, from and between computation kernels, and the
arithmetic clusters 18 use (he local register files fo store
intermediate resulis produced during computations within
the cluster so they do not need (o recirculate through the
stream register file 14.

The stream register file 14 is preferably 2 64 kB memory
organized to handle streams of data and instructions (of
course, the size of the stream register file may he vared
according to the application). An array of eighteen 64 word
stream buffers are used to allow read/wrile access (o eigh-
teen streams simultancously. The internal memory array is
thirty-twe 32-bit words (i.c., 1024 bits) wide so thal it can
fill or empty half a stream buffer each cycle. Eachi stream
client may aceess its dedicated stream buffer every cycle if
there is data available to be read or space available to be
written. The clienis of eight of the stream buffers are the
cight clusters 18, and these stream bufters are accessed cight
words at a time. The remaining ten stream buffers are
aceessed a single word at a time,

The stream memory system 16 can perform two simul-
taneous memory transfers belween four thirty-twe bit wide
SDRAM banks 24 and the stream register file 14 via four
stream buffers (two for data and two for indices) in the
stream register file 14.

The eight arithmetic clusters 18 connected to the stream
register file 14 are controlled by the microcontroller 20.
Each cluster 18 operates on one record of a stream so that
cight records can be processed simullaneously. An exem-
plary internal structure of an arithmetic cluster, shown in
FIG. 2, includes four funciional elements 26 cach buffercd
by one of the Iocal repister files 28 which stores kemel
constants, paramelers and local variables, thereby reducing
the bandwidth load on the stream register file 14.

The local register files 28 themsclves are fed by a cros-
spoint switch 30 which distrbutes outputs of the functional
elements 26 to inpuis thereof as intermediate data for use in
subsequent arithmetic operations. The output of each func-
tionial element 26 is connected (o one of the input lines of the
crosspoint swiich 30, and the inpul of each local register file
28 is fed by a corresponding output line of the crosspoint
switch 30. Additionally, one of the crosspoint input lines is
fed by the stream register file 16 to provide the contents of
the strean dedicated to that cluster, and one of the crosspoint
output lines is retnrped to the stream register file 16 for
writing into that strearm.

A speeific implementation of the arithinetic cluster 18

p stoucture is shown in FIG. 3 in which three adders 260-26c,

two multipliers 264 and 26¢, a divider/square root upit 26,
2 128 entry scraichpad register file 26g, and an inter-cluster
communication unit 26k (hereinafter collectively referred 1o
as functional elements 26) are employed as functional
clements 26,

The scratch pad register file 26g can be Indexed with a
base address specified in an instruction word and an oflset
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specified in a local register and may be used for coefficient
storage, short arrays, small lookup tables and some local
register spilling. The adders 266-26c and multipliers 264
and 26¢ have latencices of four and five cycles, respectively,
are fully pipelined and perform single precision fioating
point arithumetic, 32-bit integer arithmetic, and 8-bit or 16-bit
paratle] subword integer operations. The adders 26a-26¢
also are able to perform 32-bit integer and parallel subword
integer shift operations. The divider/square rool unit 26f is
not pipelined and operales only on single precision floating
point and 32-bil integers.

Finally, the intercluster commnunication unit 26/ performs
data transfer among clusters using arbitrary communication
patterns. This Is particularly useful in applications such as
Fast Fourier Transforms where interaction is required
between adjacent stream elements.

The microcontroller 20 receives kernels as compiled
VLIW microcode programs from the host processor 10. The
microcontroller 20 executes each of the kemels as an
independent process using the arithmetic clusters 18 for
performing computational operations.

The network interface 22 connects the stream register file
14 (o four bidirectional links that can be used (o connect the
graphics processor (o other like processors.

Preferably, a substantial portion of the graphics
coprocessor, particularly including the stream register file
14, arithmetic clusiers 18 and microcontroller 20, are imple-
mented on a single chip using VLSI iechniques. This is
particularly advantageous because it allows accesses within
the arithmetic clusters 18 and accesses (o the siream register
file 14 to be internalized, thus freeing up more of the pin
bandwidth to be used for commonication with the stream
memories 24. In fact, it appears that a coprocessor as
disclosed herein can be implemented on a 1 em™ 0.25 um

CMOS chip operating at 400 MHz and perform up to 16 -

billion operations per second.

The application-level instruction set used by the host
processor 1 o program the graphics coprocessor is shown
in FIGS. 4A-4E. The set consists of two complementary
Load and Store instructions which are used to move sireams
between the stream register file 14 and the stream memory
16. As shown in FIGS. 4A and 4B, each instruction consists
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FIGS. 4C and 4D show send and receive instructions
which allow streams to be passed from the streamn register
file of one graphics coprocessor to thal of another. These
insfructions are particularly advaotageous because they

5 allow multiple processors o operate in cooperation and
provide extensibility and scalability. The Send instruction
shown in FIG. 4C includes the stream io be sent, a routing
header identifying the external coprocessor to which the
strearn is senf, and a channel indicator designating the
communications channel used so that a single node can
discriminate belween ariving messages. Similarly, the
Receive instruction of FIG. 4D includes the stream fo be
received and a chanoel indicator designating the communi-
cations channel for node discrimination of multiple mes-
sages.

Finally, the Operate instruction invokes a kernel o per-
form its compound streamn operation on one or more input
streatns to generate one or more output streams. The instruc-
tion includes a kernel field designating the keruel to be
activated, up to four input stream designators which identify
streams to be used o provide input data to the kemel's
compound slream operation, and up to four output stream
designators which identify streams to which results of the
compound siream operations are provided.

The host processor 10 issues these application-level
instructions to the coprocessor with encoded dependency
nformation which specifics the system resources and data
needed to execule the instructions. The host interface 12
buffers these instructions and, when their requiremnents are
satisfied, issues them to the coprocessor. The host interface
12 also maps the coprocessor 1o the host’s address space so
that the host can read and wrile to the stream memory 16 and
execule programs that issue the appropriate application-
level instructions (o the coprocessor.

Using this architecture, substantial improvements in
memory bandwidth use. minimization can be realized.
Consider, for example, the point transformation example
given in the Summary of the Invention section above. The
above struclure may be used to perform the operations
necessary to carry out the transformation as show in TABLE
1 below.

TABLE 1
From SRF ALU Cluster ALU Ciuster ALU Cluster ALU Cluster
Cyele 14 Ta SRF 14 18a 18b 18c 18d
1 X
2 ¥ Xy = ayX How 8K Xy = apX Xg = a,X
3 z Y1~ anY ¥2 = 2y Ya = anY Ya = 22s¥
4 Zy =82 2y = Uy 2y =yt 24 = Bygl
3 L=Xp4yl L=ty Lty Li=xty,
A Uy = 2k Agg Up 2y b By Uy m Zy o+ By LUy o= Zg + A4y
7 Bp=li iy Yp=ly b0y Zosthitus Walitu,
8 wy = 1w
9 PR S S S M
10 '
1 v
j¥3 z'
i)

of an instruction descriptor which identifies a starting
location, the stream to be loaded into the stream register file
14 or stored in the stream memory 16, and an address
descriptor which specifies the record size, base address in
memory and addressing mode, ¢.g., constant stride, indexed
or bit-reversed. Optionally, the length of a stream in the
stream register file 14 may be included.

0207

In the first operation cycle, the x-coordinate of the point
is loaded from the register file 14. In the next operation
cycle, the y-coordinate is loaded and the x-coordinate Is
multiptied by appropriate clements in the fransformation

¢ malrix. Similarly, in the following operation cycle, the
7-coordinate is lpaded and the y-coordinate is multiplied by
the appropriate matrix elements, and so on. During the

o
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compultations, the program parameters such as the transfor-
mation matrix entries and intermediate resulls are stored in
the local register files associaled with the functional ele-
ments 26 which will consume them. Also, various values are
distributed over the crossbar switch 30, For example, at the
end of cycle 8 w,, the reciprocal of w, is distribufed to three
of the arithmetic clusters 18 to be used in calculating X', y*
and z'.

In this way, four arithmetic clusters 18 can calculate the
point transformation in just lwelve opetational cycles, a
greal improvement over conventional archilectures. In
practice, further optimizations would be performed to ¢limi-
nate blank spots in the table at the beginning and end of the
sequence using, €.g., loop unrolling or software pipelining.
Also, in an actual implementation the functional clements 26
will have Jatencies of several cycles, e.g., two cycles for the
adders 26a-26¢, four cycles for the multipliers 264 and 26e,
and eight cyeles for (he divider 26f, and the operation
schedule would need 1o be rolled oul 1o account for arith-
metic latency. The resulting spaces can also be filled using
unrolling,

Consider, as another example, (riangle rendering—a corn-
mon procedure in graphics processing which is exemplified
by the C++ code below and whose dataflow is shown in FIG.
5

veid reader_triangle_ stream() {

# Make sure kernels loaded into coprocessar pcontroller

int transform ~ load _microcede {*iransformuc™);

inl shade = load_microcode(“shade uc™);

int proj __cull = load _microcode(“proj__culluc™);

int spen_ setup = load,_microcode(“span., setup.ne),

int process__span = load_microcode{“process._..span.uc);

inl soxt = foad_microcode(“sort.uc"),

int comp = load_microcode(“comp.uc’);

int 2_composiie ~ Joad__mi de{“z_c

/1 Triangle tendering on series of triangle stieams

for (int ii = 0; I<NUM_TRIANGLE_STREAMS; l++} {
stream__load{mem__model_id, srf _model _tr);
stream_op{lransform, sef_model i, sst_weort
stream... op(shade, stf_world_tei, sif._shaded
streant._op(proj...cull, sef._shaded __tri, srf._
strean_op(span_sstup, sif__screen,_tri, stf
streem__op{process_span, s«f_spans, srf_fregments);
slream__op{sod, srf_fragments, s1{_ser!__fr);
stream. op{comp, srf_sort_fr, srif_bof_ idx, srf_pix});
stream__load{mem_buf_pix{sef_buf_idx] sef_pix2);
siream, _op(z__comp, sef_pix, ssf_pix2, sri_out_pix);
strem__store(sif__aut_ pix, mem._bof_pixfscf_buf _idxT]);
update__descriptors();

uc”);

Here, each library function has a one-to-one comespondence
with an application-level instruction. The load microcode
function loads the microcode routine denoted by its argu-
ment and returns the starting address of the code. Memory
load and slore mstructions are respectively issued o the
coprocessor by the stream__load and stream__store func-
tions. Finally, an Operale Instruction is issued by the
stream_op funclion to cause the corresponding microcode
kernel to mun on cach clement of the specified source
streams. For example, the first stream__op function shown in
the code initiates a compound stream operation on the
coprocessor by issuing an Operate instruction specifying the
start address of the transform microcede. The instruction
also specilies ope input siream, stf_model _tr, and one
output siream, sri_world _ri.

The arguments of the stream load, store and operate
instructions are specified by stream descriptors. Each
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memory stream deseriplor, e.¢., mem__mode]__tri, includes
a base address, length, record length, mode and stride or
index stream. Fach register stream descriptor, e.g., stf__
model__iri, includes a base location in the stream register file
16, record length, and stream length, These descriptors are
produced by C++ code running on the host processor.

As shown in FIG. 5, the first arithmetic step in the process
is to transform the Uiangle from model space to world
space—-a slightly more complicated version of the siple
transform described in the summary section above, For this
transformation, there is a single input stream and a single
output stream. Each stream cousists of tweaty-four
elements—for each of the three triangle vertices, the three
dimensional vertex coordinates; a perspective coordinate;
the vertex color; and a pormal vector for the vertex
expressed as a three dimensional coordinate. With (his
stream structure, the transformation computation can be
expressed as the single compound stream operation shown
in pseudocode below:

loops over all triangles {
loop cver three vertices {
H 1ead verlex data {rom inpul strcam
[, ¥, 2z, W, colog, nx, ny, nz] = inpul__streamb;
te Uransic d vertex i
XmrIT*R+112*fy+ri3 2+ 114 Y Wy
by =121 "X + 1227 y+ (23" 2+ 124 * vy
T2 =31 TR 4320 y e 33024034 0wy

#f compute transformed normal vector
tnx =03l * ox + ni2* ay + 03 % nz
tny = n21 * nx + n22” ny + n23 * oz
nz = n31 * nx + n32* ny + 033 * nz;

1 write vertex dats ta oulput stream

outpul__stresmt = {1z, ty, (2, w, coler, lnx, toy, (az);

)

Now, a typical data set might consist of average triangles
covering (wenty-five pixels with a depth complexity of §.
Rendering cach toangle might require 1929 arithmetic
operations, 666 references 10 stream register file 16 and 44
references to stream memory 18, With a conventional archi-
tecture in which three memory references are required for
cach arithmetic operation (one for reading the arithmetic
instruction, one for reading the operands and one for writing
the result), at least 5787 references would be necessary.
Thus, by capturing Jocality within the kernels, coding the
triangle rendering application lo take advantage of the
above-described architecture, references to memory outside
the kernels are reduced by a factor of more than 8,

Moreover, once the kernels are programmed by micro-
code from the host processor 19, the entire triangle rendering
process shown in FIG., 5 can be performed with only eleven
application-level instructions: a Load instruction reads the
triangle stream from the stream memory 16; seven Operate
instructions sequence the kernels from transform o com-
pact; a Load iostruction uses the index vector computed by
compact to read the old Z-values of tle pixels in question;
an Operate instruction performs Z-compositing; and a Store
instruction writes the visible pixels and their Z-values back
to the stream memory 16.

Additional cfficiency could be realized by using more
than one coprocessor in a multiprocessing arrangement. For
example, when performing the triangle rendering process
described above, one copracessor could be used to run the
first three kernels and transmit the result 10 a second copro-
cessor 1o run the remaining five kemels simply by inserting
a Send and complementary Receive instruction at the appro-

*
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priate position in the sequence of application-level instruc-
fions. The remaining resources of the two coprocessors may
be used to render other triangles or (o execute unrelated
processes,

Kernels such as the transformation kernel listed abave are
written in a C-like microassembly language, and the kernel
compiler (preferably on the host processor 1) takes this
C-like code and generates VLIW microcode instructions that
enable the microcontrolier 20 to control the functional
clements 26a-264, The only flow control operations permit-
ted in the kernels are iterative loops (although some control
operations such as conditional branching may preferably be
implemented in alternative ways as described in the U.S.
patent application to William Dally, Scott Rixner, I. P.
Grossman, and Chris Buehler, filed concurrently herewith
and entitled SYSTEM AND METHOD FOR PERFORM-
ING COMPOUND VECTOR OPERATIONS, incorporated
herein by reference) and the compiler applies several com-
mon bigh-level optimizations such as loop varolling, itera-

tive copy propagation and dead code elimination. It then
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memory references for the entire pipeline over eight kernels.
The global register file reference figure is based on the 24
words read from the stream register file 14 and the 24 words
written to the stream register file 14. Finally, the kernel
exceutes 108 arthmelic operations which use 355 words of
data from local register file 28. As can be seen from TABLE
I, the memory bandwidth requirements of the scalar pro-
cessor are 62.2 times higher than that of the stream archi-
tecture and the global register bandwidth requirements of the
scalar processor are 21.5 times higher than that of the stream
processor. The memory bandwidth requirements of the vec-
{or processor are 8.7 times that of fhe stream processor, and
the global register bandwidth requirements of the vector
pirocessor are 5.4 times that of the siream processor.

Three image processing kernels, FFT, tdangle transform
and blockwarp (taken from an image-based rendering
application), were used to generale the performance resulls
shown m TABLE III below, FFT performs one stage of an
N-point Fast Fourier Transform; triangle transform is the

performs list scheduling starting with the largest, most 2° triangle veriex transformation described above; and Block-
deeply nested block, and within each block operations with ~ Warp perfonms a 3-D perspective transformation. on 8x8
the least slack are scheduled first, blocks of 3-D pixels to warp them from model space into
The stream memory 16, siream register file 14 and local screen space. As can be seen from the Table, the mean speed
register files 28 have bandwidth ratios of 1:32:272, That is,  increase when moving from execution of each kernel on a
for cach word read from memory, thirty-two words may be 25 single cluster to execution on eight clusters is over 7.5.
accessed from the stream register file 14 and 272 words may
be read from or written fo the local register files 28 in the TABLE 11
functional clements 26a-26k. In other words, the coproces- X N
sor can perform 40.5 arithmetic operations per four byte Kemel Single Cluster_ Bight Clusters _ Sposchup
word of memory bapdwidth and 1.2 arithmetic operations *°  FFT (cyclesfbuucrly) 419 075 5.59
per word of stream register file bandwidth. The bandwidths Transform {cyelesfiriangle) 171 2213 8
of the stream memory 16 and stream register file 14 are ﬁlod;;vam (eyclesblock) 2840 275 105
L . . h . armonic Mean 152
limited by chip pin bandwidth and by available global chip
wiring, respectively, while the bandwidth of the local reg-
isier files 28 is set by the number of functional clements 3 he vertex transformations are independent of one another,
26a-26h. s0 there is no overhead lost to communication between
TABLE II compares the memory, global register and local clusters when executing that kernel, and the net speedup is
register bandwidth requircments of the stream architecture cxactly 8. The FFT requires exchanges of data between
of the coprocessor with a prior art vector processor and a kernels, so the speedup when exccuting that kemel is
prior art scalar processor for the above-described triangle 40 somewhal less than 8. Bxecution of the Blockwarp kernel on
transformation kernel. The figures for the scalar architecture cight clustsrs eliminates a loop in the process, resulling in a
were generated by compiling the transformation kemel for speedup of more than 8.
an UltraSPARC 1I using version 2.7.2 of the gee compiler. TABLE IV shows the bandwidth used by each of the
45 above kernels al each level of the memory hierarchy. The
TABLE It kernels require an average of 9.4 times as much local
References Siream Soatar Vector register bapdwidth as stream rcgislcr bandvgidth. The
throughput in the blockwarp kernel is worse than in the other
Memory 55 342 (622} 48 [Ch)] kernels because it performs a divide when computing each
Global Register File 48 030 (L5 283 (54 ¢y Dixel. The non-pipelined divider creates a bottlencck
bocel Begister File 355 A A because all subsequent calculations are dependent on the
divide resull. Fully one-third of the execution cycles are
The entries for the scalar and vector processors should be spent waiting for results from the divider without issuing
self-explanatory. For the stream architecture, the 5.5 stream any arithmetic operations, even with loop unrolling to hide
memory access figure was obtained by averaging the 44 the latency to dependent calculations.
TABLE 1v
Sisesm Kegisler  Local Register  Operations per  Arithmetic
Kernel File (GBJs) File (GB/s) Cycle Op'ns (GOPS)
FFT 21.45 165.66 18.76 7.51
Transform 10.41 70 1464 586
Biockwarp 418 46.59 873 3.49
Harnionic Mean 787 74.10 12,70 50&
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Thus, a pmcessing systemn according to the present inw;n.
jon eXposes the parallelisnr and lncahty of_ data processing,
- such as image processing and the like in a manner than
Fa&kseil-guited to current technologies. A programmer may
is v ‘bt; an application as streams of records passed through
dcscnutalion kernels, and individual stream elements may be
Gm—:ﬂpgcd on in parallel by the aritbmetic units acting under
Op“zmml of the microcontroller as computational means to
lhef it data parallelism, Instruction parallelism may be
explg;tcd within the individual computation kernels by the
ei‘};rocontmuer acting as program eg:ecut'mg means. Einaﬂy,
Iclc,mml parallelism niay be cxploftcd by partitioning an
lication across multiple processing systems by the host
appcc-asor acting as control means. Locality is exposed both
ILl;mre;irculating streams through a stream register file ar%d
a]};o within the computation kernels WblCh access streams in
order and keep a small 50(} gf local Varx_ables. Moreover, (he
combined effect of exploiting parallelism on each level is
multiplicative. This enables the system a[ch{(cc(u}:c o 'makc
efficient use of a large npmber of aritbmeltic units without

global bapdwidth becoming a bottleneck. .

As will be apparent from reading the abpvc explanation,
exploiting parallelism as used abc}ye and in the appcnd_ed
claims means pct{om\mg computalions, program execution
or process control to take advantage of redundancy of
coptent and similarity of structure in Fiata: programs or
processes flow (0 realize operational efficiencies in compari-
son with conventional architectures.

Modifications and variations of the p_rcfcrr_ed embodiment
will be readily apparent lo those skilled in the art. For
example, the number of operative units such as arithmetic
clusters, functional units within the clusters, memory b:m}cs
and the like need not be as set forth herein :de'may readily
be adapted depending on a parlicular_ application. Further,
variations on the instruction set described above as well as

new processor instructions may be provided. A larger num- 4

ber of simplified clusters may be provided, or a smaller
number of mere powerful clusters may be used. Such
variations are within the scope of the present invention as
defined by the appended claims,
What is claimed: .
1. A data processing syslem comprising:
a controller;
at least one arithmetic cluster capable of independently
and sequentially performing compound arithmetic
operations, responsive (o commands directly opera-
tively provided from the controller, on data presented at
ap input thereof and providing resultam. processed dala
at an output thercof, and capable of utilizing interme-
diate data generated as a result of performing he

operations in subsequent operations without retrieving s

the intermediate data from a source external to that
arithmetic cluster; and

a stream register file directly operatively coupled to the

cluster and being selectively rcadable and writable,
responsive to cormmands from the controller, by each of
the at least one arithmetic cluster for holding the
resultant processed data of the at least one arithmetic
cluster.

2. The system of claim 1, wherein at least one arithmetic
cluster includes a plurality of functional elements each
Capable of performing an individual arithmetic operation
Independentily of other functional elements, and capable of
Providing results thereof to at keast one of itself and other
functional clements for use in subsequent arithmetic opera-
tions,

3. The system of claim 2, wherein the plurality of func-
lional elements are connected to a crossbar switch for
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providing results of arithmetic operations performed by cach
functional element to other functional elements.

4. The system of claim 3, wherein an arithmetic cluster
mcludes a Jocal storage unit for storing data to be used by a
functional element within the arithmetic cluster during a
compound vector operation.

5. The system of claim 4, wherein:

the local storage unil is connected to an input of the

functional clernent within the arithmetic cluster; and

1o dala stored in the local storage unit is dircctly accessible

only by the functional element to which it is connected.

6. The system of claim 4, wherein data stored in the local
storage unit 1s accessible by a plurality of functional ele-
ments in the arithmetic clusier containing that local storage
unit and plurality of functional elements.

7. The system of claim 3, wherein the crossbar swiich is
a sparsc crossbar switch.

8. The system of claim 2, wherein the plurality of func-
tional elements includes a scratchpad register file.

9. The system of claim 2, wherein the plurality of func-
tional elements includes an interclister communication unit
for communicating with other arithmetic clusters.

10. The system of claim 1, wherein an arithmetic cluster
fncludes a Iocal storage unit for storing data to be used by the
arithmetic cluster in subsequent arithmetic operations.

11. The system of claim 1, fuither comprising a host
processor capable of selectively reading and writing the
stream register file.

12. The system of claim 11, further comprising:

a network interface connected to the stream register file
for exchanging data between the stream register file and
another system.

13. The system of claim 1, wherein the at least one
arithmetic cluster is a plurality of arithmetic clusters each
capable of independently and sequentially performing com-
pound arithmetic operations, responsive to commands from
tlie controller, on data presented af respective inputs thereofl
and providing resultant processed data at respeetive outputs
thereof, and capable of utilizing intermediate data generated
as a result of performing the operations in subsequent
operations without retrieving the intermediate data from a
source external to that aritlunetic cluster.

14. The system of claim 1, further comprising a global
storage umt being selectively readable and writable, respon-
sive 10 commands from the controller, only by the stream
register file,

15. The system of claim 14, wherein the stream register
file is selectively and independently writable, responsive to
the controller, by at Jeast two of the controller, the global
storage unit and an arithmetie cluster,

16. The system of claim 14, wherein the global storage
unit is selectively readable and writable, responsive to the
controller, by the stream register file in independent, simul-
tanieous transfers.,

17. A method of processing data comprising:

performing multiple arithmetic operations simultaneously
and independently in each of a plurality of arithmetic
clusters responsive to commands directly operatively
provided from a controller, at least some of the arith-
metic operations utilizing data generated and supplied
by the arithmetic clusters without retrieving the gener-

ated data from a source external to the arithmetic
clusters; and

reading data used by the arithmetic clusters from and

writing data generated by the arithmetic clusters o a
stream register file conpected directly to the plurality of
arithmetic clusters.
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18. The method of claim 17, wherein the reading and
wiiting are performed f{or date generated by multiple arith-
metic clusters in the plurality of arithmetic clusters inde-
pendently and simultaneously.

19. The method of claim 17, wherein performing multiple
arithmetic operations includes utilizing data generated and
supplied by the arithmetic clusters without retrieving the
generated data from a source exlernal to an arithmetic
clusters utilizing that data.

20. The method of claim 17, wherein performing mulfiple
arithmeltic operations includes performing individual arith-
metic operations simultaneously and mdependently in cach
of a plurality of functional elements, at least some of the
functional clements utilizing data generated and supplied by
{he functional clements without retrieving the data generated
by the functional elements from a source external (o an
arithmetic cluster containing those functional elements.

21. The method of claim 17, further comprising storing at
least some data generated by a functional clement In a local
storage unit.

22. The method of claim 21, further comprising retrieving
data stored in the local storage unit only by a functional
element which stored that data.
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23. The method of claim 21, further comprising retrieving
data stored in the local storage unit by plural feoctional units
within an arithmetic cluster containing the phural fupctional
clements.

24. The method of claim 17, further comprising exchang-
ing data between arithmetic clusters,

25. The method of claim 17, further comprising exchang-
ing data from the stream register file to an external system.

26. The method of claim 17, further comprising exchaug-
ing data betweea the stream register file and a global storage
unit.

27. The method of claim 26, wherein exchanging data
includes exchanging multiple data ¢lements between the
stream regisier file and the global storage unit independently
and simultancously.

28. The system of claim 1, wherein clusler instruetions
and al lcast one of dala mput and output streams are
provided to the at least one cluster responsive to a stream
instruction.

29. The system of claim 8, wherein the scraichpad register
file is independently addressable for the cluster which itis in
using a4 computed address.
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1
AUTOMATED TEST HARNESS
BACKGROUND

1. The Field of the [nvention

This invention relates to computer networks and, niore
particularly, to novel systems and methods for temporarily
slaving operating systems of a plurality of processors for
configuration purposes or for downloading software, and
then later emancipating these slaved devices (e.g.
compulers, microprocessor-based devices, instruments, etc.)
to operate independently, including running software, down-
loading files, and uploading files over the network.

2. The Background Art

Networking typically involves several microprocessor-
based devices (nodes) exchanging data with one another
over a (ransinission medium, a communication link such as,
for example, a hard wire, fiberoptic cable, radio frequency
transmitter/receiver, or other physical communication
mechanism. A link belween a node and a network or
between routers of a wide arca network (WAN) may be
wireless. Network cards provide a mechanical and data
connection between the communication link (c.g. fiberoptic,
wire, or wireless) and the processor of the node or device to
be connected to the network. Communication may occur by
various protacols (rules), with steps (activities) executed by
devices satisfying those protocols.

Networks may be defined at several levels of grouping
and communication. For convenience, the terms primary,
secondary and tertiary network are used liere to indicate the
cxtent and complexity of a network. A primary network is
the most fundamental connccting of two nodes in some
manner. A local area network (LAN) may be thought of as
a primary network. A secondary network is a rouled

network, one including at least two primary networks con- 3

nected by a router for forwarding messages between the
priniary networks. A tertiary network (sometimes called an
internetwork) is one including two primary or secondary
networks, a router in one being separated by an intermediate
network from a router in the other. Thus, as the name
network implies, a tertiary network can extend from router
Lo router to router via intervening primary networks virtually
forever, within the constraints of the laws of electrophysics
and communications protocols.

A server is a compuler comnected to a network via a
network card and programmed to act as a traffic manager and
storage device for files of data being transmitted over the
network by the various connected nodes. A hard wire
interconnected to a group of network cards with attached
computers, with one of those compulers acting as a server,
is a typical network. In other networks, every device may be
a server.

Coniputer networks are capable of facilitating many
functions, but not certain other functions. For example, as
computer network technology has grown, so has the need to
pass information over the networks.

Likewise, a user at each node, typically, must configure
the node, from physically connecting hardware and loading
an operating system of the processor (o loading an applica-
tion and instructing the application how to store and retrieve
data representing information. A high degree of automation
of tasks normally done by users is not typically available
between devices (nodes) across networks. One command
line at a time is typically required to be sent and responded
to.

Unfortunately, a user logging a controller computer on to
a network cannot automaltically download executables to a
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remole, general-purpose, computer for execution. The
remote computer must be logged on and configured by the
user just as any other computer.

Similarly, a slaved compuler may be logged on to a
network, configured, loaded with an application and then
enslaved to communicate with a master to receive informa-
tion from a master for use by an application previously
launched on the slave computer. Instructions and responses
are typically on a command-by-command basis.

Configuration may be thought of as programming a slave
with executable codes, and providing information for estab-
lishing connections and protocols, identifying other devices
to be addressed, identifying a server and possibly a router,
providing the address of the slave to the network server, and
so forth. Thus, once configured, a node (e.g. computer or
other processor-based device on a network) may send and
receive messages. Also, once an application has been
lannched (loaded and instrucled to run), the slave may send
and receive information related to the application. However,
if a slave is basically a general purpose processor with an
operating system and memory, or optionally including a
storage device, it must be manually loaded with software
and Instructed to run by a user before communicating with
a master.

What is needed is a system (hat enables a controller to act
as a uscr or otherwise take control of a processor to instruct
it. For example, a processor needs to be controlled long
enough to be instructed to download “exccutables,” (files
conlaining a coded instruction capable of being “under-
stood” by an operating system of a processor to result in an
operable instruction executable by the processor), and to
launch (run) the executables. Slaving an operating system
and configuring the host (remote computer) need o be
followed by a high degree of independent operatiou by the
remote compulter.

Ascliecrne is needed for slaving and configuring, followed
by downloading cntire exccutables to a general purpose
computer, that is, a larget, located remotely from a
controller, particularly over a network. For example, a
controller may need to automatically perform all tasks
normally required of a user sealed at a keyboard associated
with the target. For example, a user boots up a computer with
some operating system, logs on to a network, navigates
through a hierarchy of directories, locates and loads an
cxecutable file, and runs the “executable” For systems
having an input/output (I/O) interface for dealing with
humans, great utility may be obtained by providing for a
remole computer to replace the user, thus providing auto-
mation of many manual tasks associated with setting up a
compuler, running software, and managing files.

Similarly, for processor-based apparatus having 1/0 inter-
faces embedded, without user iterfaces as monitors and
keyboards, great utility could be obtained by providing for
automatic access to the operating system by a remote
compuler across a network. For example, automatic loading
of executables from a remole computer, automatic
upgrading, and any similar task accessing the operaling
system of a microprocessor-based device on a network could
make management and upgrading of such devices tractable
on a large scale.

Likewise, the need may be for downloading information
to the memory of a device by which the device may operate
a resident exccutable. For example, when a single computer
connects to several peripheral devices, the single computer
typically may control those various devices directly. Also, a
confrolling computer may simply provide data correspond-
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ing to responses, commands, or information needed by an
application running on a slaved computer. However a need
exisis for autonomous devices to be (cmporarily accessed
remolely with data for contolling or supporting resident
executables, after which the devices return to their autono-
mous operating condition. The need, when compared with
the conventional term “slaved computer” is for an “eman-
cipated compuler” that may be lemporarily and remotely
cnslaved at an operating system level, configured, and
emancipaied lo operate independently over the network. The
emancipated computer or other device needs (o be able to
access files of Input twformation or load itself with an
executable, or launch an executable, after which it may
report back to a master to be enslaved again, and reconfig-
ured to operaic again as an emancipated device,

A system is nceded that is transparent to a user for
tracking large numbers of such emaneipated slave comput-
ers. Thus, a system is needed that will facilitale a controller
accessing munerous resources (computers), monitoring {heir
capabilities, taking temporary control of any available one,
commanding the selected resource to configure itself, load
and run software, and pass input and output information
properly, and report to the controller when it is again
available to be assigned another project. Again, single

commands witl reporting back for another command arenot %

the intention. What is needed is true emancipation, maxi-
mizing the use of the emancipated slave resource, with
mimimum necessity for control by the controller, while at the
same time permitting the eontroller to communicate with the
resource at an operating system level when needed. Thus a
general purpose computer may be commanded to com-
pletely re-configure itself as necded without human inter-
vention.

Thus maximum utility of all resources may be achieved

by simply programming the logical options, defaults, back- 3

ups for failed options, and the like, in order to keep all
resources operating all the time with tasks that each can
complete. Thus, regardless of processor, speed, memory,
architecture or operating system, each resource needs to be
able to be put to work effectively for every mimute that it is
available, without waiting for a user to monitor, schedule,
and program the resource manually. All this capability over
network can make possible festing systems having great
speed, throughput, and flexibility from an assembly of any
number of available resources of virtually any type.
Moreover, luman intervention may be only required af some
minimal degree, yct a human opecator could access the
controller for information on the system status, results, and
the like at any time.

BRIEF SUMMARY AND OBIECTS OF THE
INVENTION

In view of the foregoing, it is a primary object of the
present invention to provide a system for commanding
resource compulers to download test software and paramet-
ric data from a computer server (central repository) to the
resource (test) computer or device selected from a phirality
of resource computers aver a primary, secondary, or tertiary
network.

It is an object of the invention to provide a system for
uploading and sforing test result data from a test computer
to a cenlral repository on the network.

It is an object of the mvention to automatically, according
to a method transparent fo a user, without requiring inter-
vention by a user, manage a pluralily of resource computers,
over a network from a controlling computer, the startup and
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configuration of one or more test computers selected from
the plurality of resource computers, transfer software files
and parametric data files to the test computer or cause the
test computer to download those files, provide surrogate
commands fo the lesi computers as if from a user or
programiming computer, and emancipale the test computer to
operate the software of the software files and return result
data corresponding lo test data to a system database reposi-
{ory remote from the test computer.

It is an object of the invention to permit trapsfer of data
by bit streams, files, ficlds, or entire dafabases.

It js an object of the invention to transfer data to a
controller, or lo a remote processor operating as a database
manager, or directly (o a database in a storage device, over
4 network, without requiring synchronous communication as
in conventional master/slave systems, for example, without
requiring that a master send an instruction to obtain cach
packet of information from a slave, or without requiring a
master to do anything to enable a resource to complete a
function and store data for access later by other computers,
such as the controller.

1t is an object of the invention to provide a system for
tracking and schieduling of available resource computers
connected in a network, including monitoring such param-
eters as, for example, the location, pame, operating system,
memory, speed, processor characteristics, memory capacily
and other operational characteristics, of each resource
computer, and using that mformation to allocate those
resource computers to run applications, such as for example,
test applications and collect dafa, such as test data,

It is an object of the invention to provide over a network
a server (wlhether having a separale central processor, or
time-sharing with the controller) for storing and retrieving
files to be used temporarily by a controlling computer on the
network and files to be loaded to and from a selected fest
(resource) computer of a plurality of resource computers
connected to the network.

It is an object of the invention to provide database
management, including an information format and desig-
nated fields to be slored in a database, for application, such
as test applications, datafiles of parameters for controlling
the test applications, and datafiles of test results obtained by
rioning the fest applications, all to be uploadable and
downloadable over a networl between a plurality of
resource compuiers, a server, and a controller connecied in
a network.

It is an object of the invention to provide scheduling and
queuing for a plurality of resource computers conuected in
a network, the resource compulers being general purpose,
program inable, digital computers, wherein application files
of testing software, and parametric datafiles for operating the
testing software are not required (o be resident, but may be
made available or downloaded by each selecled, available,
resource computer as prompied by a controlling compuier
connected (o the petwork to communicate with the indi-
vidual operating systems of the resource computers.

It is an object of the invention to provide resonree
management of a plurality of resource computers connected
in a network according to the performance paramcters of
each resource, such as, for example, its memory, speed,
processor characteristics, memory capacity and other opera-
tional characteristics.

It is an object of the invention fo provide selection of a
resource compuier by a controller, loading and launching of
applications by the resource computer under limited prompt-
ing or direction from the controller.
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1t is an object of the invention to provide a scheduler for
selecting a test, having an application, from a queue of tests,
sclecting criteria for choosing a resource computer, and
passing to a resource manager such criteria, and to provide
a resource manager {o track performance characleristics of a
plurality of resource computers connected Lo a network, and
lo select a suilable resource computer for running the
application based on the criteria, for exaniple, by tracking
each resource, and matching each resource al any given time
with a selected application to run on that resource, the
application being selected from a plurahity of applications
identified by the scheduler from the launch queue.

It is an object of the invention to provide a method for a
resource manager Lo catalog and track a plurality of resource
computers, for a launcher to configure a selected resource of
the plurahity of resource compnters, for emancipating the
sclected resource to run alone, for the selected resource to
load or have loaded on it an application, for receiving
therefrom (such as by a controller or a server) data corre-
sponding to test results generated by a test application in a
suifable format for storing and retrieval.

It is an object of the invenlion to provide a method for
configuring a plurality of resource computers remotely over
a network by a controlling compuler to load and run appli-
calion soflware and crcatc dala corresponding to results
generated by the applicalion software for storage in a slorage
device, such as, for example, by ransfer of a dalafile from
the application software to a server, or by transfer of data
from the processor to the controller for logging into a
dalabase on a server, which mnay have a database manager
operably connected (hereto for managing datafiles.

It is an object of the invention to communicate over a
network with the operating system of a general purpose
computer, temporarily control the general purpose computer
to configure it for running application software selected and
downloaded by a controlling compuler, and then emancipate
the general purpose coniputer (o operate substantially inde-
pendently.

It is an object of the invention to provide for monitoring
by a controller the availability and abilities of a plurality of
resource computers, and for communication by the control-
ler with the operating systems of individual resource com-
puters over a network for configuring the resource
compulers, providing for loading and launching of applica-
tion software thereon.

Consistent with (he foregoing objects, and in accordance
with the invention as embodied and broadly described
herein, a test harness may include a controller, a slave or
target, and a network interconnecting the master aud one or
more slaves. A lest harness may also be thought of as a
system of related software modules for controlling and
managing the resources of a system of hardware components
(such as computers) to render one processor a controller and
anolher processor a slave at an operating systein level.

A resource or target may be a computer controlled across
a network as a slave during a setup procedure controlled by
commands from the controller. The slave is thereafter eman-
cipated to operate independently, capable of downloading
and ruuning software, reading and writing files, and the like,
without direction or control from the controller. A computer
may iuclude a processor capable of hosting an operating
system, with memory for temporary storage of data aud
instructions used by the processor during operation.

An operating environment, or sinply environment, may
be an operaling system, such as, for example DOS, O§/2™,
Windows™, and so forth. However, an environment may be
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another executable program operating within or under the
operaling environment hosted by a processor. By a “differ-
enl” operaling system is meant not a copy of an operating
syslem running on a different processor, but an operating
system using a programming structure, command system,
protocol, comnbination of the foregoing, or the like, different
from that of another operating system. For example DOS by
Microsoff™ and Windows by Microsoft™, OS§/2™,
Macintosh™, Next Step™, are all separate, dislinct,
“different,” operating systems for communicating with and
controlling a processor, its associated memory, and possibly
other devices such as a storage device over a bus of a
computer.

A method and apparatus are disclosed in one embodiment
of the present invention as including a network having a
coniroller and a plurality of resources. An apparatus made in
accordance with one embodiment of the invention may
include a server, a database manager, a scheduler, a resource
manager, a launcher, and a plurality of resources, ecach
resource containing a processor and memory for hosting an
applicalion.

A melhod practiced m accordance with an embodiment of
the invenlion may include tracking a plurality of resources,
scheduling a plurality of applications having executables for
controlling a processor and for providing data corresponding
to operations of the processor, selecling a resource (o host an
application selected {rom the pluralily of applications, con-
figuring remotely over a network the selecled resource,
launching the application on the resource, running by the
resource the application, providing output dala from the
resource, recording in a database for later retrieval the oulput
data, and managing the database for identification and
selection of the output data.

In one embodiment of an apparatus made in accordance
with the invention, an apparatus for running test software
may include a network for communicating data. A target
may be operably connected to the network, the target
comprising a first network interface, a first processor and a
first memory device. The first processor may be program-
mable to host an operating system to communicale instruc-
tions to the first processor and to communicate data to and
from the memory device. The first network interface may be
operably connected to the first processor to communicale
data between the first processor and the network;

A conlroller may be operably connected to the network to
communicate data with the target over the network. The
controller may include a second network interface and may
be operably connected to the network lo communicate data
between the controller and the network. Likewise the con-
troller may include a second processor operably connected
to the second network interface for controlling the first
Processor’s operating system.

The controller may include a second memory device for
storing data communicated to and from the second
processor, and a storage device for storing files. The files
may include test applications containing instructions execut-
able by the first processor, control applicalions containing
instructions executable by the second processor, test data-
files containing data corresponding to test parameters used
by the first processor in running the test applications, and
resull dalafiles containing data corresponding to results
obtained by the first processor while running test applica-
tions.

The apparatus may include software modules hosted on
the controller. Modules may include a resource manager
operable on the second processor for accumulating, tracking,
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and controlling storage of dala corresponding to
identification, performance characteristics, and availability
of the larget o run test applications. The resource manager
may also service likewise a plurality of such targets.

The apparatus may include a server for storing and
retrieving files, and a database wmanager lor storing to and
retricving from a database records corresponding to data
communicated between the first processor and the second
processar. The apparains may include a plurality of data-
bases accessible by the database manager.

The controller may inclnde a launcher 11 one or more
instantiations for communicating with the operating system
of the target. The launcher, or the target after configuration,
may download selected applications and application (test)
datafiles to the target. In general, another type of application
may be substituted for a test application, an application
datafile for a test datafile of inputs, and a result datafile for
test result dalafile. The controfler may include a scheduler
for acquiring data corresponding to a queue of tests o be
run, selecting test applications to be loaded onto the target,
and controlling matching of the test applicalions to the
target.

The apparatus may include a plurality of targets, wherein
each target of the plurality of targets may host an operaling
system different from the operating system of any or all
other targets of the plurality of targets. The target (or cach
target of a plurality of targets) may include a storage deviee
operably comnected to the first processor for temporarily
sloring test datafiles, result dalafiles, and test applications
while running tests. The targel may be programmed to host
an operaling system, and an enviromnent operating under
the operating system, {or on top of the operating system).

In general, when the term “test application” is used
herein, the word “application” may be substituted. Although
in one preferced embodiment, the apparatus and method may
be used to aulomate the execulion of software festing
applications, the method and apparatus are equally valid for
other software applications.

The apparatus may be arranged to have the second
processor programmed witl a plurality of software modules.
For example, the plurality of software modules may include
a server for sloring and retrieving files, a database manager
for storing and retrieving records from a plurality of data-
bases corresponding to tests, suites of tests, groups of tests,
suites, or other groups, larget performance characteristics,
fest results, system paramelers and errors, launchers and
launches, status of targels, and the like communicaled
between the first processor and the second processor. Other

madules may include a resource manager for tracking s

identification, characteristics, and availability of the target to
run test applications, a launcher for communicating with the
larget and [or initiating downloading, by the controller or the
target, of selected fest applications and test datafiles to the
target, and a scheduler for acquiring data correspondiog to a
queue of tests to be rum, selecting test applications to be
loaded by the target, under direction of the launcher, and for
spawning launchers as needed.

An apparatus may use processes aud operational codes
(opcodes) to provide a logical flow between processes, each
process operating according Lo opeodes placed in a quene of
the process by another process. Each process may be hosted
on an individual device (computer, processor) alone, or
several processes may be hosted on a single processor,
timesharing the processor. This is one benefit of 4 nuli-
tasking operating system. An enlire system (automated test
harness) may be queve driven. Processes simply pass
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opeodes o queues of other processes, Bach process may
simply keep checking certain queues to determine whether
anything needs to be done. When a process finds information
in a queue, the process exccutes iisel{ based npon the opeode
found in the queue,

In general, an opcode may be a small data structure that
may be passed from one process to a queue to be picked up
by another process. Alternatively, an opcode may similarly
pass from ene thread o another thread of the same process.
An opcode may include a block of memory atlocated to
contain a name, a poinier 1o identify other data struciures
needed by the particular opcode. For example, an opcode
may invoke cerain sieps wilhin a process. Those steps may
expect certain information (o be provided. That information
may be provided in the data structure to which a pointer is
pointing, addressing. In general, a data structure may be
configured in a variety of ways.

A process may operate on dala contained in a data
structure, and then pass to another process (by means of an
opcode) a pointer indicating that data structure, Thereafter,
the other process may access the same data structure oper-
ating on, using, adding (o, or deleting the information, or the
like. Thus, an opcode may pass a pointer and data between
multiple processes or threads during the running of an
application.

Pointers may be chained. That is, a serics of pointers may
identify a series of next data structures. A data structure
identified by a first pointer may in turn conlain information
interpreted as pointers, These pointers jn (he dala structure,
then, may point at, and thus chain to other data structures.

In an opcode as implemented in one preferred embodi-
ment of an automated fest harness in accordance with the
invention, a generie first pointer may exist without practical
limilation as to the nature of the data structure to which it
points. By contrast, a second pointer may introduce a certain
efficiency by pointing at a single, specific type of data
stueture, For example, the second pointer, by ifs very
location in an opcode, may be bound to specific data that
identifies its function. This may save process steps, and
create processes by chaining opeodes, each data structure
containing a pointer to the following data structure.

Amethod practiced in accordance with the invention may
include a method of running test software on a plurality of
targets, also called resources, processors, or computers. One
may think of resources as hardware resources having the
capability to Liost an operating system. The operating system
may be enslaved and then cmancipated by a master or
controller. Emancipated means that a formerly enslaved
resource’s operatmg system is again rendered autonomous
to operale independently of the master or controller.

The method may include operably conpecting a target or
resource 10 a network, the target comprising a first network
interface, a first processor and a first memory device, the
processor being programmable to host an operaling system
o communicate insiructions to the processor and to com-
municate data to and from the memory device. The targel’s
first network interface may be operably connected to the
processor to communicate data between the processor and
the network.

The method may include operably connecting a controtler
to the network to communicate with the target over the
network, The controller may include a second network
interface operably connected to the neiwork to communicale
data between the controller and the network. A second
processor may be operably connected to the second network
inferface for controlling the operating system of the target.
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A second memory device may be operably connected to the
second processor for storing dala communicaled (o and from
the second processor, while a storage device may be con-
nected for storing files.

The method may include loading by the targel, at the
mslance of a launcher hosted on the controller to be in
communication with an operating systemn hosted on the
target, certain fifes, including executable files downloaded
by the target from a server. These files may include test
applications containing instructions executable by the first
processor, test datafiles containing data cortesponding (o test
parameters used by the first processor, and the hke.
Similarly, control applications containing instructions
executable by the second processor may be downloaded by
the controller.

The method may include running (e test applications on
the target, creating datafiles containing data corresponding
to resnlts obtained by the first processor while running the
test applications. The method may also include nploading
the datafiles of results to the server.

Temporary slaving may be accomplished by loading a
slave module onto each target to operate on the operating
system of the target, and a master module to operate on the
operating system of controller. The slave module feeds back
to the master module all data necessary for the master
module to interact wiih the target’s operating syslem as a
user. Thus prompts, screens, and the like generated hy the
operalting system of the target are communicated by the
slave module to the master module of (e confroller. The
master nmodule is programmed to act based on data provided
Dby the slave, sending iostructions (o the slave and commands
for forwarding to the operating system of the target
(resource).

The slave module receives executables from the master

niodule, along with commands to be sent by the slave -

module to the command line of the operating system. Thus,
the slave module is effectively provided with commands
destined for the operating system, and is itself instrucied to
send (he commands to the operating systemn for execution.

The temporary slaving operation may be conducted by
any suitable software modules operating on the confroller
and the farget. For example, a slaving program such as
NCONTROL™ is a Novell™ slaving program that has been
found suitable {or facilitating the temporary slaving opera-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and features of the
present invention will become more fully apparent from the
following description and appended claims, taken in con-

junction with the accompanying drawings. Understanding

that these drawings depict only typical embodiments of the
invention and are, therefore, not to be considered limiting of
its scope, e invention will be described with additional
specificity and detail through use of the accompanying
drawiugs in which:

FIG. 1 is a schematic block diagram of one embodiment
of an apparatus made in accordance with the invention;

FIG. 2 is a schematic block diagram of oue embodiment
of software modules hosted on the apparatus of FIG. 1;

FIG. 3 is a schematic block diagram of one embodiment
of processes and threads run on a controller, and operational
codes passed between processes and threads running on the
apparatus of FIG. 1;

FIG. 4 is a schematic block diagram of ooe embodiment
of a process by which the operational codes of FIG. 3 may
operate; and
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FIGS. § and 6 are schemalic block diagrams illustrating
one embodiment of records of databases accessed by the
apparatus of FIG, 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[t will be readily understood that the components of the
present invention, as generally deseribed and ilustrated in
the Figures herein, could be arranged aud designed in a wide
variety of differcnt configurations. Thus, the following more
detailed description of the embodiments of the system and
method of the present invention, as represented in FIGS, 1
through 6, is not inteuded to limit the scope of the invention,
as claimed, but it is mercly representative of the presently
preferred embodiments of the invention.

The presently preferred embodiments of the invention
will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out. Reference is first made to FIG. 1, which illustrates one
preferred embodiment of a schematic diagtam of hardware
components, while FIG. 2 illustrates a block diagram of
software modules operable on the apparatus from the block
diagram of FIG. 1.

FIG. 3 illusirates the processes and threads of cerain
software modules of FIG. 2, and particularly illustrates
cerlain opeodes passed between the threads for establishing
the operating logic of the apparatus of FIG. 1. Since the
apparatus and processes may be queue driven according to
messages or opeodes sent and received as appropriate, logic
may be complex, but a multitude of logical paths may be
determined by reference to the FIGS, 1-6.

Each operational code or opeode may be used by a
sending and receiving thread or process according to the
logic of the flow chart of FIG. 3. Data for inputs to and
outpuis from the components of apparatus of FIG. 1 may be
stored in any suitable data structure or memory device. For
example, in one embodiment, data may be stored in data-
bases configured as illustrated by the representative records
and flelds of the databases of FIGS. 5-6.

Those of ordinary skill in the art will, of course, appre-
clale that various modifications to the detailed schematic
diagrams of FIGS. 1-6 may casily be made without depart-
ing from the essential characteristics of the invention, as
described in connection wiih the block diagram of FIGS.
1-6. Thus, the following description of the details of the
schematic diagrams of FIGS. 3-6 is infended only as an
example, and it simply illustrales ene presently preferred
embodiment of a schematic diagram that is copsistent with
the foregoing description of FIGS. 1-2 and the invention as
claimed herein, The operation of varivus eomponents and
modules corresponding fo each of the functional blocks of
FIGS. 1-2 are outlined in FIGS. 3-6 and are aumbered with
like numerals.

Referring to FIG. 1, an apparatus 10, alternately referred
o as a system 10 or an automated test harness 10 wmay
inchude a controller 12. The controlier 12 may be connecled
to a network interface 14A, or the network interface 14A
may be integral to the controller 12, Regardless, the con-
troller 12 may be connected to a network 16. The controller
12 may host a slaving software module for slaving a number
of resources 18, alternately referred fo as targels 18, or targel
compulters 18. The resources 18 nay have alternate embodi-
ments including the resource 20 and resource 22. That is, a
resource 18 may include all of the components of a general
purpose compuler. Nevertheless, the resource 18 need only
confain a processor and sufficient memory to host an oper-
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ating system for temporary enslavement o the controller 12,
followed by later emancipation for running independently.
The resources 18, 20, 22, and controller 12 may be
conneeted o a server 24 by means of a carnier 26, typically

a physical line 26 or cable 26, although the carder 26 may s

be a wireless carrier 26.

The controlier 12 and resovrces 18, together with the
server 24 may be configured in a variety of topologies. For
exaniple, the network 16 may be arranged as 4 slar, a ring,
a mesh having more than one connection on a single node,
or the like. Alternatively, the network 16 may be configured
as a bus having a single line 26 to which all nodes 28
connect. 1u general, a node 28 may be used to designate any
nicreprocessor based device connectable to the network 16.

Similarly, the nodes 28 may be confignred to operale
under any one of a multitude of available protocols. For
example, popular protocols that might be employed may
nclude an internetwork packel exchange (IPX} or transimis-
sion eontrol protocol/internet protocel (TCP/IP), sometimes
called transport control protocol/interface program,
sequenced packet exchange (SPX), token ring, and other
protocols thai arc currently available or may be made
available in the future.

The cable 26 of the network 16 may be of any suitable
local arca network (LAN) or wide area network (WAN). For
example, a token ring cable system, a twisted pair, a co-axial
cable, a 10 base 1, fiber oplic lines, microwave or other radio
frequency (RF), wircless transmission media, infrared or
laser communication beams, and the like, The controller 12
may operale under any suitable operating system, but in one

preferred embodiment should mclude a true multi-tasking .

operating system,

Although the controller 12 may include multiple
processors, a multi-tasking operating system operating on a
single processor 30 may be selected from 08/2™, UNIX|
Windows NT™, Windows 95™, Macintosh™ Operating
System, Next Step™, or the like. An object-oriented oper-
ating systermn may be suitable, but is not required. The
conveniional Windows™ operafing system is not truly
multi-tasking, and as currently copfigured would not be
suitable.

By contrast, the resources 18, 20, 22 need not have
multi-tasking operating systems. Although any resource 18,
20, 22 may include an entire general purpose computer, and
may host any operaling system such as Windows 95, Next
Step, Macintosh Operating System, 0S-2, or the like. In
short, the resources 18, 20, 22 may be configured with any
operaling system capable of operating on a processor.

For cxample, the Novell™ embedded systems technology
(NEST) devices and systems represent a very limiied capa-
bility. However, NEST devices are capable of hosting an
operating system, and thereby operating under the direction
of the confroller 12 in the automated test hamess 10 long
cenough to be configured for subsequent independent opera-
110

That is, each resource 18 may include in a minimal
configuration a central processing unit and sufficient

memory, either on the individual chip associated with the B

processor, or independent thereof, capable of independent
operation once loaded. Thus, each resource 18 need only be
capable of executing mstructions, In general an “executable™
may be thought of as any data that may be understood by an
operating system and thus resulting eventually in a machine
code lnstruction executable by a processor.

As used lere, a resource 18 may refer to any of (e
resources 18, 20, 22 or the like. Thus, a resource 18 may be
the generalized expression for a resource 18, 20, 22 or the
like.

Referring to FIG. 1, a controller 12 may include a
processor 30 connected to a memory device 32 and a storage
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device 34. Connections may be made by a bus 36. Other
auxiliary devices 38 may also connect fo the bus 36, In
addition, the controller 12 may include an input device 42,
such as a keyboard, mouse, graphical user interface with
some interactive sensor for receiving nser inputs, or the like.
Similarly, an oulput device 44 may be comnecied to the bus
36, such as a monitor for supporling a graphical user
interface, or the like.

The coatroller 12 may have multiple processors 46, 48 in
addition to the processor 30. Nevertheless, the processor 3¢
may simply be configured to host a multi-tasking operating
system and thereby carry on all processing of the controller
12.

The resource 20 may be the most common embodiment of
the resource 18 connected to the network 16. The resource
20 may include a processor 50 connecled lo a memaory
device 82 and storage device 54 for operational storage of
data, and long-term non-volalile storage, respectively. The
bus 56 connecting the processor 50 to the memory device 52
and the storage device 54 may also accommodate connec-
tions {6 other auxiliary device 58 whether singular or plural.
Similarly, the resource 22 may be configured with different
software packages fo operate differently than the resource
20, as discussed below, bul may also include a processor 60
connected to a2 memory device 62 and a storage device 64 by
the bus 66. Auxiliary devices 68 may also be connected to
the bus 66 as nceded. The resource 18, needing only a
processor 70 and a sufficient memory device 74 (o provide
for operations of the processor 70 may or may not include
a bus 76, depending upon the configuration of the memory
device 74 with respect to the processor 780, The resource 18 -
need only lost an operaling system, and need not be
complex, or sophisticated. That s, certain devices exist that
may be desitable to temporarily control by means of a
confroller 12 remotely connected over an extensive network
16. Any microprocessor-based device may be a suitable
resource 18. For example, numerous types of data
acquisition, instrumentation, process centrol, and other
devices exist on networks 16, Temporary slaving, followed
by emancipation for independent operation, may be desir-
able and suitable in an automated test harness 10 in accor-
dance with the invention.

All nodes 28 connected to the network 16 may include
network cards 144, 14B, 14C, 14D, 14E, 14F as illustrated,
for providing a hardware interface with the network 16.
Different networks 16 provide for different amounts of
embedded hardware and software for accomplishing the
functions of a network card 14A, 14B, 14C, 14D, 14E, 141,
However, int general, a nelwork card 14 designales any one
of the network cards 14A~14F,

The server 24 may be a general purpose computer and
may include a processor 80 connected to a memory device
82 and storage device 84 by a bus 86, Auxiliary devices 88
may include additional storage devices 84, additional
memory devices 82, and the like as needed. Inasmuch as a
server 24 provides file access and management for all the
nodes 28 on the network 16, the server 24 may include
various auxiliary devices 88.

The software system hosted by the nodes 28 of the
automated test harness 10 may include a system of controller
modules 92 and resource modules 94, 96, 98 as illustrated in
FIG. 2. Also, server modules 100 may be hosted by the
server 24, The controller modules 92 may include a network
client interface 102 for driving (he network card 14A. Thus,
the network client interface 102 facilitates communication
by the controller 12 over the network 16. The controller
modules 92 also include a multi-tasking operating syslem
for controlting the processor 30 of the controller 12.

An automated fest harness 10 may include modules 106
(ATH Modules) or processes 106 hosted on the controller
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12. Processes 106 may include a resource manager 108 for
monitoring all of the resources 18 connected to the nelwork
16. A scheduler 110 may be included for scheduling lests
according fo the availability of resources 18 and the require-
ments for each specific test. Launchers 112 may be

“spawned” by the scheduler 110. A launcher 112 may be °

insirucied by the scheduler 110 to run, and may be spawned
as needed. Multiple instances of the launcher 112 may run
simuitaneously,

The data base manager 114 may be unique to the con-
troller 12. Alternatively, a variety of suitable data base
management software modules are available. For example,
Lotus Notes™ has been shown to provide an “engine” for an
effective data base manaper. A console 116 may include
software for interfacing with a user. For example, the

console 116 may include a graphical user interface including

icons, windows, and other mechanisms for selection by a
user with a minimum of command structures.

The ATH modules 106 may include a server 118.
Although a set of server modules 100 are hosted by the
server 24, the contreller 12, in one cwmently preferred

embodinient of an apparatus 10 in accordance with the *

wvention, may include a server module 118. Thus, the
controller 12 may include all of the modules required to
operale the automated test larness 10 and the setver 24,
Thus, in general, all of the server modules 100 may
actually be incorporated into the server module 118 in the
controller 12. Nevertheless, the server 24 will be discussed
as a separale hardware component of the automated test
harness 10, bosting the server modules 100. The resource
modules 94 may include a network client interface 122 for
communicating, with the network 18, as well as an operating
system 124, A slaving module 126 may be included to
permit cnslaving of the operating system 124 to the con-
troller 12 temporarily for configuring the resource 20 prior
to emancipating the resource 20 o operate independently. In
addition, temporary applications 128 may be hosted in the

resource 20, typically by the resource 20 downleading the

temporary applicalions 128 from the server 24 in response to
comnmands received in a slave mode from the controller 12.
The resource modules 86 corresponding to the resource
22, may include a network client interface 132, an operating
system 134, a slaving module 136, and preloaded applica-
tions 138. Although the resource modules 96 may be iden-
tical to those of the resource modules 94, for the sake of
explanation and discussion, the resource 22 is configured to
have preloaded applications 138, rather than temporary
applications 128 as lhosted by the resource 20. Thus,
although not taking full advantage of the capabilities of fhe
automated test haroess 10, a resource 22 that is completely
configured, inchiding being loaded with the software to be
run, may be fed information and commands one line at a
time by the controller 12. Nevertheless, a more useful
automated test harness 10 may be configured wsing
resources such as the resource 20, in which temporary
applications 128 are loaded by the resource 20 as a result of
the controller 12 slaving the operating system 124 tempo-
rarily to instruct {be resource 20 by command line instruc-
tions. That is, once the operating system 124 has been slaved
o the confroller 12, the operating system 124 may be
instructed on what (o load and how to load it. Thereafter, the
operating systern 124 and the resource 20 may be emanci-
pated to operate independently, as though they had been
programmed by a user individually, Nevertheless, the
resource 2 at that point (emancipated) can operate to run
software, download and upload files, with a very high degree
of autonomy. This is substantially different than other slav-
ing in which individual command lines nmust be passed {o a
preloaded exeeutables in response (© queries, or prompts.
The resource moduoles 98 represent a minimum configu-
ration in which a processor 70 of a resource 18 need include
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only sufficient processor and memory capability to host an
operating system 144, The resource module 98 may include
a nctwork client interface 142 and a slaving module 146 for
facilitating communication between the controller 12 and
the processor 70, or more correctly the operating system 144
hosted on the processor 70.

The network server modules 100 may include a petwork
server nterface 152 corresponding to the network client
interfaces 102, 122, 132, 142. The network server interface
152 facilitates communication by the server 24 over the
network 16. Thus, the confroller modules 92 hosted by the
controller 12 correspond to the resource module 94, 96, 98
and server modules 100 of the resources 20, 22, 18 and
server 24, respectively.

The server modules 100 may include a network server
interface 152 for facililating communication by the operat-
ing system 1584 over the network 16, while network appli-
cations 156 may aperate “on top of” the operating system
154 for accomplishing the functional requirements of the
server 24. Of course, a number of files 158 are typically
stored on the storage device 84 of the server 24.
Accordiugly, the network applications 156 may perform
management, storage, retrieval, indexing, and other associ-
ated functions for the files 158, serving the files 158 to cach
resource 18, 20, 22 or io the confroller 12, as needed.

In general, the operating system 104 of the controller 12,
or of the controller modules 92 hosted by the controller 12,
should be a multi-tasking operating system such as an 08-2
or UNIX operaling system, as discussed above, In addition,
anetwork inferface should render the controller 12 a node 28
on the network 16 served by the server 24. For example, the
controller 12 may be set up as an 08-2 requester, or as a,
client in a network 16. The data base manager 114 of the
controller modules 92 may require that the confroller 12 host
either the server software or the client software for the data
base manager program. For example, the notes server or
client may be associated with the Lotus Notes™ data base
manager for managing all data base files associated with the
automated test hamess 16,

Each of the network interfaces 102, 122, 132, 142 may be
configured to facilitate communication by the controller 12
al an operating system level with the resources 18, 20, 22.
Thus, the controller 12, communicating as a node 28 of the
network 16 may instruct the resources 18, 20, 22 to load
exccutables. Nevertheless, as mientioned previously, the
resource 22 may be preloaded with applications. This con-
figuration gives less flexibility but may be used by the
automated test harness 10. Nevertheless, even in such a
configuration, the resource 22 wmay be enslaved by ihe
controller 12, communicating with the operating systen 34
lo reconfigure the tesource 22.

An explanation of the relationships between the various
opcodes 180 and the threads 150 from which and to which
cach may be directed is explained below. However, referring
to F1G. 3, the sources and destinations of all opcodes 180
may be illustrated by schematic block diagram. Since the
logic of the automated fest harness 10 is so intertwined
among the various threads 160, 170, 172, 174, and opeodes
180, all opeodes 188 and threads 150 need to be identified,
and their relationships identified, before the operation and
logic of each may be properly explained with reference to
each of the other opcodes 180 and threads.

In addition, Tables 1-3 below illustrate logical relations
between various opcodes 180. Entries in Tables 1-3 are
arranged more-or-less according to which process 106 in the
second column is sending an opcode 180 in the third
column. In cerfain circumstances, a thread 150, in general,
of the scheduler 110 may send an opcode 180 to another
general thread 150 of the scheduler 110,

For each opcode 180 identified in the niiddle or third
(“opcode™) column, the process 106 in the second (“from™)
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column is the sending process 106, and the process 106 in
the fourth (“lo”) column receives the opcode 180. The
sending process 106 identified in the second column may
send an opcode 180 upon receiving an opeode 180, or
occurrence of some other initiating event, identified in the
first (“initiated by”) column.

The receiving process 106 of the fourth (“t0™) column
may send a retumn opcode 180 identified in the ffth
(“returns”) column. A returned opcede 180 is typically sent
to the sending process 106 of the second (“from™) column,
but may be sent to another process 106, either of which will
be identified in the sixth or last (“io™) column.

TABLE 1

[

9

16

One may nole that no return opcodes are shown in Table
2, and thus no fifth and sixth columns. This is merely for
presentation here. That is, only the opcode RESOURCE _
REBOOT 256 sent o the scheduler 110 fas an associated
return. The CLEANUP 234 opcode is returned to the
resource manager 108,

QPCODES FROM SCHEDULER TO RESOURCE MANAGHER

INITIATED Y  FROM  OPCODE T0 RETURNS TO

SCH INIT.. RM 108  INIT_ SCH

110 QUEUES 230 SUCCESS 242 110

ScH INIT.. RM 108 INIT.. SCH

110 QUEUES 230 FAIL 244 110
BLD_. sCH SETUP RM 108 SBETUP__ SCH
SUCCESS 220 110 PROGRAM 232 FAIL 248 116
BLD SCH SETOP_, RM 108  SETUP__ scu
SUCCESS 220 11a PROGRAM 232 SUCCESS 246 110
BID__ scr SETUP... RM 108 RESERVE__ SCH
SUCCESS 220 110 PROGRAM 232 PENDING 258 110
BLD.. SCH SETUP_ RM 108  RESERVE.. SCII
SUCCESS 220 110 PROGRAM 232 SUCCESS 260 110
TEST. SCH CLEANUP 234 RM 108 LEANUP_ SCH
COMPLETE 214 110 SUCCESS 250 110
TEST... SCH CLEANUP 234 KM 108  CLEANUP . SCH
COMPLETE 214 110 FAIL 248 uo
RESOURCE.. SCH CLEANUF 234 RM 108 CLEARUP SCH
REBOOT 256 110 SUCCESS 230 110
RESOURCE . SCH CLEANUP 234 RM 108 CLEANUP_ SCH
REBOOT 256 119 FAIL 248 110
LAUNCHER, .  SCH CLEANUF_ RM 108  CLEANUF_, SCH
FAIL.218 1o LAUNCHER _ LAUNCHER. 110

FAIL 236 FAlL_FAILL 268
LAUNCHER_  SCH CLEANUP RM 108  CLEANUP__ SCH
FAIL 218 110 LAUNCHER _ LAUNCHER_FAIL. 110
FAIL 236 —
SUCCESS 266
(LAUNCH SCH RESERVE,_ RM 108  RESERVE_ 5CH
ENTRY 110 REMOVE 238 REMOVE 110
DELETED) SUCCESS 262
{LAUNCH SCH RESERVE_ RM 108  RESERVE_ SCH
ENTRY 110 REMOVE 238 REMOVE__ 110
DELETED) FAIL 264
CONSOLE SCH EXIT 204 RM 108
BXIT 228 110
50

TABLE 2

OPCODES PROM RESCURCE MANAGER TO SCHEDULER

INITIATED BY FROM  OPCODE 0
INIT_QUEUES 230 RM 108 INIT_SUCCESS 242 SCH 110
INIT_QUEUES 230 BM 108  INIT_PAIL 244 SCH 110
SETUP_PROGRAM 232 KM 108  SETUP_SUCCESS 246 SCH 110
SETUP_PROGRAM 232 RM 108  SETUP_FAIL 248 SCH 110
CLEBANUP 234 RM 108 CLEANUP_SUCCESS 250  SCH 110
CLEANUP 234 RM 108  CLEANUP_FAIL 252 SCH 110
(UNIDENTIFIED RM 108  INCONSISTENT_ SCH 110
OPCODE) DATA 254

(RESOURCE REBOOTED) RM 108 RESOURCE_REBOOT256  SCH 110
SETUP_PROGRAM 237 RM 108 RESERVE_PENDING 158  SCH 119
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TABLE 2-continued
OPCORES FROM RESOURCH MANAGER TO SCHEDULER
IN{TIATED BY FROM OPCODE TO
(R_P 158 SENT PREVIOUSLY) RM 108  RESHRVE_SUCCESS 150 SCH 110
RESERVE._REMOVE 238 RM 108 RESERVE_REMOVE_ SCH 110
SUCCESS 262
RESERVE__REMOVE 238 RM 108 RESERVE_REMOVE,_ SCH 110
TAIL 264
CLEANUP_LAUNCHER RM 108 CLEANUP_LAUNCHER SCI 110
FAIL 236 FAIL__SUCCESS 266
CLEANUF_LAUNCHER_. RM 108 CLEANUP_LAUNCHER_.  SCH 110
BAIL 236 FAlL_FAIL 268
15
Referring to FIG. 3, the controller 12 niay operate several The main thread 170 of the resource manager 108 may
processes 108, 110, 112, 116, 118. In addition, cach process provide management of all the resources 18 connecied 1o the
108, 110, 112, 116, 118 may include multiple threads. For network 16, That is, the IESOUCE Mmanager 108 tracks_ all
example, the scheduler 110 may include a main thread 160 - resources 18, their status, their capabilitics, their physical
communicating with a configuration file builder thread 162, * and softwarc limitations, and provides information regard-
a scanner thread 164, a data base watch thread 166, and an ing these resources 18 and their availability to the scheduler
exit thread 168. In one embodiment, the data base watch 119, and more patticularly to the main thread 160.
thread 166 may be incorporated, included in, the main thread - The console 116, although it may have multiple threads,
160. Similarly, the exit thread 168 may be included in the 1D 0n¢ embodiment prosently preforred, may include a main
main thread 160. In general, the individual threads 162, 164, thread 172 for implementing  graphical user mterflace for a
166, 168 may be included within a main thread 160 or  US9T operating the controfler 12. The console main thread
ce .';r ated oul o operate on the multi-lasking operatin 172 communicates to the scheduler main thread 160 aud the
. }s‘tcm 104 P sKing operating resource managet main thread 170. By contrast, the sched-
¥ ) uler main thread 160 and resource manager main thread 170
The SChﬂdule}' _119 may be made to operale op the COn- 33 may comununicate back and forth with one another.
1r(‘3ﬂer 12, prowdmg fcedbac}( and prompls to a user in a However, in one embodiment, the console main thread 172
window of a graphical user mterface of the console main  may simply send out information and not receive informa-
thread 172, providing visible output to a user on an output tion from the main threads 160, 170, Alternatively, other
device 44 of the controller 12. The output device 44 may be, tasks and functions may be provided for or execufed by the
for example, a moaitor associated with the controller 12, console 116.
TABLE 3
OTHER OPCODES
INITIATED BY FROM  OPCODE TO RETURNS 10
RESERVE.__ SCH SUITES__ SCH SETUP__ RM
SUCCESS 260 110 READY 121 110 PROGRAM 232 108
SCH TEST_. SCH CLEANUP 234 RM
116 COMPLETE 214 110 108
SETUP_ SCH  BLD_ SCH BLD_ SCH
SUCCESS 246 110 CONFIG 224 110 SUCCESS 220 110
SETUP_ SCH  BLD_ SCH BLD_ SCH
SUCCESS 246 114 CONFIG 224 110 FAIL 222 115
BLD SCH BLD SCH {LAUNCHER 112
CONFIG 224 110 SUCCESS 220 110 INITIATED)
BLD_ SCH BLD_ SCH
CONFIG 224 10 FAIL 222 110
ANY  SYSTEM.. SCH
LOG 210 110
LAU LAUNCHER . SCH
112 PASS 216 110
LAU LAUNCHER_.  SCH
112 FAIL 218 110
CON CONSOLE_ SCH
116 ADDRESS 225 110
CON  CONSOLE_ RM 108
116 ADDRESS 225
{USER ON CON  ADD__ RM 108
CONSOLE GUI} 116 PREFIX 226
(USER ON CON DEL.. RM 108
CONSOLE GUI) 116 PREFIX 228
{USER ON CON CONSOLE, SCH
CONSGLE GUX) 116 BXIT 228 110
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The launcher 112 may include a launcher main thread
174, and inay be configured to have other threads. However,
the launcher 112 may be “spawned” in multiple versions by
the scheduler main thread 160. That is, the launcher 112 may
be simultaneously runniog in more than one instantiation, to
accommodate the multiple resources 18 that must be con-
figured and run.

Each of the threads 160, 162, 164, 166, 168,170,172,174
may communicate with one another by a series of opcodes
180. For example, the opcodes 180 may be referred to as
opcodes 180, and may be illustrated by the opcodes 182
communicating between the exit thread 168 aud the main
thread 160. Similarly, the opcodes 184 may communicate
between the dala base watch thread 166 and the main thread
160. The opcodes 186 may be passed from the scanner
thread 164 to the main thread 160, while the opcodes 188 are
passed from the launcher main thread 174 to the scheduier
main thread 160. Similarly, the opcodes 192 pass from the
schednler 110 to the scheduler main thread 160 to the
configuration file builder thread 162, the opcodes 194 pass
from the configuration file builder thread 162 back to the
scheduler main thread 160, the opcodes 196 pass from the
console main thread 172 to the resource manager main
thread 170, and the opcodes 198 pass from the console main
thread 172 to the scheduler main thzead 160. The opcodes
260 may pass from the scheduler main thread 160 to the
resource manager main thread 170 while the opcodes 202
pass from (he resource manager main thread 170 to the
scheduler main thread 160.

In general, each opcode 180 may have a generic opcode
structure 270. In one presently preferred embodiment of an
apparatus 10 in accordance with the invention, an opcode
structure 270 may include three pieces of information, each
comprising three long (32 bit) words, The first piece of

information is an identifier 272 that may be a name, or 3 3

number that uniquely identifics a particular opcode 180. A
generic pointer 274 may follow the identifier 272 and may
include an address for identifying generic data that may be
used by the process receiving the opcode 180, Following the
generic pointer 274, a resource pointer 276 may contain a
niemory address associated with data stored in the memory
device 32 of this controller 12, or similar devices specifically
for use in identifying and managing resources 18. The
purpose of a generic pointer 274 and resource pointer 276
rather than a single pointer, is to simplify logic and speed up
operation.

As referenced earlier, the data base watch thread 166 and
the exit thread 168 may be incorporated directly info the
scheduler main thread 160. Similarly, the scannec thread 164
in one embodiment of an apparatus 10 in accordance with
the invention, may be incorporated into the scheduler main
thread 160. However, in general, opcodes may each be made
to operate similarly, or even identically. At a source thread,
an opcode indicates o the source thread to reserve a memory
block, that is, a specific segment of memory in a memory
device such as the memory device 32. The source thread
then writes the identifier 272, a generic pointer 274, and a
resouree pointer 276 into the reserved block of memory, The
source thread then sends the address of the opcode 180 to a
destination thread by writing the address o a message queue
associated with the destination tbread. A destination thread
periodically reads all messages in a message queue associ-
ated with a destination thread, Upon reading the message
received from the source thread, the destination thread
receives the address of the opeode 180. The destination
thread then reads the opcode in the memory block, ascer-
taining the identifier 272, and the pointers 274, 276. The
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destination thread then may move an execution pointer in
the opcode associated with the thread that has received the
opeode 180, and may begin executing the opcode at the
designated location. Thus, the opende identifier 272 has
served lo move an exccufion pointer within the coded
executable of the destination thread. The destination thread
then exccules the apeode using the data pointed fo by the
pointers 274, 276. In corfain circumstances, the destination
thread roay return an opcode 188 to the source thread, or to
another thread in the controller 12, and particularly the
controller modules 92.

In one embodiment, opcodes 182 may include an EXIT
204. The data base watch thread 166 may seud opcodes 184
to the scheduler main thread 160, including a POLL__
LAUNCHQ 206, a DB__WATCH__SIGNAL 208, and a
SYSTEM_ILOG 218. The scanner thread 164 may send
opeodes 186 including a SUITES_READY 212, a TEST
COMPLETE 214, and a SYSTEM__LOG 210 to the main
thread 160. The launcher main thread 174 of any individual
launcher 112 “spawned” by the scheduler 110, may retura to
the scheduler main thread 160 any of the opcodes 188
including a LAUNCHER _PASS 216, LAUNCHER __FAIL
218, SYSTEM__LOG 210, and othiers as appropriale.

The configuration file builder thread 162 may send the
opcodes 194 (o the main thread 160, which opcodes 194 may
include a BLD_SUCCESS 220, a BLD_FPAIL 222, or
SYSTEM _LOG 210. The opeodes 194 may he sent by the
configuration file builder thread 162 in response to une of the
opcodes 192, which may include s BLD_CONFIG 224
opcode. The console main fhread 172 may send a
CONSOLE__ADDRESS 225 to the resource manager main
thread 170. In addition, an ADD_PREFIX 226 or DEL__
PREFIX 228 may be sent from the console main thread 172
lo the resource manager main thread 170,

The console main thread 172 may receive no opcodes 180
from other threads. Rather, the console main thread 172 may
receive its principal direction from inpuls from a graphical
user imterface gathering inputs from a user. The console
main thread 172 does send a CONSOLE_EXIT 229 opeode
to the scheduler main thread 160, indicating that a system
exit is in order. The CONSOLE__ADDRESS 225 may also
be sent from the conscle main thread 172 to the scheduler
main thread 160. The SYSTEM__LOG 210 may be sent by
any thread to the scheduler main thread 160.

The scheduler main thread 160 may send an INIT_
QUEUES 230 opcode lo the resource manager main thread
170, Similarly, a SETUP_PROGRAM 232 may be for-
warded Lo the resource mapager main thread 176, which like
all main threads may be referred o as the main thread 170.

A CLEANUP 234 or CLEANUP _LAUNCHER__FAIL
236 may be sent from the scheduler main thread 160 to the
resource manager main thread 170. A RESERVE _
REMOYVE 238 or an EXIT 240 may be passed from (he
scheduler main thread 160 to the resource manager main
thread 170.

In the return direction from the resource manager main
thread 170 back lo the scheduler main thread 168, a host of
opcodes 202 may be sent, including INIT_SUCCESS 242,
INIT_FAIL 244, SETUP_SUCCESS 246, SETUP_ FAIL
248, CLEANUP__SUCCESS 250, and CLEANUP__FAIL
252. Bach of the opcodes 202 provides information from the
tesource manager 108 to the scheduler 110 to indicate the
status of a given resource 18 selected for a particular test.

In addition, the resource manager main thread 170 may
send INCONSISTENT__DATA 254, RESOURCE _
REBOOT 256, RESERVE_PENDING 258, RESERVE__
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SUCCESS 260, RESERVE_ REMOVE__ SUCCESS 262, or
RESERVE_REMOVE_FAIL 264 in response o various
opcodes 200 received by the resource manager main thread
170.

The resource manager main thread 170 may send a 3

CLEAN_UP_LAUNCHER_FAIL_SUCCESS 266 or a
CLEANUP__LAUNCHER__FAIL__FAIL 268 (o the sched-
uler main thread 160. As with other threads in communica-
tion with the scheduler 160, the resource manager main
thread 170 may send a SYSTEM__LOG 210 to the scheduler
main thread 160.

Referring now to FIG. 4, before returning to the defini-
tions and further relationships illustrated in F1G. 3, the
operation of a source thread 280 and a destination thread 290
are shown with respect to each other and an opcode 180
contained in the opcode structure 270 of FIG. 3.

In general, any thread 150 may be regarded as a source
thread 280 and any other thread 150 may be regarded as a
destination thread 290. Each opcode 180 may be used by a
source thread 280 as illustrated in FIG. 4. At an appropriate
point in the execution of the source thread 280, the reserve
niemory 282 step may be executed. The effect of the reserve
memory 282 may be (o reserve a segment or block of
meniory, typically in the memory device 32 of the controller
12. The wrile opcode 284 step may then follow, in which the
source thread 280 writes an opcode 180 including all of the
elements of the opcode structure 270 to the memory block
reserved by the reserve memory 282 step.

After writing the identifier 272, generic pointer 274, if

applicable, and resource pointer 276, as required, the source

thread 280 executes a SEND_ADDRESS 286 step. The
SEND_ADDRESS 286 step may include sendiag the
address in the memory device 32 or other memory device to
which the opcode 180 may be stored, to a message queue
readable by a destination thread 290. A destination thread
290 may include an operation read address 288, that may
have the effect of reading the code address written by the
source thread 280 in the SEND__ADDRESS operation 286.
The destiuation thread 290 periodically may read the mes-
sage queue, Thus, the READ_ADDRESS 288 operation
will effectively read the code address from the message
queue.

The destination thread 150 next may read the opcode 180
itself at the address in the memory block, as designated by
the code address read in the READ_ ADDRESS operation
288.

The effect of the READ opcode 292 may be to provide an
identifier 272 from the opcode structure 270 of the opcode
180, which identifier 272 indicales a location for an execu-
tion pointer in the destination thread 290. The destination
thread 290 then executes a move pointer operation 294 in
which the execution pointer of the processor 30 may be
moved to the appropriate location designated by the identi-
fier 272, The destination thread 290 then executes 296. The
exccuting 296 operation effectively executes the code begin-
ning at the execution pointer designated in the MOVE__
POINTER 294 operation. The code of the destination thread
290 may have a return, or may itself write a new opcode 180
and return if to the source thread 280 or to some other thread
150. In sending a return opcode 180, the destination thread
290 may use the same operations or steps 282, 284, 286
since in such an operation, the destination thread 290
becomes the new source thread 280 for the returned opcode
180.

Referring again to FIG. 3, the operational codes 180 or
opcodes 180, remembering that auxiliary thread 150 such as
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the threads 164, 166, 168 may optionally be incorporated
into the main thread 160 of the scheduler 110. 1t may be
instructive to discuss the opcodes 180 associated with the
sclieduler 110. The EXIT opcode 204 iitiates a scheduler
160 to signal the resource manager 108 with an EXIT
opcode 240 to exit the system 10. Alternatively, the EXIT
opcode 204 may be sent from within the scheduler main
thread 160, or may be replaced by the CONSOLE_EXIT
opcode 229.

The POLL_LAUNCHQ 206 may be used to instruct the
main thread 160 to periodically, or upon occurrence of a
signalling eveal, poll the launch queue data base 302 for a
new record 303, indicating an addition to the launch queue.

The DB_ WATCH__SIGNAL 208 opcode may be used to
indicate to the main thread 160 that certain of the data bases
300 have had records 301 recently written to them. Since the
apparatus 10 iu one currently preferred embodiment may be
queue-driven, one methodology for prompting a thread 150
lo execute an instruction, may be to provide reading of data
bases 300, or reading of ficlds in data bases written with the
specific purpose of operating as flags to indicate occurrence
of an awaited event or triggering event.

The SYSTEM__ LOG 210 may be sent by the data base
walch thread 166 to the main thread 160 to produce a
message that may eventually be saved in a system log data
base 310. Since the scheduler 110 manages most of the
interaction between the processor 30 of the controller 12 and
the data bases 300, the main thread 160 may be tasked with
the operation of reporting or writing all entries into the
system log data base 310. The system log data base 310 may
be normally used to store reports of system errors. Thus, the
SYSTEM__LOG 210 opcode may be normally sent to the
scheduler main thread 160 to report system errors. No
initiation opcode 180 may be required lo send the
SYSTEM__LOG 210, and no return opcode 180 need be
returned in reply or as a direct result.

The SUITES_READY 212 opcode may be sent Lo the
scheduler main thread 160 when a test is ready for running
on a resource 18. The SUITES _READY 212 may also be
sent as a result of a RESERVE_SUCCESS 260 opcode
received. Thus, the main thread 160 may typically receive
the SUITES_ READY 212 opcode, and may actually initiate
it within the main thread 160 in response to a RESERVE__
SUCCESS 260 initiation opcode 180 received from the
resource manager 108. The scheduler main thread 160 may
send a SETUP__PROGRAM 232 return opcode to the
resource manager main thread 170,

The TEST_COMPLETE 214 opcode may be sent when
the scheduler 110, and more particularly the scaimer thread
164 has detected that a test has conipleted running. Thus, no
initiation opcode 180 may be required, but the main thread
160 may then send, in response, or as a result, a CLEANUP
234 return opcode to the resource manager main thread 170.

The LAUNCHER _PASS 216 opcode may be returned by
a launcher mam thread 174 to the scheduler 110, and more
parlicularly to the scheduler main thread 160 when a test has
been successfully launched. A successful launch of a test 305
indicales that the launcher 112 was able to configure a
resource 18, also referred to as a target 18 or target resource
18, al an operating system level, and the subject resource 18
has successfully loaded the test program and the necessary
data. The test 305 is therefore running. No initiation opcode
180 may be required for the LAUNCHER _PASS 216, but
the Tauncher 112 is itself “spawned” by the scheduler main
thread 160, which may be itself an initiating event. No return
opcode 180 may be necessary from the main thread 160.
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The LAUNCHER _FAIL 218 may be sent by the launcher
main thread 174 to the scheduler main thread 160 if a test
305 has uot been successfully launched. Some reasons why
4 launch may fail may include the failure of a “login”
command from a launcher 112 to a resource 18, failure of a
“map” comrmand (o map the necessary drives, or perhaps
more properly, for example, virtual drives on the storage
devices 54, 64 or memory devices 52, 62, 72 of the resources
18. As discussed above, the resource 18 refers generally to
all resources 18, 20, 22, and the like. The LAUNCHER_ .
PAIL 218 requires no initiation opcode 180, since a launcher
is “spawned” by the scheduler 110. No return opcode 180
miay be required,

The BLD, SUCCESS 220 may be sent from the configu-

ration file builder thread 162 to the scheduler main thread '

160 when the scheduler 110, and more specfically, the
configuration file builder thread 162 has successfully orga~
nized the information necessary 1o tun a test 305, The
initiation opeode BLID__CONFIG 224 may be first received
by the configuration file builder thread 162 from the main
thread 160. No return opcode 180 may be required.

The receipt of the BLD_SUCCESS 220 may be an
initiating event for the scheduler main thread 160, The
response by the scheduler main thread 160 may be to

“spawn” a launcher 112, which will itself initiate a fest 305,

selfing up the proper resources 18 to conduct the test 305.

The BLD__FAIL 222 opcode may be returned to the main
thread 160 from the configuration file builder thread 162
when the informafion necessary to operate a fest 305 has not
been successfully organized by the configuration file builder
thread 162. For example, if datafiles are not present, if
required eniries are not available, if a token value is not
defined, if an operating system refuses to function properly,
or if any faw in logic or data, then the configuration file
builder thread 162 may not be able to provide all of the
configuration information needed by the launclier 112, The
initiation opcode 180 may be a BLI) __CONFIG 224 opcode,
but no return opcode 180 may be necessary.

The BLD__CONFIG 224 may be sent fo the configaration
file builder thread 162 of the scheduler 110 by the main
thread 160. The function of the opcode 224 may be {o
compile and organize all information associated with the
opeode 224 so that a launcher 112 may be “spawned” by the
niain thread 160, and will have all of the data necessary to
run a test 305, An initiation opcode 180 for the opeode 224
may be the SETUP_SUCCESS 246 reccived from the
resource manager main thread 170. Thus, the resource
manager main thread 170, having identitied that the hard-
ware resources 18 are available, properly equipped, and
otherwise ready for employment in a test 305, sends the
initiation opcode SETUP_SUCCESS 246 to the main
thread 160 of the scheduler 110, Possible return opcodes sent
from the scheduler 110 to the configuration file builder
thread 162 may include the BLD__SUCCESS 220 or the
BLD__EAIL 222 opcodes.

Thus, the opcodes 212, 214, 220, 222, 224 originate in a
thread of the scheduler 110 and may be sent to the origi-
pating thread or another thread of the scheduler 110. The
SYSTEM__LOG 210, in conirasf, may be returned by any
process 108 to the scheduler main thread 160.

The CONSOLE_ADDRESS 225 may be sent by the
console main thread 172 to the resource manager main
thread 170. This opcode 225 may be sent during an inifial-
ization for the automated test harness 10 for the purpose of
sending an address of global memory, available to all
processes 106 and threads 150, to the resource manager 108,
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and more particularly to the main thread 170. Similarly, the
CONSOLE__ADDRESS 225 opcode may be sent from the
console 116 to the scheduler 110, typically from the main
thread 172 to the main thread 160. Since global memory
may be used for all the data structures associated with any
apeoade, the block of global memory established by the
CONSOLE__ADDRESS 225 may be available to all pro-
cesses 106, No initiation opcode 186 may be necessary,
since the opeode 225 may be sent during the start-up phase
for the automated test harness 10. Similarly, no retum
opcode 180 may be necessary.

The main thread 172 may also send an ADD__PREFIX
226 or a DEL_PREFIX 228 to the resource mapaper main
thread 170. The opcode ADD__PREFIX 226 may be a signal
to the resource manager 108 that another resource prefix
should be added to a list. That is, a prefix may be an
initiation opcode 180 in the name of a service advertising
protocol (SAP) in a slaving program protocol. For example,
a slaving program such as NCONTROL™ is a Novell™
slaving program. that has been found suitable for facilitating
the temporary slaving operation for setup, configuring the
resource 18 through its operating system by the countroller
12, After the setup operation, the resource 18 may be
“emancipated,” left to operate independently, loading appli-
cations and files aver the network as necded by applications
running on the resource 18.

Thus, a prefix may be added 1o a SAP string by a resource
manager 108 in response to the opcode 226. The resource
manager 108 then uses the prefix to know which resources
18 are to be used for a given task. The resource manager 108
may handle multiple prefixes. An initiation opcode 184 is
not necessarily required, although the opcode 226 may be
initiated by another opcode 180. However, in one embodi-
ment of an apparatus 10 made in accordance with the
invention, a user may make 1 selection from a graphical user
interface hosted by the console 116. A selection of the
feature designated to add a prefix may be selecied by a user.
In response to the selection by a user, the console 116 sends
the ADD_PREFIX 226 to the scheduler 110.

The DEL.__PREFIX 228 cffectively iostructs the resource
manager 108 to cease looking for resources 18 thal are
advertising with the SAP prefix associated with the opcode
228, As with the ADD__PREFIX 226, the opcode 228 has no
refurn opeode 180. Similarly, no initiation opcode 180 may
be required. However, as with the opcode 226, a selection by
a user of an icon, such as a delete button, selection box, or
the like presented on screen of a graphical user interface of
the console 172 may be used to initiate the opoode 228.

The CONSOLE_EXIT 229 opcode may be sent to the
scheduler 110 to signal a system exif. As with other opcodes
180 initiated by the console 116, the opcode 229 may be
initiated by a uscr selection from the graphical user interface
presented on a screen of a monitor associated with the
console 116. Thus, no initiation opcode 180, that is opcode
180 associated with initistion, is required. Similarly, no
return opcode 180 may be appropriate. The appropriate
response by the scheduler 160 may be a system exit.

The INIT_QUEUES 230 may be seni by the scheduler
110 to synchronize with the resource manager 108, thus
ensuring that all queucs are properly set up, identified, and
functioning for receiving messages for the appropriate
threads 150, No initiation opcode 180 may be required,
although possible return opcodes may include INFT
SUCCESS 242 or INIT_FAIL 244 opcodes returned by the
resource manager 108,

The SETUP_PROGRAM 232 opeode sent by the sched-
uler 110 has the effect of requesting resources 18 needed for
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a test 305. The information associated with the opcode 232
identifies resource information structures identifying the
nature of the needed resources 18. Thus, a “specification” of
sorts may be associated with the opeode 232. An initiation
opcode BLD___SUCCESS 220 gives rise to the opcode 232,
Thus, when configuration by the thread 162 is complete, the
scheduler main thread 160 makes a resource request of the
resource manager 108 with the opcode 232. Possible return
opcodes may include SETUP_SUCCESS 246, SETUP_
EAIL 248, RESERVE_PENDING 258, or RESERVE_
SUCCESS 260 sent by the resource mnanager 108 to the
scheduler 160.

The CLEANUP 234 opcode may be used by the scheduler
119 1o instruct the resource manager 108 to [ree resources
18, makiog those resources 18 available for use in a new test
305. This is usually done when a resource 18 has been
allocated or reserved for a particular test 305 peeding the
capabilities of the selected resource 18. With each opeode
234, a list of information structures associated with the
selected resource 18 is associated. Although information
may be sent with an opcode 180, information may also be
stored and pointed to by the pointers 274, 276 associated
with thie opeode 234, [nitiation opcodes 180 giving rise to
the CLEANUP 234 opcode may include TEST
COMPLETE 214, from the scanner thread 164, or
RESOURCE_REBOOT 256 sent by the resource manager
108 in response lo a reboot, typically occurring outside of
the control of the automated fest harpess 10. Possible return
opcodes 180 may include CLEANUP_SUCCESS 250, and
CLEANUP__FAIL 252.

The CLEANUP_LLAUNCHER__FAIL 236 bears some
resemblance to the CLEANUP 234 opcode. However, the
opeode 236 may be sent after the scheduler 110 receives a
LAUNCHER _FAIL 218 opcode from the launcher 112,
Thus, the effecis are the same, although the initiation sources
are different. The initiation opeode 180 for the opcode 236
may include the LAUNCHER_FAIL 218, while possible
return opcodes may include CLEANUP_LAUNCHER_
FAIL_SUCCESS 266, or CLEANUP_LAUNCHER__

The RESERVE_REMOVE 238 opcode may be sent by
the scheduler 110 to the resource manager 108 when an entry
is deleted from the launch queued data base 302. That is, to
the extent that an eniry in the launch queue data base 302 has

cerlain resources 18 reserved for the (est 305 specified, those 4

resources 18 need to be released when a test 305 is canceled.
Thus, the opeode 238 instrucis the resource manager 108 to
release the reserve resources 18 and delete the reservation
eniry from any infernal tables maintained by the resource
nianager 108, The opcode 238 may have associated with il
an instance ideniification of a deleted entry in the launch
queue data base 302, The instance identification, sometimes
referred to as instance ID, may be a unique number assigned
by an automated test harness 10 to cach test 305 that is to be
run. Thus, with each instance of a launcher 112, or of a fest
305 to be run by a launcher 112, an instance ID may be
assigned. Thus, any test 305 may be tracked according fo its
unique instance ID. Possible initiation opcodes 180 for the
opcode 238 may be used, but in one embodiment of an
apparatus 10 in accordance with the invention, the deletion
of an entry from the launch queue data base 302 may be
detected by the scheduler main thread 160 monitoring the
launch queve 302, Thus, the main thread 160 may then
initiate the opcode 238 wpon detection of deletion of an
entry. Possible return opcodes 180 may include RESERVE_
REMOVE_SUCCESS 262 and RESERVE_REMOVE__
FAIL 264, returned hy the resource manager 108 to the
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scheduler 110. Although return opcodes 180 are often
returned o an initiating or saurce thread 280, such need not
be the case. A return opcode 180, in general, may be simply
an oulput opcode 180 associated with a thread 150 operaling
in accordance with another received opcode 180,

The EXIT 240 opcode may be sent to the resource
nranager 108 Lo signal a system exit. The initiation opcode
180 may be controlied by an exit thread 168 sending an
EXIT 204 opcode (o the scheduler main thread 160,
However, in one presently preferred embodiment of an
apparatus 10 made in accordance with the invention, all
control over the EXIT 204 opcode may reside in the console
116. Thus, an appropriate initiation opcode 180 may be a
CONSOLE_EXIT 229 sent from tle console main thread
170 to the scheduler maiu thread 160. No retum opeode 180
may be required, since a resource manager 108 may be
programned to properly log off or otherwise exit alt
tesources 18 from the system 10.

The INIT_SUCCESS 242 opcode may be sent from the
resource manager 108 to the scheduler 110 o instruct the
scheduler 110 to complete synclironization, thus ensuring
that all queues (message queues of all threads 150) are
functioning. Thus, all protocols are properly operaling to
synchronize messaging between the resource manager 108
and scheduler 110. Initiation opeodes 180 may include
INIT. .QUEUES 230, although no return opcode 180 may
be required.

The INIT_FAIL 244 opcode 180 may be sent hy the
resource manager 108 when initialization fails. Inifiation
opcodes 180 may include INIT__QUEUES 230, although no
refurn opcode 180 may be required, similar to the opcode
242,

The SETUP_SUCCESS 246 opcode 180 may be sent
when the resource manager 108 is successful in allocating
all of the resources requested by the scheduler 110 for a
specified test 305, lpitiation opcodes 180 may inclade
SETUP__PROGRAM 232 from the scheduler 110, but no
return opcode 180 may be required.

The SETUP__FAIL 248 may be sent to the scheduler 110
when an error occurs with respect to information supplied
with or associated with the SETUP_PROGRAM 232
opcode 180 received by the resource manager 170. Thus if
the request for information identified with a request for
preparation with a test 305 is improper, the opcode 232 acts
as an initiation opcode 180 for the opcode 248.

The CLEANUP__SUCCESS 250 opcode may be returned
when the resource manager 108 has been successful in
freeing up the necessary resources 18 identified in data
associated with the CLEANUP 234 opcode. Thus, the
CLEANUP 234 operates as an initiation opcode 180,
although no return opcode 180 may be required. Identifica-
tion of resources 18, as discussed above, may occur by
specification of any or all of several parameters identifying

5 be capacity of a resource 18 required lo run a test 305,

Similarly, the CLEANUP_FAIL 252 opcode may be
returned by the resource manager 108 in response to &
CLEANUP 234 opcade. When the resource manager 108 is
unable to free up the necessary resources 18 identified in
data associated with the opcode 234, the opcade 252 may be
appropriate. No return opcodes 180 may be required from
the scheduler 110 in response to the opcode 252.

An INCONSISTENT__DATA 254 opcode may be sent by
the resource manager 108 when an unrecogaized opcode
180 is reccived. Theoretically, an unrecognized opcode 180
should not occur, particularly in a compiled code or in a
previeusly debugged code. However, the opcode 254 serves
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as a backup, an initiation opcade 180 being any undefined
opcode 180 received by the resource manager 108. No return
opcode 180 may be required.

A RESOURCE__REBOOT 256 may be sent when the
resource manager 108 detects that a resource 18 has been
rebooted. Rebooting should not notmally occur, and there-
fore indicates thal a person or program independent of the
apparatus 10 has rebooted a resource 18 that was originally
logged on to the network 16 as an available resource 18 for
the apparatus 10, Also, if a resource 18 has been temporarily
enslaved by a controller 12, it may be unloaded (have its
software removed) and then be loaded again. Thus, if the
slaving software (e.g. NControl™) has been unloaded from
the resource 18 in question and then Joaded again, the
resource 18 has effectively beeu removed from the apparatus
10 and then replaced. The opcode 256 (reats this operation
as a reboot. No initiation opcode 180 may be required, since
the initiating event may be an outside action, typically by a
user, detected by the resource manager 108 upon polling of
its resources 18, Possible return opcodes 180 sent by the
scheduler 110 in response fo the opeode 256 may nclude
CLEANUP 234.

The RESERVE _PENDING 258 apcode may be sent by
the resource manager 108 to the scheduler 110 if requested

resources 18 are not available (o the resource manager 108. 2

The opcode 258 indicates 1o the scheduler 110 thal the
resource manager 108 will notify the scheduler 110 when the
appropriate resources 18 become available to run the des-
ignated test 305, Thus, whenever the resource manager 108

has been unable to locate sufficient resources 18 having the -

appropriate capabilities to run a test 305, the opcode 258
niay be returned. Thereafter, the resource manager 108 waits
for sufficient resonrces 18 to become available to conduct
the requested tests 305,

When the resource manager 108 has previously sent a
RESERVE_ PENDING 258 opcode to the scheduler 110, it
may subsequently send a RESERVE SUCCESS 260
opcode. Thus, whereas an initiation opcode 180 of SETUP_
PROGRAM 232 may result in 2 RESERVE_PENDING
258 opeode from the resource manager 108, no return
opcode 180 is sent immediately. Rather, the resource man-
ager 108 simply tracks the resources 18 in view of the
pending tequest, and sends the apeode 260 when the proper
resources 18 are available, Thus, once the resource manager
108 has “collected” sufficient resources 18, those resources
18 are designated in the data associated with the opcode 260,
Thus, although no initiation opeode 180 or return opeode
180 may be required, a SETUP_PROGRAM 232 may be
regarded as a guasi-initiation opcode 180, but cannot control
the timing of the opeode 260 being returned.

The RESERVE_REMOVE__SUCCESS 262 may be sent
when the resource manager 108 bas been able to remove a
test reservation (an entry in its table of resources 18 main-
tained for allocation to lests 305) associated with tests 308,
from the launch queue 302. That is, when the resource
manager 170 will no longer attempt to reserve resources 18
for a test 305, it may send the opeode 262 without ever
devoling thosc resources 18 (o (hat st 305, The initiation
opcode 180 1nay be a RESERVE _REMOVE 238, although
no retuen opeode 180 may be necessary for the opcode 262
or the opcade 264.
senl when the resource manager 108 has been unable to
remove a test reservation from the table of resources 18
maintained. Thus, the entry may never have existed, or the
appropriate resources 18 may have bgen located and allo-
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cated previously, making the initiation opcode 180, opcode
238, unnecessary. No return opeode 180 may be required.

The CLEANUP_LAUNCHER_FAIL_SUCCESS 266
may be sent when the resource mapager 108 has success-
fully freed up those resources 18 to be allocated to a test 308
that previously failed to launch properly. Similarly, the
CLEANUP_LAUNCHER__FAIL__FAIL 268 opcode may
be sent when the resources 18 have not been successfully
freed up. Either opeode 266, 268 may be initiated by the
initiation opeode CLEANUP__LAUNCHER_FAIL 236,
and may require no return opcode 180.

Several dala bases 300 are associated with the data base
maoager 114 of the automated test hamness 10. Each data
base 300 may be comprised of a number of records 301, each
record 301 containing some number of fields 320 for con-
taining data,

Referring now to FIGS. 5-6, the data bases 300 are
designated by a reference number although it is proper to
speak of a database 300 or a record 301 in the database 300
interchangeably in certain circumstances. The launch quene
data base 302 stores data associated with each launch. A
launch may be made by a launcher 112 “spawned” by the
scheduler 110 in order to run either a lest 305 (actually a test
wentified by a record 308) from the test data base 304, 4
suite 307 of tests 305, (identified by the records 307 from the
suite data base 306), or a group 309 (or group identified by
record 309) of tests 305, suites 307, or groups 309, from the
group data base 308. After running a test 305, or a suite 307
or group 309 of tests 305, the automaled test harness 10 may
store e results in 2 launch history data base 310, Other data
bases 300 or files may be filled with any information desired
from a test 305, However, in general, the automated test
harpess 10 may rn any test 305 without regard to what
operations are conducted or what data may be gencrated by
the test 305. Thus, a user may determine any number of
executable files and output files for a fest 305, independent
of the automated test hamess 10. Thus, the launch history
data base 310 concerns primarily the history of the auto-
maled test harness 10 and launching aud completing tests
305.

To sel up the automated test harness 10, certain seftings
may be saved i a settings data base 312. The sellings data
base 312 facilitates rapid set-up and reconfigucation of the
automated lest harness 10, including the controlier 12, and
any associated hardware and software.

The system log data base 314 may be nsed to store errors
encountercd during attempts by the automated test harness
10 to launch and run a test 305 or tesis 305,

Information particular to each resource 18 in the appara-
tus 10 may be stored in a resource data base 316. Thus, when
the resource manager 108 secks resources 18 to run a test
305 scheduled by the scheduler 110, the resource manager
108 may make a determination of the suitability of any
resource 18, based on a record 317 of the resource data base
31s.

Referring now to FIGS. 5-6, fields 320 in each of the data
bases 300 may be configured in a vagietly of ways. In one
presently preferred embodiment of an apparatus 16 made in
accordance with the invention, the fields 320 of the launch
queue may include a type 331 designating the type of
taunch, whether a test 305, suite 307, or group 309, Aname
332 of the Jaunch may correspond io the test name 340, suite
name 361, or group name 368 as appropriate. The lanncher
333 indicates the launcher 112 responsible for the test 305 in
question, The status 334 may store information relative to
the current status in operation of the antomated test harness
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10 occupied by the launch 332 in question. The priority 335
indicafes a designation of importance assigned by a user.
Tterns with lowesl priority numbers, highest priority, will be
launched first from first received in the launch queue 302 to

last received 1n the launch queue 302, followed by ali .

launches next in prority. The iterations field 336 indicates
how many times an individual launch should be run. That is,
one may speak of tests 305 or launches 333, but each may
refer to an instance 339 corresponding to one instantiation of
a launcher 112 tasked by the main thread 160 of the
scheduler 110 to slave resources 18, configure those
resources 18 (o operate, and then emancipate those resources
18 1o act in accordance with mstructions obtained in con-
sequence of the launcher 112 sefting np the resources 18.

Token definitions 337 may be stored in the token defini-
tions fickd 337 and token files may be identified 1o the token
files field 338. Tokens are those parameters or variables
replaceable during any individnal operation with specific
data, but defined by place holders within 4 code.

Each record 305 in the test data base 304 may include a
test name 340, a description 341, and an exccutable name
342. A path directing a resource 18 fo the actual software 1o
operate a test 305 may be stored at the path field 343, along
with parameters 344 for a specific instance 339, Usage
information between a programmer and a user may be stored
al ficld 345, while a wrapper name, indicating the designa-
tion of a test 305, may be stored in 346. Network
dependencies, including types of networks and protocols
may be stored in the nefwork dependencics field 347. The
type of the controller 12 may be stored at master resource
types 348, while resource 18 types may be identified at slave
resource types 349. A server 24 may be designated by the
server 350 field, whereas the context 351, user 352, and
password 353 may be filled with individualized information
particular to a user and testing scenario.

The drive mapping 354 field may enable additional drives 4

to be mapped on a computer such as a controller 12 or server
24 on a network 16. The files (o tokenize 355 allows cach
token in a user-specified file to be replaced with a specified
value defined elsewhere and stored in memory device 32.
The instance 356 may be a unique serial number assigned to
each test name 340 and peculiar fo the particular instantia-
tion of that test name 3460 by a launcher 112,

Similarly, cach suite 307 may have a suite name 361, also
referred (o simply as a name 361, in the name ficld 361. A
text description may be provided in the description field 362,
along with instructions for usage m the usage field 363. The
individual responsible, typically a user, and possible a
directing individual requesling certain testing, may be iden-
tified as a contact in the contact field 364. All test names 340
that are included within a suite 361 may be listed, scparated
by some delimiter, in the fest list field 365. The number of
tests 305 may be inpul in number tests field 366, or the
number of tests 305 may simply be delermined antomati-
cally by the coding for reading the delimiters in the lest list
field 365. To the extent that cerfain code may be lokenized,
a token file path field 367 may be filled with information to
direct a resource 18 to the proper token files to All in dummy
variables.

Each group 309 of tests 305, group 309 of suites 307, or
group 309 of groups 309, may be assigned a group name in
the group name ficld 368. A description, such as a lextual
description may be stored in the description field 369. A
contact or responsible individual may be identified in the
entered by field 370, while usage instructions may be stored
in the usage field 371. Similar to the test data base 304 and
suite data base 306, token files may be identified in a token
file field 372.
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Since, unlike the test data base 304 and snite data base
306, the group data base 308 may accepi any type of Lesting
grouping, a member type, whether a test 305, snite 307, or
group 309, within a group name 368 may be identified in the
member type ficld 373. A name, such as a test name 340,
suite name 361, or group name 368, from a test 305, suite
307, or group 309, respectively, associated with the group
name 368 In question, may be sfored in the member main
ficld 374. A priority may be assigned by a user in the priority
field 375, and a group 309 may be repeated, just as a fest 305
or suite 307 may be repeated, some number of ilerations
designated in the iterations field 376, Pararveters to be
passed may be stored in the parameters field 378, while the
instance number unique to the group name 368 and iis

‘instantiation by the launcher 112 may be identified by an

instance field 379. The mstance fields 339,356, and 379 may
be used as indices to associate any (esting instantiation with
the test data and any record 311 in the launch history data
base 310.

The launch history data base 310 may include a launch
time set by a clock, and recorded in a launch time field 381,
as well s a most recent time in which the record 311 of the
data base 310 in question was last updated or stored in an
update time field 382. With each instantiation of a launch by

5 the launcher 112, a type may be stored in the iype field 384

and a name in the name field 385, corresponding {o the type
(lest 305, suite 307, group 309) and the name 341, 361, 368
corresponding thereto in the name field 385. The corre-
sponding instance 356, 377, 379 may be stored in the
instance field 386. Thus, ihe launch data base 302 nmay be
indexed to the individual test 305, suite 307, or group 309,
as is the launch history dala base 310. The status field 387
may be used to store information regarding the status of the
launch being recorded, while the data field 388 may be used
to gather other data pertinent o the individual launeh.

The automated test harness dala base 312, also referred to
as the ATH dala base 312, may be used to specify particular,
standardized, configurations of the automated test harness
10. Each record 313 of the ATH data base 312 may include
a name field 391 for identifying a standardized setup
configuration, an automated test harness server identifier in
the ATH server field 392, the path in an ATH path field 393,
with a test directory or subdirectory for the location of
executables associated with a test 305 stored in the fest
directory ficld 394, The path to the databases 300 may be
specified in the DB manager path field 395, while a text
editor of choice may be specified by a user or for a user in
the text editor field 396 to enable modification of coding,
comments, and other lext strings by an appropriate engine.

The system log data base 314 may contain various error
messages. In general, however, a message information field
397 may contain the text of a message or additional
de-bugging information relating lo possible sources of a
message, or both. The reported by ficld 398 may store
information regarding a process 106 or a hardware resource
18 responsible for generating a pacticular error message.

The resources 18 may be specified in substantial detail.
Similarly, any particular lesting set-up may be provided with
a specification for resources 18 according to any or all fields
320 in the resource data base 316.

The resource dala base 316 may contain information
regarding the automated test harness 10, in general.
However, in one embodiment of the apparatus 10 made in
accordance with the invention, the resource database 316
coatains information louching configuration of the hardware
suite employed in the resources 18, and, optionally, the
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server 24, In addition, certain other information, such as
specifications related to peripheral equipment attached to a
resource 18, may be significant to an individual laboratory
using the automated test harness 10.

General information concerning the automated test har-
ness 10 may include a location ficld 402 for specilying a
geographical location such as a laboratory room number or
other geographical identifier. A node address field 404 may
store the actual network node address of the confrolier 12 on
the network 16. The status field 406 may identify the state
of readiness or configuration, while the prefix ficld 408 may
contain a prefix for uniquely identifying files pertaining to
the automated fest harness.

The operating system type field 410 may contain infor-
mation regarding ihe particular operating system {ype asso-
ciated with a controller 12, or may be made to list a number
of operaling systems that may be hosted by the controller 12.
The instance field 412 may temporarily contain one of the
instances from an instance field 356, 377, 379 associated
with a testing regimen associated with a resource 18 iden-
tified by a record 317 in the data base 316. Thus, the instance
ficld 412 does not confain 2 permanently associated number
unique to a resource 18, but rather the designation of the
current instaunce to which the resource 18 is dedicated.

Euch of the data bases 302, 304, 306, 308, 310, 312, 314,
316 has associated with it a series of individual records 303,
305,307, 309, 311, 313, 315, 317, respectively. Each record
303, 305, 307, 309, 311, 313, 315, 317 has associated with
it a plurality of fields 320,

Related to the hardware of a resource 18 may be the brand 3

field 414 identifying the actual brand name of the resource
18 The CPU field 416 and the speed field 418 in the record
317 of the resource data base 318 identify exactly the CPU
identifying number or name and the speed or megaheriz at
which tlie processor 70 of the resource 18 operates.

The drive size ficld 422 and the drive size field 424 may
identify the size and megabytes of hard drives associated
with the resource 18. Topology field 426 identificd the
lopology discussed above under which a resource 18 may be
connected lo the network 16, while the nel card field 428
identifies the type of network card 14C, 148, 14E associated
with a partieular resource 18.

The IPX backbone field 430 may be the identifier for the
network protocol used by the automated test harness 10 for
communicating over an internciwork through a router 25
connecting the network 16 to an internetwork 17 (refer to
F1G. 1). The IPX infernal ficld 432 and IP ioternal ficld 434
may contain identifying numbers, names, or other strings to
identify the protocols used within the automated lest harness
10 over the network 26 between the network cards 144,
14B,14C, 14D, 14E, 14F IPX s a potential protocol (haf has
beens used in various networks, and indicates in general the
network protocol of the network 16. Similarly, the 1P inter-
nal field 434 relates to the internetwork profocol and may be
replaced by some other protocol as appropriate.

Relating to the sofiware suite of the aulomated tesl
harness 10, the function field 436 may contain data relating
to sofiware that may be or has been organically hosted on a
resource 18, The OS type field 438 and OS version field 440
identify the operating system type as well as the current
version number hosted by each tesource 18. For some
resources 18, operating system types may be changed
readily, in which event a second 08 field 442 and second OS
version fleld 444 may be used to store information relating
to a second operating system voder which a resource 18 may
operale.
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Other infermation that may be pertinent to a laboratory or
organization operating an awlomated fest harness 10 mray
include a capital asset number ficld 446 for containing a
capital inventory number such as is assigned by most

s companies in controlling capital assets. Similarly, a machine
serial number may be stored in a serial number field 448,
while the bus type may be identificd in a bus type field 450
and the video card type and drive controller may be desig-
nated in a video card ficld 452 and drive controller field 454.

10 Alternate topalogy may be designated by another topol-
ogy field 456, while an additional uetwork card 14 may be
hosted in certain types of systems, such as a wireless card
and a wired card, one of which may be a default card. Thus,
a net card ficld 458 may be vsed to designate an additional

15 petwork card 14, associated with a tesource 18, or an
alternative network card 14. Similarly, a network backbone
protocol for the network 16 or internetwork 17 may be
designated in the IPX back field 460 and the 1P back field
462, respectively. Similarly, the data link layer addressing

20 information associated with the MAC-LAYER protocols
according to the International Organization for Standardiza-
tion Open Systemns Interconnection model (ISO/CSI) model
may be designated in a MAC back field 464. The software
associated with the slaving model 446 for slaving the

25 pperating systemn 144 of a resource 18 to the controller 12 of

the automalted lest harness 10, may be specified in a slave
type ficld 466.
Other fields may be created in records 303-317 in the data
bases 302316, respectively, or other new data bases or-
records may be created as convenient. However, in one
embodiment of an apparatus 10 made in accordance with the
invention, the foregoing fields 320, records 303-317, and
data bases 302-316 may be used {o identify data determined
to be useful in operating an automated test harness 10.
From the above discussion, it will be appreciated that the
present invention provides an apparatus and method for
temporarily slaving a resource 18 or target computer 18 to
a controller 12, during which event the controller 12 oper-
ates as a comnmand line controller communicating with the
operating system of the resource 18 to configure the resource
18, and afier which the resource 18 may load and run
software for condncting tests independenily.
The present invention may be embodied in olher specific
45 forms without departing from its spirit or esseatial charac-
teristics. The described embodiments are (o be considered in
allrespects only as illustrative, and not restrictive. The scope
of the invention is, therefore, indicaled by the appended
claims, rather than by the foregoing description. All changes

sp which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

‘Whal is claimed and desired to be secured by United
States Letters Patent is:

1. Ap apparatus for running test software, the apparatus

55 comprising:

a nelwork for communicating data;

a target operably connecled {o the neiwork, the target
comprising:
a first metwork inferface operably connected fo the

50 network,

a first processor connected to the first network interface
and provided with a first operating system,

a first memory device operably connected to a store
data transferred to and from the first processor; and

65 a controller operably connected to a network to communi-
cate data with the farget over the network, the controller
comprising:

40
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second network interface operably connecied to the
network to communpicate dafa between the confroller
and the network,

second processor operably connected to the second
network interface for selectively, based on resource
information teceived from the target and temporarily
providing operating system command line instructions
for controlling the operating system of the target, while
the operating system of the target is continuously
operating, fo configure the target,

a second memory device for storing dala comtnunicated

to and from the second processor, and

a slorage device connected to the network for storing files

of data.

2. The apparatus of claim 1 wherein the controller is
further provided with a launcher for communicating with the
target, and for enslaving and controlling the operating sys-
tem of the target during a setup operation to configure the
larget.

3. The apparatus of claim 2 wherein the second processor
is programmed fo emancipate the target to operate indepen-
dently after the setup operation, and the targel is configured
to load and run an application independently of the control-
ler.

4. The apparatus of claim 1 wherein the controiler is
further provided with a resource manager for managing data
corresponding to identification and performance character-
istics of the target, and to availability of the target to run
apphications,

5. The apparatus of claim 1 wherein the controller further
comprises a server for storing and retrieving files.

6. The apparatus of claim S whercin the files comprise
datafiles selected from applications for maoning on the first
processor, control applications confaining exccutables for
controlling loading and running of the applications, appli-
cation datafiles containing data corresponding to parametors
used by the first processor in running the applications, and
result datafiles containing data corresponding to resulis

I3
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oulput by the first processor while running the applications.

7. The apparatus of claim 1 wherein the controller is
further provided with a database manapger for storing and
retrieving application datafiles and resull datafiles commu-
nicated between the first processor and the storage device.

8. The apparatus of claim 1 wherein the controller is
further provided with a scheduler for acquiring data corre-
sponding 1o 2 queue of applications to be run, scheduling to
run an application associated with the queue, confirming thal
all data needed to run the application has been assembled,
and monitoring the target to defermine complation of rup-
ning of the application.

9. The apparatus of claim 8 further comiprising a database
manager for storing, and for retrieving over the network,
application datafiles and result datafiles.

10. The apparatus of claim 9 fuether comprising a
resource manager for acquiring and storing data correspond-
ing to identification and characteristics of the target, and to
availability of the targel to run applications.

11. Tthe apparatus of claim 10 further comprising a
launcher for commuricating commands to the operating
system of the target for configuring the target prior to
emancipation of the target to operate independently.

12. The apparatus of claim 11 further comprising a server
for transferring files communicated over the network to and
from the storage device,

13. The apparatus of ¢laim 1 further comprising a plural-
ity of targets, the target being a first target of the plurah'ly of
fargets.
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14. The apparatus of claim 13 wherein a second target of
the plurality of targets is provided with a second operating
system different from the first operating system.

15, 'The apparatus of claim 1 wherein the target further
comprises a storage device operably connected to the first
processor {or storing application datafiles, result datafiles,
and applications.

16, The apparatus of claim 1 wherein the target is pro-
vided with an operating system for downloading an execul-
able to be run on the first processor.

17. The apparatus of claim 16 wherein the executable is
selected from a command file, an interpretable language file,
& batch file, and an instruction file written in machme code,

18. The apparatus of claim 1 wherein the farget is pro-
vided with an operating system for receiving execufables
downloaded by the controller to be run on the first processor.

19. The apparatus of claim 1 further comprising a second
targel operably connecied to the network and having a
second operating system different from the fisst operating
syslem.

20. The apparatus of claim 1 whercin the second memory
device is provided with a plurality of queues for receiving
operational codes communicated by a plurality of processes
running on the second processor, cach operational code
being readable by a process of the plurality of processes for
controlling an operation of the process.

21. The apparatus of claim 1 wherein the second proces-
sor is programmed fo run simultancously a plurality of
software modules, the plurality of software modules com-
prising:

a database manager for storing and relrieving apphication
datafiles to be used as inputs for applications exccut-
able by the second processor, and result datafiles con-
tatning outputs of the applications;

a resource manager for storing data corresponding o
identification, characteristics, and availability of the
target to run the applications;
launcher for communicating with the operating system
of the target and for configuring the target to operate
independently of the coutroller in running applications
and uploading result files to the server, and for selec-
tively downloading applications te the tfarget and
instructing the target to download applications to the
target result datafiles to the server; and

a scheduler for acquiring data corresponding to apphca-
tions to be run, selecting applications to be identified to
the target for downloading io the target, and for spawn-
ing instantiations of the launcher.

22. A method of running software on a plurality of

computers, the method comprising:

connectiog a target lo a network, the larget comprising:
a first processor having a first operating system, and
a first network interface operably connected to the

processor to communicate data between the proces-
sor and the network,
connecting a controller to the network to communicate over
the network with the first operating system, the controller
comprising:

a second network interface operably connected fo the
network to communicate data between the controller
and the network,

a second processor having a second operating system and
operably conaccted to the second network interface for
selectively, based on resource information received
from the target, and temporasily provide operating
system command line instructions for controlling the
fiest operating system of the target, and

B



WEST

5,909,544

35

a memory device for storing data communicated to and
from the second processor;
commecling a server, containing a storage device, to the
network for staring and retrieving files transferred over
the networlg
enslaving the first operating system of the target to be
controfled by the controller;
transmithing operating system command line instructions
from the controller to the first operating system of the
targel o be executed by the first operating system of the
target to configure the target;
emancipating the first operaling system of the farge! o
operale independently of the controiler; and
loading by the target, independently of the controller, a
file from the server onto the target.
23. The method of claim 22 wherein the first operating
system and the second operating system are different from
cach other.
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24, The method of claim 22 further comprising running an
application of the applications on the first processor,

25, The method of claim 24, further comprising creating
Dy the target a resull datafile containing data corresponding
to resulis obtained by the first processor while running the
applications.

26. The method of claim 25, further comprising indepen-
dently uploading by the target the result datafile to the server.

27. The method of claim 22 wherein the file is selecied
from applications containing insitructions executable by the
first processor, control applicalions containing instructions
executable by the first processor for controlling running of
applications, a batch file iterpretable by the first operaling
system, and application datafiles containing data corre-
sponding to parameters used by the first processor in ruoning
apphcations.
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Detailed Description Text (34):

In addition, Tables 1-3 below illustrate logical relations between various opcodes 180.
Entries in Tables 1-3 are arranged more-or-less according to which process 106 in the
second column is sending an opcode 180 in the third column. In certain circumstances, a
thread 150, in general, of the scheduler 110 may send an opcode 180 to another general
thread 150 of the scheduler 110.

Detailed Description Text (43):

Each of the threads 160, 162, 164, 166, 168, 170, 172, 174 may communicate with one
another by a series of opcodes 180. For example, the opcodes 180 may be referred to as
opcodes 180, and may be illustrated by the opcodes 182 communicating between the exit
thread 168 and the main thread 160. Similarly, the opcodes 184 may communicate between
the data base watch thread 166 and the main thread 160. The opcodes 186 may be passed
from the scanner thread 164 to the main thread 160, while the opcodes 188 are passed
from the launcher main thread 174 to the scheduler main thread 160. Similarly, the
opcodes 192 pass from the scheduler 110 to the scheduler main thread 160 to the
configuration file builder thread 162, the opcodes 194 pass from the configuration file
builder thread 162 back to the scheduler main thread 160, the opcodes 196 pass from the
console main thread 172 to the resource manager main thread 170, and the opcodes 198
pass from the console main thread 172 to the scheduler main thread 160. The opcodes 200
may pass from the scheduler main thread 160 to the resource manager main thread 170
while the opcodes 202 pass from the resource manager main thread 170 to the scheduler
main thread 160.

Detailed Description Text (45):

As referenced earlier, the data base watch thread 166 and the exit thread 168 may be
incorporated directly into the scheduler main thread 160. Similarly, the scanner thread
164 in one embodiment of an apparatus 10 in accordance with the invention, may be
incorporated into the scheduler main thread 160. However, in general, opcodes may each
be made to operate similarly, or even identically. At a source thread, an opcode
indicates to the source thread to reserve a memory block, that is, a specific segment
of memory in a memory device such as the memory device 32. The source thread then
writes the identifier 272, a generic pointer 274, and a resource pointer 276 into the
reserved block of memory. The source thread then sends the address of the opcode 180 to
a destination thread by writing the address to a message queue associated with the
destination thread. A destination thread periodically reads all messages in a message
queue associated with a destination thread. Upon reading the message received from the
source thread, the destination thread receives the address of the opcode 180. The
destination thread then reads the opcode in the memory block, ascertaining the
identifier 272, and the pointers 274, 276. The destination thread then may move an
execution pointer in the opcode associated with the thread that has received the opcode
180, and may begin executing the opcode at the designated location. Thus, the opcode
identifier 272 has served to move an execution pointer within the coded executable of
the destination thread. The destination thread then executes the opcode using the data
pointed to by the pointers 274, 276. In certain circumstances, the destination thread
may return an opcode 180 to the source thread, or to another thread in the controller
12, and particularly the controller modules 92.

Detailed Description Text (48):

The console main thread 172 may receive no opcodes 180 from other threads. Rather, the
console main thread 172 may receive its principal direction from inputs from a
graphical user interface gathering inputs from a user. The console main thread 172 does
send a CONSOLE.sub.-- EXIT 229 opcode to the scheduler main thread 160, indicating that

P
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a system exit is in order. The CONSOLE.sub.-- ADDRESS 225 may also be sent from the
console main thread 172 to the scheduler main thread 160. The SYSTEM.sub.-- LOG 210 may
be sent by any thread to the scheduler main thread 160.

Detailed Description Text (51):
In the return direction from the resource manager wmain thread 170 back to the scheduler

main thread 160, a host of opcodes 202 may be sent, including INIT.sub.-- SUCCESS 242,
INIT.sub.-- FAIL 244, SETUP.sub.-- SUCCESS 246, SETUP.sub.-~- FAIL 248, CLEANUP.sub.

SUCCESS 250, and CLEANUP.sub.-- FAIL 252. Each of the opcodes 202 provides 1ntormatlon
from the resource manager 108 to the scheduler 110 to indicate the status of a given
resource 18 selected for a particular test.

Detailed Description Text ({(59):

Referring again to FIG. 3, the operational codes 180 or opcodes 180, remembering that
auxiliary thread 150 such as the threads 164, 166, 168 may opticnally be incorporated
inte the wain thread 160 of the scheduler 110. It may be instructive to discuss the
opcodes 180 ass001ated with the scheduler 110. The EXIT opcode 204 injtiatc& a

the scheduler 110 and more particularly to the scheduler main thread 160 when a test
has been succeqqful]y launched. A successful launch of a test 305 indicates that the
launcher 112 was able to configure a resource 18, also referred to as a target 18 or
target resource 18, at an operating system level, and the subject resource 18 has
successfully loaded the test program and the necessary data. The test 305 is therefore
running. No initiation opcode 180 may be required for the LAUNCHER.sub.-- PASS 216, but
the launcher 112 is itself "spawned" by the scheduler wain thread 160, which may be
itself an initiating event. No return copcode 180 may be necessary from the main thread
160.

Detailed Description Text (66):

The LAUNCHER.sub.-- FAIL 218 may be sent by the launcher main thread 174 to the
scheduler main thread 160 if a test 305 has not been successfully launched. Some
reasons why a launch way fail may include the failure of a "login" command from a
launcher 112 to a resource 18, failure of a "map" command to map the necessary drives,
or perhaps more properly, for example, virtual drives on the storage devices 54, &4 or
memory devices 52, 62, 72 of the resources 18. As discussed above, the resource 18
refers generally to all resources 18, 20, 22, and the like. The LAUNCHER.sub.-- FAIL
218 requires no initiation opcode 183, since a launcher is "spawned" by the scheduler
110. No return opcode 180 may be requ:red

Detailed Description Text (67):

The BLD.sub.-- SUCCESS 220 may be sent from the configuration file builder thread 162
to the scheduler main thread 160 when the scheduler 110, and more specifically, the
configuration file builder thread 162 has successfully organized the information
necessary to run a test 305. The initiation opcode BLD.sub.-- CONFIG 224 may be first
received by the configuration file builder thread 162 from the main thread 160. No
return opcode 180 may be required.

Detailed Description Text (70):

The BLD.sub.-- CONFIG 224 may be sent to the configuration file builder thread 162 of
the scheduler 110 by the main thread 160. The function of the opcode 224 may be to
compile and organize all information associated with the opcode 224 so that a launcher
112 may be "spawned" by the main thread 160, and will have all of the data necessary to
run a test 305. An initiation opcode 180 for the opcode 224 may be the SETUP.sub.--
SUCCESS 246 received from the resource manager main thread 170. Thus, the resource
manager main thread 170, having identified that the hardware resourcea 18 are
available, properly equipped, and otherwise ready for employment in a test 305, sends
the initiation opcode SETUP.sub.-- SUCCESS 246 to the main thread 160 of the scheduler
110. Possible return opcodes sent from the scheduler 110 to the configuration file
builder thread 162 may include the BLD.sub.-- SUCCESS 220 or the BLD.sub.-- FAIL 222

opcodes.
Detailed Description Text (71):

Thus, the opcodes 212, 214, 220, 222, 224 originate in a thread of the scheduler 110
and may be sent to the originating thread or another thread of the scheduler 110. The

4/3/03 11:58 AM
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SYSTEM.sub.-- LOG 210, in contrast, may be returned by any process 106 to the scheduler
main thread 160.

Detailed Description Text (78):
The SETUP.sub.-- PROGRAM 232 opcode sent by the scheduler 110 has the effect of
requesting resources 18 needed for a test 305. The information associated with the

needed resources 18. Thus, a "specification" of sorts wmay be associated with the opcode
232. An initiation opcode BLD.sub.-- SUCCESS 220 gives rise to the opcode 232. Thus,
when configuration by the thread 162 is complete, the scheduler main thread 160 makes a
resource request of the resource manager 108 with the opcode 232. Possible return
opcodes may include SETUP.sub.-- SUCCESS 246, SETUP.sub.-- FAIL 248, RESERVE.sub.--
PENDING 258, or RESERVE.sub.-- SUCCESS 260 sent by the resource manager 108 to the
scheduler 160.

Detailed Description Text (82):

The EXIT 240 opcode may be sent to the resource manager 108 to signal a system exit.
The initiation opcode 180 may be controlled by an exit thread 168 sending an EXIT 204
opcode to the scheduler main thread 160. However, in one presently preferred embodiment
of an apparatus 10 made in accordance with the invention, all control over the EXIT 204
opcode may reside in the console 116. Thus, an appropriate initiation opcode 180 may be
a CONSOLE.sub.-- EXIT 229 sent from the conscle main thread 170 to the scheduler main
thread 160. No return opcode 180 may be required, since a resource manager 108 may be
programmed to properly log off or otherwise exit all resources 18 from the system 10.

4/3/03 11:58 AM
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1
METHOD AND SYSTEM FOR
CONSTRUCTING A PROGRAM INCLUDING.
A NAVIGATION INSTRUCTION
BACKGROUND

1. Technical Field

The technical field of the present specification relates in
general 10 a method and systemn for data processing and in

particular to a method and system for multiscalar data .

processing.

2. Cross-Reference to Related Applications

This application is related to the following patent
applications, which are incorporated herein by reference:

(1) application Ser. No. 08/767,488 (Altorney Docket No.,
AT9-96-223), eutitled “METHOD AND SYSTEM FOR
CONSTRUCTING A MULTISCALAR PROGRAM
INCLUDING A PLURALITY OF THREAD DESCRIP-
TORS THAT EACH REFERENCE A NEXT THREAD
DESCRIPTOR TO BE PROCESSED,” filed of even date
herewith;

{2) application Ser. No. 08/767,488 (Atlorney Docket No.
AT9-96-187), entitled “PROCESSOR AND METHOD FOR
DYNAMICALLY INSERTING AUXILIARY INSTRUC-
TIONS WITHIN AN INSTRUCTION STREAM DURING
EXECUTION,” filed of even date herewith;

(3) application Ser. No. 08/767,489 (Atlorney Docket No.
AT$.96-185), entitled “METHOD AND SYSTEM FOR
CONCURRENTLY EXECUTING MULTIPLE THREADS
CONTAINING DATA DEPENDENT INSTRUCTIONS,”
filed of even date herewith;

(4) application Ser. No. 08/767,487 (Attorney Docket No.
AT9-96-224), entitled “METHOD AND SYSTEM FOR
EXECUTING A PROGRAM WITHIN A MULTISCALAR
PROCESSOR BY PROCESSING LINKED THREAD
DESCRIPTORS,” filed of even date herewith; and

(5) application Ser. No. 08/767,490 (Attorney Docket No.
AT9-96-186), entitled “METHOD AND SYSTEM FOR
CONSTRUCTING A PROGRAM INCLUDING OUT-OF-
ORDER THREADS AND PROCESSOR AND METHOD
FOR EXECUTING THREADS OUT-OF-ORDER,” filed of
even date herewith.

3. Description of the Related Art

In the development of data processing systems, it became
apparent that the performance capabilities of a data process-
ing system could be greatly enhanced by permilting multiple
instructions to be excculed simultancously. From this
realization, several processor paradigms were developed

that each permit multiple instructions to be execnted con- 5

currently,

Asuperscalar processor paradigm is one in which a single
processor is provided with multiple execution units that are
capable of concurrently processing multiple instructions.
Thus, a superscalar processor may include an instruction
cache for storing instructions, at least onc fixed-point unit
(FXU) for exccuting fixed-point instructions, a floating-
point unit (FPU) for executing floating-point instructions, a
load/store unit (LSU) for executing load and store
instructions, a branch processing unit (BPU) for executing
branch instructions, and a sequencer that fetches nstructions
from the instruction cache, examines each instruction
individually, and opportunistically dispatches each
instruction, possibly out of program order, to the appropriate
execution unit for processing. In addition, a superscalar
processor typically includes a limited sel of architected
registers that lemporarily store operands and results of
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processing. operations performed by the execution upits.
Under the controt of the sequencer, the archilecled registers
are renqmcd in order to alleviate data dependencies between
instruciions,

State-of-the-art superscalar processors afford a perfor-
mance of between 1 and 2 instructions per cycle (IPC) by,
among other things, peomitting speculative execution of
instructions based upon the dynamic prediction of condi-
tional branch instructions. Because superscalar processors
have no advance knowledge of the control flow graph (CFG)
(i.e., the control relationships linking basic blocks) of a
program prior to execution, IPC performance is necessarily
limited by branch prediction accuracy. Thus, increasing the
performance of the superscalar paradigin requires not only
improving the accuracy of the already highly accurate
branch prediction mechanism, but also supporting a broader
instruction issue bandwidth, which requires exponentially
complex sequencer circuitry (o analyze instructions and
resolve instruction dependencies and antidependencics.
Because of the inherent difficulty in overcoming the perfor-
mance bottlenecks of the superscalar paradigm, the devel-
opment of increasingly aggressive and complex superscalar
processors has a diminishing rate of return in terms of 1PC
petformance.

An alternalive processing paradigm is that provided by
parallel and multiprocessing data processing systems, which
although having some dislinctions between them, share
several essential characteristics, Patallel and mulliprocessor
data processing systems, which each typically comprise
multiple identical processors and are therefore collectively .
referred to hereinafter as multiple processor systems,
exccute programs out of a shared memory accessible to the
processors across a system bus, The shared memory also
serves as a global store for processing resulis and operands,
which arec managed by a complex synchronization mecha-
nism to ensurc that data dependencies and antidependencies
between ipstructions executing on different processors are
resolved correctly. Like superscalar processors, multiple
processor systems are also subject ta a number of perfor-
mance botilenecks.

A significant performance bottleneck in multiple proces-
sor systems is (he latency incurred by the processors in
storing resulis lo and retrieving operands from the shared
memory dcross the system bus. Accordingly, in order mini-
mize latency and thereby oblain efficient operation, compil-
ers for mulliple processor systems are required to divide
programs into groups of instructions (tasks) between which
contro] and data dependencies are identified and minimized.
The tasks are then each assigned to one of the multiple
processors for execution. However, (his approach to task
allocation is not suitable for exploiting the instruction leve]
parallelism (1P} inherent in many algoritams. A second
source of performance degradation in multiple processor
systems is the requirement that control dependencies
between tasks be resolved prior to the dispatch of subse-
quent tasks for execution. The failure of multiple processor
systems to provide support for speculative task execution
can cause processors within the multiple processor sysiems
to incur idle cycles while waiting for inter-task control
dependencies 1o be resolved. Moreover, the development of
software for multiple processor systems is complicaled by
the need to explicilly encode fork information within
programs, meaning thal multiple processor code cannot be
easily ported Lo systems having diverse architectures.

Recently, a new aggressive “multiscalar” paradigm, com-
prising both hardware and software clements, was proposed
lo address and overcome the drawbacks of the conventional
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superscalar and mulftiple processor paradigms described
above. In general, the proposed bardware includes a collec-
tion of processing units that are each coupled to a sequencer,
an inlerconnect for imerprocessor communication, and a
single set of registers. According to the proposed multiscalar
paradigm, a compiler is provided that analyzes a program in
terms of its CFG and partitions a program ioto multiple
tasks, which comprise contiguons regions of the dynamic
instruction sequence. In contrast to conventional multiple
processor tasks, the tasks created by the multiscalar compiler
niay or may not exhibit a high degree of control and data
independence. Importantly, the compiler encodes the details
of the CFG in a task descriptor within the instruction set
architecture (ISA) code space in order to permit the
sequencer {o traverse the CFG of the program and specula-
tively assign tasks (o the processing units for cxecution
withou( examining the conlen(s of the tasks.

According to the proposed mulliscalar paradigm, register
dependencies are resolved statically by the compiler, which
analyzes each task within a program to determine which
register values each task might possibly create during execu-
tion. The compiler then specifies the register values that
might be created by cach task within an associated register
reservation mask within the task descriptor. The register
reservations seen by a given task are the union of the register
reservation masks associated with concurrently executing
tasks that precede the given task in program order. Duting
execution of the program, a processing umt executing an
instruction dependent upon a register value that might be

created by a concurrently exccuting task stalls until the ,

register value is forwarded or the reservation is released by
the preceding task. Upon release of the register or receipt of
a forwarded register value by the stalled processing unit, the
reservation for the register is cleared within the register
reservation mask of the stalled processing unit and {he
stalled processing unit resumes execution. In order to trigger
the forwarding of register values, the compiler adds tag bits
to cach nstruction within a task. The tag bits associated with
the last instruction in a task to create a particular register
value indicate that the register value is to be forwarded 1o all
concurrently executing lasks subsequent to the task in pro-
gram order. Release of a regisier, on the other hand, is
indicated by a special release instruction added to the base
ISA or crealed by overloading an existing instruction within
the ISA.

In contrast to register dependencies, the proposed multi-
scalar paradigm does not attempt to statically resolve
memory dependencies and permits load and store instruc-
tions to be executed speculatively. A dynamic check must
then be made to ensure that no preceding task stores (o a
memory location previously loaded by a subsequent task. If
such a dependency violation is detected, the execution of the
task containing the speculative load and all subsequent tasks
are aborted and appropriale recovery operations are per-
formed. Jurther details of the proposed multiscalar archi-
tecture may be found in G. 8. Sohi, S. E. Breach, and T. N.
Vijaykumar, “Multiscalar Processors,” Proc. ISCA °95 Ine’l
Synmposium on Computter Architecture, Junc 1995, pp.
414-4325.

The proposed multiscalar paradigm overcomes many of
the deficiencies of other paradigms in that the multiscalar
paradigm affords a wide instruction window from which
instructions can be dispatched utilizing relatively simple
scheduling hardware, is less sensitive to infer-task data
dependencies and mispredicted branches, and is capable of
exploiting the 1LP believed to be present in most sequential
programs. However, the proposed mulliscalar architecture
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also has several deficiencies. First, backward compatibility
of code binarwes is sacrificed due to the insertion of release
and other multiscalar insiructions into the program to handle
task synchronization. Second, multiscalar simulations have
shown that the insertion of a large amount of multiscalar
instructions that do no useful work into a program can
actually degrade multiscalar performance to such an exient
that better performance may be obtained with a conventional
superscalar processor. Third, the attachment of additional
bits to cach instruction in the program, which was proposed
in order to trigger the forwarding of processing results from
a predecessor task to subsequent tasks, vecessilates an
increased instruction path width and additional bardware
complexity. Fourth, the proposed multiscalar paradigm has

5 no mechanism for handling dependencies between loads and

stores fo memory. Fifth, in the proposed multiscalar
architecture, all tasks except the oldest arc executed
speculatively, meaning tiat even if task prediction accuracy
is 90%, the prediction accuracy for tasks beyond the fifth
task drops below 60%.

As should thus be apparent, it would be desirable (o
provide an enhanced multiscalar architecture that overcomes
the foregoing and other deficiencies of the proposed multi-
scalar processor paradigm.

SUMMARY

It is therefore one object of the present disclosure to
provide an improved method and system for data process-
ing.

[t is another object of the present disclosure to provide an
improved method and system for multiscalar data process-
ing.

The foregoing objects are achieved as is now described.
A method and system are provided for constructing a
program executable by a processor including one or more
processing elements for executing threads and a thread
scheduler for assigning threads {o the processing elements
for execution. According to the method, a plurality of
threads are provided (hat each include at least one control
flow instruction. From one or more control flow instauctions
within the plurality of threads, a condition upon which
exccution of a particular thread depends is determined. In
response to the delermination, at least one navigation
instruction execuiable hy the thread scheduler is created that
indicates that the particular thread is lo be assigned to one of
the processing clements for execution in response to the
condition.

The above as well as additional objects, features, and
advantages of an illustrative embodiment will become
apparent in the following detailed wrilten description.

BRIEE DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself
however, as well as a preferred mode of use, further ohjects
and advantages thereof, will best be understood by reference
to the following detailed description of an illustralive
embodiment when read in conjunction with the accompa-
nying drawings, wherein:

FIG. 1 illustrates a conceptual diagram of a process for
constructing a rnultiscalar program, wherein the multiscalar
program includes separate Instruction Code (1-Code) and
Thread Code (T-Code) strearns;

FIG, 1B depicts a high level logical Howchart of an
illustrative embodiment of the process by which a multisca-
lar compiler builds the T-Code stream of the altiscalar
program;
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H(}. 2 depicts an illustrative embodiment of a thread
descriptor within the T-Code stream depicted in FIG. 1;

FIG. 3 illuslrates an exemplary multiscalar program frag-
ment that includes possibly dependent instruction set archi-
tecture (ISA) instructions synchronized Ly SetFlag and
WaitFlag extension instructious, wherein the program frag-
ment further includes an inter-thread contral dependency
that may be resolved by executing 1 set of T-Code navigation
instructions created by the multiscalar compiler;

FIG. 4 is a block diagram depiction of an illustrative
embodiment of a multiscalar data processing system;

FIG. 5 illustrates a more detailed depiction of the global
synchronization flags (SFs) illustrated in FIG. 4;

FIG. 6 depicis a tiing diagram of the pipelined process-
ing of the threads of a multiscalar program, wherein the
thread pipeline includes thread scheduling, thread execution,
and thread completion stages;

FIG. 7 is a high level logical flowchart of a method of
thread scheduling when threads are processed according to
logical program order;

FIG. 8 is a high level logical flowchart of a method for
fetching and dispatching instructions within a processing
clement, which ilfustrates the dynamwic insertion of extension

instructions mto the instruction stream of the processing 2

clement;

FIG. 9 is a high Jevel logical flowchart depicting a method
of executing instructions within # processing element when
threads are processed in logical program order;

FIG. 18 is a high level logical flowchart illusirating a
method of completing threads when threads are processed in
logical program order;

FIG. 11 illustrates the execution of the Thread Code
(T-Code) and Instruction Code (I-Code) streams comprising
4 multiscalar program, wherein multiscalar execution of the
multiscalar program is initiated by a SetTP instruction
embedded within the 1-Code streany;

FI1G. 12 depicts a state diagram of the protocol utilized by
the processing clements (PEs) within the multiscalar pro-
cessor illustrated in FIG. 4 to maintain local register and
memory data coherency in response to local events;

FIG. 13 illustrates a stale diagram of the snooping pro-
tocol utilized by the PEs within the multiscalar processor
depicted in FIG. 4 to maintain local register and memory
data cohercncy i response to external events;

FIG. 14 depicts an illustrative embodiment of a T-Code
thread deseriptor utilized to support out-of-order execution
of thireads;

FIG. 15 illustrates the partitioning of threads within a
mulliscalar program: into multiple thread regions;

FIG. 16 is a high level logical fowchart depicling 2
method of scheduling threads for out-of-order execution;

FIG. 17 is a high level logical flowchart illustrating a
method of executing instructions within a processing cle-
ment when threads are processed out-of-order; and

FIG. 18 is a high level logical flowchart depicting a
method of completing threads when threads are processed
out-of-order.

DETAILED DESCRIPTION

The multiscalar processing paradigm disclosed herein
overcomes numerous defliciencies of the previously pro-
posed multiscalar paradigm through improvemeats to both
the multiscalar hardware and software architcctures. In order
to facilitate an understanding, of the operatiop of the multi-
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scalar pracessor hardware, an introduction to the improved
multiscalar software architecture will first be given.
Saftware Architecture

With reference now to the figures and in particular with
reference to FIG. 14, there s a conceptual diagram of a
process for constructing a mmltiscalar program is illustrated.
As depicted, an ordinary high level language {(c.g., C++)
program 10 containing & number of high level instructions
12 is input into muliiscalar compiler 14 for processing.
During a fist pass, multiscalar compiler 14 translates cach
of high level instructions 12 into one or more executable
instruction set architecture (ISA) instructions 16 arranged in
a particular program order. In addition, rmultiscalar compiler
14 partitions ISA instructions 16 iuto one or more threads
18, which cach contain a logically contiguous group of ISA
instructions 16. As utilized hereinafter, the term thread refers
to a set of one or more logically contiguous instructions
within a multiscalar program that have a single eutry point
and mulliple possible exit poinls. In other words, when a
thread is executed, the first instruction within the thread is
always executed, but there are multiple possible execution
paths out of the thread. Importantly, the multiscalar software
architecture disclosed herein permits cach ISAinstriction 16
to be jncluded within more than one thread 18 and does not
utilize the explicit programmed forks required by conven-
tional multiple processor software architectures. Threads 18
can be distinguished from basic blocks 20 in that basic
blocks 20 are sets of sequential ISA instructions terminated
by a branch instruction. Basic blocks 20 have only two exit
points, but may have two or more entry points. The set of
threads 18 produced by the first pass of multiscalar compiler
14 forms Instruction Code (I-Code) stream 22.

Because threads 18 are not necessarily substantially data
and control independent (in contrast to those processed in
parallel and multiprocessor systems), information describ-
ing the CFG of program 10 and inter-thread data dependen-
cies must be made available fo a multiscalar processor
during execution in order to permil concurrent execution of
multiple threads. Accordingly, during a second pass muli-
scalar compiler 14 generates a Thread Code (T-Code) stream
30 including a oumber of thread descriptors 32 that are each
associated with a respective one of threads 18. Each thread
descriptor 32 provides the information needed to support
multiscalar thread scheduling, thread prediction, and thread
synchronization, including (as depicted in FIG. 1) pointers
10 both the corresponding thread 18 and subsequent thread
descriptors 32, 1-Code stream 22 and T-Code stream 30
togethier comprise a multiscalar program 34 executable by
the multiscalar data processing system described below with
reference to FIG. 4.

With reference now to FIG. 2, there is depicted a more
detailed diagram of an illustrative embodiment of a thread
descriptor 32 associated with a thread 18, As illustrated,
thread descriptor 32 is a data structure containing a number
of 32-bit entries. The first 32-bit enlry conlains a 24-bit
I-Code pointer 40 that indicates the address of the first ISA
instruction 16 within thread 18 relative to the address
indicated by a hardware-maintained thread pointer (TP). As
described above, the ISA instruction 16 pointed to by I-Code
pointer 40 will be the first instruction executed within thread
18. The first 32-bit entry also includes 4 bits that indicate the
number of possible exit points within the assoctated thread
18.

As itlustrated, thread descriptor 32 also includes at least
two 32-bit entries that each contain a 24-bit exit pointer 46,
Each exit pointer 46 is associated with a possible exit point
of thread 18 and indicates a TP-relative address of a thread
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descriptor 32 associated with the next thread 18 to be
exceuted il the associaled exit point of the current thread 18
is taken or predicted as taken. The 32-bit entries containing
exil pointers 46 also include an 8-bit reserved section that
may be subsequently defined to provide further exit infor-
mation. Future improvements to the multiscalar architecture
disclosed hercin may also be supported by defining the
reserved 32-bit enirics indicated at reference numeral 44,

Thread descriptor 32 further contains a 24-bit [-Code
Extension pointer 42 that points to an exicasion list 60
containing auxiliary extension Instructions that arc to be
dynamically inserted into thread 18 by the multiscalar
processor hardware during execution. The length of (ie.,
nuraber of entries within) extension list 60 is specificd by the
final 8 bits of the 32-bit entry. Refecring now to extension list
60, each of extension Hst entries 62 conlains a 26-bil address
identifier 64 that indicates, relative to 1-Code pointer 48, the
address of an ISA instruction 16 within thread 18. The
indicated instruction address specifies the location within
thread 18 at which the extension insiruction defined by 6-bit
opcode 66 is (0 be dynamically inserted. Finally, each
extension list cntry 62 can optionally include parameters 68
and 70, Depending upon the type of extension instruction
defined by opeode 66, paramelers 68 aud 70 can be utilized
1o indicate whether the exteusion instruction is (o be
executed prior 1o, subsequent t, or in conjunction wilh the
[SAinstruction 16 indicated by address identificr 64. As will
be appreciated by those skilled in the art, multiple extension
instructions may be associated with a single [SA instruction
address.

Following is a description of a number of instruction
extensions that can be inseried info extension lists 60 by
mulliscalar compiler 14 in order to support thread
scheduling, thread prediction, and thread synchronization:
SetExit: Marks a possible exit point of a thread;

SetStop: Marks a possible exil point at which mulliscalar
execulion terminates if the possible exit poial is taken;
SetFlag: Sets a specified hardware-maintained synchroniza-

tion fag (SF) to indicate that register or memory data is

available for use by subsequent threads;
WaitFlag: Delays execution of one or more specified instruc-

tions within a thread until a specified SF is set; and
ChainFlag: Sets a second SF in response lo a first SF being

set.
In order to minimize penalies attributable to inter-thread
data hazards, multiscalar compiter 14 ulilizes SetFlag and
Waitflag extension instructions to resolve every inter-thread
register data dependency (although hardware support is also
available as discussed below with reference to FIG. 4).
Accordingly, multiscalar compiler 14 preferably creates a
SetFlag extension instruction in the extension list 60 of the
ihread that produces a data value and creates a WaitFlag
extension instruction in the extension list 60 of the thread
that consumes the data value. In addition, if the execution
path between (wo threads is not control-independent, raul-
tiscalar compiler 14 creates SelFlag exteasion instmctions
within the aliemative excention path(s) in order (o ensure
that the consuming (hread can proceed as soon as the data
dependeney (or possible data dependency) is resolved.

For example, referring to FIG. 3, there is illustrated a
fragment of a muliiscalar program for which mulliscalar
compiler 14 will create SctFlag and WaiiFlag extension
instructions. As depicted, thread C contains ISA instruction
86, which specifies that the sum of registers GPR1 and
GPR2 is lo be calculated and stored within GPR3, Thread F
contains 1SA instruction 88, which specifies that the sum of
GPR3 and GI’R4 is (o be caleulated and stored within GPR1.
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Thus, in the present example, thread C is a producer of the
value of GPR3 and thread F is a consumer of the value of
GPR3. During compilation of multiscalar program 80, mul-
liscalar compiler 14 inserts a WailFlag exiension instruction
in extension list 60 of thread F that is associated with the
instruction address of ISA instruction 8B. The WaitFlag
extension instruction specifies that it is to be inserted into
thread ¥ prior fo ISA instruction 88 so that execation of ISA
instruction 88 (and possibly other instructions within thread
F) is stalled until a specified SF is set. In addition, multi-
scalar compiler 14 inserts a SetFlag extension instruction in
extension list 60 of thread C that is associated with the
instruction address of ISA instruction 86. The SetFlag exlen-
sion instruction specifies that it is o be [nserted into thread
C following ISA instruction 86. Furthermore, multiscalar
compiler 14 inserts a Sc(Flag cxtension instruction into
extension list 60 of thread E so that, if control passes from
thread B to thread E 1o thread F during execution, the
execution of thread I is oot unnecessarily stalled by the
WailFlag exiension iostruction.

In contrast to possible register data dependencies, which
are always detected and synchronized utilizing SetFlag and
Waitklag extension instructions, multiscalar compiler 14
only utilizes the SetFlag and WaitFlag extension instructions
to synchronize disambiguable memory data accesses (i.c.,
memory data accesses known (o be dependent becanse the
target addresses can be slatically determined). Other
memory data accesses are assumed to be independent by
multiscalar compiler 14 and are monilored by the multisca-
lar processor hardware deseribed below in order Lo prevent
data inconsistencies. :

Referring again to FIG. 2, thread descriptor 32 may
optionally include an entry containing a 24-bit navigation
pointer 48 that points 1o a set of navigation instructions 50.
In accordance with the illusirative embodiment of a mnulti-
scalar dafa processing system described below with refer-
ence to FIG. 4, navigation instructions 50 may be utilized by
the multiscalar processor’s thread scheduling hardware to
traverse the CFG of [-Code stream 22 in a non-speculative
fashion.

With reference again to FIG. 3, multiscalar program 80
also illustrates a scenario in which multiscalar compiier 14
may creale a sot of navigation instructions 50 in order fo
facilifate non-speculative thread scheduling. As depicted,
thread A of multiscalar program 80 contains [SA instruction
82, which sels a variable X to a particular value. Thread B
contains ISA instruction 84, which causes control to pass to
thread E if X has a value greater than or equal to 0 and lo
pass to thread C if X has a value less than 0. If multiscalar
program 80 were executed in the previously proposed mui-
tiscalar processor, the sequencer hardware would simply
predict one of the exits of thread B and speculatively assign
the indicated one of threads Cand E (o a processing element
prior to the execution of ISA instruction 84. In contrast,
according to the multiscalar paradigm disclosed herein,
multiscalar compiler 14 identifies ISA instruction 82 as a
condition setting instruction and ISA instruction 84 as an
inter-thread conirol flow instruction that depends upon the
condition set by ISA {nstruction B2. Multiscalar compiler 14
then inserts a navigation pointer 48 into thread B’s thread
descriptar 32 that points to a set of navigalion mstructions 50
also created by multiscalar compiler 14. The set of naviga-
tion instructions 50 created by multiscalar compiler 14 for
thread B may be expressed as follows:
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Hx el
fork C
else
fork
eadif;

By making these navigation instructions available to the
thread scheduler hardware at muntime through navigation
pointer 48, the thread scheduler can schedule one of threads
Cand E to a processing element for non-speculative execu-
tion. Thus, in this instance, the penalty for exil misprediction
is totally eliminated. Multiscalar compiler 14 can also pro-
vide such control flow information for other types of inter-
thread control flow instructions, including if-then-clse and
loop constructs., Importantly, (he navigation instructions 50
generated by multiscalar compiler 14 can allernatively be
aceessed by an extension polnter 64 within extension list 60.
Furthenmore, navigation instructions 50 can be executed
within a processing elemient of the multiscalar processor on
behaif of the thiread scheduler.

With reference now o FIG. 1B, there is depicted a high
level logical flowchart that summarizes the method by which
multiscalar compiler 14 constructs T-Code stream 30 m an
illustrative emboditent. As illustrated, the process begins at
block 90 in response to multiscalar compiler 14 translating
high level instructions 12 into ISA instructions 16 and
partitioning ISA instructions 16 into one or more threads 18,
which as described above each include a single entry point
and a plurality of possible exit poiots. The process then
proceeds to block 91, which depicts multiscalar compiler 14
creating an empty thread descriptor 32 associated with each
thread 18. The process proceeds from block 91 (o block 92,
which depicts multiscalar compiler 14 identifying the next
thread to be executed in program order following each
possible exii point of threads 18. Multiscalar compiler
ufilizes the exit information to iosert appropriate exit point-
ers and exit counts withis thread descriptors 32. Next, the
process passes to block 93, which illustrates multiscalar
compiler 14 identifying inter-thread data dependencies by
analyzing the register IDs and memory addresses accessed
by ISA instructions 16. As depicted at block 94, multiscalar
compiler 14 utilizes the exit information ascertaimed at block
92 and the data dependency information collected at block
93 to create an extension list 60 associaied with each
respective thread 18. As described above, extension lists 60
contain the extension instructions utilized by the multiscalar
processor hardware (o resolve identified inter-thread data
dependencies and to identify possible exit points of threads.
Multiscalar compiler alse creates an [-Code exlension
pointer 42 within each thread descriptor 32 that references
the associated extension list 60. The process then proceeds
from block 94 to block 95, which illustrates multiscalar
compiler 14 analyzing the control flow instruction(s) adja-
cent to euch thread boundary to determine if the conditions
upon which the control flow instructions depend can be
resolved prior to prediction of an exit point of the (hreads.
As described above with reference to FIG. 3, in response to
detection of a control fiow condition that can be resolved
prior to exit prediction, multiscalar compiler 14 creates a set
of navigation instructions 50 exccutable by or on behalf of
the thread scheduler and inserts a navigation pointer 48
within the thread descriptor 32. The process proceeds from
block 95 to optional block 96, which is described below with
reference o FIG. 14, and thereafier teriinales at block 97,

Referring again to F1G. 2, in order o permit selective
nultiscalar execution of multiscalar program 34, I-Code
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stream 22 preferably includes at Jeast one SetTP instruction
near the beginning that triggers copcurrent execution of
threads 18 by initializing the value of the hardware TP In
order to maintain software compatibility with prior proces-
sor paradigms, the SetTP instruction preferably overloads a
seldom used instruction within the [SA, such as ao alterna-
tive form of a noop or branch instruction. I-Code stream 22
preferably also includes SetTP instructions at locations
scattered throughout I-Code stream 22. The additional SelTp
instructions permit concurrent execution of threads 18 to be
resumed following an exception or other interruption of
multiscalar execution and are ignored by hardware if threads
18 are being exccuted concurrently.

Having provided an overview of an iilustrative embodi-
ment of the improved multiscalar software architecture, the
hardware architecture will now be described.

Hardware Architeciure

Referring now to FIG. 4, there is depicted an illustrative
embodiment of a multiscalar data processing system. As
ilustrated, the multiscalar data processing system includes a
multiscalar processor 100, which is coupled to system
memory 112 and other unillustrated components of the
muliiscalar data processing system via system bus 114, As
depicted, multiscalar processor 100 includes processor inter-
face circuitry 120, which comprises the latches and support
circuitry necessary to communicate data and instructions
between systern bus 114 and unified level two (L.2) cache
122. As a unified cache, L2 cache 122 stores a copy of a
subset of both the data and instructions residing in system
memory 112 for use by multiscalar processor 100 during
exccution. Coherency between the data stored within L2
cache 122 and system memory 112 is maintained ufilizing a
conventional cache coherency prolocol. Multiscalar proces-
sor 100 further includes architected register file 124, which
n addition to providing register slorage for data and con-
dition information, includes instruction pointer (IP) 126,
which indicales the instruction address at which multiscalar
processor 100 is currently executing non-speculatively. As
described in greater detail below, multiscalar processor 100
is capable of excouting multiple threads concurrently, only
one of which is typically execuiing non-speculatively. Thus,
IP 126 martks the current point of execution in this non-
speculative thread, In contrast to informalion maintained
within the execution circuitry of multiscalar processar 100,
information within architected register file 124, 12 cache
122, and processor interface eireuitry 120 is in a committed
state, meaning that his information constitutes a nou-
speculative, consisten! machine state to which multiscalar
processor 100 can return upon interruption.

Still referring to FIG. 4, the execution circuitry of mul-
tiscalar processor 100 includes thread scheduler 130 and a
scalable number of identical processing elements (PEs),
which in the illustrative embodiment include PEs 132, 134,
136, and 138. In accordance with the multiscalar software
architecture described above, thread scheduler 130 pro-
cesses thread descriptors within the T-Code stream of a
multiscalar program in order to assign multiple threads to
PEs 132138 for concument execution. In order te reduce
access latency, thread scheduler 130 is equipped with a
T-Code cache 44 that stores the thread descriptors, thereby
establishing separate felch paths for the 1-Code and T-Code
streams. As noted above, ordinarily only ope of PEs
132-138 exccutes non-speculatively at a time. The non-
speculative thread, which is the earliest occurring thread in
program order amoag the executing threads (and the thread
that contains the insiruction to which 1P 126 points), is
indicated by thread pointer (TP} 142 maintained by thread
scheduler 130.
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Thread scheduler 130 also includes exit prediction mecha-
nism 140, which is utilized by thread scheduler 130 to
predict exits of threads. In a first embodiment of multiscalar
processor 106, exit prediction mechanism 140 comprises a
static prediction mechanism that predicts one of the possible
exits of a thread based upon information supplied by mul-
tiscalar compiler 14. For example, multiscalar compiler 14
could be constrained to list the statically predicted exit
within the thread descriptor as Exit 0, thereby indicating to
exit prediction mechanism 140 that this exit should be
selected. Exit prediction mechanism 140 can alternatively be
implemented as a history-based dynamic prediction mecha-
nism like that utilized in a superscalar processor 10 predict
branch resolutions.

As illustrated, thread scheduler 130 further includes a
thread list (TL) 146 that records, in association with an
arbitrary thread number, the exit sumber of cach exit
selected by thread scheduler 130. The thread number is
utilized fo identify the thread containing the selected exit in
communication belween {hread scheduler 130 and PEs
132-138. In the illusirative embodiment, thread scheduier
130 tracks which of PEs 132-138 is (are) frec wtilizing a
4-bit status register 148 in which the state of each bit
indicates whether a comresponding one of PEs 132-138 is
free or busy. Status register 148 is updated each time a thread
is scheduled to or completed by one of PEs 132-138.

Referring to PEs 132-138, the cealral component of each
of PEs 132-138 is an execution core 158 that cxecutes
instructions conlained within an assigned thread, In a pre-
ferred embodiment, execution core 158 contains superscalar
circuitry that supports intra-thread branch speculation and
includes multiple execution units capable of executing mul-
tiple ISA instruclions out-of-order during each cycle.
However, based upon design and cost considerations, execu-
tion core 158 of PEs 132-138 can alternatively employ any
one of a sumber of diverse hardware architectures. For
example, execution core 188 may comprise a single execu-
tion resource that executes ISA instructions sequentially.
Regardless of which hardware architecture is utilized to
inplement execution core 158, each execution core 158
includes an instruction sequencer that fetches and dispatches
instructions and at leas! one execution resource that executes
instructions,

Local stocage is provided o each execution core 158 by
an associated ipstruction cache 150, data cache 156, and
GPR cache 154, which respectively store the ISA
instructions, memory dala values, and data and condition
regisler values required by the associated execufion core 158
during execution. Each execution core 158 is also coupled to
CAM 160 that stores the extension list asscciated with the
thread exceuting within the associated execution core 158.
Extension instructions in the extension list are dynamicafly
inserted into the thread executed by the associated execution
core 158 in accordance with the method described below
with respec( to FIG. 8.

Each of PEs 132-138 further includes communication and
synchropization logic 182, which is coupled o both GPR
cache 154 and data cache 156. Communication and syn-
chronization logic 152 maintains register and memory data
coherency (i.¢., the availability of data to the associated PE)
through inter-PE and PE-L2 communication across local
communication and syochronization mechanism 170,
which, in order to reduce latency, preferably {ncludes four
cancurrent address busses for register communication and at
least one address bus for memory communication. Cormmu-
nication across local communication and synchronization
mechanism 176 is performed under the arbitrating control of
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arbitration logic 172. Further details of local commurication
and synchronization mechanism 170 ray be found in J. L.
Hennessy and D). A. Patlerson, “Compuler Architecture: A
Quantitative Approach,” second ed, Morgan Kaufmanon
Publishers, Inc., pp. 655-623, which is incorporated herein
by reference. The inter-PE and PE-L2 communication con-
ducted by commuanication and synchronization logic 152 is
governed by the data coherency protocol depicted in FIGS.
12 and 13.

Referring now to FIGS. 12 and 13, two state diagrams are
shown that together illustrate the data coherency protocol
implemented by multiscalar processor 100 for both register
and memory data. For clarity, FIG, 12 shows the portion of
the data coherency protocol relating to local (intra-PE)
events, while FIG. 13 shows the potion of the data cohier-
ency protocol relating to extemal (inter-PE) eveats received
from local communication and synchronization mechanism
170. Because the data coherency prolocol includes five
slates, the staie of each data word in data cache 156 and cach
regisier within GPR cache 154 is preferably tracked utilizing
three status bits. Those skilled in the art will appreciate from
the following description that the data coberency protocol
could alternatively be implemented within multiscalar pro-
cessor 100 wtilizing a direetory-based cohcrency mecha-
nIsm.

With reference first to FIG. 12, when execution of a
multiscalar program begins, all data locations within GPR
cache 154 and data cache 156 of each of PEs 132-138 are
initially in invahd state 500. In response fo receipt of an
instruction within a thread, an execution core 158 within a
PE requests data required for execution of the instruction
from its local GPR cache 154 or dala cache 156. I the data
location associated with the requested data is in invalid state
500, meaning that the requested dala is not present locally,
communication and synchronization logic 152 broadcasts a
read request indicating the register number or memory
address of the required data on local communication and
synchronization mechanism 170, which is snooped by each
of PEs 132-138. As depicted in FIG. 13, the communication
and synchronization logic 152 within PEs that have the
requested register or memory data in any of valid state 502,
dirty state 504, valid hazard stale 506, or dirty hazard state
508 responds to the read request by indicating ownership of
the requested data. PEs for which the requested data is in
invalid state 500 do nol respond. Based upon thread issne
order information obtained from thread scheduler 130, arbi-
tration logic 172 signals the responding PE executing the
nearest preceding thread in program order to place the
requested data on local communication and synchronization
mechanism 170, However, if no PEs respond to the read
request broadeast on local communication and synchroni-
zation mechanism 170, the communication and synchroni-
zation logic 152 within the requesting PE retrieves the
required register or memory data from archilected register
file 124 or 1.2 cache 122, respectively. Referxing again to
FIG. 12, once the requested data is read into GPR cache 154
or data cache 156 of the requesting PE, communication and
synchronization logic 152 updates the state of the data
tocation from iovalid state 500 to vatid state 502. Data in
valid state 502 is “owned” by the PE and hence can be
utilized as an operand for subsequent instructions.

As depicted, communication and synchronization logic
152 updates a register or memory data location in invalid
state 500 or valid state 502 to dirty (modified) state 504 in
response 1o the local execution of a store or other instruction
that writes data to the data location, A regisler or memory
location in dirty state 504 does not change state in response
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to a Jocal execution of an instruction that writes to the data
location. Dirty state 504 is similar fo vakhid slate 506 in {hat
data locations in dirty state 504 are also owned a PE and thus
can be utilized as a source of operands for subsequent
instruciions. However, in contrast to data locations in valid
state 502, data locations in dirly slate 504 are written back
to architected register file 124 and L2 cache 122 (ic., the
commitled slate) by communication aud synchronization
logic 152 in response to a receipt of a writeback sigual

dunng thread completion in order to update modified data 1

locations. Importantly, following thread completion, data
locations in valid state 502 do not undergoe a state transition,
leaving GPR cache 154 and data cachs 156 “primed” with
valid data that can be accessed by a subsequent thread
exccuted locally or within another PE.

Referring apain to FIG. 13, the data coherency protocol
utilizes valid hazard state 506 and dirty hazard state 508 to
mark data locations that have been wrilten by PEs executing
future threads in logical program order. Thus, commumica-
tion and synchronization logic 152 updates a dala location in
valid state 502 to valid hazard state 506 and updates a data
focation in dirty state 504 to dirty hazard state 508 in
response to receipt of a wrile request from a PE executing a
future thread, The semantics of valid hazard state 506 and
dirty hazard state 508 in response to both local and external
evenis are the same as those of valid state 502 and dirty state
504, respectively, except in response to a writeback signal,
Because valid hazard state $06 marks locally unmodified
data locations that have been writicn by future threads (and
therefore may not be valid after execution of the current
thread), data locations in valid hazard state 506 are updated
to invalid state 500 in response to receipl of a writeback
signal by cooununication and synchronization logic 152.
Similarly, data locations in dirty hazard state 508 are
updated 1o invalid state 500 after the contents of the data
Incations are written back to architected register file 124 or
L2 cache 122.

Still referring to FIG. 13, communication and synchroni-
zation logic 152 updates the state of all local data locations
to invalid state 500 in response to the receipt of a reset signal
generated in response to the occurrence of an exception or
{he detection of a data or control hazard. As discussed above,
setting the state of all local data locations to invalid state 500
discards all of the data within GPR cache 154 and data cache
156.

With reference again to FIG. 4, multiscalar processor 100
further includes a global disambiguation buffer 182 coupled
to PEs 132138 that verifies inter-thread data consistency,
that is, that the exccution of a multiscalar program obtains

the same results as those obtained under sequential, scalar 5

execution.

In the lustrative embodiment of multiscalar processor
100, memory data inconsistencics can cecur because execit-
tion cores 158 quene store instruclions and preferentially
perform load instructions such that memory data latency is
minimized. This practice, which tacitly assumes that
memory accesses are data independeni, can lead to data
inconsistency if memory accesses are, in fact, dependent
between threads. In order to detect an inter-thread memory
data incensistency, global disambiguation buffer 182 stores
the farget addresses and thread numbers of Joad instructions
and the target addresses and thread numbers of store instruc-
tions such that the relative execution order of the load and
store instructions is retained. Global disambiguation buffer
182 then compares the target address of each store instruc-
tion executed by PEs 132-138 with the buffered load
addresses. If a target address match is found and (1) the
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ihread number of the load instruction follows the thread
nurmber of the store instruction in logical program order, and
(2) there is no intervening store to the target address within
the thread containing the Joad instruction, thereby indicating
that the load instruction was dependent upon a store
instruction, global disambiguation buffer 182 signals that a
data inconsistency (hazard) has been detected by generating
a cancellation signal. lo response to a cancellation signal
generated by global disambiguation buffer 182, all threads
subsequent to the thread containing the load insiruction are
cancelled and the thread containing the Joad instruction is
reexccuted utilizing the correct memory data,

The canceliation of threads in response to the detection of
a data incopsisiency can be handled in at least two ways,
depending upon design considerations. in a first
embodiment, the cancellation signal sets a consistency bit
within thread scheduler 130 that is associated with the PE
execuling the thread that loaded the mconsistent data. As
discussed below with reference to FIG. 10, the consistency
bit is subsequently processed during the completion of the
thread that loaded the mconsistent data. This approach has
the advantage of reguiring that the conpsistency bit be
checked only a sinple time during thread processing.
However, if data inconsistencies occur relatively frequently
or carly in the execution of a thread, this approach permits
a large amount of uscless work to be performed prior to
thread cancellation. Alterpatively, in a second embodiment,
the cancellation signal generated by global disambiguation
buffer 182 can set a bit within the PE executing the thread
that loaded the incopsistent data, Although this embodiment
requires each of PEs 132138 to check ifs consistency bit
during each cycle, thercby increasing latency, the second
ermbodiment has the advantage of detecting and correcting
for data inconsistencies as carly as possible, so that the
number of processor cycles consumed by useless work is
minimized.

In order to correct for possible errors by multiscalar
compiler 14 in identifying inter-thread register dependencies
with SetFlag/WaitFlag extension instructions or in order (o
permit multiscalar compiler 14 fo insert SetFlag/WaitFlag
extension instruction in only (he statistically most likely
execution paths, global disambiguation buffer 182 prefer-
ably further include facilities that ensure inter-thread register
data consistency. Similar to the facilities that haudle memory
data accesses, the register data facilities store the register
nember and thread nember of instructions that read and
wrile register data in a manner that preserves the relative
execution order of the “read” and “write” Instructions.
Global disambiguation buffer 182 then compares the register
number into which data is written by an instruction with all
of the pumbers of registers previously read by threads
subsequent in program order to the thread containing the
“write” instruction. If the comparison reveals thal a “write”
instruction in an earlier thread was executed subsequent o
a “read” instruction that referenced the same register and the
thread containing the “read” instruction does not include an
intervening “write” to the sae register, global disambigu-
ation buffer 182 signals that a data inconsistency has
oceurred so that appropriate corrective action can be taken
in the manner discussed above with respeet to the detection
of a memory data inconsistency.

Multiscalar processor 100 finally includes global synchro-
nization flags (SFs) 180, which comprise a shared resource
utilized by PEs 132-138 to provide inter-thread data con-
sistency support for register and disambiguable memory
accesses. Although not reguired for data correctness, which
is guaranteed by global disambiguation buffer 182, the data
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cousistency support provided by global SFs 180 improves
processor performance by inhibiing data speculation for
identified dependencies, thereby avoiding the performance
penalty incurred by misspeculation.

With reference now to FIG. 5, there is illustrated a more
detailed representation of global SFs 180, which include 32
1-bit flags that are assigned to threads during compilation by
multiscalar compiler 14 in order to ensure inter-tbread data
copsistency for register and disambiguable memory
accesses. ASF is cleared (set to logical zero) when the thread
to which tlie SF is assigned is scheduled by thread scheduler
130 to one of PEs 132-138 for exccution. The $F is set o
logical one in response to an occurrence of a synchroniza-
tion cvent, such as the cxecution of a SetFlag extension
instruction in response {o the produclion of a data value.
Setting the SF notifies subscquent threads stalled by a
WaitFlag extension instruction that computation dependent
upon the occurrence of the synchronization event can then
be performed. Importantly, the oldest (non-speculative)
thread ignores all WaitFlag extension insirictions since
inter-thread data consistency for register and disambiguable
memory accesses is guaranteed.

Multiscalar Operation

Referring now to FIG. 6, there is depicted a conceptual
timing diagram of the pipelined processing of threads by
multiscalar processor 1. As illusirated, the processing of
threads by processor 100 is divided into thread scheduling,
thread execution, and thread completion slages. During
multiscalar execution, stages m the processing of a thread
are overlapped with the same and different stages in the
processing of other threads in order to mask the effects of
latency.

During the thread scheduling stage of thread processing,
the thread is assigned by thread scheduler 130 to one of PEs
132-138 for execution. As discussed above and as is
described below ia greater detail with reference to FIG. 7,
once thread scheduler 130 has selecled an exit point of a
scheduled thread by prediction or execution of navigation
code, thread scheduler 130 assigns the thread indicated by
the selecled exit point to one of PEs 132-138 for execution.

During the thread exccution stage, a PE executes an
assigned thread. It is during the execution stage that a PE
communicates with PEs executing preceding threads in
order fo request required register or memory data. As
described below with reference to FIG. 8, it is also during
the thread execution stage that exicnsion instructions are
dynamically inserfed into the execufion stream of a PE. If
execution of a thread confirms the exit selected by thread
scheduler 130, the thread enters the thread completion stage,
However, if upon execution a different exit of the thread is
taken then was selected by thread selector 130, all subse-
quent threads are cancelled.

As described in greater detail below with reference to
FI1G. 140, during the completion stage of thread processing all
niodified register and memory lacations of successfully
completing threads are writfea back to the architected state
maintained within architected register file 124 and 1.2 cache
122. Because all required data is forwarded to Pis executing
subsequent threads during the thread exccution stage, the
thiread cowpletion stage is completely overlapped with otber
processing stages, thereby hiding latency.

With reference now (o FIG. 7, there is illustrated a high
level Jogical flowchart of a method of sclieduling threads for
execution in accordance with the illustrative embodiment of
a multiscalar data processing system depicted in F1G. 4. The
process shown in FIG. 7 will be described with reference to
the exemplary multiscalar program depicted in FIG. 11. As
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illustrated, the process begios at block 200, which represents
the operating system of the multiscalar data processing
system depicted in FIG. 4 loading multiscalar program 400
in response lo a sefected command. The process then pro-
ceeds from block 200 to block 202, which depicts multisca-
lar processor 100 executing ISA nstructions on a single one
of PEs 132138 beginning with ISA instruction 402. Next,
the process proceeds to block 204, which iilustrates a
determination of whether or not a SetTP instruction, such as
1SA instruction 404, has been executed. If pot, scalar execu-~
tion of ISA instructions continues on a single onc of PEs
132-138, as indicated by the process returning from block
204 to block 202.

Referring again to block 204, in response to execution of
SelTP instruction 404, which specifies the base address of
thread deseriptor 406, the process proceeds from block 204
to biock 210. Block 210 depicts mulfiscalar processor 100
initiating multiscalar execution of multiscalar program 400
by loading the base address of thread descriptor 406 into TP
142 of thread scheduler 130. Next, as illustrated at block
212, thread scheduler 130 passes the [-Code pointer and
I-Code extension pointer specified within thread descriptor
406 0 a free one of PEs 132-138 in conjunction with a
thread oumber that does not conflict with a thread number
currently allocated within TL 146, As illustrated at block
213, status register 148 is then updated to indicate that the
PE to which the thread was assigned is busy.

The process proceeds from block 213 to block 214, which
depicts a deteemination is of whether or not thread descriptor
406 includes a navigation pointer. As described above, the
presence of a navigation pointer within thread descriptor 466
indicates that multiscalar compiler 14 has created a sct of
navigation instructions that may be executed in order to
resolve the inter-thread control dependency that defermines
which of the possible exit points of thread 406 will be taken.
In response {0 a delermination by thread scheduler 130 that
thread descriptor 406 does not include a navigation pointer,
the process proceeds to block 216, which illustrates exit
prediction mechanism 140 predicting an exit of thread 408.
The process then proceeds from block 216 to block 220.
However, in respoase o a determigation at block 214 that
thread descriptor 406 includes a navigation pointer, thread
scheduler 130 loads the set of navigation instructions
pointed fo by the navigation pointer and execules the navi-
gation instruetions in order to determine an exit of thread
408, as illustrated at block 218. As wiil be appreciated by
those skilled in the art, the execution of navigation instruc-
tions by thread scheduler 130 entails either the inclusion of
siple arithmetic and control Bow execution circuitry withia
thread scheduler 130 or the execution of the navigation
instructions within ooe of PEs 132-138 on behalf of thread
scheduler 130. Following a determination of an exit of
thread 408 at either of blocks 216 or 218, the process
proceeds to block 220, which illustrates entering the selected
exit rumber within TL 146 in association with the thread
number. The process then passes to block 230.

Block 230 depic(s a determination of whether or not the
exit selected at one of blocks 216 and 218 was marked in
thread descriptor 406 as a termination point of multiscalar
execution. If so, the process returns to block 202, which
depicts multiscalar processor 100 again executing ISA
instructions within multiscalar programn 400 utilizing ouly a
single one of PEs 132-138. However, in respomse 1o a
determination at block 230 that the selecled oxit was not
marked by multiscalar compiler 14 as a termination point of
multiscalar execution, the pocess proceeds to block 232,
Block 232 iliustrates thread scheduler 130 loading thread
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descriptor 410, the thread descriptor pointed to by the exit
pointer in thread descriplor 406 associated with the sclected
exit. Thereafler, the process returns io block 212, which has
been described.

Referring now to FIG. B, there is depicted a high level
logical flowchart of a method of feiching and dispatching
instructions within each of PEs 132-138 of multiscalar
processor 100. Although the described process is individu-
ally employed by each of PEs 132-138, anly PE 132 will be
reforred to for the sake of simplicity. As illustrated, the
process begins at block 250 in response to receipt hy PE 132
of an 1-Code pointer, 1-Code extension pointer, and thread
number from thread scheduler 130. The process then pro-
ceeds 1o blocks 252 and 254, which illustrate PE 132 loading
the I-Code specified by the 1-Code pointer into instruction
cache 150 and loading the cxtension list specified by the
I-Code extensian poiuter iuto CAM 160. Next, the process
passes to block 256, which depicts the instruction sequencer
within execution core 158 determining the instruction
address of the pext ISA instruction o be executed. As
depicted at block 258, onc or more instructions are then
fetched from instruction cache 150 utilizing the insiruction
address calculated at block 256, The process proceeds from
black 258 {o block 260, which fllusirates a determination of
whether or not the instruction address of any of the instruc-
tions fetched at block 258 matches an instruction address
associated with ap instruction extension stored within CAM
160. If not, the process proceeds to block 264, However, in
response to a determination that an instruction address of a
ISA instruction fetched from inslruction cache 150 has a
match within CAM 160, CAM 160 fumishes the opeode of
the instruction extension to the instruction sequencer of
execution core 158, which inserts the extension instruction
opeode into the instruction stream at a point indicated by the
extension instruction. The process then passes to block 264,
which illustrates the instruction sequencer of execution core
158 dispatching one or more ISA instructions and instruction
extensions to the execulion resources for execution.
Thereafter, the process returas to block 256, which has been
described.

‘With reference now to FIG. 9, there is illustrated a high
fevel logical flowchart of 2 method of instruction execution
within execution core 158 of PE 132. As illustrated, the
process begins at block 280 in response lo the execution
resources of execution corc 158 receiving at least one
instruction dispatched by the instruction sequencer.
Thereafier, the process proceeds to block 282, which illus-
trates the execution resources of execution core 158 decod-
ing the instruction. A determination is then made at block
284 whether or not the dispatched instruction Is a WaitFlag
extension instruction. If so, the process passes to block 285,
whicli depicts a determination by execution core 158
whether or not the thread being executed is the oldest
(non-speculative) thread. For cxample, execution core 158

can determine if it is execuling the oldest thread by inter- :

rogating thread scheduler 130, which tracks the ordering of
threads executing within PEs 132-138. In response lo a
determination that exccution core 158 is executing the oldest
thread, the WaitFlag extension instruction is simply dis-
carded since data consistency is guaranteed. However, in
response to a determination that execution core 158 is not
executing the oldest thread, the process proceeds 1o block
286, which illustrates execution core 158 executing the
WaitFFlag cxtension instruction by stalling execution of at
ieast one instruction untif the specified one of global SFs 180
is sel. According to a preferred cmbodiment, the WaitFlag
extension instruction specifies whether the subsequent ISA
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instruction or all ISA instructions within the thread are to be
stalled. The process then tenminates at block 308 until the
nexi instruction is received by the execution resources.

Returning to block 284, in response to a determination
that the dispatched instruction is oot a WaitFlag exiension
instruction, the process proceeds 1o block 288, which illus-
trates a determination of whether or not the dispatched
instruction is a SelFlag extension instruction. If so, the
process passes to block 290, which depicts execution core
158 sciting onc of global SFs 180 indicated by the SetFlag
extension instruction. The process thereafter passes (o block
308 and terminates until the next instruetion is received by
the execution resources.

If a determipation is made at block 288 that the dispatched
instruction is not a SetFlag extension instruction, the process
proceeds o block 300, which illustrates a determination of
whether or not the dispaiched instruction is a SetExit exten-
sion instruction. If so, the process proceeds 1o block 302,
which depicts execution core 188 signalling the thread
pumber of the thread under execution and the exi( number
marked by the SetExit exicnsion instruction {o thread sched-
uler 130, Excention core 158 preferably delecmines the
appropriate exit number from a parameter of the SetExit
extension Instruction within extension list 0. PE 132 then
terminates execution of the thread at block 308 and initiates
the thread completion process iliustrated in FIG. 10 by
transmit{ing the thrcad number and exit number to thread
scheduler 130.

In response to a determination at block 300 that the -
dispatched instruction is not a SetExit extension instruction,

_ the process proceads fo block 304, which depicts a deter-
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mination of whether or not the dispatchied instruction is a
SetStop extension instrection. If so, the process passes Lo
block 306, which jllustrates PE 132 signalling thread sched-
uler 130 to halt multiscalar execution of the multiscalar
program. Thereafter, PE 132 terminates execution of the
thread at block 308 and initiates the thread completion
process illustrated in FIG. 10 in the manner which has been
described. Thus, as illustrated in FIG. 11, if a SetStop
extension instruction is executed at the exit of thread 420,
exccution of multiscalar program 400 continues in a scalar
fashion on a single PE. :

Referring again to FIG. 9, in response to a delermination
at block 304 that the dispatched instruction is not SetStop
extension instruction, the process passes to blocks 310-317,
which illusirates the execution of an ISA instruction by
execution core 158. Referring first to block 319, in response
to a read signal from execution core 158, a determination is
made whether or not ali of the source data required to
execute the ISA instruction is available locally within GPR
cache 154 and dala cache 156 in any of data coherency states
502-508. If 5o, the process proceeds to block 318, thereby
signifying that execution core 158 can access the required
data locally. However, in response to a delermination that
the required daia is not owned locally, the process proceeds
to block 311, which depicts commumication and synchioni-
zation logic 152 transmitting a read request on local com-
mupication and synchronization mechanism 170 that indi-
cates ihe required memory address or register number. As
described above, PEs having the requested data in any of
data coherency statcs 502-508 will respond to the read
request by indicating ownership of the requested data.
Arbitration logic 172 then signals the responding PE execut-
ing the nearest preceding thread in logical program order to
place the requested data on local communication and syn-
chronization mechanism 170, As illustrated at block 312, if
a PE responds to the read request, the process proceeds (o
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block 314, However, if none of PEs 132-138 responds to the
read request, the process passes fo block 313, which iflus-
frates the PE fetching the required data from the commiited
stale, that is, from either 1.2 cache 122 or architected register

file 124. The process then proceeds to block 314, which s

illustrates communication and synchronization logic 152
updating the data cobercncy state of the local data location
containing the requested data to valid state 502. Thereafter,
the process passes to block 315,

Block 315 depicts communication and synchronization
logic signalling global disambiguation buffer 182 with the
memory addresses and regisier numbers accessed to obtain
data for the ISA iustruclion. As described above, global
disambiguation buffer 182 records these data Jocation. iden-
tificrs for subsequent comparison with data locations wrilien
Dby threads that precede the current thread in program order.
The process then proceeds to block 316, which illustrates the
execution resources of exccution core 158 executing the ISA
instruction, possibly generating resull data that is wrilten (o
a local data Jocation. As illustrated at block 317, commu-
pication and synchronization logic then broadcasts a write
request indicating the register number(s) or memory
addressees), if any, wrilten in response (o execution of the
ISA instruction. As described above with reference to FIG.
13, the communication and synchronization logic 152 within
PEs that are exccuting threads subsequent (o a the signalling
thread n program order and that have the indicated data
locations) in valid state 502 or dirty state 504 updates the
state of the indicated data locations to the appropriate one of

valid hazard state 506 and dirty hazard state 508, The data 3

location identifiers broadcast at block 317 are also processed
by global disambiguation buffer 182 in order to check for
data dependencies. The process proceeds from block 316 to
block 317, which Hlustrates communication and synchroni-
zation logic 152 updating the local state of data locations
wrilien in response lo execution of the ISA instruction, if
necessary. Thercafter, the process passes to block 308 and
terminates until the next instruction is dispatched to the
execution resources of execution core 158 for execution.
‘With reference now to FIG. 10, there is depicted a high
level logical fSowchart of & method of thread completion
within multiscalar processor 100, According to the ilustra-
(ive embodiment, threads are completed according to logical
program order. As illustrated, the process begins at block
320 in response to receipt by thread scheduler 130 of a
thread uumber and exit number from one of PEs 132-138.
The process then proceeds to block 321, which illustrales a
determination of whether or not a data dependency was
detected during execution of the specified thread. If so, the

process passes 1o block 328, which illustrates thread sched-

uler sending a reset signal to the signalling PE to invalidate
the local data and rescheduling the specified thread for
execution within the signalling PE. Thereafter, the process
terminates at block 344. Referring again to block 321, in
response (o a determination that no data dependency was
detected during the execution of the specified thread, the
process proceeds to block 322,

Block 322 depicts thread scheduler 130 comparing the
aclual exit number reccived from the signalling PE with the
selected exit pumber associated with the indicated thread
number in TL 146. As illustrated at block 324, a deterni-
nation is then made whether or not the actual exit number
indicated by the signalling PE matches the predicted exit
pumber associaled with the thread nunber in TL. 146. If so,
the process passes o block 340, which is described below,
However, if the actual exit number does not maich the exit
number recorded in TL 146, the process proceeds to block
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330, which depicts thread scheduler 130 sending a resel
signal to all PEs executing threads subsequent to the speci-
fied thread in program order. Thus, as illustrated at block
330, the occurrence of a control (but not data) hazard
requires the cancellation of all subsequent speculative
threads. The process then passes to block 332, which depicts
thread scheduler 130 updating status register 148 to mark the
PEs for which execulion was cancelled as free. Nexl, the
process proceeds to block 334, which illustrates thread
scheduler 130 scheduling the threads (in accordance with the
method depicted in FIG. 7} within the correet execution
path. The process then proceeds to block 346,

Block 340 depicts thread scheduler 130 sending a write-
back signal to the signalling PE. In response to receipt of the
writeback signal, thc PE writes back all data locations in
dirty state 504 and diriy hazard stalc 508 to the appropriate
one of architected register file 124 and 12 cache 122. In
addition, the state of updated locations within L2 cache 122
are marked as valid. The process then passes from block 340
to block 342, which illusiraies thread scheduler 130 updat-
ing status register 148 to indicate that the signalling PE is
free. In addition, TP 142 is updated to point (o the thread
descriptor indicated by the exit pointer associated with the
actual exit point of the completed thread. Thereafter, the
process terminates at block 344,

In the hercinbefore described process of thread
processing, exceptions occurning during the execution of a
multiscalar program are only taken in scalar cxecution
wmode. Thus, as illustrated in FIG. 11 at reference numeéral
430, PEs 132-138 simply quit execution of threads and
return to an idle state in response to the occurrence of an
exception. An appropriale exception handler is then
execuled on one of PEs 132-138. Thereafter, scalar execu-
tion of the ISA instructions within multiscalar program 460
is resumed on a single one of PEs 132-138, as depicted at
reference numeral 432, Execution of ISA instructions con-
tinues in scalar mode until the execution of SefTP instruction
434, which as described above, initializes TP 142 with the
base address of thread descriptor 436, thereby restarting
concurrent execution of wultiple threads.

Out-of-Order Operation

Heretofore, it has been assumed that threads within a
multiscalar program are assigned by thread scheduler 130 to
PEs 132-138 according o logical program order. However,
even greater levels of [P may be achieved by scheduling
threads to PEs 132-138 for speculative out-of-order
execution, if a high percentage of the out-of-order threads
are data independent from preceding threads.

[n order to support out-of-order thread execution, it is
desirable to make a number of enhancemments to the software
and bardware architectures described above. First, referring
now to FIG. 14, there is depicted an illustrative embodiment
of a thread descriptor generated by multiscalar compiler 14
to support out-of-order cxecution of threads. As is appareni
upon comparison of FIGS. 2 and 14, the thread descriptor 32
illustrated in FIG. 14 is identical to that depicted in FIG. 2,
except for the inclusion of meta-thread list pointer 43,
Meta-thread list pointer 43 is a 24-bil pointer that indicales,
relative to TP 142, the base address of meta-thread list 51,
which contains one or more 24-bit meta-thread pointers 53,
As illustrated, each meta-thread pointer 53 specifies the base
address of a thread descriptor 32 associated with a meta-
thread 55 that is to be scheduled to one of PEs 132-138 for
out-of-order cxecution, Unlike the thread 18 to which

5 I-Code pointer 40 points, the meta-threads 55 indirectly

specified by meta-thread pointers 53 do not logically follow
the thread preceding thread 18 in logical program order.
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Instead, meta-threads 55 are threads identified by multisca-
lar compiler 14 at block 96 of FIG. 1B as control indepen-
dent from preceding threads once the execution path has
reached thread 18 (i.e., each meta-thread 55 will be executed
regardless of which exit of thread 18 is taken). Thus,
meta-threads 55 can be executed out-of -order with respect to
the Iogical ordering of threads under the assumption that
hardware within multiscalar processor 160 will detect and
correct for any unidentified data dependencies between
mela-threads 55 and preceding threads,

According to the ilfustrative embodiment, data dependen-
cies between meta-threads and preceding threads are
handled at thread completion on a thread region-by-thread
region basis, where cach meta-thread defines a thread region
including the meta-thread and all subscquent threads (hat
logically precede the next meta-thread, if any, in program
order. For example, with reference now fo FIG. 185, there is
illustrated a multiscalar program 520 ipeluding threads
522-534, which are depicted in logical program order. As
illustrated, thread 522 includes a first possible exit point 540,
which if taken causes thread 524 (o be executed, and a
second possible exit point 542, which if taken causes thread
526 to be executed. Because thread 534 will be executed
regardless of which of possible exit points 540 and 542 is
aclually {aken dunng execution, multiscalar compiler 14
designates thread 534 as a meta-thread child of thread 522
by creating a meta-thread pointer 43 in the thread descriptor
32 associated with thread 522. As illustrated, thread 522 and
all logically subscquent threads preceding meta-thread 534
comprise a first thread region 552, and meta-thread 534 and
all logically subsequent threads preceding the next meta-
thread comprise a second thread region 552.

In order to permit multiscalar processor 160 to identify
the boundary between first thread region 550 and second
thread region 552, multiscalar compiler 14 creates, within
the thread descriptor of thread 832, an exit pointer associated
with possible exit point 544 that specifies the base address
of the thread descriptor of meta-thread 534 (as would be the
case for in-order thread exccution). In addition, multiscalar
compiler 14 indicates that possible exit point 544 of thread
532 crosses a thread region boundary belween first thread
region 550 and second thread region 552 by creating a
region boundary exit identifier within the 8-bit reserved
seclion following the exit pointer.

Two principal hardware enhancements are made fo mul-
tiscalar processor 100 in order to support out-of-order thread
processing. First, thread scheduler 130 is modified to include
four instances of the thread scheduling hardware hereinbe-
fore described. Each instance of thread scheduler 130 is
associated with a particular one of the four thread regions in
which PEs 132138 may possibly be exccuting, A separate
TL 146 is utilized by cach instance of thread scheduler 130
to irack the exit predictions made within the associated
thread region. In contrast to TL 146, TP 142, status register
148, and exit prediction mechanism 140 are shared between
the four instances of thread scheduler 130

Second, global disanibiguation buffer 182 preferably
includes four thread region buffers that are each associated
with a respective one of the four possible thread regions in
which PEs 132-138 can execute. Like the embodiment of
global disambiguation buffec 182 described above wilh
respect fo in-order execution, cach thread region buffer
accumulates the register numbers and memory addresses
from which threads wilhin tbe associated thread region read
data and the register numbers and memory addresses (o
which threads within the associated thread region wrile data.
These data location identifiers are utilized to detect jntra-
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tegion data consistency in the manner described above. In
addition, as described below with reference to FIG. 18, the
identifiers of data locations wrilten by threads within a
thread region are utitized during thread completion to verify
that all infer-region data dependencies are observed.

Referting now to FIG. 16 there is depicted a high level
logical flowchart of a method of scheduling threads m a
multiscalar processor that supporls out-of-order thread
execution. FIG. 16 illustrates the steps performed by each of
the four instances of thread scheduler 130 to schedule
threads within its associated thread region. As illustrated, the
process begins at block 600 and thereafter proceeds to
blocks 602-620, which illustrate the first instance of thread
scheduler 130 loading a thread descriptor, initiating execu-
tion of the associated thread within one of PEs 132-138,
selecting one of the exits of the thread, and storing the exit
selection within TL 146, in the manner which has been
described above with reference to blacks 202-220 of FIG. 7.

The process proceeds from block 626 to block 630, which
illustrates a determination of whether or not the exit type of
the selected exit specifies that multiscalar execution is to be
terminated. If so, the process returns to block 602, which
illustrates the resumption of scalar execution by a single one
of PEs 132-138. However, in response 1o a determination at
block 630 that the exit type of the selected exit does not
specify the termination of multiscalar execution, the process
proceeds to block 632, which illustrates the first instance of
thread scheduler 130 determining whether the currently
loaded thread descriptor includes a meta-thread List pointer
43, If not, the process passes to block 640, which is
deseribed below. However, in response to a determination
that the thread descriptor includes a meta-thread list poinler
43, the process proceeds to block 634, which depicts the first
instance of thread scheduler 130 allocating a new thread
region and passing a mela-thread pointer 53 within meta-
thread list 51 to a second instance of thread scheduler 13¢ so
that the second instance of thread scheduler 130 can load the
thread descriplor assoeiated with the meta-thread 55 and
begin the thread scheduling process illustrated in FIG. 16 at
block 612. The process then proceeds from block 634 to
block 636, which illustrates a determination by the first
instanice of thread scheduler 130 whether or not additional
meta-thread pointers are present within meta-thread Jist §1.
If s0, the process returns to block 634, which illustrates the
first instance of thread scheduler 130 passing a next meta-
thread pointer 33 to a third instance of thread scheduler 130.
Referring again to block 636, in response to a determination
that all meta-thread pointers 53 within meta-thread list 51
have been passed to ofher instances of thread schedulee 130,
the process proceeds from block 636 to block 640.

Block 640 illustrates a determination of whether or not the
exit type of the selected exit point iudicates that the exit
poiot of the current thread defines a boundary beiween two
thread regions. If pof, lhe process proceeds to block 642,
which illustrates the first instance of thread scheduler 130
loading the thread descriptor indicated by the exit pointer
associated with the selected exit point. The process then
returns 1o block 612, which illustrates the first instance of
thread scheduler 130 processing the new thread descriptor.
Retuming to block 640, in respouse (o a determination that
the exit type of the sclecled exit point indicates (hat the
selected exit point defines a thread region boundary, the
process proceeds to block 650, which depicts the first
nstance of thread scheduler 130 discontinuing the schedul-
ing of threads and waiting for the associated thread region to
be completed. OF course, if a dala or control hazard is
detected within the thread region while the first instance of
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thread scheduler 130 is wailing at block 650, the first
instance of thread scheduler 130 recavers from the detected
hazard by scheduling the appropriate thread(s). Following
block 650, the process passes to black 652, which illustrates
the first instance of thread scheduler 130 waiting for a new
thread region to be allocated in the manner described above
with reference (o block 634. In response to receipt of a
meta-thread pointer 53 by the first instance of thread sched-
uler 130, the process returns to block 612, which has been
descnbed.

With reference now to FIG. 17, there is illustrated a high
level logical flowchart of a method of exccuting instnuctions
within the PE of a multiscalar processor that supports
out-of-order thread execution. As illustrated, ihe process
begins at block 680 in response to receipl of an instruction
dispaiched to the exccution resources of execution core 158
in accordance with the method descnbed above with refer-
ence to FIG. 8. The process then proceeds to blocks
682706, which correspond to blocks 282-306 of FIG. ¢ aud
accordingly are not further described here,

Referring now to block 704, in response to a determina-
tion that the dispatched instruction is not a SeiStop extension
instruction, thereby indicaling that the dispatched instruction
is an ISA instruction, the process proceeds to block 710.
Block 710 illustrates a determination of whether or not all of
the source dafa required to execute the dispatched ISA
instruction arc available Jocally in any of data coherency
statos 502508, 1f so, the process passes to block 718, which
is described below. However, in response to a defermination
that all of the source data required to execute the ISA
instruction are not available locally within GPR cache 154
and data cache 156, ibe process proceeds to block 711,
which depicts communication and synchronization logic
152 transmiiting a read request on Jocal conununication and
synchronization mechanism 170 that indicates the memory
address or register number containing the required data as
well as the mumber of the thread region in which the PE is
executing. A PE snooping local communication and syn-
chronization mechanism 179 esponds (o the read request if
the PE is execuling an earlier thread within the same thread
region and owns the requested data in one of data coherency
states 502-508. As illustrated at block 712, if the required
data is available from another PE executing a thread in the
same (hread region as the requesting PE, the process passes
to block 714. However, in response to a delermination at
block 712 that the required dala is not available from another
PE exccuting within the same thread region, the process
proceeds to block 713, which illustrates the requesting PE
fetching the required data from L2 cache 122 or architected
register file 124. The process then passes to block 714,
which depicts communication and synchronization logic
152 updaling the data state of the accessed data to valid state
502. Thereafter, the process proceeds to block 715.

Block 718 illustrates commuunication and syncironization
logic 182 (ransmitting (be identifier of cach data locations
accessed (o oblain an operand for the ISA instruction to the
appropriate thread region buffer within glebal disambigua-
tion buffer 182. Next, as depicted at block 7186, the exceution
resources of execulion core 158 execule the ISA instruction.
The process then proceeds o block 717, which illustrates
communication and synchronization logic 152 broadcasting
a write request on logic communication and synchronization
mechanism 170 (hat indicales to all subsequent threads
within the same thread region cach memory address or
register number, if any, writien in response lo execution of
the ISA instruction. In addition, as depicted at block 718,
comimunication and synchronization logic 152 records the
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register number or memory address of each data location
wrillen by the ISA instruction in the (hread region buffer
associated with the current thread region. As described
below with respect 1o FIG. 18, the information within the
thread region buffer is ulilized to correct for inter-region data
depeadencies upon the completion of all threads within the
cureent thread region. The process then proceeds from block
717 to block 718, which illustrates communication and
synchronization logic 152 updating the local state of data
locations written 1n response to execulion of the ISA mstruc-
tion. Thereafter, the process terminates at block 708.

Referring now to FIG. 18, there 1s depicted a high level
logical flowchart of a method of thread completion within a
multiscalar processor thal supports out-of-order thread
execution. As ilfustrated, the process begins at block 820, in
response to receipl of a thread number and exit number by
the instance of thread scheduler 130 associated with ihe
thread region to which the executed thread belongs. The
process proceeds from block 820 to block 821, which
depicts a determination of whether or not a daia dependency
was detected during execution of the specified thread. 1f so,
the process proceceds to block 828, which illustrales the
instance of thread scheduler 130 sending a reset signal to the
signalling PE to invalidate all local data and rescheduling
the specified thread for execution by the signalling PE. The
process then passes to block 844 through pape connector B
and terminales.

Referring again to block 821, in response to a determi-
nation al block 821 that no data dependency was defected
during the execution of the specified thread, the process
proceeds to block 822, which illustrates a determination of
whether or not the exit type of the exit pointer associated
with the actual exit point of the executed thread indicates
that the exit point defines a thread region boundary. If so, the
process proceeds to block 838, which illustrates the instance
of thread scheduler 130 causing the identifiers of all data
iocations writfen by threads within the current thread region
to he¢ broadeast from the thread region buffer associated with
the current thread region to all threads within the immedi-
ately subsequent thread region. As described above with
reference to FIG. 13, PEs executing threads within the
subsequent thread region utilize the broadcast write requests
to update the data coherency state of data locations in valid
slate 502 and dirty state 504 (o valid hazard state 506 and
dirty hazard state 508, respectively. In addition, the identi-
fiees of data Jocations wrilten by threads within the current
thread region are transferred to the thread region buffer
associated with the immediately snbsequent thread region so
that global disambiguation buffer 182 can cheek for inter-
thread data dependencies between (he immediately subse-
quent thread region and the current thread region. The
process then passes to block 840,

With reference again to block 822, in response o a
determination that the aclual exit taken by the execuled
thread does not define a thread region boundary, (he process
proceeds to block 824, which depicts the instance of thread
scheduler 130 comparing the actual exil number received
from the signalling PE with the exit number associated with
the thread number in TL 146. A determination is then made
at block 826 whether or not the actual exit number indicated
by the signalling PE wmatches the selected exit number
associated with the thread number in TL 146. If so, the
process passes {o block 840, which is described below. 1f the
actual and selected exit numbers do not match, however, the
process proceeds from block 824 1o block 838, which
llusirates the instance of thread scheduler 130 sendiog a
resel signal 1o all PEs that are executing threads within the
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current thread region that are subscquent to the completed
thread. Thus, in contrast to the in-order execution case, the
detection of a control hazard during out-of-order execution
requires only the cancellation of all subscquent threads
within the same thread region and not all subsequent threads.
The process proceeds from block 830 to block 832, which
illustrates the instance of thread scheduler 130 updating
slatus register 148 to mark the PEs for which execution was
cancelled as free. Next, (he process passes to block 834,
which illustrates the instance of thread scheduler 130 sched-
uling threads within the correct execution path in accordance
with the method depicted in FIG. 16. The process then
passes to block §40.

Biock 849 illustrates the Instance of thread scheduler 130
trausmifting a writcback signal to the signalling PE, which
in response to receipt of the writeback signal, writes back
dirty (medified) registers and memory addresses to L2 cache
122 and architected file 124, The process then proceeds to
block 842, which illustrates the instance of thread scheduler
130 updating status register 148 to indicate that the signal-
ling PE is free. In addition, TP 142 is updated to point to the
thread associated with the exit point of the completed thread.
The process then terminates at block 844,

As will be appreciated from the foregoing description, the
multiscalar software and hardware architectures disclosed
berein provide numerous advantages over prior art
superscalar, multiprocessor, and multiscalar data processing
systems. By providing linked thread descriptors within a
T-Code stream that is parallel (o, yet separate from the
I-Code stream, the present multiscalar software architecture
avoids the performance degradation experienced in prior art
multiscalar sysiems due to an increase in program length.
Maintaining separate processing paths for the T-Code and
I-Code streams and providing hardware and software sup-
port for the dynamic insertion of auxiliary instructions
within the I-Code stream ensures backward compatibility
between the mnltiscalar software architecture described
herein and scalar ohject code executable by conventional
processoss. The dynamic insertion of auxiliary instructions
within the I-Code stream and the possibility of including a
single instruction within multiple threads further permits a
single instruction to be associated with multiple instruction
extensions. Thus, an'instruction within a first thread, which
produces a particular register value and is therefore associ-
ated with a SetFlag extension instruction within the exten-
sion list of the first thread, may also be included in a second
thread and associated with a second SeiFlag cxtension
instruction within the extension list of the second thread.

Furthermore, the data consistency support provided by the
SetFlag/WaitFlag paradigm permits multiple instructions to
be synchronized utilizing a single execution control facility
that may be employed for both register accesses and disam-
biguable memory accesses, In contrast to prior art data
processing systems, the hardware and software architectures
herein disclosed support both speculative and non-
speculative executfion of multiple threads through the gen-
cration of navigation instructions executable by the thread
scheduler. The execution of navigation instructions by the
thread scheduler reduces the amount of speculative work
that is discarded in response to exit mispredictions, thereby
enhancing IPC performance.,

Moreover, from the foregoing description of out-of-order
thread processing, it shiould be apparent that partitioning
multiscalar programs info thread regions in this manper has
a pumber of advantages. First, inter-region thread interaction
is minimized through the use of different protocols for
inter-region and intra-region thread interaction. According
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to the iltustrative embodiment, the inter-thread data coher-
ency communication and SetFlag/WaitFlag extension
instruclions are utihized during the thread execution stage of
out-of-order thread processing to maintain data coherency
and regisier data consistency between threads within fhe
same thread region. However, because threads in different
thread regions are executed under the assumption of inter-
region data and control independence, data coherency com-
munication between threads in different thread cegions is
chminated and verification of register data consistency is
deferred untl the thread completion stage of thread
processing, which is performed according to the logical
progrant order of thread regious.

Second, delaying the verification of data consisiency until
thread writcback has the advantage that computalion per-
formed by a meta-thread is not discarded in response to
speculative exccution of threads within a mispredicied
execution path upon which execution of the meta-thread is
secmingly dependent. For example, with reference again to
FIG. 15, if an instruction in thread 534 has an apparent
register data dependency upon an iostruction in thread 526
and possible exit point 542 of thread 522 is predicted, thread
534 and subsequent threads within thread region 552 are not
cancelled if it is determined that the exit point of thread 522
was inispredicted.

Third, the recovery activities performed in response to the
detection of data hazard during out-of-order thread process-
ing entail a potentially smaller performance penalty than
those performed in response to the detection of a control or
data hazard during in-order thread processing. As described
above and as illustrated at block 330 of FIG. 19, for in-order
thread processing the detection of a control hazard during
thread writcback entails the canccllation of all threads
subsequent to the thread being processed. In contrast, the
detection of a control hazard between (hreads within a thread
region only requires that subsequent threads within the same
thread region be cancelled. Thus, the discarding of control
independent work is ehminated.

Fourth, thread regious penmit greater ulihization of a
limited shared resource, such as SFs 180, by allocating a
separale instance of the shared resource to each thread
region. For example, assume that SFs 180 include four
instances of 32 SFs each, where each instance of 8Fs 180 is
identified by a respective one of thread regions 0-3 so that
a PE must trapsmit both a thread region number and a 8F
number in order to set a SE. In addition, referring again to
FIG. 15, assume thatl thread 522, which is in thread region
0, contains a “write” instruction having an associated Set-
Flag extension instruction that sets ST'4 and that thrcad 532,
which is also in thread region 0, contains a “read” instruction
having an associated WaitFlag extension instruction that
delays execution of the “read” instruction until SF4 is set. In
this exemplary embodiment, data consistency for the “read”
instruction in thread 532 is guarantced even if meta-thread
534, which is scheduled to one of PEs 132-138 for execu-
tion immediately following thread 522, contains an instiuc-
tion having an associaled SetFlag extension instruction thai
targets SF4. Thus, organizing threads into fhread regions
prevents contention for shared resources between threads in
different regions and minimizes the complexity of the pro-
cessor hardware required to track utilization of shared
resources by out-of-order threads.

While an illustrative embodiment has been particularly
shown and described, it will be understood by those skilled
in the art that various changes in form and detail may be
made therein without departing from the spirit and scope of
the illustrative embodiment. For example, although aspects
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of the illustrative embodiment have been described with
respect to specific “method steps” implementable within a
data processing system, those skilled in the art will appre-
ciate from the foregoing description that the illustrative
embodiment can alternatively be implemented as a computer
program praduct for use with a dala processing system. Such
computer program products can be delivered to a computer
via a variety of signal-bearing media, which include, but are
not limited to: (a) information permanently stored on non-
writable storage media (e.g., CD-ROM); (b) information
alterably stored on writable storage media (floppy diskettes
or hard disk drives); or (¢) iformation conveyed (o a
computer through communication media, such as through a
compuier or telephone network. It should be understood,
therefore, that such signal-bearing media, when camrying
compufer readable instructions that direct the method func-
tions of the illustrative embodiment, represent alternative
embodiments.
What is claimed is:
1. A method of consfructing a program cxecutable by a
processor, said processor including one or more processing
clements for exeeuting threads aud a thread scheduler for
assigning threads to said one or more processing clements
for execution, said method comprising:
providing a phurality of threads, each of said plurality of
threads including at least one control Bow instruction;

delermining, from one or more control flow instructions
within said plurality of threads, a condilion upon which
execution of a particular thread among said plurabity of
threads depends; and

. . L . 3
in response to said determination, creating at least one

navigation instruction, said at least one navigation

instruction indicaling that said particular thread is to be .

assigned to one of said one or more processing ele-
ments in response {o said condition, wherem said

plurality of threads and said at least one navigation ~

nstruction together commprise said program.

2. The method of clai 1, said method further comprising
constructing a plurality of data structures that are each
associated with a respective one of said plurality of threads,
wherein each of said plurality of data structures specifies a
plurality of possible exit points of an associated thread.

3. The method of claim 1, wherein said step of creating al
least one¢ navigation instruction comprises the step of cre-
ating a loop construct,

4. The miethod of claim 1, wherein said step of creating at ¢

least one navigation instruction comprises the step of cre-
ating ap if-then-else construct.

5. The method of clain 1, wherein said method further
comprises the steps of:

providing a plurality of instructions of a selecied instruc-

tion set architecture; and

assipning each of said plurality instruction to at least one

of said plurality of threads.
6. A method of executing a program within a processor
including one or more processing clements. and a thread
scheduler, said method comprising:
providing a program including a plurality of (hreads and
at least one navigation instruction, said at least one
navigation instruction indicating that a particular thread
is to be assigned to one of said one or more processing
elements in response (o a particular condition;

executing said al least one navigation instruction to deter-
mine if said particular condition is present; and

in response lo a determination that said particnlar condi-

tion is present, assigning said particular thread to one of
said one or more processing elements for execution.
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7. The method of claim 6, and further comprising the step
of:

thereafler, executing said pacticular thread within said one

of said onc or more processing clements.

8. The method of claim 6, and further comprising:

in response o a determination that said particular condi-

tion does not exist, assigning a thread subsequent lo

said particular thread in logical program order (o one of

said one or wore processing elements without assigning
0 said particular thread.

9. The method of claim 6, and further comprising:

speculatively assigning a thread among said plurality of

threads that is nol associated with said at least one
navigation instruction to onc of said one or more
processing elements,

10. The method of claim 6, said at least one navigation
instruction comprising a loop construct, wherein said
execuling step comprises the step of comparing a value of 2
loop iteration variable to a second value.

11. The method of claim 6, said at least one navigation
insfruction comprising an if-then-else construct wherein said
exceuting step comprises the step of delermining whether an
if statement within said if-then-else construct is logically
true.

12. A system for copstructing a program executable by a
processor including one or more processing elements for
execuling threads and a thread scheduler for assigning
threads 1o said one or more processing clements for
execution, said system comprising:

means, responsive to receipt of a plurality of threads, cach

of gaid plurality of threads including at least one control
flow instruction, for determining, from one or more
control flow instructions within said plurality of
threads, a condition upon which execution of a particu-

w

¥ lar thread among said plurality of threads depends; and
means, responsive to said determmation, for creating at

least one navigation instruction, said at least one navi-

gation instruction indicating that said particular thread

@ is 10 be assigned 1o one of said one or more processing

elements in response fo said condition, wherein said

plurality of threads and said at least one navigation
mstruction together comprise said program.

13. The system of claim 12, said system further compyis-

5 ing means for constructing a plurality of data structures that

are cach associated with a respective one of said plurality of

threads, wherein each of said plurality of data structures

specifies a plurality of possible exit points of an associaled

thread.

o 14. The system of claim 12, wherein said means for

creating at least one navigation instruction comprises means
for creating 4 loop construct.

15, The system of claim 12, wherein said means for
creating at least one navigation instruction comprises means
for creating an if-then-else construct.

16. The sysiem of claim 12, whercin said system further
comprises:

means, respoasive to receipt of a plurality of instructions

of a selected instruction set architecture, for assigning
each of said plurality inslruction lo at lcast one of said
plurality of threads.

17. A processor, comprising:

one or more processing elements for executing threads;

means, responsive (0 loading at least one navigation

instruction, said at least one navigation instruction
indicating thal a particular thread is to be assigned to
one of said one or more processing elements in

65
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response to a particular condition, for determining if
said parlicular condition is presenl; and

means, responsive o a delermination that said particular

condition js present, for assigning said particular thread
to one of said one or more processing clements for
execution.

18. The processor of claim 17, said processor further
comprising:

means, responsive (o a determination that said particular

condition does not ¢xist, for assigning a thread subse-
quent lo said particular thread in a logical program
order 1o one of said one or more processiug elements
without assigning said particular thread.

19. The processor of claim 17, said processor further
comprising:

means for speculatively assigning a thread among said

plurality of threads that is not associated with said a
least one navigation instruction to one of said one or
more processing elements,

20 The processor of elaim 17, said at Jeast one pavigation
instruction comprising a loop construct, wherein said means
for determining comprises means for comparing a value of
a Joop iteration variable to a second value,

21. The processor of claim 17, said af Jeast one navigation
insiruction comprsing an if-then-clse construct, wherein
said means for determining comprises means for delermin-
ing whether au if staternent within said if-then-else construct
is logically true.

22. A computer program product for creating a program
executable by a processor including one or more processing
clements for executing threads and a thread scheduler for
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assigning threads 1o said one or more processing elerents,
said computer progeam product comprising:

signal bearing means;

iostruction code within said signal bearing means for
causing a data processing system lo determine, from
one or mote control flow instructions within a plurality
of threads, a condition upon which execution of a
particular thread among said plurality of threads
depends; and

responsive to said determination, instruction code within
said signal bearing means for causing said data pro-
cessing system to create al Jeasi onc navigation
instruction, said at lcast one navigation inslruction
indicating that said particular thread is to be assigned Lo
one of said one or morc processing clements in
response lo said condition, wherein said plurality of
threads and said at least one navigation instruction
together comprise said program.

23. A computer program product, comprising:

a program exceutable by a processor including one or
more processing elements for executing instructions
and a thread scheduler for assigning threads o said one
or more processing elements, said program including at
least one navigation instruction, said at least one navi-
gation instruction indicating that said pacticular thread
is to be assigned 1o one of said one or more processing
elements in response to said condition; and

signal bearing means bearing said program.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,887,166
DATED - . Mar. 23, 1999
INVENTOR(S) : Mallick et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is hereby
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in col. 1, line 23, please change "08/767,488" to -- 08/767.,482 --,

Signed and Sealed this
~Sixteenth Day of November, 1999

Q. TODD DICKINSON

Attesting Officer Acting Commissioner uf Paretizs and Trademarks
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PATENT APPLICATIC{X%Q
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Applicants: Ralph Clayton Taytoretal.  Examiner:  Mackly Monestxme Q\ <((éb Q)Q“Q/
Serial No.:  09/556,474 - Art Group: 2676 . \@Q\S\
Filing Date:  April 21, 2000 ~ Docket No.: - 0100.0000650 Q\gﬁ\ﬁ
Confirmation No.: 6798 ' ' OurFile No.: 00100 00 0650 A&
Title: GEOMETRIC ENGINE INCLUDING A COMPUTATIONAL MODULE FOR USE
IN A VIDEO GRAPHICS CONTROLLER ;
: ) Certificate df First Class Mailing
Box Non-Fee Amendment I hereby certify that this paper is being deposited with the
Commissioner for Patents United States Postal Service as first-class mail in an
' , . ~ envelope addressed to: Box Non-Fee Amendment,

US. Eatent and Trademark Office Commissioner for Patents, Washington, D.C.20231, on
Washington, D.C. 20231 ‘ this date. v

g_/ g /é 3 )%MW Casievo

Date : Margaret%‘ aruso

AMENDMENT

Dear Sir:

In response to the Office Action dated November 19, 2002, Applicants submit the

following remarks.

REMARKS

Applicants respectfully traverse and request reconsideration.

As a preliminary matter, Applicants wish to thank the Examiner for the notice that claims
9-18 have been allowed.

Claims 1-2, 6 and 7 stand rejectéd under 35 U.S.C. §102(b) as being anticipated by U.S.
Patent No. 5,887,166 (Mallick et al.). The Mallick reference describes a method and system for
constructing a program including a navigation instruction for a multiscalar program. As such,

the cited reference teaches a process for constructing a multiscalar program and teaches using
CHICAGO/M#1037528.1
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during a first pass, a multiscalar ‘compiler that translates each high level instrﬁction into. one or
more executable instruction set architecture (“ISA”) 1nstruct10ns arranged in a. pamcular program
order. The multlscalar compller partitions the ISA instructions into. one or more threads.. When
a thread is executed, the first instruction w.ithin the thread is always executed, but there are
multiple possible execution paths out of ;11e thread.’ "Duri‘ﬁg a seéond plavsys, théf multiscalar
compiler gehérates a thread code stream including a number of thread descriptors that are each
associated with a respective one of the threads. Each thread descriptdr pro.vid'ethhe iﬁfo@étion
needed to. support multiscalar thread scheduling, thread prediction, and thread synchronizatiom
including pointers to both corresponding threads and subsequent thread descriptors. A thread
descriptor is a data structure containing a number of 32 bit entries. The multiscalar compiler
utilizes a set flag and wait flag extension instructions to resolve inter-thread register d'afa
dependency.

As to claims 1-2 and 7, the Mallick reference has been cited as teaching each vand every
claim limitation of these claims. However, Applicants respectfully submit that the Mallick
reference is silént as to specific aspects of Applicants’ claimed invention. For example, among
other differences, Mallick does not disclose the claimed thread controllers nor the claimed
arbitration module. For example, the Office Action cites items 30 and 32 'of Mallick as the
claimed thread controllers. However, items 30 and 32 are merely thread descriptors which are.
data structures. In contrast, Applicants’ claimed thread controllers may be state machines or any
other suitable structure that may contain for example op codes and other information if desired.
The thread descriptors 30 and 32 as such cannot be the claimed the thread controllers.

In addition, the Office Action states that the claimed arbitration module is allegedly

taught as items no. 172 and 130 of Mallick. Applicants claimed arbitrations module, among

CHICAGO#1037528.1 2

0278



other thingé, is coupled to a plurality of thread controllers and utilizes an application’s specific
prioritization scheme to provide op codes from the thread controllers to the chputafion engine
in an order to minimize idle tirﬁe of the computation engine.

The Office Action cites col. 7, lines 45-48 and col. 10, lines 57-60 as %dlegedly‘ teaching
the claimed arbitration’ module. However, ‘;%pplicants respéctfully noté that col.r 7, liﬁés 45«48, '
refers to the multiscalar compiler 14 and does not refer to the arbitration logic 172 or the thread
schedﬁler 130. As such, Applicants are unsure as to whyithis pafticular passagé has Aberen cited
and respectfully reéuésté clarification of the same. Col. 10, lines 57-60, refers to. the thread
scheduler 130, but notes that the thread scheduler 130 ﬁses a T-code cache that stores tﬁe thread
descriptors thereby establishing separate fetch paths for the T-code and T -coae streams fo reduce
access latency. This is not an application specific prioritization scheme that provides op codes
from the thread controllers in a way that minimizes idle time, but instead is a mechanism which
stores thread descriptors in a cache to provide separate fetch paths. This is a different operation
from that claimed by Applicants. As such, these claims are believed to be in condition for
allowance.

As to claim 6, the Office Actvion cites FIG. 1, items 30 and 32 of M’allick,‘ as éllegedly
disclosing a thread controller that includes at least one of a transform thread controller, a clip
thread controller, a barycentric controller, and an attribute thread controller’. | However,
Applicants respectfully submit that they are unable.to find reference to such thread controllers as
claimed or to reference items 30 and 32. Since it appears that Mallick is silent as to graphics
transformations, clipping operations, barycentric controllers or attribute thread controllers,

Applicants respectfully submit that this claim is also in condition for allowance. If the rejection

CHICAGO/#1037528.1 3
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is maintained, Applicants respectfully request a showing by column and line number of where

the Mallick reference teaches such specific thread controllers as claimed.

Claim 3 stands rejectéd under 35 U.S.C. §103(a) as being unpatent*c‘lble.ove; Mallick in
view of U.S. Patent No. '5,909,5'44 (Andersén II et'al.). The Office Action cites golumn 7, lines
9-27 of Mallick, as allegedly teaching that ;ach op code includés‘ a controller ‘identity, type of
operation, apd wherein each of the plurality of thread controllers ‘maintain latency data for
operation codes of a corresponding thread and wherein eéch of the pluralify of thread controllers

releases opération codes to the arbitration module in accordance with the latency data.

Applicants respectfully submit that the cited poﬁi011 of Mallick fails to teach, ar.nong ofher
»things, the thread controller that variation latency data as claimed. The cited portion of Mallick
instead teaches merely that the thread descriptor may contain an extension pointer that points to
an extension list containing auxiliary extension instructions that are to be dynamically inserted
into threads by multiscalar processor hardware during execution. It does not teach that the op.
codes include avcontroller identity. Appylicants respectfully request the column and line showing
where the op codes in Mallick include a controller identity and a type of operation as claimed.

In addition,’ Applicants claim that the thread controllers maintain latency data for
operation codes. The Office Action previously indicated that the thread controllers are items 30
and 32 of Mallick. However, the thfead descriptors do not include latency data and the thread
controllers do not hold op codes and release them based on the latency data to an arbitrator.
Applicants are unable to find reference in the cited portion to the latency data as alleged in the
Office Action. As claimed, the thread controllers maintain latency data and release op codes to

an arbitration module in accordance with the latency data. Such as structure and operation is not

CHICAGO/#1037528.1 4
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taught or suggested by the cited reference. As such, these claims are also believed to be in
cdndition for allowance.

Claims. 4-5 and claim 8 stand rejected under 35 U S.C. §103(a) as being unpatentablel
over Mallick in view of U.S. Patent No. 6,192,384 (Dally et. al) Dally is- dlrected to a system
and method for performing compound vector Operatlons Apphcants agree that Malhck does not
disclose a computation module that comprises a vector engine that perfomis structure operations.
The Office Action alleges‘that on,e' of ordinary skill would combine the teachings of Dally:with
those of Mallick, but the Office Action does not appear to proviae any factﬁal support for the
conclusion that one would combine the references. In particular, the Applicants respectfully
submit that references cannot be combined W.ith the knowledge of VApp]iCants’ claimed invention,
but there must be some motivation to combine the references found elégwhere other .than
Applicants” own claimed invéntion‘. The Ofﬁce Action cites col. 2, lines 35-45, of Daliy. This
cited portion mérely states that the Dally system performs a compound . vector operation and
generates a result that .is written Back to the stream register file. It ai)pears that ;che Dally
reference teaches an opposite approacﬁ to that of Applicants’ claimed invention since it does not
appear to contemplate multiple thread controllers or arbitration modules coupled to a plurality of

thread controllers. As such, these claims are also believed to be in condition for allowance.

CHICAGO/M#1037528.1 5
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Accordingly, Applicants respectfully submit that the claims are in condition for
allowance, and that an early Notice of Allowance be issued in this application. The Examiner is
invited to contact the below-listed attorney if the Examiner believes that a’ telephoher éonference .
will advance the ﬁrosecution Qf this application. | |

H

Respectfully submltted

: ' , By Ké/ /%/ %\__
Date: February 19, 2003 . ChristopHfer J. Reckamp ’
- B Registration No 34,414 ‘

Vedder, Price, Kaufman & Kammholz
222 North LaSalle Street

Chicago, lllinois 60601 -

PHONE: (312) 609-7599

FAX:  (312) 609-5005

CHICAGO/#1037528.1 6
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{57 ABSTRACT

An associative architecture for a static data flow pro-
cessing system comprises & functional computation unit
in which data processing operations are executed, a data
processing execution control structure (template) stor-
age and control unit and communication channels
through which the functional computation unit and the
template storage and control unit communicate with
one another. The template storage and control unit
controls the supply of data to be processed by the func-
tional computation unit and includes memory for stor-
ing a plurality of templates. Each template storage and
control unit assembles data processing messages for
application to a first of the cc ication ch Is for
controlling the execution of a data processing operation

" by the functional computation unit, Each message con-
- tains the address of that template to which the result of

the data processing operation is returned and stored in a
return buffer, an opcode and cither the data directly or
the address of the template that contains the data to be
processed by the functional computation unit. Each
template also stores the status of a data processing exe-
cution cycle. Each template continuously monitors the
communications channels for its address and, upon de-
tecting its- address, controllably interfaces prescribed
information associated with the execution of a data -
processing operation with respect to the communica-
tion channels.

Lenahan & McKeown 25 Claims, 22 Drawing Sheets
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1

STATIC DATAFLOW COMPUTER WITH A
PLURALITY OF CONTROL STRUCTURES
SIMULTANEOUSLY AND CONTINUOUSLY
MONITORING FIRST AND SECOND
COMMUNICATION CHANNELS

BACKGROUND OF THE INVENTION

The present invention relates in general to data pro-
cessing systems and is particularly directed to a static
dataflow computer architecture communications within
which are effected through associative processing.

1. Field of the Invention

In static dataflow computer architectures, program
execution is typically controlied by tokens, with di-
rected information packets providing communication
and synchromization among data execution control
structures, or templates. Unfortunately, the amount of
serial, temporal overhead required for a token-based
processor to perform a single operation and the number
of memory accesses per operation have effectively pre-
vented static data flow computers from being employed
for practical parallel data processing.

2. Summary of the Invention

In accordance with the present invention, the sub-
stantial temporal overhead and ‘memory bandwidth
requirements of token-based static data flow computer

- architectures are substantially reduced by replacing

token-based processor communications with associative
processing, similar to that used for associstive memo-

tures, or templates, of the system are interconnected
with one agother and with the data processing re-
sources of the system, so that they may monitor and
respond to operstions carried out with respect to all
other components of the system simuitancously,
thereby increasing data processing execution speed and
enhancing the efficient use of system memory.

For this purposs, in accordance with g first embodi-
ment of the present invention involving a single pro-
cessing node architecture, the static dataflow data pro-

2

tion, each template is coupled to and continuously mon-
itors the first and second communications channels for -
the presence of its address having been asserted thereon
and, in response 1o detecting the presence of its address,
controllably interfacing prescribed information associ-
ated with the execution of & data processing operation
with respect to the first and second communication
channels.

Each template monitors the fint communications
channel and asserts the contents of its return buffer onto
the first communications channel in response to recog-
nizing its address, so that the data stored in the return
buffer may be employed as an operand for the execution
of a data processing operation by the functions! compu-
tation wnit. In its status entry a template contains ac-
knowiedgement information representative of whether
any other template requires the use of the contents of
the return buffer. The status entry also inclades operand
availability information indicating whether the result
entry of another template, whose address is defined by

- the contents of a source address entry of that template,

" ries, through which plural data execution control struc-

40

cessing system includes a functional computation unit,

in which data processing operations are controllably
executed, a template storage and control unit, and a pair
of communication channels through which the func-
tional computation unit and the template storage and
control unit communicate with one another. The tem-
plate storage and control mechanisin controls the sup-

" ply of data to be processed by the functional computa-

tion unit and includes memory for storing a plurality of
templates. The template storage and control unit assem-
bles data processing messages for application to a first of
the communication channels for controlling the execu-~
tion of a data processing operation by the functional
computation unit, Each message contains first informa-
tion representative of the identification of that template
(its address) to which the resuit of the data processing
operation is to be returned (via the second cominupica-
tion channel and stored in a return buffer within that
template dedicated for the purpose), second information
{an opcode] representative of the data processing opera-
tion to be performed by the functional computation
unit, and third information representative of the data
(either the data directly or the address of the template
that contains the data) to be processed by the functional

45

30

contains an operand required for the execution of a data
processing operation defined in accordance with op-
code entry of that same template. .

Each template also contains a code indicating its
readiness to “fire™, i.e. to have a data processing mes-
sage asserted onto the first communications channel, in
accordance with the contents of the status entry, and
includes means for indicating the readiness of the tem-
plate to have 2 data processing message asserted on the
first communications chaunel in response to the ac-
knowledgement information being representative that
no other templaie requires the use of the contents of the
current result entry of that template as an operand, and
that the operand availability information indicates that
all operands required for the exccution of a data pro-
cessing operation defined in accordance with opcode
are available.

The template storage and control unit includes means
for clearing the contents of the acknowledgement and
operand availability information within the status entry
of the template in the course of causing a data process-
ing message associated with that template to be asserted
onto the first communications channel.

The second commuaications channe! includes a data
portion over which output data from the functional
computation unit is conveyed and a result address por-
tion over which the address of an output data recipient
template is conveyed. Bach template includes a com-
parator for comparing its operand source address
entries with the coniénts of the address portion of the
second communications channel and *controllably
causes the operand availability information of the siatus
entry to indicate that an operand entry required for the
execution of a data processing operation defined in
accordance with an opcode entry of the respective
template is available in the result entry of another tem-

" plate whose address matches one of the operand source

60

computation unit. Each template also stores the status .

of a data processing execution cycle. In accordance
with the associative architecture of the present inven-
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address entries of the respective template.

" The second communications channel also includes a
result index portion for identifying one of the operand
source entries of s template, and the comparator in-
cludes means for caunsing the operand availability infor-
mation of the status entry to indicate that an operand
entry required for the execution of a data processing
operation defined in accordance with an opcode entry
of that template is available in the result entry of an-
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other template whose address matches the operand
source address entry of the respective terplate as iden-
tified by the result index portion,

The first communications channel includes a data
portion over which operands are conveyed, an address
portion over which the address of a selected template is
conveyed, an opcode portion over which the opcode
entry of a selected template is conveyed, and am intra
template address link over which operand source ad-
dresses are conveyable among the templates of said
storage unit. Each template includes means for compar-
ing its address with the contents of the intra template
address link and causing the contents of its resuit entry
to be asserted onto the data portion of the first commu-
nications channel, in response to detecting a match
between its address and the contents of the intra tem-
plate address link,

A respective template includes means for controlia-
bly asserting its operand source addresses onto the intra
template address link in the course of the assertion of 2
data processing message, and the second communica-
tions channel includes a data portion over which output
data is conveyed and a result address portion over
which the address of an output data recipient tempiate
is conveyed. A template also includes means for con-
trollably causing the operand address asserting means to
assert an operand source address onto the intra template
address link in accordance with the contents of the
address portion of the second communications channel.
A selected operand source address is asserted onto the
intra template address link in accordance with the con-
tents of a prescribed (least significant bit) portion of the
data portion of the second communications channel,

In accordance with a second embodiment of the pres-
ent invention, the associative teraplate-based data pro-
cessing mechanism is applied to a larger, system level
architecture, comprised of multiple nodes, each having
its own dedicated functional computation unit and tem-
plate storage facility, wherein operand and result data
are exchanged among the nodes of the system. The
nodes preferably form a mesh topology, in which each
node is connected with and may communicate with
some number, e.g. three, nearest neighbor nodes with
which it shares data resources in the course of execution
of its own data processing operations and aiso in the
course of the execution of dats processing operations by
those neighboring nodes. Namely, within an individual
node, a data processing operation defined by 2 template
stored within that node is always executed by the func-
tional computation unit within that node. However, the
operands required for and the results of that execution
may be shared by templates in nearest neighbor nodes.
In order to effect this sharing of data rescurces, the
architecture of each node is configured to provide an
inter-node associative communication capability, simi-
lar to that of an individual node, for those aspects of a
template which may depend upon or be necessary for

nodes, by assigning associative communication control
functions to dedicated storage and supervisory units
within each node.

w

. 4 :
for identifying that template, a plurality of operand
source entries for specifying the addresses of operands
to be employed in the execution of a data processing
operation associated with that template, and the status
of the template with respect to its associated data pro-
cessing operation. Each node also contains an opcode
store, coupled to the program execution control unit,
for storing a plurality of opcodes respectively associ-
ated with the plurality of templates, and an opcode
which defines a data processing operation to be per-
formed by the functional computation unit. Also in-
cluded within cach node is an operand store, which is
coupled to the program execution control unit, for stor-
ing a plurality of result entries in which output data
produced by the functional computation unit as a result
of its execution of a data processing operation requested
by a template are stored.

Assembly of a data processing message is carried out
by an operation packet builder, which is coupled 1o the
program execution control unit, the opcode store and
the operand store. The operation packet builder assem-
bles a plurality of data processing messages to be for-
warded to the functional computation uait for execu-
tion, & respective data processing message including the
identification of a respective template, the contents of
respective result entries identified by operand source
addresses of said respective template, and the opcode
associated with said respective template.

A first communications chaonel is coupled between
the operation packet builder and the functional compu-
tation unit for conveying data processing request mess-
sages between the packet builder and the functional
computation unit. A second communications channel is
coupled between the functional computation unit, the
program execution control unit, storage unit end the

- operand store, for conveying output data from the func-

40

_ the execution of a template in any of its neighboring

&

For this purpose, the multi-node configuration of the

associative data processing architecture of the present

_ invention comprises a plurality of data processing nodes

each of which includes its own dedicated functional
computation unit and a program execution control unit
which contains a plurality of templates, each template
comprising a plurality of entries, including an address
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‘tional computation unit to the operand store and the

identification of the template for which a data process-
ing request message has been processed by the func-
tional computation unit to the program execution coan-
trol unit. '

A first internode communication channel is coupled
to the second cc ication ch 1 of each node, for
coupling the identification of the template for which a
data processing request message has been processed by
its associated functional computation unit to the pro-
gram execution control unit in each node. A second.

linternode communication channel is coupled to the

operand store, the operation packet builder, and the
program cxecution contro] unit of each node, for en-
abling the operand addresses of a template stored within

-the program execution control unit of a aode to be

presented to the operand store of every other adjacent
node, and for cnabling operand values stored in any
node to be presented to the operation packet builder of
any node. ‘ )

The status entry of a respective template includes
operand availability information representative of
whether the result entry of another template in' any
neighboring node, whose address is defined by the con-
tents of a source address entry of the terplate, contains
an operand required for the execution of a data process-
ing operation defined in accordance with opcode entry -

-of the template.

The second communications channe! includes a data
portion over which output data from the functional
computation unit is conveyed and a result address por~
tion over which the address of said respective templare
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is conveyed, and the program execution control unit
includes & comparator for comparing the operand
source entries of the template with the contents of the
address portion of the second communications channet
and causes the operand availability information of the
status entry to indicate that an operand required for the
execution of a data processing operation defined in
accordance with an opcode associated with the tem-
plate i8 available in the operand store of that node
which contains the template whose identification
matches one of the operand source address entries of
the template.

The second communications channel further includes
a result index portion for identifying one of the operand
eatries of a template and the comparator outputs a sig-
nal which causes the operand availability information of
the status entry to indicate that an operand entry re-
quired for the execution of a data processing operation
defined in accordance with an opcode entry of the tem-
plate iy available in the operand store of a node contain-
ing the template whose address matches the operand
source address entry of the template as identified by the
result index portion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 diagrammatically illustrates the general archi-
tecture of an associative template dataflow processing
system in accordance with the present invention;

FIG. 2 diagrammatically illustrates the contents of a
respective template stored within a storage and control
unit of FIG. 1;

FIG. 3 shows the sub-entries within a template status
word;

FIG. 4 diagrammatically illustrates the general orga-
nization of the system template storage and control unit

_architecture of FIG. 1;

FIG. § illustrates the interfacing of the respective bus
links of the architecture of FIG. 4 with the respective
entries of an individual template within a storage and
control unit;

FIG. 6 shows circuitry within a templata for handling
result data.and address signals;

FIG. 7 diagrammatically illustrates the operation of a
‘master’ template;

FIG. 8 diagrammatically illustrates the operation of
an operand-supplying template;

FIG. 9 illustrates a circuit for modifying the template

status word field through the use of a counter to track
the number of dependent templates, remaining to be
asserted; : .
" FIGS. 10 and 11 diagrammatically illustrate a mecha-
nism for generating an acknowledgement through the
use of a dual argument acknowledgement bus and status
word field;

FIG. 12 shows the configuration of a designator cir-

cuit for detecting whether a template is ready to be
asserted and for selecting which ready template is the
next in line to be asserted;
" FIG. 13 diagrammatically showsz a single level
scheme, as a modification of the operand generation
mechanism of FIG. 7, for supporting the use of immedi-
ate arguments; .

FIG. 14 shows a dual level modification of the oper-
and generation mechenism of FIG. 7, for handling both
direct addressing and immediate type arguments;

FIG. 15 diagrammatically shows a switch template
for initiating the execution of a data processing opera-
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to one of two sets of prescribed recipient templates
depending on the value of a control Boolean operand;

FIG. 16 illustrates a switch template;

FIG. 17 illustrates the configuration of modified sig-
nal processing hardware within the template necessary
to support a switch function;

FIG. 18 diagrammatically illustrates a select template
for initiating the execution of a data processing opersa-
tion in which one of its two datz operands is made
available, depending on the value of a third, control
Boolean operand;

FIG. 19 illustrates a select template;

FIG. 20 shows signal processing logic for enabling a
template to perform the select function;

FIGS. 21 and 22 diagrammatically show expanded
template fields and template word status entries;

FIGS. 23 and 24 show the overall comparator and
driver circuitry and their associated communication
buses, together with combined control logic for imple-
menting an associative template;

FIG. 26, illustrates an exemplary mesh topology of a
multiple node architecture;

FIG. 26 diagrammatically illustrates the architecture
of an individual node of a multi-node processor archi-
tecture; '

FIG. 27 shows the bus structure of an inter-node
communications link;

FIG. 28 diagrammatically illustrates the configura-
tion of a data store; ’

FIG. 29 shows the configuration of an operation
packet builder;

FIG. 30 diagrammatically illustrates the respective
fields of an individual template stored within the pro-
gram execution coordinator and -the mechanism
through which the program execution -coordinator
monitors the result address link from its local node and
those of neighbor nodes for setting the A, B and Z flags;
is generated.

FIG. 31 illustrates circuitry for handling acknowi-
edgements; and

FIG. 32 diagrammatically ‘illustrates - a .muiti-node
data flow operation.

DETAILED DESCRIPTION

Before describing in detail the particular improved
computer architecture in accordance with the present
invention, it should be observed that the present inven-
tion resides primarily in a novel structural combination
of conventiona! signal processing and communication
circuits and components and not in the particular de-
tailed configutrations thereof. Accordingly, the struc-
ture, control and arrangement of these conventional
circuits and components have been illustrated in the
drawings by readily understandable block diagrams
which show only those specific details that are pertinent
to the present invention, 30 as not to obscure the disclo-
sure with structural details which will be readily appar-
ent to those skilled in the art having the benefit of the
description herein. Thus, the block diagram illustrations
of the Figures do not necessarily represent the mechani-
cal structural arrangement of the exemplary system, but

- are primarily intended to illustrate the major structural

65

tion in which a primary data operand is made available .
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components of the system in a convenient functional
grouping, whereby the present invention may be more
readily understood.

" Referring now to FIG. 1, the general architecture of

" & single node associative template dataflow processing

system -in accordance with the.present invention is
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shown as comprising a pair of operational (storage/con-
trol and execution) units 11 and 13 linked with one
another by way of 2 pair of communication paths 18 and

17. By single node architecture is meant that all data’

processing operations with the system are executed
within the confines of a self~contained node or process-
ing unit, as contrasted with a multi-node environment,
to be described infra, where multiple execution units
have their own computational capabilities and share
data resources through an inter-node communications
architecture.

Withia the single node system of FIG. 1, a data stor-
age and control unit 11 and a functionsl computation
unit 13 are munally linked by way of an operation
channel 15 and a result channe] 17. Data storage and
control unit 11 contains memory and associated control
logic for storing and controllably interfacing a plurality
‘of data processing exccution control structures, termed
templates, with each of operation channel 15 and result
channel 17. A pnncxpal responsibility of unit 11 is the
control of the pr on or tr ission of data pro-
cesging mesaages awaitiag service in the templates to
functional computation unit 13 over operation channel
15. Functional computation unit 15 performs arithmetic
and logical operations on one and two argument value
sets that are contained within data processing execution
messages supplied over operation channel 15 from stor-
age and control unit 11 and forwards the resuit of its
data processing operation over result channel 17 to
template storage and control unit 11.

" The contents of a respective template, stored mthln
template storage and control unit 11, are diagrammati-
cally illustrated in FIG. 2 as a sct of table entries com-
prising: an address, or label, (L) identifying the template
and employed by various portions of the system to
address that template; a status word (TSW), which
contains .a pumber of sub-entries (shown in FIG. 3)
representative of the operational/control status of the
template; a pair of argument value cntries (A arg src and

B arg src) corresponding to the labels or addresses of 40

those templates within unit 11 from which the actual-
argument values of a data processing message are to be
obtained; and a rasult buffer entry in which the result of
a data processing operation executed by the functional
computation unit i3 stored.

As shown in FIG. 3, the sub-entries within the tem-
plate status word comprise an opcode, representative of
the data processing operation to be performed, a pair of
argument available flags (A arg avl and B arg avl),
which indicate whether or not the respective A and B
argument values to be employed in the data processing
operation are currently resident within the templates
whose labels correspond to the A arg sre and B arg src
entries, referenced above, and a set of acknowledge-
ment flags representative of the status of other tem-
plates that use the contents of the result buffer as an
argument value. As will be explained in detail below,
the contents of the TSW field effectively determine
whether or not the entries within the template are com-
plete, so that a data processing message may be assem-
bled and placed on the operation chamnel to be pro-
cessed by functional computation unit 13,

-FIG. 4 diagrammatically illustrates, in greater detail,
the general organization of the system architecture of
FIG. 1, referenced above. Storage and control unit 11 is
shown as being comprised of a plurality or array of N
templates, 21-1 ...
functional computation unit 13 through operation chan-
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nel 15 and result channel 17, each of which is comprised
of a multiple bus structure, as shown. Specifically, oper-
ation chanael 15 contains a set of inter-unit buses includ-
ing an opcode bus 31, an A argument data bus 32, a2 B
argument data bus 33, an active template bus 3¢ and a
read control bus 35, and a set of intra-unit buses, includ-
ing an A argument address bus 41, a B argument address
bus 42 and an acknowledge bus 43. Opcode bus 31
carries the opcode portion of a data processing message
derived from the TSW ficld of one of templates 21-1 ..
. 21-N which is currently invoking the execution of a
data processing operstion, while buses 32 and 33 carry
the A and B argument values obtained from the source
templates (A src and B src) specified by the A and B
argument source entries of the template. Bus 34 indi-
cates which template is currently active (having a data
processing request serviced by functional computation
unit 13), and bus 35 is used to provide timing and con-
trol signals to manage and synchronize the transmission
of messages between template storage and control unit
11 and functional computation unit 13. For this purpose,
template storage and control unit 11 includes an arbitra-
tion logic circuit, or active template designator 38,
which is controlled by the timing signals on bus 35 and
controllably designates, via one of links 39-1.. . 39-N
which template is currently ‘active’.

“'Within the set of intra-unit buses, A argument address
bus 41 and B argument address bus 42 are employed by
the active template to identify which templates contain
the respective A and B argument values {(operands) that
are to be asserted on A and B argument data buses 32
and 33 during the forwarding of a data processing mes-
sage to functional computation unit 15. Acknowledge
bus 43 serves to propagate control/status information
among the templates in the course of establishing
whether a template is ready to be asserted.

Result channel §7 is comprised of 2 load control bus
5%, a result address bus 52 and a result data bus 53, Load
control bus 51 provides timing signals that direct the
momtonng of the address and data buses and the load-
ing of the data by the templates, Result address bus 52

' contains the address or label of the template that initi-

4
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ated the data processing operation and to which the
résult of that operation is to be returned, while data bus
53 contains the actual result data that has produced by
functional computation unit 13 and which is to be writ-
ten into the result buffer of the initiating template. -
FIG.'5 illustrates, in greater detail, the interfacing of
the respective bus links of the architecture of FIG. 4
with the respective entries of an individual template 21-i
within storage and countrol unit I1. Also shown is a

" timing and control logic circuit 61 that controls the

&0
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21-N, which are interfaced with

storage and readout of the contents of the respective
ficlds of the template. Within the intra-unit bus portion
of operation channel 15, the A and B argument address
huses 41-and 42 are coupled as inputs to a template labet
or address field 21L, so'that their contents may be com-
pared with the identity of the template, and, thercby
determine whether -or-not the contents of that tem-
plate’s result buffer 21R are to be asserted onto either of
A argument or B argument buses 32 and 33, respec-
tively, which are connected as result buffer output links,
as shown. A and B argument address buses 41 and 42
are also coupled as inputs to both A argument and B
argument source fields 21A and 21B, respectively, so

- that their contents may be compared with the stored A

and B argument source ficlds for purposes of handling
an acknowledgement, as will be described infra. Ac-
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knowledgemcm bus 43 is coupled to timing logic and
control logic circuit §1. Under the control of read con-
trol bus 35, buses 41 and 42 are also respectively cou-
pled to receive the contents A and B argument source
ficlds 21A and 21B, 30 that the contents of fields 21A
and 21B may be asserted onto the respective A and B
argument address buses,

Within the inter-unit portion of operation chanuoel 15,
the result address bus 52 is coupled as-an input to tem-
plate label field 211, so thet its contents may be com-
pared with the identity of the template, and thereby
determine whether or not the contents of the result data
bus 53 are to be written or loaded into that template's
result buffer 21R, in accordance with a load control
signal supplied to timing and control logic circuit §1
over link 51, Result address bus 52 is further coupled to
each of A argument source and B argument source
ficlds 21A and 21B. When either of these argument
source fields detects a match between the contents of
result address bus 52 and itself, a respective (A or B)
‘argument-available’ flag within the template status
word field is raised, indicating the availability of that
argument for use in a message to functional computa-
tion umit 13.

Additional bus connections of the inter-unit bus por-
tion of operation channel 15 include the coupling of the
opcode portion of the template status word field 218 to
opcode bus 31 and the coupling of the template address

“'to active template bus 3. Timing and contro! logic

circuit 61 also monitors the contents of template status
word field 218 to control the generation of a ‘ready’
control signal on link 39R to active template designator
38 which, in turn, asserts an ‘active’ control signal on
link 39A to inform timing and control logic circuit 61
when that template has become the current or actwc
data structure.

To facilitate an understanding of the associative oper-
ation of the architecture of the single node embodiment
of the present invention, in the description to follow,
the manner in which a template monitors and responds
to the contents of the respective bus portions of result
and operation channels 15 and 17 will be explained in

- detail with reference to FIGS. 6-24, which diagram-

matically illustrate the state and functionality -of the
stored coantents of a template in the course of its interac-

“tion with the contents of one or more prcscnbe;d por-

tioms of one of the « ication ch

Result Handling (FIG. 6)

As shown in FIG. 6, result address bus 52 is coupled
to each of respective comparators 21CAR, 21CBR and
21CLR wherein its contents are compared with A argu-

‘ment address field 21A, B argument address field 21B
" and the template address 21L. If the result address

matches either of the argument address fields a respec-

.tive A or B flag is set within the template status word
- field 218. If the result-address matches the template’s

address, comparator 21CLR supplies a 'load input to
result buffer 21R causing the contents of result data bus
53 to be written into result buffer 21R. The loading
operation of each of the template status word field 218
and result buffer 21R is controlled by a clock control
signal from timing and control logic circuit 61 on link
62, which synchronizes the loading operation with the
operation of functional computation unit 13.

There arc two situations in ‘'which a remplate may
respond (o0 the contents of result address bus 52. As
pointed out previously, when functional computation
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unit 13 completes the execution of & data processing
operation, the contents of result address bus 52 identify
the template which initiated the dats processing opera-
tion that produced the output dats on result data bus 53.
In this circumstance, comparator 21ICLR detects a
match between the template label 211 and the contents
of result address bus 52, so that result buffer 21R is
losded with the result data. -

The other situation involves the use of & r&ult value
by a template as one of its operands. In this case the
template does not store the argument value itself, since
it is alceady being saved by the template that initiated its
production. However, it is necessary to store an indica-
tion that the argument value is pow available (in an-
other tempiate). For this purpose, the template employs
comparators 21CAR and 21CBR to determine whether
or not the result address matches either or both of its A
and B argument source fields. If a match -occurs, in
cither case, a respective flag bit is set in the correspond-
ing A/B availability field within the template status
word field 218, thereby indicating that the A/B argu-
ment is resident in the template whose label corresponds
to the argument source address. All templates which
employ the result dats as an operand will set their corre-
sponding flag bit(s) simultanecusly.

Assertion of Data Processing Message (FIGS. 7 and 8)

During each cycle of operation of channel 15, two
types of templates are involved-—a master tempiate ’
(which initiates the assertion of a data processing mes-
sage), and one or more aperand templates {(which pro-
vide the actual argument values).

In response to a message assert request from func-
tional computation unit 13 on read control bus 35, ac-
tive template designator 38 asseris an ‘active’ control
signal on bus 39A to a ‘master’ template (the operation
of which is diagrammatically shown in FIG. 7), which
is ready to transmit a message and which the arbitration
logic within designator 38 has determined to- be next in
line for service. This active control signal canses con-
trol logic 61 to assert a master template control signal
on link 71, which is coupled to the ensble inputs of sach
of respective output drivers 72L, 72A, T2B and 720 that
are associated with the respective template address, A
and B argument source and opcode portion of the tem-
plate status word fields, Template address driver 721 is
coupled to active témplate bus 34, drivers 72A and 72B
are coupled to address buses 41 and 42, and opcode
driver 720 is coupled to bus 31. As a consequence, the
source and opeode portions of the operation channel are
specified immedintely by the contents of label field 211
and the opcode portion of the template status word field
that are asserted onto the inter-unit buses of operation
channel 15, while the addresses of the A and B argu-
ments to be asserted on the A .and B argument data
buses of the inter-unit bus portion of operation channel
15 are asserted onto buags 41 and 42, respectively. Since
buses 41 and 42 are contained within the intra-unit por-
tion ‘of operation channel 18, their contents are not
applied directly lo functionsl computation unit 13, In-
stead, they are used to select the templates in which the
actual operand values are stored.

‘The operation of an operand-supplying template is
diagrammatically illustrated in FIG. 8. As shown
therein, A and B argument address buses 41 and 42 are
respectively coupled to first input ports of comparators
21 CAL and 21CBL, second input ports of which are
coupled to template address field 211 Should the con-
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tents of either of buses 41 and 42 match the temiplate
address, a corresponding one ar both of drivers 81A and
81B will be enabled, 50 as to cause the contents of result
buffer 21R, which is the actual operand value to be
employed in the execution of the data processing opera-
tion, to be asserted on the associated A and B argument
data bus 32 and 33 of the inter-ynit bus portion of the
operation channel 15, It should be noted that the config-
uration shown in FIG. 8 will support the situation
where a single template is requesied to supply both the
A and B arguments (as in the case of a multiply opera-

‘tion to compute the square of & number).

Acknowledgements

As pointed out supra, in the course of the generation
of a data processing message by a master template, the
operands are derived from the result buffers in one or
more other templates. The contents of these other tem-
plates depend upon the contents of a previous template
in terms of program flow. It often occurs that a template
may be used repeatedly and, in the cuse of pipelined
processing, continuously. It is necessary, therefore, to
preserve the order of message assertion of a sequence of
templates, 0 that no témplate can perform & new opera-
tion until all of its dependent tempiates, that require the
usc of a previously computed value stored in its result
buffer as an operaod, have performed their operations.
Preserving the order of message assertion is accom-
plished in accordance with the present invention
through the use of an acknowledgement mechanism
which is incorporated into the template and which is
examined before execution of the template may pro-
ceed. The discussion to follow will address two types of
acknowledgement mechanisms, one using a counter to
keep track of the number of dependent templates that
have yet to be asserted before the template may become
gctive, and a distributed mechanism thmngh which a

‘template determines the status of all of its dependent

templates whenever its own result buffer is referenced
by another template,

Counter-Defined Acknowledgement
FIG. 9 illustrates the manner in which the template

status word field 215 is modified through the use of a

counter used to track the number of dependent tem-
plates remaining to be asserted. Specifically, a first addi-

. tional static sub-field, identified as #Acks, is used to

indicate the .number of dependent templates, while a
variable Cnt sub-field is used to indicate the number of
templates remaining to be asserted before the template
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may reexecute, The contents of the Cat sub-field are .

coupled to a down counter or decrement circuit 96, the
output of which is coupled to one input of 8 multiplexer

- 94. The output of muitiplexer 94 is coupled to the count

sub-field. A second input of multiplexer 94 is coupled to

receive the contents of the #Ack sub-field of the tem- -

-plate status word 218. The output of the Cnt sub-field is

also coupled to a zero reference comparator 97, to de-
termine when the contents of the Cat sub-field have
been decremented to zero.

In operation, when the template has been dcsxgnatcd
a3 the ‘master template and asserts a data processing
message on operation chaniel 15, the contents of the
Chat sub-field is reset to the value of the #Ack sub-field,
If the master control signal is asserted on link 71, multi-
plexér 94 couples the #Acks subfield to the Cnt sub-
field and an active load signal is coupled from OR gate
91 to the load input of the registér in which the Cnt
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sub-field is resident. Otherwise, multiplexer 94 selects
the decrement output to reduce the value in the Cnt
sub-field. Whenever the result buffer is accessed by a
master template, one of comparators 21CAL and
21CBL will supply an output through OR gste 91 to
cause a load signal to be applied to the Cnt subfield.
Because the master active control sigaal is not asserted
at this time, multiplexer 94 couples the decremented
count value to the Cnt sub-field. As a consequence, the
contents of the Cnt sub-field are decremented every
time the template’s result buffer is accessed. This pro-
cess continues until comparator 97 detects that the
count value has reached zero, at which time it produces
an output indicating the all dependent templates have
been asserted. ’

Distributed Acknowledgement

FIGS. 10 and 11 diagrammatically illustrate a mecha-
nism for generating an acknowledgement through the
use of a dual argument acknowledgement bus and status
word field. FIG. 10 illustrates comparator and logic

‘circuitry by which a dependent template provides an

indication of whether or not it has been asserted; FIG.
11 depicts comparator and logic circuitry. for determin-
ing if all dependent templates have been asserted.

As shown in FIG. 10, A and B argument address
buses 41 and 42 are respectively coupled to pairs of dual
comparators JICAR-A, 21CBR-A and 21CAR-B,
21CEBR-B. Comparators 21CAR-A and 21CAR-B are
coupled to compare the contents of each of the argu-
ment address buses 41 and 42 with the A argument
source field 21A, while comparators 21CBR-A and
21CBR-B sre coupled to compare the contents of each
of the argument address buses 41 and 42 with the B
argument source field 21B. If any of the comparators
detects a match between its monitored argument ad-
dreas and the stored source address field (representative
of earlier asserted templates), then the template is re-
quired to indicete status information on the appropriate
acknowledgément line 43A, 43B. Acknowledgement
link 43A. is used in the ¢ase of an earlier-asserted tem-
plate being referenced by a current master template on
A Arxg address bus 41, while acknowledgement link 438
is used in the case of an earlier-asserted template being
referenced by a current mastcr tempiate on B Arg ad-
dress bus 42,

The template is considered pending with respect to
an carlier-asserted template if it has not been asserted
since the prior template’s most recent result value be-
came available, which is determined by reference to the
state of the A argument available and B argument avail-
able flags in the template status word sub-fields
21SA,21SB. If the A argument availabie flag is set when
the prior template referenced by the contents of the A
argument .source field 21A is detected, then onc of
AND gates 101 and 102 will be enabled, causing an
active {low) signal to be asserted via one of NOR gates
on either (open, collector) Ack A line 43A or Ack B line
43B. Similarly, if the B argument available flag is set
when the prior template referenced by the contents of
the B argument source field 21B is detected, then cne of
AND gates 111 and 112 wxll be enabled, causing an
active signal to be asserted. :

Referring now to FIG. 11, which shows the mecha-
nism for determining whcthcr all dependent templates
have been asserted; acknowledgement bus portions 43A
and 43B are coupled to one input of respective AND
gates 212 and 122, second inputs to which are coupled
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to the outputs of comparators 21CAL and 21CBL,
described previously with reference to FIG. 8. When-
ever the result buffer is referenced by argument address
signals on argument address bus lines 41 or 42, its corre-
sponding comparator 21CAL, 21CBL will detect a
maich between the referenced template’s address and
the argument address, thereby providing an epabling
input to one of AND gates 121 and 122. If cither of
comparators 21CAL, 21CBL detects a match, then it is
known that the dependent templates are providing as-
sertion status information on the acknowledgement
lines 43A or 43B. An active acknowledgement line
indicates that there are still pending dependent tem-
plates to be ssserted. When the relevant acknowledge-
ment line goes high (inactive) at the time the associated
comparator 21CAL, 21CBL has detected a match, then
it can be inferred that ail dependent templates have been
executed, so that the referenced template may execute
{(subject, of course to the availability of its own operand
values). Upon this condition being satisfied, the output
of OR gate 123 sets the acknowledgement flag within
. the status word field 21S. This flag will be reset upon
execution of the template.

- As pointed out previously, the order of assertion
(becoming master/execution) of a template onto the
operation channel is dependent upon the template being
ready and not requiring execution of any other tem-
plate, and it must be selected for assertion by the active
template designator. FIG. 12 shows the configuration
of such a designator circuit for detecting whether a
template is ready to be asserted and for selecting which
ready template is the next in line to be asserted.

For this purpose the active template designator com-
pnsc:l a dasy-chain arbitration logic circuit 38 which
monitors the acknowledgement and A and B availabil-
ity flags within the status word field via an AND gate
131, the output of which is asserted active (RDY) if all
three flags arc set. This RDY signal is coupled to a
respective stage of a conventional linked AND gate
daisy chain arbitration circuit 38. A constant active
signal level is asserted at the input to the fst (top, as
viewed in FIG. 12) stage and is controllably propagated
down the chain in dependence upon the assertion of the
respective RDY signals from the template status word
fields. For a template Ti, if RDY is asserted and there
are no higher priority (up the chain} templates waiting
to be agserted, then a hold flip-flop HFF is set by a clock
signal CK, causing a MASTER i signal to become ac-
tive, indicating that template Ti is the new master tem-
plate. In response to this MASTER i signal, the tem-
plate enables the appropriate output drivers and resets
the status word flags,

In the foregoing description it has been assumed that
template arguments are generated by the execution of
other templates. However, it is occasionally necessary
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13, uses additional drivers between the srgument source
field and the data bus. The second, or dual level scheme,
shown in FIG. 14, empioys edditional fogic to transfer
immediste values from the address bus to the data bus.

Referring now to FIG. 13, there is shown a first mod-
ification of the operund generation mechanism de-
scribed above with reference to FI1G. 7, for supportiog
the use of immediate arguments. As shown in FIG. 13,
the operation channel 15 is modified to include a pair of
additional A and B argument type signal lines 41T and
42T to indicate whether or not the arguments are imme-
diate. These argument type signals (A Arg Type and B
Arg Type) are asserted by the master tempiate. If none
of these lines is active, its associated argument is imme-
diate rather that requiring direct addressing to an argu-
ment source field. Esch of links 43T and 42T is coupled
to (controllably) disable (in the case of an immediate
argument) a respective template address (label) compar-
ator 21CAL, 21CBL that is monitoring its associated
address bus, 30 23 to prevent any template, other than
the master template, from applying an argument value
to a data bus.

A pair of additional drivers 72AI and 72BI are cou-
pled to the respective A and B argument source entries
21A and 21B, for controllably asserting the immediate
arguments directly onto the data buses. These drivers
are controllably enabled by a pair of AND gates 147
and 148 which monitor a pair of status flag bits Ia and Ib
that are incorporated into the template status word 218,
These additional bits are active (logical 1) when the A
or B argument source flelds 21A or 21B contain imme-
diate arguments. Gates 147 and 148 are controlled by
the active template designator (FIG. 12) asserting an
active gsignal on master line 39M., Otherwise, if immedi-
ate flag bits Ia, Ib are not set, then via inverters 145, 154
and AND gates 146 and 149, drivers 72A and 72B arc
controllsbly enabled by the assertion of an active signal
on master line 33M.

The use of the additional immediate flag bits within
the status word field also affects the manner in which
the RDY sigral is generated. In sddition to requiring
the setting of the acknowledgement flag Ack, indicating
that all dependent templates have been asserted, either
the A or B availability flag is set, or the [a or Ib flags are
set indicating that the argument is immediate and its
value is resident in the corresponding argument source
field 21A, 21B. Logical circuitry for producing the
RDY signal in the case of an expanded status word field

to include immediate argunents includes OR gates 151,

55

to specify the value of an argument as a coustant,

namely, an immediate argument. To successfully sup-
port an immediate argument, the entries in the tem-
plate’s Argument Source fields 21A and 21B must be
capable of storing and using both template addresses
and constant values, In addition, during the formation
of a data processing message, a mechanism for applying
the constant to the operation channel must also be pro-
vided. Finally, the presence or use of immediate argu-
ments must not interfere with the acknowledgement
mechanism. In the explanation to follow, two mecha-
nisms for supporting immediate arguments will be de-
scribed. The first, or single level scheme, shown in FIG.
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152 and AND gate 153, as shown.

In addition to being coupled to disable compmtors
21CAL, 21CBL, argument type signal lines 41T and
42T are coupled to controllably. disable comparators
21CAR-A, 1CBR-A and 2ICAR-B, 21CBR-B of FIG..
10, to prevent the assertion of false acknowledgement
signals on the Ack A and Ack B lines.

FIG. 14 shows a second, or dual level, modification
of the opersnd generation mechanism of FIG. 7, for
handling both direct sddressing and immediate type
arguments, again usmg the A and B argument type lines .
41T and 42T, shown in FIG. 13, but with reduced logic
complexity. As shown in FIG. 14, a pair of additional A
and B .drivers 161 and 162 are coupled between the
respective A and B address and A and B data buses.
These additionsl drivers are controflably enabled di-
rectly by the respective A dnd B type lines. In the con-
ﬁgutatlon of FIG. 14, when the Ia flag is set, the value
is apphcd to the A Arg Address bus; however, : ﬁnvcr :
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161 is enabled, so as to assert the immediate value onto
the A data bus 32. Similarly, when the Ib flag is set, the
value is applied to the B Arg Address bus; however,
driver 162 is enabled, so as to assert the immediste value
onto the B data bus 33,

The data processing operations of the associative
communications architecture thus far described involve
the use of fixed operators, In a practical sysiem, how-
ever, function execution will involve conditional opera-
tors for flow control and decision making. In the discus-
sion to follow, the manner in which the architecture

5

described supra is modified to handle conditional opera-

tors, termed ‘switch’ and ‘sclect’, will be addressed.
Switch Template
A switch template, diagrammatically shown ia FIG.
15, initiates the execution of a data processing operation
in which a primary data operand A is made available to
one of two scts of prescribed recipient templates (0,1)

. depending on the value of a control Boolean operand B. 2

Any dependent template’s argument source entry will
reference only one of the two result values. Namely, the
value returned is always the template’s A argument,

. with the named result to which the value is returned

being defined by the Boolean value of the template’s B
argumeant. If the Boolean operand value is false (logical
0), the A operand value will be returned to the first
result, designated <switch label»>0.0, where< switch
iabel > is the contents of the switch template’s label
address field. Similarly, if the B operand is true (logical
1), the value of the A operand will be returned to the

. <switch fabel > 0.1 result. Because each template that is

dependent upon the switch template last scquired the
most recent of a pair of values referenced by it, a switch
template is inhibited from executing until all of its de-
pendent templates, for both result values, have been
executed.

The mechanism of a switch template, shown in FIG.
16, involves a minor madification of the basic template
data structure shown in FIG, 2, specifically the addition
of a result index line 521X to the result channel, which

appended to the result address to identify to which of
the two result elements the returned value is directed,
Generally, the result index will be a logical 0, referenc-
ing the first resuit element RO of the template (since
most templates have only single element results); for the
infrequent case in which the second result element R1 is
referenced, the result index is a logical 1.

The configuration of the modified signal processing
hardware within the temiplate necessary to support a
switch fanction is itlustrated in FIG. 17 as comprising
comparators 21CXA, 21CXB which are coupled to
compare the appended A and B index bits of the tem-
plate status word field 21S with the contents of the
result index line 52IX, The output of comparator
21CXA is logically ANDed with the output of compar-
ator 21ICAR In AND gate 201; the output of compara-
tor 21CXB is logically ANDed with the output of com-
parator 2XCBR in AND gate 202, For a template’s A
operand, comparator 21CAR. compares its contents
with the result address, as described previously, while
comparator 21CXA compares the bit on the result index

“line 521 with the A index bit of the status word field.

Only if both compare operations are true does the tem-
plate recognize the presence of its A operand and up-
dates its A availability bit. A similar operation is carried
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out with respect to the B operand, wsing its dedicated
comparator logic.

It should be noted that there is no need to specify
which of the two result elements from a switch template
is required by a master template argument since there is
only one available at a time from & given switch and the
current master template has already determined that the
one available is the one that it requires. Morcover, since
all dependent templates of a switch template must have
used its previous results before it can be asserted, the
distributed acknowledgement mechanism described
supra need not distinguish between templates accessing
result element RD and those sccessing result el
R1, 50 that it requires no madification in order to sup-
port a switch template.

The assertion of a switch template proceeds in the
same manner as a normal dyadic operator, placing its
address (label), opcode and A and B argument source
entries onto the operation channel 15. Functional com-
putation unit 13 returns the contents of the A data bus
32 to result data bus 53, the label to resulf address bus 52
and the appended (least significant) bit of the contents
of the B data bus 33 to result index line 52IX. Depen-
dent template then determine whether or not they are
able to use the result in accordance with the velue of the
index bit and the contents of their own extension bits, as
explained above.

Select Template

A select template, diagrammatically shown in FIG.
18, and the mechanism for the execution of which is
shown in FIG. 19, initiates the execution of a data pro-
cessing operation in which one of its two data operands
A and B is madc available, depending on the value of a
third, control Booclean operand Z. In order to be as-
serted, the control operand Z and the selected argument
(A or B) are required. To accommodate the additional
Z operand, the data structure is modified to include a Z
argument source field 21Z and to add a corresponding
Z argument available bit Z into the status word field
218S. In addition, the least significant bit (S} of the resuit -
data is latched as part of the template status word, so
that the template can hold the Boolean value of the Z
argument and can determine which of its A and B argu-
ments i8 to be applied to the A argument address bus of
the operation channel when the select template be-
comes A master template. ’

The signal processing logic for enabling the template
data structure to perform the select function is shown in
detail in FIG. 20 as comprising a fitst Z comparator

'21CZR which compares the entry in the Z argument

source field 21Z with the contents of the result bus 52,

4 second Z comparator 21CZA which compares the Z

argument with the contents of the A argument address
bus 43A and a third Z comparator 21CZB which com-
pares the Z argument with the contents of.the B argu-
ment address bus. The output of comparator 21CZR
sets a Z available flip-flop 21SZ within the template
status word 218 and loads an S flip-flop 218S with the
least significant bit S3ILSB of the result data bus 53. The
outputs of comparators 31CZA, 21CZB are coupled to
NOR gates 240 and 241, respectively, which are con-
troliably enabled by the Q output of Z latch 21SZ,
which is further coupled to on input of AND gate 231,
The Q output of S latch 2188 is coupled to NAND gate
212 and AND gates 223 and 224 and to OR gate 213. It
is complemented by .inverter 226 and applied to AND
gate 222, *
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The opcode field 210 is coupled to a decoder 211
which provides a first “select” output to each of
NAND gate 212 and AND gates 231, 223 and 243. A
second “other” output of decoder 211 is coupled to OR
gate 213 and to each of AND gates 221 and 242. The
output of NAND gate 212 is coupled to one input of
AND gate 214 & second input of which is coupled ta
master control line 39M, which serves as a clear or reset
input for the contents of the template status word. Mas-
ter control line 39M is further coupled to the clear
inputs of acknowledgement latch 21SACK and Z latch
215Z and to AND gates 215, 243, 252 and 253. A sec-
ond input of And gate 252 is coupled so the output of
AND gate 223, which is also complemented by inverter
251 and applied to a second input of AND gate 253.

The output of AND gate 253 is applied to the enable
input of driver 161, while the output of ANd gate 242 is
coupled to the enable input of driver 162, A pair of
additional drivers 211 and 220 are coupled to Z argn-
ment source ficld 21Z and B argument source field 218,
respectively. The output of driver 211, which is enabled
by the output of ANd gate 243, is coupled to B argu-

-ment address bus 42. The output of driver 220, which is

enabled by the output of AND gate 252, is coupled to A
argument address bus 41,

Logic circuitry for generating 2 RDY indication to
the template designator 38 over line 39K includes AND
gate 250, a first input of which is coupled to the Q out-

put of Acknowledgement Jatch 21SACK, and a second

input of which is coupled to OR gate 232, OR gate 232

‘i coupled to the outputs of zach of AND gates 221 and

231. AND gate 221 receives the Q outputs of the A and
B available latches 21SA and 215B and the other output
af decoder 211, The Q output of A available latch is also
coupled to AND gate 222, while the Q output of B
available latch is coupled to AND gate 224, The outputs
of AND gates 222 and 224 are coupled via OR gate to
AND gate 231.

In operation, opcode decader 211 examines the con-
tents of the opcode field and determines if the template
is to operate as a select template (asserting its ‘select’
output bit) or if the template is-another type (asserting
its ‘other’ output bit). If the tempiate is not a ‘select’
template, then gates 221,232 and 250 cause a RDY sig-
nal to be place on line 39R, when the A and B and ACK
latches 21SA, 218B, 21SACK are set (A and B.argu-

25

40

ments available and acknowledgement ACK flagsinthe -

status field are set. :

Om the other hand, if the opcode indicates that the
template is a sclect template, the Z argument must be
available; namely comparator 28CZR must have de-
tected a match between the contents of the result bus
and the Z argument source field 21ZZ, thereby setting
latch 2182 and enabling a second input of AND gate
231, The third input 6f AND gate 231 depends upon the
value of the least significant bit § of the result data bus.
If the bit is a 0, so that the Q cutput of latch is 0, AND
gate 224 is disabled, while AND gate 222 receivesa | on
its lnput coupled to inverter 226. To be enables the
second input of AND gate 222 must indicate that the A
argument is available (A availability latch 21SA is sct).
Alternatively, if the least significant bit S is a |, then the

B argument must be available, to enable the second

input to AND gate 224.

As pointed out previously, when a template becomes
a master template, it supplies operation data and reini-
tializes template status word 218, which is ordinarily
performed by clearing the A, B and ACK flags. For a
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select template, however, not all flags are necessarily
reset. When a template becomes a master only the argu-
ment available flag of the argument that is actually used
is cleared. Control logic for this purpose includes gates
212-215. The A available flag is cleared if the template
is not a ‘select’ template or, of it is a ‘select’ template, if
the value of the S bit is 2 0. The B available flag is
cleared if the template is not a ‘select’ template or, if it
is a ‘select’ template, if the value of the Sbitisa 1.

In the course of execution of a select template the Z
argument and one of the A and B arguments arc em-
ployed. For this purpose the Z argument is applied to
the B argument address bus of the operation channel] 15
vig driver 211. If the S bit is a 0, then driver 181 is
ensbled via AND gate 253, and the contents of the A
argument source field is asserted onto A argument ad-
dress bus 41. Thus, the A and Z arguments are asserted
and the B argument is saved for later use, as described
above. If the 8 bit is a 1, on the other hand, then driver
162 is ensbled via AND gate 242, and the contents of
the B argument source field is asserted onto B argument
address bus 42. The B and Z arguments are asserted and
the A argument is saved for later use.

Distributed acknowledgements are extendable to the
Z argument for the sclect template through the use of
comparators 21CZA and 21CZB to compare the con-
tents of Z argument field 21Z with the A and B argu-
ment addresses on buses €1 and 42, respectively, to
thereby determine the select template’s respoase on the
acknowledgement buses 43A and 43B. Gates 240 and
241 assert active signals on buses 43A and 43B when
either comparator detects a match and the Z bit is set,
indicating that the template has not been asserted since
its Z argument became available,

When all of the data structure and signal processing
mechanisms described thus far are incorporated into a
single template architecture, the expanded template
fields and template word status entries may be diagram-
matically represented by the data structures shown in
FIGS. 21 end 22, respectively. The comparator and
driver circuitcy and their associated communication
buses, together with the combined control logic there-
fore are depicted in F1GS. 23 and 24, respectively. To
simplify the circuitry, operand decoder employs only a
single output D to indicate that the template possesses

-select functionality. The ready signal RDY may be

represented by the Boolean expression:

RDY <~
-ACK'{A+I,4+S‘D}'{B+!3+S‘D] -
" Z41z4D})
Note that the participation of immediate values for the
Z argurnent, including Zyis shown by the logic of FIG.
24, When s szlect template becomes master, the values

s of the A and B argument type signal lines are defined in

accordance with the value of the $ bit of the status
word field. 14 or Ip flags are asserted on A argument

‘type line depending whether on not the template is a

select template. If it is, whether the value of Sisa O or
a | is controlling. 14 will be asserted on the B argument
type line if the template is a select tcmplate. otherwise,
Iy will be zsscrmd

Muln-nodc Architecture

The associative template-based data processing
mechanjsm described thus far is configured as a single,
self-contained . data processing station (or node),
wherein all operands employed in the course of the
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execution of data processing messages and all execution
results are exchanged between one template data stor-
age facility and one functionsl computation unit, In a
larger, system level architecture, comprised of multiple
nodes, each having its own dedicated functional compu-
tation unit and template storage facility, wherein oper-
and and result data are exchanged among the nodes of
the system, the associative cc ication mech

of the present invention may be extended to fnclhtatc
parallel computation throughput.

In the description to follow, for. purposes of provid-
ing an illustrative example of a multiple node architec-
ture, the system configuration will be considersd to
have a mesh topology, such as those illustrated in FIG.
25, in which each node is connected with and may
communicate with three nearest neighbor nodes. For
reference purposes, the exemplary node of interest will
be identified as a south (S) node, having ncighboring
north (N), east (B) and west (W) nodes with which it
shares data resources in the course of execution of its
own data processing operations and also in the course of

20

the execution of data processing operations by those -

ncighboring nodes, Namely, within an individual node
(e.g. & south node), a data processing operation defined
by a template stored within that node is always exe-
cuted by the functional computation unit within that
node. However, the operands required for and the re-
sults of that execution may be shared by templates in
nearest neighbor (north, east and west) nodes. In order
to effect this sharing of data resources, the architecture
of each node is configured to provide an inter-node
associative communication capability, similar to that of
an individual node, for those aspects of a template
which may depend upon or be necessary for the execu-
tion of a template in any of its neighboring nodes, by
assigning associstive communication control functions
to dedicated storage and supervisory units within each
node.

More particularly, as dmgrammaucaﬂy illustrated in
FIG. 26, the architecture of an individual node (8) in-
cludes a multinode communications channel interface
301 containing inter-node communication links 303 that
extend to its three neighboring nodes (N, E, W) and
through which data resources are shared. An individual
inter-node link is shown in FIG. 27 as containing an
operand address segment OA, an operand value scg-
ment OV, a result segment R and an ncknowledgc seg-

- ment A.

The operand address segment OA conveys the ad-
dress of the template in which the operand is to be
obtained, while the operand value segment OV conveys
the actual operand value to be used in the execution of
a dats processing operation by the functional computa-
tion unit within the node to which the operand value is

. transmitted. The result segment R conveys the result

address and an indication of the availability of the result
of a data processing operation executed by the func-
tional computation unit of one node to each of its near-
est neighbor nodes, The acknowledge segment A con-
veys acknowledge information consisting of the ac-
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knowledge condition state and is used to set the ac-

knowledge flags of a selected template.

Within the node (8) itself, sach of operand address
segments OAE, OAW. and OAN from neighboring
nodes B, W and N and an internal operand address link
OAS from a program ciecution coordinator 304 {to be
described below with reference to FIG. 30) within

which the data flow graph topology of that node is
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stored, is coupled to a data store 305 (to be described
below with reference to FIG. 28). Data store 305 stores
operands to be employed in the execution of data pro-
cessing operations by templates contained within that
node and templates of its neighboring nodes.” It also
stores acknowledgement information that is made awvail-
able to the program execution coordinator 304 over link
306.

Within data store 308, operand addresses conveyed
by local operand address link OAS and internode links
OAE, OAW gnd OAN are employed to access operand
values stored in an operand memory within the data
store 305; accessed values are coupled links OVE,
OVW, OVN, OVS to an operation packet builder 313
(to be described below with reference to FIG. 29),
which essentially comprises a set of temporary holding
registers in which the various component parts of a data

. processing message, intended for transmission over an

internal execution message link 312 to a local functional
computation unit 314, arc assembled.

The results of imstruction execurion by functional
computation unit 314 are coupled over an internal result
1 RS to data store 305, program
cxecution coordinator 304 and over respective portions
RE, RW and RN of result segment R to the program
execution coordinators in neighboring nodes E, W and
N. The result value is stored in the operand memory
within the data store 305, while the result address and
the Z (least significant result value) bit are applied over
result address segrment R.

The opcodes of the instructions to be executed within

[ole ations ¢k

-the local node (8) are stored (in terms of template ad-

dress) in.an opcode store (memory) 321. In response to
a template {opcode) address coupled onto link 325 by
program execution coordinator 304, opcode store 321
couples the opcode over link 323 to operation packet
builder 313, wherein data processing messages are as-
sembled, as noted above. Operation packet builder 313
is alsa coupled (over link 325) to receive the template
address ‘from program execution coordinator 304, -in
order to identify the template originating the data pro-
cessing execution request. As noted above, the operand
values of data processing messages that are assembiled
by operation packet builder 313 are coupled over inter-
node operand value links OVE, OVW and OVN (from
neighboring nodes E, W and N} and local opcrand

-value link OVS from data store 305,

Data Store (FIG. 28)

Data store 308 contains a pair of dual-port operand
(result value} data memories 331 and 332, in which
operands (result values) are stored for use by any of the
four interconmected (E, W,'N, §) nodes. The use of a
pair of redundant data memories (and attendant access
control circuitry) allows two operands to be resolved
simultancousiy, thereby increasing the -availability of |

- operand data.. Specifically, each of the two memories

performs a read and a write in the same cycle. Thus, the
functional computation unit writes into its node’s oper-
and memory which two read addresses are being
served. ) ) ) .

The writing of result values into memories 331 and
332 occurs as a result of operation of the local func-
tional computation unit, with the result value being
coupled over result data input link RD and the template
address bemg coupled over link RA, to identify that
location in cach of the data memories in which the
result value is to be stored,
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The reading of operand data values out of memories
331 and 332 and the handling of acknowledgements is

effected through respective sets of buffer registers 335 .

and 336 and associated muitiplexers 337 and 338 under
the supervision of an arbitration logic circuit 341.

More particularly, each of buffers register scts 335
and 336 containg four data and address register units
351E, 351W, 351N, 3515 and 352E, 351W, 351N, 3518,
respectively, coupling operand address links QAE,
OAW, OAN, OAS and operand valuc links OVE,
OVW, OVN, OVS with data store operand data links
355D, 356D and data store operand address links 355A,
386A, through which operand values stored within data
memories 331 and 332 are accessed. Each data and
address register unit contains a pair of registers, one for
storing operand data that is read out from memory and
another for storing acknowledgement status informa-
tion to be forwarded to the program execution coordi-
nator and an operand address for accessing the operand
value that is to be read out of memory and coupied to
the operation packet builder of the requesting node.

Which operand address link will be serviced is han-
dled by multiplexers 337 and 338 under contwrol of an
arbitration logic circuit 341, which is preferably imple-
mented as a round-robin arbitration circuit to ensure
that no reguesting link will be locked out. Whenever the
contents of an operand address register are coupled
over one of links 355A, 356A to access an operand from
onc of data memories 351,352 the associated acknowl-
edgement status information is coupled over link 306 to
program execution coordinator 304,

Operation Packet Builder (FIG. 29)

As noted previously, the operation packet builder 313
assembles data processing operation message packets
for delivery to functional computation unit 314. For this
purpose, the packet builder is coupled to.receive an
opcode from opcode store 321, a result address from

‘data store 35 and, for each operand, an additional

neighbor interface address which specifics a neighbor
node and from which of the memories of the data store
an operand is to be accessed. Because the delay between
the initiation of the execution of a data processing oper-
ation and the arrival of an operand can vary, and be-
cause there are multiple (four in the present example)
sotrces of operand values, throughput can be enhanced
by preparing, concurrently, a plurality of template data
processing messages. To accommodate multiple tem-

- plate messages, the operation packet builder is essen-

tially configured as a set of buffers in which opcode and
result addresses are temporarily stored, while operands
are being fetched from the data store. Once the operand
data values have been obtained from the data store, the
assemblied message packet is transmitted to the func-
tional computation unit,

The buffer circuitry of which operation packet
builder 313 is configured is disgrammatically shown in
FIG. 29 as 2 first set of four packet registers 361, 362,

‘363 and 364, Each register encompasses a packet field

that.contains  the opcode, result (originating template)
address, the A operand and the B operand. Associated
with the first register set is a second register set, con-
‘taining -four acighbor/data memory registers 371, 372,
373 and ‘374, Each of the registers of the second set

“stores three. bits, for designating in which of the four

nodes the operand value is stored and which of the data
memories (331 or 332) of that operand value-storing
node contains the operand. Once an operand value (A
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operand or B operand) has been accessed from the data
store 305 and stored in the operand field of the desig-
nated packet ragister, the contents of the address regis- -
ter within the data store that had been storing operand
address is cleared, so that it may be used by another
template. Whether or not an operand address register
has been cleared so that it may receive a new operand
address is indicated to a dispatcher logic unit within
program execution coordinator 304 be described below
with reference to FIG. 4L

Program Execution Coordinator (Representative
Templute Shown in FIG. 30}

- As noted previously, the program execution coordi-
pator stores data flow program execution topology,
maintsains the program control state and determines the
order in which program templates are asserted. In addi-
tion, it reccives acknowledge synchronization signals
from the program execution coordinators of neighbor-
ing nodes indicating whether or not any of their tem-
plates still require the availability of an operand that is
associated with a template to be exccuted in that node.
Finally, the program execution coordinator monitors
the result link from the functional computation units in
each of its neighboring nodes in order to synchronize
the operation of the node with the completion of opera-
tions in other nodes and to update its control state.

For this purpose, the program execution coordinator
is comprised of memory for storing each field of the
templates of that node, except for the result values
(which sre retained in the data store, as explained su-
pra), the opcodes and (condition determination) com-

_parator logic, coupled with the respective fields of the

templates, for monitoring, in substantially the same
manner a8 & single node architecture described above,
the result and acknowledge signal commumcanon links
of the local and neighboring nodes.

Result Bus Comparisan

Referring now to FIG. 30 there are diagrammatically
illustrated the respective fields of an individual one of
the templates stored within the program execution co-
ordinator and the mechanism through which the pro-
gram execution coordinator monitors the result address
link from its local node and those of neighbor nodes for
setting the A, B and Z flags, Because of the static alloca-

- tion of dataflow templates, the operand referenced by

an operand sddress field can come from only one of the
local node and the thre:‘n'eighbon’ng nodes; it is not
variable. As a comsequence, it i necessary to monitor
only one of the four result address buses, the identity of
which is specifiable by the two most significant bits of
the template address.

To this end, rather than provide respcctwc Aand B
operand address and Z address comparators for each of
the four result buses, each template utilizes only one
comparator for each of the respective operand and 2
address fields, with the input to the comparator being
defined by a multiplexed connection to each bus. As
shown in FIG. 38, respective comparators 381, 382 and
383 are coupled to compare the A operand, B operand
and Z address values of a respective template 300 with
the outputs of respective mutliplexers 391, 352 and 393.
Each multiplexer haa four inputs coupled to the result
links of nodes B, W, N, § and a select input which is
coupled to the two most significant bits of the template
address, 50 aa to designate which of the result links will
be coupled to its associated comparator. The use of a
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multiplexer and comparator pair significantly reduces
the hardware complexity (transistor count and pawer
consumption) that would be encountered using a sepa-
ate comparator for each bus.

Acknowledgement Handling

In the single node architecture, described above,
acknowledgement signaling is essentially defined by
two operations: 1-generating the acknowledge condi-
tion state; and 2-setting an acknowledge flag. Since, in a
single node architecture all templates reside in the same
node, both of these operations may be carried out at the
same time. In a multinode architecture, however, a
dependent template may be located in any one of four
different nodes, the data processing operations within
which are being carried out by independent functional
computation units. Still, whenever a node creates an
acknowledge condition signal, that signal needs to go to
only the node to which the operand data request is
directed. All templates in one node that use the results
of a template in another node monitor each other to
determine whether every template in that node is fin-
ished with the operand of interest. When the operand is
no longer required by any template in that node an
acknowledge condition signal is generated.

The handling of acknowiedgements is effected by
expanding the template acknowledgement field (shown
in FIG. 38) and logically operating on & sei of four
acknowledge flags and associated mask bits that make
up the expanded field, using the circuitry shown in FIG.
31. As shown in FIG. 30 the expanded acknowledge
field includes a masking ‘expected’ bit X, which is set if
an acknowledgement is still expected, and a ‘received’
bit R, which indicates that an expected acknowledge-
ment has in fact been received, for each of the four
nodes, For each of the nodes E, W, N, §, a respective
one of AND gates 410, 402, 404, 404 is coupled to the X
and R bits and hss its output coupled to NOR gate 408.
[f there are no templates within a neighboring node that
-require the use of a template in the local node then no
acknowledgement is expected and the X bit is not set. If
this mask bit has been set, then tpon a change in state of
the acknowledge ‘received’ bit R, the output of its asso-
ciated AND gate will change state, thereby applying a
8 to that node's input to NOR gate 405. Upon the ac-

" knowledgements for alf four nodes having been satis-
fied, the output of NOR gate changes state to one bit,
thereby asserting a one on its input to template-ready
AND gate 406. Other inputs of AND gate 406 are cou-
pled to receive the A, B and Z flags of the template 38¢.
Upon ‘each of the flags (A and B operand, Z bit and
Acknowledge) being set, the output of AND gate 406
changes state, indicating that the template may be as-
serted.

Template Execution

The execution of a template in the multi-node archi-
tecture proceeds as follows. Again, cansidering the
local node of interest to be the south node §, let it be
assumed that the A operand is to be obtained from the
{ocal node and its B operand from neighiboring node E;
in addition, the result values are used by two local (node
§) recipient templates and one neighboring (node E)
template, as diagrammatically illustrated in FIG, 32.

An execution cycle begins with the template being in
condition to be asserted to its local functional computa-
tion unit. The program execution coordinatos dispatch-
ing logic, described above with reference to FIG. 31,
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selects the pending template for execution when a com-
munication port to the local data store 3085 (which
contains the A operand) and a similar port to the data
store 305¢ in the east node E containing the B operand
are available and transmits the address of the pending
template to the opcode store 321 and to operation

. packet builder 3135. The contents of the A and B oper-

40

and address fields with the program execution coordi-
nator 3135 are asserted onto the A and B operand buses;
the A operand address is applied to the available access
port of data store 3055 and the B operand address is
applied to the available access port of data store 308z in
neighboring node E.

As explained above, for each of the operand fetches
an acknowledgement condition state signal is generated;
the other templates in local node S monitor the opera-
tion channel 301 and if cither of their A and B operand
fields matches either of the A and B operand addresses
that have been asserted onto the operation channel,
these templates assert an active signal on the wired-OR

‘acknowledge signal line, indicating that these templates

still require that operand to be available. Otherwise,
their respective acknowledge lines are not asserted
active. As pointed out above, the states of these lines tell
the source template whether or not there are other
templates in the local node § for which that operand
must remain available.

Cuoce the pending template has been selected for
execution, operation packet builder 313 selects an avail-
able buffer and stores the identity of the data store ports
that are to supply the A and B operands. The identity of
the asserting template is stored in the result ficld and
applies its address to the opcode store 321, 50 that the
opcode associated with that template is read out of the
opcode store and loeded in the opcode field in the
packet builder buffer. :

As described previously, the data store arbitration
logic is preferably implemented as a round-robin mech-
anism. Consequently, within neighboring node E from
which the B operand is to be accessed, each -of the
address buffers is examined.. When the port for the as-
serted template is accessed, the data memory reads the

- contents of its addressed value and returns it to the

dedicated output’ buffer of the local node, which
supplies the operand directly to thic packet builder. At
the same time, the acknowledge condition state that
accompanies the operand -address is coupled. over link
306 to the program execution coordinator. The address
selects the operand source template and the acknowl-
edge condition state is loaded into the acknowledge flag
associated with local node 8. : :

" 'When the contents of each of the fields of the request-
ing template’s buffer within the operation packet
builder 313 have been filled, the buffer’s ready flag is set
(the output of AND gate 406 is enabled). The functional
computation unit detects the-assertion of the ready flag
on the operation channel and acquires the contents of

. the data processing message within the buffer. -

60

After processing the instruction, functional computa-
tion unit 314 places the result value and the address of

“the asserted template on the result channels to each of
‘the nodes. The result value is stored in each of the re-

dundant pair of data memories 351, 352 within the data
store 3055 of the local node: S and the result address is
distributed over the result bus to the program execution
coordinators of each of the four nodes E, W, N, S.
Within each of these nodes, the result address com-
parators of each template monitor the result buses of the
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nodes from which their operands are derived. The A
operand comparator of the source template in local
node S monitors the local result bus. When the operand
source templates arc asserted, each comparaior deter-
mines the availability of the resuit value by detecting a
match between the contents of its operand address field
and the result address bus, In response to a match, the
corresponding A or B flag is set.

Thereafter, as other templates, which are dependent
upon the results of the local template’s execution, are
asserted they acoess the data memory in local node § to
obtain ity result value and they return acknowledge
condition state signals to the acknowledge ports of the
program execution coordinator. When a dependent
template in neighboring node E is asserted, there are no
other tempiates using local node S%s result value as

" operands, so that the acknowledge condition state that

is returned to the local program execation coordinator
causes the corresponding acknowledge condition flag
to be set. When the first of the two dependent templates
in node S is asserted, the acknowledge flag will not be
set since the second dependent template has yet to be

5

asserted and still requires the result value to be avail-

able. Once the second template is asserted, however, the
acknowledge flag in node S is set (there are no other
templates in'node S requiring the result value to remain
available for their use).

With both the neighboring node template and the
local node's two operations completed, both the A and
B flags are now set, indicating that both operands are
available. The acknowledge flag in focal node S and
that associated with the neighbor node E containing the
dependent template are set; also, the masks (X) bits of
the remaining two acknowledge flags (for nodes W and
N} are set since these nodes contain no templates that
arc dependent on the template of interest in node S. As
a consequence, each of AND gates 401404 provides an
enable input to ready AND gate 406 (FI1G. 32), so that
its outpus changes state indicating that the template is
ready to be asserted again.

As will be appreciated from the foregoing descrip-
tion, the present invention provides a computer archi-
tecture which significantly reduces the substantial tem-
poral overbead and memory bandwidth requirements of
token-based static date flow computer architecturss by
replacing token-based processor communications with
associative processing, similar to that used for associa-
tive memories, through Wwhich plural data execution
control structures, or templates, of the system are inter-
connected with one another and with the data process-
‘ing resources of the system, so that they may monitor
and respond to operations carried out with respect to all
other components of the system simultaneously,
thereby increasing data processing execution speed and
-enhancing the efficient use of system memory.

‘While we have shown and described several embodi-
ments in accordance with the present invention, it is to
be understood that the same is not limited thereto but is
susceptible to numerous changes and modifications as

known to a person skilled in the art, and we therefore

do not wish to be limited to the details shown and de-
scribed herein but intend to cover all such changes and

. modifications as are obvious to one of ordinary skill in

the art. 7 :
What is claimed is:
1. A data processing system comprising:
first means for controllably executing a data process-
ing operation on datu supplied thereto;
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second means for controlling the supply of data to be
processed by said first means and including means
for stosing a plurality of data processing execution
control structures, each respective one of said data
processing execution control structures containing
first information representative of the identification
of that data processing execution control structure,
second information representative of a data pro-
cessing operation to be performed by said first
means, third information representative of data to

- be processed by said first means, fourth information
representative of the status of a data processing
execution cycle, and fifth information representa-
tive of the result of a date processing operation
carried out by said first means;

a first communiczations channe! for coupling data and
control messages from said second means to said
first means; and

a second cc | for coupling the
results of a data processing operation carried out
by said first means to said second means; and
wherein

each of said plurality of data processing execution
control structures stored by said second means is
associatively coupled with and simultancously and
continuously monitors said first and second com-
munications channels, and said second means in-
cludes means for asserting onto said first communi-
cations channel a data processing control message
containing first and second information derfived
from a.selected data processing execution control -
structure requesting the execution of a data pro-
cessing operation by said first means, and third
information derived from fifth information stored
within prescribed ones of said plurality of data
processing  execution -control structures; and
wherein

said first means includes means for asserting onto said
second communications channel a data processing
output mesaage containing the identification of said
selected data processing cxecution control struc-
ture and the result of the data processing operation
carried out in accordance with the second and
third information asserted onto said first communi-
cations chennel,

2, A data processing system comprising:

a functional computation unit in which data process-
ing operations are executed on operand datz in
accordance with an opcode supplied thereto, so as
to produce output data representative of the result
of the execution of a data processing operation;

a storage unit in which are stored a plurality of data
processing execution control structures .each of
which comprises a plurality of entries including an
address for identifying that data processing cxecu-
tion control structure, an opcode for defining a
data processing operation to be performed by said
functional computation unit, a plurality of operand
source addresses for specifying the addresses of
data processing execution control structures con-
taining operands to be employed in the execution
aof said defined data processing operation, the siatus
of said data processing execution control structure
with respect o its associated data processing oper-
ation and a result entry in which the output data
produced by said functional computation unit as a
result of its execution of & data processing opera-

jcations ch
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tion requested by that data processing execution

control structure is stores;

a first communications channel, coupled between said
storage uait and said functionat computation unit,
and being monitored simultaneously by each of the
data processing execution control structures of said
storage unit, for conveying data processing request
messages from said storage unit to said functional
computation unit;

a second communications channel, coupled between
said functional computation unit and sdid storage
unit, and being monitored simuitaneously by each
of the data processing execution control structures
of said storage onit, for conveying output data
from said functional computation unit to said stor-
age unit; and
control unit, coupled with said storage unit, for
controliably causing a dats proceasing message to
be asserted onto said first communication chaonel
in accordance with the contents of a selected one of
said data processing exccution control structures,
said data processing message including the con-
tents of the address and opcode entries of said se-
lected data processing execution control structure
and operands specified in accordance with the
operand source address entries of said selected data
processing execution control structure, and for
causing output dats, produced by said functional
computation uait as a result of a data processing
operation executed in accordance with said data
processing message and asseried onto said second
communications channel by said functional compu-
tation umit, to be captured in the resuit entry of said
selected data processing structure.

3. A data processing system according to claim 2,
wherein a respective data processing execution control
structure includes means for monitoring said first com-
munications channel and asserting the contents of its
result entry onto said first communications channel in
response to recognizing its address having been asserted
thereon, so that said result may be employed as an oper-
and for the execution of & data processing operation by
said functional computation unit.

4. A data processing system according to claim 3,

1)

‘wherein the status entry of a respective data processing

execution control structure includes acknowledgement
information representative of whether any other data
processing execution coantrol structure of said storage
unit requires the use of the contents of the result catry
of said respective data processing execution control
structure as an operand.

8. A data processing system according to .clsim 4,
wherein the status entry of a respective data processing
execution control structure includes operand availabil-
ity information representative of whether the result
entry of another data processing execution control
structure, whose address is defined by the contents of a
source address entry of said respective data processing
execution control structure, contains an operand re-
quired for the exccution of a data processing operation
defined in accordance with opcode entry of said respec-
tive data processing execution control structure,

6. A data processing system according 0 claim 5,

- ~wherein a respective data processing execution control

structure further includes means for indicating the

" readiness of said data processing execution - control
structure to have 2 data processing message asserted on,
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said first communications channel in accordance with
the contents of said status eatry.

7. A data processing system according to claim 6,
wherein said indicating means iscludes for indicating
the readiness of said data processing execution control
structure to have a data processing message asserted on
said first communications channe} in response to said
acknowledgement information being representative
that no other data processing execution control struc- .
ture of said storege unit requires the usc of the contents
of the result entry of said respective data processing
exccution control structure as an operand, and that said
operand availability information is representative that
all. operands required for the execution of a data pro-
cessing operation defined in accordance with opcode
entry of said respective data processing execution con-
trol structure are available.

8. A data processing system according to claim 7,
wherein said control umit includes means for clearing
the contents of the acknmowledgement and operand
availability information within the status entry of said
respective data processing execution control structure
in the course of causing a data processing message asso-
ciated with said respective data processing execution
control structure (o be asserted onto said first communi-
cations channel.

9. A data processing system according to claim 2,
wherein the status entry of a respective data processing
execution controf structure includes operand availabil-
ity information representative of whether the result
entry of another data processing execution control
structure, whose address is defined by the contents of a
source address entry of said respective data processing
execution control structure, contains an operand re-
quired for the execution of a data processing operation
defined in accordance with opcode entry of said respec-

tive data processing execution control structure,

10. A -dats processing system according to claim 9,
wherein said second communications channel includes a
data portion over which said output data is conveyed
and a result address portion over which the address of
an output data recipient data processing execution con-
trol structure is conveyed, and wherein a respective
data processing exccution control structure includes
means for comparing its operand source address entries
with the contents of the address portion of said second
communications channel and causing said operand
availability information of said status entry to indicate
that an operand entry required for the execution of a
data processing operation defined in accordance with
an opcode entry of said respective data processing exe-

“cution control structure is available in the result entry of

another data processing execution control structure
whose address matches one of the operand source ad-
dress entries of said respective data processing execu-
tion control structure.

11. A data processing system according to claim 10,
wherein said second communications channel further
includes a result index portion for identifying one of the
operand source entries of a data processing execution
control structure and said comparing means includes
means for causing said operand availability information -
of said status eatry to indicatc that an operand entry
required for the execution of a data processing opera-
tion defined in accordance with an opcode entry of said
respective data processing execution control structure
is available in the result entry of another data processing
execution control structure whose address matches the
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opetand source address entry of said respective data
processing execution coutrol structure as identified by
said result index portion,

12. A data processing system according to claim 2,
wherein a data processing execution control structusre
further includes means for controllably enabling the
contents of an operand source address entry to be di-
rectly asserted as an operand for the execution of said
defined data processing operation.

13. A data processing system according to claim 2,
wherein said first communications channel includes a
data portion over which operands are conveyed, an
address portion over which the address of a selected
data processing execution controf structure is conveyed
and an opcode portion over which the opcode entry of
a selected data processing exccution control structuore is
conveyed, and further including an intra data process-
ing execution control structure address link over which
operand source addresses are conveyable among the
data riocessing cxecution control structures of said
storage unit, and wherein 2 respective dsta processing

.execution control structure includes means for compar-

ing its address with the contents of said intra data pro-
cessing exccution control structure address link and
causing the contents of its result entry to be asserted
onto aaid data portion of said first communications
channel, in response to detecting a match between its
address and the contents of said intra data processing
execution control structure address link.

14. A data processing system according to claim 13,
wherein a respective data processing execution control
structure includes means for controilably asserting its
operand source addresses onto ssid intra data process-

ing execution controf structure address link in the

course of the assertion of a data procasmg message, and
wherein said second communications channel includes a
data portion over which said output data is conveyed
and a result address portion over which the address of
an output data recipient data processing execution con-
trol structure is conveyed, and wherein a respective
data processing - execution control structure includes
means for controllably causing said operand address
asserting means to assert an operand source address
onto seid intra data processing execution control struc-
ture address link in accordance with the contents of the
address partion of said second communications channel.

15. A data processing system according to claim 14,
wherein said codtrollably causing mesns includes means
for controllably causing said operand address asserting
means (o assert a selected operand source address onto
said intra data processing execution countrol structure

address link in accordance with the contents of a pre-

scribed portion of the daza pomon of said second com-
munications channel.
"16. A data processing system comprising:
first means for controliably executing a data process-
ing operation on data suppiied thereto;

* second means for controlling the supply of data to be
processed by said first means and including means
for storing a plurality of data processing execution
control structures, each respective one of said data
processing execution ¢ontrol structures containing
first information representative of the identification
of that data processing execution control structure,

" second information representative of a data pro-
cessing operation to be performed by said first
means, third information representative of data to
be processed by said first means, fourth information
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representative of the status of a data processing

execution cycle, and fifth information representa-

tive of the resuit of & data processing operation
carried out by said first means;

6 first communications channel for coupling data and
control messages from said second means to said
first means; and

8 second communications channe] for coupling the
results of a data processing operation carried out
by said first means to said second means; and
wherein

cach of said plurality of data processing execution
control structures stored by said second means is
-associatively coupled with and simultaneously and
continuously monitors said first and ‘second com-
munications channels for the presence of said first
information having been asserted thereon and, in -
response to detecting the presence of its identifica-
tion, controllably interfaces prescribed information
associated with the execution of a data processing
operation, and said second means includes means
for asserting onto said first communications chan-
nel & data procsssing control message containing
first and seccond information derived from a se-
lected data processing execution controf structure
requesting the execution of a data procesaing oper-
ation by said first means, and third information
derived from fifth information stored within pre-
scribed ones of said plurality of data processing
execution control structures; and wherein

said first mueans includes means for a.sscmng onto smd
second communications | a data proc 3
output message containing the identification of said
sclected data processing execution control struc-
ture and the result of the data processing operation
carried out in accordance with the second and
third information asserted onto said first communi-
cations channel.

17. A data processing system comprising:

a plurality of data processing nodes mh of which
includes
a functional computation unit in which data pro-

cessing operations are executed on operand data
in accordance with sa opcode supplied thereto,
30 as to produce output data representative of
the result of the execution of s data processing
operation,

a program execution coatrol unit which contains a
plurality of data processing execution control
structures, ach of which data processing execu-
tion control structures comprises a-plurality of
entries including an address for identifying that
data processing execution control structure, a
plurality of operand source entries for specifying
the addresses of operands to be employed in the
execution of a data processing operation associ-
ated with that data processing execution control
structure, and the status of said data processing
execution control structure with: respect to its
associated data processing operation,

opcode storage means, coupled-to said program
execution control unit, for storing a plurality of
opcodcs mspectsvc!y associated with said plural-
ity of data prccemmg execution control struc-

tures, & respectivé opcode defining a data pro-

‘cessing operation to be performed by said func-
tional computation unit,
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operand storage means, coupled to said program
execution control unit, for storing a plurality of
result cotries in which output data produced by
said functional computation unit as a result of its
execution of & dats processing operation re-
quested by a dats processing execution control
structure is stored,

data processing I bly , coupled
to said program execution control unit, said op-
code storage means and said operand storage
means, for assembling a plurality of data process-
ing messages to be forwarded {o said functional
computation unit for execution, a respective data
processing message including the identification
of a respective data processing execution control
structure, the contents of respective result
entries identified by operand source addresses of
said respective data processing execution control
structure, and the opcode associated with said
respective data proccssmg execntion control
structure, and

a first communications channel, coupled between
said data processing measage assembly means
and said functionsl computation unit, and being
monitored simultaneously by each of the data
processing execution control structures of said

32

structure in any of said plurality of nodes, whose ad-
dress is defined by the contents of a source address
entry of said respective data processing execution con-
trol structure, contains an operand required for the
execution of a data processing operation defined in
accordance with opcode entry of said respective data
processing execution control structure.

19. A data processing system according to claim 18,
wherein, within each node, said second communica-
tions channel includes a data portion over which output
data from said functional computation unit is conveyed
and & result address portion over which the address of
said respective data processing execution control struc-
ture is conveyed, and said program execution control
unit includes means for comparing the operand source
cotries of aaid respective dats processing execution
control structure with the contents of the address por-
tion of said second commuaications channel and caus-
ing said operand availability information of said status
entry to indicate that an operand required for the execu-
tion of a data processing operation defined in accor-

- dance with an opcode associated with said respective

program execution control unit, for conveying -

dats processing request messages from said data
processing message assembly means to said func-
tional computation unit,
second communications channel, coupled be-
tween said functional computation . unit,  said
program execution control unit storage unit and
said operand storage meaas, and being moni-
tored simultaneously by each of the data process-
ing execution control structures of said program
exccution - control ‘unit, for conveying output
data from said functional computation unit to
said operand storage meaxns and the identification
of the data processing execution control struc-
ture for which a data processing request message
has been processed by said functional computa-
‘tion unit to said program execution control unit;
first internode communication channel means, cou-
pled to the second communication channel of each
of said plurality of nodes, for simultaneously cou-
pling the identification of the data processing exe-
cution control structure for which a data process-
ing request message has been processed by its asso-
ciated functional computation unit to the program
execution control unit in each of said nodes; and
second internode communication channel means,
coupled to the opcmnd storage mesns, data pro-
cessi bly means and program exe-
cution control means of each of said nodes, for
enabling the operand addresses of a data processing
execution coatrol structure stored within the pro-
gram execution control unit of a node to be simulta-
neously preseated to the operand storsge means of
each of every other node, and for cnabling operand
value stored in any node to be simultaneously pres-
ented to the data proccssmg message assembly
‘means of any node.
1B. A data processing system. accardmg to claim 17,
wherein the status entry of a respective data processing
execution control structure includes operand availabil-
ity information representative of whether the result

»

data processing execution control structure is available
in the operand storage means of that one of said nodes
which contains the data processing execution control
structure whose identification matches one of the oper-
and source address entries of said respective data pro-
cessing execution countrol structure.

20. A data processing system according to claim 19,
wherein said second communications channel further
includes a result index portion for identifying one of the

- operand entries of a data processing exccution control

40

30

60

structure and ssid comparing means includes means for
causing said operand availability information of said
status entry to indicate that an operand entry required
for the execution of a data processing operation defined

in accordance with an opcode entry of said respective

data processing execution control structure is available
in the operand storage means of g node containing the
data processing execution control structure whose ad-
dress matches the operand source address entry of said
respective data processing execution control structure
as identified by said result index portion. .

21. A data processing system according to claim 17,
wherein, with a node, said operand storage means in-
cludes means for monitoring said first. internode com-..
muaications channel means and asserting therean the
contents of an operand entry, in response to recognizing
the address of a data processing execution control struc-
ture contained within the program execution control
unit of that node having been asserted on said first inter-
node communications channel means, so that said oper-
and entry may be employed as an operand for the exe-
cution of a data processing operation by a functional
computation unit in one of said nodes.

22. A data processing systern according to claim 21,
wherein the status entry of a respective data processing
execution control structure contained within the pro-
gram execution control unit of a node includes ac-
knowledgement information representative of whether
snother data processing execution control structure of
any of said nodes requires the use of the operand con---

© tained within the operand storage. means of said node

entry of another data processing execution control

0326

whose address corresponds to identity of said respective
data processing execution control structure.

23. A data processing system according to claim 22,
wherein the statug entry of said respective data process-
ing execution control structure includes operand avail- -
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ability information representative of whether the oper-
and storage means of any node has an address, which is
defined by a source address entry of said respective data
processing execution control structure and contains an
operand required for the execution of a data processing
operation, defined in accordance the opcode associated
with said respective data processing execution control
structure.

24. A data processing system accordiag to claim 23,
wherein the program execution ¢ontrol unit of a node
includes means for indicating the readiness of said re-
spective data processing execution control structure to
have a data processing message asserted oo said first
communications channel in accordance with the con-
tents of gaid status entry. o

25, A data processing system according to claim 24,
wherein said indicating means includes for indicating

0327

5

20

25

30

35

4

the readiness of said respective data processing execu-
tion control structure to have a data processing message
asseried on said first communications channel, in re-
sponse to said acknowledgement information being
representative that no other data processing execution
control structure in any of said plurality of nodes re-
quires the use of the contents of a storage location of the
operand storage means of said anode, the address of
which storage location is the identity of said respective
data processing execution control siructure and that
said operand availability information is representative
that all operands required for the execution of a data
processing operation defined in accordance with the
opcode of said respective data processing execution

control structure are available,
L L] * -
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6,018,353

1
THREE-DIMENSIONAL GRAPHICS
ACCELERATOR WITH AN IMPROVED
VERTEX BUFFER FOR MORE EFFICIENT
YERTEX PROCESSING

CONTINUATION DATA

This application s a continuation-in-part of application
Ser. No. 08/511,294, filed Aug. 4, 1995 now U.S. Pat. No.
5,793,371, entitled METHOD AND APPARATUS FOR
GEOMETRIC COMPRESSION OF THREE-
DIMENSIONAL GRAPHICS DATA, and assigned to the
assignee of this application.

This application is a continuation-in-part of application
Ser. No. 08/511,326, filed Aug. 4, 1995 now U.S. Pat. No.
5,842,004, entitted METHOD AND APPARATUS FOR
DECOMPRESSION OF COMPRESSED GEOMETRIC

w

THREE-DIMENSIONAL GRAPHICS DATA, and assigned

to the assignee of this application.
Incorporation by Reference

U.S. application Ser. No. 08/511,294, filed Aug. 4, 1995
now U.S. Pat. No. 5,793,371, entitled METHOD AND
APPARATUS FOR GEOMETRIC COMPRESSION OF
THREE-DIMENSIONAL GRAPHICS DATA, and assigned
to the assignee of this application, is hereby incorporated by
reference as though fully and completely set forth herein.

U.S. application Ser. No. 08/511,326, filed Aug. 4, 1995
now U.S. Pat. No. 5,842,004, eatitted METHOD AND
APPARATUS FOR DECOMPRESSION OF COM-
PRESSED GEOMETRIC THREE-DIMENSIONAL,
GRAPHICS DATA, and assigned to the assignee of this
application, is hereby incorporated by reference as though
fully and completely set forth herein.

FIELD OF THE INVENTION

The present invention relates to improved vertex pointer
logic for assembling polygons from received geomelry data
in a three-dimensional graphics accelerator,

DESCRIPTION OF THE RELATED ART

A three dimensional (3-D) graphics accelerator is a spe-
cialized graphics rend=ring subsystem for a computer sys-
tem.which is designed to off-load the 3-D rendering func-
tions from the host processor,” thus provxdmg improved
system performance. In a system with a 3D graphics
accelerator, an application program executing on the host
processor of the computer system gencrates three-
dimensional geometry data that defines three-dimensional
graphics elements for display on a video output device. The
application program causes the host processor to transfer the
geometry data to the graphics accelerator. ‘The grapbics

.accelerator receives the geometry data and renders the
corresponding graphics elements on the display device.

Applications which display three-dimensional graphics
require a tremendous amount of processing capabilities. For
example, for a computer system lo generate smooth 3-D
motion video, the computer system is required to maintain
a frame rate or update rate of between 20 to 30 frames per
second. This requires a 3-D) graphics accelerator capable of
processing over a million graphics primitives per second.

In general 3-D graphics accelerators have had three major

bottlenecks which limit performance. A first bottleneck is

the transfer of geometric primitive data from main memory
lo the graphics accelerator over ‘the system bus. A second
bottleneck is the veriex processing requirements {such as
transformation, lighting, and set-up) which are performed on
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the geometric primitives by the graphics accelerator prior to
tendering. A third bottleneck is the speed at which pixels
from processed primitives can be filled into the frame buffer,

Vertex processing operations arc typically performed by
dedicated hardware in the graphics accelerator. This hard-
ware is commonly pipelined, such that each stage of the
pipeline effectuates a distinct operation on the vertices of the
received geometric primitive. The operations may be per-
formed in cither fixed or floating-point math.

SUMMARY OF THE INVENTION

The present invention comprises improved vertex pro-
cessing in a graphics accelerator.

A vertex accumulation buffer for improved three-
dimensional graphical processing is disclosed. ln one
embodiment, the accumulation buffer may include two indi-
vidual buffers (buffers A and B) that cach comprise a
plurality of individual storage locations. The individual
storage locations are each configured to store vertex param-
eler values such as XYZ values, normal values, color

‘informaation, and alpba information. The individual buffers

serve to double buffer the vertex parameter values stored in
the accumulation buffer. The storage locations may be
wrilten o on an individual basis without overwriting the

-other storage locations in the buffer.

In another embodiment, the vertex accurnulation buffer
may comprise a first buffer for storing a plurality of vertex
values. The plurality of vertex values may inclide XYZ
position values, red, green, and blue values, alpha values and
normal values, The vertex accumulation buffer may further
comprises a second buffer configured to receive and store
copies of the plurality of vertex values. The first buffer may
include a plurality of outputs {(corresponding to each of the
stored vertex values). The outputs may be coupled to cor-
responding inputs on the second buffer, The first buffer may
be adapted to receive and store new vertex values, The old
vertex values may remain unchanged in the frst buffer until
a new value overwrites the stored value. A graphics system
configured to utilize the vertex accumulation buffer is also
contemnplated,

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description’ of the
preferred embodiment is considered in con)uncnon with the
following drawings, in which:

.. FIG. 1 illustrates a computer system which .ipcludes a

three dimensional (3-D)- graphics accelerator according to
the present invention;

FIG. 2is a sunplmed block diagram of 'the computer
system of FIG. 1;

FIG. 3 is a block diagram illustrating the 3-D graphics
accelerator according to the preferred embodiment of the
present invention;

- FIG. 4 is a block diagram illustrating the command chip
in the 3-D graphics accelerater according to the preferred

- embodiment of the present inveation;

FIG. 5 illustrates the vertex accumulation buffer;

FIG. 6 illustrates format converter op-codes; )

FIG. 7 is a more detailed diagram illustrating the vertcx
accumulation buffer; .

FIG. 8 illustrates the valid assertions of the load snable
lines to the vertex aceumulation vuffer;

FIG. 9 is a biock diagram of the vertex buffer;
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FIG. 10 illustrates organization of one of the vertex
buffers;

FIG. 11 illustrates the vertex buffer control logic;

FIG. 12 is a more delailed diagram illustrating vertex
buffer organization;

FIG. 13 lists the types of primilives supported by the
vertex buffer as well as the primary control registers and
state machines that handle the respective primitives;

FIG. 14 illustrates vertex buffer storage of FFB polygons;

FIG. 15 illustrates vertex buffer storage of FFB fast fili
primitives;

FIG. 16 1llustrales vertex buffer storage of FFB rect-

angles;

FIG. 17 illustrates vertex buffer organization for vertical
scroll;

FIG. 18 illustrales the vertex buffer load state machine;

FIG: 19 illustrates the vertex buffer FFB load state
machine;

FIG. 20 illustrates the vertex pointer logic;

FIG. 21 illustrates the relationship of edge bits to tri-

angles;

FIG. 22 illustrates the vertex pointer logic state machine;

FIG. 23 iltustrates the state diagram for the vertex buffer
output state machine;

FIG. 24 illustrates the vertex buffer FFB output state
machine;

FIGS. 250~ illustrates user defined registers;

FIG. 26 illustrates the vertex buffer state registers address
map; and

FIG. 27 illustrates the vertex buffer memory and VAB
context address map.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

FIG. 1—Computer System
Referting now to FIG. 1, a computcr system 80 which
includes a- three-dimensional (3-D) graphics accelerator
- according to the present invention is shown. As shown, the
" computer system 80 comprises a system unit 82 and a video
monitor or display device 84 coupled to the system unit 82.
The display device 84 may be any of various types of display
monitors or devices. Various input deévices may be con-
nected. lo the computer system, including a keyboard 86
andfor a mouse 88, or other input. Application software may
“be executed by the computer system 80 to display 3:-D
. graphical objects on the video monitor 84. As described
further below, the 3-D graphics accelerator in computer
systern 80 includes a lighting unit which exhibits increased
performance for handling of incoming color values of poly-

gons used to render three-dimensional graphncal ob;ects on

display device 84.
FIG. 2-—Computer System Block Diagram

. Referring now to FIG. 2, a simplified block diagram
illustrating the computer system of FIG. 1 is shown. Ele-
ments of the computer system which are not necessary for an
understanding of the present invention are not shown for
convenience. As shown, the computer system 80 includes a
central processing unit (CPU) 102 coupled to a high speed
bus or system bus 104, A systern memory 106 is also
preferably coupled to the high speed bus 104.

The host processor 102 may be any of various types of
computer pracessors, multi-processars and CPUs. The sys-
tem mentory 106 may be any of various types of memary
subsystems, including random access memories and mass
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storage devices. The system bus or host bus 104 may be any
of various types of commupication or host computer buses
for communication between host processors, CPUs, and
memory subsystems, as well as specialized subsystems. In
the preferred embodiment, the host bus 104 is the UPA bus,
which is a 64 bit bus operating at 83 MHz.

A 3-D graphics accelerator 112 according to the present
invention is couple to the high speed memory bus 104. The
3-D graphics accelerator 112 may be coupled to the bus 104
by, for example, a cross bar switch or other bus conaectivity
logic. it is assumed that various other peripheral devices, or
ather buses, may be connecled to the high speed memory
bus 104, as is well kaown in the art. It is noted that the 3-D
graphics accelerator may be coupled to any of various buses,
as desired. As shown, the video monitor or display device 84
connecls to the 3-D graphics aceelerator 112.

The host processor 102 may transfer information to and
from the graphics accelerator 112 according to a pro-
grammed input/output (1/0) protocol over the host bus 104.
Alternately, the graphics accelerator 112 accesses the
memory subsystem 106 according to a direct memory access

. (DMA) protocal or through intelligent bus mastering.
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A graphics application program conforming to an appli-
cation programimer tnterface (API) such as OpenGL gener-
ates commands and data that define a geometric primitive
such as a polygon for output on display device 84. As
defived by the particular graphics interface used, these
primitives may have separate color properties for the front
and back surfaces. Host processor 102 transfers these com-
mands and data 1o memory subsystem 106. Thereafier, the
host processor 102 operates to transfer the data to the
graphics accelerator 112 over the host bus 104.
Alternatively, the graphics accelerator 112 reads in geometry
data arrays using DMA access cycles over the host bus 104.
In another embodiment, the graphics accelerator 112 is
coupled to the system memory 106 through a direct port,
such as the Advanced Graphics Port {AGP) promulgated by
Intel Corporation. As will be described below, graphics
accelerator 112 is advantageously configured to more cffi-
ciently produce polygons to be rendered from received
geometry data.

FIG. 3—Graphics Accelerator

Referring now to FIG. 3, a block diagram is shown
illustrating the graphics accelerator 112 according to the
preferred embodiment of the present invention. As shown,
the graphics accelerator 112 is principally comprised of a
command block 142, a set of floating-point processors

‘152A-152F, a set of draw processors 172A and 172B, a

frame buffer 100 comprised of 3DRAM, and a rapdom
access memory/dxgnla{ -to-analog converter (RAMDAC)
196.

As shown, the graphics accelerator 112 includes com-
mand block 142 which interfaces to the memory bus 104,
The comrmand biock 142 interfaces the graphics accelerator
112 to the host bus 104 and controls the transfer of data
between other blocks or chips in the graphics accelerator
112. The command block 142 aiso pre-processes triangle
and vector data and performs geometry data decompression.

The command block 142 interfaces to a plurality of-
floating point blocks 152, The graphics accelerator 112
preferably includes up lo six floating point processors
labeled 152A~152F, as shown. The floating point processors.
152A-152F receive high level drawing commands and
generate graphics primitives, such as trianfles, lines, etc. for
rendering three-dimensional objects on the screen, The
floating point processors 152A-152F pecform
transtormation, clipping, face determination, lighting and



6,018,353

5

set-up operalions on received geometry data. Each of the
floating point processors 152A~152F connects to a respec-
tive memory 153A-153F. The memories 183A~183F are
preferably 32 kx36-bit SRAM and are used for microcode
and dala storage.

Each of the floating point blocks 152A~F connects to each

- of two draw processors 172A and 172B. The graphics
accelerator 112 preferably includes two draw processors
172A and 172B, although a greater or lesser number may be
used. The draw processors 172A and 172B perform screen
space rendering of the various graphics primitives and
operate to sequence or fill the completed pixels into the
3DRAM array, The draw processors 172A and 172B also
function as 3DRAM control chips for the frame buffer 100.
The draw processors 172A and 172B copcurrently render an
image into the frame buffer 100 according (o a draw packet
received from one of the floating-point processors
152A~152F, or according to a direct port packet received
from the command processor 142.

Each of the floating point blocks 152A-F preferably
operates to broadcast the same data to the two drawing
blocks 172A and 172B. In other words, the same data is
always on both sets of data lines coming from each floating
point block 152. Thus, when the floating point block 152A
trapsfers data, the floating point block 152A transfers the
same data over both parts of the FD-bus to the draw
processors 172A and 172B.

Each of the respective drawing blocks 172A and 172B -

couple to frame- buffer 100, wherein frame buffer 100
comprises four banks of 3DRAM memory 192A-B, and
194A~B. The draw processor 172A couples to the two
3DRAM banks 192A and 192B, and the draw processor
172B couples to the two 3DRAM banks 194A and 194B,
- respectively. Each bank comprises three 3DRAM chips, as
shown. The 3DRAM memories or banks 192A-B and
194A-B collectively form the frame buffer 160, which is
12B0x1024 by 96 bits deep. The frame buffer stores pixels
corresponding to 3-D objects which are rcndcred by the
draw processars 172A and 172B.

Each of the 3DRAM memories 192A~B and 194A-B
couple to a RAMDAC (random access memory digital-to-
analog converter) 196. The RAMDAC 196 comprises a
programmable video timing generator and programmable
pixel clock synthesizer, along with cross-bar functions, as
well as traditional color look-up tables and triple.video DAC
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lighting, and setup calculations. The output data is then
provided to the draw chips for rendering into the frame
buffer. As described further below, the command block
includes improved vertex pointer logic according to the
present invention, which more efficiently creates complete
polygons from received geometry data.
FIG. 4—Command Block

As discussed above, the command preprocessor or com-
mand block 142 is coupled for communication over the host
bus 104. The command preprocessar 142 receives geometry
data arrays transferred from the memory subsystem 106 over
the host bus 28 by the bost processor 102, In the preferred
embodiment, the command preprocessor 142 receives data
transferred from the memory subsystem 106, including both
compressed and nen-compressed geometry data. When the
command preprocessor 142 receives compressed geomelry
data, the command preprocessor 142 operates to decompress
the geometry data to produce decompressed geometry data,

The command preprocessor 142 preferably implements
two data pipelines, these being a 3D geometry pipeline and
a direct port pipeline. In the direct port pipeline, the com-
mand preprocessor. 142 reccives direct port data over the
host bus 104, and transfers the direct port data over the
command-to-draw (CD}) bus to the draw processocs

5 172A-172B. As mentioned above, the CD bus uses or

“borrows” portions of other buses to form a direct data path
from the command processor 142 to the draw processor
172A~172B. The direct port dafa is optionally processed by
the command preprocessor 142 to perform X11 functions
such as character writes, screen scrolls and block moves in
concert with the draw processors 172A-172B. The direct

port data may also include register writes to the draw

processors 172A-172B, and individual pixel writes to the
frame buffer 3DRAM 192 and 194. :

[n the 3D geometry pipeline, the command preprocessor
142 accesses a stream of input verlex packets from the
geomelry data arrays. When the command preprocessor 142
receives a stream of input vertex packets from the geomelry

* data arrays, the command preprocessor 142 operates lo

circuits. The RAMDAC in turn couples to the v1deo mounitor -

84.

The command block is pteferabiy :mplemcmed as a single
<hip. Bach of the floating point processors 152 are preferably
implemented as separate .chips. In the preferred
embodiment, up to six floating point blocks or.chips 152A-F
may be included. Each of the drawing blocks or processors
172A and 172B also preferably comptise separate chips. For
more information on different aspects of the graphics accel-

erator architecture of the preferred embodiment, please see s

related co-pending application Ser No. 08/673,492 catitled
“Three-Dimensional Graphics Accelerator With Direct Data
. Channels for Improved Performance”, and related
_co-pending application Ser. No. 08/673,491 entitled “Three-
Dimensional Graphics AcceleratorWhich Implements Mul-
tiple Logical Buses Using Common Data Lines for
Improved Bus Communication™, both filed on Jul. 1, 1996.
As described above, command block 142 interfaces with

" host bus 104 to receive graphics commands and data from

host CPU 102. These commands and data (including poly- 4

gons with both front and back surface properties) are passcd
in tun to floating point processors 182 for transformation,
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reorder the information contained within the input vertex
packets and optionally delete information in the input vertex
packets. The command preprocessor 142 preferably con-
verts the received data into a standard format. The command
preprocessor 142 converts the information in each input
vertex packet from differing number formats iato the 32 bit
IEEE floating-point number format. The command prepro-
cessor 142 converts 8 bit fixed-point numbers, 16 bit fixed- -
point numbers, and 32 bit or 64 bit IEEE floating-point
numbers. For normal and calor values, the command pre-
processor 142 may convert the data to a fixed point value.

“The command preprocessor 142 operates to accurmulate
input vertex information until an entice primitive is received.
The command preprocessor 142 then transfers output geom-
etry packets or primitive data over the command-to-floating-
point (CF) bus to one of-the floating-point processors
152A~152F. The output geometry packets comprise the
reformatted vertex packets with optional modifications and
data substitutions.

Referring now to FIG. 4, 2 block dmgram 1llu.srxatmg the
command processor-or command block 142 .is shown. As
shown, the command block 142 includes input buffers 362
and output buffers 304 for interfacing to' the- host bus 104.
The input buffers 302 couple to 4 global data issuer 306 and
address decode logic 308."The global data issucr 306 con-
nects to the output buffers 304 and to the CM bus and
performs data. transfers. The address decade logic 308
receives an input from the DC bus as shown. The address
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decode logic 308 also couples 1o provide output to an input
FIFO buffer 312.

In general, the frame buffer has a plurality of mappings,
including an 8-bit mode for red, green and blue planes, a
32-bil mode for individual pixel access, and a 64-bit mode
to aceess the pixel color logether with the Z buffer values.
The boot prom 197, audio chip 198 and RAMDAC 196 also
have an address space within the frame buffer. The frame
buffer also includes a register address space for command
block and draw processor registers among others. The
address decode logic 308 operales Lo create tags for the input
FIFO 312, which specify which logic unit should receive
data and how the data is to be converted. The input FIFO
buffer 312 holds 128 64-bit words, plus a 12-bit tag speci-
fying the destination of data and how the data should be
processed.

The input FIFO 312 coupies through a 64-bit bus to a
multiplexer 314, Input FIFQ 312 also provides an output to
a geornelry decompression unit 316. As discussed above, the
command block 142 receives both compressed and non-
compressed geometry data. The decompression unit 316
teceives the compressed geomelry data and operates to
decompress this compressed geometry data to produce
decompressed geometry data. The decompression unit 316
receives a stream of 32-bit words and produces decotn-
pressed geometry or prmitive data. Then decompressed
geometry data output from the decompression unit 316 is
provided to ao input of the multiplexer 314. The output of
the multiplexer 314 is provided to a format converter 322, a
collection buffer 324 and register logic 326. In general, the
decompressed geometry data output from the decompres-
sion unit is provided to either the format converter 322 or the
collection buffer 324,

In essence, the geometry decompression umit 316 can be
considered a detour on the data path beiween the input FIFO
312 and the next slage of processing, which is either the
format converter 322 or the collection buffer 324. For data
received. by the command processor 142 which is not
compressed geomelry data, i.c., non-compressed data, this
data is provided from the input FIFO 312 directly through
the multiplexer 314 to either the formal converter 322, the
collection buffer 324, or the register logic 326. When the
command processor 142 receives compressed geomelry
data, this data must first be provided from the input FIFO
312 to the geometry decompression unit 316 to be decom-
pressed before being provided (o other logic.

- Thus, the command block 142 includes a first data path

‘coupled to the input buffers 302 or input FIFO 312 for

[

transferring the non-compressed -geomeltry data directly -

through the multiplexer 314 to either the format converter

322 or the collection buffer 324. The command block 142

also includes a second data path coupled to the input buffers
302 or input FIFO 312 for receiving compressed geometry
data. The second data path includes a geometry decompres-
sion unit coupled o an output of the input FIFO 312 for
receiving. and decompressing the compressed geomelry
input data to produce decompressed geomelry input data.
The formal converter 322 receives. integer and/or floating
point data and outputs cither foating point or fixed point
data. The format converter 322 provides the command
processor 142 the flexibility to receive a plurality of different

8

vertex accumulation buffer 332 and the verlex buffers 334
provide outputs to the collection buffer 324, which in turn
provides an outpul back o the output buffers 304.

The vertex accumulation buffer 332 is used to store or
accumulate vertex dala required for a primitive that is
received from the format converter 322. The vertex accu-
muiation buffer 332 actually comprises iwo sets of registers,
ie., is double buffered. The first set of registers is.used for
composing a verlex, ard the second set of registers is used
for copying the data into one of the vertex buffers 334. As
discussed further below, these two sets of registers allow for
more efficient operation. Data words are wrilten one at a
time into the first or top buffer of the vertex accumulation
buffer 332, and these values remain unchanged until a new
value overwrites the respective word, Data is transferred
from the first set of registers to the second set of registers in
one cycle when a launch condition occurs.

The vertex buffers 334 are used for copstructing or
“building up” geomelric primitives, such as lines, tiangles,
eic. Lines and (riangles require two and three vertices,
respectively, to complete a primitive. According to one
embadiment of the invention, new primitives may be created
by replacing a vertex of an existing primitive when the
primitive being created shares one or more vertices with the
prior created primitive. In other words, the vertex buffers
334 remember or maintain previous vertex values and
intelligently reuse these vertex values when a primitive or
triangle shares one or more vertices or other information
with a neighboring primitive or triangle. This reduces the
processing requirements and makes operation of the Open
GL format operate more efficiently. In the preferred
embodiment, the vertex buffers 334 can hold up to seven
vertices. This guarantees maximum throughput for the
worse case primitive, i.c., independent triangles. The vertex
buffers 334 also operate at optinum speed for dots, lines and
triangles and is substantially optimal for quad primitives.

Each of the vertex accumulation buffer 332 and the vertex
buffers 334 are coupled to a collection buffer 324. The
collection buffer 324 provides respective outputs to the
output buffers 304 as shown. The vertex buffers 334 are
coupled to provide outputs to CF bus output FIFOs 144, The
collection buffer 324 is also coupled to provide oulpuis to
the CF bus output FIFOs 144, The collection buffer 324 is
used for sending all aon-geometric data to the floating point
blocks 152A-152F. The collection buffer324 can hold up to
32 32-bit words. It is noted that the operation of copying data
into the CF-bus output FIFOs 144 may be overlapped with
the operation of copying new data into the colleclmn buffer
324 for optimal throughput.

As mentioned above, the command block 142 includes a
plucality of registers 326 coupled to the output of the
multiplexer 314. The registers 326 also provide an output to
the UPA output buffers 304, Register block 326 comprises

16 control and status registers which control the format and

How of data being-sent to respective Hoating point blocks
152A-152F.
Each of the vertex buffers 334 and the collection buffer

- 324 provides a 48-bit output 10 CE-bus output FIFOs 144,

N
<

data types while providing each of the Aoating block units °

152A~152F with only a single data type for a particular
word.

The format converter 322 provides a 48-bit output to a
vertex accumulation buffer 332, The vertex sccumulation
332 in turn provides an output to vertex buffers 334, The
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The CF-bus output FIFOs 144 ¢nable the command block
142 10 quickly copy a primitive from the vertex buffers 334
into the output FIFO 144 while the last of the previous
primilive is still being (ransferred across the CF-bus. This
enables Lhe graphics accelerator 112 to maintain-a steady

flow of data across each of the point-to-point buses. In the
s preferred embodiment, the CF-bus output FIFOs 144 have

sufficient room to hold one complete primitive, as well as
additional slorage to smooth out the data flow. The CF
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output FIFOs 144 provide respective 8-bit outputs lo a bus
interface block 336, The bus interface 336 is the final stage
of the command processor 142 and couples to the CF-bus as
shown. In addition, the CF/CD bus interface 336 provides
“direct port” accesses to the CDC bus which are multiplex
on the CF-bus as mentioned above.

The command block 142 also includes round robin arbi-
tration logic 334. This round robin arbitration logic 334
comprises circuitry to determine which of the respective
floating point processors 152A-152F is to receive the next
primitive. As discussed above, the graphics accelerator 112
of the present invention comprises separate point-to-point
buses both into and out of the respective floating point
processors 152A-152F. Thus, the round robin arbitration
logic 334 is included to distribute primitives evenly between
the chips and thus maintain ap even flow of data across all
of the point-to-point buses simultaneously. In.the preferred
embodiment, the round robin arbitration logic 334 utilizes a
“next available round robin” arbitration scheme, which skips
over a sub-bus that is backed up, ie., full.

‘For information on another embodiment of the command
processor 142, please see U.S. Pat. No. 5,408,605 titled
“Command Preprocessor for a High Performance Three
Dimensional Graphics Accelerator”, which is hereby incor-
porated by rcference in its entirety.

Vertex Buffer System

The Vertex Buffer organizes incoming vertices into primi-
tives to be loaded into the CF bus output fifos for delivery
to the AFB-Float ASICs. These manipulations include face
orientation, substitution, replication, edge processing, and
vertex ordering. These operations are handled by various
pieces of the Vertex Buffer, which are discussed below.
Vertex Accumulation Buffer

The Vertex Accumulation buffer facilitates OpenGL
operation, and also simplifies other operation of the graphics
accelerator. FIG. 5 shows the Vertex Accumulation buffer
together with the other medules in the AFB-Command chip
to which it is connected. Data comes into the VAB from the
Format Converler and is written to one of the Vertex Buffers.

Incoming data js written to Buffer A of the Verlex Accu-
mulation Buffer. There is a 7-bit word for the header, three
32-bit words for X, Y and Z, four 12-bit words for R, G. B
and Alpha. three 16-bit words for N,, N, and N, two more

32-bit words for U and V (texture coordinates_, and three

32-bit words for FN,, Fn,, and FN, (the facet normal). These
words are written one at a time and remain unchanged until
a new value overwrites the word, The feature of the words
remaining the same “forever” allows a color, normal or Z
value to be sel in this buffer, with no need for other constant
registers. It also permits the.data to- be written in any order.

When a “launch” condition occurs, the entire coatents of
Buffer A is written into Buffer A in one cycle. New values
may then be written immediately to Buffer A while the
contents of Buffer B is being copies into the appropriate
Vertex Buffer. The transfer into the Vertex Buffer is accom-~
plished 48 bits at a time (see FIG. 4-6 for the format of the
48-bit words), For OpenGL mode and some of the XGL
modes, a write to an explicit address causes the Jaunch
condition. .For beopy mode in XGL the Format Converter
Op-codes determine when to launch a vertex. For decom-
pression mode the current mode and a counter determine
when a launch condition has been reached. »

A major advantage of this design over prior art designs is
that there are no “dead cycles” during the data transfer on
either side of the Vertex Accumulation Buffer.
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Incoming Header Word
The incoming header word is defined to exactly match the
XGL bit definition. The seven bits of this header word are
defined as follows: ’

Bit 0 Deaw édge

Bii 1 Dmaw previous edge
Bits 2-3 Triangle replace bils

Bu 4 Face orieatation {CCW)
Bit 5 Edge is intemnal

Bits Previous edge is intecnal

The individual bits bave the following meanings:

Draw edge: For lipes, this is the same as a move/draw bit.
When zero the line starting position is specified and when
one, a line is drawn from the previous point to the current
point. For dots, the dot is not drawn when this bit is zero.
‘When drawing triangle edges, this bit indicates that an edge
is to be drawn from the newest vertex to the middle vertex.

Draw previous edge: This bit only applies while drawing
triangle edges and indicates that an edge should be drawn
from the newest vertex to the oldest vertex.

Triangle replace bits: A value of 00 iIn these two bits
mdicates to restart the triangle. The mext two wvertices
received will complete the (riangle, no matter what the value
of the replace bits. That is to say, the replace bits are always
ignored for the second and third vertices after a restart. A
value of 01 indicaies that the oldest of the three existing
vertices is to be discarded in foriming a new triangle. Avalue
of 10 indicates that the middle of the three exisling vertices
is to be discarded in forming a new triangle.

Face Oricntation: The face orientation bil is only used on
a restart and is exclusive-Ored with the CCW bit of the
Primitive Control Register to determine the current winding
bit used when outputting primitives.

Note: The. CCW bit in both the GT and ZX graphics
accelerators was specified assuming a lefl-handed coordi-
nate system {X positive up, Y positive to the right, Z positive
going away from the viewer) as needed by PHIGS. This is
actually backwards for XGL, which uses a right-handed
coordinate system (Z is now positive coming towards the
viewer). AFB will differ from its predecessors by specifying
the CCW bit for a right-handed coordinate system.

Edge is internal: This bit is used when drawing hollow
triangles and indicates that the edge from the most recent
vertex (o the middle vertex is an internal edge (part of a
larger polygon) and is not to be drawn.

Previous edge is internal: Same as the above, but for the
edge from the most recent vertex to the oldest vertex.
Format Converter Controller

When running in “immediate mode,” both XGL and Open
GL store data directly to the appropriate Vertex Accurula-
tion Buffer registers based on the address to which the data
is written. The addresses also specify to the Format Con-
verter how the data is to be handled. However, when data is
copied to AFB-Command in large blocks using beopy, it
can’t be written to the required addresses that make imme-
diate mode work. Some other way is required to specify how
many words make up-a vertex and how each word is to be
treated.

The-Format Converter Controller at the bottom of the
Input FIFO contains opcodes to specify how incoming data
streams should be dealt with, The op-code format is shown
in FIG. 6. The Destination field (bits 3-0) specify which of
the 16 Vertex Accumulation Buffer registers is to receive
cach data word. The Source Type ficld (bits 5-4) specifies
whether the incoming data is 32-bit IEEE Hoating-point,
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32-bit signed integer fraction, 32-bit unsigned integer frac-
tion or 64-bit double-precision IEEE floating-point. The last
word of a vertex has the Launch bit set (bit 6), all other words
must keep this bit clear {or they suddenly become the last
word of the vertex). The launch bit eliminates the need for
a count register, as was needed in prior architectures.

Data is directed to the Collection Buffer instead of the
Vertex Accumulation Buffer if bit 7 is set. No conversions
are performed on the data in this case, so the launch bit is the
‘only other bit that affects the data,

There is no provision for skipping vertex data as in prior
art designs, but that can be easily accomplished by writing
to a location twice or by writing to a location that is not used
in the primitive as sent to the AFB-Float chips.

The Vertex Accummulation Buffer is responsible for storing
all converted data from the Format Converter. The VAB is
organized as a double buffered set of registers: buffer A and
buffer B as shown in FIGS. 5 and 7. The contents of buffer
A are loaded by the Format Converter via a 16 bit load

enable. The Format Converter indicates to the Vertex Buffer.

that it is done loading the VAB by asserting one of several
“launch” signais. Also provided by the VAB is a 32 bit data
path for reading the contents of the A buffer during register
reads and context switches,

Each piece of data converted by the Format Converter
gets placed into the Vertex Accumulation buffer. This is
accomplished by the proper assertion of the 16 bit fe__vab__
Iden lines. FIG. 8 shows the only valid assertions of the load
enable (fc_vab__den) lines. Each line corresponds to a
different register within the VAB. With the exception of two
special cases the load enable lines are only asserted one at
a time, A special case exists for normals. If the correspond-
ing bits for all three normals are asserted then the two muxes
seen above N, and N, in FIG. 7 will switch to the 48 bit path.
This allows for loading of a single 48 bit normal from the
Decompression Unit. When only one of the load enable bits
corresponding to the normal registers is enabled then the
upper 16 bits of the 48 bit path is used. Note also that the R,
G, B and A registers use bits 45:34 of the 48 bit path, The
other special case is that the Header register may be loaded
in combination with any other register. This was done to
accommodate certain querks in the architecture (parely
performance in the FFB compatibility mode).

The mux logic following the VAB is used to pack the data
from the VAB as it is transferred into-the Vertex Buffer.
Header information is not stored in the Vectex Buffers. It is
stored directly in the Vertex Pointer Logic The next section
explains the formal of the data as stored in the Vértex Buffer
Memory.

Context is read from the A buﬁcr cf the VAB via the
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There are seven vertex buffers; enough to run at maximum
speed while gathering independent triangles; that is, three
for the tdangle currently being written out, three for the
triangle being loaded in, and one extra for the overhead of
moving the buffers around. Each word in the vertex buffer is
48 bits, to match the width of the data sent across CF-Bus
to the AFB-Float chips. Data is transferred into sach vertex
buffer 48 bits at a time, even if this means reading from up
to three separate values in the Verlex Accumulation Buffer.
A diagram of one of the vedex buffers is shown in FIG. 10.
All vertices have an X Y Z coordinate and a color. There
are three optional parts: the normal, the texture coordinate,
and the facet normal. The facet normal actually applies to a
full primitive, bul the hardware is simpler with the facet

‘normal attached to the veriex it came in with.

The seven vertex buffers are kept track of using three-bit
pointers. These pointers are kept on one of six lists:

The Free list. These point to vertex buffers that are ready
to receive data.

The New Guy vertex. A veriex transferred in from the
Vertex Accumulation buffer gets put here first, along
with the two-bit replacement code, until the previous
primitive has been grouped is beginning to be trans-
ferred to the CF-Bus Qutput FIFOs. This vertex is then

moved 1o one of the three working vertices,

The Newest vertex. This is the most recent vertex to be
added to the working vertices.

The Middle vertex. This is the next to oldest wcrking
vertex.

The Oldest vertex. The vertex that has been a workmg
vertex the longest.

The I Wanna Be Free list. When a vertex is taken from the
New Guy veriex, either one vertex (the Oldest or
Middle) wili be recyclcd or ail three in the case of a
restart, These are placed on the “I Wanna Be Free” list
until the primitive gets completely transferred, at which
point they are moved to the free list.

- Once a complete primitive is held in the Newest, Middle,
and Oldest registers, these three pointers are transferred to
the Vertex Output Pointers so that the primitive may be sent
out while the next one is being put together. This is shown

"in FIG. 11. It is noted that all registers shown in the diagram

are three bits wide; this is not a large piece of logic like most
other block diagrams.

" State Machines

vbrd__vab__radr and vab_vbrd__d032 lines. The vbrd__ ~

vab__radr is a 4 bit address derived from the gdi_wads (GDI1
word address) which is used to select which of the VAB
registers is to be read out onto the vab_vbrd_do32 bus.

Vertex Buffer
1. Vertex Buffer Organization )
The Vertex Buffer resides between the Vertex Accumula-

tion buffer and CF bus output fifos. Data is loaded into the

Vertex Buffer from the Vertex Accumulation buffer when a
“launch” signal is received fromh the Formmnat Converter.
When enough vedices to assemble a complete primitive
have been loaded into the Vertex Buffer Memory the primi-
tive is loaded into the CF bus outpit fifos for detivery to the
AFB-Float chips over the CF Bus. FIG. 9 diagrams the
Vertex Buffer. -

The Vertex Buffers gather vertices to form complete
geometric primitives: dots, lines, triangles, or quadrilaterals.

0359

The Vertex Buffer control logic is made up of a number
of small state machines. The following list is an attempt to
describe all of them.

The working registers, Newesl/dedlc/Oldest has a-state

machine with the following states:

None—~Only happens when logic is initialized.

Have 1 vertex-——Afler “none” or a restart.

Have 2 vertices—-After “have 1.”

Have 3 vertices—After “have 27 or after “have 3” and
a replace condition.

Have 3 vemce&—-transnuued—-After the transfer to
- VI/V2/V3,

The V1/V2/V3 oulput registers get loaded all at once and
are only temporarics to show the state of Newest/
Middle/Oldest when the triangle was made completc It
has-thie following states:

Outputting ‘VI-—After a trdangle launch.
Qutputting V2—Afier “oulputting V1.”
Outputting V3—After “outputting vV2.”
Done outputting—Afler “outputiting V3.”

The “l wanna be free” list keeps track of which vertices
in the V1/V2/V3 registers need to be sent to the free
list. These need to be held until the compleie tnanglc is
ouiput,”
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Have pone—Default state, when all have been
returned.
Have 3—Only occurs on a restart.
Have 2—After “have 3.”
Have 1—After “have 2” or any replace.

The free list behaves like a FIFO and has a counter that
goes from zero to seven, When hardware gets
initialized, it holds all seven. At most other times it
holds less.

The “New Guy” vertex has two slales:

Have nope.
Have 1.
When the Registers Get Clocks

The working registers, Newest/Middle/Oldest, are .

clocked any lime a “New Guy” is present and they are got
waiting to output a completed primitive -(i.c., not in the
“have 3 verlices” state). They are all three clocked at once
except on a replace middle condition. The oldest register is
pot clocked when replacing the middle veriex.
The V1/V2/V3 output registers all get clocked whenever
a completed primitive is to be output (i.e,, “done outputting”
and the working registers are in the “have 3 vertices” state).
Note that clockwise triangles are transferred Newest 1o V3,
Middle to V2, and Oldest to V1.. When a triangle is
- counterclockwise, Newest goes to V2 and Middle goes to
V3. This is done 50 that triangles are always clockwise when
sent to AFB-Float.
The “I wanna be free” registers get clocked at the same
time that the “New Guy” gets transferred into the working

registers. They all get clocked on a restart. Only IWBF1 gets 3

clocked for replace middle or replace oldest. Note that the
value clocked into IWBFL is either from the Middle or
Oldest register depending on whether the replacement code
is replace middle or replace oldest, respectively.

The free list gets values clocked in from the “I wanna be
free” list when the completed primitive has been transmitted
‘and the V1/V2/V3 registers are in the “done transmitting”
state. They are transmitted one at a time. Since the fastest a
verlex could possible be created is three clocks, it is okay to
take three clocks in the worst case to put register. pomters
back on the free list.

Avalue goes from the free list to the New Guy whenever
there is af least one value on the free list and the New Guy
is emply.

Please keep in mind that these registers are only used to
index into the array of seven veriex buffers or for house-
keeping purposes. The only ones that are actually used as
indices are the “new guy” for writing data from the Vertex
Accumulation buffer into a Vertex Buffer, and the V1/V2/V3
registers used when writing completed primitives to the

- CF-Bus Qutput FIFOs. All other rchslr:rs are just there for
housekeeping purposes.
Treatment of Lines and Dots

Lines behave similarly to triangles, but only the M[ddlc
(actually used as “Oldest” for limes) and Newest working
registers get used and only two of the V1/V2/V3 registers
are needed. The only rcplaccment -conditions are replace
oldest or restart,

Dots just use one register, the Ncwest working register,
and only one of the VI/V2/V3 registers. The only replace-
ment condition is restart.

. Quads

Dealing with quadrilaterals adds a little complexity to the
design. Quads can be tredted as triangles except whea there
is a facet normal or facet color, Then it is necessary to have
four vertices present before anything can be output. This
calls for a new Quads register added to the working registers
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after Oldest and a V4 register for output. Unlike triangles,
quad strips require two new vertices to create a new primi-
live.

Quads are still output as trangles to the AFB-Float chips.
First, V1, V2, and V3 are sent, thea V3, V2 and V4.
Substitution and Replication

There are two cases where either the vertex color or the
vertex normal is not the value actually oufput (o the CF-Bus
Qutput FIFO for a particular primitive. Substitution is where
a different color or normal is output for all vertices. Repli-
cation is where the value in the last {or first) vertex is also
used for the other vertices.

Substitution is done using an eighth vertex buffer called
the substitution buffer. This is used for overriding the color
during operatioas such as pick highlighting and to specify
one facet normal for large polygons.

Replication is similar to substitution, except that the value
comes from the Newest (or Oldest) vertex instead of the
substitution register. This is needed when color interpolation
is disabled, that is, when the color of the most recent vertex
specifies the color of the eatire triangle or line rather than
having the color smoothly interpolated across the primitive.
It is also used for faceted shading where one normal is used
for all three vertices of a triangle.

The hardware performs substitution and replication by
selecting the color fields from one vertex while selecting the
XYZ values from another vertex while outputting a primi-
tive to AFB-Float. If you look closely at FIG. 4-6 on page
4-27, you’ll notice that 16 bits of color share a 48-bit field
comes from the one vertex each time. For nornals, the whole
48-bit field comes from the one vertex each lime. The
implementation involves simple multiplexing of the address
lines.

Collection Buffer

Attributes and other non-geometric data do not go through
the Veriex Accumulation buffer or the Veriex Buffers, but are
gathered into the Collection Buffer. Once a full primitive has
been gathered, it is sent to the CF-Bus Output FIFOs. All
collection buffer data is packed, one and one-half 32-bit
words per 48-bit word, as it is written to the CF-Bus Output
FIFOs.

There are two types of passthrough data: AFB-Float
attributes which are broadcast to all six AFB-Float chips,
and dala or attributes sent to AFB-Draw which go through
a single AFB-Float chip, just like peometric data, For
broadcast data, no oulput is expected from any of the
AFB-Float chips. Also, for broadcast primitives, all six

- Ougput FIFOs must have enough room in them before the
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data may be copied.

The Collection Buffer does not behave quite like a FIFO.
The first data written to it.is always started at location zero.
The input pointer points at the next location to receive any
data and also contains the count of how many words are in
the buffer. When a launch condition occurs, the input poiater
is copied to a count register and the input and output pointers
are cleared to zero. Now, the data is copied out from the
locations pointed to by the output pointer, with the point
being incremented until it matches the count register. The
last word sent is marked with. the last word bit set. .

- Since copying data from the Collection -Buffer to the
CF-Bus Output FIFO is guaranteed to be uninterruptable and
since new data coming in cannot be copied in faster than the
data is read out, the next input operation can be overlapped -
with the data output. itis still unclear whether we will have
10 wait one cycle between the write that causes the launch
and the write of the fitst word of the next data: packet, or if
the next write can happen on the same cycle as the read.





