
US 6,385,757 Bl
41

To optimize an iformat design for a particular application
program, !he iforrnat system selects custom templates from
operation issue statistics obtained from scheduling the pro
gram. The iformat system then generates an iformat based
on a combination of the custom templates and an abstract
ISA specification.

Tbe system uses a re-targetablc compiler to generate the
operation issues statistics for a particular processor design.
A:;; shown in FIG. 12, a module called the MOES extractor
560 generates a machine description in a format called JO

MOES.
Tb is machine description re targets the compiler 564 to the

processor design based on its abstract ISA specification 510

42
one per operand, form an operation's io-formal. For
example, suppose an add operation permits its left source
operand to be either an integer register or a short literal
value, and suppose iL' right source and destination operands
source and sink from integer registers. 'foe corresponding
io-sets are (gpr, s}, {gpr}, {gpr}. The io-fonnal is simply
this list of io-sets, which are abbreviated in shorthand
notation as follows:

gpr s, gpr . gpr
Closely related operations such as add and subtract often

have the same io-formal. One reason for this is that related
operations may be implemented by a single, multi-function
unit (macro-cell). As discussed above, to simplify tbe
instruction formal design process, related operations are and datapath specification 514. The compiler 564 then

schedules a given application program 566 and generates
operation issue statistics 568 regarding the usage of the
operation groups in the instruction format templates. '01e
system thea uses tbe frequency of use of the operations in
each template by the application program lo compute cus
tomized templates as shown in step 569. The customization
process is automated in that it selects custom templates by
minimizing a cost function that quantifies the static or
dynamic code size and the decode cost (e.g., measured in
chip area).

15 grouped into operation groups.
111e instruction format assigns sets of op groups (called

super groups) to slots of an instruction. The processor issues
operations within an instruction from these slots concur
rently. To fully specify an operation, the instruction format

20 specifies both an op-group and an opcode (specific lo that
opgroup). In effect, tbis organization factors a fiat opcode
name space into a multi-tier encoding. In rare cases, this
factorization may increase the encoding length by one bit
per level. However, it should be noted that this approach

The process of selecting instruction templates in the
iformat based on scheduling statistics may be conducted as
a stand-alone proce&s, or may be conducted in conjunction
with the automated iformat design process. In the latter case,

25 does not preclude a fiat encoding space: placing each
operation in its own op-group eliminates the factorization.
More importantly, hierarchical encoding often gives the
same benefits as variable-length field encoding, but is sim-

it may be used to provide an initial input specification of the
desired ILP constraints to the automated iformat design JO

process. Additionally, it·may be used lo optimize an existing
iformat design.

The system may also perform additional oplimizatioa by
using variable-length field encodings to further reduce the
instruction size. These optimized designs can lead lo dra- 35

matic reductions in code size, as showa in the detailed
description below.

7.2 !mplementation of the Input Specification
The principal input of the iformal design process is an

Abstract Instruction Set Architecture (ISA) specification 40

510. In the current implementation, the user or another
program module may provide this specification as an Arch
Spec in texrual form.

An ArchSpec reader module converts the textual form of
the ArchSpec to an abstract ISA spec data structure, which 45

contains a machine-readable set of tabular parameters and
constraints, including register file entries, operation groups,
and exclusion/concurrency relationships.

7.3 Instruction Syntax
VLIW processors issue instructions having multiple so

instruction fields. An instruction field is a set of bit positions
intended lo be interpreted as an atomic unit within some
instruction context. Familiar examples are opcode fields,
source and destination register specifier fields, and literal
fields. Bits from each of these fields flow from the instruc- 55

lion register lo control ports in the data path. For example,
opcode bits flow to functional uoits, and source register bits
flow lo register file read address ports. Another common
type of instruction field is a select field. Select fields encode
a choice between disjoint alternatives and communicate this 60

context to the decoder. For example, a select bit may indicate
whether an operand field is to be interpreted as a register
specifier or as a short literal value.

An operation is the smallest unit of execution; ii com
prises an opcode, source operaods, and destination operands. 65
Each operand may support one or more operand types. A set
of possible operand types is called an io-set. A list of io-sets,

pler lo implement.
7 ,4 The Instruction Format Tree
In a flat, horizontal instruction formal, all instruction

fields are encoded in disjomt position.s within a single, wide
instruction. A hierarchical instruction format allows exclu
sive instruction fields (those that are not used simultaneously
in any instruction) lo be encoded in overlapping bit
positions, thereby reducing the overall instruction width, In
the instruction formal design system shown in FIG. 12, the
hierarchical relationship between instruction fields is repre
sented by an instruction formal tree (if-tree). The leaves of
an if-tree are instruction fields; where each leaf points to a
control port in the data path, such as a register file address
port, or an opcode input of a FU.

FIG. 13 illustrates the structure of an if-tree used in the
current implementation. 1be overall structure of the tree
defines how each instruction is built. Each part of the tree
represents a node, with the lowest nodes (the cut-off-box
shaped nodes) forming the tree's leaves. The oval-shaped
nodes are "OR" nodes, while the boxed-shaped nodes are
"AND" nodes. The OR nodes denote a selection between the
children of the node such that only one choice (one branch)
extends lo the next level. Conversely, an AND node allows
all of the components of the node to form new branches.
Stated another way, each level of the tree is either a
conjunction (AND) or disjunction (OR) of the subtrees al the
lower level.

The root node 632 of tbe tree is the overall machine
instruction. This is an OR node representing a choice of
instruction templates. A template select field (template ID) is
used lo identify the particular template. This select field is
illustrated as the leaf node labeled "steer" connected lo the
instruction node 632.

[ndividual instructions are based on instruction templates,
which are the AND-type child nodes of the root node (See,
e.g., template.s 634 and 636). 1be templates each encode the
sets of operations that issue concurrently. Since the 1mmber
of combinatioos of operations that may issue concurrently is
astronomical, it is necessary to impose some structure oo the

0181

Volkswagen 1008 - Part 2 of 3

US 6,385,757 Bl
43

encoding within each lemplale. Hence, each template is
parlitiorled into one or more operation issue sloL>. Every
combination of operations assigned lo th"''e slots may be
issued concmrently.

In addition, each template has a consume to end-of-packet s
bit field (CEP) that indicates whether the next instruction
directly follows the current instruction or ii starts at lhe next
packet boundary. This capability is used to align certain
inslrnclions (e.g. branch targets) lo known address bound
aries. Each template also specifies the number of spare bits 10

that may be used to encode the number of no-op cycle to
follow the current instruction. These spare bits may arise due
to a need for packet alignment or quantized allocation.

1he next level of the tree defines each of the concurrent
issue sloL~. Each slot is an OR node supporting a set of 15

operation groups, called a super group (i.e., nodes 638, 640,
642), that are all mutually exclusive and have tne same
concurreoey pattern. A select field chooses among the vari
ous operation groups within a super group. Again, this select
field is illustrated as the leaf node labeled "steer'' connected 20

to super group 640.
Below each super group lie operation groups as defined in

the input specification as described above. Each operation
group (e.g., operation group 643) is an OR node that has a
select field ("steer") to choose among tbe various operation
formats supported by operation group. PIG. 13 shows this
situation where one operation format allows a literal field on
the left port, while the other allows it on the right port.

Each operation format (e.g., IO fonnat descriptors 644,
646) :is an AND node consisting of the opcode field 654, the 30

predicate field (if any) 656, and a sequence of source and
destination field types(shown as IO sets 648, 660, 652). The
traditional three-address operation encoding is defined at
this level.

44
wid"'st instructions where necessary, and make use of
compact, restricted instruction formals, such as instructions
that do not encode long literals.

FIG. 14 shows tbe format of an instruction and its
building blocks. Al the heart of the instruction is an instruc
tion template 670. An instruction template encodes sets of
operations that issue concurrently. Each template includes
multiple concurrent slots 672, where each slot comprises a
set of exclusive operation groups 674. Since all of the
operations in an operation group are exclusive, all of the
operations in each slot are also exclusive. Each template
encodes the cross-product of the operations in each of its
slors.

11ie length of each template is variable, depending in part
on the length and number of the slots in the template. For
example, some templates might have two slots, while other
templates have three or four slots. Furthermore, the
width of slot will depend on the width of the widest
operation group within that slot, plus overhead, as shown in
the lower portion of FIG. 14. There :is considerable similarity
and overlap among the opcodes within an operation group
by construction, so very little encoding space is wasted
within the operation group. But the opcode field now must
be split into an operation group selection field 676 and an
opcode selection field 678 within the operation group. With
logarithmic encoding, this requires at most one additional bit
for encoding the opcode. For example, 15 opcodes may be
encoded in 4 bits, while splitting them into 3 operation
groups of 5 opcodes each requires (log,(3))+(1og,(5)]+5
bits. In addition, every slot has a reserved no-op encoding.

In cases where an op group has alternative operation
formats, there is yet another select field to select the opera
tion format.

Each instruction also includes a consume to end-of-packet
Each IO set is an OR node consisting of a singleton or a

set of instruction fields that identify the exact kind and
location of the operaod. IO sets with multiple choices (e.g.,
650) have a select field to identify which instruction field is
intended. For example, one of the IO set nodes 650 repre
sents a selection between instruction fields 660, 662, which
is controlled via a multiplexor select field 664. The other 10
sets each have only one kind of field, and thus, have a single
child node representing that field (nodes 658, 666). The
instruction fields point to the datapath control ports 668.

35 bit 680, and a template specifier 682. The template specifier
identifies the template. An instruction format having t tem
plates will need [log2(t) J bits to encode the template speci
fier. This template specifier is in a fixed position within every
instruction, and from its value, the instruction sequencer in

40 the proces.sor's control path determines the overall instnic
tion length, and thus the address of the subsequent instmc
tioo.

In implementing an instruction format, one principal 45

design choice is whether lo use a single, fixed-length instruc
tion format, or allow variable-length instructions. 'Il1e ifor
mat design system supports both fixed and variable length
instructions. The use of variable-length instructions pro
duces more-compact code but increases decode complexity. 50

The trade-off between code size and instruction decode
complexity is a primary design consideration. A single,
fixed-lengtb instruction format simplifies decode logic and
the data path for of operations to functional units,
but it often results poor code density, since the single 55

format must accommodate the worst-case (longest) instruc
tion. For example, if the longest instruction in a fixed-length
instruction formal is 128 bil5 long, then all of the instruc
tions in the instruction set must be 128 hits long. In order lo
maintain a constant instruction length, many instructions 60

will require the use of wasted bits whose sole purpose is to
fill in unused space in the instructions. These wasted bits
lead to increased code size. Conversely, variable-length
instruclions can accommodate both wide and compact,
restricted instruction formats without wasting bits, which 65

results in a reduction in code size. By using variable-length
instructions, the instruction format can accommodate the

In the current implementation, the length of the instruc
tion is variable, but each length is a multiple of a pre
determined number of bits called a quantum. For instance, if
the quantum is 8 bits, the length of the instruction could pe
any number equal to or above some minimum value (say 32
bit.s) that is divisible by 8, such as 64 bits, 72 bits, 80 biL<;,
etc. One or more dnmmy bits may be placed as appropriate.
within the instruction to ensure that the length of the
instruction falls on a quantum boundary.

The iformat system builds the level-, of the if-tree in an
incremental fashion. It construct-, the top three levels, con
sisting of the iostrnction, the templates, and the super groups
from the abstract !SA specification, and optionally, custom
templates. It constrncls the middle layers, including the
operation groups, the operation formats, and the field types
from the abstract !SA specification. Finally, it coastmcts the
instruction fields from the contents oft.be various field types
in tbe abstract ISA specification and the individual control
ports in the datapath that each field is supposed to control.

7.5 Instruction Templates
A primary objective of tbe instruction format desigo

system is to produce a set of instruction templates that
support the encoding of all of the sets of operation groups
th<tl can be issued concurrently. 1b initiate lhe template
design process, the instruction format design system starts

0182

US 6,385,757 Bl
45

out with the architecture specification, which defines the
exclusion and concurrency constraints for a particular
design. ln one implementation, the architecture specification
directly provides the exclusion relationships between
tion groups. However, the iformal design process to s
know which opcodes can be issued concurrently, i.e., the
concurrency relationship, rather tlran which opcodes must be
exclusive.

In such an implementation, the concurrency relationship
is taken to be the complement of the exclusion relationship. rn
One way of determining the concurrency relation is lo take
the complement of the exclusion relations among opcodes
implied by the architecture specification and treat each set of
concurrent opcodes as a potential candidate for becoming an
instruction template. While this provides an excellent start- 15

ing point, it unfortunately does not lead to a practical
solution, since the number of combinations of operations
that may issue concurrently quickly becomes intractable.
For example, a typical VLJW machiue specification may
include 2 integer ALUs, 1 floating point ALU and 1 memory 20

u.nit, with 50 opcodes each. In such a machine tbe total
number of distinct 4-issue instructions is 502 x50x50=6,250,
000. Specializing instructions to 1, 2, and 3-issue templates
would add many more. It is therefore necessary lo impose
some structure on the encoding within each template. 25

Our current implementation uses several mechanisms to
reduce the complexity of the problem. These mechanisms
represent iformat design decisions and affect the final
instruction fonnat layout and size. In most cases there may
al.so be a tradeoff between the simplicity and orthogonality 30

of the field layout (and hence the decode hardware) and the
size of the instruction template. These tradeoffs will be
described as the design process is detailed below.

46
cess. The process starts witb the !LP constraints 681, wbicb
define a set of exclusion rdationsbips 683 between operation
groups 684. From these exclusion relationships, the iformat
design system builds a boolean exclusion matrix 686. In the
exclusion matrix 686, the rows and columns are matched up
with respective operation groups, e.g., "A" corresponds to
the operation group A, "B" corresponds to the operation
gmup B, etc. The 1 's in the matrix indicate an exclusion
relationship, while a blank indicates that the corresponding
operation groups may be issued concurrently. (1be blanks
are actually O's in the real matrix--blanks are used here for
clarity). The system then builds a concurrency matrix 688
from the exclusion matrix 686. The concurrency matrix 688
is the complement of the exclusion matrix 686. The "?''s
along the diagonal of the concurrency matrix 688 can be
interpreted as either a 1 or 0.

The rows in the concurrency matrix determine a set of
concurrency neigbbors for each operation group.Agraphical
representation of the relationships defined by the ccncur
rency matrix 688 is shown in concunency graph 692. Eacb
node represents an operation group, while each connecting
"edge" represents a concurrency relation. A clique is a set of
nodes from a graph where every pair of nodes is connected
by an edge. For instance, there are 16 cliques in lbe
concurrency graph 692.

After the concurrency matrix is generated, the system
compares the rows in the concurrency matrix to identify
equivalent operation groups. The super groups are formed
from the equivalent operation groups. Two operation groups
are said to be equivalent if they have the same set of
concurrency neighbors. Note that two mutually exclusive
nperation groups tbat have the same set of concurrency
neighbors can replace each other in any template without
violating any exclusion constraint and therefore can be
treated equivalently. Similarly, two concurrent operation
groups that have tbe same set of concurrency neighbors
(other than themselves) can always be placed together in a
template without violating any exclusion constraints and
therefore can be treated equivalently.

An example of psendocode for performing equivalence
checking and partitioning into super groups is illustrated
below.

AF. a first axiom, all templates must satisfy an exclusion
constraint between two opcodes, i.e. these opcodes must 35

never occupy separate slots in any template. 'D1is is because
tbese opcodes may share hardware resources during
execution, and therefore, the scheduler should never put
these opcodes together within the same instruction. Oo the
other hand, a concurrency constraint between two opcodes 40

implies that the scheduler is free lo issue these opcodes
together in a single instruction and therefore there should be
some template in which these two opcodes are allowed to
occur together. In particular, that template may contain
additional slots that can be filled with noops, if necessary.
Tberefore, it is unnecessary to generate a special template
for each concurrency constraint, but rather all that is needed

Proceduref'iodSuperGroups (BitM:atri.x con.cur)
45 1: // "concuf' is a (numNodes x nurn.Nodes) boolean matrix

is a set of templates that can effectively cover all possible
sets of concurrently scheduled opcodes_

2: {/First, initialize supergroup hash table and id counter
3: Hash.Map;Bi.tVector, inll SGmap
4: int Sf;COUOt ... O;
5: for (i = 0 to numNodes-1) do
6: //cxt:acl C8ch node's vector of n.eighbo1s w/ an.d w/o self

The problem becomes greatly simplified when the con
currency of operation groups is considered instead of indi
vidual opcodes. As introduced above, operation groups are
defined as sets of opcode instances that are generally similar

SO 7: Bit Vector AND-group - ooncur.row(i) .aet_bit(i);
8: BilVectcr OR~group - c.oncur.row(i) .reset_bit(i);
9: //Check for existing AND-style st1pergroup for this node
10: if (SGruap(AND·group) is already bound) then
11: SGkind(i) = SO-AND;
12: SGid(i) = SGtnap(AND·group); in nature in terms of their latency and connectivity to

physical register files and are expected to be mutually
exclusive with respect to operation issue. All opcodes within
an operation group must be mutually exclusive by definition.
Furthermore, the instruction format is designed so that all
opcodes within an operation group sbare the same instruc
tion fields. Tbus, the operation group is an obvious choice
for the primary building block for creating templates.

55 13: //Check for existing OR-style suporgroup for this node
14: else if (SGmap(OR·gruup) is already bound) then
15: SGkind(i) - SG·OR
16: SGid(i) - SGmap(OR-group);
17: //If neither neighbor relation is present, start a new
18; f/supergroup with the ne:w neighbor re[ations

GO ~~: else SGid(i) = S<Ycount;

Another simplification involves classifying mutually
exclusive operation groups into equivalence classes called
super groups based on the constraints provided in the
architecture specification. FIG. 15 illustrates an example that 65

shows how the opera lion groups (sbown as letters) ancl
exclusion relations arc used in the template selection pro-

21:
22:
23:
24:

SGmap(AND-group) SG01ap(OR-group) SGcount;
SGcount = SGcount + 1;

cndif
e1td[or

The equivalence check and the partitioning can be per
formed quickly by employing the pigeon-hole principle. The

0183

US 6,385,757 Bl
47

algorithm hashes each operation group using its set of
neighbors in the concurrency matnx as the key, 11ie neigh
bor relations (neighbor keys) for each operation group (each
row) are converted 1D bilvectors. The algorithm hashes in
two ways: once by treating each operation group as concur
rent with itself (AND-style) thereby finding equivalent con
current operation groups, and the second time by treating
each operation group as exclusive with itself (OR-s!yle)
thereby finding equivalent exclusive operation groups, Thi~
hashing approach results io two bitvectors for each operation

10 grou!'-"ne with the"?" entry changed to a 1 (AND-style),
and one with the "?" entry changed to a 0 (OR-style).

Bitvectors (operation groups) that hash to the same bucket
necessarily have the same concurrency neighbors and there
fore become part of the same super group. For example in
FIG. 15, operation groups A, B, and C have the same 15

concurrency neighbors and thus form the super group {A, B,
C}. The other super groups, {P, Q}, {X, Y}, and {M, N}, are
similarly formed. The set of all distioct super groups is
defined by all the distinct neighbor keys. This partitioning
leads to a reduced-concurrency (super group) graph 694, 20

comprisiog the super groups and their concurrency relations.
Instruction templates 696 are obtained from the reduced
concurrency graph, as described below.

Each operation group identifies whether it is anAND·lYPe
or OR-type super grou]J. This information is used in the final 25

template expansion, where each operation group from an
AND-type super group is given a separate slot, while all
operation groups from an OR-type super group are put into
the same slot.

In the concurrency matrix 690 shown in FIG. 15, the"?" 30

entries o(the "A", "B", and "C" operation group bitvectors
have been changed to O's so that their corresponding bitvec
tors are identical. 'Thus, "A:', "B", and "C" form an OR-type
super group {A, B, C}, and each operation group is placed

48
As an example, suppose super groups A, B and C only

have pairwise concurrency constraints, i.e., {AB}. {AC},
and {BC}. These pairwise concurrencies can be covered in
one of two ways. First, the pairwise concurrency constraints
can be treated as three independent templates AB, AC, and
BC, each requiring lwo issne slots. A second possibility is lo
treat the pairwise concurrencies as being simultaneously
concurrent, thereby requiring only one template (ABC) with
three issue slois. Strictly speaking, this allows more paral
lelism than what was intended, lf the compiler never sched
uled all three operations simultaneously, the second design
would end up carrying one ooop in every instruction 111ereby
wasting one-third of the program space, On the other hand,
the first design requires additional decoding logic lo select
among the three templates and more complex dispersal of
the instruction bits to the various functional units,

In the present scheme, this tradeoff is made tow•rds
initially choosing a reduced number of possibly longer
templates, 11iis is partly due to the fact that the ArchSpec
does not directly specify concurrency in most instances, but
rather specifies exclusion relations among operation groups
that are then complemented to obtain concuneocy relations.
During the initial template design phase, choosiog the maxi·
mally concurrent templates covers all possible concurrency
relations with as few templates as possible.

The maximally concurrent !emplates may be determined
by finding tbe cliques of the super group graph. An example
of a simple reduced super group concurrency graph fo shown
in FIG. 17. The graph comprises super groups 1-7, and their
interconnecting edges. The maximal cliques for such a
simple graph ca.n be determined by hand by siniply identi-
fying sets of nodes that are completely connected-that is
each node in a clique must connect to the remaining nodes
in the clique, For instance, { 1, 3, 7} is a clique, while {2, 4,

in the same slot. 35 5, 6} is not (nodes 5 and 6 are not connected). In the
supergraph of FIG. 6, there are seven maximal cliques, and
thus seven maximally concurrent templates,

FIG. 16 shows a case with an AND-type and an OR-type
super group. In order to obtain identical bitvectors, the "A",
"B", and "C" operation groups are treated as being concur
rent with tbernselves. As a result, they form an AND-tYPe
super group and are placed in separate template slots. In 40

contrast, the "M", "N", "X", and 11Y" operation groups are
treated as exclusive with them.selves and form two different
sets of OR-type super groups {M,N} and {X,Y}, which each
occupy a single slot

For a homogenous VLIW-style machine with multiple, 45

orthogonal functional units thL'i process yields tremendous
savings by reducing the complexity of the problem to just a
few iodependent super groups. Tbe resulting instruction
templates closely match super groups to independent issue
slots for each functional unit. For a more heterogeneous 50

machine with shared resources, the resulting number of
templates may be larger and the decoding is more complex
but partitioning the operation groups into super groups still
reduces the complexity of the problem significantly.

7.6 Concurrency Cliques and Templates
Once the super groups have been determined, each clique

in the reduced concurrency graph is a candidate for an
instruction template since it denotes a set of super groups
tbat may be issued in parallel by the scheduler. A clique is

55

a subgraph in which every node is a neighbor of every other 60

node. Clearly, enumerating all cliques would lead to a large
number of templates. On the other hand, unless the concur
rency among super groups is restricted in some other way,
it is necessary lo choose a set of templates that cover all
possible cliques of the super group graph to ensure that !lie 65

scheduler is not restricted in any way other than that
specified in the Ard1Spec.

It is necessary to use computational means to calculate the
cliques for more complex super group graphs, The instruc
tion format designer uses the same approach for finding
cliques as the datapath synthesizer described above.

7.7 Set-Up of Bit Allocation Problem
Once the templates are selected, the iforrnat system con

structs the lower levels of the IF tree, 'The tern plates form the
upper level of the tree. For each of the operation groups in
a template, the system extracts the inputs and outputs for
each operation based on their f/0 formats in the .abstract ISA
specification and adds this information to the IF tree, Using
the extracted 1/0 fom1ats, the system enumerates the instruc·
tion fields for each of the operation groups associated with
the templates. Next, it builds field conflicts, partitions
instruction fields into superfields, and extracts bit widtb
requirements.

7 .7 .1 Instruction Fields
As shown in FIG, 13, the instructi.on fields form the leaves

of the if-tree. Each instruction field corresponds to a data
path control port such as register file read/write address
ports, predicate and opcode port> of functional units, and
selector port5 o[multiplexors, Each field reserves a certain
number of instruction bits to control the corresponding
control port.

1ne iforrnat designer assigns each field to a control port
by traversing the if tree lo find the operation group associ
ated with the field, and then extracting the fonctional unit
assigned to the operation group in the datapath specification.

The following sub-sections describe various kinds of
instruction fields. FIG. 20 is annotated with letters S, A, L,

0184

us 6,385,757 Bl
49

op and C to illustrate examples of lhe information flowing
from these fields in the instruction register to the control
ports in the data path.

50
7.7 .2 Computing Field Conflicts
Before performing graph coloring, tbe system computes

the pairwise conflict relation between instruction fields,
which are represented as an undirected conflict graph.

In the two leaf nodes (instruction fields) conflict if
and only if Least-common ancestor is an AND node.
The system computes pairwise conflict relations using a
bottom-up data flow analysis of the if-tree. TI1e procedure in
the implementation maintains a field set, F, and a conflict

Select fields (S). At each level of the if-tree that is an OR
node, there is a select field that chooses among the various
alternatives. The number of alternatives is given by the
number of children, n, of the OR node in the if-tree.
Assuming a simple binary encoding, the bit requirement of
the select field is then log2(n) bits.

Different select fields are used lo control different aspects 10 relation, R. Set F" is lbe set of instruction fields in the subtree
rooted al node n. Relation R" is the conflict relation for the
subtree rooted at node n.

of the datapalh. 'Die root of the if-tree has a template select
field that is routed directly to the instruction unit control
logic in order lo determine the template width. ll also
specifies where the supergroup select fields are positioned. 15
Therefore, lb.is field must be allocated at a fixed position
within tbe instruction. Together with the template select
fields, the select fields al super group and operation group
levels determine how to interpret the remaining bits of the
template and therefore arc routed to the instruction decode 20

logic for the datapath. The select fields at the level of field
(IO sets) are us~,d lo control the multiplexors and
drivers at the input and output ports of the individual

functional units to wbich th.al operation group is mapped.
These fields select among tbe various register and literal file zs
alternatives for each source or destination operand.

Register address fields (A). The read/write ports of vari
ous register files in the datapalh need to be provided address
bits lo select the register to be read or written. The number
of bits needed for these fields depends on the number of 30

registers in the corresponding register file.
Literal fields (L). Some operation formats specify an

immediate literal operand that i5 encoded within the instruc
tioo. 1be width of these literals is specified externally in the
ArchSpec. Dense ranges of integer literals may be repre- 35
seated directly within the literal field, for example, an
mteger range of -512 lo 511 requires a 10-bit literal field in
2's complement representation. On the other hand, a few
individual program constants, such as 3.14159, may be
encoded in a ROM or a PLA table whose address encoding 40

is lben provided in the literal field. In either case, the exact
set of literals and their encodings must be specified in the
Arch.Spec.

Opcode fields (op). The opcode field bits are used to
provide the opcodes to the functional unit to wbich an 45
operation group is assigned. It is possible to use the internal
hardware encoding of opcodes in the functional unit directly
as the encoding of the opcode field, in which case the width
of the opcode field is the same as the width of the opcode
port of the corresponding functional unit and the bits are 50
steered directly to iL This mechanism may be used when all
the opcodes supported by a functional unit are present in the
same operation group or the same super group.

Under some templates, however, the functional unit
as.signed lo a given operation group may have many more 55

opcodes than those present within the operation group. In
this case, opcode field bits may be saved by encoding the
hardware opcodes in a smaller set of bits determined by the
number of opcodes in that operation group and then decod
ing these bits before supplying lo the functional unit. lu this 60
case, the template and opgroup specifier bits are used to
provide the context for the decoding logic.

Miscellaneous control fields (C). Some additional control
fields are present al the instruction level that help in proper
sequencing of instructions. 'Diese consists of the consume to 65
end-of-packet bit (Eop) and the field lhal encodes the
number of no-op cycles following the current instructioo.

The procedure proces.ses nodes in bottom-up order as
follows:

Leaf node: Al a leaf node, /, the field set is initialized lo
contain !he leaf node, and the conflict relation is empty.

or-node: At an OR-node, the field set is the union of field
sets for !be node's children. Since an OR-node creates
no new conflicts between fields, the conflict set is the
union of conflict sets for the node's children.

aod-node: At an AND-node, the field set is the unioo of
field sets for the node's children. An AND-node creates
a new conflict between any pair of fields for which this
node is the least-common ancestor; i.e. there is a new
conflict between any two fields that come from distinct
subtrees of the AND-node. Formally,

This method can be implemented very efficienlly, by
noting that the sets can be implemented as linked lists.
Because the field sets are guaranteed to be disjoint, each
uoion cao be performed in constant time by simply linking
the children's lists (each union is charged to the child).
Similarly, the initial union of children's conflict sets can be
done in constant time (charged 10 each child). Finally,
forming the cross-product conflicts between fields of distinct
and-node children can be done in time proportional to the
number of conflicts. Since each conflict is considered only
once, the total cost is equal to the total number of conflicts,
which is at rnosl n2

• For an if-tree with n nodes and E
conflicts, the overall complexity is O(n+E) lime.

7 .7.3 Assigning Field Affinities
A> introduced above, the iformat system is capable of

instmclion fields that correspond to the same a:m-
port lo the same bit position in a process called affinity

allocation. Such alignment may simplify !he multiplexing
and decoding logic required to control the corresponding
datapath control ports since the same instruction bits are
used under different templates. On the other hand, such
alignment may waste some bits in the template thereby
increasing its width.

[n order to make use of affinity allocation, the iformat
designer groups instruction fields that point to the same
datapath rontrol port into a superfield. All instruction fields
within a superfield are guaranteed not lo conflict with each
other since they use lhe same hardware resource and there
fore must be mutually exclUEive.

The superfield partitioning only identifies instruction
fields tbal should preferably share instruction bits. However,
sometime.<; it is deemed essential tbat certain instruction
fields must share the same bits. For example, if tbe addres.<;
biLs of a register read port are aligned to the same bit
positions unde1 all templates, then these address bits may be
steered directly [rom the instruction register to the register

0185

us 6,385,757 Bl
51

file without requiring any control logic to select the right set
of bits. This forced sharing of bit positions can avoid the
need for a multiplexor in the critical path of reading oper
ands out of a register file, thereby enhancing performance.

To handle such a constraint, the ifonnat system allows a
user or other program module to specify a subset of field5
within a superfield that must share bits. One way to specify
this is in the form of a level mask that identifies the levels
of the if-tree below which all instruction fields that are in the
same superfield must share bit positions. This mask is a
parameter to the bit allocation process described in tb.e next
section.

7.8 Resource Allocation
Once the instruction fields have been assigned to the

leaves and the pairwise conflicts have been determined, we
are ready lo begin allocating bit positions to the instruction
fields. Irr this problem, instruction fields are thought of as
resource requesters. Bit positions in the instruction format

52
[11 the above pseudocode, the tDlal resource request for a

node and its neighbors is computed by the first loop. The
heuristic repeatedly reduces the graph by eliminating the
node with !he current lowest total resource request (node
plus remaining neighbors). Al each reduction step, we keep
track of the worst-case resource lin1it needed to extend the
coloring. If the minimum total resources required exceed the
current value of k, we increase k so that the reduction
process can continue. The graph reduction is perfonned by

10
the second loop. Nodes are pushed onto a slack as they arc
removed from the graph. Once the graph. is reduced to a
single node, we begin allocating bit positions (resources) to
nodes. Nodes are processed in stack order, i.e. reverse
reduction order. Al each step, a node is popped from the
stack and added lo the current conflict graph so that it

15 conflicts with any neighbor from the original graph that is
present in the current conflict graph. The existing allocation
is extended by assigning bit positions to satisfy the current
node's reguest, using bit positions disjoint from bit positim15

are resources, which may be reused by mutually exclusive
instruction fields. Fields required concurrently in an inslruc- 20

lion must be allocated different bit positions, and are said to
conflict. lbe resource allocation problem is to assign
resources lo requesters using a minimum number of
resources, while guaranteeing that conflicting requestors arc
assigned different resources. The current implementation of
resource allocation uses a variation of graph coloring.

assigned lo the current node's neighbors.
7.8.1 Allocation Heuristics
During bit allocation, the current node's regucsl can be

satisfied using any bit positions disjoint from positions
allocated to the node's neighbors in the current a:mll.ict
graph. The current implementation applies several heuristics

25 to guide the selection of bits.
Left-most allocation. The number of reguired bit positions

computed during graph reduction is the number needed lo
guarantee an allocation. In practice, the final allocation often
uses fewer bits. By allocating reguested bits using the

Once the if-tree and instruction field conflict graph are
built, the iformal system can allocate bit positions in the
instruction format to instruction fields. Pseudocodc for the
resource allocation is shown below:
RcsourceAlloc(rrodeRequests, couflictGraph)

30
left-most available positions, we can often achieve a shorter
instruction format.

II compute resource request for each node+neigbbors
foreacb (node E couflictGraph)

Mark(rrodc)=FALSE;
To talRequcs t(rro de)= Re ques !(node)+ Reg ues t 35

(NeighborsOf(rrode));
II sort nodes by increasing remaining total resource

request
II compute upper-bound on resources needed by alloca-

tion resNceded=O; Stack=EMPTY; 40

for (k from 0 to NumNodes(conflictGraph))
find (mirrNode E unmarked nodes) such that

Contiguous allocation. Since bit positions requested by an
instruction field generally flow ID a common control point in
the data path, we can simplify the interconnect layout by
allocating reguested bits to contiguous positions.

Affinity allocation. Norr-corrilicting instruction fields may
have affinity, meaning there is au advantage lo assigning
them the same bit positions. For example, consider two
non-conflicting fields that map to the same register file read
address port. By assigning a single set of bit positions to the
two fields, we reduce the interconnect complexity and avoid
muxirrg al the read address port. As discussed earlier, each
node has a set of affinity siblings. During allocation, we
attempt to allocate the same bit positions to affinity siblings. TotalRequest(minNode) is minimum;

Mark(minN ode)= TRUE;
push(minNode,Stack);
res N ce dcd =max(resN ceded, To ta !Re guc st:

(minNodc));

45 This heuristic works as follows. When a node is first
allocated, its allocation is aL5o tentatively assigned to the
node's affinity siblings. When a tentatively allocated node is
processed, we make the tentative allocation permanent pro-

foreach (rrhbr E NeighborsOf(mirrNode))
TotalRequest(rrhbr) -=Request(minNode);

50
II process nodes in reverse order (i.e., decreasing total

request)
while (Stack is not EMPTY)

rrodc=pop(Stack);
AllResources={O ... rcsNceded-1); 55
II available bits are those not already allocated tD any

neighbor
Available Res(rrode)=Al!Rcsources-Alloca tedRcs

(NeighborsOf(nodc));
II select requested number of bits from available posi- 60

lions
II according lo one of several heuristics
AllocatedRes(nodc)=Choose Request(node) resources

from AvailableRes(node)
lll!Hl: Contiguous Allocation

181112: Affinity Allocation
return rcsNcedcd

65

vided it does not conflict with the node's neighbors' allo
cations. If the tentative allocation fails, we allocate available
bits to the current node using the previous heuristics, and we
then attempt lo re-allocate all previously allocated affinity
siblings to make use of the current node's allocated bils.
Because nodes are processed in decreasing order of conflict,
tentative allocations often succeed.

A heuristics diagram for the resource allocation is as
follows:
if node is tentatively allocated then

make tentative allocation permanent, if possible
if node is (still) not allocated then

try to use a sibling allocation
if node is (still) not allocated then {

allocate either contiguously, or left-most available
for each sibling of node {

if sibling is allocated then
try to use node's allocation in place of existing

allocation

0186

us 6,385,757 Bl
53

else
tentatively allocate sibling, using node's allocation

} // for

7.9 Template-based A'>Sembly
Once the complete structure of the instruction templates

has been determined, we can proceed lD assemble the code.
All subsequent di>cussion is essentially to improve the
quality of the templates. In this section, we briefty ou lline
the process of assembly with a given set of templates. JD

54
templates. This amounts to reordering the positions of
various operation groups within these templates.

(4) 'Jbe instruction fetch and decode hardware is usually
designed with a certain quantum of instruction infor
mation in mind, A quantum is a unit of data (e.g., an
inleger multiple of bytes) used to specify the width of
tbe data path in the instruction fetch and decode hard
ware. Rounding lhe instruction templates up lo tbe next
quantum usually frees up extra bit space. One or more
of tbe above strategies can then take advantage of this
extra bit space without increasing the widlh of tbe
instruction.

7.11 Schedule-based template customization
The instruction format information is not needed until the

program is ready to be assembled. 11le compiler is driven by
a machine-description that only depends on the specified
ArchSpec and the structure of !be dalapath. This implies that
the exacl schedule of the program may be used to customize
the various available templates. To customize templates for

A program that has been scheduled and register-allocated
coosisL<; of a sequence of operations each of which has been
assigned a time of issue. Multiple operations scheduled
within the same cycle need lo be assembled into a single
instruction. Any instruction template that covers all the 15
operations of an instruction may be used to assemble that
instruction. Clearly, tbe shortest template L'i preferred to
avoid increasing the codesize unnecessarily since longer
templates would have lo be filled with noops in tbe slots for
which there are no operations in the current instruction. 20 a particular application program, the iformat system 11~es

operation issue statistics from a scheduled version of the
program to de!ennioe tbe frequency of use of the various
combinations of operations. It lben selects frequently 11sed

The process of template selection for an instruction bas
the following steps. First, the specific compiler-opcode of
each scheduled operation in the instruction is mapped back
to its operation group. Each operation group keeps a record
of the set of templates lbat it can be a part of. Finally, tbe 25
intersection of all such sets corresponding to the operation
groups present in the current instruction gives the set of
templates tbal may be used to encode !be current instruction.
The sborlest template from this set is chosen for assembly.
TI1e exact opcode and register bits are determined by map- 30
ping tbe compiler mnemonics to their machine encodings by
consulting !he if-tree.

7. 10 Design of Applicalion-specific Instruction Formals
As discussed above, the initial design produces a minimal

set of maximally concurrent instruction templates that cover 35
all possible concurrency relations implied by the ArchSpec.
In practice, this tends to produce a few long templates since
the processor designs we are interested in have quite a bit of
expressible instruction-level paraJJelism (ILP). But ool all
that parallelism i:> used at all times by the scheduler. If we 40
assemble programs using only these long templates, a lot of
noops would have to be inserted in the low ILP parts of the
code.

One fix to this problem is to customize the templales to
the program being compiled. There are several aspects to 45
such customization:

(1) Identify !he most frequently used combinations of
opera lions in the program and design shorler templates
for them which allow fewer concurrent operations in
them. An extension of Ibis view also takes into account so
the mos! frequen!ly used operation formals and creates
new opgroups that incorporate just those.

(2) Use variable lengtb encoding wherever there is a need
to select one out of many choices in tbe instruction
format. We may use variable length template selection 55

biLs according to tbe frequency of use of each template.
Likewise, different operation groups within a slot and
different opcodes within an operation group may be
given a variable length encoding according to their
frequency of use. There is, of course, a tradeoff 60

between tbe codesize reduction and the increase in
decode complexily.

(3) Sometimes, lhe decode complexity may be improved
dramatically by doing affinity-based allocation of simi-
lar inslruction fields across templates. This reduces the 65

degree of multiplexing needed lo route the same infor
mation represented at different positions in different

combinations of operalions as possible candidates for new
templates. Finally, it performs a cost/benefit analysis to
select new "custom" templates.

FIG. 18 is a flow diagram illustrating a process of
selecting cuslom templates from operation i>sue statistics.
The process begins by extracting usage statistics from a
scheduled application program 700. 1bis is done by map
ping the scheduled opcodes of an instruclion back to their
operation groups as shown in step 702. The process then
generates a histogram of combinations of operation groups
from the program as shown in step 704.

A static his!Ogram records tbe frequency of static occur·
rences of each combination within the program and may be
used to optimize !he static codesize. A dynamic histogram
weights each operation group combination with its dynamic
execution frequency and may be used to improve the
instruction cache performance by giving preference to the
most frequently executed sections of the code. One imple-
mentation uses the static histogram in the optimization to
give preference to the overall slatic code size. In alternative
implementalions, the dynamic histogram or botb tbe
dynamic and static histograms may be used to optimize !he
dynamic code si7,e of the combined dynamic/static code
size, respectively.

Based on the frequency of use data in the bi~togram, the
customization process selects combinations of opgroups as
potential candidates for templates (706) and evaluates their
costfbenefit (708) in terms of code size/decode complexity,
which is quantified in a cost function. The process iteratively
selecls a set of templates, evaluates their cost/benefit, and
ultimately returns a set of custom templa!es tbat meet a
predetermined optimization criteria (710, 712). As noted
above, the criteria may include, for example, a mioirni7.ed
static or dynamic code size or a minimized code size and
decode complexity. An example of this criteria is discussed
below.

In the current implementation, the problem of determin
ing custom templates is formulated as follows. Let us
assume that T,, ... , T" are tbe instruction templates thal are
required to conform with tbeArcbSpec. Suppose C" ... ,
are distinct combinations of operation groups occurring
the program. Let tbe width of each combination be W; and
its frequency of occurrence be f; Nso, in case of unopti-
mized assembly, suppose eaclJ combination C, maps to an

0187

US 6,385,757 Bl
55

initial template T1 with width v1. A'i-5uming that variable
length encoding is nol used for the template selection field,
the initial size of the program is,

W = i: f; (v; <-fJog,11])
jCC{

56
used for dala compression where an input symbol of some
inpul length in bits is converted to a variable length code,
with potentially a different length depending oo the fre
quency of occurrence of the input symbol. Entropy coding
assigns shorler codes to symbols that occur more frequent I y
and assigns longer codes to less frequent codes such that the
total space consumed of the coded symbols is less than that
of the input symbols.

Let F be a set of exclusive bit fieWs, and let w, denote the Now suppose we include C, as a custom template. This is
taken to be in addition to the initial set of templates since
those must be retained In cover other pos.siblc concurrency
relations of the machine as specified in the ArchSpec. The
additional template has a smaller width w,- but it increases
the size of the template selection field (and hence the decode
logic). The other significant increase in decode cost is due to
the fact that now the same operation may he represented in
two different ways in the instruction format and hence the
instruction bits from these two positions would have to be
multiplexed based on the template selected. 111is cost may
be partially or completely reduced by performing affinity
allocation as discussed above,

10 bit length of field i <' F. Au encoding for the steering field for
Fis represented as a labeled binary tree, where each element
of Fis a tree leaf. The edge labels (zero or one} on the patli
from the root to a leaf i denotes tbe binary code for selectiug
i. A fixed-length sleering code is represented by a balanced

J5 tree in which every leaf is at the same depth. Variable-length
encodings are represented by asymmetric lrees.

For a tree T representing a code for F, we define d,{x) to
be the depth of x, i.e., the codelength for choice x. The total
cost of encoding a choice xis the sum of the bit requirement

20 for x and the code length for x:

costr(x)=d,.(x)+W(x)
If X1 represents a 1/0 variable denoting whether combi

nation C,- is included or not, the optimized length of the
program is denoted by,

W,= = 2: f;·(X,.w; + (l -X;)·v; <- flag,(n+ l: X;j!)

The overall cost for encoding the set of fields F together

25
with its steering field is equal IO the worst-case single field
cost:

i::d

= .I;k(>;-X;·(v;-w;)<-[log,(n+ .I; X1)l)
j=;[

II is clear that we should customize all those operation
group combinations into additional templates that provide

30

the largest weighted benefit until the cost of encoding
additional templates and their decoding cost outweigh the 35

total benefits. One possible strategy is lo pick the k most
beneficial combinations where k is a small fixed number
(e.g. k<16). The decode complexity directly impacts' chip
area needed for decode logic. With an increase in the number
of templates, the complexity of the decode logic lends lo 40

grow, unless affinity constraints are used to align operation
group occurrences uorn different templates to the same
template slots. The chip area occupied by selection logic
may be guantified as another component of the cost function.

7.12 Variable Length Field Encodings 45

Variable length field encoding is an important technigue
for reducing the overall instruction formal bil length, The
simplest use of variable leugth liekls is in encoding a
steering field that selects one of a sel of exclusive fields of
differing lengths. For example, tbe instruction formats have so
an opgroup steeciug field to select one of many opgroups
available within a single issue slot. Suppose we have 32
opgroups available within a particular issue slot, and that the
opgroups' encodings reguire lengtb.s Erom 12 lo 29'bits. With
fixed-length encodings, we reqnire an additional 5 bits to 55

encode the opgroup selection, bringing the overall size of the
issue slot lo 34 bits. Using a vaciable-lcngth encoding, we
can allocate short encodings to op groups having the greatest
overall width, while using longer encodings for opgroups
having smaller width. Provided .there is enough "slack" io 60

the shorter opgroups to accommodate longer encodings, the
overall bit requirement can be reduced significantly. In our
example, we may be able to achieve a 30 bit encoding for the
issue slot. ·

One approach to designing variable-length encodings 65

uses entropy coding, and in particular, a variant of Huffman
encoding. Entropy coding is a coding technique typically

C(D =max {cosrr(x)}
x•J

The goal is to find a code Tof minimal cost. This problem
is solved by the algorithm shown below;

Huffman (Set C, Weights W)
N= IC!;
f/insert elements of C into priority queu::

3: for)'.;< C do
4: enqueue (x, Q);
5: endif
6: for i • 1 t.o n-1 do
7: z . new node;
8: x extract_min (Q);
9: y ex:traet~_miu (Q);
10: z.left = x; z.right = y;
11: W(z) max {W(x), W(y)) + 1;
12: enqueue (z,Q);
13: endif
14: relurn extracl __ tr.in (Q);

7, 13 Exlracting an Abstract ISA Specification from a
Concrete ISA Speci!icatioo

A> outlined above, the iformat design process may be
used to generate an instruction format specification from a
datapath specification and an abstract ISA specification. In
an alternative design scenario, the iformat design proces.s
may be nsed to generate optimized concrete ISA specifica
lion programmatically from an initial concrete [SA specifi
cation and a list of frequently occurring combinatioos of
operation group occurrences and !LP constraints. The initial
concrete ISA specification includes an instruction formal
specification and a register file specification and mapping.
Tbe register file specification and mapping provides: l) the
regL,ter file types; 2) the number of registers in each file; and
3) a correspondence between each type of operand instruc
l!on field in the instruction format and a register file.

Io order to optimize the iostruction format in this scenario
(and thereby the ccncrete ISA specification), the iformat
design process programmatically extracts ao abstract ISA

0188

us 6,385,757 B1
57

specification from the concrete [SA specification (see step
554 in FIG. 12). It then proceeds lo generate the bit
allocation problem specification, and allocate bit positions
programmatically as explained in detail above. 111e opera
tion group occurreoces and !Li' const.raints (e.g., concur
rency sets of the operation group occurrence&) may be
provided a;; input from the user (e.g., starting with a custom
template specification at block 556 in FIG. 12), or may be
generated prograrnmatically from operation issue statistics
568 111 step 569 shown in FIG. 12 and described above.

Given a Concrete ISA Specification, this step extracts the
information corresponding to an Abstract ISA Specification.
The Instruction Format, which is part of the Concrete ISA
Specification, consists of a set on Instruction Templates,
each of which specifies sets of mutually exclusive opcodes
that can be issued in parallel. From this information one can
define the correspondmg Operation Group Occurrences and
a Concurrency Set consisting of these Operation Group
Occurrences. All of the Instruction Templates, together,
define the opcode repertoire, the Operation Groups and !be
!LP specification that fom1 part of the Abstract ISA Speci
fication. The Instruction Format Specification directly pro
vides the 1/0 Fonnat for each opcode as needed by the
Abstract ISA Specification. The Register File Specification
in the Concrete ISA Specification directly provides the
Register File Specification that completes the Abstract ISA
Specification.
8.0 Overview of Control Path Design System

The control path design system is a programmatic system
that extracts values for control path parameters from an
instruction format and data path specification and creates a
control path specification in a hardware description ·
language, such as AIR.

FIG. 19 is a block diagram illustrating a general overview
of the control path design system. Tbe inputs to the control
path design synthesizer (CP synthesizer) 800 include a data
path specification 802, an instruction format specification
804, and !Cache parameters 806. The CP synthesizer selects
the hardware componenl.s for the control path design from a
macrocell database 808 that includes generic macrocell> for
a sequencer, registers, multiplexors, wiring buses, etc. in
AIR format. The macrocell database also includes a machine
description ofcertain macrocells, referred to as mini MDES.
Tbe mini-mdes of a functional unit rnacrocell, for example,
includes the functional unit opcode repertoire (i.e., the
opcodes executable by lbe functional unit and their binary
encoding), a latency specification, internal resource usage,
and input/output port usage.

Implemented as a set of program routines, the CP syn
thesizer extracts parameters from the data path, the instruc
tion format, and instruction cache specificatiorL~ and syn
thesizes the control path including the !Udatapath, control
logic for controlling the !Udatapath, and decode logic for
decoding the instructions in the instruction register.

The CP synthesizer builds the IUdatapath based on the
instruction width requirements extracted from the instruc
tion format speciftcation. It instantiates macrocells in the
lUdatapath by computing their parameters from the maxi
mum and minimum instruction sizes and the instruction
cache access time.

It then constructs the control logic for controlling the
!Udampatb based on the computed IUdatapath parameters
and the !Cache parameters. The !Cache parameters provide
basic information aboul the instrnclion cache needed to
construct tile instruction fetch logic. These parameters
include the cache access time and the width of the instrnc·
tion packet, which is the unit of cache access.

58
111e control path design process synthesizes the decode

logic for decoding the instruction in the instruction register
by scanning the instruction formal and data path control
ports. l! also determines the interconnect between the bit

5 positions in the io..,truction register and the control ports in
the data path.

The CP synthesizer is programmed to optimize the design
of tbe instruction onit for a pre-determined control path
protocol. As part of this process, it may optimize the

JG instruction pipeline (the IUdatapath) by selecting macrocells
that achieve a desired instruction issue rate, such as one
instruction to the decode logic per cycle, and by minimi?ing
the area occupied by the macrocells. It also minimizes the
area of the control logic, such as the area that !he ru control

15 logic and decode logic occupies.
The output of the control path design process is a data

strncture that specifies the control path hardware design in
the AIR fonnat 810. The AIR representation of the !Udata
patb includes the macrocells for ead1 of the componenls in

20 the !Udatapath. 1bis may include, for example, a pre.fetch
buffer for covering the latency of sequential instruction
fetching, and other registers used to store instructions before
issuing them to the decode logic. The AIR representation
includes a macrocell representing the sequencer and the

25 control logic specification (e.g., a synthesiz:able behavioral
description, control logic tables, etc.) representing the con
trol logic for each of the mmponenl~ in the !Udatapath.
Finally, the AIR representation includes a decode logic
specification (e.g., decode logic tables) representing the

30 instruction decode logic and the interconnection of this
decode logic between the instruction register and the control
ports enumerated in the data path specification. Conven
tional synthesis tools may be used to generate the physical
logic (such as a PLA, ROM or discrete logic gates) from the

35 control and decode logic specifications.
8.1 The Relationship between the Control Path and the

Control Ports in tbc Data Path
Before describing aspects of the control path in more

detail, it is instructive to consider the state of the processor
40 design before the CP synthesizer is executed. As noted

above, one input of the control path design process is the
data path specification. Provided in tbe AIR format, the data
patb input 802 specifies insmnces of the functional unit
macrocells and register file macrocells in the data path. It

45 also specifies instances of the macrocells representing the
wiring that interconnects the read/write data ports of the
register files with input and output data ports of the func·
tional units. At this phase in the design of the processor, the
control ports in the data path are enumerated, but are not

so connected to other components. For example, tbe opcode
input of the functional nnits aod the address inputs of the
register files are enumerated, but are not connected lo the
control path hardware.

FIG. 20 illustrates an example of a processor design,
55 sl1owing the relationship between the data patb (in dashed

box 820) and the control path. The data path includes a
register file instance, gpr, a functional unit (FU) cell
instance, and an interconnect between the gpr and functional
unit. The interconnect comprises data buses 822-830 lhat

6G carry data between the FU and gpr, a multiplexor 832 that
selects between input sources (e.g., gpr and literal pseudo
register Sext), and tri-state buffer 834 that drives output data
from the FU onto a data bus 830. Tbe data read ports of the
gpr, drO and dry, provide data to the data input ports of the

65 FU, iO and il, via buses 822-828 and multiplexor 832. 'The
output port of the FU, oO, provides data to the data write
port, dwO, via tri-state buffer 834 and data bus 830.

0189

US 6,385,757 Bl
59

The control pons that are enumerated, yet remain unc0n
nected before the control path design, include the read and
write address porl.s of the gpr, arO, arl aud awO, and the
opcode input port, op, of the FU. Some data ports in a FU
or gpr may map to more than one data port io the gpr or FU,
respectively. This sharing may be controlled via control
ports of a multiple:xor 832 or tri-state buffer 834.

60
because it is easier to control shifting in units of quanta
rather than individual bits. The parameters to be extracled
al-;o include W the minimum instruction width in
quanta, and' w,~:::' the maximum instruction width in
quanta.

The protocol also defines parameters relating to the
instruction cache (!Cache) as follows:

Also, a control port of tbe gpr or FU may map to more
than one bit position in the instruction. This type of sharing
may be controlled via control ports of a multiple:xor 836, for 10
example. However, the hardware logic to control this shar
ing is left to be specified io the control path design process.

WA II instiuction packet width (qu.anta) (WA~W,,n.ax•
WA·2"')

WL II cache line size (quanta) fWL?;_WA, WL•2")
'l',, ii cache access time (cycles)
'!11e instruction packet defines the amount of data that the

control path fetches from the !Cache with each fetch opera
tion. In the protocol of the current implementation, the size

111e mapping between the instruction fields in an instruc
tion and the control ports in the data path is specified in the
instruction format specification. The datapath specification
enumerates the eonlrol ports in lbe data path and provides
the information needed to map lbese control ports lo the
instruction fields. The instruction fom1at specification speci
fies the specific bit positious and encodings of the fields in
the instruction fields.

1be following sections describe in more detail how an
implementation of the control path design process generates
the control path.

8.2 The Control Path Protocol
The control path de-sign process synthesizes a specific

control path design based on a predefined control path
protocol. In lbe current implementation, the control path
protocol defines a method for fetching instructions from an
instruction cache and dispatching them sequentially lo an
instruction register that interfaces with the processor's
decode logic. It also defines the type of macrocells that the
control path will be constructed from and enumerates their
parameters. 1ne CP synthesizer program then selects the
macrocel!s and computes specific values for their parameters
based on information extracted from the instruction format
and datapalh.

'The example in FIG. 20 helps to illustrate the control path
protocol used in the current implementation. It is important
lo note that a number of design choices are made in defining
the protocol, and these design choice-s will vary with the
iniplemenlation. TI1e illustrated prolocul represents only one
pos.sible example.

To get a general understanding of the control path
protocol, consider the flow of an instruction through the
control path in FIG. 20. The sequencer 900 initiates the
fetching of instructions into the IUdatapalh. 1be MAR 902
in the :sequencer stores the address of lbe next instruction lo

15 of the instruction packet is defined to be at least as large as
the widest instruction and is expressed as a number of quanta
that must be a power of two, However, the packet need not
be that large if the widest instruction is infrequent. In
instruction format designs where the widest instruction is

20 infrequent, the size of the control path can he reduced
because tbe extra cycles needed lo fetch iastruclions larger
U1an the packet size will rarely be incurred. The computation
of the packet size can be optimized by finding the smallest
packet size that will provide a desired fetch performance for

25 a particular application or a set of application programs.
Tile protocol specifies the method for fetching inslruc

lions from the !Cache and the types of components in the
!Udatapath. In the current implementation, the protocol
includes a prefetch packet buffer, an On Deck Register

30 (OnDeckReg or ODR) and an instruction register (IR). As
shown in FIG. 20, the sequencer 900 is connected to the
instruction cache 904 via control lines 906, These control
lines include !Cache address lines used to spe<.'.ify the next
instruction to be fetched into the IUdatapath. Through these

35 control lines, the sequencer 900 selects the packet and
initiates the transfer of each packet of instructions from the
instruction cache to a First·ln, First-Out (FIFO) buffer 908.

The cache access time TA is an !Cache parameter pro
vided as input lo the control path design process. It is the

40 time taken in cycles between the point when an address is
presented to the address port of the !Cache and when the
corresponding data is available on its data port for reading.
The cache line size parameter defines the width of a cache
line in quanta. The control path design process selects a

45 cache line size that is greater or equal to the packet size and
is expressed as a number of quanta th al must be a power of
two. Although not necessary, this implies that in our current
implementation a cache line contains an integral number of be fetched from tbe instruction cache 904. Using the con

tents of the MAR, the sequencer initiates the fetching of
instructions from the cache for both a sequential mode and 50
a branch mode.

instruction packets.
The IUdatapath begins at the ICache and flows into the

FIFO 908 via data lines 910. The number of data lines is
defined as the instruction packet size in quanta. 1be FIFO
908 temporarily stores packets of instructions on their way
lo the instruction register 912. Tbe objective in designing the

In order to specify values for the widths of components in
the !Udatapath, the CP synthesizer extract5 information
abo~t tbe instni.clion widths from the instruction format
specification. 'The protocol specifies the types of parameters
that need to be extracted from this information.

11te parameters extracted from the instruction formal
include:

Q1 II quantum (bytes) (greatest commou denominator of
all possible instruction widths, fetch widths)

w .. II minimum instruction width (quanta) w::: // maximum instruction width (quanta)
'The parameter, Q,, is a unit of data used to express the

size of instruction and fetch widths in an integer multiple of
bytes and is referred to as a quantum. Thi.s para~eter is not
critical tJJ the invention, but it does tend to simplify the
design of other components such as lbe alignment network

55 FIFO is to make it deep enough to cover the latency of
sequential instruction fetching from the instruction cache.
The control path must be able lo issue instructions to the
instruction register to satisfy a desired performance crite
rion. In this case, !he protocol defines the performance

60 criterion as a rate of one instruction issue per clock cycle of
the proceS-~OI. Note, one instruction may contain several
operations that are issued concurrently.

The IlJ Control 903 is responsible for controlling the flow
of instruction packets from the FIFO 908 lo a register Iha!

65 holds the next packet of instructions to be issued to the
instruction register, called the ODR 914, In tbe example
shown in FIG. 20, th" IU Control 903 controls the !low of

0190

US 6,385,757 Bl
61

instruction packets from the FIFO lo the ODR 914 through
control lines 916 to the FIFO 908, and conlrol lmes 918 lo
a multiplexor 920. The control lines 916 from the IU Control
to the FIFO are used to accept new instruction packeLs from
the ICachc and lo instruct the FIFO lo transfer the next
instruction packet lo the ODR via data lines 922 from the
FIFO to tbe multiplexor 920 and data lines 924 from the
multiplexor to the ODR. As explained above, the size of this
data path is defined via lhe instruction packet size parameter.

62
tion fetch mode. FIG. 21 illustrates the operation of the shift
network protocol for sequential instmction fetching, and
PIG. 22 illustrates the operation of the shift network for
branch target instruction fetching. Before describiag the
operation of the shift network in more detail, we begin by
describing the relevant parameters associated with the shift
network. The parameters in the current implementation are
as follows:

The IU Control 903 issues control signals 918 lo the 10
multiplexor 920 lo select an io.slruction packet either from

Wm// width of instruction register (quanta) (VV,R~W """")
Wcurr II width of ~'Urrent instruction (quanta)
Wcon.1umrd II width of already used part in ODR (quanta)
P '""'"II position of branch target in ODR (quanta) the FIFO 908 or directly from the instruction cache 904. The

data path 926 is useful in cases where the FIFO has been
cleared, such as when the processor has executed a branch
instruction arid needs to load the instruction packet contain
ing the target of the branch into the ODR as quickly as
possible.

The size of the HFO (in packet.s) is another parameter in
the control path protocol. The size of the FIFO depends upon
the maximum and minimum instruction widths of instruc
tions in lbe instruction format as well as the !Cache access
time. The width of an instruction may be as large as the
maximum instruction width, and may be as small as the
minimum instruction width in the io.struction format speci
fication. Tbis constraint is merely a design choice in U1c

current implementation, and is not necessary. The minimum
instruction width plays an important role in determining the
size of the FIFO because, in an extreme case, the ODR may
be filled entirely with instructions of minimum size. In this
case, the FIFO needs to be large enough lo be filled with
instruction packets already in flight from the I Caches as each
of the instructions is issued sequentially from the ODR. The
maximum instruction width also bas an impact on the size of
the FIFO because, in the opposite extreme, the ODR may
contain a single instruction. In this case, the FIFO must be
able to supply an instruction packet to the ODR at the
desired performance rate, namely, ouce per clock cycle,
while hiding the !Cache access latency.

The parameters associated with the instruction fetch pro
cess include the size of the FIFO and lhe branch latency.
These parameters are computed as shown below. The nee·
essary FIFO size can be computed based on lUdatapatb
parameters and the instruction fetch policy. In case the
policy does not allow for stalling the processor due to
interrupts, then the FIFO size can be reduced further.

NFrFo II size of prefetch FIFO (packets) (NFI.rn=
lTA •w mu,) wA)l

T8 II branch latency (1'i,=TdparJ.+·(.,+1)
T11e IU Control 903 controls t11e transfer of each instruc

tion from the ODR 914 to the instruction register 912. The
IU Control provides control signals via control lines 927 to
the ODR, which in tum transfers the next instruction to the
instruction register 912 via data lines 928 and an alignment
network 930. Tbe alignment network is responsible for
ensuring that each instruction is left aligned in the instmc
tion register 912. In the example shown in FIG. 20, the
alignment netwurk is comprised of a multiplexor for each
quantum in the instruction register. Each of these mu!liplex-
ors indicates where the next quantum of dala will originate
from in the ODR 914 or the JR 912. The IU Control 903
provides multiplexor select controls via control line.s 932
based on parameters fed back from the decode logic via
control lines 934.

As noted previously, lhe shift network controls where
each bit of data in lhe instruction register comes from. This

15 data may come from lhe IR, the ODR, or in some cases, from
both the ODR and the lop instmction packet in the FIFO.
With each cycle, the shift network ensures that the next
instruction to be executed is left aligned in the instruction
register. In doing so, it may shift unused bits within the

20 instruction register itself, il may Lransfer bits from the ODR,
and finally il may also transfer bits from the lop of the FIFO.
In particular, if the instruction register contains unused bils
from the previous cycle representing part of the next
instruction, it shifts these unused bits over to the left, and

25 then fills in the rest of the instruction register with the next
group of bits sufficient to fully load the register.

As noted above, the FIFO transfers instructions to the
OnDeck register in packets. A packet remains in the ODR,
and is incrementally consumed as the alignment network

30 transfers portions of the bits in the ODR into the instruction
register. The IU Control supplies control signals via control
lines 936 lo the instruction rcgistu 912 to issue the current
instruction to the decode logic. The PC 938 in the sequencer
specifies the memory address of the instruction currently

JS being L<.sued for execution.
8.2. l The Alignment Network Protocol
FIG. 21 illustrates the two principle cases that occur in the

shift network protocol for sequential instruction fetching.
The first case is where the width of the current instruction in

40 the instruction register, W cu~' is less than the remaining,
unconsumed portion of the ODR, WA-Wcol'Sum.d· FIG. 21
illustrates an example of this scenario by showing the
transition of the state of the instruction register, ODR, and
FIFO from one cycle lo. the next. In the first cycle 1000, the

45 current instruction occupies the left-most section (see sec
tion 1002) of lhe instruction register, while a part of the next
instruction occupies the remaining section 1004. Al.so, a
portion 1006 of lbe ODR is already consumed, and the
remaining section 1008 contains valid data. In this case, the

so shift network shifts the unused portion 1004 lo the left of the
instruction register (see section 1010 representing the trao.s
for of the bits from lhe right of the instruction register lo the
left-most position). [n addition, the shift network transfers
enough bits fo fill in the remaiuder of the iostruclion register

55 (see section 1012) from the lefl-most valid data portion 1008
in the ODR.

In the next cycle 1014, the instruction register contains the
current instruction, aligned lo the left, and a portion of the
next instruction_ The length of the currenl instruction

60 becomes known only after decoding. The ODR contains a
consumed portion 1016, which includes portions that the
shift network already transferred in previous cycles. It also
contains a remaining valid data portion 1018. The FIFO

The control path protocol outlines the operation of !he
alignment network. There are two principle modes of opera- 65
tion that the protocol of the alignment network must atldress:
sequential instruction fetch mode; and branch target instrnc-

remains unchanged in this case.
Tbe bottom diagrams 1030, 1032 in FIG. 21 illustrate the

case where the width of the current instruction is greater than
lbe valid data portion (WA-Wcmuumedl· In this case, !he

0191

us 6,385,757 Bl
63

current instrnction occupies a relatively large section 1034
of the instruction register and the remaining portion 1036
contains part of tbe next instrnction, Tbe consumed portion
1038 of the ODR is relatively large compared to the remain·

valid data portion 1040. As a result, the shift register
lo transfer data from three sources: the unused portion

1036 of the instrnction register (shown being transferred in
graphic 1042), the entire valid data portion remaining in the
ODR 1040 (shown being transferred in graphic 1044), and
finally, a portion in the top packet of the FIFO that is needed 10

to fill in the rest of the instruction register (shown being
transferred in graphic 1046). Since the ODR is fully
consumed, the top packet of the FIFO needs to be advanced
ID the ODR. However, this example shows that a portion of
the packet in the lop of the FIFO is already consumed when
the packet is transferred into the ODR (see section 1048
being transferred into the ODR), wbicb leaves a consumed
portion 1050 in the OnDeck register.

FIG. 22 illustra'tes the two principle cases that occur in the
shift network protocol for branch target instruction fetching. 20

When the processor executes a branch instruction, the con-
trol path should load the instruction containing the target of
the branch as quickly as possible. There are a variety of
schemes lo accomplish this objective. Even within the
specific protocol described and illustrated thus far, there are 25

alternative ways to define the target fetch operation. In the
example shown in FIG. 22, the target of a branch is allowed
to reside anywhere in an instruction packet. This may result
in the case where the next portion of valid data to be loaded
into the instruction register (the target data) spans two JO

instruction packets. One way lo avoid this case is to require
the application program compiler to align branch targets al

64
operation is identified by P, 0 ,g,, (see invalid portion 1130 in
the ODR, which has a width l'mrger)· Since lhe width of the
instruction register plus P'"'K" is greater than W ·"' some of
the new data comes from the ODR and some comes from the
next packet from the ICache. To get the target data into the
instruction register, the control path may require two cycles.
111e shift network transfers valid bil~ from tbe ODR (as
identified by P,"'"") to the lR and transfers the next packet
(1132) from the [Cacbe into the ODR. It then transfers valid
bits from tbe ODR (ll28) sufficient lo fill the IR. 1bis)eaves
a portion of the bits in the ODR 1134 (W1R-(WA-Pwrg«))
invalid.

111c shift network protocol outlined above specifies how
the IU Control logic controls the select ports of the multi
plexors in the shift network in order lo make lbe selection of
the appropriate quanta in the IR, ODR, and FIFO. Further
details about lbe synthesis of the shift network are provided
below.

The final aspect of tbe control path protocol is the decode
logic. Referring again to U1e example in FIG. 20, the decode
logic (e.g., decode units 940-944) interfaces with the
instruction register, decodes the current instrnction, and
dispatches control signals lo the control porls in the data
patb. TI1e CP synthesizer computes decode tables from the
instruction format design as explained below.

8.3 Control Path Design
FIG. 23 is a flow diagram illustrating the operation of a

software implementation of the CP synthesizer illustrated in
FIG, 19. 'Ibe CP synthesizer is implemented in the c++
programming language, While the software may be ported to
a variety of computer architectures, the current implemen-
tation executes on a PA-RISC workstation or server running
under the HP-UX 10.ZO operating system. 'The functions of
the CP synthesizer software illustrated in FIG. 23 are

the beginning of instruction packets. However, the example
shown ia FIG. 22 is more general and handles the case where
the target data spans instruction packets. 35 described in more detail below.

The top diagrams 1100, 1102 illustrate the case where the
target data is entirely within an instruction packet. This case
is defined as a packet where the width of the instruction

. register, W1R, is less than or equal lo the width of a packet,
WA, less the position of the target instruction relative lo the 40

start of the packet, P,arger In the first cycle 1100, tile current
instruction occupies the Left-most portion 1104 of the
instruction register. ln !he shift operation, the entire contents
of the instrnction register are considered invalid. A~ such,
the shift network fills the instruction register with new bits 45

sufficient to fill il entirely (as shown in graphic 1106. The
starting bit in the ODR for Ibis shift operation-is identified
by P,0 ,g., (see invalid portion 1108 in the ODR, which has
a width P,.,,,eJ Since the width of lhe instruction register
plus 1',ari;c< is still less than or equal lo WA• all of the new 50

data comes from the ODR. After tlle shift, the consumed
portion of the ODR occupies the left-most portion 1110 and
some valid data for the next instruction may reside in the
remaining portion 1112.

The bottom two diagrams 1120, 1122 show the case where 55
the target data spans an instruction packet. This case is
defined as a packet where the width of the instrnction
register, W rm is greater than the width of a packet, WA, less
the width of the offset ta the target instruction inside tbe
packet, l',nrg-'' In the first diagram 1120, the current inslruc· GO
lion occupies tbe left-most portion 1124 of tl1e instruction
register. In the shin operation, tbe entire contents of the
instruction register are considered invalid. A~ such, the shift
network fills the instruclion register wilh new bits sufficienl
to fill ii entirely, but to do so, il must take bits from the ODR 65

and the next pa eke l from the I Cache (as shown i o
1126 and 1128). 'TI1c starting bi~ in the ODR for

8.3.1 Collecting Parameter Values
The CP synthesizer begins by collecting and adjusting

input parameters, Q,, wimaX> w imi"' WA, T,., and WL as
shown in step 1200. It calculates Q1 as the greatest common
denominator of all possible instruction widths and fetch
widl11s. It extracts W'"""'' W ,,,,,n from the instruction format,
and derives W,, and possibly adjusts WL as defined above.
1be !Cache access time TA is one of the [Cache input
parameters lo tbe control path design.

The CP synthesizer computes tfW cu,,bits, a parameter that
defines the number of bits needed to represent the length of
the current instruction in quanta. 1be length of the current
instmclion may be zero or as Large as W,"""". Therefore,
Wcurrbils is computed as]log2(W,max+l)]. The IU Control
receives W""~ from the decode logic (See lines 934 in FIG.
20) and nses it to compute the appropriate shift amount for
tbe shift and align network. The sequencer also uses this
number to update the PC with the address of the next
instruction to execute. The CP synthesizer determines the
number of instruction register multiplexor selection bits
#IRrnux,,1bit.s as shown in step 1200, from the following
expression: #1Rmux"1bits=]log2(WA+W,n..,x-W,.,,,,,)] in
biK This is the number of biLs needed to select between
(WA+Wimax-Wimin) input quanta choices for each quantum
multiplexor placed before the i11~tructioa register.

8.3.2 Allocating the Instruction Register and Sequencer
Next, the CP synthesizer selects an instruction register

from the rnacrocell database as shown in step 1202, and sets
the width of tbe instruction register equal to W,,,,,,,_.

The CP synthesizer also selects a sequencer from the
macrocell database in step 1204. The sequencer includes
logic lo process tile branch addressing, logic to handle

0192

US 6,385,757 Bl
65

interrupts and exceptions and logic to issue instruction
fetching from the rcache. The choice of the sequencer
depends oo lhe architectural requirements specified during
the design of the datapath aod the instruction format, i.e.,
whether the processor needs to nandle interrupts and 5

exceptions, branch prediction, and control aod data specu
lation. It is independent of the design of tbe instruction unit
data path itself. Therefore, we assume that we have a set of
predesigned sequencer macrocclls available in the macroce!l
database from which one is selected that matches the arcbi- 10

tectural parameters of the datapath and the instruction for
mal.

8.3.3 Building the Instruction Decode Logic
The CP synthesizer generates decode logic from the

instruction format specification, which is provided in the IF 15
tree U06. Th.is section describes how the CP synthesizer
generates the decide tables programmatically.

The CP synthesizer generates the decode logic by creating
decode tables that specify the inputs and outputs of the
decode logic. In building a decode table, the CP synthesizer 20

specifies the input bit positions in the instruction register, the
input values for these bit positions, the corresponding con
trol ports, and finally, the output values to be provided at
these control ports in response to !be input values. There are
t.wo general cases: 1) creating decode table entries for select 25

fields (e.g., bits !bat control multiplexors and tri-state
drivers) ; and 2) creating decode table entries for logic Iha!
converts opcodes. In the first case, lhe CP synthesizer
generates the address selection logic needed to map bit
positions in the instruction register with shared address 30

control ports in the data path. It also generates the appro
priate select values based on lhe select field encoding in the
instruction template, Jn the second case, the CP synthesizer
generates the opcode input values needed to select a par
ticular opcode in a functional unit based on the opcode field 35
encoding in the instruction template. Both of these cases are
described further below.

The implementation divides the decode logic into two
types of components: the template decode logic (synthesized
in step 1208) and the FU decode logic, one per FU macrocell 40

(synthesized in step 1210). The template decode logic is
responsible for decoding all the information that is relevant

66
because a number of different bit positions may map to the
same register file address port depending on the instruction
template. Tbe Table 1 sbows an example of this scenario.

TABLE 1

Template Bit Positions Mux Inputs Mux selccl

Tl 0-3 II 00
T2 10--13 12 01
T3 10 l3 10
1'4 14 11

In tbe example shown above, four different sets of bit
positions map lo the same register file address ports, depend
ing on the instruction template. The decode logic, therefore,
needs to generate the appropriate mux select signal lo map
the appropriate bit positions in the instruction to the register
file address ports depending on the template specifier bits.

for each template, the CP synthesizer traverses the rF tree
to the template specifier field and adds lbe bit encoding to
the decode table as an input. It finds the corresponding bit
positions from different templates that map to U1e same
register file address ports and assigns them to the input ports
of a multiplexor. Finally, it assigns mux select values so thal
the decode logic instructs U1e mux to select the appropriate
mux inputs depending on the template specifier.

To illustrate decode logic generation for opcode fields,
consider a.n example where the bits used to encode the
opcode field in the instruction do not match the number of
bits used lo encode the opcode on the functional uni!
rnacrocell. The CP synthesizer functional unit constructs the
FU decode Pl..A in step 1210 in a similar fashion as the
template decode PLA. ln particular, it builds a decode table
that maps instruction register bits to data path control porl'l
of the functional units in the data path. It traverses the IF tree
to find the fields for the FU opcode fields. The CP synthe
sizer finds !be instruction register ports that these fields have
been assigned, and maps them to the opcode control ports.

The opcode field in the IF tree identifies the desired
operations in an operation group and the corresponding
functional unit to the decode logic. The opcode in the
instruction field may need to be translated into a different
form so that it selects the proper operation in the functional
unit. Table 2 shows an example of this scenario.

TABLE2

Opcode encoding

00
01
JO
ll

FV input

0000
1011
1100
0010

In the above example, the instruction selects one of four

for the entire instruction including Uie template width, the
end-of-packet bit and the position of register file address
port bits. lbe FU decode logic decodes all the information 45

that is relevant for one FU macrocell including its opcode
and the select ports of the data multiplexors and tri-state
drivers. In step U08, the CP synthesizer constructs a decode
table for a template decode programmable logic array
(PLA). As shown in the example FIG. 20, the template SG

decode PLAprovides information fV'lcun and EoP parameter
values) to the IU Control to drive the instruction shifting
network. Jt converts the template JD into W """ and feeds
this information to the JU Control. It also provides the
consume to end-of-packet (EoP) bit to the JU Control. 55 different operations to be executed on a given functional unit

in the data path. The functional unit, however, supports more
operations, and thus, nses a four bit input code to select an
operation. In Ibis case, the CP synthesizer generates a

Based on the template ID, the template decoder also
generates the mux select inputs in cases where instruction
fields from different templates map to the same control ports
in the datapath. For example, it computes select values for
the rnux select ports of register file address port multiplexors 60

(RF port addrmux,e,; see, e.g., multiplexor 836 in FIG. 2.0).
To illustrate decode logic generation for select fields,

consider the example of the RF address port multiplexors.
Tbe CP synthesizer builds .a decode table for the address port
multiplexors by traversing tbe IF tree lo find the template 65

specifier fields. The template specifier in !lie instruction
identifies the template to the decode logic. This is significant

decode table for decode logic that will select the proper
operation based on tbe opcode encoding in the instruction
register. To accomplish this, it traverses the IF tree to find the
opcode field, and the corresponding bit encoding, control
port assignment, and bit position for this field. Tbe opcode
field in the IF tree is annotated with information that maps
a bit encoding in the instruction to a particular input encod·
ing for a functional llllit in the data path. The Cl' synthesizer
assigns l\Je inputs of tlte decode logic to the bit positions of

0193

US 6,385,757 Bl
67

the opcode field, and assigns the outputs of the decode logic
to the opcode control ports of the functional unit

The FU decode logic for tbe control ports of the muxes
and tri-sla!es io the interconnect between the functional nnits
and register files is generated based on the select fields at tbe s
10 set level in the IF tree in a similar fashion as described ·
above for the RF address MUXes.

Once the decode logic tables are created, a variety of
conventional logic synthesizer tools may be used lo create
hardware specific decode logic from the decode tables which

10
is not necessarily restricted to a PLA-based design.

8.3.4 Assembling the Instruction Unit
In step 1212, the CP synthesizer builds the remainder of

the instruction unit, including the IUdalapath and the control
logic between the !Udalapath and sequencer. In this step, the
CP synthesizer allocates the FIFO, ODR, and alignment 15

network by selecting AlR macrocells from the macroccll
database and instantiating them. It maps the control ports of
these components in the IUdatapalh to the control outputs of
the JU Control logic. The IU Control logic controls the
behavior of the lUdatapath at each cycle by providing 20
specific bit values for each of the control pacts of the
!Udatapath components. The logic may be specified as a
behavioral description of a finite stale machine (FSM). From
this description, conventional logic synthesis may be used to
generate the FSM logic that forms the !Udatapath control 25
logic.

When it allocates the sequencer macrocell, the CP syn
thesizer allocates the sequencer ports responsible for I Cache
control and addressing and connects it to the corresponding
!Cache ports(see, e.g., 906, FIG. 20). The numberof address
lines depends on #W1caddrbits, the number of [Cache 30

address bits. The memory address register (MAR) 902
drives the address port of the !Cache while a fetch request
bit (FReq) generated by the IU Control logic controls when
new instruction packet fetches are initiated.

111e CP synthesizer allocates the F1FO (908, FIG. 20) by 35

computing the size of the FIFO as described above and
constructing a macrocell instance from the macrocell data
base with N FIFO packet registers of width WA and a number
of control and data porl<c. 1be data oulp1ll of the [Cache is
connected lo the data input of the FIFO. lbe various FIFO 40

control ports are driven by the corresponding ports of the IU
Control logic (916, F1G. 20).

The CP synthesizer aLso allocates the ODR (914, FIG. 20)
by constructing a macrocell instance of a register having a
width WA and having corresponding control and data ports. 45

It synthesizes the ODR's input side multiplexor (920, F1G.
20) by constructing a multiplexor from the roacrocell data
base having a width WA" Tbe two inputs of the multiplexor
920 are connected to the FIFO and the lCache respectively.
The selection control and the ODR load control ports are so
driven by the corresponding ports from the fU Control logic
(918, 926, FIG. 20).

The CP synthesizer additionally synthesizes the branch
FU control and address lines to interconnect the branch
control ports of the sequencer with control ports of the 55
branch FU.

68
It further allocates the instruction register shift network

(930, FIG. 20), and connects its control ports to the lU
Control logic (932, FIG. 20). FIG. 24 illustrates aspects of
the IUdatapath to illustrate how the CP synthesizer allocates
the shift network. In what follows, we assume that the
various quanta in the IR, the ODR, the FIFO, and the cache
are logically numbered sequentially slartiug from 0 as

shown in F1G. 24.
As explained above, the shift network has a multiplexor

for each quantum in the instruction register numbered Cl
through WIR-L In the following discussion, k represents the
number of a given multiplexor (O~k~WJR-1).

Each quantum multiplexor k selecl~ among all quanta
between the following two extremes:

1) k+Wirnin (last inst. was minimum size); and

2) k+WA+W1R-1 (last inst. was maximum size and all of
ODR WA+was consumed).

The CP synthesizer creates instaoces for each multiplexor
with enough input ports lo select among the number of
quanta reflected above. This number is (k+WA+WJR-1)-(k+

Wimin)+1-V('4.+W,R-Wimin'
"The choices for lU selection control for a quantum mux

k is given by:

1) k+W =rr (sequential access and k+Wcurr<W m);

2) k+ W eurr+ W consumed from ODR/F1FO (sequential
access and k+Wcurr~WnJ; and

3) k+Wm+Prnre"' from ODR/FIFO (branch target access).
'The choices for IU selection control for ODR/HFO

quantum k is given by:

1) k+WA from FIFO (advance FIFO by a full packet);

2) (k-WIR) % WA from I-Cache output(load directly from
I-Cache); and

3) no shift (disable ODR load/FIFO advaoce).
The CP Synthesizer generates the IU Control logic to

control the shift network according to the constraint5 given
above. The design of the lU Control logic is discussed
below.

8.3.5 Building IU Control Logic
1be instruction fetch protocol described above is imple

mented in control logic that keeps track of the packet
inventory-the packets in flight, packets in the prefetch
buffer, and the unconsumed part of the ODR. It also issues
instruction cache fetch requests, FIFO load and advance
requests, and an ODR load request at the appropriate times,
and provides the appro1iriate selection control for the shift
and align network and other multiplexors in the instruction
pipeline. Finally, the control logic is also responsible for
flushing or stalling !be pipeline upon request from the
sequencer due to a branch or an interrupt

The control logic is expressed in the following
pseudo code.

Pseudocodc for IU Control Logic
Module lU Conirol (cachcPktRdy, f\ushPipc, EOP: in boolean; We,,,,: in lnicgcr)
1: II Design time const.1nts: pktSizc fW ,J .. invSlY.e

([T""' w,,,, .. tw,.JJ
2: II Internal s!atc: numFtFOPkis(O). numCachcPkis(O),

W,==00(W,.J
3: if (ouml'1FOPkts + numCachePkts<invSize.) Lhen
4; Reque.St I-Cache fet.ch; //launch fetches lo keep

0194

US 6,385,757 Bl
69 70

-cootiaued

5; numCnchcPkt.s++; 111ventory const;ml
6: cndif
7: if (cachePktRdy) then
8: numCachePkls--;

//p8ckets are ready TA
cycles later

9; if (W tOW\lOOt:1 ?; w A, && numFIFOPkts > 0) then
l O: Load cachePkt into ODR;

11: W o.mmwetl O;
12: else
13. Load cachcPkt into FIFO;

//pul pkl directly into
ODR, if empty
//otherwise, save pkt in
FIFO

14: numFIFOPktE--;
15: cndif
16: endi!
17: if (\V co1.Utune:f ~ WA&& numPlFOPkts:i.O) lhen //draw next pkt from FIFO
18: Load FlFDPkt into ODR;
19: W COnnnlled-"" WA;
20: advance FiFD;
21: numFIFOPk1.o·-;
ZZ: cndcf
23: if (llushPipe) then
24: ftush l·cache and FlFO;

/(branch or interrupt
processmg

25: numCachePkts=O;
26: numFJJlOPkts ~o;

2 7: W corurumeo1 WA
28: elseif (EOP) then II skip lo end-of-packet
29; Shift [R to align to next pack boundary:
JO: WCQIUl\.c::t).l•d =WA;
31: else
32: Shift [R by W cmc;

II :shift to next
instroction

33: adjusc W cotm.11.'.lltd'

34; endif

The coutrol logic is expressed as pseudocode that consists
of a sequence of coaditions and various actions lo be
performed uader those conditioas. The logic keeps track of
the inventory of packets internally including those ia flight
in the instruction cache pipeline (numCachePkts) and those
sitting in the prefetch buffer (numFIFOPkts). This is used lo
issue a fetch request whenever the inventory size falls below
the threshold (line 3). 1be correspondiog instruction packet
is ready to be read at the output of the cacbe TAcycles after
the fetch is initiated (line 1). This packet may be loaded
directly into the ODR if the rest of the pipeline is empty (line
9), or it may be saved in the FIFO (line 12). These packets
are later loaded into the 0 DR as needed (line 17).

Upoa encounteriag a taken branch signal or an interrupt
signal from the sequencer (fiushPipe), the control logic
flushes the iastructioa pipeline by reseting the internal slate
(line 23). Thi~ eaables the pipeline to start fetching iastruc
tions from the new address from the next cycle. Otherwise,
the next instruction in sequeace needs to be aligned into the
instruction register (line 28). If the end-of-packet (EOP) bit
is set, the current packet residing in the ODR is coasidered
to be fully consumed and the IR is shifted lo the next packet
available. Otherwise, the IR is shifted by the width of the
current iastructioa. In either case, the multiplexors of the
shift and alignment network in front of the IR are provided
with the appropriate selection control as described above.

30 the decode logic. In Ibis protocol, for example, the instmc
tioa register has a wider width (e.g., a width of one packet)
and the alignment network routes varying width instructions
from the instruction register to the decode logic. 1bis
protocol is based on a procedural model of "in-place"

35 decoding, where instructions are not aligned in the IR, bu!
rather, fall ialo varyiag locations in the IR. The protocol
procedure defines a methodology to determine the start of
the next instruction to be issued from the IR.

The procedural model may be based oo a statistical policy
40 where the width of the control path pipeline is optimized

based on the width of the templates in the instruction format.
In this approach, the coatrol pa th designer minimizes the
width of the pipeline within some performance coastraint.
For example, the width is allowed lo be smaller than the

45 widest instruction or instructions as long as the stall cycles
needed lo issue these instructions do not adversely impact
overall performance. When U1e width of the pipeline is less
than the widest instruction, one or more stall cycles may be
necessary to issue the instruction to the decode logic.

50 Performance is estimated based OD the time required lo issue
each instruction and the correspondiag frequency of the
instructioo's issuance.

9 .0 Generaliag a Structural Descriptioa
The system produces a structural descriptioa of the pro-

55 cessor hardware at the RTL-level in a standard hardware
description language snch as VHDL This description can be
linked with the respective HDL component libraries pointed
to by the rnacroccll database aad proce&Sed further for
hardware synthesis and simulation.

The control logic shown above may be synthesized into a
finite-state machine (FSM) using standard synthesis tools
lhat translate a functioaal descriptioa such as that given
above and produce a concrete implementation in tenns of
gates or PLA logic along with control registers to keep track 60

of the sequential state. CONCLUSION

While we have illustrated a specilic coalrol path protocol,
it is important to note that the control path synthesizer
program can be adapted for a variety of different protocols.
Both the structural and procedural aspecL-; o(the protocol 65

may vary. The protocol may specify that the alignment
actwork is positioned between lhe instruction register and

While the invention is described in the context of a
specific irnpkmenla!ion, lhe scope of the invention is not
limited lo this implementation. A number of design varia
tions are possible.

One possible variation is the manner in which the ILP
constrait1ts are specified. As 11oted above, the !LP constraints

0195

US 6,385,757 Bl
71

may be specified as exclusion sets, concurrency sets, or
some combination of both. The form of other input data
structures, such as the register file specification and macro
ccl! library may vary as well. 'I11ese data structures may be
provided in an external file form, such as a textual file (e.g.,
the ArchSpec which is in a tabular form using the HMDES
database language) or in an internal form (e.g., a separate
user interface to specify register .file data structures and a
component-level interface to the standard HDL macrocell
databases). The above description provides a number of 10

constructs for specifying an opcode repertoire, the I/0
formats of the opcodes and the desired ILP among the
operations. However, these constructs are not critical to the
implementation of the invention.

The AIR form of the datapath represents only one possible 15
way to specify lhe output of the datapath design process.
Other types of hardware description languages may be used
as well, such as VHDL or Verilog. Indeed, the AIR form cau
be easily translated to one of these external textual formals.
The current implementation produces VHDL output. 20

In view of the many possible implementations of the
invention, it should be recognized tbat the implementations
described above are only examples of the invention and
should not be taken as a limitation on the scope of the
invention. Rather, the scope of the invention is defined by 25

the following claims. We therefore claim as our invention all
that comes within the scope and spirit of these claims.

We claim:
1. A method for programmatic design of a VLIW proces

sor from an input specification including specified processor 30

operations, 1/0 formats for the specified operations, instruc
tion Level parallelism constraints among the specified
operations, and a register file specification of the processor,
the method comprising:

based on the specified processor operations, and the 35

instruction level parallelism constrainl~. programma!i
cally generating a datapath description of the processor
from a rnacrocell library, the datapath description
including functional unit instances, register file
instances and an interconnect between the functional 40

unit and register file instances; and
based on the datapath description, the I/0 formats, and the

instruction level parallelism constraints, prograrnmati
cally generating an instruction format specification,

45
including instruction templates representing VLIW
instructions executable by the processor, instruction
fields for each of the templates, and bit positions and bit
encodings for the instruction fields.

2. The method of claim 1 further including:
50

programmatically extracting a machine description suit
able to re-target a compiler from the datapath descrip
tion and the input specification.

3. Tue method of claim 2 further including:
from the compiler, re-targeted using the machine descrip- 55

tion of the processor, generating operation issue statis
tics for the specified operations;

using the operation issue statistics, selecting custom tem
plates; and

using the custom templates as input to prograrnmatically 60

generate the instruction format specification of the
processor.

4. The method of claim 1 wherein programmalically
generating the instruction format specification includes:

programmatically constructing a bit allocation problem 65
specification identifying instruction fields that are to be
assigned to bit positions in th" i115truction format of the

72
processor, bit width requirements of tbe instruction
field,, and instruction field conflict constrainl5; and

programrnatically allocating bit positions io the proce&<;or
to the instruction fields in the bit allocation problem
specification.

5. The method of claim 4 including:

programmatically extracting a machine description suit
able lo re-target a compiler from the datapa.th descrip
tion and the input specification;

from the compiler, re-targeted using the machine descrip
tion of the processor, generating operation issue statis
tics for the specified operations;

using the operation issue statistics, selecting custom tem
plates; and

using the custom templates as input to programrnatically
construct the bit allocation specification problem of the
processor.

6. The method of claim 1 including:
using the instruction format specification, prograrnrnati

cally generating a controlpath description with compo
nents from the rnacrocell library, where the control path
description includes a hardware description of an
instruction unit datapath for transferring instructions
from an instruction cache to an instruction register, a
description of control logic for coupling an instruction
sequencer to the instruction unit data path, and a
description of decode logic for decoding instructions in
the instruction register and issuing the instructions to
control ports in the datapath.

7. A computer readable medium having software for
performing the method of claim 1.

S. An automated VLIW processor design method com
prising:

receiving as input a concrete instruction set architecture
specification of a processor including an instruction
format specification, and register file specification,
wherein the instruction format specification includes
instructions, instruction fields within each of the
instruction templates, and bit positions and encodings
for the instruction fields; and

wherein the register file specification enumerates register
files in the processor, including a number of registers in
each of the register files, and a correspondence between
operand instruction fields in the instruction format
specification and a register file;

programmatically extracting an abstract instruction set
architecture specification including specified processor
operations and instruction level parallelism constraints
among the specified operations.

9. 111e method of claim 8 including:
based on the specified processor operations, and the

instruction level parallelism co11,traints, programmati
cally generating a datapath description of the processor
from a macrocell library, the datapath description
including functional unit instances, register file
instances and an interconnect between tbe functional
unit and register file instances.

10. Tbe method of claim 9 including:
programmatically extracting a machine description suit

able lo re-target a compiler from the datapath descrip
tion and the abstract instruction set architecture speci
fication.

11. The method of claim 9 including:
using the instruction formal specification, programmati

cally generating a conlrolpath description with compo-

0196

US 6,385,757 Bl
73

nents from lhe macrocell library, wl!ere the control path
description includes a hardware description of an
instruction unit datapath for transferring instructions
from aa instruction cache to an instruction register, a
description of control logic for coupling an instrnction
sequencer to the instruction unit data path, and a
description of decode logic for decoding instructions in
the instruction register and issuing the instructions to
control ports in !he dalapath.

12. A computer readable medium having software for 10

performing the method of claim 11.
13. An automated VLIW processor design method com

prising:

reading a datapath description of a VLIW processor in a
hardware description language, the datapath descrip- 15

tion including fruJCtional unit instancrA~, register file
instances and a description of hardware componellL'i
that form an interconnect path between the functional
unit and register file instances; and

prograrnmatically extracting an abstract instruction set 20

architecture specification of the VLIW processor, the
abstract instruction set architecture including processor
operations, I/0 formats for the specified operations,
instruction level parallelism constraints among the
specified operations, and a register file specification of 25

the processor.
14. The method of claim 13 including:
based on tbe data path description, tbe 1/0 formats, and the

~:~~~u~~~~/:t~:~ p:~·~~:l~~:i::~~t ~~0e~~:~~~: 30

including instruction templates representing VUW
instructions executable by the processor, instrnclion
field' for each of the templates, and bit positions and bit

15~~~~:i~!~:~~ t!~ ~~~u~t~o:!::~~ programmatically 35

generating the instruction formal spedfication includes:
prograrnmatically constructing a hit allocation problem

specification identifying in..c;truction fields that are to he
assigned to bit positions in the instruction format of the

40
processor, bit width requirements of the instruction
fields, and instruction field conflict constraints; and

programmatically allocating bit positio115 in the processor
to the instruction fields in the bit allocation problem
specification.

16. The method of claim 13 including:
programmatically extracting a machine description suit

able to re-target a compiler from the datapath descrip
tion and the input specification.

17. 1bc method of claim 14 including:

45

50
using the instruction format specification, programmati

cally generating a controlpath description with compo·
nents from the macrocell library, wl:ierc the control path
description includes a hardware description of an
instruction unit datapath for lra11Sferring instructions 55

from an instruction cache to an instruction register, a
description of control logic for coupling an instruction
sequencer to the instruction unit data path, and a
description of decode logic for decoding instructions in
the instruction register and issuing the instructions to 60

control ports in the datapath.
18. A computer readable medium having software for

performing the method of claim 13.
19. A system for programmatic design of a VLIW pro

cessor from an input specification including specified pro- 65

cessor operations, 1/0 formats for the specified operations,
instruction level parallelism constraints among the specified

74
file specification of the processor,

a datapath syntttesizcr for reading tbe specified processor
operations, 1/0 fom1ats of the operations and the
instruction level parallelism constraints, and for gen
erating a datapath description of the processor from a
macrocell library, tb.e datapath description including
functional unit instances, register file instances and an
interconnect between the functional unit and register
file instances; and

an instruction format designer for reading the datapalh
description, the I/0 formats, and tbe instruction level
parallelism constraints, and for generating an instruc
tion format specification, including instruction tem
plates representing VLIW instructions executable by
the processor, instruction fields for each of the
templates, and bit positions and bit encodings for the
instruction fields.

20. Tbe system of claim 19 further including:

an MDES extractor for extracting a machine description
suitable to re-target a compiler from the datapath
description and the input specification.

21. Tue system of claim 20 further including:

a custom template module for selecting custom templates
using operation issue statistics for an application pro
gram generated by tb.e compiler, re-targeted based on
the machine description; and

wherein the custom templates are used as input to the
instruction format designer to generate the instruction
format specification of the processor.

22. The system of claim 19 wherein the instruction formal
designer includes:

a modnle for constructing a bit allocation problem speci
fication identifying instrnction fields that are to be
as.'iigned lo bit positions in the instruction format of the
processor, bit width requirements of the instruction
fields, and instruction field confilct constraints; and

a bit allocation module for allocating bit positions in the
processor to the instruction fields in the bit allocation
problem specification.

23. The system of claim 22 including:
an MOES extractor for extracting a machine description

suitable to rc·target a compiler from the datapatb
description and the input specification; and

a custom template module for selecting Cl15lom templates
using operation issue statistics for an application pro
gram generated by the compiler, re-targeted based on
the extracted machine description; and

wherein the custom templates are used as input to the
instruction formal designer lo generate the instruction
format specification of the processor.

24. The system of claim 19 including:
a control path synthesizer for reading the instruction

format specification, and for generating a controlpath
description with components from the macroeell
library, where the control path description includes a
hardware description of an instrnclion unit datapath for
transferring instructio11S from an instruction cache to an
instruction register, a description of control logic for
coupling an instruction sequencer lo the instruction unit
data path, and a description of decode logic for decod-

instructions in the instmction register and issuing
instructions to control por!s in the datapatb.

0197

UNITED ST ATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 5,909,544
DATED June 1, 1999
!NVENTOR(S) : Graham et al.

It is certified that error appears in the abo11e-lndentified patent and that said Letters Patent is hereby
corrscted as shown below:

--M ichiel--.

On the title page section [751 Inventors please delete "Micheil" and insert therefor

Attesr:

Attesting Officer

Signed and Sealed this

Sixteentl1 Day of November, 1999

Q. TODD DICKINSON

0198

c12) United States Patent
Dally ct al.

(54) SYSTEM AND METHOD FOR PERFORMING
COMPOUND VECTOR OPERATIONS

(75) Inventors: William J. Dally, Stanford; Scott
Whitney Rlxner, Mountain View, botb
of CA (US); Jeffrey P. Gros.'iman;
Christopher James Buehler, both of
Cambridge, MA (US)

(73) A.'Signees: Tbe Board of 1rustees of the Leland
Stanford Junior University, Stanford,
CA (US); The Massachusetts Institute
of Technology, Cambridge, MA (US)

(•) Notice: Under 35 ll.S.C 154(b), the term of this
patent shall be extended for 0 days.

(21) Appl. No.: 09/152,763

(22) Filed: Sep. 14, 1998

(51) Int. Cl.7 .. G06F 9/28

(52) U.S. CJ 708/200; 712/1; 712/10;
712/16; 712/20; 712/21; 708/3

(58) Field of Search 710/131-132;
711/147; 712/22, 21, 16, 10; 708/3, 200

(56) References Cited

U.S. PATENT DOCUMENTS

4,807,183 • 2/1989 Kung et al. 7!0/132
5,327,548 • 7/1994 Hardell, Jr. cl aL 711/147
5,522,083 ' 5/1996 Gove el aL 712(22
5,692,139 • ll/1997 Slavenburg et al. 710/131

onu.m PUBLICATIONS

Rixner et al.," A bandwidth-efficient architrecture for media
processor." Proceedings on Annual ACM;IEEE lntema-

24

SDRAM

11/ IHI
US006192384Bl

(10) Patent No.: US 6,192,384 Bl
J;'eb. 20, 2001 Date of Patent:

tional Symposium on Microarchitecure, p. 3-13, Nov.,
1998.*

Borkar, ct al. "i Warp: an integrated solution to high-speed
parallel computing." Proceedings on Supercomputing, p.
330--339, Nov., J 988!

• cited by examiner

Primary Examir.er--rvleng-Ai T Au
Assistant Examine1·-Wen-Tai Lin
(74) Altorney, Agent, or Firm-Pillsbury Madison & Sutro,
LLP

(57) ABSTRACT

A procossor particularly useful in multimedia applications
such as image processing is based on a stream programming
model and has a tiered storage architecture to minimize
global bandwidth requirements. The processor has a stream
register file through which the processor's functional units
transfer streams to execute processor operations. Load and
store instructions transfer streams between the stream reg
ister file and a stream memory; send and receive instructions
transfer streams between stream register files of different
processors; and operate instructions pass streams between
the stream register file and computational kernels. Eacb of
the computational kernels is capable of. performing com
pound vector operations. A compound vector operation
performs a sequence of arithmetic operations on data read
from the stream register file, i.e., a global storage resource,
and generates a result that is written back to the stream
register file. Each function or compound vector operation is
specified by an instruction sequence that specifies the arith
metic operations and data movements that are performed
each cycle to carry out tbe compound operation. TI1is
sequence can, for example, be specified using microcode.

29 Claims, 5 Drawing Sheets

24

Stream Memory Syslem

Suearn Register l'iie

\

0199

10
s

Host
Processor

24 \ 24 \ 24 \ 24 \
I SDRAM j SD RAM SD RAM SD RAM

r--------------- --~ ------ -~~---------~--- ---------.--------
I
I 12 I
I
I ~ Stream Memory System I
I
I
I Host I I

L..l_

I Interface I -
I
I

Stream Register File 14 I
I ---
I
I

~~~-

I 
I 

Illi 
I I I I 

I 20 I -
I 

~ I 

Micro-
ALU ALU ALU ALU ALU ALU ALU ALU 

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster 
Controller ~ 

I 0 1 2 3 4 5 6 7 

18 _) 18 _) 18 _) 18 _) 18 _) 18 _) 18 _) 18 _) 
I 

! Image Stream Processor 

Memory Bandwidth 
------------1 

I 

~16 
I 

22 
~ I 

I 
r------r------ Network I 
1--L-

Interface 
I 

+ 
I -,..-

SRF 
Bandwidth 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

Network 

~ 

L----------------------------------------------------------~---------------~---
__ ; 

FIG. I 

d . 
\J'J . 

0200



26 

To 
SRF 

28~BUF BUFI IBUF 
18 

30 
~ m m Eb Eb Eb I (1) Eb I (1) (1) I 

From 
SRF )(.!) m m ID m m m m m 

FIG. 2 

~ . 
VJ . 
~ 
t.:i 
~ 
re = l""I'-

:;; 
O-

N 
~o 
N 
Q 
c ....... 

r:n 
::r 
~ 

~ 
N 
0 

""' vi 

c:: 
\.rJ. 

!?"-
....... 
\0 
N w 
00 
+;... 

t::d 
""'" 

0201



Local 
Register 

File 

To 
SRF 

18 
30 

26a 26b 26c 26d 26e 26f 26h 

~rh-~-a~~-a~-m--+:~-+R--fA--~f----f;i+--J--H'!---l+l--l--f++--m-~-1--m---flt 

From 
SRF~~~~---1f.G---fl1---€~-f'7----et---1t:'7----t'i~'7---et--e:t---e---e:~:'7---e:r--E:'i 

FIG. 3 

Intercluster 
Network 

Cross 
Point 

~ . 
rFJ. . 
~ 
~ -rt> = -
~ 
~ 

P" 

N 
0 
0 

'""' 

00 
;:." 
~ 
~ .... 
(,,.) 

0 ..., 
U'• 

e 
r..n 
~O'I 
I-' 

"'° N 
l.;i 
00 
+.-.. 
Cd 
I-' 

0202



r::; . 
CJ'j . 

Address "'C 

FIG. 4A Load Stream 
~ 

Descriptor -!"l:l ~ -
Address "!;l 

FIG. 4B 
.-:> 

Store Stream Descriptor ?" 
N _e 
N 
0 
0 ...... 

FIG. 4C Send I Stream 
Routing Channel en Header g 

I';) .... .... 
0 ..... 
th 

FIG. 4D Receive Stream Channel 

FIG. 4E Operate Kernel Stream . . . Stream Stream . . . Stream 
Srcl Src4 Dstl Dst4 

0203



ST 

U.S. Patent Fcb.20,2001 Sheet 5 of 5 

Triangle Records 
w 

Shaded Triangle Records 
r---.---....... ,- . • . 15 w 

Projected Triangle Records 
~~----,..;;._ 

Span Records 
7W 

Fragment Records 
4W 

Fragment Records 
4W 

Fragment Records 

US 6,192,384 Bl 

Transform 
108 ops 

Shade 
513 ops 

Project/Cull 
171 ops 

Span Setup 
222 ops 

Process Span 
30 ops 

Sort 
20 ops 

Compact 
10 ops 

4W i......1----
--'----L__;,_;;.;__, 

Pixel Depth & Color 
~.....----.- 2W 

Pixel Depth & Color 
~~~-

Pixel Depth & Color

Z-Composite
3 ops

"--1---1~-.---~- 2 w L........1-----

FIG. 5

0204

US 6, 192,384 B 1
1

SYSTEM AND METHOD FOR PERFORMING
COMPOUND VECTOR OPERATIONS

This invention was made in conjunction with U.S. Gov·
emment support under U.S. Army Grant No. DABT63-96-
C-0037.

2
system and method which can provide a high level of
performance without a correspondingly high memory band
width requirement.

It is another object of the present invention lo provide
data processing system and method which can reduce global
storage resource bandwidth requirements relative to a con
ventional scalar or vector processor. BACKGROUND OF TIIE INVENTION

L Field of the Invention
'11re present invention is directed lo computer architec

tures. More spccif1ca1ly, the invention is directed to pipe
lined and parallel processing computer systems which are
designed to efficiently handle continuous streams of instruc
tions and data.

It is a further object of the present invention to provide a
parallel processing system and method which minimizes the

lO number of external access operations each proce&sor COD·

ducts.

2. Description of Related Art
Providing adequate instruction and data bandwidth is a 15

key problem in modem computer systems. In a conventional
scalar architecture, each arilhmelic operation, e.g., an addi
tion or multiplication, reqnires one word of instruction
bandwidth to control the operation and three words of data
bandwidth to provide the input data and to consume the 20

result (two words for the operands and one word for the
result). Tims, the raw bandwidth demand is four words per
operation. Conventional architectures use a storage hierar
chy consi'iting of register files and cache memories to
provide much of this bandwidth; however, since arithmetic 25
bandwidth scales with advances in technology, providing
this instruction and data bandwidth at each level of the
memory hierarchy, particularly the bottom, is a challenging
problem.

Vector architectures have emerged as one approach to 30
reducing the instruction bandwidth required for a computa
tion. With convention vector architectures, e.g., the Cray-1,
a single instruction word specifies a sequence of arithmetic
operations, one on each element of a vector of inputs. For

~~=~l:~c~ ~~~::~n~~~~t~,0e1~~t~~:il~~fo~~~~~~~~r 0~ 35

to be added to the corresponding element of a vector VB
with the result being placed in the corresponding element of
vector VC Thus, lo the extent that the computation being
performed can be expressed in terms of vector operations, a
vector architecture reduces the required instruction band· 40
width by a factor of the vector length (sixty-four in the case
of the Cray-1).

While vector architectures may alleviate some of the
instruction bandwidth requirements, data bandwidth
demands remain undiminished. Each arithmetic operation 45
still requires three words of data bandwidth from a global
storage source shared by all arithmetic units. In most vector
architectures, this global storage resource is the vector
register file. As the number of arithmetic units is in<eTeased,
this register file becomes a bottleneck that limits further 50

improvements in machine performance.
To reduce the latency of arithmetic operations, some

vector architectures perform "chaining" of arithmetic opera
tions. For example, consider performing the above vector
addition operation and then performing the veclor multipli- 55

cation operation VMUL VC VD VE using the result. With
chaining, the vector multiply instruction consumes the ele
ments computed by the vector add instruction in VC as they
are produced and without waiting for the entire vector add
instruction to complete. Chaining, however, also does not 60

diminish the demand for data bandwidth-each arithmetic
operation still requires three words of bandwidth from the
vector register file.

[tis yet another object of the present invention to provide
a parallel processing system and method which utilizes
granular levels of operation of a higher order than individual
arithmetic operations.

It is still another object of the present invention to provide
a parallel processing system and method which is capable of
simultaneously exploiting multiple levels of parallelism
within a computing process.

It is yet a furtherobject of the present invention to provide
a single-chip processing system which reduces the number
of off-chip memory accesses.

The above objecL5 are achieved according lo a first aspect
of the present invention by providing a processor having a
tiered storage architecture to minimize global bandwidth
requirements. The processor has a stream register file
!11rough which the processor's arithmetic units transfer
streams to execute processor operations. Load and store
instructions transfer streams between the stream register Hie
and a stream memory; send and receive in.struclions transfer
streams between stream register files of different processors;
and operate instructions pass slreams between tbe stream
register file and computational kernels.

Each of the computational kernels is capable ofperform·
ing compound vector operations. A compound vector
llon performs a sequence of arithmetic operations on
read from the stream register file, i.e., a global storage
resource, and generates a result that is written back to the
stream register file. Eacb function or compound vector
operation is specified by an instruction sequence that speci·
fies the arithmetic operations and data movements that are
performed each cycle lo carry out the compound operation.
This sequence can, for example, be specified using micro
code.

Because intermediate results are forwarded directly
between arithmetic units and not loaded from or stored to the
stream register file, bandwidth demands on the stream
register file arc greatly reduced and global storage band
width requirements are minimized.

For example, consider the problem of performing a trans
formation on a sequence of points, a key operation in many
graphics sysle1ns when, e.g., adjusting for perspective or
moving from a model space to a world space. ln its most
basic form, the operation requires reading three words of
data for each point (x, y, z), performing a 4x4 vector-matrix
multiply, taking the reciprocal of a number, performing three
multiplies, and writing the resulting point (x', y', z') in the
new coordinate system. Without optimizations, the perspec·
tive transformation requires thirty-two arithmetic operations
for each point-nineteen multiplications, twelve additions
and one reciprocal operation. On conventional vector
architectures, this would require ninety-six words of vector

BRlEF SUMMARY OF THE INVENTION 65 register bandwidth per point.
In view of the above problems of the prim arl, it is an

object of the present invention to provide a data processing
In contrast, a compound vector architecture as des~Tibcd

in greater detail below can perform the perspective trans-

0205

us 6, 192,384 Bl
3 4

formatioo in a single operation. The compound vector
operation requires only six words of global bandwidth
storage per point: three words to read the coordinates of the
original point (x, y, z) a.ud three words to write the coordi
nates of the transformed point (x', y', z'). AU of the inter
mediate resnlts are forwarded directly between arithmetic
units and thus do uol require global storage bandwidth. This
sixteen-fold reduction in vector register bandwidth greatly
.improves the scalability of the architecture. Iu effect, the
compound vector architecture moves the vector register file 10

access outside of a function such as perspective transforma
lion

tlata from the host procc&'<1f 10 is stored in a stream register
file 14 which is the cenlcr of activity in the graphics
coprocessor. The host interface 12, stream memory 16,
arithmetic clusters 18, microcontroller 20 and network inter
face 22 all interact by transferring streams of data and
instructions lo and from the stream register file 14.

111e system has a three-level storage hierarchy consisting
of the stream memory 16 as a global storage unit, the stream
register file 14 as an intermediate s!Drage unit, and local
register files 2S (see FIG. 2) in the arithmetic clusters 18 as
local storage units. The stream memory 16 holds persistent
data; the stream register file 14 stores streams as they are
passed to, from and between computation kernels, and the
arithmetic clusters 18 use ll1e local register files to store
intermediate resulLs produced dnring computations within
the cluster so they do nol need to recirculate through the

BRIEF DESClUPTION OF THE DRAWINGS

The above and other objects of the present invention will 15

become readily apparent when reading the following
detailed description taken in conjunction witl1 lhe appended
drawings in which:

stream register file 14.
The stream register file 14 is preferably a 64 kB memory

organized lo handle stream> of data and instructions (of
course, the size of tbc stream register file may be varied
according to the application). An array of eighteen 64 word
stream buffers are used to allow read/write access to eigh
teen streams simullaneously. The internal memory array is
thirty-two 32-hit words (i.e., 1024 bits) wide so that it can

FIG. 1 is a block diagram of a processor accord-
20

ing lo a preferred embodiment invention;

FIG. 2 is a diagram of an arithmetic cluster used in the
graphics processor;

FIG. 3 is a diagram of an arithmetic cluster having
variegated functional elemenL>;

FIGS. 4A-4E show the structure of the instruction set of
the graphics processor; and

FJG. 5 depicL5 the flow of data between kernels in 1he
graphics processor when performing a triangle rendering
operation,

DETAILED DESCRIPTION OF PRESENTLY
PREFERRED EMBODIMENTS

First, the overall architecture of an exemplary computer
system employing a preferred embodiment of the present
invention will be described.

Central to the operation of this preferred embodiment are
lhe concepts of streams and kernels. A stream is a sequence
of elements made up of a collection of related data words.
A stream may be received by a computation kernel which
executes the same operation on all of the elements in the
stream to produce another stream that can be output or sent
1o other kernels for further processing.

Kernels arc relatively small computational units tbal may
only access local variables, read input streams and write to
output streams. They cannot make arbitrary memory refer
ences. In preferred embodiment of the invention, the
computation kernels are expressed in a C-like programming
language and compiled into microcode programs that
sequence the operation of arithmetic clusters to carry out
compound stream operations on each element in a stream.
The operations implemented by lne kernels are called com
pound operations because in contrast to conventional vector
or stream operations which perform only one operation on
each vector element, each kernel performs multiple arith
metic operations on each stream element. A compound
stream operation is a small program that has access lo the
record at the head of each of its iuput streams and to its local
variables. The kernel reads the input streams and writes to
the output streams using explicit instructions. 1hc length and
record size of each slream can be different and tbe number
of input and output streams need not be the same.

With this foundalion in mind, FIG. 1 shows a preferred
embodiment of the present invention used in a high speed
graphics coprocessor. Here, host 10 provides
data to the graphics coprocessor via a interface 12. The

25 fill or empty balf a stream buffer each cycle. Eacli stream
client may access its dedicated stream buffer every cycle if
there is data available to be read or space available to be
wri.tten. The clients of eight of the stream buffers are the
eight clusters 18, and these stream buffers are accessed eight

30 words at a time. The remaining ten stream buffers are
accessed a single word at a time,

The stream memory system 16 can perform two simul
taneous memory transfers between four thirty-two bit wide

35
SDRAM banks 24 and the stream register file 14 via four
stream buliers (two for data and two for indices) in the
stream register file 14.

The eight ariHunetic clusters 18 connected to the stream
file 14 are controlled by the microcontroUer 20.

40
cluster 18 operates on one record of a stream so !hat

eigl1t records can be processed simultaneously. An exem·
plary internal structure of an arithmetic cluster, shown in
FIG. 2, includes four functional elements 26 each buffered
by one of the local register files 28 which stores kernel

45 constants, parameters and local variables, thereby reducing
the bandwidth load on the stream register file 14.

1be local files 28 themselves are fed by a cros-
spoint switch which distributes outputs of !he functional
elements 26 lo inputs thereof as intermediate data for use in

50 subsequent arithmetic operations. The output of each func·
tional element 26 is connected lo one of the input lines of the
crosspoint switch 30, and the input of each local register file
28 is fed by a corresponding output line of the crosspoint
switch 30. Additionally, one of the crosspoint input lines is

55 fed by tbc stream register file 16 to provide the contents of
the stream dedicated to that cluster, and one of the crosspoint
output lines is relnrned to the stream register file 16 for
writing into that stream.

A specific implementation of the arithmetic cl115ter 18
60 structure is shown in FIG. 3 in which three adders 26a-26c,

two multipliers 26d and 26e, a divider/square root unit 26[,
a 128 entry scratcbpad register file 26g, and an inter-cluster
communication unit 26h (heremafter colleclively referred lo

as functional elemenLs 26) are employed as functional
65 ckmenls 26.

The scratch par\ register file 26g can be indexed with a
base address specified in an instruction word and an offset

0206

US 6,192,384 Bl
5

specified in a local rngiste~ and may be used for coefficient
storage, short arrays, small lookup tables and some local
register spilling. The adders 26a-26c and multipliers 26d
a11d 26e have latencies of four and five cycles, respectively,
are fully pipelined and perform single precision floating
point arithmetic, 32-bit integer arithmetic, and 8-bit or 16-bit
parallel subword integer operations. Tire adders 26a-26c
also are able to perform 32-bil integer and parallel sulJword
integer shift operations. The divider/square rool uni! 26[is
not pipelined and operates only on single precision floating
point and 32-bit integers.

Finally, the intercluster communication unit 26/i performs
data transfer among clusters using arbitrary cnmmunication
patterns. 'J11is is particularly useful in applications such as
Fast Fourier Transforms where interaction is required
between adjacent stream elements.

'The microcontroller 20 receives kernels as compiled
VUW microcode programs from ilie host processor 10. The
microconlroller 20 executes each of the kernels as an
independrni process using the arithmetic clusters 18 for
performing computational operations.

The network interface 22 connects the stream register file
14 to four bidirectional links that can be used lo connect the
graphics processor to other like processors.

Preferably, a substantial portion of the graphics
coprocessor, particularly including the stream register file
14, arithmetic clusters 18 and micro controller 20, are imple
mented on a single chip using VLSI techniques. This is
particularly advantageous because il allows accesses within
the arithmetic clusters 18 and accesses lo the stream register
file 14 to be internalized, thus freeing up more of the pin
bandwidth to be used for commnnicatiou with the stream
memories 24. In fact, it appears that a coprocessor as
disclosed herein can be implemented on a 1 cm2 0.25 µm
CMOS chip operating at 400 MHz and perform up to 16
billion operations per second.

The application-level instruction set used by lhe host
processor 10 lo program the graphics coprocessor is shown

6
FIGS. 4C and 40 sbow send and receive instructions

which allow streams to be passed from the stream register
Ille of one graphics coprocessor to that of another. These
ins!ructions are particularly advantageous because they

5 allow multiple processors lo operate in cooperation and
provide extensibility and scalability. 11le Send instruction
shown in FIG. 4C includes the stream to be sent, a routing
header identifying the external coprocessor to which the
stream is sent, and a channel indicator designating the

10 commurrica lions channel used so that a single node can
discriminate between arriving messages. Similarly, the
Receive instruction of FIG. 40 includes the stream lo be
received and a channel indicator designating the communi
cations channel for node discrimination of mulliple mes-

15 sages.

Finally, the Operate instruction invokes a kernel lo per
form iL~ compound stream operation on one or more input
streams to generate one or more ontput streams. The instruc
tion includes a kernel field designating the kernel to be

20 activated, up to four input stream designators which identify
streams to be used lo provide input data to the kemel's
compound stream operation, and up to follr output stream
designators which identify streams to which resul!s of the

25
compound stream operations are provided.

The host processor 10 iss11es these application-level
instructions to the coprocessor witb encoded dependency
information which specifies the system resources and data
needed to execute the instructions. The host interface 12

30 buffers these instrnctions and, when their requirement.s are
satisfied, i£5ues them lo the coprocessor. The host interface
12 also maps the coprocessor to the host's address space so
that the host can read and write to the stream memory 16 and
execute programs that issue lbe appropriate applicalioo-

35 level instructions to the coprocessor.

in FIGS. 4A-4E. The set consists of two complementary
Load and Store instructions which are \L5ed to move streams 40

between the stream register tile 14 and tl!e stream memory
16. As shown in FJGS. 4A and 4B, each instruction consists

Using this architecture, substantial improvements
memory bandwidth lL~e minimization can be realized.
Consider, for example, the point transformation example
given in the Summary of the Invention section above. 1be
above structure may be used to perform the operations
necessary to carry out the transformation as show in TABLE
I below.

TABLE!

From SHF ALU Cluster ALU Cluster ALU Cluster ALU Cluster
Cyclo

8
9

10
ll
12

of an instruction descriptor which identifies a starting
location, the stream lo be loaded into the stream register file
14 or stored in the stream memory 16, and an address
descriptor which specifies the record size, base address in
memory and addressing mode, e.g., cons!ao! stride, indexed
or bit-reversed. Optionally, the length of a s!rearn in the
stream register lile 14 may be included.

14

60

10 SRF 14 18a lBb 18c lBd

X 1 - a11x X;i - a12X X:i - ao.:X x4 ... aHx
h - 3 11Y Y1 - «.:nY Y: • a1JY Y~ ""a:HY
4-i "'aHz z, 83:;,;2. Z~ ""J:nZ Z4 == aJ4Z

'• X1 + yl lz"" X7 + Yi t, x, + YJ l4 "'X4 + Y4
u, z, + 1\.41 0 2 "'"" 71 + a4 2 U1 ""Z;; + a43 U4""' 2.4 + ll.H

'" l1 + U1 Yp""tz+u;- 7l'"'t~~+U:ii w l4 + U4

w, 1/w
x' -Xr."wi y' ... Yp"'Wi z' ... zP•w,

x'

r
,;

In the first operation cycle, the x-cnordinate of the point
is loaded from the register file 14. In the next operation
cycle, the y-coordinate is loaded and the x-<:oordinate is
multiptied by appropriate elemenls in the transformation
matrix. Similarly, in the following operation cycle, the
z-coordinate is loaded and they-coordinate is multiplied by
the appropriate matrix elements, and so ori. During the

0207

US 6, 192,384 B 1

7
computations, the program parameters such as the trnnsfor
mation malnx entries and intermediate resulls are stnrcd in
the local register Jiles associated with the functional ele
ments 26 which will consume them. AL-;o, various values are
distributed over the crossbar switch 30, For example, al the 5
end of cycle 8 w1, lhe reciprocal of w, is distributed to lhrce
of the arithmetic clusters 18 lo be used in calculating x', y'
and z1

•

In lhis way, four arithmetic dusters 18 can calculate the
point transfom1ation in just twelve operational cycles, a 10

great improvement over conventional architectures. In
practice, Curther optimizations would he performed to elimi
nate blank spots in tile table at the beginning and end of the
sequence using, e.g., loop unrolling or software pipelining.
Also, in an actual implementation lhe functional clements 26 is
will have latencies of several cycles, e.g., two cycles for the
adders 26a-26c, four cycles for the multipliers 26d and 26e,
and eight cycles fot the divider 26/, and the operation
schedule would need to be rolled out to account for arith
metic latency. The resulting spaces can also be filled using 20

unrolling

Gmsider, as another example, triangle rendering-a com
mon procedure in graphics processing which is exemplified
by the C++ code below and whose dataflow is shown in FIG.
5: ~

void rcndcr_tria.ngk_strertm() {
if Make .sure kernels loaded mto coprnccssor)teonlroller
int transfonn .. load_microcode ("transform.uc");
inL ghade ..,. !oad_microcode("shade.uc");
inl proj _t."tlll = lo,.1_Jrucmc•Jde("p•roJ __ e1>ll.uc'"

int span_J:etup = ln3<1 .. _>11ictoe<Jde(.. '!""----"'tup.nc

int £HU0C"'--"J'3H

30

8
memory stream descriptor, e.g., mcm~model_tri, includes
a hase address, length, record length, mode and stride or
index stream. Each register slream descriptor, e.g., srf_
model_tri, includes a base location in the stream register file
16, record length, a11d stream length. These descriptors arc
produced by C++ code running on the host processor.

As shown in FfG. 5, the first arilhmetic step in the process
is to transform the triangle from model space to world
space-a slightly more complicated version of the simple
transform descrihed in the snmmary section above. For this
transformation, there is a single input stream and a single
output stream. Each stream consists of twenty-four
elements-for each of the three triangle vertices, the three
dimensional vertex coordinates; a perspective coordinate;
the vertex color; and a normal vector for the vertex
expressed as a three dimensional coordinate. With this
slream structure~ U1e transformation computation can be
expressed as the single compound stream operation shown
in pseudocode below:

loop over aU trlaogles {
loop ever three vertices

ii rr..11d w,rtcx dat;1 inpul stream
[:x, y, z, w, color, nx, ny, nz] inpulJtrcamG;
II coa1pnte transformed verlex coordinu!es
tx - rlJ "' x + r12 • y + rl3 • z + r14 • Wj

ty r2l • x + r22 " y + r23 • z + r24 " w;
lZ r3l '" x + r32 • + r33 • z + r34 • w;
II normal vector
tnx = • nx + nl2*' ny + n13 • nz,
tny"" n21 " nx + n22"' ny + n23 " nl.;
ln.1. n31 "" nx + n32* ny + n33 * nz;

II write vertex &LB to output stream
u"'>'"'---""°'""·' - {tx, ty, t.z) w, color, Lnx, tny, !nzJ;

Now, a typical data set might consist of average triangles
covering twenty-five pixels with a depth complexity of 5.
Rendering each triangle might require 1929 arithmetic

40 operations, 666 references to stream register file 16 and 44
references to stream memory 18. With a conventional archi
tecture in which three memory references are required for
each arithmetic operation (one for reading the arithmetic
instmction, one for reading the operands and one for writing

Herc, each library function bas a one-lo-one correspondence
with an application-level instruction. The load .. Juicrocode
function loads the microcode routine denoted by its argu
menl and retnrns the starting address of the code. Memory
load and store inslmctions are respectively issued to the
coprocessor by the stream_load and stream_store func
tions. Finally, an Operate instruction is issued by the
stream_op function to cause the corresponding microcode
kernel to run on each element of the specified source
streams. For example, the first strcam_op f\mction shown in
the code initiates a compound stream operation on the
coprocessor hy issuing an Operate instruction specifying the
start address of the transform microcode. The inslruction
abo specilics one input slream, srf_modeLJti, and one
output stream, srt ___ world_tri.

The arguments of the stream load, slorc and operate
instructions are specified by stream descriptors. Each

45 the result), at least 5787 references would be necessary.
Thus, by capturing locality v,~thin the kernels, coding the
triangle rendering application to take advantage of the
above-described architecture, references to memory outside
the kernels are reduced by a factor of more than 8.

50 Moreover, once the kernels are programmed by micro-
code from the host processor 10, the. entire triangle rendering
process shown in FIG. 5 can be performed with only eleven
application-level instructions: a Load instruction reads the
triangle stream from the stream memory 16; seven Operate

55 instrnclions sequence the kernels from transform to com
pact; a Load iostrnction 1L'es the index vector computed by
compact to read lhe old Z-values of the pixels in question;
an Operate instruction performs Z-compositing; and a Store
instruction writes the visible pixels and their Z-values back

60 to the stream memory 16.
Additional efficiency could be realized by using more

than one coprocessor in a multiprocessing arrangement. For
example, wlien performing the triangle rendering proccs.-;
described above, one coprocessor wuld be used !o mn lhe

65 first three kernels and transmit the resull to a second copro
cessor tn run the remaining live kemeL> simply by inserting
a Scud and complementary Receive instmction al the appro-

0208

US 6,192,384 Bl
9

priale posirion in the sequence of application-level instruc
t10ns. 111e remaining resources of lbe two coprocessors may
be used to render otber triangles or lo execute unrelated
processes.

10
memory references for the entire pipeline over eightkernels.
The global register file reference figure is based on tbe 24
words read from the stream register file 14 and the 24 words
written to the stream register file 14. Finally, tbe kernel
executes 108 arithmetic operations which use 355 words of
data from local register file 28. A' can be seen from TABLE
II, tbe memory bandwidth requiremenl' of the scalar pro
cessor are 62.2 times higher than that of the stream archi
tecture and the global register bandwidth requirements of the

JO scalar processor are 41.5 times bigher than that of the stream
processor. The memory bandwid!h requirements of the vec
tor processor are 8.7 times that of the stream processor, and
the global register bandwidth requirements of the vector

Kernels such as the transformation kernel listed above are
written in a C-like rnicroassembly language, and the kernel
compiler (preferably on the host processor 10) takes this
C-like code and generates VLIW microcode instructions that
enable the rnicrocontroller 20 to control the functional
clements 26a-26h. The only flow control operations permit
ted in the kernels are iterative loops (allhougb some control
operations such as conditional branching may preferably be
implemented in alternative ways as described in the U.S.
patent application to William Dally, Scott Rixncr, J. P.
Grossman, and Cbris Buehler, filed concurrently herewith
and entitled SYSTEM AND METHOD FOR PERFORM- 15

IN"G COMPOUND VECroR OPERA110NS, incorporated
herein by reference) and the compiler applies several com
mon high-level optimizations such as loop unrolling, itera
tive copy propagation and dead code elimination. ll then
performs list scheduling starting with the largest, most
deeply nested block, and within each block operations with
the least slack are scheduled first.

The stream memory 16, stream register file 14 and local
register files ZS have bandwidth ratios of 1:32:272. Thal is,
for each word read from memory, lbirty-two words may be
accessed from the stream register file 14 and 472 words may
be read from or written to the local register files 28 in the
functional elements 26a-26h. In other words, the coproces
sor can perform 40.5 arithmetic operations per four byte
word of memory bandwidth and 1.2 arithmetic operations
per word of stream regL,ter file bandwidth, The bandwidths

processor are 5.4 times that of the stream processor.

Three image processing kernels, FFT, triangle transform
and blockwarp (taken from an image-based rendering
application), were used to generate the performance results
shown in TABLE Ill below, FFT performs one stage of an
N-point Fast Fourier Transform; triangle transform is the

20 triangle vertex transformation described above; and Block
warp performs a 3-D perspective transformation on 8x8
blocks of 3-D pixels to warp them from model space into
screen space. A~ can be seen frorn the Table, the mean speed
increase when moving from execution of each kernel on a
single cluster to execution on eight clusters is over 7.5.

TABLE III

KemcJ Single Clu:;tcr Eight CIU.1ters Speedup

JO
FFT (cydes/butcerlly) 4.19 0.15 5.59

1'tansfom1 (cydes/trlangle) 171 2213 B

of the stream memory 16 and stream register file 14 are
limited by chip pin bandwidth and by available global chip
wiring, respectively, wbile the bandwidth of the local reg
ister files 28 is set by the number of functional elements 35

26a--26h.

!llock:warp (cyctcs/blnck) 2890 275 10.5
Harmonic Mean 7.52

The vertex transformations are independent of one another,
so U1ere is no overhead lost to communication between
clusters when executing that kernel, and the net speedup is
exactly 8. The FFT requires exchanges of data between
kernels, so the speedup when executing that kernel is

TABLE II compares the memory, global register and local
register bandwidth rcqmrements of the stream arcbilecture
of the coprocessor with a pnor art vector processor and a
prior arl scalar processor for the above-described triangle
transformation kernel. The figures for the scalar architecture
were generated by compiling the transformation kernel for
an UltraSPARC II usmg version 2.7.2 of the gee compiler.

RefeJences

Memory
Global Re.gisler File
Local Register File

TABLE II

Stream

5.5
48
355

Scalar

342 (62.2)
f030 (21.5)

N/A

48
261

Vee.tor

(8.7)
(5.4)

NIA

111e entries for the scalar and vector processors should be
self-explanatory. For the stream architecture, the 5.5 stream
memory access figure was obtained by itvernging the 44

40 somewhat less than 8. Execution of the Blockwarp kernel on
eight clusters eliminates a loop in the process, resulting in a
speedup of more than 8,

TABLE !IV shows the bandwidth used by each of the

45
above kernels at each level of the memory hierarchy. The
kernels require an average of 9.4 times as much local
register bandwidth as stream register bandwidth. Tue
throughput in lhe blockwarp kernel is worse than in the other
kernels because it performs a divide when computing each

50
pixel. The non-pipelined divider creates a bottleneck
because. all subsequent calculations are dependent on the
divide result. Fully one-third of the execution cycles are
spent wailing for results from the divider without issuing
any arithmetic operations, even with loop unrolling to hide
the latency to dependent calculations.

TABLE IV

sucam Regisler Local Regisler Operations per Arithmetic
Kernel File (GB/s) File (GB/s) Cycle Op'ns (OOPS)

FfT 21.45 165.66 18.76 7.51
Ttansform 10.41 77.02 14-64 5.86
mockwarp 4.19 46.59 8.73 3.49

Ha:ruonic Mean 7 87 74.10 12.70 5.0S

0209

US 6,192,384 Bl
11

·nnis a processing system according to the present inven·
. exp' oses the parallelism and locality of data processing

t1on · d h lik · tasks such as image processrng an t e ·em a manner than
. well-suited to current lechnolog1es. A programmer may
;f ribe an application as streams of records passed through
c~:putation kernels, and individual stmam elements may be

0
crated on in parallel by the anthrncllc umt,; actwg under

I
p ontrol of the ro1crocontroller as computational means to

t IC c [' I . 11 l' b ex !oil data paralle ;srr: .. nstructwn pa:a e ism may e
plaited within the md1v1dual computatmn kernels by the

exp ocontroller acting as program executing means. Finally,
10

nucr b I · ed b · · · t ol parallelism may e exp mt y part1t10rung an
co;l~cation across multiple processing systems by the l10st
;~oce,;.sor acting as control means. lncality is ~xposed both
b recirculating streams. through a str~am register file a~d Js

0
within the computation kernels wh.1ch access streams m 15

dcr and keep a small set of local vanables. Moreover, the
~~mbined effect of exploiting parallelism on each level is
multiplicative. This enables the sysle~ architectn.re to .make
efficient use of a large number of antbmel1c nruts without

Jobal bandwidth becoming a bottleneck. 20
g As will be apparent from reading the above explanation,
exploiting parallelism. as used above and in the appended
claims means pcrfonn1ng cornputat1ons, program execut10n
or process oontr.ol .to take advantage of redundancy of
content and srmllanty of structure m data, programs or 25
processes flow to ~ealize op~rational efficiencies in compari
son with convenllonal architectures.

Modifications and variations of the preferred embodiment
will be readily apparent lo those skilled in the art. For
example, the number of operative unils such as arithmetic 30
clusters, functional units within the clusters, memory banks
and the like need not be as set forth herein and may readily
be adapted depending 011 a particular application. Further,
variations on the instruction set described above as well as
new processor instructions may be provided. A larger num
ber o(simplified clusters may be provided, or a smaller
number of more powerful clusters may be used. Such
variations are within the scope of the present invention as
defined by the appended claims.

12
providing resulis of arithmetic operations performed by each
functional element to nther functional elements.

4. The system of claim 3, wherein an arithmeUc cluster
includes a local storage unit for storing data to be used by a
fuuctional element within the arithmetic cluster during a
compound vector operation.

5. The system of claim 4, wherein:
the local storage unil is connected to an input of the

functional element within the arithmetic cluster; and
dala stored in the local storage uoit is directly accessible

only by the functional element to which it is connected.
6. The system of daim 4, wherein data stored in the local

storage unit is accessible by a plurality of functional ele·
rnenL' in the arithmetic cluster containing that local s!JJrage
unit and plurality of functional elements.

7. The system of claim 3, wherein the crossbar switch is
a sparse crossbar switch.

8. The system of claim 2, wherein the plurality of func·
tional elements includes a scratcbpad register file.

9. The system of claim 2, wherein the plurality of func·
tional elements includes an intcrcluster communication unit
for communicating with other arithmetic clusters.

10. The system of claim 1, wherein an arithmetic cluster
includes a local storage unit for storing data to be used by the
arithmetic cluster in subsequent arithmetic operations.

11. Tue system of claim 1, further comprising a host
processor capable of selectively reading and writing the
stream register !ile.

12. The system of claim 11, further comprising:
a network interface connected to the stream register file

for exchanging data between the stream register file and
another system.

13. 11ie system of claim 1, wherein the at least one
arilt1metic cluster is a plurality of arithmetic dusters each
capable of independently and sequentially performing com
pound arithmetic operations, resporu;ive to commands from
tile controller, on data presented at respective inputs thereof
and providing resultant proces.5ed data at respective outputs
thereof, and capable of utilizing intermediate data generated

What Ls claimed:
I. Ada la processing system comprising:
a controller;

40 as a result of performing the operations in subsequent
operations without retrieving the intermediate data from a
source external to that aritllmetic cluster.

at least one arithmetic cluster capable independent! y
and sequentially performing compound arithmetic
operations, responsive to commands directly opera
tively provided from the controller, on data presented at
an input thereof and providing resultant processed data

14. The system of claim 1, further comprising a global
storage unit being selectively readable and writable, respon-

45 sive to commands from the controller, only by the stream
register file.

at an output thereof, and capable of utilizing interme
diate data generated as a result of performing the
operations in subsequent operations witbout retrieving
the intermediate data from a source external to that
arithmetic cluster; and

15. The system of claim 14, wherein the stream rcgiste1
file is selectively and independently writable, responsive to
the controller, by al least two of the controller, the global

so storage 11nit and fill arithmetic cluster.

a stream register file directly operatively coupled to the
cluster and being selectively readable and writable,
responsive to commands from the controller, by each of 55

the al least one aritbmelic cluster for holding the
resultaut processed data of the at least one arithmetic
cluster.

2. 'I11e system of claim 1, wherein al least one arithmetic
cluster includes a plurality of functional elements each 60

':'apable of performing an individual arithmetic operation
independently of other functional elements, and capable of
Providing results thereof to at least one of itself and other
functional elements for use in subsequent arithmetic opera
tions. 65

. 3. The system of claim 2, wherein the plurality nf func·
t1onal elements are connected to a crossbar switch for

16. 'Ibe system of claim 14, wherein the global storage
unit is selectively readable and writable, responsive to the
controller, by tl1e stream register Jile in independent, simul·
taneous transfers.

17. A method of processing data comprising:
performing rnulliple arithmetic operations simultaneously

and independently in each of a plurality of arithmetic
clusters responsive to commands directly operatively
provided from a controller, at least some of the aritb·
metic operations utilizing data generated and supplied
by the arithmetic clusters without retrieving the gener-
ated data from a source external lo the arithmetic
clusters; and

readmg data used by the arithmetic clusters from and
writing data generated by the arithmetic clusters to a
stream register file connected directly to the plurality of
arithmetic clusters.

0210

US 6., 192,384 B 1
13

18. The method of claim 17. wherein tlie reading and
writing are performed for data generated by multiple arith·
metic clusters in lhc plurality of arithmetic clusters indc·
peodently aod simultaneously.

19. The method of claim 17, wherein performing multiple
arithmetic operations includes utilizing data generated and
supplied by tbe arithmetic clusters without retrieving the
generated data from a smuce external to an arithmetic
clusters utilizing !hat data.

20. The method of claim 17, wherein performing multiple
arithmetic operations includes performing individual arith
metic operations simultaneously and independently in eacb
of a plurality of functional elements, at least some of the
functional elements utilizing data generated and supplied by
!he functional elements wi!hout retrieving the data generated
by the functional elements from a source external to an
arithmetic cluster con!Jtiniog those fuoctional elements.

21. The method of claim 17, further storing at
least some data generated by a functional in a local
storage unit.

22. '!be method of claim 21, furtber comprising rc!J'icving
data stored in ll1e local storage unit only by a functional
element which stored that data.

14
23. 111e method of claim 21, further comprising

data stored in the local storage unit by plural functional
within an arithmetic cluster containing tbe phtral functional
clements.

24. The method of claim 17, further comprising exchang
ing data between arithmetic clusters.

25. The method of claim 17, further crnmnrisin~
ing data from tbe stream register file to au system.

26. The method of claim 17, further comprising exchaug-
10 ing data between the stream register file and a global storage

unit.
2 7. The method of claim 26, wherein data

includes exchanging multiple data elements the
slrcam regfater file and the global storage uni! independent! y
and simultaneous! y.

15 28, The system of claim l, wherein cluster instructions
and al least one of data input and output streams are
provided to the at least one cluster responsive lo stream
instruction.

29. The system of claim 8, wherein the scratch pad
w file is independently addre&Sable for the cluster which in

using a computed addre&S.

0211

United States Patent [19]

Anderson, II et al.

[54] AUTOMATED TEST HARNESS

[75 J Inventors· Micheil M. Andtmmn, II, Orem;
Howard K. Ilangertcr, Highland;
Marlon T. Borup, Orem; James E.
Byer, American Fork; Darin L. Cable,
Spanish Fork; Ross W. Doxey, Orem;
Ridmrd S. Graham, Springville; Todd
D. Hale, American Fork; Britt J.
Hawley; Richard W. Lamplugh, both
of Orem; !lick L. Pray, Woodland
Hills, all of Utah

(73] A>signee: Novell Inc., Provo, Ulab

f *) Notice: This patent issued on a continued pros
ecntion application filed under 37 CFR
1.53(d), and is subject lo tbe twenty year
patent term provisions of 35 U.S.C.
154(a)(2).

[21] Appl. No.: 08/518,160

[22] Filed: Aug. 23, 1995

[51) Int. CJ.6 ... G06F 13/00
[521 U.S. Cl. 395/200.38; 395/200.47;

395/200.5; 395/712
[58] Field of Search 395/183.03, 183.14,

395/712, 200.47, 200.49, 200.5, 200.51,
200.52, 200.38, 200.39, 200.41

[56] References Cited

U.S. PATENT DOCUMENTS

6/1991 Archie el al. 395/183.07
10/1992 Tuttle el 11!. ..•..•....•.....•..• 395/575
6/1993 Low el 371/16

128

111
US005909544A

[l lJ Patent Number:

[45] Date of Patent:

S,909,544
*Jun. l, 1999

5,313,616
5,315,711
5,335,342
5,371,8.S:l
5,388,211
5,630,049
5,671,414
5,684,952
5,805,897

5/1994 Cline el al. 395/500
5/1994 Barone cl al 395!100.38
8/1994 Pope el al. 395/575

Gross el al. 395/5 75
Hornbuckle 3951712

5/1997 Cardoza el al. 395/183.01
9/1997 Nicolet 395/684

11/1997 Stein 3951712
9/1998 Glowny 3951712

Primary Examiner-Meng-Al T. An
1\ssistanl Examiner-Waller D. Davis, Jr.
Allomey, Agent, or Firm-Madson & Metcalf

[57] ABSTRACT

An apparatus and method for temporarily slaving and con
figuring a plurality of hardware resources such as computers,
microprocessor-based devices, and the like, over a network,
and then emancipating the resources to operate
denlly. Resources or targels may be enslaved al an
system level. A controller may configure a
hardware resources such as computers, ruicroproeessor
based devices, and the like, to operate autonomously over a
network. Resources or targets may be enslaved at an oper
almg system level, configured will1 commands from a
controller, and emancipated to operate independently.
Emancipated resources may download applications, read
and write files, cornnmnicatc with other devices, and otber
v.rise operate as independent computers. Data corresponding
to test instructious may be downloaded from, and data
corresponding to results may be recorded and saved on, a
network server by a resource operating independently. Upon
completion of a test or a series of tests, a resource again
report ba~k to a controller, be enslaved and rec:ontilJ;ured,
and be emancipated to operate other test software.

27 Claims, 6 Drawing Slu.>ets

roo
.)

96

0212

L;
12 10 86 24 .

rF1

(
/ .

88
"'O

34 42 ~ -('tl
44 = -38 40

48

30 ~
NETWORK 80 =

CARD ::i ,._.
17

~ ,....
14C IO

28
IO

16~ ~ \0

14A 28

14F 28
C'1

14D /28 14E ;:r r 26 (";)
(";)
.......
0

60 -.
~

25
PROCESSOR MEMORY

70
72

18~ tll
"'

68 "° 20_/ 22:__/
c

Fig. 1 "° 1.,.

0213

90~ 100 ~
92 r.r:i .

~
102 NETWORK CLIENT INTERFACE 152 = -MULTITASKING OPERA TING OPERATING SYSTEM ~

154 :;
SYSTEM NETWORK APPLICATIONS -ATHMODULES 156 FILES

108 RESOURCE MANAGER
110 SCHEDULER

112 LAUNCHERS
DATABASE MANAGER

""" 114 CONSOLE 158 i=

116 SERVER := ,...
,...
',Q
IO
IO

'7:i

=--~
~

NETWORK CLIENT NETWORK CLIENT NETWORK CLIENT tv
142 132 0

INTERFACE INTERFACE INTERFACE -.
146 SLAVING MODULE 126 SLAVING MODULE 136 SLAVING MODULE ~

144 OPERATING SYSTEM 124 OPERATING SYSTEM OPERA TING SYSTEM

TEMPORARY 134 PRELOADED
APPL/CATIONS APPLICATION

128
PRELOADED

138 APPLICATION Vl

96_) ~
98 94 Q

Fig. 2 "" "' Vl

0214

225

' 22.5

229

210

112

188
168

Fig. 3

DENTIF/ER
GENERIC POINTER
RESOURCE POINTER

\
270

~
en .
""d
:.:i -('!) -
:......
= ::i
......
.....
'° \0
\0

0215

U.S. Patent Jun. 1, 1999 Sheet 4 of 6

~----------------------------~
I
I
I
I
I
I
I
I
I
I

RESERVE MEMORY BLOCK

WRITE OPCODE
TO MEMORY I

I
I

5,909,544

282

284

I
I
I
I
I
I
I
I
I
I
I
I
I
I

~280

I

SEND OPCODE ADDRESS TO
MESSAGE QUEUE

I
I
I

I I

'-----------------------------' r----------------------------,
I I
I I
I I

286

: READ OPCODE ADDRESS
1
- 288

I FROM MESSAGE QUEUE I
I I
I I

: ~290
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

READ OPCODE AT
ADDRESS IN MEMORY BLOCK

MOVE EXECUTION POINTER

EXECUTE CODE
AT POINTER

1-----------------------------'

Fig. 4

292

296

0216

U.S. Patent Jun.1,1999 Sheet 5 of 6 5,909,544

320

320

320

301

)
r-~~~~~~~::-;:-~~~~~~~~--:~373

GROUP NAME~ 368 MEMBER TYPE:
DESCRIPTION:--- 369 MEMBER NAME: 374

ENTERED BY:------ 370 PRIORITY::-. -----.--- 375
USAGE:-- 371 ITERATIONS: 376

320
TOKEN FILE(S):-- 372 PARAMETERS: 378

INSTANCE: 379

NAME:---- 361
DESCRIPTION~362

USAGE:-363
ONTACT:--- 364

TEST LIST:- 365
NUM. TESTS:---- 366
TOKEN FILE PATH:--- 367

INSTANCE:-..._ 377

TEST NAME:_,,.-- 340 SERVER;----- 350
DESCRIPTION:-- 341 CONTEXT:---- 351
EXECUTABLE NAME:~342 USER:- 352
PA TH TO TEST:-------- 343

344
PASSWD:___.--- 353

PARAMETERS:----- DRIVE MAPPINGS.
USAGE/INFO:--- 345 FILES TO TOKENIZE.
WRAPPER NAME:------ 346 INSTANCE:--._ 356 NETWORK DEPENDENCIES:- 347
MASTER RESOURCE TYPES:-- 348
SLAVE RESOURCE TYPES:- 349

NAME:_.......-- 391
ATH SERVER: _..--392

ATH PATH,...___.-- 393
TEST DIRECTORY:___..-- 394

DB MANAGER PATH:.----- 395
TEXT EDITOR::------- 396

Fig. 5

308

307

306

355

305

304

313

312

0217

U.S. Patent Jun. 1,1999 Sheet 6 of 6 5,909,544

301

HARNESS_____/""" 402
LOCATION: / 404
NODE ADDRESS: ,,-- 406
STATUS:-~···_.,
PREFIX:..........---- 408
OS TYPE: - 410
INSTANCE:- 412

)
SOFTWARE

FUNCTION: __..r- ::
OSTYPE: _,.,-
OSVERSION:--- 440
2ND OS TYPE:....- 442
2ND OS VERSION: 444

OTHER
CAPITAL ASSET NO:
SERIALNO: -
BUS TYPE:--~
VIDEO CARD:-~__,,--
DRIVE CONTROLLER:
TOPOLOGY:___-
NET CARD:--- 458
/PX BACK:-- 400

320

HARDWARE 414
BRAND:~416
CPU·--
SPEED:__,-- 418

MEMORY:____..- 420
DRfVE 1 SIZE:--- 422
DRIVE 2 SIZE:_,,- 424
TOPOLOGY:~___.--426
NET CARD:_.---- 428
IPX BACKBONE:-430
/PX INTERNAL: - 432
IP INTERNAl.J---.... 434

IP fJACK: -- 462 317

320

320

320

MAC BACK:-- 464
SLAVETYPE:-466 316

MESSAGE INFORMATION:-...__ 399 REPORTED BY:

LAUNCH TIME~ 381
UPDATE TIME:--- 382
PATH::-.___..-- 383
TYPE:--384
NAME. 385
INSTANCE • .__- 386
STATUS:- 387
DATA~388

TYPE:-- 331
NAME:----- 332
LAUNCHER:--- 333
STATUS:-- 334
PRIORITY:---- 335
/TERA TIDNS:.------.._ 336

TOKEN DEFINITIONS.
TOKEN FILES:--...._ 338
INSTANCES:-.__,

'-339

Fig. 6

311

337

303

302

310

314

0218

WEST

5,909,544
1

AUTOMATED TEST HARNESS

BACKGROUND

1. The Field of the Invention

This invention relates to computer networks and, more 5

particlllarly, to novel systems and methods for temporarily
slaving operating systems of a plurality of processors for
configuration purposes or for downloading software, and
then later emancipating these slaved devices (e.g.
computers, microprocessor-based devices, instruments, etc.) 10

to operate independently, including running software, down
loading files, and uploading files over tbc network.

2. The Background Art

2
remote, general-purpose, computer for execution. The
remote computer mus! be logged on and configured by the
user just as any otl1er computer.

Similarly, a slaved computer may be logged on lo a
network, configured, loaded with an application and then
enslaved to communicate with a master to receive informa
tion from a master for use by an application previm1sly
launched on the slave computer. Instructions and responses
are typically on a command-by-command basis.

Configuration may be thought of as programming a slave

Networking typically involves several microprocessor
based devices (nodes) exchanging data with one another
over a lransrnission medium, a communication link such as,
for example, a bard wire, fiberoptic cable, radio frequency
transmitter/receiver, or other physical communication
mechanism. A link between a node and a network or
between routers of a wide area network (WAN) may be
wireless. Network cards provide a mechanical and data
connection between the communication link (e.g. fiberoptic,
wire, or wireless) and the processor of the node or device to

with executable codes, and providing information for eslltb
lishing connections and protocols, identifying other devices
lo be addressed, identifying a server and possibly a router,
providing the address of the slave to the network server, and

15 so fortll. Thus, once configured, a node (e.g. computer or
other processor-based device on a network) may send ancl
receive messages. Also, once an application has been
launched (loaded and instructed to run), the slave may send
and receive information related to the application. However,

20 if a slave is basically a general purpose processor with an
operating system and memory, or optionally including a
storage device, it must be manually loaded with software
and instructed lo run by a user before communicating with

be connected to the network. Communication may occur by
various protocols (rules), with steps (activities) executed by 25

devices satisfying those protocols.
Networks may be defmed at several levels of grouping

and communication. For convenience, the terms primary,
secondary and tertiary network are used here to indicate the

30
extent and complexity of a network. A primary network is
the most fundamental connecting of two nodes in some
manner. A local area network (LAN) may be thought of as
a primary network. A secondary network is a routed
network, one including al least two primary networks con- 35
nected by a router for forwarding messages between the
primary networks. A tertiary network (sometimes called an
internetwork) is one including two primary or secondary
networks, a router in one being separated by an intermediate
network from a router in the allier. Thus, as the name

40
network implies, a tertiary network can extend from router
to router to router via intervening primary networks virtually
forever, within the constraints of the laws of elcctrophysics
and communications protocols.

A server is a computer connected to a network via a 45
network card and programmed to act as a traffic manager and
storage device for files of data being transmitted over the
network by the various connected nodes. A bard wire
interconnected to a group of network cards with attached
computers, with one of those computers acting as a server, 50
is a typical network. In other networks, every device may be
a server.

a master.

What is needed is a system that enables a controller to act
as a user or otherwise take control of a processor to instruct
it. For example, a processor needs to be controlled long
enougl! to be instructed to download "executables," (files
containing a coded instruction capable of being "under
stood" by an operating system of a processor to result in an
operable instruction executable by the processor), and to
launcll (run) the executables. Slaving an operating system
and configuring the host (remote computer) need to be
followed by a bigb degree of independent operatiou by lhe
remote computer.

A scheme is needed for slaving and configuring, followed
by downloading entire executables to a general purpose
computer, that is, a target, located remotely from a
controller, particularly over a network. For example, a
controller may need to automatically perform all tasks
normally required of a user seated at a keyboard associated
with the target. For example, a user boots up a computer with
some operating system, logs on to a network, navigates
through a hierarchy of directories, locates and loads an
executable file, and runs the "executable." For systems
having an input/output (110) interface for dealing with
humans, great utility may be obtained by providing for a
remote computer to replace tl1e user, thus providing auto
mation of many manual tasks associated with setting up a
computer, running software, and managing files.

Similarly, for processor-based apparatus having 1/0 inter
faces embedded, without user interfaces as monitors and
keyboards, great utility could be obtained by providing for

Computer networks are capable of facilitating many
functions, but not certain other functions. For example, as
computer network technology has grown, so has the need to
pass information over the networks.

Likewise, a user at each node, typically, must configure
the node, from physically connecting hardware and loading
an operating system of the processor to loading an applica
tion and instructing the application how to store and retrieve
data representing information. A high degree of automation
of tasks normally done by users is not typically available
between devices (nodes) across networks. One command
line at a time is typically required to be sent and responded
to.

55 automatic access lo the operating system by a remote
computer across a network. For example, automatic loading
of executables from a remote computer, automatic
upgrading, and any similar task accessing the operating
system of a microprocessor-based device on a network could

Unfortunately, a user logging a controller computer on to
a network cannot automatically download executables lD a

60 make management and upgrading of such devices tractable
on a large scale.

Likewise, the need may be for downloading infonnation
to the memory of a device by which the device may operate
a resident executable. For example, when a single computer

65 connecL~ to several peripheral devices, the single computer
typically may control those various devices directly. Also, a
controlling computer may simply provide data correspond-

0219

5,909,544
3

ing to responses, commands, or information needed by an
application running on a slaved computer. However a need
exists for autonomous devices to be temporarily accessed
remotely with data for controlling or supporting resident
executables, after which the devices return ID their autono
mous operating condition. The need, when compared will1
the conventional terrn uslaved co1nputcr11 is for an Hen1an~
cipated computer" that may he temporarily and
erL>lavcd at an operating system level, configured,
emancipated lo operate independently over the network. The 10

emancipated computer or other device needs to be able lo
access files of input information or load itself with an
executable, or launch an executable, after which it may
report back to a master ID be enslaved again, and reconfig
ured to operate again as an emancipated device.

A system is needed that is transparent (o a user for
(racking large numbers of such emancipated slave
ers. '11ms, a system is needed that will facilitate a

4
configuration of one or more test computers selected from
the plurality of resource computers, transfer software tiles
and parametric data files lo the lest computer or cause the
test <X>mpuler to download those files, provide surrogate
commands lo the lest computers as j[from a user or
programming computer, and emancipate lhe test computer lo
operate the software of the software files and return result
data corresponding lo lest data to a system database reposi-
tory remote from the lest computer.

It is ao object of the invention to permit transfer of data
by bit streams, files, fields, or entire databases,

It is an object of the invention to transfer data to a
controller, or lo a remote processor operating as a database
manager, or directly to a database in a storage device, over
a network, without requiring synchronous communication as
in conventional master/slave systems, for example, wilhou1
requiring lhal a master send an instruction to obtain each
packet of information from a slave, or without requiring
master to do anything to enable a resource to complete a accessing numerous rcsourcr.s (computers), mcl!Ul:or:mg

capabilities, taking temporary control of any one,
commanding the selected resource lo configure itself, load
and run software, and pass input and output information
properly, and report lo the controller when it is

20 function and store data for access later by other computers,
such as the controller.

It is an object of tbe invention to provide a system for

available lo be assigned another project. Again,
commands with reporting back for another command are not 25

the intention. Whal is needed is true emancipation, maxi
mizing the use of the emancipated slave resource, witb
minimum necessity for control by l11e controller, wbile at tlle
same time permitting the con(roller to communicate with the
resource at an operating system level when needed. Thus a 30

general purpose computer may be commanded lo com
pletely re-configure itself as needed without human inter
vention.

tracking and scheduling of available resource computers
connected in a network, including monitoring such param
eters as, for example, the location, name, operating system,
memory, speed, processor characteristics, memory capacity
and other operational characteristics, of each resource
computer, and usirrg tbat information to allocate those
resource computers to run applications, such as for example,
test applications and collect data, such as lest data.

It is an object of the invention to provide over a network
a server (whether having a separate central processor, or
time-sharing with the controller) for storing and retrieving
files lo be used temporarily by a controlling computer on the '11rns maximum utility of all resources

by simply programming the logical options,
ups for failed options, aod the like, in order lo
resources operating all tbe time with tasks that
complete. Tl:ms, regardless of processor, speed,

35
network and files to be loaded lo and from a selected test
(resource) computer of a plurality o[resource computers
connected to the network.

:~~~i:~c~:r:u~rl~p:~~~~ff~~~it:~ ~~~~~~;u~~~~~~~.;~t is 40

It is an object of the invention ID provide database
management, including an information format and
nated fields lo be stored in a database, for application,

available, will10ut waiting for a user lo monitor, schedule,
and program the resource manually. All this
network can make possible systems
speed, throughput, and llexibility an assembly
number of available resources of
Moreover, human intervention may be only
minimal degree, yet a human operator access the
controller for information on the system status, results, and
the like al any time.

BRIEF SUMMARY AND OBJECTS OF TI"'IE
INVENI10N

In view of the foregoing, it is a primary object of the
present invention to provide a system for commanding
resource computers to download lest software and paramet
ric data from a computer server (central repository) to the
resource (test) computer or device selected from a plurality
of resource computers over a primary, secondary, or tertiary
network.

lt is an object of tbe invention to provide a system for
uploading and storing lest result data from a lest computer
lo a central repository on the network.

It is an object of the invention to aU1toniat1cally,
to a method transparent lo a user, without
vention by a user, manage a plurality of resource rnm'"''""
over a network from a controlling computer, the

45

as lest applications, datafiles of parameters for controlling
the test applications, and dataliles of test results obtained by
running the test applications, all to be uploadable and
downloadable over a network between a of
resource computers, a server, and a controller
a network.

It is an object of the invention lo provide scl1eduli11g
queuing for a pluraii(y of resource computers

in

so a network, the resource compulcrs general
program inable, digital computers,
of testing software, and parametric
testing software are not required lo be resident,
made available or downloaded by each selected,

55 resource cmnpuler as prompted by a controlling computer
connected to the network to communicate with the indi
vidual operalirrg systems of the resource computers.

It is arr object of the invention to provide resonrce
management of a plurality of resource computers connected

60 in a network according to the performance parameters of
each resource, such as, for example, its memory, speed,
processor characteristics, memory capacity and other opera
tional characteristics.

it is an object of the invention to provide selection of a
65 resource computer by a controller, loading and launching of

applications by the re.source computer under limited prompt
ing or direction from the e<:introller.

0220

5,909,544
5

lt is an object of the invention lo provide a scheduler for
selecting a test, having an application, from a queue of tests,
selecting criteria for choosing a resource computer, and
passing to a resource manager such criteria, and lo provide
a resource manager to track performance characleristics of a
plurality of resource computers connected to a network, and

6
another executable program operating within or wider the
operating environment hosted by a processor. By a "diITer
enl" operating system is meant not a copy of an operating
system running on a different processor, but an operating
system using a programming structure, command system,
protocol, combination of the foregoing, or the like, dilierenl
from that of another operating system. For example DOS by
Microsoft™ and Windows by Microsoftn<, OS/2"'.
MacintoshTM, Next Step"', are all separate, distinct,

lo select a suitable resource computer for running the
application based on tile criteria, for example, by tracking
eacb resource, and matching each resource al any given lime
with a selected application to run on tbal resource, the
application being selected from a plurality of applications
identified by the scheduler from the launch queue.

10 "diITerent," operating systems for communicating with and
controlling a processor, its associated memory, and possibly
other devices such as a storage device over a bus of a
computer. ll is an object of the invention lo provide a method for a

resource manager lo catalog and track a plurality of resource
computers, for a launcher lo configure a selected resource of 15

the plurality of resource compnlers, for emancipating lhe
selected resource to run alone, for the selected resource lo
load or have loaded on it an application, for receiving
therefrom (such as by a controller or a server) data corre
sponding lo test results generated by a lest application in a 20

suitable formal for storing and retrieval.
ll is an object of the invention lo provide a method for

configuring a plurality of resource computers remotely over

A method and apparatus are disclosed in one embodiment
of the present invention as including a network having a
controller and a plurality of resources. An apparatus made in
accordance with one embodiment of the invention may
include a server, a database manager, a scheduler, a resource
manager, a launcher, and a plurality of resources, each
resource containing a processor and memory for hosting an
application.

A method practiced in accordance with an embodiment of

a network by a controlling computer lo load and run appli
cation software and create data corresponding lo resull5 25
genera led by the application software for storage in a storage
device, such as, for example, by transfer of a datafile from

the invention may include tracking a plurality of resources,
scheduling a plurality o(applications having executables for
controlling a processor and for providing data corresponding
to operations of the processor, selecting a resource lo host an
application selected from the plurality of applications, con
figuring remotely over a network lhe selected resource,
launching the application on the resource, running by the
resource the application, providing output data from the
resource, recording in a database for later retrieval the output

lhe application software lo a server, or by transfer of data
from the processor lo lhe controller for logging into a
database on a server, which may have a database manager 30

operably connected thereto for managing dalafiles.
ll is an object o[the invention lo communicate over a

network with the operating system of a general purpose
computer, temporarily control the general purpose computer

35 lo configure il for running application software selected and
downloaded by a controlling computer, and then emancipate
the general purpose computer to operate substantially inde
pendently.

data, and managing the database for identification and
selection of the output data.

[n one embodiment of an apparatus made in accordance
with the invention, an apparatus for running lest software
may include a network for communicating data. A target
may be operably connected to the network, the target
comprising a first network interface, a first processor and a

ll is an object of lite invention to provide for monitoring
by a controller the availability and abilities of a plurality of
resource computers, and for communication by the control-
ler with lhe operating systems of individual resource com
puters over a network for configuring the resource
computers, providing for loading and launching of applica
tion software thereon.

Consistent with lhe foregoing objects, and in accordance
with the invention as embodied and broadly described
herein, a test liamess may include a controller, a slave or
target, and a network interconnecting the master and one or
more slaves. A lest harness may also be thought of as a
system of related software modules for controlling and
managing the resources of a system of hardware components
(such as computers) to render one processor a controller and
another processor a slave al an operating system level.

A resource or target may be a computer controlled across
a network as a slave during a setup procedure controlled by
commands from the controller. The slave is thereafter eman
cipated lo operate independently, capable of downloading
and running software, reading and writing files, and the like,
without direction or control from the controller. A computer
may include a processor capable of hosting an operating
system, with memory for temporary storage of data aud
instructions used by the processor during operation.

40
first memory device. The first processor may be program
mable to host an operating system lo communicate instruc
tions lo the first processor and to communicate data to and
from the memory device. The first network interface may be
operably connected to the first processor to communicate

45
data between the first processor and the network;

Aconlroller may be operably connected to the network lo
communicate data with the target over the network. The
controller may include a second network interface and may
be operably connected to the network lo communicate data

50 between the controller and the network. Likewise the con
troller may include a second processor operably connected
lo the second network interface for controlling the first
processor's operating system.

The controller may include a second memory device for
55 storing data communicated to and from the second

processor, and a storage device for storing files. The files
may include test applications containing instructions execut
able by the first processor, control applications containing
instructions executable by the second processor, test data-

60 files containing data corresponding to test parameters used
by the first processor in running the test applications, and
result dalafiles containing data corresponding to results
obtained by the first processor while running test applica
tions.

An operating environment, or simply environment, may 65

be an opera ling system, such as, for example DOS, OS/2TM,
Windows™, and so forth. However, an environment may be

The apparatus may include software modules hosted on
the controller. Modules may include a resource manager
operable on the second processor for accumulating, tracking,

0221

5,909,544
7

and controlling storage of dala corresponding to
identification, performance characteristics, and availability
of the target to run test applications. The resource manager
may also seIVice likewise a plurality of such targets.

8
opcodes to queues of other processes. Each process may
simply keep checking certain queues to determine whether
anything needs to be done. When a process finds information
in a queue, the process executes itself based upon the opcode

The apparat1L'; may include a server for storing and
retrieving files, and a database manager !'or storing to and
retrieving from a database records corresponding to data
communicated between the first processor and the second
processor. The apparatus may include a plurality of data
bases accessible by the dalllbase manager.

s fouud in the gueue.
In general, an opcode may be a small data structure that

may be passed from one process to a gueue to be picked up
by another process. Alternatively, an opcode may similarly
pass from one thread lo another thread of the same process.

10 An opcode may include a block of memory allocated to
The controller may inclnde a launcher in one or more

instantiations for with the operating system
of the lllrgel. The launcher, or target after configuration,

to identify other data structures
needed by the opcode, For example, an opcode
may invoke certain steps within a process. Those steps may
expect certain infoanation lo be provided. That information may download selected applications and application (test)

datafilcs to the target. In general, another type of application
may be substituted for a test application, an application

1s may be provided in the data structure to which a pointer is
pointing, addressing. In a data slmcture may be

datafile for a test datafile of and a result datafile for configured in a variety ways.
test result datafile. The may include a scheduler A process may operate on data contained in a data

structure, and then to another process (by means of an for acquiring data corresponding to a queue of tests to be
run, selecting test applications to be loaded onto the target,
and controlling matcbing of the test applications lo the
large!.

20 opcode) a pointer tbat data structure. Thereafter,
the other process may access the same data structure oper
ating on, using, adding lo, or deleting the information, or the
like. Thus, an opcode may pass a pointer and data between
multiple processes or threads during the running of an

The apparatus may include a plurality of targets, wherein
each target of the plurality of targets may host an operating
system different from the operating system of any or all

25 application.
other targets of the plurality of The target (or each
target of a plurality of targets) may a storage device
operably connected to the first for temporarily
storing test dataliles, result and test applications

30
while running tests. The target programmed to host
an operating system, and an operating under
the operating system, (or on top the operating system).

In general, when the tem1 "test application" is used
herein, the word "application" may be substituted. Although 35
in one preferred embodiment, the and method may
be used to automate the of software testing
applications, the method aod apparatus are equally valid for
other software applications.

111e apparatus may be to have the second 40
processor programmed wiU1 of software modules.
For example, the plurality of modules may include
a server for storing and retrieving files, a database manager
for storing and retrieving records from a plurality of data
bases corresponding to tests, suites of test,, groups of tesl,, 45

suites, or other groups, target performance characteristics,
test results, system parameters and errors, launchers and
launches, status of targets, and the like communicated
between the first processor and the second processor. Other
modules may include a resource manager for tracking so
identification, characteristics, and availability of the target to
run test applications, a launcher for communicating with the
target and for initiating downloading, by !he controller or the
target, of selected test and test datafiles to the
target, and a scheduler data corresponding lo a 55
gueuc of tests to be run, test applications to be
loaded by the target, under direction of the launcher, and for
spawning launchers as needed.

Pointers may be chained. That is, a series of pointers may
identify a series of next data structures. A data structure
identified by a first pointer may in turn contain information
interpreted as pointers. These pointers in the data structure,
then, may point at, and thus chain to other data structures.

In an opcode as in one preferred embodi-
ment of an lest harness in accordance with the
invention, a generic first pointer may exist without practical
limitation as to the nature of the data structure to which it
points. By contrast, a second pointer may introduce a certain
efficiency by pointing al a single, specific type of data
structure. For example, the second pointer, by its very
location in an opcode, be bound to specific data thal
identifies it> function. may save process steps, and
create processes by chaining opcodes, each data structure
containing a pointer to the following data structure.

A method practiced in accordance with the invention may
include a method of running test software on a plurality of
targets, also called resources, processors, or computers. One
may think of resources as hardware resources having the
capability lo host an system. The operating system
may be enslaved then emancipated by a master or
controller. Emancipated means that a formerly enslaved
resource's operating system is again rendered autonomous
to operate independently of the master or controller.

1be method may include operably connecting a target or
resource to a network, the comprising a first network
interface, a first processor a first memory device, the
processor being ID host an operating system
to co=unicate to the processor and lo corn·
rn11nicate data to and from the memory device. The target's
first network interface be operably connected to the
processor to communicate between the processor and An apparatus may nse processes and operational codes

(opcodes) to provide a logical flow between processes, each
process operating according to opcodes placed in a queue of
the process by another process. Each process may be hosted

60 the network.

on an individual device (computer, processor) alone, or
several processes may be hosted on a single processor,
timesharing the processor. This is one benefit of a multi·
tasking operating system. An entire (automated test
harness) may be queue driven. simply pass

The method may include operably connecting a controller
to the network to communicate with the target over the
network. The controller may include a second network
interface operably connected to the network to communicate

65 data between the controller and the network. A second
processor may be operably connected to the second network
interface for controlling the operating system of lhe target.

,.,•

0222

5,909,544
9

A second memory device may be operably connected to the
second processor for storing data mmmunicaled lo and from
the second processor, while a storage device may be con
nected for storing files.

Tbe met.hod may include by the target, al the
mstance of a launeller hosted on controller to be in
communication with an operating system hosted on the
target, certain Jiles, including executable files downloaded

10
FIGS. 5 and 6 are schematic block diagrams illustrating

one embodiment of records of databases accessed by the
apparatus of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

by the target from a server. These files may include test
applications containing instructions executable by the first

10
processor, test datafiles containing data corresponding lo test
parameters used by the first processor, and the like.
Similarly, control applications containing instructions
executable by !be second processor may be downloaded by

ft will be readily understood thal the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. '!bus, the following more
detailed description of the embodiments of lhe system and
method of the present invention, as represented in FIGS. l
through 6, is not inteuded to limit the scope of the invention,
as claimed, but it is merely representative of the presently the controller.

'Die method may include running the te;;t applications on
the target, creating datatiles containing data corresponding
to results obtained by the first processor while running the
test applications. The method rnay also include uploading
the datafiles of resu]Ls lo lhe server.

Temporary slaving may be accomplished by loading a
slave module onto each target to operate on the operating
system of the target, and a master module lo operate on the
operating system of controller. 'lbe slave module feeds back

15 preferred embodiments of the invention.

The presently preferred embodiments of the invention
will be best understood by reference lo the drawings,
wherein like pacts are designated by like numerals through
out. Reference is first made lo HG. 1, which illustrates one

20 preferred embodiment of a schematic diagram of hardware
components, while FIG. 2 illustrates a block diagram of
software modules operable on the apparatus from the block
diagram of FIG. 1.

to the master module all data necessary for the master
25

module to interact with lhe target's operating system as a
user. Thus prompts, screens, and the like generated hy the
operating system of llie target arc communicated by the
slave module lo the master module of the controller. The
master module is programmed to act based on data provided 30
by the slave, sending instructions lo the slave and commands

FIG. 3 illustrates the processes and threads of certain
software modules of FIG. 2, and particularly illustrates
certain opcodes passed between the threads for establishing
the operating logic of the apparatus of FIG. 1. Since the
apparatus and processes be queue driven according to
messages or opcodes sent received as appropriate, logic
may be complex, but a multitude of logical paths may be

for forwarding to the operating system of the target
(resource).

The slave module receives executables from the master
module, along with commands to be sent by lhe slave
module to the command line of the operating system. Thus,
the slave module is effectively provided wilh commands
destined for the operating system, and is itself instructed to
send the commands to the operating system for execution.

The temporary slaving operation may be conducted by
any suitable software modules operating on the controller
and the target. For example, a slaving program such as
NCONTROL™ is a Novell'"' slaving program that has been
found suitable for facilitating the temporary slaving opera
tion.

BRIEF DESCRTPTfON OF THE DRAWINGS

'lbe foregoing and olhcr object~ and features of the
present invention will become more fully apparent from the
following description and appended claims, taken io con
junction with the accompanying drawings. Understanding
that these drawings depict only typical embodiments of the
invention and are, therefore, not to be considered limiting of

determined by reference to the HGS. 1-6.
Eacb operational code or opcode may be used by a

sending and receiving thread or process according lo the

35 logic of the flow chart of FIG. 3. Data for inputs lo and
outputs from the components of apparatus of FIG. 1 may be
stored in any suitable data structure or memory device. For
example, in one embodiment, data may be stored in data
bases configured as illustrated by the representative record~

40 and fields of the databases of FIGS. 5-6.
Those of ordinary skill in the arl will, of course, appre

ciate that various modifications to the detailed schematic
diagrams of FIGS. 1--6 may easily be made without depart
ing from the essential characteristics of the invention, as

45 described in connection with lbc block diagram of FIGS.
1-6. Thus, the following description of the details of the
schematic diagrams of FIGS. 3-6 is intended only as an
example, and it simply illustrates one presently preferred
embodiment of a schematic diagram that is consistent with

so the foregoing description of FIGS. 1-2 and the invention as
claimed herein. The operation of various components and
modules corresponding io each of the functional blocks of
FIGS. 1-2 are outlined in FIGS. 3-6 and are numbered with

its scope, the invention will be described with additional
specificity and detail through use of !be accompanying

55
drawings in which:

like numerals.

Referring to FIG. 1, an apparatus 10, alternately referred
to as a system 10 or an automated test harness 10 may
include a controller 12. The controller 12 may be connected
to a network interface 14A, or the network interface 14A
may be integral to the controller 12. Regardless, the con-

FIG. l is a schematic block diagram of one embodiment
of an apparatus made in accordance with the invention;

FIG. 2 is a schematic block diagram of one embodiment
of software modules hosted on the apparatus of FIG. l;

FIG. 3 is a schematic block diagram of one embodiment
of processes and threads run on a controller, and operational
codes passed between processes and threads running on lhe
apparatus of FIG. 1;

60 troller 12 may be connected lo a network 16. 'lbe controller
12 may host a slaving software modnle for slaving a number
of resources 18, alternately referred to as targets 18, or target
computers 18. 'lbe resources 18 may have alternate embodi-

PIG. 4 is a schematic block diagram of ooc embodiment 65
of a process by which the operational codes of FIG. 3 may
operate; and

ments including lhc resource 20 and resource 22. That is, a
resource 18 may include a.ll of the components of a
purpose computer. Nevertheless, !lie resource 18 only
contain a processor and sufficient memory to host an oper-

0223

5,909,544
11

aling system for temporary enslavement to the controller 12,
followed by later emancipation for running independen!ly.

12
device 34. Connections may be made by a bus 36. Other
auxiliary devices 38 may also connect to the bus 36. In
addition, the COillroller U may include an input device 42,
such as a keyboard, mouse, graphical user interface with

The resources 18, 20, 22, and controller 12 may be
connected lo a server 24 by means of a carrier 26, typically
a physical line 26 or cable 26, although the carrier 26 may
be a wireless carrier 26.

111e controller 12 and resourc.cs 18, together with the
server 24 may be configured in a variety of topologies. For
example, the network 16 may be arranged as a star, a ring,

, some interactive sensor for receiving nser inputs, or the like.
- Similarly, an oulpul device 44 may be connected lo the bus

36, such as a monitor for supporting a graphical user
interface, or the like.

a mesh having more than one connection on a single node,
or the like. AHematively, the network 16 may be configured
as a bus having a single line 26 to which all nodes 28
connect. In general, a node 28 may be used to designate any
microprocessor based device connectable to the network 16.

The controller 12 may have multiple processors 46, 48 io
addition to tl1e processor 30. Nevertheless, the processor 30

lO may simply be configured to host a multi-taskiug operating
system and thereby carry on all processing of tbe conlrollcr
12.

Similarly, the nodes 28 may be configured to operate
under any one of a multitude of available protocols. For 15
example, popular protocols tbat might be employed may
include an internetwork packet exchange (lPX) or transmis
sion control protocol/internet protocol (fCP/lP), sometimes
called transport control protocol/interface program,
sequenced packet exchange (SPX), token ring, and other 20
protocols that arc currently available or may be made
available in the future.

111e cable 26 of the network 16 may be of any suitable
local area network (LAN) or wide area network (WAN). For
example, a token ring cable system, a twis!ed pair, a co-axial

25
cable, a 10base1: fiber optic lines, microwave or other radio
frequency (RF), wireless transmission media, infrared or
laser communication beams, and the like. The controller 12
may operate under any suitable operating system, but in one
preferred embodiment should include a true multi-tasking
operating system. 30

Although the controller 12 may include mulliple
processors, a multi-tasking operating system operating on a
single processor 30 may be selected from OS/2"", UNIX,
Windows NT"', Windows 95™, Macintoshrn Operating
System, Next Steprn, or the like. An object-oriented oper- 35

a!iog system may be suitable, but is not required. TI1e
conventional Windows™ operating system is not truly
multi-tasking, and as currently configured would not be
suitable.

The resource 20 may be the most common embodiment of
the resource 18 connected to the network 16. The resource
20 may include a processor 50 connected lo a memory
device 52 and storage device 54 for operational storage of
data, and long-term non-volatile storage, respectively. The
bus 56 connecting the processor 50 lo the memory device 52
and the storage device 54 may also accommodate connec
tions lo other auxiliary device 58 whether singular or plural.
Similarly, the resource 22 may be configured with different
software packages to operate differently than the resource
20, as discussed below, but may also include a processor 60
connected lo a memory device 62 and a storage device 64 by
the bus 66. Auxiliary devices 68 may also be connected to
the bus 66 as needed. The resource 18, needing only a
processor 70 and a sufficient memory device 74 to provide
for operations of the processor 70 may or not include
a bus 76, depending upon the configuration the memory
device 74 v,ilh respect to the processor 70. The resource 18
need only host an operating system, and need not be
complex, or sophisticated. That is, certain devices exist that
may be desirable to temporarily control by means of a
controller 12 remotely connected over an extensive network
16. Any microprocessor-based device may be a suitable
resource 18. For example, numerous types of data
acquisition, instrumentation, process control, and other
devices exist on networks 16. Temporary slaving, followed
by emancipation for independent operation, may be desir
able and suitable in an automated test harness 10 in accor-

By contrast, the resources 18, 20, 22 need not have
multi-tasking operating systems. Although auy resource 18,
20, 22 may include an entire general purpose computer, and
may bast any operatmg system sucb as Windows 95, Next
Step, Macintosh Operating System, OS-2, or the like. In
short, the resources 18, 20, 22 may be confignred with any
operating system capable of operating on a processor.

40 dance with the invention.
All nodes 28 connected to the network 16 may include

network cards 14A, 14B, 14C, 14D, 14E, 14F as illustrated,
for providing a hardware interface "'ith the network 16.
Di!Ierent networks 16 provide for different amounts of

45 embedded hardware and software for accomplishing the
functions of a network card 14A, 14B, 14C, 14D, 14E, 14F.
However, in general, a network card 14 designates auy one
of lhe network cards 14A-14F.

For example, the NovelF" embedded systems technology
(NEST) devices and systems represent a very limited capa
bility. However, NEST devices are capable of hosting an
operating system, and thereby operating under the direction

50
of the controller 12 in the automated test harness 10 long
enough lo be configured for subsegnent independeut opera-

The server 24 may be a general pmpose computer and
may include a processor 80 connected to a memory device
82 and storage device 84 by a bus 86. Auxiliary devices 88
may include additional storage devices 84, additional
memory devices 82, and the like as needed. Inasmuch as a
server 24 provides file access and management for all the
nodes 28 on the network 16, the server 24 may include

tic
1hal is, each resource 18 may include in a minimal

configuration a central processing unit and sufficient
memory, either on the individual chip associated with the
processor, or independent thereof, capable of independent
operation once loaded.]bus, each resource 18 need only be
capable of executing instructions. In general an "executable"
may be thought of as any data that may be understood by an
operating system and lhu..' resulting eventually in a machine
code instruction executable by a processor.

As used here, a resonrce 18 may refer to any of the
resources 18, 20, 22 or tlie like. Thus, a resource 18 may be
ll1e generalized expression for a resource 18, 20, 22 or the
like.

Referriug to FIG. 1, a controller 12 may include a
processor 30 connected to a memory device 32 and a storage

55 various auxiliary devices 88_
The software system hosted by the nodes 28 of the

automated lest harness 10 may include a system of controller
modules 92 and resource modules 94, 96, 98 as illustrated io
FIG. 2. Also, server modules 100 may be hosted by tbe

60 server 24. The controller modules 92 may include a network
client interface 102 for driving the network card 14A.11ms,
the network client interface 102 facilitates communication
by the conlroller 12 over the network 16. The controller
modules 92 also include a multi-tasking operating system

65 for controll:ing the processor 30 of Uie controller 12.
An automated test harness 10 may include modules 106

(ATH Modules) or processes 106 hosted on U1e controller

0224

5,909,544
13

12. Processes 106 may include a resource manager 108 for
all of the resources 18 connected to the network

110 may be included for scheduling tests
according to the availability ofresources 18 and the require
ments for each specific test. Launchers 112 may be
"spawned" by the scheduler 110. A launcher 112 may be
instructed by the scheduler 110 lo run, and may be spawned
as needed. Multiple instances of the launcher 112 may run
simultaneously.

The da!JJ. base manager 114 may be unigue to the con
troller 12. Altematively, a variety of suitable data base JO
management software modules are available. For example,
Lotus Notesrn has been shown to provide an "engine" for an
effective data base manager. A console 116 may include
software for interfacing with a user. For example, the

f~~:~l~~~~~:i, i~~iu~~h~f~~~a~'.i~~r~~ ~~;r;;l~ec~f0c~u~n: 15

user with a minimum of command structures.
The ATH modules 106 may include a server 118.

Although a set of server modules 100 are hosted by the
server 24, the controller 12, in one currently preferred
embodiment of an apparatus 10 in accordance with the 20
invention, may include a server modale l18. Thus, the
controller U may include all of the modules re<Juired to
operate the automated tc.sl !Jarness 10 and the server 24.

Thus, in general, all of the server modules 100 may
actually be incorporated into the server module 118 in the 25
controller 12. Nevertheless, the server 24 will be diseussed
as a separate hardware component of lhe automated test
harness 10, hosting the server modules 100. The resource
modules 94 may include a network client interface 122 for
communicating with the network 16, as well as an operating 30
system 124. A slaving module 126 may be included to
permit ens!a.ving of the operating system 124 to the con
troller 12 temporarily for configuring the resource 20 prior
lo emancipating the resonrce 20 to operate independently. In
addiliou, temporary applications 128 may be hosted in the
resource 20, typically by the resource 20 downloading the 35

14
only sufficient processor and memory to host an
operating system 144. TI1e resource 98 may include
a network client interface 142 and a slaving module 146 for
facilitating communication between the controller 12 and
the processor 70, or more correctly the operating system 144
hosted on the processor 70.

The network server modules 100 may include a network
server interface 152 corresponding to the network client
interfaces 102, 122, 132, 142. The network server interface
152 facilitates communication by the server 24 over the
network 16. Thus, tbe controller modules 92 hosted by !he
controller 12 correspond to the resource module 94, 96, 98
and server modules 100 of lbe resources 20, 22, 18 and
server 24, respectively.

The server modules 100 may include a network server
interface 152 for facilitating commnuication by the operat
ing system 154 over the network 16, while network
cations 156 may operate "on top of' the operating
154 for accomplishing the functional requiremen~s the
server 24. Of course, a number of files 158 are typically
stored on tbe storage device 84 of the server 24.
Accordingly, the network applications 156 may perform
management, storage, retrieval, and other associ-
ated functions for the files 158, serving files 158 to each
resource 18, 20, 22 or lo the controller 12, as needed,

In general, the operating system 104 of the controller
or of the controller modules 92 hosted by the controller
should be a multi-tasking operating system such as an
or UNIX operating system, as discussed above, 1n
a network interface should render the controller 12
on the network 16 served by the server 24. For example, the
controller 12 may be set up as an OS-2 reguester, or as a.
client in a network 16. The clata base 114 of ihe
controller modules 92 may require that 12 host
either the server software or the client software for the data
base manager program. For example, the notes server or
client may be associated witJ1 the Lotus Notes'"' data base
manager for managing all data base files associated with the
automated lest harness 10.

Each of the network interfaces 102, 122, 132, 142 may be
configured to facilitate communication by U1e controller 12
at an operating system level with the resources 18, 20, 22.

applications 128 from the server 24 in response to
co1nnianos received in a slave mode from the controller 12.

resource modules 96 corresponding to the resource
22, may include a network client interface 132, an operating

134, a slaving module 136, and preloaded applica-
138. Although the resource modules 96 may be iden

tical lo those of the resource modules 94, for the sake of
coxµ1'tu•uuT1 and discussion, the resource 22 is configured lo

preloaded applications 138, rather than temporary
ap11licalions 128 as hosted by the resource 20. Thus,
allhough not taking full advantage of the capabilities of the
antomaled test harness 10, a resource 22 lhat is completely
muHJ~urcu, including being loaded with the software to be
run, rnay fed information and commands one line at a
time by the controller 12. Nevertheless, a more usefol
automated test harness 10 may be configured using
resources such as the resource 20, in which temporary
applications 128 are loaded by the resource 20 as a result of
the controller 12 slaving the operating system 124 tempo·
rarily to instruct the resource 20 by command line instrnc
tions. That is, once tbc operating system 124 has been slaved
to the controller 12, the operating system 124 may be
instructed on what to load and how to load it. Thereafter, the

40 Thus, the controller 12, communicating as a node 28 of the
network 16 may instruct lhe resources 18, 20, 22 to load
executables. Nevertheless, as mentioned previously, the
resource 22 may be preloaded with applications. This con
figuration gives less flexibility but may be nsed by the

system 124 and the resource 20 may be emanci
indepcndently, as tltongh they had been

by a user individnally. Nevertheless, tbe
resource 20 at that point (emancipated) can operate lo run
software, dowuload and upload files, with a very high degree
of autonomy. 'This is substantially different than other slav-

in which individual command lines must be paEsed to a
executables in response to gueries, or prompts.

111c resource mndules 98 represent a minimum configu
ration in which a processor 70 of a resource 18 need include

45 automated lest harness 10. Nevertheless, even in such a
configuration, the resource 22 may be enslaved by the
controller 12, communicating with the operating system 34
to reconfigure the resource 22.

An explanation of tbe relationships between tbe various

50 opcodes 180 and the threads 150 from which and to which
each may be directed is explained below. However, referring
to FlG. 3, the sources and destinations of all opcodes 180
may be illustrated by schematic block diagram. Since the
logic of the automated lost harness 10 is so intortwined
among the various threads 160, 170, 172, 174, and opcodes

55 180, all opcodes 180 and threads 150 need to be identified,
and tl1eir relationships identified, before the operation and
logic of each may be properly explained with reference to
each of the other opcodes 180 and threads.

In addition, Tables 1-3 below illustrate logical relations
60 between various opcodes 180. Entries in Tables 1-3 are

arranged more-or-less according to which process 106 in the
second column is sending an opcode 180 in the third
column. In certain circums!JJ.nces, a tbreacl 150, in general,
of the scheduler 110 may send an opcode 180 to another

65 general thread 150 of the scheduler 110.
Fm each opcode 180 identified in the middle or third

("opcode") column, the process 106 in the second ("from")

0225

5,909,544
15 16

column is the sending process 106, and the process 106 in
the fourth ("lo") column receives lhe opcode 180. The
sending process 106 identified in tl1e second column may
send an opcode 180 upon receiving an opcode 180, or
occurrence of some other initiating event, identified iu tbe
first ("initiated by") column.

lbe receiving process 106 of the fourth ("to") column
may send a return opcode 180 identified the liftb
("returns") column. A returned opcode 180 is typically sent

One may nole that no return opcodes are shown in Table
2, and thus no fifth and sixth columns. 111is is merely for
presentation here. That is, only U1e opcode RESOURCE .. _
REBOOT 256 sent to the scheduler 110 has an associated
return. The CLEANUP 234 opcode is returned to the
resource manager 108.

to the sending process 106 of the second ("from") column, 10
but may be sent to another process 106, either of which will
be identified in the sixU.1 or last ("lo") column

TABLE 1

OPCODES F1WM SCHEDULER TO RESOURCE MANAGER

!NllATEDllY FROM OPCODE TO RETURNS

SCH !NIL. RM108 IN!'f
110 QUEUES 230 SUCCESS 242
SC!i !NIT_ RM 108 INIT_
110 QUEUES 230 fA!L 244

llLD_ SCH SbTl1P RM 108 SETUP
SUCCESS 220 llO PROGRAM F:.\IL 248
BLD SCH SITl'UP_ RM 108 SETUP __
SUCCESS 220 no PROGRAM 232 SUCCESS246
Bill __ sen S!oTUl'_ RM 108 RESERVE
SUCCESS 220 110 PROGRAM 232 l'ENDING 258
Bl.D ... SCH SETUP_ RM](]B RESERVE •..
SUCCESS 220 110 PROGRAM 232 SUCCESS 260
TES! SCH CLEANUP 234 RM !OS OJ3ANUP,
COMPU!Tll 214 llO SUCCESS 250
TESL. SCH CLEANUP 234 RM 108 CLEANUP_ ...
COMPLETE 214 110 FAil.248
RESOliRCE_ SCH CLEANUP 234 RM 108 CLEANllP_
REBOOT256 110 SUCCESS 250

SCH CLEANUP 2.14 RM 108 CLEANUP_
110 FAIL 248

LAUNCHER_ SCH CLEANUP RM 108 CLEANUP __
FAIL218 llO LAUNCHER LAUNCHER.

FAIL 236 FAIL_FA[L 268
LAUNCfIBlL SCH Cl.JlANUP_ RM 108 CLEANUP_
PA!L218 110 LAHNCHER_ lAUNCllER_,FAIL

FA[L 236
SUCCESS 266

(LAUNCH SCH RESERVE_ RM 108 RESERVE_
ENTRY 110 REMOVE 238 RllMOVE.
DELETED) SUCCESS 262
(LAUNCH SCH RM 108 RE~'ERVE_

ENTRY JlO RBMOVE 238 REMOVE_
FA1L264

SCH EXIT204 RM 108
llXIT'.l.29 110

50

TO

SCH
110
SCH
110
SCH
110
SCH
110
SCH
no
SC[!
no
SCH
110
SCH
110
SCH
110
SCH
110
SCH
110

SCH
!JO

SCH
110

SCH
110

TABLE2

OPCODES FROM RESOURCE MANAGER TO SCHEDULER

INITIATED BY PROM OPCODE

INIT_QUBUES 230 RM 108 !NlT _StJCCESS 24 2
!NIT'_ QUEUES 2.10 l\M 108 INff_FAlL 244
SE!'UP _PROGRAM 232 RM 108 SllTULSOCCESS 246
SETUP_PROGRAM 2.12 RM 108 SE'n:JPJ11.!L 248
CLEANUP 234 RM JOB CLEANUP__5UCCEss 250
CLEANUP 234 RM 108 CLEANUP _FAIL 252
(UNIDENTIFIED RM 108 INCUNSCSJ'ENT _
OPCODE) DATJ;.254

RM JOB RESOURCl.l_REBOOT 256
RM 108 RESERVE~PEND!NG J58

TO

SCH 110
SCH 110
SC!l 110
SCH 110
SCH 110
SCH 110
SCH 110

SCE llO
SCH 113

0226

WEST

5,909,544
17 18

TABLE ?.continued

OPCODES FltoM RESOUl\Cl! MANAGER TO SC!!ED!JLBR

INITIATED BY FROM

(R_P 158 SENT PREVJO!JSLY) R."1 l08
RESERVE .. _R!lMOVE R.'.l 108

RESERVJLREMOV!o 2~8 R.\1 l08

CLEANUP LAUNCHER RM 108
FA!L236
ClllANUP _LAUNCl!ER_ R.\1 108
EArL236

OPCODE

RESERVILSUCCESS l 60
RES!lRVfLREMOVIL
SUCCESS 262
RESF.RVE_REMOVIL
M!L264
Cll!ANUP LAUNCHER
FAIL_.SUCCESS 266
CLEANUP __ LAUNCHER_.
FAIL_FAIL 268

Referring to FIG. 3, the controller 12 may operate several
processes 108, 110, 112, 116, 118. [n Rddition, each process
108, 110, l12, 116, 118 may include multiple threads. For
example, the scheduler 110 may include a main thread 160
communicating with a configuration file builder thread 162,
a scauner thread 164, a data base watch thread 166, and an
exit thread 168. In one embodiment, the data base watch
thread 166 may be incorporated, included in, the main thread
160. Similarly, the exit thread 168 may be included in the
ma.in thread 160. ln general, the individual threads 162, 164,
166, 168 may be included within a main thread 160 or
separated out lo operate on the multi-tasking opernting
system 104.

The scheduler 110 may be made to opera le on the con
troller 12, providing feedback and prompts to a user in a
window of a graphical user interface of the console main
thread 172, providing visible output lo a user on an output
device 44 of the controller 12. The output device 44 may be,
for example, a monitor associated with the controller 12.

TABLE 3

OTHER OPCODES

INLTIATED BY FROM OPCODE TD RETURNS

RESERVE .. _ SCH SUITES_ sen SETUP_

15

·m

SC!l 110
SCH 110

SCH 110

SCH 110

SCH 110

The main thread 170 of the resource manager 108 may
provide management of all the resources 18 connected to the
network 16. That is, the resource manager 108 tracks all
resources 18, their status, their capabilities, their physical

20 and software limitations, and provides information regard
ing these resources 18 and their availability to the scheduler
110, and more particularly to the main thread 160.

The console 116, although it may have multiple threads,
in one embodiment presently preferred, may include a main

25 thread 172 for implementing a gra11hical user interface for a
user operating the controller 12. The console main thread
172 communicates to !be scheduler main thread 160 and the
resource manager main thread 170. By contrast, the sched
uler main thread 160 and resource manager main thread 170

3G may communicate back and forth with one another.
However, in one embodiment, the console main thread 172
may simply send out information and not receive informa
tion from the main threads 160, 170. Alternatively, other
tasks and functions may be provided for or executed by the
console 116.

TO

RM
SUCCESS 260 110 READY 121 110 PROGRAM232 108

SCH TEST_. SCH CLEANUP 234 RM
110 COMPLE!l! 214 110 108

SETUP_ SCH BLD - SCH BLD_ SCH
SUCCIJSS 246 llO CONF!G 224 110 SUCC'..!lSS 220 110
SETUP SCH BID_ SCH BLD_ SCH
SUCCESS 246 110 CONF!Ci 224 110 l'AIL 222 110
llLlL SCH BLll_ SCH (LAUNCHER 112
CONFIG 224 110 SUCCESS 2W 110 lNmATED)
lll.D_ SCH BlD_ SCI!
CONE'IG224 110 UAIL 222 110

ANY SYSTEM SCH
LOG 210 no

LAU LAUNCHER .. _ SCH
112 PASS 216 110
LAU LA!NCHER SCH
112 FArL21B 110
CON CONSOLE_ SCH
116 ADDRESS 225 110
CON CONSOLE_ RM 108
116 ADDRESS225

(USER ON CON ADD_ RM 108
CONSOLE (HJ!) 116 PREFIX 226
(USER ON CON DEL_ RM108
CONSOLE GUI) 116 PREFIX228

ON CON CONSOLE.~ SCH
GUI) 116 EXIT229 110

0227

5,909,544
19

111e launcher 112 may include a launcher main thread
174, and may be amfigured lo have other threads. However,
the launcher lU may be "spawned" in multiple versions by
the scheduler main thread 160. That is, the launcher 112 may
be simultaneously running in more than one instantiation, to 5
accommodate the multiple resources 18 that must be con·
figured and mn.

Each of the threads 160, 162, 164, 166, 168, 170, 172, 174
may communicate v.'1th one another by a series of opcodes
180. For example, the opcodes 180 may be referred to as JO
opcodes 180, and may be illustrated by the opaides 182
aimmunicating between the exit thread 168 and the main
thread 160. Similarly, the opcodes 184 may communicate
between the data base watch thread 166 and the main thread
160. The opcodes 186 may be passed from the scanner 15
thread 164 to the main thread 160, while the opcodes 188 are
passed from the launcher main thread 174 to the scheduler
main thread 160. Similarly, the opcodes 192 pass from the
scheduler 110 to the scheduler main thread 160 to the
configuration file builder thread 162, the opcodes 194 pass 20
from the configuration file builder thread 162 back lo the
scheduler main thread 160, the opcodes 196 pass from the
console main thread 172 to the resource manager main
thread 170, and the opcodes 198 pa..«S from the console main
thread 172 to the scheduler main thread 160. The opcodes
200 may pass from the scheduler main thread 160 lo the
resource manager main thread 170 while the opcodes 202
pass from the resource manager main thread 170 to the
scheduler main thread 160.

20
destination thread then may move an execution pointer in
the opcode associated with the thread that has received the
opcode 180, and may begin executing the opcode at the
designated location. Thus, the opcode identifier 272 has
served lo move an execution pointer within the coded
executable of the destination thread. The destination thread
then executes the using the data pointed to by the
pointers 274, 276. certain circumstances, lite destination
thread may return an opcode 180 lo the source thread, or to
another thread in the controller 12, aod particularly the
controller modules 92.

In one embodiment, opcodes 182 may include an EXIT
204. 1he data base watch thread 166 may send opcodes 184
lo the scheduler main thread 160, including a POLL_
LAUNCIIQ 206, a DH_WATCH_SIGNAL 208, and a
SYSTEM_LOG 210. The scaDiler thread 164 may send
opcodes 186 including a SUI'rES_READY 212, a 1EST_
COMPLETE 214, and a SYSTEM_LOG 210 to the main
thread 160. 'Ilic launcher main thread 174 of any individual
launcher 112 "spawned" by the scheduler 110, may return to
the scheduler main thread 160 any of the opcodes 188
including a LAUNCHER_PASS 216, LAUNCHER_FAIL
218, SYSTEM_LOG 210, and others as appropriate.

The configuration file builder thread 162 may send the
opcodes 194 lo the main thread 160, which opcodes 194 may
include a BLD_SUCCESS 220, a BLD_FAIL 222, or
SYSTEM_LOG 210. The opcodes 194 may he sent by the
configuration file builder thread 162 in response lo one of I he
opcodes 192, which may include a BLD_CONFIG 224

In general, each opcode 180 may have a generic opcode
structure 270. In one presently preferred embodiment of an
apparatus 10 in accordance with the invention, an opcode
structure 270 may include three pieces of information, each
comprising three long (32 bit) words. The first piece of
information is an identifier 272 that may be a name, or a
number that uniguely identifies a particular opcode 180. A
generic pointer 274 may follow the identifier 272 and may
include an address for identifying generic data that may be
used by the process receiving the opcode 180. Following the
generic pointer 274, a resource pointer 276 may contain a
memory address associated with data stored in the memory
device 32 of this controller 12, or similar devices specifically

30 opcode. The console main thread 172 may send a
CONSOLE_ ADDRESS 225 to the resource manager main
thread 170. In addition, an ADDJREFCX 226 or DEL_
PREFIX228 may be sent from the console main thread 172
lo the resource manager main thread 170.

35 The console main thread 172 may receive no opcodes 180
from other threads. Rather, the console main thread 172 may
receive its principal direction from inputs from a graphical
user interface gathering inputs from a user. The console

40 :a:~et~~e;:~~i?r d~:~ns~~;~~dC~~~;;fd~-,;tTn~~=~~ ~~~~:
exit is in order. The CONSOLE~.ADDRESS 225 may also
be sent from the console main thread 172 lo the scheduler
main thread 160. The SYSTEM_LOG 210 may be sent by

for use in identifying and managing resources 18. The
puq1ose of a generic pointer 274 and resource pointer 276
rather than a single pointer, is lo simplify logic and speed up
operation.

45
any thread lo the scheduler main thread 160.

The scheduler main thread 160 may send an INIT~
QUEUES 230 opcode to the resource manager main thread
170. Similarly, a SETUP_PROGRAM 232 may be for
warded to the resource manager main thread 170, which like

As referenced earlier, the data base watch thread 166 and
the exit thread 168 may be incorporated direclly into the
scheduler main thread 160. Similarly, the scanner thread 164
in one embodiment of an apparatus 10 in accordance with 50

the invention, may be incorporated into the scheduler maiu
thread 160. However, in general, opcodes may each be made
to operate similarly, or even identically. At a source thread,
an opcode indicates to the source thread to reserve a memory
block, that is, a specific segment of memory in a memory 55
device such as the memory device 32. The source thread
then writes the identifier 272, generic pointer 274, and a
resource pointer 276 in lo the resetYed block of memory. The
source tbread then sends the address the opcode 180 to a
destination thread by writing the address to a message queue 60

associated with tbe destination thread. A destination thread
periodically reads all messages in message queue associ·
ated with a destination thread. Upon reading the message
received from the source thread, the destination thread
receives the address of the opcode 180. The destination 65

thread then reads the opcode in the memory block, ascer·
taiuing the identifier 272, and the pointers 274, 276. The

all main threads may be referred to as the main thread 170.
A CLEANUP 234 or CLEANUP ~LAUNCHER..~FAIL

236 may be sent from !he scheduler main thread 160 lo the
resource manager rnaio thread 170. A RESERVE .. _
REMOVE 238 or an EXIT 240 may be passed from the
scheduler main thread 160 to the resource manager main
thread 170.

In the return direction from the resource manager main
thread 170 back lo the scheduler main thread 160, a host of
opcodes 202 may be sent, including INJT_SUCCESS 242,
!NIT _FAIL 244, SETUP _SUCCESS 246, SETUP _FAIL
248, CLEANUP._SUCCESS 250, and CLEANUP _ _FAIL
252. Each of the opcodes 202 provides information from !he
resource manager 108 to the scheduler 110 lo indicate the
status of a given resource 18 selected for a particular lest.

In addition, the resource manager main thread 170 may
send INCONSISTENT_DATA 254, RESOURCE_
REBOOT 256, RESERVE_PENDING 258, RESERVE~

0228

WEST

5,909,544
21

SUCCESS 260, RESERVE_REMOVE_SUCCESS 262, or
RESERVE_REMOVE_FAJL 264 in response lo various
opcodes 200 received by tile resource manager main thread
170.

22
the lbreads 164, 166, 168 may optionally be incorporated
inlo tbe main thread 160 of the scheduler 110. ll may be
instructive to discuss the opcodes 180 associated with lhe

1ne resource manager main thread 170 may send a 5

CLEAN_ UP _LAUNCHER_FAIL_SUCCESS 266 or a
CLEANUP _LAUNCHER FAIL_ FAIL 268 lo lhe sched
uler main lbread 160. As wilh other threads in communica
tion with lhe scheduler 160, the resource manager main
thread 170 may send a SYSTEM_LOG 210 lo tile scheduler 10

main lbread 160.

scheduler 110. The EXIT opcode 204 initiates a scheduler
160 to signal the resource manager 108 with an EXIT
opcode 240 to exil the system 10. Alternatively, the EXIT
opcode 204 may be senl from within the scheduler main
lhread 160, or may be replaced by the CONSOLE_EXIT
opcode 229.

The POLL_LAUNCHQ 206 may be used to inslrucl the
main lhread 160 lo periodically, or upon occurrence of a
signalling event, poll the launch queue dala base 302 for a
new record 303, indicating an addition to lhe launch queue.

Referring now lo FIG. 4, before returning lo lhe defini
tions and further relationships illustrated in FIG. 3, the
opera lion of a source thread 280 and a deslinalion thread 290
are shown with respecl to each olher and an opcode 180
contained in lhe opcode structure 270 of FIG. 3.

In general, any thread 150 may be regarded as a source
thread 280 and any other lhread 150 may be regarded as a
destination thread 290. Each opcode 180 may be used by a
source thread 280 as illuslraled in FIG. 4. At an appropriate
point in lhe execution of the source thread 280, ll1e reserve
memory 282 slep may be executed. The effccl of the reserve
memory 282 may be to reserve a segmenl or block of
memory, typically in the memory device 32 of the controller
U. The write opcode 284 step may then follow, in which the
source tbread 280 writes an opcode 180 including all of tl1e
elements of lhe opcode structure 270 lo the memory block
reserved by lhe reserve memory 282 step.

After writing the identifier 272, generic pointer 274, if
applicable, and resource pointer 276, as required, the source
thread 280 executes a SEND_ADDRESS 286 slep. The
SEND_ADDRESS 286 slep may include sending lhe
address in the memory device 32 or other memory device to
which the opcode 180 may be stored, to a message queue
readable by a destination thread 290. A destination ll1read
290 may include an operation read address 288, that may
have lhe effect of reading tl1e code address wrillen by the
source lhread 280 in the SEND_ADDRESS operation 286.
The desliuation lhread 290 periodically may read tbe mes
sage queue. Thus, the READ_ADDRESS 288 operation
will effectively read the code address from lhe message
queue.

The destination thread 150 nexl may read the opcode 180
itself al the address in lhe memory block, as designated by
tl1e code address read in lhe READ_ADDRESS operation
288.

The DB_WATCH_SIGNAL208 opcode may be used lo
l.I indicale lo lhe main lhread 160 thal certain of lhe data bases

300 have had records 301 recently written to them. Since the
apparatus 10 in one currently preferred embodiment may be
queue-driven, one melhodology for prompting a thread 150
lo execute an instruction, may be lo provide reading of data

20 bases 300, or reading of fields in data bases written with the
specific purpose of operating as flags lo indicale occurrence
of an awaited event or triggering event.

The SYSTEM_LOG 210 may be sent by ll1e data base

25
watch thread 166 to the main thread 160 to produce a
message that may eventually be saved in a syslcm log data
base 310. Since lhe scheduler 110 manages most of the
interaction between the processor 30 of the controller 12 and
lhe data bases 300, the main thread 160 may be tasked with

30
lhe operation of reporting or writing all entries into the
syslem log data base 310. The syslem log data base 310 may
be normally used to slore reports of system errors. Thus, the
SYSTEM_LOG 210 opcode may be normally sent to the
scheduler main lhread 160 lo reporl system errors. No

35
initiation opcode 180 may be required to send the
SYSTEM_LOG 210, and no return opcode 180 need be
returned in reply or as a direcl result.

The SUITES_READY 212 opcode may be sent to the
scheduler main thread 160 when a test is ready for running

40 on a resource 18. The SUITES_READY 212 may also be
sent as a resull of a RESERVE_SUCCESS 260 opcode
received. 'I1ms, the main thread 160 may typically receive
lhe SUITES _READY 212 opcode, and may actual! y initiate
it within the main thread 160 in response to a RESERVE_

45 SUCCESS 260 initiation opcode 180 received from lhe
resource manager 108. The scheduler main thread 160 may
send a SETUP __ _FROGRAM 232 return opcode lo the
resource manager main thread 170. The effect of the READ opcode 292 may be lo provide an

identifier 272 from the opcode structure 270 of lhe opcode
180, which identifier 272 indicates a location for an execu
tion pointer in the destination lhread 290. The destination
thread 290 lhen executes a move pointer operation 294 in
which the execution pointer of the processor 30 may be
moved to the appropriate location designated by lhe identi
fier 272. The destination thread 290 then executes 296. 'I11e 55

executing 296 operation effectively executes the code begin
ning al the execution pointer designated in the MOVE_
POINTER 294 operation. The code of the destination tl1read
290 may have a relum, or may itself write a new opcode 180
and relurn it to the source thread 280 or lo some other thread
150. Jn sending a return opcode 180, the destination thread
290 may use the same operations or steps 282, 284, 286
since in such an operation, the destination thread 290
becomes lhe new source thread 280 for lhe returned opcode
180.

The TEST_COMPLETE 214 opcode may be sent when
50 ll1e scheduler 110, and more particularly the scanner thread

164 has detected thal a lesl has completed running. Thus, no
initiation opcode 180 may be required, but the main thread
160 may then send, in response, or as a result, a CLEANUP
234 return opcode lo the resource manager main thread 170.

The LAUNCHER_PASS 216 opcode may be returned by
a launcher main lhread 174 to the scheduler 110, and more
particularly to the scheduler main thread 160 when a test has
been successfully launched. A successful launch of a lest 305
indicates tha l the launcher 112 was able lo configure a

60 resource 18, also referred to as a larget 18 or target resource
18, at an operating system level, and the subject resource 18
has successfully loaded the test program and the necessary
dala. 'The test 305 is therefore running. No initiation opcode
180 may be required for the LAUNCHER __ PASS 216, but

65 the launcher 112 is itself "spawned" by the scheduler main
lhread 160, which may be itself an initiating evenl. No return
opcode 180 may be necessary from the main thread 160.

Referring again lo FIG. 3, ll1e operational codes 180 or
opcodes 180, remembering that auxiliary thread 150 such as

0229

WEST

5,909,544
23

The LAUNCHER~FAJL218 may be sent by the launcher
main thread 174 lo the scheduler main thread 160 if a tcs!
305 has not been successfully launched. Some reasons why
a launch may fail may include the failure of a "login"
command from a launcher 112 to a resource l B, failure of a
"map" command to map the necessary drives, or perhaps
more properly, for virtual drives on the storage
devices 54, 64 or memory 52, 62, 72 of !he resources

24
and more particularly to the main thread 170. Similarly, the
CONSOLE_ADDRESS 225 opcode may be sent from the
console 116 to the scheduler 110, typically from the main
thread 172 lo the main thread 160. Since global memory
may be used for all the data structures associated with any
opcode, the block of global memory established by the
CONSOLE ADDRESS 225 may be available to all pro
cesses 106. No initiation opcode 180 may be necessary,
since the opcode 225 may be sent during the start-up phase 18. A-; discussed above, the resource 18 refers generally to

all resources 18, 20, 22, and !he like. The LAUNCHER_.
FAJ.L218 requires no initiation opcode 180, since a launcher
is "spawned" by the scheduler 110. No return opcode 180
may be required.

JO for the automated test harness 10. Similarly, no return
opcode 180 may be necessary.

The main thread 172 may also send an ADD_PllEFIX
226 or a DEL__pREFIX 228 to the resource manager main
thread 170. The opcode ADD _YRI!FlX 226 may be a signal

lbe BLD._ .. SUCCESS 220 may be sent from the conligu
ration file builder thread 162 to the scheduler main thread
160 when lbc scheduler 110, and more spec.,-ifically, the
configuration file builder thread 162 has successfully
nized the information necessary lo run a test 305.
initiation opcode BLD_CONFIG 224 may be first received
by the configuration file builder thread 162 from the main
thread 160. No return opcode 180 may be required.

15
to the resource manager 108 that another resource prefix
should be added to a list. That is, a prefix may be an
initiation opcode 180 in the name of a service advertising
protocol (SAP) in a slaving program protocol. For example,
a slaving program such as NCONTROL™ is a NoveJPM

The receipt of the BLD_SUCCESS 220 may be an
initialing event for the scheduler main thread 160. The
response by the scheduler main thread 160 may be lo

a laurrcber 112, which will itself initiate a test 305,
up the proper resources 18 lo conduct the lest 305.

20
slaving program that has bee11 found suitable for facilitating
!he temporary slaving operation for setup, configuring the
resource 18 through its operating system by the cou!roller
12. After the setnp operation, the resource 18 may be
"emancipated," left to operate independently, loading appli-

25 cations and files over the network as needed by applications
rum1ing on the resource 18.

Tbe BLD_FAIL222 opcode returned to the main
thread 160 from the configuration builder thread 162

Thus, a prefix may be added to a SAP string by a resource
manager 108 in response lo the opcode 226. 111e resource
manager 108 then uses the prefix to know which resources

when the information necessary lo operate a lest 305 has not
been successfully organized by the configuration file builder
thread 162. For example, if dalafiles are not present, if
required entries arc not available, if a token value is not
defined, if an operating system rcf1L,es lo function properly,
or if any flaw in logic or data, then tbe configuration file
builder thread 162 may not be able to provide all of the
configuration information needed by the launcher 112. The
initiation opcode 180 may be a BLD_CONFIG 224 opcode,

30
18 are lo be used for given task. The resource manager 108
may handle multiple prefixes. An initiation opcode 180 is
not necessarily required, although the opcode 226 may be
initiated by another opcode 180. However, in one embodi
ment of an apparatus 10 made in accordance with the

35 invention, a user may make a selection from a graphical user
interface basted by the console 116. A selection of the
feature designated to add a prefix may be selected by a user.
In response to the selection by a user, the console 116 sends

but no return opcode 180 may be necessary.

'The BLD~CONFIG 224 may be sent lo the configuration 40
file builder thread 162 of the scheduler 110 by the main
thread 160. The function of the opcode 224 may be to
compile and organize all information associated with the
opcode 224 so that a launcher 112 may be "spavmed" by the
main thread 160, and will have all of the data necessary to 45
run a test 305. An initiation opcode 180 for the opcode 224
may be the SETUP _SUCCESS 246 received from the
resource manager main !bread 170. Thus, the rcsomce
manager main thread 170, having identilied that the hard
ware resources 18 are available, properly equipped, and 50
otherwise ready for employment in a test 305, sends the
initiation opcode SETUP _SUCCESS 246 ID the main
thread 160 of the scheduler 110. Possible return opcodes sent
from the scheduler 110 lo the configuration file builder
thread 162 may include the BLD_SUCCESS 220 or the 55
BLD_FAIL 222 opcodes.

Thus, Uie opcodes 212, 214, 220, 222, 224 originate in a
thread of the scheduler 110 and may be sent to !he origi·
nating thread or another thread of the scheduler 110. The
SYSTEM_IDG 210, in contrast, may be returned by any 60

process 106 to the scheduler main thread 160.

TI1e CONSOLE__ADDRESS 225 may be sent by the
console main thread 172 to the resource manager main
t11fcad 170. This opcode 225 may be sent during an initial-
ization for the automated test harness 10 for the of 65
sending an address of global memory, to all
processes 106 and threads 150, lo the resource manager 108,

the ADD~J'REFIX 226 to the scheduler 110.
The DEL__pREFIX 228 effectively instructs the resource

manager 108 to cease looking for resources 18 that are
advertising with the SAP prellx associated with the opcode
228.A> with thcADD~PREFIX226, the opcode228 has no
return opcode 180. Similarly, no initiation opcode 180 may
be required. However, as with the opcode 226, a selection by
a user of an icon, such as a delete button, selection box, or
!he like presented on screen of a graphical user interface of
the console 172 may be used to initiate the opcode 228.

111e CONSOLE~EXff 229 opcode may be sent to the
scheduler 110 to signal a system exit. A• with other opcodes
180 initiated by the console 116, the opcode 229 may be
initiated by a user selection from the graphical user interface
presented on a screen of a mooitor associated with the
console 116. Thus, no initiation opcode 180, that is opcode
180 associated with initiation, is required. Similarly, no
return opcode 180 be appropriate. The appropriate
response by the 160 may be a system exit.

The INIT~QUEUES 230 may be sent by the scheduler
110 to synchronize with the resource manager 108, thus
ensuring that all queues arc properly set up, identified, and
functioning for receiving messages for the appropriate
threads 150. No initiation opcode 180 may be required,
although possible return opcodes may include INIT._
SUCCESS 242 or INIT_FAIL244 opcodes returned by the
resource manager 108.

The SETUP_PROGRAM 232 opcode sent by the sched
uler 110 has tbe effect of requesting resources 18 needed for

0230

WEST

5,909,544
25

a tesl 305. 111e information associated with the opcode 232
identifies resource information slruclures identifying the
nature of the needed resources 18. Thus, a "specification" of
sorls may be associated with the opcode 232. An initiation

26
scheduler 110. Although return opcodes 1110 are ofleo
returned to an initiating or source thread 280, such need not
be the case. A return opcode 180, in general, may be simply

opcode BLD_~SUCCESS 220 rise to the opcode 232. 5

an outp1lt opcode 180 associated with a tliread 150 operating
in accordance with another received opcode 180.

Thus, when configuration by thread 162 is complete, the
scheduler main thread 160 makes a resource request of the
resource manager 108 with the opcode 232. Possible return

may include SETUP_SUCCESS 246, SETUP
248, RESERVEJENDING 258, or RESERVE_ 10

SUCCESS 260 sent by the resource manager 108 to the
scheduler 160.

The EXIT 240 opcode may be senl to the resource
manager 108 lo signal a system exiL 'The initiation opcode
180 may be controlled by an exit thread 168 sending an
EXIT 204 opcode lo the scheduler main thread 160.
However, in one presently preferred embodiment of an
apparatus 10 made in accordance with the invention, all
control over the EXIT 204 opcode may reside in the console
116. Thus, an appropriate initiation opcode 180 may be a
CONSOLE__EXlT 229 sent from lhe console main thread

Tiie CLEANUP 234 opcode rnay be used by the sclieduler
110 to instruct the resource manager 108 to free resources
18, makiog those resources 18 available for use in a new test
305. This is usually done when a resource 18 bas been
allocated or reserved for a particular test 305 needing the
capabilities of the selected resource 18. With each opcode
234, a list of information structures associated with the
selected resource 18 is associated. Although infomiation
may he sent with an opcode 180, information may also be
stored and pointed lo by tbe pointers 274, 276 associated
with !be opcode 234. Initiation 01icodes 180 giving rise to
the CLEANUP 234 opcode may include TEST_
COMPLETE 214, from the scanner thread 164, or
RESO!JRCE_REBOOT 256 sent by the resource manager
108 in response to a reboot, typically occurring out.side of
the control of the automated test harness 10. Possible return
opcodes 180 may include CLEANUP _SUCCESS 250, and
CLEANUP _FAIL 252.

15 170 to the scheduler main thread 160. No return opcode 180
may be required, smce a resource manager 108 may be
programmed to properly log off or otherwise exit all
resources 18 from the system 10.

The INlT_SUCCESS 242 opcode may be sent from the
20 resource manager 108 lo the scheduler 11 O to instruct the

scheduler 110 to complete synchronization, thus ensuring
that all queues (message queues of all thread' 150) arc
functioning. Thus, all protocols are properly operating to
synchronize messaging between the resource manager 108

25 and scheduler 110. Initiation opcodes 180 may include
INIT__QUEUES 230, although no return opcode 180 may
be required

The lNIT_FAIL 244 opcode 180 may be sent hy !he
resource manager 108 when initialization fails. Initiation

30 opcodes 180 rnay include lNlT __ QUEUES 230, although no
return opcode 180 may be required, similar to the opcode
242.

The CLEANUP _LAUNCHER_FAIL 236 bears some
resemblance lo the CLEANUP 234 opcode. However, tbe
opcode 236 may be sent after lbe scheduler 110 receives a
LAUNCHER _ _FAJL 218 opcode from the launcher 112.
Thus, the effects are !be same, although the initiation sources 35

are different. The inihation opcode 180 for the opcode 236
may include !be LAUNCHER_FAIL 218, while possible
return opcodes may include CLEANUP _LAUNCHER_
FAlL_SUCCESS 266, or CLEANUP_LAUNCHER_~
FA!L . .FAIL 268. 40

The SETUP __ SUCCESS 246 opcode 180 may be sent
when the resource maoager 108 is successful in ailoeating
all of the resources requested by the scheduler 110 for a
specified lest 305. Initiation opcodes 180 may include
SETUP _PROGRAM 232 from the scheduler 110, but no
return opcode 180 may be required.

The SETUP J'AIL248 may be sent lo the scheduler 110
The RESERVE_REMOVE 238 opcode may be sent by

the scheduler 110 to the resource manager 108 when an entry
is deleted from the launch queued data base 302. 1bat is, to
the extent that an entry in the launch queue data base 302 bas
certain resomces 18 reserved for the lest 305 speciiied, those
resources 18 need to be released when a test 305 is canceled.
Thus, the opcode 238 instrucls !he resource manager lOB lo
release the reserve resources 18 and delete the reservation
entry from internal tables maintained by the resource

when an error occurs with respect to information supplied
with or associated with the SETUP _PROGRAM 232
opcode 180 received by the resource manager 170. 'fbus if
the request for information identified wi!h a request for

45 preparation with a test 305 is improper, the opcode 232 acts
as an initiation opcode 180 for the opcode 248.

The CLEANUP_SUCCESS 250 opcode may be returned
when the resource manager 108 has been successful in

manager 108. opcode 238 may have associated with it so
the necessary resources 18 identified in data

aoouo•••ou with the CLEANUP 234 opcode. Thus, the
CLEANUP 234 operates as an initiation opcode 180, an instance identification of a deleted entry in tbe launch

queue data base 302. The instance identification, sometimes
referred to as instance ID, may be a number assigned
by an automated lest harness 10 to test 305 that is to be
run. Thus, with each instance of a launcher ll2, or of a test
305 to be run by a launcher 112, an instance ID may be
assigned. Thus, any test 305 may be tracked according to its
uuique instance ID. Possible initiation opcodes 180 for the
opcode 238 may be used, but in one embodiment of an
apparatus 10 in accordance with the invention, the deletion
of an entry from lhe launch queue data base 302 may be
detected by the scheduler main thread 160 monitoring the
launch queue 302. Thus, the main thread 160 may then
initiate lhe opcode 238 upon detection of deletion of an
entry. Possible return opcodes 180 may include RESERVE_
REMOVE_SUCCESS 262 and RESERVE_REMOVE_
FAIL 264, returned by the resource manager 1()8 to the

although no return opcode 180 may he required. Identifica
tion of resources 18, as discussed above, may occur by
specification of any or all of several parameters identifying

55 the capacity of a resource 18 required to run a test 305.
Similarly, lhe CLEANUP _FAIL 252 opcode may he
returned by the resource manager 108 iu response to a
CLEANUP 234 opcode. When toe resource manager 108 is
unable lo free up lhe necessary resources 18 identified in

60 data associated with the opcode 234, Ute opcode 252 may be
appropriate. No return opcodes 180 may be required from
the scheduler 110 in response to the opcode 252.

An INCONSISTENT _DATA 254 opcode be sent by
the rcsomce manager 108 when an opcode

65 180 is received. Theoretically, an opcode 180
sliould not occur, particularly in a code or in a
previously debugged code. However, the opcode 254 serves

0231

5,909,544
27

as a backup, an initiation opcode 180 being any undefined
opcode 180 received by the resource manager 108. No return
opcode 180 may be required.

A RESOURCE .. _REBOOT 256 may be sent when the
resource manager 108 detects that a resource 18 has been
rebooted. Rebooting should not normally occur, and there-
fore indicates tbal a or program independent of tbe
apparatus 10 has a resource 18 that was originally

28
cated previously, making the initiation opcode 180, opcode
238, unnecessary. No return opcode 180 may be required.

Tbe CLEANUP _LAUNCHER_FAIL __ SUCCESS 266
may be sent when the resource manager 108 has success
fully freed up those resources 18 to be allocated to a test 305
that previously failed to launch properly. Similarly, the
CLEANUP _l.AUNCHER_FAIL_FAIL 268 opcode may
be sent when the resources 18 have not been successfully
freed up. Either opcode 266, 268 may be initiated by the logged on to the network 16 as an available resource 18 for

tile apparatus 10, Also, if a resource 18 bas been temporarily
enslaved by a controller 12, ii be unloaded (have its

JO initiation opcode CLEANUP_LAUNCHER~FAIL 236,
and may require no return opcode 180

software removed) and then be again. Thus, if the
slaving software (e.g. has been unloaded from
the resource 18 in question then loaded again, the
resource 18 has effectively beeu removed from the apparatus
10 an<l then replaced. The 256 treats this operation

Several data bases 300 are associated with the data base
manager U4 of the automated test harness 10. Each data
base300 may be comprised of a number of records301, eacb

15 record 301 containing some number of fields 320 for con
taining data.

as a reboot. No initiation 180 may be required, since Referring now to FIGS. 5-6, the data bases 300 are
designated by a reference number although it is lo the initiating event may be an outside action, typically by a

user, detected by the resource manager 108 upon polling of
its resources 18. Possible return opcodes 180 sent by the
scheduler 110 in response lo the opcode 256 may include
CLEANUP 234.

The RESERVE PENDJNG 258 may be sent by
the resource manager 108 to tbe 110 if requested

speak of a database 300 or a record 301 in the 300
20 interchangeably in certain circumstances. The launch queue

data base 302 stores data associated with each launch. A
launch may be made by a launcher 112 "spawned" by the
scheduler 110 in order to nm either a test 305 (actually a test
identified by a record 305) from the test data base 304, a

25 suite 307 of lcsls 305, (identified by the records 307 from the
suite data base 306), or a group 309 (or group identified by
record 309) of tesls 305, suites 307, or groups 309, from the
group data base 308. After ru1mi11g a lest 305, or a suite 307

resources 18 arc not available lo the resource manager 108.
The opcode 258 indicates to the scheduler no that the
resource manager 108 will notify the scheduler no when !he
appropriate resoura:s 18 become available to run the des
ignated test 305. Thus, whenever tl1e resource manager 108
bas been unable to locale sufficient resources 18 having the
appropriate capabilities to run a test 305, the opcode 258
may be returned. Thereafter, the resource manager 108 waits

or 309 of tests 305, the automated test harness 10 may
30 store results in a launch history data base 310. Other data

for suilicient resonrces 18 to become available ID conduct
the requested tests 305.

bases 300 or files may be filled with any information desired
from a test 305. However, in general, the automated test
harness 10 may nm any test 305 without regard to what

are conducted or what data may be generated by
test 305. Thus, a user may determine any number of

executable files and output files for a iesl 305, independent
of the automated test harness 10. Thus, the launch history
data base 310 concerns primarily the history of !he auto-

40 mated test harness 10 and launching and completing tests
305.

When the resource manager 108 has previously sent a
35

RESERVE_ PENDING 258 opcode to the scheduler 110, ii
may subsequently send a RESERVE_SUCCESS 260
opcode. Tlnrn, whereas an initiation opcode 180 of SETUP_
PROGRAM 232 may result in a RESERVE_PENDING
258 opcode from the reoource manager 108, no return
opcode 180 is sent lnuuediately. Rather, the resource man
ager 108 simply tracks the resources 18 in view of the
pending request, and sends the opcode 260 when the proper
resources 18 are available. Thus, once lhe resource manager

45
108 has "collected" sufficient resources 18, those resources
18 are designated in the data associated with the opcode 260.
Tbus, although no initiation opcode 180 or return opcode
180 may be requ.ired, a SETUPJROGRAM 232 may be
regarded as a quasi-initiation 180, but cannot control

50
the timing of tbe opcode 260 returned.

111e RESERVE_REMOVE_SUCCESS 262 may be sent
when the resource manager 108 has been able to remove a
lest resiorvation entry in its table of resources 18 main·
tained for to tests 305) associated with tests 305, 55

from the launch queue 302. That is, when the resource
manager 170 will no longer attempt to reserve resources 18
for a test 305, it may send the opcode 262 without ever
devoting l11ose resources 18 lo that test 305. TI1e initiation
opcode 180 may be a RESERVE_REMOVE 238, although 60
no return opcode 180 may be necessary for the opcode 262
or the opcode 264.

The RESERVE.REMOVB_FA!L 264 opcode may be
sent when the resource manager 108 has been unable to
remove a lest reservation from the table of resources 18 65

maintained. Thus, the entry never have existed, or !he
appropriate resources 18 may been located and allo-

To set up the automated test harness 10, certain settings
may be saved in a settings data base 312. The settings data
base 312 facilitates rapid set-up and reconfiguration of the
automated lest harness 10, includiDg the controller 12, and
any associated hardware and software.

The system log data base 314 may be used to store errors
encountered during attempts by the automated test harness
10 to launch aud nm a lest 305 or tests 305.

Information particular to each resource 18 in the appara
tus 10 may be stored in a resource data base 316. Thus, when
the resource manager 108 seeks resources 18 to run a test
305 scheduled by the scheduler no, the resource manager
108 may make a determination of the of any
resource 18, based on a record 317 of the re.~ource base
316.

Referring now to FIGS. 5-6, fields320 in each of the data
bases 300 may be configured in a variety of ways. In one
presently preferred embodiment of an apparatus 10 made in
accordance with the invention, the fields 320 of the launch
queue may include a type 331 designating the type of
launch, whether a test 305, suite 307, or group 309. A name
332 of the launch may correspond lo the test name 340, suite
name 361, or group name 368 as appropriate. The lallllcher
333 indicates the lanncher 112 responsible for the test 305 in

The status 334 may store information relative to
current status in operation of the automated test harness

0232

WEST

5,909,544
29 30

10 occupied by the launch 332 in question. Tbe priority 335 Since, unlike the test data base 304 and snite data base
indicales a designation of import.ance assigned by a user. 306, the group data base 308 may accept any type of testing
Items with lowest priority numbers, highest priority, will be grouping, a member type, whether a test 305, suite 307, or
launched first from first received in the launch queue 302 to group 309, within a name 368 may be identified in the
last received in the launch queue 302, followed by all member type field A name, such as a test name 340,
launches next in priority. The iterations field 336 indicates suite name 361, or group name 368, from a test 305, suite
how many times an individual launch should be run. Thal is, 307, or group 309, respectively, associated with the group
one may speak of tests 305 or launches 333, bul each may name 368 in question, may be s!ored in the member main
refer to an instance 339 corresponding to one instarrtiation of field 374. A priority may be assigned by a user in the priority
a launcher 112 tasked by the main thread 160 of the 10 field 375, and a group 309 may be repeated, just as a test305
scheduler 110 to slave resources 18, configure those
resources 18 to operate, and then emancipate those resources or suite 307 may be repeated, some number of iterations
18 to act in accordance with instructions obtained in con- designated in the iterations field 376. Parameters to be
sequence of the launcher 112 setting up the resources 18. passed may be stored in the parameters field 378, while the

Token defmitions 337 may be stored in the token defini- instance number unigue to the group name 368 and iL-;
tions field 337 and token files may be identified in the token 15 , instarrtiation hy the launcher 112 may be identified by an
files field 338. 1bkens are those parameters or variables instance field 379. The instance fields 339, 356, and 379 may
replaceable during any individual operation with specific be used as indices to associate any testing instantiation with
data, but defined by place holders within a code. the test data and any record 311 in the launch history data

Each record 305 in the test data base 304 mav include a base 310.
test uame 340, description 341, and an excGUlable name 20 The launch history data base 310 may include a launcl1
342. A path directing a resource 18 to the adual software to time set by a clock, and recorded in a launch time field 381,
operate a test 305 may be stored at the path field 343, along as well a most recent time in wllich the record 311 of the
with parameters 344 for a specific instance 339. Usage data base 310 in question was last npdated or stored in an
information between a programmer and a user may be stored update time field 382. With each instantiation of a launch by
at field 345, while a wrapper name, indicating the designa- 25 the launcher 112, a type may be stored irr the type field 384
tion of a lest 305, may be stored in 346. Network and a name in the name field385, corresponding to the type
dependencies, including types of networks and protocols (test 305, suite 307, group 309) and the name 340, 361, 368
may be stored in the network dependencies field 347. 111e corresponding thereto in the name field 385. The corre-
type of U1e controller 12 may be stored at master resource sponding instance 356, 377, 379 may be stored in the
types 348, while resource 18 types may be identified at slave 30 instance field 386. Thus, the launch data base 302 may be
resource types 349. A server 24 may be designated by the indexed to the individual lest 305, suite 307' or group 309'
server 350 field, whereas the context 351, user 352, and as is the launch history data base 310. 111e status field 387
password 353 may be filled with individualized information may be used to store information regarding the status of the
particular to a user and testing scenario. launch being recorded, while the data field 388 may be used

Tue drive mapping 354 field may enable additional drives 35 to gather other data pertinent to the individual launeli.
to be mapped on a computer such as a controller 12 or server
24 on a network 16. The files to tokenize 355 allows each The automated test harness data base 312, also referred to
token in a user-specified file to be replaced with a specified as the ATH data base 312, may be used to specify particular,
value defined elsewhere and stored in memory device 32. standardized, configurations of the automated test harness
The inst.ance 356 may be a unique serial number assigned to 10. Each record 313 of the ATH data base 312 may include
each test name 340 and peculiar to the particular instantia"

40
a name field 391 for identifying a standardized setup

tion of that test name 340 hy a launcher 112. configuration, an automated test harness server identifier in
theATH server field 392, the path in anA11I path field 393,

Similarly, each suite 307 may have a suite name 361, also with a lest directory or subdirectory for the location of
referred lo simply as a name 361, in the name field 361. A executables associated with a test 305 stored in the test
text description may he provided in the description field 362, 45 directory field 394. The path to the databases 300 may be
along with instructions for usage in the usage field 363. The specified in the DB manager path field 395. while a text
individual responsible, typically a user, and possible a ' editor of choice may be specified by a user or for a user in
directing individual requesting certain testing, may be iden-
tified as a contact in the contact field 364_ All test names 340 the text editor field 396 to enable modification of coding,
that are included within a suite 361 may be listed, separated so comments, and other text strings by an appropriate engine.
by some delimiter, in the test list field 365. The number of The system log data base 314 may contain various error
tests 305 may be input in number tests field 366, or the messages. In general, however, a message information field
number of tests 305 may simply be determined automati- 397 may contain the text of a message or additional
cally by the coding for reading the detimiters in the lest list de-bugging information relating to possible sources of a
field 365. 1b the e:A.ient that certain code may be tokenized, 55 message, or both. The reported by field 398 may store
a token file path field 367 may be filled with information to information regarding a process 106 or a hardware resource
direct a resource 18 to the proper token files lo fill i:n dummy 18 responsi&le for generating a pacticnlar error message.
variables. The resources 18 may be specified in substantial detail.

Each group 309 of tests 305, group 309 of suites 307, or Similarly, any particular testing set-up may be provided with
group 309 of groups 309, may be assigned a group name in 60 a specification for resources 18 according to any or all fields
the group name field 368. A description, such as a textual 320 in the resource data base 316.
description may he stored in the description field 369. A
contact or responsible individual may be identilled in the
entered by field 370, while usage instrndious may be stored
in the usage field 371. Similar to the test data base 304 and 65
suite data base 306, Loken files may be identified in a token
file field 372.

The resource data base 316 may contain infom1ation
regarding the automated test harness 10, in general.
However, in one embodiment of the apparatus 10 made in
accordance with the invention, the resource database 316
contains information touching configuration of lhe hardware
suite employed in the resources 18, and, optionally, !he

0233

5,909,544
31

server 24. In addition, certain other information, such as
specifications related to peripheral equipment attached to a
resource 18, may be significant to an individual laboratory
using the automated lest harness 10.

General infom1ation concerning the automated test har·
ness 10 may include a location field 402 for specifying a
geographical location sucb. as a laboratory room number or
other geographical identifier. Anode address field 404 may
store the actual network node address of lhe controller 12 on
the network 16. The status field 406 may identify the state JO
of readiness or configuration, whik the prefix field 408 may
contain a prefix for uniquely identifying files pertaining to
the automated test harness.

The operating system type field 410 may contain infor·
malion regarding the particular operating system type asso· JS

ciated with a controller 12, or may be made to list a number
of operating systems that may be hosted by the controller 12.
The instance field 412 may temporarily contain one of !be
instances from an instance field 356, 377, 379 associated
with a testing regimen associated with a resource 18 iderr· 20

tified by a record317 in the data base316. Thus, the instance
field 412 does not contain a permanently associated number
unique to a resource 18, but rather the of the
current instance to which the resource 18 is

Each of the data bases 302, 304, 306, 308, 310, 312, 314, 25

316 has associated with it a series of individual reoords 303,
305, 307, 309, 311, 313, 315, 317, respectively. Each record
303, 305, 307, 309, 311, 313, 315, 317 has associated with
it a plurality of' fields 320.

30
Related lo the hardware of a resource 18 may be the brand

field 414 identifying the actual brand name of the resource
lit The CPU field 416 and the speed field 418 in the record
317 of the resource data base 316 identify exactly the CPU
identifying number or name and the speed or megahertz al
which the processor 70 of lhe resource 18 operates.

Tt1e drive size field 422 and the drive size field 424 may
identify U1e size and megabytes of hard drives associated
wil11 the resource 18. Topology field 426 identilied the
topology discussed above under which a resource 18 may be 40
connected lo the network 16, while the nel card field 428
identifies the type of network card 14C, 141.l, 14E associated
with a particular resource 18.

32
Other information tbat may be pertinent to a laboratory or

organization operating an automated test harness 10 may
include a capital asset number lie!d 446 for containing a
capital inventory number such as is assigned by most
crn:npumes in controlling capital assets. Similarly, a machine

number may be stored in a serial number field 448,
while the bus type may be identified in a bus type field 450
and !he video card and drive controller may be dcsig·
nated in a video 452 am! drive controller field 454.

Alternate topology may be designated by another topol·
ogy field 456, while an additional network card 14 may be
hosted in certain types of systems, such as a wireless card
and a wired card, one o[which may be a default card. 11ms,
a net card field 458 may be used to designate an additional
network card 14, associated with a resource 18, or an
alternative network card 14. Similarly, a network backbone
protocol for the network 16 or internetwork 17 may be
designated in the IPX back field 460 and the IP back field
462, respectively. Similarly, the data link layer addressing
information associated with the MAC-LAYER protocols
according lo the International Organization for Slandardiza·
tion Open Systems Interconnection model (ISO/OSI) model
may be designated in a MAC back field 464. The software
associated with the slaving model 446 for slaving the
opera ling system 144 of a resource 18 to the controller 12 of
the automated lest harness 10, may be specified in a slave
type field 466.

Other fields may be created in records 303-317 in the data
bases 302-316, respectively, or other new data bases or
records may be created as convenient. However, .in one
embodiment of an apparatus 10 made in accordance with the
invention, the foregoing fields 320, records 303-317, and
data bases 302-316 may be used to identify data determined
lo be useful in operating an automated test harness 10.

From the above discussion, it will be appreciated that the
present invention provides an apparatus and method for
temporarily slaving a resource 18 or large! computer 18 to
a controller 12, during which event the controller 12 aper·
ales as a command line controller cornmunicating with the
operating system of the resource 18 to configure the resource
18, and after which tbe resource 18 may load and run
software for condncting tests independently.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac·
teristics. The described embodiments are lo be considered in
all respecL~ only as illustrative, and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims, rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

Whal i' claimed and desired to be secured by United
States Letters Patent is:

1. An. apparatus for running lest software, the apparatus

The lPX backbone field 430 may be the identifier for the
network protocol used by the automated test harness 10 for 45

communicating over an internetwork through a router 25
connecting the network 16 to an internetwork 17 (refer to
FIG. 1). The !PX internal field 432 and IP internal field 434
may contain identifying numbers, names, or other strings to
identify the protocols used within the automated lest harness so
10 over lbe network 26 between the network cards 14A,
14B, 14C, 14D, 14E, 14F. JPXis a potential protocol that has
been used in various networks, and indicates in general the
network protocol of the network 16. Similarly, the IP inter·
nal field 434 relates lo the iutemelwork protocol and may be
replaced by some other protocol as appropriate.

55 cornpnsmg:

Relating to the software suite of the automated test
harness 10, the function field 436 may contain data relating
lo software that may be or has been organically hosted on a
resource 18. The OS type field 438 and OS version field 440 60
identify the system type as well as the current
version hosted by each resource 18. For some
resources 18, operating syslenr types may be changed
readily, in which event a second OS field 442 and second OS
version field 444 may be used to store infonnation relating 65
to a second operating system under which a resource 18 may
operate.

a network for communicating data;
a target operably connected to the network, the layget

comprising:
a first network interface operably connected to the

network,
a first processor connected to the first network interface

and provided with a first operating system,
a first memory device operably connected lo a store

data transferred to and from the first processor; and
a controller operably connected to network lo communi
cate data with the target over the network, the controller
comprising:

0234

WEST

5,909,544
33

second nelwork inlerface operably connected to tbe
network to communicate data between the amlroller
and the network,

34
14. The apparatus of claim 13 wherein a second target of

the plurality of targets is provided with a second operating
system different from the first operating system.

15. The apparatus of claim I wherein the target furllier
comprises a storage devic.c operably connected to the first
processor for storing application datafiles, result datafile.';,
and applications.

a second processor operably connected to the second
network intcrfaai for selectively, based on resource
information received from the target and tempmarily
providing operating system command line instmctions
for controlling the operating system of the target, while
the operating system of the larget is continuously
operating, lo configure the target,

16. The apparatus of claim 1 wherein tbe large! is pro
vided with ao operating system for downloading an execnt-

10 able to be run oo the first processor.
17. The apparatus of claim 16 wherein the executable

selected from a command file, an interpretable language file,
a batch file, and an instruction file written in machine code.

18. The apparatus of claim 1 whercill the target is pro
vided with an operating system for receiving executables

15 downloaded by the controller lo be run on the first processor.

a second rne1nory device for storing daLa communicated
to and from the second processor, and

a storage device connected to the network for storing files
of data.

2. The apparatus of claim 1 wherein the controller is
further provided with a launcher for communicating with the
target, and for enslaving and controlling the operating
tern of the target during a setup operation lo configure
target.

3. The apparatus of claim 2 wherein the second processor 20

is programmed to emancipate the target to operate indepen
dently after the setup operation, and the target is configured
lo load and run an application independently of the control
ler.

19. Tbe apparatus of claim 1 further comprising a second
large! operably connected lo !he network and having a
second operating system different from the first operating
system.

20, The apparatus of claim 1 wherein the second memory

4. The apparatus of claim 1 wherein the controller is
further provided with a resource manager for managing data
corresponding to identification and performance character
llitics of tire target, and lo availability of the large! lo run
applications,

device is JlrDVided with a plurality of queues for receiving
operational codes communicated by a plurality of processes
running on tbc second processor, each operational code
being readable by a process of the plurality of processes for

25 controlling an operation of the process.

5. The apparatus of claim 1 wherein the controller further
comprises a server for storing and retrieving files.

21. The apparatus of claim 1 wherein the second proces
sor is programmed lo run simultaneously a pluralil y of
software modules, the plurality of software modules com
prising:

30 a database manager for storing and retrieving application

6. The apparatus of claim 5 wherein the files comprise
datafiles selected from applications for running on the first
processor, control applications containing executables for
controlling loading and running of the applications, appli- 35
cation datafiles containing data corresponding to parameters
used by the first processor in running the applica.tions, and
result datafiles containing data corresponding lo results
output by the first processor while running the applicalioos.

7. The apparatus of claim 1 wherein the controller is 40

further provided with a database manager for storing and
retrieving application datafiles and result datafiles commu·
nica!ed between the first processor and the storage device.

S. The apparatus of daim 1 wherein the controller is
further provided with a scheduler for acquiring data corre- 45
sponding to a queue of applications to be run, scheduling to
run an application associated with the queue, confirming thal

datafiles lo be used as input<; for applications execut
able by the second processor, and result dalaliles arn
taining outputs of the applications;

a resource manager for storing data rnrresponding to
identification, characteristics, aud availability of the
target to run the applications;

a launcher for communicating with the operating system
of the target and for configuring the large! to operate
independently of the controller in mnning applicalioru;
and uploading result files to the server, and for selec
tively downloading applications to the target and
instructing the lo download applications lo the
target result to the server; and

a scheduler for acquiring data corresponding to applica
tions to be run, selecting applications to be identified to
the target for downloading lo the target, and for spawn
ing instantiations of the launcher. all data needed lo run the application has been assembled,

and monitoring the target to detem1ine completion of mn
ning of the applicatiort.

22. A method of runuing software on a plurah!y of

50 computers, the method comprising:

9. The apparatus of claim 8 further comprising a database
manager for storing, and for retrieving over the network,
application datafiles and result dalafilcs.

10. The apparatus of claim 9 further comprising a
resourai manager for acquiring and storing data correspond- 55
ing to identification and characteristics of the target, and to
availability of the target to run applications.

11. The apparatus of claim 10 further comprising a
launcher for communicating rnmmands to the operating
system of the for configuring the target prior to 60
emancipation of target to operate independently.

12. The apparatus of claim 11 further comprfaing a server
for transferring files communicated over the network to and
from the storage device.

13. The apparatus of claim 1 further comprising a plural- 65
ity of targets, the target being a first target of the plurality of
targets.

connecting a target to a network, the target comprising:
a first processor having a first operating system, and
a first network interface operably connected lo the

processor to communicate data between the proces
sor and the network,

connecting a controller to the network to communicate over
the network with the first operating system, the controller
comprfaing:

a second network interfaai operably connected to the
network lo communicate data between the controller
and the network,

a second processor having a second operating system and
operably connected to the second network interface for
selectively, based on resource infomiation receiver!
from tl1e target, and temporarily provide operating
system command line instructions for controlling the
first operating system of the target, and

0235

WEST

5,909,544
35

device I.or storing data commnnicalcd to and
second processor;

connecting a server, containing a storage device, to the
network for storing and retrieving files transferred over
the network;

the Jirsl operating system of the target to be
by the controller;

transmitting operating system command line instructions
from the controller lo the first operating system of the

10
target lo be executed by lhe first operating system of the
target to configure the large!;

emancipating !he first operaling system of the large! to
operate independently of the coo!rollcr; and

loading by the target, independently of lhc controller, a 15

file from the server onto the target
23. 111e method of claim 22 wherein the firs! operating

system and the second operating system arc different from
each o!hcr.

36
24. The me!lmd of claim 22 further comprising running an

application of the applicalions on the first processor.
25. The method of claim 24, further comprising creating

by the target a result datafile containing da!a corresponding
to results obtained by the Jin;t processor while running the
applications.

26. The method of claim 25, further comprising indepen
dently uploading by the target the result datafile to the server.

27. lhe method of claim 22 wherein the file is selecicd
from applications containing instrnctions executable by the
firs! processor, control applications containing instructions
executable by the first processor for con!rolling running of
applications, a batch file inlerpretablc by the first operating
system, and application datafilcs containing data corre
sponding lo parameters used by !he first processor in ruoniog
applications.

0236

WEST

UNITED ST A TES PA TENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 5,909,544
DATED June 1, 1999
INVENTOR[S) : Graham et al.

It is certified that error appears in the above-lndentified patent and that said Letters Patent is hereby
corrected as shown below:

--Michiel--.

On the title paQe section [75l Inventors please delete "Micheil" and insert therefor

Aues1:

A11esti11g Officer

Signed and Sealed this

Sixteenth Day of November, 1999

Q, TODD lllCK!NSOl'i

0237

4 d pisplay Form

4"
http://wcstbrs: 8002/bin/gale. exe? 1"'doc&s ... c=&r ... Message=& P __ docent= 1 &p _doc ... != PTFKWIC

Ll: Entry 4 of 5

DOCUMENT-IDENTIFIER: US 5909544 A
TITLE: Automated test harness

Detailed Description Text (34):

...... G e n ·.e r a·.·.-...... te c 0 1 .. 1. e c t i ... o _n ~~i~~

File: USPT Jun 1, 1999

In addition, Tables 1-3 below illustrate logical relations between various opcodes 180.
Entries in Tables 1-3 are arranged more-or-less according to which process 106 in the
se.cond column is sending an opcode 180 in the third column. In certain circumstances, a
thread 150, in general, of the scheduler 110 may send an opcode 180 to another general
thread 150 of the scheduler 110.

Detailed Description Text (43):
Each of the threads 160, 162, 164, 166, 168, 170, 172, 174 may communicate with one
another by a series of opcodes 180. For example, the opcodes 180 may be referred to as
opcodes 180, and may be illustrated by the opcodes 182 communicating between the exit
thread 168 and the main thread 160. Similarly, the opcodes 184 may communicate between
the data base watch thread 166 and the main thread 160. The opcodes 186 may be passed
from the scanner thread 164 to the main thread 160, while the opcodes 188 are passed
from the launcher main thread 174 to the scheduler main thread 160. Similarly, the
opcodes 192 pass from the scheduler 110 to the scheduler main thread 160 to the
configuration file builder thread 162, the opcodes 194 pass from the configuration file
builder thread 162 back to the scheduler main thread 160, the opcodes 196 pass from the
console main thread 172 to the resource manager main thread 170, and the opcodes 198
pass from the console main thread 172 to the scheduler main thread 160. The opcodes 200
may pass from the scheduler main thread 160 to the resource manager main thread 170
while the opcodes 202 pass from the resource manager main thread 170 to the scheduler
main thread 160.

Detailed Description Text (45):
As referenced earlier, the data base watch thread 166 and the exit thread 168 may be
incorporated directly into the scheduler main thread 160. Similarly, the scanner thread
164 in one embodiment of an apparatus 10 in accordance with the invention, may be
incorporated into the scheduler main thread 160. However, in general, opcodes may each
be made to operate similarly, or even identically. At a source thread, an opcode
indicates to the source thread to reserve a memory block, that is, a specific segment
of memory in a memory device such as the memory device 32. The source thread then
writes the identifier 272, a generic pointer 274, and a resource pointer 276 into the
reserved block of memory. The source thread then sends the address of the opcode 180 to
a destination thread by writing the address to a message queue associated with the
destination thread. A destination thread periodically reads all messages in a message
queue associated with a destination thread. Upon reading the message received from the
source thread, the destination thread receives the address of the opcode 180. The
destination thread then reads the opcode in the memory block, ascertaining the
identifier 272, and the pointers 274, 276. The destination thread then may move an
execution pointer in the opcode associated with the thread that has received the opcode
180, and may begin executing the opcode at the designated location. Thus, the opcode
identifier 272 has served to move an execution pointer within the coded executable of
the destination thread. The destination thread then executes the opcode using the data
pointed to by the pointers 274, 276. In certain circumstances, the destination thread
may return an opcode 180 to the source thread, or to another thread in the controller
12, and particularly the controller modules 92.

Detailed Description Text (48) :
The console main thread 172 may receive no opcodes 180 from other threads. Rather, the
console main thread 172 may receive its principal direction from inputs from a
graphical user interface gathering inputs from a user. The console main thread 172 does
send a CONSOLE.sub.-- EXIT 229 opcode to the scheduler main thread 160, indicating that

4/3/03 11 :58 AM

0238

Form http://westbrs:8002/bin/gate.exc?l~doc&s ... e•"&p _ Message=&p _ doccnt- l&p __ doc _ l ~ PTFKWIC

a system exit is in order. The CONSOLE.sub.-- ADDRESS 225 may also be sent from the
console main main thread 160. The SYSTEM.sub. - LOG 210 may
be sent by any main thread 160.

main thread 160,
INIT.sub. FAIL
SUCCESS 250, and

the resource manager main -it~h:..cr,_e,_a~d···<':-:-::=:--~c=-~'--:::-::c:::-:::::=-=-'::-::-:-::--""'
a host of opcodes 202 may be sent,

from the
resource

244, SETUP-.sub.-- SUCCESS 246, SETUP.sub.-
CLEANUP.sub.-- FAIL 252. Each of the

108 to the scheduler 110 to
a particular test.

FAIL 248, CLEANUP.sub.--
202 provides information
the status of a given

Detailed Description Text (59):
Referring again to FIG. 3, the operational codes 180 or
auxiliary thread 150 such as the threads 164, 166, 168 may

remembering that
be incorporated

to discuss the
initiates a

into the 110. It may be
180 110. The EXIT

manager 108 with an
204 may be sent

CONSOLE.sub.--

240 to exit the
the scheduler
229.

(65):
16 opcode may be returned by a launcher main

110, and more particularly to the scheduler main thread a
launched. A successful launch of a test 305 indicates that the

launcher to configure a resource 18, also referred to as a target 18 or
target resource 18, at an operating system level, and the subject resource 18 has
successfully loaded the test program and the necessary data. The test 305 is therefore
running. No initiation 180 may be required for the LAUNCHER.sub.-- PASS 216, but
the launcher 112 is spawned" by the scheduler main thread 160, which may be
itself an initiating event. No return 180 may be necessary from the main thread
160.

(66) :
18 may be sent by the launcher

::...::..::.:: :.:==...::...:. main it a test 3 0 5 has not been
a launch may fail may include the failure of

112 to a resource 18, failure of a "map" command to map the necessary drives,
more properly, tor example, virtual drives on the storage devices 54, 64 or

52, 62, 72 of the resources 18. As discussed above, the resource 18
refers generally to all resources 18, 20, 22, and the like. The LAUNCHER.sub. FAIL
218 requires no initiation opcode 180, since a launcher is "spawned" by the scheduler
110. No return 180 may be required.

Detailed Descrintion Text
The ELD.sub. SUCCESS configuration file builder

~;=-=;::,-=-::..::....,,:.~:~-.;.==--====:..;::::., 110, and more specif
the

initiation ~pcode BLD. CONFIG 224 may be first
tile builder thread 162 from the main thread 160. No

;;,,=..::=~~=-=:..;:.::=-=~~~~T-=--e~x~t: (70):
may be sent to the configuration file builder

the main thread 160. The function of the
all information associated with the

112 may be "spawned" by the main thread 160, and will have of the data necessary to
run a test 305. An initiation 180 for the 224 may be the SETUP.sub.--
SUCCESS 246 receiv~d from the resource manager 170. Thus, the resource

thread 170, having identified that the hardware resources 18 are
equipped, and otherwise ready for employment in a test 305, sends

opcode SETUP.sub. - SUCCESS 246 to the main thread of the
110. Possible return sent from the scheduler 110 to
builder thread 162 may the ELD.sub. SUCCESS 220 or the ELD.sub.-

110
The

413103 I I :58 AM

0239

Display Form http://wcstbrs:8002.lbin/gutc.exe?i'"doc&s ... c=&p __ Mcssage=&p _docent= l&p =doc= 1 =PTFKW!C

SYSTEM.sub. LOG 210, in contrast, may be returned by any process 106 to the scheduler
main thread 160.

identifies resource

sent by the scheduler 110 has the effect of
a test 305. The information associated with the

information structures identifying the nature of the
fication" of sorts be associated with

.-- SUCCESS 220 gives 232.
resources 18. Thus, a 11

232. An initiation <:'.Pcode BLD.
when configuration by the
resource request of the resource

160 makes a

may include SETUP.sub.-- SUCCESS 246, SETUP.
258, or RESERVE.sub.-- SUCCESS 260 sent by the

scheduler 160.

(82) :

Possible return
248, RESERVE.sub.

resource manager 108 to the

sent to the resource manager 108 to signal a system exit.
may be controlled by an exit thread 168 sending an EXIT 204

main thread 160. However, in one presently embodiment
apparatus made in accordance with the invention, all the EXIT 204

may reside in the console 116. Thus, an appropriate initiation
.sub. - EXIT 229 sent from the console main to main

thread 160. No return opcode 180 may be required, since a resource manager may be
programmed to properly log off or otherwise exit all resources 18 from the system 10.

4/3/03 11:58 AM

0240

United States Patent
Mallick et al.

[t9]

[54] METHOD AND SYSTEM FOR
CONSTRUCTING A PROGRAM INCLUDING
A NAVIGA110N INSTRUCTION

[75] Inventors: Soummya Mallick; Uobe1i G.
McDonald; Edward L. Swarthout, all
of Austin, Tex.

[Tl] Assignee: International Business Machines
Corporation, Annook, N.Y.

[21] Appl. No.: 767,491

[22] Filed: Dec. 16, 1996

[51] lnt.Cl.6 G06F 9/00
.. 395/672 [52] U.S. CL

[58 J Field of Search 395/670, 672,
395/677, 674

[56] References Cited

U.S PATENT DOCUMENTS

111993 Spix el al ..
8/1994 Strout, II el al. .

5,4()4,898 411995 Stowers.

10
1 4

12 ~!ISGAlAR
==::> I ''~~~{'t;:s1 :

~---~

1 4

MULTI SCALAR
COMPILER

(SEGOHO PASS)

111111 Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US005887166A

[11] Patent Number:

[45] Date of Patent:

5,887,166
Ma1~ 23, 1999

5,421,014 .511995 Bucher
5,452,459 9/1995 Dmry et al.
5,524,247 6/1996 Mizuno.
5,524,250 611996 Chesson el al.

Prinuiry Examiner-Majid A. Banahkan
Anorney, Ageru, or Firm--Casimer K. Sa!ys; Brian F.
Russell; Andrew J. Dillon

[57] ABSTRACT

A method and system are provided for constructing a
program executable by a processor including one or more
processing elemenL> for executing threads and a thread
scheduler for assigning threads lo tbe proces.sing elements
for execution. According lo the method, a plurality of
threads are provided thal each include al least one control
flow instruction. From one or more control flow instructions
within lhe plurality of threads, a condition upon which
execution of a particular thread depends is determined. In
response lo the determination, at least one ua'ngamm
instruction executable by the thread scheduler is
indicates Lhat Lhe particular thread is to be assigned to one of
Lhe processing clements for execution in response to the
condition.

23 Claims, 18 Drawing Sheets

90
OEOIN

CREATE EMPTY THREAD
DESCRIPTOR ASSOCIATED

WITH EACH THREAD

ANALYZE REGISTER AND
DlSAMBIGUABLE MEMORY
ACCESSES TO IOENTIFY

INTER-THREAD DATA
DEPENDENCIES

CREA TE EXTENSION LIST
AND EXTENSION LIST

POINTER FOR EACH THREAD

ANALYZE CONTROL FLOW
INSTRUCTIONS AT THREAD

BOUNDARIES !O CREATE
NAVIGATION INSTRUCTIONS
AND NAVIGATION POINTER

IDENTIFY CONTROL
INDEPENDENT THREADS
THAT ARE LIKELY TO BE

DATA INDEPEDENT AS
META·TKREADS UTlllZING
MET A-TKREAO POINTERS

91

92

93

94

9 5

96

0241

U.S. Patent

22(

1 8

1 6

34

Mar. 23, 1999

)30

0:::

0
01-
«'t: c_
w-
0:: 0::
::r::O

cr:
0

01-
-d; a..
w-
0:: 0::
;r:O
;- (./)

w
0

32

Sheet I of 18

MUL TISCALAR
COMPILER

(FIRST PASS)

~14

1 8

5,887,166

1 6

20

~ MULTISCALAR
COMPILER

(SECOND PASS)

Pig. ljl

0242

U.S. Patent Mar. 23, 1999 Sheet 2 of 18 5,887,166

90
BEGIN

9 1
CREATE EMPTY THREAD

DESCRIPTOR ASSOCIATED
WITH EACH THREAD

92
IDENTIFY NEXT THREAD
TO BE EXECUTED AFTER

EACH POSSIBLE EXIT POINT
AND ENTER APPROPRIATE
EXIT POINTERS IN THREAD

DESCRIPTORS

93
ANALYZE REGISTER AND
DlSAMBIGUABLE MEMORY
ACCESSES TO IDENTIFY

INTER-THREAD DATA
DEPENDENCIES

94
CREATE EXTENSION LIST

AND EXTENSION LIST
POINTER FOR EACH THREAD

95
ANALYZE CONTROL FLOW

INSTRUCTIONS AT THREAD
BOUNDARIES TO CREATE

NAVIGATION INSTRUCTIONS
AND NAVIGATION POINTER

96
IDENTIFY CONTROL

INDEPENDENT THREADS
THAT ARE LIKELY TO BE

DATA INDEPEDENT AS Pig. l<B META-THREADS UTILIZING
META-THREAD POINTERS

END
s97

0243

32

I-Code Pointer Address (TP offset)

!-Code Extension Pointer Address (TP offset) Length
__JC;--~~~~--~~~~---~~~~~~~---i

E . 0 p . 44 xii 01nter
: 46 .

Exit N Pointer

Navigation Pointer

Reserved

Address (TP offset)

• • •
Address (TP offset)

Address (TP offset)

50

NAVIGATION
INSTRUCTIONS

Reserved

Reserved

Reserved

•

1 6 1 B

60

Extension 0 Address (ICP offset) Opcode Parm A Parm B]62
• • •

Extension P

Pig. 2

0

• • •
Address {ICP offset) Opcode Parm A Parm B

1516 2122 2627 31
64 66 6B 70

Lj .
fr.I .
'"C
~ -~ = -
~
Q;

:"!
N
w -'° '° '°

w
0 --oc

0244

U.S. Patent Mar. 23, 1999 Sheet 4 of 18 5,887,166

A

82
set X

,..--JBO

B

bge X,E

c E

D F

88
add r1,r3,r4

Pig. 3

1/JEST

0245

U.S. Patent Mar. 23, 1999 Sheet 5 of 18 5,887,166

14 6, r 1 3 0 r 140
I i \
I

~48
J

T-COOE
TL I THREAD EXIT

~ PREDICTION CACHE SCHEDULER I TP I MECHANISM
1

l144 1 4 2::.J (132 t (134 t (136 i (13 8

PE PE PE PE 850 (182
INSTRUCJION I INSTRUCTION INSlRUC!ION INS !RUCTION

CACHE CACHE CACHE CACHE

GLOBAL ~_l2 COMM· I COMM· COMM· COMM· OISAMBIGUATION UNICATION UNICAT JON UNICATION ONICA!IOH
BUFFER ANO AND ANO ANO

SYNCHRONI· i SYNCHRONI· SY~CHRONI- SYNCHRONI·
ZA TIO N ZATION ZA !ION ZA T 10 N u54
~ Q[J GillJ GPR

CACHE E E E

856 (180
DATA DATA DATA DATA

CACHE CACHE CACHE CACHE
GLOBAL u58 SYNCHROlllZATION
f LAGS EXECUTION EX£ CUI ION EXECUTION EXECUTION

CORE CORE CORE CORE

I CAM.] ~ ~ ~
060

(172 t t i
AR81TRAT ON

LOCAL COMMLINICATIOtl AND SYNCllRON11ATION MECHANISM LOGIC

(124 (122 (170

ARCHITECTED
REGISTER L2 CACHE

Fl LE

~6
p

(120

PROCESSOR INTERFACE

1
' t

C.100 11 2; / _,

l:_j <'..11 4 '

I
SYSTEM

Pig. 4 MEMORY

WEST

0246

GI ob al
Synchronization Flags

S FO

SF 1

SF2

SF3

SF4

SF5

SF6

S F7

SFS

0

1

0

0

0

1

0

0

S F9

SF10 0

SF 11 O

S F30

SF 31

• ..
• •
•

Pig. 5

Concurrent Thread pipeline

---- Data communication

EZ2J Thread Scheduling

c::::J Thread Execution

[SS] Thread Completion

Pig. 6

~ .
r:J:J .

0247

\PJEST

U.S. Patent

EXECUTE
NAVIGATION

INSTRUCTIONS TO
DETERMINE EXIT

Mar. 23, 1999 Sheet 7 of 18

YES

BEGIN

EXECUTE
INSTRUCTIONS ON

SINGLE PE

LOAD THREAD
DESCRIPTOR

INDICATED BY TP

200
202

2 1 2

PASS l·CODE
POINTER AND I-CODE
EXTENSION POINTER

TO FREE PE

UPDATE STATUS
REGISTER

PREDICT EXIT

ENTER EXIT NO.
IN THREAD LIST

NO

5,887,166

Pig. 7

232

LOAD THREAD
DESCRIPTOR

INDICATED BY
EXIT POINTER

0248

U.S. Patent Mar. 23, 1999

Pig. 8

264

DISPATCH
INSTRUCTIONS

NO

WEST

Sheet 8 of 18

250
BEGIN

LOAD l·CODE INTO
LOCAL I-CACHE

LOAD EXTENSION
LIST INTO CAM

DETERMINE NEXT
INSTRUCTION

ADDRESS

FETCH NEXT
INSTRUCTION(S)
FROM I-CACHE

INSERT I-CODE
EXTENSION(S} INTO

INSTRUCTION STREAM

5,887,166

252

254

256

258

262

0249

U.S. Patent

Pig. 9

3 11

TRANSMIT READ
REQUEST TO
OTHER PEs

UPDATE LOCAL
STATE OF

ACCESSED DATA

3 1 4

livEST

Mar. 23, 1999 Sheet 9of18 5,887,166

2BO
BEGIN

DECODE
INSTRUCTION

ST ALL INDICATED
INSTRUCTION(S)
UNTIL SPECIFIED

SF SET

290

SET INDICATED
SF

3 0 2

SIGNAL THREAD
">----t....i NO. AND EXIT NO.

TO THREAD
SCHEDULER

NO

RECORD ACCESSED DATA
LOCATIONS IN GLOBAL

DISAMBIGUATION BUFFER

EXECUTE INSTRUCTION

BROADCAST WRITE
REQUEST, IF NECESSARY

UPDATE LOCAL STATE
OF WRITTEN DATA,

IF NECESSARY

306
SIGNAL THREAD
SCHEDULER TO
DISCONTINUE
MUL TISCALAR

EXECUTION

3 1 5

3 1 6

3 1 7

3 1 8

3 0 8 END

0250

WEST

U.S. Patent

330

SEND RESET
SIGNAL TO ALL
PEs EXECUTING

SUBSEQUENT
THREADS

332

UPDATE STATUS
OF PEs FOR

WHICH EXECUTION
WAS CANCELLED

334
SCHEDULE
THREADS

WITHIN CORRECT
EXECUTION PATH

Mar. 23, 1999 Sheet 10 of 18

320
BEG IN

COMPARE ACTUAL
EXIT NO. TO SELECTED

EXIT NO.

344

SEND WRITEBACK
SIGNAL TO

SIGNALLING PE

("3 4 2

UPDATE STATUS
OF SIGNALLING

PE AND TP

END

Pig. 10

5,887,166

RESCHEDULE
SPECIFIED THREAD

0251

U.S. Patent

408

WEST

Mar. 23, 1999

{

404

interrupt

resume

402

432

Sheet 1l of 18

a:
0 o,_

<C 0...
w
n:: Cl::
::i::U
I- rl)

w
Cl

Cl::
0

Cl 1-
<C a._
w
a: 0:::
:i::<.l
I- Cl)

w
Cl

406

4 1 0

436

. '
Pig. 11

5,887,166

0252

writeback

read, writeback

read
read request

506

write back
push data

write

write

Pig. 12

write, read

write back
push data

read, write

~ .

-00

0253

502

506

rl500
v

future read request
push data

future write request

future read request
push data

Pig.

future read request
push data

future read request
push data

13

L; .
r.n .

504

future write request

508

0254

32

I-Code Pointer Address (TP offset)

Code Extension Pointer ~'::'-_;_A....:d....:d....:r....:e....:s....:s~(....:T....:P_o.:...:..:.fl....:s....:e....:!L)~~-+-~.:::...:.~...:..:.:.~-1
M e 1 a - T h re a d Li s t P o i n t e r 1-=~_;_A....:d....:d....:r....:e....:s....:s_,_(T....:P....:....:o:...f....:f.:..s.:..e....:t),__-+__,__--=..:...:..:..£1.....:"-----I

Reserved

Exit 0 Pointer .!§. Address (TP offset) . . . • . .
Ex ii N Pointer .!§. Address (TP offset)

Navigation Pointer Address (TP offset)

0

51
Mela Thread O

Pointer Address (TP offset) . .
•

Mela-Thread 0
Pointer

. . .
~ Address (TP offset)

32
• • •

Reserved

Reserved
Reserved

.
•

1 6
1 B

60

Opcode Parm A Parm B J6 2
• •

Extension P Address (ICP offsel) Opcode Parm A Parm B

0 1516 2122 2627 31

THREAD DESCRIPTOR 64 66 68 70
55

Pig. 14

~
Cf'j .
~
~ -~ = -
s:
= ::i
tv
~VJ -l.O
l.O
IC

0255

U.S. Patent

WEST

Mar. 23, 1999

•
•
•

•
•

Sheet 15 of 18

522

542

534

Pig. 15

5,887,166

550

552

0256

WSST

U.S. Patent Mar. 23, 1999 Sheet 16 of 18 5,887,166

BEGIN 600

602

EXECUTE INSTRUCTIONS 1---ii..<
ON SINGLE PE

6 1 2

PASS I-CODE POINTER
AND I-CODE EXTENSION 1-o1t--+--i

POINTER TO FREE PE

UPDATE STATUS
REGISTER

EXECUTE NAVIGATION
INSTRUCTIONS TO
DETERMINE EXIT

ALLOCATE NEW THREAD
REGION FOR

META-THREAD AND PASS
META-THREAD POINTER

TO APPROPRIATE
INSTANCE OF THREAD

SCHEDULER

634

STOP SCHEDULING
THREADS AND WAIT

FOR THREAD REGION
TO BE COMPLETED

WAIT FOR NEW THREAD
REGION TO BE

ALLOCATED

652 Pig. 16

YES

YES

LOAD THREAD
DESCRIPTOR

I ND ICA TED BY TP

PREDICT EXIT

ENTER EXIT NO. IN
THR AD LIST

61 6

620

SELECTED EXIT
POINT CROSSES THREAD

REGION BOUNDARY

642
LOAD THREAD DESCRIPTOR

INDICATED BY EXIT
POINTER ASSOCIATED WITH

SELECTED EXIT POINT

0257

WEST

U.S. Patent Mar. 23, 1999 Sheet 17 of 18 5,887,166

680

DECODE
INSTRUCTION

7 11

TRANSMIT READ
REQUEST TO
OTHER PEs

FETCH DATA FROM
COMMITTED STATE

UPDATE LOCAL
STATE OF

ACCESSED DATA

7 1 4

Pig. 17

STALL INDICATED
INSTRUCTION(S)
UNTIL SPECIFIED

SF SET

INDICATED SF

SIGNAL THREAD
NO, AND EXIT NO.

TO THREAD
SCHEDULER

SIGNAL THREAD
SCHEDULER

TO DISCONTINUE
MUL TISCALAR

EXECUTION

RECORD ACCESSED 715
DATA LOCATIONS IN
THE APPROPRIATE

THREAD REGION
BUFFER IN GLOBAL

DISAMBIGUATION
BUFFER

EXECUTE INSTRUCTION

BROADCAST WRITE TO
ALL SUBSEQUENT
THREADS IN SAME

REGION, IF NECESSARY
RECORD IDENTIFIER OF

WRITTEN DATA IN
THREAD REGION BUFFER

UPDATE LOCAL STATE
OF WRITTEN DATA,

IF NECESSARY

708

END

7 1 6

7 1 7

7 1 8

7 1 9

0258

WEST

U.S. Patent

838

BROADCAST
CONTENTS OF

THREAD REGION
WRITE BUFFER

TO ALL THREADS
IN NEXT THREAD

REGION

Mar. 23, 1999 Sheet 18 of 18

YES

BEGIN

COMPARE ACTUAL
EXIT NO.

TO SELECTED
EXIT NO.

YES

840

WRITE THREAD
RESULTS

TO GLOBAL
COMM'-TED STATE

c842

UPDATE STATUS
OF PE AND TP

EMO

844

Pig. 18

5,887,166

828

RESCHEDULE
SPECIFIED

THREAD

830

CANCEL ALL
SUBSEQUENT

THREADS
WITHIN THE SAME
THREAD REGION

c;-832

UPDATE
STATUS OF PEs

FOR WHICH
EXECUTION

WAS CANCELLED

SCHEDULE
THREADS IN

CORRECT
EXECUTION

PATH

834

0259

WEST

5,887, 166
1

METHOD AND SYSTEM FOR
CONSTRUCTING A PROGR~M INCLUDING.

A NAVIGATION INSTRUCTION

2
processrng operations performed by the execution uniK
Under tbe control of the sequencer, the architecled registers
~re rena_med m orcler lo alleviate data dependencies between
lJlStruclJOns.

BACKGROUND s State-of-the-art superscafar proc_es.sors afford a perfor-
mance of between 1 and 2 _mslrucl10ns pe! cycle (IPC) by,
among other tlnngs, perm1ttmg speculative execution of
instructions based upon the dynamic prediction of condi-

1. Teclmical Field
T11e technical field of the present specification relates in

general to a metl1od and system for data and in
particular to a method and system for data

10 processing.
2. Cross-Reference to Related Applications

tional branch irntruclions. Because superscaiar processors
bave no advance knowledge of the ccntroi flow graph (CFG)
(i.e., the control relationships linking basic blocks) of a
program prior to execution, !PC performance is ne•:esc'"1·11v
limited by branch prediction accuracy. Thus, increasing
performance of the superscalar paradigm requires nol

This application is related to the following patent
applications, which are incorporated herein by reference:

(1) application Ser. No. 081767,488 (Attorney Docket No. 15 improving the accuracy of the already highly
branch prediction mechanism, but also supporting a broader
instruction issue bandwidth, which requires exponentially

sequencer circuitry to analyze instructions and
instruction dependencies and antidcpendencies.

AT9-96-223), entitled "METHOD AND SYSTEM FOR
CONSTRUCTING A MULTISCALAR PROGRAM
INCLUDING A PLURALlTY OF TI!READ DESCRIP
TORS THAT EACH REFERENCE A NEXT 1HREAD
DESCRIPTOR TO BE PROCESSED," filed of even date
herewith;

{2) application Ser. No. 081767,488 (Attorney Docket No.

20
Because of the inherent difficulty in overcoming the perfor
mance bottlenecks of the superscalar paradigm, the devel
opment of increasingly aggressive and complex superscalar
processors has a dirninishiog rate of return in terms of !PC
performance.

AT9-96-187), entitled "PROCESSOR AND METHOD FOR
DYNAMICALLY INSERTING AUXILIARY INSTRUC
TIONS W!Tll!N AN INSTRUCITON STREAM DURING 25
EXECUTION," filed of even date herewith;

(3) application Ser. No. 08(167,489 (Allorney Docket No.

An alternative processing paradigm is that provided by
parallel and multiprocessing data processing systems, which
although having some distinctions between them, share
several e.ssential characteristics. Parallel and multiprocessor
data processing systems, which each typically comprise

AT9-96-185), entitled "METIIOD AND SYSTEM FOR
CONCURRENTLY EXECUTING MULTIPLE TIIREADS
CONTAINING DATA DEPENDENT INSTRUCTIONS,"
filed of even dale herewith;

(4) application Ser. No. 08(767,487 (Attorney Docket No.
AT9-96-224), entitled "METHOD AND SYSTEM FOR
EXECUTING A PROGRAM WITHIN A MULTISCALAR
PROCESSOR BY PROCESSING LINKED THREAD
DESCRIPTORS," filed of even date herewith; and

30 multiple identical processors and arc therefore collectively
referred to hereinafter as multiple processor systems,
execute programs out of a shared memory accessible lo the
processors across a system bus. The shared memory also
serves as a global store for processing resul!S and operands,

(5) application Ser. No. 081767,490 (Attorney Docket No.
AT9-96-186), entitled "METHOD AND SYSTEM FOR
CONSTRUCTING A PROGRA.\1. INCLUDING OUT-OF
ORDER TI-IRE.ADS A.ND PROCESSOR AND MEfHOD
FOR EXECUTING TIIREADS OUT-OF-ORDER," filed of
even date herewith.

35 which are managed by a complex synchronization mecha
nism to ensure that data dependencies and antidependencies
between instructions executing on differen! processors are
resolved correctly. Like superscalar processors, multiple
processor systems are also subject to a number of perfor-

40 mance bottlenecks.

3. Description of the Related Art
In the development of data processing systems, it became 45

apparent that the performance capabilities of a data process
ing system could be greatly enhanced by permitling multiple
instructions to be executed simultaneously. From this
realiwtion, several processor paradigms were developed
that each permit multiple instructions to be executed con- 50
currently.

A significant performance bottleneck in multiple proces
sor systems is the latency incurred by the processors in
storing resu!Ls to and retrieving operands from the shared
memory across the system bus. Acccrdingly, in order mini
mize latency and thereby obtain efficient operation, compil
ers for multiple processor systems arc required to divtde
programs into groups of instructions (tasks) between which
control and data dependencies ate identified and minimized.
The tasks are then each assigned to one of the multiple
nrr;cc'-'o"' for execution. However, this approach lo task

is not suitable for exploiting the instruction level
parallelism (!LP) inherent in many algorithms. A second
source of performance degradation in multiple processor
systems is the requirement that control dependencies

55 between tasks be resolved prior to the dispatch of subse-

Asuperscalar processor paradigm is one in which a single
processor is provided with multiple execution units that are
capable of concurrently processing multiple instructions.
Thus, a superscalar processor may include an h1s1.ruction
cache for storing instructions, a(least one fixed-point unit
(FXU) for executing fixed-point irnlruclions, a fioating
point unit (FPU) for executing !loating-point instructions, a
load/store unit (LSU) for executing load and store
instructions, a hranch processing nail (BPU) for executing 60

branch instructions, and a sequencer that fetches instructions
from the instruction cache, examines each instruction
individually, and opportunistically dispatches each
instruction, possibly out of program order, to the appropriate
execution unit for processing;. ln addition, a superscalar 65
processor typically iacl1ldes a limited set of architected
registers that temporarily store operands and results of

quent tasks for execution. The failure of multiple processor
systems to provide support for speculative task execution

nrnre.<'""''·' within the multiple processor systems
cycles while waiting for inter-task control

de1ien.de11ci1os lo be resolved. Moreover, the development of
for multiple processor systems is complicated by

the need to explicitly encode fork information within
meaning tbat multiple processor code cannot be

poried lo systems having diverse architectures.
a new aggressive "rnultiscalar" paradigm, com
hardware and software elements, was proposed

and overcome the drawbacks of the conventional

0260

WEST

5,887,166
3

superscalar and multiple processor
above. In general, the proposed hardware a collec
tion of processing units that am each coupled to a sequencer,

4
also has several deficiencies. First, backward compatibility
of code binaries is sacrificed due to the iosertion of release
and other multiscalar instructions into the program to handle
task svnchronization. Second, multiscalar simulations have
show~ lhal the insertion of a large amount of multiscalar
instructions that do no useful work into a program can
actually degrade mulliscalar performance to such an extent
that better performance may be obtained with a conventionaJ
superscalar processor. Third, the attachment of additional

an interconnect for interprocessor communication, and a
single set of regi,ters. According lo the proposed multiscalar
paradigm, a compiler is provided that analyzes a program in
terms of ils CFG and partitions a program into multiple
tasks, which comprise contiguons regions of the dynamic
instruction sequence. [n cootrasl lo conventional multiple
processor tasks, the tasks created by the multiscalar compiler
may or may not exhibit a high degree of control and data
independence. Importantly, the compiler encodes the details
of the CFG in a task descriptor within Ure instruction set
architecture (!SA) code in order to permit the
sequencer to traverse the of the and specula-

10 bits to each instrnction in the program, which was proposed
ill order to trigger the forwao.ling of processing results from
a predecessor task to subsequent tasks, necessitates an
increased instruction path width and additional hardware
complexity. Fourth, the proposed mulliscalar paradigm ha.s

lively assign tasks to the for execution
without examining the contents of tasks.

15 no mechanism for handling dependencies between loads and
stores lo memory. Fifth, in the proposed multiscala r
architecture, all tasks except the oldest are executed
speculatively, meaning that even if task prediction accuracy
is 90%, the prediction accuracy for tasks beyond the fifth

According to the proposed ornlliscalar paradigm, register
dependencies are resolved statically by the compiler, which
analyzes each task within a program to determine which
register values each laskmight possibly create during execu
tion. The compiler then specifies the register values lhat
might be created by each task within an associated register
reservation mask within the task descriptor. lbe register
reservations seen by a given !ask are the union of the register 25

reservation masks associated with concurrently executing

20 task drops below 60%.

tasks that precede the given task in order. During
execution of the program, a unit exernting an
instruction dependent upon a register value that might be
created by a concurrently executing task stalls until the 30
register value is forwarded or the reservation is released by
the preceding task. Upon release of the register or receipt of

As should thus be
provide an that overcomes
the foregoing and other deficiencies of the proposed multi
scalar processor paradigm.

SUMMARY

It is therefore one object of the pre.sent disclosure to
provide an improved method and system for data process
ing.

It is another object of the present disclosure to provide an
improved method and system for mulliscalar data process
ing.

The foregoing objects are achieved as is now described.
A method and system are provided for constructing a

a forwarded register value by the stalled processing unit, (be
reservation for the register is cleared within the register
reservation mask of the stalled processing unit and the
stalled processing unit resumes execution. In order to trigger

35 program executable hy a processor including one or more

the forwarding of register values, the adds tag biL'
lo each inslrnction within a task. '!be associated with
the last instrnction in a task to create a particular register

processing elements for threads and a !!tread
scheduler for assigning threads to processing elements
for execution. According to the method, a plurality of
threads are provided that each include at least one control

value indicate that the is lo be forwarded to all
concurrently executing subsequent to the task in pro-
gram order. Release of a on the other hand, is
indicated by a special release added to the base
ISA or created by overloading an existing instruction within
the ISA

40 flow instruction. From one or more control llow instructions
within the plurality of threads, a condition upon whicb
execution of a parti.cnlar thread depends is determined. In
response to the determination, al least one navigation
instruction executable the thread scheduler is created that

45 indicates that the thread is to be assigned lo one of
In contrast to register dependencies, the proposed multi

scalar paradigm does not attempt to statically resolve
memory dependencies and load and store instruc-
tions to be executed A dynamic check must
then be made to ensure that no preceding task stores to a 50
memory location previously loaded by a subsequent task. If
such a dependency violation is detected, the execution of !he
task containing the speculative load and all subsequent tasks
are aborted and appropriate recovery operations are per
formed. Further dctaiL5 of the proposed multiscalar archi- 55
lecture may be found in G. S. Sohi, S. E. Breach, and T. N.
Vijaykumar, "Mul!iscalar Processors," Proc. !SCA '95 lnr'I
Symposium on Computer Architecture, June 1995, pp.
414-425.

Tue proposed multiscalar overcomes many of 60

the deficiencies of other in that the multiscalar
paradigm affords a wide window from which
instructions can be dispatched utilizing relatively simple
scheduling hardware, L' less sensitive to in!er-task data

the processiog for execution in response to the
condition.

The above as well as additional objects, features, and
advantages of an illustrative embodiment will become
apparent in the following detailed written description.

BRlEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
lo the followiog detailed description of an illustrative
embodiment when read in conjunction with the accompa
nying drawings, wherein:

FIG. 1 illus!ra.tes a conceptual diagram of a process for
constructing a multiscalar program, wherein the rnultiscalar
program includes Instruction Code (I-Code) and
Thread Code streams;

FIG. lB level logical flowchart of an
dependencies and branches, and is capable of 65 illustrative proccs.s by which a mullisca-
exploiting the !LP to be in most sequential
programs. However, the multiscalar architecture

lar compiler builds the T-Code stream of the rnultiscalar
program;

0261

5,887,166
5

FIG. 2 depicts an illustrative embodiment of a thread
descriptor within the T-Code stream depicted in FIG. 1;

FlG. 3 illustrates an exemplary multiscalar program frag
ment !~at includes possibly dependent instruction set archi
tecture (ISA) instructions synchronized by SetFlag and
WaitFlag extension instructions, wherein the program frag
ment further includes an inter-thread control dependency
that may be resolved by executing a set ofT-Code navigation
instructions created by the umll!scalar compiler;

Fl G. 4 is a block diagram depiction of an illustrative
embodiment of a mull!scalar data processing system;

FIG. S illustrates a more detailed depiction of the global
synchronization Jlags (SFs) illustrated in FIG. 4;

FIG. 6 depicts a timing diagram of the pipelined process·
ing of the threads of a multisca]ar program, wherein the
thread pipeline includes thread scheduling, thread execution,
and thread completion stages;

1'1G. 7 is a high level logical flowchart of a method of
thread scheduling when threads are processed according to
logical program order;

FIG. 8 is a high level logical llowchart of a method for
fetching and dispatching instructions within a processing
clement, which iUustrates the dynamic insertion of extension
instructions into the instruction stream of the processing
elemenl;

FIG. 9 is a high level logical flowchart depicting a method
of executing instructions within a processing element when
threads arc processed in logical program order;

FIG. IO is a high level logical flowchart illustrating a
method of completing threads when threads are processed in
logical program order;

FIG. 11 illuslra!es the execution of the I1iread Code
(T-Code) and Instruction Code (I-Code) streams comprising
a multiscalar program, wherein multiscalar execution of !he
multiscalar program is initia!ed by a SetTP instruction
embedded within the I-Code stream;

Fl G. 12 depicts a sta!e diagram of the protocol utilized by
lhe processing elemen!s (PEs) within the multi.scalar pro
cessor illustrated in FIG. 4 to maintain local register and
memory data coherency in response to local events;

FIG. 13 illustrates a stale diagram of the snooping pro·
tocol utilized by the PEs within the multi.scalar processor
depicted in FIG. 4 to maintain local register and memory
data coherency in response to extemal events;

FIG. 14 depicts an illustrative embodiment of a T-Code
thread descriptor utilized to support out-of-order execution
of threads;

FIG. 15 illustrates the partitioning of threads within a
nmlliscalar program into multiple thread regions;

flG. 16 is a high level logical llowcliart depicting a
method of scheduling threads for out-of-order execution;

6
scalar processor hardware, an introduction to the improved
mulliscalar software architecture will first be given.
Software Architecture

With reference now to the figures and in particular with
reference to FIG. lA, there is a conceptual diagram of a
process for constructing a mulliscalar program is illustrated.
A5 depicted, au ordinary high level language (e.g., C++)
program 10 containing a number of high level instructions
12 is input into mulliscalar compiler 14 for processing.

10 During a first pass, multi.scalar compiler 14 translates each
of high level instructions 12 into one or more executable
instruction set architecture (!SA) instructions 16 arranged in
a particular program order. In addition, multisca!ar compiler
14 partitions ISA inslructions 16 into one or more threads

1.s 18, which each contain a logically contiguous group of lSA
ins!ructions 16. As utilized hereinafter, the term thread refers
to a set of one or more logically contiguous instructions
within a multiscalar program that have a single entry point
and multiple possible exit points. In other words, when a

20 thread is executed, the first instruction within the thread is
always executed, but there are multiple possible execution
paths out of the thread. Importantly, the mu.Jtiscalar software
architecture disclosed herein permits each !SA instruction 16
to be included within more than one !bread 18 and does not

25 utilize the explicit programmed forks required by conven
tional multiple processor software architectures. Threads 18
can be distinguished from basic blocks 20 in that basic
blocks 20 are sets of sequeutial ISA instructions terminated
by a braoch instmction. Basic blocks 20 have only two exit

30 points, but may have two or more entry points. The set of
threads 18 produced by the first pass of multiscalar compiler
14 forms lostruc!ion Code (l-C-0de) stream 22.

Becau.se threads 18 are not necessarily substantially data
and control independent (in contrast to those processed in

35 parallel and multiprocessor systems), information describ
ing the CFG of program 10 and inter-thread data dependen
cies must be made available to a multiscalar processor
during execution in order to permit concurrent execution of
multiple threads. Accordingly, during a second pass mulli-

40 scalar compiler 14 generates a Thread Code (T-Code) stream
30 including a oumber of thread descriptors 32 that are each
as.'ociated with a respective one of threads 18. Each thread
descriptor 32 provides the information needed to support
multi.,calar thread scheduling, thread prediction, and thread

45 synchronization, including (as depicted io FIG. 1) pointers
to both the corresponding thread 18 and subsequent thread
descriptors 32. I-Code stream 22 and T-Code stream 30
together comprise a multiscalar program 34 executable by
the multiscalar data processing system described below wilb

so reference to FIG. 4.

FIG. 17 is a high level logical llowchart illustrating a 55
method of executing instructions witliin a processing ele
ment when threads are processed out-of-order; and

With reference now lo HG. 2, there is depicted a more
detailed diagram of an illustrative embodiment of a thread
descriptor 32 associated witb a thread 18. As illustrated,
thread descriptor 32 is a data structure containing a number
of 32-bit eutrics. The first 32-bit entry contains a 24-bit
I ·Code pointer 40 tbat indicates the address of tbe first !SA
instruction 16 within thread 18 relative to the address
indicated by a hardware-maintained thread pointer (TP). As
described above, the ISAinstruclioo 16 pointed to by I-Code

FIG. 18 is a high level logical flowchart depicting a
method of completing threads when threads are processed
out-of-order.

DETAILED DESCRIPTION

60 pointer 40 will be the first instruction executc.d within thread
18. The first 32-bit entry also includes 4 bil> thllt indicate the
number of possible exit points wilbin the associated thread
18. TI1e mulliscalar processing paradigm disclosed herein

overcomes numerous deficiencies of the previously pro·
posed multiscalar paradigm through improvements tn both 65
the multiscalar hardware and software architectures. In order

As illustrated, tbrcad descriptor 32 also includes at least
two 32-bit entries that each contain a 24-bit exit pointer 46.
Each exit pointer 46 is associated with a possible exit point
of tbread 18 and indicates a TP-relative address of a thread to facilitate an understanding of the operation of the multi-

0262

5,887,166
7

descriptor 32 associated with the next tillead 18 to be
executed if the associated exit point of the current thread 18

8

is taken or predicted as taken. The 32-bit entries containing
exit pointers 46 also include an 8-bil reserved section that
may be subsequently defined to provide (urther exit infor- 5

malion. Future improvements to the nmltiscalar architecture
disclosed herein may also be supported by defining the
reserved 32·bit entries indicated al reference numeral 44.

Th11s, in the present example, thread C is a producer of the
value of GPR3 and thread F is a consumer of the value of
GPR3. During compilation ofmultiscalar program 80, mul-
tiscalar compiler 14 inserts a WailFlag extension instruction
in extension list 60 of thread F that is associated with the
instruction address of ISA instruction 88. The WaitF!ag
extension instruction specifies that it is lo be inserted into
thread F prior to ISA instruction 88 so tbat execution of ISA
instruction 88 (and possibly other instructions within thread
F) is stalled until a specified SF is set. In addition, multi
scalar compiler 14 inserts a SetFlag extension instruction in
extension list 60 of thread C that is associated with the
instruction address of ISA instruction 86. 111c Set.Flag exten·
sion instruction specifies that it is to be inserted into thread
C following ISA instruction 86. Furthermore, multiscalar
compiler 14 inserts a SetFlag extension instruction into
extension list 60 of thread E so that, if control pas.ses from
thread [3 to thread E lo thread F during execution, the

Thread descriptor 32 further contains a 24-bit I-Code
Extension pointer 42 that points to an extension list 60 10

containing auxiliary extension instructions that arc to be
dynamically inserted into thread 18 by the mult~'calar
processor hardware during execution. The length of (i.e.,
number of entries within) extension lL't 60 is specified by the
final 8 bits of the 32-bit entry. Referring now to extension list J 5
60, each of extension tist entries 62 contains a 26-bit addre&S
identifier 64 that indicates, relative lo I-Code pointer 40, the
address of an ISA instruction 16 within thread 18. The
indicated instruction address specifies the location within
thread 18 at which the extension instruction defined by 6-bit
opcode 66 is to be dynamically inserted. Finally, each
extension list entry 62 can optionally include parameters 68
and 70. Depending upon the type of extension instruction
defined by opcode 66, parameters 68 and 70 can be utilized

20 execution of thread F is not unnecessarily stalled by the
WaitFlag extension instruction.

lo contrast lo possible register data dependencies, which
are always detected and syncbroni7A?d utilizing SetFlag and
WailFlag extension instructions, multiscalar compiler 14

to indicate whether the extension instruction is lo be
executed prior to, subsequent to, or in conjunction with the
ISA instruction 16 indicated by address identifier 64. As will
be appreciated by those skilled in the art, multiple extension
instructions may be associated with a single ISA instruction
address.

Following L' a description of a number of instruction
extensions that can be inserted into extension lisLs 60 by
multiscalar compiler 14 in order ta support thread
scheduling, thread prediction, and thread synchronization:
Set.Exit: Marks a possible exit point of a thread;
SetStop: Marks a possible exit point at which multiscalar

execution terminates if the possible exit point is taken;
SetFlag: Sets a specified hardware-maintained synchroniza -

tion flag (SF) lo indicate that register or memory data is
available for use by subsequent threads;

WaitFlag: Delays execution of one or more specified instruc
tions within a thread until a specified SF is set; and

ChainFlag: Sers a second SF in response to a first SF being
set.

In order to minimize penalties attributable lo inter-thread
data hazards, multiscalar compiler 14 utilizes SetP!ag and
Waitf!ag ex!ension instructions to resolve every inter-thread
register data dependency (although hardware support is also
available a.< discussed below with reference to FIG. 4).
Accordingly, multiscalar compiler 14 preferably creates a
SetF!ag extension instruction in the extension list 60 of the
thread that produces a data value and creates a Wait.Flag
extension instruction in the extension list 60 of the thread
that consumes the data value. In addition, i(the execution
path between two threads is not control-independent, mul
tiscalar compiler 14 creates SetF!ag extension instructions
within the alternative execution pat.h(s) in order to ensure
that the consuming thread can proceed as soon as the dal.a
dependency (or possible data dependency) is resolved.

For example, referring to FIG. 3, there is illustrated a
fragment of a multiscalar program for which multiscalar
compiler 14 will create Set.Flag and WaitFlag extension
instructions. As depicted, thread C contains ISA instruction
86, which specifies that the sum of registers GPRl and
GPR2 is lo be calculated and stored within GPR3. Thread F
contains ISA instruction 88, which specifies that the sum of
GPR3 and Gl'R4 is to be calculated and stored within GPRl.

25 only utilizes the SetFlag and Wait.flag extension instructions
to synchronize disamhiguable memory data accesses (i.e.,
memory data accesses known lo be dependent because the
target addresses can be statically determined). Other

30
memory data accesses are assumed to be independent by
multiscalar compiler 14 and are monitored by the multisca
lar processor hardware described below in order to prevent
data inronsistencies.

Referring again to FIG. 2, thread descriptor 32 may
35 optionally include an entry containing a 24-bit navigation

pointer 48 that points to a set of navigalion instructions 50.
In accordance with the illustrative embodiment of a mulli
scalar data processing system described below with refer·
ence to FIG. 4, navigation instructions 50 may be utilized by

40 the multi.scalar processor's thread scheduling hardware to
traverse the CFG of I-Code stream 22 in a non-speculative
fashion.

With reference again lo FIG. 3, multiscalar program 80

45 also illustrates a scenario in which multiscalar compiler 14
may create a set of navigation instructions 50 in order to
facilitate non-speculative thread scheduling. As depicted,
thread A of multiscalar program 80 contains !SA instruction
82, which sets a variable X to a particular value. Thread B

50 contains ISA instruction 84, which cau.ses control to pass ta
thread E if X has a value greater than or equal to 0 and lo
pass lo thread C if X has a value less lhan 0. If multiscalar
program 80 were exe~'Uled in the previously proposed mul
tiscalar processor, the sequencer hardware would simply

55 predict one of the exiL' of thread B and speculatively assign
the indicated one of threads C and E to a processing element
prior to the execulion of ISA instruction 84. In contrast,
according to the mul!iscalar paradigm disclosed herein,
mu!tiscalar compiler 14 identifies ISA instruction 82 as a

60 condition setting instruction and ISA instruction 84 as an
inter-thread control flow instruction that depends upon the
condition set by ISA instruction 82. Multiscalar compiler 14
then inserts a navigation pointer 48 into thread B's thread
descriptor 32 t.hat points to a set of navigation instructions 50

65 also created by multiscalar compiler 14. The set of naviga
tion instructions 50 created by multiscaiar compiler 14 for
thread B may be expressed as follows:

0263

5,887,166
9

tf x < 0
fork C

fork n
cndif;

By malting these navigation instructions available to the
thread scheduler hardware at runtime through navigation
pointer 48, the thread scheduler can schedule one of threads
C and E to a processing element for non-speculative execu
tion. lbus, in this instance, the penalty for exit misprediction
is totally eliminated. Multiscalar compiler 14 can also pro
vide such control flow information for other types of inter
thrcad control flow instructions, including if-then-else and
loop constructs. Importantly, tbe navigation instructions 50
generated by multiscalar compiler 14 can alternatively be
accessed by an extension pointer 64 within extension list 60.
Furthennore, navigation instructions 50 can be executed
within a processing element of the rnulliscalar processor on
behalf of the thread scheduler.

With reference now lo FJG. lB, there is depicted a high
level logical flowchart that summarizes the method by which
multi.scalar ccmpiler 14 constructs T-Code stream 30 in an
illustrative embodiment. As illustrated, tlie process begins at
block 90 in response to mulliscalar compiler 14 translating
high level instructions 12 into ISA instructions 16 and
partitioning ISAinstructiorn 16 into one or more threads 18,
which as described above each include a single entry point
and a plurality of possible exit points. lbe process then
proceeds to block 91, which depicts mulliscalar compiler 14
creating an empty thread descriptor 32 associated with each
thread 18. The process proceeds from block 91 to block 92,
which depicts mulliscalar compiler 14 identifying the next
thread to be executed in program order following each
possible exit point of threads UL Multiscalar compiler
utilizes the exit information to insert appropriate exit point-

10
stream 22 preferably includes at least one SelTP instruction
near the beginning that triggers concurrent execution of
threads 18 by initializing the value of the hardware 11'. In
order to maintain software compatibility with prior proces-

s sor paradigms, the SetTP instruction preferably overloads a
seldom used instruction witbin the (SA, such as an alterna
tive form of a uoop or branch instruction. I -Code stream 22
preferably also includes SetTP instructions at locations
scattered throughout I-Code stream 22. 11ie additional SelTp

10
instructions permit concurrent execution of threads 18 lo be
resumed following an exception or other interruption of
multi.5calar execution and are ignored by hardware if threads
18 are being executed concurrently.

Having provided an overview of an illuslralive embodi
ment of the improved multiscalar software architecture, the

15 hardware architecture will now be described.
Hardware Architecture

Referring now lo FIG. 4, there is depicted an illustrative
embodiment of a multiscalar data processing system As
illustrated, the multiscalar data proce.%ing system includes a

20 multi.scalar processor 100, which is coupled to system
memory 112 and other unillustrated components of the
multiscalar data processing system via system bus 114. As
depicted, multi.scalar processor lOO includes processor inter
face circuitry 120, which comprises !be latches and support

25 circuitry necessary to communicate data and instructions
between system bus 114 and unified level two (I.2) cache
122. As a unified cache, L2 cache 122 stores a copy of a
subset of both the data and instructions residing in system
memory 112 for use by multiscalar processor 100 during

30 execution. Coherency between the data stored within U
cacbe 122 and system memory 112 is maintained utilizing a
conventional cache coherency pro!Dcol. Multiscalar proces'
sor 100 further includes arcbitecled register file 124, which
in addition lo providing register storage for data and coo-

35 dition information, include.~ instruction pointer (IP) 126,
which indicates the instruction address at which multiscalar

ers and exit counts within thread descriptors 32. Next, the
process passes to block 93, which illustrates rnultiscalar
compiler 14 identifying inter-thread data dependencies by 40

analyzing the register IDs and memory addresses accessed

processor 100 is current! y executing non-speculative] y. As
described in greater detail below, multiscalar processor 100
is capable of executing multiple threads concurrently, only
one of which is typically executing non-speculatively. Thus,
IP 126 marks the current point of execution in this non-

by ISA instructions 16. As depicted al block 94, mulliscalar
compiler 14 milizes the exit information ascertained at block
92 and the data dependency information collected at block
93 to create an extension list 60 associated with each 45

respective thread 18. As described above, extension lists 60
contain the extension instructions utilized by the multi.scalar
processor hardware to resolve identified inter-thread data
dependencies and to identify possible exit points of threads.
Multiscalar compiler also creates an I-Code extension 50

pointer 42 within each thread descriptor 32 that references
the associated extension list 60. The process then proceeds
from block 94 to block 95, which illustrates multiscalar
compiler 14 analy1ing the control flow inslruction(s) adja
cent to each thread boundary to determine if !be conditions 55
upon whicb the control flow ins!ructioos depend can be
resolved prior to prediction of ao exit point o(the thread"

speculalive thread. Jn contrast to information maintained
within the execution circuitry of multiscalar processor 100,
information within arcbitected register file 124, U cache
122, and processor interface circuitry 120 is in a committed
stale, meaning that this information constitutes a non-
speculative, consistent machine state to which rnultiscalar
processor 100 cao return upon interruption.

Still referring lo FIG. 4, !be execution circuitry of rnul
tiscalar processor 100 includes thread scheduler 130 and a
scalable number of identical processing elements (PEs),
which in the illustrative embodiment include PEs 132, 134,
136, and 138. In accordance witb the multiscalar software
architecture described above, thread scheduler 130 pro·
cesses thread descriptors within the T-Code stream of a
multiscalar program in order lo assign multiple threads to
PEs 132-138 for concurrent execution. In order to reduce
access latency, thread scheduler 130 is equipped with a
'I'Code cache 44 that stores the thread descriptors, thereby

As desc,-ribed above with reference to FIG. 3, in response to
detection of a control flow condition that can be resolved
prior to exit prediction, multiscalar compiler 14 creates a set
of navigation instructions 50 executable by or on behalf of
the thread scheduler and inserts a navigation 1iointer 48
within the thread descriptor 32. The process proceeds from
block 95 to optional block 96, which is described below with
reference to FIG. 14, and therea(ler terminates al block 97.

60 establishing separate fetch paths for tbe]-Code and T-Code
streams. As noted above, ordinarily only one of PEs
132-138 executes non-speculatively at a time. The uon
spcculative thread, which is the earliest occurring thread in
program order among the executing threads (and the thread

Referring again to FlG. 2, in order to permit selective
multi,calar execution of multiscalar program 34, I ·Code

65 that contains the instruction lo which IP 126 points), is
indicated by thread pointer (TP) 142 maintained by thread
scheduler 130.

-

0264

5,887,166
11 12

Tb read scheduler 130 also includes exil prediction mecha
nism 140, which is utilized by thread scheduler 130 to
predict exits of threads. In a first embodiment of multiscalar
processor 100, exit prediction mechanism 140 comprises a
static prediction mechanism !bat predicts one of lbe possible
exits of a lhrcad based upon information supplied by mul
tiscalar compiler 14. For example, multiscalar compiler 14
could be constrained to list ihe statically predicted exit
within tbe thread descriptor as Exit 0, thereby indicating to
exit prediction mechanism 140 that this exit should be lO

selected. Exit prediction mechanism 140 can alternatively be
implemented as a history-based dynamic prediction mecha
nism like that utilized in a superscalar processor to predict
branch resolutions

arbitration logic 172. Further details of local communication
and synchronization mechani'm 170 may be found in J. L
Hennessy and D. A Patterson, "Computer Architecture: A
Quantitative Approach," second ed., Morgan Kaufrnaon
Publishers, Inc., pp. 655-693, which is incorporated herein
by reference. The inter-PE aod PE-L2 communication coo
ducted by communicalioo and synchronization logic 152 is
governed by the data coherency protocol depicted in FIGS.
12 and 13.

Referring now lo FIGS. 12 and 13, two state diagrams are
shown that together illustrate the data coherency protocol
implemented by multiscalar processor 100 for both register
and memory da!a. For clarity, FIG. 12 shows the portion of
the data coherency protocol relating lo local (intra-PE)
evenL,, while FIG. 13 shows !he portion of the data coher
ency protocol relaliog to external (inter-PE) events received

A' illustrated, thread scheduler 130 further includes a 15
thread fat (TL) 146 tilat records, in association with an
arbitrary thread number, the exit number of each exit
selected by thread scheduler 130. The thread number is
utilized to identify the !bread containing the selected exit in
communication between thread scheduler 130 and PEs 20

132-138. In the illustrative embodiment, thread scheduler
130 tracks whicb of PEs 132-138 is (are) free utilizing a
4-bit status register 148 in which the stale of each bit
indicates whether a corresponding one of PEs 132-138 is
free or busy. Status register 148 is updated each time a thread 25
is scheduled to or completed by one of PEs 132-138.

from local communication and synchronization mechanism
170. Because the data coherency protocol includes five
states, the state of each data word in data cache 156 and each
register within GPR cache 154 is preferably tracked utilizing
three status bits. Those skilled in the art will appreciate from
the following description that the data coherency protocol
could alternatively be implemented within multi.scalar pro
cessor 100 utilizing a direetory-based coherency mecha
nism.

With reference first to FIG. 12, when execution of a
multiscalar program begins, all data locations within GPR
cache 154 and data cache 156 of each of PEs 132-138 are
initially in invalid stale 500. In response to receipt of an

Referring to PEs 132-138, the central component of each
of PEs 132-138 is an execution core 158 that executes
instructions contained within an assigned thread. lo a pre
ferred embodiment, execution core 158 contains superscalar
circuitry that supports intra-thread branch speculation aod
includes multiple execution units capable of executing mul
tiple ISA instructions out-of-order during each cycle.
However, based upon design and cost considerations, execu
tion core 158 of PEs 132-138 can alternatively employ any
one of a number of diverse hardware architectures. For
example, execution core 158 may comprise a single execu
tion resource that executes ISA instructions sequentially.
Regardless of which hardware architecture is utilized to
implement execution core 158, each execution core 158
includes an instruction sequencer that fetches and dispatches
inslruclions and al least one execution resource that executes
instructions.

Local storage is provided to each execution core 158 by
an associated instruction cache 150, data cache 156, and
GPR cache 154, which respectively store the ISA
instructions, memory da!a values, and data and condition
register values required by the associated execution core 158
during execution. Each execution core 158 is afao coupled lo
CAJ'v[160 lb at stores the extension list associated with the
thread executing within the associated execution core 158.
Extension instructions in the extension list are dynamically
inserted into the thread executed by the associated execution
core 158 in accordance with lhe method described below
with respect to FIG. 8.

Each of PEs 132-138 further includes communication and
synchronization logic 152, which is coupled to both GPR
cache 154 and data cache 156. Communication and syn·
chronization logic 152 maintains register and memory data
coherency (i.e., the availability of data to the associated PE)
through inter-PE and PE-L2 communication across local
communication and synchronization mechanism 170,
which, in order to reduce latency, preferably includes four
concurrenl address busses for reglslcr communication and at
least one address bus for memory communication. Commu
nication across local communication and synchronization
mechanism 170 1s performed under the arbl!rating control o(

30 instruction within a thread, an execution core 158 within a
PE requests data required for execution of the instruction
from its local GPR cache 154 or data cache 156. ff the data
location associated with the requested data is in invalid slate
500, meaning I.hat the requested data is not present locally,

35 communication and synchronization logic 152 broadcasts a
read request indicating the register number or memory
address of tbe required data on local communication and
synchronization mechanism 170, which~~ snooped by each
of PEs 132-138. As depicted in FIG. 13, the communication

40 and synchronization logic 152 within PEs that have the
requested register or memory data in any of valid state 502,
dirty stale 504, valid hazard stale 506, or dirty hazard slate
508 responds to the read request by indicating ownership of
the requested data. PEs for which the requested data is in

45 irwalid state 500 do not respond. Based upon thread issne
order information obtained from thread scheduler 130, arbi
tration logic 172 signals the responding PE executing the
nearest preceding thread in program order to place the
requested data on local communication and synchronization

so mechanism 170. However, if no PEs respond to lhe read
request broadcast on local communication and synchroni
zation mechanism 170, the communication and synchroni
zation logic 152 within the requesting PE retrieves the
required register or memory data from architecled register

55 file 124 or L2 cache U2, res']Jectively. Referring again to
FIG. 12, once the requested data is read into GPR cacbc 154
or data cache 156 of the requesting PE, communication and
synchronization logic 152 updates the stale of I.he data
location from invalid stale 500 to valid slate 502. Data in

60 valid state 502 is "owned" by the PE and hence can be
utilized as an operand for subsequent instructions.

As depicted, communication and synchronization logic
152 updates a register or memory data location in invalid
state 500 or valid state 502 lo dirty (modified) stale 504 in

65 response to the local exe<--ution of a store or other instruction
that writes data to lhe data location. A register or memory
location in dirty stale 504 does not change slate in response

0265

5,887,166
13

lo a local execution of an instruction that writes to tbe data
location. Dirty state 504 is similar to valid state 506. in that
data locations in dirty slate 504 are also owned a PE and thus
can be utilized as a source of operands for subsequent
inslruclions. However, in contrast to data locations in valid s
state 502, data locations in dirty stale 504 are written back

14
thread number of the load instruction follows the thread
number of the store instruction in logical program order, and
(2) there is no intervening store to the target addres.s within
the thread containing the load instruction, thereby indicating
tbat lhe load inslruction was dependent upon a store
instruction, global disambiguation buffer 182 signals that a
data inconsistency (hazard) has been detected by generating
a cancellation signal. lo respouse to a cancellation signal
generated by global disambiguation buffer 182, all threads
subsequent lo the thread containing the load instruction are
cancelled and the thread containing the load instruction is
reexe<--ulcd utilizing the correct memory data.

'The cancellation of threads in response to the detection of
a data inconsistenc-y cau be handled in at least two ways,

lo architected register file 124 and l2 cache 122 (i.e., !he
committed slate) by communication aod synchronization
logic 152 in response to a receipt of a wrileback signal
during thread completion in order lo update modified data JD

locations. Importantly, following thread completion, data
locations in valid state 502 do not undergo a state transition,
leaving GPR cache 154 and data cache 156 "primed" with
valid data that can be accessed by a subsequent thread
executed locally or within another PE.

Referring again to FIG. 13, the data coherency protocol
utilizes valid hazard state 506 and dirty hazard state 508 lo

mark data locations that have been written by PEs executing
future threads in logical program order. Thus, communica
tion and synchronization logic 152 updates a data location in 20

valid state 502 to valid hazard state 506 and updates a data
location in dirty stale 504 . to dirty hazard slate 508 in
response to receipt of a write request from a PE executing a
future thread. 'The semantics of valid hazard slate 506 and
dirty hazard stale 508 in response to both local and external 25

events are the same as those of valid sta.te 502 and dirty slate
504, respectively, except in response to a writeback signal.
Because valid hazard state 506 marks locally unmodified
data locations that have been written by future threads (and
therefore may not be valid after execution of the current 30

thread), data locations in valid hazard stale 506 are updated

JS depending upon design cousiderations. In a first
embodiment, the cancellation signal sets a consistency bit
within thread scheduler 130 that is associated with the PE
executing the thread that loaded the inconsistent data. As
discussed below with reference to FIG. 10, the consL,tency
bit is subsequently processed during the completion of the
thread !bat loaded the incousist.ent data. Tbis approach has
the advantage of requiring that the consL,tency bit be
checked only a single time during thread processing.
However, if data inconsistencies occur relatively frequently
or early in the execution of a thread, this approach permits
a large amount of useless work lo be performed prior to
thread cancellation. Alternatively, in a second embodiment,
the cancell.atiou signal generated by global disambiguation
buffer 182 can set a bit within the PE executing the thread
that loaded the inconsistent data. Although this embodiment
requires each of PE.s 132-138 lo check its consistency bit

lo invalid stale 500 in response lo receipt of a writcback
signal by communication and synchronization logic 152.
Similarly, data !ocatio!lS in dirty hazard state 508 are
updated to invalid slate 500 after the contents of the data 35
locations ace wriHen back to architected register file 124 or
I.2 cache 122.

during each cycle, thereby increasing latency, the second
embodiment has the advantage of detecting and correcting
for data inconsistencies as early as possible, so that the
number of processor cycles consumed by useless work i5
minimized.

In order to correct for possible errors by mulliscalar
Still referring to FIG. 13, communication and synchroni

zation logic 152 updates the slate of all local data locations
compiler 14 in identifying inter-thread register dependencies
with SetF!ag/WaitF!ag extension instructions or in order lo
permit mulliscalar compiler 14 to insert SetE'lag!WaitF!ag
extension instruction in only the statistically most likely
execution paths, global disambiguation buffer 182 prefer·
ably further include facilities that ensure inter-thread register
data consistency. Similar to the facilities that handle memory

to invalid stale 500 in response to the receipt of a reset signal 40

generated in response to the occurrence of an exception or
the detection of a data or control hazard. As discUEsed above,
setting the state of all local data Jocatious lo invalid state 500
discards all of the data within GPR cache 154 and data cache
156. 45 data accesses, the register data facilities store the register

number and thread number of instructions that read and
write register data in a manner that preserves the relative
execution order of the 0 read 0 and 1'write'1 instructions.
Global disambiguation buffer 182 then compares the register

With reference again to FIG. 4, multiscalar processor 100
further includes a global disambiguation buffer 182 coupled
to PE.s 132-138 that verifies iuter-tbread data consistency,
that is, that the execution of a multiscalar program obtains
the same results as those obtained under sequential, scalar
execution.

la the illustrative embodiment of mulliscalar processor
100, memory data incomistencies can occur because execu
tion cores 158 queue store instructions and preferentially
perform load instructions such that memory data latency is
minimized. This practice, which tacitly assumes that
memory accesses are data independent, can lead to data
inconsistency if memory accesses are, in fact, dependent
between threads. In order lo detect an inter-thread memory
data inconsistency, global disambiguation buffer 182 stores
the target addresses and thread numbers of load instructions
and the target addresses and thread numbers of store instruc
tions such that the relative execution order of the load and
store instrnctions is retained. Global disambiguation buffer
182 then compares the target address of each store instruc
tion executed by PEs 132-138 with the buffered load
addresses. If a target address match is found and (1) the

so number into which data is written by an instruction with all
of the numbers of registers previously read by !breads
subsequent in program order to the thread containing the
"write" instruction. If the comparison reveals that a "write"
instruction in a11 earlier thread was executed subsequent to

55 a "read" instruction that referenced the same register and the
thread containing the "read" instruction does not include an
intervening "write" to the same register, global disambigu·
ation buffer 182 signals that a data inconsistency has
occurred so that appropriate corrective action can be taken

60 in the manner discussed above with respect to the detection
of a memory data inconsistency.

Multiscalar processor 100 finally includes global synchro·
nization fiags (SFs) 180, which comprise a shared resource
utilized by PEs 132-138 lo provide inter-thread data con-

65 sistency support for register and disambiguable memory
accesses. Although not required for data correctness, which
is guaranteed by global disambiguation buffer 182, the data

0266

5,887,166
15

consistency support provided by global SFs 180 improves
processor performance by inhibiting data speculation for
identified dependencies, thereby avoiding the performance
penalty incurred by misspeculation.

With reference now to FIG. 5, there is illustrated a more s
detailed representation of global SFs 180, which include 32
1-bit flags that are assigned lo threads during compilation by
multiscalar compiler 14 in order to e11sure inter-thread data
consistency for register and disambiguable memory
accesses. ASF is cleared (set to logical zero) when the thread 10

to which the SF is assigned is scheduled by thread scheduler
130 to ooe of PEs 132-138 for execution. The SF is set to
logical one in response to an occurrence of a synchroniza
tion event, such as the execution of a SetFlag extension
instruction in response lo the production of a data value. J5

Setting the SF notifies subsequent threads stalled by a
WaitFlag extension instruction that computation dependent
upon the occurrence of the synchronization event can !hen
be performed. Importantly, the oldest (non-speculative)
thread ignores all WaitFlag exte11sion instructions since 20

inter-thread data consistency for register and disambiguable
men10ry accesse.._~ is guaranteed.
Multiscalar Operation

Referring now to FIG. 6, there ~'depicted a conceptual
timing diagram of the pipelined processing of threads by 25

multi.scalar processor 100. As illustrated, the proce&sing of
threads by processor 100 is divided into thread scheduling,
thread execution, and thread completion stages. During
multiscalar execution, stages in the processing of a thread
are overlapped with tbe same and different stages in the 30

processing of other threads in order to mask tbe effects of
latency.

During tbe thread scheduling stage of thread processiog,
!he thread is assigned by thread scheduler 130 to one of PEs
132-138 for execution. As discussed above and as is 35

described below in greater detail with reference to FIG. 7,
once thread scheduler 130 bas selected an exit point of a
scheduled thread by prediction or execution of navigation
code, thread scheduler 130 assign.s the thread indicated by
the selected exit point to one of PEs 132~138 for execution. 40

During the thread execution stage, a PE executes an
assigned thread. It is during the execution stage that a PE
communicates with PEs executing preceding threads in
order to request required register or memory ·data. As
described below with reference to FIG. 8, it i' also during 45
tl1e thread execution stage that extension instructions are
dynamically inserted into the execution stream of a PE. If
execution of a thread confirms the exit selected by thread
scheduler 130, !he thread enters the !bread completion stage.
However, if upon execution a different exit of the thread is so
taken tbeo was selected by thread selector 130, all subse
quent threads are cancelled.

As described in greater detail below witli reference to
FlG. 10, duriug the complelioo stage of thread processing all
modified register and memory locations of successfully 55
completing thread' are written back lo the architected slate
maintained within architected register file 124 and L2 cache
122. Because all required data is forwarded to P& executing
subsequent threads during tbe thread execution stage, the
thread completion stage is completely overlapped with other 60

processing stages, thereby hiding latency.
With reference now lo FIG. 7, there is illustrated a high

level logical flowchart of a method of scl1eduling threads for
execution in accordance with the illustrative embodiment of
a multiscalar data processing system depicted in FIG. 4. The GS
process shown in FIG. 7 will be described with reference lo

the exemplary multiscalar program depicted in FIG. ll. As

16
illustrated, the process begins at block 200, which represents
the operating system of the multiscalar data processing
system depicted in FIG. 4 loading multiscalar program 400
in response lo a selected command. The process then pro·
ceeds from block 200 lo block 202, which depicts multisca
!ar processor 100 executing ISA instructions on a single one
of PEs 132--138 beginning with ISA instruction 402. Next,
the process proceeds to block 204, which illustrates a
determination of whether or not a Set11' instruction, such as
lSAinstruction 4-04, has been executed. lf not, scalar execu
tion of !SA instructions continues on a single one of PEs
132-138, as indicated by the process returning from block
204 lo block 202.

Referriog again to block 204, in response to execution of
SetTP instruction 404, which specifics the base address of
thread descriptor 406, the process proceeds from block 204
lo block 210. Block 210 depicts multiscalar processor 100
initiating multiscalar execution of mulliscalar program 400
by loading the base address of thread descriptor 406 into TP
142 of thread scheduler 130. Next, as illustrated at block
2U, thread scheduler 130 passes the I-Code pointer and
I-Code extension pointer specified within thread descrjptor
406 to a free one of P& 132-138 in conjunction with a
thread number !bat does no! conflict with a tllread number
currently allocated within TL 146. As illustrated at block
213, status register 148 is then updated to indicate that the
PE lo which the thread was as.>igned is busy.

The process proceeds from block 213 to block 214, which
depicts a determination is of whether or not thread descriptor
406 includes a navigation pointer. As described above, the
presence .of a navigation pointer within thread descriptor 406
indicates that multiscalar compiler 14 bas created a set of
navigation instructions that may be executed in order lo
resolve the inter-thread control dependency that determines
which of the possible exit points of thread 406 will be taken.
lo response to a determination by thread scheduler 130 that
thread descriptor 406 docs not include a navigation pointer,
the process proceeds to block 216, which illustrates exit
prediction mechanism 140 predictiog ao exit of thread 408.
111e process then proceeds from block 216 to block 220.
However, in response to a determination al block 214 that
thread descriptor 406 includes a navigation pointer, thread
scheduler 130 loads the set of navigation instructions
pointed to by the navigation pointer and executes the navi
gation instructions in order to determine an exit of thread
408, as illustrated at block 218. As will be 'appreciated by
those skilled in the art, the execution of navigation instruc
tions by thread scheduler 130 entails either the inclusion of
simple arithmetic and control fl.ow execution circuitry within
thread scheduler 130 or the execution of the navigation
instructions within ooe of PEs 132-138 on behalf of thread
scheduler 130. Following a determination of an exit of
thread 408 al either of blocks 216 or 218, tbe proce;;s
proceeds to block 220, which illustrates entering the selected
exit number within TL 146 in association with the thread
number. The process then passes to block 230.

Block 230 depicts a determination of whether or not the
exit selected at one of blocks 216 and 218 was marked in
thread descriptor 406 as a termination point of multiscalar
execution. If so, the process returns to block 202, which
depicts multi.scalar processor 100 again executing ISA
instructions within multiscalar program 400 utiliz.ing only a
single one of PEs 132--138. However, in response to a
determination at block 230 that the selected exit was not
marked by multllica!ar compiler 14 as a teanioatioo point of
mul!iscalar execution, the process proceeds to block 232.
Block 232 illustrates thread scheduler 130 loading thread

0267

5,887,166
17

descriptor 410, the thread descriptor pointed to by the exit
pointer in thread descriptor 406 associated with the selected
exit. 'l1iereafter, the process returns to block 212, which has
been descrilied.

Referring now to FIG. 8, lhere is depicted a high level
logical flowchart of a method of fetching and dispatching
instructions within each of PEs 132-138 of multiscalar
processor 100. Although the described process is individu
ally employed by each of PEs 132-138, only PE 132 will be
referred to for the sake of simplicity. As illustrated, lhe
process begins at block 250 in response to receipt by PE J.32
of an I-Code pointer, I-Code extension pointer, and thread
number from thread scheduler l.30. Uie process then pro
ceeds to blocks252 and254, which illustrate PE 132 loading

18
instruction or a!l ISA instructions within the thread are to be
stalled. The process then temiinates al block 308 until the
next instruction is received by the execution resources.

Remrniog to block 284, in response lo a determination
that the dispatched instruction is not a WaitF!ag extension
instruction, the process proceeds to block 288, which illus
trates a determination of whether or not the dispatched
instruction is a Se!Flag extension instruction. If so, lhe
process passes to block 290, which depicts execution core

10 158 setting one of global SFs 180 indicated by the SetFlag
extension instruction. The process thereafter passes to block
308 and terminates until the next instruction is received by
the execution resources.

If a determination is made at block 288 that the dispatched
15 instruction is not a SetFlag extension instruction, the process

proceeds to block 300, which illustrates a determination of
whether or not the dispatched instruction is a SetExi! exten
sion instruction. If so, the process proceeds to block 302,
which depicts execution core 158 signalling the thread

the I-Code specified by lhe I-Code pointer into instruction
cache 150 and loading the extension list specified by the
I-Code extension pointer iuto CAM 160. Nexl, the process
passes lo block 256, which depicts tbe instruction sequencer
within execution core 158 determining the instruction
address of the next ISA instruction to be executed. As
depicted al block 258, one or more instructions are then
fetched from instruction cache 150 utilizing the instruction
address calculated at block 256. The process proceeds from
block 258 lo block 260, which illustrates a determination of
whether or not the instruction address of any of the instruc
tions fetched at block 258 matches an instruction address
a..%ociated with an instruction extension stored within CAM
160. If not, the process proceeds lo block 264. However, in
response lo a determination lhat an instruction address of a
ISA instruction fetched from inslruction cache 150 has a JO

match within CAM 160, CAM 160 furnishes the opcode of
the instruction extension to the instruction sequencer of
execution core 158, which inserL' the extension instruction
opcode into the instruction stream al a point indicated by !he
extension instruction. The process then passes to block 264, 35

which illustrates the instruction sequencer of execution core
158 dispatching one or more ISA instructions and instruction
extensions to the execution resources for execution.
Thereafter, !he process returns to block 256, which has been
described.

20 number of the thread under execution and the exit number
marked by the SetExit extension instruction to thread sched
uler 130. Execution core 158 preferably determines the
appropriate exit number from a parameter of the SetExit
extension instruction within extension list 60. PE 132 then

25 terminates execution of the thread at block 308 and initiates
the thread completion process illustrated in FIG. 10 by
transmitting !he thread number and exit number to thread
scheduler 130.

ln response to a determination at block 300 that the
dispatched instruction is not a SetExit extension instruction,
the process proceeds lo block 304, which depicts a deter
mination of whether or no! the dispatched instruction is a
SetStop extension instruction. If so, the process passes lo
block 306, which illustrates PE 132 signalling thread sched
uler 130 to halt multiscalar execution of the rnultiscaiar
program. 1bereafter, PE 132 terminates execution of the
thread at block 308 and initiates the thread completion
process iUustrnted in FIG. 10 in the manner which has been
described. lbus, as illustrated in FIG. 11, if a SetStop

40 extension instruction is executed at the exit of thread 420,
execution of multiscalar program 400 continues in a scalar
fashion on a single PE.

Wilb reference now to FIG. 9, there is illustrated a high
level logical llowchart of a method of instruction execution
within execution core 158 of PE 132. As illustrated, the
process begins al block 280 in response to the execution
resources of execution core 158 receiving at least one
instruction dispatched by the instruction sequencer.
Thereafter, the process proceeds to block 282, which illus
trates the execution resources of execution core 158 decod
ing the instruction. A determination is then made al block
284 whether or not the dispatched instruction is a WaitFlag
extension instruction. lf so, the process passes to block 285,
which depicts a determination by execution core 158
whether or not the thread being executed is the oldest
(non-speculative) thread. For example, execution core 158
can determine if it is executing the oldest !bread by inter
rogating thread scheduler 130, which tracks !he ordering of
threads executing within PEs 132-138. In response to a
determination that execution core 158 is executing the oldest
thread, the Wai!Flag extension instruction is simply dis
carded since data consistency is guaranteed. However, in
response lo a determination that execution core 158 is not
executing the oldest thread, the process proceeds to block
286, which illustrates execution core 158 executing the
Wai!Flag extension instruction by stalling execution of at
least one instruction until the specified one of global SFs 180
is set. According to a preferred embodiment, !he WaitFlag
extension instruction specifies whether the subsequent !SA

Referring again to FIG. 9, in response to a determination
al block 304 that lbe dispatched instruction is nol SetStop

45 extension instruction, the process passes to blocks 31()~317,
which illustrates the execution of an ISA instruction by
execution core 158. Referring first to block 310, in response
lo a read signal from execution core 158, a determination is
made whether or no! di of tbe source data required to

50 execute the !SA instruction is available locallv within GPR
cache 154 and data cache 156 in any of data coherency stales
502-508. If so, the process proceeds to block 315, thereby
signifying that execution core 158 can access the required
data locally. However, in response to a determination that

55 the required data is not owned locally, the process proceeds
to block 311, which depicts communication and syuchroni
zation logic 152 transmitting a read request on local com
munication and synchronization mechanism 170 that indi
cates the required memory address or register number. As

60 described above, PEs having the requested data in any of
data coherency slates 502-508 will respond to !he read
request by indicating ownership of the requested data.
A!bitralion logic 172 then signals the responding PE execut
ing the nearest preceding thread in logical program order to

65 place the requested data 011 local communication and syn
chronization mechanism 170. A' illustrated at block 312, if
a PE responds to the read request, the process proceeds to

0268

5,887,166
19

block314. However, if none of PEs 132--138 respqnds to the
read request, the process passes lo block 313, which illus-
1rates the PE fetching the required data from the committed
slate, tbal is, from either L2 cache 122 or architected register
file 124. The process Lbeu proceed' to block 314, whicb
illustrates communication and synchronization logic 152
updating tbc data coherency stale of lhe local data location
containing the requested data to valid slate 502. Thereafter,
the process passes to block 315.

Block 315 depicts communication and synchronization 10

logic signalling global disambiguation buffer 182 with the
memory addresses and register numbers accessed to obtain
data for the lSA iustruction. As described above, global
disambiguation buffer 1112 records these data location iden·
tificrs for subsequentcomparisou with data locations written 15
by threads that precede the current thread in program order.
The process then proceeds lo block 316, which illustrates the
execution resources of execution core 158 executing the ISA
inslruc1ion, possibly generating result data that is '"rilten lo
a local data location. A'i illustrated at block 317, commu- 20

nicatioa and synchronization logic then broadcasts a write
request indicating the register number(s) or memory
addressees), if any, written in response lo execution of the
ISA instruction. As described above with reference to FIG.
13, the communication and synchronization logic 152 wiU1in 25

PEs that are executing threads subsequent lo a the signalling
thread in program order and that ha Ve the indicated data
locations) in valid srnle 502 or dirty stale 504 updates the
stale of the indicated data locations to the appropriate one of
valid hazard slate 506 and dirty haz.ard stale 508. The data 30

location identifiers broadcast at block317 are also processed
by global disambiguation buffer 182 in order lo check for
data dependencies. The process proceeds from block 316 to
block 317, which illustra!cs communication and synchroui
zation logic 152 updating the local state of data locations 35
written in response lo execution of the ISA instmction, if
necessary. TI1ercafter, the process passes lo block 308 and
terminates until the next instruction is dispatched to the
execution resources of execution core 158 for execution,

With reference now lo FIG. 10, there is depicted a high 40

level logical flowchart of a method of thread completion
within multiscalar processor 100. According to U1e illustra
tive embodiment, threads are completed according to logical
program order. As illustrated, the process begins al block
320 in response to receipt by thread scheduler 130 of a 45

thread uumber and exit number from one of PEs 132-138.
The process then proceeds to block 321, which illustrates a
determination of wliether or not data dependency was
detected during execution of the specified thread. If so, the
proces.s passes lo block 328, whicu illustrates thread sched- 50

uler sending a reset signal lo the signalling PE lo invalidate
the local data and rescbeduling tbe specified thread for
execution within the signalling PE. 'Thereafter, the process
terminates at block 344. Referring again to block 321, in
response lo a determination that no data dependency was 55
dete<.:ted during lhe execution of the specified thread, the
process proceeds to block 322.

Block 322 depicts thread scheduler 130 comparing the
actual exit number received from the signalling PE with lhe
selected exit number associated with the indicated thread 60
number in TL 146. As illustrated at block 324, a detenni
nation is then made whether or not lhe actual exit number
indicated by the signalling PE matches the predicted exit
number associated with U1e thread number in TL 146. If so,
the process passes to block 340, which is described below. 65

However, if the actual exit number does not matcb the exit
number recorded in TL 146, lhe process proceeds lo block

20
330, which depicts thread scheduler 130 sending a reset
signal to all PEs executing threads subsequent to the speci
fied thread in program order. Thus, as illustrated at block
330, the occurrence of a control (but not data) hazard
requires the cancellation of all subsequent speculative
threads. The process then passes to block 332, which depicts
thread scheduler 130 updating status register 148 lo mark the
PEs for which execution was cancelled as free. Next, the
process proceeds to block 334, which illustrates thread
scheduler 130 scheduling lhe !breads (in accordance with the
method depicted in f<1G. 7) within the correct execution
path, The process then proceeds lo block 340.

Block 340 depicts thread scheduler 130 sending a write
back signal to the signalling PE. In response to receipt of the
wrileback signal, lhc PE writes back all data locations in
dirty slate 504 and dirty hazard slate 508 to the appropriate
one of archilccted register file 124 and U cache 122. lo
addition, the stale of updated locations within L2 cache 122
are marked as valid. The process !hen passes from block 340
lo block 342, which i!lustra!cs thread scheduler 130 updat
ing status register 148 to indicate that the signalling PE is
free. ln addition, TP 142 is updated to point to the thread
descriptor indicated by the exit pointer associated with the
actual exit point of the completed thread. Thereafter, tbe
process terminates al block 344.

In the hercinbefore described process of thread
processing, exceptions occurring during the execution of a
multiscalar program are ouly taken in scalar execution
mode. Thus, as illustrated in FIG. 11 at reference numeral
430, PEs 132-138 simply quit execution of threads and
return lo an idle state in response to the occurrence of an
exception. An appropriate exception handler is then
executed on one of PEs 132-138. Thereafter, scalar execu
tion of the !SA instructions within multis.calar prqgram 400
is resumed on a single one of PEs 132-138, as depicted al
reference numeral 432. Execlllion of lSA instructions con
tinues in scalar mode until I.he execution of SelTP instruction
434, which as described above, initializes TP 142 with the
base address of thread descriptor 436, thereby restarting
concurrent execution of multiple threads.
Outcof-Order Operation

Heretofore, it bas been assumed that threads within a
multiscalar program are assigned by thread scheduler 130 lo
PEs 132-138 according lo logical program order. However,
even greater levels of !LP may be achieved by scheduling
tiJreads lo PEs 132-138 for speculative out-of-order
execntion, if a high percentage of the out-of-order threads
are data independent from preceding threads.

In order lo support out-of-order thread execution, it is
desirable to make a number of enhancements to the software
and hardware architectures described above. First, referring
now to FIG. 14, there is depicted an illustrative embodiment
of a thread descriptor generated by multiscalar oompiler 14
to support out-of-order execution of threads. As is apparenl
upon comparison of FIGS. 2 and 14, the tlJrcad descriptor 32
illustrated in HG. 14 is identical to that depicted in FIG. 2,
except for the inclusion of meta-thread list pointer 43.
Meta-thread list pointer 43 is a 24-bit pointer that indicates,
relative to TP 142, the base address of meta-thread !isl 51,
which conrnins one or more 24-bit meta-thread pointers 53.
As illustrated, each meta-thread pointer 53 specifies the base
address of a thread descriptor 32 associated with a meta
tbread 55 that is to be scheduled lo one of PEs 132-138 for
out-of-order execution. Unlike the thread 18 lo which
I-Code pointer 40 poinl', the meta-threads 55 indirectly
specified by meta-thread pointers 53 do not logically follow
the thread preceding thread 18 in logical program order.

0269

5,887,166
21

Instead, meta-threads 55 are threads identified by muHisca-
lar compiler 14 at block 96 of FIG. lB as control indepen
dent from preceding threads once the execution path has
reached thread 18 (i.e., each meta-thread 55 will be executed
regardless of which exil of thread 18 is taken). Thus,
meta··threads 55 can be executed out-of-order with respect to

22
region data consistency in the manner described above. In
addition, as described below with reference to HG. 18, !he
identifiers of dala locations written by threads within a
thread region arc utilized during thread completion to verify
that all inter-region data dependencies are observed.

Referring now to FIG. 16 there is depicted a high level
logical flowchart of a method of scheduling threads in a
multiscalar processor that supports out-of-order thread
executinn. FIG. 16 illustrates the steps performed by each of

the logical ordering of threads under the assumption that
hardware within mulliscalar processor 100 will detect and
correct for any unidentified data dependencies between
meta-threads 55 and preceding threads. 10 U1c four instance.s of thread scheduler 130 to schedule

According to the illustrative embodiment, data dependen
cies between mela-lhreads and preceding threads are
handled at thread completion on a thread region-by-thread
region basis, where each meta-thread defines a thread region
including the meta-thread and all subsequent threads that 15
logically precede !be next meta-thread, if any, in program
order. For example, with reference !lOW io F1G. 15, there is
illustrated a multiscalar program 520 including threads
522-534, which are depicted in logical program order. As
illustrated, thread 522 includes a first possible exit point 540, 20

which if taken causes thread 524 kl be executed, and a
second possible exit point 542, which if taken causes thread
526 to be executed. Because thread 534 will be executed
regardless of which of possible exit points 540 and 542 is
actually taken during execution, multiscalar compiler 14 25

designates thread 534 as a meta-thread child of thread 522
by creating a meta-thread pointer 43 in the thread descriptor
32 associated with thread 522. As illustrated, thread 522 and
all logically subsequent threads preceding meta-thread 534
comprise a first thread region 552, and meta-thread 534 and 30

all logically subsequent threads preceding the next meta
thread comprise a second thread region 552.

In order to permit multiscalar processor 100 to identify
the boundary between first thread region 550 and second
thread region 552, multi.scalar compiler 14 creates, within 35

the thread descriptor of thread 532, an exit pointer associated
with possible exit point 544 that specifies the base address
of the thread descriptor of meta-thread 534 (as would be the
case for in-order tliread execution). In addition, multi.scalar
compiler 14 indicates that possible exit point 544 of thread 40

532 crosses a thread region boundary between first thread
region 550 and second thread region 552 by creating a
region boundary exit identifier within the 8-bit reserved
section following the exit pointer.

Two principal hardware enhancernems. are made to mul- 45

tiscalar processor 100 in order to support out-of~order thread
processing. First, thread scheduler 130 is modified to include
four instances of the thread scheduling hardware hereinbe
fore described. Each instance of thread scheduler 130 is
associated with a particular one of the four thread regions in 50

which PEs 132-138 may possibly be executing. A separate
TL 146 is utilized by each instance of thread scheduler 130
to track the exi\ predictions made within the associated
thread region. In contrast to TL 146, TP 142, status register
148, and exit prediction mechanism 140 are shared between 55

the four instances of thread scheduler 130.
Second, global disambiguation buffer 182 preferably

includes four thread region buffers that are each associated
with a respective one of tue four possible thread regions in
which PEs 132-138 can execute. Like the embodiment of 60

global disambiguation buffer 182 described above with
respect" to in-order execution, each thread region buffer
accumulates the register numbers and memory addresses
from which threads within tbe associated thread region read
data and tlle register numbers and memory addresses to 65

which threads within the associated thread region write data.
These data location identifiers are utilized lo detect intra-

threads within its associated thread region. As illustrated, the
process begins al block 600 and !hereafter proceeds to
blocks 602-620, which illustrate the first instance of thread
scheduler 130 loading a thread descriptor, initiating execu
tion of the associated thread within one of PEs 132-138,
selecting one of the exits of the thread, and storing the exit
selection within TL 1%, in the manner which has been
described above with reference lo blocks 202-·220 of FIG. 7.

The process proceeds from block 620 lo block 630, which
illustrates a determination of whether or not the exit type of
the selected exit specifies that multiscalar execution is lo be
terminated. If so, !he process returns to block 602, which
illustrates the resumption of scalar execution by a single one
of PEs 132-138. However, in response to a determination at
block 630 that !he exit type of tbe selected exit does not
specify the termination of mulliscalar execution, the process
proceeds lo block 632, which illustrates the first instance of
thread scheduler 130 determining whether the currently
loaded thread descriptor includes a meta-thread list pointer
43. If not, the process passes to block 640, which is
described below. However, in response to a detemiination
that the thread descriptor includes a meta-thread list pointer
43, the process proceeds to block 634, which depicts !he first
instance of thread scheduler 130 allocating a new tbread
region and passing a meta-thread pointer 53 within mela
thread list 51 to a second instance of thread scheduler 130 so
that the second instance of thread scheduler 130 can load !he
thread descriptor associated with the meta-thread 55 aud
begin the !bread scheduling process illustrated in FIG. 16 al

block 612. The process then proceeds from block 634 to
block 636, which illustrates a determination by the first
instance of thread scheduler 130 whether or not additional
meta-thread pointers are present within meta-thread list 51.
If so, the process returns to block 634, which illustrates the
first instance of thread scheduler 130 passing a next rneta
!hread pointer 53 to a third instance of thread scheduler 130.
Referring again to block 636, in response to a determination
that all meta-thread pointers 53 within meta-thread list 51
have been passed lo other instances of thread scheduler 130,
the process proceeds from block 636 to block 640.

Block 640 illustrates a determination of whetheror not the
exit type of the selected exit point indicates that Uie exit
poiot of the current thread defines a boundary between two
thread regions. If not, lhe process proceeds lo block 642,
which illustrates the first instance of thread scheduler 130
loading U1e thread descriptor indicated by the exit pointer
associated with the selected exit point. 111e process then
returns to block 612, which illustrates the first instance of
thread scheduler 130 processing the new thread descriptor.
Returning lo block 640, in resporu;e to a determination !hat
the exit type of the selected exit point indicates that the
selected exit point defines a thread region boundary, !be
process proceeds to block 650, which depicts the first
instance of thread scheduler 130 discontinuing the schedul
ing of threads and waitiog for the associated thread region to
be completed. Of course, if a data or control hazard is
detected within the thread region while tlie first instance of

0270

5,887,166
23 24

register number or memory address of each data location
written by the ISA instruction in the lbrcad region buffer
associated with the current lhread region. As described
below witb respect to FIG. 18, the information within the

thread scheduler 130 is waiting at block 650, the first
instance of thread scheduler 130 recovers from the detected
hazard by scheduling the appropriate thread(s). Following
block 650, the process passes lo block 652, which illustrates
the first instance of Ulfead scheduler 130 wailing for a new
thread region to be allocated in the manner described above
with reference lo block 634. Jn response to receipt of a
meta-thread pointer 53 by the first instance of thread sched
uler 130, the process returns to block 612, whicll has been
described.

s thread region buffer is utilized lo correct for in!er-region data
dependencies upon lhe completion of all threads within the
current thread region. The process then proceeds from block
717 to block 718, which illustrates communication and
synchronization logic 152 updating the local state of data

With reference now to FfG. 17, there is illustrated a high
level logical flowchart of a method of executing instructions
within the PE of a multiscalar processor that supports
out-of-order thread execution. As illustrated, the process
begirt5 at block 680 in response lo receipt of an instruction
dispatched I.a the execution resources of execution core 158
in accordance with the method described above wilh refer
ence to FIG. 8. The process then proceeds to blocks
682-706, which correspond to blocks282-306 of FIG. 9 and
accordingly are not further described here.

10 locations written in response to exeL11tion of the ISA instruc
tion. Thereafter, the process terminates al block 708.

Referring now to FIG. 18, there is depicted a high level
logical flowchart of a method of thread rnrnpletion within a
multiscalar processor that supports out-of-order thread

15 execution. A~ illustrated, the process begins al block 820, in
response to receipt of a thread number and exit number by
the instance of thread scheduler 130 associated with the
thread region to which the executed thread belongs. The
process proceeds from block 820 lo block 821, which

Referring now lo block 704, in respoose lo a detennina
lion lhat lhe dispatched instruction is not a SelSlop extension
instruction, !hereby indicating that the dispatched instruction

20 depicts a determination of whether or not a data dependency
was detected during execution of the specified thread. l f so,
the process proceeds to block 828, which illustrates the
instance of thread scheduler 130 sending a reset signal to the

is an ISA instruction, the process proceeds to block 710.
Block 710 illustrates a determination of whether or not all of 25

the source data required to execute the dispatched ISA
instruction are available locally in any of data coherency
slates 502-508. If so, the process passes lo block 715, which
is described below. However, in response to a determination
that all of the source data required to execute lhe ISA 30

instruction are not available locally within GPR cache 154
and data cache 156,' tbe process proceeds lo block 711,
which depicts rnmrnunicatioo and synchronization logic
152 transmilling a read request on local communication and
synchronization mechanism 170 that indicates the memory 35
address or register number containing the required data as
well as the number of lhc thread region in which the PE LS

executing. A PE snooping local communication and syn
chronization mechanism 170 responds lo the read request if
tbe PE is executing an earlier thread within the same thread 40

region and owns the requested data in one of data coherency
slates 502-508. As illustrated at block 712, if lhe required
data is available from another PE executing thread in the
same thread region as the requesting PE, the process passes
to block 714. However, in response lo a determination at 45

block 712 that the required data is nol available from another
PE executing within the same thread region, the process
proceeds to block 713, which illustrates tbe requesting PE
fetching the required data from U cache 122 or architccted
register file 124. The process lhen passes to block 714, 50

which depicts communication and synchronization logic
152 updating lhe dala state of the accessed data to valid stale
502. Thereafter, the process proceeds to block 715.

Block 715 illus!rales communication and synchronization
logic 182 transmitting tbe identifier of each data locations
accessed to obtain an operand for !he ISA instruction lo the
appropriate thread region buffer within global disambigua
tion buffer 182. Next, as depicted at block 716, the execution
resources of execution core 158 execute the ISA instruction.
The process then proceeds lo block 717, whicb illustrates 60
communication and synchronization logic 152 broadcasting
a write request on logic communication and synchroni7;i!ion
mechanism 170 that indicates lo all subsequent threacls
within the same thread region each memory address or
register number, if any, written in response lo execution of
the ISA instruction. ln addition, a' depicted al block 718,
communioation and synchronization logic 152 records the

signalling PE lo invalidate all local data and rescheduling
the specified thread for execution by the signalling PE. The
process !hen passes to block 844 through page connector B
and terminates.

Referring agalli to block 821, in response lo a determi
nation a! block 821 that no data dependency was detected
during the execution of !he specllied thread, the process
proceeds lo block 822, which ilJusti:ales a determination of
whether or not the exit lype of the exit pointer associated
with the actual exit point of the executed thread indicates
lhat the exit point defines a thread region boundary. If so, the
process proceeds to block 838, which illustrates the instance
of thread scheduler 130 causing !he identifiers of all data
locations written by threads within the current thread region
to be broadcast from the thread region buffer associated with
the current thread region to all threads within the immedi
ately subsequent thread region. As described above with
reference lo FIG. 13, PEs executing threads within the
subsequent thread region utilize the broadcast write requests
to update !he data coherency stale of data locations in valid
slate 502 and dirty slate 504 lo valid hazard state 506 and
dirty hazard slate 508, respectively. In addition, the identi
fiers of data locations written by threads within the current
thread region are transferred to the thread region buffer
associated with the immediately snbsequent thread region so
that global disambiguation buffer 182 can check for inler
thread data dependencies between the immediately subse
quent thread region and the current thread region. The
process then passes to block 840.

With reference again lo block 822, in response to a
determination Utal the actual exit taken by lhe executed
thread does not define a thread region boundary, the process
proceed~ to block 824, whicb depicts the instance of thread
scheduler 130 ~umparing the actual exit number received
from the signalling PE with !he exit number associated with
the thread nnmbcr in TL 146. A determination is then macle
al block 826 whether or nol lhe actual exit number indicated
by the signalling PE matches the selected exit number
associated with the thread number in TL 146. If so, the
process passes lo block 840, which is described below. lf lhe
actual and selected exit numbers do nol match, however, the
process proceeds from block 824 10 block 830, which
illustrates the instance of lllfead scheduler 130 sending a
reset signal lo all P& that arc executing threads within the

0271

5,887,166
25

current thread region that are subsequent w the completed
thread. Thus, in contrast to the in-order execution case, the
detection of a control hazard during out-of-order execution
reqitires only the cancellation of all subsequent threads
within the same thread region and not all subsequent thread,.
The process proceeds from block 830 to block 832, which
illustrates the instance of thread scheduler 130 updating
status register 148 to mark the PEs for which execution was
cancelled as free. Next, the process passes lo block 834,
which illustrates the instance of thread scheduler 130 sched
uling threads within the correct execution path in accordance
with the method depicted in FIG. 16. The process then
passes to block 840.

Block 840 illustrates lhe instance of thread scheduler 130
transmitting a writeback signal lo the signalling PE, which
in response to receipt of the writeback signal, writes back
dirty (modified) registers and memory addres.scs lo L2 cache
122 and architected file 124. The process then proceeds to
block 842, which illustrates the instance of thread scheduler
130 updating status register 148 lo indicate thal the signal
ling PE is free. ln addition, TP 142 is updated to point lo the
thread associated with the exit point of the completed !bread.
The process then terminates at block 844.

As will be appreciated from the foregoing description, the
mulliscalar software and hardware architectures disclosed
herein provide numerous advantages over prior art
superscalar, multiprocessor, and multiscalar data processing
systems. By providing linked thread descriptors within a
T-Code stream that is parallel lo, yet separate from the
I-Code stream, the present multiscalar software architecture
avoids the perfomiance degradation experienced in prior art
mullisalar systems due lo an increase in program length.
Maintaining separate processing paths for the T·Code and
I-Code streams and providing hardware and software sup
port for lhe dynamic insertion of auxiliary instructions
within the I-Code stream ensures backward compatibility
between the mnltiscalar software architecture described
herein and scalar object code executable by conventional
processors, The dynamic insertion of auxiliary instructions
within lhe I-Code stream and the possibility of including a
single instruction within multiple !breads further pennits a
single instruction lo be associated with multiple instruction
extensions. Thus, an instruction within a first thread, which
produces a particular register value and is therefore associ
ated with a SelFlag extension instruction within the exten
sion list of the first thread, may also be included in a second
thread and associated with a second SetF!ag extension
instruction within the extension list of the second thread,

Furthermore, the data consistency support provided by the
SetFlag/WaitFlag paradigm permits multiple instrnclions lo
be synchronfrcd utilizing a single execution control facility
that may be employed for both register accesses and disam
biguable memory accesses, In contrast to prior art data
processing systems, the hardware and software archilcctures
herein disclosed support both speculative and non
speculative execution of multiple threads through the gen
eration of navigation instructions executable by lhe thread
scheduler. The execution of navigation instructions by the
thread scheduler reduces the amount of speculative work
that is discarded in response to exit mispredictions, thereby
enhancing !PC performance.

Moreover, from the foregoing description of out-of-order
thread processing, it should be apparent that partitioning:
multi.scalar programs into thread regions in lbis manner has
a number of advantages. First, inter-region thread interaction
is minimized through lhe IL'<C of different protocols for
inter-region and intra-region thread interaction. According

26
to the illustrative embodiment, the inter-thread data coher
ency communication and Setl'lag(WaitFlag extension
instructions are utitized during the thread execution stage of
out-of-order thread processing to maintain data coherency
and register data consistency between threads within !he
same thread region. However, because threads iii differenl
thread regions are executed under the assumplion of ioter
region data and control independem:e, data coherency com
munication between !breads in different thread regions is

10 eliminated and verilication of register data consistency is
deferred until the thread completion stage of thread
proces.sing, which is performed according to lhe logical
program order of thread regions.

Second, delaying the verification of data coflsistency until
JS thread wrileback has the advantage lhal computation per

formed by a meta-thread is not discarded in response to
speculative execution of threads within a mispredicted
execution path upon which execution of the meta-thread is
seemingly dependent For example, with reference again to

:w FIG. 15, if an instruction in thread 534 bas an apparent
register data dependency upon an instruction in thread 526
and possible exit point 542 of thread 522 is predicted, !bread
534 and subsequent threads within thread region 552 are not
cancelled if it is determined thal the exit point of thread 522

25 was rnispredicted.
1bird, the recovery activities performed in response to the

detection of data hazard during out-of-order thread process
ing entail a potentially smaller performance penalty than
those performed in response lo the detection of a control or

30 data hazard during in-order thread processing. As described
above and as illustrated at block330 of FIG. 10, for in-order
thread processing the delcction of a control hazard during
thread writeback entails the cancellation of all tbreads
subsequent lo the lbread being processed. In contrast, the

35 detection of a control hazard between threads within a !bread
region only requires thal subsequent threads within lhe same
thread region be cancelled, Thus, the discarding of control
independent work is eliminated.

Fourth, thread regious permit greater utilization of a
40 limited shared resource, such as SFs 180, by allocating a

separate instance of the shared resource lo each thread
region. For example, assume that SFs 180 include four
instances of 32 SFs each, where each instance of SFs 180 is
identified by a respeclive one of thread regions 0-3 so lhat

45 a PE must transmit both a thread region number and a SF
nnmber in order to sel a SF. In addition, referring again lo
FIG. 15, assume that thread 522, which is io thread region
0, contains a ''write" instruction having an associated Sel
Flag extension instrnction that sets SF4 and that thread 532,

so which is also in thread region 0, contains a "read" inslrnction
having an associated WaitFlag exlcosion instruction that
delays execution of the "read" instrnction until SF4 is set In
lbis exemplary embodiment, data consistency for the "read"
inslrnction in thread 532 is guaranteed even if meta-thread

55 534, which is scheduled to one of PEs 132-138 for execu·
lion immediately following thread 522, contains an instrnc
tion having an associated SetFlag extension instruction that
targets SF4. Thus, organizing threads into thread regions
prevents contention for shared resources between threads in

60 different regions and minimizes the complexity of the pro
cessor hardware required lo track utilization of suared
resources by out-of-order threads.

Wlti!c an illustrative embodiment has been particularly
shown and described, it will be nnderstood by those skilled

65 in the art that various changes in form and detail may be
made therein without departing from the spirit and scope of
the illustrative embodiment. For example, allhongh aspects

0272

5,887,166
27

of the illustrative embodiment have been described with
respect lo specific "method steps" implernentabk within a
data processing system, those skilled in tbc art will appre
ciate from the foregoing description that the illustrative
embodiment can alternatively be implemented as a computer
program product for use with a data processing system. Such
computer program products can be delivered to a computer
via a variety of signal-bearing media, wl:rich include, but are
not limited to: (a) information permanently stored on non·
writable storage media (e.g., CD-ROM); (b) information

10
alterably stmed on writable storage media (floppy diskettes
or hard disk drives); or (c) information conveyed lo a
computer through communication media, such as through a
compulcr or telephone network. ll should be understood,
therefore, that such signal-bearing media, when carrying
computer readable instructions that direct the method func- 15

tions of the illustrative embodiment, represent alternative
embodiments.

Whal is claimed is:
1. A method of constructing a program executable by a

processor, said processor including one or more processing 20

clements for executing threads aud a thread scheduler for
assigning threads to said one or more processing elements
for execution, said meti1od comprising:

providing a plurality of threads, each of said plurality of
threads including at least one control fiow instruction; 15

determining, from one or more control fiow instructions
within said plurality of threads, a condition upon which
execution of a particular thread among said plurality of
threads depends; and

30
in response to said determination, creating al least one

navigation instruction, said at least one navigation
instruction indicating lhal said particular thread is lo be .
assigned to one of said one or more processing ele
ments in response to said condition, wherein said
plurality of threads and said at least one navigation

35

instruction together comprise said program.
2. 1bc method of claim 1, said method further comprising

constructing a plurality of data structures that are each
associated with a respective one of said plurality of threads,

40
wherein each of said plurality of data structures specifies a
plurality of possible exit points of an associated thread.

3. The method of claim 1, wherein said step of creating al

least one navigation instruction comprises the step of cre-
ating a loop construct.

45
4. The method of claim 1, wherein said step of creating al

least one navigation instruction comprises the step of cre
ating an if,then-eise construct.

28
7. The method of claim 6, and further comprising the step

of:
thereafter, executing said particular thread within said one

of said one or more processing elements.
8. The method of claim 6, and further comprising:

in response to a determination that said particular condi
tion does not exist, assigaing a thread subsequent to
said particular lhrcad in logical program order to one of
said one or more processing elements without assigning
said particular thread.

9. The method of claim 6, and further comprising:

specnlatively assigning a thread among said plurality of
threads that is nol associated with said at least ooe
navigation instruction to one of said one or more
processing elements.

10. ·The method of claim 6, said at least ooe navigation
instruction comprising a loop construct, wherein said
executing step comprises the step of comparing a value of a
loop iteration variable lo a second value.

11. Tbe method of claim 6, said al least one navigation
inslmction comprising an if-then-else construe! wherein said
executing step comprises the step of determining whether an
if statement within said if,then-eL5e construe! is logically
true.

12. A system for constructing a program executable by a
processor including one or more processing elements for
executing threads and a thread scheduler for assigning
threads to said one or more processing elements for
execution, said system comprising:

means, responsive to receipt of a plurality of threads, each
of said plurality of threads including at least one control
flow instruction, for d-cterroining:o from one or more
control !low instructions within said plurality of
threads, a condition upon which execution of a particu
lar thread among said plurality of threads depends; and

means, responsive lo said determination, for ICTeating at
least one oavigation instruction, said al least one navi·
gation instruction indicating that said particular thread
is to be assigned to one of said one or more processing
elements in response to said condition, wherein said
plurality of threads and said at least one navigation
instruction together comprise said program.

13. The system of claim 12, said system further compri>,
ing means for constructing a plurality of data structures that
are each associated with a respective one of said plurality of
threads, wherein each of said plurality of data structures
specifies a plurality of possible exit points of an associated
thread. S. 1be method of claim 1, wherein said method further

comprises the steps of:
providing a plurality of instructions of a selected instruc

tion set architecture; and

50 14. The system of claim 12, wherein said means for

assigning each of said plurality insttuction to al least one
of said plurality of threads.

6. A method of executing a program within a processor
including one or more processing clements. and a thread
scheduler, said method comprising:

providing a program including a plurality of threads and
al least one navigation instruction, said at least one
navigation instructioo i ndicaling that a particnlarthread 60
is to be assigned lo one of said one or more processing
ekment:5 in response lo a particular condition;

executing said al least oue navigation instmclion lo deter,
mine if said particular condition is present; and

in to a de!eonination that said particular condi, 65

lion present, assigning said particular thread to ooc of
said one or more processing clcmcnL-; for execution.

creating at least one navigation instruction comprises means
for creating a loop construct.

15. The system of claim 12, wherein said means for
creating al least one navigation instruction comprises means
for creating an if-then,else construct.

16. Tbe system of claim 12, wherein said syslcm further
comprises:

means, responsive to receipt of a plurality of instructions
of a selected instruction set architecture, for assigning
each of said plurality inslrnclion lo at least one of said
plurality of threads.

17. A processor, comprising:
one or more processing elements for executing threads;
means, responsive lo loading al least one navigation

instruction, said al least one navigation instruction
indicating that a particular thread is lo be assigned lo
one of said one or more processing elements in

0273

5,887,166
29

response to a particular condition, for determining if
said particular condition is presenl; and

means, responsive to a dcLermination that said particular
condition is present, for assigning said particular thread
to one of said one or more processing clements for
execution.

18. The processor of claim 17, said processor further
comprising:

means, responsive to a determination llial said particular
condition docs not exist, for assigning a thread subse· 10

quenl lo said particular thread in a logical program
order lo one of said one or more processing elements
without assigning said particular thread.

19, The proce&.~or of claim 17, said processor further
comprising: I 5

means for speculatively assigning a !bread among said
plurality of threads that is not associated wilh said at
leas! one navigation instruction to one of said one or
more processing elements.

20
20. The processor of claim 17, said al least one navigation

instruction comprising a loop construct, wherein said means
for determining comprises means for comparing a value of
a loop iteration variable lo a second value.

21. The processor of claim 17, said at least one navigation
25

instrnction comprising an if-then-else construct, wherein
said means for determining comprises means for determin
ing whether au if statement within said if-then-else construct
is logically true,

22. A computer program product for creating a program
30

executable by a processor including one or more processing
clements for executing tlueads and a thread scheduler for

30
assigning !breads to said one or more processing elements,
said computer program product comprising:

signal bearing means;

instruction code within said signal bearing means for
causing a data processing system to determine, from
one or more control flow instructions within a plurality
of threads, a condition upon which execution of a
particular tbread among said plurality of threads
depends; and

responsive to said determination, instruction code within
said signal bearing means for causing said data pro
cessing system to create at least one navigation
instruction, said at least one navigation instruction
indicating that said particular thread is to be assigned lo
one of said one or more processing elements in
response lo said condition, wherein said plurality of
threads and said at leas! one navigation instruction
together comprise said program.

23. A computer program product, comprising:

a program executable by a processor including one or
more processing elements for executing instructions
and a thread schednler for assigning threads to said one
or more processing clements, said program including at
least one navigation instruction, said at least one navi
gation instruction indicating that said particular thread
is to be assigned to one of said one or more processing
elements in response to said condition; and

signal bearing means bearing said program.

0274

WEST

U~,1TED STA'fES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. :

DATED

INVENTOR(S) :

5,887, 166
Mar. 23, 1999
Mallick et al.

It is certified that error appears in the above-identified patent arid that said Letters Patent Is hereby
corrected as shown below;

In col. 1, line 23, please change "08(767,488" to -- 08/767,492 --.

Attest:

Attesting O.fficer

Signed and Sealed this

Sixteenth Day of November, 1999

Q, TODD DICKINSON

0275

UNITED ST ATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 19, 2015

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 091556,474

FILING DA TE: April 21, 2000

PATENT NUMBER: 6,630,935

ISSUE DATE: October 07, 2003

By Authority of the

Under Secretary of Commerce foJ: Intellectual Property
and Director of the Unitedztat ; Pate and Trademark,Office

!/ /
<£ __ 7

~LVI
Certifying Officer

0276

E~l~~4A~ r~ ~llu
~ ~ '\ PATENT APPLICATI~<::)

~~~lJ STATES PAIENT AND TRADEMARK OFFICE (;~, f;>Q ~~ 
~ ~~ ~y 

Applicants: Ralph Clayton Taylor et al. Examiner: Mackly Monestime ~ ~<(}> ~\;~ / 
Senal No.: 09/556,474 Art Group: 2676 ~\Sj 
Filing Date: April 21, 2000 Docket No.: 0100.0000650 # 
Confirmation No.: 6798 1 Our File No.: 00100.00.0650 "\.'<] 

Title: GEOMETRIC ENGINE INCLUDING A COMPUTATIONAL MODULE FOR USE 
IN A VIDEO GRAPHICS CONTROLLER 

Box Non-Fee Amendment 
Commissioner for Patents 
U.S. Patent and Trademark Office 
Washington, D.C. 20231 

Dear Sir: 

Certificate of First Class Mailing 
I hereby certify that this paper is being deposited with the 
United States Postal Service as first-class mail in an 
envelope addressed to: Box Non-Fee Amendment, 
Commissioner for Patents, Washington, D.C.20231, on 
this date. 

#tli__ ___ ~ ~ 
Date Margare aruso 

AMENDMENT 

In response to the Office Action dated November 19, 2002, Applicants submit the 

following remarks. 

REMARKS 

Applicants respectfully traverse and request reconsideration. 

As a preliminary matter, Applicants wish to thank the Examiner for the notice that claims 

9-18 have been allowed. 

Claims 1-2, 6 and 7 stand rejected under 35 U.S.C. §102(b) as being anticipated by U.S. 

Patent No. 5,887,166 (Mallick et al.). The Mallick reference describes a method and system for 

constructing a program including a navigation instruction for a multiscalar program. As such, 

the cited reference teaches a process for constructing a multiscalar program and teaches using 

CHICAGO/# 1037528. l 

0277



·3· (. · .. · ... · .. · ' .. 

during a first pass, a multiscalar compiler that translates each high level instruction into. one or 

more executable instruction set architecture ("ISA") instructions arranged in a particular program 

order. The multiscalar compiler partitions the ISA instructions into one or more threads. When 

a thread is executed, the first instruction within the thread is always executed, but there are 

multipfe possible execution paths out of the thread. During a second pass, the multiscalar 

compiler generates a thread code stream including a number of thread descriptors that are each 

associated with a respective one of the threads. Each thread descriptor provides the information 

needed to support multiscalar thread scheduling, thread prediction, and thread synchronization, 

including pointers to both corresponding threads and subsequent thread descriptors. A thread 

descriptor is a data structure containing a number of 32 bit entries. The multiscalar compiler 

utilizes a set flag and wait flag extension instructions to resolve inter-thread register data 

dependency. 

As to claims 1-2 and 7, the Mallick reference has been cited as teaching each and every 

claim limitation of these claims. However, Applicants respectfully submit that the Mallick 

reference is silent as to specific aspects of Applicants' claimed invention. For example, among 

other differences, Mallick does not disclose the claimed thread controllers nor the claimed 

arbitration module. For example, the Office Action cites items 30 and 32 of Mallick as the 

claimed thread controllers. However, items 30 and 32 are merely thread descriptors which are 

data structures. In contrast, Applicants' claimed thread controllers may be state machines or any 

other suitable structure that may contain for example op codes and other information if desired. 

The thread descriptors 30 and 32 as such cannot be the claimed the thread controllers. 

In addition, the Office Action states that the claimed arbitration module is allegedly 

taught as items no. 172 and 130 of Mallick. Applicants claimed arbitrations module, among 

CHICAG0/#1037528. l 2 

0278



•--:1 

other things, is coupled to a plurality of thread controllers and utilizes an application's specific 

prioritization scheme to provide op codes from the thread controllers to the computation engine 

in an order to minimize idle time of the computation engine. 

The Office Action cites col. 7, lines 45-48 and col. 10, lines 57-60 as allegedly teaching 

the claimed arbitration module. However, Applicants respectfully note that col. 7, lines 45-48, 

refers to the multiscalar compiler 14 and does not refer to the arbitration logic 172 or the thread 

scheduler BO. As such, Applicants are unsure as to why this particular passage has been cited 

and respectfully requests clarification of the same. Col. 10, lines 57-60, refers to the thread 

scheduler 130, but notes that the thread scheduler 130 uses a T-code cache that stores the thread 

descriptors thereby establishing separate fetch paths for the I-code and T-code streams to reduce 

access latency. This is not an application specific prioritization scheme that provides op codes 

from the thread controllers in a way that minimizes idle time, but instead is a mechanism which 

stores thread descriptors in a cache to provide separate fetch paths. ·This is a different operation 

from that claimed by Applicants. As such, these claims are believed to be in condition for 

allowance. 

As to claim 6, the Office Action cites FIG. 1, items 30 and 32 of Mallick, as allegedly 

disclosing a thread controller that includes at least one of a transform thread controller, a clip 

thread controller, a barycentric controller, and an attribute thread controller. However, 

Applicants respectfully submit that they are unable. to find reference to such thread controllers as 

claimed or to reference items 30 and 32. Since it appears that Mallick is silent as to graphics 

transformations, clipping operations, barycentric controllers or attribute thread controllers, 

Applicants respectfully submit that this claim is also in condition for allowance. If the rejection 

CHICAGO/# 1037528.1 3 

0279



() d. () 

is maintained, Applicants respectfully request a showing by column and line number of where 

the Mallick reference teaches such specific thread controllers as claimed. 

Claim 3 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Mallick in 

view of U.S. Patent No. 5,909,544 (Anderson II et al.). The Office Action cites column 7, lines 

9-27 of Mallick as allegedly teaching that each op code includes a controller identity, type of 

operation, and wherein each of the ·plurality of thread controllers maintain latency data for 

operation codes of a corresponding thread and wherein each of the plurality of thread controllers 

releases operation codes to the arbitration module in accordance with the latency data. 

Applicants respectfully submit that the cited portion of Mallick fails to teach, among other 

things, the thread controller that variation latency data as claimed. The cited portion of Mallick 

instead teaches merely that the thread descriptor may contain an extension pointer that points to 

an extension list containing auxiliary extension instructions that are to be dynamically inserted 

into threads by multiscalar processor hardware during execution. It does not teach that the op 

codes include a controller identity. Applicants respectfully request the column and line showing 

where the op codes in Mallick include a controller identity and a type of operation as claimed. 

In addition, Applicants claim that the thread controllers maintain latency data for 

operation codes. The Office Action previously indicated that the thread controllers are items 30 

and 32 of Mallick. However, the thread descriptors do not include latency data and the thread 

controllers do not hold op codes and release them based on the latency data to an arbitrator. 

Applicants are unable to find reference in the cited portion to the latency data as alleged in the 

Office Action. As claimed, the thread controllers maintain latency data and release op codes to 

an arbitration module in accordance with the latency data. Such as structure and operation is not 

CHICAGO/# 1037528.l 4 

0280



taught or suggested by the cited reference. As such, these claims are also believed to be in 

condition for allowance. 

Claims 4-5 and claim 8 stand rejected under 35 U.S.C. §103(a) as being unpatentable 

over Mallick in view of U.S. Patent No. 6,192,384 (Dally etaL). Dally is directed to a system 

and method for performing compound vector operations. Applicants agree that Mallick does not 

disclose a computation module that comprises a vector engine that perfom1s structure operations. 

The Office Action alleges that one of ordinary skill would combine the teachings of Dally with 

those of Mallick, but the Office Action does not appear to provide any factual support for the 

conclusion that one would combine the references. In particular, the Applicants respectfully 

submit that references cannot be combined with the knowledge of Applicants' claimed invention, 

but there must be some motivation to combine the references found elsewhere other than 

Applicants' own claimed invention. The Office Action cites coL 2, lines 35-45, of Dally. This 

cited portion merely states that the Dally system performs a compound vector operation and 

generates a result that is written back to the stream register file. It appears that the Dally 

reference teaches an opposite approach to that of Applicants' claimed invention since it does not 

appear to contemplate multiple thread controllers or arbitration modules coupled to a plurality of 

thread controllers. As such, these claims are also believed to be in condition for allowance. 

CHICAGO/# l 037528. l 5 

0281



' .... 

Accordingly, Applicants respectfully submit that the claims are in condition for 

allowance, and that an early Notice of Allowance be issued in this application. The Examiner is 

invited to contact the below.:. listed attorney if the Examiner believes that a telephone conference 

will advance the prosecution of this application. 

Date: February 19, 2003 

Vedder, Price, Kaufman & Kammholz 
222 North LaSalle Street 
Chicago, lllinois 60601 . 
PHONE: (312) 609-7599 
FAX: (312) 609-5005 

CHICAG0/#1037528.l 6 

Respectfully submitted, 

By __ C_,_~~is_....to"'--. ·~e"'""~7"· .'-"R"'---e=ck=a-m"""p"""~~..___·. -

Registration No 34,414 

0282



PTOISB/21 (08-00) 
Approved for use through 10/31/2002. OMB 0651-0031 · 

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE 
I ' d' ' I Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information un ess 1t 1splays a valid OMB contra number. 

r 
Application Number 09/556,474 "' 

TRANSMITTAL Filing Date April 21,2000 ,..,,.,. 

FORM ) First Named Inventor Ralph Clayton Tayl~ 
(to be used for all correspondence after initial filing) Group Art Unit 2.6 76 -,,,,,. ~ 

M. Monestime UJ ~ 
Examiner Name r' !.:\? 

co 
\,,.. Total Number of Pages in This Submission I Attorney Docket Number 0100.0000650 Lil ,lt..J ,,) 

ENCLOSURES (check all that annlvJ .£.J...· -~ 

D Fee Transmittal Fonn D Assignment Papers D After Allowance Communication ~l> 
(for an Application) to Group 

Fee Attached D Drawing(s) D Appeal Communication to Board 
of Appeals and Interferences 

Amendment I Reply D Licensing-related Papers D Appeal Communication to Group 
(Appeal Notice, Brief, Reply Brie~ 

D After Final Petition D Proprietary lnfonnation 

D Petition to Convert to a 
Aftidavits/declaration(s) Provisional Application D Status Letter 

0 Power of Attorney, Revocation 

D Extension of Time Request 
Change of Correspondence ca Other Enclosure(s) (please 
Address identify below): 
Terminal Disclaimer Form PTO/SB/08A; copies Express Abandonment Request 

D Request for Refund of cited references; return 

0 Information Disclosure Statement D CD, Number of CD(s) 
receipt postcard. 

D Certified Copy of Priority 

I Document(s) Remarks 

D Response to Missing Parts/ 
Incomplete Application 

Response to Missing Parts 
under 37 CFR 1.52 or 1.53 

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT 

Firm Christopher J. Reckamp 
or Reg. No. 34,414 Individual name 

Signature ~~-4?- ----Date / / 

,2-11-03 
,,. 

CERTIFICATE OF MAILING 

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient oostaae as first class 
mail in an envelope addressed to: Com,mj~~9.~xJ,t~~,r;,atents, Washington, DC 20231 on this date: I 2-19-03 I 
Typed or printed name Margaret Caruso 

... Signature )}I L-tjl//.! .1. I; &u:t.#./J I Date I d? -/t/' -;13 
Burden Hour Statement: This form is estimated to f~ke 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments 
on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, 
DC 20231, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231. 

#1037629 

0283



Please type a plus sign(+) insioe this box ----i ..... El Approved for use through 1013112002: OMB 0651-0035 
U.S. Patent and Trademark Office: U.S: DEPARTMENT OF COMMERCE. 

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. 

Application Number 09/556,474 

CHANGE OF 
CORRESPONDENCE Filing Date 04/21/2000 

First Named Inventor Tayloretal. 

Address to: 
Group Art Unit 2676 

Assistant Commissioner for P . Examiner Name 

Washington, D.C. 20231 Attorney Docket Number 0100.00006 

Please change the Correspondence Address for the above-identified application 

1

[~1 Customer Number 1

23418 I flllfll 
OR 

D Firm or· 
Individual Name 

Address 

Address 

City 

Country· 

Telephone 

Type .Customer Number here 

P TENT TRADEMARK OFFICE 

State ZIP 

Fax 

This form cannot be used ta change the data associated with a Customer Number. To change the , 
data associated with an existing Customer Number use "Request for Customer Number Dafa· 
Change" (PTO/SB/124). 

I am the: 

D Applicant/Inventor. 

D Assignee of record of the entire interest. 
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96). 

0 Attorney or Agent of record. · 

D Registered practitioner named in the application transmittal letter in an application without an 
executed oath or declaration. See 37 CFR 1.33(a)(1 ). Registration Number ___ _ 

Typed or Printed 
Name Christopher J. Reckamp, Reg. No. 34,414 

Signature ,I 

Date 

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple 
forms if more than one signature is required, see below*. 

[ 0 *Total of ---1__ forms are submitted. I 
Burden Hour Statement: This form is estimated to take 3 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments an 
the amount of time you are required to complete this farm should be sent ta the Chief Information Officer. U.S. Patent and Trademark Office, Washington, DC 
20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231. 

1037633 

0284



PATENT APPLICATION 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicants: Ralph Clayton Taylor et al. 
Serial No.: 09/556,474 

Examiner: 
Art Group: 

Mackly Monestime 
2676 
00100~00.0650 

0100.0000650 
Filing Date: April 21, 2000 
Confirmation No.: 6798 

Our File No.: 
1 Docket No.: 

Title: GEOMETRIC ENGINE INCLUDING A COMPUTATIONAL MODULE FOR 
USE IN A VIDEO GRAPHICS CONTROLLER 

Box Non-Fee Amendment 
Commissioner for Patents 
U.S. Patent and Trademark Office 
Washington, D.C. 20231 

Certificate of First Class Mailing 
I hereby certifY that this paper is being deposited with the 
United States Postal Service as first-class mail in an 
envelope addressed to: Box Non-Fee Amendment, 
Commissioner for Patents, Washington, D.C 20231, on 
this date. 

:l/!ct/b3 
Dcfte 

~~t~dl. 
Mar~aruso 

INFORMATION DISCLOSURE STATEMENT IN ACCORDANCE WITH 
37 C.F.R. §§1.97 AND l.98 

Pursuant to 37 CFR §§ 1.97 and 1.98, Applicants hereby respectfully submit that the 

below references were known to Applicants less than three months ago and submit the following 

statement consisting of: 

I. A list of documents 

II. General remarks. 

A copy of each listed document is enclosed herewith, along with Form PTO/SB/08A. 

I. Documents 

A. U.S. Patents 

Patent No. Inventor Issue Date 

4,964,042 Sterling et al. October 16, 1990 

6,018,353 Deering et al. January 25, 2000 

6,091,506 Payne et al. July 18, 2000 

CHICAGO/# I 03 8312. l 

0285



6,212,542 Kahle et al. April 3, 2001 

II. General Remarks 
-

The submission of the above documents is not an admission that the information is prior 

art, analogous or otherwise material. It is respectfully requested that the above listed documents 

be considered and made of record in the present application. 

Date: Feb. 2003 
--'--+--' 

Vedder, Price, Kaufinan & Kamrnholz 
222 North LaSalle Street 
Chicago, Illinois 60601 
Phone: (312) 609-7599 
Fax: (312) 609-5005 

CHICAG0/#1038312. I 

Respectfully submitted, 

By:~~ 
Christo})her:R~ 
Registration No. 34,414 

2 

0286



+ 

Und 

........._, ., ·· ell , •ee•v•~u ouo u0~ ""uu'1" '"'" uuvuu, ~•"v vvv • uuu • 
<:\-"() i, (:; U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE 

er the Pa~eiwork Reduction Act of 1995 no \erson~ 'are reouired to rea nd to a collection of information unless it contains a valid OMB control number. 

r "i ., "' Subsiilute for form 1449A/PTO ·~~# Complete if Known 
~"~" 

Application Number 09 556 474 
INFORMATION DISCLOSURE Filing Date Aoril 21, 2000 
STATEMENT BY APPLICANT First Named Inventor Raloh Clavton Tavlor et al. 

Group Art Unit 2R7R 
(use as many sheets as necessary) Examiner Name ~A ~Anriestime 

Sheet 11 I of 11 Attorney Docket Number 0100.0000650 
.... "' 

U.S. PATENT DOCUMENTS 
U.S. Patent Document Date of Publication of Pages, Columns, Unes, 

Examiner Cite 
Kind Codez 

Name of Patentee or Applicant 
Cited Document 

Where Relevant 

Initials' No.1 Number 
lit known\ 

of Cited Document 
MM-DD-YYYY 

Passages or Relevant 
Fidures Armear 

~tv' 4 964 042 Sterlina et al. 10/16/1990 
\U.1 6 018.353 Deerina et al. 01/25/2000 
Mil 1 6 091 506 Pavne et al. 0711812000 

1\ M 6,212,542 Kahle et al. 04/03/2001 

FOREIGN PATENT DOCUMENTS 
Forelqn Patent Document Date of Publication of 

Pages, Columns, Unes, 
Examiner Cite Name of Patentee or Where Relevant 

Kind Code5 Cited Document 
Initials' No.1 Applicant of Cited Document Passages or Relevant 

Office' Number' (if known) MM-DD-YYYY T• 
Fiaures Aooear 

Examiner 
Signature 

Date 
Considered 

'EXAMINER: lnilial ii reference cqnsi ered, whether or not citation is in conformance with MPEP 609. Draw line through cit lion if n in conformance and not 
considered. Include copy of this for with next communication to applicant. 

1 Unique citation designation number. 2 See attached Kinds of U.S. Patent Documents. 3 Enter Office that issued the document, by the two-letter 
code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial 
number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if 
possible. 6 Applicant is to place a check mark here ii English language Translation is attached. 

Burden Hour Statement: This form is estimated to lake 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on 
!he amount of time you are required to complete this fonn should be sent to the Chief Information Officer, U. S. Patent and Trademark Office, Washington, DC 20231. 
DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231. 

1038320 

0287



WEST 

United States Patent [19J 

Sterling et al. 

(54] STATIC DATAFLOW COMPUfER wnH A 
PLURALITY OF CONTROL STRUCTURES 
SIMULTANEOUSLY AND CONTINUOUSLY 
MONITORING FIRST AND SECOND 
COMMUNICATION CHANNELS 

[75] Inven!Ors: Thomas L. Sterling, Crofton, Md.; 
Ellery Y. Clum, Melbourne, Fla. 

[73] Assignee: Hanis Corporation, Melbourne, Fla. 

[2 l] Appl. No.: 231,(i73 

[22] Filed: Aug. U, 1988 

{51) Int. a.' ......................... G06F 9/30; 006F 15/82 
[52] U.S. Cl .................................. 364/lOO; 364/228.3; 

364/232.22; 364/253; 364/260.2; 364/736 
(58] Field of Search ... 364/200 MS File, 900 MS File, 

364/736 

(56J Refuences Cited 

U.S. PATENT DOCUMENTS 

4,1~3,932 5/1979 Dennis et al ........................ 364/200 
•.379,326 4/1983 Anastas et al ....................... 364/200 
4,809,159 2/1989 Sowa ................................... 364/200 
4,&14,978 3/1989 DenniB ................................ 364/200 
4,841,436 6/1989 Asano et al ......................... 364/200 
4,893,234 t/1990 ·Davidson et aJ .................... 364/200 
4,901.274 211990 Maejima et al ..................... 364/900 

Primary &:aminer....;.Thomas C. Lee 
Attorney, Agent. or Finn-Evenson, Wands, Edwards, 
Lenalum & McKeown 

[S7] 

[1 IJ Patent Number: 

[45] Date of Patent: 

ABSTRACT 

4,964,042 
Oct. 16, 1990 

An associative architecture for a static data flow pro
cessing system comprises a functional computation unit 
in which data processing operations are executed, a data 
processing execution control structure (template) stor
age and control unit and communication channels 
through which the functional computation unit and the 
template storage and control unit communicate with 
one another. The template storage and control unit 
controls the supply of data to be processed by the func
tional computation unit and includes memory for stor
ing a plurality of templates. Each template storage and 
control unit assembles data processing messages for 
application to a first of the communication channels for 
controlling the execution of a data processing operation 
by the functional computation unit. Each message con
tains the address of that template to which the result of 
the data processing operation is returned and stored in a 
return buffer, an opcode and either the data directly or 
the address of the template that contains the data to be 
processed by the functional computation unit. Each 
template alllo stores the status of a data processing exe · 
cution cycle. E.ach template continuously monitors the 
communications channels for its address and, upon de· 
tecting its address, controllably interfaces prescribed 
information associated with the execution of a data 
procesmng operation with respect to the communica
tion channels. 

:ZS Claims, 22 Drawing Sheets 

13 

FUNCTIONAL 
COMPUTATION 

UNIT 

15 OPERATION 
CHA~NEL 

SRC OP ARG A ARG B 
---v---' 

1EMPLATE 
STORAGE & 

CONTROL 
UNH 

17 RESUU 
CHANNEL 

BEST.RESULT 

0288



. ' 

U.S. Patent oct.16, 1990 Sheet 1of22 

r _, 
FUNCTIONAL 

COMPUTATION 
UNIT 

.__.:...15 OPERATION '--17 
CHANNEL 

. SAC OP ARG A ARG B BEST RESULT 

r 11 

TE~PLATE 
STORAGE & 

CONTROL 
i UNIT 

FIG. 1 

LABEL/ ADDRESS I 
TEMPLATE STATUS HORD I 
A·ARG SOURCE 
8 AAG SOURCE 
RESULT BUFFER 

FIG. 2 

I OP CODE A AAG AYL ! 8 ARG AVL ACK. s 

FIG. 3 

WEST 

4,964,042 

RE 
CH 

SULT 
ANN EL 

0289



OPERATING 
COlI 

~ 31-

3B ~ 

i...--._.. I 

~ 

..__I 

A CT IVE 
DESIGNATOR 

SAC ACTIVE 
TEMPLATE 

A ARG B ARG READ 
DA.TA DATA· COOTROL 

33-

FIG. 4 
'ACK' LOAD 
BUS CONlAOL 

35._ 39\ 
B All6 -34 ~35/ 2H\ A!Ill . .., ._,__ 51 

A ARli ,_.,,_;... 
mJR. -I TlflLT 1 

41 42 43--\...... l- - r--
I TtflLT 2 

- r--
I JMPL T 3 

- r--
1 TMPLT 4 

..,___ 
• r--
• • • 

I 

' i I I l .i - ... ~ 

11 • ' I I - - --u 1-

• • • 

TEMPLATE ARAAY 2 y 

-OPERATJDN CHANNEL 21 N 

~ 
Cl) . 

RESULT · ffSULT 
ADORE SS om 

""'d a 
f§ 

I- 52 ,__.... 53 !"'I>-

0 
p.. 
,.... 
SI' ,.... 
~ 

I I 

i 
• 

' . 
RESULT CHANNEL 

0290



AESUl T 
AOOAESS 

B AAG 
AOORESS 

A AAG 
ADDRESS 

ACTIVE 
TEMPLATE 

IP 
CODE 

t' 
/ 

t' 
} 

/ 
,! 

' J 

/ 

I 

r 52 

r42 

f 41 

. f 34 
' J 

f 31 

- - - - - -
r-y--\/-V 

COHP COMP COMP 

LABEL 
.ill. 

6l·_j L 

:>-= er: 

/ 

t' 

f 
I 

v-sv-v - L. 

COMP COMP COMP COMP 

TSH A ARG SRC 
215 21A 

TIMING & CONTROL LOGIC 

--- :J~JB 
t.;J -35 '---- 51 ;"".:; ,_ 
u 

""" 

IG. F 5 ) ACTIVE TEMPLATE DESIGNATOR ) READ LOAD 
I c 0 c ONTR L ONTAOL 

/ 
} 

' J 

I' 
) 

~ - J2H 

COMP COMP 

B AAG SAC RSLT BUFFER 
218 2lR 

I 
33 32 53 

_) _) _) 
~43 

t' / 
1 ACK ) B AAG A AAG AESUL T 

OHA DATA DATA 

0291



RSLT 
om 
RSLT 

ADDRESS 

53 

52 

2!CAR 

COMPARATOR Ar= =COMPARATOO Br 

2!A 

A ARG SAC [BARG SRC 

215 

f · SET SET 
OPCODE A B ACK 

FLG FLG 

TSW 
62 

21CBA 21Clfl 

COMP ARA TOR Tr= 

218 2tl 21A 

om IN 
TEMFU TE LABEL 0 ASLT lllfFER 

INPUT LOAD J"I 
CONTROL -.--------------'---------------------' 

FIG. 6 

0292



OPERATION 
CODE 

B ARG 
ADDRESS 

AARG 
ADDRESS 

ACTIVE 
TEMPLATE 

HAST ER 
SIGNAL 

34 

DRIVER T 

21L 

LABEL 

71 

31 

42 

41 

728 720 

DRIVER As DRIVER Bs DRIVER C 

ZIA 21B 21S 

A AHG SRC B ARG SRC [is; OPERA TOR 

FIG. 7 

0293



B ARG 
ADORE SS 

AARG 
ADORE SS 

B ARG 
DATA 

A ARG 
OATA 

42 

41 

2lCAL 

COMPARATOR As= 

LABEL 

. 33 

32 

21CBL 2lR 

RSLT BUFFER 

2!L Bl A 

DRIVER Bd 

. FIG. 8 

0294



~ 
71 r.n . 

HAST ER ~ 
A MIG 41 a 

. ADDRESS 
("t> 

B AR6 42 a 
ADDRESS 

95 0 
21CAL fl 

~ 

COMPARATOR A5 94 $"-
71 .... 

92 
~ 

TSll CNT 
LOAD 

21L 21S 

96 r.n 
LABEL 

:r a. 
DECREMENT -.J 

~ 
N 

97 N 

91 COMPARATOR ALL ACKS 
.&;.. 

FIG. g \c 
~ -.. 
?: 
N 

0295



A AHG 
ADDRESS 41 

B AflG 42 
ADDRESS 

2lCAR-A 21CAR-8 

COJ.P ARA TOR A 1 COHPARATOO A 2 

21A 

A ARG SflC 

2!SA TSH 2158 

A ARG B AHG 
AVAILABLE AVAILABLE 

!03 1 ll 

21CBR-A 

B ARG SAC 

~ 
~ 
"'d a 

2lCBR-B a 
COHPAHA TOH B 2 

21B 

113 

0 
~ -.9" -~ 
[ 
QC 

FIB.· 10 S. 
t:i 

43A ACK A _......_ ____ -------------------------1--'---J. 

438 

0296



A MIG 
ADDRESS 

B ARG 
ADDRESS 

21CAL 

COMPARATOR As 

41 

42 

21CBL 

COMPARATOR B5= 
123 TSW 21S ~ 

0297



0 'I' 
I • CLOCK SIGNAL 21S 

FIG. 12 

.__-1---MASTER H _______ ) ____ TO TEMPLAH 

ENTRY Ofl 

CK 

CLA 

B } JS~ n 

39Hi 
MASTER i 

39Ri 
llflY i 

TEHPlAlE fi 

i---i----MAS1ER itl 

ACTIVE TElfllAfE DESIGNAlOH TEMPLATE ARRAY 

0298



oPERATION CHANNEL 32 
AARGOATA f-¥'------------------...----------------.,.._, 

41 
A ARG ADDRESS l'-T'---l--

4
-!T--------.-------+--------------_..,..._, 

A ARG TYPE .f-4t---"-------..,.---t---t-t----t-----------~-----> 
B ARG OW. . .......,1--_ __..._ _______ +----------------------~ 

42 
B ARG AOOOESS r.--li---J-...-~42::::1-----+---+-t----t--------.----t---t--r-_, 

B AAG TYPE f--l~---"-------+--7-2.A--i-t---+--------t---t"-t----t---> 728 72BI 

FIG. 13 

151 
152 

en ORIVER As 

. 21CAL 

=IN TO 
DRIVER 

Ad 
ulOl·lPARATOR As 

A ARG SRC 21A 

39M 

147 

LABEL 

DRIVER BI e 

149 

21CBL 

"IN TO 
COMPARATOR Bsou"' DRIVER 

Bd 

2!L 218 
154 B ARG SAC 

0 
?-

00 

~ ..... --0 ..... 
N 
N 

~ 

~ 
~ 

"9 = .g;;.. 
N 

0299



OPERATION CHA"'1EL 32 

AARGOAU .......,-----------L-----------------------~ 

41 
AARGAOO~SS ,_,,__-l.....-

4
-
11
-.:i.----+--t----..-------------------r"-:r 

AARGTYPE ........,..,___.1..-_:_ ____ +--+---...+--------------------~ 

a AflG om ...,._1--_:.:::.._i._ _______ +---H------------
16

=-
2
------.,,.<-( 

·---'l---.J.~ 

en DRIVER BG 
42 

B ARG ADDRESS '-'-'---..l-..--
4
-
2
T-----1----+.J..------l----4o-.-..,._--.....-----r'-? 

BARG TYPE f--1-----....-"'--,;.._-----i--7-2A-+.J-----+------11-----t-f------? 

FIG. 

21S' 

Tsw{-A .........._ 

151 

en DRIVER As 

21CAL 

"IN TO 
flUVER 

Ad 
= COMPARATOR As 
UT 

A AAG SRC 21A LABEL 

149 i-.....-t-_..,.._ __ 

21CBL 

"IN 
COMPARATOR Bsou" 

TO 
OR IVER 

Bd 

218 
!54 B ARG SRC 

ROY __ _....._. 

MASTER -...:....+--------1>------'-3
-
9

-M -------------------~ 

0300



U.S. Patent Oct. 16, 1990 Sheet 13 of 22 4,964,042 
A 

R2 

RESULT CHANNEL 

A B 

WEST 

0301



RSLT 
DATA 

RSU 
ADDRESS 

RESLlT 

53 

52 

52IX 
INDEX ----------.....----. 

21CAR 

COMPARATOR Ar= 

201 
mJ 
~-~ 

A ARG SRC 

21C8R 21CLR 

COMPARATOR Tr= 

21B 

B ARG SRC LABEL 

FIG. 

~ 
00 • 

~ 
~ 
rt> a 
0 
fl-
'""" 9" -~ 
00 =-
m. 
'""" ... 
s. 
tl 

17 A 
\c 
~ ..... 

~ 
N 

0302



WEST 

U.S. Patent oct.16, 1990 Shed 15of22 4,964,042 

A AAG B AAG FIG 19 ADDRESS ADDRESS . • 
LEAST SIGNIFICANT RESULf 
8 IT OF RESULT DATA ADDRESS 

41 

l 

42 

OP 
21A 

41Z 

A AAG SRC 
8 ARG SRC 

Z ARG SAC 

2lB 
2il 

l 42l '----------'! -( I RSLT BUFFER L · 2!R i· 

LABEL 

TSW 

A ARG SAC 

XA 

B ARG SRC FIG. 
Xs . 

Z AAG SRC 

X[, 

RESULT BUFFER 

OPERATION CODE 

FIG. 22 

53LSB 

52 

1 

21 

0303



210 

21 ___ 1 _._,.___ 
21SA 2tSB SELECT 

DECODER 
OH£R1'-'-'--+--~-f-_. 

OPEllAlION CHANNEL 41 
A AAG AflOffSS 

43A 
ACK A 

42 
B ARG MJOHESS 

438 
ACK B' 

21CZB 

= COMPARATOR Z2 

220 

253 

FIG. 20 

0304



RESULT <;-,.o"--------------------------------...-----"'"' 
OATA 

RESUL1 
AOO~SS~4-------'---+--------..-----------------1---~'--" 

FIG. 23 

LABEL Z AAG SRC Id RE~AJ Bl.fFE 

CAse 
"COHPARA 100 As 

AAAG Allllf!ESs<r+-+----'---ir------'t----t--'----t---+-----""----+---------1"""' 

DRIVER B z 

DRIVER B d 

DRIVER 1 OBse 
DRIVER B s OIUVER Zs 

OTe 
AAAG nm ,_,..+-----------------------------1-----1----"""' 
B ARG 
om,_,."+----------------------------'-------~ 

ACTIVE 
TEPflLATf ,_,.4-----------------------------------.,.._,, 

0305



~ 
U"J 

OPERATION • 
CODE ~ FIG. 24 ...... a 

OBse 
Ole 0 

MASTER p. 
OZse 

,_. 
$7' 

LEAST ,_. 
Sl6N!f !CANT ~ BIT Of 

OBze RESULT om 

OAse 
C re 

ADY rJ) 
:r a ,_. 

OAde 
QO 

0 ...... 
N ACK A N 

OBde 

ACK B ~ A ARG \o !YPE 
B ARG ~ TYPE 

"' . RESULT 

~ INDEX 

0306



WEST 

U.S. Patent Oct. 16, 1990 Sheet 19 of 22 4,964,042 

RESULT 
ADDRESSES & 

LSB OF VALUE 

. OPERAND 
DATA VALUES 

OPERAND 
ADDRESSES 

ANO 
ACKNOWLEDGE 

STATUS 

(A) 

303--. ) 301 

f 
h 

I 
l 
I RE 

l I HH 
I RN 

INTER-NOOE 
UiTERFACE 
(FIG. 27) 

{ 
I 
I 
I 
I 
I 
1 OA 
I 

I 

I OAE 
1 OAW 
I OAN 

v 

·FIG. 26 

FIG. 25 
(Bi 

rRF 
rRW 
,... RN 

314 
OPERAfI ON 3 i 21 I 

FCU ~-CHANNELl323 l 
313 \ 4 OPCODE I 

321 
I PAC~E~AaW&ER 11 OPCODE 
I !FIG. 291 STORE RESULT 

-:-315 
CHANNEL 

1 I 3~5 OVS1.,... 396 304 -i 
CNffil. 

I DATA STORE ri \ \ PROG. EXEC. 
I (FIG. 28) I \ \ \ I . COOADlNA TOA 

f ·"" o~s \ \ 1 (FIG. 30) 
I 

\ ~\._ACKNOWLEDGEMENTS I 
I FROM NEIGHBORS 

FIRING TEMPLATE OPERAND VALUE AOORESS 
RESULT ADDRESS 

& VALUE 

0307



WEST 

U.S. Patent Oct. 16, 1990 

MRAl(l AIJOP.ESS -
OPEAANO VAUf -

FIG. 28 

NOOE A 

ADORE SS 
REGISTERS 

Sheet 20 of 22 4,964,042 

FIG. 27 

ARBIT ATION 
LOGIC 

DATA 
MEMORY 

NODE B 

OPERAND ADDRESS & 
ACKNOWLEDGE STATUS 
ITO GRAPH CONTROLLER) 

\.. 

0308



WEST 

U.S. Patent 

OPERATION 
PACKET 

BUILDER 

Oct. 16, 1990 

OPERAND PACKET 

RESULT ADDRESS 

t 
~ A 110 B OPEA ANO VALUES 

D.S. 
N. 

D.S. 
w. 

A OPERAND 

ACKNOWLEDGMENT ACKNOWLEDGMENT 
EXPECTED RECEIVED 

-
Sheet 21 of 22 4,964,042 

DOMAIN/BANK 

A AND B DOMAIN BANK ADDRESS 

OPCODE ANO RESULT ADDRESS 

335N A ANO B OPERAND AOORESSES 

FIG. 3.1 TEMPLATE CAN FIRE 

0309



U.S. Patent 

LABEL 

WEST 

Oct. 16, 1990 Sheet 22 of 22 4,964,042 

ACKNOWLEDGE 
FLAGS. 

360 

ACKNOWLEDGE ADDRESS COMPARATORS 

\ 
XN . AN XE RE Xw • Rw Xs ' Rs 

391 

/ ' EXPECTED RECEIVED 

RESULT ADDRESS BUS 
FROM EACH DOMAIN MEMBER 

' .LOCAL NODE 'S' !NEIGHBORING NOOE 'E' 
' 

FIG. 32 

FIG. 30 

0310



WEST 

1 
4,964,042 

2 

STATIC DATAFLOW OOMPUTER WITH A 
PLURALITY OF CONTROL STRUCTURF.s 

SIMULTANEOUSLY AND CONTINUOUSLY 
MONITORING FIRST AND SECOND 

COMMUNICATION CHANNELS 

BACK.GROUND OF THE INVENTION 

tion, eai::h template ill coupled to and continuously mon
itors the fint and second communicatiom channels for 
the prCKncc ofits addrC38 having been asserted thereon 
and, in response to detecting the presence of its address, 

5 controllably interfaoing prescribed infohnlltion associ
ated with the execution of 11 data processing operation 
with respect to the first and second communication 
channels. 

The present invention relates in.general to data pro- Each template monitors the fint communications 
cessing system!! imd is particularly directed to a static 10 channel and asserts the contents of its return buffer onto 
data.flow compuier architecture communicatiollll within the first communicatiom channel in response to recog-
which are effected through iwociative processing. nizi.ng its address, so that the data stored in the return 

I. Field of the Invention buffer may be employed as an operand for the execution 
In static data.flow computer architectures, program of a cat.a prOCdSing operation by the functional compu-

execution is typically controlled by tokens, with di- IS talion unit. In its s.tatus entry a template contains ac-
rected information packets providing communication k.nowledgement information representative of whether 
and synchronization among data execution control any other template requires the use of the contents of 
structures, or templates. Unfortunately, the amount of the return buffer. The status entry al£O includ~ operand 
serial, temporal overhead required for a token-based availability information indicating whether the result 
proce5110r to ped"orm a single operation and the number 10 entry of another template, whose address is defined by 
of memory a= per operation have effectively pre· the contents of a source addres,, entry of that .template, 
vented static data flow computers from being employed contains an operand required for the execution of a data 
for practical parallel data processing. proceui.ng operation defined in accordance with op-

2. Summary of the Invention code entry of that same template. 
In 11CCOrdance with th<: present invention, the sub- 25 Each template also contains a code indicating its 

sumrial temporal overhead and memory bandwidth readiness to "fire", i.e. to have a data processing mes· 
requirements of token·based sta.tic data flow computer sage asserted onto the first communications channel, in 
architectures are substantially reduced by replacing llCCOrdancc with the contents of the status entry, and 
token-based processor communicatiolll! with fl880ciative includes means for indicating the readiness of the tem· 
proceising, similar to that used for associative memo- 30 
ries. through which plural data execution control struc- plate to have a data processing message asserted on the 
turcs, or templates, of the system are interconnected firnt communicatiOil!i channel in response to the. ac-
with one another and with the data proccuing re- k.nowledgement infonnation being representative that 
sow:ces of the 3ystem, 50 that they may monitor and no other template requires the use of the contents of the 
respond to .operations carried out with respect to all H current result entry of that template as an operand, and 
other components of the system simultaneously, that the operand availability information indicaies that 
thereby increasing data proceaaing execution apeed and all operands required for the execution of a data pro-
enhancing the efficient use of symm memory. ceseing operation defined in accordance with opcode 

For th.is purpose, in aa:ordiince with & first cmbodi· are available. 
ment of the pr~nt invention involving a single pro- 4-0 The template storage and control unit includes means 
cessing node architecture, the static dataflow data pro- for clearing the contents of the acknowledgement and 
cessing system includes a functional computation unit, open.Ind availability information within the status entry 
in which data proceuing operations are controllably of the template in the course of causing a data process· 
executed, a template storage and control unit, and a pair ing mcssa.ge IWOCiated with that template to be asserted 
of communication cha.nnds through which the func- 45 onto the fust ccmmunications channel. 
tional computation unit and the templaie storage and The sccond communications channel includes a data 
control unit communicate with one another. The tem· portion over which output data fro.m the functional 
plate storage and control mech.aniam controls the sup- computation unit ilJ conveyed and a result address por-
ply of data to be processed by the function.al coi:nputa- tion over which the addreu of an output data recipient 
lion unit and includes memory for storing a plurality of ~o template ill conveyed. Each template includes a com-
templa.tes. The template storage and control unit assem- parator for comparing its operand source address 
bles data procasing messages for application to a first of entriC3 with the contents of the address portion of the 
the CO!lllllunication channels for controlling the ellecu- second C{)mmunicati011s channel and controllably 
tion of a data processing operation by the functional causes the operand availability information of the status 
computation unit. Each message conllli.ruJ first infonna- s~ entry to indicate that an operand entry required for the 
tion representative of the identification of that template execution of a data processing operation defined in 
(its address) to which the result of the data processing accordance. with an opcode entry of the respective 
operation ill to be returned (via the second communica- template is .available ill the result entry of another tem-
tion channel and stored in a return buffer within tha1 plate whose address matche$ one of the. operand source 
template dedicated for the p~). second infonnation 60 addrCl!S entries of the respective template. 
(an opcode) representative of the data proces11ing opera- The second communications channel also includes a 
tion to be performed by the functional ·computation result index ponion for identifying one of the operand 
unit, and third information representative of the data source entries of a template, and the comparator in-
(either the data directly or the.addrCSI! of the template eludes meaas for causing the operand availability infor-
that contains the data) to be processed by the functional 6j mation of the status entry to indicate that an operand 
computation unit. Each template also stores the status entry required for the execution of a data pr0cessing 
of a data processing execution cycle. In accordance operation defined in accordance with an opcode entry 
with the asaociative architecture of the present inven· of that template is available in the result entry of an· 

0311



l WEST 

3 
4,964,042 

4 
other template whose address matches the oper1111d 
source address entry of the respective ternplale as iden
tified by the result index portion, 

The finlt communicatioas channel includes a dara 
portion over which operandi are conveyed, 1111 address 
portion over which the adcb:ess of a selected template is 
conveyed. an opcode portion over which the opcode 
entry of a selected templau: is conveyed, and an intra 
template address link over which operand source ad
dre5SCS an: conveyable among the templates of said JO 
storage unit. Each template includes means for compar
ing its address with the content:i of the intra template 
address link lllld causing the contents of its result entry 
to he asserted onto the data portion of lhe first commu
nications channel, in response to detecting a match 15 
between its address and the contents of the intra tCID
plare addre:is link. 

A respective template includes mCllllll for controlla
bly assertinJ its operand source addres&CS onto the intra 
template address link in the cow:se of the assertion of a 20 
data processing message, and the second communica
tions channel includes a data portion over which output 
data is conveyed and a reault address portion over 
which the address of m output data recipient template 
is conveyed. A template also includes mearui for con- 25 
trollably causing the operand adcb:ess ll.llSerting means to 
assert an operand source address onto the intra template 
adcb:ess link in accordance with the contents of the 
address portion of the second communications channel. 
A selected operand source addres.s ill asserted onto the 30 
intra template addresa link in accordance with the con
tent& of a prescribed (leiut significant bit) portion of the 
data portion of the second communications channel. 

In accordance with a second embodiment of the pres
ent invention, the associative template-based data pro- 35 
cessing mechanism is applied to a larger, $ystem level 
architecture, comprised of multiple nodes, each having 
its own dedicated functional computation unit and tem
plate storage facility, wherein operand and result data 
are exchanged among the nodes of the system. The 40 
nodes preferably form a mesh topology, in which each 
node is connected with ll!ld may communicate with 
some number, e.g. three, nearest neighbor node:s with 
which it shares data resources in the course of execution 
of its own data processing oper:atioru1 and also in the 45 
course of the execution of data procesl!ing operations by 
those neighboring nodes. Namely, within an individual 
node, a data processing operation defined by a template 
stored within that node is always executed by the func
tional computation.unit within that node. However, the SO 
operands required for and the re:iulb of that execution 
may be shared by templates in nearest neighbor nodes. 
In order to effect thill 3haring of data rCll<Jurces. the 
architecture of each node is configured to provide an 
inter-node associative communication capability, simi- 55 
lar to that of an individual node, for those as~ts of a 
template which may depend upon or be necessary for 
the execution of a template in any of its neighboring 
nodes, by assigning associative communication control 
functioas to dedicated storage and supervisory units 60 
within each node. 

For this purpose, the multi-node configuration of the 
associative data processing architecture of the present 
invention comprises a plurality of data pro~ing nodes 
each of which includes its own dedicated functional 6S 
computation unit and a program execution control unit 
which contairu a plurality of templates. each template 
comprising a plurality of entries, including an address 

for identifying that template, a plurality of operand 
source entries for specifying the addrc:sse11 of operands 
to be employed in the execution of a data processing 
operation associated with that template, and the statllll 
of 1he template with respect to its associated data pro
cessing operation. Each node also contains an opcode 
~tore, coupled to the program execution control unit, 
for storing a plurality of opcodes respectively associ· 
ated with the plurality of templates, and an opcode 
which defines a data processing operation to be per
fonned by the functional computation unit. Abo in
cluded within each node is an operand store, which is 
coupled to the program execution control unit, for stor
ing a plurality of result entries in which output data 
produced by the functional computation unit as a result 
of its execution of a data processing operation requested 
by a template are stored. 

Assembly of a data proces.sing message iJI carried out 
by an operation packet builder, which is coupled to the 
program execution control unit, the opcode store and 
the operand store. The operation pack.et builder assem
bles a plurality of data processing messages to be for
warded to lhe functional computation unit for execu
tion, a respective data processing message including the 
identification of a respei;tive template, the contents of 
respective resuJt entries identified by operand source 
addresses of said respective template, and the opcode 
associated with said respective template, 

A first communications channel is coupled between 
the operation packet builder and the functional compu· 
tation unit for conveying data proce&ing request me11·
sages between the pack.et builder and the functional 
computation unit. A second communicatioru1 channel is 
coupled between the functional computation unit, the 
program execution control unit, storage unit and the 
operand s1ore, for conveying output data from the func· 
tional computation unit to the operand store and the 
identification of the template for which a data process· 
ing request meMage bu. been processed by the func
tional computation unit to the program execution con
trol unit. 

A first intemode communication channel is coupled 
to the second communication channel of each node, for 
coupling the identification of the template for which a 
data proce8Sing request message ha~ been processed by 
its associated functional computation unit to the pro
gram execution control unit ~ each node. A second . 
. intemode communication channel is coupled to the 
operand store, the operation packet builder, and the 
program execution control unit of each node, for en
abling the operand addresse8 of a template stored within 
lhe program execution control unit of a node to be 
presented to the operand store of every other adjacent 
node, and for enabling operand values stored in any 
node to be presented to the operation packet builder of 
any node. 

The statllll entry. of a respective template includes 
operand availability information representative of 
whether the result entry of another template in any 
neighboring node, whose address is defined by the con
tents of a source address entry of the template, contains 
an operand required for the execution of a data process
ing operation def med in accordance with opcode entry -
of the template. 

The second communications channel includes a data 
ponion over which output data from the functional 
computation unit is conveyed and a res;ult address por· 
tion over which the address of said rl!l!.pective template 

0312



4,964,042 
6 5 

is conveyed, and the program execution control unit 
includes a comparator for comparing the operand 
source entries of the template with the contents of 1he 
address portion of the second communicatioiu channel 
and causes the operand availability information of the 
status entry to indicate that an operand required for the 
execution of a data processing operation defined in 
accordance with an opcode associated with the tem· 
plate ia available in the operand store of that node 
which contaim the template whose identification ID 
matches one of the operand source address entries of 
the template. 

The second communications channel further includes 
a result index portion for identifying one of the operand 
entries of a template and the comparator outputs a sig- 11 
nal which cal18CS the operand availability information of 
the status entry to indicate that an operand entry re
quired for the execution of a data processing operation 
definetl in accordance with an opcode entry of the tem
plate ;~ available in the operand store of a node contain- 20 
ing the template whose address matches the operand 
source address entry of the template ""' identified by the 
result index portion. 

BRIEF DESCRIPTION OF THE DRAWINGS 
2~ 

FIG. 1 diagrammatically illustrates the general archi
tecture of an asrociative template dataflow processing 
system in accordan= with the present invention; 

FIG. 2 diagrammatically illustra!C!i the contents of a 
respective template stored within a storage and control 30 
unit of FIG. 1; 

FIG. 3 shows the sulH:ntries within a template status 
word; 

FIG. 4 diagrammatically illustrates the general orga
nization of the system template storage and control unit 3~ 
architecture of FIG. 1; 

FIG. ! illustrates the interfacing of the respective bus 
linb of the architecture of FIG. 4 with the respective 
entries of an individual template within a storage and 
control unit; 40 

FIG. 6 shows circuitry within a template for handling 
result data and address signals; 

FIG. 7 diagrammatically illustrates the operation of a 
'master' template; 

FIG. 8 diagrammatically illustrates the operation of 41 
an operand-supplying template; 

FIG. 9 illustrates a circuit for modifying the template 
status word field through the use of a counter to track 
the number of dependent templalc3, remaining to be 
!IMerted; w 

FIGS. 10 and 11 diagrammatically illustrate a mecha
nism for generating an acknowledgement through the 
use of a dual argument acknowledgement bus and statU:.S 
word field; 

FIG. 12 shows the configuration of a designator cir- 15 
cuit for detecting whether a template is ready to be 
MSCrted and for selecting which ready template is the 
next in line to be asserted; 

FIG. 13 diagrammatically shows a single level 
scheme, as a modification of the operand generation 60 
mechanism of FIG. 7, for supporting the use of immedi-
ate arguments; 

to one of two sets of prescribed rec1p1cnt templates 
depending on the value of a control Boolean operand; 

FIG. 16 illustrates a switch template; 
FIG. 17 illustrates the configuration of modified sig

nal processing hardware within the template necessary 
to support a switch function; 

FIG. 18 diagrammatically illustrates a select template 
for initiating the execution of a data processing opera
tion in which one of its two data operands is made 
available, depending on the value of a third, control 
Boolean operand; 

FIG. 19 illustrates a select template; 
FIG. 20 shows sigruil processing logic for enabling a 

template to perform the select function; 
FIGS. 21 and 22 diagrammatically show expanded 

template fields and template word status entries; 
FIGS. 23 and 2-4 show the overall comparator and 

driver circuitry and their associated communication 
buses, together with combined control logic for imple
menting an associative template; 

FIG. l!, illustrates an exemplary mesh topology of a 
multi pie node architecture; 

FIG. 26 diagrammatically illustrates the architecture 
of an individual node of a multi-node processor archi
tecture; 

FIG. l7 shows the bus structure of an inter-node 
communications link; 

FIG. 28 diagrammatically illustrates the configura
tion of a data store; 

FIG. 29 shows the configuration of an operation 
packet builder; 

FIG. 30 diagrammatically illustrates the respective 
fields of an individual template stored within the pro
gram execution coordinator and ·the mechanism 
through which the program execution coordinator 
monitors the result address link from its local node and 
tha!C of neighbor nodes for setting the A, Band Z flags; 
is generated. 

FIG. 31 illustrates circuitry for handling acknowl
edgements; and 

FIG. 32 diagrammatically illustrates a multi-node 
data flow operation. 

DETAILED DESCRIPTION 

Before dcscribinK in detail the particular improved 
computer architecture in accordance with the present 
invention, it should be observed that the present inven
tion resides primarily iii a novel structural combination 
of conventional signal processing and communication 
circuits and components and not in the particular de
tailed configuntioDB thereof. Accordingly, the struc-
ture, control and arrangement of these conventional 
circuits and components have been illustrated in the 
drawings by readily understandable block diagrams 
which show only those specific details that are pertinent 
to the pre:icnt invention, so as not to obscure the disclo-
sure with structural details which will be readily appar
ent to those OOlled in the a.rt having the benefit of th.e 
description herein. Thus, the block diagram illustrations 
of the Figures do not necessarily represent the mechani
cal strnctural arrangement of the exemplary system, but 
are primarily intended to illustrate the major structural 
components of the system in a convenient .functional 
grouping, whereby the present invention may be more 

FIG. 14 shows a dual level modification of the oper· 
and generation mechanism cifFIG. 7, for handling both 
direct addressing and immediate type arguments; 61 readily understood. 

FIG. 15 diagrammatically shciws a switch template 
for initiating the execution of a data processing opera
tion in which a primary data operand is made available 

Referring now to FIG. 1, the general architecture of 
a single node associative template dataflow processing 
system in accordance with the present invention is 

0313



7 
4,964,042 

8 
shown B.ll comprising a pair of operational (storage/con- nel 15 and result channel 17, each of which is comprised 
trol and execution) units 11 and 13 linked with one of a multiple bWI structure,. as shown. Specifically, oper-
another by way of a pair of communication paths 15 and ation channel 15 conlains a set of inter-unit bl1Ses includ-
17. By single node architecture i!! meant th.at all data · ing an opcode bw. 31, an A argument data bus 32, a E 
processing operations with the system are executed argument data bus 33, an active template bus 34 and a 
within the confines of a self-contained node or process- read control bWl 35, and a set of intra-unit buses, includ-
ing unit, as contrasted with a multi-node environment, ing an A argument address bus 41, a B argument address 
to be described infra, where multiple execution units bus 42 and an acknowledge bus 43. Opcode bus 31 
have their own computational capabilities and share carries the opcode portion of a data processing mc:ssage 
data re:iourcea through an inrer-node co~unications 10 derived from the TSW field of one of templates ll-1 .. 
architecture. · . 21-N which iB currently invoking the e7>ecution of a 

Within the single node system of FIG. 1, a data star- data processing operation, while buses 3l and 33 carry 
age and control unit 11 and a functional computation the A and B argument values obtained from the source 
unit 13 are mutually linked by way of an operation templates (A uc and B src) specified by the A and B 
channel 15 and a result channel 17. Data storage and 1$ argument source entries of the template. Bus 34 indi· 
control unit 11 contains memory and llSSOCiated control cates which template is currently aclive {having a data 
logic for storing and controllably interfacing a plurality processing request serviced by functional computation 
of data processing eJ1ccution control structurets, termed unit 13), and bus J! is used to provide timing and con· 
templates, with each of operation channel 15 and result 1rol signals to manage and synchronize the transmission 
channel 17. A principal responsibility of unit 11 is the 20 of mcssage:i between template storage and control unit 
control of the presentation or transmission of data pro- 11 and functional computation unit 13. For this purpose, 
cessing mC$811ges awaiting service in the templates to template storage and control unit 11 includes an arbitra-
functional computation unit 13 QVer operation channel lion logic circuit, or active template designator 38, 
15. Functional computation unit 15 perfonrui arithmetic which is controlled by the timing $ignals on bus 35 and 
and logical operations on one and two lll'gument value 2$ controllably designates, via one of links 39-1 ... 3!>-N, 
sets that are contained within data processing execution which template is currently 'active'. 
messages supplied over operation channel 15 from 11tor· Within the set of intra-unit buses, A argument address 
age and control unit 11 and forwards the result of its bus 41 and B argument address bus 42 are employed by 
data prOCCMing operation over result channel 17 to the active tempi.ate to identify which templates contain 
template storage and control unit 11. 30 lhe respective A and B argument values (opcrant:U) that 

The contenlll of a respective template, stored within are to be ll!lSCrted on A and B argument data buses 32 
template slorage and control unit 11, are dia.grammati- and 33 during the forwarding of a data processing mes-
cally illmtrated in FIG. 2 as a /let of table entries com- sage· to functional computation unit 15. Acknowledge 
prising: a.n address, or label, (L) identifying the template bus 43 serves to propagate control/statll!J information 
and employed by variow portioDll of the system to JS among the templates in the cour5e of establishing 
addreu that template; a status word (TSW), which whether a template is ready to be iwerted. 
contains. a nwnber of sub-entries (shown in FIG. J) Result channel 17 is comprised of a load control bus 
representative Qf the operational/control status of the 51, a result address bus 52 and a result data bus 53. Load 
template; a pair of argument value entries (A arg src and control bus 51 provides timing signals that direct the 
B arg · w;) corresponding to the label> or . addresses of 40 monitoring of the address and data buses and the load-
those templates within unit 11. from which the actual ing of the data by the templates. Result addre3S bus 52 
argument values of a data processing message are to be contains the address or label of the template that initi-
obtained; and a. result b.uffer entry in which the result of ated the data processing operation and to which the 
a data processing operation executed by the functional result of that operation is to be returned, while data bus 
computation unit is stored. 45 53 contains the actwd result data that has produced by 

As shown in FIG. 3, the sub-entries within the tem· functional computation unit 13 and which is to be writ-
plate status word comprise an opcode, representative of ten into the result buffer of the initiating template. 
the data procCMing operation to be performed, a.pair of FIG. S illustrates, in greater detail, the interfacing of 
argumenl available flags (A arg avl and B arg av!), the respective bus link& of the a.rchitecture of FIG. 4 
which indicate whether or not the respective A and B so with the respective entries of an individual template 21·i 
argument values to be employed in the data processing within srorage and control unit· 11. Also shown i$ a 
operation are currently resident within the templates timing and control logic circuit ti1 that controls the 
whose labels correspond to the A arg src and B arg src su>rage and readout of the contents of the respective 
entries, referenced above, and a set of acknowledge· fields of the template. Within the intra-unit bu! portion 
ment flags .representative of the status of other. tem- 5$ of operation channel 15, the A and B argument address 
plates that use the contents of the result buffer as an buses 41 and 42 are coupled as inputs to a template label 
argument value. As will be explained in detail below, or address field 21L, so that their cont•mts may be corn-
the contentll of the TSW field effectively determine pared with the identity of the template, and.thereby 
whether or not the entries within the template are com· determine whether or not the contents .of that tem-
plete, so that a data processing message may be assenh 60 plate's result buffer 21R are to be 88Serted onto either of 
bled. and placed on the operation channel to be pro- A argument or B argument buses 32 and 33, respec-
cessed by functional computation unit 13. tively, which are connected as re5ult buffer output linb, 

FIG. 4 diagrammatically illustrates, in greater detail, as shown. A and B .argument address buses 41 and 42 
the general organization of the system architecture of are also coupled a.s inputs to both A argwnent and B 
FIG. 1, referenced above. Storage and contrnl unit 11 is 65 argument source fields 21A and 21B, respectively, so 
shown as being comprised ofa plurality or array of N that their contents llllly be compared with the stored A 
templates, 21-1 , .. 21-N, which are interfaced with and B argument source fields for purposes of handling 
functional computation unit 13 through operation chan· an acknowledgement, as will be described infra. Ac-

0314



WEST 

9 
4,964,042 

10 
knowledgement bus 43 is coupled to timing logic and unit 13 completes the execution of a data processing 
control logic circuit 61. Under the control of read con- operation, the contents of re11ult addres$ bus 52 identify 
trol bus 35, bWle:I 41 and 42 a.re also respectively cou- the template which initiated the data proccss.ing opera-
pied to receive the contentl! A and B argumc:nt source tlon that produced the output data on result data b\1$ 53. 
fielda 21A ll.lld 21B, so that the contents of fields 21A S In this circwmt&nce, comparator 21CLR detects a 
and 218 lll.81Y be usertcd onto the respective A and 8 match between the template label 21L and the contents 
argument address bWIC3. of result addr= bus 52. so thllt result buffer 21R is 

Within the inter-unit portion of operation channel 15, loaded with tbe result data. 
the re:iult address bus 52 is coupled as lln input to tem- The other situation involvc:i the use of 11 result value 
plate label field 21L, so that its cohtents may be com- lO by a template as one of its operandi. In this case the 
pared with the identity of the tcmplllte, and thereby templllte does not store the argument value itself, since 
determine w beth er or not the contents of the result data it is already being saved by the template that initiated its 
bus 53 lll'e to be written or loaded into that template's production. However, it is neceisary to store an indica-
re:sult buffer 2lR, in accordance with a load control tion th.at the argument value is now available (in an-
signal supplied to timing and control logic circuit 61 15 other template). For this purpose, the template employs 
over link 51. Rault address bUB 52 is further coupled to comparaton 21CAR and 21CBR to determine whether 
each of A argument source and B argument source or not the result address matchC3 either or both of its A 
fields 21A and :UB. Wbc:n either of tbes1:l argument and B argument source fields. If a match occurs, in 
source fielda detecb a match between the contents of either case, a respective flag bit is set in the correspond-
result addresll bus 52 and itself, a respective (A or B) 20 ing A/B availability .field within the template status 
'argument-available' flag within the template statua word field 21S, thereby indicating that the A/B argu-
word field is raised, indicating the availability of that mcnt is resident in the template whose label corresponds 
argument for use in a message to functional computa- to the lti\Jlllent source address. All templates which 
tion unit 13. employ the result data as an operand will set their corre· 

Additional bus connectiorui of the inter-unit bus por· 25 sponding flag bit(s) simultaneously. 
tion of operation channel 15 include the coupling of the 
opcode portion of the template statllll word field 21S to 
opcode bus 31 and the coupling of the t.emplate address 
to active template bus 34. Timing and control logic 
circuit lit also monitors. the contents of template status 30 
word field 21S to control the generation of a 'ready' 
control signal on link 39R to active template designator 
38 which, in turn, asserts an 'active' control signal on 
link 39A to inform timing and control logic circuit lil 
when that template has become the current or active 35 
data structure. 

To facilitate an understanding of the associative oper
ation of the llrchitecture of the single node embodiment 
of the present invention, in the description to follow, 
the manner in which a template monitors and responds 40 
to the contents of.the respective bus portions of result 
and operation channels 15 and 17 will be explained in 
detail with reference to FIGS. 6-24, which diagram· 
matically illustrate the state and functionality of the 
stored contents of a template in the course of its interac- 45 
tion with tbe contents of one or more prescribed por
tio:rui of one of the communication channels. 

Result Handling (FIG. 6) 

AB shown in FIG. 6, result address bus 5.2 is coupled SO 
to each of respective comparators 21CAR, 21CBR and 
21CLR wherein its contents are compared with A argu
ment address field 21A, B argument address field 21B 
and the template addr.ess 21L. If the result address 
matches either of the argument address fields a respec- SS 
ti ve A or B flag is set within the template status word 
field 215. If the rC3ult address matches the template's 
address, comparator 21CLR supplies a loa.d input to 
rc:iult buffer llR causing the contents of result data bus 
53 to be written into result buffer 21R. The loading 60 
operation of ea.ch. of the template statua word field 21S 
and result buffer 21R is controlled by a clock control 
signal from timing and control logic circuit 61 on link 
62, which syncbroniz03 the loading operation with the 
operation of functional computation unit 13, 65 

There are two situations in which 11 template may 
respond to the contents of result address bUJl 52. As 
pointed out previously, when functional computation 

Assertion of Data Processing Mess.age (FIGS. 7 and !f) 

During each cycle of operation of channel 15, two 
types of templates are involved-a master template 
(which initiate$ the assertion of a data processing mes
sage), and one or more operand templates (which pro
vide the actual argument values). 

In reciporuie to 11 message assen request from func
tional computation unit 13 on read control bus 35, ac· 
tive template designator 33 asserts an 'active' control 
signal on bus 39A to a 'master' template (the operation 
of which iii diagrammatically shown in FIG. 1), which 
is ready to trammit a message and which the arbitration 
logic within designator 38 has determined to be next in 
line for service. This active control signal cawies con
trol logic 61 to as.sen a master template control signal 
on link 71, which is coupled to the en.able inputs of each 
of re11pective output drivers 72L, 72A, 728 and 720 that 
are MSOCiated with the re:ipective template address, A 
and B argument source and opcode portion of the tem· 
plate status word fields; Template address driver 12L is 
coupled to active template bus 34, drivers 72A and 72B 
are coupled to address buses 41 and 42, and opcode 
driver 720 is coupled to bus 31. As a consequence, the 
source and opcode portion& of the operation channel are 
specified immediately by the contents of label field 21L 
and the opcode portion of the template status word field 
that are asserted onto the inter-unit buses of operation 
channel 15, while the addresses of the A and B argu
ment!! to be asserted on the A . and B argument data 
buses.of the inter-unit bWl portion of operation channel 
15 are ll!!Serled onto bl.l.SCS 41 and 42, respectively. Since 
buses 41 and 42 are contained within the intra-unit por· 
tion of operation channel 15, their contents a.re not 
applied directly lo functional computation unit 13. In
stead, ~ey are Wied to select the templates in which the 
a.ctual operand values a.re stored. 

The operation of a.n operand-supplying template is 
diagnunmatlcally illustrated in FIG. 8. As shown 
therein, A and B argument address buses 41 and 42 are 
respectivcly·couplcd to fint input ports of comparators 
21 CAL and 21CBL, second input pons of which are 
coupled to template addrcM fielri 21L Should the con· 

0315



WEST 

11 
4,964,042 u 

tents of either of bW!eS 41 and 42 match the template 
addCCM, a corresponding one or both of drivers 81A and 
818 will be enabled, so as to cawie the contenlll of result 
buffer 21 R. which is the aetual operand value to be 
employed in the execution of the data processing opera
tion, to be asserted on the MSOCiated A and B argument 
data bus 32 and 33 of the inter-unit .bus portion of the 
operation channel 15. It should be noted that the config· 
uration &bowo in FIG. 8 will support the &ituation 
where a single template is requested to supply both the 10 
A and B arguments (as ii:i the case of a multiply opera
tion to compute the square of a number). 

Acknowledgements 

As pointed out supra, in the course of the generation ls 
of a data proce:ising mew.ge by a master .template, the 
operands are derived from the result buffers in one or 

sub-field is resident. Otherwise, multiplexer !14 selects 
the decrement output lo reduce the value in the Cnt 
sub-field. Whenever the result buffer is accessed by a 
ma.at.er template, one of comparators llCAL and 
21CBL will supply an output through OR gate 91 to 
cause a load signal to be applied to the Cot subfield. 
Because the master active control signal is not asserted 
at this time, multiplexer 94 couples the decremented 
count value to the Cnt sub-field. As a consequence, the 
contents of the Cnt sub-field are decremented every 
time the template's result buffer is accessed. This pro
CC3ll continues until comparator 97 detects that the 
count value has reached zero, at which time it produces 
an output indicating the all dependent templates have 
been asserted. 

Distnbuted Acknowledgement 

more other templates. The contenlll of these other tem· FIGS. to and 11 diagrammatically illustrate a mecha-
~dates depend upon the contents of a previous template nism for generating an acknowledgement through the 
in tenns of program flow. It often occurs that a template 20 use of a dual argument acknowledgement bus and status 
may be 1l8ed repeatedly and, in the case of pipelined word field. FIG. 10 illustrates comparator and logic 
pn:x;e35ing, continuously. It is necessary, therdore, to circuitry by which a dependent templale provides an 
pn::serve the order of message assertion of a sequence of indication of whether or not it luis been asserted; FIG. 
templates, ISO that no tempi.ate can perform a new opera- 11 depiclll comparalor and logic circuitry for determin-
tion until all of itl! dependent templates, that require the 2S ing if all dependent templates have been asserted. 
use of a previowily computed value stored in its result All shown in FIG. 10, A and B ·argument address 
buffer as an operand, have performed their operatloD.li. buses 41 and 42 a.cc respectively coupled to pairs of dual 
Preserving the order of message assertion is accom- compa.cators llCAR-A, 21CBR·A and llCAR-B, 
plished in accordance with the present invention 21CBR-B. Comparators 21CAR-A and llCAR·B are 
through the use of an acknowledgement mechanism JO coupled to compare the contents of each of the argu-
wh.ich is incorporated into the template and which is ment address b= 41 and 42 with the A argument 
examined before execution of the template may pro- source field 21A, while· comparators 21CBR-A and 
ceed. The discw&ion to follow will address two types of 21CBR·B are coupled to compare the contents ofeach 
acknowledgement mechanisms. one using a counter to of the argument address buses 41 and 42 with the B 
keep track of the number of dependent templates that 35 argument wurce field llB. If any of the comparators 
have yet to be asserted before the template may become detects a .match between its monitored argument ad-
active, and a distributed mechanism through which a dress and the stored !IOutce address field (representative 
template determines the statWI Of alJ .of its dependent of earlier asserted templates), then the template is fC· 

templates whenever itli own result buffer is referenced quired to indicate status information on the appropriate 
by another template. 40 acknowledgement line '3A, 43B. Acknowledgement 

Counter-Defined Acknowledgement 
link 43A is used in the case of an earlier-asserted tem
plate being referenced by a current. !JlllSter template on 

FIG. 9 illwstrates the manner in which the template A Arg address bus 41, while acknowledgement link 43B 
&tlltus word field 21S is modified through the use of a is used in the case of an earlier-a.sserted template being 
counter used to track the number of dependent tem- 45 referenced by a current master template on B Arg ad· 
plates remaining to be ~rted. Specifically, a first addi- dress bm 42. 
tional static sub-field, identified as #Aclc.s, .is used to The template is considered pending with respect to 
indicate the . number of. dependent templates, while a an earlier·asserted template if it hu not been 113.Serted 
variable Cnt $ilb-field is Wied w indicate the numhcr of since the prior template's most recent result value be· 
templates remaining to be asserted before the template SO came available, which is determined by reference to the 
may. reexecute. ,The contents of the Cnt sub-field a:re state of the A argument available and B argument avail-
coupled to a down counter or decrement circuit %, the able flag5 in the template status word sub-fields 
output of which is coupled to one input of a multiplexer 21SA,.21SB. If the A argument available flag is set when 
94. The output of multiplexer 94 is coupled to the count the prior template referenc'ed by the contents of the A 
sub-field. Asecondinputofmultiplexer94iscoupledto SS argument,source field 21A is detected, then one .of 
receive the.contents of the #Ack sub-field of the teni· AND gates 101 and lOl will be enabled, causing an 
.plate statWI word llS. The output of the.Cut sub-field is active (low) signal to be asserted via one of NOR gates 
also coupled to a zero reference comparator rn, to de- on either (ope11,.collector) Ack A line 43A or Ack Bline 
termine when the contents of the Cnt sub-field have 43B. Similarly, if the B argument available flag is set 
been deeremented tc zero. 60 when the prior template referenced by the contents of 

In operation, when the template has been designated the B argument source field 21B is detected, then one of 
as the master template and !ISSCIU a data processing AND gates 111 and 112 will .be enabled, causing an 
message on operation channel .15, the contents of the active signal to be asserted. 
Cnt sub-field is reset to the value of the ft Ack sub-field. Referring now to FIG. 11, ·which shows the meeha-
If the master control signal is asserted on link 71, niulti- 65 nism for determining whether aJl dependent teinplates 
plexer 94 couples the #Acks subfield to the Cnt sub- have been asserted; acknowledgement bu8 portions 43A 
field and an active load signal is coupled from OR gate and 438 .are coupled to one input of respective AND 
91 to the load input of the register in which the Cnt gates 212 and 122, second inputs to which are coupled 

0316



13 
4,964,042 

14 
to the outputs of comparatorn 21CAL and llCBL, 13, ~additional drivers between the argument source 
described previously with reference to FIG. 8. When- fidd and the data bus. The second, or dual level scheme, 
ever the result buffer is referenced by argument address shown in FIG. 14, employs additional logic to transfer 
signals on argument address bus lines 41 or 42, its corre· immediJlte valuei from the address bus to the data bus. 
sponding comparator 21CAL llCBL will detect a Referring now to FIG. 13, there is 3hown a first mod-
match between the referenced template's address and ification of the operud generation meclum.ism de-
t.he argument address, thereby providing an enabling scribed above with reference to FIG. 7, for supporting 
input to one of AND gates 121 and 1.ll. If either of the use of immediate arguments. As shown in FIG. 13, 
comparators llCAL. llCBL detects a match, then it is the operation channel 15 is modified to include a pair of 
known that the dependent templates are providing as- 10 additional A and B argument type sign.al lines 41T and 
sertion statwi information on th~ acknowlcdacment 4lT to indicate: whether or not the arguments are imme-
lines 43A or 43B. An active acknowledgement line diatc. TI=e argument type signals (A Arg Type and B 
indicates that there arc still pendina dependent tcm- Arg Type) are asserted by the lllll$tcr template. If none 
plates to be .asserted. When the relevant acknowledge- of these lines is active, its 8"0Ciated argument is lmme-
ment line goes high {inactive) at the time the asaociated 15 diate rather that requiring direct addressing to an argu-
comparator llCAL, llCBL bu detected a 1111.tch, then menl source field. Each of links 41T and 4ZT is coupled 
it ca.a be inferred that all dependent tcmplat.c<i have been to (controllAbly) disable (m the case of an immediate 
executed, so that the referenced template 111J1Y execute argument) a respective template address (label) compar-
(subject, of CO\ITTC to the availability of its own operand ator llCAL, llCBL that is monitoring its associated 
values). Upon this condition being satisfied, the output 20 address bus, so u to prevent any template, other than 
of OR gate ll3 sets the acknowledgement flag within the master template, from applyini an.argument value 
the stlltus word field .11S. This flag will be reset upon to a data bus. 
execution of the template. A pair of additional driven 7lAl and 7lBI are cou-

As pointed out previoualy, the order of assertion pied to the respective A and B argument source entries 
(becoming master/execution) of a template onto I.he 25 21A and llB, for controllably assening the immediate 
operation channel is dependent upon the template being arguments dim::tly onto the .data buses. These drivers 
ready and not requiring execution of any other tem· are controllably enabled by • pair of AND gates 147 
plate, and it must be selected for assertion by the active and 148 whlch monitor a pair of status flag bit.!I Ia and Ib 
template designator. FIG. U shows the configuration that are incorporated into the template status word llS. 
of such a designator circuit for detecting whether a 30 These additional bits are active (logical 1) when the A 
template is ready to be asserted and for selecting which or B argument source fields 21A or 218 contain imme· 
ready template is the next in line to be asserted. diate arguments. Gates 147 and 148 are controlled by 

For this purpose the active template designator com- the active te!llplate designator (FIG. 12) as,,erting an 
prises a daisy-chain arbitration logic circuit 38 which active signal on master line 39M. Otherwise, if immedi-
monitol'!l the acknowledgement and A and B availabil- 35 ate flag biu Ia, lb are not set, then via inverters 1'45, 154 
ity flags within the statu!I word field via an AND gate and AND ~ 146 and 149, driven 7lA and 72B are 
131, the output of which is asserted active (R.DY) if all controllably enabled by the assertion of an active signal 
three flap are set. This RDY signal ill coupled to a on 01J1Stcr line 39M. 
respective stage of a conventional linked AND gate The use of the additional immediate flag bits within 
d.aiily chain arbitration circuit 38. A colllltant active 40 the statu!I word field also affects the manner in which 
signs.I level is asserted at the input to the lirst (top, as the RDY signal is generated. In addition to requiring 
viewed in FIG. U) stage and is controllably propagated the setting of the acknowledgement flag Ack, indicating 
down the chaln in dependence upon the aMCrtion of the thal all dependent templates have been asserted, either 
respective RDY signals from the template status word the A or B availability flag is set, or the la or lb flags are 
fields. For a template Ti, if RDY is llSBCt'ted and there 4S set indicating that the arguu1ent is . immediate and its 
are no higher priority (up the chain) U:mplates waiting value is resident in the corresponding argument source 
to be 8.S$Crtcd, then a hold flip-flop HFF is set by a clock field llA,. llB. Logical circuitry for producing the 
signal CK, causing & MASTER i signal to become ac- . RDY signal in the case of.an expanded status word field 
tive, indicating tllllt template Ti iii the new master tem· to include immediate arguments includes OR gates 151, 
plate. In rcspollllC to this MASTER i signaJ, the tem· so 152 and AND gate 153, as shown. 
plate enables the appropriate output drivers and resets In addition to being eoupled to disable comparators 
the status word flags. .21CAL, 21CBL. argument type signal lines 41T and 

In the foregoing description it bu been assumed that 4ZT are coupled to controllAbly. disable comparators 
template arpments are generated by the execution of llCAR-A, UCBR-A and llCAR-B,llCBR·B of FIG. 
other templates. However, it is occasionally n~ S5 10, to prevent the aMertion of false acknowledgement 
to specify the value of an argument as a constant, signals on the Ack A and Ack B lines. 
namely, an immediate argument. To su=fully sup- FIG. 14 shows a second, or dual level. modification 
port an immediate argument, the entries in the ·tern- of the openuid generation mechanism of FIG. 7, for 
plate's Argument Source field,, 21A and 21B must· be handling both direct addressing and immediate type 
capable of storing and using both u:mplate addresses ISO argumenl3, again using the A and B argument type lines 
and comtanl values. In addition, during the foI1IlJ1tion 41T and 4lT, shown in FIG. 13, but wilb reduced logic 
of a data processing message, a mechanism for applying complexity. As shown in FIO. 14, a pair of additional A 
the constant to the operation channel mwt also be pro- and .B drivers 161 and 162 are coupled ·between the 
vided. Finally, the presence or use of immediate argu- respective A and B address and A and B data buses. 
ments must not interfere with the acknowledgement 65 These additional drivers are conttollably enabled di-
mechanism. In the explanation to follow, two mecha- rectly by the rc!pective A and B type Jines. In the con-
nisms for supporting immediate arguments will be de- figuration of PIO. 14, when I.be Ia flag ill set, the value 
scribed. The fil'llt, or single level scheme, shown in FIG. is applied to the A Arg AddrCll.'l bus; however, driver 

0317



15 
4,964,042 

16 
161 is enabled, so as to llSSCI't the immediate value onto 
the A data bus 32. Similarly, when the lb flag is set, the 
value is applied to the B A.rg Address bus; however, 
driver 162 is enabled, so aa to llSl!Crt the immediate value 
onto the B data bus 33. 

The data proce:ssing: opcratiom of the llS&OCia.tive 
communications architecture thllli far described involve 
the use of fixed operators. In a practical system, how· 
ever, function execution will involve conditional opera
tors for flow control and decision ma.Icing. In the discus
sion to follow, the manner in which the architecture 
described supra is modified to handle conditional opera
torll, termed 'switch' and 'select'. will be addressed. 

out with respect to the B opcrll.lld, using its dedicated 
oompa.ra.wr logic. 

It should be noted that there is no need to specify 
which of the two result clements from a switch template 
is required by a IUJl.tlter template argument since there is 
only one available at a time from a given switch and the 
current master template has already determined that the 
one available ia the one th.at it requires. Moreover, since 
all dependent templates of a switch template must have 

10 UBCd its previoWI results before it can be 8.BSCrted, the 
distribured a.c:knowlerlgement mechanism described 
supra. need not distinguish between temp!atci accessing 
result element RD and thnse accessing result element 
Rl, so that it requires no modification in order to .sup· 

SWitch Template IS port a switch template. 
A switch template, diagnunmatically shown in FIG. The assertion of a switch template proceeds in the 

15, initiates the execution of a .data proceMing operation same manner as· a normal dyadic opera.tor, placing: its 
in which a primary data operand A is made available to adch-ess (label), 0 JlCOCI.: and A and B argw:n~nt source 
one of two sets of prescribed recipient templales (0,1) entni:s onto. the operation channel 15. Functional com· 

. depending on the value of a control Boolean operand B. 20 putatton urut 13 retumB lhe contents of the A data bus 
An de ndent template's aro,,ment source entry will 32 to result data bus 53, th7 la~l to res:iit address bus 52 

y pc ,,.- th and the appended (lea.'lt Hgnificant) bit of the contents 
reference only one of the two result values. Namely, e f th B data b 33 t ult · d r SlIX De . 
value returned is always the template's A argument, 0 e WI 0 r~ m ex me • pen 
with the named result to which the value.is returned dent template then ~etenmne wheth~ or not they arc 

bein d fined b th Boo) _, f th t late' B 2S able to use the result m accordance with the value of the 
g: e y e can vwue o e emp s . _,_ b' d h fth · · b' 

If th. .., __ 1 and al . r_, (1 'cal mucx it an t e contents o cir own extension its, as 
argument. e DVU ean oper v ue xs uuse ogi 1 · ed above 
0), the A operand value .wilJ be returned to the first exp am · 
result, designatcd<switch label>0.0, where<switch Select Template 
label> ill the.contents of the switch template's label 30 A select template, diagrammatically shown in FIG. 
address field. Similarly, if the B operand is true (logical 18, and the mechanism for the execution of which is 
I), the value .of the A operand will be returned to the shown in FIG. 19, initiates the e:a:ecution of a data pro· 
<switch label> 0.1 result. Because each template that is ccssing operation in which one of its two datil operands 
dependent upon the switch template laat acquired the A and B is made available, depending on the value of a 
most recent of a pair of values referenced by it, a switch JS third, control Boolean operand z. In order to be as-
ternplate is inhibited from eucuting until all of its de· s.erted, the control operand z and the selected argument 
pendent templates, for both result values, have been (A or B) are required. To accommodate the additional 
executed. z operand, the data structU.l'e is modified to include a Z 

The mechanism of a switch template, shown in FIG. argument source field 21Z and to add a corresponding 
16, involves a minor modification of the ba:sic template 40 z argument available bit z into .the status word. field 
data structure shown in FIG. l, specifically the addition 21S. Ia addition, the least significant bit (S) of the result 
of a result index line 52IX to the result channel, which data is latched as part of the template status word,· so 
is coupled to a result index bit (211XA, 211XB) that is that the template can hold the Boolean value of the Z 
appended to the result address to identify to which of argument and can determine which ofirs A and B argu-
the two result elements the returned value is directed. 45 ments is to be applied to the A argument address bus of 
Generally, the tesult index will be a logical 0, refcrenc· the operation charuiel when the select template be· 
ing the first result element RO of the template (since comes a IIlll!lter template. 
most templates have only single element results); for the Tue signal processing logic for enabling the template 
infrequent case in which the second result element Rl is data structure to perform the select function i3 shown in 
referenced, the l'C$ult index is a logical l. so detail in FIO. 20 as comprising a first Z comparator 

The configuration of the modified signal processing 21CZR which compares the entry in the Z argument 
hardware within the template nc:Cess.ary to 5upport a source field :ZtZ with the contents of the result bus 52, 
switch function is illustrated in FIG. 17 as comprising a second Z comparator 21CZA which compares the Z 
comparators 21CXA, 21CXB which arc coupled to argument with the contents of the A argument address 
compare the appended A and B index bil.!l of the tem· SS bus 43A and a third Z comparator 21CZB which com· 
plate status word field l1S with the contents of the pa.res the Z argument with the contents of the B argu· 
result index line 52IX. The output of comparator ment 11ddre11S bus. The output of comparator .21CZR 
21CXA is logically ANDed with the output <tf compa.r· sets a Z available flip-flop 21SZ within the template 
alor 21CAR in AND gate 201; the output of compa.ra- status word 21S and loads an S flip-flop 21SS with the 
tor 21CXB is logically ANDed with the output of com- 6-0 least significant bit 53LSB of the result data bu$ 53. The 
pa.rator llCBR in AND gate 202. For a template•s A outputs of comparators 21CZA, 21CZB are coupled to 
operand, comparator 21CAR compares its contents NOR gates 240 and 241, respectively, which are con· 
with the result address, as described previously, while trollably enabled by the Q output of z latch nsz. 
comparator 21CXA compares the bit on the result index which is further coupled to on input of AND gate 231. 
line 52I with the A index bit of the status word field. 6S ·The Q output of S latch 21SS is coupled to NANO gate 
Only if both compare operatiolls are true does the tem· 212 and AND gates 2.23 and 224 and to OR gate 213. It 
plate recognize· the presence of its A operand and up- is complemented· by inverter 126 and applied to AND 
dates its A availability bit. A similar operation is carried gate 222. • 

0318



17 
4,964,042 

18 
The Op<;ode field 210 is coupled to a decoder 211 

which provides· a first "select" output to each of 
NAND gate 212 and AND gates 231, 223 and 243. A 
second "other" output of decoder lll ill coupled to OR 
gate Z13 and to each of AND gates 2.21 and 24.2. The 
output of NAND gate 2ll ill coupled to one input of 
AND gate .214 a second input of which is coupled to 
master control line 39M, which serves as a clear or reset 
input for the contents of the template statllll word. Mas
ter control line 39M is further coupled to the clear IO 
inpuu of acknowledgement latch llSACK and Z latch 
llSZ and to AND gates 215, 143, 252 ll.l1d .253. A sec· 
ond input of And gate 252 is coupled IO the output of 
AND gate 223, which ill also complemented by inverter 
151 and applied to a second input of AND gate 253. IS 

The output of AND gate 253 is applied to the enable 
input of driver ltil, while the output of ANd gate 242 is 
coupled to the ellllble input of driver 161. A pair of 
additional driven 211 and 220 a.re coupled to Z argu
ment source field llZ and B argument source field 21B, 20 
respectively. The output of driver 211, which is enabled 
by the output of ANd gate 243, is coupled to B argu· 
mcnt address bus 42. The output of driver 220, which is 
enabled by the output of AND gate .25.2, is coupled to A 
argument address bus 41. 25 

L-Ogic circuitry· for generating a RDY indication to 
the template designator 38 over line 39R include:i AND 
gate 250, a first input of which is coupled to the Q out
put of Acknowledgement latch llSACK, and a Jeeond 
input of which is coupled to OR gate 232. OR gate 232 JO 
ls coupled to the outputs of each of AND gates 221 and 
231. AND gate 221 receives the Q outputs of the Aand 
B available latches 21SA and llSB and the other output 
of decoder 211. The Q output of A available 111.tcb is also 
coupled to AND gate m, while the. Q output of B 3~ 
available latch is coupled to AND gate 224. The outputs 
of AND gates .212 and 224 are coupled via OR gate to 
AND gate 231. 

In operation, opcode decoder 211 cu.mines the con
tents of the opcode field and determines if the template 40 
iA to operate a_, a select template .(asserting its 'select' 
output bit) or if the template is another type (B88erting 
its 'other' output bit). If the template is not a 'select' 
template, then gates 121,23.2 and 2.!0 cause a RDY sig
nal to be place on line 39R. when the A and Band ACK 4~ 
Latches 21SA, llSB, 21SACK are set .(A and B argu· 
menu available and acknowledgement ACK flags in the 
status field are set. 

On the other hand, if the opcode indicates that the 
template is a select template, the Z argument mll.'.lt be 50 
available; namely .comparator 21CZR must have de
tected a match .between the contents of the r~uJt bus 
and the Z argument source field llZZ, thereby setting 
latch 21SZ and enabling a second. input of AND gate 
.231. The third input of AND gate 231 depends upon the 5~ 
value of the least significant bit S of the result data bus. 
lf the bit is a 0, so that the Q output of latch is O, AND 
gale 224 is disabled, while AND gate lll receivell a I on 
its input coupled to inverter 226. To be ellllbles the 
second input of AND gate 222 must indicate that the A 60 
argument is available (A availability latch :21SA is set). 
Alternatively, if the least significant bit S is a l, then the 
B a.rl!llment mwit be available, to enable the second 
input to AND gate 224. 

As pointed out previously, when a template becomes oS 
a master template, .it supplies operation data and reini
tializes template status word US, which is ordinarily 
performed by clearing the A, B and ACK flags. For a 

select template, however, not a.lJ lla1>3 are necessarily 
reset. When a template· becomes a master only che argu
ment available flag of the argument that is actually uJed 
is cleared. Control logic for this purpose includes gates 
212-215. The A available flag is cleared if the template 
is not a 'select' template or. of it is a 'select' template, if 
the value of the S bit is a 0. The B available flag is 
cleared if the template is not a 'select' template or, if it 
is a 'select' template, if the value of the S bit is a 1. 

In the coone of execution of a select template the Z 
argument and one of the A and 8 arguments are em
ployed. For this purpose the Z argument is applied to 
the B argument address bus of the operation channel IS 
via driver 211. If the S bit is a 0, then driver llil is 
ellllbled via AND gate l!J, and the contents of the A 
argument source field is asserted onto A argument ad· 
drcsa bus 41. Thus, the A and Z arguments are asserted 
and the B argument is saved for later UllC, as described 
above. lf the S bit is a I, on the other hand, then driver 
162 is ~led via AND gate 242, and the contents of 
the B argument wurce field is werted onto B argument 
addn:s& bus 42. The B and Z arguments are as.setted and 
the A argument is saved for later use. 

Distributed acknowledgements are extend.able to the 
Z argument for the select template through the use of 
comparaton1 llCZA and 21CZB to compare the con
tenu of Z argument field 21Z wich the A and B argu· 
ment addresses on buses 41 and 4.2, respectively, to 
thereby determine the select template's response on the 
acknowledgeme.nt blllieli 43A and 43B. Gates 240 and 
241 assert active sign.a.ls on buses 4JA and 43B when 
either comparator detects a match and the Z bit is set, 
indicating that the template hB.!1 not been asserted since 
its Z argument became available. 

Wbcn all of the data structure and signal proce:!Sing 
mechanisms described thUB far are incorporated .into a 
single template architecture, ·the expZ1Ddcd template 
field& and template word starus entries may be diagram
matically represented by the data structures shown in 
FIGS. 21 and 22, respectively. The comparator and 
driver circuitry and their associated communication 
b\13C$, together with the combined control logic there· 
fore are depicted in FIGS. 23 and .U. respectively. To 
simplify the circuitry, operand decoder employs only a 
single output D to indicate that the template possesses 
select functionality. The ready signal RDY may be 
represented by the Boolean expression: 

RDY<
·ACK"jA+l.4+S•OJ•[B+la+S"Dj•[· 
Z+lz+oi 

Note that the participation of immediate values for the 
Z argument, including Zxis shown by the logic ofF!G. 
24. When a select template becomes master, the values 
of the A and B argument type signal linC3 are defined in 
accordance with the value of the S bit of the ~tntus 
word field. IA or IB flag:ll a.re asserted on A argument 
type line depending whether or not the template is a 
select lemp!Ate. If it is, whether the value of S is a 0 or 
a I is controlling. IA will be asserted on the B argument 
type line if the template is a select template: otherwise, 
le will be :werted. 

Multi-node Architecture 

The 1WOCiative template-based data processing 
mechanism ddcribed thus far is configured as a single, 
self-contained data processing station (or node), 
wherein all operands employed in the course of the 

0319



WEST 

19 
4,964,042 

20 
execution of data prOCC88ing messages and all execution stored, is coupled to a data store 3(}5 (to be described 
results are exchanged between one template data stor· below wilh reference to FIG. 28). Data store 305 store3 
age facility and one functional computation unit. In a operands to be employed in the execution of data pro-
Jargcr, system level architecture, comprised of multiple cessing operations by templates contained within th.@.t 
nodes, each having its own dedicated functional compu· node and templates of itll neighboring nodes: It also 
tation unit and template storage facility, wherein oper· stores acknowledgement information that is made avail-
and and result data are exchanged among the nodes of able to the program execution coordinator 304 over link 
the system, the a!SOciative communication mechanism 306. 
of the present invention may be extended to facilitate Within data store 30!!, operand addresses conveyed 
parallel computation throughput. . 10 by local operand address link OAS and intemode link.:! 

In the description to follow, for. purposes' of provid- OAE, OAW and OAN are employed to access operand 
ing an illustrative example of a multiple node arcllitec- value! stored in an operand memory within the data 
ture, the system configuration will be considered to store 305; acces.sed values are coupled !inn OVE, 
have a mesh topology, such as those illustrated in FIG. OVW, OVN, OVS to an operation packet builder 313 
25, in which each node is connected with and may IS (to be dtl$Cl'lbed below with reference to PIG .. 29), 
communicate with three nearest neighbor nodes. For which essentially comprises a set of temporary holding 
reference purposes, the exemplary node of interest will registers in which the various component parts of a data 
be identified aa .11. south (S) node, having neighboring . processing m=age, intended for transmission over an 
north (N), east (E) and west (W) nodes with which it internal execution message link 31:2 to a local functional 
shares data resourct:3 in the course ofexccution of its 20 computation unit 314, are assembled. 
own data processing operatioll8 and also in the coUISe of The resulbl of instruction execution by functional 
the execution of data proce3Sing operations by those · computation unit 314 are coupled over an internal result 
neighboring nodes. Namely, within.an individUlll node communicatiom channel RS to data store 305, program 
(e.g. a south node), a data procesaing operation defined execution coordinator 304 and over respective portions 
by a template: stored within that node is always exe- 2~ RE, RW and RN of result segment R to the program 
cuted by the functional computation unit within that execution coordinator.1 in neighborini nodes E, W and 
node. However, the operands required for and the re- N. The result value is stored in the operand memory 
suits of that execution may be shared by template3 in within the data store 305, while the result address and 
nearest neighbor (north, east and west) nod=i. In order the Z (least significant result value) bit are applied over 
to effect this sharing of data rCSQurces, the architecture '.)() result address segment R. 
of each node is configured to provide .an inter-node The opcodes of the iruitructions to be executed within 
llllSOCiative communication capability, similar to that of the locaJ node (S) are stored (in terms of template a.d-
an individual node, for .those aspects of a template dress) in.an opcode store (memory) 311. In response to 
which may depend upon or be necessary for the execu- a template (opcode) address coupled onto link 325 by 
tion of a template in any of its neighboring nodes, l:?y 35 program execution coordinator 304, opcode store 321 
assigning associative communication control functions couples the opcode over link 3.23 to operation packet 
to dedicated storage .and supervisory units within each builder 313, wherein data proceuing messagc:s are !13· 

node. · semblcd, as noted above. Operation packet builder 313 
More particularly, as diagrammatically illustrated in ill also coupled (over link 325) to receive the template 

FIG. 26, the architecture of an individual node (S) in· 40 .address from program execution coordinator. 304, ·in 
eludes a multinode cominunications channel interface order to identify the template originating the data pro-
301 containing inter-node communication links 303 that cessing execution reque:it. As noted above, the operand 
extend to its three neighboring nodes (N, E, W) 11I1d values of data processing messages that are assembled 
through which data resources are shared. An individUlll by operation packet builder 313 are coupled over inter· 
inter-node link is shown in FIG. 27 as containing an 45 node operand value links OVE, OVW and OVN (from 
operand address segment OA, an operand value seg- neighboring nodes E, W and N) and Joe.al operand 
ment OV, a result segment R and an acknowledge seg- value link OVS from data store 305. 
ment A. 

The operand address segment OA conveys the ad· 
dress of the. template in which the operand is to be 'o 
obtained. while the operand value segment OV conveys 
the actual operand value to be used in the execution of 
a data processing operation by the functional computa
tion unit within the node to which the operand value is 

. transmitted. The result segment R conveys the result SS 
address and an indication of the availability of the result 
of a data processing operation executed. by the func
tion.al computation unit of one node· to each of its near· 
est neighbor nodes. The aclcnowledge segment A con
·veys acknowledge information con:ii3ting of. the ac· 60 
knowledge condition state a.ad is used to set the ac· 
knowledge flags of a selected template. 

Within the node (S) itself, each of operand address 
segments OAE, OA W and OAN from neighboring 
nodes E, W and N and an internal operand addr= link 65 
OAS from a progr!lllt execution coordinator 304 (to be 
described bel.ow with reference to FIG. 30) within 
which the data flow graph topology of that node is 

Data Store (FIG. lll) 

Data store 305 contains a pair ofdnal-port operand 
(result value) data memories 331 and 332, in which 
operands (result values) are stored for use by any of the 
four interconnected (E, W, N, S) nodes. The .use of a 
pair of redundant data memories (and attendant ace~ 
control circuitry) allows two operands to be resolved 
simultaneowly, thereby increasing the ·availability ·of 
operand data.. Specifically, each of the two memories 
performs a read and a wrjte in the s11me cycle. Thus, the 
functional computation unit writes into its node's oper· 
and memory which two read addresses are being 
served. . .. 

The writing of result values into memories 331 and 
332 occurs as a result of operation of the local func
tional computation unit, with the result value being 
coupled over result data input link RD and the template 
address being· coupled over link RA, to identify. that 
location in eacl:~ of the data memories in which the 
result value is 10 be stored. 

0320



WEST 

21 
4,964,042 

22 
operand or B operand) has been accessed from the data 
store 305 and stored in the operand field of the desig
nated packet register, the contents of the address regis
ter within the data store that had been storing operand 

The reading of operand data values out of memories 
331 and 332 and the b.andling of aclrnowledgemenlll is 
effected through respective sets of buffer regillters 33.5 
and 33(; and associated multiplexera 337 and 338 under 
the supervision of an arbitration logic circuit 341. 5 addresll is cleared, so that it may be used by another 

template. Whether or not an operand address register 
has been cleated so that it may receive a new operand 
address is indicated to a dispatcher logic unit within 

More particularly, ea.ch of buffen register sets 335 
and 336 contains four data and addres& register unita 
351E, 351W, 351N, 351S and 352E, 351W, 351N, 351S, 
respectively, coupling operand address links OAE, 
OA W, OAN, OAS and operand value links OVE, 10 
OVW, OVN, OVS with data store operand data links 
355D, 3560 and data store operand address links 355A, 
3.MA, through which operand values stored within data 
memories 331 and 331 are a.ccessed. Each data and 
address register unit contains a pair of registers, one for U 
storing operand. data that ill read out from memory and 
another for storing acknowledgement status informa
tion to be forwarded to the program execution coordi· 
n.ator and an operand address for a.ccessing the operand 
value that is to be read out of memory and coupled to 20 
tbe operation packet builder of the requesting node. 

Which opcn.od addrCM link will be serviced is han· 
dled by multiplexers 337 and 338 under control of an 
arbitration logic circuit 341, which is preferably imple· 
mented aa a round-robin arbitration circuit to ensure 2~ 
th.at no requesting link will be locked out. Whenever the 
contents of an operand address register a.re coupled 
over one of links 355A, 356A to access an operand from 
one of data memories 351,352 the associated acknowl
edgement status information ill coupled over link 306 to 30 
program execution coordinator 304, 

Operation Packet Builder (FIG. 29) 

As not.ed previoW1ly, the operation packet builder 313 
assembles data processing operation message packets 3' 
for delivery to functional computation unit 314. For this 
purpose, the packet build.er is coupled to . receive an 
opcode from opcode store 311, a result address from 
data store 305 and, for ea.ch operand, an additional 
neighbor interface address which specifies a neighbor 40 
node and from whlch of the memories of the data store 
an operand is to be accessed. Because the delay between 
the initiation of the execution ofa data process.in g oper. 
ation and the arrival of an operand can vary, and be
cause there are multiple (four in the present example) 43 
sources of operand values, throughput can be enhanced 
by preparing, concurrently, a plurality of template data 
processing messages. To accommodate multiple tem
plate messages, the operation packet builder ill essen
tially configured as a set of buffers in which opcode and 50 
result addresses are temporarily stored, while operands 
are being fetched from the data store. Once the operand 
data values have been obtained from the data store, the 
assembled mesMge packet is transmitted lo the func-
tional computation unit. SS 

The buffer circuitry of which operation packet 
builder 313 is Configured is diagrammatically shown in 
FIG. 29 as a first set of four packet registers 361, 362, 
363 and 364. Each register encompllSllell a packet field 
that contains the opcode, result (originating template) 60 
address, the A operand and the B operand. Associated 
with the first register set .ill a =nd register set, con• 
tai.ning four neighbor/data memory registers 371, 372, 
373 ·and 374. Ea.ch of the regiliten of the second set 
stores three. bits, for designating in which of the four 6,1 
nodes the operand value ill stored and which of the data 
memories (331 or 332) of that operand value-storing 
node contairui the operand. Once an operand value (A 

program execution coordinator 364 be described below 
with reference to FIG. dl 

Proqram Execution Coordinator (Representative 
Template Shown in FIG. 30) 

~ noted previously, the program execution coordi
nator stores data flow program execution topology, 
maintains the program control state and determines tne 
order in which program templates a.re assened. In addi
tion. it receives acknowledge synchronization signals 
from the program e:i:ecution coordinatora of neighbor
ing nodes indicating whether or not any of their tem
plates still require the availability of an operand that is 
associated with a template to be executed in that node. 
Finally, the prOiflllll. execution coordinator monitors 
the result link from the functional computation units in 
each of its neighboring nodes in order to synchroni2e 
the operation of the node with the completion of opera
tioD11 in other nodes and to update its control state. 

For thill purpose, the program eucution coordinator 
is comprised of memory for Storing each field of the 
templates of that node. except for the result values 
(which are retained in the data store, as explained su
pra), the opcodes and (condition determination) com
parator logic, coupled with the respective fields of the 
templAtes, for monitoring, in substantially the same 
!llllllrier as a single node architecture described above, 
the rc:1ult and acknowledge signal communication links 
of the local and neighboring nodes. 

Remit Bus Compa.rllon 

Referring now to FIG. 30 there are diagrammatically 
illustrated the respective .fields of an individu.a.l one of 
the templates stored within the program execution co
ordinator and the mechanism through which the pro· 
gram execution coordinator monitors the result address 
link from its local node and those of neighbor nodes for 
setting the A, B and Z flags. Because of the .static alloca
tion of da.taflow templates,. the operlllld referenced by 
an operand address field can come from only one of the 
local node and the three neighboring nOdes; it is not 
variable. As a consequence, it is necessary. to monitor 
only one of the four result address bl!SC'l, the identity of 
which is specifiable by the two most significant bits of 
the template addrCS!!. 

To. this end, rather than provide respective A and B 
operand address and Z address comparators for each of 
the four result buses, each template utilizes only one 
comparator for each of the respective operand and Z 
address fields, with the input to the comparator being 
defined by a multiplexed connection to each bus. As 
shown in FIG. JD, respective comparators 381, 382 and 
383 are coupled to compare the A operand, B operand 
and Z arldte:!ll values of a respective template 300 with 
the outputs of respective mutliplexers 391, 392 and 393. 
Each multiplexer haa four inputs coupled to the result 
links of nodes E, W, N, S and a select input which is 
coupled to the two most significant bits of the template 
address, so Jiil to designate which of the result links will 
be coupled to its aMOCiated comparator. The use of a 

0321



WEST 

23 
4,964,042 

24 
multiplexer and comparator pair significantly reduces 
the hardware complexity (transistor count and power 
consumption) that would be encountered using a sepa
rate comparator for each bw. 

Acknowledqement Handling 

In the single node architecture, described above, 
acknowledgement signaling is essentially defined by 
two operations: 1 -generating the acknowledge condi
tion state; and 2-setting an acknowledge ~g. Since, in a IO 
single node architecture all templates reside in the same 
node, both of these operatiom may be ca.rried out at the 
same time. In a multinode architecture, however, a 
dependent template may be located in any one of four 
different nodes. the data processing operations within I~ 
which are being carried out by independent functional 
computation units. Still, whenever a node creates an 
acknowledge condition signal, that signal needs to go to 
only the node to which the operand data request is 
directed. AJI tempi.Ates in one node that WJe the results 20 
of a templllte in -another node monitor each other to 
determine whether every template in that node is fin· 
ished with the operand of interest. When the operand is 
no longer required by any template in that node an 
acknowledge condition signal is generated. ~ 

The handling of aclcnowledgements is effected by 
expanding the template acknowledgement field (shown 
in FIG. 30) aud IogicaU;r uperatiug on a set of rour 
acknowledge flags and associated muk bits that ma1:e 
up the expanded field, using the circuitry shown in FIG. JO 
31. As shown in FIG. 30 the expanded acl:nowledge 
field includes a lllWllcing 'expected' bit X, which is s.et if 
an acknowledgement is still expected, and a 'received' 
bit R, which indicates that an eiqlected acknowledge
ment has in fact been received, for each of the four 35 
nodes. For each of the nodes E, W, N, S, a respective 
one of AND gates 410, 402, 404, 404 is coupled to the X 
and R bits and has. its output coupled to NOR gate 4'15. 
[f there are no template$ within a neighboring node that 

-require the use of a template in the local nbde then no 40 
acknowledgement is expected and the X bit is not set. If 
this mask bit ha.& been set, then upon a change in state of 
the acknowledge 'received' bit R, the output of its~ 
ciated AND gate will change state, thereby applying a 
0 to that node's input to NOR gate 405. Upon the ac- 45 
knowledgements for all four nodes having been satis
fied, the output of NOR gate changes state to one bit. 
thereby asserting a one cm its input to template-ready 
AND gate 406. Other inputs of AND gate 406 are cou
pled to receive the A. B and Z flag:1 of the template 380. so 
Upon each of the fl<tgs (A and B operand, Z bit and 
Acknowledge) being set, the output of AND gate 406 
changes state, indicating that the template may be as
serted. 

selects the pending template for execution when a com· 
rnunication port to the local data store 3&Ss (which 
contains the A openuld) and a similar. port to the data 
store JOSE in the east node E containing the B operand 
are available and transmits the address of the pending 
template to the opcode store 3l1 and to operation 
packet builder 313s. The contents of the A and B oper· 
and address fieJds with the program execution coordi-
nator 313s are asserted onto the A .and B operand buses; 
the A operand addreiis is applied to the available access 
port of data store 30Ss and the B operand address is 
applied to the available access port of data store 305Ein 
neighboring node E. 

As explained above. for each of the operand fetches 
an acknowledgement condition state signal is generated; 
the other templates in local node S monitor the opera
tion channel 301 and if either of their A and B operand 
fields matches either of the A and B operand addr= 
that have been asserted onto the operation channel, 
the:ie templates assert an active signal on the wired-OR 
acknowledge signal line, indicating that these templates 
still require that operand to be available. Otherwise, 
their respective acknowledge liru::s are not asserted 
active. As pointed out above, the states of these lines tell 
the source template whether or not there are other 
templates in the local node S for which that operand 
must remain available. 

Once the pending template has been selected for 
execution, operation packet builder 313 selects an avail· 
able buffer and stores the identity of the data store ports 
that ace to supply the A end B operands. The identity of 
the asserting template is stored in the result field and 
applies its address to the opcode store 321, so that the 
opcode associated with that template is read out of the 
opcode store and loaded in the opcode field in the 
packet builder buffer. 

As. described previously, the data store arbitration 
logic is preferably implemented u a round-robin mech· 
anism .. Consequently, within neighboring node E from 
which the B operand is to be accessed, each of the 
address buffers is examined .. When the port for the as· 
serted template is accessed, the data memory reads the 
contents of its addressed value and returns it to the 
dedicated output buffer of the local node, which 
supplies the operand directly to the packet builder. At 
the same time, the acknowledge condition state that 
accompanies the operand address is coupled over link 
3a6 to the program execution coordinator. The address 
selects the operand source template and the acknowl· 
edge condition state is loaded into the acknowledge flag 
associated with local node S. 

When the contents of each of the fields of the request
ing template's buffer within the operation packet 
builder 313 have been filled, the buffer's ready flag is set 

Template Execution 
SS (the output of AND gate 406 is enabled). The functional 

computation unit detects the assertion of the ready flag 
on the operation channel and acquires the contents of 
the data processing message within the buffer. -

The execution of a template in the multi-node archl
tecture proceeds as follows. Again, considering the 
local node of interest to be the south node S, let it be 
assumed that the A operand is to be obtained from the 60 
local nOde and its B operand from neighborin11 node E; 
in addition, the remit values are UJed by two local (node 
S) recipient templates and one neighboring (node E) 
template, as diagrammatically illustrated in FIG. Jl. 

An e:tecution cycle begins with the templatt: being in 6S 
condition to be asserted to its local functional computa
tion 1lllit. The program execution coordinatoG dispatch
ing logic, described above with reference to FIG. 31, 

After processing the imtruction, functional computa
tion unit 314 places the res'ult value and the address of 
the asserted template on the: result channels to each of 
the nodes. The result value is stored in each of the re· 
dundant pair of data memories 351, 352 within the .data 
store J05s of the local node S and the res.ult address is 
distributed over the result bus to the program execution 
coordinators of each of the four·nodes E, W, N, S. 

Within each of these nodes, the result address com
parators of each template monitor the result buses of the 

0322



25 
4,964,042 

26 
nodes from which their operands are derived. The A 
operand comparator of the 110urcc template in local 
node S monitora !.he local result bllfl. Wben the operand 
wurcc U:mpl.ates arc ~. each comparator deter
mines the availabili1y of the rc:suJt value by detecting a 
match between the contents of itll operand address field 
and the result address hus. In re3ponBc to a match, the 
corresponding A or B flag is set. 

Thereafter, as other templates, which arc dependent 
upon the remits of the local template's ell:ecution, 111e 10 
11.!JSerted they access the data memory in local node S to 
obtain ita result value and they return acknowledge 
condition state signals to the BCmowledge ports of the 
program execution coordinator. When a dependent 
template in neighboring node E is asserted, there ace no I~ 
other templates ming local node S's result value as 
operandA, so th.at the acknowledge condition state that 
is returned to the local program execution coordinator 
causes the corresponding acknowledge condition flag 
to be set. When the first of the two dependent templates :W 
in node S is asserted, the acknowledge flag will not be 
set since the second dependent template has yet to be 
assened and still requires the result value to be avail
able. Once the second template is Wlllerted, however, the 
acknowledge flag in node S is set (there are no other ~ 
templates in node S requiring the result value to remain 
available for their use). 

With both the neighboring node template and the 
local node's two operatiom: completed, both the A and 
B flags are now set, indicating th.at both operands arc JO 
available. The acknowledge flag in local node S and 
thAt a.MOCiated with the neighbor node E containing the 
dependent template are set; also, the masks (X) bits of 
the remaining two acknowledge flags (for nodes W and 
N) are set since these nodes contain no templates that 35 
are dependent on the template of interest in node S. Aa 
a consequence, each of AND gates 401-404 provide.\ an 
enable input to ready AND gate 466 (FIG. 32), so that 
its output clumges state indicating that the template i8 
ready to be asserted again.. 40 

As will be appreciated from the foregoing descrip
tion, the present invention provides a computer archl
tecture which significantly reduces the substantial tem· 
poral overhead and memory band width requirements of 
token-based static data flow computer arcb.itecturcs by 45 
replacing token-based processor communications with 
associative processing, similar to that Wied for 8.550Cia
tive memories, through which plural data execution 
control structures, or templates, of the system a.re inter
connected with one another and with the data process· SO 
ing resourCC'.I of the system, so that they may monitor 
and respond to operations carried out with respect to all 
other componentll ·of the system simultaneously, 
thereby increasing data processing execution speed and 
enhancing the efficient use of system memory. 

While we have shown and described several embodi
ments in accordance with the present invention, it is to 
be understood th.at the same is not limited thereto but is 
susceptible to numerous changes and modificatiom as 
known to a person skilled in. the art, and we therefore 60 
do not wish to be limited to the details shown and de
scribed herein but intend to cover all such changes and 
modifications as are obviollll to one of ordinary skill in 
the art. 

Wh.at ill claimed is: 65 
1. A data proc-ing system comprising: 
first means for contr©llably executing a. data process-

ing operation on datt.. supplied thereto; 

second m= for controlling the supply of data to be 
processed by said first means and including means 
for storing a plnrality of data. proce:i.!ling execution 
control structures, each respective one of said data 
processing e:tecution control structures containing 
fint information representative of the identification 
of that data pr<>ceiSing execution control structure, 
second information representative of a data pro
=ing operation to be performed by said first 
means, third information representative of data to 
be pf'OCCMCd by $.Bid first means, fourth information 
representative of the status of a data proceMing 
execution cycle, and fifth information representa
tive of the result of a. data proceuing operation 
carried out by said lint means; 

a first communications channel for coupling data a.nd 
control messages from said 5C(;()nd means to said 
first means; and 

a second commwrications channel for coupling the 
results of a data processing operation carried out 
by said linit means to said second means; and 
wherein 

each or said plurality of data processing execution 
control structures stored by said ll':Cond means is 
assooi.afively coupled with and simultaneously and 
continuously monitors said first and second com
munications channels, and said second means in
clude:s means for asserting onto said first communi
catiom channel a data processing control message 
containing first and second information derived 
from a. selected data procesiring execution control 
structure requesting the e:tecution of a data pro
cessing operation by said lini.t means, and third 
information derived from fifth information $tOred 
within prescribed ones of said plurality of data 
processing execution control structures; a.nd 
wherein 

said first means includes means for asserting onto said 
second communicatiom channel a data .processing 
output message containing the identification of said 
selected data processing execution control struc
tun: and the result of the data processing operation 
carried out in accordance with the second and 
third information asserted onto said first communi
cations channel. 

2. A data proceMing system comprising: 
a functional computation unit in which data process

ing operations are executed on operand data in 
accordance with an opcode supplied thereto, so as 
to produce output data representative of the result 
of the execution of a data procdlling operation; 

a storage unit in which are stored a plurality of data 
processing execution control structures each of 
which comprises a plurality of entries including an 
addrc:sS for identifying that data processing execu
tion control structure, an opcode for defining a 
data processing operation to be performed by !laid 
functional computation unit, a plurality of operand 
source addr= for specifying the addresses of 
data processing execution control >tructures con· 
ta.ining operancb to be employed in the execution 
of said defined data proces&ing operation, the status 
of said dau process.ing execution control structure 
with respect to its associated data processing oper
ation and a result entry in which the output data 
produced by said functional computation unit as a 
result of its execution of a data processing opera· 

0323



WEST 

27 
4,964,042 

28 
tion requested by that data processing execution 
conlrol structure is stores; 

a fint communications channel, coupled between said 
storage unit and aaid functional computation unit, 
and being monitored simultaneoW1ly by each of the 
data proccuing execution control &tructul'es of said 
storage unit, for conveying data processing request 
messases from said storage unit to said functional 
computation unit; 

a second communications channel, coupled between lO 
said functional computation unit and !!lid storage 
unit, and being monitored simultaneollllly by each 
of the data procC3Sing execution control structures 
of said storage unit, for conveying output data 
from said functional computation unit to said stor· l$ 
age unit; and 

a control unit, coupled with said storage unit, for 
controllably causing a data prOCCSlling message to 
be asserted onto said first communication channel 
in accordance with the contents of a selected one of 20 

said data processing execution control structures, 
said data processing message including the con· 
tenis of the address and opcode entrie5 of said llC· 

lected data processing execution control structure 
25 and operands specified in accordance with the 

operand SOUfce address entries of said selected data 
processing execution control structure, and for 
cawing output data, produced by said functional 
computation unit u a result of a data pracessing 30 
operation executed in accordance with said data 
prooessing me$Sllgc and IWerted onto 34.id second 
communicatioos channel by said functional compu
tation unit, to be captured in the result entry of said 
selected data processing structure. 35 

3. A data processing system according to claim 2, 
wherein a respective data processing execution control 
structure includes mCll.Jlll for monitoring said· first com· 
munications channel and asserting the contents of its 
re:sult entry onto said first communications channel in 40 
response to recognizing its addres.s having been asserted 
thereon, so that said resUlt may be employed as an aper· 
and for the execution of a .data procemiing operation by 
llaid functional computation uniL 

4. · A data processing &ystem according to claim 3, 4S 
wherein the ~taluft entry of a respective data proces:iing 
execution control structure includes acknowledgement 
information representative of whether any other data 
processing execution control 11tructure of said storage 
unit rcq~ the use of the contents of the result entry 50 
of said respective data processing execution control 
structure as an operand. 

5. A data processing system according to .claim 4, 
wherein the statwi entry of a respective data procesSing 
execution control structure includes operand availabil· 55 
ity information representative of whether the result 
entry of another data proces11ing execution control 
structure, whose address .is defined by the cdntents of a 
source address entry of said respective data processing 
execution control structure, contains an operand re· 60 
quired for the execution of a data. processing operation 
defmed in accordance with opcode entry of said respec· 
tive data processing execution control structure. 

6. A data processing system according 10 claim 5, 
wherein a respective data processing execution control 65 
structure further includes means for indicating ·the 
readiness of said data processing execution control 
structure to have a data processing mess.age asserted on. 

said rust communications channel in accordance with 
the contenu of !lllid statUA entry. 

7. A data processing system ace-Ording to claim 6, 
wherein said indicating mearus includes for indicating 
the readiness of said data processing execution control 
structure to have a data proc=ing message asserted on 
said fll'llt communications channel in respome to said 
acknowledgement infonn.ation being representative 
that no other data processing execution control struc
ture of said storage unit require:i the use of the contenu 
of the rC!lult entry of said respective data processing 
execution control structure as an operand, and that said 
operand availability infocmation is representative that 
all. operands required for the execution of a da.ta pro· 
cessing operation defined in accordance with opcode 
entry ofsaid respective data processing execution con
trol structure arc available. 

8. A data processing system according to claim 7, 
wherein said control unit includes means for clearing 
the contents of the acknowledgement and operand 
availability information within the status. entry of said 
respective data processing execution control structure 
in the co= of causing a data processing message asso
ciated with said respective d!lta processing execution 
control structure to be asserted onto said first communi
catiollll channel. 

9. A data processing system according to claim 2, 
wherein the status entry of a respective data processing 
execution control structure includes operand availabil
ity information representative of whether the result 
entry of another data prOCCMing execution control 
structure, whose address is dcfmed by the contents of a 
source address entry of wd respective data processing 
execution control structure, contains an operand re
quired for the execution. of a data processing operation 
defined in accordance with opcode entry of said respec
tive data procel!Sing execution control structure. 

10. A data prOCC5Sing system according to claim 9, 
wherein said second communications channel includes a 
data portion over which said output data is conveyed 
and a result address portion over which the address of 
an output data recipient data processing execution con
trol structure is cooveyed, and wherein a .respective 
data procC!l&ing execution control structure includes 
me.am for comparing its operand source address entries 
with the contents of the address portion of wd second 
communicatio1111 channel and caWling said operand 
availability information of said statllll entry to indicate 
that an operand entry required for the execution of a 
data processing operation cdefined in accordance with 
an opcode entry of said respective dat4 processing exe
cution control structure is available in the result entry of 
another data processing execution control structure 
whose address matches one of the operand source ad· 
dress entries of said respective data processing execu
tion control structure. 

11. A daa processing system according to claim 10, 
wherein said second commllllications channel further 
includes a result index portion for identifying one of the 
operand source entries of a data pr~g execution 
control structure and said comparing means includes 
means for causing said operand availability information 
of said status entry to indicate that an operand entry 
required for the execution of a data processing opera
tion defined in accordance with an opcode entry of said 
respective data processing execution control structure 
is available in the result entry of another data processing 
execution control structure whose address matches the 

0324



VVEST 

4,964,042 
30 29 

operand source address en try of said respeetive data 
processing execution control structure as identified by 
said result indeJI portion. 

U. A data processing system according to claim l, 
wherein a data processing execution control structure 
further includes means for controllably enabling the 
contents of an operand source address entry tO be di
rectly asserted as an operand for the execution of said 
defined data processing operation. 

13. A data processing system aceording to claim 2, m 
wherein said rmu communications channel includes a 
data portion over which operand$ are conveyed, an 
address portion over which the address of a selected 
data proccs.sing execution control lltructure is conveyed 
and an opcode portion over wb.ich the opcode entry of IS 
a selected data processing execution control structure is 
conveyed, and further including an intra da.ta process
ing execution control structure address link over which 
operand source addresses are conveyable among the 
data r-:ucessing execution conttol structures of said 20 
storage unit, and wherein a respective data procc:Wng 
eucution control structure includes D1Cllila for compar· 
ing its address with the content:i of said intra data pro
cessing execution control structure address link and 
causing the contents of its result entry to be asserted 2.5 
onto said data portion of said first communications 
channel. in respome to detecting a match between its 
address and the: conteotll of said intra data processing 
execution control structure addres$ link. 

14. A data proce311ing system according to claim 13, JO 
wherein a respective data prOCCS$ing execution control 
structure includes means fox controllably asserting its 
operand source addresses onto said intra data process
ing execution control sttucture address link in the 
course of the assettion of a data p=ing message, and 3S 
wherein said l!CCOnd com.municatioll.ll channel includes a 
data portion over which said output data is conveyed 
and a result sddresll portion over which the addrC88 of 
an output data recipient data processing execution con
trol structure is conveyed, and wherein a respective 40 
data processing eJecution conttol structure includes 
means for conttollably causing said operand address 
asserting means to assen an operand source address 
onto said intra data proces8ing execution control struc· 
ture addreu lin.lr. in accordance with the contents of the 4S 
address ponion of said second communications channel. 

15. A data pro=;sing system according to claim 14, 
wherein said controllably causing mesns includes means 
for controllably causing said operand address asserting 
mea.ns to assert a 8Clected operand source address onto 50 
said intra data processing execution control structure 
address lin.lr. in accordance with the contents of a pre
scribed portion aftbe data portion of said second com
munications channel. 

16. A data processing system comprising: 
first means for controllably executing a data process

ing operation on data supplied thereto; 
seccnd means for controlling the supply of data to be 

processed by said first means and including means 
for storing a plurality of data processing execution 60 
control structures, each respective one or said data 
processing execution control structures containing 
first information representative of the identification 
of that data procegaing execution control structure, 
second information representative of a data pro· 65 
c=sing operation to be perl'ormed by said first 
means, third information representative of data to 
be processed by said fl1llt meAnS, fourth information 

representative of the status of a data processing 
execution cycle, and fifth information representa
tive of the result of a data proce3Sing operation 
carried out by said first means; 

a first communications channel for coupling data and 
control messages from said second means to said 
first mcam; and 

a second communicatiollll channel for coupling the 
rew.lta of a data processing operation carried out 
by said first means to said second means; and 
wherein 

each of said plurality of data processing execution 
control structures stored by &aid second means is 
associatively coupled with and simultaneously and 
continuously monitors said first and second com· 
municatiolll! channels for the presence of said first 
infornllltion having been asserted thereon And, in 
response to detecting the pre3Cnce of its identifica
tion, controllably interfaces prescribed information 
associated with the execution of a data processing 
operation. and said second means includes means 
for asserting onto said first communicatio!lll chan
nel s data processing control message containing 
first and second information derived from a se
lected data processing execution control structure 
requesting the execution of a data pl'OCCMing oper
ation: by !Ill.id first means, and third information 
derived from fifth information stored within pre
scribed .ones of said plurality of data processing 
execution control strucmres; and wherein 

said first llU2Illl includes mearu for asserting onto said 
second cooununications clwmel a data processing 
output message containing the identification of said 
selected dita processing execution control struc
ture aad the resUlt of the data processing operation 
carried out in accordance with the second and 
third information asserted onto said first communi
cations channel. 

17. A data processing system comprising: 
a plurality of data processing nodes each of which 

includes 
a functional computation unit in which data pro

cessing operations arc executed on operand data 
in accordance with an opoode supplied thereto, 
so 113 to produce output data representative of 
the rc:sult of the eJ1ecution of a data processing 
operation, 

a program execution control unit which contain.S a 
plnnlity of data processing execution control 
strw::tm'es, each of which data processing execu
tion control structures comprise:s a· plurality of 
entries including an address for identifying that 
data processiiig execution control structure, a 
plurality of operand source entries for specifying 
the a.ddr= of operands to be employed in the 
exet":ution of a data processing operation associ
ated with that data processing execution control 
rtructure, and the status of said data processing 
execution control structure with respect to its 
associated data processing operation, 

opcode storage . means, coupled. to said program 
execution control unit, for storing a plurality of 
opcodes respectively lWOCiated With said plural
ity of data processing e1'ecution control struc· 
turcs, a respective opcode defining a data pro
CC3l!ing operation to be perfonned by said func· 
tional computation unit, 

0325



31 
4,964,042 

32 
operand storage means, coupled to said program 

execution control unit, for storing a plurality of 
result entries in which output data produced by 
said functional computation unit as a result of its 
execution of a data processing operation re
quested by a data procesaing execution control 
structure i& stored, 

data processing message assembly means, coupled 
to said program execution control unit, said .op
code storage means and said operand storage !O 
means, for usembling a plurality of data process
ing messages to be forwuded to said functional 
computation unit for execution, a rcspcctive data. 
processing mess.age including the identification 
of a respective data processing execution control IS 
structure, the contents of respective result 
entries identified by operand source addresses of 
said respective data processing ex.ecution contr<>I 
structure. and the opcode as.wciatcd with said 
respective data processing execution control 20 
structure, and 

a fint communicationa channel, coupled between 
said data processing message usembly means 
and said functional computation unit, and being 
monitored simultaneously by each of the data 25 
processing execution control structures of said 
program execution control unit, for conveying 
data prOCC!!!ing request messages from said data 
processing message assembly meallll to said func-
tional computation unit, 30 

a second communications channel. coupled be
tween said . functional computation unit. said 
program execution control unit storage unit and 
said operand storage means, and being moni
tored simult:am:ously by each of the data process- Jj 

ing execution control structures of said program 
execution . control unit, for conveying output 
data from said functional computation unit to 
said operand storage means and the identification 
of the data processing execution control struc- 40 
ture for which a data prOCC$8ing request message 
lwi been proceMed by said functional computa
tion unit to said program execution control unit; 

first internode OOllllilunication channel means, cou
pled to the second communication channel of each 45 
of said plurality of nodes, for simultaneously cou· 
pling the identification of the data processing exe· 
cution control structure for which a data process· 
ing request message lwi been procCMed by its assn· 
ciated functional computation unit to the program SO 
execution control unit in each of said nodes; and 

second internode communication channel means, 
coupled to the operand storage me.ans, data pro
cessing message assembly means and program exe
cution control means of each of said node:i, for SS 
enabling the operand addresses of a data processing 
execution control structure stored within the pro
gram execution control unit of a node lo be simulta
neously p~nted to the operand storage means of 
each of every other node, and for enabling operand 60 
value stored in any node to be simultaneously pres
ented to the data processing message assembly 
means of any node. 

18. A data processing system according to claim 17, 
wherein the status entry of a respective data processing 65 
execution 'COntro! structure includes operand availabil· 
ity information representative of whether the result 
entry of another data proceoising execution control 

structure in any of said plurality of nodes, whose ad
dress is defined by the contents of a wurce address 
entry of said respective data processing execution con
trol structure, contains an operand required for the 
execution of a data prOCC1Sing operation defined in 
accordance with opcode entry of said respective data 
procesaing execution control structure. 

19. A data pr=ing system according to claim 18, 
wherein. within each node, said second communica
tions channel includes a data portion over which output 
data from said functional computation unit is conveyed 
and a result address portion over which the address of 
said respective data prOCCSlling execution control struc
ture is conveyed, and said program execution control 
unit includes means for comparing the operand source 
entries of said respective data pr0cessing execution 
control structure with the contents of the address por
tion of said second communications channel !llld caus· 
ing said operand availability information of &aid status 
entry to indicate that an operand required for the execu
tion of a data processing operation defined in accor
dance with an opcode auociated with said respective 
data processing execution control strUc1ure is available 
in the operand storage mCll.ll! of that one of said nodes 
which contains the data processing execution control 
structure whose identification matches one of the oper· 
and source address entries of said respective data pro
cCMing execution control structure. 

20. A data processing system according to claim 19, 
wherein said ~ond communication.5 channel further· 
includes a result index portion for identifying one of the 
operll!ld entries of a data processing execution control 
structure and said comparing means includes means for 
causing said operand availability information of said 
status entry to indicate that an operand entry required 
for the execution of a data processing operation defined 
in accordance with an opcode entry .of said respective 
data processing execution control structure is available 
in the operand storage mcami of a node containing the 
dafll processing execution control structure whose ad
dress matches the operand source addres.s. entry of said 
respective data. processing execution control structure 
all identified by said result index portion. 

21. A data processing system according to claim 17, 
wherein, with a node, said operand storage means in· 
eludes means for monitoring said first intemode com,_ 
munications channel meam and iwc:rting thereon the 
contents of an operand entry, in respo°" to recognizing 
the address of 11 data processing execution control struc- · 
ture contained within thi: program execution control 
unit of that node having been asserted on said first inter· 
node communicatiollll channel means, so that said oper
and entry may be employed as an operand 'for the exe
cution of a data processing operation by a functional 
computation unit in one of said nodes. 

:22. A data processing system acrording to claim 21, 
wherein the status entry of a respective data processing 
execution control .structure contained within the pro
gram execution control .unit of a node includes ac
knowiedgc:mcnt information repr~ntative ofwhethcr 
another data processing execution control structure of 
any of said nodes requires the use of the operand con··· 
tained within the operand ston1ge means of said node 
whose address corresponds to identity of said resp<:ctive 
data processing execution c.ontrol structure. 

23. A data proce!..'ling system according to claim 22, 
wherein the statu.s entry of said respectfve data process
ing execution control structure includes operand avail· 

0326



4,964,042 
33 

ability information representative of whether the oper· 
and storage means of any node has an address, which is 
defined by a source address entry of said respective data 
processing execution control structure and cont.aim an 
operand required for the execution of a data processing 
operation, defined in accordance the opcode associated 
with wd te!pective data prOCC$1ing execution control 
structure. 

:24. A data processing system according to claim 23, 
wherein the program execution control unit of a node 
includei1 means for indicating the readiness of wd re
spective data processing execution control structure to 
have a data prOCCMi.ng message asserted on said first 
communications channel in accordance with the con
tents of said stAIWi entry. 

25. A data processing system according to claim 24, 
wherein said indicating mea.llJl includes for indicating 

the readin~ of .'18id respective data processing execu
tion control structure to have a data processing message 
assened on said first communicatiorui channel, in re· 
sponse to said acknowledgement information being 
representative that no other data processing execution 
control structure in any of said plurality of nodes re· 
quires the use of the conte-nts of a storage location of the 
operand storage means of wd node, the address of 

10 which atot'llge location is the identity of said respective 
data processing execution control structure and that 
said operand availability information is representative 
that ail operands required for the execution of a data 
processing operation defined in accordance with the 

ts opcode of said respective data processing execution 
control structure are available. 

• • • • • 

20 

30 

JS 

4S 

so 

SS 

60 

65 

0327



United States Patent r19J 

Deering et al. 

[54] 

(75] 

THREE-DIMENSIONAL GRAPHICS 
ACCELERATOR WITH AN IMPROVED 
VERTEX BUFl<'ER FOR MORE EFFICIENT 
VERTEX PROCESSING 

Inventors: Michael F. Deering, Los Altos; 
Michael N ellly, Menlo Park, both of 
Calif. 

(73] Assignee: Sun Microsystems, Inc., Palo Alto, 
Calif. 

[ • I Notice: Thi.-; patent issued on a continued pros
ecution application filed under 37 CFR 
1.53(d), and is subject to the twenty year 
patent lean provisions of 35 U.S.C. 
154(a)(2). 

(21] Appl. No.: 08/885,280 

(22] Filed: Jun. 30, 1997 

Related U.S. Application Data 

[ 63] Continuation-in-part of application No. 08/511,294, Aug. 4, 
1995, Pal. No, 5,793,371, and application No. 08/511,326, 
Aug. 4, 1995, Pat. No. 5,842,004. 

(51] Int. Cl.1 ...................................................... G06F 13(00 
(52] U.S. Cl .............................................. 345/511; 345(202 
[58] Field of Search ..................................... 345/508, 511, 

345/513, 519, 501, 503, 509, 202 

[ 56] References Cited 

U.S. PATENT DOCUMENTS 

5,740,409 4/1998 Deering ................................... 345/503 

l lllll llllllll Ill IHI 11111111111~11 llUI 1110 11111 HU 111111111111111111 
US006018353A 

[HJ Patent Number: 

[45] Date of Patent: 

6,018,353 
*Jan.25,2000 

5,745,125 
5,767,856 
5,793,371 
5,821,949 
5,842,004 
5,867,167 
5,870,094 

411998 Deering et al. ...•...... ............... 345/503 
6/1998 Peterson et al. ........................ 345/503 
8/1998 Deering ................................... 345/418 

10/1998 Deering ................................... 345/505 
11/1998 Deering et al. ......................... 345/501 
2/1999 Deering ...........•....................... 345/419 
211999 During ................................... 345/419 

OTHER PUBLICATIONS 

OpenGL Architecture Review Board, "OpenGL Reference 
Manual," The Official Reference Document for OpenGL, 
Release 1, Nov. 1992, pp. 1-5. 

"The OpenGL Machine," The OpenGL Graphics System 
Diagram, 1992 Silicon Graphics, Inc., 4 pages. 

Primary Examiner-Kee M. Tung 
Attorney, Agent, or Firm-Conley, Rose & Ta.yon; Dan R. 
Christen; Jeffrey C. Hood 

[57] ABSTRACT 

A vertex accumulation buffer for improved three
dirnensional graphical processing is disclosed. The accumu· 
lation buffer may include two individual buffers (buffers A 
and B) that each comprise a plurality of individual storage 
locatioo.s !hat are each configured to store vertex parameter 
values such as XYZ values, normal values, color 
information, and alpha information. The individual buffers 
serve lo double buffer the vertex parameter values stored in 
tbe accumulation buffer. The storage locations may be 
written to on an individual basis without overwriting the 
other storage location& in the buffer. 

20 Claims, 25 Drawing Sheets 

UPAOutputellf!<n 63 
;jQ! MHz 

l..,..,,~~..i--~~T-~C-Ti ~~ 

CM-Eus 

0328



U.S. Patent Jan.25,2000 Sheet 1 of 25 6,018,353 

82 

Computer 

FIG. 1 

0329



U.S. Patent Jan.25,2000 Sheet 2 of 25 6,018,353 

N . 
(!) 

~ 
0 

-LL 
E 
(I) co I ~o 

..:-
c:: 
<ti 
:a: 

(I) .... (.) 

ti) 0 ·:; 
(.) ...... (I) ·- cu 

.c: .... NI 0 ..q-1 c. J!:! ..:-
cu (I) ~ >.CO 
.... (.) ~ 

(!) 0 c. 
<( ti) 

0 

:::> 
CL ONI .....,o 
(/) ..:-
0 
:c 

0330



U.S. Patent Jan.25,2000 Sheet 3 of 25 

DC Bus 

2 
32 

AFB Draw 
172A 

r--- -
t~...i,...,...,,.~~,.,,,...,j,..~ 

t hno:"'Pl'TT..-i .......,..,.......,..,......-1 
I 
1~~"T"-lh=.,...,...-I 

I ..__...,.......__. '"---_,.......--' 
I 
I 

Serial Ports Audio Output 

AFB Command 
142 

RAMDAC 
196 

AFB Draw 
172B 

Video Output 

To Display Device 84 

6,018,353 

FIG. 3 

0331



U.S. Patent Jan.25,2000 Sheet 4 of 25 6,018,353 

UPA-Bus 104 

f 64 

Command 
I 

; UPA Input Buffers 
302 

Global Data Issuer 
306 

Address Decode 
309 

t64 
Input FIFO 

312 
64,. 

, 

Decompression ... . 
Unit \114_/ 316 

' 
Formal Converter 

322 

48 
32 I; , 

,, 
I Vertex Accumulation Buffer 

~ 332 
Collection 

48{ Buffer 

I 
Vertex Buffers 

~ 
324 

334 
I 

~8 '!48 '48 

CF-Bus Output FIFOs 
144 

~ 81 Bf~~~ • 
CF/CD-Bus Interface 

I 336 

CF.Susi 

Command Block Diagram 

FIG. 4 

UPA Output Buffers 
304 

~ 
Re~isters 

..'2 

32,i.-
32 . , 

. 

. 

Round Robin 
Arbitration 
~ 

CD-Bus Data 

DC-Bus 

a , 

,C 

83 
MHz 

100 
MHz 

M·Bus 

0332



Format 
Converter 

Vertex Buffers 
Vertex Accumulation Buffer 

FIG. 5 

d . 
rJj . 

0333



r::: . ., 
Cl) 

I I Destination ~ 
~ 

Value Meaning -ftl 5 4 3 2 1 0 Header = 7 6 0000 -
l Lslnch 

0001 x 
0010 y 
0011 z 

'--< 0100 R ~ 

? 
Collection Buffer 0101 G ~~ ". 

0110 8 N 

0111 Alpha e e 
<:> 

Source Type 1000 Nx 
Value Meaning 1001 Ny 

1010 Nz rJ) 00 Float 1011 u :r 
(!> 
(!> 01 Integer. 1100 v ..... 
0\ 10 Unsigned 1101 FNx 0 -11 Double 1110 FNy N 
U1 

1111 FNz 

Format Converter Opcodes 

FIG. 6 

0334



fc_vab_di8 fc_vab_di8 fc_vab_di8 
0 481 I 

8 32,,, < 
lll 
0- vbrd_ vab_radr I N 

rf1' ... 
"'1" 

0: "" «) 

(t> ~ iD 
::> """ 

l r-1 ' ... • ... • ... ... + 
+j Header I Na1 I Ny I Nz I A I R I . I B I x I Y I z I u v I Fx I Fy I Fz I 

r 

A 
~ 

::-

I 
: 

f- -

. I . . 
~ 

B ~./ 

' 
,. ,, 

' 
,, , 

~~d~rl Nx I Ny I Nz I A I R I G l_B_ln I z I u v r Fy 
I Fz I 

-· - -l 16,.i-- 3:0 32 l 3~., 

~ 
-, 

' 
' ,,,..... 

' 
,, 11 :5 , 

' 

I \VAB_MUX 161+-

< 

la 

48, 48, _) 
<ll ' I .I ' CT 

x \VAB_MUX_4~ 
~-

48 l . 
Vertex Accumulation 

vab_vbc_do8 vab_vom_do48 vbi_vab_mux16aei vbi_ vab_mux32aei Buffer 
vbi_ vab _mux48aei vab_vord_dc32 FIG. 7 

0335



~ 
" . 

CIJ. . 
fc vab iden VAB register loaded (A buffer) ~ - - ~·· .. 

0000 0000 0000 0000 ·None """'" t"C> 

0000 0000 0000 0001 Header *Header may be loaded at any time = 
"""'" 

0000 0000 0000 001x x 
0000 0000 0000. 01 Ox y 
0000 0000 0000 1 OOx z 

. 0000 0000 0001 OOOx R 
...... 
= ? 

0000 0000 0010 ooox G N 

0000 0000 0100 OOOx B 
~th 

N 
0 

0000 0000 1000 OOOx A 0 
0 

0000 0001 0000 OOOx NX 
0000 0010 0000 OOOx NY 
0000 0100 0000 ooox NZ 00 

;::' 

0000 1000 0000 OOOx u (!> 
(!> ..... 

0001 0000 0000 OOOx v Q() 

0 

0010 0000 0000 OOOx FNX ...... 
N 

0100 0000 0000 OOOx FNY 
th 

1000 0000 0000 OOOx FNZ 
0000 0111 0000 ooox 48 bit Normal (Nx,Ny,Nz) 

Load enables to the Vertex Accumulation Buffer 
FIG. 8 

0336



vb_stall vab_xfer 
'~ •ll 

AFB/FFB 
Load State 
Machines 

Input Control 

Vertex 
Pointer logic 

AFB/FFB 
Output State 

Machines 

·~ u 

fd order vd cff xfer 

vab_vbm_do4B gdi_wads 

1 " 

I I 
Vertex Buffers Vertex Buffers . 

(R/A,G/A,B/A,Nx (X,Y,Z,Ny/Nz,U.V 
... 

9x4x16 9x9x32 

I I . ,.... 

Vertex Buffer 
Memory '~ 

°"" 

•r u 

vb_gdi_out vb data out - -

. 
r vb_cb_go 

ob_vb_ack 

context load enables 
(cb_*_ctxid) 

register write enables 
(vb_*_wr) 

Vertex Buffer 

FIG. 9 

e . 
r:JJ. . 

0337



A R 

A G 

A B 

Nx Ny 

-unused-

-unused-

-unused-

-unused-

-unused-

47 44 43 32 31 

x 
y 

z 

I Nz 

u 
v 

FNx 

FNy 

FNz 

Vertex Buffer 

FIG. 10 

i 
I 

0 

Coordinate and Color 

Normal 

Texture Coordinate 

Facet Normal ,.... 
0 
0 
....... 
N 
tn 

0338



Oldest 

V3 

V2 

V1 

Replace 
Middle 

Vertex Buffer Control Logic 

FIG. 11 

I Wanna 

IWBF3 

Be 

IWBF2 

Free 

IWBF1 

d . 
r.l'J . 
"'C 
~ 

"""" t1' 

= Mo 

Free 

List 
~ 
i:; 

? 
N 

~°' 
N c c = 

0339



0 . 
VJ. . 

A R x 
A A R x 
A A A R x 

A A A R 
A R buffer4 

I..; 

A A R x buffer 3 = := 
A A R x buffer 2 

N 
~Ul 
N 

A x buffer 1 0 
0 R 
0 

A A R x bufferO 

A G y 

z r:.n =-(":> 
B 

Ny 
(":> 

Nz ...... 
...... 
N 

u 0 

Optional for texture -.. 
v N 

!Jl 

FNx 

Vertex Buffer Organization 

FNy Optional facet nonnal 
per primitive 

FNz O'\ 

FIG. 12 "' 0 0 ,..... 32 31 
Qt; 

"' w 
tll 
~ 

0340



AFB Primitives 

Quads 
Triangles 
Lines 
Dots 

FFB Primitives 

_Triangles 
Lines 
Dots 
Polygons 
Fast Fill 
Rectangles 
Vertical Scroll 

} 

Primitives that rely on the Primitive Control Register. 
The Format Converter asserts the fc_vb_launch signal 
for these primitives. 

Primitives that use the vb_ 1dsm. 

Primitives that rely on the FFB Opcode Register. 
The Format converter asserts a combination of the 
fc_vb_launch, fc_vb_ebxi and fc_vb_nxgo signals. 

Primitives that use the vb_fldsm. 

Selection Of Load State Machine 

FIG. 13 

. 
00 . 

0341



U.S. Patent Jan.25,2000 Sheet 14 of 25 6,018,353 

47 32 31 0 

buffers 0-2 will be used 

buffers 3-5 may be used 

buffers 6-8 are unused 

Vertex Buffer Storage Of FFB Polygons 

FIG. 14 

buffers 0-1 will be used 
i...........--..,,;.+-,---------i 

buffers 2-4 may be used 

buffers 5-8 are unused 

47 32 31 0 

Vertex Buffer Storage Of FFB Fast Fill Primitives 

· FIG. 15 

0342



d . 
rJ'l 

*buffers 2-8 unused 
. 

47 32 31 0 47 32 31 0 

buffer 0 buffer 1 

Vertex Buffer Storage Of FFB Rectangles 

FIG. 16 

47 32 31 0 47 32 31 0 47 32 31 0 

buffer 0 buffer1 buffer2 

Vertex Buffer Organization For Vertical Scroll 

FIG. 17 

0343



U.S. Patent Jan.25,2000 Sheet 16 of 25 

else I dot with draw edge bit 
not set in XGL header 

6,018,353 

Vertex Buffer Load State Machine 

(vb_ 1dsm) 

FIG. 18 

0344



U.S. Patent Jan. 25,2000 Sheet 1 7 of 25 6,018,353 

y 

(I.) 
c:: 
0 
-0 

.!!.? 
E 
ct! OJ 
0 J; .... , 
.0 ·e 
> 'C: 

0.. u 2 
ti.) 

c.. inx_go E 
0 u 

vb_ corn not finished 

Vertex Buffer FFB Load State Machine 

FIG. 19 

0345



~ . 
r.n . 

i vab_header "'t1 ~ 

~ 

r:·"' ~ -(Cl 

rt ex = I ust [_ & -
-:~ New 

Vertex ~ 

List = ? 
N 
~Ul 

8 N 
0 
0 

Quad Newest Middle 
0 

r:.n ::r 
(;> 
(;> ..... 
,..... 
00 
0 ...... 
N 
tit 

Free Middle 111 Vertex1 VertexO 

Vertex Pointer Logic vb_vpi_optru "vb_vpi_optri 

FIG. 20 

0346



U.S. Patent Jan.25,2000 Sheet 19 of 25 6,018,353 

PE3 3 PE5 5 0 Restart 
1 RO 
2 RO 

E1 E2 E3 E4 3 RO 
4 RO 
5 RO 

0 PE2 2 PE4 4 PE6 6 6 RO 

2 

1 3 
O Restart 
1 RM 

E4 2 RM 
3 RM 
4 RM 

6 4 
5 RM 
6 RM 

Edge Logic Explanation 

FIG. 21 

0347



U.S. Patent Jan.25,2000 Sheet 20 of 25 6,018,353 

Valid transitions 

Condition 

Quad 

Restart 
Restart+1 cycle 
Restart+2 cycle 
*Restart+3cyele 
Replace Oldest 
*Replace Oldest+ 1 

Triangle 

Restart 
Restart+ 1 
*Restart+ 2 
*Replace Oldest 
*Replace Middle 

Line 

Restart 
Move 
*Draw 

Dot 

*Restart 
*Draw 

Transitions 

Q->F, N->F, M->F, 0->F, 1->N 
N->M, 1->N 
M->O, N->M, 1->N 
1->Q 
M->F 0->F N->O Q->M 1->N 
l->Q I I I I 

N->F, M->F, 0->F, 1->N 
M->O, N->M, 1->N 
M->O, N->N, 1->N 
M->F, N->M, 1->N 

N->F, M->F, 1->N 
N->F, M->F, 1->N 
N->M, 1->N 

I-Incoming (NVL) 
Q-Quad 
N-Newest 
M-Middle 
0-0ldest 
F-Free 

E ·;:: 
0. 
QJ -ru 
a. 
E 
0 
u 
ro 
(/) 

2 
B 
:0 
c: .. 

N->F 1->N 
N->F'. l~>N 

vb_vplsm 
FIG. 22 

0348



U.S. Patent Jan.25,2000 Sheet 21 of 25 6,018,353 

vb_osm 

FIG. 23 

0349



U.S. Patent Jan.25,2000 Sheet 22 of 25 6,018,353 

else 

vpi contains a complete primitive 

Vertex Buffer FFB Output State Machine (vb_fosm) 

FIG. 24 

0350



. . n Control Register 
Substitution Rephcat10 17161514 13.1211_10 9 

Replicate 
6543210 8 7 

. Substitute 
UNRZYX 

31 

Reserved 0 U N R Z Y X 

31 . 6543210 
131211 10d91 ~:I UN I N I Type I I Rev j Or I I 

I I I I I 
Reserved 

876543210 

j _ Reserved _ :~1=G==LH=e=a=d=er=R=e=g=is~t~er~~~~~~~-1J51_14il_HeL'a~d,~eri~_aL1sk~1c_ll_LIL~~l~~l_FLj_~~l_o_lE .. I 
Float Ena e bl Mask Register 

31 

1 
Reserved 

543210 
10 9 8 7 6 F F F l F IFlfl 
lei~! 15/413 2 ~ 

FIG. 25a 

FIG. 25b 

FIG. 25c 

FIG. 25d 

0351



d . 
00 . 
""C 
~ 

Address Source Contents used to load """'" rt> 

= Ox0060 1060 NVL {0000, nvl[4], 0000, nvl[3]} cb _ nvl_ ctxld !""!'-

Ox0060_1064 NVL {0000, nvl[2], 0000, nvl[1]} cb nvl ctxld - -
Ox0060 1068 NVL {0000, nvl[O], 0000, rptr, 0, cb nvl ctxld - -

wptr, fcount}} I..; 

= 
Ox0060 106C FVL {O, rptr, 0, wptr, 0, fcount, cb fvl ctxld ? 

N 

fv1 [4:0]} ~ti'! 
N 

Ox0060 1070 QNMO {quad, new, middle, oldest} cb_vpl_ctxld 0 
Q 

Ox0060 1074 *reserved* reserved for misc state bits 
Q 

Ox0060 1078 FreeA {000, freequada, 000, cb_vpl_ctxld 
freenewa, 000, freemiddlea, 00 

000, freeolda} ::r 
I'll 
I'll 

Free B {000, freequadb, 000, cb_vpl_ctxld 
.... 

Ox0060 107C N 
.ii. 

freenewb, 000, freemiddleb, 0 
....... 

000, freeoldb} N 
tTI 

Vertex Buffer State Registers Address Map 

FIG. 26 

0352



d . 
00 . 
~ 
~ 
!'"I'-

Address Description 
!"O = !'"I'-

Ox0060 1080 Vertex Buffer 0 

Ox0060 1DCO Vertex Buffer 1 

Ox0060 1EOO Vertex Buffer 2 ...... 
It> 

Ox0060_1E40 Vertex Buffer 3 ? 
N 

Ox0060_1E80 Vertex Buffer 4 
._IJ\ 

N 
0 

Ox0060 1ECO Vertex Buffer 5 
0 
Q 

·ox0060 1FOO Vertex Buffer 6 

Ox0060 1F40 Vertex Buffer 7 00 

=-
Ox0060_1F80 Vertex Buffer 8 \":> 

\":> ... 
Ox0060 1FCO Vertex Accumulation Buffer 

N 
IJl 

0 ...., 
N 
tit 

Vertex Buffer Memory and VAS Context Address Map 

FIG. 27 

0353



6,018,353 
1 

THREE-DIMENSIONAL GRAPHICS 
ACCELERATOR WITH AN IMPROVED 

VERTEX BUFFER FOR MORE EFFICIENT 
VERTEX PROCESSING 

2 
the geometric primitives by the graphics accelerator prior to 
rendering. A third bottleneck is the speed at which pixels 
from processed primitives can be filled into the frame buffer. 

Vertex processing operations are typically performed by 

CONTINUATION DATA 
5 dedicated hardware in the graphics accelerator. This hard

ware is commonly pipelined, such that each stage of the 
pipeline effectuates a distinct operation on the vertices of the 
received geometric primitive. The operations may be per-

This application is a continuation-in.-part of application 
Ser. No. 08/511,294, filed Aug. 4, 1995 now U.S. Pat. No. 
5,793,371, entitled METHOD AND APPARATUS FOR 

10 
GEOMETRIC COMPRESSION OF THREE 
DIMENSIONAL GRAPHICS DATA, and assigned to the 
assignee of this application. 

This application is a continuation-in-part of application 
Ser. No. 08/511,326, filed Aug. 4, 1995 now U.S. Pat. No. 15 
5,842,(Xl4, entitled METHOD AND APPARATUS FOR 
DECOMPRESSION OF COMPRESSED GEOMETRIC 
THREE-DIMENSIONAL GRAPHICS DATA, and assigned 
to the assignee of this application. 

formed in either fixed or floating-point math. 

SUMMARY OF THE INVENTION 

The present invention comprises improved vertex pro
cessing in a graphics accelerator. 

A vertex accumulation buffer for improved three-
dimensional graphical processing is disclosed. In one 
embodiment, the accumulation buffer may include two indi
vidual buffers (buffers A and B) that each comprise a 
plurality of individual storage locations. 111e individual 

Cncorporation by Reference 
U.S. aP,plication Ser. No. 08/511,294, filed Aug. 4, 1995 

now U.S. Pat. No. 5,793,371, entitled METHOD AND 
APPARATUS FOR GEOMETRIC COMPRESSION OF 
THREE-DIMENSIONALGRAPHlCS DATA, and assigned 

20 storage locations are each configured to store vertex param
eter values such as XYZ values, normal values, color 
information, and alpba information. The individual buffers 
serve to double buffer the vertex parameter values stored in 

to the assignee of this application, is hereby incorporated by 25 
reference as though fully and completely set forth herein. 

U.S. application Ser. No. 08/511,326, filed Aug. 4, 1995 
now U.S. Pat. No. 5,842,004, entitled METHOD AND 
APPARATUS FOR DECOMPRESSION OF COM
PRESSED GEOMETR!C THREE-DIMENSIONAL, 30 
GRAPHICS DATA, and assigned to the assignee of this 
application, is hereby incorporated by reference as though 
fully and completely set forth herein. 

the accumulation buffer. The storage locations may be 
written to on an individual basis without overwriting the 
other storage locations in !he buffer. 

In another embodiment, the vertex accumulation buffer 
may comprise a first buffer for storing a pluraliLy of vertex 
values. The plurality of vertex values may include XYZ 
position values, red, green, and blue values, alpha values and 
normal values. The vertex accumulation buffer may further 
comprises a second buffer configured to receive and store 
copies of the plurality of vertex values. The first buffer may 
include a plurality of outputs (corresponding to each of the 

FIEl.D OF THE INVENTION 

The present invention relates to improved vertex pointer 
logic for assembling polygons from received geometry data 
in a three-dimensional graphics accelerator. 

35 stored vertex values). The outputs may be coupled to cor
responding inputs an the second buffer. The first buffer may 
be adapted to receive and store new vertex values. The old 
vertex values may remain unchanged in the first buffer until 
a new value overwrites the stored value. A graphics system 

DESCRIPTION OF THE RELATED ART 40 configured to utilize the vertex accumulation buffer is also 
contemplated, 

A three dimensional (3-D) graphics accelerator is a spe
cialized graphics rend~ring subsystem for a computer sys
tem which is designed to off-load !he 3-D rendering func
tions from the host processor, thus providing improved 45 
system performance. In a system with a 3-D graphics 
accelerator, an application program executing on the host 
processor of the computer system generates tbree
dimensional geometry data that defines three-dimensional 
graphics elements for display on a video output device. The 50 
application program causes the host processor lo transfer the 
geometry data !o the graphics accelerator. The graphics 

. accelerator receives the geometry data and renders the 
corresponding graphics elements on the display device. 

Applications which display three-dimensional graphics 55 
require a tremendous amount of processing capabilities. For 
example, for a computer system lo generate smooth 3-D 
motion video, the computer system is required to maintain 
a frame rate or update rate of between 20 to 30 frames per 
second. This requires a 3-D graphics accelerator capable of 60 

processing over a million graphics primitives per second. 
In general 3-D graphics accelerators have had three major 

bottlenecks which limit performance. A first bottleneck is· 
the transfer of geometric primitive data from main memory 
to the graphics accelerator over ·the system bus. A second 65 

bottleneck is the vertex processing reguirement.s (such as 
transformation, lighting, and set-up) which are performed on 

BRIEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the present invention can be 
obtained when the following detailed descripLion of the 
preferred embodiment is considered in conjunction with the 
following drawings, in which: 

FIG. 1 illustrates a computer system which includes a 
three dimensional (3-D) graphics accelerator according to 
the present invention; 

FIG. 2 is a simplified block diagram oCthe computer 
system of FIG. l; 

FIG. 3 is a block diagram illustrating the 3-D graphics 
accelerator according to the preferred embodiment of the· 
present invention; 

FIG. 4 is a block diagram illustrating the command chip 
in the 3-D graphics accelerator according to the preferred 
embodiment of the present invention; 

FIG. 5 illustrates ibe vertex accumulation buffer; 
FIG. 6 illustrates format converter op-codes; 
FIG; 7 is a more detailed diagram illustrating the vertex 

accumulation buffer; 
FIG. 8 illustrates the valid as:,<:rlions of the load enable 

lines to the vertex accumulation ;.iuffer; 
FlG. 9 is a block diagram of the vertex buffer; 

0354



6,018,353 
3 

FIG. 10 illustrates organization of one of the vertex 
buffers; 

FIG. 11 illustrates the vertex buffer control logic; 

FIG. 12 is a more detailed diagram illustrating vertex 
buffer organization; 

FIG. 13 lists the types of primitives supported by the 
vertex buffer as well as the primary control registers and 
state machines that handle the respective primitives; 

4 
storage devices. lbe system bus or host bus 104 may be any 
of various lypes of communication or host computer buses 
for communication between host processors, CPUs, and 
memory subsystems, as well as specialized subsystems. Ia 
the preferred embodiment, the host bus 104 is the UPA bus, 
which is a 64 bit bus operating at 83 MHz. 

A 3-D graphics accelerator 112 according to tbc present 

FIG. 14 illustrates vertex buffer storage of FFB polygons; 10 
HG. 15 illustrates vertex buffer storage of FFB fast fill 

primitives; 

invention is coupled to the high speed memory bus 104. The 
3-D graphics accelerator 112 may be coupled to the bus 104 
by, for example, a cross bar switch or other bus connectivity 
logic. It is assumed tbat various other peripheral devices, or 
other buses, may be connected tri the high speed memory 
bus 104, as is well known in the art. It is noted Lbal the 3-D 
graphics accelerator may be coup.Jed lo any of various buses, 
as desired. As shown, the video monitor or display device 84 
connects to the 3-D graphics accelerator lU. 

FIG. 16 illustrates vertex buffer storage of FFB rect
angles; 

FIG. 17 illustrates vertex buffer organization for vertical 15 

scroll; 
The host processor 102 may transfer information lo and 

from the graphics accelerator 112 according to a pro
grammed input/output (lfO) protocol over the host bus 104. 

20 Alternately, the graphics accelerator 112 accesses the 
memory subsystem 106 according to a direct memory access 
(DMA) protocol or tbrough intelligeal bus mastering. 

FIG. 18 illustrates the vertex buffer load state machine; 

HG: 19 illustrates the vertex buffer FFB load state 
machine; 

FIG. 20 illustrates the vertex pointer logic; 

HG. 21 illustrates the relationship of edge bits 
angles; 

to tri-

FIG. 22 illustrates the vertex pointer logic state machine; 

FIG. 23 illustrates the stale diagram for llie vertex buffer 
output state maehiae; 

FIG. 24 illustrates the vertex buffer FFB output slate 
macbiae; 

FI GS. 25a-d illustrates user defined registers; 
FIG. 26 illustrates the vertex buffer slate registers address 

map; and 
FIG. 27 illustrates the vertex buffer memory and VAB 

context address map. 

DETAILED DESCRIPTION OF TIIE 
EMBODIMENTS 

FIG. !--Computer System 
Referring now lo FIG. 1, a computer system 80 which 

includes a three-dimensional (3-D) graphics accelerator 
according lo the present inveation is shown. As shown, the 
computer system 80 comprises a system unit 82 and a video 
monitor or display device 84 coupled lo the system unit 82. 
'The display device 84 may be any of various types of display 
monitors or devices. Various input devices may be con
nected lo the computer system, including a keyboard 86 
aad/or a mouse 88, or other input. Application software may 
be executed by the computer system 80 to display 3cD 
graphical objects on the video monitor 84. As described 
further below, the 3-D graphics accelerator in computer 
system 80 includes a lighting unit which exhibits increased 
performance for handling of incoming color values of poly
gons used to reader three-dimensional graphical objects on 
display device 84. 
FIG. 2-Computer System Block Diagram 

A graphics application program conforming to an appli
cation programmer interface (AP!) such as OpeuGL gener-

25 ates commands and data that define a geometric primitive 
such as a polygon for output on display device 84. As 
defined by the particular graphics interface used, these 
primitives may have separate color properties for the front 
and back surfaces. Host processor 102 transfers these com-

30 mands aad data to memory subsystem 106. Thereafter, the 
host processor 102 operates IO transfer the data to the 
graphics accelerator 112 over the host bus 104. 
Alternatively, the graphics accelerator 1l2 reads ia geometry 
data arrays using DMA access cycles over the host bus 104. 

35 In another embodiment, the graphics accelerator 112 is 
coupled to tbe system memory 106 through a .direct port, 
such as the Arlvanced Graphics Port (AGP) promulgated by 
Intel Corporation. As will be described below, graphics 
accelerator 112 is advantageously configured to more effi-

40 cienlly produce polygoa.s lo be readered from received 
geometry data. 
FIG. 3..:....0raphics Accelerator 

Referring now lo FIG. 3, a block diagram is shown 
illustrating the graphics accelerator 112 according to the 

45 preferred embodiment of the present invention. As shown, 
the graphics accelerator 112 is principally comprised of a 
command block 142, a set of fioating-point processors 
152A.c 1521-~ a set of draw processors 172A and 172B, a 
frame buffer 100 comprised of 3DRAM, and a random 

50 access memory/digital-to-analog converter (RAMDAC) 
196. 

As shown, the graphics accelerator 112 includes com
maad block 142 which iaterfaces to the memory bus 104. 
The command block 142 interfaces the graphics accelerator 

55 112 lo the host bus 104 and controls the traasfor of. data 
betweea other blocks or chips in the graphics accelerator 
112. The command block 142 also pre-processes triangle 
and vector data and performs geometry data decomprei.:.sion. 

Referring now lo FIG. 2, a simplified block diagram 
illustrating the computer system of Fl G. 1 is shown. Ele
ments of the computer system which are not necessary for aa 
understanding of the .present invention are not shown for 
convenience. AB shown, the computer system 80 includes a 60 
central processing unit (CPU) 102 coupled to a high speed 
bus or system bus 104. A system memory 106 is aL~o 
preferably coupled to the high speed bus 104. 

The command block 142 interfaces to a plurality of 
floating point blocks 152. The graphics accelerator 112 
preferably includes up lo six floating point processors 
labeled 152A-152F, as shown. The floating point processors 
152A-152F receive high level drawing commands and 
generate graphics primitives, such as triangles, lines, elc. for The host processor 102 may be any of various types of 

computer processors, multi-processors and CPUs. The sys- 65 
tern memory 106 may be any of various types of memory 
subsystems, iocludiag random access memories and ma&s 

rendering three-dimeasional objecls on the screen. The 
t1oating point processors 152A-152F perform 
transformation, clipping, face determination, lighting and 

0355



6,018,353 
5 6 

lighting, and setup calculations. The output data is then 
provided to the draw chips for rendering into the frame 
buffer. As described further below, lhe command block 
includes improved vertex pointer logic according to the 

set·Up operations on received geometry data. Each of the 
!loating point processors 152A-152F connects lo a respec· 
live memory 153A-153F. The memories 153A-153F are 
preferably 32 kx36-bil SRAM and are used for microcode 
and dala storage. 

Each of the floating point blocks l.52A-F connects to each 
s present invenlion, which more efficiently creates complete 

polygons from received geometry data . 
. of two draw processors 172A and 172B. The graphics 

accelerator 112 preferably includes t\jlo draw processors 
172A and 172B, although a greater or lesser number may be 
used. The draw processors 172A and 172B perform screen 10 

space rendering of the various graphics primitives and 
operate lo sequence or fill the completed pixels into the 
3DRAM array. The draw processors 172A and 172B also 
function as 3DRAM control chips for the frame buffer 100. 
The draw processors 172A and 172B concurrently render an 15 

image into the frame buffer 100 according to a draw packet 
received from one of the floating-point processors 
152A-l52F, or acc0rding to a direct port packet received 
from the command processor 142. 

Each of the fioating point blocks 152A-F preferably 20 

operates to broadcast the same data to the two drawing 
blocks l 72A aod 172B. In other words, the same data is 
always on both seL~ of data lines coming from each floating 
point block 152. Thus, when tne floating point block 152A 
transfers data, the fioating point block 152A transfers the 25 

same data over both parts of the FD-bus to the draw 
processors l 72A and l 72B. 

Each of the respective drawing blocks 172A and l 72B 
couple to frame buffer 100, wherein ·frame buffer 100 
comprises four banks of 3DRAM memory 192A-B, and 30 

194A--B. The draw processor 172A couples to the· two 
3DRAM banks 192A and 192B, and the draw .processor 
l72B couples to the two 3DRAM banks 194A and l94B, 
respectively. Each bank comprises three 3DRAM chips, as 
shown. The 3DRAM memories or banks 192A-B and 35 

194A--B collectively form tbe frame buffer 100, which is 
1280x1024 by 96 bits deep. The frame buffer.stores pixels 
corresponding to 3-D objects which are rendered by the 
draw processors 172A and 172B. 

Each of the 3DRAM memories 192A-B and 194A-B 40 

couple to a RAMDAC (random access memory digital-to
analog converter) 196. The RAMDAC 196 comprises a 
programmable video timing generator and programmable 
pixel clock synthesizer, along with cross-bar functions, as 
well as traditional color look-up tables and triple video DAC 45 
circuits. The RAMDAC in tum·couples to the video monitor 
84. 

FIG. 4--Command Block 
As discussed above, lhe command preprocessor or com

mand block 142 is coupled for communication over the host 
bl!B 104. The command preprocessor 142 receives geometry 
data arrays transferred from !he memory subsystem 106 over 
the host bus 28 by the host processor 102. In the preferred 
embodiment, the command preprocessor 142 receives data 
transferred from the memory subsystem 106, including both 
compressed and non-compressed geometry data. When the 
command preprocessor 142 receives compressed geometry 
data, the command preprocessor 142 operates to decompress 
the geometry data to produce decompressed geometry data. 

The command preprocessor 142 preferably implements 
two data pipelines, these being a 3D geometry pipeline and 
a direct porl pipeline. In the direct port pipeline, lhe corn· 
mand preprocessor 142 receives direct port data over the 
host bus 104, and transfers the direct port data over the 
command-to-draw (CD) bus lo the draw processors 
172A-172B. As mentioned above, the CD bus uses or 
"borrows" portions of other buses to form a direct data path 
from the command processor 142 to the draw processor 
172A-172B. The direct port data is optionally processed by 
the command preprocessor 142 to perform Xll functions 
sucb as character writes, screen scrolls and block moves in 
concert witb the draw processors 172A-172B. The direct 
port data may also include register writes to the draw 

· processors 172A-172B, and individual pixel writes to the 
frame buffer 3DRAM 192 and 194. 

[n the 3D geometry pipeline, the command preprocessor 
142 accesses a stream of input vertex packets from the 
geometry data arrays. When the command preprocessor 142 
receives a stream of input vertex packets from the geometry 
data arrays, the command preprocessor 142 operates lo 
reorder the information contained within the input vertex 
packets and optionally delete infot:mation in the input vertex 
packets. The command preprocessor 142 preferably con· 
verts the received data into a standard forrnat. The command 
preprocessor 142 converts the infonnation in each input 
vertex packet from differing number formats into the 32 bit 
IEEE floating-point number format. The command prepro· 
cessor 142 converts 8 bi! fixed-point numbers, 16 bit fixed
point numbers, and 32 bit or 64 bit IEEE floating-point 
numbers. For normal and color values, the command pre-

The command block is preferably implemented as a single 
chip. Each of the floating point processors 152 are preferably 
implemented as separate chips . .In the preferred 
embodiment, up lo six fioating point blocks or chips 152A-F 
may be included. Each of the drawing blocks or processors 
172A aod 172B also preferably comprise separate chips. For 
more information on different aspects of the graphics accel
erator architecture of the- preferred embodiment, please see 
related co-pending application Ser No. 08/673,492 entitled 
"Three· Dimensional Graphics Accelerator With Direct Data 
Channels for Improved Performance", and related 
co-pending application Ser. No. 08/673,491 entitled "Three· 
Dimensional Graphics Accelerator Which Implements Mul
tiple Logical Buses Using Common Data Lines for 
Improved Bus Communication", both filed on Jul. 1, 1996. 

50 processor 142 may convert the data to a .ftxed point value. 

As described above, command block 142 interfaces with 
host bus 104 to receive graphics commands and data from 
host CPU 102. These commands and data (including poly· 
goos with both front and back surface properties) are pa.s.":Gd 
in tum to floating point processors 152 for transformation, 

The comrnan.d preprocessor 142 operates to accumulate 
input vertex information until an entire primitive is received. 
The command preprocessor 142 then transfers output geom· 
etry packets or primitive data over the command-to·floating-

55 point (CF) bus to one of· the floating-point processors 
152A~152F. The output geometry packets comprise the 
reformatted vertex packets with optional modifications and 
data substitutions. 

. Referring now to FlG. 4, a block diagram ill~trating the 
60 command processor or command block 142 is shown. As 

shown, tb.e command block 142 includes input buffers 302 
and output buffers 304 for interfacing to lhe. b.ost bus 104. 
The input buffers 302 couple to a global data issuer 306 and 
address decode logic 308. 'The global data issuer 306 con-

~5 nects to the output buffers· 304 and to the CM bus .and 
performs dala. transfers. The address decode logic 308 
receives an input from the DC bus as shown. The address 

0356



6,018,353 
7 

decode logic 308 also couples to provide output tn an input 
FIFO buffer 312. 

In general, lhe frame buffer has a plurality of mapping.s, 
including an 8-bit mode for red, green and blue planes, a 
32-bit mode for individual pixel access, and a 64-bit mode 
to access the pixel color together with tbe Z buffer values. 
The boot prom 197, audio chip 198 and RAMDAC 196 also 
have an address space within the fra~e buffer. The frame 
buffer also includes a register address space for command 
block and draw processor registers among others. The 
address decode logic 308 operates tn create tags for the input 
FIFO 312, which specify which logic unit should receive 
data and how the data is to be CQnverted. The input FIFO 
buffer 312 holds 128 64-bit words, plus a 12-bil tag speci
fying the destination of data and how the dala should be 
processed. 

The input FIFO 312 couples through a .64-bit bus lo a 
mulliplexer 314. Input FIFO 312 also provides an output to 
a geometry decompression unit 316. As discussed above, the 
command block 142 receives both CQmpressed and non
compressed geometry data. The decompression unit 316 
receives the compressed geometry data· and operates to 
decompress Ibis compressed geometry data to produce 
decompressed geometry data. The decompression unit 316 
receives a stream of 32-bit words and produces decom· 
pressed geometry or primitive data. Then decompressed 
geometry data output from the decompression unit 316 is 
provided to ao input oflhe multiplexer 314. The output of 
the multiplexer 314 is provided to a format converter 322, .a 
collection buffer 324 and register logic 326. In general, the 
decompressed geometry data output from the decompres
sion unit is provided to either llie format CQnVerter 322 or the 
collection buffer 324. 

In essence, the geometry decompression unit 316 can be 
considered a detour on the data path between the input FIFO 
312 and the next stage of processing, which is either the 
format converter 322 or the collection buffer 324. For data 
received by the command processor 142 which is not 
compressed geometry data, i.e., non-compressed data, this 
data is provided from the input FIFO 312 directly through 
the multiplexer 314 to either the formal converter 322, the 
collection buffer 324, or the register logic 326. When the 
command processor 142 .receives compressed geometry 
data, this data must first be provided from the input FIFO 
312 to the geometry decompression unit 316 to be decom
pressed before being provided to other logic. 

8 
vertex accumulation buffer 332 and the verlex buffers 334 
provide outputs to the collection buffer 324, which in turn 
provides an output back lo the output buffers 304. 

The vertex accumulation buffer 332 is used to store or 
accumulate vertex data required for a primitive thal is 
received from the formal converter 322. The vertex accu
mulation buffer 332 actually comprises two sets of registers, 
i.e., is double buffered. The first set of registers is used for 
composing a vertex, and the second set of registers is used 

JO for copying the data into one of the vertex buffers 334. As 
discussed further below, these two sets of registers allow for 
more efficient operation·. Data words are written one at a 
time intn the first or top buffer of the vertex accumulation 
buffer 332, and these values remain unchanged until a new 

15 value overwrites llie respective word. Data is transferred 
from the first set of registers to the second set of registers in 
one cycle when a faunch mndition occurs. 

The vertex buffers 334 are used for constructing or 
"building up" geometric pdmitives, such as lines, lriaogles, 

20 etc. Lines and triangles require two and three vertices, 
respectively, to complete a primitive. According to one 
embodiment of the invention, new primitives may be created 
by replacing a vertex of an existing primitive when the 
primitive being created shares one or more vertices with the 

25 prior created primitive. In other words, the vertex buffers 
334 remember or maintain previous vertex values and 
intelligently reuse these vertex values when a primitive or 
triangle shares one or more vertices or other information 
with a neighboring primitive or triangle. This reduces the 

30 processing requirements and makes operation of !he Open 
GL format operate more ef!ic[ently. Io the preferred 
embodiment., the vertex buffers 334 can bold up tn seven 
vertices. This guarantees maximum throughput for the 
worse case primitive, i.e., independent triangles. The vertex 

35 buffers 334 also operate at optimum speed for dots, lines and 
triangles and is substantially optimal for quad primitives. 

Each of the vertex accumulation buffer 332 and the vertex 
buffers 334 are coupled to a collection buffer 324. The 
collection buffer 3.24 provides respective outputs to the 

40 output buffers 304 as shown. The vertex buffers 334 are 
coupled to provide outputs lo CF bus output FIFOs 144. The 
collection buffer 324 is also coupled to provide oulpui~ to 
the CF bus output FIFOs 144. The collection buffer 324 is 
used for sending all non-geometric data to the floating point 

45 blocks 152A-152F. The collection buffer 324 can hold up to 
32 32·bit words. It is noted that the operation of copying data 
into the CF-bus output FIFOs 144 may be overlapped with 
the operation of copying new data into the collection buffer 

]bus, the command block 142 includes a first data path 
coupled to the input buJfors 302 or input FIFO 312 for 
transferring the non-compressed ·geometry data directly 
llirough the multiplexer 314 to either the format converter so 
322.or the collection buffer 324. The command block 142 
also includes a second data. path coupled to the input buffers 
302 or input FIFO 312 for receiving compressed geometry 
data. The second data path includes a geometry decompres
sion unit c0upled tn an output of the input FIFO 312 for 
receiving and decompressing the compressed geometry 

324 for optimal throughput. 
As mentioned above, the <;emmand block 142 includes a 

plurality of registers 326 coupled to the output of the 
multiplexer 314. The registers 326 also provide an output to 
the UPA output buffers 304. Register block 326 comprises 
16 control and status registers wbicb control the format and 

55 flow of data being· sent to respective floating point blocks 
152A-152F. 

input data to produce decompressed geometry input data. Each of the vertex buffers 334 and tlie collection buffer 
The formal converter 322 receivesinleger and/or floating 324 provides a 48-oit output to CF-bus output FIFOs'144. 

point data and output.s eilhei floating point or fixed point The CF-bus output FIFOs 144 enable the command block 
data. The format converter 322 provides the command 60 142 to quickly copy a primitive from the vertex buffers 334 

. processor 142 llie flexibility to receive a plurality of different into the output F1FO 144 while the last of the previous 
data types while providing each of the f!()ating block units primitive is still being transferred across lhe CF-bus. This 
152A-152F with only a single data type for a particular enables the graphics accelerator 112 to maintain· a steady 
word. : !low of data across each of the point-ID-point buses. lo the 

The format converter 322 provides a 48-bit output to a 65 preferred embodiment, the CF-bus output F!FOs 144 have 
vertex accumulation buffer 332. The vertex accumulation sufficient room lo hold one complete primitive, as well as 
332 in turn provides an output to vertex buffers 334: ·me additional slorage to smooth out the data !low. The CF 

0357



6,018,353 
9 

output FIFOs 144 provide respective 8-bil outputs to a bus 
interface block 336. The bus interface 336 i.~ the final stage 
of the command processor 142 and couples to the CF-bus as 
shown. In addition, the CF/CD bus interface 336 provides 
"direct port" accesses to lbe CDC bus which are multiplex 5 

on the CF-bus as mentioned above. 

The command block 142 also includes round robin arbi
tration logic 334. This round robin arbltralion logic 334 
compri.~es circuitry lo determine which of the respective 
floating point processors 152A-152F is to receive the next 10 

primitive. As discussed above, the graphics accelerator 112 
of the present invention comprises separate point-lo-point 
buses both into and out of the respective floating point 
processor.; 152A-152F. Thus, the round robin arbitration 
logic 334 is included to distribute primitives evenly between 15 

the chips and thus maintain an even flow of data across all 
of the point-to-point buses simultaneously. In the preferred 
embodiment, the round robin arbitration logic 334 utilizes a 
"next available round robin" arbitration scheme, which skips 
over a sub-bus that is backed up, i.e., full. 20 

10 
Incoming Header Word 

The incoming header word is defined to exactly match the 
XGL bit definition. The seven bits of this header word are 
defined as follows: 

Bit 0 
Bit 1 
Bits 2-3 
Bil 4 
Bit 5 
Bil 6 

Draw edge 
Drow previous edge 
Triangle replace bits 
Fat>l oricotation (CCW) 
Edge is internal 
.Previous edge is internal 

The individual bits ba ve the following meanings: 
Draw edge: For lines, this is the same as a move/draw bit. 

When zero the line starting position is specified and when 
one, a line is drawn from the previous point to the current 
point. For dots, the dot is not drawn when this bit is zero. 
When drawing triangle edges, this bit indicates that an edge 
is to be drawn from· the newest vertex to the middle vertex. 

Draw previous edge: This bit only applies while drawing 
triangle edges and indicates that an edge should be drawn 
from the newest vertex lo the oldest vertex. 

Triangle replace bits: A value of 00 in these two bits 
indicates to restart the triangle. The next two vertices 

For information on another embodiment of the command 
processor 142, please see U.S. Pat. No. 5,408,605 titled 
"Command Preprocessor for a High Performance Three 
Dimensional Graphics Accelerator", which is hereby incor-
porated by reference ie it~ entirety. · 
Vertex Buffer System 

The Vertex Buffer organizes incoming vertices into primi
tives to be loaded into the CF bus output fifos for delivery 

25 received will complete the triangle, no matter what the value 
of the replace bits. That is to say, the replace biis are always 
ignored for the second and third vertices after a restart. A 
value of 01 indicates that the oldest of the three existing 

to the AFB-Float AS!Cs. These maoipulations include face 30 

orientation, substitution, replication, edge processing, and 
vertex ordering. These operations are handled by various 
piece·s of the Vertex Buffer, which are discussed below. 

Vertex Accumulation Buffer 
The Vertex Accumulation buffer facilitates OpenGL 35 

operation, and also simplifies other operation of the graphics 
accelerator. FIG. 5 shows the Vertex Accumulation buffer 
together with the other modules in the AFB-Command chip 
to which it is connected. Data comes into the VAB from the 
Format Converter and is written to one of the Vertex Buffers. 40 

Incoming data is written to Buffer A of tbe Vertex Accu
mulation Buffer. There is a 7-bit word for the header, three 
32-bit words for X, Y and Z, four 12-bit words for R, G. B 
and Alpha. three 16-bit words for N., NY and N.,two more 

45 
32-bit words for U and V (texture coordinates_, and three 
32-bit words for FN., Fny, and FN, (the facet normal). These 
words are written one at a time and remain unchanged until 
a new value overwrites the word. The feature of !be words 
remaining lbe same "forever'' allows a color, normal or Z 

50 
value to be set in this buffer, with no need for other coastant 
registers. It also permits the.data to be written in any order. 

vertices is to be discarded in forming a new triangle. A value 
of 10 indicates that the middle of the three existing vertices 
is to be discarded in forming a new triangle. 

Face Orientation: The face orientation bil is only used on 
a restart and is exclusive-Ored with the CCW bit of tbe 
Primitive Control Register to determine tbe current winding 
bit used when outputting primitives. 

Note: The. CCW bit in both the GT and ZX graphics 
accelerators was specified assuming a lefl-handed coordi
nate system (X positive up, Y positive to the right, Z positive 
going away from the viewer) as needed by PHIGS. This is 
actually backwards for XGL, which uses a right-handed 
coordinate system (Z is now positive coming toward> the 
viewer). AFB will differ from its predecessors by specifying 
the CCW bit for a right-handed coordinate system. 

Edge is internal: This bit is used when drawing hollow 
triangles and indicates tbat the edge from the most recent 
vertex to the middle vertex is an internal edge (part of a 
larger polygon) and is not to be drawn. 

Previous edge is internal: Same as the above, bu I for the 
edge from the most recent vertex lo the oldest vertex. 
Format Converter Controller 

When running in "immediate mode," both XGL and Open 
GL store data directly to tbe appropriate Vertex Accumula
tion Buffer registers based on the address lo which tbe data 
is written. The addresses also specify to !be Format Con-

When a "launch" condition occurs, the entire contents of 
Buffer A is written into Buffer A in one cycle. New values 
may tben be written immediately to Buffer A while the 
contents of Buffer B is being copies into the appropriate 
Vertex Buffer. The transfer into the Vertex Buffer is accom
plished 48 bits at a time (see FIG. 4-6 for the format of the 
48-bit words). For OpenGL mode and some of the XGL 
modes, a write to an explicit address causes the Jauoch 
condition. For bcopy mode in XGL the Format Converter 
Op-codes determine when to launch a vertex. For decom
pression mode the current mode and a .counter determine 
when a launch condition has been reached: 

55 verter how the data is to be handled. However, when data is 
copied to AFB-Command in large blocks using bcopy, it 
can't be written lo the required addresses that make imme
diate mode work. Some other way is required to specify how 
many words make up a vertex and how each word is to be 

60 treated. 

A major advantage of this design over prior art designs is 65 

that there are no "dead cycles" during the data transfer on 
either side of the Vertex Accumulation Bufl"er. 

The· Format Converter Controller at the bottom of the 
Input FIFO contains opcodes to specify how incoming data 
streams should be dealt with. The op-code format is shown 
in FIG. 6. The Destination field (bits 3-0) specify which of 
the 16 Vertex Accumulation Buffer registecs is to receive 
each data word. The Source Type field (bits 5-4) specifies 
whether the incoming data is 32-bil IEEE !loating-poinl, 

0358



WEST 

6,018,353 
11 12 

32-bit signed integer fraction, 32-bit unsigned integer frac- There are seven vertex buffers; enough to run at maximum 
hon or 64-bit double.-precisioo IEEE floating-point. lbe last speed while gathering independent triangles; that is, three 
word of a vertex has the laund1 bit set (bit 6), all other words for the triangle currently being written out, three for the 
must keep lhis bit clear (or they suddenly become the last triangle being loaded in, and one extra for the overhead of 
word of the vertex). The launch bit eliminates the need for moving the buffers around."Each word in the vertex buffer is 
a count register, as was needed in prior architectures. 48 bits, to match the width of the data sent across CF-Bus 

Data is directed to the Collection Buffer instead of the to the AFB-Float chips, Data is transferred into each vertex 
Vertex Accumulation Buffer if bit 1 is seL No conversions buffer 48 bits at a time, even if this means reading from up 
are performed on the data in this case, sO the lauoch bit is the to three separate values in the Verlcx Accumulation Buffer. 
only other bit that affects the data. 

10 
A diagram of one of the vertex buffers is shown in FJG. 10. 

There is no provision for skipping vertex data as in prior All vertices have an X Y Z coordinate and a color. There 
art designs, but that can be easily accomplished by writing are three optional parts: the normal, the texture coordinatc, 
to a location twice or by writing to a location that is not used and the facet normal. The facet normal actually applies to a 
in the primitive as sent to the AFB·Float chips. full primitive, but the hardware is simpler with the facet 

The Vertex Accumulation Buffer is responsible for storing normal attached to the vertex it came in with. 
all converted data from the Format Converler. The VAB is 15 The seven vertex buffers are kept track of using three-bit 
organized as a double buffered set of registers: buffer A and pointers. These pointers are kept on one of six lisls: 
buffer B as shown in FIGS. 5 and 7. The contents of buffer 'The Free list. 'These point fo vertex buffers that are ready 
A are loaded by the Format Converter via a 16 bit load lo receive data. 
nabl The F t C rt · d' t to th y, te B If. The New Guy vertex. A vertex transferred in from the 

eh . e-, 
00
· orrna. onhve er 10 ica es e er x u er, 20 Vertex Accumulation buffer gets put here .first, along 

t al it is ne loading t e VAB by asserting one of several 
"launch" signals. Also provided by the VAB is a 32 bit data wilh the two-bit replacement cede, until the previous 
path for reading the contents of the A buffer during register primitive has been grouped is beginning to be trans-
reads and context switches. ferred to the CF-Bus Output FIFOs. This vertex is then 

moved to one of the three working vertices. 

ge~a;7a~:~~n~: ~;:\~::~~~~u~~i~;:~e~o~:~ 25 The Newest vertex. This is the most recent vertex to be 
added to the working vertices, 

accomplished by the proper assertion of the 16 bit fc_vab._ 
Iden lines. FIG. 8 shows the only valid assertions of the load The Middle vertex. This is the next to oldest working 
enable (fc_ vab, _ _Iden) lines. Each ,line corresponds to a vertex. 
different register within the VAB. With the exception of two 30 The Oldest vertex. Tue vertex that has been a working 

vertex the longest. 
special cases the load enable lines are only asserted one at The I Wanna Be Free list. When a vertex is taken froin the 
a time. A special case exists for normals. If the correspond-

New Guy vertex, either one vertex (the Oldest or 
ing bits for all three normals are asserted then the two muxes Middle) will be recycled or all three in tbe case of a 
seen above N, and N, in FIG. 7 will switch to the 48 bit path. restart. These are placed on the "I Wanna Be Free" list 
This allows for loading of a single 48 bit normal from the 35 until the primitive gets completely transferred, at which 
Decompression Unit. When only one ofthe load enable bits point they .are moved to the free list. 
corresponding to the normal registers is enabled then the Once a complete primitive is held in the Newest, Middle, 
upper 16 bits of the 48 bit path is used. Nole also that the R, and Oldest registers, these three pointers are transferred to 
G, B and A registers use bits 45:34 of the 48 bit path. The the Vertex Output Pointers so that the primitive may be sent 
other special case is that the Header register may be loaded 

40 
out while the next one is being put together. lbis is shown 

in combination with any other register. This was done to in FIG. 11. Jt is noted that all registers shown in the diagram 
accommodate certain querks in the architecture (aamely are three bits wide; this is not a large piece of logic like most 
performance in the FFB compatibility mode). other block: diagrams. 

The mux logic following the VAB is used to pack the data State Machines 
from the VAB as it is transferred into the Vertex Buffer. 

45 
The Vertex Buffer control logie is made up of a number 

Header information is not stored in the Vertex.Buffers. It is of small state machines. The following list is an attempt lo 
stored directly in the Vertex Pointer Logic. The next section describe all of them. 
explains the formal of the data as stored ia the Vertex Bulfer The working registers, Newest/Middle/Oldest, bas a state 
Memory. machine with the following states: 

Context is read from. the A buffer of the VAR via the 
50 

None-Only happens when logic is initialized. 
vbrd_vab_radr and, vab_vbrd_d032 lines. The vbrd__ Have 1 vertex-After "none" or a restart. 

Have 2 verlices--After "have l." 
vab_radr is a4 bit address derived from the gdi_wads (GDl Have 3 vertices-After "have 2 .. or after "have 3" and 
word address) which is used to select which of the VAB a replace condition. 
registers is to be read o.ut onto the vab_vbrd_do32 bus. Have 3 vertice&-transmitled-After the transfer to 

Vertex Buffer 55 V1N2N3. 
1. Vertex Buffer Organization ·n1e Vl/V2fV3 output registers get loaded all at once and 

The Vertex Buffer resides between the Vertex Accumula- are only temporaries to show the state of Newes!/ 
tion buffer and CF bus output fifos. Data is loaded into the Middle/Oldest when the triangle was made complete. It 
Vertex Buffer from the Vertex Accumulation buffer when a has the following states: 
"launch" signal is received from -the Format Convert.er. 60 Outputting Vl--After a triangle launch. 
When enough vertices to assemble a complete primitive Outputting V2-After "outputting Vl." 
have been loaded into the Vertex Buffer Memory the primi- Outputting V3--Aft!"r "outputting V2." 
tive is loaded into the CF bus output fifos for delivery to the Done outputting-After ''outputttiog V3." 
AFB-Float chips over the CF Bus, HG. 9 diagrams the The "I wanna be free" list keeps track of wbich vertices 
Vertex Buffer. · 65 in the Vl/V2N3 registers need to be sent to the free 

The Vertex Buffers gather vertices to form complete list. These need to be held until tbe complete triangle is 
geometric primitives: dots, 'lines, triangles, or quadrilaterals. output.· 

0359



6,018,353 
13 

Have none-Default state, wben all have been 
returned. 

14 
after Oldest and a V4 register for output. Unlike triangles, 
quad strips require two new vertices to create a new primi
tive. Have 3-0nly occurs on a restart. 

Have 2-After "have 3." 
Have 1-After "have 2" or any replace. 

Quads are still output as triangles to the AFB· Float chips. 
5 First, Vl, V2, and V3 are sent, then V3, V2 and V4. 

Substitution and Replication Tue free list behaves like a FIFO and has a counter that 
goes from zero to seven, When hardware gets 
initialized, it holds all seven. At .most other times it 
holds less. · 

Tue "New Guy" vertex has two states: 
Have none. 
Have 1. 

There are two cases where either the vertex color or the 
vertex normal is not the value actually output to the CF-Bus 
Output FIFO for a particular primitive. Substitution is where 

10 a different color or normal is output for all vertices. Repli
cation is where the value in the last (or first) vertex is also 
used for the other vertices. 

When the Registers Get Clocks 
The working registers, Newest/Middle/Oldest, are 

clocked any time a "New Guy" is present and they are not 
waiting to output a completed primitive (i.e., not in the 
"have 3 vertices" state). They are all three clocked at .once 
except on a replace middle condition. The oldest register is 
not clocked when replacing the middle vertex. 

Substitution is done using an eightb vertex buffer called 
the substitution buffer. This is used for overriding the color 

15 durin,g operations such as pick highlighting and to specify 
one facet normal for large polygons. 

Replication is similar to substitution, except that the value 
comes from the Newest (or Oldest) vertex instead of the 
substitution register. This is needed when color interpolation 

Tue VlN2N3 output registers all get clocked whenever 20 is disabled, that is, when the color of the most recent vertex 
specifies the color of the entire triangle or line rather than 
having the color smoothly interpolated across the primitive. 
It is also used for faceted shading where one normal is used 

a completed primitive is to be output (i.e., ~'done outputting" 
and the working registers are in the "have 3 vertices" state). 
Note that clockwise triangles are transferred Newest to V3, 
Middle to V2, and Oldest to Vl. When a triangle is 
counterclockwise, Newest goes to V2 and Middle goes to 25 

V3. This is done so that triangles are always clockwise when 
sent to AFB-Float. 

for all three vertices of a triangle. 
Tue hardware pedorms substitution and replication by 

selecting the color fields from one vertex while selecting the 
XYZ values from another vertex while outputti0g a primi
tive to AFB-Float. If you look closely at FIG. 4-6 on page 
4-27, you'll notice that 16 bits of color share a 48-bit field 

Tue "I wanna be free" registers get clocked at the same 
time that the "New Guy" gets transferred into the working 
registers. They all get clocked on a restart. Only IWBFl gets 
clocked for replace middle or replace oldest. Note that the 
value clocked into IW~Fl is either from the Middle or 
Oldest register depending on whether the replacement code 

30 comes from the one vertex each time. For nornals, the whole 
48-bit field comes from the one vertex each time. The 
implementation involves simple multiplexing of the address 
lines. 

is replace middle or replace oldest, respectively. Collection Buffer 
The free list gets values clocked in from the "I wanna be 

free" list when the completed primitive has been transmitted 
and the VlN2N3 registers are in the "done transmitting" 
state. They are transmitted one at a lime. Since the fastest a 
vertex could possible be created is three clocks, it is okay to 
take three clocks in the worst case to put register pointers 
back on tbe free list. 

35 Attributes and other non-geometric data do not go through 
the Vertex Accumulation buffer or the Vertex Buffers, but are 
gathered into the Collection Buffer. Once a full primitive has 
been gathered, it is sent to the CF-Bus Output FIFOs. All 
collection buffer data is packed, one and one-half 32-bit 

40 words per 48-bit word, as it is written to the CF-Bus Output 
FIFOs. 

Av alue goes from the free list to the New Guy whenever 
there is at least one value on the free list and the New Guy 
is empty. 

Please keep in mind that these registers are only used to 45 

index into the array of seven vertex buffers or for house
keeping purposes. The only ones that are actually used as 
indices are the "new guy" for writing data from the Vertex 
Accumulation buffer into a Vertex Buffer, and the. V1/V2/V3 
registers used when writing completed primitives to the so 
CF-Bus Output FlFOs. All other registers are just there for 
housekeeping purposes. 
Treatment of Lines and Dots 

Llnes behave similarly to triangles, but only the Middle 
(actually used as "Oldest" for lirtes) and Newest working 55 

registers get used and only two of the VlN2N3 registers 
are needed. The only replacement conditions are replace 
oldest or restart. 

Dots just use one register, the Newest working register, 
and only one of the VlN2/V3 registers. The only .replace- 60 

meat condition is restart. 
Quads 

Dealing with quadrilaterals adds a little complexity to the 
design. Quads can be treated as triangles except when there 
is a facet normal or facet color. Then it is necessary to have 65 
four vertices present before anything can be output. This 
calls for a new Quads register added lo the working registers 

There are two types of passthrough data: AFB-Float 
attributes which are broadcast to all six AFB-Float chips, 
and data or attribllles sent to AFB-Draw which. go through 
a single AFB-Float chip, just like geometric data,, For 
broadcast data, no output is expected from any of the 
AFB-Float chips. Also, for broadcai;t primitives, all six 
Output FIFOs must have enough room in them before the 
data may be copied. 

The Colledion Buffer does not behave quite like a FIFO. 
The first data written to itis always started at location zero. 
The input pointer points at the next location to receive any 
data and also contains the count of how many words are in 
the buffer. When a launch condition occurs, the input pointer 
is copied to a count register and the input and output pointers 
are cleared to zero. Now, the data is copied out from the 
locations pointed to by the output pointer, with tbe point 
being incremented until it matches the count register. The 
last word sent is marked with the last word bit set. 

Since copying data from tbe Collection Buffer to the 
CF-Bus Output FlFO is guaranteed to be uninterruptable and 
since new data coming io cannot be copied in faster than the 
data is read out, the next input operation can be overlapped 
with the data output. lt is still unclear whether we will have 
to wait one cycle between the write that causes the launch 
and the write of the first word of the next data packet, or if 
the next write can happen on the same cycle as the read. 

0360




