
,“~ raow2_L£NerH-
« r \ ‘ M -rI»""§L 3; L

E: = a >s"**=:' rt-v*4=,,.§

fig. 3‘ __ “kl

""‘ ’SK|P_‘7_FIOWS ‘ "_‘1"‘iV‘ 'x..a-"'we

Figure 8-9 *SKIP_ROWS, *SI(IP_PlXlJ.S, and *ROW_LENGTH Parameters

Often a particular machine's hardware is optimized for moving pixel data

to and from memory, ifthe data is saved in memory with a particular byte
' alignment. For example, in a machine with 32-bit words, hardware can

often retrieve data much faster if it’s initially aligned on a 32-bit‘boundary,

which typically has an address that is a multiple of 4. Likewise, 64-bit

architectures might work better when the data is aligned to 8-byte

boundaries. On some machines, however, byte alignment makes no
difference.

As an example, suppose your machine works better with pixel data aligned

to a 4-byte boundary. Images are most efficiently saved by forcing the data

for each row of the image to begin on a 4-byte boundary. If the image is 5

pixels wide and each pixel consists of 1 byte each of red, green, and blue
information, a row requires 5 x 3 = 15 bytes of data. Maximum display

efficiency can be achieved if the first row, and each successive row, begins

on a 4-byte boundary, so there is 1 byte of waste in the memory storage for

each row. if your data is stored like this, set the *ALlGNMENT parameter

appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byte is used. If it’s 2, a byte is
skipped if necessary at the end of each row so that the first byte of the next

row has an address that's a multiple of 2. In the case of bitmaps (or 1-bit

images) where a single bit is saved for each pixel, the same byte alignment
works, although you have to count individual bits. For example, if you’re

saving a single bit per pixel, the row length is 75, and the alignment is 4,

then each row requires 75/8, or 9 3/3 bytes. Since 12 is the smallest multiple

of 4 that is bigger than 9 3/8, 12 bytes of memory are used for each row. If

the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is rounded

Imaging Pipeline 301

0351 Volkswagen 1021 - Part 2 of 2

Parameter Name Type Initial Value Valid Range

GL_INDEX_SHlF_l‘ GLint 0 (—oo, oo)

GI.-_INDEX_OFI~‘SET GLint 0 (—oo, oo) ‘

GL_RE-D_SCALE GLfloat 1.0 (—oo, oo)

GL_GREEN_SCALE GLfloat 1.0 (—c», an)

GL_BLUs_sc.ALE GLfloat 1.0 (—m, on)

GL_ALPHA_SCALE G1;float 1.0 . (—«=, no)

GL_DEl’TH_SCALE GLfloat 1.0 (—o«», co)

GL_RED_BlA5 GLfloat 0 (—m, an)

GL_GREEN_BLAS GLfloat ‘ 0 (—m, on)

GL_BLUE_BIAS GLfloat 0 (—m, an)

GL_ALPl-lA_BlAS GLfloat 0 (—«n, so)

GL_DEI»’I‘H#BIAS GLfloat 0 (_oo, oo)

Table 8-4 glPixel'1‘ransfer*0 Parameters (continued)

If the GL_MAP_COLOR or GL__MAP_STENCIL parameter is TRUE, then

mapping is enabled. See the next subsection to learn how the mapping is

done and how to change the contents of the maps. All the other parameters

directly affect the pixel component values.

V - A scale and bias can be applied to the red, green, blue, alpha, and depth
components. For example, you may wish to scale red, green, and blue
components that were read from the framebuffer before converting them to

a luminance format in processor memory. Luminance is computed as the

sum of the red, green, and blue components, so if you use the default value
for GL_RED_SCALE, GL_GREEN_SCALE and GL__BLUE_SCALE, the

components all contribute equally to the final intensity or luminance

value. If you want to convert RGB to luminance, according to the NTSC

standard, you set GL_RED__SCALE to .30,.GL_GR}:‘.EN_SCALE to .59, and
GL_BLUE_SCALE to '.1 1.‘

lndices (color and stencil) can also be transformed. In the case of indices a

shift and offset are applied. This is useful if you need to control which

portion of the color table is used during rendering.

Imaging Pipeline

0353

303

Pixel Mapping

All the color components, color indices, and stencil indices can be modified

by means of a table lookup before they are placed in screen memory. The

‘ command for controlling this mapping is glPixelMap*0.

void 'glP-ixe_lMa'p'{ui us f}v(GLenum map, GLint m.apsize{
const T-'YPE *vaIues);

Loads the pixel map-indicated by map‘ with;-mzipsize entriesg;whose values.

are pointed to by values. Table 8.-5~lists the;I'nap names and values; the

default sizes areal] 1 and the default vaiue_s_are.'_'al-l-.0. Each --ruap’s' size. must

be a power of 2. _ -

Map Name Address Value

GL_PIXEL_MAP_I_TO__l color index color index

GL_PIXEL_MAP_S_TO_S stencil index stencil index

GL*PIXEL_MAP_I_TO_R Color index R

GL_PlXEL_MAP_i_TO_G color index G

GL_PlXEL_MAP_I_T0_B color index B

GL_PIXEL_MAP_l_TO_A color index A

GL_PIXEL_MAP_R_TO_R R R

GL_PlXEL_MAP_G_TO_G G G

GL_PIXEL,_MAPHB_TO_B B B

GL_PlXEL_MAP_A_TO_A A A

Table B-5 glPixelMap*0 Parameter Names and Values

The maximum size of the maps is machine-dependent. You can find the

sizes of the pixel maps supported on your machine with glGetlntegerv0.
Use the query argument GL_MAX_PIXEL_MAP_TABLE to obtain the

maximum size for all the pixel map tables, and use

GL__PIXEL_MAP_*_TO_*_SiZE to obtain the current size of the specified

map. The six maps whose address is a color index or stencil index must
always be sized to an integral power of 2. The four RGBA maps can be any
size from 1 through GL_MAX_PlXEL_MAP_TABLE.

Chapter 8: Drawing Pixels, Bitmaps, Fonts. and Images

0354

To understand how a table works, consider a simple example. Suppose that

you want to create a 256-entry table that maps color indices to color indices

using GLHPlXEL_MAP_l_'l‘O_l. You create a table with an entry for each of

the values between 0 and 255 and initialize the table with glPixelMap*0.

Assume you're using the table for thresholding and want to map indices

below 101 (indices 0 to 100) to 0, and all indices 101 and above to 255. In

this case, your table consists of 101 0s and 155 2555. The pixel map is

enabled using the routine glPixelTransfer*0 to set the parameter

GL_MAP_COLOR _to TRUE. Once the pixel map is loaded and enabled,

incoming color indices below 101 come out as 0, and incoming pixels

between 101 and 255 are mapped to 255. If the incoming pixel is larger than

255, it’s first masked by 255, throwing out all the bits above the eighth, and

the resulting masked value is looked up in the table. If the incoming index

is a floating-point value (say 88.14585), it’s rounded to the nearest integer

value (giving 88), and that number is looked up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices

to RGB. (See “Reading and Drawing Pixel Rectangles” on page 309 for

information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel—storage modes and pixel-transfer operations are applied,
images and bitmaps are rasterized. Normally, each pixel in an image is

written to a single pixel on the screen. However, you can arbitrarily

magnify, reduce, or even flip (reflect) an image by using glPixelZoom().

void glPixelZoom(GLfloa_t zoomx, GLfloat zoomfi);

Sets the magnification or reduction factors for pixel-write operations

-(glDrawPixels()~or:glCopyPixels0), in the x— and y-dimensions. By

default, zoomx andzoomy are 1.0. If they.’re both 2.0, each image pixel is
drawn to 4-screen pixels. Note that fractionalmagnification or reduction

factors are allowed, as are negative factors. Negative zoom factors reflect

the resulting image about the current raster position.

During rasterization, each image pixel is treated as a zoom, >< zoom),
rectangle, and fragments are generated for all the pixels whose centers lie

within the rectangle. More specifically, let (x , y,_,,) be the current raster
position. If a particular group of elements (in ex or components) is the nth

in a row and belongs to the mth column, consider the region in window

coordinates bounded by the rectangle with corners at

Imaging Pipeline 305

0355

306

' (x,,, + zoomx * n, y,p + zoom’, * m) and (x,_,, + z0om,,(n+1), y“, + zoomy(m+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or
left boundaries) are produced in correspondence with this particular group
of elements. -

A negative zoom can be useful for flipping an image. OpenGL describes

images from the bottom row of pixels to the top (and from left to right). If

you have a “top to bottom” image, such as a frame of video, you may want

to use glPixelZoom(1.0, -1.0) to make the image right side up for OpenGL.

Be sure that you reposition the current raster position appropriately, if
needed.

Example 8-4 shows the use of glPixelZ.oom0. A checkerboard image is

initially drawn in the lower-left corner of the window. Pressing a mouse

button and moving the mouse uses gICopyPixels() to copy the lower-left

corner of the window to the current cursor location. (If you copy the image

onto itself, it looks wacky!) The Copied image is zoomed, but initially it is
zoomed by the default value of 1 .0, so you won't notice. The '2' and ‘Z’ keys

increase and decrease the zoom factors by 0.5. Any window damage causes

the contents of the window to be redrawn. Pressing the ‘r’ key resets the

image and the zoom factors.

Example 8-4 Drawing, Copying, and Zooming Pixel Data: irnage.c

#include <GL/g1.h>

#inc1ude <GL/g1u.h>

#inc1ude <GL/g1ut.h>
#include <stdlib.h>

#include <stdio.h>

#define checklmagewidth 64

#define checknnagei-ieight 64

GLubyte checkImage[checklmagefleight][checkImagewidth][3]:

static GLdoub1e zoomFactor = 1.0;

static GLint height;

void makeCheckImage(void]
{

int i. j, c;

for (i = 0; i < checkImageHeight; i++} {

for (j = 0; j < checkImageWidth; j++} {

C = {(({i&0x8)== }“{(j&Dx8))==0)}*255;

checkImageIi][j]IU] = (Gnubytel c;

Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

0356

}

checkImage[i][j][1]
checkImage[i] {j] [2]

void init(void)

{

}

glclearcolor (0.0, 0.0, 0.0, 0.0);

g1ShadeMode1{GLHFLAT);

makeCheckImage();

(GLubyte} c;

(GLubyte} c;

g1PixelStorei(GL;UNPACK_ALIGNMENT, 1);

void display(void)

{

J

glClear{GL_COLOR_BUFFER_BIT};

glRasterPos2i{0, 0];

g1DrawPixe1s(checklmagewidth, checklmagefleight, GL_RGB.

checklmage};GL_UNSIGNED_BYTE,

g1F1ush[) ,-

void reshape(int w, int h)

{

1

glviewporttfl, O, {GLsizei} w,

height = (GLint) h;

g1MatrixMode {GL_PROJECTION} ,-

g1LoadIdentityf):

gluOrtho2D(0.0, (GLdouble} w,

glMatrixMode(GL_MODELVIEW};

glLoadIdentity();

void motionfint x, int y)
{

static GLint screeny;

screeny 2 height — {GLintJ y;

g1RasterPos2i {x, screeny);

{GLsizei} h);

0.0, (GLdoub1e} h}:

g1Pixe1Zoom {zoomFactor, zoomFactor};

glCopyPixels [0, 0, checklmagewidth,'checkImageHeight,

. GL_COLOR);

glPixe1Zoom (1.0, 1.0};

g1F1ush (};

0357

Imaging Pipeline

307

303

void keyboard(unsigned char key, int x, int y]
{

switch (key) {
case ‘r’:

case ‘R’:

zoomFactor = 1.0;

g1utPostRedisp1ay();

printf {'zoomFactor reset to 1.0\n”}:
break;

case ‘z’:

zoomFactor += 0.5:

if (zoomFactor >= 3.0}

zoomFactor = 3.0;

printf (“zoomFactor is now %4.1f\n". zoomFactor);
break;

case ‘Z’:

zoomFactor —= 0.5;

if (zoomFactor <= 0.5}
zoomFactor = 0.5;

printf [“zoomFactor is now %4.1f\n", zoomFactor1;
break;

case 2?:

exit[0];

break;
default:

break;

}

int main(int argc, char** argv)

{

g1utInit{&argc, argv};

g1utInitDisp1ayMode(GLUT_SINGLE I GLUT_RGB}:

glutInitWindowSize{250, 250);

glutInitWindowPosition(100, 100):

g1utCreateWindow(argv[0]};

initil;

g1utDisp1ayFunc{disp1ay);

g1utReshapeFunc{reshape);

g1utKeyboardFunc{keyboard};

glutMotionFunc{motion):

glutmainboopi):
return 0;

Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

0358

...-__....-,....-....—..,.......u...,-M,»

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel

conversions performed when going from framebuffer to memory (reading)

are similar but not identical to the conversions performed when going in

the opposite direction (drawing), as explained in the following sections.

You may wish to skip this section the fi1st—t1'me through, especially if you

do not plan to use the pixe1—transfer operations right away.

The Pixel Rectangle Drawing Process

Figure 8-10 and the following list describe the operation of drawing pixels
into the frarnebuffer.

Reading and Drawing Pixel Rectangies

0359

309

byte shod int float
Data Stream

(index or component)

index-II-index
_ looku
0 i P

RGBA Index

2 (slenr,-if, color index)
Pixel Data Out

Figure 8-10 Drawing Pixels with glDrawPixels0

3'10 Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

0360

If the pixels aren't indices (that is, the format isn’t GL_COLOR_INDEX

or GL_STENCIL_INDEX), the first step is to convert the components to
floating-point format if necessary. (See Table 4-1 on page 164 for the

details of the conversion.)

If the format is GL_LUl\/[INANCE or GL_LUlV[INANCE_ALPHA, the

luminance element is converted into R, G, and B, by using the

luminance value for each of the R, G, and B components. In

GL__LUMlNANCE_ALPHA format, the alpha value becomes the A

value. If GL_LUMlNANCE is specified, the A value is set_to 1.0.

Each component (R, G, B, A, or depth) is multiplied by the appropriate

scale, and the appropriate bias is added. For example, the R component

is multiplied by the value corresponding to GL_RED_SCALE and added

to the value corresponding to GL_RED_BIAS.

if GL_MAP_COLOR is true, each of the R, G, B, and A components is

clamped to the range {0.0,1.0], multiplied by an integer one less than

the table size, truncated, and looked up in the table. (See "Tips for

Improving Pixel Drawing Rates” on page 314 for more details.)

Next, the R, G, B, and A components are clamped to [0.0,1.0], if they

weren’t already, and converted to fixed—point with as many hits to the

left of the binary point as there are in the corresponding framebuffer

component.

If you're working with index values (stencil or color indices), then

the values are first converted to fixed-point (if they were initially

floating-point numbers) with some unspecified bits to the right of the

binary point. Indices that were initially fixed-point remain so, and

any bits to the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute

value of GL_INDEX_SHIF'I‘ hits; the value is shifted left if

GL_INDEX_SHlFT > 0 and right otherwise. Finally, GL_INDEX__OFFSET
is added to the index.

The next step with indices depends on whether you’re using RGBA
mode or color-index mode. In RGBA mode, a color index is

converted to RGBA using the color components specified by

GL-_PIXEL_MAP_l_T0_R, GL_PlXEL_MAP_I_'I‘0__G, ‘

GL_PlXEL__MAP_l_TO__B, and GL__PIXEL_MAP__I_TO__A. (See “Pixel

Mapping” on page 304 for details.) Otherwise, if GL_MAP_COLOR

is GL_TRUE, a color index is looked up through the table

GL_PIXEL‘_MAP_l_TO_I. (if GL__MAP_COLOR is GL_FALSE, the index

is unchanged.) If the image is made up of stencil indices rather than

Reading and Drawing Pixel Rectangles

0361

311

312

color indices, and if GL_MAP_STENCIL is GL_TRUE, the index is

looked up in the table corresponding to GL_PlXEL_MAP_S__’I‘O_S. If
GL_MAP_STENCIL is FALSE, the stencil index is unchanged.

8. Finally, if the indices haven't been converted to RGBA, the indices are
then masked to the number of bits of either the color—index or stencil

buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process
are also done during the pixel rectangle reading process. The pixel reading

process is shown in Figure 8-11 and described in the following list.

Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

0362

Pixels from Framebufier

FIGBA Index
~ 2

.0 '

(stencil. oolor index}

index-bindex

lookup

byte short int float
Data Stream

(index or component)
to memory

Figute 8-11 Reading Pixels with glReadPixels()

1. If the pixels to be read aren’t indices (that is, the format isn’t

GL_COLOR_INDEX or GL_STENCIL_INDEX), the components are

mapped to [0.0,1.0]—that is, in exactly the opposite way that they are
when written.

2. Next, the scales and biases are applied to each component. If
GL_MAP_COLOR is GL_TRUE, they’re mapped and again clamped to

{0.0,1.0]. If luminance is desired instead of RGB, the R, G, and B

components are added (L = R + G + B).

Reading and Drawing Pixel Reclangles 313

0363

314

. -_ --—¢-

3. If the pixels are indices (color or stencil), they’re shifted, offset, and, if

GL*_MAP_COLOR is GL_TRUE, also mapped.

4. If the storage format is either GL_COLOR_lNDEX or
GL__STENClL_lNDEX, the pixel indices are masked to the number of

bits of the storage type (1, 8, 16, or 32) and packed into memory as

previously described.

5. If the storage format is one of the component kind (such as luminance

or RGB), the pixels are always mapped by the index—to-RGBA_maps.

Then, they're treated as though they had been RGBA pixels in the first

place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed

into memory according to the GL_PACI<* modes set with

glPixelStore*().

The scaling, bias, shift, and offset values are the same as those used when

drawing pixels, so if you’re both reading and drawing pixels, be sure to reset

these components to the appropriate values before doing a read or a draw.

Similarly, the various maps must be properly reset if you intend to use maps
for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the

reading and drawing operations. For example, luminance is not

usually equally dependent on the R, G, and B components as it may

be assumed from both Figure 8-10 and Figure 8-11. If you wanted

your luminance to be calculated such that the R component

contributed 30 percent, the G 59 percent, and the B 11 percent, you
can set GL_RED_SCALE to .30, GL_RED_BIAS to 0.0, and so on. The

computed L is then .3OR + .59G + .11B.

Tips for Improving Pixel Drawing Rates

As you can see, OpenGI. has a rich set of features for reading, drawing and

manipulating pixel data. Although these features are often very useful, they
can also decrease performance. Here are some tips for improving pixel draw
rates.

0 For best performance, set all .pixel—transfer parameters to their default

values, and set pixel zoom to (1.0,1.0).

Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

0364

A series of fragment operations is applied to pixels as they are drawn
into the frarnebuffer. (See “Testing and Operating on_Fragments” on

page 382.) For optimum performance disable all fragment operations.

While performing pixel operations, disable other costly states, such as
texturing and lighting.

If you use an image format and type that matches the framebuffer, you

can reduce the amount of work that the OpenGL implementation has
to do. For example, if you are writing images to an RGB frarnebuffer

with 8 bits per component, cal] glDrawPixels() with format set to RGB
and type set to UNSIGNED_BYTE.

For some implementations, unsigned image formats are faster to use

than signed image formats.

It is usually faster to draw a large pixel rectangle than to draw several

small ones, since the cost of transferring the pixel data can be

amortized over many pixels.

If possible, reduce the amount of data that needs to be copied by using

small data types (for example, use GL_UNSlGNED_BYTE) and fewer

components (for example, use format GLWLUMINANCLALPHA).

Pixel-transfer operations, including pixel mapping and values for scale,

bias, offset, and shift other than the defaults, may decrease

performance.

Tipsfor Improving Pixel Drawing Rates

0365

315

Chapter 9

Texture Mapping

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Understand what texture mapping can add to your scene

Specify a texture image

Control how a texture image is filtered as it's applied to a fragment

Create and manage texture images in texture objects and, if available,

control a high-performance working set of those texture objects

Specify how the color values in the image combine with those of the

fragment to which it’s being applied

Supply texture coordinates to indicate how the texture image should
be aligned to the objects in your scene

Use automatic texture coordinate generation to produce effects like

contour maps and environment maps

31?

0366

318

So far, every geometric primitive has been drawn as either a solid color or

smoothly shaded between the colors at its vertices—that is,_tl1ey’ve been

drawn without texture mapping. If you want to draw a large brick wall

without texture mapping, for example, each brick must be drawn as a

separate polygon. Without texturing, a large flat wall-—which is really a

single rectangle—might require thousands of individual bricks, and even

then the bricks may appear too smooth and regular to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained,

perhaps, by scanning in a photograph of a real wall) to a polygon and to

draw the entire wall as a single polygon. Texture mapping ensures that all

the right things happen as the polygon is transformed and rendered. For

example, when the wall is viewed in perspective, the bricks may appear

smaller as the wall gets farther from the viewpoint. Other uses for texture

mapping include depicting vegetation on large polygons representing the
ground in flight simulation; wallpaper patterns; and textures that make

polygons look like natural substances such as marble, wood, or cloth. The

possibilities are endless. Although it’s most natural to think of applying

textures to polygons, textures can be applied to all prirnitives—points, lines,

polygons, bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-31 all
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large,
complex subject, and you must make several programming choices when

using it. For instance, you can map textures to surfaces made of a set of

polygons or to curved surfaces, and you can repeat a texture in one or both
directions to cover the surface. A texture can even be one—di1nensional. In

addition, you can automatically map a texture onto an object in such a way
that the texture indicates contours or other properties of the item being

viewed. Shiny objects can be textured so that they appear to be in the center

of a room or other environment, reflecting the surroundings off their
surfaces. Finally, a texture can be applied to a surface in different ways. It

can be painted on directly (like a decal placed on a surface), used to

modulate the color the surface would have been painted otherwise, or used
to blend a texture color with the surface color. If this is your first exposure

to texture mapping, you might find that the discussion in this chapter
moves fairly quickly. As an additional reference, you might look at the

chapter on texture mapping in Fundamentals 0fThree-Dimensional Computer

Graphics by Alan Watt (Reading, MA: Addison-Wesley Publishing

Company, 1990).

Textures are simply rectangular arrays of data—for example, color data,

luminance data, or color and alpha data. The individual values in a texture

array are often called texels. What makes texture mapping tricky is that a

Chapter 9: Texture Mapping

0367

rectangular texture can be mapped to nonrectangular regions, and this

must be done in a reasonable way.

Figure 9-1 illustrates the texture-mapping process. The left side of the figure

represents the entire texture, and the black outline represents a

quadrilateral shape whose corners are mapped to those spots on the texture.

When the quadrilateral is displayed on the screen, it might be distorted by

applying various transforrnations—rotations, translations, scaling, and

proiections. The right side of the figure shows how the texture-mapped

quadrilateral might appear on your screen after these transformations.
(Note that this quadrilateral is concave and might not be rendered correctly

by OpenGL without prior tessellation. See Chapter 1 1 for more information

about tessellating polygons.)

Figure 9-1 Texture-Mapping Process

Notice how the texture is distorted to match the distortion of the

quadrilateral. In this case, it’s stretched in the x direction and compressed

in the y direction; there’s a bit of rotation and shearing going on as well.

Depending on the texture size, the quadrilateral’s distortion, and"the size of

the screen image, some of the texels might be mapped to more than one

fragment, and some fragments might be covered by multiple texels. Since
the texture is made up of discrete texels (in this case, 256x256 of them),

filtering operations must be performed to map texels to fragments. For

example, if many texels correspond to a fragment, they’re averaged down
to fit; if texel boundaries fall across fragment boundaries, a weighted

average of the appiicable texels is performed. Because of these calculations,
texturing is computationally expensive, which is why many specialized

graphics systems include hardware support for texture mapping.

An application may establish texture objects, with each texture object

representing a single texture (and possible associated mipmaps). Some

0368

319

320

___ —_:;1¢‘_t

implementations of OpenGL can support a special working set of texture

objects that have better performance than texture objects outside the

working set. These high~performance texture objects are said to be resident

and may have special hardware and/or software acceleration available. You

may use OpenGL to create and delete texture objects and to determine

which textures constitute your working set.

This chapter covers the 0penGL’s texture-mapping facility in the following

major sections. ‘

"An Overview and an Example” on page 321 gives a brief, broad look

at the steps required to perform texture mapping. It also presents a

relatively simple example of texture mapping.

. "Specifying the Texture” on page 326 explains how to specify one- or
two-dimensional textures. It also discusses how to use a texture’s

borders, how to supply a series of related textures of different sizes, and

how to control the filtering methods used to determine how an

applied texture is mapped to screen coordinates.

“Filtering” on page 344 details how textures are either magnified or
minjfied as they are applied to the pixels of polygons. Minification

using special rnipmap textures is also explained.

“Texture Objects” on page 346 describes how to put texture images
into objects so that you can control several textures at one time. With

texture objects, you may be able to create a working set of
hjgh—performance textures, which are said to be resident. You may also

prioritize texture objects to increase or decrease the likelihood that a

texture object is resident.

“Texture Functions" on page 354 discusses the methods used for

painting a texture onto a surface. You can choose to have the texture

color values replace those that would be used if texturing wasn’t in

effect, or you can have the final color be a combination of the two.

“Assigning Texture Coordinates” on page 357 describes how to

compute and assign appropriate texture coordinates to the vertices of

an object. It also explains how to control the behavior of coordinates

that lie outside the default range—that is, how to repeat or clamp
textures across a surface.

“Automatic Texture-Coordinate Generation” on page 364 shows how

to have OpenGL automatically generate texture coordinates so that

you can achieve such effects as contour and environment maps.

Chapter 9: Texture Mapping

0369

0 “Advanced Features” on page 371 explains how to manipulate the

texture matrix stack and how to use the q texture coordinate.

Version 1.1 of Oper1GL introduces several new’ texture-mapping operations:

0 Thirty-eight additional internal texture image formats

0 Texture proxy, to query whether there are enough resources to

accommodate a given texture image

0 Texture subimage, to replace all or part of an existing texture image

rather than completely deleting and creating a texture to achieve
the same effect

0 Specifying texture data from frarnebuffer memory (as well as from
processor memory)

- Texture objects, including resident textures and prioritizing

If you try to use one of these texture-mapping operations and can't find it,

check the version number of your-implementation of OpenGL to see if it

actually supports it. (See "Which Version Am I Using?” on page 503.)

An Overview and an Example

This section gives an overview of the steps necessary to perform texture

mapping. It also presents a relatively simple texture-mapping program. Of

course, you know that texture mapping can be a very involved process.

Steps in Texture Mapping

To use texture mapping, you perform these steps.

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to "each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates. _

Keep in mind that texture mapping works only in RGBA mode. Texture

mapping results in color-index mode are undefined.

An Overview and an Example 321

0370

32

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two-dimensional, like most images,

but it can also be one-dimensional. The data describing a texture may

consist of one, two, three, or four elements per texel, representing anything

from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-1, which is very simple, a single texture object is created to

maintain a single two-dimensional texture. This example does not find out

how much memory is available. Since only one texture is created, there is

no attempt to prioritize or otherwise manage a working set of texture

objects. Other advanced techniques, such as texture borders or Iniprnaps,

are not used in this simple example.

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final

RGBA value from the fragment color and the texture-image data. One

possibility is simply to use the texture color as the final color; this is the

decal mode, in which the texture is painted on top of the fragment, just as

a decal would be applied. (Example 9-1 uses decal mode.) The replace mode,

a variant of the decal mode, is a second method. Another method is to use

the texture to modulate, or scale, the fragment’s color; this technique is

useful for combining the effects of lighting with texturing. Finally, a

constant color can be blended with that of the fragment, based on the
texture value.

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is

enabled or disabled using glEnable0 or glDisable0 with the symbolic
constant GL_TEXTURE__1D or GL_TEXTURE_2.D for one- or

two-dimensional texturing, respectively. (If both are enabled,
GL_TEXTURE_2D is the one that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture-should be aligned relative to the

fragments to which it’s to be applied before it’s "glued on.” That is, you

need to specify both texture coordinates and geometric coordinates as you

specify the objects in your scene. For a two-dimensional texture map, for

example, the texture coordinates range from 0.0 to 1.0 in both directions,

but the coordinates of the items being textured can be anything. For the

brick-wall example, if the wall is square and meant to represent one copy of

Chapter 9: Texture Mapping

0371

the texture, the code would probably assign texture coordinates (0, 0), (1, 0),

(1, 1), and (O, 1) to the four comers of the wall. If the wall is large, you might

want to paint several copies of the texture map on it. If you do so, the‘

texture map must be designed so that the bricks on the left edge match up

nicely with the bricks on the right edge, and similarly for the bricks on the

top and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0]

should be treated. Do the textures repeat to cover the object, or are they
clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture

mapping is that interesting textures are large. Typically, textures are read

from an image file, since specifying a texture programmatically could take

hundreds of lines of code. In Example 9-1, the texture-—which consists of

alternating white and black squares,_like a checkerboard—is generated by

the program. The program applies this texture to two squares, which are

then rendered in perspective, one of them facing the viewer squarely and

the other tilting back at 45 degrees, as shown in Figure 9-2. In object

coordinates, both squares are the same size.

Figure 9-2 Texture-Mapped Squares

Example 9-1 Texture-Mapped Checkerboard: checker.c

itinclude <GL/g1 .h>

itinclude <GL/glu. h>

#inc1ude <GL/g1ut.h>
fiinclude <stdlib.h>

#include <stdio.h>

/* Create checkerboard texture */

#define checklrnagewidth 64

#define checklmagefleight 64

An Overview and an Example 323

0372

static GLubyte checkImage[checklmagefleightl[checkImageWidth][4];

static GLuint texName,-

void makechecklmageivoidl
{

int i, j, C;

for (i = 0; i < checkImageHeight; i++} [

for (j = 0; j < checklmagewidth; j++} {

c = {I((i&Ux8)==U)*{{j&0x8)}==0)}*255;

checkImage[i][j][0] = (GLubyte} c;

checkImage[i][j][1] = {GLubyte} c;

checkImage[i][j][2] = (GLubyte) c;

checkImage[i][j][3] = {GLubyte) 255;

}

void init(void)

{

glclearcolor (0.0, 0.0, 0.0, 0.0);

g1ShadeModel{GL_FLAT);

glEnable(GL_DEPTH_TEST}:

makeCheckImage(};

glPixelStorei {GL_UNPACK_ALIGNMENT, 1} ;

g1GenTextures{1, &texName];

g1BindTexture{GL_TEXTURE_2D, texName);

glTexPara.mete-ri [GL_TEXTURE_2D, GL_TEX’I'URE_WRAP_S , GL__REPEA'I‘) :

g1TexParamete-ri (GL___TEXTURE___2D, GLH_TE:XTURE_W'RAP_'I‘, GL_REPEA'I‘) ;

glTexPara.mel:eri (GL_TEX'I'URE_2D, GL_TEX'I'U'R.E_I-IAG_FILTE.‘R,

GL_NEAREST}:

g1TexParameteri(GL_TEXTUREL2D, GL_TEXTURE_MIN_FILTER,

GL__NEAREZST} :

glTexImage2D(GL_TEXTURE;2D, 0, GL_RGBA. checklmagewidth,

' checkimagefleight, 0 , GL_RGBA, GL_UNSIGNED__BYTE,

bheckImage);

void disp1ay(void}
{

glclear{GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT):
g1Enab1e{GL_TEXTURE_2D);

g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE*ENV;MODE, GL_DECAL);

324 Chapter 9: Texture Mapping

0373

}

glBindTexture(GL_TExTURE_2D,

g1Begin(GL_QUADS);

glTexCoord2f(0

glTexCoord2f(D.

glTexCoord2f(O.

g1TexCoord2f(1.

g1TexCoord2f(1.

g1End() ;

glFlush();

.0,

glTexCoord2f(0.

g1TexCoord2f(1.

glTexCoord2f(1.

I

CDC)
-.

GOOD Gl—'I—‘CIG1-‘I-‘Q
glDiSable{GL_TEXTUREL2D};

void reshapeiint w,

{

J

glviewporttfl, 0,

glnatrixmode{GL_PR0JECTI0N)3

g1LoadIdentity();

g1uPerspective(60.0, {GLf1oat) w/(GLf1oat} h, 1.0, 30.0);

gmatrixmode {G1._1«1onELvIEw) ,- '

g1LoadIdentity();

g1Trans1atef{0.0, 0.0. -3.6};

int h)

(GLsizei) w,

texName];

.0}: g1Vertex3f(—2.0,

.0}: 9lVertex3f(—2.0, 1.0, 0.0};

.0}: 9lVertex3E(0.0,

.0}: 9lVertex3f(0.0,

.0); glVertex3f(1.0,

.0): Q1Vertex3f(1.0,

.0); g1Vertex3f{2.

.0}: 9lVertex3f(2.

-1.0, 0.0);

1.0, 0.0);

-1.0. 0.0}:

-1.0, 0.0};

1.0, 0.0);

41421. 1.0. -1.41421}:

41421, -1.0, —1.4l421);

(GLsizei} h};

void keyboard (unsigned char key, int x, int y}
{

}

switch (key) {
case 27:

exit{0);

break;
default:

break;

int maintint argc, char** argv}
{

g1utInit{&argc, argv);

glutInitDisp1ayMode{GLUT;SINGLE | GLUT;RGB I GLUT_DEPTH);
g1utInitWindowSize(250, 250};

g1utInitWindowPosition(100, 100};

g1utCreateWindow(argv[0]};

initi);

g1utDisp1ayFunc(disp1ay}:

0374

An Overview and an Example 325

325

glut.ReshapeF1mc (reshape) ,-
g1utKeyboardFunc {keyboard} ;

glut!-Iainlioop {) ,-

return 0;

}

The checkerboard texture is generated in the routine makechecklrnageo,

and all the texture-mapping initialization occurs in the routine init().

glGenTextures() and g1BindTexture0 name and create-a texture object for

a texture image. (See “Texture Objects” on page 346.) The single,

full-resolution texture map is specified by glTexImage2D0, whose

parameters indicate the size of the image, type of the image, location of the

image, and other properties of it. (See "Specifying the Texture” on page 326
for more information about glTexImage2D0.)

The four calls to glTexParameter*0 specify how the texture is to be

wrapped and how the colors are to be filtered if there isn't an exact match

between pixels in the texture and pixels on the screen. (See "Repeating and

Clamping Textures” on page 360 and “Filtering” on page 344;)

In displayo, gl_Enable0 turns on texturing. glTexEnv*0 sets the drawing

mode to GL_,DI:‘.CAL so that the textured polygons are drawn using the

colors from the texture map (rather than taking into account what color the

polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified

along with vertex coordinates. The gITexCoord*0 command behaves

similarly to the glNormal0 command. gl’I‘exCoord*0 sets the current

texture coordinates; any subsequent vertex command has those texture
coordinates associated with it until glTexCoord*0 is called again.

Note: The checkerboard image on the tilted polygon might look wrong

when you compile and run it on your machine-—foI example, it

might look like two triangles with different projections of the

checkerboard image on them. If so, try setting the parameter

GL_PERSPECTIVE_CORRECTION_l-IINT to GL_NICEST and running

the example again. To do this, use glHint0.

Specifying the Texture

The command glTexImage2D0 defines a two-dimensional texture. It takes
several arguments, which are described briefly here and in more detail in
the subsections that follow. The related command for one-dimensional

Chapter 9: Texture Mapping

0375

textures, glTexImage1D(), is described in "One-Dimensional Textures” on

page 335.

void.g1I;g5imagq2DgqLenun;_targetf”Gunt.~1eve:, GLi11t inremamommr,
, ~ _ GL,§i-;e1;1i:idth,‘(3I:§i;éi}3éigHtj GLif1t'border,

1 - .3. _ GLénum..f0m_ig_t;'GLenum ti/pe, ‘
». .~ ,‘;,=j ."coi1st_GL1(oid_'*pi;ie'Is); . 4...--‘_'

Defines a"tw{d—dimensibna-1 ‘texture‘.’JFh'eitarget.p:1raméter_ is set-to either
tfie.'cQii3t§H§ GL;I;EXTUIgE;?2D 6i;GL_PRQXY__TEXT_UREfl2D. Yéu use the
Ietiel.-pagraitiétér.if»y@u’-re"sjgppljiin-g. m111'¢:¢i1':vl'e.re“s(‘)lt'1‘tier1_s-_ of _the texture .
um;a1'J':'Wit1/1 QI]1Y.'9}}:"%.]1T;e?:F’1-13fion',' Il§fve_I'_ should lge (seg ztmfiltiple Levels of
.~Det§il"-F’: ‘on .p'age-338 formo1feti'nfom'1a'tion zib'out'usin'g inultiple
resc1l1it,ic_pns;)' ,; _ — " — * I 1IF .

33-‘ _, I

The‘m=,;x't_ .p5ra;ne_te:, i;¥;eznaIFafinqt,.1ndita_tes- -which oi; ‘the R; G, 13,- and A
e¢mf39nent§:Q;: lu'I_'I1jfi§nce;of_-'intensity- vaIues;ar.e selected for use in

‘ i_:lesc1'ibiIig“.=theLtexel‘s tigsajxki-ixnagel The vgalue of"intemaIEdnnat is "an integer
' from 1 to 4»,v‘..or-on-‘e’ of stfiirty-eigl;.1t'-sylnbolic constants. The thirty-eight
syI'nt;)o_l'_ic coqstantstgag‘are:-also.lega'l.vz{1ues for igzteinaIFmmat _are
G.L_ALPHA,-GL_.‘ALPH-A4, GLALPHA8, .GL_A'LPHA12, GLJCLPHA16,

GL_LUMIl_\TANCE; .GL_;LU'MINANCE4, GL_LUI_y1'-INANCE8,
GL_LUMfN-ANCE-12, GLgLUMINANCE16, GL_LUMINANCE;_ALPHA,

GL;LUN[[N'ANC-'E.4'_:1.°&I;‘PHA4; .GL__.;I.-:UMI1§IA‘NC'.E6_AL'PHA2,
-G'L_LU{M_I'NAN(:j3_E8;A1iFHA8,TGL_LUMINANCE12_,ALPHA4,

G.L_I,¢.,1IJ}UIf_[$11!tN.(3_E1:6_-}¢\rLPl-I}A'1.6f
.GL_,_I1~I~"£.‘s'1"\;;sI'1.“1.:, 'GL;_II~IfI:ENSFI'Y4,;GE;INI‘E1\IS'FI‘Y8, GL_;INTENSI'I‘Y12,
G15.;INTEr§snY.15,.G1;4;1§GB, _GL;I';3'_G3_'B'2-, GL‘-;R(E‘wB4;,GL_-_RGBS\,
GL_I{g}B8§ZGL_‘RG_B‘1Q,g:GL;RGB;12.4;,(3:L_:RCB.1T6,:,4G.L;RGBA,-'GL_RGBA2,

.GE;—R'€:?‘E{Fg4i?-fiB:?RG_Ii5::A1,~@L‘ERGBA8}é G1J:‘_R§iB§t9;A2,_ g§Lg_RGBA1-2, -and
'GL_,RG'B_1$-1%; -;(See‘;§.‘;';:l’feT1étt'1re F_finctio%s‘*'»oI=1 page.354-fez.-a-.'discus§i0n of
_h9v_v these selected 'cOrr1‘pon_ent's’_are_ __ap.p_1ied.) ' '

.\ _ . ‘.1 :Eu -;“I_v:{:Efl-‘E ’ H1 $1 r ‘,3 1. . ‘vfl
If;iig_tem¥1IE§ji1na£ i§;.()1fei-g3_f. t_hg. "sj(1i1ti_olie constants, -then-you

;'a'Ie-1a'slgi_ng_--fO1=‘-sfiedfi-Efpomponen-ts and-fwerh-aps't«l1e fesoiu-tion_ of-.those
components?" For ,-«'if;-in'té’r1nalEo1gmat -is~§1".-_R3~_G3:_B52,'*you are

‘_-_ asking t1l1§;c_t,-‘té;c;eis be‘3fb1t§fl0f:fed, 3. bits o‘f.'g1'.ee.1‘1. i.1nd"2 bij£s- pf.b_l_ue; but
i;-Gpenc-I;%“1L:é;1r=1;eIst’sguaJ-gala‘-iaé5eci*°rc. -de1_i<iér--221113;» ofpgig:fGt:s:i§s”bfi13r§ii‘b1i‘g1aEéa' to?-

choose-’-afig;nfemaL;ep§esen*tafi_dr‘1' t_ha_t eloselyfiapgpoxirhategss-what is f
,' requested, ‘but-.-"ah. 'm_a‘tt-*.1‘-1‘ is usuzilty not;;:eguired:' 'By—‘defi'I,1i't'~_iojn.,
'GL“_:___LIIHI{INANCE, _G'I;:_iLUNHNANCE_ALPHA-, GE_RG-B; a11_'_d_GL_:RG—BA

are..len'i'ent, -brecause. they.do~'r_1_6t askfora speCifiG?iespluti'om (‘For
'oompatibi]j,ty wi‘iih—thé'-'0penGI}rele‘a§e7 1'.0, the m1n_1er_ic valuesql, 2, 3,

Specifying the Texture

0376

327

328

and 4; for inté:na1gannat§tq;gq:_equivi:;1efnt‘:;o :zh5_=,;s;E‘t:1I.-a-_ca1i°:.~-.<:«'c» _ ,3; gs: 1
,GL;‘LUMINi&N§=1]':'f (='iIi;_RGB'=,,and 61.31; GB); '5,* _ ‘la "~‘~v”L?”. gm‘ ‘:1... - .. 4I““"|.g_‘i‘

r reSp.?.‘éti%Y?‘Iy:l«%’i' F ,5--'s'e,' 5?. .-J‘ * ${,*_3f§‘E: “'<~<~1~" ‘Q '75-" 4 . :3-;_,‘:§i1::;3‘-J:i'E'R~‘:;
t 5%‘; v:t:‘«“.,~‘2'r1‘§. 5 -\fiv;3Z21':’7§"V: ':' '1 113-399 am "2 "' - ' ' - 3-4

r The width and " pazametéfisigiye the‘ ' "ans--pf ea r'.“°-"'\~I

border)‘ qr_=I9pe.. (.* f;"1g;3ng a TextuIe’s.'B%g%-g_1e:sf _gn.page'--333;)-ifigfilxfdgl ’
and'hgfgh_tm1i§t;have the:torp1~2:'}‘;r2$l:g,l¥where to is a nonne'gative'i11tegler*.~

(wgpeh;33nzh%V%=fi$qiH§5entfi§Ia}fié§sllalléfar-'33$? tlie
va ue oxbdnier.1 1.75’ ‘e 111,” 3.xini‘-_siz'ei-op a textgire map--depen- ' _:}-.o_n. 'e*5.%§:‘§w._

if1iplemér§f3;iffig;£}§'Qi5§¥G]3.3§$f1t--it i”z11§s'1; 333% aggfit §4x64 (ot;66,x§6‘§r‘1tE r
:u.bOIdeI$);t?;‘¥-:§§’4.*« N::";t» "~35-4‘ ;s;4‘Ea’sii1s;.“~;’%*;" 3; 41., 1 . ' - ‘aeena 3%

t; Shh kid‘ kl‘; ‘fir ‘Li-(‘ 1:,‘ 21%‘: "Ex 1'3 ‘F 1.3;“ - '12—?‘;;"3 ~43‘,

The'fonnc;;?;git£i§-:);,;:e';‘at‘aiai§§;ie‘t«Kerstlesi§ri’bé¥
-1' 1- - -‘T 4.4.’ ll '- -- ‘ ‘at . '-v - ii-T J."-L‘ '-
-tenémie i;nagé<21;ij;;tja;:*;f;:1:_.e;3ze-ti;;;gz"e:111g.same:mggfi;pg_1as.-they.ao---iofiffég
glnrawpixelso..-;(seeannagin‘§.'g*1pe1me~ on page 2296;) In gtact,

* iat§:'_;‘fis';i11*§tl"}e‘.‘TE_§'E!i'I“;é‘?f(sijj_1i‘sit:;a:s§ tge dat;1’ii”s:egi._by-g1DrawPixelsG,ase“figtgeel ti’-.* .. =4‘ ’ .~u‘ 'u¢ - “- - . -, ‘rpqi. q?

settingszoiw glPixelStoret;s'andfgIPlxelTr fer*0 are a‘p1:uli,l2(l-,,,(In§;_t. E‘-,,{.;_ .-- . ‘ta ‘ f I ..+,_, - -- -. -r * M * -v-1 =~ " ""r

Example"9;1v,.the;eafl*,; .- - ‘_’.~__:-“ = p; _- ' _ a . ., -_;,; 5:
.I v_ I .. - -5 -. M‘ ‘» _ .1‘ F‘ ‘_ I’ ' 1' ‘div T I.-5 _- r’ 11: ,‘:1u

g1Pix_e1j$torei {'GL_a1vi:1a;c1;*_»zxL1op1a_:a1s1r1':g A1i".;"‘ “ -!“{‘,L;JE“ Z,‘ 9- ~‘e~r~”” =- ,
-= 6,, 'f%’:"":?*’U‘ 1 K .

5 is made br.=';c(2|i?1sw¢e;*_§‘1e::i;:laFt~:a;‘-i1'1J‘ nth? exatljpiqe iLsf-i’t padded at the‘ fa fiegfigfi‘-1
texel row.) éHI?fié"fon'31at;13arameter‘?:at3*be on COLORJNDEX, G1*;'RGB§?_~;. =

._ _,__l _. .. ‘I I. "J 3 plriréarl ‘H “'6'?GL_RoBA, (_3I_-t__R.I::1),,L.oL__(3RgEN, GI-.~r_13(§.UEf«§zL_.4tI.I’I~I.v;k,=..x{=;§_§‘§_efi®§?#Lg1Wr‘
I3‘1-xv-LUh“»IINANCE:Zor.aGLg;yuLaINA1s;eE;ALPHA7a;at'-is,-eaaesamea _;g;:ar3..: , __ _ , _ _ . 1 _ \-._-<_ . ‘ _ J 1:-.1l..’$!‘{,. L‘-us

formats available tot the_-.:.except1ons--of .- m ' ;,1 _H3;_::%L._ U H .. _ . p 3;: , I,
GLg_T5TENCII:.;INDE._X(and GLr_:DE2*r;1.,coh4PQ,Nr;rs{T.;,g%.;- }3Eaqg.::a}*:a:;I§.aa
Ill _ ‘ya I r u * /~~~ .;s-1~v Ca; -3 ‘tie? igéfi‘ ;._ a?%§';s§r ‘>3;-L--in .2-. ,. Ht ‘a-We’- |-§_'A3.wt."Lll11¥.___,': , _ . __5i"fl;"

”:si3x'§Iaa§1y,§c1i'E§Ejz;f:-¥é‘i§a&‘fi'nét$ai‘é§*n"%bE“éLiB$%a,4oL;uNsIoNE5'_,
c.~L;sHoI;T,GL¥;Ui\:s1GNE1j%g1c;j;iq;=(3.;,_ .h_, .7;—C}-If3FI.0°?§fI$:otGL_BTIMAl‘%.-=,g’3";3E*§¥§€£ _.”e:i pg‘ g I '

“-51-” ‘tif’; ‘ijggfftk-“ifiié -fl f""‘;‘=é‘E:.”?«‘:~” i ’ 23* ,5.1-»

“f r3

1” .9; L‘! .. . _ t}&fi1$“k '-"' '5-,r~ _g,~ “‘~I{¥§_»'iV . .1‘ ,_ 3- .,.. _ _ -.- '_- 23'-.€.? " 3.

7_-~{ia'1'l_'~'wyfi ;—ima§§ descnbes J
"t [I1-1".‘ ' ': “'- .*-'§':« "' "' 31‘ ; -5 ~‘J=-Q9 --f‘ * :";g$“e?;~3=§%?:=§‘i ""at5§§‘5 - -"°’» . ~ , ia§:%f§L~"

The internal format of a texture image may affect the performance of
texture operations. For example, some implementations perform texturing

with GL_RGBA faster than GL_RGB, because the color components align

the processor memory better. Since this varies, you should check specific

information about your implementation of OpenGL.

The internal format of a texture image also may control how much memory

a texture image consumes. For example, a texture of internal format

Chapter 9: Texture Mapping

0377

GL_RGBA8 uses 32 bits per texel, while a texture of internal format

GL_R3_G3_B2 only uses 8 bits per texel. Of course, there is a corresponding

trade-off between memory consumption and color resolution.

Note: Although texture-mapping results in color-index mode are
undefined, you can still specify a texture with a GL_COLOR_INDEX

image. In that case, pixel-transfer operations are applied to convert

the indices to RGBA values by table lookup before they're used to

form the texture image.

The number of texels for both the width and height of a texture image, not

including the optional border, must be a power of 2. If your original image
does not have dimensions that fit that limitation, you can use the OpenGL

Utility Library routine giuscalelmageo to alter the size of your textures.

Jint:glu$caleIi;1hageIfGLenuml';format, Eitint-i~:idJti!tin,#G1‘.in*theighrin, t
A -« ' ,‘ _‘._ ta , (_;I;t_=_:r_1"ur_11 typeintrconst Void,*d§ztain,4 GI'.int widthout,,2- " i‘‘u r
 g _ it; __.;gL1g;tJze'igh;gu:,GLgi;umypeayt,—v,g:drdaraour);

sScal_es-'—'_ uifsingi-tl1"e appropriate pixel-storage mbdes ‘to, unpack the
.-data from gia_tain.JFl'1"e —fohna§,~ t;»p’ein;~and iy_péo_{t't parameters can refer t'o
-,a-i-1‘y“.o_1‘:’the-fonnats or da__ta types supported ‘by-'gllf,)ra3wPi3Eels(_). The image
' is scaled:-using linearinterpolation and box filt'e'1'in'g- (from the size

, irfdicagted bglufidthin and heightin to widthout and heightout); and —_the
'resulting_‘iri1age' is wnrittento din-‘aout, using the pixel‘ GL_PACK* storage

:fnodesmTl;re,i§:aHer3of-gluscalelniageo;-:must-allocate sufficient space for
‘-the outpiutébufier. A,value of 0 is‘ returned on success, .an'd-:'a-GLU error

cgdefsi-retu;g1ed‘on gailure. '

The framebuffer itself can also be used as a source for texture data.

glCopyTexImage2D() reads a rectangle of pixels from the framebuffer and
uses it for a new texture.

I

 .§g1mragé2D(GLenum;tpiget, GI‘.i-'11°'t~_-l.;<:,1.I'eI,
'34 :v’}_,'«‘\,V_f7tfi._';,_-_¥ I f: __ L b. , _

,: E’ L: . -_4,;_' .. 4 3; I. “GLir1t_.x, GI.int?—y,'G1sizei-width: G_Lsizei height,
' " g ,' _“"G1ri-ntbprder); A -

.c J p _ *'*
Fexsli-"Tfi§?:HiXelsi-ate-'read fiem‘fhe"s1%Ir¢n’%'(3£:§E>“iEZ.BU}’FEl} and are

‘ 1'a';=o.éess'ei1f_exEietly_-51$:'ifIg1CopyPixels0-had -been:€alle§1-‘built-‘stopped before
-finalj-‘conire"rsion.'CThe . settings. of.«glPix_elTransfer*0 .a;re._applied.

Specfiing the Texture

0378

329

330

-

The target parameter must beset to the constant .GL;TEXT_URE_;,2D. The

level, 1'ntemalEonna.t,.»and‘bom'er parameters have -the -same 'effects_-‘that

they have for -glr'l’exImage§I‘)'0"." The :t_E*XtlIl'E" array is = taker-'1' frorp a
screen-aligned piatelrecta-ngle with ,the lower-left-Corr-1er..a-t coprd_i‘_r1ates __

« ?eI?¢%¢ifie!I!.f|2taLtl:e-(st: r) parameters-_siEl1é?fti%ldtlia-nd fieishft:pararr1e¢ersrspe9ifr'
‘t'Iite‘*’si2'-¢ve"<3ii'4?'t1'¢i‘i_‘s';’Jixel rectangle.’"§"irE1'*aaighraiu-se*1iav¢- the fdi-‘_m‘.
2‘“+2b, where m is a_ nonnegative integer (which can ‘have a different
value for width than for height)'and b‘ i~s=the value of border. ' 1

The next sections give more detail about texturing, including the use of the

target, border, and level parameters. The target parameter can be used to

accurately query the size of a texture (by creating a texture proxy with

gl'I'exImage*D()) and whether a texture possibly can be used within the

texture resources of an OpenGL implementation. Redefining a portion of a

texture is described in ‘_‘Replacing All or Part of a Texture Image” on

page 332. One-dimensional textures are discussed in “One—Dimensional

Textures” on page 335. The texture border, which has its size controlled by

the borderparameter, is detailed in “Using a Texture’s Borders” on page 337.

The level parameter is used to specify textures of different resolutions and is

incorporated into the special technique of mipmapping, which is explained

in “Multiple Levels of Detail" on page 338. Mipmapping requires

understanding how to filter textures as they’re applied; filtering is the

subject of “Filtering” on page 344.

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture

resources are typically limited and vary among OpenGL implementations.
There is a special texture proxy target to evaluate whether sufficient
resources are available.

glGetIntegerv(GL_MAX_TEXTURE_SIZE,...) tells you the largest dimension .

(width or height, without borders) of a texture image, typically the size of

the largest square texture supported. However, GL_MAX_TEXTURE_SlZE
does not consider the effect of the‘ internal format of a texture. A texture

image that stores texels using the GL_RGBA16 internal format may be using

64 bits per texel, so its image may have to be 16 times smaller than an image

with the GL_LUMINANCE4 internal format. (Also, images requiring

borders or rnipmaps may further reduce the amount of available memory.)-

A special place holder, or proxy, for a texture image allows the program to
query more accurately whether OpenGL can accommodate a texture of a

Chapter 9: Texture Mapping

0379

.-1|;-sq.-in

desired internal format. To use the proxy to query OpenGL, call
glTexImage2D0 with a target parameter of GL_PROXY_'I'EXTURE__2D and

the given level, intemalFomzat, width, height, border, format, and type. (For

one-dimensional textures, use corresponding 1D routines and symbolic

constants.) For a proxy, you should pass NULL as the pointer for the pixels
array.

To find out whether there are enough resources available for your texture,

after the texture proxy has been created, query the texture state variables

with glGetTexLevelParameter*(). If there aren't enough resources to

accommodate the texture proxy, the texture state variables for width,

height, border width, and component resolutions are set to O.

troigitglGetTexLev_elPararne=tér[if]1r(GLenurn_ target, (fl.-}L'int-level,‘
- ' GLenumJgnap;e, fparams);

Re_tr1rr_1.s’i'r}.par_az}1s texture-paranjfieter iralues.‘ for 51. specific;level of detail,
specified-as §leveI.':tgjirget defizaes-'th’e target te"'xture%a'nd '-is 'on'e.of
G.I:_'1‘EX"IfE,IR.'?J:_-ID; GL_TEX'I_'URJ:‘.__2D, oL;PRo'xY_’TEXTURE_1D, or
GL_'—PROXY,.TE)€TURE'_2D. fifccepted va1ues.for"'pname--are" -
GL_T_EXT,URE:WIDTH,' GL;rExTURE_H-EIGHT, GL_TEXTURE_BORD'ER,
GL_TEXTURE__INTERNAL_FORMAT, GL_TEXTURE'_RED_:SIZE,

GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BI..UE__SIZE, I

GL_-_TEXTURE__ALP'HA_SIZE, GL_-TEXTURE_.LUM1NANCE,_SIZ'E,- 01'
GL,_TEXT_UI$E;INT\ENSIT*Y_SI-ZE. ' ' — ‘

GL_TEXTURE'_COMl?0NEN’I’S is also acceptei1;fo‘r'pname, but
onlyfor backward compat-ibili-ty'with'OperiGI3 Release '
.1%Q¥eGL;TEXTLJRE;lNf1"E_RNAL_FQRMAT‘is*'tl§r'e‘ recom-mended
v-sym1}KoliC.constaht-fo;:Ré1ease '1.1._ ' ’ ' ”‘ AJ

..‘3 ' 1 =:.‘'!\‘‘ ' 3"

Example 9-2 demonstrates how to use the texture proxy to find out if there

are enough resources to create a 64x64 texel texture with RGBA

components with 8 bits of resolution. If this succeeds, then

glGetTexLevelParan1eteriv0 stores the internal format (in this case,

GL_RGBA8) into the variable format.

Example 9-2 Querying Texture Resources with a Texture Proxy

GLint format;

g1TexImage2D {GL___PROXY_'I‘EX'I'URE__2D, 0, GL__RGBA3 .

64 , 64 , O, GL;RGBA. GLHUNSIGNEDHBYTE, NULL} .'

g1GetTexLevelParameteriv {GL_PROXY_TEXTURE_2D, 0 ,

GL_TELX'I'U'RE_INTERNAL_FORl~1AT , 8: forma 1:) ;

Specifying the Texture

0380

331

332

Note: There is one major limitation about texture proxies: The texture _
proxy tells you if there is space for your texture, but only if all texture

resources are available (in other words, if it’s the only texture in

town). if other textures are using resources, then the texture proxy

query may respond affinnatively, but there may not be enough space

to make your texture resident (that is, part of a possibly

high-performance working set of textures). (See “Texture Objects” on

page 346 for more information about managing resident textures.)

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying

an existing one. In OpenGL Release 1.1, there are new roufines to replace

all or part of a texture image with new information. This can be helpful for
certain applications, such as using real-time, captured video images as

texture images. For that application, it makes sense to create a single texture

and use glTexSubImage2D0 to repeatedly replace the texture data with
new video images. Also, there are no size restrictions for

gl'I‘exSubIrnage2D() that force the height or width to be a power of two.

This is helpful for processing video images, which generally do not have

sizes that are powers of two.

void.glT‘e);SubImage2D_[GLenum -tar-get,-G_Lint level,‘ xoffiset, I ‘ '-
- - <-3i.irj;t"f3_2r,i;7‘s.«:t,_<31.-sizgi ‘G-Lsizveirheight, as '- - .

Y . ,- s Glirelllalm-for-7nat;vG,Lenum.t};tJe, -.6011-St,G]3_V0i('i“'3'P1:7t€‘lS);= _
I _ I I‘, ,_. L up. ._w ,_: --J.-,I_-, _ ~ :. V‘: ._._i ‘F I_._&u.“-3:1 ‘la: _ . ._a..

.Defines.atwg)1gdjmensionai_ tei;ti_1re.1tr”iage—t1iatrefilac§s-_alLpr,par€ofa » ‘
.contiguous}_Isubfregion‘(in_2?;itjs siI1’ip1y?‘aa.»iectaii_gl;e)'of'the-current,‘ . ” '
existing. t'v1i‘.;ea-.(:li,1'I'1t_e1}_S§5Irc'_l;l texture.-ihiage. '1"-he tt:rget"paira1—“I1e't§‘¢1L.“"in1‘1s't-be=§ét _
t'o G.l..__TEX'FU-RE 2De.=' - ~ ~ '—_" r ,, ‘
_' 1' I.q""~,:l3_r‘L ,l',1'.-$'§.lJ,,_ rm‘: £11’; _fv_"—:1=I;,

-u_\-m n '|' H’: _: “J ,,—*;-_u{‘'*'_ '_"*r—:-._,.F"‘_t,} or |,.'-‘.!l.,.: >1.-"tn '/9.1"’: '1
;'I‘jl1q1eveI,¢"{'i)r'71rIcfi1_1t,.‘dan_:t:Jl_'p:§ra;;1$§§§._- Fegsimilar ro._:_13.=;-‘:‘_o:_1’2és._ used for ‘ L”
;‘81Te2r!fie2. 1%P03"?‘-'i’??1i§s'.ss*1{i.<%:.§.117i 311I=iI3:i‘1sv'e1.=*6f?+iié't,ai!.i3."*l '23’-!1~.‘It'I1.5#1":t..?’-‘fl.’
error to Specify a‘ width 05*height ‘of zgto, butthe subipjage havelno. .,u. -~ -. , .- ,.:-.-«,_-:- .n_‘3‘jr3!."- ~'..fi- _--..... 1 .','u '—.n.I
effect. fqnnggkand -type dgscnlgefiheiformat afidd-ata gfflthe texture :

5 image d_ata'.'.'_I‘1_ie su_b_im,ag_e’-is also-affejc-tefi:.b§_-mo'cies_ setfby ;gl_Pi%cefI_Stor'e‘-‘()' “' ' '1» .- > , f _ 1 x - X .,r

at“

in? 8¥?iXe‘1eef°f'9- -« =~~ r : ~
»-1~ 7:,-,

.1 \ "'3Ln

pixels contairis the texturg 'di:1taffor'_tii;£e:ifrM1‘1'§i_rx;i‘qeige.._r1/ia1ltl'1_'ai;v§l,.heig}3t are the‘
dimensions‘-St the ,subre”gionTthat is -replacing all or part of the current ‘
texture image. *xofi‘3*et ant; yofiset sp}2‘ci‘f3fi?t_l1"_é tgxel offset in the x and y

Chapter 9: Texture Mapping

0381

vtzljrectiorrisi-i(wi;tl1.-(Q; 0)“.§1t¢:fli:§=lower~leff{c;};rr.i£ggr -ofiitgigrtextfige) and-lspe{:i_f'y
,i!°iLnz1;er_eiyt_)o"-,ptJ1Nt-itiie sufiirhagéfiwithin the-existing‘ :;-Cfhis§-§egiop-
jrrpégygpot include:aI1y texels outside the: tan Je%ofi%‘;§;o‘gi}%f_.p_aH§'g_E1éfi'§!§.<}%;5:‘; '*
‘stéxture arra . ,f _ 1!§?i='*‘;‘.'tv.ga_,=i54‘”«‘7.a 5% -'3‘-4 “‘*‘”=' **L'2§:..'1

L .
. M. _ w ‘W :1 9-35 — ¥- 455a '

N ‘DUI: wr .19-iI‘..'--1.:-.5 saw, fig . #1 .’ . . 1. were . ;i‘:.°3*:.:» -’ .:~L%~..“'Iai«-.=: .'.. r-=94? ’f¢¥t~F‘*‘-

In Example 9-3, some of the code from Example 9-1 has been modified so

that pressing the ‘s’ key drops a smaller checkered subimage into the

existing image. (The resulting texture is shown in Figure 9-3.) Pressing the
‘r’ key restores the original image. Example 9-3 shows the two routines,

makechecklmageso and keyboardo, that have been substantially

changed. (See “Texture Objects” on page 346 for more information about

glBindTexture0.) .

fii
Figure 9-3 Texture with Subimage Added

Example 9-3 Replacing :1 Texture Subimage: texsub.c

/* Create checkerboard textures */

#define checklmagewidth 64

#define checklmagefleight 64

#define sublmagewidth 16

#define sublmage-He:i.ght 16

static GLubyte checklmage[checkImageHeight][checkImageWidth]I4];
static GLubyte subImage[subImageHeight][subImageWidth}[4];

void makeCheCkImages(void}
{

int i, ‘j, C;

for (i = 0; i < checklmagefleight; i++) {

for (j = 0; j < checkIm.ageWidth; j++) {

c = {{{(i&0x8}==0)" ({j&Dx8})=-=0})*2S5,-

Checklmageiil [5] [0] ‘ (G1-Ilbytel C:

checkImage[i] [j} [1] (GLubyt:e) c;

Che-ckImage[i] [j1 [2] (GLubyt:e} c:

checkImage{:i.] [j] [3] (GLuhyte) 255;
III!III

Specifying the Texture

0382

__-_..

}

for (i = 0; i c subImageHeight; i++} {

.for {j = 0; j < sublmagewidth; j++) {

c = I({{i&0x4)==0)“((j&0x4)}==U}}*255;

5UbImflQe[i1[j][0} = {GLubYte} 0:

SubIma9eEi}[j][1] = (GLubYte) 0:

SUbImfl9E[i][j][2] = (GLUbYte) 0:

subImage[i][j][3] = (GLubyte) 255:

}

void keyboard (unsigned char key, int x, int y}
I

switch (key) {
case ‘S’:

case ‘S’: '

glBindTexture(GL_TEXTURE_2D, texflamel;

glTexSubImage2D{GL_TEXTURE_2D, 0, 12, 44,

sublmagewidth, suhImageHeight, GL_RGBA,

GLLUNSIGNED_BYTE, suhlmagel;

glutPostRedisplay();
break;

case ‘r’:

case ‘R’:

glBindTexture(GL_TEXTURE_2D, texName};

g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,

checkImageWidth, checkImageHeight, 0,

GL_RGBA, GL_UNSIGNED_BYTE, checklmage}:

g1utPostRedisp1ay{};
break;

case 27:

exit(0);

break;
default:

break;

1

Once again, the framebuffer itself can be used as a source for texture data;
this time, a texture subimage. glCopy'I‘exSubImage2D0 reads a rectangle

of pixels from the framebuffer and replaces a portion of an existing texture

array. (glCopyTexSublmage2D0 is kind of a cross between

glCopyTexImage2D() and glTexSubImage2.D0.)

Chapter 9: Texture Mapping

0383

void 'glCopyTexSubIin'age2D(GLenum target, GLint level,

\G_Lint xoffset, GLint yoffset, GLint x, GLint y,
1, ' -‘ __ __ GLsigei-wjdflr, GLsizei height);

2.-mt =- '- :-*3 ~_-on 1-xv -

Uses n-.pj.{§e_data‘ebrh the‘; 7*’

k niebuffei‘ to feplaceqall or part of a ‘
con'ti"g'uous subregion of t‘l1e"curr-:en_t, existing "two-din1en.s_ibr_1a1 texture
ir§,age.:f_I‘he pi;te_1's are -rea‘tl;.fr’t;’m:\1he'.cu-rrflflént GL_RBA[)_BUFFER and are
pr§ocessed'=exa'cfly as‘.-if\g1Cop'y3Pixels0 had beencalled, stopping before
‘f-’i§1afl:l‘(:or1‘Ve1_5_sion>. 'Et'ie- settings offglPixelStdre*0 and glPixeITr.ansfer*_()
are applied.- ‘ 1+ . _ r " .

. I r ' Q '

The target‘parameter must be setto G_L_TEXTURE_2D. level is the miprnap
levéliof-'clet§i.l rfunibef. xofiffifi anti ydflrset‘ the-texel offset in the 'x
and'.~y;di¢_re'ctions (W.ith_(0,‘0) at the lower-left comer of the texture)‘and-
specifyfiwhere to r')‘ut=-the ‘subimage within the ‘existing’ texture array. The

~ siibirnfage-_.texture=a"rray'is taken' from a s_c'ree_n-aligned pixel rectangle with
the lo_wer-5-left co'rner- at coortlinates specified by the (x, y) parameters. The
width andheight p‘aramet'ers'speeify "the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient—for example, if you’re

drawing textured bands where all the variation is in one direction. A

or1e~dimensional texture behaves like a two—dimensional one with height =

1, and without borders along the top and bottom. All the two-dimensional

texture and subtexture definition routines have corresponding

one-dimensional routines. To create a simple one-dimensional texture, use

glTexlmage1D0.

- --J .' _ ’.wGI,s_i2éi;1_vg§;g}iFfGLji1t bof5ier,,§§Lenum.fqr?nat,
-- .? - - ‘ - '_ _I}eri1__1'rI_‘r-typegconst 'GI;void *p_r°.xels);_

_‘_h_”_\h:J f,,J.._ _ 1‘, r N

lTJ’_eti.r‘:ie':s£1.'.-3riune4di"_r'1_iT§.-"rig-i'or_r:1'l tefigilre; _AH=-the -;5aran1eter's.haV_e the same‘
111ea_nings=as for g1TexIrnage2D(), except-that the image is now a

.:9ne:£1iinsi1sional.<arta3%-of tex~‘=1s-A-‘xtlteicestflrssvaiues-efivzidfita-21$ 2.3~‘-r.f9F- »~
2":-I-2; if there’s a bor'c}er)', where m iiv§5a}§r‘i‘()‘ri:‘ri"£‘:g_7a_i'ti_'Ie7iii‘-'I5¢‘é‘§","er.-You caI"1
~s;f[Jpjy mifimaps, progties--(set-:_tar;g*et‘;to GL._RRO'XY-_TE}_(TURE__1D), }and

. the same filtering options-are--available as well.

 5 .

For a sample program that uses a one-dimensional texture map, see

Example'9-6 on page 365.

Specifying the Texture

0384

335

To replace all or some of the texels of a one-dimensional texture, use

glTexSubIn1age1D0.

+*-vp;;t17g1;reisgh;3:uage1D(oLé11_tm;-firgef,‘éunt léveI;fiG[Jir1t~«xofl*set; 9-:3
~

. 5 'GI;.enu;m_1_Eype;constrQJ;yoid<fpfieIs);‘ _ .I‘

D§tin§s.a taneagiimensiogaalétextilrethat -re15:olav<.;és§'e11l" or 1aiargmo__f 'a~' '~ ix -
”config_hou'sésubregion .(in' II), a'=1+ow)-"ofi’flie‘curi‘ent§jéXisti.ngt= 14?; :" “~ 3

v ._ Iiié"-dirr1é‘r1siif:1rfaJ.texture-;;irriage.;'iTl'1e'target3pata1n§tet~3n1ust--he -§et%-_tt).- -:5; , '5
"'t"_3‘:'1'.._-."f‘EX'I-“l.1lIE;\l-B. .a . ~ . __ c t .. E ,5, __ ‘
3 :’':%”.§‘fi 55-; -.3 " ., ":V 9, u’- -3 ‘--’7“1«3* ~* - ' n is 1» -r' , ‘”**‘%.”u ‘“%=:''"' "-7.“< t .

_ fofmat, ,and. t)»_j;-e;;)aramete_rs-.are:_ sirnilat.'teg»ttre;or1es(£grs_e£L~forfi‘;, _
_'.gIIfe?§'IpgageI.D(}. ._IeveI.is=_the2rniprnap,heyeléofggietailigirurnlielj?ffim{iat_'aIidT_."
gq3g?desér'rl;>e fthejonnat and data'-‘.ty_fie'.ol§rt.t11q;texti1re-jfimége data". The -

“stzbirriage _i_s, also affected» by modes'set.by.glPixel§to1te?0vor' . 1 I
-:gl_P-i‘x_élTransfer’$O.' 1 -_‘ '_ ;. "J - - '-

pixels contains the texture data for the subirnage. width is the number of

texels that replace part or all of the current texture image. xofiset specifies

the texel offset for where to put the subimage within the existing texture
array.

To use the frarnebuffer as the source of a new or replacement for an old

one—dimensional texture, use either glCopyTex!mage1D0 or
g1CopyTexSubIrnagelD0.

void-_glCppJysfI‘exIinageI_D‘(G'Lenur1i;1E;irget,7G.Lint_Ie1{eI, Ff“, :4‘ Hi"-‘_. .
«' ’ 'GI,inf-intei'{iciIF0§‘rnat,'-GI;ir:1tx,r C‘i_'I.'.in't~‘y,-_r ‘A ~“ » xi

a r .'~.._.G.17SiZi3iM3fl1»'-G1fiflt.5?0id¢r)iif:s u x ' 2» - = ‘at;u——-‘.'
9-. c. \\-“=''''. rm _- ',-1: -1-‘.,,,,’.*;«:'_'*..’‘‘ -4r»_'* '4.-.,_ '_ _ ' _j. ,- .,; "

'§lf§§£,€Sf@E‘QflJE-diIflCflSi0fli}I- I’ .;_fra_1._r1eb‘i1£f-er. t_i_ata.»t§gdefiné:thea _
“~;¥¢{ig!§1‘Th'¢?PE‘e‘5“§I°-T934 sth‘e1 raR»EADi‘BUFF'%R §.11d.h'fé 3 J

-p1:s;>;ces°.§"é.i<1;7-‘e2'<";'gctly 'a§§tt3o;$f’5zPixelsf§ih}aifiE;1;beerr;i:§',7lIri§:cgj;but—.stof:jiegl-tigfore 32

' ‘ti’.-.* ~'-.. ».« . P‘: '.‘}if ’r'r *u':.U*-, .’..-v_- '-"'v‘*T. . ' 2%..
£116-??.§'rx‘c 5-‘Dana, ese-r;ml;§$1 l?eeJ5etst°7c+i‘1;i¢»s0n..5ta1"T’:~€v!.3i:

Level, -mtennzIFoi?irm!.:, arrdabomfer rgaraméters ;hg;ve_§t1fe;»$_a;fr1e'=effeii’F$}tI;%it%- “._*§’i’9'.».

- . an‘. .--1- .-...-... . .. , .--. , ,J.,. ' .. ¢- .. "" 1.; .~" I x v : ..“ "u." ' ~:_, .,- .__ -." "V"

"vfiIfa1‘”eQ;wers1on.=eTheF sett1_ngsofi-g_lP_1sxel’St_o;je‘{0‘ and gIlf1gre1If§-r;sfefl0- .9 -
' _“' {Bi ' ".7 ..» “'3. . V‘ yr u_ .}~« L _ T ‘.{_J=.L,;“ '$(-2;. $13..) an?’ gm‘ ,_.:__J':~

are pp‘ 1eq,; , 4 _.r _ , , _ cg: $53 yr‘ %r__,_3 {ME #33
. f . fitigtqigr 1‘ A 1% __:‘_rla--|I__'3- a ‘,1-.‘§vai(!€‘ ‘_1.a'n,; ‘:ri,}rsg&1- vb \ -w~|iJ-«I fr‘''‘';;;{‘I ‘*3?’ 4"?" 523 mg ‘I’. -.‘“~4?".‘r'-1'

‘tliietélave f§fi‘s1C:°i2Y,T¢xLfié;%i‘§*¢2l?0-~T§s. tettaw ‘3'“a3”;:i§;sta1*‘e,;*1°3°t1*o1*iil:ag~c§;:"g
. rowtof pixels *y'V'ith1he¥lowe_1'éIeft'“con1e;%it -co§)i'<r_1i;ri'a‘tes - ?\1:he“T(-x-5;
jz.)-fi§i’r§;1r_’a‘te‘rs-’. The width 'iparah1éter"spec;;'fies'théf’rigfi1ber_ of.-pfxe1s- infithis

:roii?tJThé;’j?al1xe”’0f_uddflI7is 12-¥“'(or 2'I'+2 if there’: a.Bo:ae§)', where in is"-at ts‘ ‘ ' -r I MI‘: ‘ 9

nofinégatfite integer. :~ » *4 ’’'’i'” 9- *

Chapter 9: Texture Mapping

0385

void glCopyTexSubImage1D(GLenurn target, GLint level, GLint xoffset,

GLint x, GLint "y, Glgsizei width);

Uses image data from the frarnebuffer to replace all or part of a
contiguous subregion-‘of the current, existipg one-dimensional texture
image. The pixels are read from the current GL;READ_BUFFER and are
processed exactly -'as if glCop'yPixels0 had been called but stopped before
final conversion. Thesettings of -glPixelStor'e*() and glPixelTransfer*0
are applied.

The target parameter must be-set to GL_TEXTURE_1D. level is the mipmap

level-of-detail number. xoffset specifies the texel offset and specifies

where to put the subirnage within the existing texture array. The
su_bimage' texture array istaken ‘from a row of pixels with the lower-left
‘cprner- at coordinates specified by the (x, y) parameters. The width
parameter specifies the number of pixels in this row.

Using a Texture’s Borders

Advanced

If you need to apply a larger texture map than your implementation of
0penGL allows, you can, with a little care, effectively make larger textures

by filing with several different textures. For example, if you need a texture
twice as large as the maximum allowed size mapped to a square, draw the

_ square as four subsquares, and load a different texture before drawing each
piece.

Since only a-single texture map is available at one time, this approach might

lead to problems at the edges of the textures, especially if some form of

linear filtering is enabled. The texture value to be used for pixels at the edges

must be averaged with something beyond the edge, which, ideally, should

come from the adjacent texture map. If you define a border for each texture
whose texel values are equal to the values of the texels on the edge of the

adjacent texture map, then the correct behavior results when linear filtering
takes place. ‘

To do this correctly, notice that each map can have eight neighbors—one'

adjacent to each edge, and one touching each corner. The values of the

texels in the corner of the border need to correspond with the texels in the

texture maps that touch the corners. If your texture is an edge or corner of

the whole tiling, you need to decide what values would be reasonable to put

in the borders. The easiest reasonable thing to do is to copy the value of the

Specifying the Texture

0386

L*"*~'°£-arlfl

337

adjacent texel in the texture map. Remember that the border values need to

be supplied at the same time as the texture-image data, so you need to figure
this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way

that it only partially covers a primitive. (See "Repeating and Clamping

Textures” on page 360 for more information about this situation.)

Multiple Levels of Detail

Advanced

Textured objects can be viewed, like any other objects in a scene, at

different distances from the viewpoint. In a dynamic scene, as a textured

object moves farther from the viewpoint, the texture map must decrease in

size along with the size of the projected image. To accomplish this, OpenGL
has to filter the texture map down to an appropriate size for mapping onto

the object, without introducing visually disturbing artifacts. For example,

to render a brick wall, you may use a large (say 128x128 texel) texture image

when it is close to the viewer. But if the wall is moved farther away from the

viewer until it appears on the screen as a single pixel, then the filtered

textures may appear to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps
of decreasing resolutions, called mipmaps, as shown in Figure 9-4. The term

mipmap was coined by Lance Williams, when he introduced the idea in his

paper, “Pyramidal Parametn'cs” (SIGGRAPH 1983 Proceedings). Mip stands

for the Latin multim im parvo, meaning “many things in a small place.”

Mipmapping uses some clever methods to pack image data into memory.

Chapter 9: Texture Mapping

0387

Original Texture

Pre—FiItered Images

Figure 9-4 Mipmaps

When using mipmapping, OpenGL automatically determines which

texture map to use based on the size (in pixels) of the obiect being mapped.

With this approach, the level of detail in the texture map is appropriate for

the image that’s drawn on the screen-—as the image of the object gets

smaller, the size of the texture map decreases. Mipmapping requires some

extra computation and texture storage area; however, when it's not used,

textures that are mapped onto smaller objects might shimmer and flash as

the objects move.

To use rnipmapping, you must provide all sizes of your texture in powers of

2 between the largest size and a 1x1 map. For example, if your

highest—resolution map is 64x16, you must also provide maps of size 32>-:8,

16x4, 8x2, 4x1, 2x1, and 1x1. The smaller maps are typically filtered and

averaged—dowri versions of the largest map in which each texel in a smaller

texture is an average of the corresponding four texels in the largertexture.

(Since OpenGL doesn’t require any particular method for calculating the
smaller maps, the differently sized textures could be totally unrelated. In

practice, unrelated textures would make the transitions between mipmaps

_ extremely noticeable.)

To specify these textures, call glTexImage2D() once for each resolution of
the texture map, with different values for the level, width, height, and image

parameters. Starting with zero, level identifies which texture in the series is

specified; with the previous example, the largest texture of size 64x16 would

be declared with level = 0, the 32x8 texture with level = 1, and so ‘on. In

addition, for the mipmapped textures to take effect, you need to choose one

of the-appropriate filtering methods described in the next section.

Specrfiving the Texture

0388

339

Example 9-4 illustrates the use of a series of six texture maps decreasing in

size from 32x32 to 1x1. This program draws a rectangle that extends from

the foreground far back in the distance, eventually disappearing at a point,

as shown in Plate 20. Note that the texture coordinates range from 0.0 to

8.0 so 64 copies of the texture map are required to tile the rectangle, eight
in each direction. To illustrate how one texture map succeeds another, each

map has a different color.

Example 9-4 Mipmap Textures: mipmap.c

#inc1ude <GL/gl.h>

#inc1ude <GL/glu.h>

#include <GL/glut.h>
#include <stdlib.h>

GLubyte mipmapImage32[32][32]{4];

GLubyte mipmapImage16[16][16][4];

GLubyte mipmapImage8[8}[8][4];

GLubyte mipmapImage4[4]{4][4];

GLubyte mipmapImage2[2][2][4];

GLubyte mipmapImage1[1][1][4];

static GLuint texflame;

void makeImages(void}
{

. int 1, j;

for (i = D; i < 32: i++) {

for (j 2 0; j < 32; j++) {

mipmapImage32[i][j][0] = 255;

mipapImage32Ii][j][l] = 255:

mipmapImage32[i][j][2] = 0:

mipmapImage32[i][j][3] = 255;
}

}

for (i = 0; i < 16; i++) {

for (j = 0; j < 16; j++} {

mipmapImage16[i][j][0] = 255;

mipmapImage16[i][j][1} 3 0;

mipmapImage16[iI[j][2} = 255;

mipmapImage16[i][j][3] = 255;
}

l

for {i = 0; i < 8; i++) {

for {j = 0: 3' <8: J'++){

Chapter 9: Texture Mapping

0389

miprnapImage8[i] [j] {0} 255,-

mipmaplmage-8[i]Ij}[1] = 0:

mipmapImage8[i][j1 [2]

mipmaplmageatil ti] [3]

I!
G

255;

}

}

for (:i. = 0; i < 4; i++){

for (j = 0; j < 4; j++} {

miI.:rmapImage4[i] [j] [01 = 0.-

255;miPmaPIm3Qe4[i][j][11 =

mipmapImage4[i][j][21 = 0;

mipmapImage4[i][j][3I = 255;
}

I

for {i = 0; i < 2; i++} {

for (j = 0: 3 <2: :i++){

miDm3PImaQe2[i][j}I0] = 0:

mipmapImage2[i][j][1] = 0;

mipmapImage2[i][j}[2] — 255,

mipmapImage2{i][j}[3] = 255,
}

}

mipmapImage1[0][O}[0] 255;

mipmapImage1[0][0][1] 255;

mipmapImage1[0][0][2] = 255;

mipmapImage1[0][0][3] 255;

H

}

void init{void)

I .

g1Ena.b1e (GL_DEPTH_TES‘1‘} ,-

g1ShadeMode1{GL_FLAT];

glTrans1atef{0.0, 0.0. -3.6);

makeImages();

glPixelSt0rei(GL_DNPACKdALIGNMENT, 1};

glGenTextures{1, &texName);

glnindrexture(GL_IEXTURE_2D. texName};

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GLLREPEAT);

glTexParameteri(GL_TExTURE;2D. GL_TEXTURE_wRAR_T, GL_REPEAT):
g1TexParameteri{GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

g1TexParameteri{GL_TEKTURE_2D, GL_TEXTURE_MIN_FIUTER,
GL_NEAREST_MIPMAP_NEAREST);

g1TexImage2D{GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage32}:

Specrfiaing the Texture

0390

341

342

g1TexImage2D{GL_TEXTURE_2D. 1, GL_RGBA, 16, 15, 0,

I GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmagelfi};

g1TexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage8);

g1TexImage2D(GL_TEXTURE_2D, 3, GL_RGBA. 4, 4, 0,

GL_RGBA. GL_DNSIGNED_BYTE. mimapImage4};

g1Tex1maige2n(GL__TExTURE_2n, 4, GL___RGBA, 2, 2. 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage2);

g1TexImage2D{GL_TEXTURE_2D. S, GL_RGBA, 1, 1. 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage1};

g1TexEnvf{GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL};

glEnable(GL_TEXTURE_2D):
}

void disp1ay{void}
{

g1Clear{GL_COLOR_BUFFER_BIT } GL_DEP'I'H_BUFFER,___BIT};
glBindTexture(GL_TEXTURE_2D, texflame);

g1Begin(GL_QUADSJ:

glTexCoord2f{0.0, 0.0]: glVertex3f{~2.D, ~1.0, 0.0};

glTexCoord2f{0.0, 8.0); glVertex3f(—2.0, 1.0, 0.0);

glTexCoord2f{8.0, 8.0): glVertex3f{2000.0, 1.0, ~6000.0):

glTexCoord2f{8.0, 0.0): g1Vertex3f{20U0.0, -1.0, —60D0.0);
9‘1End{ }:

glFlush{);
}

void reshape(int w, int h}
I

glviewporttfl, 0, {GLsizei) w, (GLsizei) h};

glnatrixflode{GL_PROJECTION};

glLoadIdentity{};

gluPerspective(60.0, {GLf1oat}w/(GLf1oat)h, 1.0, 30000.0];

glflatrixuode{GL_MODELVIEW);

glnoadldentityi};
}

void keyboard {unsigned char key. int x, int y)
I

switch {key} {
case 27:

exit{0);

break ;
default:

break;

Chapter 9: Texture Mapping

0391

}

int mainlint argc. char** argv)
{

g1utInit{&argc, argv};

glutrnitoisplaynode{GLU'r_srNeLE | GLUT_RGB 1 GLUT_DEPTl-I}:
g1utInitWindowSize{500, 500);

g1utInitWindowPosition(S0, 50};

glutcreatewindowlargvtol);

initll:

glutDisp1ayFuncldisplay}:

g1utReshapeFunc{reshape};

g1utKeyhoardFunc{keyboard};

glutMainLoop(};

return 0;

}

Example 9-4 illustrates mipmapping by making each mipmap a different

color so that it's obvious when one map is replaced by another. In a real
situation, you define miprnaps so that the transition is as smooth as

possible. Thus, the maps of lower resolution are usually filtered versions of

an original, high-resolution map. The construction of a series of such

mipmaps is a software process, and thus isn't part of 0penGL, which is

simply a rendering library. However, since mipmap construction is such an

important operation, however, the OpenGL Utility Library contains two

routines that aid in the manipulation of images to be used as mipmapped
textures.

Assuming you have constructed the level 0, or highest-resolution map, the

routines gluBuild1DMipmaps() and gluBuild2DMipmaps0 construct and

define the pyramid of mipmaps down to a resolution of 1 x 1 (or 1, for
one-dimensional texture maps). If your original image has dimensions that

are not exact powers of 2, gluBuild*DMipmaps0 helpfully scales the image

to the nearest power of 2.

Specifying the Texture

0392 '

___,.._",__

int ,gh"1_Btiild‘iDLfipmaps(G-lggenurn 'target,'.G{-li_I1t:cf{mponmts,-~GLii1t width,

» ,, 1. emxguiirn fopnat,-.-G_hgnu1'ifitypgt- g¢m;1_*d;;ra;;;~'= “ ,
int gli1Bi’iild2IiLfipfl1aps(G§er1t?m‘target,fiGIint cbimiénena, onntivgath, -

L lGI.i'nt height?GI.e1;;um fQnnat,',GI§enurn t){pe,:‘.4. I ‘I, V‘ . '3‘, é‘1_ :15-“..‘_ AL A '“~.‘’v!1s. __ l 3L‘ ., -1; '§l,:';§)1___f};-."lq‘$'_r:§'-E‘ - ‘V0ldr-‘3£,,,fltfl);..- ‘St 5}, »<rr~:.%‘,§t,=§#e.(*:§ai?Aa‘'“»_§%*'t'i§k*C”a;,-::.‘‘‘’=i*g«‘-=:>7?-t‘>~'' W‘ I “. 1.

Constructs a',_sF‘t;"r_.it;'s__'j§f.‘i1.1j;:.i'[)f_r"r'1_a;';os: and _1'g\,;‘?Jj!';1;‘]:$-_;5[.;;1r§“g“e*g(T]rto 'loadr._the
images‘. T1féjparameters‘.lfp:; "gompo'i3en£s, widgig, .fop_n£zr,- .9493,
anaiaam are exactly the.’ sagixe:-_a§_trio§g;_ro:;giréxJni5g%1_n0-and .
g1T,exImagé2I>0~ an vilue or 0-isTre.tl!II1€‘€i’3if‘a11' t1_1.e*mip'I;na"P5'aIe”-
constflilizted-rsucéessfullji; .otherwise: a‘ §If.U error-code .-is

Filtering

Texture maps are square or rectangular, but after being mapped to a

polygon or surface and transformed into screen coordinates, the individual

texels of a texture rarely correspond to individual pixels of the final screen

image. Depending on the transformations used and the texture mapping

applied, a single pixel on the screen can correspond to anything from a tiny

portion of a texel (magnification) to a large collection of texels

(minification), as shown in Figure 9-5. In either case, it’s unclear exactly

which texel values should be used and how they should be averaged or

interpolated. Consequently, 0penGL allows you to specify any of several
filtering options to determine these calculations. The options provide

different trade-offs between speed and image quality. Also, you can specify
independently the filtering methods for magnification and minification.

Texture Polygon

Magnification

Figure 9-5 Texture Magnification and Minification

In some cases, it isn’t obvious whether magnification or minification is

called for. If the mipmap needs to be stretched (or shrunk) in both the x and
y directions, then magnification (or minification) is needed. If the mipmap

needs to be stretched in one direction and shrunk in the other, 0penGL

Chapter 9: Texture Mapping

0393

makes a choice between magnification and minification that in most cases

gives the best result possible. It's best to try to avoid these situations by

using texture coordinates thatmap without such distortion. (See

“Computing Appropriate Texture Coordinates” on page 358.)

The following lines are examples of how to use glTexParameter*() to

specify the magnification and minification filtering methods:

g1TexParamel:eri (GL_'I‘EXTURE_2D , GL__'I'EXTURE_MAG_FILTER ,

GL_NEA.R.EST} ,-

grrexparameteri{GL_'rEx'I'uRE,_2D, GL_TEXTURE__MIN_FILTER,

GL_NEARES'I‘) ;

The first argument to glTexParameter*0 is either GL_TEXTURE_2D or

GL_TEXTURE_1D, depending on whether you’re working with two- or

one-dimensional textures. For the purposes of this discussion, the second

argument is either GL_'TEXTURE_MAG_FlLTER or

GL_TEXTURE__MIN_FILTER to indicate whether you’re specifying the

filtering method for magnification or minification. The third argument

specifies the filtering method; Table 9-1 lists the possible values.

Parameter Values

GL_TE.XTURE_MAG_FlLTER GL_NE.AREST or GL_LINEAR

GL_TE.XTUREWM[N_FlLTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,

GL_NEAREST_MIPMAP_LINEAR,

GL_LI'NEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LlNEAR

Table 9-1 Filtering Methods for Magnification and Minification

If you choose GLWNEAREST, the texel with coordinates nearest the center of

the pixel is used for both magnification and rninification. This can result in

aliasing artifacts (sometimes severe). If you choose GL_LINEAR, a weighted

linear average of the 2x2 array of texels that lie nearest to the center of the
pixel is used, again for both_magn.ification and minification. When the

texture coordinates are near the edge of the texture map, the nearest 2x2
array of texels might include some that are outside the texture map. In these

cases, the texel values used depend on whether GL_REPEAT or GL_,CLAMP

is in effect and whether you've assigned a border for the texture. (See “Using

a Texture’s Borders” on page 337.) GL_NEAREST requires less computation

than GL_LINEAR and therefore might execute more quickly, but

GL_LIN‘EAR provides smoother results.

FEIrering

0394

With magnification, even if you've supplied rnipmaps, the largest texture

map (level = 0) is always used. With minification, you can choose a filtering

method that uses the most appropriate one or two miprnaps, as described

in the next paragraph. (If GL_NEAREST or GL_LINEAR is specified with

minification, the largest texture map is used.)

As shown in Table 9-], four additional filtering choices are available when

minifying with mipmaps. Within an individual mipmap, you can choose
the nearest texel value with GL_NEAREST_MIPMAP_NEARES’I‘, or you can

interpolate linearly by specifying GL_LINEAR_MIPMAP_NEAREST. Using

the nearest texels is faster but yields less desirable results. The particular

rnipmap chosen is a function of the amount of minificatiou required, and -

there's a cutoff point from the use of one particular rniprnap to the next. To

avoid a sudden transition, use GL_NEAREST_MIPMAP_LINEAR or

GL_LINEAR_MIPMAP_LINEAR to linearly interpolate texel values from the

two nearest best choices of mipmaps. GL_NEAREST__MIPMAP_LINEAR

selects the nearest texel in each of the two maps and then interpolates

linearly between these two values. GL_LINEAR_MlPMAP_LINEAR uses

linear interpolation to compute the value in each of two maps and then

interpolates linearly between these two values. As you might expect,

GL_LINEAR_MlPMAP_LINEAR generally produces the smoothest results,

but it requires the most computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of 0penGL. A

texture object stores texture data and makes it readily available. You can

now control many textures and go back to textures that have been

previously loaded into your texture resources. Using texture objects is

usually the fastest way to apply textures, resulting in big performance gains,

because it is almost always much faster to bind (reuse) an existing texture

object than it is to reload a texture image using g1TexIrnage*D0.

Also, some implementations support a limited working set of
high-performance textures. You can use texture objects to load your most
often used textures into this limited area.

To use texture objects for your texture data, take these steps.

1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the
image arrays and texture properties.

Chapter 9: Texture Mapping

0395

3. If your implementation supports a working set of high-performance

textures, see if you have enough space for all your texture objects. If

there isn't enough space, you may wish to establish priorities for each

texture object so that more often used textures stay in the working set.

4. Bind and rebind texture objects, making their data currently available
for rendering textured models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid"
accidentally reusing names, consistently use gIGe11Textures() to provide
unused texture names.

 1'void';gl_Ge: "Text-_1ir'_es‘(G'Lsizei- ‘n, —GLui1_'_it '*.textureNames);,J‘

Returns 1} cu‘1‘:rently‘-unused names for -texture objects in the array
' te_x_ni_rreNames: 'Tl;1_e.',nar'nes- returf1ed'in'texi1ir¢:Names do not have to be a
‘contiguous set of -integers. ' ' '

"I‘he.ria1-ties in textureNames -are marked as used, but they acq-uire texture
stateand dimensionality (ID -or 213)only when they are first bound.

I 1

_roizyis.-a-—rese1:ved,texturernarne and isnever returned as a texture name
by.‘g1_G.<=.I.fl,‘-'e"-1r1e'I1.1'*’es(). - '

g1IsTexture() determines if a texture name is actually in use. If a texture

name was returned by glGenTextures() but has not yet been bound (calling

glBi11clTextu.re0 with the name at least once), then gllsTexture() returns
GL_FALSE.

yum.

. _. -—':«_- .I_'I nu . I,” I’ .|”_ ‘W
QG-Lbo3c)l:eEifj‘f§lI§Té}£tqre(GLuifit.textllrehlarne); " “ ' -r _ ’

 In ""‘ -1 "1' ._.IT:‘§‘ 3_‘''t'-M‘'.''i.‘' 3-‘ -r _ 7-. '5' an '-' . . I

IReti3r1isTG;L;T=BLJE“if-:rext1treNqme;'is.the:.i1an1e. o£- a texwethat --has been
, bound: and-' 1_Ias_'_rrot' been-subsequently’-deleted. Returns _G.L_FALSE if
_,te;§t.r1reNanw ,_ZerQ“(L)'£ti{3gf11TéNa?3iE is; a. non'zeroyaluezrthat is not t1_1e_namerg” _ '. . .e « . . ,4 "xix-T‘ " I‘;‘ ‘ - ‘ ',-..-1,‘_., .,;—_,, "9 N4-\-1, mu * ~,'--_
Lof-ansex1st1ng:texti1re.~ M-:..~..:-§“~‘i’~;5‘-‘m>é«‘Fa‘<~_‘>‘ '-.\ **.“5*‘-=2 - ‘1 - ,

Texture Objects

0396

347

348

---- -- ---ow---—--u—---%

Creating and Using Texture Objects

The same routine, glBindTexture(), both creates and uses texture objects.

When a texture name is initially bound (used with glBindTexture0), a new

texture object is created with default values for the texture image and

texture properties. Subsequent calls to glTexImage*(), gITexSubImage*0,
glC0pyTexImage*(), glCopyTéxSubImage*(), glTexParameter*0, and

glPrioritizeTextures() store data in the texture object. The texture object

may contain a texture image and associated mipmap images (it any),

including associated data such as width, height, border width, internal

format, resolution of components, and texture properties. Saved texture

properties include rninification and magnification filters, wrapping modes,
border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes

the current texture state. (The state of the previously bound-texture is

replaced.)

void -gl-B-indTexture(GLenu'n1 target,‘GLuint textureName);

glBindTexture0 _does three things. When using texturelxlame of an

unsigned integer other than zero for the first time, a new texture -‘object is
created and assigned that name. When binding to a previously created

texture object, that ‘texture obiect becomes active. When bindir1g,to a
textureN'ame valu'e.o_f zero, Op'enGL stops using texture obieets:-and~

returns to the‘unna'med default texture. ' ‘

dimensionality of: ta__rget,.which=is' either GL_TEXTURE;_1D’o’}' -- .
GL_jTEXTURE_'2lj3_e:IrnInediateIy.'upofi’~its.initial bindinjg';*thé'-'st_at¢- '5» 4 _.
texture object is equivalent to thgestate of the default G _iTE.X'I“U_RE'_1_D _
or GL_'l‘:E{{TUTRE:'2I37 (dépendin'g_upon itsfdlimensionality)“at-..tfit! : ,
initialization b1:O_pe;ffG'L_L 'In"thi_s initial .state,. texture prof-)er,ti_es_.such as Q»

When a texture object is iniflallyhbound. (that is, created)‘, i-t-ass'1'unes='_tshe!

mini_fication-ahd'fm'aghificafi3iffilters,_ wrapping modes:border .C'0f0§,
and texture.priori_ty areset to‘th_eir default values. R “' F t _‘ L ‘I ._- I - _

In Example 9-5, two texture objects are created in inito. In display(), each

texture object is used to render a different four—sided polygon.

- Example 9-»5 Binding Texture Objects: texbindc

#define checkImageWidth 64

#define checklmagefleight 64

static GLubyte checklmage[checklmagefleightllchecklmagewidth][4];

_Chapter 9: Texture Mapping

0397

static GLubyte otherlmage[checklmagefleightl[checkImagewidth][4];

Static GLuint texName[2];

void makeCheckImages{void)
{

3

int i, j, c:

for (i = 0; i < checkImageHeight; i++) {

for (j = D; j < checkImageWidth; j++)v{

c = ((({i&0x8)==0)“(lj&0x8}}==0l)*255:

checkImage[i][j1I0] = {GLubyte} C;

checkImage[iJ[:i][1] = {GLubyt'.e) c;

checkImage[i][j][2] = (GLubyte) c;

checkImage[i][j][3] = (GLubyte] 255;

c = {[{{i&Ux10]==)“[{j&0x10}}==0))*255:

otherImage[i][jI[0I = {GLubyte} C;

otherImage[i][j][13 = {GLubyte} 0;

otherImage[i][j][2] = (GLubyte} 0;

otherImage[i][j][3] = (GLuhyte) 255;

void inittvoid)

{

glclearcolor (0.0, 0.0, 0.0, 0.0);

g1ShadeMode1(GL_FLAT};

g1E'nable {GL_DEP'I'H_TEST) :

makeCheckImages{};

g1PixelStorei(GL_UNPACK_ALIGNMENT, 1):

g1GenTextures{2. texmamel:

g1BindTexture(GL_TEXTURE_2D, texName{O]};

g1'I'exParameteri (GL_TEXTU'RE__2D, GL_TEX'I'URE_WRAP_S, GL_CLAMP};

glTexParamet:eri {GL_'I‘EXTURE_2D, GL_‘I'EX'I‘U'RE_WRAP_T, GL_CLAMP};

glTexParameteri(GL_TEXTUREL2D, GL_EEXTURE_MAG_FILTER,

GL_N'EAREST] ; ‘

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_1\'|'EARES'I') ,-

g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checklmagewidth,

checklmagefleight, 0, GL_RGBA. GL_DNSIGNED_BYTE.

checklmagel;

glBindTexture{GLflTEXTURE_2D, texName[1]}:

gl'I'exParameteri(GL_TEX'1‘URE_2D, GL_TE‘.XTU'RE_WRAP_S, GL__CLAHP}}

Texture Objects

0398

349

350

}

._. rv .-—-u...-..._m.>..v...p.-n——..m.—..,\

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

glTexParameteri {GL_TEXTURE_2D, GL__TEXTURE_MAG_FILTER,

GL_NEAREST);

g1TexParameteri(GL_TEXTURE_2D, GL;TEXTURE_MIN_FILTER,

GL_NEAREST):

g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

g1TexImage2D{GL_TEXTURE_2D, 0, GL_RGBA, checklmagewidth,

.checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,

otherlmagel;

g1Enab1e(GL_TEXTURE_2D}:

void displaytvoidl

{

}

glclear (GL_CoLoR_BUFFER__BI'r I GL_DEPTH_BUFFER__BIT) ,-
glBindTexture(GL_TEXTURE_2D, texmameiflll:

g1Begin{GL_QUADS);

g1TexCoord2f(0.0, 0.0}; g1Vertex3f(-2.0. -1.0. 0.0);

g1TexCoord2f[0.0, 1.0]: glVertex3f(~2.0, 1.0, 0.0);

g1TexCoord2f{l.0. 1.0): glVErtex3f[0.0, 1.0, 0.0};

glTexCoord2f(1.U, 0.0}; g1Vertex3f(0.0, -1.0, 0.0);

Q1End (3 :

g1BindTexture(GL_TEXTURE_2D, texName[1}};

g1Begin(GL_QUADS);

g1TexCo0rd2f{U.D, 0.0]: glVErtex3f(1.G, -1.0, 0.0};

g1TexCoord2f{0.0, 1.0}: glVertex3f(1.U, 1.0, 0.0};

glTexCoord2f(1.0, 1.0}; g1Vertex3f(2.41421, 1.0, —l.4142l);

g1TexCoord2f(1.D, 0.0}: glVertex3f(2.41421. ~l.0, —1.4l421);

g1El'1d(I :

glFlush(};

Whenever a texture object is bound once again, you may edit the contents

of the bound texture object. Any commands you call that change the

texture image or other properties change the contents of the currently
bound texture object as well as the Current texture state.

In Example 9-5, after completion of displayo, you are still bound to the

texture named by the contents of texName[1]. Be careful that you don't call

a spurious texture routine that changes the data in that texture object.

When using mipmaps, all related mipmaps of a single texture image must
be put into a single texture object. In Example 9-4, levels 0-5 of a
Iniprnappecl texture image are put into a single texture obiect named
texName.

Chapter 9: Texture Mapping’

0399

TI

.54:

Cleaning Up Texture Objects

As you bind and unbind texture obiects, their data still sits around
somewhere among your texture resources. If texture resources are limited,

deleting textures may be one way to free up resources.

Void gl_Del_eteTe_xtfires(GI.sizéi n, éonst GLuint *textureNames); _

Deletes n texturé objects, named by-elernentsin the array textureNames.

The freed texture names may now be reused (for example, by
glGei1Textures0)£ _

If a texture that is currently bound is deleted, the binding reverts to the
default.texture,- as if glBindTextur-e0 were called with zero for the value

of text1'rreNa'me. Attempts to delete nonexistent texture names or the

"texture name__ of zero are ignored without gerierating an error.

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance

textures, which are said to be resident. Typically, these implementations

have specialized hardware to perform texture operations and a limited

hardware cache to store texture images. In this case, using texture objects is

recommended, because you are able to load many textures into the working
set and then control them.

If all the textures required by the application exceed the size of the cache,

some textures cannot be resident. If you want to find out if a single texture

is currently resident, bind its object, and then use g1GetTexParameter*v()
to find out the value associated with the GL_TEXTURE_RESlDENT state. If

you want to know about the texture residence status of many textures, use

glAreTexturesResident0.

Texture Objects

0400

351

352

...__.-_

 GLh_-oo‘1ea_r'1 glA?reTexturesRe§ident(Gls'i'zei-Jr;const-J
Ghuint *-teitt1}reNa'n'res,fi~GLboo1ean <'_*re'.sidénces);

' I’,-g_‘.. " r\,J'
_ F. _ -- In ._ ___..I x_‘ 3 PA 5 I .1 I fr I .___v'_._ V _ ‘ l -

the texture "1'eSidéI1GE:SE3tDS'Of'-thjc-'~H-ft&XtUIE‘Qb.]&€tS;Lfl'i}3Ile(l‘.1{1:i:l1¢
-«astray.

isvreturneélaforfthe. corresponding texture objects in..the-a'1_'J.-',3Y - ‘ -.
teJftIufe*Namesz<If'a1l-£,'he=- "L es1étextiu';sfm’_ 3 - " €Na'n1eS. are =-.'f.$”-‘5'iE1.¢.=I1ti.:Fh°
gL&i§TékmresResident0“fiu"iétibn=re3li;firs GL},TRUE,§fL1d—the?cohtérit§."of-
the'£_t1'fay residerzcesiare lf;'any3text_u_re.is‘-pot

.r.'esiden-t-, then glKreTexuu“_e§Residpnt().'-ret‘um-s .(3L;E{lI:S;l:}«ar.id.-gthe. ,. f ,
e'l¢Inefits in-«residences, wh“_i'chl't:orrespo'r_-13 =to_ rfonresidentgtexture ob.i.e_(-.15’ _L ,

in.text1irgNames," -are-also» s,e.t~fE1_'_-G_IJI_fFi9i-ESE. . ' . ' _ . - '

Note that glAreTexturesResident() returns the current residence status.
Texture resources are very dynamic, and texture residence status may

change at any time. Some implementations cache textures when they are

first used. It may be necessary to draw with the texture before checking

residency.

If your OpenGL implementation does not establish a working set of

high-performance textures, then the texture obiects are always considered

resident. In that case, glAreTexturesResident() always returns GL_TRUE

and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture

performance possible, you really have to know the specifics of your

implementation and application. For example, with a visual simulation or

video game, you have to maintain performance in all situations. In that
case, you should never access a nonresident texture. For these applications,

you want to load up all your textures upon initialization and make them all

resident. Ifyou don’t have enough texture memory available, you may need
to reduce the size, resolution, ‘and levels of mipmaps for your texture

images, or you may use gITexSubImage*0 to repeatedly reuse the same

texture memory. '

For applications that create textures “on the fly, ” nonresident textures may

be unavoidable. If some textures are used more frequently than others, you

may assign a higher priority to those texture objects to increase their

likelihood of being resident. Deleting texture objects also frees up space.

Short of that, assigning a lower priority to a texture object may make it first

Chapter 9: Texture Mapping

0401

in line for being moved out of the working set, as resources dwindle.

glPrioritizeTextures0 is used to assign priorities to texture objects.

'void- -glPrioritizeTextures(G-Lsizei n, const GLuint- *textureNames,_
const GLclampf *prion'ties);

"Assigns then textureobjects, named" in the array,tea'rtureNames, the-

textureresidence priorities in the correspondingielements of the array_
priorities. The priority values in the array priorities are "clamped to the
range [0.0, 1.0] before being assigned. Zero indicates the lowest priority;

these textures are least likely to be resident. One indicates the highest
priority.

glE_’rio_ri_fizeTextures() does not require that any of the textures in
textureNa'mes be bound. However, the priority might not have any effect-

on a texture object until it is initially bound.

glTexParameter*() also may be used to set a single texture"s priority, but

only if the texture is currently bound. In fact, use of glTexParameter*0 is
the only way to set the priority of a default texture.

If texture objects have equal priority, typical implementations of 0penGL

apply a least recently used (LRU) strategy to decide which texture obiects to

move out of the working set. If you know that your OpenGL

implementation has this behavior, then having equal priorities for all

texture objects creates a reasonable LRU system for reallocating texture
resources.

If your implementation of OpenGL doesn't use an LRU strategy for texture

objects of equal priority (or if you don’t know how it decides), you can

implement your own LRU strategy by carefully maintaining the texture

object priorities. When a texture is used (bound), you can maximize its

priority, which reflects its recent use. Then, at regular (time) intervals, you

can degrade the priorities of all texture obiects.

Note: Fragmentation of texture memory can be a problem, especially if
you’re deleting and creating lots of new textures. Although it is even

possible that you can load all the texture objects into a working set

by binding them in one sequence, binding them in a different

sequence may leave some textures nonresident.

Texture Objects

0402

353

Texture Functions

In all the examples so far in this chapter, the Values in the texture map have

been used directly as colors to be painted on the surface being rendered.

You can also use the values in the texture map to modulate the color that
the surface would be rendered without texturing,-or to blend the color in

the texture map wit_h the original color of the surface. You choose one of

four texturing functions by supplying the appropriate arguments to
glTexEnv*0.

fi§f?;§§§1i£Té2s7Efix{ifl:(GLsfiwn miséi;:LGhseisQ1;PfiPe?» TY?"r§.'_-k?s1r!1m);i
~4vo1d'j‘gi‘lA{éXEn1{|=il}-y(:(}Lenum ti:1rget_,'; GLer1‘ttm‘pna_me{ TYPE-‘_fparam);

- * q f '1' 1, ' . ' '

the-icurrént téxftiring function. 'far;geti_.iii-ust be-GL?‘_TEXTURE_'-EN-V.‘ If
pnm__nei's. GI-;_a"T,EXTURE{;ENV_l5it@D-E,-‘pzgfatriz-':can-he GL_D.E€Al1,
'GL;R_I5l’-LACE, 'GL_MODUI.ATE, or GL;BL-"ENIE5,-"to" specify:how texture
values-fare to‘b_e cor-i1bined'?u_iitl1a-the -color-. "values of the-'.fragme_nt -being
p1*o'_§:essed.* If"-pname--is‘ GL:TE.x-TURE:-Euvgcoioa, j;«a'mm- is famarray ‘of
four’flI)atin.g-point values -representing R, G, B, .-and Aucomponents. These
values areused only-“if the-"GI,-;~_BLEND texture -func~ti'on has been specified
as well.

The combination of the texturing function and the base internal format

determine how the textures are applied for each component of the texture.
The texturing function operates on selected components of the texture and

the color values that would be used with no texturing. (Note that the

selection is performed after the pixel-transfer function has been applied.)

Recall that when you specify your texture map with g1TexImage*D(), the

third argument is the internal format to be selected for each texel.

Table 9-2 and Table 9-3 show how the texturing function and base internal

format detennine the texturing application formula used for each
component of the texture. There are six base internal formats (the letters in

parentheses represent their values in the tables): GL_ALPI-IA (A),

GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A), GLJNTENSITY

(I), GL_RGB (C), and GL_RGBA (C and A). Other internal formats specify

Chapter 9: Texture Mapping

0403

desired resolutions of the texture components and can be matched to one
of these six base internal formats.

Base Internal Formal Replace Texture Function Modulate Texture Function

GL_ALPI'-IA C = C}; C = Cfi
A = At A = Afar

GLLUMINANCE C = Lt, C = CfLt,
A = Af A = Af

GL_LUMINANCE_ALPHA C = Li, C = ,

A = A, A = Affit

GL_lNTENSlTY C = If, C = Cflt,
A 7- It A = Ari‘

GL_RGB C = Ct, C = cfct,
A = Ar A = Af

GL_RGBA C = Cr, C = CfCt,
A = At A = A’-At

Table 9-2 Replace and Modulate Texture Functions

Base Internal Format Decal Texture Functlon Blend Texture Function

GL*ALPI-IA undefined C = Cf,
A = Arm

GL_I..UMl’NANCF. undefined C = Cf(1~Lt) + CcL,,
A = Af

GL_LUMINANCE‘._ALPHA undefined C = Cf(1-LT) + Cclrp
A = Aft,

GL_IN'I‘ENSITY undefined C = C’(1—l,)' + C61,,
' A = Ar(1-It) + Aclt,

GL_RGB C = Ct, C = Cf{1—Ct) + CL-Ct,
A = Af A = Af

GL_RGBA C = Ck(1—A,) + CPAI, C = Cf[1—Ct) + CCCD
A = A = Affit

Table 9-3 Decal and Blend Texture Functions

0404

Texture Functions 355

356

Note: In Table 9-2 and Table 9-3, a subscript of t indicates a texture value, f

indicates the incoming fragment value, c indicates the values

assigned with GL_TEXTURE_ENV_COLOR, and no subscript

indicates the final, computed value. Also in the tables, multiplication
of a color triple by a scalar means multiplying each of the R, G, and

B components by the scalar; Inultiplying (or adding) two color triples

means multiplying (or adding) each component of the second by the

corresponding component of the first.

The decal texture function makes sense only for the RGB and- RGBA internal

fonnats (remember that texture mapping doesn’t work in color-index
mode). With the RGB internal format, the Color that would have been

painted in the absence of any texture mapping (the fragmer1t’s color) is
replaced by the texture color, and its alpha is unchanged. With the RGBA

internal format, the fragment’s color is blended with the texture color in a

ratio determined by the texture alpha, and the fragment’s alpha is

unchanged. You use the decal texture function in situations where you

want to apply an opaque texture to an obiect—if you were drawing a soup

can with an opaque label, for example. The decal texture function also can

be used to apply an alpha blended texture, such as an insignia onto an

airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB

internal format, they are exactly the same. With all the internal formats, the

component values are either replaced or left alone.

For modulation, the fragment’s color is modulated by the contents of the
texture map. If the base internal format is GL_LUMlNANCE,

GL_LUMINANCE_ALPHA, or GL_INTENSl'lY, the color values are

multiplied by the same value, so the texture map modulates between the

fragrnent’s color (it the luminance or intensity is 1) to-black (if it’s O). For

the GL_RGB and GLARGBA internal formats, each of the incoming color

components is multiplied by a corresponding (possibly different) value in

the texture. If there’s an alpha value, it’s multiplied by the fragment’s alpha.
Modulation is a good texture function for use with lighting, since the lit
polygon color can be used to attenuate the texture color. Most of the

texture-mapping examples in the color plates use modulation for this

reason. White, specular polygons are often used to render lit, textured

objects, and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color

specified by Gl._TEXTURE_ENV_COLOR. The luminance, intensity, or

color value is used somewhat like an alpha value to blend the fragment’s

Chapter 9: Texture Mapping

0405

color with the GL_TEXTURE_ENV_COLOR. (See “Sample Uses of Blending"

on page 217 for the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object
coordinates and texturecoordinates for each vertex. After transformation,

the object coordinates determine where on the screen that particular vertex
is rendered. The texture coordinates determine which texel in the texture

map is assigned to that vertex. In exactly the same way that colors are
interpolated between two vertices of shaded polygons and lines, texture

coordinates are also interpolated between vertices. (Remember that textures

are rectangular arrays of data.)

Texture coordinates can comprise one, two,.three, or four coordinates.

They’1'e usually referred to as the s, r, r, and q coordinates to distinguish

them from object coordinates (x, y, z, and w) and from evaluator

coordinates (a and v; see Chapter 12). For one-dimensional textures, you

use the s coordinate; for two-dimensional textures, you use 5 and t. In

Release 1.1, the r coordinate is ignored. (Some implementations have 3D
texture mapping as an extension, and that extension uses the r coordinate.)

The 4; coordinate, like w, is typically given the value 1 and can be used to

create homogeneous coordinates; it’s described as an advanced feature in

“The q Coordinate” on page 372. The command to specify texture

coordinates, glTexCoord*0, is similar to glVertex*(), glColor*0, and
glNormal*0—it comes in similar variations and is used the same way

between g1Begin() and glEnd() pairs. Usually, texture-coordinate values
range from 0 to 1; values can be assigned outside this range, however, with

the results described in “Repeating and Clamping Textures” on page 360.

Assigning Texture Coordinates

0406

357

—1

void“gI'I’exCoord{1234}[sifd}('TYPE coards);
void g'lTexCoord{1234-}{sifd}v(TYPE-_*coords); '

Sets the-current texture coordinates (s, t, r’,-sq). Subsequent;-;alls.t"t')
glV.ertex*0 -resul_t.:i1n'those vertices being; assigned _the'_curI.eI1t...teJEtu.l'e— ;, _~g;mk)qw~.

coo':aifiate‘s;.-with g"1Téxc‘o&:ra~1-*‘()”-;‘~'ii1”§-s‘-'t3’6rdixt‘itéii‘:-iset.-to '
value, rand r are set to O, and q is set to 1. Usir1g_glTexCoord2*0'aHows

you to s and _t; r and q are set to.0 and 1, respecu‘ve_Iy;=With
gl'I'exCoord3*(), -qis set to] and the other coordinates are‘.-set_as‘
specified. You can specify all coordi'na‘tes with g'lTi:xCo17i'r.'di1l'f(). Use the
appropriate suffix (s, i, f, or d) and :-the-corresponding value” for

.(G1~.§'hort, GLint, G'Lfloat, or GLdouble) to spefify the coo1‘_d_inates"data -
You can supply thecoordinates individually, or you _c_an~use'-the '

vectorversion of the ‘command to supply. them‘ in a' siifgle array. Texture
coordinates are multiplied by the 4x4 texture matrix before’ anytexture
mapping occurs. (See “The Texture Matrix Stack” on page,3-7'1.) Note. that
integeritextu-re.coordinates are interpreted directly rather than-"being.
mapped to. the range.- [-—1,1] as normal c_oordinates.are.

The next section discusses how to calculate appropriate texture coordinates.

Instead of explicitly assigning them yourself, you can choose to have

texture coordinates calculated automatically by OpenGL as a function of
the vertex coordinates. (See "Automatic Texture-Coordinate Generation"

on page 364.)

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are

typically mapped to the polygons that make up a polygonal model. In the
simplest case, you're mapping a rectangular texture onto a model that's also

rectangular—for example, your texture is a scanned image of a brick wall,

and your rectangle is to represent a brick wall of a building. Suppose the

brick wall is square and the texture is square, and you want to map the
whole texture to the whole wall. The texture coordinates of the texture

square are (0, 0), (1, 0), (1, 1), and (0, 1) in counterclockwise order. When

you’re drawing the wall, just give those four coordinate sets as the texture

coordinates as you specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the

texture is again square. To avoid distorting the texture, you need to map the

wall to a portion of the texture map so that the aspect ratio of the texture is

preserved. Suppose that you decide to use the lower two-thirds of the

Chapter 9: Texture Mapping

0407

texture map to texture the wall. In this case, use texture coordinates of (0,0),

(1,0), (1,213), and (0,213) for the texture coordinates as the wall vertices are
traversed in a counterclockwise order.

As a slightly more complicated example, suppose you'd like to display a tin

can with a label wrapped around it on the screen. To obtain the texture, you

purchase a can, remove the label, andscan it in. Suppose the label is 4 units

tall and 12 units around, which yields an aspect ratio of 3 to 1. Since

textures must have aspect ratios of 2” to 1, you can either simply not use
the top third of the texture, or you can cut and paste the texture until it has
the necessary aspect ratio. Suppose you decide not to use the top third. Now

suppose the tin can is a cylinder approximated by thirty polygons of length

4 units (the height of the can) and width 12/30 (ll30 of the circumference

of the can). You can use the following texture coordinates for each of the

thirty approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)

2: (1/30, 0), (2730, 0), (2/30, 2/3), (U30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

30: (29130, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfacessuch as cones and cylinders can be mapped to a

flat surface without geodesic distortion. Any other shape requires some

distortion. In general, the higher the curvature of the surface, the more

distortion of the texture is required.

If you don’t care about texture distortion, it’s often quite easy to find a

reasonable mapping. For example, consider a sphere whose surface

coordinates are given by (cos 9 cos :1}, cos 9 sin 4:, sin 9), where 038521;, and

Ostbsrt. The 6-¢ rectangle can be mapped directly to a rectangular texture

map, but the closer you get to the poles, the more distorted the texture is.

The entire top edge of the texture map is mapped to the north pole, and the

entire bottom edge to the south pole. For other surfaces, such as that of a
torus (doughnut) with a large hole, the natural surface coordinates map to

the texture coordinates in a way that produces only a little distortion, so it

might be suitable for many applications. Figure9-6 shows two tori, one
with a small hole (and therefore a lot of distortion near the center) and one

with a large hole (and only a little distortion).

Assigning Texture Coordinates

0408

359

360

Figure 9-6 Texture-Map Distortion

If you’re texturing spline surfaces generated with evaluators {see
Chapter 12), the if and t’ parameters for the surface can sometimes be
used as texture coordinates. In general, however, there’s a large artistic
Component to successfully mapping textures to pol)—'gonal approxitnations
of Curvetl surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,]! and have them
either clamp or repeat in the texture map. with repeating textures, if you

have a large plane with texture coordinates running from (1.0 to l(}.ll in
both directions, for example, you'll get 100 copies of the texture tiled
together on the screen. During repeating, the integer part of texture
coordinates is ignored, and copies of the texture map tile the surface. For
most applications where the texture is to be repeated, the texels at the top

of the texture should match those at the bottom, and similarly for the left
and right edges.

The other possibility is to clamp the texture coordinates: Any values greater
than 1.0 are set to 1.0, and any values less than 0.0 are set to 0.0. Clamping
is useful for applications where you want a single copy of the texture to
appear on a large surface. If the surface-texture Coordinates range from 0.0
to 10.0 in both directions, one copy of the texture appears in the lower
corner of the surface. If you've chosen GL__Lll\’F.AR as the filtering method

Chapter 9: Te.\'rm'e Mrr,r)_nr';:,t:

0409

(see “Filtering” on page 344), an equally weighted combination of the

border color and the texture color is used, as follows.

0 'When repeating, the 2x2 array wraps to the opposite edge of the

texture. Thus, texels on the right edge are averaged with those on the

left, and top and bottom texels are also averaged.

I If there is a border, then the texel from the border is used in the

weighting. Otherwise, GL_TEXTURE_BORDER_COLOR is used. (If

you’ve chosen GL_NEAREST as the filtering method, the border color is

completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the

surface affected by the texture. To do this, use alpha values of0 for the edges
(or borders, if they are specified) of the texture. The decal texture function

directly uses the texture’s alpha value in its calculations. If you are using

one of the other texture functions, you may also need to enable blending

with good source and destination factors. (See “Blending” on page 214.)

To see the effects of wrapping, you must have texture coordinates that

venture beyond [().0, 1.0]. Start with Example 9-1, and modify the texture

coordinates for the squares by mapping the texture coordinates from 0.0 to
3.0 as follows:

g1Begin(GL_QUADS);

g1TexCoord2f{0.0, 0.0); g1Vertex3f(—2.0, -1.0, 0.0):

g1TexCoord2f{0.0, 3.0): g1Vertex3f(—2.0, 1.0, 0.0);

g1TexCoord2f[3.U, 3.0); g1Vertex3f(0.0, 1.0, 0.0):

g1TexCoord2f{3.0, 0.0); glVertex3f(0.0, —1.0, 0.0);

g1TexCoord2f(0.0, 0.0J: glVertex3f(1.0, -1.0, 0.0];

g1TexCoord2f{0.0. 3.0); glVertex3f{1.0, 1.0, 0.0);

glTexCoord2f{3.0, 3.0); glVertex3f{2.41421, 1.0, -1.41421};

g1TexCoord2f{3.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421};

glEnd():

With GL_REPEAT wrapping, the result is as shown in Figure 9-7.

Figure 9-7 Repeating a Texture

Assigning Texture Coordinates

0410

351

362

In this case, the texture is repeated in both the 3 and tdirections, since the

following calls are made to glTexParamete1*():

glTexParameteri{GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT};

glTexPara.meteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_'I‘, GL_REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see

something similar to Figure 9-.8.

bk
Figure 9-8 Clamping a Texture

You can also clamp in one direction and repeat in the other, as shown in

Figure 9-9.

Figure 9-9 Repeating and Clamping a Texture

You've now seen all the possible arguments for glTexParameter*0, which
is summarized here.

Chapter 9: Texture Mapping

0411

iroid glTexParameter{if](GLen1m:1 target, GLenun1 pmime, TYPE param);
void glTexParameter{if}v(GLenum target, GLenu1n pname,

I TYPE *param);

Sets various parpameterspthat control how a texture is treated as it’s
applied toa fragment or stored in a texture object. The target parameter is

either GL__TEX‘I"_UREw2D. or GI,‘;TEX.’I’URE_1D.t_q indicate a two- or
one-dimensional texture. The possible values for pmzme and param are
shown in Table 9-4-.-You can use the vector version of the command to

supply angrray of values for GL__TE_XT.URE_BQRDER_COLOR, or you can
supply--individual values"-for _oth_er parameters using .t_he nonvector‘
versioni If these values are supplied as integers, ‘they’re converted to

floa-tii1'/‘g-poi1_1t according to Table 4-1~‘on page 1-64; they're also clamped
to the range [0, 1]. ,

Parameter Values

GL_~TEXTURE_WRAP_S

GL_TEXTURE_WRAP_T

G1._TEXTURE__MAG_FILTER

GL_TE'.X'I'URE_MIN_FILTER

GL_~CLAMP, GLHREPEAT

GLJCLAMP, GL_REPEAT

GL_NEAREST, GL_LINEAR

GL_NEARES’I‘, GL_LINEAR,

GL_N}'.-‘.AREST_MIPMAP__NEAREST,

GL_NEAREST_MIPMAP_LINEAR,

GL_LINE.AR_MIPMAP_NEAREST,

GL_L1NEAR_MIPMAP_L1NE.AR

GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0]

GL_TEXTURE_PRIORi'I‘Y [0.0, 1.0] for -the current texture object

Table 9-4 glTexParan1eter'0 Parameters

Try This

Figure 9-8 and Figure 9-9 are drawn using GLNEAREST for the minification

and magnification filter. What happens if you change the filter values to

GL_LINEAR? Why?

Assigning Texture Coordinates

0412

I

364

Automatic Texture-Coordinate Generation

You can use texture mapping to make contours on your models or to

simulate the reflections from an arbitrary environment on a shiny model.
To achieve these effects, let OpenGL automatically generate the texture

coordinates for you, rather than explicitly assigning them with
glTexCoord*(). To generate texture coordinates automatically, use the

command glTexGen0.

void glTexGen{ifd}(GLénum word, GLenum pmzme, TYPE pcirairr); “’ _
void-glTe7xGer1{if,d}_v(GLenum coord, GLenu.m pimme, TYPE‘j'param);’

Specifies the‘ -functions for automatically generating-.*t_ex-tI.lre- coordinates.
'I'-hefirst parameter, coord, must be GL_'S, GL_T, GL_R, or=GL“Q to
indicate whether texture coordinate s, 1‘, r, or -q is. to be generated. The

pname parameter is GL_’I‘EXTURE_G'EN_M0'DE, GL_OBJECT_PLANE, or

GL~EYE__PLANi':'.. If it's GL_TEX'I‘URE_GEN_MODE, param is an integer

(or,-in the vector version of the command, points to an integer)-thatfs
either GL_OBJEC'1‘_LiNE-AR, GL_EYE_LINEAR, o_r GL_SPHERE_MAP.
These symbolic constants determine which function is used to generate

the texture coordinate. With either of the other possible values for

pname, param is a pointer to an array-of values (for the vector version)
specifying -parameters for the texture-generation function.

The different methods of texturecoordinate generation have different uses.

Specifying the reference plane in object coordinates is best for when a
texture image remains fixed to a moving obiect. Thus, GL,_OBJECT__LlNEAR '
would be used for putting a wood grain on a table top. Specifying the

reference plane in eye coordinates (GL_EYE_LINEAR) is best for producing

dynamic contour lines on moving objects. GL__EYE_LINEAR may be used by

specialists in geosciences, who are drilling for oil or gas. As the drill goes
deeper into the ground, the drill may be rendered with different colors to

represent the layers of rock at increasing depths. GL_SPHERE_MAP is

predominantly used for environment mapping. (See “Environment

Mapping” on page 369.)

Chapter 9: Taxrure Mapping

0413

.-uufi

Creating Contours

When GL__TEXTURE_GEN_MODF. and GL_0BJECT_LINEAR are specified,

the generation function is a linear combination of the object coordinates of

the vertex (x,,, y,,, 2,,’ w,_.,): '

generated coordinate = p1x9 + pzyo + p329 + p4w0

The p1, ..., p4 values are supplied as the param argument to glTexGen*v0,

with pname set to GL_,0B]ECT_PLANE. With p1, ..., p4 correctly normalized,

this function gives the distance from the vertex to a plane. For example, if

P2 = 193 = p4 = 0 and pi = 1, the function gives the distance between the

vertex and the plane x = 0. The distance is positive on one side of the plane,

negative on the other, and zero if the vertex lies on the plane.

Initially in Example 9-6, equally spaced contour lines are drawn on a teapot;

the lines indicate the distance from the plane x = 0. The coefficients for the

plane at = 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a

one-dimensional texture map suffices. The texture map is a constant green

color, except that at equally spaced intervals it includes a red mark. Since

the teapot is sitting on the x-y plane, the contours are all perpendicular to

its base. Plate 18a shows the picture drawn by the program.

In thesame example, pressing the ‘s’ key changes the parameters of the
reference plane to

static GLfloat s1anted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plane x + y + z = 0, slicing across the

teapot at an angle, as shown in Plate 181). To restore the reference plane to

its initial value, x = 0, press the ‘x’ key.

Example 9-6 Automatic 'I‘exture—Coordinate Generation: texgen.c

#int:1ude <GL/g1.h>

ilinclude <GL/g1u.h>

ilinclude <GL/g1ut.h>
llinclude <stc'll:i.b.h>

#include <stdio.h>

lldefine stripelmagewidth 32

GLubyte stripelmage[4*stripeImageWidth] ,-

Automatic Te.x:mre-Coordinate Generation

0414

static GLuint texname;

void makestripelmagelvoid)
{

lnt j;

for (j = 0; j < stripeImageWidth; j++) (

stripeImage{4*j] = (GLuhyte) {{j<=4} ? 255 : 0):

stripeImage{4*j+1] ~ (GLubyte} {(j>4} ? 255 : 0};

stripeImage[4*j+2] = (GLubyte} O;

stripeImage[4*j+3] = {GLubyte) 255;

/* planes for texture coordinate generation */

static GLfloat xequalzero[] = {1.0, 0-0, 0.0, 0.0};

static Gbfloat slantedfl = {1.0, 1.0, 1.0. 0.0};

static GLf1oat *currentCoeff;

static GLenum currentP1ane;

static GLint currentGenMode;

void init{void]

{

glC1earColor (0.0, 0.9, 0.0, 0.0};
g1Enable {GL_DEPTH_TEST) ;

g1ShadeModel(GL_SMOOTH);

makeStripeImage();

g1P;i.xe1Storei{GL_UNPACK__ALIGNMENT , 1) .'

g1GenTextures(1, &texName};

g1BindTexture(GL_TEXTURE_1D, texflame);

g1TexParameteri (GL_TEXTURE_1D, GL_TEX'I‘URE_WRAP__S, GL___REPEAT);

g1TexPara:meteri {GL_'I‘EXTURE_lD, GL_TEX'I‘URE_M.AG_FILTER,

GI¢;LIlHflUR};

g1TexParameteri (GL_TEXTURE__1D , GL__TEXTURE_MIN_FILTER ,

GL_LINEAR};

g1TexImage1D[GL__TEXTU'RE__1D, O, GL__RGBA, stripelmagewidth, 0.
GL_RGBA, GL_UNSIGNED_BYTE, stripelmagei;

g1'I'exEnvf (GL_TEXTURE__EbN. GL_'I'E!X'I'URE__ENV_MODE, GL_MODULA'I'E}.°

currentcoeff = xequalzero;

currentGenMode = GL_,_OBJECT_LINEAR;

currentP1ane = GL_0BJECT_PLANE;

g1TexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);

g1TexGenfv{GL_S. currentP1ane, currentcoeff);

Chapter 9: Texture Mapping

0415

g1Enable{GL_TEXTURE_GEN_S};

g1Enable(GL_TEXTURE_1D);

g1Enable{GL_CULL_FACE);

glEnab1e(GL_LIGHTING};

glEnab1e{GL_LIGHTO);

g1Enab1e {GL_A'U'I'o_NORMAL} ;

g1Enable(GL_NORMALIZE};

glFrontFace(GL_CW);

glCu1lFace(GL_BACK};

glnaterialf {GL_FRONT. GL_SHININESS, 64.0};
}

void disp1ay{§oid}
{

glclear(GL_CQLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT);

g1PushMatrix I};

g1Rotatef(45.0, 0.0, 0.0, 1.0};

g1BindTexture{GL_TExTURE_1D, texflamel;

g1utSolidTeapot(2.0);

g1PopMatrix {};

g1Flush{);
}

void reshape(int w, int h}
{

g1Viewport(0, 0, (GLsizei) w. {GLsizei) h);
gluatrixnode(GL_PROJECTION);

g1LoadIdentity(];
if (w <= h)

glortho (-3.5, 3.5, —3.5*(GLfloat}h/(GLf1oat)w,

3.5*(GLf1oat}h/(GLf1oat)w, -3.5, 3.5}:
else

glortho (—3.5*{GLf1oat}w/(GLf1oat)h,

3.5*(GLf1oat}w/(GLf1oat}h, -3.5, 3.5. -3.5, 3.5};

glnatrixmode(GL_MODELVIEw};

g1LoadIdentity{};
}

void keyboard (unsigned char key. int x, int y}
{ .

switch (key) {
case ‘e’:

case ‘E’:

currentGenMode = GLfiEYE_LINEAR;

currentP1ane = GL_EYE_PLANE;

glTexGani{GL_S, GLgfEXTURE_GEN_MODE, currentGenMode};

Automatic Texture-Coordinate Generation 36?

glTexGenfv{GL_S. currentP1ane, currentcoeff);

glutPostRedisp1ay();

break;
case ‘o’:

case ‘O’:

curre-.ntGenMode = GL_0BJEC'I'_LIN'EAR,-

currentPlane = GL_0BJECT;PLANE;

g1TexGeni(GL_S, GL_TEXTURE_GEN;MODE, currentGenMode);

glTexGenfv(GL_S, currentP1ane, Currentcoeffl;

g1utPo$tRedisp1ay(};
break;

case ‘S’:

case ‘S’:

currentcoeff = slanted;

glTexGenfv(GL_S, currentP1ane, currentcoeff}:

glutPostRedisp1ay(};
break:

case ‘x’:

case ‘X’:

currentcoeff = xequalzero;

glTexGenfv(GL_S. currentPlane, currentcoeffj;

glutPostRedisp1ay(}:
break;

case 27:

exit(0);

break;
default:

break;

int main(int argc, char** argv)
I

glutInit{&argc, argv};

glutxnitnisplayuode (GLUT_SINGLE [GLU'I'_RGB | GLUT_DEP‘1‘H).'
g1utInitWindowSize(256, 256):

glutInitWindowPosition(100, 100);

glutcreatewindow targvlflll;

illit ()3

glutDisplayFunc[display};

glutReshapeFunc{reshape};

g1utKeyboardFunc(keyboard);

g1utMainLoop(};
return 0;

Chapter 9: Texture Mapping

0417

You enable texture-coordinate generation for the s coordinate by passing
GL__TEXTURE_GEN_S to glEnable0. To generate other coordinates,

enable them with GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or

GL_,TEX'l'URE_GEN_Q. "Use g1Disable0 with the appropriate constant to

disable coordinate generation. Also note the use of GL_REPEAT to cause

the contour lines to be repeated across the teapot.

The GL__OBJECT_LINEAR function calculates the texture coordinates

in the model’s coordinate system. Initially in Example 9-6, the

GL_0B]ECT_LINEAR function is used, so the contour lines remain

perpendicular to the base of the -teapot, no matter how the teapot is" rotated

or viewed. However, if you press the ‘e’ key, the texture generation mode is
changed from GL_OB]ECT_LlNEAR to GL_EYE_LINEAR, and the contour

lines are calculated relative to the eye coordinate system. {Pressing the '0’

key restores GL_OBJECT_LINEAR as the texture generation mode.) If the

reference plane is x = 0, the result is a teapot with red stripes parallel

to the y-z plane from the eyes point of view, as shown in Plate 13c.

Mathernatically, you are multiplying the vector (p1 P2 p3 p4) by the inverse
of the modelview matrix to obtain the values used to calculate the distance

to the plane. The texture coordinate is generated with the following .
function:

generated coordinate = pl ’ 14,, +172’ ye + p3’ z,_. + p4’ we

where (pr‘p2’p3’p4’) = (P1 P2 P3P4)M_1

In this case, (x,,, y_.,, z_.,, w,,) are the eye coordinates of the vertex, and p1, ...,

p4 are supplied as the param argument to gITexGen*() with pname set to

GL__EYE__PLANE. The primed values are calculated only at the time they’re

specified so this operation isn’t as computationally expensive as it looks.

In all these examples, a single texture coordinate is used to generate.

contours. The s and t texture coordinates can be generated independently,

however, to indicate the distances to two different planes. With a properly
constructed two-dimensional texture map, the resulting two sets of

contours can be viewed simultaneously. For an added level of complexity,

you can calculate the 3 Coordinate using GL_OBJEC.T_LINEAR and the t
coordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were

perfectly reflective, so that the colors on its surface are those reflected to

Automatic Texture-Coordinate Generation

0418

370

the eye from its surroundings. In other words, if you look at a perfectly
polished, perfectly reflective silver object in a room, you see the walls, floor,

and other objects in the room reflected off the object. (A classic example of

using environment mapping is the evil, morphing cyborg in the film
Terminator 2.) The objects whose reflections you see depend on the_ position

of your eye and on the position and surface angles of the silver object. To
perform environment mapping, all you have to do is create an appropriate

texture map and then have OpenGL generate the texture coordinates for
you.

Environment mapping is an approximation based on the assumption

that the items in the environment are far away compared to the surfaces

of the shiny obiect—that is, it's a small object in a large room. With this

assumption, to find the color of a point on the surface, take the ray from

the eye to the surface, and reflect the ray off the surface. The direction of

the reflected ray completely determines the color to be painted there.
Encoding a color for each direction on a flat texture map is equivalent to

putting a polished perfect sphere in the middle of the environment and

taking a picture of it with a camera that has a lens with a very long focal
length placed far away. Mathematically, the lens has an infinite focal length

and the camera is infinitely far away. The encoding therefore covers a

circular region of the texture map, tangent to the top, bottom, left, and

right edges of the map. The texture values outside the circle make no
difference, as they are never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain a

large silvered sphere, take a photograph of it in some environment with a

camera located an infinite distance away and with a lens that has an infinite

focal length, and scan in the photograph. To approximate this result, you

can use a scanned-in photograph of an environment taken with an

extremely wide-angle (or fish-eye) lens. Plate 21 shows a photograph taken

with such a lens and the results when that image is used as an environment
map.

Once you’ve created a texture designed for environment mapping, you
need to invoke OpenGL’s environment-mapping algorithm. This algorithm

finds the point on the surface of the sphere with the same tangent surface

as the point on the obiect being rendered, and it paints the object's point

with the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment

mapping, use this code in your program:

g1TexGeni{GL_S, GL_TEXTUREMGENHMDDE, GL_SPHERE_MAP);

g1TexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP}:

Chapter 9: Texture Mapping

0419

glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE,GEN;T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for

the environment mapping. As shown, you need to specify it for both the s

and tdirections. However, you don’t have to specify any parameters for the

texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using
the following mathematical steps.

1. u is the unit vector pointing from the origin to the vertex (in eye

_ coordinates).

2. n’ is the current normal vector, after transformation to eye
coordinates.

r is the reflection vector, (rx ry rz)T, which is calculated by u - 2n"n’Tu.

4. Then an interim value, :11, is calculated by m = 2+ 3': + (rz + 1) 2.
1

5. Finally, the s and t texture coordinates are calculated by s = rx/m + 51 .

and t = ry/m+§.

Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how

to use the q coordinate. Both techniques are considered advanced, since you

don't need them for many applications of texture mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being

rendered, texture coordinates are multiplied by a 4x4 matrix before any

texture mapping occurs. By default, the texture matrix is the identity, so the
texture coordinates you explicitly assign or those that are automatically

generated remain unchanged. By modifying the texture matrix while

redrawing an obiect, however, you can make the texture slide over the

surface, rotate around it, stretch and shrink, or any combination of the

three. In fact, since the texture matrix is a completely general 4x4 matrix,

effects such as perspective can be achieved.

Advanced Features

0420

371

372

When the four texture coordinates (s, t, r, q) are multiplied by the texture

matrix, the resulting vector (s’ t’ r’ q’) is interpreted as homogeneous texture

coordinates. In other words, the texture map is indexed by S’/q’ and Hg’ .

(Remember that r’/q’ is ignored in standard OpenGL, but may be used by

implementations that support a 3D texture extension.) The texture matrix
is actually the top matrix on a stack, which must have a stack depth of at

least two matrices. All the standard matrix-manipulation commands such

. as glPu'shMatrix0, glPopMatrix0, glMultMatrix(), and g1Rotate*() can be

applied to the texture matrix. To modify the current texture matrix, you

need to set the matrix mode to GL_TEXTURE, as follows:

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */

glRotated{...l;

/* ... other matrix manipulations ... */
g1MatrixMode(GL_MODELVIEW); /* hack to modelview mode */

The q Coordinate

The mathematics of the q coordinate in a general four-dimensional texture
coordinate is as described in the previous section. You can make use of q

in cases where more than one projection or perspective transformation is

needed. For example, suppose you want to model a spotlight that has

some nonuniform pattern—brighter in the center, perhaps, or nonc-ircuiar,

because of flaps or lenses that modify the shape of the beam. You can
emulate shining such a light on a flat surface by making a texture map that

corresponds to the shape and intensity of a light, and then projecting it

on the surface in question using projection transformations. Projecting

the cone of light onto surfaces in the scene requires a perspective

transformation (:3 at 1), since the lights might shine on surfaces that aren’t

perpendicular to them. A second perspective transformation occurs because
the viewer sees the scene from a different (but perspective) point of view.

(See Plate 27 for an example, and see “Fast Shadows and Lighting Effects

Using Texture Mapping” by Mark Segal, Cari Korobkin, Rolf van Widenfelt,

Jim Poran, and Paul I-laeberli, SIGGRAPH 1992 Proceedings, (Computer
Graphics, 26:2, July 1992, p. 249-252) for more details.)

Another example might arise if the texture map to be applied comes from a

photograph that itself was taken in perspective. As with spotlights, the final
view depends on the combination of two perspective transformations. '

Chapter 9: Texture Mapping

0421

Chapter 10

The Framebufier

Chapter Obiectives

After reading this chapter, you'll be able to do the following:

- Understand what buffers make up the framebuffer and how they’re
used '

0 Clear selected buffers and enable them for writing

- Control the parameters of the scissoring, alpha, stencil, and
depth~buffer tests that are applied to pixels

- Perform dithering and logical operations

0 Use the accumulation buffer for such purposes as scene antialiasing

373

0422

374

An important goal of almost every graphics program is to draw pictures on

the screen. The screen is composed of a rectangular array of pixels, each

capable of displaying a tiny square of color at that point in the image. After

the rasterization stage (including texturing and fog), the data are not yet
pixels, but are fragments. Each fragment has coordinate data which

corresponds to a pixel, as well- as color and depth values. Then each

fragment undergoes a series of tests and operations, some of which have

been previously described (See "Blending" in Chapter 6) and others that are

discussed in this chapter.

If the tests and operations are survived, the fragment values are ready to

become pixels. To draw these pixels, you need to know what color they are,
which is the information that's stored in the color buffer. Whenever data is

stored uniformly for each pixel, such storage for all the pixels is called a

bufiier. Different buffers might contain different amounts of data per pixel,
but within a given buffer, each pixel is assigned the same amount of data.

A buffer that stores a single bit of information about pixels is called a

bitplane.

As shown in Figure 10-1, the lower-left pixel in an 0penGL window is pixel

(O, 0), Corresponding to the window coordinates of the lower-left comer of

the 1x1 region occupied by this pixel. In general, pixel (x, y) fills the region

bounded by x on the left, x+I on the right, yon the bottom, and y+1 on the

top.

lower left oorner
3.0 of the window

ywindowcoordinate
0.0 1 .0 2.0 3.0

1: window coordinate

Figure 10-1 Region Occupied by a Pixel \

As an example of a buffer, let’s lookmore closely at the color buffer, which

holds the color information that's to be displayed on the screen. Assume '

Chapter 10: The Frarnebufiier

0423

that the screen is 1280 pixels wide and 1024 pixels high and that it’s a full
24-bit color screen—in other words, there are 224 (or 16,777,216) different

- colors that can be displayed. Since 24 bits translates to 3 bytes (8 bits/byte),

the color buffer in this example has to store at least 3 bytes of data for each

of the 1,310,720 (12,80*1024) pixels on the screen. A particular hardware

system might have more or fewer pixels on the physical screen as well as

more or less color data per pixel. Any particular color buffer, however, has

the same amount of data saved for each pixel on the screen.

The color buffer is only one of several buffers that hold information about

a pixel. For example, in “A Hidden-Surface Removal Survival Kit” on

page 171, you learned that the depth buffer holds depth information for

each pixel. The color buffer itself can consist of several subbuffers. The

framebuffer on a system. comprises all of these buffers. With the exception

of the color buffer(s), you don’t view these other buffers directly; instead,

you use them to perform such tasks as hidden-surface elimination,

antialiasing of an entire scene, stenciling, drawing smooth motion, and
other operations.

This chapter describes all the buffers that can exist in an OpenGL

implementation and how they're used. It also discusses the series of tests

and pixel operations that are performed before any data is written to the

viewable color buffer. Finally, it explains how to use the accumulation
buffer, which is used to accumulate images that are drawn into the color

buffer. This chapter has the following major sections.

- “Buffers and Their Uses” on page 376 describes the possible buffers,
what they’re for, and how to clear them and enable them for writing.

- “Testing and Operating on Fragments” on page 382 explains the

scissoring, alpha, stencil, and depth-buffer tests that occur after 'a
pixel’s position and color have been calculated but before this

information is drawn on the screen. Several operations-blending,

dithering, and logical operations—can also be performed before a
fragment updates the screen.

I "The Accumulation Buffer” on page 394 describes how to perform

several advanced techniques using the accumulation buffer. These

techniques include antialiasing an entire scene, using motion blur, and

simulating photographic depth of field.

0424

375

Buffers and Their Uses

An OpenGL system can manipulate the following buffers:

0 Color buffers: front—left, front-right, back-left, back-right, and any

number of auxiliary color buffers

0 Depth buffer

0 Stencil buffer

0 Accumulation buffer

Your particular OpenGL implementation determines which buffers are

available and how many bits per pixel each holds. Additionally, you can
have multiple visuals, or window types, that have different buffers

available. Table 10-1 lists the parameters to use with glGetIntegerv0 to

query your OpenGL system about per-pixel buffer storage for a particular
visual.

Note: If you're using the X Window System, you're guaranteed, at a

minimum, to have a visual with one color buffer for use in RGBA

mode with associated stencil, depth, and accumulation buffers that
have color components of nonzero size. Also, if your X Window

System implementation supports a Pseudo-Color visual, you are also

guaranteed to have one OpenGL visual that has a color buffer for use

in color-index mode with associated depth and stencil buffers. You'll

probably want to use glXGetConfig0 to query your visuals; see

Appendix C and the OpenGL Reference Manual for more information
about this routine.

Parameter Meanlng

GL_RED_BlTS, GL_GREEN_BITS, Number of bits per R, G, B, or A component
GL_BLUE_BlTS, GL__ALPl-IA_BITS in the color buffers

GL_INDEX_BITS Number of bits per index in the color buffers

GL_DE.P'_I'H_BI'I‘S Number of bits per pixel in the depth buffer

GL_Sl‘ENCIL_BI'I‘S Number of bits per pixel in the stencil buffer

GL__ACCUM_RED_BlTS, Number of bits per R, G, B, or A component V
GL_ACCUM_GREE.N_Bl'IS, in the accumulation buffer

GL_ACCUM_BLUE__BITS, - -

GL_ACCUM_ALPHA_BI'IS

Table 10-1 Query Parameters for Per-Pixel Buffer Storage

376 Chapter 10: The Franzebujfer

0425

.....__....?_..._.__....a..._......-._....._.__..--u—_..__....___,.___________
Color Buffers

The color buffers are the ones to which you usually draw. They contain

either color~index or RGB color data and may also contain alpha values.

An OpenGL implementation that supports stereoscopic viewing has left

and right color buffers for the left and right stereo images. If stereo isn't

supported, only the left buffers are used. Similarly, double-buffered systems

have front and back buffers, and a single-buffered system has the front
buffers only. Every OpenGL implementation must provide a front-left color
buffer.

Optional, nondisplayable auxiliary color buffers may also be supported.

Oper1GL doesn’t specify any particular uses for these buffers, so you can

define and use them however you please. For example, you might use

them for saving an image that you use repeatedly. Then rather than

redrawing the image, you can just copy it from an auxiliary buffer into

the usual color buffers. (See the description of glCopyPixe-150 in “Reading,
Writing, and Copying Pixel Data” on page 2.90 for more information about

how to do this.)

You can use GL__STEREO or GL_DOUBLEBUFFER with glGetBooleanv0 to

find out if your system supports stereo (that is, has left and right buffers) or

double-buffering (has front and back buffers). To find out how many, if any,

auxiliary buffers are present, use glGetInteger'v() with GL_AUX_BUFFER3.

Depth Buffer

The depth buffer stores a depth value for each pixel. As described in “A

Hidden-Surface Removal Survival Kit” on page 171, depth is usually

measured in terms of distance to the eye, so pixels with larger depth-buffer
values are overwritten by pixels with smaller values. This is just a useful

convention, however, and the depth buffer’s behavior can be modified as
described in “Depth Test” on page 391. The depth buffer is sometimes

called the 2 buffer (the 2 comes from the fact that x and y values measure

horizontal and vertical displacement on the screen, and the z value

measures distance perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the

screen, just as a cardboard stencil can be used with a can of spray paint to

make fairly precise painted images. For example, if you want to draw an

image as it would appear through an odd—shaped windshield, you can store

an image of the windshield’s shape in the stencil buffer, and then draw the .

Bujfers and Their Uses

0426

377

378

entire scene. The stencil buffer prevents anything that wouldn't be visible

through the windshield from being drawn. Thus, if your application is a
driving simulation, you can draw all the instruments and other items inside

the automobile once, and as the car moves, only the outside scene need be

updated.

Accumulation Buffer

The accumulation buffer holds RGBA color data iust like the color buffers

do in RGBA mode. (The results of using the accumulation buffer" in

color—index mode are undefined.) It’s typically used for accumulating a

series of images into a final, composite image. With this method, you can

perform operations like scene antialiasing by supersampling an image and

then averaging the samples to produce the values that are finally painted

into the pixels of the color buffers. You don't draw directly into the

accumulation buffer; accumulation operations are always performed in

rectangular blocks, which are usually transfers of data to or from a color
buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically

one of the most expensive operations you can perform—on a 1280x1024

monitor, it requires touching well over a million pixels. For simple graphics

applications, the clear operation can take more time than the rest of the

drawing. If you need to clear not only the color buffer but also the depth

and stencil buffers, the clear operation can be three times as expensive.

To address this problem, some machines have hardware that can clear more

than one buffer at once. The OpenGL clearing commands are structured to

take advantage of architectures like this. First, you specify the values to be

written into each buffer to be cleared. Then you issue a single command to

perform the clear operation, passing in a list of all the buffers to be cleared.

If the hardware is capable of simultaneous clears, they all occur at once;

otherwise, each buffer is cleared sequentially.

The following commands set the clearing values for each buffer.

Chapter 10: The Framebu_fi‘er

0427

, Void g_I(3le§}§;!&C¢i1nr(GLfloat_._red; §i_Lfloa_t green, (3Lf_ioat,:iJI:ie,- -4

void _glClearC¢$ior(GLdarnpf red, GLc1a'r°npf green: G].cIan1_pf bfrliefi
_ v- ,_ ‘":"v”’ "51:’ GLcl'2_iiiipf'aIpha); «

v9i¢:l_g'_l‘§‘__,1e::1r1'»I1‘1¥i:Ie,J¢:(_J(_}Lfl-:i.*ei'_t ;index);. ' - ’_- .
'Void31,C1eai;!?¢i5’t§(GLtlaIn15§1'iierith): ..> ~ ?~
v‘oid"'gl{3;léarSte‘I_;cil(GLir-1t..5); ' ~ . r

 ' —' GLriozit"z'a1';:$r:_az);'*» ’ L, 7_ ," i‘~=""" ‘.

Spe'eifie$H;lre"§cunent clea1=ing.val-ues for, tlIe.color'b.uffef (in R(:iBA;I11ode),
the gglpi butter (in ct'g_l§3r_-.ir_1g*;l,~('e:rc;.i:r__1<_:_:{,*le), Tt‘he*d'epatl.'i, _b_g_ffer',_- the stencig _-”_
b_uffef-I1andiitvls1e%'aei:urnulati_onabuffer.' The GLclampf.”and GLclampd
{c1.gm§edjQ_I_-.110‘ tala-_r1d glamped 'G_I-rdouble) ate; cramped to he betgyeen-_0.0
and 1.52‘The.de ault depfhicleariné value "is ~.1-.0; alljthe other default
clearing: Yalyesinrésfl. The ’values.set wit'h'the clear comm_‘ar1d§.Iemai'n'in
effect «until_th_ey're..cha-nged by--another‘ cal1_?ta the same command. I

After you’ve selected your clearing values and you're ready to clear the
buffers, use glClear().

‘void g1C1ear(Gflhiffield mask);

Clears the .specified buffers. The -value of mask is the bitwise logical OR of
some combi-nation. of GL__COLOR_BUFF-ER_BIT, GL__DEPTH_BUFFER_BIT,

GL_ST.'ENGIL_~_BUfFFER_',_BIT, _aJ1d-GL_-_AC,CUM-_BUFFER"._BI'1" td‘ iqeritify
vihich buffers are to'.be‘t‘:1ea'rec_i. GL__C0LOR_;BUFFER__BI7lT;clears either‘ the

RGBA-"color or the color-index‘b‘uffer, depending on-the-mode of the

systemat the.time;jflhen you clear: the color -or color-’i'n£_1ex;‘tru.*Efe_1f,.all~tI;1e
color b11ffe'rs;t_h;at-are-"ehabled .fe-‘I-—-writing .(seethe nextffsection-)_are . .»
c1_ear§e_d?:'The pjgcél Qvgpersfiipktest; scissbr test; and;difh__e1;*-ing', if énatgled, .
are-applied "to tt;¢é!§fel£1:‘ari;;1gQe‘;i£_arhation.;1\/[asking operations, s1»1eh.as.:
gIC<§_IorM:§5_§S0' fifidrfiflndexfidfisko; are a1$o‘£_ff&Cti1re.‘-_Tlf§7a1phé’$e§t;
stencil; test, ‘and de-pth;Ztest‘fi_e_ not-"affect, the opemtjQn' of,_

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from any

of the color buffers: front, back, front-left, back-left, front-right, backqight,

or any of the auxiliary buffers. You can choose an individual buffer to be

the drawing or reading target. For drawing, you can also set the target to

draw into more than one buffer at the same time. You use g1DrawBuffer()

to select the buffers to be written and glReadBuffe1-0 to select the buffer as

Bufiers and Their Uses

0428

379

380

the source for glReadPixels(), glCopyPixels0, glCopyTexImage*(), and

glCopyTexSubImage*0.

If you are using double-buffering, you usually want to draw only in the back
buffer (and swap the buffers when you're finished drawing). In some

situations, you might want to treat a double-buffered window as though it

were single-buffered by calling glDrawBuffer0 to enable you to draw to
both front and back buffers at the same time.

glDrawBuffer() is also used to select buffers to render stereo images

(GL*LEF1' and GL*RIGHT) and to render into auxiliary buffers (GL_AUXO.

void glI)rawB_1_1fl‘.er((}Len_urIi mods): . I —I

Selects the color buffers enabledfor or clearing. Disables buffers
-enabled byprevious calls to glDrawBuffer0. More than one buffer may
be enabled at one time. The value of mode. can be one of the following:

GL_FRONT GL__FRONT_L,EI-T GL_AUX1'

GL_BACK GL_FRON’1‘_-RIGHT GL_FRONT_AND_.BACI<

GL_LEF1‘ GL-__BACK'_LEFl‘ _ GL_NONE

GL_RIGHT GL_BACI(._RIGHT

Arguments that omit LEFl"».or RIGHT: refer to both the left and right
buffers; similarly, argtunents that om_it FRONT or B-AC_K refer toboth. The

2' in GL_AUXi is a digit identifying-a--particular auxiliary buffer.

Byrdefault, mode is GL_FRON'I"for singl_e~buffered contexts -and GLHBACK

for double-buffered contexts.» ' ' .. - -

Note: You can enable drawing to nonexistent buffers as long as you enable

drawing to at least one buffer that does exist. If none of the specified
buffers exist, an error results.

.V0id glReaHBuffeij(Gl;enul}1 model; _ .

Selects the color buffer enabled-as the source for. reading. pixels for

-subsequent. calls to-gl—ReadPi,xels0, glCopyPixels0, glCopy'l‘-exlmag_e*0,
and .glCopyTe_xS'ubImage*0. Disables buffers enabled by previouscalls
to glReadBu“ffer0. The value of modecan be one ‘of the following:

GL_FROl*'~3T - GL__FRON'I_T_LEl_-T GL_AUX1'
GL_BACI< -' GLHFRONT_RlGI~l'-I‘

Chapter 10: The Frarnebufier

0429

Gl.'.__LEFI‘- >~ ' GL'_.'BA'C-II(»_gLEF'l‘

GL__RlGl-I-T l , , f1(§L_BAGK_RIGHT H
" ,1 "'i_,.’.|"fi T- I --:11‘? _ l+: ' j‘ I . '

By‘ default, made-is.',Gl.1FRONT for ;s_ing1e—bu‘ffered contexts and GL__BACK
for double"-buffered contexts. - ' " - "' ' '

Note: You must enable reading from a buffer that does exist or.an error
results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers,

a masking operation is applied to the data, as specified with one of the

following commands. A bitwise logical AND is performed with each mask
and the corresponding data to be written.

-void gllr1dexMasl<(_GLuint mask); 1

void glGolorMask(GLbeolean red,,GLboolean green,-GLboo'lean blue,
_‘GL'booie-a_n alpha) ;'

void g1Dep'thMask(GLboolean~flag);
void g1Stene"rlMas-k(GLuint mask);

Sets‘-t_h_e r_n_a_sks’used_to control wfiflng :into.tl-1e_.indicated_.'huffers-. The.

mask set by,'glI11d_eXMask0‘applies only .in’color-ir-1dex=. mode. If a" 1
‘appears in inask',1:he (_-:orresponding."bit in t_h'e- color-index bufferis.
written; vghere a Oappears-, ‘the--bi,tf-isn’-t wri;ten*..,Simi1a;ly,,glColo1=Mask0
affects drawingzein RGBA.modé-fairly. C_[‘he"'r§d,- green, blue; ar1d_-_'aIplm' values
CQl‘itI0l whether-‘t-he.corresponding: component is «wri-‘ttenn (GL__TRUE
ri1ea'ns’~it';i's w1'_itté'n":)-If flag is-"(’}_L‘,“_’i7R’IJ’E for g]DepthMa$k()l,..th_é depth

.'§l)'_t';-l‘I'___e__1,';‘”i".i' er1z‘§’blei';l‘fE;‘r.ggritin.grT3'thef€vGi§ei‘:it’s{dis:al3lefl§g§he-iiiaslc for »
_gI_Sté_ncilMask0 isflused for stencil data in the same way asj;,them_ask' .
_used‘fo'1= Color-index datajn gllrgdexlyiasko. The? -.default:i'ralues'Iof*al1?- the
GLl';i9'o1'ea'n 'r_nask_s a3reT$(31r_*§TRF,I-E,:”_a1j_d,’the-dgfault.valuesfor ithertwof '

"GLui1it are7”'all" 1-is.

E You can do plenty of tricks with color masking in color-index mode. For
' example, you can use each bit in the index as a different layer and set up

"5 interactions between arbitrary layers with appropriate settings of the color
; map. You can create overlays and underlays, and do so—cal1ed color—map

animations. (See Chapter 14 for examples of using color masking.) Masking

in RGBA mode is useful less often, but you can use it for loading separate

; image files into the red, green, and blue bitplanes, for example.

Buffers and Their Uses 381

L____j___jj_
0430

382

You've seen one use for disabling the depth buffer in "Three—Dimensional

Blending with the Depth Buffer” on page 222. Disabling the depth buffer
for writing can also be useful if a common background is desired for a series

of frames, and you want to add some features that may be obscured by parts

of the background. For example, suppose your background is a forest, and

you would like to draw repeated frames with the same trees, but with _

objects moving among them. After the trees are drawn with their depths

recorded in the depth buffer, then the image of the trees is saved, and the

new items are drawn with the depth buffer disabled for writing. As long as

the new items don't overlap each other, the picture is correct. To draw the
next frame, restore the image of the trees and continue. You don't need to

restore the values in the depth buffer. This trick is most useful if the

background is extremely complex—so complex that it’s much faster just to

recopy the image into the color buffer than to recompute it from the

geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer

to hold multiple stencils (one per bit). You might use this technique to
perform capping as explained in “Stencil Test” on page 385 or to implement

the Game of Life as described in “Life in the Stencil Buffer” on page'526.

Note: The mask specified by glSter1cilMask0 controls which stencil

bitplanes are written. This mask isn't related to the mask that’s

specified as the third parameter of glStencilFunc(), which specifies

which bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL
performs several calculations to rotate, translate, scale, determine the

lighting, project the object(s) into perspective, figure out which pixels in
the window are affected, and determine what colors those pixels should

be drawn. Many of the earlier chapters in this book give some information

about how to control these operations. After OpenGL determines that an

individual fragment should be generated and what its color should be,
several processing stages remain that control how and whether the

fragment is drawn as a pixel into the framebuffer. For example, if it's

outside a rectangular region or if it’s farther from the viewpoint than the

pixel that's already in the framebuffer, it isn't drawn. In another stage, the

fragment’s color is blended with the color of the pixel already in the
framebuffer.

Chapter 10: The Franrebufier

0431

This section describes both the complete set of tests that a fragment must

pass before it goes into the frarnebuffer and the possible final operations

that can be performed on the fragment as it’s written. The tests and

operations occur in the following order; if a fragment is eliminated in an
early test, none of the later tests or operations take place.

Scissor test

Alpha test

Stencil test

Depth test

Blending

Dithering
2‘*‘:'-""5-":'*E-""E"l"

Logical operation

Each of these tests and operations is described in detail in the following
sections.

Scissor Test

You can define a rectangular portion of your window and restrict drawing
to take place within it by using the glScissor0 command. If a fragment lies

inside the rectangle, it passes the scissor test.

void glS_i:issor(GLi'nt x, G_I-.int .y,*_G=Lsizei -width, G[.sizei height); —

“Sets tlieflocation "ant! =si-_zé, of lthe scissor-re'c-tangle (also -known a's'_.t'11e I
I-sgissotr-Box).'The=arameteridélfine the lower-left comer (x-, y)_', the-_
-and height offt_11_e'rec-_;t_angle-; Pixels that lieinside the rectan.:g1e"pass
-theiscissiqr -test.-Spissorring igenabled and-disabled by passing ,

.GL_'SCI35QK;TE5.T'SD 'gl_E.n_able() aI'1d‘glDisab'le0. By default,‘ the

rectangle-.matches.tl1e"size of the window and scissoring-is disabled.

The scissor test is iust a version of a stencil test using a rectangular region of

the screen. It’s fairly easy to create a blindingly fast hardware
implementation of scissoring, while a given system might be much slower

at stenciling—perhaps because the stenciling is performed in software.

Testing and Operating on Fragments

0432

Advanced

An advanced use of scissoring is performing nonlinear projection. First

divide the window into a regular grid of subregions, specifying viewport.
and scissor parameters that limit rendering to one region at a time. Then

project the entire scene to each region using a different projection matrix.

To determine whether scissoring is enabled and to obtain the values that

define the scissor rectangle, you can use GL_SCISSOR_TEST with

glIsEnabled() and GL_SCISSOR_BOX_with glGetIntege1-v0.

Alpha Test

In RGBA mode, the alpha test allows you to accept or reiect a fragment

based on its alpha value. The alpha test is enabled and disabled by passing

GL__ALPHA_TES'I‘ to glEnable0 and glDisable0. To determine whether the

alpha test is enabled, use GL__ALPHA“TEST with glIsEnabled0.

If enabled, the test compares the incoming alpha value with a reference

value. The fragment is accepted or rejected depending on the result of the

comparison. Both the reference value and the comparison function are set
with glAlphaFunc(). By default, the reference value is zero, the comparison

function is GL_ALWAYS, and the alpha test is disabled. To obtain the alpha

comparison function or reference value, use GL_ALPHA_TEST_FUNC or

GL_ALPHA_TEST_REF with glGetIntegerv0.

'v?es2rfs‘4.AipHaFanctGLenumifiznc{GLcIa:npfren:» i ~::.’.d'*:= ea‘ s—i e i.
=« c. :-..-_v +1, , s .»-.,_g «
.$ets thszrelsleeémlsle amt<:°mean.ss°51l*funcH°n= £°£=$J}e,,elPh;.9? Issttthet
reference vfe___tltf'r§r£{fis damped"tb be 'l;_et§veéné.z§ré;and;ohe§' e=p_‘ossiblel_

and -t,1i‘,eif-rn§:=t.’niI1g;=!,;§.Eli3;ed Talglegl-O§,2.?5 23;, .»;- J ~ ‘

1

Parameter Meaning

GL_NEVER Never accept the fragment

GL_ALWAYS Always accept the fragment

GL_LESS Accept fragment if fragment alpha < reference alpha

GL_LEQUAL Accept fragment if fragment alpha S reference alpha

GL_EQUAL Accept fragment if fragment alpha = reference alpha

Table 10-2 glAlphaFunc() Parameter Values

Chapter I0: The Framebufler

0433

Parameter Meaning

GL_GEQUAL Accept fragment if fragment alpha 2 reference alpha

GL_GREATER Accept fragment if fragment alpha '> reference alpha -

GL_NOTEQUAL Accept ‘fragment if fragment alpha at reference alpha

Table 10-2 glAlphaFunc() Parameter Values (continued)

One application for the alpha test is to implement a transparency

algorithm. Render your entirescene twice, the first time accepting only
fragments with alpha values of one, and the second time accepting

fragments with alpha values that aren't equal to one. Turn the depth buffer
on during both passes, but disable depth buffer writing during the second

pass.

Another use might be to make decals with texture maps where you can see

through certain parts of the decals. Set the alphas in the decals to 0.0 where
you want to see through, set them to 1.0 otherwise, set the reference value

to 0.5 (or ‘anything between 0.0 and 1.0), and set the comparison function

to GL_GREATER. The decal has see—through parts‘, and the values in the

depth buffer aren’t affected. This technique, called billboarding, is

described in “Sample Uses of Blending” on page 217.

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no

stencil buffer, the stencil test always passes.) Stenciljng applies a test that

compares a reference value with the value stored at a pixel in the stencil

buffer. Depending on the result of the test, the value in the stencil buffer is

modified. You can choose the particular comparison function used, the

reference value, and the modification performed with the glStencilFunc0

and glStencilOp0 commands.

void gl§ten'cilFunc(GLenum fimc, GLint'refi GLuint mask);

* Setshthe‘ ‘C"bmpa.ri's'on" f{in'c'tioh '(fii'r't‘i§}:‘.refe-rerice '-valiiéi (ref); a mask»
(mask) fof t__1s_'e the -stencil-test; If-1e reference valueis compared-‘to
the value ihr-r=the stencil-’buffe1‘.;usir'_1g.the comparison fun_c_tion,. but“the~
coinpatishon appli_es“o'nl}'t-to th'5se‘_b'its-where the corresp.on’ding bits of the
mask are 1. The function can be G'L_NEV‘£.R, G-L_ALWAYS, GL_l.ESS-,

GL_LEQUAL, GL'_EQUAL, GL_GEQUAL, GL_GREATER, of

Testing and Operating on Fragmenrs

0434

386

GL_STENCIL*FUNE—

‘"'_“‘_'_l

G1-._‘NOTEQUAL. ‘If it’s GL_L-ESS, for example, then -title-fragment passes it-
refis "less than the value in.th'e.ster_rcil b'u1-‘ferrelf the s__tencil.buffer. contains

S; bit-planes, the lewaorder s -bits-oi-mask-arevbitwise .-$1\.1Ded~wit11'=the1value -s
_ in the stencil buffer and with the refe‘ré“n'cei”ya1ue-_-beforerthe :éo_tri_15a_i'i$oI1
_ -‘is .lpe_£f$?FII1€§::11;1i§S_l§€fI;15Z€Ll]J¢;S =;iI;i_'i§1}1,terpreted a-singnnegeitisre-aa» r~ -ii“

va1i?e.s. The stencil test enabled aria-="drse_'bled by"-passing __
GL+STENCIL_TEST to_-gl'l‘3._n‘able0 =-and'gl.Dis’able(),. B3;-default, is
GL__AI.,W_AYS, rieffis 0,"m_ask'nis all ,_1’sl ,a'nd'? steneiling Zisidisabled. '

-. .

V0i.<ii';s1$t‘t.*-irIici1f>51“:>(',fi“r.L!e1'1.I.1'r‘ir1". fail.’5‘GLén1::‘fI‘T2f:iil;.IGEé£ium.éIJa;sé)’;-'

-Spe'ci_fies'?-ho’w-the-d‘ata‘iii'tIie stencil-bi}f_fe_‘r is-riiod-ifiediwheir "a fragment
pass_es_or--fa-ilsi-the.sten‘cil test. The~tl1reé-"fung:tionsfgziietfzfaii;-anel'Izpas-s can

be ‘G—L_‘K_EEP;. _G_L;Z1§R0; 'GL-_REPLACE} 'GL_'I_N_C_R;,G[§jDECR,' or '
GL_'[NV'ERT.‘T1riey correspond to=keeping.the Current value, replacing it -
witJf_1 ’-zero, I_ep'laci-rig it;with the _refereng:e_~ V,-'1lue,~incrernenti_115g¢it,
dectementing it,vand=_bitwis'eiinVertir'-1g’ i‘i.’Th_e. r"esfliz:gf.-'th_e in'cr_e'm_ent and
d€C];eI'I1€nt_§fl.lI'1C1fi0nS is cIamp"e“d to lie-betiween -zero: ai1'd_ the‘ niaxirnuirl
unsigned. integer: value (25-'1; if the. stencil .buffer_hold_'s.s.bits). The far‘!
function is: applied if the fragment fails the stencil,test;lif it. passes,.then
zfaii is applied if the depth test f__ails- and zpass if the depth test passes, or if

no-de'pth.~test.is performed. (See “Deptl_f'Test"«:‘ on pageJ391..) By default, all
three stencil operations are GLJGEEP.‘ 1 -

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the

query function g1Getlr1tegerv0 and one of the values shown ir1 Table 10-3.

You can also determine whether the stencil test is enabled by passing

GL_STENCIL_TEST to glIsEnabled0.

Query Value i ‘ Meaning

Stencil function

GL_STENCIL_REF Stencil reference value

GL_STENCIL_VALUE_MASl< Stencil mask

GL__S'I'ENCIL_FA1L

GL_STE.NCIL_PASS___DEP'I'I-I_FAIL

Stencil fail action

Stencil pass and depth buffer fail action

Table 10-3 Query Values for the Stencil Test

Chapter 10: The Frarnebujfer

0435

an.-v-tr--1..

Query Value Meaning

GL_STENCIL_PASS_DEPTH_PASS Stencil pass and depth buffer pass action

Table 10-3 Query Values for the Stencil Test (continued)

- Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly

shaped region of the screen to prevent drawing from occurring within it (as

in the windshield example in "Buffers and Their Uses” on page 376). To do

this, fill the stencil mask with zeros, and then draw the desired shape in the

stencil buffer with PS. You can ’t draw geometry directly into the stencil

buffer, but you can achieve the same result by drawing into the color buffer

and choosing a suitable value for the zpass function (such as GL_REPLACE).

(You can use glDrawPixels0 to draw pixel data directly into the stencil

buffer.) Whenever drawing occurs, a value is also written into the stencil
buffer (in this case, the reference value). To prevent the stencil-buffer

drawing from affecting the contents of the color buffer, set the color mask

to zero (or GL_FALSE). You might also want to disable writing into the

depth buffer. '

After you’ve defined the stencil area, set the reference value to one, and the

comparison function such that the fragment passes if the reference value is

equal to the stencil-plane value. During drawing, don't modify the contents

of the stencil planes.

Example 10-1 demonstrates how to use the stencil test in this way. Two tori

are drawn, with a diarnond—shaped cutout in the center of the scene. Within

the diamond-shaped stencil mask, a sphere is drawn. In this example,

drawing into the stencil buffer takes place only when the window is
redrawn, so the color buffer is cleared after the stencil mask has been
created.

Example 10-1 Using the Stencil Test: ste'ncil.c

#inc1ude <GL/gl.h>

ilinclude <GL/g1u.h>

#include <GL/glut.h>
#include <stdlib.h>

ildefine YELLOWMAT 1

#define BLUEMAT 2

void init (void)

Testing and Operating on Fragments

0436

337

Ghfloat ye11ow_diffuse[] = { 0.7, 0.7, 0.0, 1.0 };

GLfloat ye11owflspecular[] = { 1.0. 1.0, 1.0, 1.0 }:

GLf1oat blue_diffuse[] = { 0.1, 0.1. 0.7, 1.0 };

GLf1oat b1ue_specu1ar[] = { 0.1, 1.0, 1.0. 1.0 };

GLfloat positionHpne[] = { 1.0, 1.0, 1.0, 0.0 };

g1NewList(YELLOWMAT. GL_COMPILE};

g1Materia1fv{GL_E‘RON'I', GL_DIFFUsE. yel1ow_diffuse}:

g1Materia1fv(GL_FRONT, GL_SPECULAR, yel1ow_specu1ar};

glMateria1f{GL_FRONT, GL_SHININESS, 64.0};

glEndList{);

glNewList{BLUEMAT, GL_COMPILE); .

glMaterialfv(GL_FRONT, GL_DIFFUSE, b1ue_diffuse);

g1Materialfv(GLLFR0NT, GL;SPECULAR, blue_specu1ar);

glMateria1f{GL_FRONT, GL_SHININESS, 45.0};

g1EndList();

glLightfv(GL_LIGHTO, GL_POSITION. position_pne);

g1Enable{GL_LIGHTO};

g1Enab1e{GL_LIGHTING);

glEnable{GL_DEPTH_TEST};

g1C1earStenci1{Ox0};

glEnab1e{GL_STENCIL_TEST};
1

/* Draw a sphere in a diamond-shaped section in the
* middle of a window with 2 tori.

*/

Void disp1ay(void)
{

glclear{GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT};

/* draw blue sphere where the stencil is 1 */

g1Stenci1Func {GL_EQUAL, 0x1, OX1];

glstencilop (GLLKEEP, GL_KEEP, GL_KEEP};

g1Ca11List {BLUEMAT};

glutsolidsphere (0.5, 15, 15);

/* draw the tori where the stencil is not 1 */

g1StencilFunc {GL_NOTEQUAL, 0x1, OX1);

g1PushMatrix();

Chapter 10: The Framebuffer

0437

I
glRotatef {4S.0. 0.0. 0.0. 1.0)

1.0. 0.0);glRotatef (45.0, 0.0,

g1Ca11LiSt (YELLOWMATI:

glutsolidmorus (0.275, 0.85, 15, 15};

glPushMatrix{};

g1Rotatef (90.0, 1.0. 0.0, 0.0):

§1utSo1idTorus (0.275, 0.85, 15, 15);
g1PopMatrix();

g1PopMatrix();

/* Whenever the window is reshaped, redefine the

* coordinate system and redraw the stencil area.
*/

void reshapetint w, int h}
{

g1Viewport{0. 0. {GLsizei) w, (GLsizei] h};

/* create a diamond shaped stencil area */

glmatrixnode(GL_PROJECTION);

glLoadIdentity();

if {w <= h)

g1uOrtho2D{—3.0, 3.0, —3.0*{GLf1oat}h/(GLf1oat}w,

3.0*{GLf1oat]hX{GLf1oat]w];
else

g1u0rtho2D{—3.0*(GLfloat)w/(GLfloatJh,

3.0*{GLf1oat}w/{GLf1oat}h. -3.0. 3.0};

gluatrixnode(GL_MODELVIEW);

g1LoadIdentity(};

glclear{GL_STENCIL_BUFFER_BIT);

glStenci1Func {GL_ALWAYS, OX1, 0x1};

g1StenCil0p (GL_REPLACE, GL_REPLACE, GL_REPLACE}:

g1Begin{GL_QUADS};

glvertexzf (-1.0. 0.0};

g1Vertex2f (0.0. 1.0};

g1Vertex2f {1.0, 0.0);

glVertex2f (0.0, -1.0};

9lEnd(}:

glflatrixflode{GL_PROJECTION}:

g1LoadIdentity();

gluPe:spective(45.0, {GLf1oat} w/(GLf1oat) h, 3.0, 7.0);
glflatrixmode(GL_MODELVIEW);

g1LoadIdentity();

glTrans1atef{0.0, 0.0, -5.0);

IkwfingandchnnufingonIfiugnunus 389

0438

390

/* Main Loop‘R

*/
Be certain to request stencil bits.

int main(int argc, char** argv)
{

}

g1utInit{&argc, argv);

g1utInitDisp1ayMode (GLUT_SINGLE I GLUTLRGB

I GLUT_DEPTH I GLUT_STENCILl3
glutlnitwindowsize (400, 400):

g1utInitwindowPosition (100, 100);

glutcreatewindow {argv[0]};

init II};

g1utReshapeFunc{reshape};

g1utDisp1ayFunc(disp1ay};

glutMainLoop();
return 0:

The following examples illustrate other uses of the stencil test. (See —

Chapter 14 for additional ideas.)

Capping——Suppose you’re drawing a closed convex object (or several of

them, as long as they don’t intersect or enclose each other) made up of
several polygons, and you have a clipping piane that may or may not

slice off a piece of it. Suppose that if the plane does intersect the object,

you want to cap the object with some constant-colored surface, rather

than seeing the inside of it. To do this, clear the stencil buffer to zeros,

and begin drawing with stenciling enabled and the stencil comparison

function set to always accept fragments. Invert the value in the stencil

planes each time a fragment is accepted. After all the objects are drawn,

regions of the screen where no capping is required have zeros in the

stencil planes, and regions requiring capping are nonzero. Reset the
stencil function so that it draws only where the stencil value is

nonzero, and draw a large polygon of the capping color across the
entire screen.

Overlapping translucent polygons—Suppose you have a translucent

surface that’s made up of polygons that overlap slightly. If you simply
use alpha blending, portions of the underlying objects are covered by

more than one transparent surface, which doesn't look right. Use the

stencil planes to make sure that each fragment is covered by at most

one portion of the transparent surface. Do this by clearing the stencil

planes to zeros, drawing only when the stencil plane is zero, and

incrementing the value in the stencil plane when you draw.

Chapter 10: The Framebufer

0439

0 Stipp]1'ng—Suppose you want to draw ‘an image with a stipple pattern.
(See “Displaying Points, Lines, and Polygons” on page 49 for more

information about stippiing.) You can do this by writing the stipple
, pattern into the stencil buffer, and then drawing conditionally on the

contents of the stencil buffer. After the original stipple pattern is

drawn, the stencil buffer isn't altered while drawing the image, so the

object gets stippled by the pattern in the stencil planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance

between the viewpoint and the object occupying that pixel. Then if the

specified depth test passes, the incoming depth value replaces the one
already in the depth buffer.

The de §nfiall1_usedfor_hi_c_icl_en;s_tr_rfa_1g_e_elimin_ation. If a new
candidate color for that pixel appears, it’s drawn only if the corresponding
object is closer than the previous object. In this way, after the entire scene

has been rendered, only objects that aren't obscured by other items remain.
Initially, the clearing value for the depth buffer is a value that’s as far from

the viewpoint as possible, so the depth of any object is nearer than that

value. If this is how you want to use the depth buffer, you simply have to

enable it by passing GL_DEPTH_TEST to glEnable() and remember to clear

the depth buffer before you redraw each frame. (See "Clearing Buffers” on

page 378.) You can also choose a different comparison function for the

depth test with g1DepthFunc().

Void g1DepthFunc(§}Lenum fimc); . '

.Sets.the, comparison function for'therdepthvtest._ The -value for,.fi1nc_must
be GL_NEVE_I}, GL_ALWAYS;'GL__LESSj G-L‘;I“.EQU'AL, GI'.'_:-EQI-JAL,
GL_GEQUA'L,«GLf_,4;GREATER,_ or G,I;._NO'FEQU-AL. An "incoming fragment
passes the depth. test if its 2 value has the specified relation to the value
already,-stored in tlie.-depth'.buffet. The default is GL_1_;E.SS,-wh1'_ch means
that -an incomin_g;fragment_ passes the test if“its z value is less than that

ia1‘€@dY;§*°*¢diir£;*.ti?..$1@Pthib1zffer_-.!n this ‘.C_‘7*,5."-»...“.'.‘,S'3'§.V§!‘¥EZ§¢PI§.?§’}:‘§.;31h¢
"clistafice‘fi(i‘ri‘:i“fi1 7th‘e='viewpoint‘,=-an‘i1‘?smal1eif"iritl1ies*n1eéirt the ‘
«corresponding obiectsfiare closer‘ to the-'vie‘w_point. '

Teating and Operating on Fragments

0440

391

392

Blending, Dithering, and Logical Operations

Once an incoming fragment has passed all the tests described in the

previous section, it can be combined with the current contents of the color

buffer in one of several ways. The simplest way, which is also the default, is
to overwrite the existing values. Alternatively, if you’re using RGBA mode
and you want the fragment to be translucent or antiaiiased, you might

average its value with the value aiready in the buffer (blending). On systems

with a small number of available colors, you might want to dither color
values to increase the number of-colors available at the cost of a loss in

resolution. In the final stage, you can use arbitrary bitwise logical

operations to combine the incoming fragment and the pixel that's already_
written.

Biending.

Blending combines the incoming fragment’s R, G, B, and alpha values with

those of the pixel already stored at the location. Different blending

operations can be applied, and the blending that occurs depends on the

values of the incoming alpha value and the alpha value (if any) stored at the

pixel. (See “Blending” on page 214 for an extensive discussion of this topic.)

Dithering

On systems with a small number of Color bitplanes, you can improve the

color resolution at the expense of spatial resolution by dithering the color

in the image. Dithering is like halftoning in newspapers. Although The New

York Times has only two colors—black and white—it can show photographs

by representing the shades of gray with combinations of black and white

dots. Comparing a newspaper image of a photo (having no shades of gray)

with the original photo (with grayscaie) makes the loss of spatial resolution
obvious. Similarly, systems with a small number of color bitplanes may

dither values of red, green, and blue on neighboring pixels for the

perception of a wider range of colors.

The dithering operation that takes place is hardware-dependent; all
0penGL allows you to do is to turn it on and off. In fact, on some machines,

enabling dithering might do nothing at all, which makes sense if the

machine already has high color resolution. To enable and disable dithering,

pass GL_DITHER to glEnable0 and glDisable0. Dithering is enabled by
default. '

Chapter 10: The Frarnebrgfiier

0441

Dithering applies in both RGBA and color-index mode. The colors or color

indices alternate in some hardware-dependent way between the two nearest

possibilities. For example, in color-index mode, if dithering is enabled and

the color index to be painted is 4.4, then 60% of the pixels may be painted

with index 4 and 40% of the pixels with index 5. (Many dithering

algorithms are possible, but a dithered value produced by any algorithm

must depend upon only the incoming value and the fragment’s x and y

coordinates.) In RGBA mode, dithering is performed separately for each

component (including alpha). To use dithering ir1 color-index mode, you

generally need to arrange the colors in the color map appropriately in

ramps, otherwise, bizarre images might result. '-

Logical Operations

The final operation on a fragment is the logical operation, such as an OR,

XOR, or INVERT, which is applied to the incoming fragment values (source)

and!or those currently in the color buffer (destination). Such fragment

operations are especially useful on bit-bit-type machines, on which the
primary graphics operation is copying a rectangle of data from one place in

the window to another, from the window to processor memory, or from

memory to the window. Typically, the copy doesn’t write the data directly

into memory but instead allows you to perform an arbitrary logical
operation on the incoming data and the data already present; then it

replaces the existing data with the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many
such machines are available. As an example of using a logical operation,

XOR can be used to draw on an image in an undoable way; simply XOR the

same drawing again, and the original image is restored. As another example,

when using color-index mode, the color indices can be interpreted as bit

patterns. Then you can compose. an image as combinations of drawings on

different layers, use writemasks to limit drawing to different sets of

bitplanes, and perform logical operations to modify different layers.

You enable and disable logical operations by passing

GL_lNDEX_LOGlC_OP or GL_COLOR__LOGIC_OP to glEnable0 and

glDisable() for color-index mode or RGBA mode, respectively. You also

must choose among the sixteen logical operations with g1Logic0p0, or

you'll just get the effect of- the default value, GL_COPY. (For backward _

compatibility with OpenGL Version 1.0, glEnable(GL_LOGlC_OP) also

enables logical operation in color-index mode.)

Testing and Operating on Fmgmenrs

0442

393

394

void.gl-Lo_gic()p(gLe_num- optgode); -IL:

Selects--the logical operation_..to l9e‘_perfo1'm'ed-_;—_given- an'..i-neorn_ii}g;;.(source)
fragment and,tl:ie1-"pixel currently_jstorecl.in..thie-colorbuffer=(de§1ination).
Table '10-4 shows‘ the po'ssiple;7alues. fogogcoqejand_thei§:pie5;ning (5
representsr-sourcééé-ndisdidésiiiiizitioifi?-'Tlii§'7%i?le—fault?ira‘l"fié'5_isé'£E‘r1:§t3OPY£<‘€'r9 '_**'*“

Parameter Operation Parameter Operation

GL_CLEAR 0 _ GL_AND 5 A d

GL_COPY s GL_0R s v d

GL_NO0P d GL_NAND -(S A d)

GL_SET 1 GL_NOR -(s v d)

GL_COPY_lNVERTED -s GL__XOR s XOR d

GL_lNVERT —»d GL_EQUIV -(S XOR a‘)

GL_AND_REVERSE 5 A wd GL_AND_INVERTED -as A d

GL_OR_REVERSE 5 v -d GL_OR_1NVERTED -s v d

Table 10-4 Sixteen Logical Operations

The Accumulation Buffer

Advanced

The accumulation buffer can be used for such things as scene antialiasing,

motion blur, simulating photographic depth of field, and calculating the

soft shadows that result from multiple light sources. Other techniques are

possible, especially in combination with some of the other buffers. (See The

Accumulation Buffer: Hardware Support for High-Quality Rendering by Paul

Haeberli and Kurt Akeley (SIGGRAPH 1990 Proceedings, p. 309-318) for
more information on the uses for the accumulation buffer.)

OpenGL graphics operations don't write directly into the accumulation

buffer. Typically, a series of images is generated in one of the standard color
buffers, and these are accumulated, one at a time, into the accumulation

buffer. When the accumulation is finished, the result is copied back into a

color buffer for viewing. To reduce rounding errors, the accumulation

buffer may have higher precision (more bits per color) than the standard

Chapter 10: The Franrebufier

0443

color buffers. Rendering a scene several times obviously takes longer than

rendering it once, but the result is higher quality. You can decide what

trade-off between quality and rendering time is appropriate for your
application.

You can use the accumulation buffer the same way a photographer can use

film for multiple exposures. A photographer typically creates a multiple

exposure by taking several pictures of the same scene without advancing

the film. If anything in the scene moves, that object appears blurred. Not

surprisingly, a computer can do more with an image than a photographer

can do with a camera. For example, a computer has exquisite control over
the viewpoint, but a photographer can't shake a camera a predictable and
controlled amount. (See "Clearing Buffers” on page 378 for information

about how to clear the accumulation buffer; use g1Accum0 to control it.)

void;glAccum{GLenum- op, 'GLfloat- value);'

Controls-the accumulafion buffer. The oppara-meter,selects the
"operation-, and value is .a number to be used in,th"at operation. The
possible-operations are GLAGCUM, GL;LOAD, GL_RETURN, GL_A-DD,
and .GL__MULT.

-- GL_ACCUM reads each pixel from the buffer currently selectedfor
'r'eadi-ng with .glR_eadBuffer0, multiplies the R, G, 1;, andalpha values

by value, and adds-the result to the accumul-ation buffer.

0 “GI-:__LOA;D' does the same thing, ‘except that the Yaiues replace those
in«the accumulation. buffer rather than being added. to them.

0 takes values fromthe -accumulation buffer;niultiplies
them by value, ar‘icrlvpiac_e's the.'result' in.',t-he»c3o1or'hziffer('s) enabled “for
wI'ri‘ti'ng., ‘ 'H

I"? GLQAD-D ra'nd_- GI.-;:M_ULT.sirnply-~add or multiply the vaiueof each
-pixel i=n,'-the a_c__e1'u-nulatiom buffer by value and-.ther'1--retum"it to-the

1 _ ,accu_rr1tIlation_-.?m1fifer.- -For-GL;'MULT,.value'-- is' clamped to be" in the .
‘rat-1_'ge.'.[+1'-._0,1s0].-;Fdr GL_A"-D-D, no clamping occurs. ‘

I r l

Scene Antialiasing

To perform scene antialiasing, first clear the accumulation buffer and

enable the front buffer for reading and writing. Then loop several times

The Accumulation Bufier

0444

395

396

(say, n) through code that jitters and draws the image (iittering is moving the

image to a slightly different position), accumulating the data with

g1Accu.m{GL_ACCUM, 1. 0/11) ;

and finally calling

g].Accum(GL_RE'I'URN, 1.0}:

Note that this method is a bit faster if, on the first pass through the loop,

GL_LOAD is used and clearing the accumulation buffer is omitted. See

Table 105 for possible 1' ittering values. With this code, the image is drawn

n times before the final image is drawn. If you want to avoid showing the

user the intermediate images, draw into a color buffer that's not displayed,

accumulate from that, and use the GL_RETURN call to draw into a displayed

buffer (or into a back buffer that you subsequently swap to the front).

You could instead present a user interface that shows the viewed image

improving as each additional piece is accumulated and that allows the user

to halt the process when the image is good enough. To accomplish this, in

the loop that draws successive images, call glAccum0 with GL__RETURN
after each accumulation, using 16.0/1.0, 16.0/2.0, 16.0/3.0, as the second

argument. With this technique, after one pass, 1/16 of the final image is

shown, after two passes, 2/16 is shown, and so on. After the GL_RETURN,

the Code should check to see if the user wants to interrupt the process. This

interface is slightly slower, since the resultant image must be copied in after

each pass.

To decide what u should be, you need to trade off speed (the more times you

draw the scene, the longer it takes to obtain the final image) and quality

(the more times you draw the scene, the smoother it gets, until you make
maximum use of the accumulation buffer’s resolution). Plates Z2 and 23

show improvements made using scene antialiasing.

Example 10-2 defines two routines for iittering that you might find useful:

accPerspective0 and accFrustum(). The routine accPerspective() is used

in place of gluPerspective_0, and the first four parameters of both routines

are the same. To jitter the viewing frustum for scene antialiasing, pass the x

and y jitter values (of less than one pixel) to the fifth and sixth parameters
of accPerspective(). Alsopass 0.0 for the seventh and eighth parameters to

accPerspective() and a nonzero value for the ninth parameter (to prevent

Chapter 10: The Framebufiier

0445

division by zero inside accPerspective0). These last three parameters are
used for depth-of-field effects, which are described later in this chapter.

Example 10-2 Routines for Jittering the Viewing Volume: acCpersp.c

#deEine PI_ 3.14159265358979323846

void accFrustum(GLdouh1e left, GLdouble right. GLdouble bottom,

GLdoub1e top, Ghdouble near, GLdoub1e far, GLdouble pixflx,

GLdoub1e pixdy, GLdoub1e eyedx. GLdoub1e eyedy.
GLdouble focus}

Ghdouhle xwsize, ywsize;

GLdoub1e dx, dy;

GLint viewport[4];

g1GetIntegerv {GL_VIEWPORT. viewport);

xwsize = right — left;

ywsize = top - bottom;

dx = -(pixdx*xwsize/(GLdouh1e} viewport[2] +

eyedx*near/focus);

dy = —[pixdy*ywsize/(GLdoub1e} viewport[3] +
eyedy*near/focus};

glfiatrixflode(GLLPROJECTIONJ;

glLoadIdentity{);

g1Frustum (left + dx, right + dx, bottom + dy, top + dy.

near, far};

glMatrixMode{GL_MODELVIEW];

g1LoadIdentity(};

g1Translatef {—eyedx, —eyedy, 0.0);
}

void accPerspective(GLdoub1e fovy, GLdoub1e aspect,

GLdoub1e near. GLdoub1e far, GLdoub1e pixdx, GLdoub1e pixdy,

GLdoub1e eyedx, GLdoub1e eyedy, GLdoub1e focus}

GLdouble fov2,1eft.right,bottom,top;

fov2 = ((fovy*PI_) I 180.0] / 2.0:

top = near I {fcos{fov2) I £sin(fov2)};

bottom = —top;

right = top * aspect;

left = —right;

The Accumulation Bzqfer

0446

397

398

3

Example 10-3 uses these two routines to perform scene antialiasing.

accFrustum (left, right, bottom, top, near, far,

pixdx, pixdy, eyedx, eyedy, focus};

Example 10-3 Scene Antialjasing:- accpersp.c
#inc1ude <GL/gl.h>

#inc1ude <GL/glu.h>
#include <stdlib.h>

#include <math.h>

#inc1ude <GL/glut . 11:»

#include “jitter.h'

void init(void)

{

}

GLf1oat mat_ambient[] = { 1.0, 1.0, 1.0, 1.0 }:

GLf1oat mat_specular{] = { 1.0, 1.0, 1.0, 1.0 };

Ghfloat light_position[] = { 0.0, 0.0, 10.0, 1.0 };

GLf1oat 1m_ambient[] = { 0.2, 0.2, 0.2, 1.0 };

g1Materialfv(GL_FRONT, GL_AMIENT, mat_ambient);

glMateria1fv(GL,FRONT, GL_SPECULAR, mat_specu1ar);

g1Materialf(GL_FRONT, GL_SHININESS, 50.0};

glLightfv{GL__LIGHTO, GL'_POSITION, light_position);

g1LightModelfv(GL_LIGHT_MODEy_AHBIENT, 1m_ambient);

g1Enab1e{GL_LIGHTING);

g1Enab1e{GL_LIGHTO);

g1Enable{GL_DEPTH_TEST};

glshadefiodel (GL_FLAT);

glclearcolor { 0 . 0 , . 0 ,
0

0 0.0, 0.0};

g1C1earAccum(0.0, 0. , 0.0, 0 0}-

void displayobjectstvoidl
{

GLf1oat torus_diffuse[] = { 0.7, 0.7, 0.0, 1 0 };

GLf1oat cube_diffu3e[] = { 0.0, 0.7, 0.7, 1.0 };

GLf1oat sphere_diffuse[} = { 0.7, 0.0, 0.7, 1.0 },

GLf1oat octa_diffuse{] = { 0.7, 0.4, 0.4, 1.0 };

g1PushMatrix {);

g1Trans1ate£ {0.0, 0.0, -5.0);

g1Rotatef (30.0, 1.0, 0.0, 0.0);

Chapter I0: The Framebufibr

0447

glPushMatrix (};

g1Tréns1atef (-0.80, 0.35, 0.0):

g1Rotatef (100.0, 1.0, 0.0, 0.0};

g1Materia1fv(GL_FRONT, GL_DIFFUSE, torus_diffuse);

g1utSo1idTorus (0.275, 0.85, 16. 16):

g1PopMatrix ();

g1PushMatrix (J;

g1Trans1atef (-0.75, -0.50. 0.0};

g1Rotatef (45.0, 0.0, 0.0, 1.0);

g1Rotatef (45.0. 1.0, 0.0, 0.0):

g1Materia1fv(GL_FRONT, GL_DIFFUSE, cube_diffuse);

glutsolidcube (1.5);

g1PopMatrix (}:

g1PushMatrix i};

g1Trans1atef (0.75, 0.60, 0.0};

g1Rotatef (30.0, 1.0, 0.0, 0.0);

g1Materia1fv(GL_FRONT, GL_DIFFUSE, sphere_diffuse);

glutsolidsphere (1.0, 16. 16);

glPopMatrix ();

glPushMatrix (};

g1Trans1atef £0.70, -0.90, 0.25);

glMateria1fv(GL_FRONT, GLLDIEFUSE, octa_diffuse};

glutsolidoctahedron (1;

glPopMatrix (};

g1PopMatrix (J;
}

#define ACSIZE 8

void displaytvoid}
{

GLint viewport[4];

int jitter; -

glGetIntegerv (GL_VIEWPORT, viewport};

glclear{GL_ACCUH_BUFFER_BIT};

for (jitter = 0; jitter < ACSIZE; jitter++} {

glclear{GL_COLDR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT}:
accPerspective (50.0,

{GLdoub1e) viewport[2]f(GLdouble) viewport[3],

1.0, 15.0. j8[jitter].x, j8{jitter].y, 0.0. 0.0. 1.0);
displayflbjects {}:

TheAcaunukufln1Bhfi%r

0448

399

400

Q

g1Accum{GL_ACCUM, 1.0/ACSIZE};

}

glAccum [GL_RETURN, 1.0);

glF1ush(};

}

void reshapetint w, int h)
{

glViewport(0, 0, [GLsizei) W, (GLsizei} h);
}

/* Main Loop

* Be certain you request an accumulation buffer.
*/

int main(int argc, char** argv)
{

glutInit(&argc, argv};

glutlnituisplag/Mode (GLUT_SINGLE | GLU‘I‘_RGB

| GLUT_,ACCUM 1 GLUT_DEPTH);
glutInitWindowSize (250, 250};

g1utInitWindowPosition {100, 100);

glutcreatewindow (argv[0]};

initllp

glutReshapeFunc{reshape};

g1utDisplayFunc{display};

g1utMainLoop{};
return 0;

}

You don’t have to use a perspective projection to perform scene
antialiasing. You can antialias a scene with orthographic projection simply

by using glTranslate*0 to jitter the scene. Keep in mind that glTranslate*()

operates in world coordinates, but you want the apparent motion of the

scene to be less than one pixel, measured in screen coordinates. Thus, you

must reverse the world-coordinate mapping by calculating the jittering

translation values, using its width or height in world coordinates divided by

its viewport size. Then multiply that world-coordinate value by the amount
of jitter to determine how much the scene should be moved in world

coordinates to get a predictable iitter of less than one pixel. Example 10-4

Chapter I0: The Franzebufer

0449

shows how the display() and reshapeo routines might look with a

world-coordinate width and height of 4.5.

Eliample 10-4 Jittering with an Orthographic Projection: accantic

#define ACSIZE 8

Void displaytvoidl
{

GLint viewport[4];

int jitter;

g1GetIntegerv {GL_VIEwPORT, viewport};

glC1ear(GL_ACCUMfiBUFFER_BIT};

for {jitter 2 0; jitter < ACSIZE; jitter++] {

g1Clear{GL__COLOR__BUF‘FER__BI'I' | GL_DEPTH_BUFFER__BIT};
glPushMatrix ();

/* Note that 4.5 is the distance in world space between

* left and right and bottom and top.

* This formula converts fractional pixel movement to
* world coordinates.

glTrans1atef (j8[jitter3.x*4.5/viewport[2],

j8[jitter].y*4.5/viewp0rt[3], 0.0);

displayobjects (1;

glPopMatrix {};

glAccum(GL_ACCUM, 1.0/ACSIZE};

}

glhccum (GL_RETURN, 1.0);

g1FluSh{};
}

void reshapeiint w, int h}
I

glviewportio, 0, {GLsizei} w, (GLsizei} h};

glMatrixMode(GL_PROJECTION}:

glLoadIdentity{};
if (w <= h}

glortho (-2.25, 2.25, «2.25*h/w, 2.25*h/w, -10.0, 10.0};
else

glortho (—2.25*w/h, 2.25*w/h. -2.25, 2.25, -10.0, 10.0};
glmatrixmode{GL_MDDELVIEW);

glLoadIdentity():

The Accumulation Buffer 401

0450

402

Motion Blur

Similar methods can be used to simulate motion blur, as shown in Plate 7

and Figure 10-2. Suppose your scene has some stationary and some moving

objects in it, and you want to make a motion—blurred image extending over

a small interval of time. Set up the accumulation buffer in the same way,

but instead of spatially jittering the images, jitter them temporally. The

entire scene can be made successively dimmer by calling

g1Accum {GL_MUL'I', decayFact:or),-

as the scene is drawn into the accumulation buffer, where decayFactor is a

number from 0.0 to 1.0. Smaller numbers for decayFactor cause the object to

appear to be moving faster. You can transfer the completed scene with the

object’s current position and “vapor trail” of previous positions from the
accumulation buffer to the standard color buffer with

g1Accum (GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds, or if

some of them are accelerated. As before, the more jitter points (temporal, in

this case) you use, the better the final image, at least up to the point where

you begin to lose resolution due to finite precision in the accumulation

buffer. You can combine motion blur with antialiasing by jittering in both

the spatial and temporal domains, but you pay for higher quality with

longer rendering times.

 F Mflfiflfl

Figure 10-2 Motion-Blurred Object

Depth of Field

A photograph made with a camera is in perfect focus only for items lying

on a single plane a certain distance from the film. The farther an item is

from this plane, the more out of focus it is. The depth of field for a camera

is a region about the plane of perfect focus where items are out of focus by

a small enough amount.

Chapter 10: The Frmnebufer

0451

Under normal conditions, everything you draw with OpenGL is in focus

(unless your monitor’s bad, in which case everything is out of focus). The

accumulation buffer can be used to approximate what you would see in a

photograph where items are more and more blurred as their distance from

a plane of perfect focus increases. It isn't an exact simulation of the effects

produced in a camera, but the result looks similar to what a camera would

produce.

To achieve this result, draw the scene repeatedly using calls with different

argument values to glFrustum0. Choose the arguments so that the position

of the viewpoint varies slightly around its true position and so that each

frustum shares a common rectangle that lies in the plane of perfect focus,

as shown in Figure 10-3. The results of all the renderings should be averaged

in the usual way using the accumulation buffer.

Normal View

.4 (notjittered)
| ..

1 A Jitlered at Point A
Jiitered at Point B.q(.:flI‘Hlll|I:::%

B "\ Plane in Focus

Figure 10-3 Jitter-ed Viewing Volume for Depth-of-Field Effects

Plate 10 shows an image of five teapots drawn using the depth—of—fie1d

effect. The gold teapot (second from the left) is in focus, and the other

teapots get progressively blurrier, depending upon their distance from the
focal plane (gold teapot). The code to draw this image is shown in

Example 10-5 (which assumes accPe1’spective() and accFrustun1() are

defined as described in Example 10-2). The scene is drawn eight times, each

with a slightly jittered viewing volume, by calling accPerspective0. As you

recall, with scene antialiasing, the fifth and sixth parameters jitter the

viewing volumes in the x and y directions. For the depth-of—field effect,

however, you want to jitter the volume while holding it stationary at the

focal plane. The focal plane is the depth value defined by the ninth (last)
parameter to accPerspective(), which is z = 5.0 in this example. The

The Accumulation Bafier

0452

403

404

amount of blur is‘ determined by multiplying the at and y jitter values

(seventh and eighth parameters of accPerspective()) by a constant.
Determining the constant is not a science; experiment with values until the

depth ‘of field is as pronounced as you want. (Note that in Example 10-5,

the fifth and sixth parameters to accPerspective0 are set to 0.0, so scene

antialiasing is turned off.)

Example 10-5 Depth-of-Field Effect: dof.c

fiinclude :GL/gl.h>

#inc1ude <GL/g1u.h>

#inc1ude <GL/glut.h>
#include <stdlib.h>

#include <math.h>

#inc1ude “jitter.h'

void inittvoidl

{

GLf1oat ambient[} = { 0.0

GLf1oat diffuse[1 = { 1.0, ,

GLf1oat specular[] = { 1.0, 1.0,

GLfloat position[] = { 0 0 3 0

GLfloat lmode1*ambient[1

GLf1oat looa1_view[] = {

g1Lightfv(GL_LIGHTO, GL_AMBIENT, ambient];

g1Lightfv{GL_LIGl-ITO, GL_DIFFUSE. diffuse};

glLightfv{GL_LIGHTO, GL_POSITION, position};

g1LightMode1fv{GL_LIGHTeMODEL_AMmIENT, 1model_ambient}:

glLightMode1fv(GL_LIGHT_MODEL_LOCAL_VIEWER, 1oca1_view);

glFrontFace (GL_Cw};

g1Enable{GL_LIGHTING};

g1Enable(GL_LIGHT0l:

g1Enable{GL_AUTO_NDRMAL];

' glEnable{GL_NORMALIZE};

g1Enable(GL_DEPTH_TEST);

glC1earCo1or{0.0, 0.0, 0.0, 0.0};
g1C1earAccum(0.0, 0.0, 0.0, 0.0};

/* make teapot display list */

teapotList = g1GenLists(1);

glNewList {teapotList, GL_COMPILE);

glutSolidTeapot (0.5);

(3uqnerI0:Ihelfiunu%ufi%r

0453

glEndList (J;
}

void renderTeapot {GLf1oat x, GLf1oat y, GLf1oat 2.

Ghfloat ambr, GL£loat ambg, GLfloat ambb,

GLf1oat difr, Ghfloap difg, GLf1oat difb,
Gbfloat spear, GLfloat specg. GLf1oat specb, Ghfloat shine}

GLf1oat mat[4];

glPushMatrix(}:

glTrans1atef (x. y, 2};

mat[0] = ambr; mat[1] = ambg; mat{2} = ambb; mat[3] = 1.0;

glflaterialfv {GL_FRONT, GL_AMBIENT, mat};

mat[0] = difr; mat[1] = difg; mat[2] = difb;

glflaterialfv {GL_FRONT, GL_DIFFUSE, mat};

mat[0] = spear; mat[1] = specg; mat[2] = specb;

g1Materialfv {GL_FRONT, GL_SPECULAR, mat);

glflaterialf {GL_FRONT, GL_SHININESS, shine*128.0}:

g1Ca11List(teapotList);

glPopMatrix(};
}

void displayivoidl

{

int jitter;

GLint viewport[4];

glGetIntegerv {GL_YIEWPORT, viewport);

glC1ear[GL_ACCUM_BUFFER_BIT};

for {jitter = 0; jitter < 8; jitter++) {

glC1ear{GL_COLOR_BUFFER_BI'I' [GL_DEPTI-1___BUFFER_BIT) ,-

accPerspective (45.0,

{GLdoub1e} viewport {2} I {GLdoub1e) viewport [311
1.0, 15.0, 0.0, 0.0,

0.33*j8[jitter].x, 0.33*j8{jitter].y, 5.0);

f* ruby, gold, silver, emerald, and cyan teapots */

renderTeapot (-1.1, «0.S, —4.5, 0.1745, 0.01175,

0.01175, 0.61424, 0.04136, 0.04136,

0.727811, 0.626959, 0.626959. 0.6):

renderTeapot (-0.5, -0.5, -5.0, 0.24?25, 0.1995.

0.0745, 0.75164, 0.60648. 0.22648.

0.628281. 0.555802, 0.365065, 0.41;

The Accumulation Bujfer

0454

renderTeapot (0.2. ’§.5. -5.5, 0.19225, 0.19225,

0.19225, 0.50754, 0.50754. 0.50?54.

0.508273, 0.508273, 0.508273, 0.4}:

renderTeapot (1.0, -0.5, -6.0, 0.0215, 0.1745, 0.0215,

0.07568, 0.61424, 0.07568, 0.633,

0.727811, 0.633, 0.6):

renderTeapot (1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0,

0.509B0392, 0.50980392, 0.S0196078,

0.50196078, 0.50196078, .25}:

glAccum (GL_ACCUM, 0.125);
}

glAccum (GL_RETURN, 1.0):

glF1ush();
}

void reshapelint w, int h]
{ .

glviewporttfl, 0, (GLsizeiJ w, [GLsizei) h);
}

/* Main Loop

* Be certain you request an accumulation buffer.
*/

int main{int argc, char** argv)
i

glutlnittaargc, argv);

g1utInitDisplayMode (GLUT_SINGLE | GLUT_RGB

| GLUT__ACCIJH l GLU'I'_DEPTl-I};
glutlnitwindowsize (400, 400};

g1utInitWindowPosition (100, 100):

glutCreateWindow (argv[0]);

_ initll;

g1utReshapeFunc(reshape);

g1utDisp1ayFunc{disp1ay};

g1utMainLoop{);
return 0;

Soft Shadows

To accumulate soft shadows due to multiple light sources, render the _

shadows with one light turned on at a time, and accumulate them together.

This can be combined with spatial iittering to antialias the scene at the same

time. (See "Shadows" on page 519 for more information about drawing
shadows.)

Chapter 10: The Framebufibr

0455

Jittering

If you need to take nine or sixteen samples to antialias an image, you might

think that the best choice of points is an equally spaced grid across the

pixel. Surprisingly, this is not necessarily true. In fact, sometimes it's a good

idea to take points that lie in adjacent pixels. You might want a uniform

distribution or a normalized distribution, clustering toward the center of

the pixel. (The aforementioned SIGGRAPI-I paper discusses these issues.) In

addition, Table 10-5 shows a few sets of reasonable jittering values to be
used for some selected sample counts. Most of the examples in the table are

uniformly distributed in the pixel, and all lie within the pixel.

count Values

2 (0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 03317967229}, {0.7806016275, 02504380877},

{0.2261828938, 04131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, }0.1, 0.7}

6 }0.4646464646, 0.46-46464646}, {0.1313131313, 07979797979},

{0.5353535353, 08686868686}, {0.8686868686, 05353535353},

{0.7979797979, 01313131313}, {0.202020Z020, 02020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, l0.6875, 0.8125},

}0.8125, 0.1875}, {0.9375, 0.5625}, {0.-13 75, 0.0625}, {0.1875, 0.3125}

9 {0.5, 0.5}, 101666666666, 0.9444444444}, {0.5, 0.1666666666},

{0.5, 08333333333}, {0.1666666666, 02777777777},

{0.8333333333, 03888888888}, {0. 1666666666, 0.611111 1111},

{0.8333333333, 07222222222}, }0.8333333333, 00555555555}

12 {0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},

{0.4166666666, 0.12s}, {0.7s, 0.125}, 103333333333, 0.1251, {(175, 0.525},

{o.25, 0.375}, .{0.5333333333, 0.375}, {(1.9 166666666, 0.375},

{o.o333333333, 0.625], {o.ss3333333, 0.875}

Table 10-5 Sample Jittering Values

The Accumulation Bu_fi‘er

0456

407

408

count Values

'15 (0.375, 0.4375}, {0.525, 0.0625}, {0.375, 0.1375}, {0.125, 0.0525},
}0.375, 0.5375}, }0.s7s, 0.4375}, {0.525, 0.5625}, }0.375, 0.9375},

{0.625, 0.3125}, {0.125, 0.5525}, {0.125, 0.8125}, (0.375, 0.1375},

{0.s75, 0.9375}, [0.375, 0.5375}, {o.125, 0.3125}, }0.525, 0.3125}

Table 10-5 Sample Jittering Values (continued)

Chapter 10: The Framebufifiar

0457

Chapter 11

Tessellators and Quadrics

Chapter Obiectives

After reading this chapter, you'll be able to do the following:

Render concave filled polygons by first tessellating them into convex

polygons, which can be rendered using standard OpenGL routines.

Use the GLU iibrary to create quadrics objects to render and model the

surfaces of spheres and cylinders and to tessellate disks (circles) and
partial disks (arcs). '

0458

410

The OpenGL library (GL) is designed for low-level operations, both
streamlined and accessible to hardware acceleration. The OpenGL Utility

Library (GLU) complements the OpenGL library, supporting higher-level

operations. Some of the GLU operations are covered in other chapters.

Mipmapping (gluBuild*DMiprnaps0) and image scaling
(gluScaIeImage()) are discussed along with other facets of texture

mapping in Chapter 9. Several matrix transformation GLU routines

(gluOrtho2.D0, gluPerspective(), gluLookAt0, gluProject(), and
gluUnProiect()) are described in Chapter 3. The use of gluPickMatrix()

is explained in Chapter 13. The GLU NURBS facilities, which are built

atop OpenGL evaluators, are covered in Chapter 12. Only two GLU topics

remain: polygon tessellators and quadric surfaces, and those topics are

discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons,

but the GLU contains routines to tessellate concave polygons into convex

ones, which the basic OpenGL can handle. Where the basic OpenGL

operates upon simple primitives, such as points, lines, and filled polygons,
the GLU can create higheplevel objects, such as the surfaces of spheres,

cylinders, and cones.

This chapter has the following major sections.

- “Polygon Tessellation” on page 410 explains how to tessellate convex

polygons into easier-to-render convex polygons.

- "Quadrics: Rendering Spheres, Cylinders, and Disks” on page 428

describes how to generate spheres, cylinders, circles and arcs, including
data such as surface normals and texture coordinates.

Polygon Tessellation

As discussed in “Describing Points, Lines, and Polygons” on page 37,

OpenGL can directly display only simple convex polygons. A polygon is

simple if the edges intersect only at vertices, there are no duplicate vertices,
and exactly two edges meet at any vertex. If your application requires the

display of concave polygons, polygons containing holes, or polygons with

intersecting edges, those polygons must first be subdivided into simple

convex polygons before they can -be displayed. Such subdivision is called

tessellafion, and the GLU provides a collection of routines that perform

tessellation. These routines take as input arbitrary contours, which describe
hard~to-render polygons, and they return some combination of triangles,

triangle meshes, triangle fans, or lines. '

Chapter II .' Tessellators and Quadrics

0459

Figure 11-1 shows some contours of polygons that require tessellatiori: from

left to right, a concave polygon, a polygon with a hole, and a

self-intersecting polygon.

Figure 11-1 Contours That Require Tessellation

If you think a polygon may need tessellation, follow these typical steps.

1. Create a new tessellation object with gluNewTess().

2. Use g1uTessCallback() several times to register callback functions to

perform operations during the tessellation. The trickiest case for a

callback function is when the tessellation algorithm detects an

intersection and must call the function registered for the

GLU_TESS__COMBlNE callback.

3. Specify tessellafion properties by calling gluTessProperty0. The most

important property is the winding rule, which determines the regions
that should be filled and those that should remain unshacled.

4. Create and render tessellated polygons by specifying the contours of

one or more closed polygons. If the data for the object is static,

encapsulate the tessellated polygons in a display list. (If you don’t have

to recalculate the tessellation over and over again, using display lists is

more efficient.)

5. If you need to tessellate something else, you may reuse your

tessellation object. If you are forever finished with your tessellation

object, you may delete it with gluDeleteTess().

Note: The tessellator described here was introduced in version 1.2 of the

GLU. If you are using an older version of the GLU, you must use

routines described in “Describing GLU Errors” on page 426. To query

which version of GLU you have, use gluGetString(GLU_VERSION),

which retums a string with your GLU version number. If you don’t
seem to have gluGetString0 in your GLU, then you have GLU 1.0,

which did not yet have the g1uGetString() routine.

Polygon Tesseilatian

0460

411

412

Create a Tessellation Object

As a complex polygon is being described and tesseliated, it has associated
data, such as the vertices, edges, and callback functions. All this data is tied

to a single tessellation object. To perform tessellation, your program first

has to create a tessellation object using the routine gluNewTess().

GL-Utesselator* gluNewTess(voi_d)j

Creates -anew tessellation objeedt-and returfis 'a_pointe1'- to--it. A-.--null
pointeruis returned if the creation‘ fails.

A single tessellation object can be reused for all your tessellations. This

object is required only because library routines might need to do their own
tessellations, and they should be able to do so without interfering with any

tessellation that your program is doing. It might also be useful to have

multiple tessellation objects if you want to use different sets of callbacks for

different tessellations. A typical program, however, allocates a single
tessellation object and uses it for all its tessellations. There's no real need to

free it because it uses a small amount of memory. On the other hand, it

never hurts to be tidy.

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback

routines to be called at appropriate times during the tessellation. After

specifying the callbacks, you describe the contours of one or more polygons

using GLU routines. When the description of the contours is complete, the
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation,

and any information they might have returned to your program is lost. All

are specified by the single routine glu'l‘essCalIback().

void.gluTessCallback(GLUtesseiator *tiassob;', GLe_'num type, void (-*fiz').())‘;

Associates the callback functionlfnrwith the tessellation object tessribj. The
type of=Et,he-cz1,llb;‘ack_is determii1ed._by_ the parameter type, which’ can_.be
GLU__',TESS_BEGIN, -‘_GLU_TESS_BEGIN__DATA,__GLU._TES5__EDGE__FLe'.5l'G,'
GLU__-_TESS_‘EDGE_FI.AG"_DATA, GLU_iTESs_vERTEx, '
GLUv_TESS_VERTEX_DATA, oLu_Trss-_END, GLU_TESS__END_DATA-,

GLU_TE3S___COMBINE, GLU__TE$S_COMBIN_E_DATA, GLU_TESS_ERROR,

Chapter I I .' Tesseflators and Quadrics

0461

and GLU_:TESS_«ERRO.1}__DATA. The twelve" possible callback functions -
lianye the_jfollovvir1_g.prototypes: 1. - ,. \ i

A-._(;_I;;U_'r'r:§.s;Es"13g§"1N' 5.1.2, voici'he§in(GLen{fm_iype); -

,_.G1:1j_TESSfiBEGIN;DATA - voi"dfbegiii(GLei1u'rI_I
' ‘ " - ' - voidt*user_Jdota); _

r
‘M ‘ ' -w ..

.. . , 2

GI_:.‘U__,T_lE‘.SS_;_I3.[‘)GE_~FI,‘-.1rxG “ ‘eéiggggeF1ag§GLboq1ea§;v.flag);, A

-‘GLU;TE§éi1«;ot:E;FLAo:DA'r_A -{z9;1}:1n ;;J;1g‘eE1ag(GLboq1iaan.ffiag,-*
- . - ' ' ”ix‘rciic1- *uscfr_"da'ta);
' . , ‘E I "\ E _ aw

GLU_TESS_\r’.]_E.RTE-X void verte'x(void *vercex“_data),-

f3_Lp_TEss_’vERTEx_DATA void vertex(void *vertex_data,
. ’ ‘ v void *user_data);

GLU_TESS__END void-é_nc1(void);

GLU_TESS_END_DATA void.en'cl(void *user_»data);

GLU_TESS_ERROR I void en'or(GLenu1n ermo);

Gl:U._'l‘_F.SS_ERROR_DATA void.-error(GLenurn ermo, void
*u.ser_;_dat1i) ; , 5

void ’e.oii1bine_(.GLdouble coonis[3] ,\

' void *i_rertex_da'ta[4],

G_I.-;fl'o3=t 1_.ve1'ght[4],
» ‘ -v4oicl."—”"outData};

GLU_TESS'_COMBI—NE
F

’GLU_'.I"E7SS'_GO‘MBINE_DATA. void c_omb_i‘ne(GLdouble cootds[3],
” void *vertex;‘da‘ta-[4],

GLf_Ioat weight{‘4_],
void **o'ut:Data,

. Vqisl *_u§er_;.¢;1ata):..1-'32;~‘_:u~, H";-‘; .|~ - -: Y *- l~ ..1 \ ..«

To change a callback routine, simply call g1u'I‘essCal1back0 with the new

routine. To eliminate a callback routine without replacing it with a new

one, pass gluTessCallback() a null pointer for the appropriate function.

Polygon Tessetlation

0462

413

414

As tessellation proceeds, the callback routines are called in a manner

similar to how you use the OpenGL commands glBegin0, gIEdgeFlag*{),

glVertex*(), and glEnd(). (See “Marking Polygon Boundary Edges” on

page 62 for more information about glEdgeFlag’*().) The combine callback

is used to create new vertices where edges intersect. The error callback is

invoked during the tessellation only if something goes wrong.

For every tessellator object created, a GLU_TESS_BEGIN callback is
invoked with one of four possible parameters: GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP, GL_TRIANGLES, and GL_LINE_LOOP. When the

tessellator decomposes the polygons, the tessellation algorithm will

decide which type of triangle primitive is most efficient to use. (If the

GLU_TESS_BOUNDARY_ONLY property is enabled, then GL_LINE_LOOP

is used for rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is

a callback associated with GLU_TESS_EDGE_FLAG that enables. edge flags,

the GLU_TESS_BEGIN callback is called only with GL_TRIANGLES. The

GLU_TESS_EDGE_FLAG callback works exactly analogously to the OpenGL

glEdgeFlag*() call. '

After the GLU_TESS_BEGIN callback routine is called and before the

callback associated with GLU_TESS_END is called, some combination of

the GLU_TESS_EDGE_FLAG and GLU_TESS_VERTEX callbacks is invoked

(usually by calls to gluTessVertex0, which is described on page 423). The

associated edge flags-and vertices are interpreted exactly as they are in

OpenGL between glBegin0 and the matching glEnd0.

If something goes wrong, the error callback is passed a GLU error number.

A character string describing the error is obtained using the routine

gluErrorStri11g0. (See “Describing GLU Errors” on page 426 for more
information about this routine.)

Example 1 1-1 shows a portion of tess.c, where a tessellation object is created

and several callbacks are registered.

Example 11-1 Registering Tessellation Callbacks: tess.c

/* a portion of init {} */

tobj = gluNewTess();

glu‘I'essCa1lback (tobj . GLU_'I'ESS__VERTl?.X,

. {GLvoid (*1 {ll &g1Vertex3dv];

gluTessCa1 lback {tobj . GLU_TESS_BEGIN,

{GLvoid (*l (l) &beginCa11back};

g1uTessCa11back{tobj, GLU_TESS_END.

{GLvoid (*) (J) &endCa1lback);

Chapter II : Tesseiiators and Quadrics

" ’ 0463

g1uTessCal1back(tobj, GLU;TESS_ERROR,

(GLvoid {*1 l)) &errorCa11back);

/* the callback routines registered by g1uTessCallback(} */

void heginCa11back(GLenum which}

{

g1Begin(which};
}

void endCa1lback(void}
{

QlEnd();
}

Void errorCa11back(GLenum errorcodei
{

const GLubyte *estring;

estring = g1uErrorString(errorCode};

fprintf (stderr, 'Tesse11ation Error: %s\n“, estring}:
exit {O};

}

In Example 11-1, the registered GLU__TESS_VERTEX callback is simply

glVertex3dv(), and only the coordinates at each vertex are passed along.

However, if you want to specify more information at every vertex, such as

a color value, a surface normal vector, or texture coordinate, you’ll have to

make a more complex callback routine. Example 11-2. shows the start of

another tessellated object, further along in program tess.c. The registered

function vertexCallback0 expects to receive a parameter that is a pointer

to six double-length floating point values: the x, y, and z coordinates and

the red, green, and blue color values, respectively, for that vertex.

Example 11-2 Vertex and Combine Callbacks: te5s.c

/* a different portion of init() */

g1uTessCa11back{tobj, GLU_TESS_VERTEX,

{GLvoid (*) (1) &vertexCa11back);

g1uTessCa1lback(tobj, GLU_TESS_BEGIN,

{GLvoid (*) (}) &beginCal1back};
g1uTessCallback(tohj, GLU_TESS_END,

{GLvoid (*) (}) &endCa1lback);

g1uTessCa11back(tobj. GLU_TESS_ERROR,

(GLvoid {*) ()1 aerrorcallbacki;

g1uTessCal1bac:k{ tobj , GLIJ__TESS_COMBINE,

(Ghvoid {*} {ll &combineCallback);

Polygon Tessellarion 415

0464

416

/* new callback routines registered by these calls */

void vertexEa1lback{GLvoid *vertexl

{

const GLdoub1e *pointer;

pointer = (GLdoub1e *} vertex;

glCo1or3dv{pointer+3);

glVertex3dv{vertex);

}

void combineCa11back(GLdoub1e coords[31,

GLdoub1e *vertex_data[4],

GLfloaE weight[4], GLdoub1e **data0ut }

GLdoub1e *vertex;

int i:

vertex = (GLdoub1e *} ma1loc{6 * sizeof(GLdouble));

vertex[0] = coords[0];

vertex [1] = coords [1],-

vertex[2] = coords[2}:

for (i = 3; i < 7; i++)

vertex[i] = weight[O] * vertex_data[0][i]

+ weight[1] * vertex_data[1}[i]

+ weight[2] * vertex_data[2][i]

+ weight[3] * verte::r_daI:a[3] ['1]:
*data0ut = vertex;

}

Example 11-2 also shows the use of the GLU_TESS_COMBINE callback.

Whenever the tessellation algorithm examines the input contours, detects
an intersection, and decides it must create a new vertex, the

GLU,_'1‘ESS_COMBINE callback is invoked. The callback is also called when

the tessellator decides to merge features of two vertices that are very close
to one another. The newly created vertex is a linear combination of up to

four existing vertices, referenced by vertex_data[O..3] in Example 11-2. The

coefficients of the linear combination are given by weight[0..3]; these

weights sum to 1.0. coords gives the location of the new vertex.

The registered callback routine must allocate memory for another vertex,

perform a weighted interpolation of data using vertex_data and weight, and

return the new vertex pointer as dataout. combinecallbacko in

Example 11-2 interpolates the RGB color value. The function allocates a

six-element array, puts the x, y, and z coordinates in the first three elements,

and then puts the weighted average of the RGB color values in the last three
elements.

Chapter II: Tesseflarors and Quadrfcs

0465

User-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of
each kind of callback, there are twelve callbacks in all. For each kind of

callback, there is one with user-specified data and one without. The

user-specified data is given by the application to gluTessBeginPoiygon0

and is then passed, unaltered, to each ‘DATA callback routine. With

GLU_TESS_BEGIN_DATA, the user-specified data may be used for

“per-polygon” data. If you specify both versions of a particular callback,

the callback with user_data is used, and the other is ignored. So, although

there are twelve callbacks, you can have a maximum of six callback

functions active at any time.

For instance, Example 11-2 uses smooth shading, so vertexCallback0

specifies an RGB color for every vertex. If you want to do lighting and

smooth shading, the callback would specify a surface normal for every

vertex. However, if you want lighting and flat shading, you might specify

only one surface normal for every polygon, not for every vertex. In that

case, you might choose to use the GLU_TESS_BEGIN_DATA callback and

pass the vertex coordinates and surface normal in the user_data pointer.

Tessellation Properties

Prior to tessellation and rendering, you may use gluTessP1'operty0 to set

several properties to affect the tessellation algorithm. The most important

and complicated of these properties is the winding rule, which determines
what is considered “interior” and “exterior.”

void gluTessProperty(GLUtesselator *tessob;', GLenun1 property,
GLdouble value);

For the tessellation object tessobj, the "current value of properly is set to
value. property is one of GLU_TESSFBOUNDARY_0NLY,
GLU_TESS_TOLERANCE, or GLU_'i?ESS_WlNDING_RULE.

If property is G_LU,_TESS_BOUNDARY_ONLY, value is either GL_TRUE or
GL_"_FALSE'. When set to GL_TRU.E, polygons are-no‘ longer'tesse1lated'into

filled polygons; line loops--are drawn to outline the contours that separate
the polygon interior and exterior. The default value is GL_FALSE. (See

gluTessN'ormal0 to see how to control the winding direction of the
contours.)

Polygon Tessellation

0466

417

418

Ifproperty is'GLU_TESS_TOLERANC.E,-_ value isa distance used to calculate
whether. two vertices are close together enough to l;JeWrnerge'd_by the. __
'GLU'_TE.SS;COM_B__INE callbacl<’."7I'.lie tolerance value: iS.'l_f1U]fii)1i€d'by the-- u
largest coordinate -magnitude.-of an"inj)ut verteif totdetermenre the

distange,._ at-_1y_,.feg1tu:e eangingngesas-_-.;€§ylt .o_f_a‘Singlet 3;"'-_ 11;. ~»..g_--'-'._f;,g,. . I‘: -11.». :-- 4 -:3 -9 j[§\-"“-gj-

operat1'on?"Fea{'ure"ine'fg'in’g may not s[1§13$rted"by your
implementation, and thetolerance value isonly a‘ hint.'The' Elefault
tolerancevalue is zero. '- _ ‘ I __

The GLU_TESS_WINDING_RULE'-propertydetermines. which“parts=of the‘
polygon are on the interior and whi<;h'are'_th'e.exterior'anc1'should'_not be
-filled; val'u_e can be one of GLU_TESS_-5-l/VTlilDlN(t“r'_'-C).D'E) (théfdefault), -"‘

GLU__TESS_;Wl-N_DING_‘NON_ZERQ,lGLU;TESS_WIND.ING;POSITlV:E. _
GLU__jl‘ESS_*_WINDING_NEGATWE, or '
GLU_TESS_WIND'ING;ABS_GEQ_TWO.

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number

of revolutions we make around that point while traveling once around the

contour (where a counterclockwise revolution is positive and a clockwise

revolution is negative). When there are several contours, the individual

winding numbers are summed. This procedure associates a signed integer

value with each point in the plane. Note that the winding number is the
same for all points in a single region.

Figure 11-2 shows three sets of contours and winding numbers for points

inside those contours. In the left set, all three contours are

counterclockwise, so each nested interior region adds one to the winding

number. For the middle set, the two interior contours are drawn clockwise,

so the winding number decreases and actually becomes negative.

Chapter II : Tesseflarors and Quadrics

0467

3 ‘Ar
Figure 11-2 Winding Numbers for Sample Contours

The winding rule classifies a region as inside if its winding number belongs

to the chosen category (odd, nonzero, positive, negative, or “absolute value

of greater than or equal to two”). The odd and nonzero rules are common‘

ways to define the interior. The positive, negative, and “absolute va1ue>=2”

winding rules have some limited use for polygon CSG (computational solid

geometry) operations.

The program tesswind.c demonstrates the effects of winding rules. The four

sets of contours shown in Figure 11-3 are rendered. The user can then cycle

through the different winding rule properties to see their effects. For each
winding rule, the dark areas represent interiors. Note the effect of clockwise

and counterclockwise winding.

Polygon Tesseilation 419

0468

_. _—.—.—.——........V

comouns
AND
WINDING

NUMBERS N 0
1 1

WINDING
FIULES

ODD E

NON?-EH0 *

POSWNE
NEGATIVE unfilled - unfilled uniilled

ABS_GEQ_TWO unfilled + .I
Figufe 11-3 How Winding Rules Define Interiors

420 Chapter I I: Tessellatars and Quadrics _ -

0469

CSG Uses for Winding Rules

GLU__TESS_WINDING_ODD and GLU_TESS_WINDING#NONZERO are the

most commonly used winding rules. They work for the most typical cases
of shading.

The winding rules are also designed for computational solid geometry
(CSG) operations. Thy make it easy. to find the union, difference, or

intersection (Boolean operations) of several contours.

First, assume that each contour is defined so that the winding number is
zero for each exterior region and one for each interior region. (Each contour

must not intersect itself.) Under this model, counterclockwise contours

define the outer boundary of the polygon, and clockwise contours define
holes. Contours may be nested, but a nested contour must be oriented

oppositely from the contour that contains it.

If the original polygons do not satisfy this description, they can be

converted to this form by first running the tessellator with the

GLU_'l‘ESS_BOUNDARY_ONLY property turned on. This returns a list of
contours satisfying the restriction just described. By creating two tessellator

objects, the callbacks from one tessellator can be fed directly as input to the
other.

Given two or more polygons of the preceding form, CSG operations can be
implemented as follows.

0 UNION-—To calculate the union of several contours, draw all input

contours as a single polygon. The winding number of each resulting

region is the number of original polygons that cover it. The union can

be extracted by using the GLU_,TESS__WlNDlNG__NONZERO or

GLU__TESS__WINDlNG_POSlTlVE winding rules. Note that with the

nonzero winding rule, we would ge_t the same result if all contour
orientations were reversed.

0 lNTERSEC'1‘l0N—This only works for two contours at a time. Draw a

single polygon using two contours. Extract the result using
Gl.U_'l‘ESS_WINDlNG__ABS_GEQ_'l‘W0.

0 DlFFERENCE—Suppose you want to compute A diff (B union C union

D). Draw a single polygon consisting of the unmodified contours from
A, followed by the contours of B, C, and D, with their vertex order

reversed. To extract the result, use the GLU_TESS_WlNDING_POSI'l‘IVE

winding rule. (If B, C, and D are the result of a

GLU_TESS_BOUNDARY_0NLY operation, an alternative to reversing

Polygon Tessellarion

0470

421

422

the vertex order is to use giuTessNormal0 to reverse the sign of the

supplied normal.

Other Tessellation Property Routines

There are complementary routines, which work alongside

gluTessProperty0. gluGetTessProperty0 retrieves the current values of
tessellator properties. If the tessellator is being used to generate wire frame

outlines instead of filled polygons, gluTessNor-111310 can be used to
determine the winding direction of the tessellated polygons.

void’gluGetTessProperty(GLUtesselator-*tessobjfiGLenum*piopr:ny, -,
GLdoub1e *-value); » ‘ ’ - _ 9

' ! E A? . _. i 3-‘ !..l:._' fie -

For the tessellation -object tessobj,- the current value"-of is returned
to value. Values -for property and value are the same as"for _ "

gluTessProperty0. - l ' ‘ — .

2-?=~"-1‘

void gluTessNom1al(GLUtesseiator *tessob,i, GLdoub1e x, GLd01_1ble y,

GLdouble z); . ‘

For the tessellation object tessobj, gluTessNon'nal0 defines a.-r_1orrn-,al

vector, which controls the winding direction-of generated -polygons-.
Before tessellation, all input data is proiected intp gr plarié-p;erpefndi'cula_r
to the normal. Then, all output triangles are orie‘nte'd_ ‘counter’-(2-lockwise;
with respect to the normal. (Clockwise orientation. can be-obtained -by
reversing the sign of the supplied. normal.) The-default normal is (0,-'0, 0).

Ifyou have some knowledge about the location and orientation of the input
data, then using gluTessNormal() can increase the speed of the tessellation.

For example, if you know that all polygons lie on the x-y plane, call
gluTessNormal(tessob,i, 0, 0, 1).

The default normal is (0, 0, 0), and its effect is not immediately obvious. In

this case, it is expected that the input data lies approximately in a plane,‘

and a plane is fitted to the vertices, no matter how they are truly connected.
The sign of the normal is chosen so that the sum of the signed areas of all

input contours is nonnegative (where a counterclockwise contour has a

positive area). Note that if the input data does not lie approximately in a
plane, then projection perpendicular to the computed normal may
substantially change the geometry.

Chapter I I: Tessellarors and Quadrics

0471

Polygon Definition

After all the tessellation properties havebeen set and the callback actions
have been registered, it is finally time to describe the vertices that

compromise input contours and tessellate the polygons.

Void ?;luT_es_s-Be‘ginPoly'g6n (_GLUtesselat'or *te§sob'}', void '*user_data);
void-gluTess_EndPo1ygon (GLUtesselator *fessob,");

Begins-and'.'e:i1ds the specification of_ -a polygon to be tessellated and
associates a tessellat-ion object, tessobi, with it. user_data points to a
1'1ser-.defined"data-structure, which ispassed along all the
GLU_TESS_*__DATA callback functions that‘ have been bound.

Calls to glu'l‘essBeginPolygon0 and gluTessEndPolygon0 surround the

definition of one or more contours. When g1uTessEndPolygon0 is called,
the tessellation algorithm is implemented, and the tessellated polygons are

generated and rendered. The callback functions and tessellation properties

that were bound and set to the tessellation object using g1uTessCallback0

and glu’I‘essProperty0 are used.

void gluIl‘essBegi.nContour (GLUtesselator *tessob;');

void g1uTessEndContour (GLUtesselator *tessobj);

Begins and ends the specification of a closed contour, which is a portion

of a polygon. A closed contour consists of zero or more calls to

glu7FessVertex0, which defines the vertices. The last vertexof each

contour is automatically" linked to the first.

In practice, a minimum of three vertices is needed for ameaningful
contour.

void'gh1TessVertex (GLUtesselator *tessobj, GLdouble coords[3],
void'*vertex_data); __

Specifies a vertex in ‘the current contour for the tessellation object. coords

zeqntagisathe tliree-diniensjjonal vertex;coo'rdinates;..and' '_i_s=a
pointer that’s sent to the callback associated with GLU'_TESS__VERTEX or
GLU_TESS_VERTEX_DATA.Typica11y, ve_rtex_data-contains vertex _

- coordinates, 'surface”11‘orrna1s, textumcoordinates, co1or=in-fonnation, or

whatever. else the application may find useful.

Polygon Tessellarion

0472

423

424

In the program tess.c, a portion of which is shown in Example 1.1-3, two

polygons are defined. One polygon is a rectangular contour with a

triangular hole inside, and the other is a smooth—shaded, self-intersecting,

five~pointed star. For efficiency, both polygons are stored in display lists.

The first polygon consists of two contours; the outer one is wound

counterclockwise, and the "hole” is wound clockwise. For the second

polygon, the star array contains both the coordinate and color data, and its
tessellation callback, vertexcallbacko, uses both.

It is important that each vertex is in a different memory location because

the vertex data is not copied by gluTessVertex0; only the pointer

(vertex_data) is saved. A program that reuses the same memory for several

vertices may not get the desired result.

Note: In glu'I‘essVertex0, it may seem redundant to specify the vertex
coordinate data twice, for both the words and vertex_data parameters;

however, both are necessary. coords refers only to the vertex

coordinates. vertex_data uses the coordinate data, but may also use
other information for each vertex.

Example 11-3 Polygon Definition: tess.c

GLdouble rect{4][31 = {50.0, 50.0. 0.0,

200.0, 50.0, 0.0,

200.0, 200.0, 0.0.

50.0. 200.0, 0.0}:

GLdouble tri[3][3] = {75.0, 75.0, 0.0,

125.0, 175.0, 0.0,

175.0, 75.0, 0.0}:

GLdoub1e star[5][6] = {250.0; 50.0, 0.0, 1.0, 0.0, 1.0,

325.0, 200.0, 0.0, 1.0. 1.0. 0.0.

400.0, 50.0, 0.0. 0.0, 1.0, 1.0.

250.0. 150.0, 0.0, 1.0, 0.0, 0.0,

400.0. 150.0, 0.0. 0.0, 1. 0, 0.0];

startList = g1GenLists(2};

tobj = gluNewTess(}; _

gluTessCa11backItobj, GLU_TESS_NERTEX,

{GLvoid {*} H) &g1Vertex3dv),-

g1uTessCa1lback(tobj, GLU_TESS_BEGIN,

(GLvoid (*1 {l} &beginCa1lback);

g1uTessCa11back{tobj, GLU_TESS_END,

(GLvoid (*1 ()} &endCal1back};

gluTessCa11back{tobj, GLU_TESS_ERROR,

(GLvoid (*l ()1 &errorCa1lback}:

Chapter II: Tessellarors and Quadrics

0473

g1NewList{startList, GL_COMPILE);

g1ShadeModel(GL_FLAT);

g1uTessBeginPo1ygon(tobj, NULL):

g1uTessBeginContour(tobj);

g1uTessVertex{tobj, rect[0], rect[0]};

gluTessVertex{tobj , rect [13 , rect[11} ;

g1uTessVertex{tobj, rect[2], rect[2]J;

gluTessVertex{tobj , rect[3] , rect [3] I :

g1uTessE:ndContour (tobj } ,-

g1uTessBeginContour(tobj};

g1uTessVertex(tobj, tri[0], tri[O]};

g1uTessVertex(tobj . tri [1] , tri [1} } :

gluTessVertex{tobj, tri[2], tri[2]};

gluTessEndContour{tobj);

gluTessEndPolygon{tobj};

g1EndList(];

gluTe$sCa11back(tobj, GLU_TESS_VERTEX,
{GLvoid (*) ()1 &vertexCallback);

gluTessCal1back(tobj, GLU_TESS_BEGIN,

(GLvoid (*1 {)} &beginCa1lback);

gluTessCal1back{tobj. GLU_TESS_END,

(GLvoid (*) {J} &endCal1back);

g1uTessCal1back(tobj, GLU_TESS#ERROR,

(GLvoid H) (1) scerrorcallback};

g1uTessCa11back(tobj, GLU_TESS_COMBINE,
{GLvoid (*1 (}) &combineCal1back):

g1NewList(startList + 1, GL_COMPILE);

g1ShadeModel(GL_SMOOTH};

g1uTessProperty{tobj, GLU_TESS_WINDINGHRULE.

GLUwTESS_WINDING_POSITIVE}3

gluTessBeginPo1ygon{tobj, NULL};

g1uTessBeginContour(tobj};

_gluTessVerte-xttobj, st:ar[[}]. st‘.ar[0]‘);
g1uTessVertex(tobj, star[1], star[1]);

g1uTessVertex(tobj. star[2]. star[2]):

g1uTessVertex{tobj, star[3]. %tar[3]),-

g1uTessVertex{tobj, star[4], star[4]}:

gluTessEndContour(tobj);

g1uTessEndPo1ygon(tobj};

glEndList{};

Polygon Tesseilation

0474

425

428

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all
associated memory with gluDeleteTess0.

void Hg-1nl)ele't‘eTess(élllitessellatordtessbbyi) ;

Deletes the‘ specified -t'essellati'en;object, tessobj, and frees all associated
memory. '

Tessellator Performance Tips

For best performance, remember these rules.

1. Cache the output of the tessellator in a display list or other user

structure. To obtain the post-tessellation vertex coordinates, tessellate

the polygons while in feedback mode. (See ‘'Feedback” on page 491.)

2. Use gluTessNormal0 to supply the polygon normal.

Use the same tessellator object to render many polygons rather than
allocate a new tessellator for each one. (In a multithreaded,

multiprocessor environment, you may get better performance using

several tessellators.)

_ Describing GLU Errors

The GLU provides a routine for obtaining a descriptive string for an error
code. This routine is not limited to tessellation but is also used for NURBS

and quadrics errors, as well as errors in the base GL. (See "Error Handling”

on page 501 for information about OpenGL’s error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less

powerful tessellator available. The 1.0/1.1 tessellator handles only simple

nonconvex polygons or simple polygons containing holes. It does not

properly tessellate intersecting contours (no COMBINE callback), nor

process per—polygon data.

Chapter I I : Tessellators and Quadrics

0475

The 1.0!1.1 tessellator has some similarities to the current tessellator.

gluNewTess0 and_gluDeleteTess() are used for both tessellators. The main

vertex specification routine remains gluTessVertex0. The callback

mechanism is controlled by gluTessCallback0, although there are only five

callback functions that can be registered, a subset of the current twelve.

Here are the prototypes for the 1.0} 1.1 tessellator. The 1.0/ 1.1 tessellator

still works in GLU 1.2, but its use is no longer recommended.

_void-glulieginPo'lygo31(GLUtriarigulatorQbi *£es5’ob;');‘ : .-
~".0i$1I31‘.!1‘I?’¢?‘§°I.!td“¥(§3‘siltti311%“1ét¢i££?Qiss*_Fg§a:i3!?i»1G17?%1“mfW9):
voidgfiiEndPolygon(GLUtriangi1lator0Bj ‘*tes§oba,:” ‘ '

'. '1 '-“I-..hlI-xiv ft.-

The" outermost contouf rhust be st.-uee:'_i'r"ie'ci_1'fir.st_', §nd”it,do'es not require an
initial ca]l~'to g1u‘N-ex-téon_tour0. -For’-polygo'ns‘without’holes, only one
"contour-is'.defined, and gluNex_tConto1ir() ‘is-knot','u'sed. If.'a polygon has
multiple contours (that. is, holes or‘ holes wjtliin holes), thecontours are
specified one after the other, each preceded ,l§?y.+g1iflN€2EtC_0l1t0Ill‘0.
glu‘TessVertex0 is called foreach vertex of.a--c_.on'“tour.

For gl1,il§Ie.xtCoutou-rj(}‘,' “type can-be‘ GLU_E3§'ITE'RI0R-, .GLU_INTER.IOR,
(_3fLU_CCW, .GLU_CW‘, or GLILUNKNOWN. These serve only as hints to
the tessellation. if you get them right, the -tessellafion-might go faster. If
you get them wrong, they're ignored, and the tessella-tion still works. For

polygons with holes, one-contourristheexterior contourand the other-’s

jnterior. The first éontéu-r is assuIn"e-(1 to be of-fcyije GL_U_:EX’I_‘ERIOR.
Choosing}:-iockwise and counterclockwise or*ietrtaLti'on-.is arbitrary in -three
dime’-ns'i'ons; however, there’-_a-re‘ tw.o~'i1iffe1fe1it efientations in any. plane,

' and.-the _GI-.-.U_-.CCW and-_GLU_C'W_ “types shou1‘d_=.Be ‘fused;-t<:or_1sis)'rently. Use‘
GLU;UNI<_NOW_N'if you donft have -a -"clue. - 1'

It is highly recommended that you convert GLU 1.0/1.1 code to the new

tessellation interface for GLU 1.2 by following these steps. '

1. Change references to the major data structure type from

GLUtria11gu1atorObj to GLUtesselator. In GLU 1.2, GLUtriangulato1'Obj

and GLUtesselator are defined to be the same type.

2. Convert gluBeginPolygon() to two commands:

gluTessBegi.nPolygon0 and gluTessBeginConto1_rr0. All contours

must be explicitly started, including the first one.

3. Convert gluNeJ;tContour() to both gluTessEndContour() and

gluTessBeginContour(). You have to end the previous contour before
starting the next one.

Polygon Tessellation

0476

428

4. Convert gluEndPolygon() to both gluTessEndContour0 and

gluTessEndPolygon0. The final contour must be closed.

5. Change references to constants to gluTessCa.llba'ck(). In GLU 1.2,

GLU_BEGIN, GLU_VERTEX, GLU_END, GLU_ERROR, and

GLU_EDGE_FLAG are defined as synonyms for GLU_TESS_BEGIN,

GLUJESSHVERTEX, GLU_TESS_END, GLU_TESS__ERROR, and

GLU_TESS“EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling andrendering
simple points, lines, and convex filled polygons. Neither 3D objects, not

commonly used 2D objects such as circles, are directly available.

Throughout this book, you’ve been using GLUT to create some 3D objects.

The GLU also provides routines to model and render tessellated, polygonal

approximations for a variety of 2D and 3D shapes (spheres, cylinders, disks,

and parts of disks), which can be calculated with quadric equations. This

includes routines to draw the quadric surfaces in a variety of styles and

orientations. Quadric surfaces are defined by the following general

quadratic equation:

2 2 2 _ 0alx + azy + u3z + a4xy + asyz + aéxz + a,x + asy + agz + am.

(See David Rogers’ Procedural Elements for Computer Graphics. New York, NY:

McGraw~Hill Book Company, 1985.) Creating and rendering a quadric

surface is similar to using the tessellator. To use a quadrics object, follow
these steps.

1. To create a quadrics object, use gluNewQuadric0.

2. Specify the rendering attributes for the quadrics object (unless you're
satisfied with the default values).

a. Use gluQuadric0rientation0 to control the winding direction

and differentiate the interior from the exterior.

I). Use gluQuadricDrawStyle0 to choose between rendering the

object as points, lines, or filled polygons.

c. For lit quadrics objects, use gluQuadricNormals() to specify one

normal per vertex or one normal per face. The default is that no

normals are generated at all.

Chapter II: Tessellarors and Quadrics

0477

cl. For textured quadrics objects, use gluQuadricTexture0 if you

want to generate texture coordinates.

-3. Prepare for problems by registering an error-handling routine with

gluQuadricCallback0. Then, if an error occurs during rendering, the

routine you've specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics
object: gluSphere0, gluCylinder(), gluDisk0, or gluPartialDisl<0. For
best performance for static data, encapsulate the quadrics object in a

display list.

5. When you're completely finished with it, destroy this object with

gluDeleteQuadric0. If you need to create another quadric, it's best to

reuse your quadrics object.

Manage Quadrics Objects

A quadrics obiect consists of parameters, attributes, and callbacks that are

stored in a data structure of type GLUquadric0bj. A quadrics object may

generate vertices, normals, texture coordinates, and other data, all of which

may be used immediately or stored in a display list for later use. The

following routines create, destroy, and report upon errors of a quadrics

object.

-mnquaancobjr-giafiewnfiaauc'(voiIr);s*: .- - _ - ~ ‘ «=4.\|; -

+“ * - Vi 2._--“ii ».-4.‘;-‘E-‘*5-_ ' r"Wm I‘ ’. ‘.1 ." .l‘ :7.‘ r -! ,-‘ _ . '1 ' j .'"i_ w -.

hatesiaenew quadr~1c'sio jeet d"-retumsragpomter ort.-A.m1llpomt7er is
t l,_.~,- " *1-”‘,_;‘5"r ..LL. J‘ I

‘{1}-‘ J é“,.;§§,;.¢_...».- ,'r“‘‘:..}. -c ‘E. {_ .-

1-A
."‘P ... ‘Jr_.r1 , ' l.- gig,‘ I. _ . _ us." it F I ‘?I: - . A
fitters ta’-gassdnss 03329. roared "P "*"Y"-‘~‘.'33“‘?r‘3"**‘4‘°"‘;"Y"*.:-“Tia-.°

voidfigguhadficgiaflgiafyzdg Qtdquggggpgj *:1obj, Ei'I}enmn'’tuhich,a7oid"
(*fi«)o);rr: ~* «N .. ‘ W "
L -_ r ‘+ . -elfll-figgl-_-‘.1: €g1»m,,

ithe only legal valuefor which, so _fn§is' called when an err_c')1‘,_<3éiig::'ir_s_‘.If.f_ii':1ijr_.rL»-_ _ - _ . -.e_ ,?, A: .’_4'qh1
ENULL, argyrserasegwf Jig.‘ $3; *1 , 4.‘. film}

~

For GLU_ERROR, fir is called with one parameter, which is the error code.

gluErrorString0 can be used to convert the error code into an ASCII string.

Quadrics: Rendering Spheres, Cylinders, and Disks

0478

429

430

"Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics
routines. Use these routines before you actually specify the primitives.

Example 11-4, quadric.c, on page 433, demonstrates changing the drawing
style and the kind of normals generated as well as creating quadrics objects,

error handling, and drawing the primitives.

void gluQuadricDrawStyle (GLUquadrieObi *qobj, GLe-num drawstyle);

For the quadrics object qobj, dmwstyle-‘controls the rendering '§tylé: Legal
values for drawstyle are GLU_P.0IN'I‘—,-GLU__LlNE, GLU_S-lLHOUE'I‘*I"E, and
GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a

point at every vertex or a line between each pair of connected vertices.

GLU_SlLI-IOUEIITE specifies that primitives are rendered as lines, except

that edges separating coplanar faces are not drawn. This is most often used
for gluDisk() and gluPartialDisk0.

GLU_FILL specifies rendering by filled polygons, where the polygons are
drawn in a counterclockwise fashion with respect to their normals. This

may be affected by gluQuadricOrientation0.

void gluQuadric0rientatior1 (GLUquadricObi *qobj, G'Lenum orientqtion)i'

For -the quadrics object gob}, on'en'tatiofi is either GL_U_0UTS'IDE,(the
default)_ or GLUJNSIDE, which cor'1trols'the direction in which normals
are pointing. » ‘

For gluSphere0 and gluCylinder0, the definitions of outside and inside are
obvious. For gluDisk() and gluPartia1Disk(), the positive 2 side of the disk
is considered to be outside.

void gluQ;uadri'<:No1-mals (GLUquad‘ri'cObi *‘qobj', Ghenum-normals); ' —

For the qttadfics object lqobi, norri1aIs'is "of1:e of 'GLU_NONfi (the'def_z_1‘1i1t), ‘
GLU_;_FLAT, O1’ GLU_'SMOOTH. ' ’. '1

gluQuadricNormals0 is used to specify when to generate normal vectors.
GLU__NONE means that no normals are generated and is intended for use

Chapter II: Tessellators and Quadiics

0479

without lighting. GLU__FLAT generates one normal for each facet, which is

often best for lighting with flat shading. GLU_SMO0Tl-I generates one

normal for every vertex of the quadric, which is usually best for lighting

with smooth shading. '

vpid giul-Qu2idric'1"-exture(GLUquaclricObi *qobj, -
GLboolean textureCoords);

For the. quadrics ‘object qobj, textureCoords is either GL_FALSE (the default)

or GL_TRUE. If the value of textureCo0rds is GL_TRUE,_then texture
ieoord-iriates are gene'rated'for‘the”quad1"ics obiett. The manner in which
the textute coordinates are generated varies, depending upon the type of

_ quadrics -‘object rendered.

Quadrics Primitives

The following routines actually generate the vertices and other data that

constitute a quadrics object. In each case, qobj refers to a quadrics object

created by g1uNewQuadric0.

void glusphere (GLUquadric0bj *qobj, GLdouble radius,
GLint slices, GLint stacks);

Draws a sphere‘ of the given radius, centered around the origin, (0, 0, 0)‘.
- The sphere-is subdivided around‘ the z axisinto a number of slices (similar

to longitude) and along the z axis into a number of stacks (latitude).

If cpgrdinates argalso generated by the quadrics facility, thet
"coordinate—'ranges from 0.0 at z _= -radius to 1.0 at 2 = radius, with t

ir1cré*ra,sir)rgsli1‘Iearly-aloiig longitudinal lines. Meanwhile, s ranges from 0.0 ‘
'.at.the.sI_~)1.7axis, to'0'.25*at the +x axis, to'0.5 'at. the -y axis, to‘ 0.7.5 at the -x

axis, and;-brack to 1.0 -at’ the -I-y axis. -

(G_l:iUquad1i'c0bi *qobj, GLc1'ou'ble baselladius,
‘ - _ GU:.loub_1_e topliégzdius, C_iL'double height,

Draws _.a' cylinder oriented along the 2 axis, with the base.of_ the cylinder
-.-atz"§—-;'€ian'd‘the-top.at z = height. Lilge-a sphere, the cylir.-1'der is -subdivided
around’-the z axis into a number of slices and alongthe z axis into a
nurnbef of stacks. laaselladius is the radius of-the cylinder at ‘z = 0.

void»_glu_Cylinde1_'

Quadrics.' Rendering Spheres, Cylrhders, and Disks

0480

431

432

topRaa'ius is the rad_ius- of»the'-cylinderat z '-—- height. If topRadius'is set to '

zero, then a cone is genexated. _ _ - ‘

If texture cootdin_ates,ase--generated b}r\the;_quadfi'es3_facilit3_z,-zthefrsthefi‘,5’
~°98I¥F¥zi‘e¥€=+‘#%3¢§1imzérlfiéf§>S?@i‘?i9i§$¥<fi<.£1:.¥s;'-is-0%,? %;,z.ssi:'-="%W-‘*T1,'1‘*“$k t
textit-re'coordin'ates ate fgeneratedé ‘ti1e's'a1_r1e'wa3'r-.'a’s -' ‘-« ey are‘fo1:1=:a‘ sphere. _,_t

._ ‘A-

Note: The cylinder is not closed at the top or bottom. The disks at the base

and at the top are not drawn.

1'

voic1=gluDisk(GLIlquadticObj{nob},"Ci{[Jqqu§ig1e.img:§r1§adius,..q 4; | _
GLdoub'le tJuterR'£;dius, '_or;int?sIises, GLint.ringS); .= ., ‘T 2 .,_

1.1’ ‘\-f__

I.
1..

Draws a disk onthe z =' '0 plane, with a-. radius of outerRaa‘iu.s-_an'd-a
concentric‘ circular hole with a radius of im1erRadr'u.s'. If _ir_m_erRadius is 0,

then no hole is created. The diskis subdivided around the z-.‘ax-is-into a =
number of" slices (“like slices of pizza)-and also about the z axis‘ into a‘ ‘

number of concentric rings.

With respect to orientation, the +2 side of the. disk is considered to be

“outside”; that is, any normals generated point along‘ the-+2; axis.
Otherwise, the no1'mals_,poi_nt alongflge -z. axis.

If texture coor_dinatesare' generated the.Q_uadrics facility, then the _
texture coordinates are generated-t-linearly such that where R;ou?erRadius_, ,
the -values for S -and tat-(R, O, (_)):is (1,*'0;5), at (0, R, 0).theyra1'e(0,5.,' 1),:-if

(—R,_0, 0) they are (0, 0.5), and "at (0, — ,,0) they-"are-(0.5, 0). . ' L.

void g1uPa:tia1Disk:(GLUq;_1adric0i;.j- *q‘ot5j, GLdo11'ble'inne'rRadii¢s; . ' _ i 5;.
" . GLdofibIe_-_oaterRzraii£s, G1.pit§1ic}£*s2’,’_'GLi'fit r£:i'_gs,e% *~», "

GLd_oi_1ble -'star‘t2‘g'n3_Ie,' GLdouble*sweepAngIe);§s ~».' , I *,_ « fu
.-.,_..._ *5. =r,.-- -is ':t net-,1 .1“n-* :.*e_'-me»

Draws a partial disk out-he 2' =11 151a1'_1e_.. A.‘-disk is_-sj-fnila_x'f_c)"a.a., , _ ;\€-

com'plet_e'disk, in terms{t:]foi:terRd}ii1is,'ifizie?Radifis, :s‘h'c_es, and'rji,‘1I;gseTh’e.§,,,
difference is:—that only a po'r'tio'n_ of a_pa'rtial..di§k _is_ Eto1‘11-,-__jf
start?!ngIe.thro1Tgh $tqttAiig{e;:-§weepAfigIe'-(w1jete-stdftggngfgand sweep/1ngle
are n1ea'su1"e'id-in deg,r€e's_,-_whéte .0 degre_és'.is _alor3g-.the’+j»_axis}’_90 ’
alongthe 4-): "axis, 130 @o’n'g=the -y axis, and 270' along the -_x- .«vs}se'

_ ‘ 5 - = H.’ ‘ ‘ "'“:' is ‘‘w.”

A partial disk handles-orientation .ai1_d ‘iieigturecoofel-iiratesiin
way as a complete disk.

_ '-u.I *1.

Chapter II: Tessellatars and Quadrfcs

0481

Note: For all quadrics objects, it's better to use the *Radius, height, and

similar arguments to scale them rather than the glScale*0 command

so that the unit-length normals that are generated don't have to be-

renormaiized. Set the rings and stacks arguments to values other than

one to force lighting calculations at a finer granularity, especially if
the material specularity is high.

Example 1 1-4 shows each of the quadrics primitives being drawn, as well as

the effects of different drawing styles.

Example 11-4 Quadrics Objects: quadric.C

#include <GL/g1.h>

#inc lude <GL/glu . 11>

fiinclude <GL/g1ut.h>
#include <stdio.h>

fiinclude <stdlib.h>

Ghuint startList;

void errorCa11back(GLenum errorcodel
{

const GLubyte *estring;

estring = g1uErrorStringlerrorcodel;

fprintflstderr, “Quadric Error: %s\n", estring);
exit{0);

}

void initlvoidl

{

GLUquadric0bj *qobj;

GLf1oat mat_ambient[] = { 0.5, 0.5, 0.5, 1.0 };

Gbfloat mat_specu1ar[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 }:

GLf1oat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLf1oat mode1_ambient[I = { 0.5, 0.5, 0.5, 1.0 };

glClearColor{0.0, 0.0, 0.0, 0.0};

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amhientl:

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

g1Materia1fv(GL_FRONT, GL_SHININESS, mat_shininess};

g1Lightfv(GL_LIGHTO, GL_POSITION, light_position);

glhightnodelfv(GL_LIGHT_MODEL_AMIENT, mode1_ambient};

g1EnablelGL*LIGHTING);

Quadrics: Rendering Spheres; Cylinders, and Disks 433

0482

g1Enab1e(GL_LIGHTO);

g1Enab1e(GL_DEPTH_TEST);

/* Create 4 display lists, each with a different quadric object.

* Different drawing styles and surface normal specifications
* are demonstrated.

startList = g1GenLists{4);

qobj = g1uNewQuadric();

gluguadriccallbacktqobj, GLU_ERROR, errorcallbackl;

g1uQuadricDrawStyle{qobj, GLU_FILL}; /* smooth shaded */

g1uQuadricNormals(qobj, GLU_SMOOTH};

g1NewList{startList, GL_COMPILE);

gluSphere(qobj, 0.?5, 15, 10};

g1EndList{);

gluQuadricDrawSty1e(qobj, GLU_FILL}; /* flat shaded */

g1uQuadricNorme1s{qobj, GLU_FLAT):

g1NewList{startList+1, GL_COMPILE];

gluCy1inder(qobj, 0.5, 0.3, 1.0, 15, 5);

g1EndList(); M.

g1uQuadricDrawSty1e{qobj, GLU_LIfiE); /* wireframe */
g1uQuadricNorma1s(qobj, GLU_NONE);

g1NewList { startList+2, GL_COMPILE}' ;
g1uDisk(qobj, 0.25, 1.0, 20, 4};

g1EndList{);

g1uQuadricDrawSty1e(qobj, GLU_SILHOUETTE};

gluQuadricNormals{qobj, GLU_NONE};

g1NewList(startList+3, GL_COMPILE);

g1uPartia1Disk(qobj, 0.0. 1.0, 20, 4. 0.0, 225.0};

g1EndList();

}

void displaytvoidl
{

glclear {GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT}:
g1PushMatrix{};

g1Enab1e{GL_LIGHTING};

g1ShadeModel {GL_SMO0TH};

g1Trans1atef{~1.0. -1.0, 0.0);

g1Ca11List(startList};

glShadeModel {GL_FLAT);

Chapter II: Tesseliators and Quadrics

0483

g1Trans1atef{0.0, 2.0, 0.0);

g1PushMatrix{);

g1Rotatef{300.0, 1.0, 0.0, 0.0};

g1Ca1lList{startList+1J;

g1PopMatrix{};

g1Disab1e(GL_LIGHTING};

g1Co1or3f(0.0, 1.0, 1.0};

g1Trans1atef{2.0, -2.0, 0.0);

g1Ca11List{startList+2};

g1Co1or3f(1.0, 1.0, 0.0};

glTranslatef(0.0. 2.0, 0.0};

g1Ca11List(startList+3};

g1PopMatrix();

-glF1ush{);

)

void reshape {int w, int h)

{

g1Viewport(0, 0, {GLsi2ei} w, (GLsizei) hi:

glnatrixmode{GL_PROJECTION);

glLoadIdentity();

if (w <= h}

glOrtho{—2.5. 2.5, —2.5*{GLfloat)h/{GLf1oat}w,

2.5*{GLf1oat}h/(GLf1oat1w, —10.0, 10.0);
else

g10rtho{—2.S*(GLf1oat}w/(GLfloat)h,

2.5*{GLfloat)w/(GLfloat)h, -2.5, 2.5, —10.0, 10.0];

g1MatrixMode[GL_MODELVIEW);

g1LoadIdentity{);
}

void keyboard(unsigned char key, int x, int y}
{

switch (key) {
case 27:

exit{0};

break;

}

int main(int argc, char** argv}
{

g1utInit(&argc, argv};

glut:InitDisp1ayMode{GLUT_SINGLE | GLUT_RGB I GLU'T_DEPTI-I};

Quadrics: Rendering Spheres, Cylinders, and Disks

0484

436

glutInitWindowSize{500. 500);

glutInitWindowPosition(100, 100);

glutCreateWindow{argv[0]);

init{);

g1utDisplayFunc(disp1ay);

glutReshapeFunc{reshape):

g1utKeyboardPunc(keyboard):

g1utMainLoop();

return 0;

Chapter 11: Tesseilators and Quadrics

0485

Chapter 12

Evaluators and NURBS

Chapter Obiectives

Advanced

After reading this chapter, you’ll be able to do the following:

- Use OpenGL evaluator commands to draw basic curves and surfaces

- Use the GLU’s higher-level NURBS facility to draw more Complex
curves and surfaces

Note that this chapter presumes a number of prerequisites; tl1ey’re listed in

"Prerequisites” on page 439.

0486

At the lowest level, graphics hardware draws points, line segments, and

polygons, which are usually triangles and quadrilaterals. Smooth curves

and surfaces are drawn by approximating them with large numbers of small

line segments or polygons. However, many useful curves and surfaces can

be described mathematically by a small number of parameters such as a few

control points. Saving the 16 control points for a surface requires much less

storage than saving 1000 triangles together with the normal vector
information at each vertex. In addition, the 1000 triangles only

approximate the true surface, but the control points accurately describe the
real surface.

Evaluators provide a way to specify points on a curve or surface (or part of

one) using only the control points. The curve or surface can then be
rendered at any precision. In addition, normal vectors can be calculated for

surfaces automatically. You can use the points generated by an evaluator in

many ways-—to draw dots where the surface would be, to draw a wireframe

version of the surface, or to draw a fully lighted, shaded, and even textured
‘version.

You can use evaluators to describe any polynomial or rational polynomial

splines or surfaces of any degree. These include almost all splines and spline

surfaces in use today, including B-splines, NURBS (Non-Uniform Rational
B-Spline) surfaces, Bézier curves and surfaces, and Hermite splines. Since

evaluators provide only a low-level description of the points on a curve or

surface, they're typically used underneath utility libraries that provide a

higher-level interface to the programmer. The GLU’s NURBS facility is such

a higher-level interface-.L—the NURBS routines encapsulate lots of

complicated code. Much of the final rendering is done with evaluators, but

for some conditions (trimming curves, for example) the NURBS routines use

planar polygons for rendering.

This Chapter contains the following major sections.

0 “Prerequisites” on page 439 discusses what knowledge is assumed for

this chapter. It also gives several references where you can obtain this
information.

- "Evaluators" on page 440 explains how evaluators work and how to
control them using the appropriate OpenGL commands.

0 “The GLU NURBS Interface” on page 455 describes the GLU routines
for creating NURBS surfaces.

Chapter I2: Evaluators‘ and NURBS

0487

Prerequisites

Evaluators make splines and surfaces that are based on a Bézier (or

Bernstein) basis. The defining formulas for the functions in this basis are

given in this chapter, but the discussion doesn't include derivations or even

lists of all their interesting mathematical properties. If you want to use

evaluators to draw curves and surfaces using other bases, you must know

how to convert your basis to a Bézier basis. In addition, when you render a
Bézier surface or part of it using evaluators, you need to determine the

granularity of your subdivision. Your decision needs to take into account

the trade-off between high-quality (highly subdivided) images and high
speed. Determining an appropriate subdivision strategy can be quite

coInp1icated—too complicated to be discussed here.

Similarly, a complete discussion of NURBS is beyond the scope of this book.
The GLU NURBS interface is documented here, and programming examples

are provided for readers who already understand the subject. In what

follows, you already should know about NURBS control points, knot

sequences, and trimming curves.

If you lack some of these prerequisites, the following references will help.

0 Farin, Gerald E., Curves and Surfaces for Computer-Aided Geometric

Design, Fourth Edition. San Diego, CA: Academic Press, 1996.

c Farin, Gerald E., NURB Curves and Surfaces: from Proiective Geometry to

Practical Use. Wellesley, MA: A. K. Peters Ltd., 1995.

I Farin, Gerald E., editor, NURBS for Curve and Surface Design, Society for

Industrial and Applied Mathematics, Philadelphia, -PA, 1991.

0 Hoschek, Josef and Dieter Lasser, Fundamentals ofComputer Aided

Geometric Design. Wellesley, MA: A. K. Peters Ltd., 1993.

- Piegl, Les and Wayne Tiller, The NURBS Book. New York, NY:

Springer-Verlag, 1995.

Note: Some terms used in this chapter might have slightly different

meanings in other books on spline curves and surfaces, since there

isn’t total agreement among the practitioners of this art. Generally,

the OpenGL meanings are a bit more restrictive. For example,

OpenGL evaluators always use Bézier bases; in other contexts,
evaluators might refer to the same concept, but with an arbitrary
basis.

Prerequisites

0488

439

440

_ .. _ ____ne.n*

Evaluators

A Bézier curve is a vector-valued function of one variable

C(11) = [X{u) Y(u) Z00]

where it varies in some domain (say [0,1]). A Bézier surface patch is a
vector-valued function of two variables

5(u.v) = [X(u,v) Y(u,v) Z(u,v)]

where u and v can both vary in some domain. The range isn’t necessarily

three-dimensional as shown here. You might want two-dimensional output

for curves on a plane or texture coordinates, or you might want
four-dimensional output to specify RGBA information. Even

one-dimensional output may make sense for gray levels.

For each u (or u and v, in the caseof a surface), the formula for C0 (or SO)

calculates a point on the curve (or surface). To use an evaluator, first define

the function C0 or SO, enable it, and then use the glEvalCoord10 or

glEvalCoord2() command instead of glVertex*0. This way, the curve or

surface vertices can be used like any other vertices—~to form points or lines,
for example. In addition, other commands automatically generate series of

vertices that produce a regular mesh uniformly spaced in u (or in u and v).

One- and two-dimensional evaluators are similar, but the description is

somewhat simpler in one dimension, so that case is discussed first.

0ne—Dimensional Evaluators

This section presents an example of using one—dirnensional evaluators to

draw a curve. It then describes the commands and equations that control
evaluators.

One-Dimensional Example: A Simple Bézier Curve

The program shown in Example 12-1 draws a cubic Bézier curve using four
control points, as shown in Figure 12-].

Chapter I2: Evaluators and NURBS

0489

Figure 12-1 Bézier Curve,

Example 12-1 Bézier Curve with Four Control Points: bez-::urve.c

#inc1ude <GL/gl.h>

#inc1ude <GL/g1u.h>
#inc1ude «cstdlib. 11>

#inc1ude <GL/g1ut.h>

GLf1oat ctrlpoints{4][3] = {

[-4.0, -4.0, 0.0}, { —2.0, 4.0, 0.0},

(2.0, -4.0, 0.0}, {4.0, 4.0, 0.0)};

void init(void}

{

g1C1earCo1ort0.0, 0.0, 0.0, 0.0];

g1ShadeModel(GL_FLAT);

g1Map1f(GLLHAP1_VERTEX_3, 0.0, 1.0, 3. 4. &ctr1points[0][0]);

g1Enable(GL_MAPl_VERTEX_3);

}

void displayivoidl
{

int i;

glclear(GL_COLOR_BUFFER_BIT);

g1Color3f(1.0, 1.0, 1.0};

glBegin(GL_LINE_STRIP};

for (i = 0; i <2 30; i++)

g1Eva1Coord1f((GLfloat) i/30.0};

g1End();

/* The following code displays the control points as dots. */

g1PointSize(5.0}:

g1Co1or3f(1.0, 1.0, 0.0);

glBe§in(GL_POINTS};

for {i = 0: i < 4; i++}

glVertex3fv{&ctr1points[i][0]);

Evaluators . 441

0490

442

g1End{};

glF1ush(}:
}

void reShape(int: w, int h}
{

glviewporttfl, 0, {GLsizei} w, (GLsizei} h):

glflatrixmode(GL_PROJECTION];

g1LoadIdentity{};

if {w <= h)

g10rtho{—5.0, 5.0, —5.0*[GLf1oat)h/(GLf1oat}w,

5.0*{GLf1oat}h/{GLf1oat}w, -5.0, 5.0];
else

g10rtho{—5.0*{GLfloat}w/{GLf1oat}h,

5.0*(GLf1oat]w/(GLf1oat}h, -5.0, 5.0, -5.0, 5.0];
glMatrixMode(GL_MODELVIEW};

glnoadldentityi};

}

int main(int argc, char** argv}
{

glutInit{&argc, argv);

glutlnitnisplayfiode (GLUT_SINGLE I GLUT_RGB):
glutlnitwindowsize (500. 500};

glutInitWindowPosition (100, 100);

glutcreatewindow (argv{0]);

irrit I);

g1utDisp1ayFunc(disp1ay);

g1utReshapeFunc{reshape};

glutMainLoop{};
return 0;

}

A cubic Bézier curve is described by four control points, which appear in this
example in the ctrIpor'nts[][] array. This array is one of the arguments to

g1Maplf0. All the arguments for this command are as follows:

GL_MAP1_VERTEX_3

Three-dimensional control points are provided and

three—dimensional vertices are produced

0.0 Low value of parameter u

1.0 High value of parameter :1

3 The number of floating—point values to advance

in the data between one control point and the
next

Chapter 12: Evaluators and NURBS

0491

4 The order of the spline, which is the degree-n-1;

in this case, the degree is 3 (since this is a cubic curve)

&c£rIpoint:S[0][0] Pointer to the first control poir1t’s data

Note that the second and third arguments control the parameterization of

the curve~—-as the variable 11 ranges from 0.0 to 1.0, the curve goes from one

end to the other. The call to glEnable0 enables the one-dimensional
evaluator for three-dimensional vertices.

The curve is drawn in the routine displayo between the glBegin0

and glEnd0 calls. Since the evaluator is enabled, the command

g1EvalCoord1f0 is just like issuing a glVertex() command with

the coordinates of a vertex on the curve corresponding to the input

parameter :1.

Defining and Evaluating a One-Dimensional Evaluator

The Bernstein polynomial of degree n (or order n+1) is given by

B? (11) 2 uf(1_ u) 31-!-
If P,- represents a set of control points (one-, two—, three, or even four-

dimensional), then the equation

represents a Bézier curve as u varies from 0.0 to 1.0. To represent the same

curve but allowing it to vary between 111 and :12 instead of 0.0 and 1.0,
evaluate

("*1 JC
uz — 111

The command glMap1() defines a one-dimensional evaluator that uses

these equations.

void glMap1{fd} (GLen11tn target, TYPE E TYPE uz, GLint stride,
__ GI_.._intpqrd_er,- coast TYPE fpoints);

Definesa oneedinfensional etraluator. The target pafa'me'ter'specifies What
the control points represent, -asshown in" Table 12-1-, andztherefore how

many values need to‘be supplied in points. The points can represent
vertices, RGBA color data, normal vectors, or texture coordinates. For

Evaluators

0492

443

444

. ‘example, with—~GL_MAP1_COLOR_'4,_ the evaluator generates color data

al_ong.a curve in~four-dimensional (RGBA) c_olor_space.- You al-so use the

pa_ra_rnete1j values listed; in Table 12-1 toenable each definedggvaluator
before you invoke zit: Pass -the appropriate '-value to-.'glE'nable0 -or‘

3,lDi§ab1‘?,Q§::‘E¥“3~’é.-’a1?l=%9F"3i’?‘?l2l? .-t.-1--1"3=;,'°-‘:’=,‘°;‘3.-'.‘}<"~.t‘i’-.""' ' *=“==~ ea: +5» ivi" *2 ~ *‘~“* ‘

The second two parameters ‘for glMap1*0,.u1 andluz, indj_ca=te the
range"fort-he variable 11. The variable stride is=.the nurnberof single— or

dotgble-precision-values (as app'rop1'iate_)"in each.-block ofstorage; Thus,
it’s an offset -value between the beginning of onecontrol -point-'a-nd:-the ‘
beginnmg qt».-thenex-t;

'The,order:is -the degree -pl-us one, and it should agree" with."-the number of-
control -points. The points parameterpoints to the first coordinate of the

first control"-point. Using. the exampledata structure for glMap1*(), use

the -following for points:

(GLf1oat *) (&ctlpoint;S[0] .x)

Parameter Meaning

GL_MAP1_VERTEX_3

GL_MAP1_VERTEX_4

x, y, z vertex coordinates

x, y, z, w vertex coordinates

GL_MAP1_INDE.X color index

GL_MAP1_COLOR_4 R, G, B, A

GL_MAPI_NORMAL normal coordinates

GL_MAP1__TEXTURE_CO0RD_1 5 texture coordinates

GL_MAP1_TEXTURE_COORD_2 s, t texture coordinates

GL_MAP1_TEXTURE__COORD_3 s, t, rtexture coordinates

GL_MAP1_TEXTURE_COORD_4 s, t, r, q texture coordinates

Table 12-1 Types of Control Points for g1Map1*0

More than one evaluator can be evaluated at a time. If you have both a

GL_MAP1_VERTEX_3 and a GL_MAP1_COLOR_4 evaluator defined and

enabled, for example, then calls to glEvalCoord1 0 generate both a position
and a color. Only one of the vertex evaluators can be enabled at a time,

although you might have defined both of them. Similarly, only one of the

Chapter I2: Evaluators and NURBS

0493

~,:betweemanc§..includirig:p1_.,.a;ad<p _;.;,whe;e.O--g=.,p1;-p2~s§:‘n,;« -.. 13..., - , ~

texture evaluators can be active. Other than that, however, evaluators can
be used to generate any combination of vertex, normal, color, and

texture-coordinate data. If more than one evaluator of the same type is

defined and enabled, the one of highest dimension is used.

Use glEvalCoord1*0 to evaluate a defined and enabled one-dimensional

map.

Vfilid-5:1EV=!1fC:.$>°r‘11’I-fdt(T3TPE-I1): t — .. -
vdid.g1_EvaIcodr;11'{ra}g(-TYPE *u)_; I _ - . — - .1 -

,Ca_1_J_ses'j esgaluafion of the enabled. one-dimensional maps. Ther. argument :1
is the value,(or'a'_poii1tet to.the;'v_a_lue, in the. vector ve1'-si_on»- ofthe
command) -of'-t'he~d'o1nain- cdordinate.

For evaluated vertices, values for color, color index, normal vectors, and

texture coordinates are generated by-evaluation. Calls to glEvalCoord*() do
not use the current values for color, color index, normal vectors, and

texture coordinates. glEvalCoord*0 also leaves those values unchanged.

Defining Evenly Spaced Coordinate Values in One Dimension

You can use glEvalCoord10 with any values for u, but by far the most

common use is with evenly spaced values, as shown previously in

Example 12-]. To obtain evenly spaced values, define a one-dimensional

grid using g]MapGrid1*0 and then apply it using glEvalMesh1().

void glMap.Grid-1{fd](GLint n, TYPE H1, TYPE u-.2};

Defines a grid that goes from 1:1 to :12 in n steps, which are evenly spaced:

voi g-1Eva'lMes'-h1(GLenurn mode, GLint pl, GLint-p2);

Applies-the currently defined.-ma-p_grid toall. enabled.-eval'uators. The.
mode can beeither GII._l3?,-(5I'NT«tor G}-.._1.INE‘., :.de_pendirig .on.whether you
want _to dIa“lv.poiI1tS1'OI.a-’C0nIlE{CtBd line along the‘ CUWe- The‘ C311 has
exactly -the-same effect asiissuing a -g}EvaIC‘oord‘10 for each" of the steps’

Programmatically, it’-s equivalent to the fo'l1owirrg:
_fl fit 54' .- H. ' '

g1Bégin_('Gn'_-2or1\rT«,3.);? ‘ /..* -on _g1Begin(GL_LINE_STRIP): *I
for (i =_.p1.; i <= 152: i++)

g1E.‘va1Co_ord1 {L11 -I-.-i-* (u2—u1) /n.) ;

glE‘-nd() :

Evaluators

0494

446

except that if 1' = 0 or 1' = n, then glEvalCoord1() is called with exactly 111

or u2 as its parameter.

Two-Dimensional Evaluators

In two dimensions, everything is similar to the one-dimensional case,

except that all the commands must take two parameters, It and V, into

account. Points, colors, normals, or texture coordinates must be supplied

over a surface instead of a curve. Mathematically, the definition of a Bézier

surface patch is given by
H 11'!

5 (u, '0) = 223;’ (u) 3}“ (v)P,,
5: or = o

where P,,- are a set of m*n control points, and the B, are the same Bernstein
polynomials for one dimension. As before, the P,,- can represent vertices,
normals, colors, or texture coordinates.

The procedure to use two-dimensional evaluators is similar to the procedure
for one dimension.

1. Define the evaluator(s) with glMap2*().

2. Enable them by passing the appropriate value to glEnable().

3. Invoke them either by calling glEvaICoord20 between a glBegin()
and glEnd() pair or by specifying and then applying a mesh with

glMapGrid20 and glEva]Mesh2().

Defining and Evaluating a Two-Dimensional Evaluator

Use glMap2*() and glEvalCoord2*0 to define and then invoke a
two-dimensional evaluator.

void g1Ma'pz{fdl(GLe;_1um target, '_n_«;=>_a ui-, TYPE uz, cunt ustride,
'GLint uprde}, TYPE v1} TYPE 1'22, GLint vstride,
Gizint vordér, TYPE points); = ” '

The target parameter can have any of the values in Table 12-1, except that
the string -MAP1 is.-replaced with MA-P2. As before, these values are also
used with glEnable0 to:-enable the corresponding evaluator. Minimum
and_maximi1m'values'?for both it and v are provided asul, :12, 121-, '-‘and V2.
The parameters ustride and vstride indicate the number of single- or

double-precision values (as appropriate). between" independent settings

Chapter 12: Evaluators and NURBS

0495

for these values, allowing users to select a subrectangle of control points
out of.a much larger array. For example, if the data appears in the form

GLf1oat. ct1points[_100] [100] [3] ,-

and you rjvant to use the 4x4 subset beginning at ctlpoints[20] [30],
choose -ustride to be 100*3 and vstride to be 3. The starting point, points,

should be s_et'_tq 8_rctlpoints[20] [30] [0]. Finally, the order parameters,
uorder-andyorder, can-be different, allowing patches that are cubic in one

direction and quadratic in the other, for example. '

void glEvalC'oord2[fd| (TYPE :1, 'I’.l’PE V);
void glEvalCoord2[fd}v(TYPE *values);

Causes evaluation of the enabled two-dimensional maps. The
arguments u and 1.» are-the values-(or a pointer to the values u and v‘, in
the vector version of the command) for the domain coordinates. If

either of the vertex’ evaluators is enabled (GL_MAP2__VERTEX_3 or

GL_MAP2_VERTEX_4), then the normal to the surface is computed

analytically. This normal is associated with the generated vertex

' if‘ automatic normal generation has been enabled by passing
GL__AUTO_NORMAL to glEnable0. If it’s disabled, the corresponding
enabled nonnalmap is used to produce a nonnal. If no such map exists,
the current normal is used:

Two-Dimensional Example: A Bézler Surface

Example 12,-2 draws a wireframe Bézier surface using evaluators, as shown

in Figure 12-2. In this example, the surface is drawn with nine curved lines

in each direction. Each curve is drawn as 30 segments. To get the whole
program, add the reshapeo and rnain0 routines from Example 12-1.

Evaluators

0496

447

Figure 12-2 Bézier Surface

Example 12-2 Bézier Surface: bezsurf.c

#include <GL/g1.h>

#inc1ude <GL/g1u.h>
#include <stdlib.h>

#include <GL/g1ut.h>

GLfloat ctr1points[4][4][33 = {

{{—1.5. —1.5, 4.0}. {—0.5. -1.5, 2.0}.

(0.5, -1.5. -1.0), {1.5, -1.5, 2.0)}.

{{—l.5. *0.5, 1.0}. (-0.5, -0.5. 3.0}.

(0.5, -0.5. 0.0}. {1.5. -0.5. -1.01}.

{{—1.5. 0.5. 4.0}. {—0.5. 0.5, 0.0},

{0.5. 0.5. 3.0}. (1.5, 0.5. 4.0}}.

{{—1.5. 1.5. -2.0}. {-0.5. 1.5. -2.0}.

{0.5, 1.5, 0.0}. {1.5, 1.5. —1.0}}

I}:

void displaytvoidl
{

int i. j;

glclear{GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT};
g1Co1or3f(1.0, 1.0, 1.0);

g1PushMatrix (J;

g1Rotatef{35.0. 1.0, 1.0, 1.0);

for (5 = 0: 5 <= 3: j++) {

g1Begin{GL_LINE_STRIP};

for (i = 0; i <= 30; i++)

g1Eva1Coord2f{{GLf1oat)i/30.0, (GLfloat)j/8.0);

91End{}:

Cfzaprer I2: Evaluators and NURBS

0497
lax:

glBegin{GL_LINE_STRIP};

for (i = D; i <= 30; i++)

glEvalCoord2f[(Ghfloatlj/3.0, (GLf1oat)i/30.0};

g1End(}:

}

g1PopMatrix (1;

g1Flush();

}

void inittvoidl

{

g1C1earColor (0.0, 0.0, 0.0, 0.0),-

g1Map2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctr1points{01[0][0]);

g1Enab1e {GL__MAP2_VERTEX__3) ,- _
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

glEnable{GL#DEPTH_TEST);

glShadeMode1[GL_FLATl;

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, the glMapGrid2*0 and glEvalMesh2() commands are

similar to the one-dimensional versions, except that both L1 and 12
information must be included.

void‘ glMapGrid2{fd}(GLint nu, TYPE :11, TYPE :12,

_ ‘GLint nv, TYPE v1, TYPETVZ);
void 'gl'E_V_ra]Mesh2(GI,eninn made, GLi_nti1, GLint 1'2, GLint ,v'.1, GLint i2);

Defines‘ a t-woj-dimensional map=g1'id- that goes fro_m.u1 to -112 in nu evenly
spaced-steps, -from v1 to V2 in!-nv steps (glM‘apG1'id2*()), and-then applies
this g?fid.to.a]1-enabled evaluators (glEva_lM‘esh20). The only--significant
difference?fror'n.the-one-dimensional versions of these two commands is

that in g1F_.i‘ra1;Me$h2() the mode parameter can be-'GL_FILL as well as
'GL_POINT"or«GL_LINE. GL__E-‘ILL generates filled. polygons using the
quail-_r'11esh' primitive. Stated precisely, gl_Eva1Mesh20-is'n_early

-9§.!'¥.iV'f|1,$3,flI,;§i;Q--9*;1S3.sQf_'efi1’l,.€ followiligztllree CQ€1e:?'f!i=:993eni$i—I1tiS-neatly
equi'\ralé_nt.liEeai1se'whén i is equal to -mt oi)’ to n1k;.the })'arameter is
exactly ,equal_,;-‘co u2 or-V2, not to u1+nu *(u2—u1)/nu; which -might be
slightly different due to-round-off en-or.) ’

Ewahuuon

0498

449

. «rs41-eras-;.'-M:».=*

450

glBegin(GL_POINTS}; /* mode == GL_POINT */

for (i 2 nul; i <= nuz; i++}
for (j = nvl; j e: nv2; j++)

glEva1Coord2{u1 + i*{u2—u1)/nu, v1+j*tv2—v1]/nv};

9lEI1C'H}:

01'

for

for

GI

for

}

(i = nul; i <= nu2;

glBegin{GL_LINES};

for (j = nvl; j <= nv2; j++)

g1EvalCoord2(ul + i*(u2—u1J/nu, v1+j*(v2—v1}/nv};

g1End() I

i++} { /* mode 2: GL_LINE */

(j = nvl; j <= nv2; j++} {

glBegin{GL_LINES);

for (i = nul; i <= nu2; i++}

g1EvalCoord2(u1 + i*(u2—u1)/nu, v1+j*{v2—vl}/nv);

gllandm '

(i = hul; i < nu2; i++] {

glBegin{GL_QUAD_STRIP);

for (j = nvl; j <= nv2; j++) {

glEvalCoord2(u1 + i*{u2—u1)/nu, v1+j*(v2—vl}/nv};

glEva1Coord2(u1 + {i+l)*(u2—ul}/nu, v1+j*(v2—v1}/nv};
g1End{}:

/* mode == GL_FILL */

Example 12-3 shows the differences necessary to draw the same Bézier

surface as Exampie 12-2, but using glMapGrid20 and glEvalMesh20 to

subdivide the square domain into a uniform 8x8 grid. This program also

adds lighting and shading, as shown in Figure 12-3.

Chapter 12: Evaluators and NURBS

0499

',._g4_,{h_,-u-\.5E‘'8h'\'|.:*-I:Sd.,_v1''.''I3I‘-‘L

Figure 12-3 Lit, Shaded Bézier Surface Drawn with 21 Mesh

Example 123 Lit, Shaded Bézjer Surface Using a Mesh: bezmesh.c

void initlightslvoid)
{

GLf1oaI: ambient[] = {0.2, 0.2, 0.2, 1.0};

GLf1oat position[] = {0.0, 0.0, 2.0, 1.0};

GLflc-at mat_diffuse[} = {0.6, 0.6, 0.6, 1.0};

GLf1oat mat_spec:u1ar[} = {1.0, 1.0, 1.0, 1.0};

GLfloat mat_shininess[} : {50.0};

g1Enab1e {GL_LIGH'I'ING} ;

g1Enable [GL_LIGI-ITO] ;

glLightfv{GL_LIGI-ITO, GL_AD-IBIENT, ambient };

g1Lightfv(GL__LIGH'1'0, GLWPOSITION, position);

g1Materia1fv{GL_FRONT, GL_DIFFUSE, mat_diffuse);

gluate-rialfv{GL_E'RONT, GL_SPECULAR, mar._specular];

g1Materialfv{GL_FRONT, GL_SHININESS, mat__shininess);
}

void disp1ay(void}
{

glClear (GL_COLOR__BUFFER__BIT | GL_DEPTH__BUFFER_BIT) ,-
glPushMatrix():

g1Rotatef{85.0, 1.0, 1.0, 1.0};

g1Eva1Mesh2[GL_FILL, 0, 20, 0, 20);

g1PopMatrix();

glF1ush();

Evaluators 451

0500

452

void init{void}

{

g1ClearCo1or(0.0, 0.0, 0:0, 0.0);

g1Enab1e(GL_DEPTH_TEST):

g1Map2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]):
g1Enable{GL_MAP2_VERTEX_3);

glEnab1e{GL_AUTO_NORMAL);

g1MapGrid2f{20, 0.0, 1.0, 20, 0.0, 1.0);

initlightsli;

Using Evaluators for Textures

Example 12-4 enables two evaluators at the same time: The first generates

three-dimensional points on the same Bézier surface as Example 12-3, and

the second generates texture coordinates. In this case, the texture

coordinates are the same as the u and v coordinates of the surface, but a

special" flat Bézier patch must be created to do this.

The flat patch is defined over a square with corners at (0, 0), (0, 1), (1, 0),

and (1, 1); it generates (0, 0) at corner (0, O), (0, 1) at corner (0, 1), and so

on. Since it's of order two {linear degree plus one), evaluating this texture at

the point (:1, v) generates texture coordinates (5, t). It's enabled at the same
time as the vertex evaluator, so both take effect when the surface is drawn.

(See Plate 19.) If you want the texture to repeat three times in each

direction, change every 1.0 in the array texpts[][]{] to 3.0. Since the texture
wraps in this example, the surface is rendered with nine copies of the

texture map.

Example 12-4 Using Evaluators for Textures: texturesurtc

#inc1ude <GL/g1.h>

#inc1ude <GL/g1u.h>
#include <stdlib.h>

#include <GL/glut.h>
#inc1ude <math.h>

GLf1oat ctrlpoints[4][4][3] = {

{{ -1.5. -1.5. 4.0}, { -0.5, w1.5, 2.0},

{0.5, -1.5. -1.0}. {1.5, -1.5. 2.0}}.

{{ -1.5, -0.5, 1.0}. { -0.5, —0.5, 3.0},

{0.5, -0.5, 0.0}. {1.5. -0.5. -1.0)}.

{{ -1.5. 0.5, 4.0}. { -0.5, 0.5, 0.0}.

Chapter 12: Evaluators and NURBS

0501

:4.E.:.“.iai.EL°=
mfLEj._.u'__N1,

£.:_.....‘...a......'.

inn;.

{0.5. 0.5. 3.0}. {1.5. 0-5. 4.0}}.

{{ —1.5, 1.5, -2.0}, { -0.5, 1.5, ~2.0},

{0.5, 1.5, 0.0}, {1.S, 1.5, -1.0}}

}: .

GLf1oat texpts[2][2][2] = {{{0.0, 0.0}, {0.0, 1.0}},

{{1.0, 0.0}. {l.0, 1.0}}}:

void disp1ay{void}
{

glclear(GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT);
g1Co10r3f(1.0, 1.0, 1.0};

g1EvalMesh2(GL_FILL, 0, 20, 0, 20);

glF1ush{};

}

#define'imageWidth 64

#define imagefleight 64

GLubyte image[3*imageWidth*imageHeight];

void makelmagetvoid)
{

int 1, j;

float ti, tj;

for (i = 0; i < imagewidth; i++} {

ti = 2.0*3.14l59265*ifimageWidth:

for {j = 0; j < imagefieight; j++) {

tj = 2.0*3.14159265*j/imagefleight:

image[3*{imageHeight*i+j)] =

{GLubyte) 127*{1.0+sin[ti)};

image[3*(imageHeight*i+j)+1] =

(GLubyte) 127*{1.0+coS(2*tj}}:

image[3*{imageHeight*i+j}+2] =

(GLubyte) 127*{1.0+cos(ti+tj)]:

}

void init(void)

{

g1Map2f{GL__MAP2_VERTEX___3, 0, 1, 3, 4,

0, 1, 12, 4, &ctr1points[0][O][0]}:

g1l¥iap2f{GL__MAP2_TEXTURE_CO0RD_2, 0, 1, 2, 2.
0, 1, 4, 2, &tex'pts[0]{0][(}]):

g1Enab1e {GL_MAP2___TEXTU'RE__CO0RD_2) ;

g1Enab1e [GL_MAP2_VERTEX_3} ;

_g1MapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
makeImage():

Evahuuors 453

0502

gl'1‘exEnvf (GL_TEXTURE_ENV, GL_‘I‘EXTU'.RE_ENV_MODE. GL_DECAL),-

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT};

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN;FILTER,

GL_NEAREST); I _
glTexImage2D(GL_TEXTURE_2D, 0, 3, imagewidth, imagefleight, 0,

GLLRGB, GL_UNSIGNED_BYTE, image};

g1Enable(GL_TEXTURE_2D);

glEnable{GL_DEPTH_TEST);

glshademodel (GL_FLAT};
}

void reshapeiint w, int h)
{

g1Viewport(0, 0, {GLsizei) w, (GLsi2ei} h];

glfiatrixuode{GL_PROJECTION}:

g1LoadIdentity();

if (w <= h)

gl0rtho{—4.U, 4.0, —4.0*(GLfloat)hX(GLfloat)w,

4.0*(GLf1oat)h/[GLf1oat)w, -4.0, 4.0);
else

gl0rtho{—4.0*(GLfloat)w/(GLf1oatJh,

4.0*(GLf1oat)w/(GLfloat)h, -4.0, 4.0, -4.0, 4.0);

glMatrixMode{GL_MODELVIEWJ;

glLoadIdentity{);

g1Rotatef(85.0, 1.0, 1.0, 1.0);
}

int main{int argc, char** argv}
{

glutInit(&argc, argv);

g1utIn:'LtDisp1ayM0de {GLUT_SINGLE | GLUT_RGB | GLUT_DEPTI-I};
g1utInitWindowSize {500, 500};

g1utInitWindowPosition (100, 100);

glutcreatewindow {argv[0]);

init I};

g1utDisp1ayFunc{display};

g1utReshapeFunc{reshape);

g1utMainLoop();

return 0;

Chapter 12: Evaluators and NURBS

0503

.....-.=z:uuan-..=.--.|-I‘.-0'i\§)dY‘1Jv-AMA‘-‘.11’.
:...a:I..

The GLU NURBS Interface

Although evaluators are the only OpenGL primitive available to draw

curves and surfaces directly, and even though they can be implemented

very efficiently in hardware, they’re often accessed by applications through

higher-level libraries-. The GLU provides a NURBS (Non-Uniform Rational

B-Spline) interface built on top of the OpenGL evaluator commands. .

A Simple NURBS Example

If you understand NURBS, writing OpenGL code to manipulate NURBS

curves and surfaces is relatively easy, even with lighting and texture

mapping. Follow these steps to draw NURBS curves or untrimmed NURBS

surfaces. (See “Trim a NURBS Surface” on page 464 for information about
trimmed surfaces.)

1. If you intend to use lighting with a NURBS surface, call glEnable0

with Gl..*AUTO_NORMAL to automatically generate surface normals.

(Or you can calculate your own.)

2. Use gluNewNurbsRenderer() to create a pointer to a NURBS object,

which is referred to when creating your NURBS curve or surface.

3. If desired, call gluNurbsProperty0 to choose rendering values, such as
the maximum size of lines or polygons that are used to render your

NURBS object.

4. Call gluNu_rbsCallback0 if you want to be notified when an error is

encountered. (Error checking may slightly degrade performance but is

still highly recommended.)

5. Start your curve or surface by calling gluBeginCurve() or
gluBeginSurface().

6. Generate and render your curve or surface. Call gluNurbsCurve0 or

gluNurbsSurface0 at least once with the control points (rational or

nonrational), knot sequence, and order of the polynomial basis

function for your NURBS object. You might call these functions

additional times to specify surface normals and/or texture coordinates.

7. Call gluEndCurve0 or gluErrdSurface0 to complete the curve or
surface.

Example 12-5 renders a NURBS surface in the shape of a symmetrical hill

with control points ranging from -3.0 to 3.0. The basis function is a cubic

The GLU NURBS Interface

0504

455

B-spline, but the knot sequence is nonuniform, with a multiplicity of 4 at

each endpoint, causing the basis function to behave like a Bézier curve in

each direction. The surface is lighted, with a dark gray diffuse reflection and

white specular highlights. Figure 12-4 shows the surface as a lit wireframe.

; ii;
We -'-*-.~;'~:g

IIIII
IIII’

I.fiilllll E‘:-'-ElilllII.'::l-'35’:":19.-2-.r..”
A-..._7EiT'-.."-.1

Figure 12-4 NURBS Surface

Example 12-5 NURBS Surface: surface.c

#inc1ude <GL/gl.h>

#include ¢GL/glu.h>

#include <GL/glut.h>
#include <stdlib.h>

#include <stdio.h>

GLf1oat ct1points[4]{4][3];

int showPoints = 0;

GLUnurbsObj *theNurb;

void init_surface (void)
{

int u, V;

for (u = 0; u < 4; u++) {

for [v = 0; v < 4; v++) {

ctlpoints[u][v][0] = 2.0*([GLf1oat)n ~ 1.5};

ctIpoints[u][v][1] = 2.G*((GLf1oat}v - 1.5};

if { {u == 1 |[n == 2] && {v == 1 !| V == 2}}
ctlpoints[u][v][2] = 3.0;

else

ct1points[u}[v][2] -3.0;

Chapter 12: Evaluators and NURBS

0505

.Lu-Mr.

3?."8?*E-*é‘.I’9:'=:E‘.
._..__E

_M__..,-.___..__...J...

-.

void nurbsError(GLenum errorcode)

{

const GLubyte *estring;

estring = g1uErrorStringierrorcode);

fprintf (stderr, ‘Nurbs Error: %s\n”, estring);
exit (0).-

}

Void inittvoidl

{

GLf1oat mat_diffuse[] = { 0.7, 0.7, 0.7, 1.0 };

GLf1oat mat_specu1ar[] = { 1.0, 1.0, 1.0, 1.0 };

GLf1oat maI:_shininess[] = { 100.0 },-

glclearcolor (0.0, 0.0, 0.0, 0.0); -. r_
g1Materialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse]; ‘ " «

glHateria1fv{GL_FRONT, GL_SPECULAR, mat_specular}:

glMateria1fv{GL_FRONT, GL_SHININESS, mat_shininess};

g1Enable(GL_LIGHTING};

g1Enable{GL_LIGHTO);

g1Enab1e{GL_DEPTH_TEST);

g1Enable{GL_AUTO_NORMAL};

g1Enab1e{GL_NORMALIZE);

init_surface(};

theNurb = gluNewNurbsRenderer(];

g1uNurbsProperty(theflurb, GLU;SAMPLING_TOLERANCE, 25.0}:

g1uNurbsProperty(theflurb, GLU_DISPLAY;MODE, GLU_FILL);

g1uNurbsCa1lback{theNurh, GLU_ERROR,

{GLvoid (*}(}} nurbsError};

}

void display{void)
{ .

GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0}:

int i, j;

i glClear{GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix{);

g1Rotatef(330.0, 1.,0.,0.);

glscalef (0.5, 0.5, 0.5);

g1uBeginSurface{theNurb};

The GLU NURBS Interface 457

0506

458

g1uNurbsSurface(theNurb,

8, knots, 8, knots,

4 * 3, 3. &ct1points[0][0][01,

4, 4, GL_MAP2_VERTEXfl3};

g1uEndSurface(theNurb};

if {showPoints) {

g1PointSize(5.0};

g1Disah1e(GL_LIGHTING);

g1Co1or3f(1.0, 1.0. 0.0};

g1Begin(GL_POINTS};

for (i = 0; i < 4; i++} {

for (3 = 0: j < 4: j++} {

glVertex3f(ctlpoints[i][j][0],

ctlpointsliltjltll. ct1points[i][j][2]}:
}

}

glEnd{}:

g1Enable{GL_LIGHTING);
}

glPopMatrix(];

glF1ush{);
}

void reshapeiint w, int h)
{

g1Viewport{0, 0, [GLsizei] w. {GLsizei) h);

g1MatrixMode{GL*PROJECTION};

glLoadIdentity(}:

gluPerspective {45.0, {GLdoub1e)w/{GLdouble)h, 3.0, 8.0);

glflatrixmode(GL_MODELVIEW);

g1LoadIdentity{};
g1Trans1atef (0.0. 0.0, -5.0};

Chapter I2: Evaluators and NURBS

0507

"R',:',-.Iv41-n-.-mmifs.-

'k..

..5‘,gm"

void keyboard(unsigned char key, int x, int y}
{

switch (key) {
case ‘c’:

case ‘C’:

showPoints = !showPoints;

g1utPostRedisplay();
break;

case 27:

exit{0);

break;
default:

break;

}

int main(int argc, char** argv)
{

g1utInit{&argc, argv);

glutInitDisp1ayMode(GLUT_SINGLE I GLUT_RGB I GLUT_DEPTH];
glutlnitwindowsize (500, 500);

glutInitWindowPosition (100, 100);

glutCreatewindow{argv[0]);

init{}: .

glutReshapeFunc(reshape};

g1utDisp1ayFunc{disp1ay);
g1utKeyboardFunc (keyboard);

g1utMainLoop{);
return 0;

Manage a NURBS Object

As shown in Example 12-5, gluNewNurbsRenderer() retums a new NURBS

object, whose type is a pointer to a GLUnu1'bsObi structure. You must make

this object before using any other -NURBS routine. When you’re done with

a NURBS object, you may use gIuDeleteNurbsRenderer0 to free up the

memory that was used.

G'LU:‘1'u‘rbs0l-J].*=’g1tiNewNu}boRe1Iderer-(void);
Cmfitee 'a_ ggbiectj _'n_:'i9j-.fRetuH1s _a pointer-.to’J”th'e new object, -or
-zero, if"OpenGL%r1ot3aI1ocatqtinen1ory‘for‘ a new NL_IR-BS object.

I%eCH1INURBShflPdmw

 —

0508

459

void'gluDeleteNurbsRenderer (GLUnurbsObi *nobfi; ‘

Destroys the NURBS obiect nobj.

Control NURBS Rendering Properties

A set of properties associated with a NURBS object affects the way the object

is rendered. These properties include how the surface is rasterized (for
example, filled or wireframe) and the precision of tessellation.

void. gluNurbsProperty(GLUnurbsOb]' "*'nobj,. GLenu-rn
GLfloat.vaIue); " F t “

Controls attributes of a NURBS objeet,_nqb;':.'1‘he prlopertyiargument _
specifies the property and can be GLU_DIS-_PLAY_MODE, GLU_CULLING,

GLU_SAMPLING_METHOD, GLU_SAMPLING_&TOLE:RANCE,

.GLU,_PARA-METRlC_TOLERANCE, GLU_U_STEP, GLU_V_STEP, OI

GLU_AUTO_LOAD_MATRIX.'The value argument indicates what the
property shoulclbe. '

The default value for GLU_DISPLAY_MODE is GLUHFILL, which causes

the surface to be rendered as polygons. If GLU__0UTLINE_POLYGON is
used for the display-mode property, only the outlines of g0_lygor1s_c_1'eated'

by tessellation are rendered. GLU_OUTLINE_PA'l‘(-3i-I renderst-he outlines

of patches and trimming curves. (See “Create a NURBS Curve gr Surface”
on page 462.) ' - '

GLU__CULLING can speed up performance by not performing-tessellation
if the- NURBS object falls completely outside the viewing volume; set this
property to _GL~TRUE to enable culling (the default _is

—. - I %' " ,7‘ -‘

Since a NURBS object is rendered as p1'imitives,\it"s sampled at different_ _
values of its parameter(s) (1: and v) and broken do%' intdwrfiwall line . = -3
segments or polygons forirentler-ing. If’-properly is_' < ’*~ —- “~ ' - ’

-.

GLU:SA'MPLING_METHOD';'then "1'/lfilfié 1'8‘ set to-ofie or - 5 3' " -‘ ‘- ‘
GLU_PATH___LENGTH- (WhiCh is'the.defau1t), GLU;PARAMETRIC;£ERR'OR,

or GLU_DOMAlN_DISTAN_CE, which specifies ho'w'-"a'<IsJURBS-’CI3irVe‘ or. ' ‘
surface should be tessellated. Whenvalue is set to GLUH_PATH_LEI\IlG'1?H,

_thé'surface‘i§°rén‘dered- so -thatthé maxirnurn length, if-fjaiicels, oft-he
edges of tessellatedpolygons is no greater than what -is specified ‘by
GLU_SAMPl£ING;TOLERANC'E.-‘When set to -GLU'_PARAMETRlCjERROR, '

then- the value -‘specified by GLU_PARAMETRlC_'1‘OLERAN(3_E is the
maximum distance, in pixels, between tessellated polygons and the

Chapter 12: Evaluators and NURBS

0509

i
2::

3,

i
3

In

..._._...._.._..:j.....
surfaeeéfoiéy efiprbxifiate: whet’: setifo GLU"_D0MA1N_=D1-sTANcE;*rhe-

application specifles,ain'.pafgnmetricweooggiga¥§§;§hgwg;}§51y.e§agp1e poinfs

per unit length are taken iii the u and v_"§}i1_gIer1_:§'ibns, "usingithef=s{alu_e_s for ‘
fGGL],1_U_;STEP-and-GLU_V;S1'E:Pwu’_*§*f;33,,:3'*‘9%§'é4.'=%%33?“f?,’i§f‘so ix» 3*‘--

M xi , e ‘ “£"'m3.e=.* W. :-f3qg'fi$57f§?‘§€§p§§5§“. '; -*7. V‘
-:."”F.“; ‘fiufm ‘:’h.E!:.4"_ 2 '_“_.§ '* _‘r“- -* “-'-a-"°°‘*"“ 5°‘

1:propemeis GLU-_sA.Ni1?L1r~zcg;IgI;eI_z,oe1~,1g1a,‘ma; the sam ling method is
;.IGLU_PA’I‘H_LENGTH, mhm-co*fifioI:v:J.=he_- r:‘:_ia;§mi:i::*f1e "'_‘_ _' $7 in..‘pi~x‘e1-s-,- Eb‘
‘e1éSlt"f°r»:fs=§§é.11ated P°lYzéi1$¥I3:»?f’%°fa91toVéiéei9€*§\$Q:n?;vali¥3%;F*1€é!aI8¢st"
sampled liife segment or polygon ’&!”§;1"gt§"5;§{-",9‘13i2?éLsl_lQiig;¥.ifiprape§t;fi'is',E

e_GI§U5PARgA1}fiETRIC_TOLER‘§r~J1C§(q;nd tlg:§5§%afmpHgg-Iigethéd - _
gGLUEPARAMET-R1C;ERROR§,¥raI:3e‘Ebnirol§;tLfe distance, '
.;I;3i1ct-*:l_§,~‘~l:JJ«:t1v\reen the‘tesse];§‘tet_i;p§jJ§3‘rg<ii-1s;ai1’id i_1_1ej_§u;faees' ffieyfi '; _ W
"-a1'3{§:i:a5E:ni‘ate.. The detau1t‘§?51i‘ie.-régfgsI:UgI?ARAME*I*R1e;,TogERANeE is’ ‘
— 9-5. h=!!1.ék£§«ielggeteasel!a£§£fi?£215igon.?-gieithirameétialf-rpigglpfiiie

app]l't12§Ji;eifI«1:‘ELfl€ii*§S1{irf§;3C_¢?:If=ffiE'::.i5Ii}}?1iIIIgTfllét-hod-3iS' 25-= =9,-in « va . —

G'Ii_lJ_D5M'AfN Dlsrelwgemhdyripperty if; either GLU_Ujs1t?__of
c;L'u1:xg;$1tE;12,__ "I_;_i'Zl‘§1’l:_-‘.‘V’£iI'I‘JE_tF_2;-'i_S _th;e=r1I_Li'rr'1be_r; o’f_¢s-Egmpge-«point,s2,per tlrlffzlength
taken-alongthe-113.01"i?._r;ji1ne11sion;‘“i'espeCti§rely, it1‘~paramet_i=ic\-1‘ . ‘
coorglinates; ’lf1"ie';defa}flt for '35ot11 C:;LU-_,U_S'I‘EP- and1é}.LU:V;S1?EP is 100.

The GLUfAUTO;_-LOAD:‘3NfA}TRI_X property determinefwhethfier the
projection matrix, .modelview _m'at'rix=, and viewport areidownloaded from
the=OEpénGL sew?-I (GL_TRUE,.;the‘default), on wl1e_t;l:_1e_,1j.the‘-"a'pplication
must su_pp'ly:_t1=1eseefnatriees.°v'iIith gluLoagieSampli11_gMat1iees0f-
(<3_L_1=m.s-E). ‘ ‘ , ' " - ‘ - - *

voigi gluLo_§ad.Samp!ingM£itricesv (GLU'nu-rbs_Obj *nobj, -eonst GL1‘-lo_at'
mc_atieI;?\/Iat:jisiE[i_6],:.co_r1st-.GI_’:11§loat ;}n0j1_VIat_rt'x[;6__]_, 'const' viewport{4]);‘

I " 4‘L_,":_“/'-er. " ‘ ‘ ' - . *‘7“" "-1- -4 '

-It-:_thIeG:LU_AUT@;L@AH:NfK1=R1«x 1% turned -'off;;'thle‘-mofle1view.iand
"projettltfil inatriées-afiH‘tl}:e;,yie§gp§rt%i)eEjjfi'¢(§*im~- __ _‘~“a_: 3: ‘ ‘
.gluLo'z1"(1Safipling1\da£1*ices();;are;I3j§ed':to% eo1'iupute-gsalnpiing ai1el.cu1l_i1ig
matfices for each'NUBBS‘éufi7'e' ox‘-_si1rfa'c'e. "‘ '7 ~ ' " A

If you need to query the current value for a NURBS property, you may use

gluGetNurbsProperty0.
3|.

- v~-- .~-= ’ .*=.~:.-$'.i,&.‘su=a.:'§a.--A--r.r<..."«‘ev..!.,re$fi~' -‘ I 1: -. _. in e- ‘

void.gluG'etNurbsProperty;(GLUfiurbs0bi’ *nob;T, ;GLe:nun_1_pmperty, ,
. :-:.-E:.'G;¥¥1"’~7*_fit'-'-.-"r;“‘**?!i;II_é);-'. ~ ._ ' .”

Given '£Iie‘~‘pr'}:peny*te} be,q{1e£ié§ci tonne NURBS -object-mflfii; retui-}_‘;1; its _
cI1_r-rent-1_;aIue..—_ _ " '

The GLU NURBS Interface

0510

461

462

Handle NURBS Errors

Since there are 37 different errors specific to NURBS functions, it's a good

idea to register an error callback to let you know ifyou’ve stumbled into one
of them. In Example 12-5, the callback function was registered with

gluflurbscallhackttheflurb, GLU_ERROR, (GLvoid (*}()i nnrbsError);

void g1uNurbs(;3a1lbackI (GLUnurbsObi *rio_bj,. GLenum‘.which,

void (-*fn)(.GLenum7enor‘Cade)); ,

which is the type of callback; it rnustzbe GLU_._ERROR. flen a NURBS
function detects-an error condition, fit is ir'_1\?oked- with the ‘error code as
its only argument. errorCode is one of 32' error conditions, named

GLU_'NURBS_ERROR1 through _GLU__NU'RBS;ERR_OR-3 7. Use ‘

gluErrorString()- to describe the meaning or? those error codes.

In Example 12-5, the nurbsError() routine was registered as the error
callback function:

void nurbsError{GLenum errorcodei

{

const GLubyte *estring;

estring -—-. g1uErrorStringierrorcodei:

fprintf tstderr, “Nurbs Error: %s\n', estring);

exit {O};

Create a NURBS curve or Surface

To render a NURBS surface, gluNurbsSurface0 is bracketed by
gluBeginSurface0 and gluEndSurface0. The bracketing routines save and
restore the evaluator state.

Chapter I2.‘ Evaluators and NURBS

0511

void gluBegiriSu'rface (GLUnurbsObi *nob]');

void glu£ndS_ur_:face_(GLUnurb_sObj *nobj)';_

After gltrlieginsurfaceo, one or. more eallsto gluNurbsSurface0 defines
the attributes, o'f_thfe:-su"r'face‘._ Exactly one of these calls must have a surface
type-of GL_MAP2__V}iRTEX_3 or GL_MAP2_VE-RTEX_4 to generate
vei7tices_. Use ‘gluEnd_Surface0 -to end the definition of a surface.
Trimming of NURBS'..surfaces is- also supported between
gluB-eginsurfaceoland gl'uEndSurface(). (See “Trim a NURBS Surface”
on. page-464,)’

void gliihiurbssurface {GLUI1_urbs0bj *nab,i,‘GLint uknot_count,

“ GLfloat fuknot, GI-,i'nt vkn0t_count, GLfloat *vknot,
GLint u_’stn'de, GLint v_stn'a'e, GLfloat *_étIa'nay,
GLiI1t uorder, GLir1t vorder, GLenurn type);

Descr-ibes.the.ve-rt,ic_e,s (or.su1'-face normals or texturecoordin-ates) of a
NURBS surface, nalzj. Several of the values must be specified for both u

and V parametric directions, such as the knot sequences (uknot and vknot),
knot counts~-(uknot__count'and vk-not_c0unt), and order of the polynomial

(uorder and .-vorder) for the NURBS surface. Note that the number of

control points isn’t specified. Instead, it's derived by .determining the

number of control points along each parameter as the number of knots

minus the order. Then, thenumber of control points for the surface is

equal -to the number of control points in each -parametric direction,
multiplied by one another. The ctlarray argument points to an array of
control points.

-The last parameter-,--type, is-one of the two-dimensional evaluator types.

Comn1only,_..you'u1ightruse GL_MAP2_,VER'I'EX_3 for nonra-tional or
'GL_MA‘P2_'.VER7I‘EX-_4 for rational_control-points, resp.e‘ctivel_y.- You might
also usepther types,.such as-‘GL_.MAP2_TEXTURE_CO0RD_* or

GL_MAP-2'_N9RMAL to_. calculate and-assign texture-coordinates or

surface nor-rnals, For example, to create a lighted (with surface normals)
.and textured'NU-RBS7-surface}. you may need to call this sequence:

. _91.;&P.s9ie§4.rfase<e<ab3'>: .
’ ~€'§;1;jIsiij:i:1_‘:§_§u:-t-acéimoizij ,' 'oL_;1Ap2_irExTtm£i_cooRD_2};

giunnrbssugface {nobj , . . . , GL_MAP2_,NDRMAL} ,-
glufiurbssurfaceinobj, .. ., GL_;MAP2,__vERTEx_3):

g1uEndSur faceinobj) ;

The GLU NURBS Interface 463

‘ .

051 2

-uh-av-—\—'hI-.rl
The'u_stride-"and v_stn'de arguments represent the number of
floating-point values betweencontrol points in each parametric

direction. The evaluator type,'as well as" its order, affects the u_-stride and
vgstritie values. in Example‘ -12-5, _u_sin'de.'is'12 (.4"_* ?_)'bec2iuse--t-h'ere'-aIe"- --

'ti1t..§':€-c9ordirfetes';fo.z,eacii.:rertex (sets..hY‘GL;MAE2a¥.ERTEX:§)i?:nd =-,f.01.1re
contfo1'poifi‘l§‘:i‘i'1 the ”pJaii"a*‘r'rletri'c‘ v d-irection; v_stfidé'”:i"§-.:3‘heeause-‘each '
vertex had three coordinates, and v control points’-are adjacent to -one
another. -

Drawing a NURBS curve is similar to drawing a surface, except that all

calculations are done with one parameter, :1, rather than two. Also, for

curves, gluBeginCurve{) and gluEndCurve() are the bracketing routines.

void gl1rBegin'Cfn've (GLUnurbsOb]' *nob,i');' ~ ‘

void gIuEni:lCurve.(GLUnurbsObi *nob,t); '

After-'gluBeg'inCur've0, one or more ‘calls to giuNurbsCurve-0 define the

attributes of the surface. Exactly one of these calls must have a-surface

type of -GL_MAP1_VER'I‘EX_3 or GL_MAP1_VERTEX_4 -to generate

Vertices. Use gluEndCurve() to end the definition of a surface.

void gluNurbsCur've .(GLUnurbsObj *nobj, GLint uknot_count.,

GLfloat-*ukno_t, GLint-u_stn'de, GLfloat *ct_Iar_ray,
GLint uorder, GLen-um type); ’

Defines a NURBS curve for the object nobj. The argur-jnents have -the same,

meaning as those for gluNurbsSurface0. Note that this-routine requires"

only one knot sequence.-and one declaration of the order of. the-NURBS

object. If this curve is defined within a gluB'eginCurve_0/gluEr1dCurve0 -

pair, then the type can be-any of the valid one-dimensional evaluator
types (such as GL_MAP1_VE-RTEX_3 or GL_MAP1_vER'TEx_4).

Trim a NURBS Surface

To create a trimmed NURBS surface with OpenGL, start as if you were

creating an untrimmed surface. After calling gluBeginSurface0 and

gluNurbsSurface() but before calling gluEndSurface(), start a trim by
Calling gluBegin'I‘r'im(). ‘

Chapter 12: Evaluators and NURBS

0513

I..-Bl

void'g1_i1Begin_Trim (GLUnurbsObj *nob;);
voi_d.“g'l_u_I£!idTriJ;t1 (Gl.,Unu‘rbsOb]' *nab});

‘Marks the b.eg'innir_rg— and end of the definition of a tzri-mming loop. -A
loopis a set of oriented, trimming. curve segments (forming a

_ closed ;cury'e) that defines- the bound-a_ri_es of a NURBS surface.

You can create two kinds of trimming curves, a piecewise linear curve with

g1uPwlCurve() or a NURBS curve with gluNurbsCurve0. A piecewise linear

curve doesn't look like what’s conventionally called a curve, because it’s a

series of straight lines. A NURBS curve for trimming must lie within the unit

square of parametric (u, v) space. The type for a NURBS trimming curve is

usually GLU_MAP1_TRlM2. Less often, the type is GLU_MAP1_TRIM3,

where the curve is described in a two-dimensional homogeneous space (if,

V’, W’) W (U, V) = (1I’/‘W’, WW’)-

void rggipwlcurve (GLUnurbsObj *nob;', Glsi-rit count, GLfloat *array,
GLint stride, GLenun1‘type);_

Describes a piecewise iinear trimming curve for the NURBS object nobj.

There are count points on the curve, and they're given by array. The type
can be either GLU__MAP1_TRIM_2 (the most common) or

GLU__MAP_-1_.TRIM_3 ((11, -v, w) homogeneous parameter space). The type
affects whether stride, the number of floating—poin't values to the next
-vertex», .is.2 or" 3.

You need to consider the orientation of trimming curveswthat is, whether

they're counterclockwise or clockwise—to make sure you include the

desired part of the surface. If you imagine walking along a curve, everything

to the left is included and everything to the right is trimmed away. For

example, ifyour trim consists of a single counterclockwise loop, everything

inside the loop is included. If the trim consists of two nonintersecting

counterclockwise loops with nonintersecting interiors, everything inside

either of them is included. If it consists of a counterclockwise loop with two

'1 clockwise loops inside it, the trimming region has two holes in it. The
outennost trimming curve must be counterclockwise. Often, you run a

} trimming curve around the entire unit square to include everything within
it, which is what you get by default by not specifying any trimming curves.

Trimming curves must be closed and nonintersecting. You can combine

trimming curves, so long as the endpoints of the trimming curves meet to

form a closed curve. You can nest curves, creating islands that float in space.
Be sure to get the curve orientations right. For example, -an error results if

The GLU NURBS Interface 465

0514

you specify a trimming region with two counterclockwise curves, one

enclosed within another: The region between the curves is to the left of one
and to the right of the other, .so it must be both included and excluded,
which is impossible. Figure 12-5 illustrates a few valid possibilities.

g1uBeginSurface(];

gluNurbsSurface{...);

g1uBeginTrim(}:

g1uPw1Curve(.;.); X* A */

gluEndTrim(1:

gluBeginTrim{};

gluPw1Curve{ . . ll) ; f'* B */

g1uElr1d'I‘rim(I ;

g1uBeginTrim{) ;

g1uNurbsCurve{..-3:/* C */

g1uEndTrim();

g1uBeginTrim(];

g1u.NurbsCurve{ . . .) ; /* D */

g1uPw1Curve(...); /* D’ */

g1uEndTrim();

gluBeginTrim{};

gluPw1Curve{---lr /* E */

gluEndTrim();

gluEndSurface{J:

Figure 12-5 Parametric Trimming Curves

Figure 12-6 shows the same small. hill as in Figure 12-4, this time with a

trimming curve that's a combination of a piecewise linear curve and a

NURBS curve. The program that creates this figure is similar to that shown
in Example 12-5; the differences are in the routines shown in Example 12-6.

Figure 1 243 Ttimmed NURBS Surface

Chapter I2: Evaluators and NURBS’

0515

.;_R'6:«.<.,,....'‘-'-1’'..

Example 12-6 I Trimming a NURBS Surface: trim.c

void displaytvoid)
{ .

GLf1oat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0. 1.0, 1.0, 1.0};

GI-float edgePI:[Sl [2] = /* counter clockwise */

{{0.0, 0.0}. {1.0, 0.0}. {1.0. 1.0}. {0.0, 1.0}.

{0.0. o.0}}:

GLfloat curvePt[4][2] = /* clockwise *f

{{0.25, 0.5}. {0.25, 0.75}. {0.?5. 0.75}. (0.75. 0.5}}:

GLf1oat curveKnots[8] =

{0.0. 0.0, 0.0. 0.0, 1.0, 1.0, 1.0, 1.0};

GLfloat pw1Pt[4][2] : /* clockwise */

{{0.75. 0.5}. {0.5. 0.25}. (0.25, 0.5}}:

g1Clear{GL_COLOR_BUFFER_BIT [GL_DEPTH_BUFFER_BIT};
g1PushMatrix{);

g1Rotatef{330.0. l.,0.

glscalef (0.5. 0.5, 0.

.):.0

5}:

gluBeginSurface{theNurb);

gluNurbsSurface(theNurb, 8, knots, 8, knots,

4 * 3, 3, &ct1points[0][0][0},

4, 4, GL_MAP2_VERTEX_3);

g1uBeginTrim {theNurb);

g1uPwlCurve (theNurb, 5, &edgePt[0][0], 2.

GLU_MAP1_TRIM_2};

g1uEndTrim (thefiurbl;

gluBeginTrim ftheflurb);

gluNurbsCurve ttheflurb, 8, curvexnots, 2,

&curvePt[0][0], 4, GLU_MAP1_TRIM_2};

gluPw1Curve (theNurb. 3. &pw1Pt[0][0]. 2,

GLU_MAP1_TRIM_2};

g1uEndTrim itheflurb};

g1uEndSurface(theNurb);

glPopMatrix();

glF1ush();

IfieGLUAflH&$1mmfiue 467

_.. 7 _

0516

468

In Example 12-6, gluBeginTrim() and glut-‘.ndTrim0 bracket each

trimming curve. The first trim, with vertices defined by the array edgePt[][],

goes counterclockwise around the entire unit square of parametric space.

This ensures that everything is drawn, provided it isn't removed by a

clockwise trimming curve inside of it. The second trim is a combination of

a NURBS trimming curve and a piecewise linear trimming curve. The
NURBS curve ends at the points (0.9, 0.5) and (0.1, 0.5), where it is met by

the piecewise linear curve, forming a closed clockwise curve.

Chapter 12: Evaluators and NURBS

0517

aw-Hut-we
115%9-"~

___,__._._._...........__.-..

no-ve-u-‘M-fliIF‘~'

Chapter 1 3

Selection and Feedback

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

- Create applications that allow the user to select a region of the screen
or pick an object drawn on the screen

0 Use the OpenGL feedback mode to obtain the results of rendering
calculations

469

0518

470

Some graphics applications simply draw static images of two- and

three—dimensional objects. Other applications allow the user to identify

objects on the screen and then to move, modify, delete, or otherwise

manipulate those objects. OpenGL is designed to support exactly such

interactive applications. Since objects drawn on the screen typically

undergo multiple rotations, translations, and perspective transformations,

it can be difficult for you to determine which object a user is selecting in a

three-dimensional scene. To help you, OpenGL provides a selection

mechanism that automatically tells you which objects are drawn inside a

specified region of the window. You can use this mechanism together with

a special utility routine to determine which object within the region the

user is specifying, or picking, with the cursor.

Selection is actually a mode of operation for OpenGL; feedback is another

such mode. In feedback mode, you use your graphics hardware and

OpenGL to perform the usual rendering calculations. Instead of using the

calculated results to draw an image on the screen, however, OpenGL returns

(or feeds back) the drawing information to you. For example, if you want to

draw three-dimensional objects on a plotter rather than the screen, you
would draw the items in feedback mode, collect the drawing instructions,

and then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to

the application rather than being sent to the framebuffer, as it is in
rendering mode. Thus, the screen remains frozen—-no drawing

occurs—whi1e 0pe11GLis in selection or feedback mode. In these modes,

the contents of the color, depth, stencil, and accumulation buffers are not

affected. This chapter explains each of these modes in its own section:

0 “Selection” on page 470 discusses how to use selection mode and

related routines to allow a user of your application to pick an object
drawn on the screen.

0 “Feedback” on page 491 describes how to obtain information about
what would be drawn on the screen and how that information is

formatted.

Selection

Typically, when you're planning to use 0penGL’s selection mechanism,

you first draw your scene into the framebuffer, and then you enter selection

mode and redraw the scene. However, once you’re in selection mode, the

contents of the framebuffer don't change until you exit selection mode.

Chapter 13: Selection and Feedback

0519

$\:'8'.'$«-.1"'-' =-‘-

r.t[-=-"'3''-nftiq‘-'i'I"""-‘J’'5L

4.,_4.411H.-;.}_a¢"‘<".

&‘-.tr:r-1

When you exit selection mode, OpenGL returns a list of the primitives that

intersect the viewing volume (remember that the viewing volume is defined

by the current modelview and proiection matrices and any additional

clipping planes, as explained in Chapter 3.) Each primitive that intersects

the viewing volume causes a selection hit. The list of primitives is actually

returned as an array of integer-valued names and related data—-the hit

records—-that correspond to the current contents of the name stack, You

construct the name stack by loading names onto it as you issue primitive

drawing commands while in selection mode. Thus, when the list of names

is returned, you can use it to determine which primitives might have been
selected on the screen by the user.

In addition to this selection mechanism, OpenGL provides a utility routine

designed to simplify selection in some cases by restricting drawing to a
small region of the viewport. Typically, you use this routine to determine

which objects are drawn near the cursor, so that you can identify which

object the user is picking. (You can also delimit a selection region by

specifying additional clipping planes. Remember that these planes act in

world space, not in screen space.) Since picking is a special case of selection,

selection isdescribed first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps.

1. Specify the array to be used for the returned hit records with

glSelectBuffer().

2.. Enter selection mode by specifying GL_SELECT with glRende1'Mode0.

Initialize the name stack using glInitNames0 and glPushName0.

4. Define the viewing volume you want to use for selection. Usually this

is different from the viewing volume you originally used to draw the

scene, so you probably want to save and then restore the current
transformation state with glPushMatrix() and glPopMatrix0.

5. Alternately issue primitive drawing commands and commands to

manipulate the name stack so that each primitive of interest has an

appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit
records).

Selection

0520

471

472

The following paragraphs describe glSelectBuffer0 and glRenderMode0.

In the next section, the commands to manipulate the name stack are
described.

 void?.glSelectBu£fer(G1.sizei“size,--GLuii1t.-*bnflihr)§“’*"1:'ah;

Specifies: the array. to beusedfor.-the »re">t1i1_3_1ec'itselec«1ion.c:lata. -The bufltzr
argumer1t.is.a;poii1t_el3,~to ari;-ay-,of -iI1to';=t7\l1’fl.'i€11¢ the"
data 'is:=put, and size indicates the rnaxirntugnumher of values-ti1at'carr,be
‘stored in. t_he‘array:.~=¥ou‘ neegiztifi-. beforerenterirfgsqi *
selection.mode. V, "‘ a

J‘
I 1- ‘ |

GLmné1RenaerMode(G1enum.made)?_ » e- * e ,-I -_‘.t

Controls ‘whether the applicatidn -"is in‘-rendering, .s'e1ee_rien;v~o:. feedback *
mode;'The-“made. argument -calfjlae one‘-‘er G'L;_'R'ENDE_R (t;3é*‘aerau1t),_ :“
G'L_SEjI;ECT,‘rorsGLfFEEDBAGl_<;1Theapjilitzatierirremains;in-.a~£g’iye1i"mode -
un-ti'j5_glRendei'Mode0 -is‘calleEl‘[a’g’ain‘3‘Cvit’la a?d'i‘f_ferei1t-aI§u'Inéi?it. Before r
entering selection"-mode, g1Selee_tBIiff'e1‘(E} must l_)e*ca_lI'ed_' to specify‘the '
selection array:'Si'rnilarly, before-entering feedbackmode, ~
gl~Feed'backBuffer0- must .be called to specify the feedback array. The

return value for.-glRen_derMot_le_() _.-has mean-ir_1g_.if=the current render mode
_ (that is, not'the:rr1_t_a_de parameter) -is. either"_G]‘5__SELECT or-'C~‘x'I:‘:FEEE'sACK.»
The ‘return va1ue.i's- the nurnbér-of? selectiori or the numbemi-yalues
4-plat-ieéd-._i_r‘1 -the? feedback array whené-fithexr modgeis eJriterl;s'§i' négatiye"-value ‘
means-that the selection orfiedbagkéar-rayihas=-overfiowedjjou _-
GL_RENDER_MODE with g'lGe'tIn_teg_é!'V0_=t'o obtain the c_E9§en‘t.nieae.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the
selection information that's returned to you. To create the name stack, first

initialize it with glInitNames(), which simply clears the stack, and then add

integer names to it while issuing corresponding drawing commands. As you

might expect, the commands to manipulate the stack allow you to push a

name onto it (g1PushName()), pop a name off of it (glPopName0), and

replace the name on the top of the stack with a different one

(glLoadName0). Example 13-1 shows what your name-stack manipulation
code might look like with these commands.

Chapter 13: Selection and Feedback

0521

"J-5.emeta-+e«maa;e«'w.»,eseaieét\$1Es~s~su=rii’-¢"‘|-e.-penile":*.~.i‘%i*i’*__*:.-__2-
-vI

Example 13-1 Creating a Name Stack

glInitNames(};

g1PushName(0);

glPushMatrix{): /* save the current transformation state */

/* create your desired viewing volume here */

g1LoadName[1};

drawSomeObject{);

g1Loadame(2};

drawAnotherObject(};

glLoadName(3);

drawYetAnother0bject{);

drawJustOneMore0bject();

glPopHatrix ()3 f* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names,

and the third and fourth objects share a single name. With this setup, if
either or both of the third and fourth objects causes a selection hit, only one

hit record is returned to you. You can have multiple objects share the same

name if you don’t need to differentiate between them when processing the
hit records.

void.-gl]n.itNames(void);

Clears the name stack so that it‘s empty.

void glPushName(GLuint name);

-Pushes name onto thelnarne stack. Pushing a name beyond the capacity
of. the stack generates the error-GL_STACK_OVERFLOW. -The name

sta_ck’s degth can vary ~amor1_g_' different OpenGL'irr1pIementations,.but it -

"must be-able -to contain at "least sixty-four names. You can use the
parameter GL_-NAM_E_-S'EA‘CI(_DEPTH with glGe'tIntegerv0 to obtain the
depth of the name stack‘.
1*-1

void ‘g::»o§Nan&{.e(vo‘:d);f

Pops onename off the top of the name stac-‘k. Popping an ‘empty stack
generates the error GL_STACI(_UNDERFLOW.

Selection

0522

473

474

void gilg.oad'.Namei(G‘Luintgname);

Replaces the va.lue on the top-of the name stack with name. If the stack is
empty, which it is right after. glInitNames() is called, glLoadName0

generates theerror‘,GL_lNVALID;OPERA7l‘I015I; To-avo_id.this, if tire,-_sta<:-It.
is initially empty, call glPushName0 at least once to put -something on
‘the name" stack before calling. glLoadName-0.

Calls to glPushName0, glPopName(), and glLoadName() are ignored if

you’re not in selection mode. You might find that it simplifies your code to

use these calls throughout your drawing code, and then use the same

drawing code for both selection and normal rendering modes.

The Hit Record

In selection mode, a primitive that intersects the viewing volume causes a

selection hit. Whenever a name-stack manipulation command is executed

or glRenderMode0 is called, 0penGL writes a hit record into the selection

array if there’s been a hit since the last time the stack was manipulated or

glRenderMode() was called. With this process, objects that share the same

name—for example, an object that’s composed of more than one

primitive—don’t generate multiple hit records. Also, hit records aren't

guaranteed to be written into the array until glRenderMode0 is Called.

Note: In addition to primitives, valid coordinates produced by

glRasterPos0 can cause a selection hit. Also, in the case of polygons,

no hit occurs if the polygon would have been culled.

Each hit record consists of four items, in order.

0 The number of names on the name stack when the hit occurred.

0 Both the minimum and maximum window-coordinate 2 values of all

vertices of the primitives that intersected the viewing volume since the

last recorded hit. These two values, which lie in the range [0,1], are

each multiplied by 232—1 and rounded to the nearest unsigned integer.

‘I The contents of the name stack at the time of the hit, with the
bottommost element first.

When you enter selection mode, OpenGL initializes a pointer to the

beginning of the selection array. Each time a hit record is written into the

array, the p-ointer is updated accordingly. If writing a hit record would cause

the number of values in the array to exceed the size argument specified with

Chapter 13: Selection and Feedback

0523

um.-r

glSelectBuffer0, 0penGL writes as much of the record as fits in the array

and sets an overflow flag. When you exit selection mode with

glRenderMode0, this command returns the number of hit records that

were written (including a partial record if there was one), clears the name

stack, resets the overflow flag, and resets the stack pointer. If the overflow

flag had been set, the return value is —-1. ‘

A Selection Example

In Example 13-'2, four triangles (green, red, and two yellow triangles,
created by calling drawTriangle0) and a wireframe box representing the

viewing volume (drawviewvolurneo) are drawn to the screen. Then the

triangles are rendered again (select0biects0), but this time in selection

mode. The corresponding hit records are processed in processHits0, and
the selection array is printed out. The first triangle generates a hit, the

second one doesn’t, and the third and fourth ones together generate a

single hit.

Example 13-2 Selection Example: select.c

#inc1ude <GL/gl.h>

#inc1ude <GL/g1u.h>

#inc1ude <GL/glut.h>
#include <stdlib.h>

#include <stdio.h>

Void drawTriang1e {GLfloat xl, GLfloat yl, GLf1oat X2,

GLf1oat y2, GLf1oat x3, GLfloat y3, GLfloat z}

{

g1Begin (GL_TRIANGLES};

glVertex3f {K1, yl, Z};

g1Vertex3f (x2, y2, z};

g1Vertex3f (X3, y3, zl;

glEnd ll:

}

void drawviewvolume (GLf1oat x1, GLfloat X2, GLf1oat yl,

GLf1oat y2, GLf1oat zl, GLf1oat z2}
{

g1Co1or3f (1.0. 1.0, 1.0}:

g1Begin (GL_LINE;LO0P);

g1Vertex3E (x1, y1, —z1);

glVertex3f {x2, yl, -21);

glVertex3E (x2, y2, —z1);

Selection

0524

475

F’~ , ._ I , _ ij j

476

g1Vertex3f (x1, y2,

91E=nd U:

-21):

g1Begin {GL_LINE_LOOP);

g1Vertex3f (xl, yl,

glVertex3f (x2, yl,

g1VErtex3f (x2, y2.

glVertex3f (x1, y2,

flfifl U;

glBegin {GL_LINES};

g1Vertex3f (x1, y1,

glVertex3f 1x1, yl,

g1Vertex3f (x1, y2,

glVertex3f (X1, y2,

glVertex3f {x2, yl,

glVertex3f {x2, y1,

g1Vertex3f (x2, y2,

glVertex3f (x2. y2,

flmfl H:
}

void drawscene {void}

{

-Z2}:

-22}:

~22};

-Z2};

/* 4 lines */

-zl};

-Z2}:

-Z1);

-22}:

+21):

-Z2):

-Z1):

-Z2}:

gluatrixflode {GL_PROJECTION);

glboadldentity (1;

g1uPerspective (40. 0, 4.0/3.0, 1.0, 100.0);

g1MatrixMode (GL_MODELVIEW);

glLoadIdentity (I;

ghummQt{7£,

g1Co1or3f (0.

drawTriangle

glCo1or3f (1.

drawTriangle

glCo1or3f (1.

drawTriang1e

drawTriang1e
drawviewvolume {

N‘N‘ G(DU!
7

1

0

1.-....-..¢:p.-.{:a.--.C:- '.\Jl.\J-
C

.0,
0.

.0,

.0,
0.0

}

void processflits (GLin

{ _

unsigned int i, j;

GLuint names. *ptr:

. 12.5. 2.5, 2.5. -5.0, 0.0, 1.0.

, 0.0); /* green triangle

2.0, 3.0, 2.0, 2.5, 3.0, -5.0};

, 0.0); /* red triangle

7.0, 3.0, 7.0, 2.5. 8.0, -5.0}:

, 0.0); /* yellow triangles
2.0. 3.0. 2.0, 2.5, 3.0, 0.0};

2.0, 3.0, 2.0. 2.5. 3.0, -10.0]:

, 5.0, 0.0, 5.0, 0.0, 10.0);

t hits, GLuint buffer[])

printf {‘hits = %d\n', hits};

Chapter 13: Selection and Feedback _

0525

0.0;.-

*/

*/

*/

3
-,2
2

33
E.E

%

%
£
5

15

man!

4'11v-M¢\.c.n

ptr = {GLuint *} buffer;

for {i = 0; i < hits; i++} { /* for each hit */

names = *ptr:

printf (“ number of names for hit = %d\n', names); ptr++;

printfl“ zl is %g;”, {float} *ptr/0x7fffffff}; ptr++;

printf{“ z2 is %g\n", (float) *ptr/0x7fffffff): Ptr++;

printf (“ the name is “J:

for (j = 0; j < names; j++) { /* for each name */

printf {“%d “, *ptr}; ptr++,-
}

printf {“\n'};

}

#define BUFSIZE 512

void se1ect0bjects(void)
{

GLuint selectBuf[BUFSIZE];

GLint hits;

g1SelectBuffer (BUFSIZE, selectBuf);

(void) g1RenderMode {GL_SELECT};‘

g1InitNames();

g1PushName{0};

g1PushMatrix I};

glmatrixmode [GL___PROJECTION] ,-

glLoadIdentity (3;

glortho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);

glflatrixflode (GL_MODELVIEW);

glLoadIdentity i);

g1LoadName(1);

drawTriang1e (2.0, 2.0, 3 0, 2.0, 2.5, 3.0, -5.0);

g1LoadName(2};

drawTriang1e (2.0, 7.0, 3 0, 7.0, 2.5, 3.0. -5.0}:

g1LoadName{3];

drawTriang1e (2.0, 2.0, 3 0, 2.0, 2.5, 3.0, 0.0};

drawTriang1e (2.0, 2 0, 3 0, 2.0, 2.5, 3.0, —10.0};

g1PopMatrix {};

glFlush (J;

hits = glflenderuode (GL_RENDER};

processflits (hits, selectBuf};
}

Seleirtion 477

0526

478

void.init (void)

{

g1E.nab1e(GL_DEPTH_TEs'1') ;

glShadeMode1{GL_FLAT};
}

void displaytvoidl
{

glcleartolor (0.0, 0.0, 0.0, 0.0);

glclear{GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT};
drawscene (l :

selectobjects (J;

g1F1ush{};

}

int main(int argc, char** argv}
{

glutInit(&argc, argv};

glutInit:DisplayMode (GLUT_SINGLE l GLUT_RGB | GLUT_DEPTI-I};
glutlnitwindowsize (200, 200};

g1utInitwindowPosition (100. 100):

glutcreatewindow {argv[0]);

iI1it.();

g1utDisplayFunc{display];

glutMainLoop{};
return 0;

Picking

As an extension of the process described in the previous section, you can

use selection mode to determine if obiects are picked. To do this, you use a

special picking matrix in conjunction with the projection matrix to restrict

drawing to a small region of the viewport, typically near the cursor. Then

you allow some form of input, such as clicking a mouse button, to initiate
selection mode. With selection mode established and with the special

picking matrix used, objects that are drawn near the cursor cause selection

hits. Thus, during picking you're typically determining which objects are
drawn near the cursor.

Picking is set up almost exactly like regular selection mode is, with the

following major differences.

Chapter 13: Selection and Feedback

0527

- Picking is usually triggered by an input device. In the following code

examples, pressing the left mouse button invokes a function that

performs picking.

- You use the utility routine gluPickMatrix0 to multiply a special

picking matrix onto the current projection matrix. This routine should

be called prior to multiplying a standard projection matrix (such as

gluPerspective0 or gl0rtho0). You'll probably want to save the
contents of the projection matrix first, so the sequence of operations

may look like this: '

glnatrixflode {GL_PROJECTION};

g1PushMatrix {)3

g1LoadIdentity ii;

gluPickMatrix {...};

g1uPerspective. glortho, glu0rtho2D, or glFrustum

/* ... draw scene for picking ; perform picking ... */

g1PopMatrix();

Another completely different way to perform picking is described in

“Object Selection Using the Back Buffer” on page 508. This technique uses
color values to identify different components of an object.

void gluPiCkMatrix(GLdouble x, GLdouble y, GLdouble width,
GLdouble height, GLint viewport[4]);

Creates a projection matrix that restricts drawing to a small region of the

viewport and multiplies that matrix onto the current matrix stack. The
center of the picking region is (x, y) in window coordinates, typically the
cursor location. -width and height defi'ne the size of the picking region in

screen coordinates. (Yon can think of the width and height -‘asthe
sensitivity of the picking device.) viewportfl indicates-the current viewport

boundaries, which can be obtained by calling

g.iGetIntegerv(GL_VIEWPORT, GLint *viewport);

Advanced

The net result of the matrix created by gluPickMatrix0 is to transform
the clipping region into the unit cube -1 5 (x, y, z) 5 1 (or —w 5 (wx, wy, wz)

S w). The picking matrix effectively performs an orthogonal transfonnation
that maps a subregion of this unit cube to the unit cube. Since the

transformation is arbitrary, you can make picking work for different sorts

of regions—for example, for rotated rectangular portions of the window. In

Selection

0528

479

certain situations, you might find it easier to specify additional clipping

planes to define the picking region.

Example 13-3 illustrates simple picking. It also demonstrates how to use

multiple names to identify different components of a primitive, in this case

the row and column of a selected object. A 3x3 grid of squares is drawn,

with each square a different color. The board [3] [3] array maintains the

current amount of blue for each square. When the left mouse button is

pressed, the picksquareso routine is called to identify which squares were

picked by the mouse. Two names identify each square in the grid—one
identifies the row, and the other the column. Also, when the left mouse

button is pressed, the color of all squares under the cursor position changes.

Example 13-3 Picking Example: picksquarex

#inc1ude <GL/g1.h>

itinclude <GL/glu.h>
#include <std1ib.h>

#include <stdio.h>

#include <GL/glut.h>

int board[3][3]; /* amount of color for each square */

/* Clear color value for every square on the board */
void initivoidl

{

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j ++]

boardlilljl = 0:

glclearcolor (0.0, 0.0, 0.0. 0.0);

Chapter 13: Selection and Feedback

0529

void drawSquares{GLenum mode)
{

GLuint i, j;

for {i = O; i < 3; i++} {

if (mod == GL_SELECT}

g1Loadame ii):

for (J'=0::i<3::i++} {

if (mode == GL_SELECT)

g1PushName (j);

g1Co1or3f {(GLfloat} i/3.0, (GLf10at} j/3.0,

, {GLfloat} board[i]Ej]/3.0):

' glRecti :1, j. 1+1, j+1),-
if (mode == GL_SELECT)

g1PopName (l;

}

/* processflits prints out the contents of the

F selection array.
*/

void processflits (GLint hits, GLuint bu£fer[}}
{ .

unsigned int i, j;

GLuint ii, jj, names. *ptr;

printf (“hits = %d\n", hits};

ptr = (GLuint *} buffer;

for {i = 0; i < hits; i++} (/* for each hit */

names = *ptr;

printf (“ number of names for this hit = %d\n”, names);

ptr++;

printfi“ zl is %g;', {float} *ptr/0x7fffffff}; ptr++;

printf(“ 22 is %g\n'. {float} *ptr/Bx?fffffff}; ptr++;

printf (“ names are “}; '

for (j = 0; j < names; j++) { /* for each name */

printf (“%d “, *ptr);

if (j == 0} /* set row and column */

ii = *ptr;

else if {j == 1}

ii = *ptr:
ptr++;

}

printf (‘\n‘};

board[ii][3j] = (board[ii][jj] + 1) % 3;

Selection 481

i
0530

482

#define BUFSIZE 512

void picksquaresiint button, int state, int X. int y}
{

GLuint selectBuf[BUFSIZE];

GLint hits ;

GLint viewport[4];

if {button 1: GLUT;LEFT_BUTTON [I state != GLUT_DOWN)
return;

g1GetIntegerv {GL_VIEWPORT, viewport};

glSelectBuffer {BUFSIZE, selectflufl;

{void} glRenderMode (GL_SELECT}:

glInitNames(};

g1PushName{0);

gluatrixnode (GL_PROJECTION);

g1PushMatrix {};

g1LoadIdentity {);

/* create 5x5 pixel picking region near cursor location

gluPickMatrix {{GLdouble} x, {GLdoub1e) {viewport[3] - y),

5.0, 5.0. viewport);
gluOrtho2D {U.0, 3.0, 0.0, 3.0);

drawsquares (GL_SELECT};

glflatrixflode {GL_PROJECTION);

glPopMatrix (J;

glF1ush (1;

hits = g1RenderMode (GL_RENDER);
processflits (hits, selectBuf);

g1utPostRedisp1ay{);

void display{void}
{

glclear(GL_COLOR_BUFFER_BIT);

drawsquares [GL_RENDER);

g1F1ush{];

void reshapetint w, int h)
{

glviewportifl. 0. w, h);

Chapter 13: Selection and Feedback

0531

*/

g1l'-iatrixlldode(GL__PROJECTION) ;

g1LoadIdentity{);

g1uOrtho2D (0.0, 3.0, 0.0, 3.0);

glflatrixfiode{GL_MODELVIEW];

g1LoadIdentity{);
}

int main(int argc, char** argv}
{

g1utInit{&argc, argv};

glutlnitnisplayuode (GLUT__SINGLE] GLU'I'_RGB};
glutlnitwindowsize £100, 100);

g1utInitWindowPosition (100, 100];

glutcreatewindow (argv[0]};

init (); '

g1utMduseFunc (picksquaresl;

g1utReshapeFunc {reshape}:

g1utDisp1ayFunc{display);

g1utMainLoop();

return 0;

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in

a scene. For example, if you were rendering an assembly line of

automobiles, you might want the user to move the mouse to pick the third
bolt on the left front tire of the third car in line. A different name can be

used to identify each level of hierarchy: which car, which tire, and finally

which bolt. As another example, one name can be used to describe a single

molecule among other molecules, and additional names can differentiate
individual atoms within that molecule.

Example 13-4 is a modification of Example 3-4 which draws an automobile

with four identical wheels, each of which has five identical bolts. Code has

been added to manipulate the name stack with the object hierarchy.

Example 13-4 Creating Multiple Names

draw_wheel_and_holts{)
I

long i;

draw_wheel_body(};

for {i = 0; i < 5; i++} {

glPushMatrix{);

Sbkmfion

0532

g1Rotate(72.0*i, 0.0, 0.0. 1.0);

glTrans1atef(3.D. 0.0, 0.0};

g1PushName{i};

draw_bo1t_body{ J ;

glPopName();

glPopMatrix{):

}

draw_body_and_yhee1_and_bo1ts{)
{

draw_car_body{ } ,-

glPushMatrix{};

glTranslate(40, 0, 20}; /* first wheel position*/

glPushName(1}; /* name of wheel number 1 */

draw_wheel_and_ho1ts(};

glPopName{};

g1PopMatrix{);

glPushMatrixl);

g1Trans1ate{40, 0, ~20]: /* second wheel position */

glPushName{2); /* name of wheel number 2 */

draw_whee1_and_bolts();

g1PopName{};

glPopMatrix(};

/* draw last two wheels similarly */

}

Example 13-5 uses the routines in Example 13-4 to draw three different

cars, numbered 1, 2, and 3.

Example 13-5 Using Multiple Names

draw_three_cars()
{

g1InitNames{);

g1PushMatrix{);

trans1ate_to_Eirst_car_position(J;

-glPushName{1);

draw_body_and_wheel_and_bolts{};

glPopName{);

g1PopI-Iatrix {J .-

g1PushMatrix();

translate_to_second_car_position();

g1PushName{2);

draw_bocly_and,_wheel_and_bo1ts (J :

g1PopName{);

Chapter 13: Selection and Feedback

0533

glPopMatrix(};

glPushMatrix{);

trans1ate_to_third_car_position(J;

g1PushName{3};

draMLbody_and_wheel_and_boIts();

g1PopName {} ;

g1PopMatrix();
}

' Assuming that picking is performed, the following are some possible
name-stack return values and their interpretations. In these examples, at

most one hit record is returned; also, all and :12 are depth values.

2d1 .1221 Car 2,wheell

1 d1 d2 3 Car 3 body

3 d1 d2 1 1 0 Bolt 0 on wheel 1 on car 1

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don't occupy the

same picking region. A user might well pick both the wheel and the bolt,

yielding two hits. If you receive multiple hits, you have to decide which hit

to process, perhaps by using the depth values to determine which picked

object is closest to the viewpoint. The use of depth values is explored further
in the next section.

Picking and Depth Values

Example 13—6 demonstrates how to use depth values when picking to

determine which obiect is picked. This program draws three overlapping

rectangles in normal rendering mode. When the left mouse button is

pressed, the pickReets0 routine is called. This routine returns the cursor

position, enters selection mode, initializes the name stack, and multiplies

the picking matrix onto the stack before the orthographic projection
matrix. A selection hit occurs for each rectangle the cursor is over when the

left mouse button is clicked. Finally, the contents of the selection buffer are

examined to identify which named objects were within the picking region
near the cursor.

The rectangles in this program are drawn at different depth, or 2, values.

Since only one name is used to identify all three rectangles, only one hit can
be recorded. However, if more than one rectangle is picked, that single hit
has different minimum and maximum z values.

Selection

0534

3.

Example 13-6 Picking with Depth Values: pickdepth.c

#inc1ude <GL/g1.h>

#inc1ude <GL/g1u.h>

#inc1ude <GL/g1ut.h>

' #include <stdlib.h>

#include <stdio.h>

void init{void)

{

g1ClearCo1or(0.0, 0.0, 0.0. 0.0};

g1Enab1e{GL_DEPTH_TEST);

g1ShadeMode1{GL_FLAT};

g1DepthRange{0.0,'1.0); /* The default z mapping */
}

void drawRects{GLenum mode)
{

if {mod == GL_SELECT)

g1LoadName{1);

g1Begin{GL_QUADS};

glCo1or3f(1.0, 1.0, 0.0};

glVertex3i{2, 0. 0};

g1Vertex3i[2, 6, 0};

g1Vertex3i(6, 6, 0);

glVertex3i(6, 0, O);

Q1End{}:

if {mod == GL_SELECT}

g1LoadName{2):

g1Begin(GL_QUADS);

g1Co1or3f(0.U, 1.9, 1.0};

g1Vertex3i{3, 2, -1);

glVertex3i(3, B, -1);

glVertex3i{8. 8. -1);

glVertex3i{B, 2, -1);

g1End():

if (mode == GL_SELECT}
glLoadName(3);

g1Begin(GL_QUADS};

g1Co1or3f{1.0, 0.0, 1.0);

g1Vertex3i(0. 2, -2};

glVertex3i{0, 7, -2};

g1Vertex3i{5. 7, -2};

g1Vertex3i{5, 2, -2};

g1End(J:

}

486 Cfiqnwr}3:Sehmfionandfbedhmk

0535

void processHits(GLint hits. GLuint buffer[])

{

}

unsigned int i, j;

GLuint names. *ptr;

printf{“hits = %d\n', hitslfi

ptr = {GLuint *} buffer:

for {i = 0; i < hits; i++) { /* for each hit */

names = *ptr;

printf(“ number of names for hit = %d\n‘, names); ptr++:

printf(“ 21 is %g;”, {float} *ptr/0x7fffffff}; ptr++;

printft“ z2 is %g\n', {float} *ptr/0x7fffffff): ptr++;

printfi“ the name is “);

for {j = 0; j < names; j++} { /* for each name */

printf{'%d “, *ptr); ptr++;
}

printf{“\n'];

#define BUFSIZE 512

void pickRects(int button, int state, int x, int y)
{

/‘k

GLuint se1ectBuf[BUFSIZE];

GLint hits;

GLint viewport[4};

if (button != GLUT_LEFT_BUTTON I| state != GLUT_DQWN)
return;

g1GetIntegerv(GLHVIEWPORT, viewport);

glSe1ectBuffer(BUFSIZE, selectBuf};

{void} glRenderMode(GL_SELECT);

g1InitNames{};

§1PushName(0};

glflatrixfiode(GL_PROJECTION};

glPushMatrix();

glboadldentityt};

create 5x5 pixel picking region near cursor location */
g1uPickMatrix{{GLdouble) x, (GLdoub1e) (viewport[3} - Y).

5.0, 5.0, viewport}:

g10rtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5};

drawRects(GL_SELECT};

glPopMatrix();

Sbkcfion

0536

487

488

}

glFlush{};

hits = glRenderMode{GL_RENDER};

processHits(hits, se1ectBuf};

void displaylvoid}
{

}

g1C1ear{GL_COLOR_BUFFER_BIT | GLLDEPTH_BUFFER_BIT);
drawRects(GL_RENDER);

glFlush {) ;

void reshapetint w, int h]
{

}

g1Viewport{0, D, (GLsizei} w, [GLsizei] his

glnatrixmode{GL_PROJECTIONl;'

glLoadIdentity{};

g10rtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5}:

glflatrixfiode{GL_MODELVIEW];

glLoadIdentity{);

int main(int argc, char **argv}
{

}

g1utInit(&argc, argv);

glutInitDisp1ayMode{GLUT_SINGLE] GLU'T__RGB | GLUT_DEP'I‘]-I};
glutlnitwindowsize {200, 200);

glutInitWindowPosition {100, 100};

glutcreatewindowiargvlo]};

initt);

g1utMouseFunc{pickRects};

glutReshapeFunc {reshape} ;

g1utDisp1ayFunc{disp1ay);
g1utMainLoop();

return 0,-

Try This

Modify Example 13-6 to add additional calls to glPushName0 so that

multiple names are on the stack when the selection hit occurs. What
will the contents of the selection buffer be? '

By default, g1D-epthRange0 sets the mapping of the z values to
[0.0,1.0}. Try modifying the glDepthRange0 values and see how it

affects the z values that are returned in the selection array.

Chapter 13: Selection and Feedback

0537

Hints for Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry

provide a mechanism for the user to pick items or groups of items for

editing. For two-dimensional drawing programs (for example, text editors,

page—layout programs, and circuit-design programs), it might be easier to do

your own picking calculations instead of using the OpenGL picking

mechanism. Often, it's easy to find bounding boxes for two~dimensional

objects and to organize them in some hierarchical data structure to speed

up searches. For example, picking that uses the OpenGL style in a VLSI '

layout program containing millions of rectangles can be relatively slow.

However, using simple bounding-box information when rectangles are

typically aligned with the screen could make picking in such a program

extremely fast. The code is probably simpler to write, too.

As another example, since only geometric objects cause hits, you might

want to create your own method for picking text. Setting the current raster

position is a geometric operation, but it effectively creates only a single

pickable point at the current raster position, which is typically at the

lower-left corner of the text. If your editor needs to manipulate individual

characters within a text string, some other picking mechanism must be

used. You could draw little rectangles around each character during picking

mode, but it’s almost certainly easier to handle text as a special case.

If you decide to use OpenGL picking, organize your program and its data

structures so that it’s easy to draw appropriate lists of objects in either

- selection or normal drawing mode. This way, when the user picks

something, you canuse the same data structures for the pick operation that

you use to display the items on the screen. Also, consider whether you want

to allow the user to select multiple objects. One way to do this is to store a

bit for each item indicating whether it’s selected (however, this method

requires traversing your entire list of items to find the selected items). You

might find it useful to maintain a list of pointers to selected items to speed

up this search. It's probably a good idea to keep the selection bit for each
item _as well, since when you’re drawing the entire picture, you might want

to draw selected items differently (for example, in a different color or with

a selection box around them). Finally, consider the selection user interface.

You might want to allow the user to do the following:

- Select an item

- Sweep—select a group of items (see the next paragraphs for a description
of this behavior)

0 Add an item to the selection

Selection 489

L____

0538

490

Add a sweep selection to the current selections

Delete an item from a selection

Choose a single item from a group of overlapping items

A typical solution for a two—dimensional drawing ‘program might work as
follows.

1. All selection is done by pointing with the mouse cursor and using the
left mouse button. in what follows, cursor means the cursor tied to the

mouse, and button means the left mouse button.

Clicking on an item selects it and deselects all other currently selected

items. If the cursor is on top of multiple items, the smallest is selected.

(In three dimensions, many other strategies work to disambiguate a

selection.)

Clicking down where there is no item, holding the button down while

dragging the cursor, and then releasing the button selects all the items

in a screen—aligned rectangle whose comers are determined by the

Cursor positions when the button went down and where it came up.

This is called a sweep selection. All items not in the swept-out region are

deselected. (You must decide whether an item is selected only if it’s

completely within the sweep region, or if any part of it falls within the

region. The completely within strategy usually works best.)

If the Shift key is held down and the user clicks on an item that isn’t

currently selected, that item is added to the selected list. If the

clicked-upon item is selected, it's deleted from the selection list.

if a sweep selection is performed with the Shift key pressed, the items

swept out are added to the current selection.

In an extremely cluttered region, it's often hard to do a sweep

selection. When the button goes down, the cursor might lie on top of

some item, and normally that item would be selected. You can make

any operation a sweep selection, but a typical user interface interprets a

button-down on an item plus a mouse motion as a select-plus-drag

operation. To solve this problem, you can have an enforced sweep
selection by holding down, say, the Alt key. With this, the following

set of operations constitutes a sweep selection: Alt-button down,

sweep, button up. Items under the cursor when the button goes down

are ignored.

If the Shift key is held during this sweep selection, the items enclosed

in the sweep region are added to the current selection.

Chapter 13: Selection and Feedback

0539

8. Finally, if the user clicks on multiple items, select just one of them. If
the cursor isn't moved (or maybe not moved more than a pixel), and

the user clicks again in the same place, deselect the item originally

selected, and select a different item under the cursor. Use repeated

clicks at the same point to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you

probably don’t have to worry about characters on top of each other, and

selections of multiple characters are always contiguous characters in the

document. Thus, you need to mark only the first and last selected characters
to identify the complete selection. With text, often the best way to handle

selection is to identify the positions between characters rather than the

characters themselves. This allows you to have an empty selection when the
beginning and end of the selection are between the same pair of characters;

it also allows you to put the cursor before the first character in the

document or after the final one with no special-case code.

In three-dimensional editors, you might provide ways to rotate and zoom
between selections, so sophisticated schemes for cycling through the

possible selections might be unnecessary. On the other hand, selection in

three dimensions is difficult because the cursor’s position on the screen

usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you're in either mode, no
pixels are produced and the screen is frozen. Drawing does not occur;

instead, information about primitives that would have been rendered is

sent back to the application. The key difference between selection and
feedback modes is what information is sent back. In selection mode,

assigned names are returned to an array of integer values. In feedback

mode, information about transformed primitives is sent back to an array

of f1oating—point values. The values sent back to the feedback array consist
of tokens that specify what type of primitive (point, line, polygon, image,
or bitmap} has been processed and transformed, followed by vertex, color,

or other data for that primitive. The values returned are hilly transformed

by lighting and viewing operations. Feedback mode is initiated by calling

glRenderMode() with GL__FEEDBACK as the argument.

Here's how you enter and exit feedback mode.

Feedback

0540

491

492

1. Call glFeedbackBuffer() to specify the array to hold the feedback
information. The arguments to this command describe what type of

data and how much of it gets written into the array.

2. Call glRenderMode0 with GL_FEEDBACI(as the argument to enter

feedback mode. (For this step, you can ignore the value returned by

glRenderMode0.) After this point, primitives aren‘t rasterized to

produce pixels until you exit feedback mode, and the contents of the

framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can

make several calls to glPassThrough0 to insert markers into the
returned feedback data and thus facilitate parsing.

4. Exit feedback mode by calling gIRenderMode() with GL_RENDER as

the argument if you want to return to normal drawing mode. The

integer value returned by g1RenderMode0 is the number of values

stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizei size, GL-enum type, G'Lfloat tbuffer);

Establishes a buffer for the feedbackdata: b‘ufi’er isa pointer to -an array
where the data is stored. The size argument indicates the.-maximum

number oflvalues that can be stored in the array. The type-argument
describes the information fed back for each vertex in the _.feedbae_k'ar-ray; -

its possible values and their meaning are sho'w;n.in"1"-able"13-‘1.
glFee_d_backBuffer() must be called before feedback‘-.mode,is entered._I-n~
the table", -k is 1 in color-"index rnode'and=4- in RGBA mode. . *

type Argbment coordinates Color (Texture Total Values

GL_2D x, y - -‘ 2

GL_3D x, y, z - - 3

GL_3D_COLOR x, y, z k - 3 + k

GL_3D_COLOR_TEXTURF. x, y, z k 4 7 + k

GL#4D_COLOR_'I'E.XTURE x, y, z, w k 4 8 + I:

Table 13-1 glFeed_backBuffer0 type Values

Chapter I3: Selection and Feedback

0541

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each call to

glBitmap0, glDrawPixe1s0, or glCopyPixels0, if the raster position is

valid) generates a block of values that's copied into the feedback array. The

number of values is determined by the type argument to

glFeedbackBuft'er0, as listed in Table'13-1. Use the appropriate value for
the type of primitives you’re drawing: GL_2D or GL_3D for unlit two- or

three-dimensional prirnitives, GL_3D_COLOR for lit, three-dimensional

primitives, and GL_3D_COLOR_TEXTURE or GL_4D_COLOR_TEXTURE

for lit, textured, three- or four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive

type, followed by values that describe the primitive’s vertices and associated

data. Entries are also written for pixel rectangles. in addition, pass-through
markers that you’ve explicitly created can be returned in the array; the next

section explains these markers in more detail. Table 13-2 shows the syntax
for the feedback array; remember that the data associated with each

returned vertex is as described in Table 13—1. Note that a polygon can have

n vertices returned. Also, the x, y, z coordinates returned by feedback are

window coordinates; it w is returned, it’s in clip coordinates. For bitmaps
and pixel rectangles, the coordinates returned are those of the current raster

position. In the table, note that GL__LINE_RESET_TOKEN is returned only

when the line stipple is reset for that line segment.

Primitive Type code Associated Data

Point GL_POIN'I‘_TOKEN vertex

Line GL_LINE_TOKEN or vertex vertex

GL_,LINE_RESET_TOKEN '

Polygon GL__POLYGON_TOKEN n vertex vertex vertex

Bitmap GL_BI'I‘MAP_'l‘0KEN vertex

Pixel Rectangle GL_DRAW__PIXEL_TOKEN or vertex
GL__COPY_PIXEL_TOI<EN

Pass-through GL_PASS_THROUGH_TOKEN a floating-point number

Table 13-2 Feedback Array Syntax

Feedback

0542

493

494

— l

Using Markers in Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and

interpretation of polygons by glPolygo11Mode(). It might also occur after
polygons with more than three edges are broken up into triangles (if your

particular OpenGL implementation renders polygons by performing this

decomposition). Thus, it might be hard for you to recognize the primitives

you drew in the feedback data you receive. To help parse the feedback data,

call glPassTh.rough() as needed in your sequence of drawing commands to

insert a marker. You might use the markers to separate the feedback values

returned from different primitives, for example. This command causes

GL__PASS_THROUGH_TOI(EN to be written into the feedback array,

followed by the floating-point value you pass in as an argument.

void glPassThrough'(GLfloat token);

Inserts a marker-into, thestream of values written into thefeedback .

array, if called. in feedback mode. The marker consists of the code

GL_PASS_TH-ROUGH_TOKEN followed by a single floating,-.poin.t value,
taken. This command has no effect when called outside of feedback

mode. Calling glPassThrough() between g1Begin0 and glEnd0
generates a GL_INVALID_0PERATION error.

A Feedback Example

Example 13-7 demonstrates the use of feedback mode. This program draws
a lit, three-dimensional scene in normal rendering mode. Then, feedback

mode is entered, and the scene is redrawn. Since the program draws lit,

untextured, three-dimensional objects, the type of feedback data is

GL_3D_COLOR. Since RGBA mode is used, each unclipped vertex generates

seven values for the feedback buffer: 2:, y, z, r, g, b, and a.

In feedback mode, the program draws two lines as part of a line strip and

then inserts a pass-through marker. Next, a point is drawn at (—100.0,
—100.0, —100.0), which falls outside the orthographic viewing volume and

thus doesn’t put any values into the feedback array. Finally, another
pass-through marker is inserted, and another point is drawn.

Chapter 1.3: Selection and Feedback

0543

Exampl_e 13-? Feedback Mode: feedback.c

#include

#include

#include

#include

#include

void init

{

g1Enab

}

<GL/gl.h>

<GL/g1u.h>

<GL/g1ut.h>
<std1ib.h>

<stdio.h>

{void}

1e(GL_LIGHTING};

glEI1ab1e(GL_LIGHTO} ,-

void drawGeometry (GLenum mode)
{

g1Begin {GL_'LIN'E_STRIP) ;
glflorm

glvert

glvert

glvert

glEnd

if {mo

a13f (0.0. 0.0, 1.0}:

ex3f (30.0, 30.0, 0.0):

ex3f (50.0, 60.0, 0.0):

ex3f 170.0, 40.0, 0.0];

I):

de == GL_FEEDBACK}

g1PassThrough (1.0);

g1Begi

glvert

g1End

if (mo

g1P

g1Begi

n {GL_POINTS};

ex3f {—100.0. —100.0, —100.0); /*

H:

de == GL_FEEDBACK}

assThrough (2.0);

n (GLLPOINTSJ;

g1Normal3f (0.0, 0.0, 1.0};

g1Vertex3f (50.0. 50.0, 0.0};

g1End
}

(1:

will be clipped */

void pr{nt3DcolorVertex (GLint size, GLint *count.
GLfloat *buffer)

{

int i;

printf

for {i

(' “E:

: 0; i < 7; i++} {

printf (‘%4.2f “, buffer[size~(*count)});

*count = *count 4 1;

}

printf (‘\n');

0544

Fbmflmak 495

496

void printBuffer(GLint size, GLf1oat *buffer)
{

GLint count;

GLf1oat token;

count = size;

while (count) [

token = bufEer[size—count]; count——;

if (token == GL_PASS_THROUGH_TOKEN} [

printf (“GL_PASS_THROUGH*TOKEN\n'};

printf (“ %4.2f\n', buffer[5ize-count]);
count——;

}

else if (token == GL_POINT_TOKEN) {

printf (“GL_POINT_TOKEN\n”);

print3DcolorVertex (size, &count, buffer};
}

‘else if (token == GL_LINE_TOKEN] {

printf (“GL_LINE_TOKEN\n');

print3Dco1orVertex (size, &count, buffer);

print3Dco1orVertex (size, &count, buffer);
}

else if {token == GL_LINE_RESET_TOKEN} {

printf (“GL_LINE_RESET_TOKEN\n");

print3Dco1orVertex (size, &count, buffer):

print3Dco1orVertex (size, &count, buffer};

}

void displaytvoid)
{

GLf1oat feedBuffer[l024];

GLint size;

g1MdtrixMode {GL_PROJECTION).-

g1LoadIdentity ();

glortho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0),-

glclearcolor (0.0, 0.0, 0.0, 0.0);

g1C1ear(GL_COLOR_BUFFER_BIT};

‘drawGeometry {GL_RENDER):

glFeedbackBfiffer (1024, GL_3D_COLOR, feedBuffer§;
(void) g1RenderMode (GL_FEEDBACK};

drawGeometry {GL_FEEDBACK);

C%apwrI3:Sekpfionamdfbaflnmk

0545

size = glRenderMode {GL_RENDER);

printBuffer (size, feedflufferl;
}

int main(int argc, char** argv)
{

glutInit(&argc. argv};

glutrnitnisplaynode(GLU'I'_sINGLE | GLUT__RGB),-
glutlnitwindowsize (100, 100);

glutInitWindowPosition (100, 100};

g1utCreateWindow(argv[0]);

init();

g1utDisplayFunc{disp1ay};

g1utMainLoop(};
return 0;

}

Running this program generates the following output:

GL_LINE_RESET;TOKEN
30.00 30.00 0.00 0.84 0.84 0.84 1.00

50.00 60.00 0.00 0.84 0.84 0.84 1.00

GL_LINE_TOKEN
50.00 60.00 0.00 0.84 0.84 0.84 1.00

70.00 40.00 0.00 0.84 0.84 0.84 1.00

GL_PASS_THROUGH_TOKEN
1.00

GL*PASS_THOUGH_TOKEN
2.00

GL_POINT_TOKEN
50.00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

g1Begin(GL_LINE_STRIP);

g1Norma13f (0.0, 0.0, 1.0):

g1Vertex3f (30.0, 30.0, 0.0};

g1Vertex3f (50.0, 60.0, 0.0};

g1Vertex3f {70.0, 40.0, 0.0);

glandn:

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates

that the primitive is a line segment and that the line stipple is reset. The

second primitive begins with GL_LINE_,TOKEN, so it's also a line segment,

but the line stipple isn’t reset and hence continues from where the previous

line segment left off. Each’ of the two vertices for these lines generates seven

values for the feedback array. Note that the RGBA values for all four vertices

in these two lines are (0.84, 0.84, 0.84, 1.0), which is a very light gray color

Feedback 497

E. . , so _

0546

498

with the maximum alpha value. These color values are a result of the
interaction of the surface normal and lighting parameters.

Since no feedback data is generated between the first and second"
pass-through markers, you can deduce that any primitives drawn between
the first two calls to g1PassThrough0 were clipped out of the viewing

volume. Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated
data is copied into the feedback array.

Note: In both feedback and selection modes, information on objects is

returned prior to any fragment tests. Thus, objects that would not be
drawn due to failure of the scissor, alpha, depth, or stencil tests may

still have their data processed and returned in both feedback and
selection modes.

Try This

Make changes to Example 13-7 and see how they affect the feedback values
that are returned. For example, change the coordinate values of glOrtho0.
Change the lighting variables, or eliminate lighting altogether and change

the feedback type to GL_3D. Or add more primitives to see what other

geometry (such as filled polygons) contributes to the feedback array.

Chapter I3: Selection and Feedback

0547

Chapter 14 ' '” '-

Now That You Know

Chapter Objectives 3

This chapter doesn't have objectives in the same way that previous chapters

do. It's simply a collection of topics that describe ideas you might find ,

useful for your application. Some topics, such as error handling, don’t fit

into other categories, but are too short for an entire chapter.

OpenGL is kind of a bag of low-level tools; now that you know about those

tools, you can use them to implement higher-level functions. This chapter

presents several examples of such higher-level capabilities.

499

0548

This chapter discusses a variety of techniques based on 0penGL commands
that illustrate some of the not-so-obvious uses to which you can put these

commands. The examples are in no particular order and aren’t related to
each other. The idea is to read the section headings and skip to the examples

that you find interesting. For your convenience, the headings are listed and

explained briefly here.

Note: Most of the examples in the rest of this guide are complete and can

be compiled and run as is. In this chapter, however, there are no

complete programs, and you have to do a bit of work on your own to
make them run.

-0 "Error Handling” on page 501 tells you how to check for 0penGL error
conditions.

0 “Which Version Am I Using?” on page 503 describes how to find out

details about the implementation, including the version number. This-
can be useful for writing applications that are backward compatible
with earlier versions of 0penGL.

0 “Extensions to the Standard” on page 505 presents techniques to

identify and use vendor-specific extensions to the OpenGL standard.

0 “Cheesy Translucency” on page 506 explains how to use polygon
stippiing to achieve translucency; this is particularly useful when you
don’t have blending hardware available.

0 "An Easy Fade Effect” on page 506 shows how to use polygon stippling
to create the effect of a fade into the background.

0 "Object Selection Using the Back Buffer” on page 508 describes how to
use the back buffer in a double—bufferod system to handle simple object

picking.

0 “Cheap Image Transformation” on page 509 discusses how to draw a

distorted version of a bitmapped image by drawing each pixel as a
quadrilateral.

0 “Displaying Layers” on page 511 explains how to display multiple
different layers of materials and indicate where the materials overlap.

- “Antialiased Characters” on page 512. describes how to draw smoother
fonts.

0 “Drawing Round Points" on page 514 describes how to draw
near-round points.

0 “lnterpolating Images” on page 514 shows how to smoothly blend
from one image to the another.

Chapter 14: Now That You Know

0549

'0 “Making Decals” on page 515 explains how to draw two images, where
one is a sort of decal that should always appear on top of the other.

0 "Drawing Filled, Concave Polygons Using the Stencil Buffer” on

page 516 tells you how to draw concave polygons, nonsimple

' polygons, and polygons with holes by using the stencil buffer.

0 “Finding Interference Regions” on page 518 describes how to

determine where three-dimensional pieces overlap.

0 "‘Shadows” on page 519 describes how to draw shadows of lit objects.

0 “Hidden-Line Removal” on page 521 discusses how to draw a

wireframe object with hidden lines removed by using the stencil
buffer.

- “Texture-Mapping Applications” on page 523 describes several clever

uses for texture mapping, such as rotating and warping images.

0 “Drawing Depth-Buffered Images” on page 523 tells you how to

combine images in a depth-buffered environment.

- “Dirichlet Domains" on page 524 explains how to find the Dirichlet

domain of a set of points using the depth buffer.

0 “Life in the Stencil Buffer” on page 526 explains how to implement the

Game of Life using the stencil buffer. -

0 "Alternative Uses for glDrawPixels() and glCopyPixels0” on page 527
describes how to use these two commands for such effects as fake

video, airbrushing, and transposed images.

Error Handling

The truth is, your program will make mistakes. Use of error-handling

routines are essential during development and are highly recommended for

commercially released applications. (Unless you can give a 100% guarantee

your program will never generate an OpenGL error condition. Get real!)

OpenGL has simple error-handling routines for the base GL and GLU
libraries.

When OpenGL detects an error (in either the base GL or GLU), it records a

current error code. The command that caused the error is ignored, so it has

no effect on OpenGL state or on the framebuffer contents. (If the error

recorded was GL_OUT_0F_MEMORY, however, the results of the command

are undefined.) Once recorded, the current error code isn’t cleared—that is,

Error Handling

0550

501

additional errors aren’t recorded——until you call the query command

gIGetError(), which returns the Current error code. After you've queried
and cleared the current error code, or if there's no error to begin with,

glGetError() returns GL_NO_ERROR.

GLenum glGetError(void);

Returns the value of the error flag. When an error occurs-iriteither the GL
or GLU, the error flag is set to the appropriate error code value. _If '
GL_NO_ERROR is returned, there has been no detectable error sincethe

last call to glGe_tError0, or since the GL was initialized. Noother errors

are recorded until g1GetError0 is called, the error code is returned, and
the flag is reset to GL_N0_ERROR.

It is strongly recommended that you call glGetError0 at least once in each

displayo routine. Table 14-1 lists the basic defined OpenGL error codes.

Error code Description

GL_INVALID_ENUM GLenun1 argument out of range

GL_INVALID_VALUE Numeric argument out of range

GL_INVALID_OPERATION Operation illegal in current state

GL_STACK_0VE,RFLOW Command would cause a stack overflow

GL_STACK_UNDE.RFLOW Command would cause a stack underflow

GLHOUT_OF_MEMORY Not enough memory left to execute command

Table 14-1 OpenGL Error Codes

There are also thirty-seven GLU NURBS errors (with non-descriptive
constant names, GLUANURBS_ERROR1, GLU_NURBS_ERROR2, and so on),

fourteen tessellator errors (GLU_TESS_MISSING_BEGIN_POLYGON,

GLU_TESS_MISSING_END_POLYGON,

GLU"TESS_MlSSING_BEGIN_CONTOUR,

GLU_TESS_MISSING_END_CONTOUR, GLU_TESS_COORD__T0O_LARGE,

GLU_TBSS_NEED__COMBINEHCALLBACK, and eight generically named

GLU_TESS_ERROR*), and GLUMINCOMi’A'I’IBLEvGL_VERSION. Also, the

GLU defines the error codes GLU_INVALiD_ENUM,

GLU_INVALID_VALUE, and GLU_0UT_OF_MEMORY, which have the

same meaning as the related OpenGL codes.

Chapter 14: Now Thar You Know

0551

To obtain a printable, descriptive string corresponding to either a GI. or

GLU error code, use the GLU routine gluErrorString().

1’.cans: G-=Lu_byt’e* gluErrorString(GLenum _e'rrorCode);

Returns a pointer to a descriptive string that corresponds to -the OpenGL
or G—LU.erI_o__1':nun-iber passed in errorC0a‘e.

In Example 14-1, a simple error handling routine is shown.

Example 14-1 Querying and Printing an Error

GLenum errcode;

const GLubyte *errString;

if tierrcode = glGetError()} != GL_N0_ERROR) {

errstring = g1uErrorStringierrCode};

fprintf (stderr, ‘*0penGL Error: %s\n", errstringl:
}

Note: The string returned by gluErrorString0 must not be altered or freed

by the application.

Which Version Am I Using?

The portability of OpenGL applications is one of OpenGL’s attractive

features. However, new versions of OpenGL introduce new features, which

may introduce backward compatibility problems. In addition, you may

want your application to perfonn equally well on a variety of
implementations. For example, you might make texture mapping the

default rendering mode on one machine, but only have fiat shading on

another. You can use glGetString() to obtain release information about

your OpenGL implementation.

cams: Gi..ubyfe*-E-g1Ge°t_Sttin'g('(_iLenum name);

!$?*;"1?§.a P°fi1*er-ties?Sifins.££1§edeSfg1«*il?s,%‘9!!;%!§PS?.°S;9£l+ih9 9penG.L.iniple‘1i1en'tation‘?ri,liinef<‘§ar‘1 ‘lie ' one’ o ‘the’ fol1oWingi'*Cilf_VENDOR,

G1-._REI_1DF?REI_l,. GLj_vs_Rs1c;>N, or GL,__E.X'I‘-E1_\IS'iONS.

' GL_VENDOR returns the name of the company responsible for the OpenGL
implementation. GL_RENDERER returns an identifier of the tenderer,

Which Version Am I Using?

0552

503

r E

which is usually the hardware platform. For more about GL_EXTENSIONS,
see the next section, "Extensions to the Standard” on page 505.

GL__VERSION returns a string that identifies the version number of this

implementation of OpenGL. The version string is laid out as follows:

-cversion number><spaoe><vendor-specific intormatic-n>

The version number is either of the form

major_number.minor_number

or

ma]or_number.minorHnurnbar.release_number

where the numbers all have one or more digits. The vendor-specific

information is optional. For example, if this OpenGL implementation is

from the fictitious XYZ Corporation, the string returned might be

1.1.4 XYZ-OS 3.2

which means that this implementation is XYZ’s fourth release of an

0penGL library that conforms to the specification for OpenGL Version 1 .1.

It probably also means this is release 3.2 of XYZ’s proprietary operating

system. ‘

Another way to query the version number for OpenGL is to look for the
symbolic constant {use the preprocessor statement #ifdef) named

GL_VERSION_1_1. The_absence of the constant GL_VERSION_1_1 means

that you have OpenGL Version 1.0.

Note: If running from client to server, such as when performing indirect

rendering with the OpenGL extension to the X Window System, the

client and server may be different versions. If your client version is
ahead of your server, your client might request an operation that is

not supported on your server.

Utility Library Version

gluGetString0 is a query function for the Utility Library (GLU) and is

similar to glGetString0.

504 Chapter I4: Now That You Know

0553

_'<_i:o_rfst GLubyte* gluGetStri1_1g('Gl."enum name); " 'I

appolnter to a string that descri'bes’a_n’aspect of the OpenGL
;i-rnplementation-; name can be one;of'the'-followin-‘g: GLU_VE-RSION, or
.Gj1_,U_r.xTENsroNs; , — , “

Note that gluGetString0 was not available in GLU 1.0. Another way to

query the Version number for GLU is to look for the symbolic constant

GLU_VERSION__1_1. The absence of the constant GLU_VERSION#1_1

means that you have GLU 1.0.

Extensions to the Standard

OpenGL has a formal written specification that describes what operations

comprise the library. An individual vendor or a group of vendors may

decide to include additional functionality to their released implementation.

New routine and symbolic constant names clearly indicate whether a

feature is part of the OpenGL standard or a vendor-specific extension. To

make a vendor-specific name, the vendor appends a company identifier (in
uppercase) and, if needed, additional information, such as a machine name;

For example, if XYZ Corporation wants to add a new routine and symbolic

constant, they might be of the form g1CommandXYZ() and
GL_DEFlNIT[ON_XYZ. If XYZ Corporation wants to have an extension that

is available only on its FooBar graphics board, then the names might be

glCon1mandXYZfb0 and GL_DEFINlTION_XYZ_FB.

If two of more vendors agree to implement the same extension, then the
procedures and constants are suffixed with the more generic EXT

(glCom1nandEXT0 and GL_DEFINITION_EXT). ’

If you want to know if a particular extension is supported on your

implementation, use glGetString(GL_EXTENSlONS). This returns a list of

all the extensions in the implementation, separated by spaces. If you want

to find out if a specific extension is supported, use the code in Example 14-2

to search through the list and match the extension name. Return GL_TRUE,
if it is; GL_FALSE, if it isn't.-

Example 14-2 Find Out If An Extension Is Supported

s tat ic GLboolear1 Queryifixtens ion (char * extlxlame l

I

char *p : {char *') glGetString{GL_EXTE:NSIONS}:

Extensions to the Standard

0554

505

505

char *end = p + strlentpl;

while (p < end] {

int n = strcspn{p, “ “I;

if {(str1en[extName ==n) && (strncmp{extName,p,n)==0ll {
return GL_TRUE;

}

P += (11 + 11:
}

return GL_FALSE,-

}

Cheesy Translucency

You can use polygon stippling to simulate a translucent material. This is an

especially good solution for systems that don’t have blending hardware.

Since polygon stipple patterns are 32x32 bits, or 1024 bits, you can go from

opaque to transparent in 1023 steps. (In practice, that’s many more steps

than you need!) For example, if you want a surface that lets through 2.9

percent of the light, simply make up a stipple pattern where 29 percent

(roughly 297) of the pixels in the mask are zero and the rest are one. Even

if your surfaces have the same translucency, don’t use the same stipple

pattern for each one, as they cover exactly the same bits on the screen. Make
up a different pattern for each by randomly selecting the appropriate

number of pixels to be zero. (See "Displaying Points, Lines, and Polygons”

on page 49 for more information about polygon stippling.)

If you don’t like the effect with random pixels turned on, you can use

regular patterns, but they don’t work as well when transparent surfaces are

stacked. This is often not a problem because most scenes have relatively few

translucent regions that overlap. In a picture of an automobile with
translucent windows, your line of sight can go through at most two
windows, and usually it’s only one.

An Easy Fade Effect

Suppose you have an image that you want to fade gradually to some

background color. Define a series of polygon stipple patterns, each of which
has more bits turned on so that they represent denser and denser patterns.

Then use these patterns repeatedly with a polygon large enough to cover

Chapter 14: Now That You Know

0555

the region over which you want to fade. For example, suppose you want to
fade to black in 16 steps. First define 16 different pattern arrays:

GLubyte stips[16]{4*32];

l
i
I
I

I
I

{ Then load them in such a way that each has one-sixteenth of the pixels in
a 32x32 stipple pattern turned on and that the bitwise OR of all the stipple

‘ patterns is all ones. After that, the following code does the trick:draw_the_picture(};

glCo1or3f(0.0, 0.0, 0.0}; /* Set color to black */

for ii = 0; i < 16; i++) {

glPo1ygonStipple(&stipsii][0]];

draw_a_po1ygon_large_enough_to_cover_the¢Mhole_region{l:
}

In some OpenGL implementations, you might get better performance by

first compiling the stipple patterns into display lists. During your

initialization, do something like this:
i

i iidefine STIP__0FFSET 100
5 for (i = 0; i < 15,- i++) {
g glNewI..ist{i+S'I‘IP_OFFSE'I', GL_COMPILE};

g1Po1ygonStipple[&stips[i][0]};

glEndList{};
}

i Then, replace this line in the first code fragment

' glPolygonStipp1e(&stips[i]£01);

with

glCa1lList I :1) ,-

By compiling the command to set the stipple into a display list, OpenGL

might be able to rearrange the data in the str'ps[][] array into the
hardware-specific form required for maximum stipple-setting speed.

Another application for this technique is if you’re drawing a changing
picture and want to leave some blur behind that gradually fades out to give

some indication of past motion. For example, suppose you're simulating a_

1 planetary system and you want to leave trails on the planets to show a
recent portion of their path. Again, assuming you want to fade in sixteen

AnEhsyFhde£fi%cr 507

&—.m - _ ,

0556

508

steps, set up the stipple patterns as before (using the display-list version,
5.2)’). and have the main simulation loop look something like this:

Cu.rrent_sl:ipple = 0,-

while {1} { /* loop forever */

draw_the_next:_frarne U ,-

g1Cal1Lisl:(curre:r1t_stipple++} ,-

if (curren1:__st:i.pp1e == 16} c:urrent_stipp1e = (J;

g1Co1or3f(0.0, 0.0. 0.0); /* set. color to black */

draw_a_polygon_large_enough_to__cover_the_who1e_region{) ;
}

Each time through the loop, you clear one-sixteenth of the pixels. Any pixel

that hasn't had a planet on it for sixteen frames is certain to be cleared to

black. Of course, if your system supports blending in hardware, it’s easier to
blend in a certain amount of background color with each frame. (See

“Displaying Points, Lines, and Polygons” on page 49 for polygon stippling

details, Chapter 7 for more information about display lists, and "Blending”

on page 214 for information about blending.)

Object Selection Using the Back Buffer

Although the OpenGL selection mechanism (see "Selection” on page 470)

is powerful and flexible, it can be cumbersome to use. Often, the situation

is ‘simple: Your application draws a scene composed of a substantial number

of objects; the user points to an object with the mouse, and the application

needs to find the item under the tip of the cursor.

One way to do this requires your application to be running in double-buffer

mode. When the user picks an object, the application redraws the entire

scene in the back buffer, but instead of using the normal colors for objects,

it encodes some kind of object identifier for each object’s color. The
application then simply reads back the pixel under the cursor, and the value

of that pixel encodes the number of the picked object. If many picks are

expected for a single, static picture, you can read the entire color buffer once

and look in your copy for each attempted pick, rather than read back each
pixel individually.

Note that this scheme has an advantage over standard selection in that it

picks the object that’s in front if multiple objects appear at the same pixel,

one behind the other. Since the image with false colors is drawn in the back

buffer, the user never sees it; you can redraw the back buffer (or copy it from

the front buffer) before swapping the buffers. In color-index mode, the

Chapter 14: Now That You Know

0557

"”""'"-‘l.
encoding is simp1e—send the object identifier as the index. In RGBA mode,

5 encode the bits of the identifier into the R, G, and B components.

Be aware that you can run out of identifiers if there are too many objects in

the scene. For example, suppose you're running in color-index mode on a

system that has 4-bit buffers for color-index information (16 possible

I different indices) in each of the color buffers, but the scene has thousands
‘ of pickable items. To address this issue, the picking can be done in a few
1 passes. To think about this in concrete terms, assume there are fewer than
! 4096 items, so all the obiect identifiers can be encoded in 12 bits. In the first
I pass, draw the scene using indices composed of the 4 high-order bits, then
- use the second and third passes to draw the middle 4 bits and the 4

I low-order bits. After each pass, read the pixel under the cursor; extract the
‘ bits, and pack them together at the end to get the object identifier.
l With this method, the picking takes three times as long, but that's often

acceptable. Note that after you have the high-order 4 hits, you eliminate

15/16 of all objects, so you really need to draw only 1/16 of them for the

second pass. Similarly, after the second pass, 255 of the 256 possible items

have been eliminated. The first pass thus takes about as long as drawing a

single frame does, but the second and third passes can be up to 16 and 256
times as fast.

If you’re trying to write portable code that works on different systems, break

up your object identifiers into chunks that fit on the lowest common

denominator of those systems. Also, keep in mind that your system might

perform automatic dithering in RGB mode. If this is the case, turn off

dithering.

Cheap Image Transformation

I If you want to draw a distorted version of a bitmapped image (perhaps
simply stretched or rotated, or perhaps drastically modified by some

mathematical function), there are many possibilities. You can use the image
as a texture map, which allows you to scale, rotate, or otherwise distort the

image. If you just want to scale the image, you can use glPixelZoom0.

In many cases, you can achieve good results by drawing the image of each

pixel as a quadrilateral. Although this scheme doesn’t produce images that

are as nice as those you would get by applying a sophisticated filtering

algorithm (and it might not be sufficient for sophisticated users), it’s a lot

quicker.

Cheap Image Transfomration 509

L . j

0558

510

To make the problem more concrete, assume that the original image is m

pixels by n pixels, with coordinates chosen from [0, m—1] x [0, n—1]. Let the

distortion functions be x(m,n) and y(m,n). For example, if the distortion is

simply a zooming by a factor of 3.2, then x(m,n) = 3.2*m and y(m,n) = 3.2*n.

The following code draws the distorted image:

g1ShadeModel{GL_FLAT}:

glSca1e(3.2, 3.2. 1.0):

for (j=0; j < n; j++) {

g1Begin {GL_QUAD_STRIP} ;

for (i=0; i <= m; i++} {

g1Vertex2i{i,j};

glVertex2i{i, j+1);

set_co1or[i,j};
J

91EI'1dl J :
1

This code draws each transformed pixel in a solid color equal to that pixel’s

color and scales the image size by 3.2. The routine set_color0 stands for

whatever the appropriate OpenGL command is to set the color of the image

pixel.

The following is a slightly more complex version that distorts the image

using the functions x(i,;') and y(r',;'):

glshadellodel 'lGL_FLAT) ;

for {j=U; j < n; j++) {

g1Be-gin {GL_QUAD_STRIP} ;

for (i=0; i <= m: i++) {

glVertex2ilx{i,j), y{i,jJl;

g1Vertex2i{x{i,j+l}, y{i.j+1l};

set_color{i.j};
}

g1End{}:

}

An even better distorted image can be drawn with the following code:

g1ShadeModel{GL_SMO0TH);

for (:i=0: :5 < in-1}: j++) {

g1B'egin {GL_QUAD_STRIP) ,-

for (i=0; i < m; i++} {

set_eolor[i,j);

glVertex.2i(x(i.j}. y{i.:i)):

set_co1or(i,j+1);

glVertex2i(x(i,j+1}, y{i,j+l}};

Chapter 14: Now That You Know

0559

QlEI1d{):
}

This code smoothly interpolates color across each quadrilateral. Note that
this version produces one fewer quadrilateral in each dimension than do

the flat-shaded versions, because the color image is being used to specify

colors at the quadrilateral vertices. In addition, you" can antialias the

polygons with the appropriate blending function (GL_SRC__ALPI-{A,

GLHONE) to get an even nicer image. .

Displaying Layers

In some applications such as semiconductor layout programs, you want to

display multiple different layers of materials and indicate where the

materials overlap each other.

As a simple example, suppose you have three different substances that can

be layered. At any point, eight possible combinations of layers can occur, as
shown in Table 14-2.

Layer 1 Layer 2 Layer 3 Color

0 absent absent absent black

1 present absent absent red

2 absent present absent green

3 present present absent blue

4 absent absent present pink

5 present absent present yellow

6 absent present present white

7 present present present gray

Table 14-2 Eight Combinations of Layers

You want your program to display eight different colors, depending on the

layers present. One arbitrary possibility is shown hi the last column of the

table. To use this method, use color-index mode and load your color map-

so that entry 0 is black, entry 1 is red, entry 2 is green, and so on. Note that

if the numbers from 0 through 7 are written in binary, the 4 bit is turned

Displaying Layers 5'! 1

‘I . - - L I

0560

512

I--I---I-III EEEEEEEEEEEE

I , ——_.l HEEEEEEEEEHE
I ; IIIII HHEEEBEEEEEE
LIIII IIIIH EEEEEBEEEEEH
IIIII IIIII EEEEEEEMEEEE

IIIIIj IIIII EEEEEHEMEEEE
IIIII; IIIII EEEEEBEEEEEE
IIIIIf IIIII EEEEEEEMEEEE
IIIII IIIII EEEEEEEMEEEE
IIIII= IIIII EEEEEEEMEEEE

—IIIII- IIIII EEEEEI EEEE

IIIII_ IIIII EEEEE EEEE
IIIII IIIII EEEEE EEEE
IIIF' “III EEEEE EEEE

”‘j:_-‘cl

on whenever layer 3 appears, the 2 bit whenever layer 2 appears, and the I

bit whenever layer 1 appears.

To clear the window, set the writemask to 7 (all three layers) and set the

clearing color to 0. To draw your image, set the color to 7, and then when
you want to draw something in layer :1, set the writemask to n. In other

types of applications, it might be necessary to selectively erase in a layer, in

which case you would use the writemasks just discussed, but set the color

to 0 instead of 7. (See “Masking Buffers” on page 381 for more information
about writemasks.)

Antialiased Characters

Using the standard technique for drawing characters with glBitmap(),
drawing each pixel of a character is an all—or-nothing affair—the pixel is

either turned on or not. If you're drawing black characters on a white

background, for example, the resulting pixels are either black or white,

never a shade of gray. Much smoother, higher-quality images can be
achieved if intermediate colors are used when rendering characters (grays,

in this example). ‘

Assuming that you’re drawing black characters on a white background,

imagine a highly magnified picture of the pixels on the screen, with a

high-resolution character outline superimposed on it, as shown in the left
side of Figure 14-1.

Figure 14—1 Antialiased Characters

Chapter 14: Now That You Know

0561

Notice that some of the pixels are completely enclosed by the character's
outline and should be painted black; some pixels are completely outside

the outline and should be painted white; but many pixels should ideally be

painted some shade of gray, where the darkness of the gray corresponds to

the amount of black in the pixel. If this technique is used, the resulting
image on the screen looks better.

If speed and memory usage are of no concern, each character can be

drawn as a small image instead of as a bitmap. If you're using RGBA mode,

however, this method might require up to 32 bits per pixel of the character

to be stored and drawn, instead of the 1 bit per pixel in a standard character.

Alternatively, you could use one 8-bit index per pixel and convert these

indices to RGBA by table lookup during transfer. In many cases, a

compromise is possible that allows you to draw the character with a few

gray levels between black and white (say, two or three), and the resulting

font description requires only 2 or 3 bits per pixel of storage.

The numbers in the right side of Figure 14-1 indicate the approximate

percentage coverage of each pixel: 0 means approximately empty, 1
means approximately one-third coverage, 2 means two-thirds, and 3 means

completely covered. If pixels labeled 0 are painted white, pixels labeled 3

are painted black, and pixels labeled 1 and 2 are painted one-third and

two-thirds black, respectively, the resulting character looks quite good.

Only 2 bits are required to store the numbers 0, 1, 2, and 3, so for 2 bits

per pixel, four levels of gray can be saved.

There are basically two methods to implement antialiased characters,
depending on whether you're in RGBA or color-index mode.

In RGBA mode, define three different character bitmaps, corresponding

to where 1, 2, and 3 appear in Figure 14-1. Set the color to white, and clear

for the background. Set the color to one-third gray (RGB = (0.666, 0.666,

0.666)), and draw all the pixels with a 1 in them. Then set RGB = (0.333,

0.333, 0.333), draw with the 2. bitrnap,_and use RGB = (0.0, 0.0, 0.0) for the

3 bitmap. What you're doing is defining three different fonts and redrawing

the string three times, where each pass fills in the bits of the appropriate
color densities.

In color-index mode, you can do exactly the same thing, but if you're

willing to set up the color map correctly and use writernasks, you can get
away with only two bitmaps per character and two passes per string. In "the

preceding example, set up one bitmap that has a 1 wherever 1 or 3 appears

in the character. Set up a second bitmap that has a 1 wherever a 2 or a 3

appears. Load the color map so that 0 gives white, 1 gives light gray, 2 gives

Antialiased Characters 513

ii . .
0562

'1

dark gray, and 3 gives black. Set the color to 3 (11 in binary) and the

writemask to 1, and draw the first bitmap. Then change the writernask to 2,

and draw the second. Where 0 appears in Figure 14-1, nothing is drawn in

the framebuffer. Where 1, 2, and 3 appear, 1, 2, and 3 appear in the
framebuffer.

For this example with only four gray levels, the savings is small—two passes

instead of three. If eight gray levels were used instead, the RGBA method

would require seven passes, and the color-map masking technique would

require only three. With sixteen gray levels, the comparison is fifteen passes

to four passes. (See “Masking Buffers” on page 381 for more information
about writemasks and “Bitmaps and Fonts” on page 2.79 for more

‘information about drawing bitmaps.)

Try This

- Can you see how to do RGBA rendering using no more images than_the

optimized color-index case? Hint: How are RGB fragments normally

merged into the color buffer when antialiasing is desired? '

)55”

Drawing Round Points

Draw near-round, aliased points by enabling point antialiasing, turning

blending off, and using an alpha function that passes only fragments with

alpha greater than 0.5. (See “Antialiasing” on page 226 and “Biending” on

page 214 for more information about these topics.)

lnterpolating Images

Suppose you have a pair of images (where image can mean a bitmap image,

or a picture generated using geometry in the usual way), and you want to

smoothly blend from one to the other. This can be done easily using the

alpha component and appropriate blending operations. Let's say you want

to accomplish the blending in ten steps, where image A is shown in frame
0 and image B is shown in frame 9. The obvious approach is to draw image

A with alpha equal to (9—:')/9 and image B with an alpha of 179 in frame 1'.

The problem with this method is that both images must be drawn in each

frame. A faster approach is to draw image A in frame 0. To get frame 1, blend

in 1/9 of image B and 8/9 of what’s there. For frame 2, blend in 1/8 of image

514 Chapter 14: Now That You Know

0563

.__._.__.._.._jE
B with 7/8 of what’s there. For frame 3, blend in 1/7 of image B with 6/7 of

what’s there, and so on. For the last step, you're just drawing 1/1 of image

B blended with 0/1 of what’s left, yielding image B exactly.

To see that this works, if for frame 1' you have

(9—i)A
9 + 9

and you blend in B/(9-0 with (8—i)/(9-0 of what’s there, you get

+
9-1 9-1 9 9i_,Lj[<9—i)A 9 9Q] = 9- (i+1)A+ (i+1)B

(See “Blending” on page 214.)

Making Decals

Suppose yo-u’re drawing a complex three-dimensional picture using

depth-buffering to eliminate the hidden surfaces. Suppose further that one

part of your picture is composed of coplanar figures A and B, where B is a

sort of decal that should always appear on top of figure A.

Your first approach might be to draw B after you’Ve drawn A, setting the

depth-buffering function to replace on greater or equal. Due to the finite

precision of the floating-point representations of the vertices, however,

round-off error can cause polygon B to be sometimes a bit in front and

sometimes a bit behind figure A. Here’s one solution to this problem.

1. Disable the depth buffer for writing, and render A.

2. Enable the depth buffer for writing, and render B.

3. Disable the color buffer for writing, and render A again.

4. Enable the color buffer for writing.

Note that during the entire process, the depth-buffer test is enabled. In step

1, A is rendered wherever it should be, but none of the depth-buffer values

are changed; thus, in step 2, wherever B appears over A, B is guaranteed to
be drawn. Step 3 simply makes sure that all of the depth values under A are

updated correctly, but since RGBA writes are disabled, the color pixels are

unaffected. Finally, step 4 returns the system to the default state (writing is

enabled both in the depth buffer and in the color buffer).

Making Decals

0564

515

516

If a stencil buffer is available, the following simpler technique works.

1. Configure the stencil buffer to write one if the depth test passes, and
zero otherwise. Render A.

2. Configure the stencil buffer to make no stencil value change, but to

render only where stencil values are one. Disable the depth-buffer test

and its update. Render B.

With this method, it's not necessary to initialize the contents of the stencil

buffer at any time, because the stencil value of all pixels of interest (that is,

those rendered by A) are set when A is rendered. Be sure to reenable the

depth test and disable the stencil test before additional polygons are drawn.

(See “Selecting Color Buffers for Writing and Reading” on page 379, "Depth
Test” on page 391, and “Stencil Test” on page 385.)

Drawing Filled, Concave Polygons Using the Stencil

Buffer

Consider the concave polygon 1234567 shown in Figure 14-2. Imagine that

it’s drawn as a series of triangles: 12.3, 134, 145, 156, 167, all of which are

shown in the figure. The heavier line represents the original polygon

boundary. Drawing all these triangles divides the buffer into nine regions

A, B, C, ..., I, where region I is outside all the triangles.

Chapter 14: Now That You Know

0565

‘: 134

: 123134

: 134145

: 134145156

: 123134145156

: 156

: 123156

: 156167

(none)
1

Figure 14-2 Concave Polygon

In the text of the figure, each of the region names is followed by a list of the
triangles that cover it. Regions A, D, and F make up the original polygon;

note that these three regions are covered by an odd number of triangles.

Every other region is covered by an even number of triangles ‘(possibly zero).

Thus, to render the inside of the concave polygon, you just need to render

regions that are enclosed by an odd number of triangles. This can be done

using the stencil buffer, with a two-pass algorithm.

First, clear the stencil buffer and disable writing into the color buffer. Next,

draw each of the triangles in turn, using the GL_INVERT function in the

stencil buffer. (For best performance, use triangle fans.) This flips the value
between zero and a nonzero value every time a triangle is drawn that covers

a pixel. After all the triangles are drawn, if a pixel is covered an even number

of times, the value in the stencil buffers is zero; otherwise, it’s nonzero.

Finally, draw a large polygon over the whole region (or redraw the

triangles), but allow drawing only where the stencil buffer is nonzero.

Note: There's a slight generalization of the preceding technique, where you

don't need to start with. a polygon vertex. In the 1234567 example,
let P be any point on or off the polygon. Draw the triangles: P12, P23,

P34, P45, P56, P67, and P71. Regions covered by an odd number of

triangles are inside; other regions are outside. This is a generalization

in that if P happens to be one of the polygon’s edges, one of the

triangles is empty.

Drawing Filled. Concave Polygons Using the Stencil Bufier

0566

517

518

This technique can be used to fill both nonsirnple polygons (polygons

whose edges cross each other) and polygons with holes. The following

example illustrates how to handle a complicated polygon with two regions,

one four-sided and one five-sided. Assume further that there’s a triangular

and a four-sided hole (it doesn't matter in which regions the holes lie). Let

the two regions be abcd and efghi, and the holes jkl and mnop. Let 2 be any

point on the plane. Draw the following triangles:

zab zbc zcd zcla zef zfg zgh zhi zie zjk zkl zlj zmn zno zop zpm

Mark regions covered by an odd number of triangles as in, and those

covered by an even number as out. (See "Stencil Test” on page 385 for more

information about the stencil buffer.)

Finding Interference Regions

If you’re designing a mechanical part made from smaller three-dimensional

pieces, you often want to display regions where the pieces overlap. In many

cases, such regions indicate design errors where parts of a machine interfere

with each other. In the case of moving parts, it can be even more valuable,

since a search for interfering regions can be done through a complete

mechanical cycle of the design. The method for doing this is complicated,

and the description here might be too brief. Complete details can be found

in the paper Interactive Inspection ofSolids: Cross-sections and interferences, by

Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider (SIGGRAPH 1992
Proceedings).

The method is related to the capping algorithm described in "Stencil Test”

on page 385. The idea is to pass an arbitrary clipping plane through the

objects that you want to test for interference, and then determine when a

portion of the clipping plane is inside more than one object at a time. For a

static image, the clipping plane can be moved manually to highlight

interfering regions; for a dynamic image, it might be easier to use a grid of

clipping planes to search for all possible interferences.

Draw each of the objects you want to check and clip them against the

clipping plane. Note which pixels are inside the object at that clipping
plane using an odd-even count in the stencil buffer, as explained in the

preceding section. (For properly formed objects, a point is inside the object

if a ray drawn from that point to the eye intersects an odd number of
surfaces of the object.) To find interferences, you need to find pixels in the

framebuffer where the clipping plane is in the interior of two or more

Chapter 14: Now That You Know

0567

''""''“"""3

regions at once; in other words, in the intersection of the interiors of any

pair of objects.

If multiple objects need to be tested for mutual intersection, store 1 bit

every time some intersection appears, and another bit wherever the

clipping buffer is inside any of the objects (the union of the objects’

interiors). For each new object, determine its interior, find the intersection

of that interior with the union of the interiors of the objects so far tested,

and keep track of the intersection points. Then add the interior points of

the new object to the union of the other objects’ interiors.

You can perform the operations described in the preceding paragraph by
using different bits in the stencil buffer together with various masking

operations. Three bits of stencil buffer are required per pixel—one for the

toggling to determine the interior of each object, one for the union of all

interiors discovered so far, and one for the regions where interference has

“occurred so far. To make this discussion more concrete, assume the 1 bit of

the stencil buffer is for toggling interior/exterior, the 2 bit is the running
union, and the 4 bit is for interferences so far. For each object that you’re

going to render, clear the 1 bit (using a stencil mask of one and clearing to

zero), then toggle the 1 bit by keeping the stencil mask as one and using the

GLJNVERT stencil.operation.

You can find intersections and unions of the bits in the stencil buffers using

the stenciling operations. For exampie, to make bits in buffer 2 be the union

of the bits in buffers 1 and 2, mask the stencil to those 2 bits, and draw

something over the entire object with the stencil function set to pass if

anything nonzero occurs. This happens if the bits in buffer 1, buffer 2., or

both are turned on. If the comparison succeeds, write a 1 in buffer 2. Also,

make sure that drawing in the color buffer is disabled. An intersection

calculation is sirnilar——set the function to pass only if the value in the two

buffers is equal to 3 (bits turned on in both buffers 1 and 2). Write the result

into the correct buffer. (See “Stencil Test" on page 385.)

Shadows

Every possible projection of three-dimensional space to three-dimensional

space can be achieved with a suitable 4x4 invertible matrix and

homogeneous coordinates. If the matrix isn't invertible but has rank 3, it

projects three-dimensional space onto a two-dimensional plane. Every such

possible projection can be achieved with a suitable rank-3 4x4 matrix. To

find the shadow of an arbitrary object on an arbitrary plane from an

Shadows

0568

519

520

arbitrary light source (possibly at infinity), you need to find a matrix
representing that projection, multiply it on the matrix stack, and draw the

object in the shadow color. Keep in mind that you need to project onto

each plane that you're calling the "ground.”

As a simple illustration, assume the light is at the origin, and the equation

of the ground plane is ax+by+c+a'=0. Given a vertex S=(sx,sy,sz,1), the line
from the light through S includes all points as, where 0: is an arbitrary real

number. The point where this line intersects the plane occurs when

o:(a *sz+b *sy+c*sz) + d = 0,

so

on‘: —d/(a *sx+b *sy+c*sz).

Plugging this back into the line, we get

—d(sx,sy,sz)/(a *sx+b *sy+c *sz)

for the point of intersection.

The matrix that maps S to this point for every S is

—d0Oa

0—d0b

{}0—dc

0000

This matrix can be used if you first translate the world so that the light is at

the origin.

If the light is from an infinite source, all you have is a point 8 and a direction

D = (dx,dy,dz). Points along the line are given by

S + aD

Proceeding as before, the intersection of this line with the plane is given by

a(sx+adx)+b(sy+ady)+c(sz+otdz)+d = 0 -

Solving for a, plugging that back into the equation for a line, and then

determining a projection matrix gives

b*dy+c*dz —a *dy «a *dz 0

—b*dx a*dx+c*dz —b *dz 0

—c*dx —c*dy a*dx+b*dy 0

-—d*dx —d*dy —d*dz a*dx+b*dy*c*dz

Chapter 14: Now That You Know

0569

__.......__._.—.-.—.—o

This matrix works given the plane and an arbitrary direction vector. There's

no need to translate anything first. (See Chapter 3- and Appendix F.)

Hidden-Line Removal

If you want to draw a wireframe object with hidden lines removed, one

approach is to draw the outlines using lines and then fill the interiors of the

polygons making up the surface with polygons having the background

color. With depth-buffering enabled, this interior fill covers any outlines

that would be obscured by faces closer to the eye. This method would work,

except that there's no guarantee that the interior of the object falls entirely

inside the polyg0n’s outline; in fact, it might overlap it in various places.

There's an easy, two-pass solution using either polygon offset or the stencil

buffer. Polygon offset is usually the preferred technique, since polygon
offset is almost always faster than stencil buffer. Both methods are described

here, so you can see how both approaches to the problem work.

Hidden-Line Removal with Polygon Offset

To use polygon offset to accomplish hidden-line removal, the object is
drawn twice. The highlighted edges are drawn in the foreground color,

using filled polygons but with the polygon mode GL__LINE to rasterize it as

a wireframe. Then the filled polygons are drawn with the default polygon

mode, which fills the interior of the wirefrarne, and with enough polygon

offset to nudge the filled polygons a little farther from the eye. With the

polygon offset, the interior recedes just enough that the highlighted edges

are drawn without unpleasant visual artifacts.

glE:nab1e(GL_DEP‘I’I-I_TEST} .'

g 1Po1ygon1~1ode (GL_FRONT_AN'D_BACK . GL_LINE) ;

set_color (foreground} ;

draw__obj ect_wi th_£i 1 1 ed_polygons I } ,-

g1PolygonMocle {GL_FRONT_AN'D_BACK , GL_,F‘ILL} ;

g1Ena.b1e (GL_POLYGON_0FF'SET__FILL} ;

g1Polygon0ffset (1 . 0 . 1 . 0 } .,-

set__co1or (background) ,-

draw_obj ect:_wi th._f i 11ed_po1ygons l J ;

glnisable { GL_POLYGON_OFFSET___FILL} ;

H.idden-Line Removal

0570

521

You may need to adjust the amount of offset needed (for wider lines, for

example). (See "Polygon Offset” on page 247 for more information.)

Hidden-Line Removal with the Stencil Buffer

Using the stencil buffer for hidden-line removal is a more complicated I
procedure. For each polygon, you'll need to clear the stencil buffer, and I
then draw the outline both in the framebuffer and in the stencil buffer.

Then when you fill the interior, enable drawing only where the stencil

buffer is still clear. To avoid doing an entire stencil—buffer clear for each

polygon, an easy way to clear it is simply to draw 0’s into the buffer using Ithe same polygon outline. In this way, you need to clear the entire stencil

buffer only once. I
l

I

|
I

For example, the following code represents‘ the inner loop you might use
to perform such hiclden—line removal. Each polygon is outlined in the

foreground color, filled with the background color, and then outlined again

in the foreground color. The stencil buffer is used to keep the fill color of

each polygon from overwriting its outline. To optimize performance, the

stencil and color parameters are changed only twice per loop by using the

same values both times the polygon outline is drawn.

glEnable(GL_STENCIL_TESTl;

glEnabl e {GL__DEPTH_TEST) ;

glclear(GL_STENCIL_BUFFER_BIT};

glStenci1Func {GL_ALWAYS .' 0, 1} ,-

glStenCil0p(GL_INVERT, GL_INVERT, GL_INVERT);

seI:_co1or{fore-ground) ,-

for (i=0; i < max; i++) {

ouI:1ine_polygon{i);

set___co1or {background} .°

glstencilFunc(GL__EQUAL. 0, 1),-

glStencilOp(GL_KEEP, GL_KEEP, GL__KEEP};

fi1l_polygon{i} ;

set_co1or I foreground} ,-

glStencilFunc(GL_ALWAYS, 0, 1];

glStencilOp{GL_INVERT, GL_INVERT, GL_INVERT);

out1ine_polygon{i} ,-
}

(See "Stencil Test” on page 385.)

522 Chapter 14: Now That You Know

0571

Texture-Mapping Applications

Texture mapping is quite powerful, and it can be used in some interesting

ways. Here are a few advanced applications of texture mapping.

0 Antialiased text—Define a texture map for each character at a relatively

high resolution, and then map them onto smaller areas using the

filtering provided by texturing. This also makes text appear correctly

on surfaces that aren't aligned with the screen, but are tilted and have

some perspective distortion.

0 Antialiased lines——These can be done like antialiased text: Make the

line in the texture several pixels wide, and use the texture filtering to
antialias the lines.

0 Image scaling and rotation--If you put an image into a texture map-

and use that texture to map onto a polygon, rotating and scaling the
polygon effectively rotates and scales the image.

- Image warping-—As in the preceding example, store the image as a

texture map, but map it to some spline-defined surface (use

evaluators). As you warp the surface, the image follows the warping.

o Projecting images—Put the image in a texture map, and project it as a

spotlight, creating a slide projector effect. (See “The q Coordinate” on

page 372 for more information about how to model a spotlight using

textures.)

(See Chapter 3 for information about rotating and scaling, Chapter 9 for

more information about creating textures, and Chapter 12 for details on

evaluators.)

Drawing Depth—Bufiered Images

For complex static backgrounds, the rendering time for the geometric

description of the background can be greater than the time it takes to draw

a pixel image of the rendered background, If there's a fixed background

and a relatively simple changing foreground, you may want to draw the

background and its associated depth-buffered version as an image rather

than render it geometrically. The foreground might also consist of items

that are time—consuming to render, but whose framebuffer images and

depth buffers are available. You can render these items into a

depth-buffered environment using a two—pass algorithm.

Texture-Mapping Applications

0572

523

524

For example, if you're drawing a model of a molecule made of spheres, you
might have an image of a beautifully rendered sphere and its associated

depth-buffer values that were calculated using Phong shading or ray—tracing
or by using some other scheme that isn’t directly available through
OpenGL. To draw a complex model, you might be required to draw
hundreds of such spheres, which should be depth-buffered together.

To add a depth—buffered image to the scene, first draw the image’s

depth-buffer values into the depth buffer using glDrawPixels0. Then

enable depth-buffering, set the writemask to zero so that no drawing occurs,

and enable stenciling such that the stencil buffers get drawn whenever a
write to the depth bufferoccurs.

Then draw the image into the color buffer, masked by the stencil buffer

you’ve just written so thatwriting occurs only when there's a 1 in the
stencil buffer. During this write, set the stenciling function to zero out the

stencil buffer so that it's automatically cleared when it’s time to add the
next image to the scene. If the objects are to be moved nearer to or farther

from the viewer, you need to use an orthographic projection; in these cases,

you use GL_DEPTH_BIAS with glPixelTransfer*0 to move the depth image.

(See “Coordinate. System Survival Kit” on page 35, "Depth Test” on
page 391, “Stencil Test” on page 385, and Chapter 8 for details on

glDrawPixels0 and glPixelTransfer*().)

Dirichlet Domains

Given a set 5 of points on a plane, the Dirichlet domain or Voronoi polygon
of one of the points is the set of all points in the plane closer to that point

than to any other point in the set 5. These points provide the solution to

many problems in computational geometry. Figure 14-3 shows outlines of
the Dirichlet domains for a set of points.

Chapter 14: Now ‘Illa: You Know

0573

Figure 14-3 Dirichlet Domains

If you draw a depth-buffered cone with its apex at the point in a different

color than each of the points in S, the Dirichlet domain for each point is
drawn in that color. The easiest way to do this is to precompute a cone’s

depth in an image and use the image as the deptlpbuffer values as described

in the preceding section. You don’t need an image to draw in the

framebuffer as in the case of shaded spheres, however. While you’re
drawing into the depth buffer, use the stencil buffer to record the pixels

where drawing should occur by first clearing it and then writing nonzero

values wherever the depth test succeeds. To. draw the Dirichlet region, draw

a polygon over the entire window, but enable drawing only where the
stencil buffers are nonzero.

You can do this perhaps more easily by rendering cones of uniform color

with a simple depth buffer, but a good cone might require thousands of

polygons. The technique described in this section can render much

higher-quality cones much more quickly. (See “A Hidden-Surface Removal

Survival Kit” on page 171 and “Depth Test” on page 391.)

Dirichlet Domains

0574

525

-526

Life in the Stencil Buffer

The Game of Life, invented byjohn Conway, is played on a rectangular grid

where each grid location is “alive” or “dead.” To calculate the next

generation from the current one, count the number of live neighbors for

each grid location (the eight adjacent grid locations are neighbors). A grid

location is alive in generation n+1 if it was alive in generation n and has

exactly two or three live neighbors, or if it was dead in generation 71 and has

exactly three live neighbors. In all other cases, it is dead in generation n+1.
This game generates some incredibly interesting patterns given different

initial configurations. (See Martin Gardner, "Mathematical Games,”

Scientific American, vol. 223, no. 4, October 1970, p. 120423.) Figure 144

shows six generations from a game.

Figure 14-4 Six Generations from the Game of Life

One way to create this game using OpenGL is to use a rnultipass algorithm.

Keep the data in the color buffer, one pixel for each grid point. Assume that

black (all zeros) is the background color, and the color of a live pixel is

Chapter 14: Now That You Know

0575

nonzero. Initialize by clearing the depth and stencil buffers to zero, set the

depth-buffer writemask to zero, and set the depth comparison function so

that it passes on not-equal. To iterate, read the image off the screen, enable

drawing into the depth buffer, and set the stencil function so that it -

increments whenever a depth comparison succeeds but leaves the stencil

buffer unchanged otherwise. Disable drawing into the color buffer.

Next, draw the image eight times, offset one pixel in each vertical,

horizontal, and diagonal direction. When you’re done, the stencil buffer

contains a count of the number of live neighbors for each pixel. Enable
drawing to the color buffer, set the color to the color for live cells, and set

the stencil function to draw only if the value in the stencil buffer is 3 (three

live neighbors). In addition, if this drawing occurs, decrement the value in

the stencil buffer. Then draw a rectangle covering the image; this paints

each cell that has exactly three live neighbors with the “alive” color.

At this point, the stencil buffers contain 0, 1, 2, 4, 5, 6, 7, 8, and the values

under the 2's are correct. The values under 0, 1, 4, 5, 6, 7, and 8 must be

cleared to the "dead” color. Set the stencil function to draw whenever the
value is not 2, and to zero the stencil values in all cases. Then draw a large

polygon of the “dead” color across the entire image. You're done.

For a usable demonstration program, you might want to zoom the grid up

. to a size larger than a single pixel; it’s hard to see detailed patterns with a

single pixel per grid point. (See “Coordinate System Survival Kit” on

page 35, “Depth Test" on page 391, and “Stencil Test” on page 385.)

Alternative Uses for g|DrawPixels0 and

glCopyPixels()

You might think of g1DrawPixels() as a way to draw a rectangular region of
pixels to the screen. Although this is often what it’s used for, some other

interesting uses are outlined here.

- Video—Even if your machine doesn’t have special video hardware, you

can display short movie clips by repeatedly drawing frames with

glD1-awPixels() in the same region of the back butter and then

swapping the buffers. The size of the frames you can display with

reasonable performance using this method depends on your

hardware’s drawing speed, so you might be limited to 100x100 pixel

movies (or smaller) if you want smooth fake video.

Alternative Usesfor gIDrawPixels() and glCopyPixel.r() 527

0576

523

Airbrush—In a paint program, your airbrush (or paintbrush) shape can

be simulated using alpha values. The color of the paint is represented

as the color values. To paint with a circular brush in blue, repeatedly

draw a blue square with glDrawPixels0 where the alpha values are

largest in the center and taper to zero at the edges of a circle centered
in the square. Draw using a blending function that uses alpha of the

incoming color and (1—alpha) of the color already at the pixel. If the

alpha values in the brush are all much less than one, you have to paint

over an area repeatedly to get a solid color. If the alpha values are near

one, each brush stroke pretty much obliterates the colors underneath.

Filtered Zoorns-—If you zoom a pixel image by a nonintegral amount,

OpenGL effectively uses a box filter, which can lead to rather severe
aliasing effects. To improve the filtering, jitter the resulting image by

amounts less than a pixel and redraw it multiple times, using alpha

blending to average the resulting pixels. The result is a filtered zoom.

Transposing Images—You can swap same-size images in place with

glC0pyPixels() using the XOR operation. With this method, you can

avoid having to read the images back into processor memory. If A and

B represent the two images, the operation looks like this:

a. A=AXORB

b. B=AXORB

C. A=AXORB

Chapter 14: Now That You Know

0577

Appendix A

Order of Operations

This book describes all the operations performed between when vertices

are initially specified and fragments are finally written into the frarnebuffer.

The chapters of this book are arranged in an order that facilitates learning

rather than in the exact order in which these operations are actually

performed. Sometimes the exact order of operations doesn’t matter-~for

example, surfaces can be converted to polygons and then transformed,

or transformed first and then converted to polygons, with identical

resu1ts—and different implementations of OpenGL might do things

differently.

This appendix describes a possible order; any implementation is required to

give equivalent results. If you want more details than are presented here, see

the OpenGL Reference Manual.

This appendix has the following major sections:

0 “Overview” on page 530

0 “Geometric Operations" on page 530

0 “Pixel Operations” on page 532

0 “Fragment Operations” on page 533

I “Odds and Ends" on page 533

529

0578

530

Overview

This section gives an overview of the order of operations, as shown in
Figure A-1. Geometric data (vertices, lines, and polygons) follows the path

through the row ofboxes that include evaluators and per—vertex operations,

while pixel data (pixels, images, and bitmaps) is treated differently for
part of the process. Both types of data undergo the rasterization and

per-fragment operations before the final pixel data is written into the
framebuffer.

Figure A-1 Order of Operations

All data, whether it describes geometry or pixels, can be saved in a display

list or processed immediately. When a display list is executed, the data is

sent from the display list just as if it were sent by the application.

All geometric primitives are eventually described by vertices. If evaluators
are used, that data is converted to vertices and treated as vertices from then

on. Vertex data may also be stored in and used from specialized vertex

arrays. Per-vertex calculations are performed on each vertex, followed by

rasterization to fragments. For pixel data, pixel operations are performed,
and the results are either stored in the texture memory, used for polygon

stippling, or rastetized to fragments.

Finally, the fragments are subjected to a series of per—fragrnent operations,

after which the final pixel values are drawn into the framebuffer.

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the

vertices of a rectangle, or as raw data, consists of a set of vertices and the

type of primitive it describes (a vertex, line, or polygon). Vertex data

includes not only the (x, y, z, w) coordinates, but also a normal vector,

Appendix A: Order of Operations

0579

texture coordinates, a RGBA color, a color index, material properties, and

edge-flag data. All these elements except the vertex’s coordinates can be
specified in any order, and default values exist as well. As soon as the vertex

command g1Vertex*0 is issued, the components are padded, if necessary,
to four dimensions (using z = 0 and w = 1), and the current values of all the

elements are associated with the vertex. The complete set of vertex data is

then processed. (If vertex arrays are used, vertex data may be batch

processed and processed vertices may be reused.)

. Per-Vertex Operations

In the per-vertex operations stage of processing, each vertex’s spatial

coordinates are transformed by the modelview matrix, while the nonnal

vector is transformed by that 1natrix’s inverse transpose and renormalized
if specified. if automatic texture generation is enabled, new texture

coordinates are generated from the transformed vertex coordinates, and

they replace the vertex’s old texture coordinates. The texture coordinates

are then transformed by the current texture matrix and passed on to the

primitive assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the

transformed vertex and normal vector coordinates, and the current

material, lights, and lighting model. These calculations generate new colors

or indices that are clamped or masked to the appropriate range and passed

on to the primitive assembly step.

Primitive Assembly

Primitive assembly differs, depending on whether the primitive is a point,

a line, or a polygon. If flat shading is enabled, the colors or indices of all the

vertices in a line or polygon are set to the same value. If special clipping

planes are defined andenabled, they’re used to clip primitives of all three

types. (The clipping-plane equations are transformed by the inverse

transpose of the modeiview matrix when they’re specified.) Point clipping

simply passes or rejects vertices; line or polygon clipping can add additional

vertices depending on how the line or polygon is clipped. After this

clipping, the spatial coordinates of each vertex are transformed by the

projection matrix, and the results are clipped against the standard viewing

planes x = iw, y = iw, and z = :l:W.

Geometric Operations

0580

531

If selection is enabled, any primitive not eliminated by clipping generates a
selection-hit report, and no further processing is performed. Without

selection, perspective division by w occurs and the viewport and

depth—range operations are applied. Also, if the primitive is a polygon, it’s

then subjected to a culling test (if culling is enabled). A polygon might

convert to vertices or lines, depending on the polygon mode.

Finally, points, lines, and polygons are rasterized to fragments, taking into -
account polygon or line stipples, line width, and point size. Rasterization

involves determining which squares of an integer grid in window

coordinates are occupied by the primitive. If antialiasing is enabled,

coverage (the portion of the square that is occupied by the primitive) is also
computed. Color and depth values are also assigned to each such square. If

polygon offset is enabled, depth values are slightly modified by a calculated
offset value.

Pixel Operations

Pixels from host memory are first unpacked into the proper number of
components. The OpenGL unpacking facility handles a number of different

formats. Next, the data is scaled, biased, and processed using a pixel map.

The results are clamped to an appropriate range depending on the data type

and then either written in the texture memory for use in texture mapping

or rasterized to fragments.

if pixel data is read from the frarnebuffer, pixel~transfer operations (scale,

bias, mapping, and clamping) are performed. The results are packed into an

appropriate format and then returned to processor memory.

The pixel copy operation is similar to a combination of the unpacking and

transfer operations, except that packing and unpacking is unnecessary, and

only a single pass is made through the transfer operations before the data is
written back into the framebuffer.

Texture Memory

0penGL Version 1.1 provides additional control over texture memory.

Texture image data can be specified from framebuffer memory, as well as

processor memory. All or a portion of a texture image may be replaced.
Texture data may be stored in texture objects, which can be loaded into

texture memory. If there are too many texture objects to fit into texture

532 Appendix A: Order ofOperations

0581

memory at the same time, the textures that have the highest priorities

remain in the texture memory.

Fragment Operations

If texturing is enabled, a texel is generated from texture memory for each

fragment and applied to the fragment. Then fog calculations are performed,

if they're enabled, followed by the application of coverage (antialiasing)
values, if antialiasing is enabled. '

Next comes scissoring, followed by the alpha test (in RGBA mode only), the

stencil test, and the depth-buffer test. If in RGBA mode, blending is

performed. Blending is followed by dithering and logical operation. All

these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending

on the mode, and drawn into the appropriate buffer. If fragments are being

written into the stencil or depth buffer, masking occurs after the stencil and

depth tests, and the results are drawn into the framebuffer without

performing the blending, dithering, or logical operation.

Odds and Ends

Matrix operations deal with the current matrix stack, which can be the

modelview, the projection, or the texture matrix stack. The commands

glMultMatrix*(), glLoadMatrix*0, and glLoadIdentity0 are applied to

the top matrix on the stack, while glTranslate*(), glRotate*(), glScale*0,
gl0rtho0, and glFrustum0 are used to create a matrix that’s multiplied by

the top matrix. When the modelview matrix is modified, its inverse

transpose is also generated for normal vector transformation.

The commands that set the current raster position are treated exactly like a
vertex command up until when rasterization would occur. At this point, the

value is saved and is used in the rasterization of pixel data.

The various glClear0 commands bypass all operations except scissoring,
dithering, and writemasking.

Fragment Operations 533

 jm.j

0582

Appendix B

State Variables—_-_._.._._____...___..__.-..._,____,,____._!
This appendix lists the queryable OpenGL state" variables, their default

values, and the commands for obtaining the values of these variables. The

OpenGL Reference Manual contains detailed information on all the

commands and constants discussed in this appendix. This appendix has

these major sections:

...._....a..—u

0 “The Query Commands” on page 536

0 "0penGL State Variables” on page 537

0583

The Query Commands

In addition to the basic commands to obtain the values of simple state

variables (commands such as glGetIntegerv0 and glIsEnabled0, which are
described in “Basic State Management” on page 48), there are other

specialized commands to return more complex state variables. The '

prototypes for these specialized commands are listed here. Some of these

routines, such as glGetError() and glGetString0, have been discussed in
more detail elsewhere in the book.

To find out when you need to use these commands and their corresponding

symbolic constants, use the tables in the next section, “0penGL State

Variables” on page 537. Also see the OpenGL Reference Manual.

void glGetClipPlane(GLenum plane, GLd0uble *equatlon);

GLenum gIGetError(void),-

void glGetLight{if}v(GLenurn light, GLer1um pname, TYPE *params);

void glGetMap{ifd}v(GLenurn target, GLenum query, TYPE *v),'

void glGetMateriaI{if}v(GLenum face, GLenu1n pname, TYPE *params);

void glGetPixeIMap{f ui us}v(GLenum map, TYPE *valaes);

void glGetPoIygonStipple(GLubyte *mask);

. const GLubyte * glGetString(GLenun1 name);

void glGetTexEnv{if}v(GLenun1 target, GLenum pname, TYPE *params),°

void glGetTexGen[ifd}v(GI.enum caorcl, GLenun1pname, TYPE *params);

void glGetTexlmage(GLenum target, GL'1nt level, GLenum format, GLenum
type, GLvoid *pixels);_

void glGetTexLevelParameter{if}v(GLenum target, GLint level, GLenum

pname, TYPE *param$);

void glGetTexParameter{if]v(GLenum target, GLenun1 pname, TYPE

*params);

void gluGetNurbsProperty(GLUnurbs0bi *nobj, GLenum property, GLfloat

*value); '

const GLubyte *.gluGetSl:ring(GLenum name);

void gluGet'I'essPrope1'ty(GLUtesselator ‘Tess, GLenu1n which, GLdouble
*data);

Appendix B: Stare Variables

0584

OpenGL State Variables

The following pages contain tables that list the names of queryable state

variables. For each variable, the tables list a description of it, its attribute

group, its initial or minimum value, and the suggested glGet*0 command

to use for obtaining it. State variables that can be obtained using

glGetBooleanv0, glGetIntegerv0, glGetFloatv0, or glGetDoub1ev{) are
listed with just one of these cornmands—the one that's most appropriate

given the type of data to be returned. (Some vertex array variables can be

queried only with glGetPointerv().) These state variables can't be obtained

using glIsEnabled0. However, state variables for which glIsEnabled() is

listed as the query command can also be obtained using glGetBooleanv(),

glGetIntegerv0, glGetFloatv0, and glGetDoublev0. State variables for

which any other command is listed as the query command can be obtained

only by using that command.

If one or more attribute groups are listed, the state variable belongs to the

listed group or groups. If no attribute group is listed, the variable doesn’t

belong to any group. glPushAtt1'ib0, glP11shClientAtl:rib(), glPopAi.1:rib(),
and glPopClientAttrib0 may be used to save and restore all state values

that belong to an attribute group. (See “Attribute Groups” on page 78 for

more information.)

All queryable state variables, except the implementation-dependent ones,

have initial values. If no initial value is listed, you need to consult either the

section where that variable is discussed or the OpenGL Reference Manual to
determine its initial value.

OpenGL Stare Variables 537

L_

0585

889

93iq9'!-WAems=9xzvuaddv
Current Values and Associated Data

State Variable Dascrlptlon Attribute Initial Value Get Command
Group

GL_CURRENT_COLOR Current color current 1, 1, 1, 1 glGetIntegerv(),

g1GetF1oatv()

GL_CURREN'I‘_INDEX Current color index current 1 gIGetIntegerv(),

g1GetF1oatv0

GL_CURRENT_TEXTURE._COORDS Current texture coordinates current 0, 0, O, 1 g1GetF1oatv()

GL_CURRENT_NORMAL Current normal current 0, 0, 1 g1GetF1oatv()

GL_CURRENT_RASTER_POSITION Current raster position current 0, 0, 0, 1 gIGetF1oatvO

GL_CURRENT_RASTER_DISTANCE Current raster distance current 0 g1GetF1oatv()

GL_CURRENT__RASTER_COLOR Color associated with raster current 1, 1, 1, 1 glGetInte-gervo,

position glGetF1oatv()

GL_CURREN'1"_RASTER_INDEX Color index associated with current 1 g1GetIntegerv(),
raster position glGetFloatv()

GL_CURREN’I‘_RASTER_TEXTURE_COORDS Texture coordinates associated current 0, 0, 0, 1 glGetFioatv()

with raster position _

GL_CURRENT_RASTER_POSITION_VALID Raster position valid bit current GLHTRUE g1GetBoo1eanv()

GL_EDGE__FLAG Edge flag current GL_TRUE gIGetBooleanv()

Table 3-‘! State Variables for Current Values and Associated Data

0586

asssamuvnaimsrouado

Vertex Array

Stats Variable

GL__VER"I'EX__ARRAY

GL_VERTEX_ARRAY_SIZE

GL_VER'I'EX_ARRAY_TYPE

GL_VER’I‘EX_ARRAY_S’I‘RIDE

GL_VERTEX_ARRAY_POINTER

GL_NORMAL_ARRAY

GL_NORMAL__ARRAY_TYPE

GL_NORMAL_ARRAY_STRIDE.

GL_NORMAL_ARRAY-_POINTER

GL_COLOR_ARRAY

GL__COLOR_ARRAY_SIZE

GL_COLOR_ARRAY_TYPE.

GL_COLOR_ARRAY_STR1DE

GL_COLOR_ARRAY_POINTBR

GL__INDEX__,ARRAY

Table B-2

Description

Vertex array enable

Coordinates per vertex

Type of vertex coordinates

Stride between vertices

Pointer to the vertex array

Normal array enable

Type of normal coordinates

Stride between normals

Pointer to the normal array

RGBA color array enable

Colors per vertex

Type of color components

Stride between colors

Pointer to the color array

Color-index array enable

Vertex Array State Variables

0587

Attribute

Group

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

vertex~array

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

vertex-array

Initial Value

GL_FALSE

4

GL_FLOAT

0

NULL

GL_FALSE

GL_FLOAT

0

NULL

GL___FALSE

4

GL_FLOAT

0

NULL

GL_FALSE

Get Command

glIsEnabled0

g1GetIntegerv()

g1GetIntegerv0

glGetIntegerv()

glGetPointerv()

glIsEnab1ec10

g1GetIntegerv()

' g1GetIntegerv0

g1GetPointerv()

gIIsEnab1ed()

g1GetIr1tegerv0

g1GetIntegerv()

g1GetIntegerv0

g1GetPointerv()

gl1sEr1abled()

(H75

sa[qe§.1eA311213:3xrpueddv

State Variable Description Attribute lnitlal Value (39! Command
Group

GL_INDEX__ARRAY_TYPE Type of color indices vertex-array GL_FLOAT glGetIntegerv()

GL_INDEX_ARRAY_STRIDE Stride between color indices vertex-array 0 glGetIntegerv0

GL_INDEX_ARRAY_POINTE§R Pointer to the index array vertex-array NULL gIGetPointerv0

GL_TEXTURE_COORD_ARRAY Texture coordinate array vertex-array GL_FALSE g1IsEnabled()
enable

GL_TEXTURE_COORD_ARRAY_SIZE Texture coordinates per vertex-array 4 glGetIntegerv()
element

GL_TEXTURE_COORD__ARRAY_TYPE Type of texture coordinates vertex-array GL_FLOAT glGetIntegerv0

GL_TEX'I‘URE_COORD_ARRAY_STRIDE Stride between texture vertex-array 0 glGetIntegerv()
' coordinates

GL_TEXTURE_COORD_ARRAY_POINTER Pointer to the texture vertex-array NULL ‘g1GetPoir1terv0
coordinate array

GL_EDGE._FLAG_ARRAY Edge flag array enable vertex-array GL_FALSE glIsE.nab1ed()

GL_EDGE__FLAG_ARRAY_STRIDE Stride between edge flags verte-x~array 0 g1GetIntegerv()

GL_F.DGE_FLAG_ARRAY_POINTER Pointer. to the edge flag array vertex-array NULL glGetPointerv()

Table B-2 Vertex Array State-Variables (continued)

0588

weSarqvrsva2:0137911940

Transformation

State Variable

GL_MODELVIEW_MATRIX

GL_,PRO]ECTION__MATRIX

GL_TEXTURE.__MATRIX

GL_VIEWPORT

GL“,DEPTH_RANGE

GL_MODELV1EW_STACI<_DEPTH

GL_PROJECTIQN_STACK_DEPTH

GL__TEXTURE_STACl<_DEPTH

GL__MATRIX__MODE

GL_NORMALIZE

G-L_CLIP_PLANEi

GL_CLIP_PLANEi

Table B-3

Description

Modelvlew matrix stack

Projection matrix stack

Texture matrix stack

Viewport origin and extent

Depth range near and far

Modelview matrix stack pointer

Projection matrix stack pointer

Texture matrix stack pointer

Current matrix mode

Current normal normalization

onfoff

User clipping plane coefficients

ith user clipping plane enabled

Attribute Inltlel Value

Group

— Identity

—— Identity

— Identity

Vlewport —

viewport 0, 1

— 1

— 1

— 1

transform GL_MODELVIEW

transform! GL_FALSE
enable

transform 0, 0, 0, 0

transform! GL_FALSE
enable

Transformation State Variables

0589

Get command

g1GetFloatv()

g1GetFloatv()

g1GetF1oatv()

glGetIntegerv0

glGetFloatv()

glGetlntegerv()

glGetIntegerv()

g1GetIntegerv()

glGetIntegerv()

g1IsEnabled()

g1GetC1ipPlane()

g1IsEnabled()

ZFS

591519!-WAems=9Krpuaddv
Coloring

State Variable Description 7

GL_FOG_COLOR Fog color

GL_FOG_INDEX Fog index

GL__FOG_DENSITY Exponential fog density

GL_FOG_START Linear fog start

GL_FOG_I-IND Linear fog end

GL_FOG_MODE Fog mode

GL_FOG True if fog enabled

GL_SHADE_MODEL g1ShadeM0deI0 setting

Table B-4 Coloring State Variables

Attribute

Group

0590

Initial Value

0, 0, 0, 0

0

1.0

0.0

1.0

GL_EXP

GL_FALSE

Get Commend

g1GetF1oatv()

glGetFloatv()

giGetFIoatv0

giGetFloatv()

giGetFIoatv()

glGetIntegerv()

gIIsEnabled()

GL_SMO0TI-I glGetIntegerv0

WIQQWAarmsmuado

Lighting

See also Table 5-1 on page 180_and Table 5-3 on page 196 for initial values.

7Get command

State Variable Description Attribute Initial Value
Group

GL_LIGI-[TING True if lighting is enabled lighting GL_FALSE glIsEnabIed0
{enable

GL_COLOR_MATERIAL True if color tracking is enabled lighting GL__FALSE glIsEnab1ed()

GI.__COLOR_MATERIAL_PARAMETER Material properties tracking lighting GL_AMBiEN’I‘_ glGetIntegerv0
current color AND_DIFFUSE

GL_COLOR__MATERIAI..__FACE Face(s) affected by color lighting GL_FRON'I‘_ glGetIntegerv()

tracking AND_BACK

GLAMBIENT Ambient material color lighting (0.2, 0.2, 0.2, 1.0) glGetMaterialfv()

GL_DIFFUSE Diffuse material color lighting (0.8, 0.8, 0.8, 1.0) glGetMaterialfv()

GL_SPECULAR Specular material color lighting (0.0, 0.0, 0.0, 1.0) glGetMateriaifv()

GL__EMISSION Emissive material color lighting (0.0, 0.0, 0.0, 1.0) glGetMaterialfv()

GL_SHININESS Specular exponent of material lighting 0.0 glGetMaterialfv()

GL_LIGH'I‘_MODEL_AMBIENT Ambient scene color lighting (0.2, 0.2, 0.2, 1.0) glGetFloatv()

GL_LlGHT_MODEL_LOCAL_VIEWER Viewer is local lighting GL_FALSE g1GetBooleanv()'

GL_l.IGHT_MODEL_TWO_SIDE Use two—sided lighting lighting GL__FALSE glGetBoo1eanv()

Table B-5 Lighting State Variables

0591

‘59I¢l9i-WAems=9rrpuaddv
Stale Variable

GL_AMBIENT

GL_DIFFUSE

GL_SPECUI..AR

GL_POSITION

GL_CONSTANT_ATI'ENUATION

GL_LINE.AR_ATTENUATION

GI._Q_UADRATIC_ATTENUATION

GL_SPOT_DIRECTION

GL__SPOT_EXPONENT

‘ GL_SPOT_CUTOFF

GL_LIGHTf

GL_COLOR_INDEXES

Description

Ambient intensity of light 1'

Diffuse intensity of light 1'

Specular intensity of light 1'

Position of light i

Constant attenuation factor

Linear attenuation factor

Quadratic attenuation factor

Spotlight direction of light 1'

Spotlight exponent of light 1'

Spotlight angle of light 1'

True if light 1' enabled

ca, Cd, and cs for color-index

lighting

Table B-5 Lighting State Variables (continued)

Attribute

Group

lighting

lighting

lighting

lighting

lighting

lighting

lighting

lighting

lighting

lighting

lighting
{enable

lighting
/enable

Inltlal Value

(0.0,o.0,0.0,1.0)

(0.0, 0.0, 1.0, 0.0)

1.0

0.0

0.0

(0.0, 0.0, -1.0)

0.0

180.0

GL_FALSE

0,1,1

Get Command

glGetLighttv()

g1GetLightfv()

glGetLightfv()

glGetLighti'v()

glGetLightfv()

glGetLightfv()

glGetLightfv()

g1GetLightfv()

g1GetLightfv()

glGetLightfv()

glIsEnab1ed()

glGetMaterialfv()

Flasterization

State Variable Description Attribute Group lnltlal Value Get Command

GL_POINT_SlZ.E Point size point 1.0 glGetFloatv()

GL_POINT__SMO0TH Point antlaliaslng on pointfenable GL_FALSE gllsEnabled()

GL_LINE_WIDTI-I Line width line 1.0 glGetFloatv()

GL__LINE_SMO0TH Line antialiasing on linefenable GL_FALSE g1IsEnabled()

GL_LlNE._STIPPLE__PA'l'l‘ERN Line stipple line 1'5 glGetIntegerv()

GL_LINE__STIPPLE__REPEAT Line stipple repeat line 1 glGetIntegerv()

GI..__l..lNE_STIPPLE Line stipple enable linefenable GL_FALSE gllsE.nab1ed0

GL_CULL_FACE Polygon culling enabled polygonfenable GL__FALSE glIsEnab1ed()

GL_CULL_FACE_MODE Cull front-{back-facing polygons polygon GL_BACK g1GetIntegerv0

GL,_FRONT__FACI-1 Polygon front-face CWICCW polygon GL__CCW g1GetIntegerv()
indicator

Q GI._POI.YGON_SMO0TH Polygon antialiasing on polygonienable GL_FALSE gllsEnabled()
3 GL_POLYGON,+MODE Polygon rasterization mode (front polygon GL_FII..L glGetIntegerv()
E3 and back)

E: GL_POLYGON_OFFSET_FACTOR Polygon offset factor polygon 0 g1GetFloatv()

§ GL_POLYGON_0FFSET_BIAS Polygon offset bias polygon 0 glGetFloatv()
E Table B-6 Rasterlzation State Variables

0593

.__ .. _ _._...._T_-_.__.........__-.._. .._.__. . -...._. ___...___.,.._...._.. _. _..._._. -___,.___.,_________.__.

97$

‘59I‘l9l19Aems=9xlpuaddv
Stale Varlable Descrlptlon Attribute Group lnltlal Value Gel Command

GL_POLYGON_OFFSET_POINT Polygon offset enable for GL_POINT' polygonfenable GL_FALSE glIsEnabled0
mode rasterization

GL_POLYGON__OFFSET__LfNE Polygon offset enable for GI._LINE polygonfenable GL_FALSE. glIsEnab1ec1()
mode rasterlzation

GL_POLYGON_OFFSET_FILL Polygon offset enable for GL_FILL polygon!enable GL_FALSE g1IsEnabled0
mode rasterization

GL__POLYGON_S'I‘IPPLCE Polygon stlpple enable polygonfenable GL_FALSE g1IsEnabled()

— Polygon stipple pattern polygon-stipple 1’s glGetPo1yg0n-

Stipple0

Table B-6 Rasterizatlon State Variables (continued)

0594

“,5.S'3fqD_I'.IDA31013jguadg

Texturing

State Variable

GL_TEXTURE_x

GL_TEXTURE_BINDING_.X

GL_'l‘EXTURE

GI._TEXTURE__VVlDTH

GL_TE.X'I‘URE_HEIGHT

GL_TE.X'I'URE_BORDER

GL__TEXTURE_INTERNAL -

Description
Group

True if x-D texturing enabled (2: is texture! GL__FALSE.
1D or 2D) enable

Texture object bound to
GL_TEX'I‘URE_x (x is ID or 2D)

x-D texture image at level of detail 1' —

x-D texture image i’s width —

x-D texture image r"s height —

x-D texture image i’s border width —

x-D texture image is internal image --
_FORMAT format

GL_TE.XTURE_RED_SIZE x-D texture image i’s red resolution —

GL‘TEXTURE_GREEN__SIZE x-D texture image i’s green —
resolution

GL__TEXTURE.__BLUE__SIZE x-D texture image i’s blue resolution —

GL_TEXTURE_ALPHA_SIZE X-D texture image I"s alpha -
resolution

Table B-1’ Texturing State Variables

0595

Attribute lnltlal Value

texture GL_FALSE

OI-‘DOC!

Get Command

glIsEnabled()

glGetIntegerv()

glGetTexImage()

glGetTexLeve1Parameter*()

glGetTexI.evelParameter"0

glGet’1'exLeve1Parameter*0

glGet”l‘exLeve1Parameter*()

g1GetTexLevelParaII1eter*()

g1GetTexLevelParameter*()

glGetTexLeve1ParaIneter*()

g1GetTexLevelParameter*()

99l¢l5'!I9Aems=2xrpuaddv
State Variable Descrlptlon Attribute lnltlal Value Get Command
 Group

GL_TEXTURE_LUMINANCE_SIZE x-D texture image 1"s luminance — O glGetTexLevelParameter*0
resolution

GL_TEXTURE_IN‘I'ENSII'Y_SIZE x-D texture image i's intensity —— 0 glGetTexLeve1Paran1eter*0
resolution

GL_TI:‘.XTURE_BORDER_COLOR Texture border color texture O, 0, 0, 0 glGetTexParameter*()

GL_TEXTURE_MIN_FILTER Texture mlnification function texture GL_ glGetTexParameter*()
NEAREST_

MIPMAP_
LINEAR

GL_TE.X'I‘URE_MAG_FILTE.R Texture magnification function texture GL_LINEAR gIGetTexPararneter*()

GL_TEXTURE_WRAP_x Texture wrap mode (1: is S or T) texture GL__REPEAT g1GetTexPararneter*()

GL_TEXTURE_PRIOR1"I'Y Texture object priority texture 1 gIGetTexParameter"0

GL_'I‘EXTURF._RESIDENCY Texture residency texture GL_FAI.SE g1GetTexParameteriv{)

GL_TEXTURE_ENV_MODE Texture application function texture GL_ g1GetTexEnviv()
MODULATE

GL_TEXTURE__ENV_COLOR Texture environment color texture 0, 0, 0, 0 g1GetTexEnvfv()

GL_TEXTU'RE_GE.N_x Texgen enabled (x is S, T, R, or Q) texture} GL_FALSE. g1IsEnabled()
- enable

GL_EYI-:__PLANE Texgen plane equation coefficients texture -— glGet’1‘exGenfv0

GL__OBJECT__PLANE Texgen object linear coefficients texture — g1GetTexGenfv()

Table B-7 _ Texturing State Variables (continued)

0596

591417!-19A31933'I9“9d0

State Variable

GL_TEXTURE_GEN_MODE

Table B-7

Plxel Operations

state variable

GL_SCISSOR_TEST

GL_SCISSOR_l_3OX

GL_ALPHA_TCEST

GL_ALPI-IA_TEST_FUNC‘.

GL__ALPHA_TEST_REF

GL_STENCIL_TEST

GL__STENCIL_FUNC

Gl.._STENCIL_VALUE_MASK

GL_STENCIL__REF

Table B-8 Pixel Operations

Dascrlptlon

Function used for texgen

Texturing State Variables (continued)

Dascrlptlon

Scissoring enabled

Scissor box

Alpha test enabled

Alpha test function

Alpha test reference value

Stenciling enabled

Stencil function

Stencil mask

Stencil reference value

0597

Attribute Inltlal Value

Group

texture GL_EYE_
LINEAR

Attribute Group

scissorfenable

scissor

color-buffer/'
enable

color—buffer

color-buffer

stencil-bufferfe
nable

stenci1—b1.1ffer

stencil-buffer

stencil-buffer

Get command

g1_GetTexGen1v()

Inltlal Value Get Command

GL__FALSE glIsEnab1ed0

— g1Get1ntegerv0

GL_FAl..SE gIIsEnab1ecl()

GL_ALWAYS g1GetIntegerv0

0 gIGetIntegerv()

GL_FALSE gIIsEnab1ed0

GL_ALWAYS g1GetIntegerv()

1's g1GetIntegerv()

0 g1GetIntegerv()

Satan-Ivaamenxrpuaddv
State Variable

GL_STENCIL_FAIL

GL_STENCIL_PASS_DEPTH_FAIL

GL_STENCIL__PASS__DEPTI-I_PASS

Description

Stencil fail action

Stencil depth buffer fail action

Stencil depth buffer pass action

GL_DEPTH__TEST Depth buffer enabled

GL_DEPTH_FUNC Depth buffer test function

GL_BLEND Blending enabled

GL_BLEND__SRC Blending source function

G-L_BLEND_DST

GL_DITHER

Blending destination function

Dithering enabled

GL_1NDEx_LoG1c_op Color index logical operation
enabled

GL_COI.OR_LOGIC_OP RGBA color logical operation
enabled

GL_LOGiC_0P_MODE Logical operation function

Attribute Group

stencil-buffer

stencil-buffer

stencil-buffer

depth-bufferle
nable

depth-buffer

color-buffer!
enable

color-buffer

color-buffer

color-buffer!
enable

color-buffer}
enable

color-buffer/
enable

color-buffer

lnltial Value

GL_KEEP

GL_KEEP

GL__KEEP

GL__FALSE

GL_LESS

GL_FALSE

GL___ONE

GL__ZERO

GL_TRUE

GL_FALSE

GL_FALSE

GL_;COPY

Table B-3 . Pixel Operations (continued)

0598

Get Command

glGetII1tegerv0

glGetIntegerv()

glGetIntegerv()

glIsEnabled()

glGetIr1tegerv()

g1IsEnabled()

glGetIntegerv0

glGetIntegerv()

glIsEnablec10

glIsEnabled0

glIsEnabled()

~ glGetlntegerv()

F L““WLfi W

L99391901404ems19"-'»*d0

_ :.._._.._ —....._-_......-. -_-__.___..::__,_..._.__.._....._...w

Framebuffer Control

state variable Description Attribute Group Inltlal Get Command
Value

GL_DRAW_BUFFE.R Buffers selected for drawing color-buffer — glGetIntegerv()

GL_INDE‘.X_WRITEMASI< Color-index writemask color-buffer 1’s glGetIntegerv()

GI._COLOR_WRITEMASI< Color write enables; R, G, B, or A collar-buffer GL_TRUE glGetBoolear1v0

GL_DEP’I'I-LWRITEMASK Depth buffer enabled for writing depth-buffer GL__TRUE glGetBoo1eanv()

GL_STENCIL_WR1TEMASK Stencil-buffer writemask stencil-buffer 1's gIGetIntegerv()'

GL_COLOR__CLEAR_VALUE Color-buffer clear value (RGBA mode) color-buffer 0, 0, 0, 0 glGetFloatv()

GL_INDEX_CLEAR_VALUE Color-buffer clear value (color-index color-buffer O glGetF1oatv0
mode)

GL_DEP‘I‘H_CLEAR_VAI.UE Depth—buffer clear value depth-buffer 1 glGetIntegerV0

GL_STENCIL__CLEAR_VALUE Stencil-buffer clear value stencil-buffer 0 g1GetIntegerv()

GL__ACCUM_CLE.AR__VALUE Accumuiation-buffer clear value accum-buffer 0 g1GetFloatv0

Table B-9 Framebuffer Control State Variables

0599

Z99

aa[qel.IeAa;e;g:3xypuaddv
Pixels

State Variable § Description Attribute Initial Value Get command
Group

GL_UNPACI<_SWAP_BYTES Value of GL_UNPACK_SWAP_BYTES pixel-store GLHFALSE glGetBoo1eanv()

GL_UNPACK_LSB__FIRST Value of GL_UNPACK_LSB_FIRS'l’ pixel-store GL_FALSE glGetB00leanv()

GL_~UNPACK_ROW_LENGTH Value of GL_UN'PACK_ROW_LENGTH pixe-1—store 0 glGetIntegerv()

GL_UNPACK_SKIP_ROWS Value of GL_UNPACI<_SKlP_ROWS pixel-store O glGetIntegerv()

GL_UNPACl(_SKIP_PIXELS Value of GL_UNPACI<_SKIP_PIXELS pixel-store 0 g1GetIntegerv()

GL_UNPACI<_ALIGNMENT Value of GL_UNPACI<_ALIGNMENT pixel-store 4 glGetIntege1'v()

GL_PACK__SWAP_BYTES Value of GL_,PACI<__SWAP__BYTES pixel-store GL_FALSE. glGetBooleanv()

GL_PACI<_LSB_FIRST Value of GI._PACKJ..SB_FIRST pixel-store GL_FALSE glGetBooleanv()

GL_PACK_ROW_LENGTH Value of GL_PACK_ROW_LENGTH pixel-store 0 g1GetIntegerv0

GL_PACI<_SI<IP__ROWS Value of GL_PACI<_SI(IP_ROWS pixel-store O glGetIntegerv()

GL_PACK_SKlP_PIXELS Value of GL_PACI<_SI<IP__PIXELS pixel-store O glGetIntegerv()

GL_PACK_ALIGNMF.NT Value of GL_PACI<_ALIGNMENI‘ pixel-store 4 glGetIntegerv()

GL__MAP_COI.OR True if colors are mapped pixel GL_FALSE glGetBooleanv()

GL__MAP_STENCIL True if stencil values are mapped pixel GL_I-‘ALSE glGetBooleanv()

GL_IND£X_SHIFT Value of GL_INDEX_SHIF'l‘ pixel 0 glGetIntegerv0

Table B-10 Pixel State Variables

0600

F”""‘"—“"“"""”"'"""__"""_

gggsafqvgxqq21013’]’QI.t3'd0

State Variable

GL_1'NDEX_0FFSET

GL_x_SCALE

GL_x_BIAS

GL_ZO0M_X

GL_ZOOM__Y

GL_x

GL_x_SIZE

GL__READ__BUFFE'.R

Table B-10

Description

Value of GL__INDE.X_OFFSET

Value of GL_x;_SCALE; x is GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, or

GL__DEPTH

Value of GL_x_BIAS; x is one of GL_RED,
GL_GRE.EN, GL_BLUE, GL_ALPHA, or

GL__DEPTH

1: zoom factor

:1! zoom factor

g1Pixe1Map{) translation tables; 1: is a map
name from Table 8-1

Size of table 2:

Read source buffer

Pixel State Variables (continued)

0601

Attribute

Group

pixel

pixel

pixel

pixel

lnltlnl Value Get Command

1.0

1.0

0'5

glGetIntegerv()

gIGetFloatv()

glGetF1oatv()

g'1GetFloatv()

g1GetI-‘loatvo

glGetPixelMap*()

g1GetIntegerv0

g1GetIntegerv()

1799

‘39ICl9!-‘PAems=3xrpuaddv
Evaluators

State Variable

GL_ORDER

GL_ORDER

GL_COEFF

GL_COE.FF

GL_DbMAIN

GL_DOMAIN

GL__MA.P1_x

GL_MAP2_x

GL__MAP1_GRID__DOMAIN

GL_MAP2_GRID_DOMAIN

GL_MAP1___GRID_SEGMENTS

GL_MAP2_GRID_SEGMENTS

GL_AUTO_NORMAL

Table B-11

Description

1D map order

2D map orders

1D control points

2D control points

1D domain endpoints

2D domain endpoints

1D map enables: x is map type

2D map enables: x is map type

1D grid endpoints

2D grid endpoints

1D grid divisions

2D grid divisions

True if automatic normal

generation enabled

Evaluator State Variables

0602

Aflribule Group Initial Value

evalfenable

evalfenable

eval

eval

eval

eval

eval

1

1,1

GL_FALSE

GL__FAI.SE

0, 1

0, 1; 0, 1

1

1,1

GL_FAI.SE

Get Command

glGetMapiv()

g1GetMapiv()

g1GetMapfv()

g1GetMapfv()

glGetMapfv()

g1GetMapfv0

glIsEnabied()

glIsEnab1ed()

glGetFloatv()

g1GetFioatv()

g1GetF1oatv()

g1GetFioatv0

glIsEnabled()

999S?I4”.”1’A9101371311940

Hints

State Variable Description Attribute Inltlel Value Get Command
' Group

GL_PERSPECTIVE__CORRECTION_l-IINT Perspective correction hint hint GL_DONT__CARE g1GetIntegerv()

GL_POINT_SMOOTH_HINT Point smooth hint hint GL__DONT_CARE g1GetIntegerv0

GL__LINE_SMOOTH_I-{INT Line smooth hint hint GL_DONT_CARE gIGetIntegerv()

GL_POLYGON_SMO0TH_I-IINT Polygon smooth hint hint GL_DONT_CARE gIGetIntegerv0

Gi._FOG_HINT Fog hint hint GL_DONT__CARF. glGetIntegerv()

Table B-12 Hint State Variables

0603

999

salqerrenalas=axnmaddv
lmplementation-Dependent Values

State Variable

GL_MAX_LIGI-ITS

GL_MAX__CLIP__PLANES

GL_MAX_~MODELVIEW___STACK_DEPTH

GL__MAX_PROJE.CTION_STACI(_DEPTH

GL_MAX__TEXTURE__STACK_DEPTH

GL_SUBPIXEL_BITS

GL_MAX_TE.XTURE__SIZE.

GL_MAX_PIXEL_MAP_TABLE

GL_MAX__NAME__STACK_DEPTH

GL__MAX_LIST__NESTING

GL_MAX__E‘.VAL__ORDER

Table B-‘I3

Descrlption

Maximum number of lights

Maximum number of user clipping

planes

Maximum mode-lview-matrix stack

depth

Maximum projection-matrix stack

depth

Maximum depth of texture matrix
stack

Number of bits of subpixel precision in

x and y '

See discussion in “Texture Proxy" on

. page 330

Maximum size of a g1PixelMap()
translation table

Maximum selection-name stack depth

Maximum dispiay-list call nesting

Maximum evaluator polynomial order

Implementation-Dependent State Variables

0604

Attribute Minimum

Group Value

8

6

32

64

32

64

64

Get Command

giGetIntegerv0

gIGetIntegerv()

g1GetIntegerv()

glGetIntegerv()

g1GetIntegerv()

g1GetIntegerv()

glGetIr1tegerv()

gifietlntegervo

glGetIntegerv0

glGetIntegerv0

glGetIntegerv()

1.55Sarqvsavnmusrovado

State Varlable

GL_MAX_VIEWPORT_DIMS

GL__MAX_,A'ITRIB_STACK_DEPTH

GL_MAX_CLIENT__ATTRIB__S'I'ACK_DE.PTH

GL__AUX__BUFFERS

GL__RGBA_MODE

GL_INDEX_MODE

GL_DOUBLEBUFFER

GL_STEREO

GL__POINT_SIZE_RANGE

GL_POINT_SIZE_GRANULARITY

GL_UNE_WIDTH_RANGE

GL_LlNE_WIDTH_GRANULARITY

Descrlptlon

Maximum viewport dimensions

Maximum depth of the attribute stack

Maximum depth of the client attribute
stack

Number of auxiliary buffers

True if color buffers store RGBA

True if color buffers store indices

True if front and back buffers exist

True if left and right buffers exist

Range (low to high) of antlaliased

point sizes

Antialiased point-size granularity

Range (low to high) of antialiased line
widths

Antialiased line-width granularity

Attribute Minimum

Group Value

16

16

1,1

1,1

Get command

g1GetIntegerv()

glGetIntegerv()

glGetIntegerv0

glGetBoo1eanv0

glGetBoo1eanv()

glGetB0oleanv()

glGetBooleanv0

glGetBoo1eanv()

glGetFloatv()

glGetF1oatv()

glGetF1oatv()

glGetF1oatv()

Table 3-13 Implementation-Dependent State Variables (continued)

0605

999

satqer-rmems=9xzpuaddv
Implementation-Dependent Pixel Depths

State Variable Dascrlptlon Attribute Mlnlmum Get Command
Group Value

GL_RED_BITS Number of bits per red component in color buffers — — g1GetIntege1'v()

GL_GREEN_Bl'I‘S Number of bits per green component in color — — glGetIntegerv()
buffers

GL__BLUB_BITS Number of bits per blue component in color buffers —— — g1GetIntegerv0

GL_Al..PI-IA,,BITS Number of bits per alpha component in color — — glGetIntegerv0
buffers

GL_INDEX_BITS Number of bits per index in color buffers _ — glGetIntegery()

GL_DEP’I‘H_BITS Number of depth-buffer bitplanes — — glGetIntegerv()

GL__STENCIL_BI'I‘S Number of stencil bitplanes —— — glGetIntegerv()

GL_ACCUM_RED_Bl'IS Number of bits per red component in the ' — — g1Get1ntegerv(.)
accumulation buffer

GL_ACCUM_GREEN_BI'1‘S Number of bits per green component in the — — g1GetIntegerv()
accumulation buffer

GL_ACCUM_BLUE_BlTS Number of bits per blue component in the —- — g1GetIntegerv()
accumulation buffer

GL_ACCUM_ALPHA_BITS Number of bits per alpha component in the — — g1GetIntegerv()
accumulation buffer_q.— ._...

Table B-14 Implementation-Dependent Pixel-Depth State Variables

" 6606

59999149?-MAarmsvouado

Miscellaneous

State Variable

GL_~LIST__BASE

GL_LIST_INDEX

_ GL_LIST__MODE

GL_A'I”I‘RIB_STACl<__DEP'I‘I-I

GL_CLIENT_A'I'I‘RIB_STACI(_DEPTH

GL_NAME_STACl<_DEP'l‘H

GL__RENDER_MODE

GL_SELECTl0N_BUI~‘I~‘E.R_POlN'I‘ER

GL_~SELECTION_BUFFER_SIZE

GL_FEEDBACI(_BUFFER_POINTER

GL_FEEDBACI<_BUFFER_SlZ.E

GL_FEEDBACKHBUFFER_TYPE

Table B-15

Description

Setting of glListBase0

Number of display list under
construction; 0 if none

Mode of display list under construction;
undefined if none

Attribute stack pointer

Client attribute stack pointer

Name stack depth

glRenderMode() setting

Pointer to selection buffer

Size of selection buffer

Pointer to feedback buffer

Size of feedback buffer

Type of feedback buffer

Current error code(5)

select

select

feedback

feedback

feedback

Initlal Value

GL_RENDER

0

Get Command

glGetlntegerv()

g1GetIntegerv()

g1GetIntegerv()

glGetIntegerv0

glGetlntegerv()

glGetIntegerv()

glGetIntegerv()

g1GetPointerv()

glGetlntege1_'V()

glGetPointerv()

glGetIr1tegerv0

g1GetIntegerv()

glGetError0

Miscellaneous State Variables

0607

Appendix C

OpenGL and Window Systems

OpenGL is available on many different platforms and works with many

different window systems. OpenGL is designed to complement window
systems, not duplicate their functionality. Therefore, OpenGL performs

geometric and image rendering in two and three dimensions, but it does

not manage windows or handle input events.

However, the basic definitions of most window systems don’t support a

library as sophisticated as OpenGL, with its complex and diverse pixel

formats, including depth, stencil, and accumulation buffers, as well as

double-buffering. For most window systems, some routines are added to

extend the window system to support OpenGL.

This appendix introduces the extensions defined for several window and

operating systems: the X Window System, the Apple Mac OS, OS/2 Warp
from IBM, and Microsoft Windows NT and Windows 95. You need to have

some knowledge of the window systems to fully understand this appendix.

This appendix has the following major sections:

0 “GLX: OpenGL Extension for the X Window System” on page 562

0 “AGL: OpenGL Extension to the Apple Macintosh” on page 566

- “PGL: OpenGL Extension for IBM OS/2 Warp” on page 570

- ”WGL: OpenGL Extension for Microsoft Windows NT and Windows
95” on page 574

0608

562

GLX: 0penGL Extension for the X Window System

In the X Window System, 0penGL rendering is made available as an

extension to X in the formal X sense. GLX is an extension to the X protocol

(and its associated API) for communicating-OpenGL commands to an
extended X server. Connection and authentication are accomplished with
the normal X mechanisms.

As with other X extensions, there is a defined network protocol for

OpenGL’s rendering commands encapsulated within the X byte stream, so
client-server 0penGL rendering is supported. Since performance is critical

in three-dimensional rendering, the OpenGL extension to X allows

OpenGL to bypass the X server-’s involvement in data encoding, copying,

and interpretation and instead render directly to the graphics pipeline.

The X Visual is the key data structure to maintain pixel format information

about the OpenGL window. A variable of data type Xvisuallnfo keeps track

of pixel information, including pixel type (RGBA or color index), single or

double-buffering, resolution of colors, and presence of depth, stencil, and

accumulation buffers. The standard X Visuals (for example, Pseudocolor,

Truecolor) do not describe the pixel format details, so each implementation

must extend the number of X Visuals supported.

The GLX routines are discussed in more detail in the OpenGL Reference

Manual. Integrating OpenGL applications with the X Window System and

the Motif widget set is discussed in great detail in 0penGL Programming for

the X Window System by Mark Kilgard (Reading, MA: Addison-Wesley
Developers Press, 1996), which includes full source code examples. If you

absolutely want to learn about the internals of GLX, you may want to read

the GLX specification, which can be found at

ftp: / / sgigate . sgi . com/pub/opengl /c1oC/

Initialization

Use glXQueryExtension() and glXQueryVersion0 to determine whether

the GLX extension is defined for an X server and, if so, which version is

present. glXQueryExtensionsString() returns extension information about

the client-server connection. glXGetClientString0 returns information

about the client library, including extensions and version number.
glXQueryServerSt:ring() returns similar information about the server.

Appendix C: OpenGL and Window System

0609

glXChooseVisual0 returns a pointer to an Xvisuallnfo structure describing

the visual that meets the client's specified attributes. You can query a visual

about its support of a particular OpenGL attribute with glXGetConfig0.

Controlling Rendering

Several GLX routines are provided for creating and managing an 0penGL

rendering context. You can use such a context to render off-screen if you

want. Routines are also provided for such tasks as synchronizing execution

between the X and OpenGL streams, swapping front and back buffers, and

using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with glXCreateContext(). One of

the arguments to this routine allows you to request a direct rendering

context that bypasses the X server as described previously. (Note that to do
direct rendering, the X server connection must be local, and the OpenGL

implementation needs to support direct rendering.) glXCreateContext()

also aliows display-list and texture-object indices and definitions to be

shared by multiple rendering contexts. You can determine whether a GLX

context is direct with glXIsDirect0.

To make a rendering context current, use glXMakeCurrent0;
glXGetCurrentContext{) returns the current context. You can also obtain

the current drawabie with glXGetCurrentDrawable() and the current X

Display with glXGetCurrentDisplay0. Remember that only one context

can be Current for any thread at any one time. If you have multiple

contexts, you can copy selected groups of 0penGL state variables from one

context to another with glXCopyContext(). When you’re finished with a
particular context, destroy it with glXDest:royContext0.

Off-Screen Rendering

To render off~screen, first create an X Pixmap and then pass this as an

argument to glXCreateGLXPixrnap0. Once rendering is completed,

you can destroy the association between the X and GLX Pixmaps with

glXDestroyGLXPixmap0. (Off-screen rendering isn't guaranteed to be
supported for direct renderers.)

GLX: 0penGL Extension for the X Window System

0610

563

— — w—wm:—

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL

rendering is completed, call glXWaitGLO. Then, any previously issued

0penGL commands are guaranteed to be executed before any X rendering

calls made after glXWaitGLO. Although the same result can be achieved

with glFinish0, glXWaitGLO doesn't require a round trip to the server and

thus is more efficient in cases where the client and server are on separate
machines.

To prevent an OpenGL command sequence from executing until any

outstanding X requests are completed, use glXWaitX0. This routine

guarantees that previously issued X rendering calls are executed before
any OpenGL calls made after glXWaitX0.

Swapping Buffers

For drawables that are double—buffered, the front and back buffers can be

exchanged by calling glXSwapBuffers0. An implicit glFlush0 is done as

‘ part of this routine.

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the command

g1XUseXFont(). This routine builds display lists, each of which calls

glBitmap0, for each requested character from the specified font and font
size.

GLX Prototypes

Initialization

Determine whether the GLX extension is defined on the X server:

Bool g1XQueryExtension (Display *a'py, int *errorBase, int *eventBase);

Query version and extension information for client and server:

Boo] glXQueryVersion (Display *dpy, int *major, int *minor);

const char* glXGetClientSt1-ing (Display *dpy, int name);

const char‘ glXQueryServerString (Display *dpy, int screen, int name);-

const char* glXQueryExtensionsString (Display *dpy, int screen);

564 Appendix C: OpenGL and Window System

0611

Obtain the desired visual:

XVisualInfo* glxchoosevisual (Display *dpy, int screen,

int *aitn'bLfst); _ .

int glXGetConfig (Display *dpy, XVisualInfo *visuaI, int attrib,

int *vaIue);

Controlling Rendering

Manage or query an OpenGL rendering context:

GLXContext glXCreateContext (Display *dpy, XVisualInfo *visuaI,

GLXConte.xt shan2L1'st, Bool direct);

void glXDestroyContext (Display *dpy, GLXContext context);

void glXCopyContext (Display *dpy, GLXContext source,
GLXContext dest, unsigned long mask);

Boo! g!XIsDirect (Display *dpy, GLXContext context);

Boo] glXMakeCurrent (Display *dpy, GLXDrawable draw,

GLXContext context);

GLXContext glXGetCu1'rentCo11text (void);

Display* glXGetCurrentDisplay (void);

GLXDrawable glXGetCu1'rentDrawable (void);

Perform off—screen rendering:

GLXPixmap glXCreateGLXPixmap (Display *dpy, XVisua1Info *v1'suaI,

Pixmap pixmap);

void glXDestroyGLXPixmap (Display *dpy, GLXPixmap pix);

Synchronize executions

void g1XWaitGL (void);

void glxwaitx (void);

Exchange front and back buffers:

void glXSwapBuffers (Display *a‘py, GLXDrawable drawable);

Use an X font:

void glXUseXFont (Font font, int first, int count, int IistBase);

GLX: 0penGL Extensionfor the X Window .S'ys!em

0612

565

566

AGL: OpenGL Extension to the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the

Apple Macintosh (AGL), as defined by Template Graphics Software. An

understanding of the way the Macintosh handles graphics rendering

(O_uickDraw) is required. The Macintosh Toolbox Essentials and Imaging With
QuickDraw manuals from the Inside Macintosh series are also useful to have
at hand.

For more information (including how to obtain the OpenGL software
library for the Power Macintosh), you may want to check out the web site

for OpenGL information at Template Graphics Software:

http: / /www. sd. tgs . com/Products/opengl .htm

For the Macintosh, OpenGL rendering is made available as a library that is

either compiled in or resident as an extension for an application that wishes

to make use of it. OpenGL is implemented in software for systems that do

not possess hardware acceleration. Where acceleration is available (through

the QuickDraw 3D Accelerator), those capabilities that match the OpenGL

pipeline are used with the remaining functionality being provided through

software rendering.

The data type AGLPixelFmtID (the AGL equivalent to Xvisuallnfo)

maintains pixel information, including pixel type (RGBA or color index),
single- or double—buffering, resolution of colors, and presence of depth,
stencil, and accumulation buffers.

In contrast to other OpenGL implementations on other systems (such as

the X Window System), the client!server model is not used. However, you

may still need to call glFlush() since some hardware accelerators buffer the

OpenGL pipeline and require a flush to empty it.

Initialization

Use aglQueryVersion0 to determine what version of OpenGL for the
Macintosh is available.

The capabilities of underlying graphics devices and your requirements for
rendering buffers are resolved using aglChoosePixelFmt0. Use

aglListPixelFmts0 to find the particular formats supported by a graphics

device. Given a pixel format, you can determine which attributes are

available by using aglGetConfig().

Appendix c.- OpenGL and Window Systems

0613

Rendering and contexts

Several AG1. routines are provided for creating and managing an
OpenGL rendering context. You can use such a context to render into

either a window or an off-screen graphics world. Routines are also provided

that allow"you to swap front and back rendering buffers, adjust buffers in
response to a move, resize or graphics device change event, and use

Macintosh fonts. For software rendering (and in some cases,

hardware-accelerated rendering) the rendering buffers are created in your
application memory space. For the application to work properly you must

provide sufficient memory for these buffers in your application’s SIZE
resource.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created (at least one context per window

being rendered into) with aglCreateContext0. This takes the pixel format

you selected as a parameterand uses it to initialize the context.

Use aglMakeCurrent0 to make a rendering context current. Only one

context can be current for a thread of control at any time. This indicates
which drawable is to be rendered into and which context to use with it. lt’s

possible for more than one context to be used (not simultaneously) with a

particular drawable. Two routines allow you to determine which is the

current rendering context. and drawabie being rendered into:

aglGetCurrentContext0 and aglGetCurrentDrawable0.

If you have multiple contexts, you can copy selected groups of 0penGL

state variables from one context to another with aglCopyContext0. When

a particular context is finished with, it should be destroyed by calling

aglDestroyContext().

On-screen Rendering

With the OpenGL extensions for the Apple Macintosh you can choose

whether window clipping is performed when writing to the screen and

whether the cursor is hidden during screen writing operations. This is

important since these two items may affect how fast rendering can be

performed. Call aglSet0ptions0 to select these options.

Off-screen Rendering

To render off-screen, first create an off-screen graphics world in the usual

way, and pass the handle into aglCreateAGLPixrnap0. This routine returns

AGL: 0penGL Extension to the Apple Macintosh

0614

56?

568

a drawable that can be used with ag1MakeCurrent0. Once rendering is

completed, you can destroy the association with aglDestroyAGLPixn1ap0.

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the

current rendering context), call aglSwapBuffers0 to exchange the front

and back buffers. An implicit glFlush() is performed as part of this routine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event

handling and does not provide a way for libraries to automatically hook in

to the event stream. 50 that the drawables maintained by 0penGL can

adjust to changes in drawable size, position and pixel depth,

aglUpdateCurrent0 is provided.

This routine must be called by your event processing code whenever one of

these events occurs in the current drawable. Ideally the scene should be

rerendered after a update call to take into account the changes made to the

rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided with aglUseFont0. This

routine builds display lists, each of which calls glBitmap(), for each
requested character from the specified font and font size.

Error Handling

An error~hand]ing mechanism is provided for the Apple Macintosh

0penGL extension. When an error occurs you can call aglGetError0 to get

a more precise description of what caused the error.

AGL Prototypes

Initialization

Determine AGL version:

GLboolean aglQueryVersion (int ‘major, int *minor);

Appendix C: OpenGL and Window Systems

0615

Pixel format selection, availability, and capability:

AGLPixelFmtID aglChoosePixe1Fmt (GD!-Iandle *dev, int ndev,

int *attribS);

int aglListPixe1Fmts { GDHandie dev, AGLPixelFmtID **fints);

G_Lboolean agiGetConfig (AGLPixeIFmtID pix, int attrib, int *vaIue);

Controlling Rendering

Manage an 0penGL rendering context:

AGLContext aglcreatecontext (AGLPixelFmtID pix,
AGLContext sharefist);

GLboolean aglDest1‘oyContext (AGLContext context);

GLboolean aglCopyContext (AGLContext source, AGLContext dest,

GLuint mask);

GLboolean aglMakeCm-rent (AGLDIawable drawabfe,

AGLContext context);

GLboo1ean ag1Set0ptions (int opts);

AGLContext aglGetCurrentCont-ext (void);

AGLDIawable aglGetC111'rentDrawable (void);

Perform off—screen rendering:

AGLPixmap aglCreateAGLPixn1ap (AGLPixe1FmtID pix,

GWorldPtI pixmap);

GLboolean ag1DestroyAGLPixn1ap (AGLPixJI1ap pix);

Exchange front and back buffers:

GLboolean aglswapfiuffers (AGLDrawable drawabfe);

Update the current rendering buffers:

GLbooleaI1 aglUpdateCurrent (void);

Use a Macintosh font:

GLboolean aglUseFont (int famiiyID, int size, int first, int count,

int IistBase);

Find the cause of an error:

GLenun'1 aglGetEn'or (void);

AGL: 0penGL Extension to the Apple Macintosh 559

‘5------------------—-------u-----n----------III-IIIIII-IIIIIIIIIIIIIIIIIIIII

0616

PGL: OpenGL Extension for IBM OS/2 Warp

OpenGL rendering for IBM 05/2 Warp is accomplished by using PGL *

routines added to integrate OpenGL into the standard IBM Presentation

Manager. OpenGL with PGL supports both a direct OpenGL context (which 553
is often faster) and an indirect context (which allows some integration of

Gpi and OpenGL rendering).

The data type VISUALCONFIG (the PGL equivalent to X\/isuallnfo)

maintains the visual configuration, including pixel type (RGBA or color

index), single- or double-buffering, resolution of colors, and presence of

depth, stencil, and accumulation buffers.

To get more information (including how to obtain the OpenGL software

library for IBM OS/2 Warp, Version 3.0), you may want to start at

http : /’ /mm . aust in . ibrn . com} software/OpenGL/

Packaged along with the software is the document, OpenGL On OS/2 Warp, _
which provides more detailed information. OpenGL support is included

with the base operating system with OS/2 Warp Version 4.

Initialization

Use pglQueryCapability0 and pglQueryVersion() to determine whether

the OpenGL is supported on this machine and, if so, how it is supported

and which version is present. pglChooseConfigO returns a pointer to an
VISUALCONFIG structure describing the visual configuration that best

meets the client's specified attributes. A list of the particular visual

configurations supported by a graphics device can be found using

ps1QueryConfigs0-

Controlling Rendering

Several PGL routines are provided for creating and managing an OpenGL

rendering context, capturing the contents of a bitmap, synchronizing
execution between the Presentation Manager and OpenGL streams,

swapping front and back buffers, using a color palette, and using an OS/2

logical font.

570 Appendix C: OpenGL and_Window Systems

0617

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with pglC1'eateCor1text0. One of

the arguments to this routine allows you to request a direct rendering

context that bypasses the Gpi and render to a PM window, which is

generally faster. You can determine whether a OpenGL context is direct

with pglIsIndirect().

To make a rendering context current, use pglMakeCurrent0;

pglGetCurrentContext0 returns the current context. You can also obtain

the current window with pglGetCurrentWindow0. You can copy some

OpenGL state variables from one context to another with

pglCopyContext(). When you're finished with a particular context,

destroy it with pglDestroyContext().

Access the Bitmap of-the Front Buffer

To lock access to the bitmap representation of the contents of the front

buffer, use pglGrabFrontBitmap0. An implicit glFlushO is performed, and

you can read the bitmap, but its contents are effectively read-only.

Immediately after access is completed, you should call

pglReleaseFrontBitmap() to restore write access to the front buffer.

Synchronizing Execution

To prevent Gpi rendering requests from executing until any outstanding

OpenGL rendering is completed, call pglWaitGLO. Then, any previously

issued OpenGL commands are guaranteed to be executed before any Gpi

rendering calls made after pg1Wa.itGL().

To prevent an OpenGL command sequence from executing until any

outstanding Gpi requests are completed, use pglWaitPM(). This routine

guarantees that previously issued Gpi rendering calls are executed before

any OpenGL calls made after pglWaitPMO.

Note: OpenGL and Gpi rendering can be integrated in the same window

only if the OpenGL context is an indirect context.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be

exchanged by calling pglswapflufferso. An implicit g1Flush() is done as

part of this routine.

PGL: OpenGL Extensionfor IBM OS/2 Warp

0618

571

572

Using a Color Index Palette

When you are running in 8-bit (256 color) mode, you have to worry about

color palette management. For windows with a color index Visual

Configuration, call pglSelectColorIndex'Palette0 to tell 0penGL what
color-index palette you want to use with your context. A color palette must
be selected before the context is initially bound to a window. In RGBA

mode, OpenGL sets up a palette automatically.

Using an osrz Logical Font

A shortcut for using OS/2 logical fonts in OpenGL is provided with the
command pglUseFont0. This routine builds display lists, each of which

calls glBitmap0, for each requested character from the specified font and
font .size.

PGL Prototypes

Initialization

Determine whether 0penGL is supported and, if so, its version number:

long pglQueryCapability (HAB hob);

Void pglQueryVersion- (I-IAB hub, int *ma;'or, int *mI'n0r);

Visual configuration selection, availability and capability:

PVISUALCONFIG pglchooseconfig (I-IAB hab, int *attribList);

PVISUALCONFIG * pgIQueryConfigs (HAB hub);

controlling Rendering

Manage or query an OpenGL rendering context:

HGC pglCreateContext (HAB hub, PVISUALCONI-‘IG pVr‘sualConfig,

HGC .shareList, B001 isDr'rect);

Bool pglDestroyContext (I-IAB hab, HGC hgc);

Bool pglCopyContext (I-IAB hub, HGC source, HGC dest, GLuint mask);

‘B001 pglMakeCurrent (HAB hub, HGC hgc,- HTNND hwnd);

long pgllslndirect (HAB hab, HGC hgc);

Appendix C: OpenGL and Window System

0619

.,_..______q

HGC pglGetCurrentContext (HAB hub);

HWND pg1GetCurrentWindow (I-IAB hub);

Access and release the bitmap of the front buffer:

Bool pglGrabFrontBitmap (l-IAB hub, HPS *hps, HBITMAP *phb1'tmap);

Boo] pglReleaseFrontBitmap (HAB hab);

Synchronize execution:

HPS pglWaitGL (I-[AB hub);

void pglWaitPM (I-[AB hab);

Exchange front end back buffers:

void pglSwapBuffers (HAB hub, HWND hvmd);

Finding a color-index palette:

void pglSe1ectColorIndexPalette (HAB hab, I-IPAL, hpal, HGC hgc);

Use an OS/2 logical font: '

Boo1pglUseFont (1-{AB hab, HPS hps, FATTRS *fontA!tn'bs,

long Iogicalfd, int first, int count, int h'stBase);

PGL: 0penGL Extension for IBM OS/2 Warp

0620

573

574

WGL: 0penGL Extension for Microsoft Windows NT

and Windows 95

OpenGL rendering is supported on systems that run Microsoft Windows NT

and Windows 95. The functions and routines of the Win32 library are

necessary to initialize the pixel format and control rendering for OpenGL.

Some routines, which are prefixed by wgl, extend Win32 so'that 0penGL

can be fully supported.

For Win32[WGL, the PIXELFORMATDESCRIPI‘OR is the key data structure

to maintain pixel format information about the OpenGL window. A

variable of data type PIXELFORMATDESCRIPTOR keeps track of pixel

information, including pixel type (RGBA or color index), single- or double-
_ buffering, resolution of colors, and presence of depth, stencil, and
accumulation buffers.

To get more information about WGL, you may want to start with technical

articles available through the Microsoft Developer Network at

http : / /www.microsoft . comfmsdnf

Initialization

Use GetVersion0 or the newer GetVersionEx0 to determine version

information. ChoosePixeiFormat0 tries to find a

PIXELFORMATDESCRIPTOR with specified attributes. If a good match for

the requested pixel format is found, then SetPixelFormat0 should be called

to actually use the pixel format. You should select a pixel format in the

device context before calling wglCreateContext0.

If you want to find out details about a given pixel format, use

DescribePixelFormat0 or, for overlays or underlays,

wglDescribeLayerPlane0.

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL

rendering context, rendering to a bitmap, swapping front and back buffers,
finding a color palette, and using either bitmap or outline fonts.

Appendix C: OpenGL and Window Systems

0621

Managing an OpenGL Rendering Context

wglCreateContext0 creates an OpenGL rendering context for drawing on
the device in the selected pixel format of the device context. (To create an

OpenGL rendering context for overlay or underlay windows, use

wglCreateLayerContext0 instead.) To make a rendering context current,

use wglMakeCurrent0; wglGetCurrentContext0 returns the current
context. You can also obtain the current device context with

wgIGetCurrentDCO. You can copy some OpenGL state variables from one

context to another with wglCopyContext0 or make two contexts share the

same display lists and texture objects with wglShareLists0. When you're

finished with a particular context, destroy it with wglDestroyContext().

OpenGL Rendering to a Bitmap

Win32 has a few routines to allocate (and deallogate) bitmaps, to which you
can render OpenGL directly. CreateDIBitmap0 creates a device-dependent

bitmap (DDB) from a device-independent bitmap (DIB).

CreateDIBSection0 creates a device-independent bitmap (DIB) that

applications can write to directly. When finished with your bitmap, you can

use Delete0biect0 to tree it up.

Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware there are no
equivalents to functions like glXWaitGL(), glXWaitX(), or pglWaitGLO in

Win32. Although g1XWaitGLO has no equivalent in Win32, you can

achieve the same effect by calling glFinish0, which waits until all pending

OpenGL commands are executed, or by calling GdiFlush0, which waits

until all GD! drawing has completed.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be

exchanged by calling SwapBuffers() or wglSwapLayerBuffers0; the latter
for overlays and underlays.

Finding a Color Palette

To access the color palette for the standard (non-layer) bitplanes, use the

standard GD} functions to set the palette entries. For overlay or underlay

layers, use wglRealizeLayerPalette0, which maps palette entries from a

given color—index layer plane into the physical palette or initializes the

WGL: OpenGL Extensionfor Microsoft Windows NT and Windows 95

0622

575

576

palette of an RGBA layer plane. wglGet1.ayerPaletteEn!;ries0 is used to

query the entries in palettes of layer planes.

Using a Bitmap or Outline Font

WGL has two routines, wglUseFontBit:maps0 and wglUseFontOutlines0,
for converting system fonts to use with 0penGL. Both routines build a

display list for each requested character from the specified font and font
size.

WGL Prototypes

Initialization

Determine Version information:

BOOL Getversion (LPOSVERSIONINFO lpversianlnfonnation);

BOOL GetVe1'sionEx (LPOSVERSIONINFO lpwrsionlnfonnation);

Pixel format availability, selection, and capability:

int ChoosePixelFormat (I-IDC hdc,

CONST PIXELFORMATDESCRIPTOR * ppfd);

BOOL SetPixelFormat (HDC hdc, int iPixelFormat,

CONST PIXELFORMATDESCRIPTOR * ppfd);

int DescribePixelFom1at (HDC hdc, int 1'P1'xelFonm1t, UINT nBytes,

LPPIXELFORMATDESCRIPTOR ppfd);

BOOL wglDescribeLayerPlane (HDC hdc, int iPixelFonnat,

int iLayerPIane, UINT nBytes, LPLAYERPLANEDESCRIPTOR plpd);

Controlling Rendering

Manage or query an OpenGL rendering context:

HGLRC wglcreatecontext (HDC hdc);

HGLRC wglCreateLaye1-Context (HDC hdc, int iLayerPIane);

BOOL wglShareLists (HGLRC hglrcl, HGLRC hgIrc2);

BOOL wglDeleteContext (HGLRC hglrc);

BOOL wglCopyContext (HGLRC hglrcSource, HGLRC hlglrcflest,
UINT mask);

Appendix C: OpenGL and Window .S‘ysz‘ems

0623

BOOL wg1MakeCurre11t (HDC hdc, HGLRC hgfrc);

HGLRC wglGetCurrentContext (VOID) ,-

HDC wglGetC1mentDC (VOID);

Access and release the bitmap of the front buffer:

HBITMAP CreateDIBitmap (HDC hdc,

CONST BITMAPINFOHEADER *Ipbm1'h, DWORD fdwmit,

CONST VOID *IpbInit, CONST BITMAPINFO *Ipbmi, UINT fuU3age);

HBITMAP CreateDIBSection (HDC hdc, CONST BITMAPINFO *pbmi,

UINT iUsage, VOID *ppvBits, HANDLE hSecfion, DWORD dwofiket);

BOOL Deleteobiect (HGDIOBJ h0bject),-

Exchange front and back buffers:

BOOL Swap]?-uffers (HDC hdc);

BOOL wglSwapLayerBuffers (HDC hdc, UINT fi4Planes);

Finding a color palette for overlay or underlay layers:

int wglGetLayerPaletteEntries (HDC hdc, int iLayerPIane, int iStart,

int cEntn'es, CONST COLORREF *pcr);

BOOL wglRea1izeLayerPalette (HDC hdc, int iLayerPIane,

BOOL bReaIize);

Use a bitmap or an outline font:

BOOL wglUseFontBitmaps (HDC hdc, DWORD first, DWORD count,

D_WORD IistBase);

BOOL wglUseFo11t0utlines (HDC hdc, DWORD first, DWORD count,

DWORD IistBase, FLOAT deviation, FLOAT extrusion, int fonnat,

LPGLYPHMETRICSFLOAT Ipgmf);

WGIL: 0per1GL Extensionfor Microsoft Windows NT and Windows 95

0624

577

Appendix D

Basics of GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of Mark Ki1gard’s OpenGL Ufility Toolkit

(GLUT), which is fully documented in his book, OpenGL Programming for the

X Window System (Reading, MA: Addison-Wesley Developers Press, 1996).

GLUT has become a popular library for OpenGL programmers, because it

standardizes and simplifies window and event management. GLUT has

been ported atop a variety of OpenGL implementations, including both the
X Window System and Microsoft Windows NT.

This appendix has the following major sections:

0 "Initializing and Creating a Window” on page 580

0 “Handling Window and Input Events” on page 581

0 "Loading the Color Map" on page 583

0 “Initializing and Drawing Three-Dimensional Objects” on page 583

I "Managing a Background Process” on page 584

- "Running the Program” on page 585

(See “How to Obtain the Sample Code” on page v for information about

how to obtain the source code for GLUT.) -

579

0625

With GLUT, your application structures its event handling to use callback

functions. (This method is similar to using the Xt Toolkit, also known as the
X Intrinsics, with a widget set.) For example, first you open a window and

register callback routines for specific events. Then, you create a_ main loop

without an exit. In that loop, if an event occurs, its registered callback

functions are executed. Upon completion of the callback functions, flow of
control is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics: Should
it be single—buffe1'ed or double-buffered? Should it store colors as RGBA

values or as color indices? Where should it appear on your display? To

specify the answers to these questions, cail glutlnito,

glutInitDisplayMode(), glutlnitwindowsizeo, and -

glutInitWindowPosition0 before you call glutCreateWindow() to open
the window.

void glutlnitfint argc, char **ar;gv);

glutInit() should be called before any other GLUT routine, because it
initializes the GLUT library. -glut-Init0 will alsoprocess command line
options, but the specific options are window system dependent. For the X

Window System, -iconic, -geometry, and '-display are examples of

command line options, processed by glutInit0. -(The parametersto the
glutlnito should be thesame as those to main().)

void glutIni_tDispIayMode(unsigned int mode);

Specifies a display mode (suchas RGBA orcolor-index, or _single- or
d'o'uble-buffered); for _windows- created when ‘glutCreateWindow() is
called. You can also specify that the Window have an associated depth,

stencil, and/or accumulation buffer.’The mask argument is a bitwise ORed_
combination of GLUT_RGBA or G'LUT_INDEX, GLUT_SINGLE or

GLUT_DOUBLE, and any of the buffer-enabling flags: GLUT__DEPTH,

GLUT_STENClL, or GLUT_ACCUM. For example, for a doublegbuffered,

RGBA-mode window with a depth and stencil buffer, use GLUT_DOUBLE
I GLUT_RGBA l GLU'l"_DEPTI-I I GLUT_STENClL. The default value is
GLUT_RGBA I GLUT__SINGLE (an RGBA, single-bu"ffe1:ed window).

Appendix D: Basics ofGLUT: The OpenGL Utility Toolkil

0626

void glutInitWindow5ize(int width, int, height);

_-void g1utInitWindowPosi_tion(i1'1_t_ ._t, int y);
H I“ .__H, ,,_ . hi}- , _ _.

,j,eReques_.ts..windows created 'byn#§_lutC,reateWindow0' to‘ have an initial size
, and position. The airguniehtsfi, y)ji1dicate.the lotatiotrof a‘_t:”oi:1”1er‘of'the-
window, relative to tl'1e,ef1tir'e 'd-isplalye, The width andiiéight indicate the
window's‘ size (inipizrels). 'l'-l_i'ev~ir1itiaLl virhitldw siie '§hd"p“osition are hints
and may. be overridden by other'i'equests. ‘

 Q

1.int glutCreateWindow(charlfitaiiie); l*_, i -

Opens a window with‘previously set characteristics (display mode, width,
height, and so ‘on):-The -strin7g_‘ncir'71re?ma5}t='app‘ear- in the_ title bar it your
window system does that sort of thing; The window is not initially
displayed until-“g'lu__tMainLoop0' is entered, so do-not render into the
-window until then‘; .

The value returned is a -unique’-integer:-identifier» for the window. This

identifier ean.be used for controlling and rendering to. multiple windows

(each with an OpenGL rendering. Context) from ._the same application.

Handling Window and Input Events

After the window is created, but before you enter the main loop, you should
register callback functions using the following routines.

void glutDisplayFunc(void -(*fimc)(void)_);

Specifies the function that's cal.letI-whenever t1-iseicontents of thewiridow
needtobe redrawn. The contents of the-_win'dow. may need to be redrawn

_ when-thewindow "is -initially" opened, when the window is popped and

Window damage is exposed, andwhen glutPostjEledisplay0 is explicitly
called. '

Handling Window and Input Events

0627

581

void‘ glut'ReshapeFunc(void (*fimc).(int width, int height));

Speeifiesthe function that’s_talle_d- whenever the window -is resized or

moved. The argt-1_ment_fimcis.a,pdinter;to'arfqjji1ction that ex_pe'cits'two
argu_n1ents,_the ne_w- width and_hé_i'g!tt- of tire-win_'d_pw_._-Typipcalgyr.-fiu1c‘caH§

«.g1:vtfiew;3a‘rr(y;~4-so‘thatethéaarszislsya-is<é1i£i1ié‘Et6‘thenewsi£é';~afia“it ~- »
redefines the proieclzion -matrix so thatthe aspecbratio of.-the projected
image matches the viewport, avoiding aspect ratio distortion. If
glutResha_peFunc0 isn't called or is deregistered bypassing NULL, a
default reshapefunction is called, whichcalls-glView.port(0, 0, width,
height). -

void g1utKeyboardFuric(void (*-fimc)(unsign"ed int key, intx, in-t y);

Specifies the function, fimc, that’s' called when a key that generates an

ASCI-I-character is pressed. The key callback parameter is the generated
ASCII value. The x and y callback parameters. indicate the location of the

mouse (in window—relative coordinates) -when the key was-pressed.

void g]u'tMouse[-‘unc(void (*fimc)(int button, int state, int x, int y));

Specifies the function, fimc, that's called when a mouse button is pressed

or released. The button callback parameter is one of -
GLUT_LEFr_BUT1‘0N,-GLUT_M1DJ3i;s;BUrroN, or

GLUT_RiGHT_BUTI‘ON. The state-callback parameter is either GLU’I_‘_UP

or GLUT_DOWN, depending upon whether the mouse has been released

or pressed: The x and y‘ "callback parameters--indicate the -location (in ‘
window-re1ative c_o‘ordi'nates) of the mouse -when the event occurred..

void.-glutNI'(')i:ionFunc(’void '(*fianc)(in-t‘-x, int y));- -

Specifies the-func_tion;’ fimc, that's called when the mouse pointer moves-
withi'n"the”Wi'ndow-while one or mor'_e_;'n'1ot‘1se b‘ut‘tons'is pressed. The x" '
and .y- callback parameters indicate 'the.location“ (in window-relativé
coord-i'na'tes) of the mouse when the- eilrerit occurred. “ '

void glu_tP_ostRedisplay(void);

Marks the current window as needing to be redrawn. At the next
opportunity, the callback function registered by glutDisplayFunc0 will
be called. ' ‘ ‘

Appendix D: Basics ofGLUT: The 0penGL Utility Toolkit

0628

Loading the Color Map

If'you’re using color-index mode, you might be surprised to discover there's

no OpenGL routine to load a color into a color lookup table. This is because

the process of loading a color map depends entirely on the window system.

GLUT provides a generalized routine to load a single color index with an
RGB value, g1utSetColor0.

void gl_utSetColor(GLint index-, GLfloat red‘, Gbfloat green, GLfloat blue); ‘

Loadsthe index in thecolor 1_11ap,_ index, with the given red, green, and

blue values. These values are nom‘ralized'to lie in the range [0-.O,1.0].

Initializing and Drawing Three-Dimensional Objects

Many sample programs in this guide use three-dimensional models to

illustrate various rendering properties. The following drawing routines are

included in GLUT to avoid having to reproduce the code to draw these

models in each program. The routines render all their graphics in
immediate mode. Each three-dimensional model comes in two flavors:

wireframe without surface normals, and solid with shading and surface

normals. Use the solid version when you’re applying lighting. Only the

teapot generates texture coordinates.

void -glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSpl1ere(G—Ldouble radius, GLint.sl1'ces, GLint stacks);

void" glfltWiFeC'flbE(QLdO1lbl€-"5fZB);'
void 'glutSolidCube(GLd'oubIe size);

.v_oid.glutWiteTom1s(GLi:1ouble .i1gnérl§i1d_ius, GLdouble outerRadius,
Ghintdnsides; GLint rings); . -

void glutSolidTorus_(GLdouble irmerRadius, .GLdouble outerRadius,
" G1-int fisidész‘-Glim fins-3); “ ' '

Loading the Color Map

0629

583

584

glfitWi}é_Ieosahedro'n(void);“'

_x5q_i_,'a-gutsogic11cosahé‘dr;;xi_(voi§1)i;%;f‘fa:«::_ .1 ._ '

rvfiisl
void‘ " '~* jg

v0.i_d4g_]fit_‘ ._ (r94;-ah¢§d;9!1(5};gjd);:\.r;tgv if ;-I; __ Q ;\~ F} _ .~.t
V0191-S1“t3°fidT!3t1?h°d1'°11(Y0i¥1)?f'3’--"5-V'. F .':;-"13’-. I "‘ Li 1, .—_. 9' '

voidv'gltitW1reDod%2§dro11_(f}I;d_ft§;1 ‘d"adi}iS:):‘ H "'3'
voia;.g1utso1iaoodecahé§arbq((31;c_kmE1E§7faaiiaqf,%" ".“_._.}'

void -'glutWireCo11e(G-LdoubIe'radius} *GIi'cioi-Jfile‘--height, G-Lint‘.s_Iik:es,'

’ -GLintst5ckj); * '- ‘ E‘ '
voicl_glu'tSolid(3one€GI-.doubIe'radius:GT.doub1e'<heig1it;FGfiintsslices, ‘ 3‘

Gunt_smcks); ~ * _ “

void glutWiI=eTeapot_(GLdouble- size}; .
void glt1tSolidT'eapot_(GLdouble size); -

-«

Managing a Background Process

You can specify a function that's to be executed if no other events are

pending—-for example, when the event loop would otherwise be idle—wit_h

glutIdleFunc0. This is particularly useful for continuous animation or
other background processing.

 3- - .: - - .

-i—R'L-:1-"{t '

pen,din§.%ffvNULL (zero)-is’: passed in,‘”_e‘x_eeution-'.o'f r'_TC_l_iS5t_l3I(3i£.i»';-h", 9“ sf

Appendix D: Basics ofGLUT: The 0penGL Utility Toolkit

0630

- I‘ " - - ‘ ~- ’ ._.-3.-“.-ea '1 *1: ‘i ‘A-' " - ‘I -~ ' "':31‘(- I‘: -
3fiE'€ifie$° "r11§;~ft.1I.3¢=_ti,0I15‘1?.~'.{'..€, -togbe, execgtgd, gt-r‘i§%T<,:ert1w1,<.e.r;eV,€.1.:it‘,S=:.f=.*.I~‘=. 5- :5

Running the Program

After all the setup is completed, GLUT programs enter an event processing

loop, glutMainLoop0.

v-oid glutMainL_oop(vo_id};

E‘htxers.t1‘1e'G_LU~’lTproc(e'ssing loop, rrever to return. Registered callback
fijnctions will-b'e"callJed 'when'_the corresponding events instigate them.‘

Running the Program

0631

_ Appendix E

Calculating Normal Vectors

This appendix describes how to calculate normal vectors for surfaces. You

need to define normals to use the OpenGL lighting facility, which is

described in Chapter 5. “Normal Vectors” on page 63 introduces normals

. and the OpenGL command for specifying them. This appendix goes

through the details of calculating them. It has the following major sections:

0 "Finding Normals for Analytic Surfaces” on page 588

0 "Finding Normals from Polygonal Data” on page 591

587

0632

Since normals are perpendicular to a surface, you can find the normal at a

particular point on a surface by first finding the flat plane that just touches
the surface at that point. The normal is the vector that's perpendicular to

that plane. On a perfect sphere, for example, the normal at a point on the

surface is in the same direction as the vector from the center of the sphere

to that point. For other types of surfaces, there are other, better means for

determining the normals, depending on how the surface is specified.

Recall that smooth curved surfaces are approximated by a large number of

small flat polygons. If the vectors perpendicular to these polygons are used

as the surface normals in such an approximation, the surface appears
faceted, since the normal direction is discontinuous across the polygonal

boundaries. In many cases, however, an exact mathematical description

exists for the surface, and true surface normals can be calculated at every

point. Using the true normals improves the rendering considerably, as

shown in Figure E-1. Even if you don’t have a mathematical description,

you can do better than the faceted look shown in the figure. The two major

sections in this appendix describe how to calculate normal vectors for these
two cases:

' “Finding Normals for Analytic Surfaces” on page 588 explains what to
do when you have a mathematical description of a surface.

- “Finding Normals from Polygonal Data” on page 591 covers the case

when you have only the polygonal data to describe a surface.

Figure E-1 Rendering with Polygonal Normals vs. True Normals

Finding Normals for Analytic Surfaces

Analytic surfaces are smooth, differentiable surfaces that are described by a
mathematical equation (or set of equations). In many cases, the easiest

surfaces to find normals for are analytic surfaces for which you have an

explicit definition in the following form:

Appendix E: Calculating Nonnal Vectors

0633

'V($,f)=[X(5,f) Y(S,l‘) Z(S.t)l

where 3 and t are constrained to be in some domain, and X, Y, and Z are
differentiable functions of two variables. To calculate the normal, find

EV 3V

5 and 3

which are vectors tangent to the surface in the s and t directions. The cross

product ‘

av 8V

‘:7 Xe

is perpendicular to both and, hence, to the surface. The following shows

how to calculate the cross product of two vectors. (Watch out for the

degenerate cases where the cross product has zero length!)

[vx vy vz] x [wx toy wz] = [(vywz — wyvz) (wxvz — vxwz) (1-'xwy—wxvy):|

You should probably normalize the resulting vector. To normalize a vector

[x y z], calculate its length

Length = dx2 + y2 + z2

and divide each component of the vector by the length.

As an example of these calculations, consider the analytic surface

V(s,t) = [52 :3 3—st]

From this we have

3%; = 2s 0 4]: 3-}! = [0 3:2 —s:lr and 33%’ = [-313 25? 65:3]

So, for example, when s=1 and t=2, the corresponding point on the surface

is (1, 8, 1), and the vector (-24, 2, 24) is perpendicular to the surface at that
point. The length of this vector is 34, so the unit normal vector is (-24/34,

2/34, 24/34) = (—0.70588, 0.058823, 0.70588).

For analytic surfaces that are described implicitly, as F(x, y, Z) = 0, the
problem is harder. In some cases, you can solve for one of the variables, say

z = G(x, y), and put it in the explicit form given previously:

Finding Normalsfor Analytic Surfaces

0634

589

590

Vmfl=@Gmfl

Then continue as described earlier.

If you can't get the surface equation in an explicit form, you might be able
to make use of the fact that the normal vector is given by the gradient

W=E§E
ax By 32

evaluated at a particular point (x, y, z). Calculating the gradient might be

easy, but finding a point that lies on the surface can be difficult. As an

example of an implicitly defined analytic function, consider the equation

of a sphere of radius 1 centered at the origin:

1:3’-+y2+z2—l = 0

This means that

F(x,y,z) = x2+y2+z3—I

which can be solved for z to yield

2 = i./I—x2—y7"

Thus, normals can be calculated from the explicit form

v(5’t) = [5 t I—s2«-ti}

as described previously.

If you could not solve for 2, you could have used the gradient

vp= [myzz]

as long as you could find a point on the surface. In this case, it's not so hard
to find a point——for example, (2/3, 1/3, 2/3) lies on the surface. Using the
gradient, the normal at this point is (4/3, 2/3, 4/3). The unit-length nonnal
is (2/3, 1/3, 2/3), which is the same as the point on the surface, as expected.

Appendix E: Calculating Norma! Vectors

0635

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that

are described with polygonal data such that the surfaces appear smooth

rather than faceted. In most cases, the easiest way for you to do this (though

it might not be the most efficient way) is to calculate the normal vectors for

each of the polygonal facets and then to average the normals for

neighboring facets. Use the averaged normal for the vertex that the

neighboring facets have in common. Figure E-2 shows a surface and its

polygonal approximation. (Of course, if the polygons represent the exact

surface and aren't merely an approxirnation—if you"re drawing a cube or a

cut diamond, for example—don’t do the averaging. Calculate the normal

for each facet as described in the following paragraphs, and use that same

normal for each vertex of the facet.)

Figure E-2 Averaging Normal Vectors

Fiuding Normalsfrom Polygoaal Data

0636

591

592

To find the normal for a flat polygon, take any three vertices V1. V2. and V3
of the polygon that do not lie in a straight line. The cross product

[V1 - V2] >< [V2 - V3]

is perpendicular to the polygon. (Typically, you want to norinalize the
resulting vector.) Then you need to average the normals for adjoining facets
to avoid giving too much weight to one of them. For instance, in the
example shown in Figure E-2, if 11,, n2, :13, and :24 are the normals for the
four polygons meeting at point P, calculate I114-l’1z'|'?’I_-,3‘!-71.; and then
normalize it. {You can get a better average if you weight the normals by the
size of the angles at the shared intersection.) The resulting vector can be
used as the normal for point P.

Sometimes, you need to vary this method for particular situations. For
instance, at the boundary of a surface (for example, point Q in Figure E-2),
you might be able to choose a better normal based on your knowledge of
what the surface should look like. Sometimes the best you can do is to
average the polygon normals on the boundary as Well. 5i1Tli131'1Y: 501119
models have some smooth parts and some sharp corners (point R is on such
an edge in Figure E—2). In this case, the normals on either side of the crease

shouldn't be averaged. Instead, polygons on one side of the crease should
be drawn with one normal, and polygons on the other side with another.

Appendix E: Calculating Normal Vectors

0637

Appendix F

Homogeneous Coordinates and
Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. It

also lists the form of the transformation matrices used for rotation, scaling,

translation, perspective projection, and orthographic projection. These

topics are introduced and discussed in Chapter 3. For a more detailed

discussion of these subjects, see almost any book on three-dimensional

computer graphics—for example, Computer Graphics: Principles and Practice

by Foley, van Dam, Feiner, and Hughes (Reading, MA: Addison-Wesley,

1990)—or a text on projective geometry——for example, The Real Projective
Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press,

1961). In the discussion that follows, the term homogeneous coordinates

always means three-dimensional homogeneous coordinates, although

projective geometries exist for all dimensions.

This appendix has the following major sections:

- "Homogeneous Coordinates” on page 594

0 “Transformation Matrices” on page 595

593

0638

594

Homogeneous Coordinates

OpenGL commands usually deal with two— and three-dimensional vertices,

but in fact all are treated internally as three-dimensional homogeneous

vertices comprising four coordinates. Every column vector (x, y, z, w)T
represents a homogeneous vertex if at least one of its elements is nonzero.

If the real number a is nonzero, then (x, y, z, w)T and. (ex, ay, az, aw)T
represent the same homogeneous vertex. (This is just like fractions: x/y =

(ax)/(ay).) A three-dimensional euclidean space point (x, y, z)T becomes the
homogeneous vertex with coordinates x, y, z, 1.0)T, and the
two-dimensional euclidean point (x, y) becomes (x, y, 0.0, 1.0)T.

As long as w is nonzero, the homogeneous vertex (Jr, 3/, z, w)T corresponds
to the three-dimensional point (x/w, y/w, z/w)T. If w = 0.0, it corresponds to
no euclidean point, but rather to some idealized “point at infinity.” To

understand this point at infinity, consider the point (1, 2., 0, 0), and

note that the sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and

(1, 2.0, 0.0, 0.0001), corresponds to the euclidean points (1, 2), (100, 200),

and (10000, 20000). This sequence represents points rapidly moving toward

infinity along the line 2x = y. Thus, you can think of (1, 2, 0, 0) as the point
at infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinates with w < 0
correctly. To be sure that your code is portable to all 0penGL systems,

use only nonnegative w values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and

shearing) and projections (such as perspective and orthographic) can all be

represented by applying an appropriate 4x4 matrix to the coordinates

representing the vertex. If v represents a homogeneous vertex and M is a

4x4 transformation matrix, then My is the image of v under the

transformation by M. (In computer-graphics applications, the

transformations used are usually nonsingular—in other words, the matrix
M can be inverted. This isn’t required, but some problems arise with

nonsingular transformations.) '

After transformation, all transformed vertices are clipped so that x, y, and z

are in the range [-w, w] (assuming w > 0). Note that this range corresponds

in euclidean space to [—1.0, 1.0].

Appendix F: Homogeneous Coordinates and Trarzsfomration Matrices

0639

Transforming Normals

Normal vectors aren't transformed in the same way as vertices or position

_ vectors. Mathematically, it's better to think of normal vectors not as

vectors, but as planes perpendicular to those vectors. Then, the

transformation rules for normal vectors are described by the transformation

rules for perpendicular planes.

A homogeneous plane is denoted by the row vector (a, is, c, d), where at least
one of a, b, c, or dis nonzero. if q is a nonzero real number, then (a, b, c, d)

and (qa, qb, qc, qd) represent the same plane. A point (x, y, z, w)T is on the
plane (a, b, c, d) if ax+by+cz+dw = 0. (If w = 1, this is the standard description

of a euclidean plane.) In order for (a, b, c, d) to represent a euclidean plane,

at least one of a, b, or c must be nonzero. If they're all zero, then (0, 0, 0, d)

represents the “plane at infinity, ” which contains all the “points at

infinity.”

If p is a homogeneous plane and v is a homogeneous vertex, then the

statement "v lies on plane p” is written mathematically as pv = 0, where

pv is normal matrix multiplication. If M is a nonsingular vertex
transformation (that is, a 4x4 matrix that has an inverse M'1), then pv = 0
is equivalent to pM‘1Mv = 0, so Mv lies on theplane pM“1. Thus, pM'1 is
the image of the plane under the vertex transformation M.

If you like to think of normal vectors as vectors instead of as the planes

perpendicular to them, let v and n be vectors such that V is perpendicular
to n. Then, nTv = 0. Thus, for an arbitrary nonsingular transformation M,
nTM‘1Mv = 0, which means that nTM‘1 is the transpose of the transformed
normal vector. Thus, the transformed normal vector is (M'1)Tn. In other
words, normal vectors. are transformed by the inverse transpose of the

transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrix M represents a valid projective

transformation, a few special matrices are particularly useful. These

matrices are listed in the following subsections.

Transfomiarion Matrices

0640

595

596

Translation

The call glTranslate*(x, y, z) generates T, where

100:: 100-1:

T: 0109' andrr-1=Ul0—y
0012 001~z

0001 0001

Scaling

The call glScale*(x, y, z) generates S, where

1000

'x00D ‘I
S: 0y00 mm54= ogoo

0020 1
0001 0020

0001

Notice that 8'1 is defined only if x, y, and z are all nonzero.

Rotation

The call glRotate*(a, x, y, z) generates R as follows:

Let V = (x, y, z)T, and u = v/llvil = (x’, y’, z’)T.

Alsolet

0 -2. y’ T T -
S= 2- 0_,,' andM=uu +(cosa)(I—uu)+(s1na)S

—y' x' 0

Appendix F: Homogeneous Coordinates and Trai1.sjfom:an'on Matrices

0641

Then

mmmfl

R: mmmfl
mmmf)

0001

where :11 represents elements from M, which is a 3x3 matrix.

The R matrix is always defined. If x=y=z=0, then R is the identity matrix.

You can obtain the inverse of R, R‘, by substituting —a for a, or by
transposition.

The gIRotate*() command generates a matrix for rotation about an

arbitrary axis. Often, you're rotating about one of the coordinate axes; the

corresponding matrices are as follows:

1000

glRotate*(a’ L 0’ 0): 0 cost: —sina 0
0 sim! cosa 0

00_0l

COSH 0 Sim: 0

g1Rotate*(a, 0, 1, 0): 0 1 0 0
—-sinaocosal}

0001

cost! —sina 0 0

glRotate*(a,0,0,1): 55*” ‘W 0 0
0 0 10

0 001

As before, the inverses are obtained by transposition.

Transformation Matrices 597

0642

598

Perspective Projection

The call glFrustuin(i, r, b, t, n, f) generates R, where

211 r+I r—I r+I

Z": 0 9?? ° 3:; ° 0 K
2:1 t+b t—b t+b

R: 0 :3 7.3 0 andR1= ° 3,? 0 W

0 0 —g[+n)—_2f_n 0 0 0 -1

0 0 ——1 0 2fn Zfn

Risdefined aslongasI¢r,t#=b,andn¢f.

Orthographic Projection

The call glOrtho(I, r, b, t, n, f) generates R, where

2 r+i r—I r+I

:7 ° ° r—I T 0 “ '2-
2 HI: t-b t+b

R= °r:5°‘r.—andR"= "TOT

--2 t+n [-11 11+0 j
0 f—n f—n 0 0 -2 2

0 0 0 l 0 0 0 I

Ris defined as Iongasiaer, tatb, andnatfi

Appendix F: Homogeneous Coordinates and Tramformatian Marrices

0643

Appendix G

Programming Tips

This appendix lists some tips and guidelines that you might find useful.

Keep in mind that these tips are based on the intentions of the designers of

the OpenGL, not on any experience with actual applications and

implementations! This appendix has the following major sections:

0 “OpenGL Correctness Tips” on page 600

0 “OpenGL Performance Tips” on page 602 I

I “GLX Tips” on page 603

0644

BOO

0penGL Correctness Tips

Perform error checking often. Call glGetError0 at least once each time
the scene is rendered to make certain error conditions are noticed.

Do not count on the error behavior of an 0penGL imp1ernentation—it

might change in a future release of OpenGL. For example, OpenGL 1.1

ignores matrix operations invoked between glBegin() and glEnd()

commands, but a future version might not. Put another way, OpenGL

error semantics may change between upward—compatible revisions.

If you need to collapse all geometry to a single plane, use the

projection matrix. If the modelview matrix is used, OpenGL features

that operate in eye coordinates (such as lighting and

application-defined clipping planes) might fail.

Do not make extensive changes to a single matrix. For example, do not

animate a rotation by continuallycalling glRotate*() with an

incremental angle. Rather, use glLoadldentity() to initialize the given

matrix for each frame, then call glRotate*() with‘ the desired complete

angle for that frame.

Count on multiple passes through a rendering database to generate the

same pixel fragments only if this behavior is guaranteed by the

invariance rules established for a compliant OpenGL implementation.

(See Appendix H for details on the invariance rules.) Otherwise, a

different set of fragments might be generated.

Do not expect errors to be reported while a display list is being defined.

The commands within a display list generate errors only when the list
is executed.

Place the near frustum plane as far from the viewpoint as possible to

optimize the operation of the depth buffer.

Call glFlush0 to force all previous OpenGL commands to be executed.

Do not count on g1G'et*0 or glIs*0 to flush the rendering stream.

Query commands flush as much of the stream as is required to return

valid data but don't guarantee completing all pending rendering
commands.

Tum dithering off when rendering preclithered images (for example,

when glCopyPixels0 is called).

Make use of the full range of the accumulation buffer. For example, if

accumulating four images, scale each by one-quarter as it’s
accumulated.

Appendix G: Programming Tips

0645

I
If exact two—dimensional rasterization is desired, you must carefully

specify both the orthographic projection and the vertices of primitives

that are to be rasterized. The orthographic projection should be

specified with integer coordinates, as shown in the following example:

g1u0rtho2D(0, width, 0, height);

where width and height are the dimensions of the viewport. Given this

projection matrix, polygon vertices and pixel image positions should

be placed at integer coordinates to rasterize predictably. For example,
glRect:i(0, 0, 1, 1) reliably fills the lower left pixel of the viewport, and

glRasterPos2i(O, 0) reliably positions an unzoorned image at the lower
left of the viewport. Point vertices, line vertices, and bitmap positions

should be placed at half-integer locations, however. For example, a line

drawn from (xi , 0.5) to (x2, 0.5) will be reliably rendered along the

bottom row of pixels into the viewport, and a point drawn at (0.5, 0.5)

will reliably fill the same pixel as glRecti(0, 0, 1, 1).

An optimum compromise that allows all primitives to be specified at

integer positions, while still ensuring predictable rasterization, is to

translate x and y by 0.375, as shown in the following code fragment.

Such a translation keeps polygon and pixel image edges safely away

from the centers of pixels, while moving line vertices close enough to

the pixel centers.

glviewporttfl, 0, width, height};

glflatrixmode{GL_PROJECTION);

glLoadIdentity{};

gluorthoznlfl, width, 0, height};

glfiatrixfiode{GL_MODELVIEW):

glhoadldentityil;

glTrans1atef{U.375, 0.375, 0.0};

/* render all primitives at integer positions *1

Avoid using negative w vertex coordinates and negative q texture

coordinates. OpenGL might not clip such coordinates correctly and
might make interpolation errors when shading primitives defined by
such coordinates.

Do not assume the precision of operations, based upon the data type of
parameters to OpenGL commands. For example, if you are using

glRotated0, you should not assume that geometric processing pipeline

operates with double-precision floating _point. It is possible that the
parameters to g1Rotated() are converted to a different data type before

processing.-

0penGL Correcmess Tips

0646

501

602

OpenGL Performance Tips

Use glColorMaterial0 when only a single material property is being

varied rapidly (at each vertex, for exampie). Use giMaterial() for

infrequent changes, or when more than a single material property is

being varied rapidly.

Use glLoadldent:ity0 to initialize a matrix, rather than loading your

own copy of the identity matrix.

Use specific matrix calls such as glRotate*0, glTranslate*0, and

glScale*0 rather than composing your own rotation, translation, or
scale matrices and calling glMultMatrix().

Use query functions when your application requires just a few state

values for its own computations. If your application requires several

state values from the same attribute group, use glPushAttrib0 and

glPopAttrib() to save and restore them.

Use display lists to encapsulate potentially expensive state changes.

Use display lists to encapsulate the rendering calls of rigid objects that

will be drawn repeatedly.

Use texture objects to encapsulate texture data. Place all the

glTexImage*0 calls (including miprnaps) required to completely
specify a texture and the associated glTexParameter*0 calls (whichset

texture properties) into a texture object. Bind this texture object to
select the texture.

If the situation allows it, use gl*‘I‘exSubImage() to replace all or part of

an existing texture image rather than the more costly operations of

deleting and creating an entire new image.

If your OpenGL implementation supports a high—performance working

set of resident textures, try to make all your textures resident; that is,

make them fit into the high—performance texture memory. If

necessary, reduce the size or internal format resolution of your textures
until they all fit into memory. If such a reduction creates intolerably

fuzzy textured objects, you may give some textures lower priority,

which will, when push comes to shove, leave them out of the working
set.

Use evaluators even for simple surface tessellations to minimize
network bandwidth in client-server environments.

Provide unit-length normals if it's possible to do so, and avoid the

overhead of GL__NORMALIZE. Avoid using glSca1e*0 when doing

Appendix G: Programming Tips

0647

lighting because it almost always requires that GL_NORMALIZE be
enabled.

' Set glShadeModel0 to GL_FLAT if smooth shading isn't required.

Use a single glClear0 call per frame if possible. Do not use glClear0 to
clear small subregions of the buffers; use it only for complete or

near-complete clears.

Use a single call to glBegin(GL_TRIANGLES) to draw multiple

independent triangles rather than calling g1Begin(GL_TRlANGLES)

multiple times, or calling glBegin(GL_POLYGON). Even if only a

single triangle is to be drawn, use GL_TRlANGLES rather than

GL__POLYGON. Use a single call to glBegi.n(GL_QUADS) in the same
manner rather than calling glBegin(GL_POLYGON) repeatedly.

Likewise, use a single call to glBegin(GL_LINES) to draw multiple
independent line segments rather than calling g1Begin(GL_LINFS)

multiple times.

Some OpenGL implementations benefit from storing vertex data in

vertex arrays. Use of vertex arrays reduces function call overhead. Some

implementations can improve performance by batch processing or

reusing processed vertices.

In general, use the vector forms of commands to pass precomputed
data, and use the scalar forms of commands to pass values that are

computed near call time.

Avoid making redundant mode changes, such as setting the color to

the same value between each vertex of a flat-shaded polygon.

Be sure to disable expensive rasterization and per-fragment operations

when drawing or copying images. 0penGL will even apply textures to

pixel images if asked to!

Unless absolutely needed, avoid having different front and back
polygon modes.

GLX Tips

Use g1XWaitGLO rather than glFinish0 to force X rendering
commands to follow GL rendering commands.

Likewise, use glXWaitX0 rather than XSync() to force GL rendering

commands to follow X rendering commands.

GLX Tips

0648

I Be careful when using g1XChooseVisual(), because boolean selections

are matched exactly. Since some implementations won't export visuals

with all combinations of boolean capabilities, you should call

glXChooseVisual0 several times with different boolean values before

you give up. _For example, if no single-buffered visual with the required

characteristics is available, check for a double-buffered visual with the

same capabilities. It might be available, and it’s easy to use.

604 Appendix G: Prograrizming Tips

0649

Appendix H

OpenGL Invariance

0penGL is not a pixel-exact specification. It therefore doesn't guarantee
an exact match between images produced by different OpenGL

implementations. However, OpenGL does specify exact matches, in some

cases, for images produced by the same implementation. This appendix
describes the invariance rules that define these cases.

605»

0650

The obvious and most fundamental case is repeatability. A conforming

OpenGL implementation generates the same results each time a specific

sequence of commands is issued from the same initial conditions. Although

such repeatability is useful for testing and verification, it's often not useful
to application programmers, because it's difficult to arrange for equivalent

initial conditions. For example, rendering a scene twice, the second time

after swapping the front and back buffers, doesn’t meet this requirement.

So repeatability can't be used to guarantee a stable, double-buffered image.

A simple and useful algorithm that counts on invariant execution is erasing

a line by redrawing it in the background color. This algorithm works only

if rasterizing the line results in the same fragment x,y pairs being generated

in both the foreground and background color cases. OpenGL requires that

the coordinates of the fragments generated by rasterization be invariant

with respect to frarnebuffer contents, which color buffers are enabled for

drawing, the values of matrices other than those on the top of the matrix

stacks, the scissor parameters, all writemasks, all clear values, the current

color, index, normal, texture coordinates, and edge-flag values, the current

raster color, raster index," and raster texture coordinates, and the material

properties. It is further required that exactly the same fragments be

generated, including the fragment color values, when framebuffer contents,

color buffer enables, matrices other than those on the top of the matrix

stacks, the scissor parameters, writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be

invariant with respect to the matrix mode, the depths of the matrix stacks,

the alpha test parameters (other than alpha test enable), the stencil

parameters (other than stencil enable), the depth test parameters (other

than depth test enable), the blending parameters (other than enable), the

logical operation (but not logical operation enable), and the pixel—storage
and pixel-transfer parameters. Because invariance with respect to several

enables isn’t recommended, you should use other parameters to disable

functions when invariant rendering is required. For example, to render

invariantly with blending enabled and disabled, set the blending

parameters to GL_ONE and GL_ZERO to disable blending rather than

calling glDisable(GL_BLEND). Alpha testing, stencil testing, depth testing,
and the logical operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending
and the depth test, is invariant to all OpenGL state except the state that

directly defines it. For example, the only OpenGL parameters that affect

how the arithmetic ofblending is performed are the source and destination
blend parameters and the blend enable parameter. Blending is invariant to

all other state changes. This invariance holds for the scissor test, the alpha

Appendix H: OpenGL Invariance

0651

test, the stencil test, the depth test, blending, dithering, logical operations,

and buffer writernasking.

As a result of all these invariance requirements, OpenGL can guarantee that

images rendered into different color buffers, either simultaneously or

separately using the same command sequence, are pixel identical. This
holds for all the color buffers in the framebuffer or all the color buffers in

an off-screen buffer, but it isn't guaranteed between the framebuffer and
off—screen buffers.

0652

607

.....-..--.-.._.—u

Glossary

accumulation buffer

Memory (bitplanes) that is used to accumulate a series of images generated

in the color buffer. Using the accumulation buffer may significantly

improve the quality of the image, but also take correspondingly longer to
render. The accumulation buffer is used for effects such as depth of field,

motion blur, and ful1—scene antialiasing.

aliasing

A rendering technique that assigns to pixels the color of the primitive being

rendered, regardless of whether that primitive covers all or only a portion

of the pixel's area. This results in jagged edges, or iaggies.

alpha

A fourth color component. The alpha component is never displayed
directly and is typically used to control color blending. By convention,

0penGL alpha corresponds to the notion of opacity rather than
transparency, meaning that an alpha valueof 1.0 implies complete opacity,

and an alpha value of 0.0 complete transparency.

ambient

Ambient light is nondirectional and distributed uniformly throughout

space. Ambient light falling upon a surface approaches from all directions.

The light is reflected from the object independent of surface location and

orientation with equal intensity in all directions.

animation

Generating repeated renderings of a scene, with smoothly changing

viewpoint andlor object positions, quickly enough so that the illusion of

motion is achieved. OpenGL animation is almost always done using
double-buffering.

609

0653

610

antialiasing

A rendering technique that assigns pixel colors based on the fraction of the

pixel’s area that’s covered by the primitive being rendered. Antialiased

rendering reduces or eliminates the jaggies that result from aliased

rendering.

application-specific clipping

Clipping of primitives against planes in eye coordinates; the planes are

specified by the application using glClipPlane0.

attribute group

A set of related state variables, which OpenGL can save or restore together
at one time.

back faces

See faces.

bit

Binary digit. A state variable having only two possible values: 0 or 1. Binary
numbers are constructions of one or more bits. -

bitmap

A rectangular array of bits. Also, the primitive rendered by the glBitrnap0

command, which uses its bitmap parameter as a mask.

bitplane

A rectangular array of bits mapped one-to-one with pixels. The frarnebuffer
is a stack of bitplanes.

blending

Reduction of two color components to one component, usually as a linear

interpolation between the two components.

buffer

A group of bitplanes that store a single component (such as depth or green)

or a single index (such as the color index or the stencil index). Sometimes

the red, green‘, blue, and alpha buffers together are referred to as the color
buffer, rather than the color buffers.

0654

C

God’s programming language.

C++

The object-oriented programming language of a pagan deity.

client

The computer from which 0penGL commands are issued. The computer

that issues OpenGL commands can be connected via a network to a

different computer that executes the commands, or commands can be

issued and executed on the same computer. See also server.

client memory

The main memory (where program variables are stored) of the client
computer.

clip coordinates

The coordinate system that follows transformation by the projection matrix

and precedes perspective division. View-volume clipping is done in clip

coordinates, but applicatiomspecific clipping is not.

clipping

Elimination of the portion of a geometric primitive that’s outside the

half-space defined by a clipping plane. Points are simply rejected if outside.

The portion of a line or of a polygon that’s outside the half-space is

eliminated, and additional vertices are generated as necessary to complete

the primitive within the clipping half-space. Geometric primitives and the

current raster position (when specified) are always clipped against the six

half-spaces defined by the left, right, bottom, top, near, and far planes of the

view volume. Applications can specify optional application-specific

clipping planes to be applied in eye coordinates.

color Index

A single value that represents a color by name, rather than by vaiue.

OpenGL color indices are treated as continuous values (for example,

floating-point numbers), while operations such as interpolation and
dithering are performed on them. Color indices stored in the framebuffer

are always integer values, however. Floating-point indices are converted to

integers by rounding to the nearest integer value.

0655

611

612

color-index mode

An OpenGL context is in color-index mode if its color buffers store color

indices rather than red, green, blue, and alpha color components.

color map

A table of index-to-RGB mappings that’s accessed by the display hardware.
Each color index is read from the color buffer, converted to an RGB triple

by lookup in the color map, and sent to the monitor.

components

Single, continuous (for example, floating-point) values that represent

intensities or quantities. Usually, a component value of zero represents the

minimum value or intensity, and a component value of one represents the
maximum value or intensity, though other ranges are sometimes used.

Because component values are interpreted in a normalized range, they are

specified independent of actual resolution. For example, the RGB triple (I,

1, 1) is white, regardless of whether the color buffers store 4, 8, or 12 bits
each.

Out-of—range components are typically clamped to the normalized range,

not truncated or otherwise interpreted. For example, the RGB triple

(1.4, 1.5, 0.9) is clamped to (1.0, 1.0, 0.9) before it’s used to update the color

buffer. Red, green, blue, alpha, and depth are always treated as components,
never as indices.

concave

Not convex.

context

A complete set of OpenGL state variables. Note that framebuffer contents

are not part of OpenGL state, but that the configuration of the framebuffer
is. -

CODVEX

A polygon is convex if no straight line in the plane of the polygon intersects

the polygon more than twice.

convex hull '

The smallest convex region enclosing a specified group of points. In two
dimensions, the convex hull is found conceptually by stretching a rubber

band around the points so that all of the points lie within the band.

0656

coordinate system

In n-dimensional space, a set of n linearly independent vectors anchored to

a point (called the origin). A group of coordinates specifies a point in space

(or a vector from the origin) by indicating how far to travel along each

vector to reach the point (or tip of the vector).

culling

The process of eliminating a front face or back face of a polygon so that it
isn't drawn.

current matrix

A matrix that transforms coordinates in one coordinate system to

coordinates of another system. There are three current matrices in OpenGL:

the modelview matrix transforms obiect coordinates (coordinates specified

by the programmer) to eye coordinates; the perspective matrix transforms
eye coordinates to clip coordinates; the texture matrix transforms specified

or generated texture coordinates as described by the matrix. Each current

matrix is the top element on a stack of matrices. Each of the three stacks can

be manipulated with OpenGL rnatrix—manipulation commands.

current raster position

A window coordinate position that specifies the placement of an image

primitive when it’s rasterized. The current raster position and other current

raster parameters are updated when glRasterPos0~is called.

decal

A method of calculating color values during texture application, where the

texture colors replace the fragment colors or, if alpha blending is enabled,

the texture colors are blended with the fragment colors, using only the

alpha value.

depth

Generally refers to the 2 window coordinate.

depth buffer

Memory that stores the depth value at every pixel. To perform

hidden-surface removal, the depth buffer records the depth value of the

object that lies closest to the observer at every pixel. The depth value of

every new fragment uses the recorded value for depth comparison and must

pass the comparison test before being rendered.

0657

613

614

depm-cuing

A rendering technique that assigns color based on distance from the

viewpoint.

diffuse

Diffuse lighting and reflection accounts for the directionality of a light

source. The intensity of light striking a surface varies with the angle

between the orientation of the object and the direction of the light source.
A diffuse material scatters that light evenly in all directions.

directional light source

_ See infinite light source.

display list

A named list of OpenGL commands. Display lists are always stored on the
server, so display lists can be used to reduce network traffic in client-server

environments. The contents of a display list may be preprocessed and might

therefore execute more efficiently than the same set of OpenGL commands
executed in immediate mode. Such preprocessing is especially important

for computing intensive commands such as NURBS or polygon tessellation.

dithering

A technique for increasing the perceived range of colors in an image at the

cost of spatial resolution. Adjacent pixels are assigned differing color values;

when viewed from a distance, these colors seem to blend into a single

intermediate color. The technique is similar to the halftoning used in

black-and-white publications to achieve shades of gray.

double-buffering

OpenGL contexts with both front and back color buffers are

double-buffered. Smooth animation is accomplished by rendering into only

the back buffer (which isn’t displayed), then causing the front and back

buffers to be swapped. See g1utSwapBuffers0 in Appendix D.

edge flag

A Boolean value at a vertex which marks whether that vertex precedes a

boundary edge. glEdgeFlag*0 may be used to mark an edge as not on the
boundary. When a polygon is drawn in GL_LINE mode, only boundary
edges are drawn. '

0658

element

A single component or index.

emission

The color of an object which is self-illuminating or self-radiating. The

intensity of an ernissive material is not attributed to any external light
source.

evaluated

The 0penGL process of generating object—coordinate vertices and

parameters from previously specified Bézier equations.

execute

An,Op7:nGL command is executed when it’s called in immediate mode or
when the display list that it's a part of is called. '

eye coordinates

The coordinate system that follows transformation by the modelview

matrix and precedes transformation by the projection matrix. Lighting and

application-specific clipping are done in eye coordinates.

faces

The sides of a polygon. Each polygon has two faces: a front face and a back

face. Only one face or the other is ever visible in the window. Whether the

back or front face is visible is effectively determined after the polygon is

projected onto the window. After this projection, if the polygon’s edges are
directed clockwise, one of the faces is visible; if directed counterclockwise,

the other face is visible. Whether clockwise corresponds to front or back

(and counterclockwise corresponds to back or front) is determined by the

OpenGL programmer.

flat shading

Refers to a primitive colored with a single, constant color across its extent,
rather than smoothly interpolated colors across the primitive. See Gouraud
shading.

T09

A rendering technique that can be used to simulate atmospheric effects

such as haze, fog, and smog by fading object colors to a background color

based on distance from the viewer. Fog also aids in the perception of

distance from the viewer, giving a depth cue.

616

fonts

Groups of graphical character representations generally used to display

strings of text. The characters may be roman letters, mathematical symbols,

Asian ideograms, Egyptian hieroglyphics, and so on.

fragment

Fragments are generated by the rasterization of primitives. Each fragment

corresponds to a single pixel and includes color, depth, and sometimes
texture-coordinate values.

framebuffer

All the buffers of a given window or context. Sometimes includes all the

pixel memory of the graphics hardware accelerator.

front faces

See faces.

frustum

The view volume warped by perspective division.

gamma correction

A function applied to colors stored in the framebuffer to correct for the

nonlinear response of the eye (and sometimes of the monitor) to linear

changes in color-intensity values.

geometric model

The object-coordinate vertices and parameters that describe an object. Note
that 0penGL doesn't define a syntax for geometric models, but rather a

syntax and semantics for the rendering of geometric models.

geometric object

See geometric model.

geometric primitive

A point, a line, or a polygon.

Gouraucl shading

Smooth interpolation of colors across a polygon or line segment. Colors are

assigned at vertices and linearly interpolatedacross the primitive to

produce a relatively smooth variation in color. Also called smooth shading.

0660

group

Each pixel of an image in client memory is represented by a group of one,
two, three, or four elements. Thus, in the context of a client memory image,

a group and a pixel are the same thing.

- half-spaces

A plane divides space into two half-spaces.

hidden-line removal

A technique to determine which portions of a wireframe object should be

visible. The lines that comprise the wireframe are considered to be edges of

opaque surfaces, which may obscure other edges that are farther away from
the viewer.

hidden-surface removal

A technique to determine which portions of an opaque, shaded object
should be visible and which portions should be obscured. A test of the

depth coordinate, using the depth buffer for storage, is a common method
of hidden-surface removal.

homogeneous coordinates

A set of 11+] coordinates used to represent points in n-dimensional

projective space. Points in projective space can be thought of as points in

euclidean space together with some points at infinity. The coordinates are

homogeneous because a scaling of each of the coordinates by the same

nonzero constant doesn't alter the point to which the coordinates refer.

Homogeneous coordinates are useful in the calculations of projective

geometry, and thus in computer graphics, where scenes must be projected
onto a window.

A rectangular array of pixels, either in client memory or in the framebuffer.

image primitive

A bitmap or an image.

immediate mode

Execution of OpenGL commands when they’re called, rather than from a

display list. No immediate—mode bit exists; the mode in immediate mode

refers to use of OpenGL, rather than to a specific bit of OpenGL state.

0661

617

618

index

A single value that's interpreted as an absolute value, rather than as a

normalized value in a specified range (as is a component). Color indices are
the names of colors, which are dereferenced by the display hardware using

the color map. Indices are typically masked rather than clamped when out

of range. For example, the index 0xf7 is masked to OX7 when written to a

4-bit buffer (color or stencil). Color indices and stencil indices are always

treated as indices, never as components.

indices

Preferred plural of index. (The choice between the plural forms indices or
indexes——as well as matrices or matrixes and vertices or vertexes——has

engendered much debate between the authors and principal reviewers of

this guide. The authors’ compromise solution is to use the -ices form but to
state clearly for the record that the use of indice [sic], matrice [sic], and

vertice {sic} for the singular forms is an abomination.)

infinite light source

A directional source of illumination. The radiating light from an infinite

light source strikes all objects as parallel rays.

interpoiation

Calculation of values (such as color or depth) for interior pixels, given the
values at the boundaries (such as at the vertices of a polygon or a line).

IRIS GL

Silicon Graphics proprietary graphics library, developed from 1982 through
1992. 0penGL was designed with IRIS GL as a starting point.

IFIIS Inventor

See Open Inventor.

iaggies

Artifacts of aliased rendering. The edges of primitives that are rendered with
aliasing are jagged rather than smooth. A near-horizontal aiiased line, for

example, is rendered as a set of horizontal lines on adjacent pixel rows

rather than as a smooth, continuous line.

jittering

A pseudo-random displacement (shaking) of the objects in a scene, used in
conjunction with the accumulation buffer to achieve special effects.

0662

lighting

The process of computing the color of a vertex based on current lights,
material properties, and lighting—n1odel modes.

line

A straight region of finite width between two vertices. (Unlike _
mathematical lines, OpenGL lines have finite width and length.) Each

segment of a strip of lines is itself a line.

local light source

A source of illumination which has an exact position. The radiating light

from a local light source emanates from that position. Other names for a

local light source are point light source or positional light source. A
spotlight is a special kind of local light source.

logical operation’

Boolean mathematical operations between the incoming fragmenfs RGBA
color or color-index values and the RGBA color or color—index values

already stored at the corresponding location in the framebuffer. Examples

of logical operations include AND, OR, XOR, NAND, and INVERT.

luminance

The perceived brightness of a surface. Often refers to a weighted average of

red, green, and blue color values that gives the perceived brightness of the
combination.

matrices

Preferred plural of matrix. See imiices.

matrix

A two-dimensional array of values. OpenGL matrices are all 4x4, though

when stored in client memory they’re treated as 1x16 single-dimension
arrays.

modelview matrix

The 4x4 matrix that transforms points, lines, polygons, and raster positions

from object coordinates to eye coordinates.

619

0663

620

modulate

A method of calculating color values during texture application, where the

texture and the fragment colors are combined.

monitor

The device that displays the image in the framebuffer.

motion blurring

A technique that uses the accumulation buffer to simulate what appears on

film when you take a picture of a moving object or when you move the
camera while taking a picture of a stationary object. In animations without

motion blur, moving objects can appear ierky.

network

A connection between two or more Computers that allows each to transfer
data to and from the others.

HOHCODVEX

A polygon is nonconvex if there exists a line in the plane of the polygon

that intersects the polygon more than twice.

normal

A tlireeécomponent plane equation that defines the angular orientation,

but not position, of a plane or surface.

normalized

To normalize a normal vector, divide each of the components by the square

root of the sum of their squares. Then, if the normal is thought of as a vector

from the origin to the point (nx’, ny’, :12’), this vector has unit length.

factor = sqrt(nx2 + nyz + nzz)

nx’ = nx I factor

ny’ -_- ny I factor

nz’ = nz I factor

normal vectors

See normal.

NUFIBS

Non-Uniform Rational B-Spline. A common way to specify parametric

curves and surfaces. (See GLU NURBS routines in Chapter 12.)

0664

object

An object-coordinate model that's rendered as a collection of primitives.

ob|ect coordinates

Coordinate system prior to any Oper_1GL transformation.

Open Inventor

An object-oriented 3D toolkit, built on top of OpenGL, based on a 3D scene

database and user interaction components. It includes objects such as
cubes, polygons, text, materials, cameras, lights, trackballs and handle
boxes.

orthographic

Nonperspective projection, as in some engineering drawings, with no

foreshortening.

parameters

Values passed as arguments to OpenGL commands. Sometimes parameters
are passed by reference to an OpenGL command.

perspective division

The division of x, y, and z by w, carried out in clip coordinates.

pixel

Picture element. The bits at location (x, y) of all the bitplanes in the

framebuffer constitute the single pixel (x, y). In an image in client memory,

a pixel is one group of elements. In OpenGL window coordinates, each
pixel corresponds to a 1.0x1.0 screen area. The coordinates of the lower-left

corner of the pixel are x,y are (x, y), and of the upper—right corner are (x+1,

y+1).

point

An exact location in space, which is rendered as a finite-diameter dot.

point light source

See local light source

0665

621

B22

polygon

A near—planar surface bounded by edges specified by vertices. Each triangle

of a triangle mesh is a polygon, as is each quadrilateral of a quadrilateral

mesh. The rectangle specified by glRect*0 is also a polygon.

positional light source

See local light source.

primitive

A point, a line, a polygon, a bitmap, or an image. (Note: Not just a point, a
' line, or a polygon!)

projection matrix

The 4x4 matrix that transforms points, lines, polygons, and raster positions

from eye coordinates to clip coordinates.

proxy texture

A placeholder for a texture image, which is used to determine if there are

enough resources to support a texture image of a given size and internal
format resolution.

quadrilateral

A polygon with four edges.

rasterized

Converted a projected point, line, or polygon, or the pixels of a bitmap or

image, to fragments, each corresponding to a pixel in the framebuffer. Note
that all primitives are rasterized, not just points, lines, and polygons.

- rectangle

A quadrilateral whose alternate edges are parallel to each other in object

coordinates. Polygons specified with glRect*0 are always rectangles; other
quadrilaterals might be rectangles. '

rendering

Conversion of primitives specified in object coordinates to an image in the

framebuffer. Rendering is the primary operation of ‘OpenGL—-it’s what
OpenGL does.

0666

resident texture

A texture image that is cached in special, high-performance texture

memory. If an OpenGL implementation does not have special,

high-perfonnance texture memory, then all texture images are deemed
resident textures.

RGBA

Red, Green, Blue, Alpha.

FIGBA made

An OpenGL context is in RGBA mode if its color buffers store red, green,

blue, and alpha color components, rather than color indices. '

sewer

The computer on which OpenGL commands are executed. This might differ
from the computer from which commands are issued. See client.

shading

The process of interpolating color within the interior of a polygon, or

between the vertices of a line, during rasterization.

shininess

The exponent associated with specular reflection and lighting. Shininess

controls the degree with which the specular highlight decays.

single-buffering

OpenGL contexts that don’t have back color buffers are single-buffered. You
can use these contexts for animation, but take care to avoid visually

disturbing flashes when rendering.

singular matrix

A matrix that has no inverse. Geometrically, such a matrix represents a

transformation that collapses points along at least one line to a single point.

specular

Specular lighting and reflection incorporates reflection off shiny objects
and the position of the viewer. Maximum specular reflectance occurs when

the angle between the viewer and the direction of the reflected light is zero.

A specular material scatters light with greatest intensity in the direction of
the reflection, and its brightness decays, based upon the exponential value
shininess.

0667

623

624

spotlight

A- special type of local light source that has a direction (where it points to)

as well as a position. A spotlight simulates a cone of light, which may have

a fall-off in intensity, based upon distance from the center of the cone.

stencil buffer

Mernoty (bitplanes) that is used for additional per-fragment testing, along
with the depth buffer. The stencil test may be used for masking regions,

capping solid geometry, and overlapping translucent polygons.

stereo

Enhanced three-dimensional perception of a rendered image by computing

separate images for each ‘eye. Stereo requires special hardware, such as two

synchronized monitors or special glasses to alternate viewed frames for each

eye. Some implementations of 0penGL support stereo by having both left

and right buffers for color data.

stipple

A one- or two-dimensional binary pattern that defeats the generation of

fragments where its value is zero. Line stipples are one-dimensional and are

applied relative to the start of a line. Polygon stipples are two-dimensional

and are applied with a fixed orientation to the window.

tessellation

Reduction of a portion of an analytic surface to a mesh of polygons, or of a

portion of an analytic curve to a sequence of lines.

IEXE I

A texture element. A texel is obtained from texture memory and represents

the color of the texture to be applied to a corresponding fragment.

textu['38

One- or two-dimensional images that are used to modify the color of
fragments produced by rasterization.

texture mapping

The process of applying an image (the texture) to a primitive. Texture

mapping is often used to add realism to a scene. For example, you can apply
a picture of a building facade to a polygon representing a wall.

0668

texture matrix

The 4x4 matrix that transforms texture coordinates from the coordinates in

which they’re specified to the coordinates that are used for interpolation

and texture lookup.

texture object

A named cache that stores texture data, such as the image array, associated

mipmaps, and associated texture parameter values: width, height, border

width, internal format, resolution of components, minification and

magnification filters, wrapping modes, border color, and texture priority.

transfonnations

The warping of spaces. In OpenGL, transformations are limited to

projective transformations that include anything that can be represented
by a 4x4‘ matrix. Such transformations include rotations, translations,

(nonuniform) scalings along the coordinate axes, perspective

transformations, and combinations of these.

triangle

A polygon with three edges. Triangles are always convex.

vertex

A point in three—dimensional space.

vertexzarray

Where a block of vertex data (vertex coordinates, texture coordinates,

surface normals, RGBA colors, color indices, and edge flags) may be stored

in an array and then used to specify multiple geometric primitives through
the execution of a single 0penGL command.

vertices

Preferred plural of vertex. See indices.

viewpoint

The origin of either the eye-' or the clip-coordinate system, depending on

context. (For example, when discussing lighting, the viewpoint is the origin
of the eye-coordinate system. When discussing projection, the viewpoint is

the origin of the clip-coordinate system.) With a typical projection matrix,

the eye—coordinate and clip-coordinate origins are at the same location.

0669

625

626

View volume

The volume in clip coordinates whose coordinates satisfy the three
conditions

—w S x 5 w

-w 5 y S W

-w 5 z 5 w

Geometric primitives that extend outside this volume are clipped.

VRMI.

VRML stands for Virtual Reality Modeling Language, which is (according

to the VRML Mission Statement) “a universal description language for

multi-participant simulations.” VRML is specifically designed to allow

people to navigate through three-dimensional worlds thatare placed on the
World Wide Web. The first versions of VRML are subsets of the Open

inventor file format with additions to allow hyperlinking to the Web (to

URLs~—-Universal Resource Locators).

window

A subregion of the framebuffer, usually rectangular, whose pixels all have

the same buffer configuration. An OpenGL context renders to a single
window at a time.

window-aligned

When referring to line segments or polygon edges, implies that these are

parallel to the window boundaries. (In OpenGL, the window is rectangular,
with horizontal and vertical edges). When referring to a polygon pattern,

implies that the pattern is fixed relative to the window origin.

window coordinates

The coordinate system of a window. It's important to distinguish between

the_names of pixels, which are discrete, and the window-coordinate system,
which is continuous. For example, the pixel at the lower—left corner of a

window is pixel (0, 0); the window coordinates of the center of this pixel are

(0.5, 0.5, 2). Note that window coordinates include a depth, or 2,

component, and that this component is continuous as well.

wireframe

A representation of an object that contains line segments only. Typically,

the line segments indicate polygon edges.

0670

working set

On machines with special hardware that increases texture performance, this

is the group of texture obiects that are currentiy resident. The performance

of textures within the working set outperforms the textures outside the

working set.

X window System

A window system used by many of the machines on which OpenGL is

implemented. GLX is the name of the OpenGL extension to the X Window

System. (See Appendix C.)

0671

627

A

accumulation buffer, 376, 378, 394-408

clearing, 32, 379

depth-of-field effect, use for, 402-406

examples of use, 394

full range for best results, use, 600

motion blur, use for, 402

sample program with depth-of-field effect, 404

sample program with full-scene antialiasing,
397

scene antialiasing, use for, 396

AGL, 566

ag1ChoosePixelFmt(), 566,569

aglCopyContext0, 567, 569

aglCreateAGLPixmap0, 567, 569

aglCreateContext0, 567, 569

ag1DestroyAGLPixmap(), 568, 569

aglDestroyContext0, 567, 569

aglGetConfig(), 566,569

aglGetCurrentContext0, 567, 569

aglGetCurrentDrawable0, 567, 569

ag1GetError{), 568,569

aglListPixelFmts0, 566,569

aglMakeCurrent0, 567, 569

ag1QueryVersion0, 566, 568

aglSet0ptions(), 567,569

aglSwapBuffersO, 568, 569

aglUpdateCurrent0, 568, 569

aglUseFont0, 568,569

airbrushing, 528

Akeley, Kurt, 394

aliasing, See antialiasing

alpha, 214

destination alpha, 236

material properties, 197

texture image data type, 354

alpha blending, See blending

alpha test, 384

querying current vaiues, 384

rendering pipeline stage, 14, 533

0672

Index

ambient

contribution to lighting equation, 207

global light, 193,206

light, 173, 174, 182

material properties, 175, 197

animation, 20-24, 600

antialiasing, 2326-239
accumulation buffer used for, 395-401

characters (by masking), 512
characters (by texturing), 523
color-index mode, 232

coverage values, 227

enabling for points or lines, 228

enabling for polygons, 236
lines, 226, 228-235

lines (by texturing), 523

points, 228-235, 514

polygons, 235
RGBA mode, 229

sample program in color-index mode, 232
sample program in RGBA mode, 229

sample program of filled polygons, 236
scene, with the accumulation buffer, 396

architectural applications

orthographic parallel projection, use of, 124

arcs, 428

aspect ratio

perspective projection, 122
viewport transformation, 126

atmospheric effects, See fog

attenuation of light, 183-184

attribute groups, 78-81
client, 78

list of, 537-559

performance tips, 602
server, 78

stack depth, obtaining, 79
stacks, 78

auxiliary buffers, 377, 380

629

——-—-.-w.—..=-.—=_a—I

back-facing polygons, 56

culling, 57

material property, specifying, 196

two-sided fighting, 194

background, 29-32
color, 29

drawing a fixed, 382, 523

background processing, 584

backward compatibility

tessellation, 426

versions, 503

basis functions, 439, 440

Bernstein

basis, 439

polynomial, 443
Bézier

basis, 439, 440

curve, 443

sample program using mesh for surface, 451

sample program which draws curve, 441

sample program which draws surface, 448

surface, 446

billboarding, 219, 385

bitmaps, 278-284

display lists cache bitmap data, 257

distorting, 509

drawing, 283
feedback mode, 493

fonts, used for, 279, 286

imaging pipeline operations, 297

ordering of data in, 281

origin of, 283

sample program, 280

sample program that creates a font, 287
size of, 281

bitplanes, 156, 374

displayable colors, number of, 158

blending, 214-223, 392

antialiasing polygons, 235

coverage calculations for antialiasing, 227

destination alpha, 236

enabling, 216

enabling for antialiasing, 229

830

factors (source and destination), 215

images, 514

ordering polygons before drawing, 222

rendering pipeline stage, 14, 533

sample program for three-dimensional, 223

sample program with blended polygons, 220
texture function, 356

three dimensions, in, 222

uses of, 217

buffer, See framebuffer

C

C programming language, 8

CADICAM, See computer-aided design

camera analogy, 94-95

environment mapping, 370

viewport transformations, 125

capping, See computational solid geometry
characters

antialiasing, 523

circles, 428

clearing the framebuffer, 29-32, 378-379

affected by scissoring, dithering, and masking,
379, 533

performance tips, 603

client-server, See networked operation

clip coordinates, 96, 137
feedback mode, 493

clipping, 125

interference regions found using clipping

planes, 519
overview, 92

primitives in rendering pipeline, 12, 531

viewing volume, 121

clipping planes

additional clipping planes, 96, 136-139

depth-buffer resolution, effect on, 600
far, 121-125, 129

near, 121-125, 129

querying number of additional, 137

sample program with additional clipping planes,
138

0673

color

alpha values, 214

background, 30

cube showing blended RGB values, 155

current raster color, 285

human perception, 153
RGBA Values for, 33, 154

specifying, 32

specifying for tessellation, 415

specifying in color-index mode, 164

specifying in RGBA mode, 163

color buffer, 154, 156, 374, 376, 377

clearing, 32

masking, 381

color map, 154, 159

loading for antiaiiasing, 232

loading for smooth shading, 167

loading, using GLUT, 583
size of, 160

color—index mode, 159-161

changing between RGBA mode and, 162

choosing between RGBA mode and, 161

coverage calculations for antialiasing, 227

dithering, 393

layering with writemasks, 381

lighting, 209-211

lighting calculations in, 210

texturing limitations, 321, 329

union of several contours, 421

cones, 428, 584

improving rendering of, 525

constant attenuation, 134

contours, 365

control points, 433, 442, 446, 455

convex polygons, 38

Conway, John, 526 .

coordinate systems

grand, fixed, 106, 115, 140
local, 106, 115,140,144

simple 2D, 35-36
coordinates

See clip coordinates, depth coordinates, eye

coordinates, homogeneous coordinates,
normalized device coordinates, obiect

coordinates, q texture coordinates, texture
coordinates, w coordinates, or window
coordinates

coverage, pixel, 227

Coxeter, H. S. M., 593

cross product, 118, 589

CSG, See computational solid geometry

culling, 56-5'7

enabling, 57
rendering pipeline stage, 12, 532

curves and curved surfaces, 40

vertex arrays, specifying values with, 68 5'39 51150 evaluatms 91 NURB5

command syntax, 7.9 Curves iimi Surfaces for Computer—Ai'ded Geometric
compositing images, 219 Design’ 439
compositing transformations, 139-146 Cylinders’ 428
computational solid geometry, 421

capping, 390
difference of several contours, 421 D
interference regions, 518
intersection of two contours, 421 data tYPe5

RGBA color conversion, 163
. ' 8

Computer Graphics: Principles and Practice, xxi, 157, spew“ 0p'enGI"
texture data;
warning about data type conversions, 601

computer-aided design
. . . 385 515

orthographic parallel pIO]ECtl0n, use of, 124 decals’ '
d f , 247

concave polygons Polygon offset use ortexture function, 356

depth buffer, 172, 376, 377
also see hidden-surface removal

GLU tessellation, 410

stencil buffer, drawing with the, 516

631

0674

background, using masking for a common, 382

blending, use for three-dimensional, 222

clearing, 32, 172, 379 '
decals, for, 515

Dirichlet domains, for, 525

drawing static backgrounds, 523

masking, 381

near frustum plane effect on resolution, 600

pixel data, 295, 303

depth coordinates, 97, 128

perspective division, 128
picking use, 485

polygon offset, 247-250

rendering pipeline stage for depth—range
operations, 12, 532

sample program with picking, 486
selection hit records, 474

depth test, 391

also see depth buffer

rendering pipeline stage, 14, 533

depth-cuing, See fog

depth-of-field effect, 402-406

sample program, 404

destination factor, See blending
diffuse

contribution to lighting equation, 207

light, 174, 182

material properties, 175, 197

directional light source, 182

Dirichlet domains, 524

disks, 428

display lists, 29, 253

changing mode settings, 275

compiling, 262

creating, 259

deleting, 267

disadvantages, 259, 265

editing limitations, 256

error handling, 261, 600

executing, 259, 265

executing multiple, 267
font creation, 268, 285
hierarchical, 265

immediate mode, mixing with, 265

indices for, obtaining, 262

632

naming, 262

nesting, 265

nesting limit, querying, 266

networked operation, 264

performance tips, 257, 602
querying use of an index, 267

rendering pipeline stage, 11
sample program creating a font, 269

sample program for creating, 253, 259
sharing among rendering contexts, 563, 575
state variables saved and restored, 274

tessellation, use with, 426

uses for, 257, 275

vertex-array data, 264
what can be stored in, 263

distorted images, 509

texture images, 359

dithering, 158-159, 392, 600

and clearing, 379

rendering pipeline stage, 14, 533

dot product

lighting calculations, use in, 207

double—buffering, 22-24

automatic glFlush(), 35

changing between single-buffering and, 162

object selection using the back buffer, 508

querying its presence, 377

sample program, 24

drawing

clearing the window, 30

forcing completion of, 33
icosahedron, 83

points, 42

polygons, 42,55

preparing for, 29

rectangles, 40

spheres, cylinders, and disks, 428-436

drawing pixel data, See pixel data

Duff, Tom, 219

edge flags, 62-63

tessellated polygons generate, 414

vertex arrays, specifying values with, 68

0675

emission, 175, 198, 206

enabling

alpha test, 384

antialiasing of points or lines, 228

antialiasing polygons, 236

blending, 216

color material properties mode, 201

culling, 57

depth test, 391

dithering, 159, 392
evaluators, 443, 447

fog, 240

lighting, 195

line stippling, 51

logical operations, 393
normal vectors for evaluated surfaces, automatic

generation of, 447, 455

polygon offset, 247

polygon stippling, 58
stencil test, 386

texture coordinate generation, 369

texturing, ‘322, 326

unit length nonnal vectors ensured, 65

endianness, 300

environment mapping, 369

error handling, 501-503

error string description, 503

recommended usage, 600

evaluators, 440—-454

basis functions, 439, 443

evenly spaced values, 445, 449
o11e~dimensional, 440

rendering pipeline stage, 11

sample program using mesh for 2D Bézier
surface, 451

sample program which draws 1D Bézier curve,
441

sample program which draws 2D Bézier surface,
448

sample program which generates texture
coordinates, 452

tessellation usage, 602

texture coordinates, generating, 452
two-dimensional, 446, 447

event management, using GLUT, 19

example programs, See programs

0676

extensions

vendor-specific, 505

eye coordinates, 96, 137
texture coordinate generation, 364, 369

F

fade effect, 507

Farin, Gerald E., 439

feedback, 491-498

array contents, 497

pass—through markers, 494

5 querying current rendering mode, 472
retumed data, 493

sample program, 495

steps to perform, 492
tessellation, obtaining vertex data after, 426

Feiner, Steven K., xxi, 593

field of view, 100

calculate, using trigonometry to, 130

filtering, 344-346

miprnapped textures, 338-344, 346
texture border colors, 36]

flat shading, 165

flight simulation

fog, use of, 239

flushing, 33, 600

fog, 239-247

blending factors, 243
color-index mode, 244

density, 244

enabling, 240

equations, 243
hints, 240

RGBA mode, 244

sample program in color-index mode, 245

sample program in RGBA mode, 240

Foley, Jarnes D., xxi, 157, 593

fonts, 285-289

antialiased characters (by masking), 512
antialiased characters (by texturing), 523

bitmapped, 286

creating with display lists, 268

drawing, 284

drawing as bitmaps, 279

multi-byte, 286

same program, 287

sample program using multiple display lists,
269

X fonts, using, 564

I-‘oran, Jim, 372

foreshortening, perspective, 120

fragments, 156, 374

alpha test, 384

blending, 215

depth test, 391

rendering pipeline operations, 13, 533
scissor test, 383 .

tests, 383-393

texture functions, 356

framebuffer, 156, 375

capacity per pixel, 376

clearing, 378-379

copying pixel data within, 290, 295, 296

enabling for reading, 380

enabling for writing, 380

minimum configuration with the X Window

System, 376

querying color resolution, 156

reading pixel data from, 290, 292

writing pixel data to, 290, 294

front-facing polygons, 56

specifying material property for, 196

two-sided lighting, 194

frustum, 120

ftp (file—transfer protocol} site_
GLUT source code, xxii

GLX specification, 562

OpenGL Programming Guide, xxii

Fundamentals ofComputer Aided Geometric Design,
439

Fundamentals ofTirree-Dimensional Computer
Graphics, 318

G

Game of Life, 526

gamma correction, 157

634

Gardner, Martin, 526

geometric primitives, 37-48, 530-532

performance when specifying, 603

rendering pipeline stage, 12

geosciences .

use of texturing in applications, 364

giraffe, 160

glAccur_n0, 395

giAlphaFunc0, 384

giAreTexturesResident(), 352

glArrayElernent(), 71 .

legal between glBegin() and giEnd0, 46

Glassner, Andrew 5., xxi

glBegin0, 42, 43, 414
restrictions, 45

giBindTexture0, 326, 348

glBit:map0, 279,283
feedback mode, 493

fonts, used for, 286

imaging pipeline operations, 297
pixel-storage modes effect, 299

glBlendFunc0, 216

glCallLisr0, 256,259,265

legal between glBegin() and glEnd0, 46

glCallLists0, 263
fonts, use for, 285

legal between glBegin0 and glEnd0, 46

sample program, 287

g1Clear0, 30, 31, 379, 533

depth buffer, clearing the, 172

glClearAccum(), 32, 379

g1ClearColor(), 30, 31, 379

glCiearDepth(), 31,379

glclearlndexo, 32, 165, 379

fog, use with, 245

glClearStencil(), 32, 379

glClipPlane0, 137

g1Color*0, 33, 163 .

legal between glBegin0 and glEnd0, 46

glCo1orMask(), 379, 381

glColorMaterial0, 201

performance tips, 602

glColorPointer(), 68

0677

glCopyPixels0, 290, 295 glEnd0, 42, 43, 414
alternative uses, 527 restrictions, 45

dithering. turn off: 600 glEndList(), 256, 259, 253
feedbad‘ “‘°d°t 493 ‘ glEvalCoord*0, 445, 447
glReadBuffet() effect, le 1 -_ _ _ _ _ ga between glBeg1n() and gIE_.nd(), 46

ngzfiggflfihggggiiggtnséégfi used instead of glVertex*(), 440, 443
P ’ glEvalMesh*0, 445,449

glCopyTexlmage1D0, 336
g1EvalPoir1t*0

fifiiifiifféféiifilt, 392 111:3:-1'bbe$f]*:;*8(1)Be489iI2*<) -'=mdg1End0= 46
1C0 Texlrna e2I5 , 329 3 ac er ’ .

3 g1RI;dBufier% effgct’ 380 glRenderMode0, use with, 472
pixel-transfer modes effect, 302 gmnishor 35

glCopyTexSubImage1D(), 337,337 g1F1uSh0« 34435600
glReadBuffer0 effect, 380 g1Fog*0, 243

pixel-transfer modes effect, 30?. g]F1'ontFace(), 56

glCopyTexSubImage2D0, 335 g1Frustu1'n(), 101, 121, 121, 533

' giReadBuffer() effect, 380 gleenljstsof 256’ 262
pixel-transfer modes effect, 302 fonts’ use for’ 236

81C“1“‘3°°0« 57 glGeI1Textures(), 326,347
S1De1°*eLi5t50« 257» 235 g1GetBooleanv0, 10, 49, 537
g1D€1t-'t€T9X1”|JT850; 351 double-buffering support, querying, 377

g1Depth1=unc(), 391 stereo support, querying, 3'77

glDepthMask0, 381 g1GetClipPlane(), 536

blending opaque and translucent objects, 223 g1GetDoub1ev(), 10, 49, 537

glDepthRange0, 128 giGetEII01‘(), 10, 502,536

giuUnProieCt[), relationship to, 147 g1Gefl;10aW0’ 10’ 49’ 537
glDisab1e0, 10, 48 line width attributes, obtaining, 51

g1Disab1eCijentState()_, 68 point size attributes, obtaining, 50
g1DrawAn'ays(), 74 glGetIntegerv{), 10, 49, 537

g1DrawBuffe1-0' 295’ 330 alpha test information, obtaining, 334
attribute stack depth, obtaining, 79

g1Draw1':'.1ements(), 72 cu . . ._ pping planes, obtalmng number of
glDrawP1xels0, 290, 294, 387, 524 additional’ 137

alternative uses, 527

feedback mode, 493

pixel—storage modes effect, 299

pixel-transfer modes effect, 302

color resolution, obtaining, 156

display list nesting limit, obtaining, 266

matrix stack depth, obtaining, 135
maximum texture size, obtaining, 330

31Ed8eF13g'0: 53 name stack depth, obtaining, 473
19831 between 51393310 and 31EHd0: 46 pixel map information, obtaining, 304 ‘

g1EdgeFlagPointer0, 68 rendering mode, obtaining current, 472 '

glgnableo’ 43’ 173 stencil-related values, obtaining, 386
also see enabling glGetLight*0, 10, 536

glEnableC1ientState0, 46, 67 giGetMap*0, 536

glGetMaterial*(), 536

glGetPixelMap*0, 536

glGetPointerv(), 10, 49, 537

glGetPo1ygonStipp1e0, 10, 536

glGetStriI130. 503,536

glGetTexI-'.nv"0, 536

glGetTexGen*0, 536

glGetTexImage(), 536

pixel-storage modes effect, 299

pixel-transfer modes effect, 302

glGetTexLevelParameter*(): 331, 536

glGetTexParameter*(), 536

texture residency, obtaining, 351

gIHint0, 228

fog use, 240
texture use, 326

g1Index*0, 164

fog, use with, 245

legal between glBegin() and g1End(). 46

glIndexMask(), 379, 381

glIndexPointer()., 68

glInitNames(), 471, 472, 473

glInterleavedArrays{), '76

glIsEnabled(), 10, 48, 537

giIsList0, 267

g1IsTexture0, 347

glLight*0, 178, 180, 181, 186

glLightModel*0, 193

glLir1eStipple0, 51 '

glLineWidth0, 50

glListBase0, 267
fonts, use for, 286

sample program, 287

glLoadIdentitY0. 101, 103, 112, 533

performance tips, 602

viewing transformations, use before, 99

glLoadMatrix*0, 102, 104, 104, 533

g1LoadName0, 472, 474

glI..ogicOp0, 394

glMap*0, 442, 443, 446

g1MapGrid*(), 445,449

636

glMaterial*(), 179, 196

legal between glBegin0 and glEnd0, 46
performance tips, 602

glMatrixMode(), 101, 103
use with matrix stacks, 133

gIMultMatrix*0, 102,104,533

performance tips, 602

glNewList0, 256, 259, 262

glNormal*0, 64

legal between glBegin0 and g1End0, 46

glNormalPointer0, 68

gl0rtho0, 124,533

picking matrix use, 479

glPassThrough0, 492, 494

glPixelMap*(), 304

glPixelStore*0, 299

cannot be stored in display lists, 264

polygon stippling, 58

texture image data, effect on, 328, 329, 332, 335,
336

glPixelTransfer*(), 302, 524

texture image data, effect on, 328, 329, 332, 335,
336

glPixe1ZoomO, 305, 509

g1P0intSize0, 50

glP0lygonMode0, 56

antialiasing, effect on, 235

polygon offset, use with, 247

glPolygonOffset(), 248

glPolygonStipple0, 58

pixel-storage modes effect, 299

glPopAttrib0, 10, 79, 274, 537

gIPopClientAttrib(), 10, 31, 537

glPopMatrix0, 133,143, 189, 274
restore orientation of coordinate systems, 146
selection, use with, 471

g1PopName0, 472, 473

glPriorit:izeTextures0, 353

glPushAttl:ib(), 10, 79, 274, 537

g1PushCIientAttrib0, 10, 81, 537

glPushMatrix0, 133, 143, 189, 274
save orientation of coordinate systems, 146

selection, use with, 471

0679

glPushName0, 471, 472, 4'73

g1RasterPos*0, 279, 282

images, for positioning, 290
selection hits, can cause, 474

gl-ReadBuffer0, 295, 380

glReadPixels0, 290,292

glReadBuffer0 effect, 380

pixel-storage modes effect, 299

pixel-transfer modes effect, 302

glRect*0, 40

glRer1derMode(), 471, 472, 474, 492

glRotate*(), 109, 140, 143, 533

performance tips, 602

glScale*0, 99, 110, 143, 533

performance tips, 602

g1Scissor(), 383

g1SelectBuffer0, 471,472

display lists, cannot be stored in, 264

glShadeModel0, 165

glStenci1Func0, 385

glStencilMask(), 381

glStencilOp0, 386

glTexCoord*(), 326,358

legal between g1Begin0 and glEnd(}, 46

g1TexCoordPointer0, 68

glTexEnv*0, 326,354

glTexGen*0, 364

environment mapping, 370

g1TexIn1age1D0, 335

pixel—storage modes effect, 299

pixel-transfer modes effect, 302

g1TexImage2D0, 326, 327

pixel-storage modes effect, 299

pixel-transfer modes effect, 302

specifying mipmaps, 339

g1TexParan1eter*0, 326, 363

specifying filtering methods, 345

g1TexSublmage1D0, 336

pixel-storage modes effect, 299

pixel-transfer modes effect, 302

glTexSubImage2D0, 332

pixel-storage modes effect, 299

pixel-transfer modes effect, 302

0680

glTrans1ate*(), 108, 140, 143, 533

performance tips, 602

GLU, 2, 14, 410

drawing spheres, cylinders, and disks, 428-436

error string description, 503
obsolete routines

g1uBeginPo1ygon0, 427
gluEndPolygon0, 427

g1uNextContour0, 427

quadrics, 428-436
tessellation, 39, 410-428

version numbers, obtaining, 504

giuBeginCurve0, 455,464

gluBeginSurface0, 455, 463

gluBeginTrim0, 465

gluCylinder0, 429, 431

g1uDeleteNurbsRenderer0, 460

gluDeleteQuadric0, 429,429

gluDeleteTess(), 426, 427

gluDisk(), 429, 432

gluE.ndCurve0, 455, 464

g1uE.ndSurfaCe(), 455, 463

gluEndTrim(), 465

g1uErrorString0, 429, 462, 503
polygon tessellation, 414

g1uGetNurbsProperty(), 461,536

g1uGetString0, 505,536

gluGetTessProperty0, 422, 536

gluLoadSarnplingMatrices0, 461

glu1.ookAt0, 97, 99, 116, 140

gluNewNurbsRenderer0, 455, 459

gluNewQuadric0, 428,429

gluNewTess0, 412,427

gluNurbsCa1lback0, 455, 462

g1uNurbsCurve0, 455, 464

gluNurbsProperty(), 455, 460

gluNurbsSurface0, 455,463

gluOrtho2D0, 125, 601
resized windows, use with, 36

gluPartia1Disk(), 429, 432

gluPe1'spective0, 101,123, 140
picking matrix use, 479

637

g1uPickMatrix0, 479

gluProiectO, 150

gluPwlCu1've(), 465

gluQuadricCallback(), 429, 429

gluQuadricDrawStyle(), 428, 430

gluQuad1'icNorma1s(), 428, 430

gluQuadric0rientat1'on(), 428, 430

gluQuadricTexture0, 429, 431

gluscalelmageo, 329

gluSphere0, 429, 431

GLUT, 15, 579-585

basic functions, 16-20

event management, 19

glutCreateWindow0, 17, 581

giutDisplayFunc0, 17,581

g1utIdleFunc(), 20, 584

g1I.1’£Im't0, 16, 580

g1utInitDisplayMode0» 16, 580

gIutInitWindowPosition0, 17, 581

gIutInitWindowS_ize0, 17, 581

glutI(eyboardFunc0, 19, 582

glutMainLoop0, 1'7, 585

glutMotionFunc0, 19, 582

glutMouseFunc0, 19, 582

glutPostRedisp1ay(), 17, 256, 582

glutReshapeFunC0, 19, 582

simple example, 35

glutSetColor0, 16, 165, 210, 583

smooth shading, use for, 167

glutSo1idCone0, 584

glutsolidcubeo, 20,583

glutSolidDodecaheclror1(), 584

g1utSolidIcosahedron(), 584

glutsolidoctahedrono, 584

g1utSo1idSphere0, 20, 583

glutSolidTeapot(), 584
glutSolidTetrahedron0, 584

glutSolidTorus0, 583

glutSwapBuffers0, 23

glutWiIeCone(), 584

gl11tWireCube(). 20, 583

glutWireDodecahedron0, 584

glutwirelcosahedrono, 584

glutwireoctahedrono, 584 _

glI.ttWireSphere(), 20, 140, 583

638

g1utWireTeap0tO, 584

glutWireTetrahedron0. 584

glutWireTorus0, 583

sample program introducing GLUT, 18

window management, 16, 35 ‘

gluTessBeginContour(), 42.3

gluTessBeginPolygon(), 423

gluTessCal1back(), 412, 423, 427

gluTessEndContouI(), 423

glu'I‘essEndPolygon0». 423

g1u'I‘essNormalO, 422, 422, 426

gluTessP1'ope1'ty0, 417,423

gluTessVertex(), 423,427

gluUn?roiect(), 147, 150

glVertex"’0» 41

legal between glfiegint) and glEnd0, 46

using glEvalCoord*() instead, 440

glVertexPointerO, 46,68

gIViewport(), 102, 126

using with resizeci windows, 36

GLX, 14,562

ftp site for GLX specification, 562

g1XChooseVisual(), 563, 604

g1XCopyContext0, 563

glXCreateContext(), -563

glXCreateGLXPixrnap0, 563

gIXDestroyContext0, 563

glXDestroyGLXPixl'I1aP0. 563

glxoetclientstringo. 562

glxoetconfigo. 376, 563

glXGetCurrentContext(), 563

glXGetCurrentDisplay0, 563
glXGetCurrentDrawab1e0. 563

glXIsDirect0, 563

glxMakeCurrent0, 563

glXQueryExtension(), 562

g1XQueryExtensionsString0, 562

gl.XQueryServerStting0, 562

glXQueryVersion0, 562

glXSwapBuffers0, 23,564

glXUseXFont(), 564

glXWaitGL(), 564
performance tips, 603

0681

glXWaitX0, 564

performance tips, 603

Gouraud shading, See smooth shading

H

Haeberli, Paul, 372, 394

haze, See fog

header file, 15

hidden-line removal, 521

polygon offset used for, 247

hidden-surface removal, 171-173, 391

hierarchical models, 132, 265

picking, 483-485

highlights, See specular

hints, 228

fog, 240

perspective correction, 228, 326

hits (selection), See selection (hit records)

holes in polygons, 38, 518

homogeneous coordinates, 37, 594

Hoschek, Josef, 439

Hughes, John F., xxi, 593

IBM OSIZ Presentation Manager to 0penGL
Interface, see PGL

icosahedron, drawing, 83

identity matrix, 99, 103, 112, 602

illumination, See lighting

images, 278, 289-295

also see pixel data

blending, 514

compositing, 215
distorted, 509

imaging pipeline, 291, 296-308

interpolating between, 514

magnifying or reducing, 305

nonrectangular, 219

projecting, 523

0682

sample code which draws an image, 294
sample program which draws, copies, and

zooms an image, 306

scaling and rotating, 523
sources of, 290

superimposing, 515
transposing, 528

warping, 523

imaging pipeline, See images (imaging pipeline)

immediate mode, 29, 252

display lists, mixing with, 265

infinite light source, 182

input events

handling, using GLUT, 19

intensity

texture image data type, 354

interactive Inspection ofSolids: Cross-sections and

interferences, 518 -

interference regions, 518

interleaved arrays, 75

interpoiating
color values and texture coordinates, 228, 357

invariance

of an OpenGL implementation, 600, 605

Inventor, see Open Inventor

J

jaggies, 226

iittering, 396, 401, 407
accFrustum() routine, 396

accPerspective0 routine, 396

sample code to jitter projection transformations,
397

sample program with orthographic projection,
401

K

Kilgard, Mark, 15, 562, 579 .
Korobkin, Car], 372

639

L two-sided materials, 194

viewer, local or infinite, 194

Lasser, Dieter, 439 _ line segment, 38

layers, drawing, 511 linear attenuation, 184

Life, Game of, 526 lines, 38

light sources, 130-192 antialiasins. 228-235, 523
ambient light, 174, 182 connected closed loop. specifying. 43, 44
contribution to lighting equation, 206 90111135199 511113: 5P€C11Y1n8: 43: 44
diffuse light, 1'74, 182 feedback mode. 493
directional, 132 querying line width, 51

display lists cache values, 258 53mPle P10813111 with “lider 5t1PP19C1 111195: 53
infinite light source, 182 5P3C1iYi113» 43. 44
local light ‘source, 182 srippling. 51
maximum number of sources, 178 tessellaied P01Y801’15 d3C°mP°5ECl into. 414

moving along with the viewpoint, 191 Width. 50
moving light sources, 187-192 local light source, 182

SOUICES, operafigns
Peifomlailce til‘-'5: 173 rendering pipeline stage, 14, 533
130511101131: 132 transposing images, using for, 528
rendering pipeline stage, 12, 531 b1 1
RGBA values, 175 lookup ta 3' See Co or map

. luminance, 292, 314

samplrlaegprogtam that moves the light source, pixel data fomms fol,’ 293, 298
specifying a light source, 178 texture image data type’ 354
specular light, 174

spotlights, 184-186

stationary, 187 111

fighting _ _ _
also see light sources, material properties magmfymg 1313395’ 305
ambient light, 173 masking, 381

approximation of the real world, 173 antialiasing Characters» 513

attenuation, 183-184 layers, drawing, 511

calculations in color-index mode, 210 renclefing Pipeline stage, 14; 533

C010!-index mode. 209-211 material properties, 179, 195-204
default values, using, 179 ambient, 175,197

display lists Cache Values. 253 changing a single parameter with
enabling. 178, 179 glColorMateria10, 201
enabling and disabling, 195 changing material properties, 199
equation that calculates lighting, 205 diffuse, 175, 197

310bfll ambient light, 193. 206 display lists cache values, 258
lighting model, 192-195 - emission, 175, 198, 206

lighting model. specifying 3. 179 enabling color material properties mode, 201
rendering pipeline Stage. 12; 531 performance when changing, 602
Sample program introtlucing lightillg, 176 rendering pipeline stage, 12, 531
steps to perform. 176 RGBA values, 176

640

0683

sample program which changes material

properties, 199

sample program which uses glColorMaterial0,
202

shininess, 198

specular, 175, 198

two-sided lighting, 194
matrix

also see matrix stack

choosing which matrix is current, 103

column-major ordering, 104

current, 99

danger of extensive changes, 600

display lists cache matrix operations, 257

identity, 99, 103, 112, 602

loading, 104
modelview, 96, 103

multiplying matrices, 104

NURBS, specifying for sampling, 461

orthographic parallel proiection, 598

perspective projection, 598

projection, 101, 103
rotation, 596

row-major ordering, 104

scaling, 596
texture, 371

transformation pipeline, 96

transformations of homogeneous coordinates,
594

translation, 596

matrix stack, 132-136

choosing which matrix stack is current, 133
current matrix stack, 533

Inodelview, 135

popping, 133

projection, 135

pushing, 133

querying stack depth, 135
texture, 371

Megahed, Abe, 518

Microsoft
Microsoft Win32, See Win32

Microsoft Windows, 14

Microsoft Windows 95, 574

Microsoft Windows NT, xxii

0684

Microsoft Windows to 0penGL interface, See
WGL

miprnapping, 338-344
minification filters, 346

texture objects for miprnaps, 350

mirroring objects, See scaling

modeling transformations, 99, 104, 108-113

camera analogy, 94
connection to viewing transformations, 100

example, 111
rotation, 109

rotation matrix, 596

sample program, 112

scaiing, 110

scaling matrix, 596
translation, 108

translation matrix, 596

models

rendering wirefrarne and solid, 20, 583

Inodelview matrix, 96, 103

arbitrary clipping planes, effect on, 137
stack, 135

motion blur, 402

stippling, with, 507

motion, See animation

movie clips, 527

multiple layers

displaying with overlap, 511

N

name stack, 471-475

creating, 4'72

initializing, 472

loading, 472

multiple names, 483-485
popping, 472

pushing, 472 _
querying maximum depth, 473

networked operation, 34-35 _
attribute groups, saving and restoring, 78

display lists, 264
versions, 504

Non-Uniform Rational B-Splines, see NURBS

641

nonplanar polygons, 39

normal vectors, 63-65, 178

calculating, 588

calculating for analytic surfaces, 588

calculating for polygonal data, 591

calculating length, 65 '

cross product, calculating normalized, 85

enabling automatic unit length division, 65

inverse matrix generated, 533
matrix transformations, 96

normalized, 65

NURBS, generating for, 463

quadrics, generated for, 430

rendering pipeline stage, 12, 531

specifying 64

tesseilation, specifying for, 415
transformations, 595

unit length optimizes performance, 603

vertex arrays, specifying values with, 68

normal, See normal vectors

normalized device coordinates, 96

NURB Curves and Surfaces (book title), 439

NURBS, 455-468

creating a NURBS curve or surface, 462-464

creating a NURBS object, 459

culling, 460

deleting a NURBS object, 460

display list use, 256

error handling, 462

method of display (lines or filled polygons), 460
normal vectors, generating, 463

properties, controlling NURBS, 460

querying property value, 461
references, 439

sample program which draws a lit NURBS
surface, 456

sample program with a trimmed surface, 467

sampling precision, 460
source for matrices, 461

steps to use, 455

texture coordinate generation, 463

trimming, 464-468

NURBS Book, The, 439

NURBS for Curve and Surface Design, 439

642

0

object coordinates, 96
texture coordinate generation, 364

obiects, See models

opacity, 215

Open Inventor, 3, 15

OpenGL Extension to the X Window System, see
GLX

OpenGL Programming for the X Window System,
xxii, 15, 16, 562, 5'79

OpenGL Reference Manual, xxi, 529, 536, 562

OpenGL Utility Library, see GLU

OpenGL Utility Toolkit, see GLUT

orthographic parallel projection, 101, 124-125

jittering, 400
matrix, 598

specifying with integer coordinates, 601

outlined polygons, 55, 63
polygon offset solution, 247

overlapping obiects, 518

P

painting, 215, 218, 528

partial disks, 428

pass-through markers, 494

performance tips

clearing the window, 32

display lists, 256, 257

flat shading, 603

flushing the pipeline, 34

fog, 240 '

GLX tips, 603
hints, 228

light source attenuation, effect of, 184

light sources, effect of additional, 178
list of general tips, 602

material properties, changing, 602
NURBS and displayiists, 256

pixel data alignment, 301

pixel data, drawing, 314
polygon restrictions, 39

0685

polygon subdivision, 82

pushing and popping attribute groups, 602

rasterization and fragment operations for pixel
data, 603

removing hidden surfaces, 173

specifying geometric primitives, 603

tessellation and display lists, 256
tessellation, use of, 426

texture images, internal format of, 328

texture objects, 346, 602

texture subimages, 602

two-sided lighting, 195

unit-length normal vectors, 603

vector and scalar fonns of commands, 603

vertex arrays, 603

perspective projection, 120-123
correction hint, 228, 326

depth coordinates, effect on, 128

iittering, 397
matrix, 598

perspective division, 96

PGL, 14

pg1ChooseConfig0, 570,572

pg1CopyContext(), 571, 572

pglCreateContext0, 571, 572

pglDestroyContext(), 571, 572

pg1GetCurrentContext0, 571, 573

pglGetCurrentWindow(), 571, 573

pglGrabFrontBitmap(), 571, 573

pglislndirecto, 571,572

pg1MakeCurrent0, 571,572

pglQueryCapabilitY0.- 570, 572

pglQueIyConfigs(), 570,572

pglQueryVersion0, 570, 572

pglReleaseFrontBitmap0, 571, 573

pglSe1ectCo1orindexPalette0, 572, 573

pglSwapBuffers(), 571, 573

pglUseFont(), 572, 573

pglWaitGLO, 571,573

pglWaitPM{), 571, 573

picking, 478-488

back buffer for, using the, 508

depth coordinates, 485
hierarchical models, 483-485

projection matrix, special, 479

sample program, 480

sample program with depth coordinates, 486

0686

strategies, 489

sweep selection, 490

Piegl, Les, 439

pipeline

geometric processing, 530-532

imaging, 291, 296-308
rendering, 10-14

' vertex transformation, 96

pixel

coverage, 27

pixel data, 278, 289-295

also see images

byte alignment, 301

byte ordering, 300
copying within the framebutfer, 13, 290, 295,

296, 532

depth buffer pixel data, 295, 303

drawing or reading a subrectangle of, 300
drawing process in detail, 309-312
endianness, 300

feedback mode, 493

formats for reading or drawing, 292

formats for storing in memory, 293, 298

mapping, 12, 304, 532

packing into processor memory, 13, 298-300,
532

performance tips, 314
pipeline operations, 12, 291, 296-308, 532

pixel zoom, 305

querying pixel mapping information, 304
reading from the framebuifer, 290, 292
reading process in detail, 312-314

sample code which draws an image, 294
sample program which draws, copies, and

zooms pixel data, 306
stencil buffer pixel data, 293, 303

storage modes, 299
transfer modes, 13, 302, 354, 532

unpacking from processor memory, 12, 298-
300, 532

writing to the framebuffer, 290, 294

point light source, See positional light source

points, 37
antialiasing, 228-235, 514

drawing, 42
feedback mode, 493

querying point size, 50 bezsurf.c, 448'
round, 228-235, 514 checkenc, 323

size, 49 clip.c, 138

specifying, 43,44 colormatc, 202

polygon offset, 247-250 Cube-C. 98
depth slope of a polygon, 248 dof-C. 404
enabling, 247 double.c, 24
hidden-line removal, 521 C11’-1Wf-C» 230

polygonal approximations to surfaces, 81 £(eJ°gdf'a;k4g' 495
polygons, 38 I ’

boundary edges, 62-63 figgltnfegég 245
concave, drawing filled, 410, 516 ftp sit; xxii
Conyex’ 38 hello.c, 18
culling the faces, 56 image C 306
d"‘“'.'"3' 42 . . light.c, 176
drawing as points, lines, or filled, 55 lines C 53
feedback mode, 493 list C’ ’259
front and back faces, 56 ma'te’fial C 199

38 62 ““1’“‘“P'°' 340
’ ’ mode1.c, 112

nonplanar, 39

polygon mode, 12, 55, 532, 603

reversing the faces, 56

sample program with stippled polygons, 60

movelightc, 189

pickdepth.c, 486

picksquare.c, 480

self—intersecting, 416 pgilnfitéc‘{$41
simple’ 38 puzzincc 433
specifying’ 43’ 45 ?obot.c,' 144
stip-Plmg’ 57 select;c, 475
tesseliation, specifying for, 423
Vomnoi’ 524 sn1ooth.c, 166

stencil.c, 387

positional light source, 182 mokefil 269
primitives surface.c, 456

geometric. 37-43 tess.c, 414, 415, 424

raster, 278 texbind.c, 348

priority of texture objects, 352 texgen.c, __365

Procedural Elements for Computer Graphics, 428 texsub-Cr 333
programs texturesurf.c, 452

torus.c, using a display list, 253

Z:ii‘§,‘§’2°’2§§2 me» 467
aargbg 229 unpro]ect.c, 148
accanti.c, 401 . Vam7'c’ 69
accpersp.c, 397 P1'0ieCfifl8 M13895: 523
alpha3D.c, 223 projection matrix, 101,103
a1pha,c, 220 matrix stack, 135
bezcurve.c, 441 orthographic parallel projection matrix, 598
bezmesh.c, 451

644

0687

perspective projection matrix, 598
shadows_ created with, 520

projection transformations, 100, 120-125

camera lens analogy, 94

collapsing geometry to a single plane, 600

jittering, 397, 400

orthographic parallel, 101, 124-125, 601

perspective, 120-123

picking, 479

texturing effects, 372

two-dimensional, 125

proxy textures, 330

0

q texture coordinates, 372

avoiding negative values, 601

quadratic attenuation, 184

quadrics, 428-436

creating an object, 429

destroying an object, 429

drawing as points, lines, and filled polygons, _
430

error handling, 429

nonnal vectors, generating, 430
orientation, 430

quadratic equation, 428

sample program, 433

steps to use, 428

texture coordinates, generating, 431

-. quadrilateral

specifying, 43, 45

strip, specifying, 43, 45

H

raster position, 282

after drawing a bitmap, 283
current, 282, 533

current raster Color, 235

current, obtaining the, 282
transformation of, 282

rasterization, 156, 374

0688

exact, two-dimensional, 601

rendering pipeline stage, 13

reading pixel data, See pixel data

Real Projective Plane, The, 593

rectangles

specifying, 40

reducing images, 305

reflecting objects, See scaling

reflection, See material properties

reflective objects, See environment mapping

refresh, screen, 21

removing hidden surfaces, See hidden-surface
removal

repeatability, 606

resident textures, 332, 351

management strategies, 352
querying residence status, 351

RGBA mode, 157

changirig between color-index mode and, 162

choosing between color-index mode and, 16]

coverage calculations for antialiasing, 227

data type conversion, 163
light source colors, 175

lighting calculations in, 205
material property values, 176

vertex arrays, specifying values with, 68

robot arm example, 143-146

Rogers, David, 428

Rossignac, Jarek, 518

rotating images, 523

rotation, 109

matrix, 596

8

sample programs, See programs

scaling, 110
matrix, 596

scaling images, 523

Schneider, Bengt-Olaf, 518

Scientific American, 526

scissor test, 383

645

and clearing, 379

rendering pipeline stage, 14, 533

Segal, Mark, 372

selection, 470-491

back buffer for, using the, 508
hit records, 4'74

programming tips, 489 I

querying current rendering mode, 472

rendering pipeline stage, 532

sample program, 475

steps to perform, 471

sweep selection, 490

shading

flat, 165

performance tips, 603

sample program with smooth shading, 166
smooth, 165

specifying shading modei, 165

shadows, 205, 406, 520

shininess, 198

also see environment mapping

silhouette edges, 82

smoke, See fog

smooth shading, 165

solar system example, 140-143

source factor, See blending

specular

contribution to lighting equation, 208

light, 174

material properties, 175,198

spheres, 428,583

split-screen

multiple viewports, 126

spotlights, See light sources

state machine, 9-10

state variables, 48

attribute groups, 78-81

display list execution, effect of, 273

enable and disable states, 48

list of, 537-559

performance of storing and restoring, 602

querying, 49

stencil buffer, 376,377

clearing, 32,379

646

concave polygons, for drawing 516
decals, for, 515

Dirichlet domains, for, 525

Game of Life, for the, 526

hidden-line removal, 52

masking, 381

pixel data, 293, 303

stencil test, 385-391

examples of using, 387

interference regions found using clipping

planes, 519
querying stencil parameters, 386
rendering pipeline stage, 14, 533

sample program, 387

stereo, 377, 380

querying its presence, 377

stippiing

display lists cache stipple patterns, 258
enabling line stippling, 51

enabling polygon stippling, 58
fade effect, use for, 507

line pattern reset, 52, 493, 497
lines, 51

polygons, 57
sample program with line stipple, 53

sample program with polygon stippling, 60
stencil test, use of, 391

translucency, use to simulate, 506

stitching, 247

stretching obiects, See scaling
stride

vertex arrays, 70, 76

subdivision, 81-89

generalized, 88
icosahedron example, 86
recursive, 88

subimages, 332-335, 336

superimposing images, 515

surface normals, See normal vectors

surfaces, See evaluators or NURBS

"swapping buffers, See double-buffering

syntax, See command syntax

0689

T quadrics, generated for, 431

reference planes, specifying, 364

Terminator 2, 370 rendering pipeline stage, 12, 531

tessellation, 39, 410-423 - IeP€a““8r 35045? _
backward compatibility with obsolete routines, sample Pr°g_Iam “mh texture Coordmate

426 generation, 365

begin and end Callback mutinesr 414 tessellation, specifying for, 415 '
callback routines’ 412.417 vertexarrays, specifying values with, 68
combine callback routine, 414, 416 Wrapping m°de5' 360-363
computational solid geometry, winding rules text‘-“B fU1'1Cti01'15» 354-357

used for, 421 _ blend, 356

contours’ specifying’ 423 blending C0101‘,
converting code to use the GLU 1.2 tessellator, decal: 325: 355

427 fragment operations, 356

creating an object, 412 modulate. 356
decomposition into geometric primitives, 414 Pixe1't1'3“5f’31' 1110595 effect: 354
deleting objects, 426 replace, 356
display 11st use, 255 texture internal format, interaction with, 354
edge flag generation, 414 texture images

error handling, 414 alpha data, 354

evaluators used to perform, 602 borders, 337, 361

interior and exterior, determining, 418-422 components, 327

intersecting contours combined, 414, 416 data types, 328

performance tips, 426 distorting, 359

polygons, specifying, 423 framebuffer as a source of, 329, 334, 336

properties, 417-422 imaging pipeline operations, 29'?

reuse of objects, 412, 426 intensity data, 354

reversing winding direction, 422 internal format, 327

sample code, 414, 415, 424 luminance data, 354

user-specified data, 417 mipmaps, 338-344

vertices, specifying, 415, 423 one-dimensional, 335-337

winding rules, 418-422 performance affected by internal format, 328

texeis, 14, 313 performance of texture subirnages, 602
power of 2 size restriction, 329

proxy textures, 330

querying maximum size, 330
residence status, 351

resident textures, 332, 351

. ‘dent textures, management strategies of, 35211 , 353 ms‘ . .
:EE1l)l:]TiI:1tlnagul:1l1)2I1Jl1laut:C yeneration of 369 sample program with mlpmaps' 340

. g .3 . ’ . sample program with subimages, 333
environment mapping, automatic generation Specifying 326_338

f°‘* 370 subimages, 332—335, 336
evaluators, generated by, 452 .
generafing automatically’ 364_371 working set of textures, 332, 346, 351
NURB3’ generating fol.’ 463 texture mapping, see texturing
q coordinate, 372

text, see characters

texture coordinates, 326, 357-371

assigning manually, 357

avoiding negative q values, 601

clamping, 360-363

647

0690

texture matrix, 371

rendering pipeline stage, 531

texture objects, 326, 346-351

binding, 348 _

creating, 348
data which can be stored in, 348

deleting, 351

fragmentation of texture memory, 353

least-recently used (LRU) strategy, 353

mipmaps, 350

naming, 347

performance tips, 346, 602

priority, 352

rendering pipeline, 13, 532

sample program, 323

sample program with multiple texture objects,
348

sharing among rendering contexts, 563, 575

stepsto perform, 346

using, 348

texturing

also see texture coordinates, texture fimctions,

texture images, texture matrix, and texture

objects

antialiasing characters, 523

antialiasing lines, 523

blending, 219
border colors, treatment of, 361

color-index mode limitations, 321, 329

creating contours, 365

decals with alpha testing, 385

display lists cache texture data, 258

enabling, 322, 326

environment mapping, 369

filtering, 344-346

image transformations, 523

mipmapping, 338-344, 346

perspective correction hint, 326

rendering pipeline stage, 13, 532

sample program, 323

sample program with evaluated, Bézier surface,
452

sample program with mipmapping, 340

sample program with texture coordinate

generation, 365

sample uses for, 523

simulating shadows or spotlights, 372

643

steps to perform, 321
what's new in release 1.1, 321

3D Computer Graphics: A User's Guide for Artists and
Designers, xx:

31) models, rendering, 20, 583

Tiller, Wayne, 439

tips, programming, 599

also see performance tips

error handling, 600 _

selection and picking, 489
transformations, 129

transformations

also see modeling transformations, projection

transformations, viewing transformations,

and viewport transformations

combining multiple, 139-146

display lists cache transformations, 257
general-purpose commands, 102
matrices, 595-598

mimicking the geometric processing pipeline,
149

modeling, 104, 108-113

ordering correctly, 105-108
overview, 92

performance tips, 602

projection, 100, 120-125
reversing the geometric processing pipeline, 147

sample program, 98

sample program combining modeling
transformations, 141, 144

sample program for modeling transformations,
112

sample program showing reversal of
transformation pipeline, 148

troubleshooting, 129-131
units, 123

viewing, 104, 113-118

viewport, 102, 125-128

translation, 108

matrix, 596

translucent objects, 215, 506

stencil test, creating with the, 390

transparent objects, 215
creating with the alpha test, 385

transposing images, 528

0691

mangle

fan, specifying, 43, 45

specifying, 43, 45

strip, specifying, 43, 45

tessellated polygons decomposed into, 414

trimming
curves and Curved surfaces, 464-468

sample program, 467

two~sided fighting, 194

U

up-vector, 99

Utility Library, 0penGL, see GLU

Utility Toolkit, 0penGL, see GLUT

V

van Dam, Andrles, xxi, 157, 593

van Widenfelt, Rolf, 372

vendor-specific extensions, 505

versions, 503-505

GLU, 504

vertex, 37

also see vertex arrays

evaluators, generating with, 440

feedback mode, 493

per-vertex operations pipeline stage, 12, 531

specifying, 41

tessellation, specifying for, 415, 423

transformation pipeline, 96

vertex arrays, 65-77

dereference a list of array elements, 72

dereference a sequence of array elements, 74

dereference a single element, 71

disabling, 68

display list use, 264

enabling, 67

interleaved arrays, 75

v interleaved arrays, specifying, 76

performance tips, 603

querying, 537
reuse of vertices, 74

0692

sample program, 69

specifying data, 68

steps to use, 66
stride between data, 70, 76

video

fake, 527

flipping an image with glPi.xelZoom(), 306

textured images, 332

viewing

camera analogy, 94-95

viewing transformations, 99, 104, 113-118

connection to modeling transformations, 100

default position, 99
different methods, 118

pilot view, 119

polar view, 119

tripod analogy, 94

up-vector, 99

viewing volume, 121

clipping, 125, 136

jittering, 397, 400

viewpoint

lighting, for, 194

viewport transformations, 97, 102, 125-128
photograph analogy, 94

rendering pipeline stage, 12, 532
visual simulation

fog, use of, 239

Voronoi polygons, 524

W

w coordinates, 37, 96, 102

avoiding negative values, 601
lighting, use with, 183

perspective division, 128, 532

warping images, 523

Watt, Alan, 318

web sites

IBM OSIZ software and documentation, 570

Microsoft Developer Network, 574
Silicon Graphics’ OpenGL, xxii

Template Graphics Software, 566

649

WGL, 14, 574 X

wglCopyContext(), 575, 576

wgiCIeateContext(), 574, 575, 576 X Window system, 14’ 562
Wg1CIeate13yeICOHteXt0, 575, c]jent_se1-veg rendering’ 5
W3]D"l9teC°“t‘-'xt0r 576 minimum framebuffer configuration, 376
wglDescribeLayerPlane0, 574,576 X visual, 162, 552
wglDestroyContextO, 575

wgiGetCurrentContext0, 575, 577

wg1GetCurrentDCO, 575, 577 Z
wg1Get].ayerPaletteEntries(), 576, 577

wg1MakeCurrent0, 575, 577

wg1Rea1ize1,aye:Pa1ette(), 575,577 Z b“ff‘*" See depth b“fi°‘
wglshareustsol 575’ 575 2'. coordinates, See depth coordinates
wg1SwapLayerBuffeIs0, 575, 577 zooming images, 305
wg1UseFontBitmaps(), 576, 577 filtered. 523
wglUseFontOut]ines0, 576, 577

Williams, Lance, 338

Win32

Cho0sePixelFormat(), 574, 576

CreateDlBitmap(), 575, 577
CreateDIBSection(), 575, 577

Delete0biect0, 575, 577
DescIibePixelFon'nat0, 574, 576

GetVe1'sionO, 574, 576

GetVersionEx0, 574, 576

SetPixe1Fo1'rnatO» 574, 576

SwapBuffers0, 575, 577

winding rules, 418-422

computational solid geometry, used for, 421

reversing winding direction, 422

window coordinates, 97, 126

. , feedback mode, 493

polygon offset, 248

window management

glviewporto called, when window resized, 126

using GLUT, 16, 35

working set of textures, 332, 346, 351

fragmentation of texture memory, 353

writemask, See masking (buffers)

' writing pixel data, See pixel data (drawing)

650

0693

‘*--.--......;....,.

...._...__...._.-..._.......—......._____,___.._..».__,_____

 I

* T585

, .N4-55 OpenGL@ programming guide
1996 The official guide to learning

I OpenGL

0694

OpenGL
Programming Guide
‘airrmii Irfiiiiiil

The Official Guide to Learning 0penGL, Version 1.1

0penGL is a powerful software interface for graphics hardware that allows graphics
programmers to produce high—quality color images of 3D obiects. The functions in
the OpenGL library enable programmers to build geometric models, view models
interactively in 3D space, control color and lighting, manipulate pixels, and perform
such tasks as alpha blending, aiitialiasing, creating atmospheric effects, and texture
mapping.

The 0periGL Progranrrriiug Guide, Second Edition, shows how to create graphics
programs, many of which highlight features of the latest OpenGI. release. Assuming
users have a background in C program ming, the book discusses the architectureand
functions of 0penGL, Version 1.1.

The second edition contains the following additions and iinprovements:

- coverage of the new features ofOpei1GL, Version 1.1. including all
texturing changes, vertex arrays, polygon offset, and RGBA logical operations

- the incorporation of the OpenGL Utility Toolkit, GLUT,
in all programming examples

I an overview of the OpenGL rendering pipeline and state machine
I enhanced coverage of polygon tessellatiori, quadric surfaces, pixel

operations, and error handling
- more performance tips
I a greatly expanded index

The OpenGL Technical Library provides tutorial and reference books for OpenGL.
The library enables programmers to gain a practical understanding of ()penGL and
show them how to unlock its full potential.

The OpenGL ‘Technical Library is developed under the auspices of the Architecture
Review Board (ARE), an industry consortium responsible for guiding the evolution of
OpenGL and related technologies. The OpenGl. ARB is composed of industry leaders
such as Digital Equipment Corporation, Evans 8: Sutherland, Hewlett-Packard, IBM,
Intel, lntergraph, Microsoft, Sun Microsystems, and Silicon Graphics.

The OpenGL Programming Guide, Second Edition, was written by
Mason Woo, Jackie Neider, and Tom Davis.

covemesign by is-an seal Illllllllllllllllllllll Ill Illllll ..9. 0..q.,00 '

lllllllllllllllllllllllllllllllllllllllv‘v ADDISON-l.‘ ‘l

optcztisi. i-‘iron on :31~.r.»

 Addison-Wesley I
is an ‘imprint of

A-W DCVel' T F . I #2‘I (‘U

Web at http:/{W . EGR AP Aug 1 7 ;_ l _. ,) I

0-20L-4blJU—J $4fl,0fi * mp

0695

