
United States Patent [19]

Takahashi et al.

US005825878A

[ii] Patent Number:

[45] Date of Patent:

5,825,878
Oct. 20, 1998

[54] SECURE MEMORY MANAGEMENT UNIT
FOR MICROPROCESSOR

[75] Inventors: Richard Takahashi, Phoenix, Ariz.;
Daniel N. Heer, Newton, N.H.

[73] Assignee: VLSI Technology, Inc., San Jose, Calif.

[21] Appl. No.: 717,106

[22] Filed: Sep. 20, 1996

[51] Int. Cl.6 H04L 9/00
[52] U.S. Cl 380/4; 380/25
[58] Field of Search 380/3, 4, 23, 25,

380/52

[56] References Cited

U.S. PATENT DOCUMENTS

5,377,264 12/1994 Lee .
5,386,469 1/1995 Yearsley .

5,452,355 9/1995 Coli .
5,459,851 10/1995 Nakajima .

Primary Examiner—David Cain
Attorney, Agent, or Firm—LaValle D. Ptak

[57] ABSTRACT

A secure embedded memory management unit for a micro­
processor is used for encrypted instruction and data transfer
from an external memory. Physical security is obtained by
embedding the direct memory access controller on the same
chip with a microprocessor core, an internal memory, and an
encryption/decryption logic. Data transfer to and from an
external memory takes place between the external memory
and the memory controller of the memory management unit.
All firmware to and from the external memory is handled on
a page-by-page basis. Since all of the processing takes place
on buses internal to the chip, detection of clear unencrypted
instructions and data is prevented.

7 Claims, 2 Drawing Sheets

/4
SECURE DMA

DATA

'/2

CPU
CORE

CONTROL ADDR

ADDRESS 0
DATA

20 iS

ENCRYPTION
CORE

'Aco

ae

MEMORY
CONTROLLER ci=)

SL
EXTERNAL
MEMORY

J £f
KEY

REGISTER

V.

S^
$

SB

SRAM

Page 1 of 10 Unified Patents Exhibit 1005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Oct. 20, 1998 Sheet 1 of 2 5,825,878

CPU
CORE

14 -IO

SECURE DMA

DATA

'12

20 ^c

ENCRYPTION
CORE

CONTROL

ADDRESS

DATA

y\v

ADDR 06

1
i

MEMORY
CONTROLLER

»

22 ZZ
KEY

REGISTER

s*

SRAM

SL
EXTERNAL
MEMORY

7^ UL'JLIIJC^-

CPU
CORE

ENCRYPTION
CORE

DECRYPT

MEMORY
CONTROLLER

«

SRAM

DMA READ CYCLE

10
READ CYCLE

ADDRESS START
FINISH

WRITE CYCLE

ADDRESS f ^

Page 2 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Oct. 20, 1998 Sheet 2 of 2 5,825,878

£^•30
PAGE ADDRESS

REGISTER-14 BITS

ry32 "
CONTROL REG.

16 BITS

-34

STATE
MACHINE

-36

LIMITADDRESS
14 BITS

£^38

40

CPU—ADDRCShO]
— CS
— R/W
— MCLK
— RESET-BAR
- -CPU BUS CShOIl

- • I R Q
- -DMA-ADDR [23:03
--DMA-BUSC31:OD
- - M U X - E N C
- -MUX-SRAM
- - M U X - M E M . CNTL.
-—DMA R/W

—DMA-CS

1
42,

- C P U WAIT-BAR

f - - PAGE-ZERO (1,2)
- E N D / D E C (1,2)

CPUADDR[23:||]
<-• ,

147
^PAGE-ZERO'
O — T ^

(48
PAGE-ZERO 2 [*"

o ^ ^
(•49

TO MEMORY
CONTROLLER

C36

LIMITADDRESS
REGISTER-14 BITS

CPU ADDR [23:113

'IL VCD

J~I8 II

^

EXTERNAL
^MEMORY

INTERNAL
SRAM

1024 X 32

PHYSICAL
MEMORY
SPACE

VIRTUAL
ADDRESS

SPACE

FlILBc^J

PAGED

PAGE1

PAGE 2
PAGE 3

PAGE 4

PAGES

PAGE N

PAGE-ZERO

14 BITS PAGE

PAGE IN USE

ADDR LIMITS

INTERNAL
SRAM

'JLIBCDL

IZL
NEW PAGE OR

EXTERNAL ACCESS

'//

EXTERNAL MEMORY

Page 3 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

FIG. 6 is circuit detail of a portion of the embodiment of
FIGS. 1 and 4;

5,825,878
1 2

SECURE MEMORY MANAGEMENT UNIT BRIEF DESCRIPTION OF THE DRAWINGS
FOR MICROPROCESSOR „ „ , . , , , ,. , f , , ,. i ,

FIG. 1 is a block diagram ot a preferred embodiment ot
BACKGROUND the invention;

Various techniques have been employed for decrypting 5 FIG. 2 is a diagrammatic flow chart illustrating the
and encrypting firmware stored in an external memory operation of embodiment of FIG. 1 for a read cycle;
associated with a microprocessor system. Encryption of FIG. 3 is a diagrammatic flow chart illustrating the
such firmware is used to prevent unauthorized parties from operation of the embodiment of FIG. 1 for a write cycle;
determining instructions or data stored in the memory by F I G 4 i s a d e t a i i e d diagrammatic representation of a
reading out the information and then utilizing the informa- 10 portion of the circuit shown in FIG I -

tion. When this information is encrypted, unauthorized third rjr, . . • .. , . ., ,. , . , . . ,,
, , • , , , • FIG. 5 is acircuit detail useful in explaining the operation

parties are not able to use it unless they can obtain access to c ,, , ,. , r rj^c 1 A A
, , „ , • , • , „ , , , • of the embodiment ot FIGS. 1 and 4;

the unencrypted firmware which is handled by the micro­
processor.

To prevent unauthorized access to the clear or unen­
crypted instructions and data, physical security measures F I G - 7 i s a diagrammatic representation of the relation-
have been developed by forming protective layers over a s h i P between memory space in the external memory and the
memory device to limit visual access to the memory, even if internal memory of the embodiment shown in FIG. 1; and
the encapsulation material over the chip is removed. Other FIG. 8 is a diagrammatic representation of the memory
techniques include employing polysilicon layers to carry the 20 organization of the internal memory of the embodiment
signals; so that the signal transmission is invisible. In shown in FIG. 1.
addition, using multi-layer chips with criss-crossing signal
paths makes it difEcult to probe signal paths located in lower ^ ^ 1 AILED DESCRIP 1 ION
layers. As encryption/decryption circuits become more Reference now should be made to the drawings, in which
complex, however, it frequently is necessary to modify the 25 t h e s a m e r e f e r e n c e n u m b e r s are used throughout the differ-
microprocessor core in some manner in order to operate with e n t figures t o d e s i g n a t e t h e s a m e components. FIG. 1 is a
tne security systems. block diagram of a preferred embodiment of a secure

The Yearsley U.S. Pat. No. 5,386,469 is directed to a memory management unit for a microprocessor system. The
firmware encryption/decryption system operating in real system shown in FIG. 1 is fabricated on a single integrated
time to decrypt incoming code from an external memory. 30 c i r c u i t c h i p 1 0 f o r C o m m u n i c a t i o n with an external memory
This is accomplished by a program counter operating in 1 1) w h i c h m a y b e of any suitable type for storing informa-
response to "enable bits" and "seed value" bits to determine tion used in the operation of the system on the chip 10. The
when to "mask" the code using an encryption mask genera- m a i n fu n c t ion of the secure memory management unit
tor. The encryption mask of Yearsley is not a true encrypter (MMU) on the chip 10 is to read encrypted external program
using a DES (Data Encryption Standard) algorithm. Each 35 c o d e i n s t m c t i o n s a n d d a t a s t o r e d i n t h e e x t e m a l memory 11,
clock cycle in the system of Yearsley unmasks the firmware to decrypt and store the information in a secure random
in accordance with the seed and the program counter value a c c e s s memory (RAM) with an internal microprocessor
in real time. In addition, some modification of the core c p u Co re 12 then utilizing the information, which is stored
microprocessor is necessary in order to use it with the fn the secure internal RAM.
Yearsley system. 40 ^ ^ ^ ^ ^ ^ ^ ^ 1 0 o f F I G 1 ^ d e s i g n e d t o

It is desirable to provide a secure memory management c a r r y o u t t h e s e f ^ t i o n s . it should be noted that all of the
unit which overcomes the disadvantages of the prior art, and p a r t s s h o w n e n c io S ed within the dash-dot line or box 10 of
which does not require any modification to the core micro- F I G 1 a r e f a b r i c a t e d on the same integrated circuit chip
processor with which the memory management unit is used. ^ u t i i i z i n g fabrication techniques designed to physically

SUMMARY OF THE INVENTION embed the components in the chip and to prevent access to
A u AA A . •. c the internal buses and connectors shown interconnecting the
A secure embedded memory management unit tor . , , . , . , , . , «

. J J , A • . .• . c c . t various components located within the box 10.
encrypted data and instruction transter trom an external r

memory includes a microprocessor core, an internal T h e s e c u r e M M U o f F I G - * comprises a memory con-
memory, a direct memory access controller and encryption 50 t r o l l e r 1 6 a n d a s e c u r e d l r e c t memory access controller 14,
core all formed in the same IC chip. The direct access a l o n g w l t h a n S R A M memory 18 for program storage, and
memory controller is interconnected by a bus to an external a s e c u r e internal encryption core logic 20, along with a
memory, where the encrypted instructions and data are microprocessor or central processing unit (CPU) core 12.
stored. Encrypted information supplied to the memory con- Although an SRAM memory is shown, other types of
troller from the external memory then is supplied, internally 55 read/write memories, such as EEPROM or FLASH ROM
in the chip, from the memory controller to the encryption may be used as well. The memory 18 is divided into multiple
core, where it is decrypted. The decrypted information then cache sections of various sizes. The various buses for
is supplied to the internal memory coupled to the micropro- interconnecting these components for data, address and
cessor core. The information stored in the internal memory control signals are illustrated in FIG. 1.
is utilized in a conventional manner in its "clear" form by the 60 The direct memory access (DMA) controller 14 and the
microprocessor core. The reverse of this operation occurs memory controller 16 together operate to transfer instruc-
when information is to be written to the external memory. tions between the external memory 11 and the internal
Information passing from and to the external memory is SRAM memory 18. Through appropriate instructions, the
loaded on a page-by-page basis; and once a page of firmware secure DMA controller 14 moves instruction from the exter-
has been loaded from the external memory onto the chip, the 65 nal memory 11 through the memory controller 16 to the
chip disables access to the bus to protect from any external decryption core 20, and finally, to the SRAM memory 18 for
probing. a read cycle. For a write cycle, the instruction is moved from

Page 4 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5,825,878

30

the SRAM memory 18 to the encryption core 20, then to the
memory controller 16, and finally, from the controller 16
through a connecting bus to the external memory 11. All of
these transfers of information are controlled by the secure
DMA/MMU controller 14/16. 5

Typically, on a first external instruction access, the secure
DMA controller 14 puts the CPU core 12 in a wait state
mode, or the CPU core 12 executes from an internal ROM
(not shown) and reads the page of external encrypted
program code or data containing the requested external page 1°
address. The system operates to transfer information from
and to the external memory 11 on a page-by-page basis. The
page address can read or write up to 1,024x32 bit words.
After the page of instructions has been written to the secure
SRAM 18, the DMA controller 14 causes these instructions 15

to be decrypted by sequentially transferring the contents of
the secure internal SRAM 18 one 32-bit word at a time to the
encryption and decryption core block 20. The cleared word
is then written back to the SRAM 18.

When the full page of instructions has been decrypted by
the encryption core 20, the DMA controller 14 takes the
CPU core 12 out of the wait state mode, and the CPU core
12 reads the instruction located in the secure internal SRAM
18. As noted, this instruction now is clear or decrypted
information. If the next external instruction requested by the
CPU core 12 is within the page of the secure internal SRAM
18, the instruction is read in a single cycle from the secure
internal SRAM 18. If the next external instruction requested
is not in the page of the secure internal SRAM 18, the DMA
controller 14 operates as described above, and the process is
repeated. The process described may be altered, depending
upon the configuration of the MMU control register con­
sisting of the DMA controller 14 and the memory controller
16.

35
The secure DMA controller 14 and memory controller 16

is the interface which provides input/output (I/O) transfer of
data directly to and from the external memory 11 by way of
the memory controller unit 16, the encryption core 20, and
the internal SRAM memory peripheral 18. The DMA con­
troller 14 is the preferred form of data transfer for use with
high speed peripheral devices to speed the encrypted instruc­
tion transfer. The CPU core 12 utilizes the DMA controller
14 by sending the selected page address to be transferred, the
control configuration, and the limit addresses. This will be
explained in greater detail in conjunction with FIG. 4.

The actual transfer of data is done directly between the
external memory 11 and the memory controller 16, through
the DMA controller 14, which frees the CPU core 12 for
other tasks. The major difference between an I/O program 50
controlled transfer and the DMA controller 14 is that data
transfer does not employ the registers of the CPU core 12.
The transfer is done in the DMA controller 14 interface by
first checking if the memory unit 18 is not used by the CPU
core 12; and then the DMA controller 14 controls the 55
memory cycle to access a word in the external memory 11.

It should be noted that the system shown in FIG. 1 also
employs the usual circuits of an interface, such as an address
decoder, a control decoder, and state machine control logic
(not shown, since these are standard components). In 60
addition, the system uses a separate page address register, a
limit address buffer register, and a page size count register
(described in greater detail in conjunction with FIGS. 4, 5
and 6). The address and buffer registers are used for direct
communication with the memory controller 16. The page 65
size register specifies the number of words to be transferred
within a page. The CPU core 12, with the DMA controller

45

14, includes a special state machine control section for the
memory controller 16 to communicate with both the CPU
core 12, the encryption core 20, the SRAM 18, and the DMA
controller 14 on a priority basis.

Both the CPU core 12 and the DMA controller 14 can
communicate with the memory controller 16; but the DMA
controller 14 has priority over the CPU core 12. A request bit
in the control register in the DMA controller 14 is set when
the corresponding CPU core 12 requests a memory cycle.
The memory control 16 services both the CPU core 12 and
the DMA controller 14, and resolves conflicts between the
two requests. Whenever a DMA controller 14 memory cycle
request is terminated, the memory controller 16 clears a
corresponding request flip-flop (not shown) and the DMA
controller 14 waits until a new page load memory cycle is
requested.

The design of the DMA controller 14 enables, but is not
restricted to, allowing the code stored in the SRAM cache 18
to be accessed by the CPU core 12 while the DMA controller
14 is loading other sections of the cache. This increases the
speed of operation of the system, allowing commonly used
sections of code to be semi-permanently placed into the
SRAM cache 18. This is accomplished by dividing the
SRAM cache 18 into various sections of different sizes.
Implementation of this feature may be accomplished by
means of a hard division of the cache or a flexible division
where the CPU core 12 and the DMA controller 14 access
the memory 18 on alternate cycles of the system clock.
Collision detection circuitry or software (not shown) also
may be employed to prevent access to pages in the SRAM
18 while these pages are being loaded or allow accesses to
the pages being loaded when a piece of memory already has
been loaded into the cache 18. Such detection circuitry
recognizes a page as "in process", "loaded", or "unloaded".
The unloaded and partially loaded pages operate in the same
manner where the offset to the page is compared to a pointer
loading data. The wait signal (shown in FIG. 4) is released
once the actual data is loaded. For a new cycle, this occurs
when the first instruction is loaded and continues a wait/load
cycle until the code jumps out of this particular page. For a
page in process, the code actually may be able to run a full
routine and branch out prior to ever having a collision or a
wait cycle.

The initialization process for the system essentially is a
program consisting of I/O instructions that include the page
address and command codes for the DMA 14 interface. The
CPU core 12 checks the status of the peripheral (external
memory 11) and the DMA/MMU controller 14/16; and if all
is in order, the CPU core 12 sends the following information
through the I/O memory controller lines:

1. The starting address of the page memory block where
the instructions or data are available (for output) or
where data are to be stored (for input) in the SRAM 18.

2. The page size, which is the number of words in the page
memory block.

3. A control specifying an input or output transfer.
4. A command to start the DMA/MMU controller 14/16.
The starting page address, page size, and the control

specifying the direction of transfer are stored in designated
control registers in the DMA/MMU controller 14/16. The
CPU core 12 then stops communicating with the DMA/
MMU controller 14/16. The DMA controller 14, which
controls the memory controller 16, handles all of the house­
keeping operations such as packing characters into words
(for output) or unpacking words into characters (for input)
and checks the status of the peripheral external memory 11.

Page 5 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

