
Vector: Agents with U

T. Goddard, V.S. Sunderam
Department of Math and Computer Science, Emory University

{goddard,vss}@mathcs.emory.edu

Abstract

Emerging web applications demand considerable net-
work resources and, especially in science and engineering,
considerable computational resources. The use of agents
can eliminate bottlenecks in both areas, provided that their
methods of computation and communication are not overly
restricted. Webvector is an agent system that combines a
flexible communication model with URL-based agent iden-
tijcation. Within this framework, resources can be cen-
tralized to support the current web-browser security model
or distributed for eflciency. Interfacing with existing soft-
ware can be as simple as adding a hyperlink to a$le. We
concentrate on cooperative applications: uploadable active
resources, jlexible multicast for maintaining shared-space
state, and a variety of applications from distributed compu-
tation.

1. Introductidn

A group of chemists direct their web-browsers to a page
posted to a high-bandwidth servel: Besides descriptive in-
formation in the form of text and tables, the page contains
a shared note-taking applet and an embedded virtual re-
ality (VR) representation of a molecule. Each chemist is
represented in the VR world by an “avatar” rejecting their
position and view. The molecule is not a simple ball-and-
stick model; depicted is the solvent accessible surface sur-
rounding a protein that the chemists fold in real time. As
more collaborators join the group, performance actually im-
proves as each web browser loads an applet that contributes
to the solvent accessible surface computation. Agents on
the server maintain the shared notebook, the state of the VR
world, and the allocation of computational tasks. In the
meantime, other agents have traveled to protein databases,
looking for correlations, possibly bringing new molecules
into the scene depending on their discoveries.

Active documents, transparently distributed computa-
tion, and efficient multicast are just a few examples of the

“Research supported by A m y Research Office grant DAAH04-96-1-
0083 U. S. Department ofEnergy Grant No. DE-FG05-91ER25105, and
the National Science Foundation Award No. ASC-9527 186.

0-8186-7967-0/97 $10.00 0 1997 IEEE

sorts of qualitative and quantitative benefits we would like
to bring to users through agents. By discussing agents in
general and our system in particular, we hope to demon-
strate the strengths of our system as well as convey a few
ideas that would be useful in general. We will begin by
explaining briefly what our working definition of “agent” is
and how we addressed the issues common to all agents in
the design of our system. Then we will look at a few other
agent systems and move on to a more detailed examination
of the architecture of ours. That will prepare us for a few
implementation details and a complete (but simple) exam-
ple showing Webvector in use. We conclude with a few
example applications and possible future developments.

An “agent” can briefly be described as “one who acts for
another”. Rather than interpret this in the domain of artificial
intelligence [11, we define agents as follows. Agents are pro-
grams sent by an entity, or one of its agents, to a remote sys-
tem. As such, they cannot exist alone, they require a network
of “agent hosts”; these are the computers to which agents are
transmitted and thereupon executed, possibly creating and
transmitting agents to other agent hosts themselves, or pos-
sibly just communicating with their source to return results
(Figure 1).

Figure 1. Webvector Agent life-cycle

Most researchers specialize this idea further to include
migration; they insist that an agent be able to halt its exe-
cution, package and transmit itself somehow, then resume
execution on a remote machine. This is appealing, but we

100 Page 1 of 6
HCC INSURANCE HOLDINGS, INC.
Exhibit 1004f

Find authenticated court documents without watermarks at docketalarm.com.

mailto:goddard,vss}@mathcs.emory.edu
https://www.docketalarm.com/

do not see it as fundamental to every agent model. Our ap-
proach is to be less rigid; we do not wish to enforce specific
methods of migration or communication as such methods
may not be universally applicable. With our system, an
agent can migrate by sending its executable and data cap-
turing its “state” to the new location. The executable that
arrives at the new location simply reads in the state data as
its first operation.

Any particular implementation of agents must restrict
migration, communication, and host access for reasons of
security and practicality, the most pressing concern being
security. Providing for the security of the machine hosting
the agent is not a new problem; its solution is an integral part
of the design of any time-sharing system. This problem is
far from solved, but many current solutions are reasonable.
A more novel set of problems is raised by the agent’s abili-
ties to migrate and communicate. These abilities bring the
potential for the agent to attack systems that never had any
intention of hosting agents. Moreover, the agent’s potential
for replication paves the way for attacks of unprecedented
magnitude.

Since migration requires communicatialn, it follows that
the majority of security needs can be addressed by consider-
ing communication alone. Let us then consider the problem
of protecting remote machines from agent communication
(especially important when those “remote” machines are in-
side the same firewall as the host machine). Most agent
systems address this indirectly by providing only a propri-
etary communication mechanism - existing software cannot
be attacked by such agents because the proprietary mech-
anism cannot emulate existing protocols. Unfortunately,
specialized protocols often limit the range of applications.
For instance, agents that communicate through an offline
batch communication mechanism would have a very diffi-
cult time manipulating an audio stream carried over UDP.
Instead, our general security policy is to restrict communi-
cation to only those parties who desire it (note, however,
that we allow agents unrestricted communication to web
servers). This security policy provides protection for ex-
isting systems as well as agents themselves. The intent is
to make being an agent host no more of a risk than using
applets in a well-designed web browser.

rity problems: hostile agents will appear and their intended
targets will be only other agents, not the host systems.

Web browser Applets. Whether web browser applets
should be considered agents or not is largely a matter of
opinion, but if they are not agents, a strong case could be
made that this is so largely because of the standard applet
security policy (an applet may open a socket only to its
machine of origin and may not listen for any connection).
In any case, an applet could act as an agent host.

AgentTCL. AgentTCL [7] agents migrate via a modified
TCL interpreter facilitated agent- j ump and are provided
with message based communication as well as a named
stream between two agents through agentmeet. The
dedicated AgentTCL server accepts and executes incoming
agents, accepts and buffers incoming messages and connec-
tion requests, and enforces the security policies.

Infospheres. The infospheres project [3] has more en-
compassing goals than many others, “the Caltech Infos-
pheres project develops theories, methods and tools to sup-
port infospheres” where an infosphere is “our current state
and a set of interfaces through which we interact”; in more
mundane terms, they are building and theorizing about a
distributed object system. They currently use Java with
communication through remote method invocation and syn-
chronouslasynchronous message primitives.

TACOMA. TACOMA [8] is based on TCL and a single
(but complete) communication mechanism meet. An agent
communicates with another not by sending a message, but
by traveling to the remote TACOMA host and exchanging
information there, carrying its state and other data along
in “folders”. Agent hosting is mediated by a background
firewall agent.

IBM Aglets. The aglet system [9] provides an envi-
ronment for dispatching and hosting java agents. Aglets ex-
change messages by invoking the methods of “proxy” agents
(similar to java RMI stubs) and are capable of halting them-
selves and resuming execution on a remote host. Filesys-
tem access can be based on whether an aglet is “trusted”
(originated on the host machine) or “untrusted” (originated
elsewhere). Aglet transport is handled by a protocol super-
ficially different from but incompatible with HTTP.

3. Webvector Architecture
2. Agent Systems Comparison

Agent systems can be distinguished by migration and
communication mechanisms, security policies, and sup-
ported languages or environments. Most systems do not
discuss security in detail, though, because their migration
and communication mechanisms do not interface with ex-
isting software. Still, it is important to realize that an estab-
lished agent system (where establishment means that agents
are performing tasks of value) will develop its own secu-

We see agents as a natural part of the World Wide Web
and have allowed this to guide the design of Webvector.
For example, it seems reasonable to send an agent to a
remote location, have it perform some computation suit-
able to that location, then as a result of that computation,
produce a document (perhaps in HTML) that we retrieve
upon completion. The document that we retrieve would
be most naturally retrieved and viewed in a web browser,
hence it makes sense for the agent’s files to have URLs as-

101
Page 2 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

sociated with them (as a matter of course). We take this
idea a little further, as files are not the only resources served
by URLs. For instance, the “telnet:” protocol identifies a
TCP-port on a given machine. Thus, if an agent wishes
to listen on a certain port, it can make the URL available

ible” directories. Such invisible directories cannot be seen
by other agents (unless they know the name of the direc-
tory) thereby giving agents a level of security comparable to
standard login passwords.

for that connection. Moreover, the agent can identify the
purpose of the port in the text of the hyperlink for the URL;

4. Authentication and Security
for instance agent
status. Notice that the above protocol is given as
“x-tcp” rather than “telnet”. We propose two URL
protocol strings: “x- tcp” and “x-udp” for such purposes.

context as it assists agents and other entities in finding each

numbers) and provides protection for remote machines and
other agents.

Webvector is composed of essentially three components:

Authentication. Webvector accepts two categories of
agents, S IGNED andUNSIGNED; these denote files or agent
components that have been received and verified as digitally
signed or received with no such authentication respectively.

untrustworthy host, but there are two in which a

be trusted to have verified that the SIGNED agent is indeed
acting on behalf of the creator. We can then view the agent
as an extension of the creator’s machine. If the host is not

This mechanism is a Of Our agent An agent is unlikely to be able to protect itself from an

Other (without the Of pre-defined port signed agent can be useful. If the host is trusted, then it can

a cgi-bin script called webvector. cgi that unpacks and
executes agents, a security policy enforced through our Java
Securi tyManager, and a collection of core routines and
classes in a Java package called Webvector. The agent
expects to find all of these components on the host sys-
tem, although it will interact directly only with the package
Webvector. As we fine-tune the code that makes up the
Webvector package, we hope to move a little more from the
host machine classes into the classes that the agent brings
along with it. This is of benefit for two reasons: in terms of
security, there is no question that a smaller host system is
easier to analyze; in terms of maintainability, putting more
code with the agents itself ensures that the agent always
finds the version that it expects.

We provide a class called NamedServerSocket
whose constructor takes the string socketname; this class
interfaces with our SecurityManager and places an entry as
described above (with hyperlink text from socketname)
in the agent’s services . html file. Besides providing
a way of indicating how to communicate with an agent on
the appropriate channel, we use the above mechanism to
apply a security policy as follows. An agent is only al-
lowed to open sockets corresponding to the URLs found
in the hyperlinks of other agents’ services. html files
which it has discovered through Tracker. lookup (URL
agentURL) calls. This provides two levels of protection.
First, and most important, it provides protection for existing
network services; for instance, only if the system adminis-
trator puts a hyperlink to port 79 in a services. html
file in an agent’s directory can another Webvector agent talk
to the finger daemon on his machine (on the other hand,
this illustrates how easy it is to allow Webvector agents to
communicate with existing software when that is desired).
Second, agents can obtain protection for themselves (at least
from other agents) by placing hyperlinks to some of their
services in services. html files in restricted or “invis-

trusted, and we are only interested in the files, then we can
still retrieve the digital signature along with the files and
check the signature ourselves. Note that an agent should not
attempt to produce signed files at a remote location as an
untrustworthy host could disassemble the agent, learn the
private key, and pass its own files as being signed by the
agent’s authority.

Using a SIGNED agent has the added benefit of provid-
ing a reserved name space. UNSIGNED agent names are
allocated on a “first come, first serve” basis with the first
user of a particular name on a particular machine being re-
warded by a randomly generated “cookie”. This ensures
that they are the only ones who can install further resources
with that agent name (up to the security of their HTTP
connection) on that machine, but other machines may have
agents of the same name but of entirely different origin.
Agents signed using PGP via the MIME multipdsigned
content-type ([6]; [5]) are assigned URLs starting with
http://hostname/webvector/SIGNED/PGP/keylD1 where
keyZD is the keyID of the PGP digital signature (expressed as
eight hexadecimal digits). Since it is highly improbable for
two keys to have the same keyID, this effectively reserves a
portion of the agent name-space on all machines. WebVec-
tor will attempt to verify the keyID and signature using its
own key ring or through consultation with a collection of key
servers (both set up by the system administrator) and will
not install the agent unless the signature is valid. Observe
that we have not solved the problems related to maintaining
vast numbers of public keys, but there are uses for digital
signatures nonetheless.

Host Security. One of the great advantages of agents is
that the computation can be placed near the data, but this
advantage can be fully realized only if agents are able to
read and write files. Webvector agents are allowed to read
and write files in the same directory as that pointed to by
their base URL. They may read also files outside their own

102
Page 3 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

http://hostname/webvector/SIGNED/PGP/keylD1
https://www.docketalarm.com/

directory, but only indirectly via the web server (like any
other entity on the network) thereby providing privacy for
agents on the same machine.

The restrictions on URLs for agents must be some-
what strict. They must begin with http: //hostname/
webvector/ and this must be the case as services. html
files under the webvector base URL are taken to speak
for the allowed communication access for the whole ma-
chine. User-level Webvector installations could expose
fragile communication resources on machines where the
administrator had no knowledge that it was being opened to
attack by remote agents.

Network Security. As was described in the section on
architecture, Webvector agents cannot open a socket unless
the destination machine has the desired port registered in the
services. html file of some agent and the agent opening
the connection has performed a Tracker. lookup on the
agent using that port. This protects existing software and
provides a mechanism through which agents can protect
themselves.

Agent Security. By using “invisible” directories and files
(most web servers provide a facility for returning a particular
document only when its UFU is given explicitly) agents can
keep a selection of their resources secret from the outside
world. Unfortunately, other users of the host machine may
be able to read the file system directly, thereby bypassing
the web server’s efforts. For this reason we suggest that
the web server be configured in such a way that only the
system administrator and web server itself have read or write
permission on agent files - the fact that web-accessible files
are world readable through the server doe:; not imply that
those files need be world readable through the file system.
Since agents are prohibited from reading files outside their
own directories by the Webvector SecurityManager, such a
policy will provide fairly complete privacy (but still with the
risks associated with any re-use of passwords).

Future Considerations. Further development of secu-
rity policies is warranted. For instance, the massive par-
allelism that can be attained by agents potentially makes
them dangerous instigators of “denial of service” attacks.
Some agents might replicate uncontrollably simply due to
programmer error. Perhaps agents could declare their com-
munication and migration topology, giving each machine
involved a chance to opt out if it would be subject to an
inappropriate load. Network access outside the group of
agent hosts could also be limited and such limits could be
applied to the original agent and its children as a whole.

5. Implementation

Executables. Current agent systems seem to be focused
around two languages: java and TCL. Both languages are
highly portable and expressive, but we have selected java as

the first language supported by our system because of secu-
rity and performance. During our examination of security,
we were impressed with the close integration of the java
Securi tyManager with the entire Java system. Java
may not be suited to a formal verification of security [4],
but considerable resources are being applied to the problem
of making a secure implementation of java, so a workable
solution is likely. Performance is not critical for all agent
applications, but better performance expands the range of
media types usable by agents and brings the potential for
network applications. In any case, it is desirable to use the
host machine efficiently. Java is not currently thought of as
a performance leader, but emerging “just in time” compilers
should prove more than adequate for agent applications. We
do not see the same performance potential in TCL.

Three types of java executables are currently supported:
Thread (orjust plain Runnable started up in a Thread),
Applet (although calls to display routines may not have
the desired effect as an agent does not have a display), and
cgi-bin agents (expected to implement the Runnable inter-
face). Agents expecting to function as cgi-bin agents must
reside in a cgi-bin directory of their installation.

Packaging. Rather than invent a new data format for
agents, we have chosen to interpret existing MIME [2] stan-
dards in an agent context. Agents may be composed of mul-
tiple components; this is served by MIME messages with the
header Content-type: multipart/mixed [I l l .
Given the components of an agent, the host sytem needs
to know which are to be executed; this is served by the
header Content-disposition: inline. Also in
the Content -disposi tion : header is a place for spec-
ifying a filename; this is naturally used for the filename of the
particular component on the host system (subject to security
constraints, of course). Once a component has a filename, it
automatically inherits a URL. It is our expectation that the
MIME standard will continue to increase in popularity and
this will result in the production of a variety of tools that
facilitate working with agents, even though those tools were
not designed with agents specifically in mind. Further, we
imagine future agents traveling by a variety of means - mov-
ing from one web-server to another, arriving in electronic
mail messages, fanning out by multicast, etc. Anywhere that
the MIME standard was adopted would become a potential
pathway for agents.

Currently, the unpackaging routine (webvec tor. cgi)
is a combination of ksh and perl scripts. We also have simple
packaging utilities written in perl.

Transport. Once encapsulated in a multipart MIME
message, an agent may travel by a variety of means,
but our intent of providing agents with UFZs makes
one means clear: H’ITP. The cgi-bin agent hosting
program webvector.cgi receives an agent via a
POST to the (example) http: //host .edu/cgi-bin/

103
Page 4 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

webvector. cgi/UNSIGNED/agent-name. The Only point Of

interest is that we use component of the path following
webvector. cgi to specify the agent’s authentication as
SIGNED or UNSIGNED and to specify its name.

Currently we use a simple per1 script to initiate the trans-
port of agents, but it would be straightforward to modify
webvector. cgi to accept MIME multipart messages
in the slightly less expressive format produced by web
browsers (web browsers do not generally allow the user
to set the Content-disposition header).

6. Usage

Let us illustrate what is involved in producing and acti-
vating a simple WebVector cgi-bin agent.

The following agent, registerMe. java, appends
the CGI “query-string” to a file with the intended appli-
cation being to gather a list of participants. It’s true that
registerMe . j ava looks like a typical cgi-bin program
rather than something conforming to a specialized agent
API; this reflects our goal that Webvector agents use exist-
ing code as much as possible.

import java.io:;
import java.net.*;

public class registerMe implements Runnable (
public void run I 1 (

String gs i SyStem.9etPTope=ty(”http.query_gtring’);
System.out.p~inelnl*Cantent-type: textlhtml.1;
system.out.println1”):
try i

String line;
RandomAccessFile f = new

f.seek(f.lengthl1):
f.writeBytesiqs + ”
\\n*);
DataInputStream list = new Datalnputstreaml

RandamAccessFilel’../list.html’.“~;

new fileInpUtSt~eaml”../lisf.hunl’)):
while ((line i list.readLine0) != nu111

System.out .pr int ln(l Ine) ;

catch IIOException el I Sy5tem.Out.piintlnl~li >
)

1

The HTML file list. html starts out as a very sim-
ple (one line) file: <HI ALIGN=CENTER> Current list of
Participants </HI> As participant names are appended to
it, we produce a list of names below a centered title.

Compilation of registerMe . j ava. would produce
registerMe. class. Both registerMe. class and
list . html are packaged into a multipart MIME file:

Content-type: muItipart/mixed;boundaryn0.57776819635182619

--0.57776819635182619
ConLent-~i~pos~tion: inline, f i l c n o m e i ’ s g i - b i n / i e ~ = = ~ ~ = ~ ~ . = l ~ ~ = .
Content-type: application/java

(Java bytecodes go here)

--0.57776819635182619
Content-disposition: attachment: filename=*list.html”
Content-type: text/html

<H1 ALIGN=CENTER>CUrrent list of PartiCipantS</Hl>

--0.57776819635182619--

This multipart MIME file is POSTed to the UIU http: / /
host/cgi-bin/webvector.cgi/UNSIGNED/register

Then, the URL http: //host/cgi-bin/ webvector. cgi/
UNSIGNED/register/cgi-bin/registerMe.class?Gauss
would add “Gauss” and return the current list.

7. Applications

Below are a few of our favorite potential applications
for agents. Many of these applications are not realizable
in other agent systems because of the system’s use of a
proprietary message-passing scheme. This has security and
programming efficiency advantages, but we believe those
advantages are outweighed in many cases by the flexibility
offered by the more familiar sockets.

Uploadable Active Resources. The web is a tremendous
publishing tool. One common situation is that of an author
creating a document, then “uploading” that document to a
web-server with both the bandwidth and visibility desired
by the author. Unfortunately, this method does not lend
itself well to publishing all types of resources. For instance,
what if the author wanted to publish a database? Using
our agent system, the author would upload the database, a
cgi-bin agent, and an HTML page containing a form for
communicating with the cgi-bin agent.

As another example, consider where the author wishes
the viewers of the document to contribute to the state of the
document, as in our opening example, where the viewers’
avatars are part of a shared world. The author would upload
data files for generating the world together with agents and
applets for maintaining the shared world-state.

Flexible Multicast. Multicast is very useful in collabora-
tive applications for maintaining a shared “state”. The gen-
eral means of arranging multicast is through the MBONE,
but not every machine participates in the MBONE, nor is
the MBONE algorithm always best suited for every mul-
ticast application. By uploading a network of agents, an
author can create a multicast tree with nodes on machines
of his choosing. Existing applications can be added into
the tree (by a super-user) by entering their ports as URLs in
services. html files.

Search Engines. Search engines are an integral part
of daily life on the web, but currently must resort to (es-
sentially) downloading entire sites. By sending an agent,
producing a digest at the site, then later retrieving the digest,
network usage could be greatly reduced. This is not a novel
application of agents, but searching for resources is so com-
monly performed and so commonly cited as an application
for agents that we would have been remiss without it.

Distributed Computation. Our target applications are
scientific applications including visualization; therefore, ef-
ficient computation (especially from the user’s perspective
and not necessarily in terms of overall resource usage) is of
great interest to us.

Agents can be of computational benefit in two ways:

104
Page 5 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

http://java.net
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

