
Note that the basic authentication protocol does not make use of the Authentication­
Info header we showed in Table 12-1.

Base-64 Username/Password Encoding
HTTP basic authentication packs the username and password together (separated by
a colon), and encodes them using the base-64 encoding method. If you don't know
what base-64 encoding is, don't worry. You don't need to know much about it, and
if you are curious, you can read all about it in Appendix E. In a nutshell, base:.64
encoding takes a sequence of 8-bit bytes and breaks the sequence of bits irito 6-bit
chunks. Each 6-bit piece is used to pick a character in a special 64-character alpha­
bet, consisting mostly of letters and numbers.

Figure 12-4 shows an example of using base:-64 encoding for basic authentication.
Here, the usernameis ''brian-totty" and the password is "Ow!". The browser joins the
username and password with a colon, yielding the packed string "brian-totty:Ow!".
This string is thenbase·64-encoded into this mouthful: "YnJpYW4tdG90dHk6T3ch".

(a) Prompt for username and password .·

,_.·········-----... brian-totty

~--........... -····Ow!

brian-t otty··-------·····
(b) Pack username and password with colon ~brian -totty: Ow!

Ow! ___ -~

(c) Base 64 encode BASE 64ENC (brian-t otty: Ow!),. Yn J p YW4t dG90dHk 6T3 ch

{d) Send authorization Q
lient Server

GET /family/jeff.j~g HTTP/1.0
Authorization: Bas1c YnJ pYW4tdG90dHk6T3ch,.

Figure 12-4. Generating a basic Authorization header from username and password

Base-64 encoding was invented to take strings of binary, text, and international char­
acter data (which caused problems on some systems) and convert them temporarily
into a portable alphabet for transmission. The original strings could then be decoded
on the remote end without fear of transmission corruption.

Base-64 encoding can be useful for usernames and passwords that contain interna­
tional characters or other characters that are illegal in HTTP headers (such as quo­
tation marks, colons, and carriage returns). Also, because base-64 encoding
trivially scrambles the username and password, it can help prevent administrators

282 I Chapter 12: Basic Authentication

Exhibit 2002
IPR2016-01431 - Part 2 of 2

from accidentally ·viewing us ern ames and passwords while administering servers
and networks. ·

Proxy Authentication
Authentication also can be done by intermediary proxy servers. Some organizations
use proxy servers to authenticate users before letting them access servers, LANs, or
wireless networks; Proxy servers can be a convenient way to provide unified access
control across an.organization's resources, because access policies can be centrally
administered on the proxy server. The first step in this process is to establish the
identity via proxy authentication,

The steps involved in proxy authentication are identical to that of web server identifi­
cation. However, the headers and status codes are different. Table 12-3 contrasts the
status codes and headers used in web server and proxy authentication.

Table 12-3. Web server versus proxy authentication

Unauthorized status code: 401

WWW-Authenticate

Authorization

Authentication-Info

Proxy-Authenticate

Proxy-Authorization·

Proxy-Authentication-Info

The Security Flaws ofBasic Authentication
Basic authentication is simple and convenient, but it is not secure. It should only be
used to prevent unintentional access from nonmalicious parties or used in combina­
tion with an encryption technology such as SSL.

Consider the following security flaws:

1. Basic authentication sends the username and password across the network in a
form that can trivially be decoded. In effect, the secret password is sent in the
clear, for anyone to read and capture. Base-64 encoding obscures the usemame
and password, making it less likely that friendly parties will. glean passwords by
accidental network observation. However, given a base 64-encoded usemame
and password, the decoding can be performed trivially by reversing the encod­
ing process. Decoding can even be done in seconds, by hand, with pencil and
paper! Base 64-encoded passwords are effectively sent "in the clear." Assume
that motivated third parties will intercept usemames and passwords sent by
basic authentication. If this is a concern, send all your HTTP transactions over
SSL encrypted channels, or use a more secure authentication protocol, such as
digest authentication.

The Security Flaws of Basic Authentication I 283

2. Even if the secret password were encoded in a scheme that was more compli­
cated to decode, a third party could still capture the garbled usemame and pass­
word and replay the garbled information to origin servers over and over again to
gain access. No effort is madeto prevent these replay attacks.

3. Even if basic authentication is used for noncritical applications, such as corpo­
rate intranet access control or personalized content, social behavior makes this
dangerous. Many users, overwhelmed by a multitude of password-protected ser­
vices, share usernames and passwords. A clever, malicious party may capture a
username and password in the clear from a free Internet email site, for example,
and find that the same usetname and password allow access to critical online
banking sites!

4. Bask authentication offers no protection against proxies or intermediaries that
act as middlemen, leaving authentication headers intact but modifying the test of
the message to dramatically change the nature of the transaction.

5. Basic authentication is vulnerable to spoofing by counterfeit servers. If a user can
be led to believe that he is connecting to a valid host protected by basic authenti­
cation when, in fact, he is connecting to a hostile server or gateway, the attacker
can request a password, store it for later use, and feign an error.

This all said, basic authentication still is useful for providing convenient personaliza­
tion or access control to documents in a friendly environment, or where privacy is
desired but not absolutely necessary. In this way, basic authentication is used to pre­
vent accidental or casual access by curious users.*

For example, inside a corporation, product management may password-protect
future product plans to limit premature distribution. Basic authentication makes it
sufficiently inconvenient for friendly parties to access this data.t Likewise, you might
password-protect personal photos or private web sites that aren't top-secret or don't
contain valuable information, but really aren't anyone else's business either.

Basic authentication can be made secure by combining it with encrypted data trans;.
mission (such as SSL) to conceal the username and password from malicious individ­
uals. This is a common technique.

We discuss secure encryption in Chapter 14. The next chapter explains a more
sophisticated HTTP authentication protocol, digest authentication, that has stron­
ger security properties than basic authentication.

* Be careful that the username/password in basic authentication is not the same as the password on your more
secure systems, or malicious users can use them to break into your secure accounts!

t While not very secure, internal employees of the company usually are unmotivated to maliciously capture
passwords. That said, corporate espionage does occur, and vengeful, disgruntled employees do exist, so it is
wise to place any data that would be very harmful if maliciously acquired under a stronger security scheme.

284 I Chapter 12: Basic Authentication

For More Information
For more information on basic authentication and LDAP, see:

http://www.ietf.orglrfc!rfc2617. txt
RFC 2617, "HTTP Authentication: Basic and Digest Access Authentication."

http://www. ietf. orglrfc!rfc2 616. txt
RFC 2616 "HypertextTransfer Protocol-HTTP/1.1."

For More Information I 285

CHAPTER 13

Digest Authentication

Basic authentication is convenient and flexible but completely insecure. Usernames
and passwords are sent in the clear; and there is no attempt to protect messages
from tampering. The only way to use basic authentication securely is to use it in con­
junction with SSL.

Digest authentication was developed as a compatible, more secure alternative to
basic authentication. We devote this chapter to the theory and practice of digest
authentication. Even though digest authentication is not yet in wide use, the con­
cepts still are important for anyone implementing secure transactions.

The Improvements of Digest Authentication
Digest authentication is an alternate HTTP authentication protocol that tties to fix
the most serious flaws of basic authentication. In particular, digest authentication:

• Never sends secret passwords across the network in the clear

• Prevents unscrupulous individuals from capturing and replaying authentication
handshakes

• Optionally can guard against tampering with message contents

• Guards against several other common forms of attacks

Digest authentication is not the most secure protocol possible.t Many needs for
secure HTTP transactions cannot be met by digest authentication. For those needs,
Transport Layer Security (TLS) and Secure HTTP (HTTPS) are more appropriate
protocols.

* Usernames and passwords are scrambled using a trivial base-64 encoding, which can be decoded easily. This
protects against unintentional accidental viewing but offers no protection against malicious parties. ·

t For example, compared to public key-based mechanisms, digest authentication does not provide a strong
authentication mechanism. Also, digest authentication offers no confidentiality protection beyond protect­
ing the actual password-the rest of the request and response are available to eavesdroppers.

286

However, digest authentication is significantly stronger than basic authentication,
which it was designed to replace. Digest authentication also is stronger than many
popular schemesproposed for other Internet services, such as CRAM-MD5, which
has been proposed for usewith LDAP, POP, and IMAP.

To date, digest authentication has not been widely deployed. However, because of the
security risks inherent to basic authentication, the HTTP architects counsel in RFC
2617 that "any service in present use that uses Basic should be switched to Digest as
soon as practical."* It is not yet clear how successful this standard will become.

Using Digests to Keep Passwords Secret
The motto of digest authentication is "never send the password across the network."
Instead of sending the password, the client sends a ''fingerprint" or "digest" of the
password, which is an irreversible scrambling of the password. The client and the
server both know the secret password, so the server can verify that the digest pro­
vided a correct match for the password. Given only the digest, a bad guy has no easy
way to find what password it came from, other than going through every·password
in the universe, trying each one!t

Let's see how this works (this is a simplified version):

• In Figure 13-la, the clientrequ~sts a protected document.

• In Figure 13-lb, the server refuses to serve the document untiltheclient authen­
ticates its identity by proving it knows the password. The server issues a chal­
lenge to the client, asking for the username and a digested form of the password.

• In Figure 13-lc, the client proves that it knows the password by passing along
the digest of the password. The server knows the passwords for all the users,+ so
it can verify that the user knows the password by comparing the client'-supplied
digest with the server's own internally computed digest. Another party would
not easily be able to make up the right digest if it didn't know the password.

• In Figure 13-ld, the server compares the client-provided digest with the server's
internally computed digest. If they match, it shows that the client knows the
password (or made a really lucky guess!). The digest function can be set to gen­
erate so many digits that lucky guesses effectively are impossible. When the
server verifies the match, the document is served to the client-all without ever
sending the password over the network.

• There has been significant debate about the relevance of digest authentication, given the popularity and
widespread adoption of SSL-encrypted HTTP. Time will tell if digest authentication gains the critical mass
required.

t There are techniques, such as dictionary attacks, where common passwords are tried first. These cryptanal­
ysis techniques can dramatically ease the process of cracking passwords.

:j: In fact, the server really needs to know only the digests of the passwords.

The Improvements of Digest Authentication I 287

Q---,------------(~~;
Client '&>·

(a} Request

Client

Askuser for usern~me and password

digest(" Ow!")= A3FS

(<) Authorilation Q- _ _ --(JI~".S
Client

(d) Success

Server

Please give me the internal sales fore~ast.

You requested a secret financial document.
Please tell nie your username and
password digest.

· ~:~~·-····-········-~ My username 1s "bn"
\~:.··.' .. ·.· .. ··.· .. ··. ·I Please give m~ the !nter. nal sales forecast.

0l · . · My digested password is "A3F5" ·
·Server

digeste'Ow!")= A3f5 V
This is a match!

OK. The digest you sent me matches the.
digest of my internal password, so here is
the document.

Figure 13-1. Using digests for password-obscured authentication

We'll discuss the particular headers used in digest authentication in more detail in
Table 13-B.

One-Way Digests
A digest is a "condensation of a body of information."* Digests act as one-way func­
tions, typically converting an infinite number of possible input values into a finite
range of condensations.t One popular digest function, MD5,:J: converts any arbitrary
sequence of bytes, of any length, into a 128-bit digest.

128 bits = 2128, or about 1,000,000,000,000,000,000,000,000,000,000,000,000,000
possible distinct condensations.

* Merriam-Webster dictionary, .1998.

t In theory, because we are converting an infinite number of input values into a finite number of output values,
it is possible to have two distinct inputs map to the same digest. This is called a collision. In practice, the
number of potential outputs is so large that the chance of a collision in real life is vanishingly small and, for
the purpose of password matching, unimportant.

:j: MD5 stands for "Message Digest #5," one in a series of digest algorithms. The Secure Hash Algorithm (SHA)
is another popular digest function.

288 I Chapter 13: Digest Authentication

What is import<mt about these digests is that if you don't know the secret password,
you'll ha~e an awfully hard time guessing the correct digest to send to the server. .
And likewise, if you have the digest, you'll have an awfully hard time figuring Ol,lt

which of the effectively infinite number of input values generated it. .

The 128 bits of MD5 output often are written as 32 hexadecimal characters, each
character representing 4 bits. Table 13-1 shows a few examples of MD5 digests of
sample inputs. Notice how MD5 takes arbitrary inputs and yields a fixed-length
digest output.

Table 13-1. MDS digest examples

C1A5298F939E87E8F962ASEDFC206918

"bri:Ow!" BEAAAOE34EBDB072F8627C038AB211F8

"3.1415926535897" 4 758977 E19EC E E7083 SBC6DF46 F 4F6DE

"http://www .http-guide.com/index~htm" C617COC7D1D05 F 66 F 59 5 E 2 2A4BO EAAAS

"WE hold these Truths to be self-evident, that all Men are created equal, 66C4EF58DA7CB956BD04233FBB64EOA4
that they are endowed by their Creator with certain unalienable Rights,
that among these are life, liberty and the Pursuit of Happiness-That to
secure these Rights, Governments are instituted among Men, deriving their
just Powers from the Consent of the Governed, that whenever any Form of
Government becomes destructive of these Ends, it is the Right of the People
to alter or to abolish it, and to institute new Government, laying its Founda-
tion on such Principles, and organizing its Powers in such Form, as to them
shall seem most likely to effect their Safety and Happiness."

Digest functions sometimes are called cryptographic checksums, one-way hash func­
tions, or fingerprint functions.

Using Nonces to Prevent Replays
One-way digests save us from having to send passwords in the clear. We can just
send a digest of the password instead, and rest assured that no malicious party can
easily decode the original password from the digest.

·Unfortunately, obscured passwords alone do not save us from danger, because a bad
guy can capture the digest and replay it over and over again to the server, even
though the bad guy doesn't know the password. The digest is just as good as the
password.

To prevent such replay attacks, the server can pass along to the client a special token
called a nonce,* which changes frequently (perhaps every millisecond, or for every

• The word nonce means "the present occasion" or "the time being." In a computer-security sense, the nonce
captures a particular point in time and figures that into the security calculations.

The Improvements of Digest Authentication· I · 289

authentication). The client appends this nonce token to the password before com:..
puting the digest.

Mixing the nonce in with the password causes the digest to change each time the
nonce changes. This prevents replay attacks, because the recorded password digest is
valid only for a particular nonce value, and without the secret password; the attacker
cannot compute the correct digest.

Digest authentication requires the use of nonces, because a trivial replay weakness
would make un-nonced digest authentication effectively as weak as basic authentica­
tion. Nonces are passed from server to client in the WWW-Authenticate challenge.

The Digest Authentication Handshake
The HTTP digest authentication protocol is an enhanced version of authentication
that uses headers similar to those used in basic authentication. Some new options are
added to the traditional headers, and one new optional header, Authorization-Info, is
added.

The simplified three-phase handshake of digest authentication is depicted in
Figure 13-2.

Q I
Oient Server

(1) Server generates nonce
. 1 tc.ba\\engeL. ... -----·· ·

· unll\li-AUtbe~~~~~:~-----····\····:thmS
___ !!!.~~-------d-·rea\m,nonce,a gon - .-_

(3) Choose algorithm from set ' •·········tl) Ser'<eT sen s ···• .--
[generate response digest) <\

[generate client-nonce) ·········---------~uthorizatio 1 t';!f\
(4J ·a:·····-·----!!.t~~~P.ollseJ it~

telnt sends respon;~d:·---------·-·······• 1M~
send algorith 1 tgest ~:%,~ . .

[send client-nonm ,1 ~~ (S) Server venfies d1_gest
ceJ ~it [generate rspauth d1gest] .

• ~- [generate next nonce]
- tic.at\on·\~!~~~~~L------········ 1!1

-~~~~!~--------d···ext nonce ~-
•··············· {6) Ser'<~T sen sa~th digest1 _ - '1!

(7) Client verifies rspauth digest tsend c\1ent rsp _

Figure 13-2. Digest authentication handshake

Here's what's happening in Figure 13-2:

• In Step 1, the server computes a nonce value. In Step 2, the server sends the
nonce to the client in a WWW -Authenticate challenge message, along with a list
of algorithms that the server supports.

290 I Chapter 13: Digest Authentication

• In Step 3, the client selects an algorithm and computes the digest of the se<,:ret
password and the other data. In Step 4, it sends the digest back to the server in
an Authorization message. If the client wants to authenticate the server, it can
send a client nonce. ·

• In Step 5, .the server receives the digest, chosen algorithm, and supporting data
and computes the same digest that the client did. The server then compares the
locally generated digest with the network-transmitted digest and validates that
they match. If the client symmetrically challenged the server with a client nonce,
a client digest is created. Additionally, the next nonce can be precomputed and
handed to the client in advance, so the client can preemptively issue the right
digest the next time.

Many of these pieces of information are optional and have defaults. To clarify things,
Figure 13-J compares the messages sent for basic authentication (Figure 13.;,3a-d)
with a simple example of digest authentication (Figure 13-Je-h).

Now let's look a bit more closely at the internal workings of digest authentication.

Digest Calculations
The heart of digest authentication is the one-way digest of the mix of public informa.,
tion, secret information, and a time.,.limited nonce value. Let's look riow at how the
digests are computed. The digest calculations generally are straightforward.· Sample
source code is provided in Appendix F.

Digest Algorithm Input Data
Digests are computed from three components:

• A pair of functions consisting of a one-way hash function H(d) and digest
KD(s,d), where s starids for secret and d stands for data

• A chunk of data containing security information, including the secret password,
called Al

• A chunk of data containing nonsecret attributes of the request message, called A2

The two pieces of data, Al and A2, are processed by H and KD to yield a digest.

The Algorithms H(d) and KD(s,d)
Digest authentication supports the selection of a variety of digest algorithms. The
two algorithms suggested in RFC 2617 are MD5 and MD5-sess (where "sess" stands
for session), and the algorithm defaults to MD5 if no other algorithm is specified.

* However, they are made a little more complicated for beginners by the optional compatibility modes of RFC
2617 and by the lack of background material in the specifications. We'll try to help ...

Digest Calculations I 291

~:::h-0-~;~-;~;~~;;,;~;~:~~;~~;:~:;;;~--;;;:;;;~:-;-------------- ------ -- ------ - --~ 1-
Ciient · Server

(b) Chalie~/Q ,_ ---------- __ _ ·.;;:;;,~:~- ;;;;- ~;:;;;~:;:;:;;;;··--- --·--- •------------1
/ Client WWW-Authenticate: Basic realm="Shopping Cart" Server
Shoppi Cart .

Username:~';! ·:~;:~~1\f;~'··
Password: ---.. I

(c) Response Q---~~~~-~~~-~~~~~~~~-~:~~-~~~~~~:~;~~~--~~~;~~-:~-----------····································.,. .
·. Client Authonzation: Basic YnJpYW4tdG90dHk6T3ch Server

(d) Success Q,. ... , c , ... , •• ;.:.:H=T:::TP.::/=1.:::1.::2=0:::0.::0::;K ~-
Client

::.:f;i -~;~;:~;~;;;;:~;:~~:~~;:;:;::;;;~~;;;~:;••••• muu """"" ------~1
Client Server

(fl Challen:,: --Q-- ___ ____ _ _ __ __ _ _ ~;~;;~:;·-;;;-;·;~:~;;;;;~~;~~-------- ----·-- _ -I.
f Client WWW-Authenticate: Digest Server
Shopping Cart realw= "Shopping. Cat,t"

U • _,. , ... ; :. " qop= auth, auth -1nt
sername.: .. '' , <.i- nonce="66C4EF58DA7CB956BD04233FBB64EOA4"

Password:) 'i · · ' ---... . I.
(g) Response Q---~~-;-~~~-~-~~~~;~~-~~~~-~~~~-~~~-~;~~-~--~~~;~~-:~·-················--··············--··········-~ .

Client Authonzation: Digest Server

{h) Success

username=''bri"
realm="Shopping Cart"
nonce="66C4EFS8DA7CB956BD04233FBB64EoA4"
uri="/cgi-bin/checkout?cart=17854"
qop="auth"
nc=0000001,
cnonce="CFA9207102EA210EA210FFC1120F6001110D073"
response="E483C94FOB3CA29109A7BA83D10FE519"

Q .. ; HTTP/1.1 200 OK
Client Authorization-Info: nextnonce= Server

"29FE72D109C7EF23841AB914FOC3B831"
qop= "auth"
rspauth="89FSA4CE6FA932F6C4DA120CEB754290"
cnonce="CFA9207102EA210EA210FFC1120F6001110D073"

Figure 13-3. Basic versus digest authentication syntax

292 I Chapter 13: Digest Authentication

If either MD5 or MD5-sess is used; the H ·function computes the MD5 of the. data,.
and the KD digest function computes the MD5 of the colon~joined secret and nonse.:.
cret data. In other words: .

H(<data>) = MDS(<data>)
KD(<secret>,<data>) = H(concatenate(<secret>:<data>))

The Security-Related Data (A 1)
The chunk of data called Al is a product of secret and protection information, such
as the username, password, protection realm, and nonces. Al pertains only to secu­
rity information, not to the underlying message itself. Al is used along with H, KD,
and A2 to compute digests.

RFC 2617 defines two ways of computing Al, depending on the algorithm chosen:

MD5
One:-way hashes are run for every request; Al is the colon-joined triple of user­
name, realm, and secret password.

MD5-sess
The hash function is run only once, on the first WWW -Authenticate hand­
shake; the CPU-intensive hash of username, realm, and secret password is done
once and prepended to the current nonce and client nonce (cnonce) values.

The definitions ofAl are shown in Table 13-2.

Table 13-2. Definitions for Al by algorithm

Al = <user>:<realm>:<password> MDS

MDS-sess Al = MDS(<user>:<realm>:<password>):<nonce>:<cnonce>

The Message-Related Data (A2)
The chunk of data called A2 represents information about the message itself, such as
the URL, request method, and message entity body. A2 is used to . help protect
against method, resource, or message tampering. A2 is used along with H, KD, and
Al to compute digests.

RFC 2617 defines two schemes for A2, depending on the quality of protection (qop)
chosen:

• The first scheme involves only the HTTP request method and URL. This is used
when qop="auth", which is the default case.

• The second scheme adds in the message entity body to provide a degree of mes­
sage integrity checking. This is used when qop="auth-int".

Digest Calculations I 293

The definitions of A2 are shown in Table 13-3.

Table 13-3. Definitions for A2 by algorithm (request digests)

undefined

auth

auth-int

<request-method>:<uri~directive-value>

<request-method>:<uri-directive-value>

<request-method>:<uri-directive-value>:H(<request-entity-body>)
--------'-~ - -------

The request-method is the HTTP request method. The uri-directive-value is the
request URI from the request line. This may be "*,"an "absoluteURL," or an "abs_
path,'' but it must agree with the request URI. In particular, it must be an absolute
URL if the request URI is an absoluteURL.

Overall Digest Algorithm
RFC 2617 defines two ways of computing digests, given H, KD, Al, and A2:

• The first way is intended to be compatible with the older specification RFC
2069, used when the qop option is missing. It computes the digest using the
hash of the secret information and the nonced message data.

• The second way is the modem, preferred approach-it includes support for nonce
counting and symmetric authentication. This approach is used whenever qop is
"auth" or"auth-int". It adds nonce count, qop, and cnonce data to the digest.

The definitions for the resulting digest function are shown in Table 13-4. Notice the
resulting digests use H, KD, A1, and A2.

Table 13-4. Old and new digest algorithms

.. 9o~·-~}·'· ·.~·:·'"):~9)9~~tal~prith~;: •:·.·•·.·
undefined KD(H(Al), <~once>:H(A2)}

author auth-int KD(H(Al), <honce>:<nc>:<cnonce>:<qop>:H(A2))

Deprecated

Preferred

It's a bit easy to get lost in all the layers of derivational encapsulation. This is one of
the reasons that some readers have difficulty with RFC 2617. To try to make it a bit
easier, Table 13-5 expands away the H and KD definitions, and leaves digests in
terms of Al and A2.

Table 13-5. Unfolded digest algorithm cheat sheet

undefined <undefined>
MDS

. MDS-sess

294 I Chapter 13: Digest Authentication

·· ~nfold~d <~lgorithm .
. · • . . •"J;

MDS(MDS(A1):<nonce>:MDS(A2))

Table 13~5. Unfolded digest algorithm cheat sheet (continued)

auth

auth-int

<undefined>
MD5
MD5-sess

<undefined>
MD5
MD5-sess

MD5(MD5(A1):<nonce>:<no:<cnonce>:<qop>:MDS(A2))

MDS(MDS(Al):<nonce>:<nc>:<cnonc~>:<qbp>:MDS(A2))

·-----------------

Digest· Authentication Session
The client response to a WWW -Authenticate challenge for a protection space starts
an authentication session with that protection space (the realm combined with the
canonical root of the server being accessed defines a "protection space").

The authentication session lasts until the client receives another WWW-Authenti­
cate challenge from any server in the protection space. A client should remember the
username; password, nonce, nonce count, and opaque values associated with an
authentication session to use to construct the Authorization header in future
requests within that protection space.

When the nonce expires, the server can choose to accept the old Authorization
header information, even though the nonce value included may not be fresh. Alterna­
tively, the server may return a 401 response with a new nonce value, causing the cli­
ent to retry the request; by specifying "stale=true" with this response, the server tells
the client to retry with the new nonce without prompting for a new username and
password.

Preemptive Authorization
In normal authentication, each request requires a request/challenge cycle before the
transaction can be completed. This is depicted in Figure 13-4a.

This request/challenge cycle can be eliminated if the client knows in advance what
the next nonce will be, so it can generate the correct Authorization header before the
server asks for it. If the client can compute the Authorization header before it is
requested, the client can preemptively issue the Authorization header to the server,
without first going through a request/challenge. The performance impact is depicted
in Figure 13-4b.

Preemptive authorization is trivial (and common) for basic authentication. Browsers
commonly maintain client-side databases of usernames and passwords. Once a user
authenticates with a site, the browser commonly sends the correct Authorization
header for subsequent requests to that URL (see Chapter 12).

Digest Calculations I 295

(a).Normal request/challenge

Q
Client Server

·····--·········---~~guest
············--.. ,. _____ .,..

(1\a\\~~q~.--············: .
. >: ···~····················

·····-. ... 8~quest + .
· ···-----~Y.~ryp_~~~~tion

~ ;C::~.

(\\a.\\~1.'.9~-----··--······· -
..................

.......... -·······
. ······· Renuest:~. ... +auth · Q~t~tton

Sut~~-~~---··········--
..., ··.--···········

(b) Preemptive authorization

Q
Client Server

·····--.......... ,.~~guest
..........................

cna\\~1.'.9~---·;
· -·················

......... Request+
..... --~Y.~~Q~{~~?!on

. ,

-r-l\ol\tei~,9.......... Yf~;
sus~~?? .. -········ ;···

................... ···<.. ~r~;;

·······--.H~!lY.~~!:t:~Y.~horizat' ~E;(~

·-----..?¢~=~~: ::-:~
·--...... Request · . i~

..... ·---.'i:!!Y.~~g_rization \t~
.................. _

j~~~~~~---···············r~
.......... ············ . .:

Figure 13-4. Preemptive authorization reduces message count

Preemptive authorization is a bit more complicated for digest authentication,
because of the nonce technology intended to foil replay attacks. Because the server
generates arbitrary nonces, there isn't always a way for the client to determine what
Authorization header to send until it receives a challenge.

Digest authentication offers a few means for preemptive authorization while retain­
ing many of the safety features. Here are three potential ways a client can obtain the
correct nonce without waiting for a new WWW-Authenticate challenge: .

• Serverpre-sends the next nonce in the Authentication-Info success header.

• Server allows the same nonce to be reused for a small window of time.

• Both the client and server use a synchronized, predictable nonce-generation
algorithm.

296 I Chapter 13: Digest Authentication

Next nonce pregeneration .·
. . .,

The next nonce value can be provided in advance to the client by the Authentication­
Info success header. This header is sent along with the 200 OK response from a pre-.
vious successful authentication.

Authentication-Info: nextnonce="<nonce-value>"

Given the next nonce, the client can preemptively issue an Authorization header.

While this preemptive authorization avoids a request/challenge cycle (speeding up
the transaction), it also effectively nullifies the ability to pipeline multiple requests to
the same server, because the next nonce value must be received before the next
request can be issued. ·Because pipelining is ·expected to be a fundamental technol­
ogy forlatency avoidance, the performance penalty may be large.

Limited nonce reuse

Instead of pregenerating a sequence of nonces, another approach is to allow limited
reuse of nonces. For example, a server may allow a nonce to be reused 5 times, or for
10 seconds.

In this case, the client can freely issue requests with the Authorization header, and it
can pipeline them, because the nonce is known in advance. When the nonce finally
expires, the server is expected to send the client a 401 Unauthorized challenge, with
the WWW-Authenticate: stale==true directive set:

WWW-Authenticate: Digest
realm="<realm-value>"
nonce="<nonce-value>"
stale=true

Reusing nonces does reduce security, because it makes it easier for an attacker to
succeed at replay attacks. Because the lifetime of nonce reuse is controllable, from
strictly no reuse to potentially long reuse, trade-offs can be made between windows
of vulnerability and performance.

Additionally, other features can be employed to make replay attacks more difficult,
including incrementing counters and IP address tests. However, while making
attacks more inconvenient, these techniques do not eliminate the vulnerability.

Synchronized nonce generation

It is possible to employ time-synchronized nonce-generation algorithms, where both
the client and the server can generate a sequence of identical nonces, based on a
shared secret key, that a third partycannot easily predict (such as secure ID cards).

These algorithms are beyond the scope of the digest authentication specification.

Digest Calculations · 1.· 297 ·

Nonce Selection
· The contents of the nonce are opaque and implementation-dependent. However, the
quality ofperformance, security, and convenience depends on a smart choice.

RFC 2617 suggests this hypothetical nonce formulation:

BASE64(time-stamp H(time-stamp ":" ETag ":" private-key))

where time-stamp is a server-generated time or other nonrepe<lting value, ETag is the
value ofthe HTTP ETag header associated with the requested entity, and private~key
is dataknown only to the server.

With a nonce of this form, a server will recalculate the hash portion after receiving
the client authentication header and reject the request if it does not match the nonce
from that header or if the time-stamp value is not recent enough. In this way, the
server can limit the duration of the nonce's validity.

The inclusion of the ETag prevents a replay request for an updated version of the
resource; (Note that including the IP address of the client in the nonce would appear
to offer the server the ability to limit the reuse of the nonce to the same client that orig­
inally got it. However, that would break proxy farms, in which requests from a single
user often go through different proxies. Also, IP address spoofing is notthat hard.)

An implementation might choose not to accept a previously used n()nce or digest, to
protect against replay attacks. Or, an implementation might choose to use one-time
nonces or digests for POST or PUT requests and time-stamps for GET requests.

Refer to "Security Considerations" for practical security considerations that affect
nonce selection.

Symmetric Authentication
RFC 2617 extends digest authentication to allow the client to authenticate the server.
It does this by providing a client nonce value, to which the server generates a correct
response digest based on correct knowledge of the shared secret information. The
server then returns this digest to the client in the Authorization-Info header.

This symmetric authentication is standard as of RFC 2617. It is optional for back..:
ward compatibility with the older RFC 2069 standard, but, because it provides
. important security enhancements, all modern clients and servers are strongly recom­
mended to implement all of RFC 2617's features. In particular, symmetric authenti-
cation is required to be performed whenever a qop directive is present and required
not to be performed when the qop directive is missing. ·

The response digest is calculated like the request digest, except that the message
body information (A2) is different, because there is no method in a response, and ·the
message entity data is different. The methods of computation of A2 for request and
response digests are compared in Tables 13-6 and 13-7.

298 I Chapter 13: Digest Authentication

Table 13~6. Definitions for A2 by algorithm (request digests)

undefined

auth

<request-method>:<uri-directive-value>

<request-method>:<uri-directive-value>
auth-int <request-method>: <uri-directive-value>: H(<request-entity-body>)

------------------· -------------. ---· ·--.-- ··~-

Table 13-t Definitions for A2 by algorithm (response digests)

:<uri-directive-value>

:<uri~directive-value>

undefined

auth

auth-int :<uri-directive-value>:H~<response~~-ntity-~-~dy>) ___________ _

The cnonce value and nc value must be the ones for the client request to which this
message is the response. The response auth, cnonce, and nonce count directives
must be present ifqop="auth" or qop="auth-int" is specified.

Quality of Protection Enhancements
The qop field may be present in all three digest headers: WWW-Authenticate,
Authorization, and Authentication-Info.

The qop field lets clients and servers negotiate for different types and qualities of pro­
tection. For example, some transactions may want to sanity check the integrity of
message bodies, even if that slows down transmission significantly.

The server first exports a comma-separated list of qop options in the WWW -Authen­
ticate header. The client then selects one of the options that it supports and that
meets its needs and passes it back to the server in its Authorizationqop field.

Use of qop is optional; but only for backward compatibility with the older RFC
2069 specification. The qop option should be supported by all modern digest
implementations.

RFC 2617 defines two initial quality of protection values: "auth," indicating authen­
tication, and "auth-int," indicating authentication with message integrity protection.
Other qop options are expected in the future.

Message Integrity Protection
If integrity protection is applied (qop="auth-int"), H (the entity body) is the hash of
the entity body, not the message body. It is computed before any transfer encoding is
applied by the sender and after it has been removed by the recipient. Note that this
includes multipart boundaries and embedded headers in each part of any multipart
content type.

Quality of Protection Enhancements I 299

·Digest Authentication Headers
Both the basic and digest (lUthentication protocols contain an authoriz<ltion chal- ·
lenge, carried by the WWW-Authenticate header, and an authorization response,
carried by the Authorization header. Digest authentication <ldds an optionalAuthori­
zation~Info header, which is sent after successful authentication, to complete a three­
phase handshake and pass along the next nonce to use. The basic and digest authen­
tication headers are shown in Table 13-8.

Table 13-B.HTTP authentication headers

Challenge

·Response

Info

WWW-Authenticate: Basic
realm="<realm-value>"

Authorization: Basic
<base64(user:pass)>

n/a

WWW-Authenticate: Digest
realm="<realm-value>"
nonce="<nonce-value>"
[domain="<list-of-URis>ri]
[opaque="<opijque-token-value>"]
[stale=<true-or-false>]
[algorithm=<digest-algorithm>]
[qop="<list-of~qop-values>"]
[<extension-directive>]

Authorization: .. Digest
username="<username>"
realm="<realm-value>"
nonce="<nonce-value>"
uri=<request-uri>
response~"<32-hex-digit-digest>"
[algorithm=<digest~algorithm>]
[opaque=" <opaque-token-value>"]
[cnonce="<nonce-value>"]
[qop=<qop-value>]
[nc=<8-hex-digit-nonce-count>]
[<extension~directive>]

Authentication-Info:
nextnonce="<nonce-value>"
[qop="<list-of-qop-values>"]
[rspauth="<hex-digest>"]
[cnonce="<nonce-value>"]
[nc=<8-hex-digit-rionce-count>]

---------~-----

The digest authentication headers are quite a bit more complicated. They are ·
described in detail in Appendix F.

Practical Considerations
There are several things you need to consider when working with digest authentica­
tion. This section discusses some of these issues.

300 I Chapter 13: Digest Authentication

Multiple Challenges
A server can issue multiple challenges for a resource, F~r example, if a server does
not know the capabilities of a client, it may provide both basic and digest authentica­
tion challenges. When faced with multiple challenges, the client must choose to
answer with the strongest authentication mechanism that it supports. ·.

User agents must take special care in parsing the W\VW-Authenticate or Proxy­
Authenticate header field value if it contains more than one challenge or if more than
one WWW-Authenticate header field is provided, as a challenge may itself contain a
comma~separated list of authentication parameters. Note that many browsers recog­
nize only basic authentication and require that it be the first authentication mecha­
nism presented.

There are obvious "weakest link" security concerns when providing a spectrum of
authentication options. Servers should include basic authentication only if it is mini­
mally acceptable, and administrators should caution users about the dangers·of shar­
ing the same password across systems when different levels of security are being
employed. · ·

Error Handling
In digest authentication, if a directive or its value is improper, or if a required direc- ·
tive is missing, the proper response is 400 Bad Request.

If a request's digest does not match, a login failure should be logged. Repeated fail­
ures from a client may indicate an attacker attempting to guess passwords.

The authenticating server must assure that the resource designated by the "uri" direc­
tive is the same. as the resource specified· in the request ·line; if they are different, the
server should return a 400 Bad Request error. (As this may be a symptom of an attack,
server designers may want to consider logging such errors.) Duplicating information
from the request URL in this field deals with the possibility that an intermediate
proxy may alter the client's request line. This altered (but, presumably, semantically
equivalent) request would not result in the same digest as that calculated by the client.

Protection Spaces
The realm value, in combination with the canonical root URL of the server being
accessed, defines the protection space.

Realms allow the protected resources on a server to be partitioned into a set of pro­
tection spaces, each with its own authentication scheme and/or authorization data"
base. The realm value is a string, generally assigned by the origin server, which may
have additional semantics specific to the authentication scheme. Note that there may
be multiple challenges with the same authorization scheme but different realms.

Practical Considerations 1· 301

The protection space determines the domain over which credentials can be automati­
cally applied. Jf a prior request has been authorized, the same credentials may be
reused for all other requests within that protection space for a period of time deter-­
mined by the authentication scheme, parameters, and/or user preference. Unless oth­
erwise defined by the authentication scheme, a single protection space cannot extend
outside the scope of its server.

The specificcalculation of protection space depends on the authentication mechanism:

• .·In basic authentication, clients assume that all paths at or below the request URI
are within the same protection space as the current challenge, A client can pre:­
emptively authorize for resources in this space without waiting for another chal:­
lenge from the server.

• In digest authentication, the challenge's WWW-Authenticate: domain field more
precisely defines the protection space. The domain field is a quoted, space-sepa­
rated list of URis. All the URis in the domain list, and all URis logically beneath
these prefixes, are assumed to be in the same protection space. If the domain field
is missing or empty, all URis on the challenging server are in the protection space.

Rewriting U Rls
Proxies may rewrite URis in ways that change the URI syntax but not the actual
resource being described. For example:

• Hostnames may be normalized or replaced with IP addresses.

• Embedded characters may be replacedwith "%"escape forms.

• Additional attributes of a type that doesn't affect the resource fetched from the
particular origin server may be appended or inserted into the URI.

Because URis can be changed by proxies, and because digest authentication sanity
checks the integrity of the URI value, the digest authentication will break if any of
these changes are made. See "The Message-Related Data (A2)" for more information.

Caches
When a shared cache receives a request containing an Authorization header and a
response from relaying that request, it must not return that response as a reply to any
other request, unless one of two Cache-Control directives was present in the response:

• If the original response included the "must-revalidate" Cache-Control directive,
the cache may use the entity of that response in replying to a subsequent request.
However, it must first revalidate it with the origin server, using the request head­
ers from the new request, so the origin server can authenticate the new request.

• If the original response included the "public" Cache-Control directive, the
response entity may be returned in reply to any subsequent request.

302 I Chapter 13: Digest Authentication

Security Considerations
RFC 2617does an admirable job of summarizing some of the security risks inherent
in HTTP authentication schemes. This section describes some of these risks.

Header Tampering
To provide a foolproof system against header tampering, you need either end-to-end
encryption or a digital signature of the headers-preferably a combination of both!
Digest authentication is focused on providing a tamper-proof authentication scheme,
but it does not necessarily extend that protection to the data. The only headers that
have some level of protection are WWW-Authenticate and Authorization.

Replay Attacks
A replay attack, in the current context, is when someone uses a set of snooped
·authentication credentials from a given transaction foranother transaction. While
this problem is an issue with GET requests, it is vital that a foolproof method for
avoiding replay attacks be available for POST and PUT requests. The ability to suc­
cessfully replay previously used credentials while transporting form data could cause
security nightmares.

Thus, in order for a server to accept "replayed" credentials, the nonce values must be
repeated. One of the ways to mitigate this problem is to have the server generate a
nonce containing a digest of the client's IP address, a time-stamp, the resource ETag,
and a private serverkey (as recommendedearlier). In such a scenario, the combina­
tion of an IP address and a short timeout value may provide a huge hurdle for the
attacker.

However, this solution has a major drawback. As we discussedearlier, using the cli­
ent's IP address in creating a nonce breaks transmission through proxy farms, in
which requests from a single user may go through different proxies. Also, IP spoof­
ing is not too difficult.

One way to completely avoid replay attacks is to use a unique nonce value for every
transaction. In this implementation, for each transaction, the server issues a unique
nonce along with a timeout value. The issued nonce value is valid only for the given
transaction, and only for the duration of the timeout value. This accounting may
increase the load on servers; however, the increase should be miniscule.

Multiple Authentication Mechanisms
When a server supports multiple authentication schemes (such as basic and digest),
it usually provides the choice in WWW-Authenticate headers. Because the client is

Security Considerations I 303

not required to opt for the strongest authentication mechanism, the strength of the
resulting authentication is only as good as that of the weakest of the authentication
schemes.

The obvious ways to avoid this problem is to have the clients always choose the
strongest authentication scheme available. If this is not practical (as most of us do
use commercially available clients), the only other option is to use a proxy server to
retain only the strongest authentication scheme. However, such an approach is feasi­
ble only in a domain in which all of the clients are known to be able to support the
chosen.authentication scheme-. e.g., a corporate network.

Dictionary Attacks
Dictionary attacks are typical password-guessing attacks. A malicious user can eaves­
drop on a transaction and use a standard password-guessing program against nonce/
response pairs. If the users are using relatively simple passwords and the servers are
using simplistic nonces, it is quite possible to find a match. If there is no password
aging policy, given enough time and the one~time cost of cracking the.passwords, it
is easy to collect enough passwords to do some real damage.

There really is no good way to solve this problem, other than using relatively com­
plex passwords that are hard to crack and a good password aging policy.

Hostile Proxies and Man-in-the-Middle Attacks . . .

Much Internet traffic today goes through a proxy at one point or another. With the
advent of redirection techniques and intercepting proxies, a user may not even real- ..
ize that his request is going through a proxy. If one of those proxies is hostile or com­
promised, it could leave the client vulnerable to a man-in~the-middle attack.

Such an attack could be in the form of eavesdropping, or altering available authenti­
cation schemes by removing all of the offered choices and replacing them with the
weakest authentication scheme (such as basic authentication).

One of the ways. to compromise a trusted proxy is though its extension interfaces.
Proxies sometimes provide sophisticated programming interfaces, and with such
proxies it may be feasible to write an extension (i.e., plug-in) to intercept and modify
the traffic. However, the data-center security and security offered by proxies them­
selves make the possibility of man-in-the-middle attacks via rogue plug-ins quite
remote.

There is no good way to fix this problem. Possible solutions include clients provid­
ing visual cues regarding the authentication strength, configuring clients to always
use the strongest possible authentication, etc., but even when using the strongest
possible authentication scheme, clients still are vulnerable to eavesdropping. The
only foolproof way to guard against these attacks is by using SSL.

304 I Chapter 13: Digest Authentication

Chosen Plaintext Attacks
Clients using digest authentication use a nonce supplied by the server to generate the
response. However, if there is a compromised or malicious proxy in the middle
intercepting the traffic (or a malicious origin server), it can easily supply a nonce for
response computation by the client. Using the known key for. computing the
response may make the cryptanalysis of the response easier. This is called a chosen
plaintext attack, There are a few variants of chosen plaintext attacks: .·

Precomputed dictionary attacks
This is a combination of a dictionary attack and a chosen plaintext attack. First,
the attacking server generates a set of responses, using a predetermined nonce
and common password variations, and creates a dictionary. Once a sizeable dic­
tionary is available, the attacking server/proxy can complete the interdiction of
the traffic and start sending predetermined nonces to the clients. When it gets a
response from a client, the attacker searches the generated dictionary for matches.
If a there is a match, the attacker has the password for that particular user ..

Batched brute-force attacks

The difference in a hatched brute-force attack is in the computation of the pass­
word. Instead of trying to match a precomputed digest, a set of machines goes to
work on enumerating all of the possible passwords for a: given space. As the
machines get faster, the brute-force attack becomes more and more viable.

In general, the threat posed by these attacks is easily countered. One way to prevent
them is to configure clients to use the optional en once directive,· so that the response
is generated at the client's discretion, not using the nonce supplied by the server
(which could be compromised by the attacker). This, combined with policies enforc­
ing reason:;tbly strong passwords and a good password aging mechanism; can miti­
gate the threat of chosen plaintext attacks completely.

Storing Passwords
The digest authentication mechanism compares the user response to what is stored
internally by the server-usually, usemames and H(Al) tuples, where H(Al) is
derived from the digest of username, realm, and password.

Unlike with a traditional password file on a Unix box, if a digest authentication pass­
word file is compromised, all of the documents in the realm immediately are avail-
able to the attacker; there is no need for a decrypting step. ·

Some of the ways tb mitigate this problem are to:

• Protect the password file as though it contained clear-text passwords.

• Make sure the realm name is unique among all the realms, so that if a password
file is compromised, the damage is localized to a particular realm. A fully quali­
fied realm name with host and domain included should satisfy this requirement.

Security Considerations· I 305

While digest authentication provides a much more robust and secure solution than
basic authentication, it still does not provide any protection for security of the con­
tem-· a truly secure transaction is feasible only through SSL, which we describe in ·
the next chapter.

For More Information
For more information on authentication, see:

http://www. ietf. org/rfc!rfc2 617. txt
RFC 2617, "HTTP Authentication: Basic and Digest Access Authentication.';

306 I Chapter 13: Digest Authentication

CHAPTER 14

Secure HTTP

The previous three chapters reviewed features of HTTP that help identify and
authenticate users. These techniques work well in a friendly community, but they
aren,t strong enough to protect important transactions from a community of moti­
vated and hostile adversaries.

This chapter presents a more complicated and aggressive technology to secure HTTP
transactions from eavesdropping and tampering, using digitalcryptography.

Making HTTP Safe
People use web transactions for serious things. Without strong security, people
wouldn't feel comfortable doing online shopping and banking. Without being able
to restrict access, companies couldn't place important documents on web servers~
The Web requires a secure form of HTTP.

The previous chapters talked about some lightweight ways of providing authentica­
tion (basic and digest authentication) and message integrity (digest qop="auth-int").
These schemes are good for many purposes, but they may not be strong enough for
large purchases, bank transactions, or access to confidential data. For these more
serious transactions, we combine HTTP with digital encryption technology.

A secure version of HTTP needs to be efficient, portable; easy to administer, and
adaptable to the changing world. It also has to meet societal and governmental
requirements. We need a technology for HTTP security that provides:

• Server authentication (clients know they're talking to the real server, not a phony)

• Client authentication (servers know they're talking to the real user, not a phony)

• Integrity (clients and servers are safe from their data being changed)

• Encryption (clients and servers talk privately without fear of eavesdropping)

• Efficiency (an algorithm fast enough for inexpensive clients and servers to use)

• Ubiquity (protocols are supported by virtually all clients and servers)

307

• Administrative scalability (instant securt;: communication for anyone, anywhere)

• Adaptability (supports the best known security methods of the day)

• Social viability (meets the cultural and political needs of the society)

HTTPS
HTTPS is the most popular secure form of HTTP. It was pioneered by Netscape
Communications Corporation and is supported by all major browsers and servers.

You can. tell if a web page was accessed through HTTPS instead of HTTP, because
the URL will start with the scheme https:/1 instead of http:!/ (some browsers· also dis­
play iconic security cues, as shown in Figure 14-1).

https

Welcome to
Joe's Hardware

Store
(VIJ'INW.joes-hardware. com)

Joe's Hardware is a hypothetical online hardware store.

The website is a live test case for the O'Reilly and
Associates reference book "HTTP: The Definitive Guide".

Figure 14-1. Browsing secure web sites

When using HTTPS, all the HTTP request and response data is encrypted before
being sent across the network. HTTPS works by providing a transport-level crypto­
graphic security layer-using either the Secure Sockets Layer (SSL) or its successor,
Transport Layer Security (TLS)-undemeath HTTP (Figure 14-2). Because SSL and
TLS are so similar, in this book we use the term "SSL" loosely to represent both SSL
and TLS.

Because most of the hard encoding and decoding work happens in the SSL libraries,
web clients and servers don't need to change much of their protocol processing logic

308 I Chapter 14: Secure HTTP

Application layer

Transport layer Transport layer

Network layer

Data linklayer

(b) HTTPS

Figure 14~2. HTTPS is HTTP layered over a security layer, layered over TCP

to use secure HTTP. For the most part, they simply need to replace TCP input/out­
put calls with SSL calls and add a few other calls to configure and manage the secu:­
rity ·information.

Digital Cryptography
Before we·talk in detail about HTTPS, we need to provide a little background about
the cryptographic encoding techniques used by SSL and HTTPS. In the next few sec­
tions, we'll give a speedy primer of the essentials of digital cryptography. If you
already are familiar with the technology and terminology of digital cryptographyi feel
free to jumpahead to "HTTPS: The Details."

In this digital cryptography primer, we'll talk about:

Ciphers
Algorithms for encoding text to make it unreadable to voyeurs

Keys
Numeric parameters that change the behavior ofciphers

Symmetric-key cryptosystems
Algorithms that use the same key for encoding and decoding

Asymmetric-key cryptosystems
Algorithms that use different keys for encoding and decoding

Public:-key cryptography
A system making it easy for millions of computers to send secret messages

Digital signatures
Checksums that verify that a message has not been forged or tampered with

Digital certificates
Identifying information, verified and signed by a trusted organization

Digital Cryptography I 309

The Art and Science of Secret Coding
Cryptography is the art and science of encoding and decoding messages. People have
used cryptographic methods to send secret messages for thousands of years. How­
ever, cryptography can do more than just encrypt messages to prevent reading by
nosy folks; it also can be used to prevent tampering with messages. Cryptography
even can be used to prove that you indeed authored a message or transaction, just
like your handwritten signature on a check or an embossed wax seal on an envelope.

Ciphers
Cryptography is based on secret codes called ciphers. A cipher is a coding scheme-a
particular wayto encode a message and an accompanying way to decode the secret
later. The original message, before it is encoded, often is called plaintext or cleartext.
The coded message, after the cipher is applied, often is called ciphertext. Figure 14-J
shows a simple example.

Plaintext

Meet me at the pier
at midnight

Encoder

Figure 14-3. Plaintext and ciphertext

Ciphertext

Phhw ph dw wkh slhu
dwplgqljkw

Decoder

Meet me at the pier
at midnight

Ciphers have been used to generate secret messages for thousands of years. Legend has
it that julius Caesar used a three-character rotation cipher, where each character in the
message is replaced with a character three alphabetic positions forward. In our mod­
ern alphabet, "A" would be replaced by "D," "B" would be replaced by "E," and so on.

For example, in Figure 14-4, the message "meet me at the pier at midnight" encodes
into the ciphertext "phhw ph dw wkh slhu dw plgqljkw" using the rot3 (rotate by 3
characters) cipher.* The ciphertext can be decrypted back to the original plaintext
message by applying the inverse coding, rotating -3 characters in the alphabet.

Cipher
t'~~,~~~f~~~,~~~~,~l~Y~~T~
++++++++++++++++++++++++++

ABCDEFGHIJKLMNOPQRSTUVWXYZABC

Plaintext MEET ME AT THE AT PIER AT MIDNIGHT

Ciphertext PHHW PH DW WKH DW SLHU DW PLGQLJKW

Figure 14-4. Rotate-by-3 cipher example

* For simplicity of example, we aren't rotating punctuation or whitespace, but you could.

110 I Chapter 14: Secure HTTP

Cipher Machines
Ciphers began as relatively shnple algorithms, because human beings needed to do
the encoding and decoding themselves. Because the ciphers were simple, people
could work the codes using pencil and paper and code books. However, it also was
possible for clever people to "crack" the codes fairly easily.

As technology advanced, people started making machines that could quickly and
accurately encode and decode messages using much more complicated ciphers.
Instead of just doing simple rotations, these cipher machines could substitute charac­
ters, transpose the order of characters, and slice and dice messages to make codes
much harder to crack.·

Keyed Ciphers
Because code algorithms and machines could fall into enemyhands, most machines
had dials that could be set to alarge number of different values that changed howthe
cipher worked. Even if the machine was stolen, without the right dial settings (key
values) the decoder wouldn't work.t

These cipher parameters were called keys. Youneeded to enter the right key into the
cipher machine to get the decoding process to work correctly. Cipher keys make a
single cipher machine act like a set of many virtual cipher machines, each of which
behaves differently because they have different key values.

Figure 14-5 illustrates an example of keyed ciphers. The cipher algorithm is the triv­
ial "rotate-by-N" cipher. The value of N is controlled by the key. The same input
message, "meet me at the pier at midnight," passed through the same encoding
machine, generates different outputs depending on the value of the key. Today, vir-
tually all cipher algorithms use keys. .

Digital Ciphers
With the advent of digital computation, two major advances occurred:

• Complicated encoding and decoding algorithms became possible, freed from the
speed and function limitations of mechanical machinery.

* Perhaps the most famous mechanical code machine was the World War II German Enigma. code machine.
Despite the complexity of the Enigma cipher, Alan Turing and colleagues were able to crack the Enigma
codes in the early 1940s, using the earliest digital computers.

t In reality, having the logic of the machine in your possession can sometimes help you to crack the code,
·because the machine logic may point to patterns that you can exploit. Modern cryptographic algorithms usu­
ally are designed so that even if the algorithm is publicly known, it's difficult to come up with any patterns
that will help evildoers crack the code. In fact, many of the strongest ciphers in common use have their
source code available in the public domain, for all to see and study!

Digital Cryptography I 311

Key= 1

+-
Rotate(n) encoder

(b) Plaintext
....---~--,--.:..,

Meet me at the pier
at midnight

Rotate(n) encoder

Ciphertext

(c) Plaintext

.-------.,.---,

Meet me at the pier
at midnight

Rotate(n} encoder

Figure 14-5. The rotate-by~N cipher, using different keys

• It becamepossible to support very large keys, so that a single cipher algorithm
could yield trillions of virtual cipher algorithms, each differing by the value of
the key. The longer the key, the more combinations of encodings are possible,
and the harder it is to crack the code by randomly guessing keys.

Unlike physical metal keys or dial settings in mechanical devices, digital keys are just
numbers. These digital key values are inputs to the encoding and decoding algo­
rithms. The coding algorithms are functions that take a chunk of data and encode/
decode it based on the algorithm and the value of the key.

Given a plaintext message called P, an encoding function called E, and a digital
encoding key called e, you can generate a coded ciphertext message C (Figure 14-6).
You can decode the ciphertext C back into the original plaintext P by using the
decoder function D and the decoding key d. Of course, the decoding and encoding
functions are inverses of each other; the decoding of the encoding of P gives back the
original message P.

312 I Chapter 14: Secure HTIP

PlaintextP

C = E(P,e) Ciphertext C

Encoder£

Figure 14-6 .. Plaintext is. encoded with encoding key e, and decoded using decoding key d

Symmetric-Key Cryptography
Let's talk in more detail about how keys and ciphers work together. Many digital
cipher algorithms are called symmetric-key ciphers, because they use the same key
value for encoding as they do for decoding (e = d). Let's just call the key k.

In a symmetric key cipher, both a sender and a receiver need to have the same shared
secret key, k, to communicate. The sender uses the shared secret key to encrypt the
message and sends the resulting ciphertext to the receiver. The receiver takes the
ciphertext and applies the decrypting function, along with the same shared secret
key, to recover the original plaintext (Figure 14-7).

Ciphertext C

P = D(C,d)

DecoderD

Figure 14-7. Symmetric-key cryptography algorithms use the same key for encoding and decoding

Some popular symmetric-key cipher algorithms are DES, Triple-DES, RC2, and RC4.

Key length and Enumeration Attacks
It's very important that secret keys stay secret. In most cases, the encoding and
decoding algorithms are public knowledge, so the key is the only thing that's secret!

A good cipher algorithm forces the enemy to try every single possible key value in the
universe to crack the code. Trying all key values by brute force is called an enumera­
tion attack. If there are only a few possible key values, a bad guy can go through all of
them by brute force and eventually crack the code. But if there are a lot of possible
key values, it might take the bad guy days, years, or even the lifetime of the universe
to go through all the keys, looking for one that breaks the cipher.

Symmetric-Key Cryptography I 313

The number of possible key values depends on the number of bits in the key and how
many of the possible keys·are valid. For symmetric-key ciphers, usually all of the key
values are valid. • An 8-bit key would have only 256 possible keys, a 40-bit key would
have 240 possible keys(around one trillion keys), and a 128-bit key would generate
around 340,000,000,000,000,000,000,000,000,000,000,000,000 possible keys.

For conventional symmetric-key ciphers, 40-bit keys are considered safe enough for
small, noncritical transactions. However, they are breakable by today's high-speed
workstations, which can now do billions of calculations per second.

In contrast, 128-bit keys are considered very strong for symmetric-key cryptography.
In fact, long keys have such an impact on cryptographic security that the U.S. gov­
ernment has put export controls on cryptographic software that uses long keys, to
prevent potentially antagonistic organizations from creating secret codes that the U.
S. National Security Agency (NSA) would itself be unable to crack. .

Bruce Schneier's. excellent book, Applied Crypto~raphy (John Wiley & Sons),
includes a table describing the time it would take to crack a DES cipher by guessing
all keys, using 1995 technologyand economics.t Excerpts of this table are shown in
Table 14-1.

Table 14-1. Longer keys take more effort to crack (1995 data,from "Applied Cryptography")

$100,000 2 sees 35 hours

$1,000,000 200msecs 3.5 hours

$10,000,000 20 msecs 21 mins

$100,000,000 2 msecs 2mins

$1,000,000,000 200 usecs 13 sees

1 year

37 days

4days

9 hours

1 hour

70,000 years

7,000years

700years

70 years

7 years

1019 years

101s years

1017 years

1016 years

101s years

Given the speed of 1995 microprocessors, an attacker willing to spend $100,000 in
1995 could break a 40-bit DES code in about 2 seconds. And computers in 2002
already are 20 times faster than they were in 1995. Unless the users change keys fre­
quently, 40-:-bit keys are not safe against motivated opponents.

The DES standard key size of 56 bits is more secure. In 1995 economics, a $1 mil­
lion assault still would take several hours to crack the code. But a person with access
to supercomputers could crack the code by brute force in a matter of seconds. In

* There are ciphers where only some of the key values are valid. For example, in RSA, the best-known
asymmetric-key cryptosystem, valid keys must be related to prime numbers in a certain way. Only a small
number of the possible key values have this property.

t Computation speed has increased dramatically since 1995, and cost has been reduced. And the longer it
takes you to read this book, the faster they'll become! However, the table still is relatively useful, even if the
times are off by a factor of 5, 10, or more.

314 I Chapter 14: Secure HTTP

contrast, 128-bit DES keys, similar in size to Triple~DES keys; are believed to be
effectively unbreakable by anyone, at any cost, using a brute-force attack.·

Establishing Shared Keys
One disadvantage of symmetric-key ciphers is that both the sender and receiver have
to have a shared secret key before they can talk to each other.

If you wanted to talk securely with Joe's Hardware store, perhaps to order some wood­
working tools after watching a home-improvement program on public television,
you'd have to establish a private secret key between you and www.joes-hardware.com
before you could order anything securely. You'd need a way to generate the secret key
and to remember it. Both you and Joe's Hardware, and every other Internet user,
would have thousands of keys to generate and remember.

Say that Alice (A), Bob (B), and Chris (C) all wanted to talk to Joe's Hardware (J). A,
B, and C each would need to establish their own secret keys with]. A would need
key kAJ, B would need key kBJ, and C would need key kCJ. Every pair of communicat­
ing parties needs its own private key. If there are N nodes, and each node has to talk
securely with all the other N-1 nodes, there are roughly N2 total secret keys: an
administrative nightmare.

Public .. Key Cryptography
Instead of a single encoding/ decoding key for every pair of hosts, public-key cryptog­
raphy uses two asymmetric keys: one for encoding messages for a host, and another
for decoding the host's messages. The encoding key is publicly known to the world
(thus the name public-key cryptography), but only the host knows the private decod­
ing key (see Figure 14-8). This makes key establishment much easier, because every­
one can find the public key for a particular host. But the decoding key is kept secret,
so only the recipient can decode messages sent to it.

Node X can take its encoding key ex and publish it publicly.t Now anyone wanting
to send a message to node X can use the same, well-known public key. Because each
host is assigned an encoding key, which everyone uses, public-key cryptography
avoids the N2 explosion of pairwise symmetric keys (see Figure 14-9).

• A large key does not mean that the cipher is foolproof, though! There may be an unnoticed flaw in the cipher
algorithm or implementation that provides a weakness for an attacker to exploit. It's also possible that the
attacker may have some information about how the keys are generated, so that he knows some keys are more
likely than others, helping to focus a brute-force attack. Or a user might leave the secret key someplace where
an attacker might be able to steal it.

t As we'll see later, most public.-key lookup actually is done through digital certificates, but the details of how
you find public keys don't matter much now-just know that they are publicly available somewhere.

·Public-Key Cryptography I 315

Q
Client .

Plaintext

Plaintext .

.I
Server

Figure 14-8. Public-key cryptography is asymmetric, using different keys for encoding and decoding

Q
A

{a) Symmetric -key cryptography (b) Public -key cryptography

Figure 14-9. Public-key cryptography assigns a single, public encoding key to each host

Even though everyone can encode messages to X with the same key, no one other
than X can decode the messages, because only X has the decoding private key dx.
Splitting the keys lets anyone encode a message but restricts the ability to decode
messages to only the owner. This makes it easier for nodes to securely send mes­
sages to servers, because they can just look up the server's public key.

Public-key encryption technology makes it possible to deploy security protocols to
every computer user around the world. Because of the great importance of making a

316 I Chapter 14: Secure HTIP

standardized public-key technology suite, a massive Public-Key Infrastructure (PKI)
standards initiative has been under way for well over a decade.

RSA
The challenge· of any public-key asymmetric cryptosystem is to make sure rio bad guy
can compute the secret, private key-. even if he has all of the following dues:

• The public key (which anyone can get, because it's public)

• A piece of intercepted ciphertext (obtained by snooping the network)

• A message and its associated ciphertext (obtained by running the encoder on any
text)

One popular· public-key cryptosystem that meets all these needs is· the·· RSA .algo­
rithm, invented at MIT and subsequently commercialized byRSA Data Security.
Given a public key, an arbitrary piece of plaintext, the associated ciphertext from

encoding the plaintext with. the public key, the RSA algorithm itself, and even the
source code of the RSAimplementation, cracking the code to find the corresponding
private key is believed to be as hard a problem as computing huge primenumbers­
believed to be one of the hardest problems in all of computer science. So, if you can
find a fast way of factoring large numbers into primes, not only can you break into
Swiss bank accounts, but you can also win a Turing Award.

The details of RSA cryptography involve some tricky mathematics, so we won't go
into them here. There are plenty of libraries available to let you perform the RSA
algorithms without you needing a Ph.D. in number theory.

Hybrid Cryptosystems and Session Keys
Asymmetric, public-key cryptography is nifty, because anyone can send secure mes­
sages to a public server, just by knowing its public key. Two nodes don't first have to
negotiate a private key in order to communicate securely.

But public-key cryptography algorithms tend to be computationally slow. In prac­
tice, mixtures of both symmetric and asymmetric schemes are used. For example, it
is common to use public-key cryptography to conveniently set up secure communi'­
cation between nodes but then to use that secure channel to generate and communi­
cate a temporary, random symmetric key to encrypt the rest of the data through
faster, symmetric cryptography.

Digital Signatures
So far, we've been talking about various kinds of keyed ciphers, using symmetric and
asymmetric keys, to allow us to encrypt and decrypt secret messages.

Digital Signatures I 317

In addition to encrypting .and decrypting messages, cryptosystems can be 'used to
sign messages, proving who wrote the message and proving the message hasn't been
tampered with. This technique, called digital signing, is important for Internet secu­
rity certificates, which we discuss in the next section.

Signatures Are Cryptographic Checksums.
Digital signatures are special cryptographic checksums attached to a message. They
have two benefits:

• Signatures prove the author wrote the message. Because only the author has the
author's top-secret private key,· only the author can compute these checksums~
The checksum acts as apersonal "signature" from the author.

• Signatures prevent message tampering. If a malicious assailant modified the mes­
sage in-flight, the checksum would no longer match. And because the checksum
involves the author's secret, private key; the intruder will not be able to fabricate
a correct checksum for the tampered-with message.

Digital signatures often are generated using asymmetric, public-key technology. The
author's private key is used as a kind of "thumbprint," because the private key is
known only by the owner.

Figure 14-10 shows an example of how node A can send a message to node B and
sign it:

• Node A distills the variable-length message into a fixed-sized digest.

• Node A applies a "signature" function to the digest that uses the user's private
key as a parameter. Because only the user knows the private key, a correct signa­
ture function shows the signer is the owner. In Figure 14-10, we use the decoder
function D as the signature function, because it involves the user's private key.t

• Once the signature is computed, node A appends it to the end of the message
and sends both the message and the signature to node B.

• On receipt, if node B wants to make sure that node A really wrote the message,
and that the message hasn't been tampered with, node B can check the signa­
ture. Node B takes the private-key scrambledsignature and applies the inverse
function using the public key. If the unpacked digest doesn;t match node B's
own version of the digest, either the message was tampered with in-flight, or the
sender did not have node A's private key (and therefore was not node A).

• This assumes the private key has not been stolen. Most private keys expire after a while. There also are "re;vo­
. cation lists" that keep track of stolen or compromised keys.

t With the RSA cryptosystem, the decoder function D is used as the signature function, because D already
takes the private key as input. Note that the decoder function is just a function, so it can be used on any
input. Also, in the RSA cryptosystem, the D and E functions work when applied in either order and cancel
each other out. So, E(D(stuff)) =stuff, just as D(E(stuff)) =stuff.

318 I Chapter 14: Secure HTTP

C:---------------------------

1
i Mess~ge i diges · · · ·

t.f5 - og::>. a
.....
Private

key=dA

""

Plaintext
message

··t Signature

Figure 14-10. Unencrypted digital signature

Digital Certificates

"""

~-"

key=eA

In this section, we talk about digital certificates, the "ID cards" of the Internet. Digi­
tal certificates (often called "certs," like the breath mints) contain information about
a user or firm that has been vouched for by a trusted organization.

We all carry many forms of identification. Some IDs, such as passports and drivers'
licenses, are trusted enough to prove one's identity in many situations. For example,
a U.S. driver's license is sufficient proof of identity to let you board an airplane to
New York for New Year's Eve, and it's sufficient proof of your age to let you drink
intoxicating beverages with your friends when you get there.

More trusted forms of identification, such as passports, are signed and stamped by a
government on special paper. They are harder to forge, so they inherently carry a
higher level of trust. Some corporate badges and smart cards include electronics to
help strengthen the identity of the carrier. Some top-secret government organiza­
tions even need to match up your fingerprints or retinal capillary patterns with your
ID before trusting it!

Other forms of ID, such as business cards, are relatively easy to forge, so people trust
this information less. They may be fine for professional interactions but probably are
not enough proof of employment when you apply for a home loan.

The Guts of a Certificate
Digital certitlcates also contain a set of information, all of which is digitally signed by
an official "certificate authority." Basic digital certificates commonly contain basic
things common to printed IDs, such as:

• Subject's name (person, server, organization, etc.)

• Expiration date

Digital Certificates I 319

• Certificate issuer (who is vouching for the certificate)

• Digital signature from the certificate issuer

Additionally, digital certificates often contain the public key of the subject, as well as
descriptive information about the subject and about the signature algorithm used.
Anyone can create a digital certificate, but not everyone can get a well-respected sign­
ing authority to vouch for the certificate's information and sign the certificate with
its private key. A typical certificate structure is shown in Figure 14-1 L

----• bJgitalsig_~atvr~
···.·.·· functiOn·.·.· ·

'

!
-~----------·---- ... 1

Figure 14-11. Typical digital signature format .

X.509 v3 Certificates
Unfortunately, there is no single, universal standard for digital certificates. There are
many, subtly different styles of digital certificates, just as not all printed ID cards con­
tain the same information in the same place. The good news is that most certificates
in use today store their information in a standard form, called X.509 v3. X.509 v3 cer­
tificates provide a standard way of structuring certificate information into parseable
fields. Different kinds of certificates have different field values, but most follow the
X.509 v3 structure. The fields of an X.509 certificate are described in Table 14-2.

Table 14-2. X.509 certificate fields

Serial Number

Signature Algorithm 10

Certificate Issuer

Validity Period

320 I Chapter 14: Secure HTTP

The X.509 certificate version number for this certificate. Usually version 3

A unique integer generated by the certification authority. Each certificate from a CA must
have a unique serial number.

The cryptographic algorithm used for the signature. For example, "MD2 digest with RSA.
encryption". ·

The name for the organization that issued and signed this certificate, in X.SOO format.

When this certificate is valid, defined by a start date and an end date.

Table 14-2. X.509 certificate fields (continued)

f§:tit
Subject's Name The entity described in the certificate; such as a person or an organization; The subject

name is in X.SOO format.

Subject's Public Key Information The public key for the certificate's subject, the algorithm used for the public key, and any
additional parameters.

Issuer Unique ID (optional) An optional unique identifier for the certificate issuer, to allow the potential reuse of the
same issuer name.

Subject Unique ID (optional)

Extensions

An optional unique identifier for the certificate subject,to alfow the potential reuse ofthe
same subject name.

An optional set of extension fields (in version 3 and higher). Each extension field is flagged
as critical or noncritical. Critical extensions are importantand must be understood by the
certificate user.lf a certificate user doesn't recognize a critical extension field, it must
reject the certificate. Common extension fields in use include:
Basic Constraints

Subject's relationship to certification authority
Certificate Policy

The policy under which the certificate is granted
Key Usage

Restricts how the public key can be used

Certification Authority Signature The certification authority's digital signature ofall of the above fields, using the speCified
signing algorithm ..

There are several flavors of X.509~based certificates,· including (among others) web
server certificates, client email certificates, software code-signing certificates, and cer­
tificate authority certificates.

Using Certificates to Authenticate Servers
When you establish a secure web transaction through HTTPS, modern browsers
automatically fetch the digital certificate for the server being connected to. If the
server does not have a certificate, the secure connection fails. The server certificate
contains many fields, including:

• N arne and hostname of the web site

• Public key of the web site

• Name of the signing authority

• Signature from the signing authority

When the browser receives the certificate, it checks the signing authority.* If it is a
public, well-respected signing authority, the browser will already know its public key

• Browsers and either Internet applications try hard to hide the details of most certificate management, to make
browsing easier. But, when you are browsing through secure connections, all the major browsers allow you
to personally examine the certificates of the sites to which you are talking, to be sure all is on the up-and-up.

Digital Certificates I 321

(browsers ship with certificates of many signing authorities preinstalled), so it can
verify the signature as we discussed in the previous section, "Digital Signatures."
Figure 14-12 shows how a certificate's integrity is verified using its digital signature.

------------------'-------·Q
~

.· :o{here~teo$iimintorillation. · ~
~ Message iMessagedigest

r·····--··-·· ··- ~~halsi9natur;·. > -_-1----fg::> ~nn..tf19_~~
. . Signing authority's

public key

Figure 14~12. Verifying that a signature is real

If the signing authority is unknown, the browser isn't sure if it should trust the sign­
ing authority and usually displays a dialog box for the user to read and see if he trusts
the signer. The signer might be the local IT department, or a software vendor.

HTTPS: The Details
HTTPS is the most popular secure version of HTTP. It is widely implemented and
available in all major commercial browsers and servers. HTTPS combines the HTTP
protocol with a powerful set of symmetric, asymmetric, and certificate-based crypto­
graphic techniques, making HTTPS very secure but also very flexible and easy to
administer across the anarchy of the decentralized, global Internet.

HTTPS has accelerated the growth of Internet applications and has been a major
force in the rapid growth of web-based electronic commerce. HTTPS also has been
critical in the wide-area; secure administration of distributed web applications.

HTTPS Overview
HTTPS is just HTTP sent over a secure transport layer. Instead of sending HTTP
messages uner1crypted to TCP and across the world-wide Internet (Figure 14-13a),
HTTPS sends the HTTP messages first to a security layer that encrypts them before
sending them to TCP (Figure 14-13b).

322 · I Chapter 14: Secure HTTP

Application layer

Application layer Security layer

Transport layer Transport layer

Network layer Network layer .

Data link layer Data link Ioyer

(a) HTTP (b) HTTPS

Figure 14-13. HTTP transport-level security

Today, the HTTP security layer is implemented by SSL and its modern replacement,
TLS. We follow the common practice of using the term "SSL" to mean either SSL or
TLS.

HTTPS Schemes
Today, secure HTTP is optional. Thus, when making a request to a web server, we
need a way to tell the web server to perform the secure protocol version of HTTP.
This is done in the scheme of the URL.

In normal, nonsecure HTTP, the scheme prefix of the URL is http, as in:

http://www.joes-hardware.com/index.html

In the secure HTTPS protocol, the scheme prefix of the URL is https, as in:

https:/lcajun-shop.securesites.com!Merchant2/merchant.mv?Store_Code=AGCGS

When a client (such as a web browser) is asked to perform a transaction on a web
resource, it examines the scheme of the URL:

• If the URL has an http scheme, the client opens a connection to the server on
port 80 (by default) and sends it plain-old HTTP commands (Figure 14-14a).

• If the URL has an https scheme, the client opens a connection to the server on
port 443 (by default) and then. "handshakes" with the server, exchanging some
SSL security parameters with the server in a binary format, followed by the
encrypted HTTP commands (Figure 14-14b).

Because SSL traffic is a binary protocol, completely different from HTTP, the traffic
is carried on different ports (SSL usually is carried over port 443). If both SSL and
HTTP traffic arrived on port 80, most web servers would interpret binary SSL traffic
as erroneous HTTP and close the connection. A more integrated layering of security
services into HTTP would have eliminated the need for multiple destination ports,
but this does not cause severe problems in practice. .

Let's look a bit more closely at how SSL sets up connections with secure servers.

HTTPS: The Details I 323

(a) HTTP request

Q
Client

(b) HTTPS request

n.·····.
~

Client

Server

Se(ure server
--~----------------------------

(c) HTTPS over HTTP tunnel

Client Secure server

Figure 14-14. HTTP and HTTPS port numbers

Secure Transport Setup
In unencrypted HTTP, a client opens a TCP connection to port 80 on a web server,
sends a request message, receives a response message, and closes the connection.
This sequence is sketched in Figure 14-15a.

The procedure is slightly more complicated in HTTPS, bec~use of the SSL security
layer. In HTTPS, the client first opens a connection to port 443 (the default port for
secure HTTP) on the web server. Once the TCP connection is established, the client
and server initialize the SSLlayer, negotiating cryptography parameters and exchang­
ing keys. When the handshake completes, the SSL initialization is done, and the cli­
ent can send request messages to the security layer. These messages are encrypted
before being sent to TCP. This procedure is depicted in Figure 14-15b.

SSL Handshake
Before you can send encrypted HTTP messages, the client and server need to do an
SSL handshake, where they:

• Exchange protocol version numbers

• Select a cipher that each side knows

• Authenticate the identity of each side

• Generate temporary session keys to encrypt the channel

324 I Chapter 14: Secure HTTP

(a) Unencrypted HTTP transaction

~--·-----
Oient

c.--------
Client

Q-------
Ciient

HTTP response sent over TCP

Q--------
Ciient

TCP connection close

(b) Encrypted HTTPS transaction

I

. l..EJ.~
--·----~~<!>~--------

Server : Client

. -------.t¢c~
Server 1 Client

I

44a
-~------~

Server

I HTTP request sent over SSUencrypted request sent over TCP
- - - - - - - - - - 1- - - ·- -- -·· - - ·- ··- - .::. - ·- --.- .,.. - -- - - -

~--Server
' . . I

1 _H"Q:P ~se_on2e ~n!_OV!_r ~l~n~y!?!e<!_re~po!ls~e~t ~e0"C~ . _ _

1
SSL close notification

I_ ... - - - -- - ·- - - - - - - - - -· -· - - .- -

I

. --------I¢Q~-------
Server : Client

I .

: TCP connection close

-----"··1
Server

Figure 14-15, HTTP and HTTPS transactions

Before any encrypted HTTP data flies across the network, SSL already has sent a
bunch of handshake data to establish the communication. The essence of the SSL
handshake is shownin Figure 14-16.

This is a simplified version of the SSL handshake. Depending on how SSL is being
used, the handshake can be more complicated, but this is the general idea.

HTTPS: The Details I 325

I

. SSL security parameters handshake
\

\
\

I
I

\

\

I
I

\

I

\
\

Figure 14-16. SSL handshake (simplified)

Server Certificates

I
I

I
r----------------------. I

1 {2) Server sends chosen cipher and certificate

~erver

I
I

\ I
, 1 Server I

' 1 (4) Client and server tell each other to start encryption 1

'l_-------------------- _I

SSL supports mutual authentication, carrying server certificates to clients and carry­
ing client certificates back to servers. But today, client certificates are not commonly
used for browsing. Most users don't even possess personal client certificates.* A web
server can demand a client certificate, but that seldom occurs in practice.t

On the other hand, secure HTTPS transactions always require server certificates.
When you perform a secure transaction on a web server, such as posting your credit
card information, you want to know that you are talking to the organization you
think you are talking to. Server certificates, signed by a well-known authority, help
you assess how much you trust the server before sending your credit card or per­
sonal information.

The server certificate is an X.509 v3-derived certificate showing the organization's
name, address, server DNS domain name, and other information (see Figure 14-17).
You and your client software can examine the certificate to make sure everything
seems to be on the up-and-up.

* Client certificates are used for web browsing in some corporate settings, and client certificates are used for
secure email. In the future, client certificates may become more common for web browsing, but today
they've caught on very slowly.

t Some organizational intranets use client certificates to control employee access to information.

326 I Chapter 14: Secure HTTP

Certificate serial number 35:DE:F4:CF
Certificate expiration date Wed,Sep 17,2003
Site's organization name Joe's Hardware Online
Site's ON$ hostname www.joes-hardware.com
Site's publickey ell•
Certificate issuer name RSA Data Security
Certificate issuer signature JoM'l>oe.

Figure 14-17. HTTPS certificates areX.509 certificates with site information

Site Certificate Validation
SSL itself doesn't require you to examine the web server certificate, but most mod­
ern browsers do some simple sanity checks on certificates and provide you with the
means to do more thorough checks. One algorithm for web server certificate valida­
tion, proposed by Netscape, forms the basis of most browser's validation tech­
niques. The steps are:

Date check
First, the browser checks the certificate's start and end dates to ensure the certifi­
cate is still valid. If the certificate has expired or has not yet become active, the
certificate validation fails and the browser displays an error.

Signer trust check
Every certificate is signed by some certificate authority (CA), who vouches for
the server. There are different levels of certificate, each requiring different levels
of background verification. For example, if you apply for an e-commerce server
certificate, you usually need to provide legal proof of incorporation as a business.

Anyone can generate certificates, but some CAs are well-known organizations
with well-understood procedures for verifying the identity and good business
behavior of certificate applicants. For this reason, browsers ship with a list of
signing authorities that are trusted. If a browser receives a certificate signed by
some unknown (and possibly malicious) authority, the browser usually displays
a warning. Browsers also may choose to accept any certificates with a valid sign­
ing path to a trusted CA. In other words, if a trusted CA signs a certificate for
"Sam's Signing Shop" and Sam's Signing Shop signs a site certificate, the
browser may accept the certificate as deriving from a valid CA path.

HTTPS: The Details I 327

Signature check
Once the·signing authorityis judged a~.trustworthy, the browser checks the cer~
tificate's integrity by applying the signing authority's public key to the signature
and comparing it to the checksum.

Site identity check
To prevent a server from copying someone else's certificate or intercepting their.
traffic,. most browsers try to verify that the domain name in the certificate matches
the domain name of the server they talked to. Servercertifica.tes usually contain a
single domain name, but some CAs create certificates that contain lists of server
names or wildcarded domain names, for clusters or farms of servers. If the host~
name does not match the identity in the. certificate, user~oriented clients must
either notify the user or terminate the connection with a bad certificate error.

· Virtual Hosting and Certificates
It's sometimes tricky to deal with secure traffic on sites that are virtually hosted (mul~
tiple hostnames on a single server). Some popular web server programs support only
a single certificate .. If a user ;:trrives for a virtual hostname that does not strictly match
the certificate name, a warning box is displayed.

For example, consider the Louisiana~themed e~cm;nmerce site Cajun~Shop.com. The
site's hosting provider provided the official name cajun-shop.securesites.com. When
users go to https://www.cajun-shop.com, the official hostname listed in the server cer­
tificate (*.securesites.coin) does not match the virtual hostname the user browsed to
(www.cajun-:-shop.com), and thewamingin Figure 14-18 appears.

To prevent this problem, the owners of Cajun-Shop.com redirect all users to cajun­
shop.securesites.com when. they begin secure transactions. Cert management. for vir­
tually hosted sites can be a little tricky.

A Real HTTPS Client
SSL is a complicated binary protocol. Unless you are a crypto expert, you shouldn't
send raw SSLtraffic directly. Thankfully, several commercial and open source librar­
ies exist to make it easier to program SSL clients and servers.

OpenSSL
OpenSSL. is the most popular open source implementation of SSL and TLS. The
OpenSSL Project is a collaborative volunteer effort to develop a robust, commercial­
grade, full~featured toolkit implementing the SSL and TLS protocols, as well as a full­
strength, general-purpose cryptography library. You can get information · about
OpenSSL, and download the software, from http://www.openssl.org.

· 328 I Chapter14: Secure HTTP

CAJIJM~.s·Jior>.co .. :
4 GCili1N£1' Odlllll GIIOC*"IIll" .SilQI>

(a) The hostname in thisURL (www.cajuil~shop.com)
does not match the name in the certificate; because the
site is virtually hosted, and the certificate is made out ··
to *.securesites.com.

(b) A dialog box warns the ~ser that the site's certificate has
a valid date and is from a valid certificate authority, but the
name listed in the certificate does not match the site
requested in the URL. ·· · ·

(c) To get more details the user presses the "View Certificate"
button, and sees that the certificate is a wildcard certificate
made out to "*.securesites.com': With this information, the user
can decide whether to accept or decline the certificate. ·

(d) Accepting the certificate loads the page through the secure
HTIPS protocol.

To avoid this kind of user error, this particular site directs all
HTTPS traffic to the hostname alias cajun-shop.securesites.com.
This virtual hostname matches the nam~ on the certificate
provided by the ISP aspart of their commerce package.

Figure 14-18. Certificate name mismatches bring up certificate error dialog boxes

You might also hear of SSLeay (pronounced S-S-L-e-a~y). OpenSSL is the successor
to the SSLeay library, and it has a very similar interface. SSLeay was originally devel...,
oped by Eric A. Young (the "eay" of SSLeay).

A Simple HTTPS Client
In this section, we'll use the OpenSSL ·package· to write an extremely primitive
HTTPS client. This client establishes an SSL connection with a server, prints out

A Real HTTPS Client I 329

some identification information from the site server, sends an HTTP GET request
across the secure channel, receives an HTTP response, and prints the response.

The C program shown below is an OpenSSL implementation of the trivial HTTPS
client. To keep the program simple, error-handling and certificate-processing logic
has not been included.

Because error handling has been removed from this example program, you should
use it only for explanatory value. The software will crash or otherwise misbehave in
normal error conditions.

/**
* https-'client.c --- very simple HTTPS client with no error checking
* usage: https_client servername
**/

#include <stdio.h>
#include <memory.h>
#include <errno.h>
Minclude <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/ihet.h>
#include <netdb.h:> .

#include <openssl/crypto. h> .
#inciude <openssl/x509.h>
#include <openssl/pem.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

void main(int argc, char **argv)
{

SSL *ssl;
SSL_CTX *ctx;
SSL_METHOD *client_method;
XS09 *server_cert;
int sd,err; ·
char *str,*hostname,outbuf[4096),inbuf[4096],host_header[S12];
struct hostent *host_entry;
struct sockaddr_in server_socket_address;
struct in_addr ip;

I*~=======================================* I
I* (1) initialize SSL library */
/*==*/

SSleay_add_ssl_algorithms();
client_method = SSLv2_client_method();
SSL_load_error_strings();
ctx = SSL_CTX_new(client_method);

330 I Chapter 14: Secure HTTP

prihtf("(l) SSL context initialized\n\n");

I*===* I
I* (2) convert server hostname into IP address *I
1*===*1

hostname = argv[l];
host_entry = gethostbyname(hostname);
bcopy(host_entry->h...,addr, &(ip.s_addr), host_entry~>h_length);

printf("(2) '%s' has IP address '%s'\n\n", hostname, inet_ntoa(ip));

I*========================<=============;:===========* I
I* (3) open a TCP connection to port 443 on server *I
1*===========':'=====================================*1

sd;. socket (AF:_INH, SOCK_STREAM, o);

memset(&server_socket_address, '\0', sizeof(server_socket_address));
server_socket_address. sin_ family = AF _INET; ·
servet_socket~address.sin_port = htons(443);
memcpy(&(server_socket_address.sin_addr.s_addr),

host_entry->h_addr, host_entry->h _ _:length);

err = connect(sd, (struct sockaddr*) &server socket address,
sizeof(server_socket_address))'"i . - ·

if (err < o) { perror("can't connect to server port;'); exit(l); }

printf(" (3) TCP connection open to host '%s', port %d\n\n",
hosthame, server_socket_address.sin_port);

I*==* I
F* (4) initiate the SSL handshake over the TCP connection *I
1*=·===========.====;;.=======================================* I

ssl = SSL_new(ctx);
SSL~set_fd(ssl, sd);
err = SSL_connect(ssl);

I* create SSL stack endpoint •1
I* attach SSL stack to socket */
I* initiate SSL handshake *I

printf("(4) SSL endpoint created & handshake completed\n\n");

1*==*1
I* (5) print out the negotiated cipher chosen */
I*==* I

printf("(s) SSL connected with cipher: %s\n\n", SSL_get_cipher(ssl));

I*==* I
I* (6) print out the server's certificate *I
I*==* I

server_cert = SSL_get_peer_certificate(ssl);

A Real HTIPS Client I 331

}

printf("(6) server's certificate was recetved:\n\n");

str == XS09_NAME_oneline(X509_get_subject_name(seiver_tert), o, o);
printf(" subject: %s\n", str);

str "' X509_NAME_oneline(X509_get_issuer_name{server_cert), o, o);
printf(" issuer: %s\n\n", str); ·

!* certificate verification would happen here */

X509_free(server_cert);

I*** I
I* (7) handshake complete --- send HTTP request over SSL */
·I*** I

sprintf(host header,"Host: %s:443\r\n",hostname);
strcpy(outbuf,"GET I HTTP/1.0\r\n");
strcat(outbuf,host.:_;header);
strcat(outbuf,•connection: close\r\n");
strcat(outbuf,"\r\n");

err = SSL_write(ssl, outbuf, strlen(outbuf));
shutdown (sd, 1); /* send EOF to server */

printf("(7) sent HTTP request over encrypted channel:\n\n%s\n",outbuf);

!**!
I* (8) read back HTTP response from the SSL stack */
I** I

err = SSL_read(ssl, inbuf, sizeof(inbuf) - 1);
inbuf[err] = '\o.';
printf C'(8). got back %d bytes of HTTP response:\n\n%s\n",err,inbuf);

!**!
!* (9) all done, so close connection & clean up */
!**!

SSL_shutdown(ssl);
close (sd);
SSL_;free (ssl);
SSL_CTX_free (ctx);

printf("(9) all done, cleaned up and closed connection\n\n");

This example compiles and runs on Sun Solaris, but it is illustrative of how SSL pro­
grams work on many OS platforms. This entire program, including all the encryp'­
tion and key and certificate management, fits in a three-page C program, th4nks to

the powerful features provided by OpenSSL.

332 I Chapter 14: Secure HTTP

Let's walk through the program section by section:

• The top of the program includes support files needed to support TCP network·
ing and SSt. · · ·

• Section l creates the local context that keeps track ofthe handshake parameters
and other state about the SSL connection, by calling SSL_CTX:._new. . .

• Section 2 converts the input hostname (provided as a command.,.line argument)
to an IP address, using the Unix gethostbyname function. Other platforms may
have other ways to provide this facility,

• Section 3 opens a TCP connection to port 443 on the server by creating a local
socket,. setting up the remote address information, and connecting to the remote
server.

• Once the TCP connection is established, we attach the SSL layer tq the TCP con­
nection usingSSL_new and SSL_setJd and perform the SSLhandshake with the
server by calling SSL_connect. When section 4 is done, we have a functioning
SSL channel established, with ciphers chosen and certificates exchanged.

• Section 5 prints out the value of the chosen bulk-encryption cipher.

• Sectio11 6 prints out some of the information contained in the X.509 certificate
sent back from the server, including information about the certificate holder and
the organization that issued the certificate. The OpenSSL library doesn't do any­
thing special with the information in the server certificate. A real SSL applica­
tion, such as a web browser, would do some sanity checks. on the certificate to
make sure it is signed properly and came from the right host. We discussed what
browsers do with server certificates in "Site Certificate Validation." .

• At this point, our SSL connection is ready to use for secure data transfer. In sec­
tion 7, we send the simple HTTP request "GET I HTTP/1.0" over the SSL chan­
nel using SSL_write, then close the outbound half of the connection.

• In section 8, we read the response back from the connection using SSL.:....read, and
print it on the screen. Because the SSL layer takes care of all the encryption and
decryption, we can just write and read normal HTTP commands.

• Finally, we clean up in section 9.

Refer to http://www.openssLorg for more information about the OpenSSL libraries.

Executing Our Simple OpenSSL Client
The following shows the output of our simple HTTP client when pointed at a secure
server. In this case, we pointed the client at the home page of the Morgan Stanley
Online brokerage. Online trading companies make extensive use of HTTPS.

% https_client clients1.online.msdw.com
(1) SSL context initialized

A Real HTTPSCiient ·1 . 333

(2) 'cliehts1.online.msdw.com' has IP address '63.151.15.11'

(3) TCP connection open to host 'clients1.online;msdw.com', port 443

(4) SSL endpoint created & handshake completed

(5) SSL connected with cipher: DES-CBC3-MD5

(6) server's certificate was received:

subject: /C=US/ST=Utah/L=Salt Lake City/O=Morgan Stanley/OU=Online/CN=
clients1.online.msdw.com

issuer: /C=US/O=RSA Data Security, Inc.IOU=Secure Server Certification
Authority

(7) sent HTTP request over encrypted channel:

GET I HTTP/1.0
Host: clientsl.online.msdw.com:443
Connection: close

(8) got back 615 bytes of HTTP response:

HTTP/1.1 302 Found
Date: Sat, 09 Mar 2002 09:43:42 GMT
Server: Stronghold/3.0 Apache/1.3.14 RedHat/3013c (Unix) mod_ssl/2.7.1 OpenSSL/0.9.6
Location: https://clients.online.msdw.com/cgi-bin/ICenter/home
Connection: close
Content-Type: text/html; charset=iso-8859-1

<lDOCTYPE HTML PUBLIC II-/ /IETF/ /DTD HTML 2 .0//EN">
<HTML><HEAD>
<TITLE>302 Fouhd</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved <A HREF="https://clients.online.msdw.com/cgi-bin/ICenter/
home">here<IA>. <P>
<HR>
<ADDRESS>Stronghold/3. o Apache/1. 3.14 RedHat/3013c Server at clients1. online. msdw .com
Port 443</ADDRESS>
</BODY></HTML>

(9) all done, cleaned up and closed connection

As soon as the first four sections are completed, the client has an open SSL connec­
tion. It can then inquire about the state of the connection and chosen parameters
and can examine server certificates.

In this example, the client and server negotiated the DES-CBC3-MD5 bulk-encryption
cipher. You also can see that the server site certificate belongs to the organization
"Morgan Stanley" in "Salt Lake City, Utah, USA". The certificate was granted by RSA
Data Security, and the hostname is "clientsl.online.msdw.com," which matches our
request.

334 I Chapter 14: Secure HTTP

·Once the· SSL channel is established and the client feels comfortable about the site
certificate, it sends its HTTP request over the secure channel. In our example, the cli­
ent sends a simple "GET I HTTP/1.0" HTTP request and receives back a 302 Redi­
rect response, requesting that the user fetch a different URL

Tunneling Secure Traffic Through Proxies.
Clients often use web proxy servers to access web servers on their behalf (proxies are
discussed in Chapter 6). For example, many corporations place a· proxy. at the secu­
rity perimeter of the corporate network and the public Internet (Figure 14-19). The
proxy is the only device permitted by the firewall routers to. exchange HTTP traffic,
and it may employ virus checking or other content controls.

Figure 14-19. Corporate firewall proxy

Firewall
proxy

•
Security
perim~ter

But once the client starts encrypting the data to the server, using the server's public
key, the proxy no longer has the ability to read the HTTP header! And if the proxy can­
not read the HTTP header, it won't know where to forward the request .(Figure 14-20).

dient17;mycompany.com proxy.mycompany.com www.cajun·gifts.com

bdfwr73ytr6ouydoiw687eqidfjwvd76weti76fig287hdi9
8r82yr87pfdy72y87193836POUyqe719eyty3gee98y8787

Figure 14-20. Proxy can't proxy an encrypted request

To make HTTPS work with proxies, a few modifications are needed to tell the proxy
where to connect. One popular technique is the HTTPS SSL tunneling protocol.

Tunneling Secure Traffic Through Proxies I 335

Using the HTTPS tunneling protocol, the client first tells the proxy the secure host
and port to which it wants to connect. It does·. this in plaintext, before encryption

.. starts, so the proxy can read this information.

HTTP isused to send the plaintext endpoint information, using a new extension
method called CONNECT. The CONNECT method tells the proxy to open a con­
nection to the desired host and port number and, when that's done, to tunnel data
directly between the client and server. The CONNECT method is a. one-line text
command that provides the hostname and port of the secure origin server, separated
by a colon. The host:port is followed by a space and an HTTP version string fol.,.
lowed by a CRLF. After that there is a series of zero or more HTTP request header
lines, followed by.an empty line. After the empty line, if the.handshake to establish
the connection was successful, SSL data transfer can begin. Here is an example: ·

CONNECT home.netscape.com:443 HTTP/1.0
User-agent: Mozilla/1.1N

<raw SSL-encrypted data would follow here ... >

After the empty line in the request, the client will wait for a response from the proxy.
The proxy will evaluate the request and make sure that it is valid and that the user is ··
authorized to request such a connection. If everything is in order, the proxy will
make a connection to the destination server and, if succ:essful, send a 200 Cormec­
tion Established response to the client.

HTTP /1. o 200 Connection established
Proxy-agent: Netscape-Proxy/1.1

For more information about secure tunnels and security proxies, refer back to "Tun­
nels" in Chapter 8.

For More Information
Security and cryptography are hugely important and hugely compUcated topics. If
you'd like to learn more about HTTP security; digital cryptography, digital certifi­
cates, and the Public-Key Infrastructure, here are a few starting points.

HTTP Security
Web Security, Privacy & Commerce

Simson Garfinkel, O'Reilly & Associates, Inc. This is one of the best, most read­
able introductions to web security and the use of SSL/TLS and digital certificates.

·http://www;ietforglrfc!rfc2818.txt
RFC 2818, "HTTP Over TLS," specifies how to implement secure HTTP over
Transport Layer Security (TLS), the modern successor to SSL.

336 I · Chapter 14: Secure HTTP

http://www,ietforglrfc/rfc2817.txt
RFC 2817, "Upgrading to TLS Within HTTP/1.1," explains how to use the
Upgrade mechanism in HTTP/1.1 to initiate.TLS over an existing TCP connec­
tion. This allows unsecured and secured HTTP traffic to share the same welt­
known port (in this case, http: at 80 rather than https: at 443). It also enables
virtual hosting, so a single HTTP+ TLS server can disambiguate traffic intended
for several hostnames at a single IP address.

SSlandTLS
http://www. ietf orglrfc!rfc22 46. txt ·. . . .

RFC 2246, "The TLS Protocol Version 1.0," specifies Version 1.0 of theTLS pro··
tocol (the successor to SSL). TLS provides communications privacy over the
Internet. The protocol allows client/ server applications. to communicate in· a way
that is designed tO prevent eavesdropping, tampering, and message forgery.

http://developer.netscape.com!docs/manuals!security/sslinlcontents.htm
''Introduction to SSL" introduces the Secure Sockets Layer (SSL) protocoL Origi­
nally developed by Netscape; SSL has been universallyaccepted on the World
Wide Web for authenticated and encrypted communication between clients and
servers.

http:l/www;netscape.com/eriglssl3/draft302.txt
. "The SSL Protocol Version 3.0" is Netscape's 1996 specification for SSL.

http://developer.netscape.comltech!security/ssl!howitworks.htnil
"How SSL Works'' is Netscape's introduction to key cryptography.

http://www.openssl.org
The OpenSSL Project is a collaborative effort to develop a robust, commercial­
grade, full-featured, and open source toolkit implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols, as well as a
full-strength, general-purpose cryptography library. The project is managed by a
worldwide community of volunteers· that use the Internet to communicate, plan,
and develop the OpenSSL toolkit and its related documentation. OpenSSL is
based on the excellent SSLeay library developed by Eric A. Young and Tim J.
Hudson. The OpenSSL toolkit is licensed under an Apache-style licence, which
basically means that you are free to get and use it for commercial and noncom'­
mercial purposes, subject to some simple license conditions.

Public-Key Infrastructure
http://www. ietf orglhtml. charterslpkix-charter. html

The IETF PKIX Working Group was established in 1995 with the intent of
developing Internet standards needed to support an X.509-based Public-Key
Infrastructure. This is a nice summary of that group's activities.

For More Information I 337

http://www.ietforg/rfc!rfc2459.txt
RFC 2459, "Internet X.509 Public Key Infrastructure Certificate and CRL Pro-.
file," contains details aboutX.509 v3 digital certificates.

Digital Cryptography
Applied Cryptography

Bruce Schneier, John Wiley & Sons. This is a classic book on cryptography for
implementors.

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography
Simon Singh, Anchor Books. This entertaining book is a cryptography primer.
While it's not intended for technology experts, it is a lively historical tour of
. secret coding.

338 I Chapter 14: Secure HTTP

PART IV

Entities, Encodings, and
Internationalization

Part IV is all about the entity bodies of HTTP messages and the content that the
entity bodies ship around as cargo:

• Chapter 15, Entities and Encodings, describes the formats and syntax of HTTP
content.

• Chapter 16, Internationalization, surveys the web standards that allow people to
exchange content in different languages and different character sets, around the
globe.

• Chapter 17, Content Negotiation and Transcoding, explains mechanisms for
negotiating acceptable content.

CHAPTERl5

Entities and Encodings

HTTP ships billions of media objects of all kinds every day. Images, text, movies,
software programs. . . you name it, HTTP ships it. HTTP also makes sure that its
messages can be properly transported, identified, extracted, and processed. In partic-
ular, HTTP ensures that its cargo: . ·

• Can be identified correctly (using Content-Type media formats and Content·
Language headers) so browsers and other clients can process the content properly

• Can be unpacked properly (using Content·Length and Content,-Encoding headers)

• Is fresh (using entity validators and cache-expiration controls)

• Meets the user's needs (based on content-negotiation Accept headers)

• Moves quickly and efficiently through the network (using range requests, delta
encoding, and other data compression)

• Arrives complete and untampered with (using transfer encoding headers and
Content-MD5 checksums)

To make all this happen, HTTP uses well-labeled entities to carry content.

This chapter discusses entities, their associated entity headers, and how they work to
transport web cargo. We'll show how HTTP provides the essentials of content size,
type, and encodings. We'll also explain some of the more complicated and powerful
features of HTTP entities, including range requests, delta encoding, digests, and
chunked encodings.

This chapter covers:

• The format and behavior of HTTP message entities as HTTP data containers

• How HTTP describes the size of entity bodies, and what HTTP requires in the
way of sizing

• The entity headers used to describe the format, alphabet, and language of con­
tent, so clients can process it properly

341

• Reversible content encodings, used by senders to transform the content data for­
mat before sending to make it take up less space or be more secure

• Transfer encoding, which modifieshow HTTPships data to enhance the commu­
nication of some kinds of content, and chunked encoding, a transfer encoding
that chops data into multiple pieces to deliver content of unknown length safely

• The assortment of tags, labels, times, andchecksums that help clients get the lat­
est version of requested content

• The validators that act like version numbers on content, so web·applications can
ensure they have fresh content, and the HTTP header fields designed to control
object freshness

• Ranges, which are useful for continuing aborted downloads where they left off

• HTTP delta encoding extensions, which allow clients to request just those parts
of a webpage·that actually have changed since a previously viewed revision

• Checksums of entity bodies, which are used to detect changes in entity content
as it passes through proxies

Messages Are Crates, Entities Are Cargo
If you think of HTTP messages as the crates of the Internet shipping system, then
HTTP entities are the actual cargo of the messages. Figure 15-1 shows a simple
entity, carried inside an HTTP response message.

HTTP/1.0 200 OK
Server: Netscape-Enterprise/3.6

r ~~~!~-:_ ?~-1!~_!-X_ ?~£ _?9_~Q.;.9~~~g!-_=_ Q?_ -~~!~-~
1 Corrtent~type: text/pla1n · · EntitYheadeis :
: Co11tent-length: 18 · · l .
: . , : Ent1ty
l Hi! I'm a message! ·-. ·· .·- · Entitybodyl
'----------------------~-------------~----~--~-·

Figure 15-1. Message entity is made up of entity headers and entity body

The entity headers indicate a plaintext document (Content-Type: text/plain) that is a
mere 18 characters long (Content-Length: 18). As always, a blank line (CRLF) sepa­
rates the header fields from the start of the body.

HTTP entity headers (covered in Chapter 3) describe the contents of an HTTP mes­
sage. HTTP/1.1 defines 10 primary entity header fields:

Content-Type
The kind of object carried by the entity.

Content-Length
The length or size of the message being sent.

342 I Chapter 15: Entities and Encodings

Content-Language
The human language that best matches the object being sent.

Content-Encoding
Any transformation (compression, etc.) performed onthe object data.

Content-Location
An alternate location for the object at the time of the request;

Content-Range
If this is a partial entity, this header defines which pieces of the whole are included.

Content-MDS
A checksum of the contents of the entity body.

Last-Modified
The date on which this particular content was created or modified at the server.

Expires
The date and time at which this entity data will become stale.

Allow
What request methods are legal on this resource; e.g., GET and HEAD.

ETag
A unique validator for this particular instance· of the document. The ETag
header is not defined formally as an entity header, but it is an important header
for many operations involving entities.

Cache-Control
Directives on how this document can be cached. The Cache-Control header, like
the ETag header, is not defined formally as an entity header.

Entity Bodies
The entity body just contains the raw cargo. t Any other descriptive information is
contained in the headers. Because the entity body cargo is just raw data, the entity
headers are needed to describe the meaning of that data. For example, the Content­
Type entity header tells us how to interpret the data (image, text, etc.), and the Con­
tent-Encoding entity header tells us if the data was compressed or otherwise recoded.
We talk about all of this and more in upcoming sections.

The raw content begins immediately after the blank CRLF line that marks the end of
the header fields. Whatever the content is-text or binary, document or image, com,.
pressed or uncompressed, English or French or Japanese-it is placed right after the
CRLF.

• Instances are described later in this chapter, in the section "Time-Varying Instances."

t If there is a Content-Encoding header, the content already has been encoded by the content-encoding algo­
rithm, and the first byte of the entity is the first byte of the encoded (e.g., compressed) cargo.

Messages Are Crates, Entities Are Cargo I 343

Figure 15-2 shows two examples of real HTTP messages, one carrying a text entity,
the other carrying an image entity. The hexadecimal values show the exact contents
of the message:.

• In Figure 15-2a, the entity body begins at byte number651 right after the end~of­
headers CRLF. The entity body contains the ASCII characters for "Hi! I'm a
message!"

• In Figure 15-2b, the entitybody begins at byte number 67. The entity body con­
tains the binary contents of the GIF image. GIF files begin with 6-byte version
signature, a 16-bit width, and a 16~bit. height. You can see all three of these
directly in the entity body.

(a) Text/plain entity in HTTP response message

HTTP/1.0 200 OK oo: 4654 5450 2f31 2e3o 2032 3030 204f 4bod

C t t t · t t/ 1 i 16· Oa43 6f6e 7465 6e74 2d74 7970 653a 2074
on en '"' ype: ex P a n 32 · 6578 742f 706c 6169 6eOq Oa43 6f6e 7465

Content-length: 18 48; 6e74 2d6c 656e 6774 663a 2031. 380d oaoct

Hi! I'm a message! !~oa4S 6921 2049 276d 2061. 206d 6573 7361

'---------.-.----' / 676~0a
final LF (OxOA= <LF>) start-of-content (Ox48= "H") ·

--------~---~--·-------------------~--~-----"
(b) lmage/gif entity in HTTP response message

I

HTTP/1.0 200 OK
Content-Type: image/gif
Content-Length: 34867

·: I

I_-----··-----,..-----:.-_-----~

00:
1.6:
32:

Figure 15-2. Hex dumps of real message content (raw message content follows blank CRLF)

Content-Length: The Entity's Size
The Content-Length header indicates the size of the entity body in the message, in
bytes. The size includes any content encodings (the Content-Length of a gzip-
compressed text file will be the compressed size, not the original size). .

The Content-Length header is mandatory for messages with entity bodies, unless the
message is transported using chunked encoding. Content-Length is needed to detect
premature message truncation when servers crash and to properly segment messages .
that share a persistent connection.

Detecting Truncation
Older versions of HTTP used connection close to delimit the end of a message. But, .
without Content-Length, clients cannot distinguish between successful connection

344 I · Chapter 15: Entities and Encodings

close at the end of a message and connection close due to a server crash in the mid..,
die of a message. Clients need Content-Length to detect message truncation.

. ·. ··.

Message truncation is especially severe for caching proxy servers.·If acachereceivesa
truncated message and doesn't recognize the truncation, it may store the defective
content andserveitmany times. Caching proxy servers generally do not cache HTTP
bodies that don't have an explicit Content-Length header, to reduce the risk of cach­
ing truncated messages.

Incorrect Content-Length
An incorrect Content-Length can cause even more damage than a missing Content­
Length. Because some early clients and servers had well-known bugs with respect to
Content-Length calculations, some clients, servers, and proxies contain algorithms to
try to detect and correct interactions with broken servers. HTTP/1.1 user agents offi­
cially are supposed to notify the user when an invalid length is received and detected.

Content-Length and Persistent Connections
Content-Length is ~ssential for persistent connections. If the response comes across a:
persistent connection, another HTTP response can immediately follow the current
response. The Content-Length header lets the client know where one .message ends
and the next begins. Because the connection is persistent, the client cannot use con­
nection close to identify the message's end. Withouta Content-Length header, HTTP
applications won't know where one entity body ends and the next message begins.

As we will see in "Transfer Encoding and Chunked Encoding," there is one situation
where you can use persistent connections without having a Content-Length header:
when you use chunked encoding. Chunked encoding sends the data in a series of
chunks, each with a specified size. Even if the server does not know the size of the
entire entity at the time the headers are generated (often because the entity is being
generated dynamically), the server can use chunked encoding to transmit pieces of
well-defined size.

Content Encoding
HTTP lets you encode the contents of an entity body, perhaps to make it more
secure or to compress it to take up less space (we explain compression in detail later
in this chapter). If the body has been contentc.encoded, the Content-Length header
specifies the length, in bytes, of the encoded body, not the length of the original,
unencoded body.

Some HTTP applications have been known to get this wrong and to send the size of
the data before the encoding, which causes serious errors, especially with persis­
tent connections. Unfortunately, none of the headers described in the HTTP/1.1

ColltenHength: The Entity's Size I 145

specification can be used to send the length of the original, unencoded body, which.
makes it difficult for clients to verify the integrity of their unencoding processes~·

Rules for Determining Entity Body Length
The following rules describe how to correctly determine the length and end of an
entity body in several different circumstances. The rules should be applied in order;
the first match applies.

1. If a particular HTTP message type is not allowed .to have a body, ignore the
Content-Length header for body calculations. The Content-Length headers are
informational in this case and do not describe the actual body length. (Naive
HTTP applications can get in trouble if they assume Content-Length always

· means there is a body).

The most important example is the HEAD response~ The HEAD method
requests that a server send the headers that would have been returned by an
equivalent GET request, but no body. Because a GET response would send back
a Content-Length header, so will the HEAD response-but unlike the GET
response, the HEAD response will not have a body. lXX, 204, and 304
responses also can. have informational Content-Length headers but no entity
body. Messages that forbid entity bodies must terminate at the first empty line
after the headers, regardless of which entity header fields are present.

2. If a message contains a Transfer-Encoding header (other than the default HTTP
"identity" encoding), the entity will be terminated by a special pattern called a
"zero-byte chunk," unless the message is terminated first by dosing the connec­
tion. We'll discuss transfer encodings and chunked encodings later in this chapter.

3. If a message has a Content-Length header (and the message type allows entity
bodies), the Content-Length value contains the body length, unless there is a
non;..identity Transfer-Encoding header. If a message is received with both a
Content-Length header field and a non-identity Transfer-Encoding header field,
you must ignore the Content-Length, because the transfer encoding will change
the way entity bodies are represented and transferred.(and probably the number
of bytes transmitted).

4, If the message uses the "multipartlbyteranges" media type and the entity length
is not otherwise specified (in the Content-Length header), each part of the multi,.
part message will specify its own size. This multipart type is the only entity body
type that self,.delimits its own size, so this media type must not be sent unless the
sender knows the recipient can parse it. t

* Even the Content-MD5 header, which can be used to send the 128-bit MD5 of the document, contains the
MD5 of the encoded document. The Content-MD5 header is described later in this chapter.

t Because a Range header might be forwarded by a more primitive proxy that does not understand multipart/
byteranges, the sender must delimit the message using methods 1, 3, or 5 in this section if it isn't sure the
receiver understands the self- delimiting format. ·

346 I Chapter 15: Entities and Encodings

5. If none of the above rules match, the entity ends when the connection closes.
In practice, only servers can use connection close to indicate the end of a
message~ Clients can't dose the connection to signal the end of client rues­
sages, because that would leave no way for the server to send back a
response.·

Entity Digests
Although HTTP typically is implemented over a reliable transport protocol such
as TCP liP, parts of messages may get modified in transit for a variety of reasons,
such as noncompliant transcoding proxies or buggy intermediary proxies. To
detect unintended (or undesired) modification of entity body data, the sender can
generate a checksum of the data when the initial entity is generated, and the
receiver can sanity check the checksum to catch any unintended entity modification.t

The Content-MD5 header is used by servers to send the result of running the
MD5 algorithm on the entity body. Only the server where the response origi­
nates may compute and send the Content-MD5 header. Intermediate proxies and
caches may not modify or add the header-that would violate the whole pur­
pose of verifying end-to-end integrity. The Content-MD5 header contains the
MD5 of the content after all content encodings have been applied to the entity
body and before any transfer encodings have been applied to it. Clients seeking
to verify the integrity of the message must first decode the transfer encodings,
then compute the MD5 of the resulting unencoded entity body. As an example, if
a document is compressed using the gzip algorithm, then sent with chunked
encoding, the MD5 algorithm is run on the full gripped body.

In addition to checking message integrity, the MD5 can be used as a keyinto a
hash table to quickly locate documents and reduce duplicate storage of content.
Despite these possible uses, the Content-MD5 header is not sent often.

Extensions to HTTP have proposed other digest algorithms in IETF drafts. These
extensions haveproposed a new header, Want-Digest, that allows clients to specify
the type of digest they expect with the response. Quality values can be used to. sug-
gest multiple digest algorithms and indicate preference. ·

•. The client could do a half close of just its output connection, but many server applications aren't designed
to handle this situation and will interpret a half close as the client disconnecting from the server. Connection
management was never well specified in HTTP. See Chapter 4 for more details.

t This method, of course, is not immune to a malicious attack that replaces both the message body and digest
header. It is intended only to detect unintentional modification. Other facilities, such as digest authentica­
tion.' are needed to provide safeguards against malicious tampering. ·

Entity Digests I 347

Media Type and Charset ·
. .

The Content., Type header field describes the MIME type of the entity body.* The
MIME type is a standardized name that describes the underlying type of media
carried as cargo (HTML file, Microsoft Word document, MPEG video, etc.), Cli­
ent applications use the MIME type to properly decipher and process the con~
tent.

The Content.:.Type values are standardized MIME types, registered with the
Internet Assigned Numbers Authority (lANA). MIME types consist of a primary
media type (e.g., text, image, audio), followed by a slash, followed by a subtype
that further specifies the media type. Table 15-1 lists a few common MIME types
for the Content-Type header: More MIME types <uelisted in Appendix D.

Table 15~1. Common media types

text/plain

image/gif

image/jpeg

audio/xcwav

model/vrml

application/vnd.ms-powerpoint

multipart/byteranges

message/http

Entity body is a document in plain text

Entity body is an image of type GIF

Entity body is an image of type JPEG.

Entity body contains WAV sound data

Entity body is a three-dimensional VRMl model

Entity body is a MicrosoftPowerPoint presentation

Entity body has multiple parts, each containing a different range (in bytes) of the full doc­
ument

Entity body contains a complete HTTP message (see TRACE)

It is important to note that the Content-Type header specifies the media type of the
original entity body. If the entity has gone through content encoding, for example,
the Content-Type header will still specify the entity body type before the encoding.

Character Encodings for Text Media
The Content-Type header also supports optional parameters to further specify the
content type. The "charset" parameter is the primary example, specifying the mecha­
nism to convert bits from the entity into characters in a text file:

Content-Type: text/html; charset=iso-8859-4

We talk about character sets in detail in Chapter 16.

* In the case of the HEAD request, Content-Type shows the type that would have been sent if it was a GET
request.

348 I Chapter 15: Entities and Encodings

Multipart Media Types
MIME "multipart" email messages contain multiple messages stuck together and
sent as a single, complex message. Each component is self-contained, with its own
set of headers describing its content; the different components are concatenated
together and delimited by a string.

HTTP also supports multipart bodies; however, they typically are sent in only one of
two situations: in fill-in form submissions and in range responses carrying pieces of a
document.

Multipart Form Submissions
When an HTTP fill-in form is submitted, variable-length text fields and uploaded
objects are sent as separate parts of a multipart body, allowing forms to be filled out
with values of different types and lengths. For ex(}.mple, you may choos~ to fill out a
form that asks for your name and a description with your nickname and a small
photo, while your friend may put down her full name and along essay describing her
passion forfixing Volkswagen buses. ·

HTTP serids such requests with a Content-Type: multipart/form-data header or a
Content-Type: multipart/mixed header and a multipart body, like this:

Content-Type: multipart/form-data; boundary=[abcdefghijklmnopqrstuvwxyz]

where the boundary specifies the delimiter string between the different parts of the
body.

The following example illustrates multipart/form-data encoding. Suppose we ·have
this form: .

<FORM action="http://server.com/cgi/handle"
enctype="multipart/form-data"
method=" post".>

<P>
What is your name? <INPUT type="text" name="submit-name">

What files are you sending? <INPUT type="file" name="files">

<INPUT type="submit" value="Send"> <INPUT type="reset">
</FORM>

If the user enters "Sally" in the text-input field and selects the text file "essayfile.txt,"
the user agent might send back the following data:

Content-Type: multipart/form-data; boundary=AaB03x
--Aa803X
Content-Disposition: form-data; name="submit-name"
Sally
--:AaB03X

Media Type and Charset I 349

Content-Disposition: form-data; name="files"; filename="essayfile.txt"
Content-Type: text/plain
... contents of essayfile. txt . ..
--AaB03X--

Ifthe user selected a second (image) file, "imagefile.gif," the user agent might con­
struct the parts as follows:

Content-Type: multipart/form-data; boundary=AaB03x
--AaB03X
Content-Disposition: form-data; riame="submit-nanie"
Sally
--AaB03X
Content-Disposition: form'-data;. name= "files"
Content.;Type: multipart/mixed; boundary=BbC04y
--BbC04y
Content-Disposition: file; filename="essayfile.txt"
Content-Type: text/plain
, .• contents of essayfile. txt ...
-~BbC04y·

Content-Disposition: file; filename="imagefile.gif"
Content-Type: image/gif ·
Content-Transfer-Encoding: binary
... contents of imagefile.gif ...
--BbC04y--
--AaB03x-~

Multipart Range Responses
HTTP responses to range requests also can be multipart. Such responses come with a
Content-Type: multipart/byteranges header and a multipart body with the different
ranges. Here is an example of a multipart response to a request for different ranges of
a document: .

HTTP/1.0 206 Partial content
Server: Microsoft-IIS/5.0
Date: Sun, 10 Dec 2000 19:11:20 GMT
Content-Location: http://www.joes-hardware.com/gettysburg.txt
Content-Type: multipart/x-byteranges; boundary=--(abcdefghijklmnopqrstuvwxyz]-­
Last-Modified: Sat, 09 Dec 2000 00:38:47 GMT

--[abcdefghijklmnopqrstuvwxyz]-­
Content-Type: text/plain
Content-Range: bytes 0-174/1441

Fourscore and seven years ago our fathers brough forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all men are created equal.
--[abcdefghijklmnopqrstuvwxyz]--
Content-Type: text/plain
Content-Range: bytes 552-761/1441

350 I Chapter 15: Entities and Encodings

But in a larger sense, we can not dedicate, we can not consecrate,
we can not hallow this ground. The brave men, living and dead who
struggled here have consecrated it far above our poor power to add
or detract.
-- [abcdefghij klmnopqrstuvwxyz]-­
Content-Type: text/plain .
Content-Range: bytes 1344-1441/1441

and that government of the people, bythe people, for the people shall·
not perish from the earth.

--[abcdefghijklmnopqrstuvwxyz]--

Range requests are discussed in more detail later in this chapter.

Content Encoding
HTTP applications sometimes want to encode content before sending it. For exam­
ple, a server might compress a large HTML document before sending it to a client
that is connected over a slow connection; to help lessen the time it takes to transmit
the entity. A server might scramble or encrypt the contents in a way that prevents
unauthorized third parties from viewing the contents of the document.

These types of encodings are applied to the content at the sender. Once the content
is content-encoded, the encoded data is sent to the receiver in the entity body as
usual. ·

The Content-Encoding Process
The content-encoding process is:

1. A web server generates an original response message, with original Content­
Type and Content-Length headers.

2. A content-encoding server (perhaps the origin server or a downstream proxy)
creates an encoded message. The encoded message has the same Content-Type
but (if, for example, the body is compressed) a different Content-Length. The
content-encoding server adds a Content-Encoding header to the encoded mes­
sage, so that a receiving application can decode it.

3. A receiving program gets the encoded message, decodes it, and obtains the
original.

Figure 15-3 sketches a content~encoding example.

Here, an HTML page is encoded by a gzip content-encoding function, to produce a
smaller, compressed body. The compressed body is sent across the network, flagged

Content Encoding I 351

Original content
Content-type: text/html
. : 12480 .

Figure 15-3~ Content-encoding example

with the gzip encoding. The receiving client decompresses the entity using the gzip
decoder.

This response snippet shows another example of an encoded response (a com­
pressed image):

HTTP/1.1 200 OK
Date:.Fri, 05 Nov 1999 22~35:15 GMT
Server: Apache/1.2.4
Content-Length: 6096
Content-Type: image/gif
Content-Encoding: gzip
[...]

Note that the Content-Type header can and should still be present in the message. It
describes the original format of the entity-information that may be necessary for
displaying the entity once it has been decoded. Remember that the Content-Length
header now represents the length of the encoded body.

Content-Encoding Types
HTTP defines a few standard content...;encoding types and allows for additional
encodings to be added as extension encodings. Encodings are standardized through
the lANA, which assigns a unique token to each content-encoding algorithm. The
Content-Encoding header uses these standardized token values to describe the algo­
rithm used in the encoding.

Some of the common content-encoding tokens arelisted in Table 15-2.

352 I Chapter 15: Entities and Encodings

Table 15-2. Content"encodingtokens

gzip

compress

deflate

identity

Indicates that the GNU zip encoding was applied to the entity. a

Indicates that the Unix file compression program has been run on the entity.

Indicates that the entity has been compressed into the zlib format.b

Indicates that no encoding has been performed on the entity. When~ Content-Encoding header
is not present, this can be assumed. _,______ . - ·----------

a RFC 1952 describes the gzip encoding .. ·
b RFCs 1950 and 1951 describe the zlib format and deflate compression.

The gzip, compress, and deflate encodings are lossless compression algorithms used
to reduce the size of transmitted messages without loss ofinformation. Of these, gzip
typically is the most effective compression algorithm and is the most widely used.

Accept-Encoding Headers
Of course, we don't want servers encoding content in ways that the client can't deci­
pher. To prevent servers from using encodings that the client doesn't support, the
client passes along a list of supported content encodings in the Accept-Encoding
request header. If the HTTP request does not contain an Accept-Encoding header, a
servercan assume that the client will accept anyencoding (equivalent to passing
Accept-Encoding: *).

Figure 15-4 shows an example of Accept~Encoding in an HTTP transaction.

r
~ gunzip

GET /logo.gif HTTP/1.1
Acce~t-encoding: gzip
[... J

HTTP/1.1 200 OK
Content-type: image/gif
Content-encoding: gnp
[...]

The server compresses the image with gzip to transport a smaller file over the thin
network connection between itself and the client. This saves network bandwidth
and reduces the amount of time that the client waits for the transfer. Though, the
Client will have to spend time decompressing the image once the image is served.

Figure 15-4. Content encoding

Content Encoding I 353

The Accept-Encoding field contains a comma-separated list of supported encodings.
Here are a few examples:

Accept-Encoding: compress, gzip
Accept-Encoding:
Accept-Encoding: *
Accept-Encoding: compress ;q=O. 5, gzip ;q=l.O
Accept-Encoding: gzip;q=1.0, identity; q=O.S, *;q=O

Clients can indicate preferred encodings by attaching Q (quality) values as parame­
ters to each encoding. Q values can range from 0;0, indicating that the client does
not want the associated encoding, to LO, indicating the preferred encoding. The
token"*" means "anything else."The process of selecting which content encoding to
apply is part of a more general process of deciding which content to send back to a
client in a response. This process and the Content-Encoding and Accept-Encoding
headers are discussed in more detail in Chapter 17. ·

The identity encoding token can be present only in the Accept-Encoding header and is
used by clients to specify relative preference over other content-encoding algorithms.

Transfer Encoding and Chunked Encoding
The previous. section discussed content encodings-. reversible transformations applied
to the body of the message. Content encodings are tightly associated with the details
of the particular content format. For example, you might compress a text file with
gzip, butnot aJPEG file, becauseJPEGs don't compress well with gzip.

This section discusses transfer encodings. Transfer encodings also are reversible
transformations performed on the entity body, but they are applied for architectural
reasons and are independent of the format of the content. You apply a ·transfer
encoding to a message to change the way message data is transferred across the net­
work (Figure 15-5).

Safe Transport
Historically, transfer encodings exist in other protocols to provide "safe transport" of
messages across a network. The concept of safe transport has a different focus for
HTTP, where the transport infrastructure is standardized and more forgiving. In
HTTP, there are only a few reasons why transporting message bodies can cause trou­
ble. Two of these are:

Unknown size
Some gateway applications and content encoders are unable to determine the
final size of a message body without generating the content first. Often, these
servers would like to start sending the data before the size is known. Because

354 I Chapter 15: Entities and Encodings

Content-encoded respqnse

. ~I!~~-·~~~:·~~~.o~~d~l--·~Hu~k¢~ _ Basic header

•:tq -. < ,,/: ·-.·····'· · ab<:de.fgh~jk:): 1 .. ····· ...
•. Encoded blocks

a

Figure 15-5. Content encodings versus transfer encodings

HTTP requires the Content-Length header to precede the data, some servers
apply a transfer encoding to send the data with a special terminating footer that
indicates the end of data.·

Security
You might use a transfer encoding to scramble the message content before send­
ing it across a shared transport network. However, because of the popularity of
transport layer security schemes like SSL, transfer-encoding security isn't very
common.

Transfer-Encoding Headers
There are just two defined headers to describe and control transfer encoding:

Transfer-Encoding

TE

Tells the receiver what encoding has been performed on the message in order for
it to be safely transported

Used in the request header to tell the server what extension transfer encodings
are okay to uset

• You could close the connection as a "poor man's" end-of-message signal, but this breaks persistent
connections.

t The meaning of the TE header would be more intuitive if it were called the Accept-Transfer-Encoding header.

Transfer Encoding and Chunked Encoding I 355

In the following example, the request uses the TE header to tell the server that it
accepts the chunked encoding (which it must if it's an HTTP 1.1 application) and is
willing to accept trailers on the end of chunk-encoded messages:

GET /new _products. html HTTP /1. 1
Host: www.joes-hardware.tom
User-Agent: Mozilla/ 4. 61 [en] (WinNT; I)
TE: tr~ilers, chunked

The response includes a Transfer-Encoding header to tell the receiver that the mes­
sage has been transfer-encoded with the chunked encoding:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Server: Apache/3.0

After this initial header, the structure of the message will change.

All transfer-encoding values are case~insensitive. HTTP/1.1 uses transfer-encoding
values in the TE header field and in the Transfer-Encoding header field. The latest
HTTP specification defines only one transfer encoding, chunked encoding.

The TE header, like the Accept-Encoding header, can have Q values to describe pre­
ferred forms of transfer encoding. The HTTP /1.1 specification, however, forbids the
association of a Q value of 0.0 to chunked encoding.

Future extensions to HTTP may drive the need for additional transfer encodings; If
and when this happens, the chunked transfer encoding should always be applied on
top of the extension transfer encodings. This guarantees that the data will get "tun­
neled" through HTTP/1.1 applications that understand chunked encoding but not
. other transfer encodings.

Chunked Encoding
Chunked encoding breaks messages into chunks of known size. Each chunk is sent
one after another, eliminating the need for the size of the full message to be known
before it is sent.

Note that chunked encoding is a form of transfer encoding and therefore is an
attribute of the message, not the body. Multipart encoding, described earlier in this
chapter, is an attribute of the body and is completely separate from chunked encoding.

Chunking and persistent connections

When the connection between the client and server is not persistent, clients do not
need to know the size of the body they are reading-they expect to read the body
until the server closes the connection.

356 I Chapter 15: Entities and Encodings

With persistent connections, the size of the body must be known and sent in the
Content-Length header before the body can be written. When content is dynami­
cally created at a server, it may not be possible to know the length of the body before
sending it ..

Chunked encoding provides a solution for this dilemma, by. allowing servers to send
the body in chunks, specifying only the size of each chunk As the body is dynami­
cally generated, a server can buffer up a portion of it, send its size and the chunk,
and then repeat th~ process until the full body has been sent. The server can signal
the end of the body with a chunk of size 0 and still keep the connection open and
ready for the next response.

Chunked encoding is fairly simple. Figure 15-6 shows the basic anatomy of a chunked
message. It begins with an initial HTTP response header block, followed by a stream
of chunks. Each chunk contains a length value and the data for that chunk. The length
value is in hexadecimal form and is separated from the chunk data with· a CRLF. The
size of the chunk data is measured in bytes and includes neither the CRLF sequence
between the length value and the data nor the CRLF sequence at the end of the chunk.
The last chunk is special-it has a length of zero, which signifies"erid of body."

Response
stream '

' ' '

' ' ' HTTP/1.1 200 OK<CR><LF>
Content-type: text/plain<CR><LF>
Transfer-encoding: chunked<CR><LF>
Trailer: Content-MDS<CR>< LF> ·.
<CR><LF> ~ ~ ~ .J..._ ___________ -,-l

Hexadecimal chunk size (27 hex=> 39 characters)
!
2l<CR><LF>
We hold these truths to be self-evident<CR><LF>

26<CR><LF> .
, that all men are created equal, that<CR><LF>

84<CR><LF>
they are endowed by their Creator with certain

unalienable Rights, that among these are Life,
Liberty and the pursuit of Happiness.<CR><LF>

. . ,_-' :1 O<CR><LF> I

lil~~~1~:{·Y)_,/..----------------------
. // Content-MDS :gjqei54p26tjisgj3p4utjgrj53<CR><LF>

, , ''' *Optional-only present if there is a Trailer header in the message headers.

Figure 15:-6. Anatomy of a chunked message

Transfer Encoding and Chunked Encoding I . 357

A client .also may.send chunked data to a server. Because the dient does not know
beforehand whether the server accepts chunked encoding (servers do not send TE
headers in responses to clients), it must be prepared for the server to reject the
chunked request with a 411 Length Required response. ·

Trailers in chunked messages

A trailer can be added to a chunked message if the client's TE header indicates that it
accepts trailers, or if the trailer is added by the server that created the original
response and the contents of the trailer are optional metadata that it is not necessary
for the client to understand and use (it is okay for the client to ignore and discard the
contents of the trailer).·

The trailer can contain additional header fields whose values might not have. been
known at the start of the message (e.g.; because the contents of the body had to be
generated first). An example ofa header that can be sent in the trailer is the Content­
MD5 header-it would be difficult to calculate the MD5 of a document before the
document has been generated. Figure 15-6 illustrates the use of trailers. The message
headers contain a Trailer header listing the headers that will follow the chunked mes­
sage. The last chunk is followed by the headers listed in the Trailer header.

Any of the HTTP headers can be sent as trailers, except for the Transfer-Encoding,
Trailer, and Content-Length headers.

Combining Content and Transfer Encodings
Content enc:oding and transfer encoding can be used simultaneously. For example,
Figure 15-7 illustrates how a sender can compress an HTML file using a content
encoding and send the data chunked using a transfer encoding. The process to
"reconstruct" the body is reversed on the receiver.

Transfer-Encoding Rules
When a transfer encoding is applied to a message body, a few rules must be followed:

• The set of transfer encodings must include "chunked." The only exception is if
the message is terminated by closing the connection.

• When the chunked transfer encoding is used, it is required to be the last transfer
encoding applied to the message body.

• The chunked transfer encoding must not be applied to a message body more
than once.

• The Trailer header was added after the initial chunked encoding was added to drafts of the HTTP /1.1 spec­
ification, so some applications may not understand it (or understand trailers) even if they claim to be
HTTP/1.1-compliant.

358 I Chapter 15: Entities and Encodings

Content~type: text/html

Content-type: text/html
Content-encoding: gzip

Content-type: text/html
Content-encoding: gzip
Transfer-encoding: chunked

Figure 15-7. Combining content encoding with transfer encoding

These rules allow the recipient to determine the transfer length of the message.

Transfer encodings are a relatively new feature of HTTP, introduced in Version 1.1.
Servers that implement transfer encodings need to take special care not to send
transfer-encoded messages to non-HTTP /1.1 applications. Likewise, if a server
receives a transfer-encoded message that it can not understand, it should respond
with the 501 Unimplemented status code. However, all HTTP/1.1 applications must
at least support chunked encoding.

Time-Varying Instances
Web objects are not static. The same URL can, over time, point to different versions of
an object. Take the CNN home page as an example-going to "http://www.cnn.com"
several times in a day is likely to result in a slightly different page being returned each

. .

time.

Think of the CNN home page as being an object and its different versions as being
different instances of the object (see Figure 15-8). The client in. the figure requests the
same resource (URL) multiple times, but it gets different instances of the resource as
it changes over time. At time (a) and (b) it has the same instance; at time (c) it has a
different instance.

The HTTP protocol specifies operations for a class of requests and responses, called
instance manipulations, that operate on instances of an object. The two main
instance-manipulation methods are range requests and delta encoding. Both of these
methods require clients to be able to identify the exact copy of the resource that they
have (if any) and request new instances conditionally. These mechanisms are dis­
cussed later in this chapter.

TimeNarying Instances I 359

Apr2
9:07a.m. ·

~
Version 3

Figure 15-8. Instances are "snapshots" of a resource in time

Validators and Freshness.

Apr 12
1:48 p.m.

~
Version4·

I
www.cnn.com

Look back at Figure 15-8. The client does not initially have a copy of the resource, so
it sends a request to the server asking for it. The server responds with Version 1 of
the resource. Theclient can now cache this copy, but for how long?

Once the document has "expired" at the client (i.e., once the client can no longer
consider its copy a valid copy), it must request a fresh copy from the server. If the
documenthas notchanged at the server, however, the client does not need to receive
it again-it can just continue to use its cached copy.

This special request, called a conditional request, requires that the client tell the server
which version it currently has, using a validator, and ask for a copy to be sent only if
its current copy is no longer valid. Let's look at the three key concepts-. freshness,
validators, and conditionals-. in more detail.

Freshness
Servers are expected to give clients information about how long clients can cache
their content and consider it fresh. Servers can provide this information using one of
two headers: Expires and Cache-Control.

The Expires header specifies the exact date and time when the document
"expires"-when it can no longer be considered fresh. The syntax for the Expires
header is:

Expires: Sun Mar 18 23:59:59 GMT 2001

For a client and server to use the Expires header correctly, their clocks must be syn­
chronized. This is not always easy, because neither may run a clock synchronization
protocol such as the Network Time Protocol (NTP). A mechanism that defines expi­
ration using relative time is more useful. The Cache-Control header can be used to
specify the maximum age for a document in seconds-the total amount of time since
the document left the server. Age is not dependent on clock synchronization and
therefore is likely to yield more accurate results.

360 I Chapter 15: Entities and Encodings

The Cache-Control header actually is very powerful. It can be used by both servers
and clients to describe freshness using more directives than just specifying an age or
expiration time. Table 15-3 lists some of the directives that can accompany the
Cache-Control header.

Table 15~3. Cache-Control header directives

no-cache Request.

no-store Request

max-age Request

max-stale Request

min-fresh Request

no-transform Request

only-if-cached. Request

public Response

private · Response

no-cache Response

no-store Response

no-transform Response

must-revalidate Response

proxy-revalidate Response

max-age Response

s-max-age Response

Do not return a cached copy of the document without first revalidating it with the
server.
Do not return a cachedcopy ofthe document. Do not store the response from the
server.

The document in the cache must not be older than the specified age,

The document may be stale based on the server-specified expiration information;
but it must not have been expired for longer than the value in thisdirective.

The document's age must not be more than its age plus the specified amount. In
other words, the response must be fresh for at leastthe specified amountoftime.

The document must not be transformed before being sent.

Send the document only if it is in the cache, without contacting the origin server;

Response may be cached by any cache.

Response may be cached such that it can be accessed only by a single client.

If the directive is accompanied by a list of header fields, the content may be
cached and served to clients, but the listed header fields must first be removed. If
no header fields are specified, the cached copy must not be served Without revali­
dation with the server.

Response must not be cached.

Response must not be modified in any way before being served.

Response must be revalidated with the server before being served.

Shared caches must revalidate the response with the origin server before serving.·
This directive can be ignored by private caches. · ·

Specifies the maximum length of time the document can be cached and still con~
sidered fresh.

Specifies the maximum age ofthe document as it applies to shared caches {over­
riding the max-age directive, if one is present).This directive can be ignored by
private caches. ·

Caching and freshness were discussed in more detail in Chapter 7.

Conditionals and Validators
When a cache's copy is requested, and it is no longer fresh, the cache needs to make
sure it has a fresh copy. The cache can fetch the current copy from the origin server,
but in many cases, the document on the server is still the same as the stale copy in
the cache. We saw this in Figure 15-8b; the cached copy may have expired, but the

Validators and Freshness I 361

server content still is the same as the cache content. If a cache always fetches a
server's document, even if it's th~ same as the expired cache copy, the cache wastes
network bandwidth, places unnecessary load on the cache and server, and slows
everything down.

To fix this, HTTP provides a way for clients to request a copy only if the resource has
changed, using special requests called conditional requests. Conditional requests are
normal HTTP request messages, but they are performed only if a particular condi­
tion is true. For example; a cache might send the following conditional GET message
to a server, asking it to send the file /announce.html only if the file has been modified·
sincejune 29, 2002 (the date the cached document was last changed by the author):

GET /announce.html HTTP/1.0
If-Modified-Since: Sat, 29 Jun 2002, 14:30:00 GMT

Conditional requests are implemented by conditional headers that start with "If-". In
the example above, the conditional header is If-Modified-Since, A conditional header
allows a method to execute only if the condition is true. If the condition is not true,
the server sends an HTTP error code back.

Each conditional works on a particular validator. A validator is a particular attribute
of the document instance that is tested. Conceptually, you can thinkof thevalidator
like the serial number, version number, or last change date of a document. A wise cli­
ent in Figure 15~8b would send a conditional validation request to the server saying,
"send me the resource only if it is no longer Version 1; I have Version 1.'' We dis­
cussed conditional cache revalidation in Chapter 7, but we'll study the details of
entity validators more carefully in this chapter.

The If-Modified-Since conditional header tests the last-modified date of a document
instance, so we say that the last-modified date is the validator. The If-None-Match
conditional header tests the ET ag value of a document, which is a special keyword or
version-identifying tag associated with the entity. Last-Modified and ETag are the
two primary validators used by HTTP. Table 15-4 lists four of the HTTP headers
used for conditional requests. Next to each conditional header is the type of valida­
tor used with the header.

Table 15-4. Conditional request types

-,~i~~ij~~~~~~~~t~<·~';t~i~;r;~~~i~~!~rJt":f"~'f:f"Des~ription·····-······-·-·-~-
lf-Modified-since last-Modified Send a copy of the resource if the version that was last modified at the time in your

previous last-Modified response header is no longer the latest one.

If-Unmodified-Since Last-Modified Send a copy of the resource only if it is the same as the version that was last modi­
fied at the time in your previous last-Modified response header.

If-Match ET ag Send a copy of the resource if its entity tag is the same as that of the one in your
previous ETag response header. ·

If-None-Match ET ag Send a copy of the resource if its entity tag is differentfrom that of the one in your
previous ET ag response header.

362 I Chapter 15: Entities and Encodings

HTTP groups validators into two classes: weak validators and strong validators~
Weak validators maynot always uniquely identify an instance of a resource; strong
validators must. An example of a weak validator is the size of the object in bytes. The
resource content might change even though the size remains the same, so a hypothet­
ical byte-count validator only weakly indicates a change. A cryptographic checksum
of the contents of the resource (such as MD5), however, is a strong validator; it
changes when the document changes.

The last-modified time is con~idered a weak validator because; although it specifies
the time at which the resource was last modified, it specifies that time to an accuracy
of at most one secon& Because a resource can change multiple times in a second,
and because servers can serve thousands of requests per second, the last-modified
date might not always reflect changes. The ETag header is considered a strong vali­
dator, because the server can place a distinct value in the ETag header every time a
value changes. Version numbers and digest checksums are good candidates for the
ETag header, buuhey can contain any arbitrary text. ETag.headers are flexible; they
take arbitrary text values ("tags"), and can be used to devise a variety of client and
server validation strategies.

Clients and servers may sometimes want to adopt a looser version of entity-tag vali­
dation. For example, a server may want to make cosmetic changes to a large, popu:­
lar cached document without triggering a mass transfer when caches revalidate. In
this case, the server might advertise a "weak" entity tag by prefixing the tag with
"W/". A weak entity tag should change only when the associated entity changes in a
semantically significantway. A strong entity tag must change whenever the associ­
ated entity value changes in any way.

The following example shows how a client might revalidate with a server using a
weak entity tag. The server would return a body only if the content changed in a
meaningful way from Version 4.0 of the document:

GET /announce.html HTTP/1.1
If-None~Match: W/"v4.0"

In summary, when clients access the same resource more than once, they first need
to determine whether their current copy still is fresh. If it is not, they must get the lat­
est version from the server. To avoid receiving an identical copy in the event that the
resource has not changed, clients can send conditional requests to the server, specify­
ing validators that uniquely identify their current copies. Servers will then send a
copy of the resource only if it is different from the client's copy. For more details on
cache revalidation, please refer back to "Cache Processing Steps" in Chapter 7.

Range Requests
We now understand how a client can ask a server to send it a resource only if the cli­
ent's copy of the resource is no longer valid. HTTP goes further: it allows clients to

actually request just part or a range of a document.

Range Requests I 363

Imagine if you were three~fourths of the way through downloading the latest hot soft­
ware across a slow·modem link, ·and a network glitchinterrupted your connection.
You would have been waiting for a while for the download to complete, and now you
would have to start all over again, hoping the same thing does not happen again.

With range requests, an HTTP client can resumedownloading an entity by asking
for the range or part of the entity it failed to get (provided that the object did not
change at the origin server between the time the client first requested it and its subse­
quent range request). For example:

GET /bigfile. html HTTP/1.1
Host: www.joes-hardware.com
Range: bytes=4000-
User-Agent: Mozilla/4.61 [en] (WinNT; I)

In this example, the client is requesting the remainder of the document after the first
4;000 bytes (the end bytes do not have to be specified, because the size of the· docu­
ment may not be known to the requestor). Range requests of this form can be used for
a failed request where the client received the first 4,000 bytes before the failure. The
Range header also can be. used to request multiple ranges (the ranges can be specified
in any order and may overlap)-for example, imagine a client connecting to multiple
servers simultaneously, requesting different ranges of the same document from differ­
ent serversCin order to speed up overall download time for the document. In the case
where clients request multiple ranges in a single request, responses come back as a
single entity, with a ml:[ltipartbody and a Content-Type: multipart/byteranges header.

Not all servers accept range requests, but many do. Servers can advertise to clients
that they accept ranges by including the header Accept-Ranges in their responses.
The value of this header ~s the unit of measure, usually bytes: For example:

HTTP/1.1 200 OK
Date: Fri, OS Nov 1999 22:35:15 GMT
Server: Apache/1.2.4
Accept-Ranges: bytes

Figure 15-9 shows an example of a set of HTTP transactions involving ranges.

Range headers are used extensively by popular peer-to-peer file-sharing client software
to download different parts of multimedia files simultaneously, from different peers.

Note that range requests are a class of instance manipulations, because they are
exchanges between a client and a server for a particular instance of an object. That is,
a client's range request makes sense only if the client and server have the same ver­
sion of a document.

* The HTTP /1.1 specification defines only the bytes token, but server and client implementors could come up
with their own units to measure or chop up an entity.

364 I Chapter 15: Entities and Encodings

Q . Request message
. . • ._ GET /bigfile. html HTIP /1. 1

Client [.. •]

Response message •••••••••••••••• ::: :".

r-'-----=-------,----., --
HTTP/1.1 206 Partial Content
Content-type: text/html
Content-length: 65537
Acce~t-ranges: bytes

www.joes"hardware.com

110001 .. -- [••• J 111011 .._,_ _________ ____.

010111 Range request message
000101 •• - ,----::~!.:;_.:._--=---:--.:.;__--,---.,

Client received only GET /bigfile. htinl HTTP .1.1
the first 20224 bytes Range: 5ytes=20224-

ofthe resource ._[_.___;· _· 1 __ .--'-·--,--·......,-~__.. ••••• •::: :.:.: ~... . .· . . . • .· .

Range response message ____ - -
,----::~.!...-----::!...-------'---, ----

· · HTTP/1.1 200 OK
The client's original requestwas Content-Range: bytes=20224-
interrupted,buta second request Accept-ranges: bytes
for the part of.th. e message that
was not received allows the "*- -
client to resume from the point
of the interruption

[••• J

Figure 15-9. Entity range request example

Delta Encoding

www.joes-hardware.com

We have described different versions of a web page as different instances ofa page. If
a client has an expired copy of a page, it requests the latest instance of the page. If
the server has a newer instance of the page, it will send it to the client, and it will
send the full new instance of the page even if only a small portion of the page actu­
ally has changed.

Rather than sending it the entire new page, the client would get the page faster if the
server sem just the changes to the client's copy of the page {provided that the num­
ber of changes is small). Delta encoding is an extension to the HTTP protocol that
optimizes transfers by communicating changes instead of entire objects. Delta encod­
ing is a type of instance manipulation, because it relies on clients and servers
exchanging information about particular instances of an object. RFC 3229 describes
delta encoding.

Figure 15,-l 0 illustrates more clearly the mechanism of requesting, generating, receiv­
ing, and applying a delta-encoded document. The client has to tell the server which
version of the page it has, that it is willing to accept a delta from the latest version of
page, andwhich algorithms it knows for applying those deltas to its current version.

Delta Encoding I 365

The server has to check ifit has the client's version of the page and how to compute
deltas from the latest version and the client's version (there are several algorithms for
computing the difference between two objects). It then has to compute the delta,
send it to the client, let the client know that it's sending a delta, and specify the new
identifier for the latest version of the page (because this is the version that the client
will end up with after it applies the delta toits old version).

Q ... '"'""'message .
Client . GET /bigfile.html HTTP/1.1

Date: Mon, 01 Feb 2001 12:03:00 GMT
• • • • • Page on Monday

•• • •••••••••• • Feb 7,2007 at 72:03 p.m.

Hello, welcome to
Response message ~ ~ ~ ~ ~ Joe's Hardware store.
r---"----=:..__--~-.......,.-'----"""~---. Today's special is on

Client receives this response and
caches it. The next day, the client
tries to access the same page and
sees its cached copy has expired, _.
so it sends a request to the server
requesting the latest copy. Since it

. HTTP/ l. l 2 00 OK hammers
Content-type: text/html Server ·
Expires: Mon, 01 Feb 2001 12:00:00 GMT
Etag: abcdefghi09876AF

has. a cache~ copy, it t~lls !he server . Delta request message
wh1ch copy 1t has and md~eates •••. r---'-----=-----,-----'--.
its willingness to accept a delta. GET /bigfile. html HTTP .1.1

lf-None:.Match: abcdefghi09876AF
A-IM: diffe
Date: Tue, 02 Feb 2001 03:03:00 GMT

Page on Tuesday

'----'------------------' • •• Hello, welcome to :I
Feb 2,2007 at 03:03a.m.

Delta response message ~~

HTTP/1,1 226 IM Used
IM: diffe

Client receives the delta and applies
it to its cached version of the _. ~ ~
page, generating the latest version
of the page.The client also updates it

Eta¥: zywxtuv123456BG
Del a-base: abcdefghi09876AF ...

s
Hag to that of the new version of the page.

IJ
Delta app/ier

. Hello, welcome to
Joe's Hardware store.
To day's special is on

chisels.

Figure 15-10. Mechanics of delta-encoding

Delta

sc.
chisels.

Joe's Hardware store.
Today's special is on

~ cMsels.

D efta generator

The client uses the unique identifier for its version of the page (sent by the server in
its previous response to the client in the ETag header) in an If-None-Match header.
This is the client's way of telling the server, "if the latest version of the page you have

366 I Chapter 15: Entities and Encodings

does not have this same ETag, send me the latest version of the page;" Just the If­
None-Match header, then, would cause the server to send the client the full latest
version of the page (if it was different from the client's version).

The client can tell the server, however, that it is willing to accept a delta of the page
by also sending an A.,IM header. A~IM is short for Accept-Instance'-Manipulation
("Oh, by the way, I do accept some forms of instance manipulation, so if you apply
one ofthoseyou will not have to send me the full document."). In theA-1M header,
the client specifies. the algorithms it knows how to apply in order to generate the lat­
est version of a page given an old version and a delta. The server sends back the fol­
lowing: a special response code (226 IM Used) telling theclient that it is sending it
an instance manipulation of the requested object, not the full object itself; an IM
(short for Instance-Manipulation) header, which specifies the algorithm used to com­
pute the delta; the new ETag .header; and a Delta-Base header, which specifies the
ETag of the document used as the base for computing. the delta (ideally, the same as
the ET ag in the client's If-N one:-Match request!). The headers used in delta encoding
are summarized in Table 15-5.

Table 15-5. Delta-encoding headers

~~~Re.~~~ . 
ETag 

If-None-Match 

A-IM 

IM 

Delta-Base 

Unique identifier for each instance of a document. Sent by the server in the response; used by clients in sub­
sequent requests in If-Match and If-None-Match headers. 

Request header sent by the client, asking the server for a document if and only if the client'sversion of the 
document is different from the server's. 

Client request header indicating types of instance manipulations accepted. 

Server response header specifying the type of instance manipulation applied to the response. This header is 
sent when the response code is 2261M Used. 

Server response header that specifies the ETag of the base document used for generating the delta (should 
be the same as the Hag in the client request's If-None-Match header). ------- , _ ____;__;_, ------

Instance Manipulations, Delta Generators, 
and Delta Appliers 
Clients can specify the types of instance manipulation they accept using the A-IM 
header. Servers specify the type of instance manipulation used in the IM header. Just 
what are the types of instance manipulation that are accepted, and what do they do? 
Table 15.:6 lists some of the lANA registered types of instance manipulations .. 

Table 15-6. lANA registered types of instance manipulations 

Delta using vcdiff algorithma 

Delta using the Unix diff -e command 

Delta using the gdiff algorithmb 

Delta Encoding I 367 



Table .15-6. IANAregistered types of instance manipulations (continued) 

-... ··.···, 

gzip Compression using the gzip algorithm 

deflate Compression using the deflate algorithm 

range Used in a server response to indicate that the response is partial content as theresultof a range selection 

identity Used in a client request's A-IM header to indicate that the client is willing to accept an identity instance 
manipulation · 

-----. ~---.----------------·--~~~-----,--~.......----~-~~--
a Internet draft draft-korn-vcdiff-01. describes the vcdiff algorithm. This specific(ltion was approved by the IESG in early 2002 and 

should be released in RFC form shortly. 
b. http://www;w3org!TR/NOTFgdiff-1997090 1.html describes the GDIFF algorithm. 

A "delta generator" at the server, as in Figure 15-10, takes the base document and 
the latest instance of the document and computes the delta between the two using 
the algorithm specified by the client in the A-IM header. At the client side, a "delta 
applier" takes the delta and applies it to the base document to generate the latest 
instance of the document; Fbr example, if the algorithm used to generate the delta is 
the Unix diff '-e command, the client can apply the delta using the functionality of the 
Unix ed text editor, because diff -e <filel> <file2> generates the set of ed commands 
that will convert <filel > into <file2>. ed is averysimple editor with a few supported 
commands. In the example in Figure 15-10, 5c says delete line 5 in the base docu­
ment, and chisels.<cr>. says add "chisels.". That's it; More complicated instructions 
can be generated for bigger changes. The Unix diff -e algorithm does a line-by-line 
comparison of files. This obviously is okay for text files but breaks down for binary 
files. The vcdiff algorithm is more powerful, working even for non-text files and gen­
erally producing smaller deltas than diff -e. 

The delta encoding specification defines the format of the A-IM and IM headers in 
detail. Suffice it to say that multiple instance manipulations can be specified in these 
headers (along with corresponding quality values). Documents can go through multi­
ple instance manipulations before being returned to clients, in order -to maximize 
compression. For example, deltas generated by thevcdiff algorithm mayin turn be 
compressed using the gzip algorithm. The server response would then contain the 
header IM: vcdiff, gzip. The client would first gunzip the content, then apply the 
results of the delta to its base page in order to generate the final document. . 

Delta encoding can reduce transfer times, but it can be tricky to implement. Imagine 
a page that changes frequently and is accessed by many different people. A server 
supporting delta encoding must keep all the different copies of that page as it 
changes over time, in order to figure out what's changed between any requesting cli­
ent's copy and the latest copy. (If the document changes frequently, as different eli-

. ents request the document, they will get different instances of the document. When 
they make subsequent requests to the server, they will be requesting changes 
between their instance of the document and the latest instance of the document. To 
be able to send them justthe changes, the server must keep copies of all the previous 

368 I . Chapter 15: Entities and Encodings 



instances that the clients have;) In exchange for reduced latency in serving docu­
ments, servers need to increase disk space to keep old instances of documents 
around. The extra disk space necessary to do so may quickly negate the benefits from 
the smaller transfer amounts. 

For More Information 
For more information on entities and encodings, see: 

http://www.ietforg!rfc!rfc2616.txt 
The HTTP/1.1 specification, RFC 2616, is the primary reference for entity body 
management a:ndencodings. 

http://www. ietf org!rfc!rfc3229. txt 
RFC 3229, "Delta Encoding in HTTP," describes how. delta encoding can be 
supported as an extension to HTTP/1.1. 

Introduction to Data Compression 
Khalid Sayood, Morgan Kaufmann Publishers. This book explains some of the 
compression algorithms supported byHTTP content encodings. 

http://www.ietforg!rfc!rfcl521.txt 
RFC 1521, "Multipurpose Internet Mail Extensions, Part.One: Mechanisms for 
Specifying and Describing the Format of Internet Message Bodies," describes the 
format of MIME bodies. This reference material is useful because HTTP bor­
rows heavily from MIMK In particular, this document is. designed to provide 
facilities to include multiple objects in a single message, to represent body text in 
character sets other than US-ASCII, to represent formatted multi-font text mes­
sages, and to represent nontextual material such as images and audio fragments. 

http://www.ietforg/rfc!rfc2045.txt. 
RFC 2045, "Multipurpose Internet Mail Extensions; Part One: Format of Inter­
net Message Bodies," specifies the various headers used to describe the structure 
of MIME messages, many of which are similar or identical to HTTP. 

http://www.ietforg!rfc!rfcl864.txt 
RFC 1864, "The Content-MD5 Header Field," provides some historical detail 
about the behavior and intended use ofthe Content-MD5 header field in MIME 

·content as a message integrity check. 

http://www.ietforg!rfc!rfc3230.txt . 
RFC 3230, "Instance Digests in HTTP," describes improvements to HTTP entity­
digest handling that fix weaknesses present in the Content.:.MD5 formulation: 

For More Information I 369 



CHAPTER 16 

Internationalization 

Every day, billions of people write documents in hundreds. of languages. To live up 
to the vision of a truly world-wide Web, HTTP needs to support the transport and 
processing of international documents, in many languages and alphabets. 

This chapter covers two primary internationalization issues for the Web: character 
set encodings and language tags. HTTP applications use character set encodings to 
request and display text in different alphabets, and they use language tags to describe 
and restrict content to languages the user understands. We firiish with a.brief chat 
about multilingual URis and dates. 

This chapter: 
. . 

• Explains how HTTP interacts with schemes and standards for multilingual 
alphabets 

• Gives a rapid overview of the terminology, technology, and standards to help 
HTTP programmers do things right (readers familiar with character encodings 
can skip this section) 

• Explains the standard naming system for languages, and how standardized lan­
guage tags describe and select content 

• Outlines rules and cautions for international URis 

• Briefly discusses rules for dates and other internationalization issues 

HTTP Support for International Content 
HTTP messages can carry content in any language, just as it can carry images, mov­
ies, or any other kind of media. To HTTP, the entity body is just a box of bits. 

To support international content, servers need to tell clients about the alphabet and 
languages of each document, so the client can properly unpack the document bits 
into characters and properly process and present the content to the user. 

370 



Servers tell clients about a document's alphabet and language with the HTTP 
Content-Type charset parameter and Content-Language headers; These headers 
describe what's in the entity body's "box of bits," how to convert the contents into 
the proper characters that can be displayed onscreen, and what spoken language the 
words represent, 

At the same time, the client needs to tell the server which languages the user under:­
stands and which alphabetic coding algorithms the browser has installed. The client 
sends Accept:-Charset and Accept-Language headers to tell the server which charac­
ter set encoding algorithms and languages the client understands, and which of them 
are preferred. 

The following HTTP Accept headers might be sent by a French speaker who prefers 
his native language (but speaks some English in a pinch) and who uses a browser 
that supports the iso-8859-1 West European.charset encoding and the UTF-8 Uni­
code charset encoding: 

Accept-Language: fr, en;q=0.8 
Accept-Charset: iso-8859-1> utf-8 

The parameter "q=0.8" is a qualitY factor, giving lower priority to English (0.8) than 
to French (1.0 by default). 

Character Sets and HTTP 
So, let's jump right into the most important (and confusing) aspects of web interna­
tionalization-international alphabetic scripts and their character set encodings. 

Web character set standards can be pretty confusing. Lots of people get frustrated 
when they first try to write international web software, because of complex and 
inconsistent terminology, standards documents that you have to pay to read, and 
unfamiliarity with foreign languages. This section and the next section should make 
it easier for you to use character sets with HTTP. 

Charset Is a Character-to-Bits Encoding 
The HTTP charset values tell you how to convert from entity content bits into char­
acters in a particular alphabet. Each charset tag names an algorithm to translate bits 
to characters (and vice versa). The charset tags are standardized in the MIME charac­
ter set registry, maintained by the lANA (see http://www.iana.org/assignmentsl 
character-sets). Appendix H summarizes many of them. 

The following Content-Type header tells the receiver that the content is an HTML 
file, and the charset parameter tells the receiver to use the iso-8859-6 Arabic charac­
ter set decoding scheme to decode the content bits into characters: 

Content-Type: text/html; charseb=iso-8859-6 

Character Sets and HTTP I 371 



The iso-8859-6 encoding scheme maps 8-bit values into both the Latin and Arabic 
alphabets, including numerals, punctuation and other symbols.* For example, in 
Figure 16-1,. the highlighted bit pattern. has code value 225, which · (under iso-885 9'-6) 
maps into the Arabic letter "FEH" (a sound like the English letter "F"). 

HTTP I 1.1 200 OK iso-8859-6 decoding 
Content-type: textlhtml; :~h~:i$'~f#~~~2;[~5ft~.Q' ofcode 
Content-length: 18572 11100001 
Content-language: ar (decima/225) 

00100101110100100101001001111101 
0101001010011110100111~~4.~Qitb.~·1o 
01010101011100000101010001010011 
010111110010000101011111010:i.O ••• 

Entity body 

response 

• u 
Arabic letter Feh 

Character· 

Figure 16-1. The charset parameter tells the client how togo from bits to characters 

Some character encodings (e.g., UTF-8 and iso-2022-jp) are more complicated, vari­
able-length codes, where the number of bits per character varies. This type of coding 
lets you use extra bits to support alphabets with large humbers ofcharacters (such as 
Chinese and Japanese),while using fewer bits to support standard Latin characters. 

How Character Sets and Encodings Work 
Let's see what character sets and encodings really do. 

We want to convert from bits in a document into characters that we can display 
onscreen. But because there are many different alphabets, and many different ways 
of encoding characters into bits (each with advantages and disadvantages), we need a 
standard way to describe and apply the bits-to-character decoding algorithm. 

Bits-to-character conversions happen in two steps, as shown in Figure 16-2: 

• In Figure 16-2a, bits from a document are converted into a character code that 
identifies a particular numbered character in a particular coded character set. In 
the example, the decoded character code is numbered 225. 

• In Figure 16-2b, the character code is used to select a particular element of the 
coded character set. In iso-8859-6, the value 225 corresponds to "ARABIC LET­
TER FEH.'; The algorithms used in Steps a and b are determined from the 
MIME charset tag. 

A key goal of internationalized character systems is the isolation of the semantics 
(letters) from the presentation (graphical presentation forms). HTTP concerns itself 

* Unlike Chinese and Japanese, Arabic has only 28 characters. Eight bits provides 256 unique values, which 
gives plenty of room for Latin characters, Arabic characters, and other useful symbols. 

372 I Chapter 16: Internationalization 



65 
66 

224 
225 
226 
227 

___ 
... __ _ 

---------------

(iso~8859-6 coded 
character set) 

• t 

LATIN CAPITAL LETTER A 
LATIN CAPITAL LETTER B 

• • . 
ARABICTATWEEL 
ARABIC LETTER FEH 
ARABIC LETTER QAF 
ARABIC LETTER KAF . . . 

--- ---
MIME charset tag describesthe combination of character 

encoding scheme and coded character set mapping 

Figure16-2. HTTP "charset" combines a characterencoding scheme and a coded characterset 

only with transporting the character data and the associated language and .charset 
labels. The presentation of the character shapes is handled by the user's graphics dis­
play software (browser, operating systein, fonts), as shownin Figure16-2c. 

The Wrong Charset Gives the Wrong Characters 
If the client uses the wrong charset parameter, the client will display strange, bogus 
characters. Let's say a browser got thevalue 225 (binary 11100001) from the body: 

• If the browser thinks the body is encoded with iso-8859-J WesternEuropean 
character codes, it will show a lowercase Latin "a" with acute accent: 

, 
a 

• If the browser is using iso-8859-6 Arabic codes, it will show "FEH": 

• ·'--.Q 

• If the browser is using iso-8859-7 Greek, it will show a small "Alpha": 

a 
Character Sets and HTTP I 373 



• If the browser is using iso-,8859-8 Hebrew codes, it will show "BET": 

Standardized MIME Charset Values 
The combination of a particular character encoding and a particular coded character 
set is called a MIME charset. HTTP uses standardized MIME charset tags in the Con ... 
tent-Type and Accept-Charset headers. MIME charset values are registered with the 
lANA.* Table 16-1 lists a few MIME charset encoding schemes used by documents 
and browsers. A more complete list is provided in Appendix H. 

Table 16-1. MIME charsetencoding tags 

~i~t~~~~~~t§~~~~t4~;1'~~I1:~ii~l:t~t1:~,~:7~;; 
us-ascii The famous character encoding standardized in 1968 as ANSI_X3.4-1968.1t is also named ASCII, but 

the ~'US" prefix is preferred because of several international variants in ISO 646 that modify selected 
characters. US-ASCII maps 7 -bit values into 128characters. The high bit is unused. 

iso-8859-1 iso-8859-1 is an 8~bit extension to ASCII to support Western European languages, It uses the high bit 
to include many West European characters, while leaving the ASCII codes (0-127} intact. Also called 
iso-latin~1, or nicknamed "latinl." · 

iso-8859-2 Exterids ASCII to include characters forCentral and Eastern European languages, including Czech, 

iso-8859-5 

iso-8859-6 

iso-8859-7 

iso-8859-8 

iso-8859-15 

iso-2022-jp 

euc-jp 

ShifUIS 

Polish, and Romanian. Also called iso-latin-2. · 

Extends ASCII to include Cyrillic characters, for languages including Russian, Serbian, and Bulgarian. 

Extends ASCII to include Arabic characters. Because the shapes of Arabic characters change depend­
ing on their position in a word, Arabic requires a display engine that analyzes the context and gener­
ates the correct shape for each character. 

Extends ASCII to include modern Greek characters. formerly known as ElOT-928 or ECMA~118:1986. 

Extends ASCII to include Hebrew and Yiddish characters. 

Updates iso-8859-1, replacing some less-needed punctuation and fraction symbols with fotgotten 
French and Finnish letters and replacing the international currency sign with the symbol forthe new 
Eurocurrency. This character set is nicknamed ((LatinO" and may one day replace iso-8859-1 as the 
preferred default character set in Europe. 

iso-2022-jp is a widely used encoding for Japanese email and web content. It is a variable-length 
encoding scheme that supports ASCII characters with single bytes but uses three-character modal 
escape sequences to shift into three different Japanese character sets. · 

euc-jp is an ISO 2022-compliant variable-length encoding that uses explicit bit patterns to identify 
each character, without requiring modes and escape sequences. It uses 1-byte, 2-byte, and 3-byte 
sequences of characters to identify characters in multiple Japanesecharacter sets. 

This encoding was originally developed by Microsoft and sometimes iscalled SJIS or MS Kanji. It is a 
bit complicated, for reasons of histone compatibility, and it cannot map all characters, but it still is 
common. 

• See http://www.iana.org/numbers.htm for the list of registered charset values. 

374 I Chapter 16: Internationalization 



Table 16-1. MIME charset encoding tags (continued) 

koi8-r 

utf-8 

windows-1252 

KOI8-R is a popular 8-bit Internet character set encoding for Russian, defined in IETF RFC 1489. The 
initials are transliterations of the acronym for "Code for Information Exchange, 8 bit, Russian." 

UTF-8 is a common variable-length character encoding scheme for representing UCS (Unicode), 
which is the Universal Character Set of the world's characters. UTF-8 uses a variable-length encoding 
for character code values, representing each character by from one to six bytes. One of the primary 
features of UTF-8 is backward compatibility with ordinary 7 -bit ASCII text. 

Microsoft calls its coded character sets "code pages." Windows code page 1252 (a.k.a. "CP1252" or 
11Winlatin1") is an extension ofiso-8859-1. 

Content-Type Charset Header and META Tags 
Web servers send th~dien.t the MIME charset tag in theContent.c.Type header, using 
the charset parameter: 

Content-Type: text/html; charset~iso-2022-jp 

If no charset is explicitly listed, the receiver may try to infer the character set from 
the document contents. For HTML content, character sets might be found in 
<META HTTP~EQUIV="Content-Type"> tags that describe the charset. 

Example 16-1 shows how HTML MET A tags set the cha.rset to the] apanese encod­
ing iso-2022-jp. If the document is not HTML, or there is no META Content-Type 
tag, software may attempt to infer the character encoding by scanning the actual text 
for common patterns indicative of languages and encodings. 

Example 16-1. Character encoding can be specified in HTML META tags 

<HEAD> 
<META HTTP-EQUIV="Content-Type" CONTENT="textlhtml; charset=iso-2022-jp"> 
<META LANG="jp"> 
<TITLE>A Japanese Document</TITLE> 

</HEAD> 
<BODY> 

If a client cannot infer a character encoding, it assumes iso-8859-1. 

The Accept-Charset Header 
There are thousands of defined character encoding and decoding methods,. devel­
oped over the past several decades. Most clients do not support all the various char­
acter coding and mapping systems. 

HTTP clients can tell servers precisely which character systems they support, using 
the Accept-Charset request header. The Accept-Charset header value provides a list 
of character encoding schemes that the client supports. For example, the following 
HTTP request header indicates that a client accepts the Western European iso-8859-1 

Character Sets and HTTP I 375 



character system as well as.the UTF-8 variable~lengthUnicode compatibility system. 
A server is free to return content in either of these character encoding schemes. 

Accept-Charset: iso-8859-1, utf-8 

Note that there is uo Content-Charset response header to match the Accept-Charset 
request header. The response character set is carried back from the server by the 
charset parameter of the Content~ Type response header) to be compatible with 
MIME. It's too bad this isn't symmetric, but all the information still is there. 

Multilingual Character Encoding Primer 
The previous section described how the HTTP Accept-Charset header and .. the 
Content-Type charset parameter carry character...,encoding information from the cli­
ent and server. HTTP programmers who do a lot of work with international applica­
tions and content need to have a deeper understanding of multilingual character sys­
tems to understand technical specifications and properly implement software. 

It isn't easy to learn multilingual character systems-the terminology is complex and 
inconsistent,you often haveto pay to read thestandards documents, and you may 
be unfamiliar withtheother languages with which you're working. This section is an 
overview of character systems and standards. If you are already comfortable with 
character encodings, or are not interested in this detail, feel free to jump ahead to 
"Language Tags and HTTP." 

Character Set Terminology 
Here are eight terms about electronic character systems that you should know: 

Character 
An alphabetic letter, numeral, punctuation mark, ideogram (as in Chinese), sym­
bol, or other textual "atom" of writing. The Universal Character Set(UCS) ini­
tiative, known informally as Unicode,· has developed a standardized set of 
textual names for many characters in many languages, which often are used to 
conveniently and uniquely name characters.t 

Glyph 
A stroke pattern or unique graphical shape that describes a character. A charac­
ter may have multiple glyphs if it can be written different ways (see Figure 16-3). 

Coded character 
A unique number assigned to a character so that we can workwith it. 

Coding space 
A range of integers that we plan to use as character code values. 

* Unicode is a commercial consortium based on UCS that drives commercial products. 

t The names look like "LATIN CAPITAL LETTERS" and "ARABIC LETTER QAF.'; 

376 . I • Chapter 16: Internationalization 



·Code width 
The number of bits in each (fixed-size) character code. 

Character repertoire 
A particular working set of characters (a subset of all the characters in the world). 

Coded character set 
A set of coded ch~racters that takes a character repertoire (a selection of charac­
ters from around the world) and assigns each character a code from a coding 
space. In other words, it maps numeric character codes to real characters. 

Character encoding scheme . 
An algorithm to encode numeric character codes into a sequence ofcontentbits 
(and to decode them back). Characterencoding schemes can be used to reduce 
the amount of data required to identify characters (compression), work around 
transmission restrictions, and unify overlapping coded character sets. 

Charset Is Poorly Named 
Technically, the MIME charset tag (used in the Content-Type charset parameter and 
the Accept--Charset header) doesn't specify a character set at all. The MIME charset 
value names a total algorithm for mapping data bits to codes to unique characters. It 
combines the two separate concepts of character eneoding scheme and coded charac"' 
ter set (see Figure 16-2). 

This terminology is sloppy and confusing, because there already are published stan~ 
dards for character encoding schemes and for coded character sets.· Here's what the 
HTTP /1.1 authors say about their use of terminology (iri RFC 2616): 

The term "charact~r set" is used in this document to refer to a method ... to convert a 
sequence of octets into a sequence of characters; .. Note: This use of the term "charac­
ter set" is more commonly referred to as a "character encoding." However, since 
HTTP and MIME share the same registry, it's important that the terminology also be · 
shared. · 

The IETF also adopts nonstandard terminology in RFC 2277: 

This document uses the term "charset" to mean a set of rules for mapping from a 
sequence of octets to a sequence of charaCters, such as the combination of a coded 
character set and a character encoding scheme; this is also what is used as anidentifier 
in MIME "charset=" parameters, and registered in the lANA charset registry. (Note 
that this is NOT a term used by other standards bodies, such as ISO). 

So, be careful when reading standards documents, so you know exactly what's being 
defined. Now that we've got theterminology sorted out, let's looka bit more closely 
at characters, glyphs, character sets, and character encodings. 

* Worse, the MIME charset tag often co-opts the name of a particular coded character set or encoding scheme. 
For example, iso-8859-1 is a coded character set (it assigns numeric codes to a set of 256 European characters), 
but MIME uses the charset value "iso-8859-1" to rnean an 8-bit identity encoding of the coded character set. 
This imprecise terminology isn't fatal, but when reading standards documents, be. clear on the assumptions. 

Multilingual Character Encoding Primer I·· 377 



Characters 
Characters are the most basic building blocks of writing. A character represents an 
alphabetic letter, numeral, punctuation mark) ideogram (as in Chinese), mathemati­
cal symbol, or other basic unit of writing. 

Characters are independent of font and style. Figure 16-3 shows several variants of 
the same character, called "LATIN SMALL LETTER A." A native reader of Western 
European languages would immediately recognize all five of these shapes as the same 
chara<;:ter, even though the stroke patterns and styles are quite different. 

l a.a·.a·a··lil/ 
Figure 16-3. One character can have many different written forms 

Many writing systems also have different stroke shapes for a single character, 
depending on the position of the charaCter in the word. For example, the four 
strokes in Figure 16-4 all represent the character "ARABIC LETTER AIN."* 
Figure 16:-4a shows how "AIN" is written as a standalone character. Figure 16-4d 
shows "AIN" at the begin11ing of a word, Figure 16-4c shows "AIN" in the middle of 
a word, and Figure 16-Ab shows "AIN" at the end of a word.t 

(a) Standalone (b)Final position (c) Medial position (d) Initial postion 

tt 
(These different glyphs represent the same charactei; "ARABIC LETTER AIN") 

Figure 16-4. Four positional forms of the single character "ARABIC LETTER AIN" 

Glyphs, ligatures, and Presentation Forms 
Don't confuse characters with glyphs. Characters are the unique, abstract "atoms" of 
language. Glyphs are the particular ways you draw each character. Each character 
has many different glyphs, depending on the artistic style and script.+ 

Also, don't confuse characters with presentation forms. To make writing look 
nicer, many handwritten scripts and typefaces let you join adjacent characters into 
pretty ligatures, in which the two characters smoothly connect. English-speaking 

* The sound "AIN" is pronounced something like "ayine," but toward the back of the throat. 

t Note that Arabic words are written from right to left. 

:j: Many people use the term "glyph" tci mean the final rendered bitmap image, but technically a glyph is the 
inherent shape of a character, independent of font and minor artistic style. This distinction isn't very easy to 
apply, or useful for our purposes. 

378 I Chapter 16: Internationalization 



typesetters often join "F'' and "P into an "FI ligature'' (see Figure 16-5a-b), and 
Arabic writers often join the "LAM" and "AUF" characters into an attractiveliga-:­
ture (Figure 16-:Sc'-d). 

.· 

(a) Without Flligature (b) With Flligature (c) Without LA ligature (d) With LA ligature 

file file AUF\ JUM ~lAM fffld Allf 

Figure 16-5. Ligatures are stylistic presentation forms of adjacent characters; not hew characters 

Here's the general rule: if the meaning of the text changes when you replace one 
glyph with another, the glyphs are different characters. Otherwise, they are the_same 
characters, with a different stylistic presentation.· 

Coded Character Sets 
Coded charactersets, defined in RFCs 2277 and 2130, map integers to characters. 
Coded character sets often are implemented as arrays,t indexed by code number (see 
Figure 16-6). The array elements are characters.+ 

US-ASCII coded character set 
! 

. ! 

~ <j~i~~ 
! ·., .. 's 'o;, .& . I r ) . '+ I 

·o .I .2 . 3 .4 5 6 7 8 9 < 0 > 1 
. @ .A 's c .D .E .F .G .H 

.1 ·.J .K .L 'M •N . ··a 
"LATIN CAPTIAL LETTER 0" 

Code 68 (Ox44) i"p Q .R ·s T ·u ·v w ·x "y ·z I \ 1 ·, ·. 'b c • d • . r • .h 't ·, .k '·- .. -. :. 

:.CP... .• 'Li..!' . • -I .• ,. _»: ..... ".. y ·, --.~_ .I • 

Figure 16-6. Coded character sets can be thought of as arrays that map numeric codes to characters 

Let's look at a few important coded character set standards, including the historic 
US-ASCII character set, the iso-8859 extensions to ASCII, the Japanese ]IS X 0201 
character set, and the Universal Character Set (Unicode), -

US-ASCII: The mother of all character sets 

ASCII is the most famous coded character set, standardized back in 1968 as ANSI 
standard X3.4 "American Standard Code for Information Interchange." ASCII uses 

• The division between semantics and presentation isn't always clear. For ease of implementation, some pre­
sentation variants of the same characters have been assigned distinct characters, but the goal is to avoid this. 

t The arrays can be multidimensional, so different bits of the code number index different axes of the array. 

t Figure 16-6 uses a grid to represent a coded character set.· Each element of the grid contains a character 
image. These images are symbolic. The presence of an image "D" is shorthand for the character "LA TIN 
CAPITAL LETTER D," not for any particular graphical glyph. 

Multilingual Character Encoding Primer I 379 



only the code values 0-127, so only 7 bits are required to cover the code space: The 
preferred· name for ASCII is "US-ASCII," to distinguish it from international variants 
of the 7-bit character set. . , 

HTTP messages (headers, URis, etc.) use US-ASCII. 

iso-8859 

The iso..;8859 character set standards are 8-bit supersets of US-ASCII that use the 
high bit to add characters for international writing. The additional space provided by 
the extra bit (128 extra codes) isn't large enough to hold even all of the European 
characters (not to mention Asian characters), so iso-8859 provides customized char­
acter sets for different regions: 

iso-8859-1 

iso-8859-2 

.iso-8859-3 

iso-8859-4 

iso-8859-5 
iso-8859-6 

iso-8859-7 

iso-8859-8 

iso-8859-9 

iso-885 9-1 0 
iso-885 9-15 

Western European languages (e.g., English, French) 

Central and Eastern European languages (e.g~, Czech, Polish) 

Southern European languages 

Northern European languages (e.g., Latvian, Lithuanian, Greenlaildic) 

Cyrillic (e.g., Bulgarian, Russian, Serbian) 

Arabic 

Greek 
Hebrew 

Turkish 

Nordic languages (e.g., Icelandic, Inuit} 

Modification to iso-8859" 1 that includes the new Eurocurrency character 

iso-8859-1, also known as Latini, is the default characterset for HTML. It can be 
used to represent text in most Western European languages. There has been some · 
discussion ofreplacing iso-8859-1 with iso-8859-15 as the default HTTP codedchar­
acter set, because it includes the new Euro currency symboL However, because of 
the widespread adoption of iso-8859-1, it's unlikely that a widespread change to iso-
8859-15 will be adopted for quite some time. 

JISX0201 

JIS X 0201 is an extremely minimal character set that extends ASCil with Japanese 
half width katakana characters. The half-width katakana characters were originally 
used in the Japanese telegraph system. JIS X0201 is often called "JIS Roman." ]IS is 
an acronym for "Japanese Industrial Standard." 

JIS X 0208 and JIS X 0212 

Japanese includes thousands of characters from several writing systems. While it is 
possible to limp by (painfully) using the 63 basic phonetic katakana characters inJIS 
X 0201, a much more complete character set is required for practical use. 

380 I Chapter 16: Internationalization 



The JIS X 0208 character set was the first multi-byte Japanese character set; it 
defined 6,879 coded characters, most of which are Chinese-based kanji. The]IS X 
0212 character set adds anadditional6,067 characters. 

ucs 
The Universal Character Set (UCS) is a worldwide standards effort to coinbine all of 
the world's characters into a single coded character set. UCS is defined by ISO 
10646. Unicode is a commercial consortium that tracks the UCS standards. UCS has 
coding space for millions of characters, although the basic set consists of only about 
50,000 characters. 

Character Encoding Schemes 
Character encoding schemes pack character code numbers into content bits and 
unpack them back into character codes at the other end (Figure 16-7). There are 
three broad classes of character encoding schemes: 

Fixed width 
Fixed-width encodings represent each coded character with a fixed number of 
bits. They are fast to process but can waste space. 

Variable width (nonmodal) 
Variable-width encodings use different numbers of bits for different character 
code numbers. They can reduce the number of bits requiredfor commoncharac­
ters, and they retain compatibility with legacy 8-bit character sets while allowing 
the use of multiple bytes for international characters. 

Variable width (modal) 
Modalencodings use special "escape" patterns to shift between different mo4es. 
For example, a modal encoding can be used to switch between multiple, over­
lapping character sets in the middle of text. Modal encodings·are complicated to 
process, but they can efficiently support complicated writing systems. 

HTTP/1.1 200 OK 
Content-type: text/html; ~Ii,a!~.~t~#:ci~Z(j~~.~j'p 
Content-length: 4198 
Content-lanuage: jp 

J oo1oo1o111o1oo1oo1o1oo1oo1111101 I t.. 
01010010100111101001010011010010 , 01010101011100000101010001010011 r 
01011111001000010101111101010 ••• 

Entity body l 

Figure 16-7. Character encoding scheme encodes character codes into bits and back again 

Let's look at a few common encoding schemes. 

Multilingual Character Encoding Primer I 381 



8-bit 

The 8-bit fixed-width identity encoding simply encodes each character code with ·its 
corresponding 8-bit value. It supports only character sets with a code range of 256 . 
characters. The iso-8859 family ofcharacter sets uses the 8-bit identity encoding. 

UTF-8 

· UTF-8 is a popular character encoding scheme designed for UCS (UTF stands for 
"UCS Transformation Format"). UTF-8 uses a nonmodal, variable-length encoding 
for the character code values, where the leading bits of the first byte tell the length of 
the encoded character in bytes, and any subsequent byte contains six bits of code 
value (see Tablel6-2). 

If the first encoded byte has a high bit of 0, the length is just 1 byte, and the remain­
ing 7 bits contain the character code. This has the nice result of ASCII compatibility 
(but not iso-:-8859 compatibility, because iso-:-8859 uses the high bit). 

Table 16-2. UTF-8 variable-width, nonmodal encoding 

~~~~t;~~~~~~~~~~~~j\\~;l~~;i'~~~~~~*' 
0-7 Occccccc

8-11 110ccccc TOcccccc

12-16 1110cccc 10cccccc 10cccccc
17--:21 11110ccc 10cccccc 10cccccc 10cccccc

22-26 111110cc ·1occcccc 10cccccc 10cccccc 10cccccc

27-31 1111110c lOcccccc 10cccccc 10cccccc 10cccccc 10cccccc
---------·------

For example, character code 90 (ASCII "Z") would be encoded as 1 byte (01011010),
while code 5073 (13-bit binary value 1001111010001) would be encoded into 3 bytes:

11100001 10001111 10010001

iso-2022:-jp

iso-2022-jp is a widely used encoding for Japanese Internet documents. iso-2022-jp is
a variable-length, modal encoding, with all values less than 128 to prevent problems
with non-8-bit-clean software.

The encoding context always is set to one of four predefined character sets.* Special
"escape sequences" shift from one set to another. iso-202L-jp initially uses the US­
ASCII character set, but it can switch to the]IS X 0201 OIS-Roman) character set or
the much larger JIS X 0208-1978 and JIS X 0208-1983 character sets using 3-byte
escape sequences.

• The iso-2022-jp encoding is tightly bound to these four character sets, whereas some other encodings are
independent of the particular character set.

382 I Chapter 16: Internationalization

The escape sequences are shown in Table 16-3.Jn practice, Japanese text begins with
"ESC$@" or "ESC $B" and ends with "ESC (B" or "ESC(]".

Table 16-3. iso-2022-jp character set switching escape sequences

ESC (B

ESC(J

ESC$@

ESC$ B

US-ASCII

JIS X0201·1976 (JIS Roman)

JIS X 0208~ 1978

JIS X 0208-1983

1

1

2

2 . . . ------------. ----:--------...-· -·---·~---·---... --· -··--~--.----. ----. ---------

When in the US~ASCil or]IS-Roman modes, a single byte is used per character.
When using the larger]IS X 0208 character set, two bytes are used per character
code. The encoding restricts the bytes sent to be between 33 and 126.*

euc-jp
euc-jp is another popular. Japanese encoding. EUC stands for "Extended Unix
Code," first developed to support Asian characters on Unix operating systems ..

Like iso-2022-jp, the euc-jp encoding is a variable-length encoding that allows the
use of several standard Japanese character sets. But unlike iso-2022-jp, the euc-jp
encoding is not modal. There are no escape sequences to shift between modes.

euc-jp supports four coded character sets: JIS X 0201 (]IS-Roman, ASCII with a few
Japanese substitutions),]IS X 0208, half-width katakana (63characters used in the
original japanese telegraph system), andjiS X 0212.

One byte is used to encode JIS Roman (ASCII compatible), two bytes are used for JIS X
0208 and half-width katakana, and three bytes are used for]IS X 0212. The coding is a
bit wasteful but is simple to process.

The encoding patterns are outlined in Table 16-4.

Table 16-4. euc-jp encoding values

~••Wbi~~·~¥1~1~f,:'fi;~~~0"i~ts;c:1;~r·~J·1y~tj.if•~.gF (f!H~ll~ilfli~~:~~,W~Si;';. •··· ..
JIS X 0201 (94 coded characters)

1st byte

JIS X 0208 (6879 coded characters)

1st byte

2nd byte

33-126

161-254

161-254

* Though the bytes can have only 94 values (between 33 and 126), this is sufficient to cover all the characters
in the JIS X 0208 character sets, because the character sets ai-e organized into a 94 x 94 grid of code values,
enough to cover all JIS X 0208 character codes.

Multilingual Character Encoding Primer I 383

Table 16-4. euc-jp encoding values (continued)

Half~width katakana (63 coded characters)

1st byte

2nd byte

JIS X 0212 (6067 coded characters)

1st byte

2nd byte

3rdbyte

142

161-223

143

161-254

161-254

This wraps up our survey of character sets and encodings. The next section explains
language tags and how HTTP uses language tags to target content to audiences.
Please refer to Appendix H for a detailed listing of standardizedcharacter sets,

language Tags and HTTP
Language tags are short, standardized .strings that name spoken languages.

We need standardized names, or some people will tag French documents as
"French," others will use "Fran~ais," others still might use "France," and lazy people
might just use "Fra" or "F." Standardized language tags avbid this confusion.

There are language tags for English (en), German (de), Korean (ko), and many other
languages. Language tags can describe regional variants and dialects of languages,
such as Brazilian Portuguese (pt-BR), U.S. English (en-US), and Hunan Chinese (zh-
xiang). There is even a standard language tag for Klingon (i-klingon)! v

The Content-language Header
The Content-Language entity header field describes the taq;et audience languages for
the entity. If the content is intended primarily for a French audience, the Content.,.
Language header field would contain:

Content-Language: fr

The Content-Language header isn't limited to text documents. Audio clips, movies,
and applications might all be intended for a particular language audience. Any media
type that is targeted to particular language audiences can have a Content-Language
header. In Figure 16-8, the audio file is tagged for a Navajo audience.

If the content is intended for multiple audiences, you can list multiple languages. As
suggested in the HTTP specification, a rendition of the "Treaty ofWaitangi," pre:­
sented simultaneously in the original Maori and English versions, would call for:

Content-Language: mi, en

384 I Chapter 16: Internationalization

j)J-j

HTTP/1.1 200 OK
Content-type: audio/x-wav
Content-length: 289772
~oJtt,~[t~.t'?figil~g¢·;·~~~r1~\l~5:~

00100101110100100101
01010010100111101001 '"'"'·'''w ·>· · .•

01010101011100000101
01011111001000011 •••

Figure 16-8. Content-Language header marks a "Rain Song" audio clip for Navajo speakers

However, just because multiple languages are present withinan entity does not mean
that it is intended for multiple linguistic audiences. A beginner's language primer,
such as "A First Lesson in Latin," which clearly is intended to be used by an English­
literate audience, wouldproperly include only "en".

The Accept-Language Header
Most of us know at least one language. HTTP lets us pass our language restrictions
and preferences along to web servers. If the web server has multiple versions of a
resource, in different languages, it can give us content in our preferred language.*

Here, a client requests Spanish content:

Accept-Language: es

You can place multiple language tags in the Accept-Language header to enumerate all
supported languages and the order of preference (left to right). Here, the client pre­
fers English but will accept Swiss German (de-CH) or other variants of German (de):

Accept-Language: en, de-CH, de

Clients use Accept-Language and Accept-Charset to request content they can under­
stand. We'll see how this works in more detail in Chapter 17 .. ·

Types of Language Tags
Language tags have a standardized syntax, documented in RFC 3066, "Tags for the
Identification of Languages." Language tags can be used to represent:

• General language classes (as in "es" for Spanish)

• Country-specific languages (as in "en-GB" for English in Great Britain)

• Dialects of languages (as in "noc..bok" for Norwegian "Book Language")

1
• Servers also can use the Accept-Language header to generate dynamic content in the language of the user or

to select images or target language-appropriate merchandising promotions.

Language Tags and HTIP I 385

• Regionallanguages(as in "sgn-US:-MA" for Martha's Vineyard sign language)

• Standardized nonvariant languages (e;g., "i-navajo")

• Nonstandard languages (e.g., ''x-snowboarder-slang"*)

Subtags
Language tags have one or more parts, separated by hyphens, called subtags:

• The first sub tag called the primary sub tag. The values are standardized.

• The second subtag is optional and follows its own naming standard.

• Any trailing subtags are unregistered.

The primary subtag contains only letters {A-Z). Subsequent subtags can containlet­
ters or numbers, up to eight characters in length. An example is shown in Figure 16-9.

Martha's Vineyard sign language

sgn-US-MA
t I . I

First subtag Second subtag Third subtag
(sign language) (America) (Massachusetts

·regional variant)

Figure 16-9. Language tags are separated into subtags

Capitalization
All tags are case-insensitive-the tags "en" and "eN" are equivalent. However, low­
ercasing conventionally is used to represent general languages, while uppercasing is
used to signify particular countries. For example, "fr" means all languages classified
as French, while "FR" signifies the country France.t

lANA language Tag Registrations
The values of the first and second language subtags are defined by various standards
documents and their maintaining organizations, The lANA+ administers the list of
standard language tags, using the rules outlined in RFC 3066.

If a language tag is composed of standard country and language values, the tag doesn't
have to be specially registered. Only those language tags that can't be composed out
of the standard country and language values need to be registered specially with the

* Describes the unique dialect spoken by "shredders."

t This convention is recommended by ISO standard 3166.

:j: See http://www.iana.org and RFC2860.

386 l Chapter 16: Internationalization

IANA.* The following sections outline the RFC 3066 standards for the first and sec­
ond subtags.

FirstSubtag: Namespace
The first subtag usually is a standardized language token, chosen from the ISO 639
set of language standards. But it also can be the letter "i" to identify lANA-registered
names, or ''x" forprivate, extension names. Here are the rules:

If the first subtag has:

• Two characters, it is a language code from the ISO 639t and 639-1 standards

• Three characters, it is a language code listed in the ISO 639-2+ standard and
extensions

• The letter "i," the language tag is explicitly IANA~registered .

• The letter "x,'' the language tag is a private, nonstandard, extension subtag

The ISO 639 and 639.,.2 names are summarized in Appendix G. A few examples are
shown here in Table 16-5.

Table 16~5. Sample ISO 639 and 639-2language codes

Arabic ar ara

Chinese zh chi/zho

Dutch nl · dutfnla

English en eng

French fr fra/fre

German de deu/ger

Greek (Modern) el ell/gre

Hebrew he heb

Italian it ita

Japanese ja jpn

Korean ko kor

Norwegian no nor

Russian ru rus

Spanish es esl/spa

* At the time of writing, only 21language tags have been explicitly registered with the lANA, including Can­
tonese ("zh-yue"), New Norwegian ("no-nyn"), Luxembourgish ("i-lux"), and Klingon ("i-klingon"). The
hundreds of remaining spoken languages in use on the Internet have been composed from standard compo­
nents.

t See ISO standard 639, "Codes for the representation of names of languages."

:j: See ISO 639-2, "Codes for the representation of names oflanguages-Part 2: Alpha-3 code."

language Tags and HTTP I 387

Table 16~5. Sample ISO 639 and 639-2/anguage codes (continued)

Swedish

Turkish

sv

tr

Second Subtag: Namespace

sve/swe

tur

The second subtag usually is a standardized country token, chosen from the ISO
3166 set of country code and region standards. But it may also be another string,
which you may register with the lANA. Here are the rules: · .

If the second subtag has:

• Two characters, it's a country/region defined by ISO 3166*

• Three to eight characters, it may be registered with the lANA

• One character, it is illegal

Some of the ISO 3166 country codes are shown in Table 16-6. The complete list of
country codes can be found in Appendix G.

Table 16-6. Sample ISO 3166 country codes

Brazil BR

Canada CA

China CN

France FR

Germany DE

Holy See (Vatican City State) VA

Hong Kong HK

India IN

Italy IT

Japan JP

lebanon lB

Mexico MX

Pakistan PK

Russian Federation RU

United Kingdom GB

United States us

• The country codes AA, QM-QZ, XA-XZ and ZZ are reserved by ISO 3166 as user-assigned codes. These
must not be used to form language tags.

388 I Chapter 16; Internationalization

Remaining. Subtags: Names pace
There are no rules for the third and following subtags, apa:rtfrom being up to eight
characters (letters and digits).

Configuring language Preferences
You can configure languag~ preferences in your browser profile.

Netscape Navigator lets you set language preferences through Edit __. Preferences ...
--. Languages ... , and Microsoft Internet Explorer lets you set languages through
Tools--. Internet Options ... --. Languages.

Language Tag Reference Tables
Appendix G contains convenient reference tables for language tags:

• lANA-registered language tags are shown in Table G-1.

• ISO 639language codes are shown in Table G"'L

• ISO 3166 country codes are shown in Table G-3.

Internationalized URis
Today, URis don't provide much support for internationalization. With a few
(poorly defined) exceptions, today's URis are comprised of a subset of US-ASCII
characters. There are efforts underway that might let us include a richer set of char­
acters in the hostnames and paths of URLs, but right now, these standards have not
been widely accepted or deployed. Let's review today' s practice. .

Global Transcribability Versus Meaningful Characters
The URI designers wanted everyone around the world to be able to share URis with
each other-by email, by phone, by billboard, even over the radio. And they wanted
URis to be easy to use and remember. These two goals are in conflicL

To make it easy for folks around the globe to enter, manipulate, and share URis, the
designers chose a very limited set of common characters for URis (basic Latiri alpha­
bet letters, digits, and a few special characters). This small repertoire of characters is
supported by most software and keyboards around the world;

Unfortunately, by restricting the character set, the URI designers made it much
harder for people around the globe to create URis that are easy to use and remem­
ber. The majority of world citizens don't even recognize the Latin alphabet, making
it nearly impossible to remember URis as abstract patterns.

. Internationalized URis I 389

The URI authors felt it was more importantto ensure transcribability and sharability
of resource identifiers than to have them consist of the most meaningful characters. So
we have URis that (today) essentially consist of a restricted subset of ASCII characters.

URI Character Repertoire
The subset of US-ASCII characters permitted in URis can be divided into reserved,
unreserved, and escape character classes. The unreserved character classes can be
used generally within any component of URis that allow them. The reserved charac­
ters have special meanings in many URis, so they shouldn't be used in general. See
Table 16-7 for a list of the unreserved, reserved, and escape characters.

Table 16-7. URicharacter syntax

Unreserved

Reserved

Escape

[A-Za-z0-911 .. _u 1"-"1 "."I"!" I"~" I"*" l'/11/1/r 17'
";" l"t"l"?"lll:~' I"®" f"&'' I "="Ill+" J"S" I","
"%" <HEX> <HEX> ·

Escaping and Unescaping
URI "escapes" provide a way to safely insert reserved characters and other unsup­
ported characters {such as spaces) inside URis. An escape is a. three-character
sequence, consisting of a percent character (%) followed by two hexadecimal digit
characters. The two hex digits represent the code for a US-ASCII character.

For example, to insert a space (ASCII 32) in a URL, you could use the escape "%20",
because 20 is. the hexadecimal representation of ·32, Similarly, if you wanted to
include a percent sign and have it not be treated as an escape, you could enter
"%25", where 25 is the hexadecimal value of the ASCII code for percent.

Figure 16-10 shows how the conceptual characters for a URI are turned into code
bytes for the characters, in the current character set. When the URI is needed for
processing, the escapes are undone, yielding the underlying ASCII code bytes.

Internally, HTTP applications should transport and forward URis with the escapes
in place. HTTP applications should unescape the URis only when the data is needed.
And, more importantly, the applications should ensure that no URI ever is unes­
caped twice, because percent signs that might have been encoded in an escape will
themselves be unescaped, leading to loss of data.

Escaping International Characters
Note that escape values should be in the range of US-ASCII codes (0-127). Some
applications attempt to use escape values to represent iso-8859-1 extended charac­
ters (128-255)-for example, web servers might erroneously use escapes to code

390 I Chapter 16: Internationalization

Conceptual characters

External form
(email, web, billboard, radio)

URI code bytes
...
0=111
m=109
1=47
b=98
i=105
g=103
%=37
2=50
0=48
5=115 ...

What you enter and send
(in current character set)

Unescaped ASCII code byte
I
I 111
I 109
I 47
i 98
I 105
' 103
I

.~ 32
i

I. 115
I
I

What you process
(in US-ASCII character set)

Figure 16-10. URI characters are transported as escaped code bytes but processed unescaped

filenames that contain international characters. This is incorrect and may cause
problems with some applications.

For example, the filename Sven Olssen.html (containing an umlaut) might be
encoded by a web server as Sven%20%D6lssen.html. It's fine to encode the space
with %20, but is technically illegal to encode the 0 with %D6, because the code D6
(decimal214) falls outside the range of ASCII. ASCII defines only codes up to Ox7F
(decimal127).

Modal Switches in URis
Some URis also use sequences. of ASCII characters to represent. characters in other
character sets. For example, iso-2022-jp encoding might be used to insert ''ESC (]"
to shift into]IS-Roman and "ESC (B" ·to shift back to ASCII. This works in some
local circumstances, but the behavior is not well defined, and there is no standard.,.
ized scheme to identify the particular encoding used for the URL. As the authors of
RFC 2396 say: .

For original character sequences that contain non-ASCII characters, however, the situ­
ation is more difficult. Internet protocols that transmit octet sequences intended to
represent character sequences are expected to provide some way of identifying the
charset used, if there might be more than one [RFC2277]. ·

However, there is currently no provision within the generic URI syntax to accomplish
this identification. An individual URI scheme may require a single charset, define a
default cha:rset, or provide a way to indicate the charset used. It is expected that a sys­
tematic treatment of character encodingwithin URI will be developed as a future mod-
ification of this specification. ·

Currently, URis are not very international-friendly. The goal of URI portability out­
. weighed the goal of language flexibility. There are efforts currently underway to
internationalize URis, but in the near term, HTTP applications should stick with
ASCII. It's been around since 1968, so it can't be all that bad.

Internationalized URis I 391

Other Considerations
This section discusses a few other things you should keep in mind when writing
international HTTP applications. ·

Headers and Out-of-Spec Data
HTTP headers must consist of characters from the US-ASCII character set. How­
ever, not all clients and servers implement this correctly, so you may on occasion
receive illegal characters with code values largerthan 127. .

Many HTTP applications use operating..:system and library routines for processing
characters (for example, the Unix ctype character classification library). Not all of
these libraries support character codes outside of the ASCII range (0-127).

In some circumstances (generally, with older implementations), these libraries may
return improper results or crash the application when given non-ASCII characters.
Carefully read the documentation for your character classification libraries before
using them to process HTTP messages, in case the messages contain illegal data.

Dates
The HTTP specification clearly defines the legal GMT date formats; but be aware
that not all web servers and clients follow the rules. For example, we have seen web
servers send invalid HTTP Date headers with months expressed in local languages.

HTTP applications should attempt to be tolerant of out~of-spec dates, and not crash
on receipt, but they may not always be able to interpret all dates sent. If the date is
not parseable, servers should treat it conservatively.

Domain Names
DNS doesn't currently support international characters in domain names. There are
standards efforts under way to support multilingual domain names, but they have
not yet been widely deployed.

For More Information
The very success ofthe World Wide Web means that HTTP applicationswill con­
tinue to exchange more and more content in different languages and character sets.
For more information on the important but slightly complex topic of multilingual
multimedia, please refer to the following sources.

392 I Chapter 16: Internationalization

Appendixes
• lANA-registered charset tags are listed in Table H-1.

• lANA-registered language tags are shown in Table G-1.

• ISO 639language codt::s are shown in Table G-2.

• ISOJ166 countrycodes are shown in Table G-3.

Internet Internationalization
http://www;w3. org!I nternational!

"Making the WWW Truly World Wide"-the W3C Internationalization and
Localization web site.

http://www.ietf.org/rfc!rfc2396.txt
RFC 2396, "Uniform Resource Identifiers (URI): Generic Syntax," is the defin­
ing document of URis: This document includes sections describing character set
restrictions for international URis.

CJKVJnformation Processing
Ken . Lunde, 0 'Reilly & Associates, Inc. CJKV is the bible of Asian electronic
character processing. Asian character sets are varied and complex, but this book
provides an excellent introduction to the standards technologies for large charac­
ter sets.

http:l!www.ietforg!rfc!rfc2277.txt
RFC 2277, "IETF Policy on Character Sets and Languages,"documents the cur­
rent policies being applied by the Internet Engineering Steering Group (IESG)
toward the standardization efforts in the Internet Engineering Task Force (IETF)
in order to help Internet protocols interchange data in multiple languages and
characters.

International Standards
http://www.iana.org/numbers.htm

The Internet Assigned Numbers Authority (lANA) contains repositories ofregis­
tered names and numbers. The "Protocol Numbers and Assignments Directory"
contains records of registered character sets for use on the Ii:uemet. Because
much work on international communications falls under the domain of the ISO, . . .

and not the Internet community, the lANA listings are not exhaustive.

http :l!www. ietf. org!rfc!rfc3066. txt
RFC 3066, "Tags for the Identification of Languages," describes language tags,
their values, and how to construct them.

ForMore Information .I 393

"Codesfor the representation of names of languages"
ISO 639:1988 · (E/F), The International Organization for Standardization, first
edition.

''Codes for the representation of names··oflanguages-Part 2: Alpha-3 code"
ISO 639-2:1998, Joint Working Group of ISO TC46/SC4 and ISO TC37/SC2,
first edition.

"Codes for the representation of names of countries" .
ISO 3166:1988 (E/F), The International Organization for Standardization, third
edition.

394 · I Chapter 16: Internationalization

CHAPTERl7

Content Negotiation and Transcoding

Often, a single URL may need to correspond to differentresources .. Take the case of
a web site that wants to offer its content in multiple languages. If a site such as Joe's
Hardware has both French- and English-speaking users, it might want to offer its
web site in both languages~ However, if this is the case, when one of Joe's customers
requests "http://www.joes-hardware;com," which version should the server send?
French or English?

·. . .

Ideally; the server will send the English version to an English speaker and the French
version to a French speaker-a user cmdd go to Joe's Hardware's home page and get
content in the language he speaks. Fortunately, HTTP provides content-negotiation
methods that allow clients and servers to make just such determinations. Using these
methods; a single URL can correspond to different resources (e.g., a French and
English version of the same web page). These different versions are called variants.

Servers also can makeothertypes of decisions about what content is best to send to a
client for a particular URL. In some cases, servers even can ·automatically generate
customized· pages-.· for instance, a server can convert an HTML page into a WML
page for your handheld device. These kinds of dynamic content transformations are
called transcodings. They are done in response to content negotiation between HTTP
clients and servers.

In this chapter, we will discuss content negotiation and how web applications go
about their content-negotiation duties.

Content-Negotiation Techniques
There are three distinct methods for deciding which page at a server is the right one
for a client: present the choice to the client, decide automatically at the server, or ask
an intermediary to select. These three techniques are called client-driven negotiation,
server-driven negotiation, and transparent negotiation, respectively (see Table 17-1).

395

In this chapter, we will look at the mechanics of each technique as well as their
advantages.· and disadvantages.

Table 17~ 1. Summary ofcontent-negotiation techniques

Client-driven · Client makes a request
server sends list of choices
to client,. client chooses~

Server-driven

Transparent

Server examines client's
request headers and
decides what version to
serve.

An intermediate device
(usually a proxy cache)
does the request negotia­
tion on the client's behalf.

Easiest to implement at server side. Client can
. make best choice.

Quicker than client-driven negotiation. HTTP
providesa q-value mechanism to: a flow serv­
ers to make approximate matches and a Vary
header for servers to tell downstream devices
how to evaluate requests;

Offloads the negotiation from the web server.
Quicker than client-driven negotiation.

Client-Driven Negotiation

Adds latency: at least two
requests are needed to
get the correCt content.

If the decision is not obvi­
ous (headers don'tmatch
up), the server must
guess.

No formal specifications
for how to do transparent
negotiation.

The easiest thing for a server to do when it receives a client request is to send back a
response listing the available pages and let the client decide which one it wants to
see. This, of course, is the easiest to implement at the server and is likely to result in
the best copybeing selected (provided that the list has enough information to allow
the client to pick the right copy). The disadvantage is that two requestsare needed
for each page-. one to get the list and a second to get the selected copy. This is a
slow and tedious process, and it's likely to become annoying to the client.

Mechanically, there are actually two ways for servers to present the choices to the cli­
ent for selection: by sending back an HTML document with links to the different ver­
sions of the page and descriptions of each of the versions, . or by sending back an
HTTP /1.1 response with the 300 Multiple Choices response code. The client
browser may receive this response and display a page with the links, as in the first
method, or it may pop up a dialog window asking the user to make a ~election. In
any case, the decision is made manually at the client side by the browser user.

In addition to the increased hnency and annoyance of multiple requests per page,
this method has another drawback: it requires multiple URLs-one for the main
page and one for each specific page. So, if the original request was for www.joes..:.
hardware.com, Joe's server may respond with a page that has links to www.joes­
hardware.com/english and www.joes-hardware.com/french. Should clients now book­
mark the original main page or the selected ones? Should they tell their friends
about the great web site at www.joes-hardware.com or tell only their English-speak­
ing friends about the web site at www.joes-hardware.com/english?

396 I Chapter 17: Content Negotiation and Transcoding

Server-Driven Negotiation ·
Client-driven negotiation has several drawbacks, as discussed in the previous sec~
tion. Most of these drawbacks center around the increased communication between
the client and server to decide on the best page in response to a request. One way to
reduce this extra communication is to let the server decide which page to send
back-but to do this, the client must send enough information abou,t its preferences
to allow the server to make an informed decision. The server gets this information
frorn the client's request headers.

There are two mechanisms that HTTP servers use to evaluate the proper response to

send to a client:

• Examining the set ofcontent-:-negotiation headers. The server looks at the clienfs
Accept headers and tries to match them with corresponding response headers.

• Varying on other (non-content-negotiation) headers. For example, the server
could send responses based on the client's User-Agent header.

These two mechanisms are explained in more detail in the following sections.

Content-Negotiation Headers
Clients may send their preference information using the set of HTTP headers listed
in Table 17-,2.

Table 17-2. Accept headers

Accept

Accept-language

Accept-Charset

Accept-Encoding

Used to tell the server what media types are okay to send

Used to tell the server what languages are okay to send

Used to tell the server what charsets are okay to send

Used to tell the server what encodings are okay to send

Notice how similar these headers are to the entity headers discussed in Chapter 15.
However, there is a clear distinction between the purposes of the two types of head­
ers. As mentioned in Chapter 15, entity headers are like shipping labels-they spec­
ify attributes of the message body that are necessary during the transfer of messages
from the server to the client. Content-negotiation headers, on the other hand; are
used by clients and servers to exchange preference information and to help choose
between different versions of a document, so that the one most closely matching the
client's preferences is served.

Servers match clients' Accept headers with the corresponding entity headers, listed in
Table 17-3.

··Server-Driven Negotiation I 397

Table 17-3. Accept and matching document headers

Accept ·

Accept-language

Accept-Charset

Accept-Encoding

ContenHype

Content-language

Content-Type

Content-Encoding ·
·--'----,-

Note that because HTTP is a st~neless protocol (meaning that servers do not keep
track of client preferences across requests), clients must send their preference infor-
mation with every request. ·

If both clients sent Accept-Language header information specifying the language in
which they were interested, the server could dedde which copy of www.joes-hard­
ware.com to send back to each client. Letting. the server automatically pick which
document to send back reduces the la.tency associated with the back-and-forth.com­
munication required by the client-driven model.

However, say that one of the clients prefers Spanish. Which version of the page
should the server send back? English or French? The server has just two choices:
either guess, or fall back on the client-driven model and ask the client to choose.
However, if the Spaniard happens to understand some English, he might choose the
English page-it wouldn't be ideal, but it would do. In this case, the Spaniard needs
the ability to pass on more information about his preferences, conveying that he does
have minimal knowledge of English and that, in a pinch, English will suffice.

Fortunately, HTTP does provide a mechanism for letting clients like our Spaniard
give richer descriptions of their preferences, using quality values ("q values" for short).

Content-Negotiation Header Quality Values
The HTTP protocol defines quality values to allow clients to list multiple choices for
each category of preference and associate an order of preference with each choice.
For example, clients can send an Accept-Language header of the form:

. Accept-Language: en;q=O.S, fr;q=O.O, nl;q=l.O, tr;q=O.O

Where the qvalues can range from 0.0 to 1.0 (with 0.0 being the lowest preference
and 1.0 being the highest). The header above, then, says that the client prefers to
receive a Dutch (nl) version of the document, but an English (en) version will do.
Under no circumstances does the client want a French (fr) or Turkish (tr) version,
though. Note that the order in which the preferences are listed is not important; only
the q values associated with them are.

Occasionally, the server may not have any documents that match any of the client's
preferences. In this case, the server may change or transcode the document to match
the client's preferences. This mechanism is discussed later in this chapter.

398 I Chapter 17: Content Negotiation and Transcoding

Varying on Other Headers
Servers also can attempt to match up responses with other client request headers,
such as U ser-:Agent. Servers may know that old versions of a browser do not support
JavaScript, for example, and may therefore send back a version: of the page that does
not contain J avaScript.

In this case, there is noq-value mechanism to look for approximate "best" ma.tches.
The server either looks for an exact match or simply serves whatever it has (depend­
ing on the implementation of the server).

Because caches must attempt to serve correct "best" versions of cached documents,
the HTTP protocol defines a Vary header that the server sends in responses; the Vary
header tells caches (arid clients, and any downstream proxies) whiCh headers the
server is using to determine the best version of the respcmse to send. The Vary header
is discussed in more detail later in this chapteL

Content Negotiation on Apache
Here is an overview of how the Apache web server supports content negotiation. It is
up to the web site content provider-Joe, for example-to provide different versions
of Joe's index page. Joe must put all his index page files in the appropriate directory
on the Apache server corresponding to his web site. There are two ways to enable
content negotiation:

• In the website directory, create a type-map file for each URI in the web site that
has variants. The type-:map file lists all the variants and the content-negotiation
headers to which they correspond.

• Enable the MultiViews directive, which causes Apache to create type-map files
for the directory automatically.

Using type-map files

The Apache server needs to know what type-map files look like~ To configure this,
set a handler in the server configuration file that specifies the file suffix for type-map
files. For example:·

AddHandler type-map .var

This line indicates that files with the extension . var are type-map files.

Here is a sample type-map file:

URI: joes-hardware.html

URI: joes-hardware.en.html
Content-type: text/html
Content-language: en

Server-Driven Negotiation I 399

URI: joes-hardware.fr.de.html
Content-type: text/htnil; charset=iso-8859-2

Content-language: fr, de

From this type-map file; the Apache server knows to send joes-hardware.en.html to

clients requesting English and joes-hardware;fr.de.html to clients requesting French.
Quality values also are supported; see the Apache serverdocumentation.

Using MultiViews

To use MultiViews, you must enable it for the directory containing the web site, using
an Options directive in the appropriate section of the access;conf file (<Directory>,
<Location>, or <Files>). .

If Multi Views· is enabled and a browser requests a resource named joes-hardware, the
server looks for all files with "joes-hardware" in the name and creates a type-map file
for them. Based on the names, the server guesses the appropriate content-negotiation
headers to which the files correspond. For example, a French-language version of
joes-hardware should contain .fr. .

Server-Side Extensions
Another way to implement content negotiation at the server is by server-side exten­
sions, such as Microsoft's Active Server Pages (ASP). See Chapter 8 for an overview
of server-side extensions.

Transparent Negotiation
Transparent negotiation seeks to move the load of server-driven negotiation away
from the server, while minimizing message exchanges with the client by having an
intermediary proxy negotiate on behalf of the client. The proxy is assumed to have
knowledge of the client's expectations and be capable of performing the negotia­
tions on its behalf (the proxy has received the client's expectations in the request for
content). To support transparent content negotiation, the server must be able to tell
proxies what request head~rs the server examines to determine the best match for the
client's request. The HTTP/1.1 specification does not define any mechanisms· for
transparent negotiation, but it does define the Vary header. Servers send Vary head­
ers in their responses to tell intermediaries what request headers they use for content
negotiation.

Caching proxies can store different copies of documents accessed via a single URL. If
servers communicate their decision-making processes to caches, the caches can nego­
tiate with clients on behalf of the servers. Caches also are great places to transcode
content, because a general-purpose transcoder deployed in a cache can transcode
content from any server, not just one .. Transcoding of content at a cache is illus- ·
tratedin Figure 17-3 and discussed in more detail later in the chapter.

400 I Chapter 17: Content Negotiation and Transcoding

·caching and Alternates
Caching of content assumes that the content can be reused later. However, cac;hes
must employ much of the decision..:. making logic that servers do when sending back a
response; to ensure that they send back the correct cached response to a client request.

The previous section described the Accept headers sent by clients and the corre~pond:­
ing entity headers that servers match them up against in order to choose the best
response to each request. Caches must use these same headers to.decide which cached
response to. send back.

Figure 17-1 illustrates both a correct and incorrect sequence of operations involving
a cache. The first request results in the cache forwarding the request to the server
and storing the response. The second response is looked up by the cache,. and a doc­
ument matching the URL is found. This document, however, is in French, and the
requestor wants a Spanish document. If the cache just sends back the French docu­
ment to the requestor, it will be behaving incorrectly.

French-speaking
user

GET I HTTPI1.1
Host: www.joes-hardware.com
User~agent: spiffy multimedia browser
Accept -language: fr; q=1. o

I Bonjour ll

Hi! Welcome to
Joe's Hardware
Store.

Hola! Bienvenido
a Joe'sHardware
Store. ·

• l Bonjour!
;:~-------------------~::::::::::\:: :::!: ~!;g~~~~e S~o~~e' s

Cache
' ·~---------------------------------·-------------------------------~-~------·--~---------

GET I HTTPI1.1
Host: www.joes-hardware.com
User-agent: spiffy multimedia browser
Accept-language: es;q=1.0

'···················i • Hola! Bienvenido
~-----·· . I·------~-------~-! ~ a Joe's Hardware

·. BonJour ·j········ . Store.·
L-------'-.-.J

1 .. i . Web server ·

I Bienvenido I ti
::••w••~•••••••••• •••••••-·•-·•.•••"••::!

Cache

Figure 17-1. Caches use content-negotiation headers to send back correct responses to clients

The cache niust therefore forward the second request to the server as well, and store
both the response and an "alternate" response for that URL. The cache now has two

Transparent Negotiation I 401

different documents for the same URL, just as the server does. These differentver­
sions are called variants or alternates. Content negotiation can be thought of as the
process of selecting, from the variants, the best match for a client request.

The Vary Header
Here's a typical set of request and response headers from a browser and server:

GET http://www.joes-hardware.com/ HTIP/1.0
Proxy-Connection: Keep-Alive
User~Agent: Mozilla/4. 73 [en] (WinNT; U)
Host: www.joes-hardware.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png; */*
Accept-Encoding: gzi~

Accept-Language: en, pdf
Accept-Charset: iso-8859-1, *, utf-8

HTTP/1.1 200 OK
Date: Sun, 10 Dec 2000 22:13:40 GMT
Server: Apache/1.3.12 OpenSSL/0.9.Sa (Unix) FrontPage/4.0.4.3
Last-Modified: Fri, OS May 2000 04:42:52 GMT
Etag: "1b7ddf-48-3912514c"
Accept-Ranges: Bytes
Content-Length: 72
Connection: close
Content-Type: text/html

What happens, however, if the server's decision was based on headers other than the
Accept headers, such as the User-Agent header? This is not as radical as it may
sound. Servers may know that old versions of a browser do not support] avaScript,
for example, and may therefore send back a version of the page that does not have
] avaScript in it. If servers are using other headers to make their decisions about
which pages to send back, caches must know what those headers are, so that they
can perform parallel logic in choosing which cached page to send back.

The HTTP Vary response header lists all of the client request headers that the server
considers to select the document or generate custom content (in addition to the regu­
lar content-negotiation headers). For example, if the served document depends on the
User-Agent header, the Vary header must include "User-Agent".

When a new request arrives, the cache finds the best match using the content-negoti­
ation headers. Before it can serve this document to the client, however, it must see
whether the server sent a Vary header in the cached response. If a Vary header is
present, the header values for the headers in the new request must match the header
valu~s in the old, cached request. Because servers may vary their responses based on
client request headers, caches must store both the client request headers and the cor­
responding server response headers with each cached variant, in order to implement
transparent negotiation. This is illustrated in Figure 17-2.

402 I Chapter 17: Content Negotiation and Transcoding

French-speaki!lg
user1

GET I HTTP/1.1
Host: www.joes:.hardwar'e .com
User-agent: spiff~ multimedia browser
Accept-language: fr;q=l.O

/need to send her aFrench document.
Since she hassuch a cool browser,l'll
send her a media-rich version of

. thepage.

r u : ~~~·······~p:,;;:;:::;:~;:::::::::::::::::::::::~:·
: i Content-language: fr -! vary: user-agent Webserver

::__, _____________ ,. ______________ t:: Bonjour . ·
Cache [••• media-rich content]

Figure 17:.2. If servers vary on specific request headers, caches must match those request headers
in addition to the reg~Jlar content-negotiation headers before sending back cached responses

If a server's Vary header looked like this, the huge number of different User:-Agent
and Cookie values could generate many variants:

Vary: Wser..,Agent, Cookie

A cache would have to store each document version corresponding to each variant.
When the cache does a lookup, it first does content matching with the content-nego­
tiation headers, then matches the request's variant with cached variants. If there is no
match, the cache fetches the document from: the origin server.

Transcoding
We have discussed in some detail the mechanism by which clients and servers can
choose between a set of documents for a URL and send the one that best matches the

Transcoding I 403

I·

client's needs. These mechanisms rely on the presence of documents that match the
client's needs-· whether they match the needs perfectly or not so well.

·What happens, however, when a server does not have a document that matches the
client's needs at all? The server may have to respond with an error, but theoretically,
the server may be able. to transform one of its existing documents into something
that the client can use. This option is calledtranscoding.

Table 17-4 lists some hypothetical transcodings.

Table 17-4. ·Hypothetical transcodings

HTMl document

High-resolution image

Image in 64K colors

Complex page with frames

HTML page with Java applets

Page with ads

WML document

Low-resolution image

Black-and-white image

Simple text page without frames or images

HTML page without Java applets

Page with ads removed
----~--------~--~---------------

There are three categories of transcoding: format conversion, 1nformation synthesis,
and content injection.

Format Conversion
Format conversion is the transformation of data from one format to another to make it
viewable by a client. A • wireless device seeking to access a· document typically viewed
by a desktop client may be able do so with an HTML-to-WML conversion. A client
accessing a web page over a slow link that is not very interested i:h high-resolution
images may be able to view an image-rich page more easily if the images are reduced
in size and resolution by converting them from color to black and white and shrink­
ing them.

Format conversion is driven by the content-negotiation headers listed in Table 17-2,
although it may also be driven by the User-Agent header. Note that content transfor­
mation or transcoding is different from content encoding or transfer encoding, in
that the latter two typically are used for more efficient or safe transport of content, -
whereas the former is used to make content viewable on the access device.

Information Synthesis
The extraction of key pieces of information from a document-known as informa­
tion synthesis-:ean be a useful transcoding process. A simple example of this is the
generation of an outline of a document based on section headings, or the removal of
advertisements and logos from a page.

404 I Chapter 17: Content Negotiation and Transcoding

More sophisticated technologies that categorize pages based on keywords in content
also are usefuljn summarizing the essence of a document. This technology often is
used by automatic web page-dassification systems, such as web-page directories at
portal sites; ·

Content Injection
The tWo categories of·transcodings described so far typically reduce the amount of
content in web documents, but there is another category of transformations that
increases the amount of content: content-injection transcodings. Examples of content­
injection transcodings are automatic ad generators and user..:tracking systems.

Imagine the appeal (and offence) of an ad-:insertion transcoder that automatically
adds advertisements to each HTML page as it goes by. Transcoding of this type has to
be dynatnic-it must be done on the fly in order to be effective In adding ads that cur­
rently are relevant or somehow have been targeted for a particular us~r. User-tracking
systems also can be built to add content to pages dynamically, for the purpose of col.:.
lecting statistics about how the page is viewed and how clients surf theW eb.

Transcoding Versus Static Pregeneration
An alternative to transcodings is to build different copies of web pages at the web
server-for example, one with HTML, one with WML, one with high-resolution
images, one with low-resolution images, one with multimedia content; and one with­
out. This, however, is not a very practical technique, for many reasons: any small
change in a page requires multiple pages to be modified, mote space is necessary to
store all the different versions of each page, and it's harder to catalog pages and pro­
gram web servers to serve the right ones. Some transcodings, such as ad insertion
(especially targeted ad insertion), cannot be done statically-. the ad inserted will
depend upon the user requesting the page.

An on-the-fly transformation of a single root page can be an easier solution than static
pregeneration. It can come, however, at the cost of increased latency in serving the
content. Some of this computation can, however, be done by a third party, thereby off­
loading the computation from the web server-the transformation c:an be done by an
external agent at a proxy or cache. Figure 17-3 illustrates transcoding at aproxy cache.

Next Steps
The story of content negotiation does not end with the Accept and Content headers,
for a couple of reasons:

• Content negotiation in HTTP incurs some performance limits. Searching through
many variants for appropriate content, or trying to "guess" the best match, can

Next Steps I . 405

GET I HTTP/L 1
Host: wwW.joes-hanjware.tom
User-agent: wimpy wireless device
Accept-language: fr;q=1.0

that he wants, but my copy is very media-
I havea French copy of the document•. . · ..

rich a lid he has a wimpy wireless browser.
I will strip out all of the multimedia
and send it to him.

French-speaking.
user.

~ Webserver

'············~ ~ Trans~ogrifier

. I . Since I have transformed this
document for a wireless device,
I will store the transformed
copy as an a/ternateln case
someone else wants it as well.

HTTP /1.1 200 OK
Content-language: fr
Vary: User-agent

Bonjour
[... simple text content]

...............................

Figure 17-3. Content transformation or transcoding at a proxy cache

be costly. Are there ways to streamline and focus the content-negotiation proto,.
col? RFCs 2295 and 2296 attempt to address this question for transparent HTTP
content negotiation.

• HTTP is not the only protocol that needs to do content negotiation. Streaming
media and fax are two other examples where client and server need to discuss ..
the best G~.nswer to the client's request. Can a general content-negotiation proto­
col be developed on top of TCP liP application protocols? The Content Negotia­
tion Working Group was formed to tackle this question. The group is now
closed, but it contributed several RFCs. See the next section for a link to the
group's web site.

For More Information
The following Internet drafts and online documentation can give you more details
about content negotiation:

http://www.ietforglrfc!rfc2616. txt
RFC 2616, "Hypertext Transfer Protocol-HTTP/1.1," is the official specifica­
tion for HTTP /1.1, the current version of the HTTP protocol. The specification
is a well-written, well-organized, detailed reference for HTTP, but it isn't ideal
for readers who want to learn the underlying concepts and motivations of HTTP
or the differences between theory and practice. We hope that this book fills in
the underlying concepts, so you can make better use of the specification.

406 I Chapter 17: Content Negotiation and Transcoding

http:/ /search. ietf org/rfc/rfc229 5 .txt
RFC 2295, "Transparent Content Negotiation in HTTP," is a memo describing a
transparent content-negotiation protocol on top of HTTP. The status of this
memo remains experimental.

http://search;ietf.org/rfc/rfc2296.txt ..
RFC 2296, "HTTP Remote Variant Selection Algorithm-RVSA 1.0," is a memo
describing an algorithm for the transparent selection of the "best" content for a
particular HTTP request. The status of this memo remains experimental.

http://search. ietf org/rfc/rfc293 6. txt
RFC 2936, "HTTP MIME Type Handler Detection," is a memo describing an
approach for determining the actual MIME type handlers that a browser sup­
ports. This approach can help if the Accept header is not specific enough.

http://www.imc.org/ietf-medfree!index. htm ..
This is a link to the Content Negotiation (CONNEG) Working Group, which
looked into· transparent content negotiation for HTTP, fax, and print. This
group is now closed. .

For More Information I 407

PARTV

Content Publishing
and Distribution·

Part V talks all about the technology for publishing and disseminating web content:

• Chapter i8, Web Hosting, discusses the ways people deploy servers in modern
web hosting environments, HTTP support fat virtual web hosting, and how tO

replicate content across geographically distant servers:

• Chapter 19, Publishing Systems, discusses the technologies for creating web con­
tent and installing it onto web servers.

• Chapter 20, Redirection and Load Balancing, surveys the tools and techniques for
distributing incoming web traffic among a collection of servers.

• Chapter 21, Logging and Usage Tracking, covers log formats and common
questions.

.CHAPTER 18

Web Hosting

When you place resources on a public web server, you make them available to the
Internet community. These resources can be as simple as text files or images, or as
complicated as real-time driving maps or e-:-commerce shopping gateways. It's criti­
cal that this rich variety of resources, owned by different organizations, can be conve­
niently published to web sites andplaced on web servers that offer good performance
at a fair price.

The collective duties of storing, brokering, and administering content resources is
called web hosting. Hosting is one of the primary functions of a web server. You need
a server to hold, serve, log access to, and administer your content. If you don't want
to manage the required hardware and software yourself, you need a hosting seivice,
or hoster. Hosters rent you serving and web-site administration services and provide
various degrees of security, reporting, and ease of use. Hosters typically pool web
sites on heavy-duty web servers for cost-efficiency, reliability, and performance.

This chapter explains some of the most important features of web hosting services
and how they interact with HTTP applications. In particular,. this chapter covers:

• How different web sites can be "virtually hosted" on the same server, and how
this affects HTTP

• How to make web sites more reliable under heavy traffic

• How to make web ~ites load faster

Hosting Servi'ces
In the early days of the World Wide Web, individual organizations purchased their
own computer hardware, built their own computer rooms; acquired their own net­
work connections, and managed their own web server software.

As the Web quickly became mainstream, everyone wanted a web site, but few peo­
ple had the skills or time to build air-conditioned server rooms, register domain

411

names, or purchase network bandwidth. To save the day, many new businesses
emerged, offering professionally managed web hosting services. Many levels of ser.,.
vice are available, from physical facilities management (providing space, air condi­
tioning, and wiring) to full..:service web hosting, where all the customer does is
provide the content.

This chapter focuses on what the ho$ting web server provides. Much of what makes
a web site work-as well as, for example, its ability to support different languages
and its ability to do secure e-commerce transactions-depends on what capabilities
the hosting web server supports. . .

A Simple Example: Dedicated Hosting
Suppose that Joe's Hardware Online and Mary's Antique Auction both want fairly
high-volume web sites. Irene's ISP has racks· and racks full of identical, high­
'performance web servers that it can lease to Joe and Mary, instead of having Joe and
Mary purchase their own servers and maintain the server software.

In Figure 18-1, both Joe and Mary sign up for the dedicated web hosting service
offered by Irene's ISP. Joe leases a dedicated web server that is purchased and
maintained by Irene's ISP~ Mary gets a different dedicated server from Irene's ISP.
Irene's ISP gets to buy server hardware in volume and can select hardware that is
reliable, time-tested, and low-cost. If either Joe's Hardware Online or Mary's
Antique Auction grows in popularity, Irene'siSP can offer Joe or Mary additional
servers immediately.

Figure 18-1. Outsourced dedicated hosting

Irene's ISP I : ··
www.joes-hardware.com . ..l Content t··· .. : .

WWW.<iljun-gifts.roml ! .· ke

www.marys-antiques.com~· . . .l Content :
I

www.lrenes-bp.com I ,
I

, __ -------------- --------·--_I

In this example, browsers send HTTP requests for www.joes-hardware.com to the IP
address of joe's server and requests for www.marys-antiques.com to the (different} IP
address of Mary's server.

412 . I Chapter 18: Web Hosting

Virtual Hosting
Many folks want to have a web presence but don't have high-traffic web sites. For
these people, providing adedicated web server may be a waste, because they're pay­
ing many hundreds of dollars a month to lease a server that is mostly idle!

. .

Many web hosters offer lower~cost web hosting services by sharing one cmnputer
between several customers .. This is called shared hosting or virtual hosting. Each web
site appears to be hosted by a different server, but they really are hosted on the same
physical server. From the end user's perspective, virtually hosted web sites should be
indistinguishable from sites hosted on separate dedicated servers;

For cost efficiency, space, and management reasons, a virtual hosting company
wants to host tens, hundreds, or thousands of web sites on the same server-but this
does not necessarily mean that 1,000 web sites are served from only one PC. Hosters
can create banks of replicated servers (called server farms) and spread the load across
the farm of servers. Because each server in the farm is a clone of the others, and hosts
many virtual web sites, administration is much easier. (We'll talk more about-server
farms inChapter 20.) .

When Joe and Mary started their businesses, they might have chosen virtual hosting
. to save money Until their traffic levels made a dedicated server worthwhile (see
Figure 18'-2).

Client www.irene>;s~roml ,
I

-------------------------- _,

Figure 18-2. Outsourced virtual hosting

Virtual Server Request lacks Host Information
Unfortunately, there is a design flaw in HTTP/1.0 that makes virtual hosters pull
theirhair out. The HTTP/1.0 specification didn't give any means for shared web
servers to identify which of the virtual web sites they're hosting is being accessed.

Virtual Hosting J 413

Recall that HTTP /1.0 requests send only the path component of the URL in the
request message. If you try to get http://www.joes-hardware.com/index.html; the
browser connects to the server www,joes-hardware.com, but the HTTP /LO request
says "GET /index.html", with no further mention of the hostname. If the server is
virtually hosting multiple sites,. this isn't enough information to figure out what vir­
tual web site is being accessed. For example, inFigure 18-3:

• If client A tries to access http:llwww.joes-hardware.com/index.html, the request
"GET /index.html'' will be sent to the shared web server.

• If client B tries to access http://www.marys-antiques.comlindex.html, the identi­
cal request "GET /index.html" will be sent to the shared web server.

www.voting-info.gov ·.
www.joes~hardware.com

www.marys-antiques.com
r----------------~--~---------------1

I
... I

~~----···· ··---... :!
' I
' I

i /voting /mary (joe i :
l 0 0 0) :
.................. _ .. ~ .. ~--........................ .:................................ :.

1---------------------------------~-~

HTTP/1.0 requestsdo not contain hostname information, so
they do not support web servers that host multiple web sites.
(HTTP/1.1 supports a Host header to fixthis problem.)

Figure 18-3. HTTP/1.0 server requests don't contain hostname information

As far as the web server is concerned, there is not enough information to determine
which web site is being accessed! The two requests look the same, even though they
are for totally different documents (from different web sites). The problem is that the
web site host information has been stripped from the request.

As we saw in Chapter 6, HTTP surrogates (reverse proxies) and intercepting proxies
also need site-specifying information. .

Making Virtual Hosting Work
The missing host information was an oversight in the original HTTP specification,
which mistakenly assumed that each web server would host exactly one web site.
HTTP's designers didn't provide support for virtually hosted, shared servers. For this
reason, the hostname information in the URL was viewed as redundant and stripped
away; only the path component was required to be sent.

Because the early specifications did not make provisions for virtual hosting, web
hosters needed to develop workarounds and conventions to support shared virtual
hosting. The problem could have been solved simply by requiring all HTTP request

414 I Chapter 18: Web Hosting

messages to send the full URL instead of just the path component.· HTTP /1.1 does
require servers to handle full URLs in the request lines of HTTP messages, but it will
be a longtime before all legacy applications are upgraded to this specification. In the
meantime, four techniques have emerged: ·

Virtual hosting by· URL path
Adding a special path component to the URL so the server can determine the site .

. Virtual hosting by port number
Assigning a different port number to each site, so requests are handled by sepa­
rate instances of the web server.

Virtual hosting by IP address
Dedicating different IP addresses for different virtl1al sites and binding all the IP
addresses to a single machine. This allows the web server to identify the site
name by IP address.

Virtual hosting by Host header
. Many web hosters pressured the HTTP designers to solve this problem.
· Enhanced versions of HTTP /1.0 and the official version of HTTP /1.1 define a

Host request header that carries the site name. The web server can identify the
virtual site from the Host header. ·

Let's take a closer look at each technique.

Virtual hosting by URL path

You can use brute force to isolate virtual sites on a shared server by assigning them
different URL paths. For example, you could give each logical web site a special path
prefix: .

• Joe's Hardware :Store could be http:llwww.joes-hardware.com/joe/index.html.

• Mary's Antiques store could be http:l(www.marys-antiques.com/mary!index.html.

When the requests arrive at the server, the hostname information is not present in
the request, but the server can tell them apart based on the path:

• The request for Joe's hardware is "GET /joe/index.html".

• Therequest for Mary's antiques is "GET /mary/index.html".

This is not a good solution. The "/joe" and "/mary" preftxes are redundant and con,.
fusing (we already mentioned "joe'' in the hostname). Worse, the common conven­
tion of specifying http://www.joes-hardware.com or http://www.joes-hardware.com/
index.html for the home page won't work.

In general, URL-based virtual hosting is a poor solution and seldom is used.

Virtual hosting by port number

Instead of changing the pathname, Joe and Mary could each be assigned a different
port number on the web server. Instead of port 80, for example, Joe could get 82 and

Virtual Hosting I 415

Mary could have 83. But this solution has the same problem: an end user would
expect to find the resources without having to specify a nonstandard port in the URL.

Virtual hosting by IP address

A much better approach (in common use) is virtual IP addressing. Here~ each virtual
web site gets one or more unique IP addresses. The IP addresses for all of the virtual
web sites are attached to the. same shared· server. The server can look up the destina­
tion IP address of the HTTP connection and use that to determine what web site the
client thinks it is connected to.

Say a hoster assigned the IP address 209.172.34.3 to www.joes'"hardware.com,
assigned 209.172.3404 to www.marys-antiques.com, and tied both IP addresses to the·
same physical server machine; The web server could then use the destination IP
address to identify which virtual site is being requested, as shownin Figure 18-4:

• Client A fetches http://www.joes-hardware.com/index.html.

• Client A findsthe IP address forwww.joes.:hardware.com,gettirig 209.17234.3.

• Client A opens a TCP connection to the shared web server at209.172.34.3.

• Client A sends the request "GET /index.html HTTP/1.0".

• Before the web server serves a response, it notes the actual destination IP address
(209.172.34.3), determines that this is avirtual IP address for Joe's web site, and
fulfills the request from the /joe subdirectory. The page /joe/index.html is returned.

~--------------~------~------~--~----
' ' ' ' DestiP address Directory :

209.172.34.2 /voting '
209.172.34.3 /joe ,
209.172.34.4 /mary '

Figure 18-4. Virtual IP hosting

Similarly, if clientB asks for http://www.marys-antiques.com/index.html:

• Client B finds the IP address for www.marys-antiques.com, getting 209.172.34.4.

• Client B opens a TCP connection to the web server at 209.172.34.4. ·

• Client B sends the request "GET /index.html HTTP/1.0".

• The web server determines that 209.172.34.4 is Mary's web site and fulfills the
request from the !mary subdirectory, returning the document /marylindex.html.

416 I Chapter 18: Web Hosting

VirtuaUP hosting works, but it causes some difficulties, especially for large hosters:

• Computer systems usually have a limit on how many virtual JP addresses can be
bound to a machine. Hosters that want hundreds or thousands of virtual sites to
be hosted on a shared server may be out of luck.

• IP addresses are a scarce commodity. Hosters with many virtual sites might not
. be able to obtain enough virtual IP addresses for the hosted web sites. ·

• The IP address shortage is made worse when hosters replicate their servers for
additional capacity. Different virtual IP addresses may be needed on each repli­
cated server,· depending on the load-balancing architecture, so· the· number of IP ·
addresses needed can multiply by the number of replicated servers.

Despite the address consumption problems with virtual IP hosting, it is used widely.

Virtual hosting by Host header

To avoid excessive address consumption and virtual IP limits, we'd like to share the.
same IP address among virtual sites, but still be able to tell the sites apart. But as
we've seen, because most browsers send just the path component of the URL to serv­
ers, the critical virtual hostname information is lost.

To solve this problem, browser and server implementors extended HTTP to provide
the original hostname to servers. But browsers couldn't just send t:t· full URL,
because that would break many servers that expected to receive only a path compo­
nent. Instead, the hostname (and port) is passed in a Host extension header in all
requests;

In Figure 18-5, client A and clientB both send Host headers that carry the original
hostnarn:e being accessed. When the server get~ the request for lindex.html, it can use
the Host header to decide which resources to use.

n ... ·
.:.K

Client A

n .•...... ·
.:.K

ClientB

www.voting-info.gov
www.joes-hardware.com

www.marys-antiques.com .

•

r--- ------------ -·--- ----- -·-- --------:

~:: r::~=_/K·········-------,-------:~ 1
1 f I i . . J :
: . . : I

1 /voting /mary /joe I :
l 0 0 0 i:
i) l.

I

1--------------------------------~--l

The HTTP Host lieader carries the hostname information that would
otherwise be lost in normal server requests, allowing name-based
virtual hosting.

Figure 18-5, Host headers distinguish virtual host requests

Virtual Hosting I 417

Host headers were. first· introduced with HTTP /1.0+, a vendor-extended superset of
HTTP/1.0. Host headers are required for HTTP/1.1 compliance. Host headers are
supported by most modern browsers and servers, but there are still a few clients and
servers (and robots) that don't support them.

HTTP /1.1 Host Headers
The Host header is an HTTP/1.1 request header, defined in RFC 2068. Virtual serv­
ers are so common that most HTTP clients, even if they are not HTTP /1.1-compliant,
implement the Host header.

Syntax and usage
The·Host header specifies the Internet host and port number for the resource being
requested, as obtained from the original URL:

Host = "Host" ":" host[":" port]

In particular:

• If the Host header does not contain a port; the default port for the scheme is
assumed.

• If the URL contains an IP address, the Host header should contain the same
address.

• If the URL contains a hostname, the Host header must contain the same name.

• If the URL contains a hostname, the Host header should not contain the IP
address equivalent to the URL' s hostname, because this will break virtually
hosted servers, which layer multiple virtual sites over a single IP address.

• If the URL contains a hostname, the Host header should not contain another
alias for this hostname, because this also will break virtually hosted servers.

• If the client is using an explicit proxy server, the client must include the·name
and port of the origin server in the Host header, not the proxy server. In the past,
several web clients had bugs where the outgoing Host header was set to the host­
name of the proxy, when the client's proxy setting was enabled. This incorrect
behavior causes proxies and origin servers to misbehave.·

•. Web clients must include a Host header field in all request messages.

• Web proxies must add Host headers to request messages before forwarding them.

• HTTP /1.1 web servers must respond with a 400 status code to any HTTP /1.1
request message that lacks a Host header field. .

Here is a sample HTTP request message used to fetch the home page of www.joes­
hardware.com, along with the required Host header field:

GET http:/ /www.joes-hardware.com/index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.51 [en) (X11; U; IRIX 6.2 IP22)

418 I Chapter 18: Web Hosting

Accept: image/gif, image/x,..xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip · ·
Accept-Language~ en
Host: www.joes-hardware.com

Missing Host headers

A small percentage of old browsers in use do not send Host headers. If a virtual host­
ing server is using Host headers to determine which web site to serve, and no Host
header is present, it probably will either directthe user to a default web page (such as
the web page of the ISP) or return an error page suggesting that the user upgradeher
browser.

Interpreting Host headers

An origin server that isn't virtually hosted, and doesn;t allow resources to differ by
the requested host, may ignore the Host header field value. But any origin server that
does differentiate resources based on the host must use the following rules for deter:..
mining the request~d resource on an HTTP/1.1 request:

1. If the URL in the HTTP request message is absolute (i.e., contains a scheme and
host component), the value in the Host header is ignored in favor of the URL.

2. If the URL in the HTTP request message doesn't have a host, and the request con­
tains a Host header, the value of the host/port is obtained from the Host header.

3. If no valid host can be determined through Steps 1 or 2, a 400 Bad Response
response is returned to the client.

Host headers and proxies

Some browser versions send incorrect Host headers, especially when configured to
use proxies. For example, when configured to use a proxy, some older versions of
Apple and PointCast clients mistakenly sent the name of the proxy instead ofthe ori­
gin server in the Host header~

Making Web Sites Reliable
There are several times during which web sites commonly break:

• Server downtime

• Traffic spikes: suddenly everyone wants to see a particular news broadcast or
rush to a sale. Sudden spikes can overload a web server, slowing it down or stop,.
ping it completely.

• Network outages or losses

This section presents some ways of anticipating and dealing with these common
problems.

Making Web Sites Reliable I 419

Mirrored Server Farms
A server farm is a bank of identically configured web servers that can cover for each
other. The content on eachserver in the farm can be mirrored, so that if one has a
problem, another can fill in.

Often, mirrored servers follow a hierarchical relationship. One server might act as
the "content authority"-the server that contains the original content (perhaps a
server to which the content authors post). This server is called the master origin
server. The mirrored servers that receive content from the master origin server are
called replica origin servers. One sirnple way to deploy a server farm is to use a net­
work switch to distribute requests to the servers. The IP address for each of the web
sites hosted on the servers is the IP address of the switch.

In the mirrored server farm shown in Figure 18-6,the master origin server is respon­
sible for sending content to. the replica origin servers. To the outside world, the IP
address for this content is the IP address of the switch. The switch is responsible for
sending requests to the servers.

Replica origin servers

Figure 18~6. Mirrored server farm

Mirrored web seJ;vers can contain copies of the exact same content at different loca­
tions. Figure 18-7 illustrates four mirrored servers, with a master server in Chicago
and replicas in New York, Miami, and Little Rock. The master serVer serves clients
in the Chicago area and also has the job of propagating its content to the replica
servers~

In the Figure 18-7 scenario, there are a couple of ways that client requests would be
directed to a particular server:

HTTP redirection
The URL for the content could resolve to the IP address of the master server,
which could then send redirects to replica servers.

420 I Chapter 18: Web Hosting

I
.

.

. Chicago (HQ)
Master origin server

I
little Rock

Replica origin server .

Figure 18-7. Dispersed mirrored servers

DNS redirection

I
New York

eplica origin server

I
·Miami

Replica origin server

The URL for the content could resolve to four IP addresses, and the DNS server
could choose the IP address that it sends to clients.

See Chapter 20 for more details.

Content Distribution Networks
A content distribution network (CDN) is simply a network whose purpose·is the dis­
tribution of specific content. The nodes of the network calf be web servers, surro­
gates, or proxy caches.

SurrogateCaches in CONs
Surrogate caches can be used in place of replica origin servers in Figures 18-6 and
18-7. Surrogates, also known as reverse proxies, receive server requests for content
just as mirrored web servers do. They receive server requests on behalf of a specific
set of origin servers (this is possible because of the way IP addresses for content are
advertised; there usually is a working relationship between origin server and surro­
gate, and surrogates expect to receive requests aimed at specific origin servers).

The difference between a surrogate and a mirrored server is thatsurrogates typically
are demand-driven. They do not store entire copies of the origin server content; they
store whatever content their clients requesc The way content is distributed in their
caches depends on the requests that they receive; the origin server does not have the
responsibility to update their content. For easy access to "hot" content (content that
is in high demand), some surrogates have "prefetching" features.that enable them to
pull.content in advance of user requests.

An added complexity in CDNs with surrogates is the possibility of cache hierarchies.

Making Web Sites Reliable I 421

Proxy Caches in CONs
Proxy caches also can· be deployed in configurations similar to those in· Figures 18-6
and 18-7. Unlike surrogates; traditional proxy caches can receive requests aimed at
any web servers (there need not be any working relationship or IP address agree­
ment between a proxy cache and an origin server). As with surrogates, however,
proxy cache content typically is demand-driven and is not expected to be an exact
duplicate of the origin server content. Some proxy caches also can be preloaded with
hot content.

Demand-driven proxy caches can be deployed in other kinds of configurations-in
partiCular, interception configurations, where a layer-2 or -3 device (switch or router)
intercepts web traffic andsends it to a proxy cache (see Figurel£-8).

Client .

Figure 18-8. Client requests intercepted by a switch and sent to a proxy

An interception configuration depends on being able to set up the network between
clients and servers so that all of the appropriate HTTP requests are physically chan­
neled to the cache. (See Chapter 20). The content is distributed in the cache accord-
ing to the requests it receives. - ·

Making Web Sites Fast
Many of the technologies mentioned in the previous section also help web sites load
faster. Server farms and distributed proxy caches or surrogate servers distribute net­
work traffic, avoiding congestion. Distributing the content brings it closer to end
users, so that the travel time from server to client is lower. The key to speed of
resource access is how requests and responses are directed from client to server and
back across the Internet. See Chapter 20 for details on redirection methods.

Another approach to speeding up web sites is encoding the content for fast transpor­
tation. This can mean, for example, compressing the content, assuming that the
receiving client can uncompress it. See Chapter 15 for details.

422 I Chapter 18: Web Hosting

For More Information
See Part III, Identification, Authorization, and Security, for details on how. to make
web sites secure. The following Internet drafts and documentation can give you more
details about web hosting and content distribution:

http://www ;ietforg!rfc!rfc3040, txt
. RFC 3040, "Internet Web Replication and Caching Taxonomy," is a reference

' '

for the vocabulary of web replication and caching applications.

http://search. ietf org/internet-drafts/draft-ietf-cdi-request-routing-reqs-00. txt
"Request-R,outing Requirements for Content lnternetworking."

Apache: The Definitive Guide
Ben Laurie and Peter Laurie, O'Reilly & Associates, Inc. This book describes
how to run the open source Apache web server.

For More Information I 423

CHAPTER19

Publishing Systems

How do you create web pages and get them onto a web server? In the· dark ages of
the Web (let's say, 1995), you might have hand-crafted your HTML in a text editor
and manually uploaded the content to the web server usingFTP. This procedure was
painful, difficult to coordinate with coworkers, and not particularly secure.

Modem.;:day publishing tools make it much more convenient to create, publish, and
manage web content. Today, you can interactively edit web content as you'll see it
on the screen and publish that content to servers with a single click, while being noti­
fied of any files that have changed.

Many of the tools that support remote publishing of content use extensions to the
HTTP . protocol. In this chapter, we explain two important technologies for web'"
content publishing based on HTTP: FrontPage and DAV. ·

FrontPage Server Extensions
for Publishing Support
FrontPage (commonly referred to as FP) is a versatile web authoring and publishing
toolkit provided by Microsoft Corp. The original idea for FrontPage (FrontPage 1.0)
was conceived in 1994, at Vermeer Technologies, Inc., and was dubbed the first ..
product to combine web site management and creation into a single, unified tooL
Microsoft purchased Vermeer and shipped FrontPage 1.1 in 1996. The latest ver­
sion, FrontPage Version 2002, is the sixth version in the line and a core part of the
Microsoft Office suite. .

. FrontPage Server Extensions
As part of the "publish anywhere" strategy, Microsoft released a set of server-side soft­
ware called FrontPage Server Extensions (FPSE) ~ These server-side components inte- ·
grate with the web server and provide the necessary translation between the web site
and the client running FrontPage (and other clients that support these extensions).

424

Our primary interest lies in the publishing protocol between the FP clients and FPSE.
This protocol provides an example of designing extensions to the core services avail- .
able in HTTP without changing HTTP semantics. ·

The FrontPage publishing protocol implements an RPC layer on top of the HTTP
POST request. This allows the FrontPage diem to send commands to the server to
update documents on the web· site, perform searches, .collaborate amongst the web
authors, etc. Figure 19-1 gives an overview of the communication.

HTTP request message contains
the command and the URL

FrontPage
Frontpage,

MS Word, Excel, etc..

Figure 19-1. · FrontPage publishing architecture

CGI ISAPI
____ ;_ __ _i ___ ,
f. . I

: FrontPage Server :

l ~~~~~i~~~ ~~~~ J

The web server sees POST requests addressed to the FPSE (implemented as a set of
CGI programs, in the case of a non-Microsoft liS server) and directs those requests
accordingly. As long as intervening firewalls and proxy servers are configured to
allow the POST method, FrontPage can continue communicating with the server.

FrontPage Vocabulary
Before we dive deeper into . the RPC layer defined by FPSE, it m:ay help to establish
the common vocabulary:

Virtual server
One of the multiple web sites running on the same server, each with a unique
domain name and IP address. In essence, a virtual server allows a single web
server to host multiple web sites, each of which appears to a browser as being
hosted by its own web server. A web server that supports virtual servers is called
a multi-hosting web server .. A machine that is configured with multiple IP
addresses is called a multi-homed server (for more details, please refer to "Vir­
tual Hosting" in Chapter 18).

Root web·
The default, top-level content directory of a web server, or, in a· multi-hosting
environment, the top-level content directory of a virtual web server. To access
the root web, it is enough to specify the URL of the server without specifying a
page name. There can be only one root web per web server.

FrontPage Server Extensions for Publishing Support .I 425

Subweb
A named subdirectory. of ·the ·root web or . another subweb that is a complete
FPSE extended web. A subweb can be a complete independent entity with the
ability to specify its own administration and authoring permissions. In addition,
subwebs may provide scoping for methods such as searches.

The FrontPage RPC Protocol
The FrontPage client and FPSE communicate using a proprietary RPC protocol. This
protocol is layered on top of HTTP POST by embedding the RPC methods and their
associated variables in the body of the POST request.

To start the process, the client needs to determine the location and the name of the
target programs on the server (the part of the FPSE package that can execute the
POST request). It then issues a special GET request (see Figure 19-2);

HTTP request message contains
the command and the URL

GET I vti inf.html HTTP/1.1
Date:-Sat-; 12 Aug 2000 20:31:24 GMT
User_ -agent: Mozilla/2.0 (compatible;MS Frontpage 4.0)
Host: taskserver:8o · · ·
Accept: auth/sicily ·
Content-length: o .

Figure 19-2. lnitialrequest

CGI ISAPI

----;_--i-- _, I . . I

: FrontPage Server •

l ~~~~~i~~~ ~~~~ j

When the file is returned, the FrontPage client reads the response and finds the val­
ues associated with FPShtmlScriptUrl, FPAuthorScriptUrl, and FPAdminScriptUrl.
Typically, this may look like:

FPShtmlScriptUrl="_vti_bin/_vti_rpc/shtml.dll"
FPAuthor5criptUrl="_vti~bin/_vti_aut/author.dll"

FPAdminScriptUrl="_vti_bin/_vti_adm/admin.dll"

FPShtmlScriptUrl tells the client where to POST requests for "browse time" com­
mands (e.g., getting the version ofFPSE) to be executed.

FPAuthorScriptUrl tells the client where to POST requests for "authoring time" com­
mands to be executed. Similarly, FPAdminScriptUrl tells FrontPage where to POST
requests for administrative actions.

426 I · Chapter19: PublishingSystems

Now that we know where the various programs are located, we are readyto send a
request.

Request

The body of the POST request contains the RPC command, in the form of
"method=<command>" and any required parameters. For example, consider the
RPC message requesting a list of documents, as follows:

POST /_vti_bin/_vti_aut/author.dll HTTP/1.1
Date: Sat, 12 Aug 2000 20:32:54 GMT
User:..Agent: · MSFrontpage/ 4• o
. ' •.• •.•
<BODY>
method=list+documents%3a4%2e0%2e2%2e3717&service%sfname=&listHiddenDocs=false&listExp
lorerDocs=false&listRecurse=false&listFiles=true&listFolders=true&listlinkinfo,;true&l
istincludeParent=true&listDerived=false
&listBorders=false&listChildWebs=true&initialUrl=&foiderlist=%Sb%3bTW%7c12+Aug+2000+2
0%3a33%3a04+%2doooo%sd·

The body of the POST command contains the RPC command being sent to the
FPSE. As with CGl programs, the spaces in the method are encoded as plus sign(+)
characters. All other nonalphanumeric characters in the method are encoded using
%XX format, where the XX stands for the ASCII representation of the character. Using
this notation, a more readable version of the body would look like the following:

method=list+documents:4.0.1.3717
&service name=
&listHiddenDocs=false
&listExplorerDocs=false

Some of the elements listed are:

service_name
The URL of the web site on which the method should act. Must be an existing
folder or one level below an existing folder.

listHiddenDocs
Shows the hidden documents in a web if its value is "true". The "hidden" docu­
ments are designated by URLs with path components starting with"_".

listExploreDocs
If the value is "true", lists the task lists.

Response

, Most RPC protocol methods have return values. Most common return values are for
successful methods and errors~ Some methods also have a third subsection, "Sample
Return Code." FrontPage properly interprets the codes to provide accurate feedback
to the user.

FrontPage Server Extensions for Publishing Support I· 427

Continuing with our example~ the FPSE processes the "list+documents" request and
returns the necessary information. A sample response follows:

HTTP/1.1200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 12 Aug 2000 22:49:50 GMT
Content-type: application/x-vermeer-rpc
X-FrontPage:..user-Name: IUSER_MINSTAR

<html><head><title>RPC packet</title></head>
<body>
<p>method=list documents: 4.0.2.3717
<p>document_list=

document_name=help.gif
<\ul>

As you can see from the response, a formatted list of documents available.on the web
server is returned to the FP client. You can find the complete list of commands and
responses at the Microsoft web site.

FrontPage Security Model
Any publishing system directly accessing web server content needs to be very con­
scious of the security implications of its actions. For the most part, FPSE depends on
the web server to provide the security.

· The FPSE security model defines three kinds of users: administrators, authors, and
browsers, with administrators having complete control. All permissions are cumula­
tive; i.e., all administrators may author and browse the FrontPage web. Similarly, all
authors have browsing permissions.

The list of administrators; authors, and browsers is defined for a given FPSE
extended web. All of the subwebs may inherit the permissions from the root web or
set their own. For non-liS web servers, all the FPSE programs are required to be
stored in directories marked "executable" (the same restriction as for any other CGI
program). Fpsrvadm, the FrontPage server administrator utility, may be used for this
purpose. On liS servers, the integrated Windows security model prevails.

On non-liS servers, web server access-control mechanisms specify the users who are
allowed to access a given program. On Apache and NCSA web servers, the file is
named .htaccess; on Netscape servers, it is named .nsconfig. The access file associ­
ates users, groups, and IP addresses with various levels of permissions: GET (read),
POST (execute), etc. For example, for a user to be an author on an Apache web
server, the .htaccess file should permit that user to POST to author.exe. These access­
specification files often are defined on a per-directory basis, providing greater flexi­
bilityin defining the permissions.

428 I Chapter19: Publishing Systems

011· IIS servers,. the permissions are checked against the A CLs for a given root or ~ub­
root. When liS gets a request, it firstlogs on and impersonates theuser, then sends
the request to one of the three extension dynamic link libraries (DLLs). The DLL
checks the impersonation credentials against the ACL defined forthe destination
folder. If the check is successful, the requested operation is executed by the exten­
sion DLL. Otherwise, a 4 permission denied" message is sent back to the client.
Given the tight integration of Windows security with liS, the User Manager may be
used to define fine-grained control.

Iri spite of this elaborate security model, enabling FPSE has gained notoriety as a
nontrivial security risk. Inmost cases, this is due to sloppy practices adopted by web
site administrators. However, the earlier versions of FPSE did have severe security
loopholes and thus contributed to the general perception of security risk This prob­
lem also was exacerbated by the arcane practices needed to fully implement a tight
security model.

WebDAV and Collaborative Authoring
Web Distributed Authoring and Versioning (WebDA V) addsan extra. dimension to
web publishing-collaboration. Currently, the most common practice ofcollabora­
tion is decidedly low-tech: predominantly email, sometimes combined with distrib­
uted fileshares. This practice has proven to be very inconvenient and error-prone,
with little or no control over the process. Consider an example of launching a multi­
national, multilingual web site for an automobile manufacturer. It's easy to see the
need for a robust system with secure, reliable publishing primitives, along with col-
laboration primitives such as locking and versioning. .

WebDAV (published as RFC 2518) is focused on extending HTTP to provide a suit­
able platformfor collaborative authoring. It currently is an IETF effort with support
from various vendors, including Adobe, Apple, IBM, Microsoft, Netscape, Novell,
Oracle, and Xerox. .

WebDAV Methods
WebDA V defines a set of new HTTP methods and modifies the operational scope of
a few other HTTP methods. The new methods added by WebDAVare:

PROP FIND
Retrieves the properties of a resource.

PROPPATCH
Sets one or more properties on one or many resources:

MKCOL
Creates collections.

WebDAV and Collabc>rative Authoring ·1 429

COPY
Copies a resource or a collection of resources from a given source to a given des­
tination. The destination need not be on the same machine.

MOVE
Moves a resource or a collection of resources from a given source to a given des­
tination. The destination need not be on the same machine.

LOCK
_)

Locks a resource or multiple resources.

UNLOCK
Unlocks a previously locked resource.

HTTP methods modified by WebDAV are DELETE, PUT, and OPTIONS. Both the
·new and the modified methods are discussed in detail later in this chapter.

WebOAV and XML
WebDAV's methods generally require a great deal ofinformation to be associated
with both requests and responses. HTTP usually communicates this information in
message headers. However, transporting necessary information in headers alone
imposes some limitations, including the difficulties of selective application of header
information to multiple resources in a request, to represent hierarchy, etc.

To solve this problem, WebDAV embraces the Extensible Markup Language (XML),
a meta-markup language that provides a format for describing structured data. XML
provides W ebDA V with:

• A method of formatting instructions describing how data is to be handled

• A method of formatting complex responses from the server

• A method of communicating customized information about the collections and
resources handled

• A flexible vehicle for the data itself

• A robust solution for most of the internationalization issues
. .

Traditionally, the schema definition for XML documents is kept in a Document Type
Definition (DTD) file that is referenced within the XML document itself. Therefore,
when trying to interpret an XML document, the DOCTYPE definition entity gives
the name of the DTD file associated with the XML document in question.

WebDAV defines an explicit XML namespace, "DAV:". Without going into many
details, an XML namespace is a collection of names of elements or attributes. The
namespace qualifies the embedded names uniquely across the domain, thus avoid­
ing any name collisions.

The complete XML schema is defined in the WebDAV specification, RFC 2518. The
presence of a predefined schema allows the parsing software to make assumptions on
the XML schema without having to read in DTD files and interpret them correctly.

430 I Chapter 19: Publishing Systems

WebDAV Headers
WebDA V does introduce several HTTP headers to augment the functionality of the
new methods. This section provides a brief overview; see RFC 2518 for more infor­
mation. The new headers are:·

DAV
Used to communicate· the WebDA V capabilities. of the server. All resource~ sup-­
ported by WebDAV are required to return this header in the response to the
OPTIONS request. See "The OPTIONS method" for moredetails.

OAV = "DAV" ":" .,1" [":." "2"] ["," 1#extend]

Depth

The crucial element for extending W ebDA V to grouped resources with multiple
levels of hierarchy (for more detailed explanation about collections, please refer
to "Collections and NamespaceManagement"). ·

Depth = "Depth" ":" ("0" I "1" I "infinity")
Let's look at a simple example. Consider a directory DIR_Awith filesfile.:...l.html
andfile..;.2,html. Ifa method uses Depth: 0, the method applies to the DIR_A direc­
tory alone; and Depth: 1 applies to the DIR_A directory and its files, file_l.html
andfile_2.html.

The Depth header modifies many WebDAV-defined methods. Some of the
methods thatuse the Depth header are LOCK, COPY, and MOVE.

Destination

If

Defined to assist the COPY or MOVE methods in identifying the destination
URI.

Destination = "Destination" ":" absoluteURI

The only defined state token is a lock token (see "The LOCK Method"). The If
header defines a set of conditionals; if theyall evaluate to false, the request will
fail. Methods such as COPY and PUT conditionalize the applicability by specify­
ing preconditions in theifheader. In practice, the most common precondition to
be satisfied is the prior acquisition of~ lock. ··

If= "If" ":" (1*No-tag-list l 1*Tagged-list)
No-tag-list = List
Tagged-list = Resource 1*List
Resource = Coded-URL
List = "(" 1*(["Not"](State-token I "[" entity-tag "]")) ")"
State-token = Coded-URL
Coded-URL = "<" absoluteURI ">"

Lock-Token
Used by the UNLOCK method to specify the lock that needs to be removed. A
response to a LOCK method also has a Lock-Token header, carrying the neces­
sary information about the lock token.

Lock-Token= "Lock-Token" ":" Coded-URL ·

WebDAV and Collaborative Authoring I 431

)

Overwrite
Used by the COPY and MOVE methods to d,esignate whether the destination
should b~ overwritten. See the discussion of the COPY and MOVE methods
later in this chapter for more details.

Overwrite = "Overwrite" ":" ("T" I "F")

Timeout
· A request header used by a client to specify a desired lock timeout value. For
more information, refer tothe section "Lock refreshes and the Timeout header."

TimeOut = "Timeout" ":" l#TimeType
TimeType = ("Second-" DAVTimeOutVal I "Infinite" I Other)
DAVTimeOutVal = 1 *digit
Other = ~'Extend" field-value

Now that we have sketched th~ intent and implementation of WebDAV, let's look
more closely at the functions provided.

. '\

WebDAV Locking and Overwrite Prevention
By definition, collaboration requires more than one person working on a given docu­
ment. The inherent problem associated with collaboration is illustrated in Figure 19-3.

Q
A~copy.

. ~
~-

Author A

Q
Author A

Figure 19-3. Lost update problem

Shared file repository

Shared file rep01itory

Shared file repository

B'scopy.·n .

.. .:&
Author B.

"8" also publishes and .
~nwk5~~,~~ Q

AuthorB

In this example, authors A and B are jointly writing a specification. A and B indepen­
dently make a set of changes to the document. A pushes the updated document to
the repository, and at a later point, B posts her own version of the document into the
repository. Unfortunately, because B never knew about A's changes, she never
merged her version with A's version, resulting in A's work being lost.

432 I .. Chapter 19: Publishing Systems

To ameliorate the problem, WebDAV supports the concept of locking. Locking
alone will not fully solve the problem. Versioning and messaging support are needed
to complete the.solution.

WebDA V supports two types of locks:

• Exclusive write locking of a resource or a collection

• Shared write locking of a resource or a collection

An exclusivewrite lock guarantees write privileges only to the lock owner. This type
of locking completely eliminates potential conflicts. A shared writelock allows a

. group of people to work on a given document. This type of locking works. well in an
environment where all the authors are aware of each other's activities. WebDAV pro­
vides a property discovery mechanism, via PRO PFIND, to· determine the support for
locking and the types of locks supported.

WebDA V has two new methods to support locking: LOCK and UNLOCK.

To accomplish locking, there needs to be a mechanism for identifying. the author.
WebDAV requires digest authentication (discussed in Chapter 13).

When a lock is granted, the server returns a token that is unique· across. the domain
to the client. The specification refers to this as the opaquelocktoken lock token URI
scheme. When the client subsequently wants to perform a write, it connects to the
server and completes the digest authentication sequence. Once the authentication is
complete, the WebDAV client presents the lock token, alongwiththe PUT request.
Thus, the combination of the correct user and the lock token is required to complete
the write.

The LOCKMethod
A powerful feature of W ebDA V ~s its ability to lock multiple resources with a single
LOCK request. WebDAV locking does not require the client to stay connected to the
server.

For example, here's a simple LOCK request:

LOCK /ch-publish.fm HTTP/1.1
Host: minstar
Content-Type: text/xml
User-Agent: Mozilla/4.0 (compatible; MSIE s.o; Windows NT)
Content-Length: 201

<?xml version="l.O"?>
<a:lockinfo xmlns:a="DAV:">

<a:lockscope><a:exclusivel></a:lockscope>
<a:locktype><a:write/></a:locktype>
<a:owner><a:href>AuthorA</a:href></a:owner>

</a:lockinfo>

WebDAVand Collaborative Authoring I 433

The XML being submitted has the <lockinfo> element as its base element. Within
the <lockinfo> structure, there are three subelements:

<locktype>
Indicates the type of lock. Currently there is only one, "write."

<lockscope>
Indicates whether this is an exclusive lock or a shared lock. '

<owner>
Field is set with the person who holds the current lock.

Here's a successful response to.our LOCK request:

HTTP/1.1 200 OK
Server: Microsoft~IIS/s.o.

Date: Fri, 10 May 2002 20:56:18 GMT
Content-Type: text/xml
Content- Length: 419

<?xml version="1.0"?>
<a:prop xmlns :a="DAV: "> .·
<a:lockdiscovery><a:activelock>
<a:locktype><a:write/></a:locktype>
<a:lockscope><a:exclusivel></a:lockscope>
<a:ownerxmlns:a="DAV:"><a:href>AutherA</a:href></a:owner>
<a:locktoken><a:href>opaqueLocktoken:*****</a:href></a:locktoken>
<a:depth>O</a:depth>
<a:timeout>Second-180</a:timeout>
</a:activelocb</a:lockdiscovery>
</a:prop>

The <lockdiscovery> element acts as a container for information about the lock.
Embedded in the <lockdiscovery> element is an <activelock> subelement that holds
the information sent with the request (<locktype>, <lockscope>, and <owner>). In
addition, <activelock> has the following subelements:

<locktoken>
Uniquely identifies the lock in a URI scheme called opaquelocktoken. Given the
stateless nature of HTIP, this token is used to identify the ownership of the lock
in future requests.

<depth>
Mirrors the value of the Depth header.

<timeout>
Indicates the timeout associated with the lock. In the above response
(Figure 19-3), the timeout value is 180 seconds.

The opaquelocktoken scheme

The opaquelocktoken scheme is designed to provide a unique token across all resources
for all times. To guarantee uniqueness, the WebDA V specification mandates the use of
the universal unique identifier (UUID) mechanism, as described in IS0-11578.

434 I Chapter 19: Publishing Systems

When it comes to actual implementation, there is some leeway. The server has the
choice of generating a UUID for each LOCK request, Ol' generating a single UUID
and maintaining the uniqueness by appending extra characters at the end. For per­
formance considerations, the latter choice is better. However, if the server chooses to
implement the latter choice, it is required to guarantee that none of the added exten­
sions will ever be reused.

The <lockdiscovery> XML element
The <lockdiscovery> XML element provides a mechanism for active lock discovery.
If others try to lock the file while a lock is in place, they will receive a <lockdiscov­
ery> XML element that indicates the current owner. The <lockdiscovery> element
lists all outstanding locks along with their properties.

Lock refreshes and the Timeout header

To refresh a lock, a client needs to resubmit a lock request with the lock token in the
If header. The timeout value returned may be different from.the earlier timeout values.

Instead of accepting the timeout value given by the server, a client may indicate the
timeout value required in the LOCK request. This is done through the Timeout
header. The syntax of the Timeout header allows the client to specify a few options
in a comma-separated list. For example:

Timeout : Infinite, Second-86400

The server is not obligated to honor either of the options. However, it is required to
provide the lock expiration time in the <timeout> XML element. In all cases, lock
timeout is only a guideline and is not necessarily binding on the server. The adminis­
trator may do a manual reset, or some other extraordinary event may· cause the
server to reset the lock. The clients should avoid taking lengthy locks.

In spite of these primitives, we may not completely solve the "lost update problem"
illustrated in Figure 19-3. To completely solve it, a cooperative event system with a
versioning control is needed.

The·UNlOCKMethod
The UNLOCK method removes a lock on a resource, as follows:

UNLOCK /ch-publish.fm HTTP/1.1
Host: minstar.inktomi.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)
Lock-Token:
opaquelocktoken:*********

HTTP/1.1 204 OK
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 20:56:18 GMT

WebDAV and Collaborative Authoring· I 435

. .

As with most resource managemer1t requests, W ebDA V has two requirements for
UNLOCK to succeed: prior completion of a · successful digest authentication
sequence, and.matching the lock token that is sent in the Lock-Token header.

If the unlock is successful, a 204 No Content status code is returned to client.
Table 19-1 summarizes the possible status codes with the LOCK and UNLOCK
methods.

Table 19~ 1. Status codes for LOCKand UNLOCK methods

2000K HTTP lOCK Indicates successful locking,

201 Cr.eated HTTP LOCK Indicates that a lock on a nonexistent resource succeeded by ere-
atingthe resource.

204 No Content HTTP UNLOCK Indicates successful unlocking.

207 Multi-Status WebDAV .lOCK The requestwas for locking multiple resources. Not all status
codes returned were the same. Hence, they are all encapsulated
in a 207 response.

403 Forbidden HTTP lOCK Indicates that the client does not have permission to lock the
resource.

412 Precondition Failed HTTP lOCK Either the XMlsent with the LOCK command indicated a condi- .
tion to be satisfied and the server failed to complete the required
condition, orthe locktoken could not be enforced.

422 Unprocessable Property WebDAV LOCK Inapplicable semantics-an example may be specifying a non-
zero Depth for a resource that is not a collection.

423 Locked WebDAV LOCK Already locked.

424 Failed Dependency WebDAV UNlOCK UNLOCK specifies other actions and their success as a condition
for the unlocking. This error is returned ifthe dependency fails to
complete.

Properties and META Data
Properties describe information about the resource, including the author's name,
modification date, content rating, etc. META tags in HTML do provide a mecha­
nism to embed this information as part of the content; however, many resources
(such as any binary data) have no capability for embedding META data.

A distributed collaborative system such as WebDA V adds more complexity to the
property requirement. For example, consider an author property: when a document
gets edited, this property needs to be updated to reflect the new authors. WebDA V
terms such dynamically modifiable properties "live" properties. The more perma­
nent, static properties, such as Content-Type, are termed "dead'; properties.

To support discovery and modification of properties, W ebDA V extends HTTP to
include two new methods, PROPFIND and PROPPATCH. Examples and corre­
spondingXML elements are described in the following sections.

436 I Chapter 19: Publishing Systems

The PROPFIND Method
. . ~

The PROPFIND (prop~rty find) method is used for retrieving the properties of a
given file or a group of files (also known as a "collection")~ PROPFIND supports
three types of operations:

• Request.all properties and their values.

• .. Requesta selected set of properties and values.

• Request all property names.

Here's the scenario where all the properties and their values are requested:

PROPFIND /ch-publish.fm HTTP/1.1
Host: minstar.inktomi.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)
Depth: o
Cache~control: no-cache
Connecti~n: Keep-Alive
Content-Length: o

. The <propfind> request element specifies. the properties to be returned from a
PROPFIND method. The following list summarizes a few XML elements that are
used with PROPFIND requests:

<allprop> .
Requires.all property names and values to be returned. To request all properties
and their. values, a W ebDA V client may either send· an <allprop> XML subele­
ment as part of the <propfind> element, or submit a request with no body;

<propname>
Specifies the set of property names to be returned.

<prop>
A subelement of the <propfind> element. Specifies a specific property whose
value is to be returned. For example: "<a:prop> <a:owner /> </a:prop>".

Here's a response to a sample PROPFIND request:

HTTP /1.1 207 Multi-Status
Server: Microsoft-IIS/5.0

<?xml version="1~o"?>
<a:multistatusxmlns:b="urn:uuid:********/" xmlns:c="xml:" xmlns:a="DAV:">
<a:response>

<a:href>http://minstar/ch-publish.fm <la:href>
<a:propstab

<a:status>HTTP/1.1 2000K</a:status>
<a:prop>

<a:getcontentlength b:dt="int">1155</a:getcontentlength>

WebDAVand Collaborative Authoring I 437

<a~ishidden b:dt="boolean">O</a:ishidden>
<a:iscollection b:dt="boolean">O</a:iscollection>

<Ia :prop>
</a:propstat>

c/a:response><la:multistatus>

In this example, the server responds with a 207Multi-Status code. WebDAV uses the
207 response for PROPFIND and a few other WebDAV methods that act simulta­
neously on multiple resources and potentially have different responses for each
resource.

A few XML elements in the response need to be defined:

<multistatus>
A container for multiple responses.

<href>
Identifies the resource's URI.

<status>
Contains the HTTP status code for the particular request.

<propstat>
Groups one <status> element and one <prop> element. The <prop> element
may contain one or more property name/value pairs for the given resource.

In the sample response listed above, the response is for one URI, http://minstarlch­
publish.fm. The <propstat> element embeds one <status> element and one <prop>
element. For this URI, the server returned a 200 OK response, as defined by the <sta­
tus> element. The <prop> element has several subelements; only some are listed in
the example.

One instant application of PROPFIND is the support for directory listing. Given the
expressability of a PROPFlND request, one single call can retrieve the entire hierar­
chy of the collection with all the properties of individual entities;

The PROPPATCH Method
The PROPPATCH method provides an atomic mechanism to set or remove multiple
properties on· a given resource. The atomicity will guarantee that either all of the
requests are successful or none of them made it.

The base XML element for the PROPPATCH method is <propertyupdate>. It acts as
a container for all the properties that need updating. The XML elements <set> and
<remove> are used to specify the operation:

<set>
Specifies the property values to be set. The <set> contains one or more <prop>
subelements, which in tum contains the name/value pairs of the properties to be
set for the resource. If the property already exists, the value is replaced.

438 I Chapter 19: Publishing Systems

<remove>·
Specifies the properties that are to be removed. Unlike with <set>, only the
names of the properties are listed in the <prop> container .. ·

This trivial example sets and removes the "owner".property:

<d:propertyupdate xmlns:d="DAV:" xmlns:o="http://name-space/scheme/">
<d:set> ·

<d:prop>
<o:owner>Autho:r A</o:owner>

</d:prop>
</d:set>

<d:remove>
<d:prop>

<o:owner/>
<ld:prop>

<ld:reniove>
<ld:propertyupdate>

The response to PROPP A TCH requests is very similar to that for PROPFIND
requests. For more information, refer to RFC 2518.

Table 19,..2 summarizes the status codes for the PROPFIND and PROPPATCH
methods.

Table 19-2. Status codes for PROPFIND and PROPPATCH methods

~:i~~t~~~~~~~~~ii1~,~~~~!~~~~~~~~~i~tl\~tt~~~~~;~;{t~~~~~~J'~~~~~~~···
200 OK HTTP PROPFINO, · Command success.

207 Multi-Status

401 Unauthorized

· 403 Forbidden

404 Not Found

409 Conflict

423locked

5071nsufficient Storage

WEBOAV

HTTP

HTTP

HTTP

HTTP

WebDAV

WebDAV

PROPPATCH

PROPFINO,
PROPPATCH

PROPATCH

PROPFIND,
PROPPATCH

PROPFIND

PROPPATCH

PROPPATCH

PROPPATCH

Wh!!n acting on one or more resources (or a collection), the status
for each object is encapsulated into one 207 response. This is a
typical success response.

Requires authorization to complete the property modification
operation.

For PROPFIND, the client is not allowed to access the property. For
PROPPATCH, the client may not change the property.

No such property.

Conflict of update semantics-'-for example, trying to update a
read-only property.

Destination resource is locked and there is no lock token or the
lock token does not match.

Not enough space for registering the modified property.
·----------~- -~--

Collections and Namespace Management
A collection refers to a logical or physical grouping of resources in a predefined hier­
achy. A classic example of a collection is a directory. Like directories in a filesystem,

WebDAV and Collaborative Authoring I 439

collections act as containers of other resources, including other collections (equiva­
lent to directories on the filesystem).

WebDAV uses the XML namespace mechanism. Unlike traditional namespaces,
. XML namespace partitions allow for precise structural control while preventing any
namespace collisions.

WebDAV p~ovides five methods for manipulating the namespace: DELETE,
MKCOL, COPY, MOVE, and PROPFIND. PROPFIND was discussed previously in
this chapter, but let's talk about the other methods.

The MKCOL Method
The MKCOL method allows clients to create a collection at the indicated URL on
the server. At first sight, it may seem rather redundant to define an entire new
method just for creating a collection. Overlaying on top of a PUT or POST method
seems like a perfect alternative. The designers of the W ebDAV protocol did consider
these alternatives and still chose to define a new method. Some of the reasons behind
that decision are:

• To have a PUT or a POST create a collection, the dieht needs to send some extra
"semantic glue" along with the request. While this certainly is feasible, defining
an ad hoc protocol may become tedious and error-prone.

• Most ofthe access-control mechanisms are based on the type of methods-only
a few are allowed to create and delete resources in the repository. If we overload
other methods, these access..:control mechanisms will not work.

For example, a request might be:

MKCOL /publishing HTTP/1.1
Host: minstar
Content-Length: o
Connection: Keep-Alive

And the response might be:

HTTP/1.1 201 Created
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 23:20:36 GMT
Location: http://minstar/publishing/
Content-Length: 0

Let us examine a few pathological cases:

• Suppose the collection already exists. If a MKCOL /colA request is made and
colA already exists (i.e., namespace conflict), the request will fail with a 405
Method Not Allowed status code.

• If there are no write permissions, the MKCO L request will fail with a 403 For­
bidden status code.

· 440 · I Chapter 19: Publishing Systems

• If a request such as MKCOL/colA/colB is made and colA does not exist, 'the
request will fail with a 409 Conflict status code.

Once the file or collection is created, we can delete it with the DELETE method. ·

The DELETE Method
We already saw the DELETE method in Chapter 3. W ebDA V extends the semantics
to cover collections. ·

If we need to delete a directory, the Depth header is needed. Ifthe Depth header is
not specified, the DELETE method assumes the Depth header to be set to infinity-.
that is, all the files in the directory and any subdirectories thereof are deleted. The
response also has a Content-Location headeridentifyingthecollection that just got
deleted. The request might read:

DELETE /publishing HTTP/1.0
Host: minstar

And the response might read:

HTTP /1.1 .200 OK
Server: Microsoft- IIS/5. o
D~te: Tue, 14May 2002 16:41:44 GMT
Content-Location: http://minstar/publishing/
Content-Type: text/xml
Content~Length: o

When removing collections, there always is a chance that a file in the collection is
locked by someone else and can't be deleted. In such a case, the collection itself can't
be deleted, and the server replies with a 207 Multi-Status status code. The request
might read:

DELETE /publishing HTTP/1.0
Host: minstar

And the response might read:

HTTP/1.1 207 Multi-Status
Server: Microsoft-IIS/5.0
Content-Location: http://minstar/publishing/

<?xml version="l.O"?>
<a:multistatus xmlns:a="DAV:">
<a:response>
<a:href>http://minstat/index3/ch-publish.frn</a:href>
<a:status> HTTP/1.1 423 Locked </a:status>
</a:response>
</a:multistatus>

In this transaction, the <status> XML element contains the status code 423 Locked,
indicating that the resource ch-publish.fm is locked by another user.

WebDAVand Collaborative Authoring . I 441

The COPY and MOVE Methods
As with MKCOL, there are alternatives. to defining new methods for COPY and
MOVE operations. One such alternative for the COPY method is to do a GET
request on the source,. thus downloading the resource, and then· to upload it back to
the server with a PUT request. A similar scenario could be envisioned for MOVE
(with the additional DELETE operation). However, this process does· not scale
well-consider all the issues involved in managing a COPY or MOVE operation on a
multilevel collection.

Both the COPY and MOVE methods use the request URL as the source and the con­
tents of the Destination HTTP header as the target. The MOVE method performs
some additional work beyond that of the COPY method: it copies the source URL to
the destination, checks the integrity of the newly created URI, and then deletes the
source. The request might read:

{COPY ,MOVE} /publishing HTTP /1.1
Destination! http://minstar/pub-new
Depth: infinity
Overwrite: T
Host: minstar

And the response might read:

HTTP/1.1 201 Created
Server: Microsoft-IIS/5.0
Date: Wed, 15 May 2002 18:29:53 GMT
Location: http://minstar.inktomi.com/pub-new/
Content-Type: text/xml
Content-Length: o

When acting on a collection, the behavior of COPY or MOVE is affected by the
Depth header. In the absence of the Depth header, infinity is assumed (i.e., by
default, the entire structure of the source directory will be copied or moved). If the
Depth is set to zero, the method is applied just to the resource. If we are doing a copy
or a move of a collection, only a collection with properties identical to those of the
source is created at the destination-no internal members of the collection are cop­
ied or moved.

For obvious reasons, only a Depth value of infinity is allowed with the MOVE
method.

Overwrite header effect

The COPY and MOVE methods also may use the Overwrite header. The Overwrite
header can be set to either T or F. If it's set toT and the destination exists, a DELETE
with a Depth value of infinity is performed on the destination resource before a
COPY or MOVE operation. If the Overwrite flag is set to F and the destination
resource exists, the operation will fail.

442 I Chapter 19: Publishing Systems

·COPY /MOVE ofproperties

When a collection or an element is copied, all of its properties are c~pied by default.
However, a request may contain an optional XML body that supplies additional
information for the operation. You can specify that all properties must be copied suc­
cessfully for the operation to succeed,- or define which properties must be·copied for
the operation to succeed.

A couple of pathological cases to consider are:

• Suppose COPY or MOVE is applied to the output of a CGI program or other
script that generates content. To preserve the semantics, if a file generated by a
CGI script is to be copied or moved, WebDAVprovides "src" and "link" XML
elements that point to the location of the program that generated the page.

• The COPY and MOVE methods may not be able to completely duplicate all of
the live properties. For example, consider a CGI program. If it is copied away
from the cgi-bin directory, it may no longer be executed. The current specifica­
tion of WebDA V makes COPY and MOVE a "best effort" solution, copying all
the static properties and the appropriate live properties.

Locked resources and COPY /MOVE

If a resource currently is locked, both COPY and MOVE are prohibited from mov­
ing or duplicating the lock at the destination. In both cases, if the destination is to be
created under an existing collection with its own lock; the duplicated or moved
resource is added to the lock. Consider the following example:

COPY /publishing HTTP/1.1
Destination: http://minstar/archived/publishing-old

Let's assume that /publishing and /archived already are under two different locks,
lockl"and-'lock2. When the COPY operation completes; /publishing continues to be
unaer the- scope of lockl, while, by virtue of moving into a collection that's already
locked by lock2, publishing~old gets added to lock2. If the operation was a MOVE,
just publishing~otd gets added to lock2.

Table 19-3 lists most ofthe possible status codes for the MKCOL, DELETE, COPY,
and MOVE methods.

Table 19-3. Status codesforthe MKCOL, DELETE, COPY, and MOVE methods

102 Processing

201 Created

·-. :.:--·~~e#,fW~:~~~ari4~\~~~~!~-~~~~~~$~}~~JYf§it{'1i~{~-f~~~~W~]~1&t*~~
WebDAV MOVE, If the request takes longer than 20 seconds, the server sends

HTTP

COPY this status code to keep clients from timing out. This usually is
seen with a COPY or MOVE of a large collection.

MKCOl,
COPY,
MOVE

For MKCOl, a collection has been created. For COPY and MOVE,
a resource/collection was copied or moved successfully.

WebDAVand Collaborative Authoring I 443

Table 19-3. Status codes for theMKCOL, DELETE,COPY, and MOVE methods (continued)

204 No Content HTTP

. 207 Multi-Status WebDAV

403Forbidden HTTP

409 Conflict HTTP

412 Precondition Failed HTTP

415 Unsupported MediaType HTTP

422 Unprocessable Entity WebDAV

423locked . WebDAV

502 Bad Gateway HTTP

5071nsufficient Storage WebDAV

DELETE,
COPY,
MOVE

MKCOL,
COPY,
MOVE

MKCOL,
COPY,
MOVE

MKCOL,
COPY,
MOVE

COPY, ..
MOVE

MKCOL

MKCOL

DELETE,
COPY,
MOVE

COPY,
MOVE

MKCOL
COPY

Enhanced HTTP/1.1 Methods

For DELETE, a standardsuccessresponse. For COPY and MOVE,
the resource was copied over successfully or moved to replace
an existing entity.

For MKCOl, a typical success response. For COPY and MOVE, if
an error is associated with a resource other than the request
URI, the server returns a 207 response with the XML body
detailing the error.

For MKCOL, the server does not allow creation of a collection at
the specified location. For COPY and MOVE, the sou tee and
destination are the same.

In all cases, the methods are trying to create a collection or a
resource when an intermediate collection does not exist -for
example, trying to create coiA!coiB when colA does not exist.

Either the Overwrite header is set to F and the destination . .

· exists, or the XMl body specifies a certain requirement (such
as keeping the "liveness" property) and the COPY or MOVE
methods are not able to retain the property.

The server does not support or understand the creation ofthe
request entity type.

The server does not understand the XML body sent with the
request.

The source or the destination resource is locked, or the lock
token supplied with the method does not match.

The destination is on a different server and permissions are
missing.

There is not enough free space to create the resource.

WebDAV modifies the semantics of the HTTP methods DELETE, PUT, and
OPTIONS. Semantics for the GET and HEAD methods remain unchanged; Opera­
tions performed by POST always are defined by the specific server implementation,
and WebDA V does not modify any of the POST semantics. We already covered the
DELETE method, in "Collections and Namespace Management." We'll discuss the
PUT and OPTIONS methods here.

The PUT method

Though PUT is not defined by WebDAV, it is the only way for an author to trans­
port the content to a shared site. We discussed the general functionality. of PUT in
Chapter 3. WebDAVmodifies its behavior to support locking.

444 I Chapter 19: Publishing Systems

Consider the following example: ..

PUT /ch-pub~ish.fm HTTP/1.1
Accept: */* ·
If:<http://m{n~tar/index~htm>(<opaquelocktoken:********>)
User-Agent: DAV Client (C) ·
Host: min star. inktomi. com ·
Connection: Keep-Alive
Cache-Control: no-cache
Content-Lengtb:'1155

To support locking~ WebDAV adds an If header to the PUT request. In the above
transaction, the semantics of the If header state that if the lock token specified with
the If header matches the lock on the resource (in this case, ch-publish.fm), the PUT
operation should be performed. The If header also is used with a few other methods,
such as PROPPATCH, DELETE, MOVE, LOCK, UNLOCK, etc.

The OPTIONS method

We discussed OPTIONS in Chapter3. This usually is the first request a WebDAV"'
enabled client makes. Using the OPTIONS method, the client tries to establish the
capability of the WebDA V server. Consider a transaction in which the request reads:

OPTIONS /ch-publish.fm HTTP/1.1
Accept: */*
Host: minstar.inktomi.com

And the response reads:.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
MS-Author-Via: DAV
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL,PROPFIND,
PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT; COPY, MOVE, PROPFIND,PROPPATCH,
SEARCH,. LOCK, UNLOCK

There are several interesting headers in the response to the OPTIONS method. A
slightly out-of-order examination follows:

• The DA V header carries the information about DA V compliance classes. There
are two classes of compliance:

Class 1 compliance
Requires the server to comply with all MUST requirements in all sections of
RFC 2518. If the resource complies only at the Class 1level, it will send 1
with the DA V header.

Class 2 compliance
Meets all the Class 1 requirements and adds support for the LOCK method.
Along with LOCK, Class 2 compliance requires support for the Timeout and

WebDAVandCollaborative Authoring I 445

Lock-Token headers and the <supportedlock> and <lockdiscovery> XML
elements. A value of 2 in the DAV header indicates Class 2 compliance.

In the above example, the DAV header indicates both Class 1 and Class 2
compliance. . .

• ThePublic header lists all 'methods supported by this particular server.

• The Allow header usually contains a subset ofthe Publicheader methods. It lists
only those methods that are allowed on this particular resource (ch-publish.fm).

• The DASL header provides the type of query grammar used in the SEARCH
method. In this case, it is sqL More details about the DASLheader are provided
at http://www. webdav.org.

Version Management in WebDAV
It may be ironic, given the· "V" in "DAV," but versioning is a feature that did not

make the first cut. In a multi-author, collaborative environment, version manage­
ment is critical. In fact, to completely fix the lost update problem (illustrated in
Figure 19-3), locking and versioning are essential. Some of the common features
associated with versioning are the ability to store and access previous document ver­
sions and the ability to manage the change history and any associated annotations
detailing the changes.

Versioning was added to WebDA V in RFC 3253.

Future of WebDAV
WebDAVis well supported today. Working implementations of clients include IE 5.
x and above, Windows Explorer, ;:1nd Microsoft Office. On the server side, imple­
mentations include IIS5.x and above, Apache with mod_dav, and many others, Both
Windows XP and Mac OS lO.x provide support for WebDAV out of the box; thus,
any applications written to run on these operating systems are WebDAV-enabled

. natively.

For More Information
For more information, refer to:

http:!!officeupdate.microsoft.com!frontpage!wpp!serk!

Microsoft FrontPage 2000 Server ExtensionsResource Kit.

http://www.ietforg!rfdrfc2518.txt?number=2518

"HTTP Extensions for Distributed Authoring-WEBDAV," by Y. Goland;].
Whitehead, A. Faizi, S. Carter, and D. jensen.

446 I Chapter 19: Publishing Systems

http://www.ietforg!rfc!rfc3253.txt?number=3253

"Versioning Extensions to WebDAV," by G. Clemm, J. Amsden, T. Ellison, C.
Kaler, and]. Whitehead. ··

http://www .ics. uci. edulpub!ietf!webdav /intro/webdav _intro,pdf

"WEBDAV: IETF Standard for Collaborative Authoring on the Web," by].
Whitehead and M. Wiggins.

http://www. ics. uci. edu!-ejwlhttp1uturelwhitehead!http _pas _pager. html

"Lessons from WebDAV for the Next Generation Web Infrastructure," by].
Whitehead.

http:llwww.microsoft.com/msj/0699/dav!davtop.htm

"Distributed Authoring and Versioning Extensions for HTTP Enable Team
Authoring," by L. Braginski and M. Powell.

http:llwww.webdav.org/dasl!protocol!draft-dasl-protocol-OO.html

"DAV Searching&: Locating," by S. Reddy, D. Lowry, S. Reddy, R. Henderson,
] . Davis, and A. Babich.

For More Information I 447

CHAPTER20
. .

Redirection and load Balancing

HTTP does not walk the Web alone. The data in an HTTP message is governed by
many protocols on its journey. HTTP cares only about the endpoints of the journey-..
the sender and the receiver-. but in a world with mirrored servers, web proxies, and
caches, the destination of an HTTP message isnot necessarily straightforward.

This chapter. is about. redirection. technologies-. network tools, techniques, and pro­
tocols that determine the final destination of an HTTP message. RedireCtion technol­
ogies usually determine whether the message ends up at a proxy, a cache, or a
particular web server in a server farm. Redirection technologies may send your mes­
sages to places a client didn't explicitly request.

In this chapter, we'll take a look at the following redirection techniques, how they
work, and what their load-balancing capabilities are (if any):

• HTTP redirection

• DNS redirection

• Anycast routing

• Policy routing

• IP MAC forwarding

• IP address forwarding

• The Web Cache Coordination Protocol (WCCP)

• The Intercache Communication Protocol (ICP)

• The Hyper Text Caching Protocol (HTCP)

• The Network Element Control Protocol (NECP)

• The Cache Array Routing Protocol (CARP)

• The Web Proxy Autodiscovery Protocol (WPAD)

448 .

Why Redirect?
Redirection is a fact of life in the modern Web because HTTP applications always
want to do three things: .

• Perform HTTP transactions reliably

• Minimize delay

• Conserve network bandwidth

For these reasons, web content often is distributed in multiple locations. This is done
for reliability, so that if one location fails, another is available; it· is done to lower
response times, because if clients can access a nearer resource, they receive their
requested content faster; and it's done to lower network congestion, by spreading
out tatget servers. You can think of redirection as a set oftechniques that help to find
the "best" distributed content.

The subject of load balancing is included because redirection and load balancing
coexist. Most redirection deployments include some form of load balam:ing; .·that is,
they are capable of spreading incoming message load among a set of servers. Con-

. versely, any form of load balancing involves redirection, because incoming messages
must somehow be somehow among the servers sharing the load.

Where to Redirect
Servers, proxies, caches, and gateways all appear to clients as servers, in the sense
that a client sends them an HTTP request, and they process it. Many redirection
techniques work for servers, proxies, caches, and gateways because of their com­
mon, server-like traits. Other redirection techniques are specially ciesigned for a par­
ticular class of endpoint and are not generally applicable. We'll see general
techniques and specialized techniques in later sections of this chapter.

Web servers handle requests on a per-IP basis. Distributing requests to duplicate
servers means that each request for a specific URL should be sent to an optimal web
servet (the one nearest to the client, or the least-loaded one, or some other optimiza.:.
tion). Redirecting to a server is like sending all drivers in search of gasoline to the

. nearest gas station.

Proxies te~d to handle requests on a per-protocol basis. Ideally, all HTTP traffic in the
neighborhood of a proxy should go through the proxy. For instance, if a proxy cache
is near various clients, all requests ideally will flow through the proxy cache, because
the cache will store popular documents and serve them directly, avoiding longer and
more expensive trips to the origin servers. Redirecting to a proxy is like siphoning off
traffic on a main access road (no matter where it is headed) to a local shortcut.

Where to Redirect I 449

Overview of Redirection Protocols
The goal of redirection is to send HTTP messages to available web servers as quickly
as possible. The direction that an HTTP message takes on its way through the Inter­
net is affected by the HTTP applications and routing devices it passes from, through,
and toward. For example: .· · ·

• The browser application that creates the client's message could be configured to
send it to a proxy server.

• DNS resolvers choose the IP address that is used for addressing the message.
This IP address can be different for different clients in different geographical
locations.

• As the message passes through netwQrks, it is divided into addressed packets;
switches and routers examine the TCP /IP addressing on the packets and make
decisions about routing the packets on that basis.

• Web servers can bounce requests back to different web servers with HTTP
redirects;

Browser configuration, DNS,.TCP/IP routing, and HTTP all provide mechanisms for
redirecting messages. N9tice that some methods, such as browser configuration,
make sense onJy for redirecting traffic to proxies, while others, such as DNS redirec­
tion, can be used to send traffic w any server.

Table 20-1 summarizes the redirection methods used to redirect messages to servers,
each of which is discussed later in this chapter.

Table20~1. General redirection methods

~~~~~:~ch~.~·$m~t"· ;.t~~J~~~{.tr:~~~~~;~Jf;1···t,~1~~~11~~·~t;~"~"~:~ :'{:;~~~:~islfW r~~ofr~~~~J\7 ... 
HTTP redirection 

ONS redirection 

Initial HTTP request goes to a first web 
server that chooses a "best'' web server 
to serve the content. The first web 
server sends the client an HTTP redirect 
to thechosen server. The client resends 
the request to the chosen server. 

ONS server decides which IP address, 
among several, to return for the host­
name in the URL 

Anycast addressing Several servers use the same IP address. 
Each server masquerades as a backbone 
router. The other routers send packets 
addressed to the shared IP to the near­
est server (believing they are sending 
packets to the nearest router). 

450 I· Chapter 20: Redirection and Load Balancing 

Many options, from 
round-robin load 
balancing, to minimizing 
latency, to choosing the 
shortest path. 

Many options, from 
round-robin load 
balancing, to minimizing 
latency, to choosing the 
shortest path. 

Routers use built-in 
shortest -path routing 
capabilities. 

}~~~:~lW 
Can be slow-every trans­
action involves the extra 
redirect step. Also, the first 
server must be able to han­
dle the request load. 

Need to configure ONS 
server. 

Need to own/configure 
routers. Risks address con­
flicts. Established TCP con­
nections can break if routing. 
changes and packets associ­
ated with a connection get 
sent to different servers. 



Table 20-1. General redirection methods (continued) 

IP MAC forwarding 

IP address 
forwarding 

A network element such as a switch or 
router reads a packet's destination 
address; if the packet should be redi­
rected, the switch gives the packet the 
destination MAC address of a server or 
proxy. 

layer-4 switch evaluates a packet's des­
tination port and changes the IP address 
of a redirect packet to that of a proxy or 
mirrored server; 

Save bandwidth and 
improve QOS.load 
balance. 

Save bandwidth and 
improve QOS.load 
balance. 

Serveror proxy must be one 
hop away. 

· IP address of the client can 
be lost to the server/proxy. 

Table 20-2 summarizes the redirection methods used .to redirect messages to proxy 
servers. 

Table 20-2. Proxy and cache redirection techniques 

.. }:~i~??~~~~~,9Jf<·. <; ·;': j~~~~~: 
Explicit browser Web browser is configured to send HITP Save bandwidth and Depends on ability to con-
configuration messages to a nearby proxy, usually a improve QOS.load figure the browser. 

cache. The configuration can be done by balance. 
the end user or by a service that man-
ages the browser. 

Proxy auto- Web browser retrieves a PAC file from a Save bandwidth and Browser must be config- . 
configuration (PAC) · configuration server. The PAC file tells the improve QOS.load ured to query the configura-

browser what proxy to use for each URL balance. tionserver. 

Web Proxy Web browser asks a configuration server The configuration server Only a few browsers support 
Autodiscovery for the URl of a PAC file .. Unlike PAC bases the URL on infor- WPAD. 
Protocol (WPAD} alone, the browser does not have to be mation in client HITP 

configured with a specific configuration request headers. load 
server. balance. 

Web Cache Router evaluates a packet's destination Save bandwidth and Must use routers that sup-
Coordination address and encapsulates redirect pack- improve QOS.load port WCCP. Some topologi-
Protocol (WCCP) ets with the IP address of a proxy or mir- · balance. cal limitations. 

rored server. Works with many existing 
routers. Packet can be encapsulated, so 
the client' siP address is not lost. 

Internet Cache A proxy cache can query a group of sib- Obtaining content from False cache hits can arise 
Protocol (ICP} ling caches for requested content. Also· a sibling or parent cache because only theURL is used 

supports cache hierarchies. is faster than applying to to request content. 
the origin server. 

Cache Array Rout- A proxy cache hashing protocol. Allows a Obtaining content from . CARP cannot support sib-
ing Protocol (CARP) cache to forward a request to a parent a nearby peer cache is ling relationships. All CARP 

cache. Unlike with ICP, the content on faster than applying to clients must agree on the 
the caches is disjoint, and the group of the origin server. configuration; otherwise, 
caches acts as a single large cache. different clients will send 

the same URI to different 
parents, reducing hit ratios. 

· Overview of Redirection Protocols I 451 



/. 

Table 20-2. Proxy and cache redirection techniques (continued) 

Hyper Text Caching 
Prota<:ol (HTCP) 

· Participatingproxy caches can query a 
group of sibling caches for requested 
content Supports HTIP 1.0 and 1.1 
headers to fine~ tune cache queries. 

General Redirection Methods 

Obtaining content from 
a sibling or parent cache 
is faster than applying to·· 
the origin server. · 

) 

In this section, we will delve deeper ·into the various redirection methods that are 
commonly used for both servers and proxies. These techniques can be used to redi­
rect traffic to a different (presumably more optimal) server or to vector traffic 
through a proxy. Specifically, we'll cover HTTP redirection, DNS redirection, any­
cast addressing, IP MAC forwarding, and IP address forwarding. 

HTTP Redirection 
Web serverscan send short redirect messages back to clients, telling them to try 
someplace else. Some web sites use HTTP redirection as a simple form of load bal­
ancing; the server that handles the redirect (the redirecting server) finds the least­
loaded content server available and redirects the browser to that server. For widely 
distributed web sites, determining the "best" available server gets more complicated, 
taking into account not only the servers' load but the Internet distance between the 
browser and the server. One advantage of HTTP redirection over some other forms 
ofredirection is that the redirecting server knows the client's IP address; in theory, it 
may be able to make a more informed choice. . 

Here's how HTTP redirection works. In Figure 20-la, Alice sends a request to 
www.joes-hardware. com: 

GET /hammers.html HTTP/1.0 
Host: www.joes-hardwa;re.com 
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22) 

In Figure 20-lb, instead of sending back a web page body with HTTP status code 
200, the server sends back a redirect message with status code 302: 

HTTP/1.0 302 Redirect 
Server: Stronghold/2.4.2 Apache/1.3.6 
Location: http:l/161.58.228.45/hammers.html 

Now, in Figure 20-lc, the browser resends the request using the redirected URL, this 
time to host 161.58.228.45: 

GET /hammers. html HTTP /1. o 
Host: ·161. 58.228.45 
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22) 

Another client could get redirected to a different server. In Figure 20-ld-f, Bob's 
request gets redirected to 161.58.228.46. 

452 I Chapter 20: Redirection and Load Balancing 



II 
J.JU.LLUo"TJ 161.58.228.46 161.58.228.47 

-----------------------------------~--------

.li.l 
161.58.228.45 161.5~28.46 161.58.228.47 

~.~·· .. 
.•..• ;;;.~::~.::?::!~' ............................ ;; •••••••••••••• ·••••••• 

Figure 20-1. HTTP redirection 

HTTP redirection can vectorrequests across servers, but it has severaldisa:dvantages: 

• A significant amount of processing power is. required from the original server to 
determine which server to redirect to. Sometimes almost as much server horse'­
power is required to issue the redirect as would be to serve up the page itself. 

• User delays are increased, because two round trips are required to access pages. 

• If the redirecting server is broken, the site will be broken. 

Because of these weaknesses, HTTP redirection usually is used in combination with 
some of the other redirection techniques. 

DNS Redirection 
Every time a client tries to access Joe's Hardware's web site, the domain name 
www.joes-hardware.com must be resolved to an IP address. The DNS resolver may 
be the client's own operating system, a DNS server in the client's network, or a 
more remote DNS server. DNS allows several IP addresses to be associated to a sin­
gle domain, and DNS resolvers can be configured or programmed toreturn varying 
IP addresses~ The basis on which the resolver returns the IP address can tun from 
the simple (round robin) to the complex (such as checking the load on several serv­
ers and returning the IP address of the least-loaded server). 

General Redirection Methods ·1 453 



In Figure 20-2, Joe runs four servers for www.joes-hardware.com. The DNS ser:ver 
has to decide which of four IP addresses to return for www.joes-hardware.com. The 
easiest D NS decision algorithm is a simple round robin. 

server . 
· Decides whether 

to resolve to 
10.10.10.1, 
10.10.10.2, 
10.10.10.3, 

·~--~~:10.10.4 

Figure 20-2. DNS-based redirection 

10.10.10.3 
Server 3 

=j·i"'"' 
10.10.10.1 
Server 1 

-=~~aremm 
10.10.10.2 
Server2 

For a run-through of the DNS resolution process, see the DNS reference listed at the 
end of this chapter. 

DNS round robin 

One of the most common redirection techniques also is one of the simplest. DNS 
round robin uses a feature of DNS hostname resolution to balance load across a farm 
of web servers. It is a pure load-balancing strategy, and it does not take into account 
any factors about the location of the client relative to the server or the current stress 
on the server. 

Let's look at what CNN .com really does. In early May of 2000, we used the nslookup 
Unix tool to find the IP addresses associated with CNN.com. Example 20-1 shows 
the results. • 

Example 20-1. IP addresses for www.cnn.com 

% nslookup www.cnn.com 
Name: cnn;com 

* DNS results as of May 7, 2000 and resolved from Northern California. The particular values likely will 
change over time, and some DNS systems return different values based on client location. 

454 I Chapter 20: Redirection and Load Balancing 



Example 20-1. IP addresses for www.cnn.com (continued) 

Addresses: 207.25. 71.5, 267 ;25. 71.6, 207.25. 71.7, 207.25.71.8 
207.25.]1.9, 207.25.71.12, 207.25.71.20, 207.25.71~22, 207.2$;71.23 
207.25.71.24, 207.25.71.25, 207.25.71.26, 207.25.71.27, 207.25.71;28 
207.25. 71.29, )07 .25. 71.30, 207.25. 71.82, 207.25. 71.199, 207.25.71.245 
207.25.71.246 

Aliases: www~ cnn. com 

Th.e web site www.cnn.com actually is a farm of 20 distinct IP addresses! Each IP 
address might typically translate to a different physical server. 

Multiple addresses and round-robin address rotation 

Most DNS clients just use the firstaddress ofthe multi-address set. To balance load, 
most DNS servers rotate the addresses each time a lookup is done. This address rota­
tion often is called DNS round robin. 

For example, three consecutive DNS lookups of www.cnn.com might return rotated 
lists of IP addresses like those shown in Example 20-2; 

Example 20-2. Rotating DNS address lists 

% nslookup www.cnn.com 
Name: cnn.com 
Addresses: 207.25.71.5, 201:25.71.6, 207.25.71.7, 207.25.71.8 

207.25.71.9, 207.25.71.12, 207.25.71.20, 207.25.71.22, 207.25.71.23 
207.25. 71.24, 207.25. 71.25, 207.25. 71.26, 207.25. 71.27, 207.25.71.28 
207.25.71.29, 207.25.71.30,. 207.25.71.82, 207.25.71.199, 207.25.71.245 
207.25. 71.246 

% nslookup www.cnn.com 
Name: cnn.com 
Addresses: 207.25.71.6, 207.25.71.7, 207.25.71.8, 207.25.71.9 

207 .25.71.12, 207.25. 71.20, 207.25. 71.22, 207.25. 71.23, 207.25.71.24 
207.25.71.25, 207.25.71.26, 207.25;71.27, 207.25.71.28, 207.25.71.29 
207.25. 71.30, 207.25. 71.82, 207.25. 71.199, 207 .25.71.245, 207.25.71.246 
207.25. 71.5 

% nslookup·www.cnn.com 
Name: cnn.com 
Addresses: 207.25.71.7, 207.25.71.8, 207.25.71.9, 201.25.71.12 

207.25. 71.20, 207.25. 71.22, 207.25. 71.23, 207 .25.}1.24, 207.25.71.25 
207.25.71.26, 207.25.71.27, 207.25.71.28, 207.25.71.29, 207.25.71.30 
207.25. 71.82, 207.25. 71.199, 207.25. 71.245, 207.25.71.246, 207.25. 71.5 
207.25.71.6 . 

In Example 20-2: 

• The first address of the first DNS lookup is 207.25.71.5. 

• The first address of the second DNS lookup is 207.25.71.6. 

• The·first address of the third DNS lookup is 207.25.71.7 . 

. · General Redirection Methods I 455 



DNS round robjn for load balancing 

Because most DNS clients just use the first address, the DNS rotation serves to bal­
ance load among servers. If DNS did not rotate the addresses, most clients would 
always send load to the first client. · · 

Figure20-3 shows how DNS round-robin rotation acts to balance load: 

• When Alice tries to connect to www.cnn.com, she looks up the IP address using 
DNSand gets back 207.25.71,5 as the first IP address. Alice connects to the web 
server 207.25.71.5 in Figure 20.;3c. 

• When Bob subsequently tries to connect to www.cnn.com, he also looks up the 
IP address usingDNS, but he gets back a different result because the address list 
has been rotated one position, based on Alice's previous request. Bob gets back 
207.25; 71.6 as the first IP address, and he connects to this server in Figure 20'-3f. 

(a) Alice 

·Q· ~(~~;;;~······ 
........... 

· Alice 

Q 
Bob 

...... ~·~ ................. -···· 

ill 
207.25.71.5 207.25.71.6 207.25.71.7 

.. 
~ 

...... 
•' 

----------~-----------------~---------------

I I 
207.25.71.5 207.25.71.7 

Figure 20-3. DNS round robin load balances across servers in a server farm 

The impact ofDNScaching 

DNS address rotation spreads the load around, because each DNS lookup to a server 
gets a different ordering of server addresses. However, this load balancing isn't per­
fect, because the results of the DNS lookup may be memorized and reused by applica­
tions, operating systems, and some primitive child DNS servers. Many web browsers· 

456 I . Chapter 20: Redir~ction and load Balancing 



perform a DNS lookup for a host but then use the same address over and over again, 
to eliminate the cost of DNS lookups and because some servers prefer to keep talking 
w the same client. Furthermore, many operating systems perform the DNS lookup 
automatically, and cache the result, but don't rotate the addresses. -Consequently, 
DNS round robin generally doesn't balance the load of a single client-one client typ­
ically will be stuck to one server for a long period of time. 

But, even though DNS doesn't deal out the transactions of a single client across 
server replicas, it does a decent job of spreading the aggregate load of multiple cli­
ents. As long as there is a modestly large number of clients with· similar demand,· the 
load will be relatively well distributed across servers. 

Other DNS-based redirection algorithms 

We've already discussed howDNS rotates address lists with each request. However, 
some enhanced DNS servers use other techniques for choosing the order of the 
addresses: 

Load::·balancing algorithms 
Some DNS servers keep track of the load on the web servers and place the least­
loaded web servers at the front of the list. 

Proximity-routing algorithms 
DNS servers can attempt to direct users to nearby web servers, when the farm of 
web servers is geographically dispersed. 

Fault-masking algorithms 
DNS servers can monitor the health of the network and route requests away 
fromservice interruptions orother faults. 

Typically, the DNS server that runs sophisticated server-tracking algorithms is an 
authoritative server that is under the control of the content provider (see Figure 20-4) . 

. Several distributed hosting services use this DNS redirection model. One drawback 
of the. model for services that look for nearby servers is thatthe only information that 
the authoritative DNS server uses to make its decision is the IP address of the local 
DNS server, not the IP address of the client. 

Anycast Addressing 
In anycast addressing, several geographically dispersed web servers have ·the exact 
same IP address and rely on the "shortest-path" routing capabilities ofbackbone 
routers to send client requests to the server nearest to the client. One way this 
method can work is for each web server to advertise itself as a router to a neighbor­
ing backbone router. The web server talks to its neighboring backbone router using a 
router communication protocol. When the backbone router receives packets aimed 
at the anycast address, it looks (as it usually would) for the nearest "router" that 

· General Redirection Methods ·I · 457 



Figure 20-4.DNS requestinvolving authoritative server 

accepts that IP address. Because the server will have advertised itself as a router for 
that address, the backbone router will send the server the packet. 

In Figure 20-5, three servers front the same IP address, 10.10.10.1, The Los Angeles 
(LA) server advertises this address to the LA router, the New York (NY) server adver­
tises the same address to the NY router, and so on. The servers communicate with 
the routers using a router protocol. The routers automatically route client requests 
aimed at 10.10.10.1 to the nearest server that advertises the address. In Figure 20-5, 
a request for the IP address 10.10.10.1 will be routed to server 3. 

10.10.10.1 
Server 3 

Figure 20-5. Distributed anycast addressing 

458 J · Chapter 20: Redirection and load Balancing 

~t~are.mm 

10.10;10.1 
Server l · 

---=~~arecom 
10.10.10.1 
Server 2 



Anycast addressing is still an experimental technique. For distributed anycast to 
work,. the servers rnus,t "speak router language" and the route~s must be able to han­
dle possible address conflicts, because Internet addressing basically assumes one 
server for one address; (If done improperly, this can lead.to serious problems known 
as "route leaks.") Distributed anycast is an emerging technology and might be a solu­
tion for content providers who control their own backbone networks. 

IP MAC Forwarding 
In Ethernet networks, HTTP messages are sent in the form of addressed data pack­
ets. Each packet has a layer-4 address, consisting of the source and destination IP 
address and TCP port numbers; this is the address to which layer 4-aware devices 
pay attention. Each packet also has a layer-2 address, the MediaAccess Control 
(MAC) address, to which layer-2 devices {commonly switches and hubs) pay atten­
tion. The job of layer-2 devices is to receive packets with particular incoming MAC 
addresses and forward them to particular outgoing MAC addresses. 

In Figure 20-6, for example, the switch is programmed to send all traffic from MAC 
address "MAC3'' toMAC address "MAC4." 

Q 
HubMAC3 

To internet 
ClientMAC1 

Q I •· 
·Gateway MACS 

ClientMAC2 

Figure 20~6. Layer-2 switch sending client requests to a gateway 

A layer 4-aware switch is able to examine the layer-4 addressing (IP addresses and 
TCP port numbers) and make routing decisions based on this information. For 
example, a layer~4 switch could send all port 80-destinedweb traffic to a proxy. In 
Figure 20-7, the switch is programmed to send all port 80 traffic from MAC3 to 
MAC6 (a proxy cache). All other MAC3 traffic goes to MAC5. 

Typically, if the requested HTTP content is in the cache and is fresh, the proxy cache 
serves it; otherwise, the proxy cache sends an HTTP request to the origin server for 
the content, on the client's behalf. The switch sends port 80 requests from the proxy 
(MAC6) to the Internet gateway (MAC5). 

Layer'-4 switches that support MAC forwarding usually can forward requests to sev-' 
eral proxy caches and balance the load among them. Likewise, HTTP traffic also can 
be forwarded to alternate HTTP servers. 

General Redirection Methods I 459 



Q 
SwitchMAC4 

To internet 
ClientMAC1 

Q
. 

. 

8l 1 I I 
ClientMAC2 

HubMI\C3 \\ 

Port 80 traffic i 

G 
Gateway MACS .. 

Caching proxy MAC6 

Figure 20-7. MAC forwarding using a layer-4 switch 

Because MAC address forwarding is point-to-:point only, the server or proxy has to 
be located one hop away from. the switch. 

IP Address Forwarding 
In IP address forwarding,_ a switch or other layer 4-aware device examines TCP liP 
addressing on incoming packets and routes packets accordingly by changing the des­
tination IP address, instead of the destination MAC address. An advantage over 
MAC forwarding is that the destination server need not be one hop away; it just 
needs to be located upstream from the switch, and the usual layer-3 end-to-end 
Internet routing gets the packet to the right place. This type of forW-arding also is 
called Network Address Translation (NAT). 

There is a catch, however: routing symmetry. The switch that accepts the incoming 
TCP connection from the client is managing that connection; the switch must send 
the response back to the client on that TCP connection. Therefore, any .response 
from the destination server or proxy must return to the switch (see Figure 20-8). 

Figure 20-8. A switch doing IP forwarding to a caching proxy or mirrored web server 

460 I Chapter 20: Redirection and load Balancing 



Two ways ~o control the return path of the response are: 

• Change the: source IP address of the packet to the IP address of the switch. That 
·way, regardless of the network configuration between the switch.and server, the 
response packet goes to the switch. This is called full NAT, where the IP for­
warding device translates both destination and source IP addresses. Figure 20-9 
shows the effect offullNAT on a TCP/IP datagram. The consequenceis that the 
client lP addressjs unknown to the web server, whichmightwant it forauthenti~ 
cation or billing purposes, for example. 

• If the source IP address remains the client's IP address, make sure (from a hard­
ware perspective) that no routes exist directly from server to client (bypassing 
the switch). This sometimes is called half NAT. The advantage here is that the 
server obtains the client IP address, but the disadvantage is the requirement of 
some control of the entire network between client and server. 

Figure 20-9. Full NAT of a TCPIIP datagram 

Network Element Control Protocol 
The Network Element Control Protocol (NECP) allows network elements (NEs)-

. devices such as routers and switches that forward IP packets-to·talk with server ele­
ments (SEs)-devices such as web servers and proxy caches that serve application 
layer requests. NECP does not explicitly support load balancing; it only offers a way 
for an SE to send an NE load-balancing information so that the NE can load balance 
a~ it sees fit. Like WCCP, NECP offers several ways to forward packets: MAC for-
warding, GRE encapsulation, and NAT. · 

NECP supports the idea of exceptions. The SE can decide that it cannot service par­
ticular sautee IP addresses, and send those addresses to the NE. The NE can then 
forward requests from those IP addresses to the origin server. 

Messages 

TheNECP messages are described in Table 20-3.· 

General Redirection Methods l 461 



i' . ' 

Table 20~3. NECP messages 

NECP _NOOP 

NECP,..JNIT SE 

NECP _INIT_ACK NE 

NECP ... .:KEEP ALIVE NE or SE 

NECP _KEEPAUVE:....ACK NEor SE 

NECP _START SE 

NECP _START_ACK NE 

NECP _STOP SE 

NECP _STOP _ACK NE 

NECP _EXCEPTION~ADD SE 

NECP _EXCEPTION_ADD_ACK NE 

NECP _EXCEPTION_DEL SE 

NECP _EXCEPTION_DEl_ACK NE 

NECP _EXCEPTION_RESET SE 

NECP _EXCEPTION_RESET_ACK NE 

NECP _EXCEPTION_ QUERY SE 

NECP cJXCEPTION_RESP NE 

No operation-:-do nothing. 

SE initiates communication with NE. SE sends this message to NE after 
opening TCP connection with NE. SE must know which NE port to con­
nect to. 

Acknowledges NECP ...JNIT. 

Asks if peer is alive. 

Answers keep-alive message. 

SE says "I am here and ready to accept network traffic," Can specify a 
port. 

Acknowledges NECP _START. 

SE tells NE "stop sending me traffic."· 

NE acknowledges stop. 

SE says to add one or more exceptions toNE's list. Exceptions can be 
based on source IP, destination IP, protocol (above IP), or port. 

Confirms EXCEPTION_ADD. 

Asks NE to delete one or more exceptions from its list 

Confirms EXCEPTION_ DEL. 

Asks NE to delete entire exception list. 

Confirms EXCEPTION_RESET, 

Queries NE's entire exception list. 

Responds to exception query. 

Proxy Redirection Methods 
So far, we have talked about general redirection methods. Content also may need to 
be accessed through various proxies (potentially for security reasons), or there might 
be a proxy cache in the network that a client should take advantage of (because it 
likely will be much faster to retrieve the cached content than it would be to go 
directly to the origin server). 

But how do clients such as web browsers know to go to a proxy? There are three 
ways to determine this: by explicit browser configuration, by dynamic automatic 
configuration, and by transparent interception. We will discuss these three tech­
niques in this section. 

A proxy can, in tum, redirect client requests to a different proxy. For example, a proxy 
cache that does not have the content in its cache may choose to redirect the client to 
another cache. As this results in the response coming from a location different from 
the one from which the client requested the resource, we also will discuss several pro­
tocols used for peer proxy-cache redirection: the Internet Cache Protocol (ICP), the 
Cache Array Routing Protocol (CARP), and the Hyper Text Caching Protocol (HTCP). 

462 I Chapter 20: Redirection and Load Balancing 



Explicit Browser Configuration 
Most browsers can be configured to co~ tact a proxy server for content-there is a 
pull~down menu where the user can enter the proxy's name or IP address and port 
number. The browser then contacts the proxyfor all requests. Rather than relying on 
users to correctly configure their browsers to use proxies, some service providers 
require users to downloadpreconfigured browsers. These browsers know the address 
of the proxy to contact. 

Explicit browser configuration has two main disadvantages: 

• Browsers configured to use proxies do not contact the o~igin server even if the 
proxy is not responding. If the proxy is down or if the browser is incorrectly con-
figured, the user experiences connectivity problems. . . 

• It is· difficult to make changes in network architecture and propagate those 
changes to all end users. If a service provider wants to add more proxies or take 
some out of service, browser users have to change their proxy settings. 

Proxy Auto~configuration ·· 
Explicit configuration ofbrowsers to contact specific proxies can restrict changes in 
network architecture, because it depends on users to intervene and reconfigure their 
browsers. An automatic configuration methodology that allows browsers to dynami­
cally configure themselves to contact the correct proxy server solves this problem. 
Such a methodology exists; it is called the Proxy Auto-configuration (PAC) protocol. 
PAC was defined by Netscape and is supported by the Netscape Navigator and 
Microsoft Internet Explorer browsers. . 

The basic idea behind PAC is to havebrowsers retrieve a special file, called the PAC 
file, which specifies the proxy to contact for each URL. The browser must be config­
ured to contact a specific server for the PAC file. The browser then fetches the PAC 
file every time it is restarted. 

The PAC file is a J avaScript file, which must define the function: 

function FindProxyForURL(url, host) 

Browsers call this function for every requested URL, as follows: 

return_value = FindProxyForURL(url_of_request, host_in_url); 

where the return value is a string specifying where the browser should request this 
URL. The return value can be a list of the names of proxies to contact (for example, 
"PROXY proxyl.domain.com; PROXY proxy2.domain.com") or the string 
"DIRECT", which means that the browser should go directly to the origin server, 
bypassing any proxies. 

The sequence of operations that illustrate the request for and response to a browser's 
request for the PAC file are illustrated in Figure 20-10. In this example, the server 

Proxy Redirection Methods I 463 



sends back a PAC filewith a javaScript program. The javaScript program has a func­
tion called "FindProxyForURL" that tells the browser to contact the origin server 
directly if the host in the requested URL is in: the "netscape.com" domain, and to go 
to "proxyl.joes-cache.com" for .all other requests. The browser· calls this function for 
each URL it requests and connects according to the results rettJ.rned by the function. 

Hi, I've "'""onfig,;;dt,;················ E1 
ask you for the PAC file. --. 
Please send it to me. • PAC server 

Figure 20-10. Proxy auto-configuration 

The PAC protocol is quite powerful: the JavaScript program can ask the browser to 
choose a proxy based on any of a number of parameters related to the hostname, such 
as theDNS address and subnet, and even the day ofweekortime of day. PAC allows 
browsers automatically to contact the right proxy with changes in network architec­
ture; as long as the.PACJile is updated at the server to reflect changes to the proxy 
locations. The main drawback with PAC is that the browser must be configured to 
know which server to fetch the PAC file from, so it is not a completely automatic con­
figuration system. WP AD, discussed in the next section, addresses this problem. 

PAC, like preconfigured browsers, is used by some major ISPs today. 

Web Proxy Autodiscovery Protocol 
The Web Proxy Autodiscovery Protocol (WPAD) aims to provide a way for web 
browsers·to find and use nearby proxies, without requiring the end user to manually 

464 I · Chapter20: Redirection and load Balancing 



configure a proxy setting and without relying on transparent traffic interception. The 
general problem of defining a.web proxy autodiscovery protocol is complicated by 
the. existence of many discovery protocols to choose from and the diff~rerices in 
proxy-use configurations in different browsers. 

This section contains an abbreviated and slightly reorganized version of the WPAD 
Internet draft. The draft currently is being developed as part ofthe Web Intermediar­
iesWorking Group ofthe IETF. 

PAC file autodiscovery, 

WPAD enables HTTP clients to locate a PAC file and use the PAC file to discover the 
name of an appropriate proxy server. WPAD does not directly determine the name· of 
the proxy server, because that would circumvent the additional capabilities provided 
by PAC files (load balancing, request routing to an array of servers, automated 
failover to backup proxy servers, and so on). 

As shown in .Figure 20'-11, the WPAD .protocol discovers a PAC file URL, also 
known as a configuration URL (CURL). The PAC file executes a JavaScript program 
that returns the address of an appropriate proxy server. 

~~~J~:~)~~~:J:;· 

l i l i {a) WPAD i i (c) Access server
i i i f discovery i ! through proxy

l ____ ::::::::::::~Q~---_-_-_-_-_-_-_-_-_-_-_: ____ j
HTTP client

Figure 20-11. WPAD determines the PAC URL, which determines the proxy server

An HTTP client that implements the WPAD protocol:

• Uses WPAD to find the PAC file CURL

• Fetches the PAC file (a.k.a. configuration file, or CFILE) corresponding to the
CURL

• Executes the PAC file to determine the proxy server

• Sends HTTP requests to the proxy server returned by the P ACfile

WPAD algorithm

WP AD uses a series of resource-discovery techniques to determine the proper PAC
file CURL. Multiple discovery techniques are·specified, because not all organizations

Proxy Redirection Methods I 465

can use all techniques. WPAD clients attempt each technique, one by one, until they
succeed in obtaining a CURL.

The current WP AD specification defines the following techniques, in order:

• DHCP (Dynamic Host Configuration Protocol)

• SLP (Service Location Protocol)

• DNS well-known hostnames

• DNS SRV records

• DNS service URLs in TXTrecords

Of these five mechanisms, only the DHCP and DNS well-known hostname tech­
niques are required for WPAD clients. We present more details in subsequent
sections.

The WP AD client sends. a series of resource-discovery requests, using the discovery
mechanisms mentioned above, in order. Clients attempt only mechanisms that they
support. Whenever a discovery attempt succeeds, the client uses the information
obtained to construct a PAC.CURL.

If a PAC file is retrieved successfully at that CURL, the process completes. If not, the
client resumes where it left off in the predefined series of resource-discovery requests.
If, after trying all discovery mechanisms, no PAC file is retrieved, the WP AD proto­
col fails and the client is configured to use no proxy server. .

The client tries DHCP first, followed by SLP. If no PAC file is retrieved, the client
moves on to the DNS-based mechanisms.

The client cycles through the DNS SRV, well-known hostnames, and DNS TXT
record methods multiple times. Each time, the DNS query QNAME is made less and
less specific In this manner, the client can locate the most specific configuration
information possible, but still can fall back on less specific information. Every DNS
lookup has the QNAME prefixed with "wpad" to indicate the resource type being
requested.

Consider a client with hostname johns-desktop.development.foo.com. This is the
sequence of discovery attempts a complete WP AD client would perform:

• DHCP

• SLP

• DNS A lookup on "QNAME=wpad.development.foo.com"

• DNS SRV lookup on "QNAME=wpad.development.foo.com"

• DNSTXT lookup on "QNAME=wpad.development.foo.com"

• DNS A lookup on "QNAME=wpad.foo.com"

• DNS SRVlookup on "QNAME=wpad.foo.com"

• DNS TXT lookup on "QNAME=wpad.foo.com"

466 I · Chapter 20: Redirection and Load Balancing

Refer to the WPAD specification to get detailed pseudocode that addresses the entire
sequence of operations. The following sections discuss the two required mecha­
nisms, DHCP and DNS A lookup. For more details about the reminder ofthe CURL
discovery methods, refer' to the WP AD specification ..

CURL discovery using DHCP

For this mechanism to work, the CURLs must be stored on DHCP servers that
WPAD clients can query. The WPAD client obtains the CURL by sending a DHCP
query to a DHCP serveL The CURL is contained in DHCP option code.252 (if the
DHCP serveris configured with this information). All WPAD client implementa­
tions arerequired to support DHCP. The DHCP protocol is detailed in RFC 2131.
SeeRFC 2132 for a list of existing DHCP options.

Ifthe WPAD client already has conducted DHCP queries duririg its initialization, the
DHCP server might already have supplied that value~ If the value is not available
through a client OS API, the client sends a DHCPINFORM ·message to query the
DHCP server to obtain the value.

The DHCP option code 252 for WPAD is of type STRING and is ofarbitrary size.
This string contains aURL that points to an appropriate PAC file. For example:

"http://Server.domain/proxyconfig.pat"

DNS A record lookup

For this mechanism to work, the IP addresses of suitable proxy servers must be
stored on DNS servers that the WPAD clients can query. The WPAD client obtains
the CURL by sending an A record lookup to a DNS server. The result of a successful
lookup contains an IP address for an appropriate proxy server.

WPAD client implementations are required to support this mechanism. This should
be straightforward, as only basic DNS lookup ofA records is required. See RFC 2219
for a description of using well-known DNS aliases for resource discovery. For WPAD,
the specification uses "well known alias" of "wpad" for web proxy autodiscovery.

The client performs the following DNS lookup:

QNAME=wpad.TGTDOM., QCLASS=IN, QTYPE=A

A successful lookup contains an IP address from which the WPAD client constructs
the CURL.

Retrieving the PAC file

Once a candidate CURL is created, the WP AD client usually makes a GET request
to the CURL. When making requests,· WP AD clients are required to send Accept
headers with appropriate CFILE format information that they are capable of han­
dling. For example:

Accept: application/x-ns-proxy-autoconfig

Proxy Redirection Methods I 467

In addition, if the CURL results in a redirect, the clients are required to follow the .
redirect to its final destination.

When to execute WPAD

The web proxy autodiscovery process is required to occur at least as frequently as
one ofthe following: ·. .

• Upon startup of the web client-. WP AD is performed only for the start of the
first instance~ Subsequent instances inherit the settings.

• Whenever there is an indication from the networking stack that the IP address of
the client host has changed.

A web client can use either option, depending on what makes sense in its environ'­
menr. In addition, the client must attempt a discovery cycle upon expiration of a pre­
viously downloaded PAC file in accordance with HTTP expiration. It's important that
the client obey the tirneouts and rerun the WP AD process when the PAC file expires.

Optionally, the client also may implement rerunning the WPAD process on failure of
the currently configured proxy if the PAC file does not provide an alternative;

Whenever the client decides to invalidate the current PAC file, it must rerun the
entire WPAD protocol to ensure it discovers the currently correct CURL. Specifi,..
cally, there is no provision in the protocol to do an If-Modified-Since conditional
fetch of the PAC file.

A number. of network round trips might be required during the WP AD protocol.·
broadcast and/or multicast communications. The WPAD protocol should not be
invoked at a more frequent rate than specified above (such as per-URL retrieval).

WPAD spoofing

The IE 5 implementation of WP AD enabled web clients to detect proxy settings
automatically, without user intervention. The algorithm used by WPAD prep~nds
the hostname "wpad" to the fully qualified domain name and progressively removes
subdomains until it either finds a WP AD server answering the hostname or reaches
the third-level domain, For instance, web clients in the domain a.b.microsoft.com
would·query wpad.a.b.microsoft, wpad.b.microsoft.com, then wpad.microsoft.com.·

This exposed a security hole, because in international usage (and certain other con­
figurations), the third-level domain may not be trusted. A malicious user could set up
a WPAD server and serve proxy configuration commands of her choice. Subsequent
versions of IE (5.01 and later) rectified the problem.

Timeouts

WPAD goes through multiple levels of discovery, and clients must make sure that
each phase is time-:bound. When possible, limiting each phase to 10 seconds is

468 I Chapter 20: Redirection and load Balancing

considered reasonable, but implementors may choose a different value that is more
appropriate to their network properties. For example, a device implementation,
operating over a wireless network, might use a much larger timequt t() account for

.. low bandwidth orhigh.latency. .

Administrator considerations

Administrators should configure at least one of the DHCP or DNS A record lookup
methods in their environments, as those are the only two that all compatible clients
are required to implement. Beyond that, configuring to support mechanisms earlier
in the search order will improve client startup time.

One·. of the· major motivations for this protocol structure was· to support client ·Ioca~
tion ofnearby proxy servers. In many environments, there are severalproxyservers
(workgroup, corporate gateway, ISP, backbone).

There are a number of possible points at which "nearness'' decisions can be made in
the WP AD framework: · ·. ·

• DHCP servers for different subnets can return different answers. They also can
base decisions on the client cipaddr field or the client identifier option.

• DNS servers can be configured to return different SRV/A/TXT resource records
(RRs} for different domain suffixes (for example, QNAMEs wpad.marketing.big~
corp. com and wpad.development.bigcorp.com).

• The web server handling the ·CURL request can make decisions based· on the .
User~Agent header, Accept header, client IP address/subnet/hostname, topologi~
cal distribution of nearby proxy servers, etc. This can occur inside a C:GI execut­
able created to handle the CURL. As mentioned earlier, it even can be a proxy
server handling the CURL requests and making these decisions. .

• The PAC file may be expressive enough to select from a set of alternatives at run.,.
time on the client. CARP is based on this premise for an array of caches; It is not
inconceivable that the PAC file could compute some network.distance or fitness
metrics to a set of candidate proxy servers and then select the "closest" or.''most

. ,
responsive server.

Cache Redirection Methods
We'vediscussed techniques to redirect traffic to general servers and specialized tech­
niques to vector traffic to proxies and gateways. This final section will explain some
of the more sophisticated redirection techniques used for caching proxy servers.
These techniques are more complex than the previously discussed protocols because
they try to be reliable, high-performance, and content-aware-dispatching requests
to locations likely to have particular pieces of content.

Cache Redirection Methods I . 469

WCCP Redirection
Cisco Systems developed th~ Web Cache Coordination Protocol (WCCP) to enable
routers to redirect web traffic to proxy caches. WCCP governs communication
between routers and caches so that routers can verify caches (make sure they are up
and running), load balance among caches, and send specific types of traffic to specific
caches. WCCP Version 2 (WCCP2) is an open protocol. We'll discuss WCCP2 here.

How WCCP redirection works

Here's a brief overview of how WCCP redirection works for HTTP (WCCP redirects
other protocols similarly):

• Start with a network containing WCCP-enabled routers and caches that can
communicate with one another.

• A set of routers and their target caches fortl1 a WCCP service group. The config­
uration. of the service group specifies what traffic is sent where, how traffic is
sent, and how load should be balanced among the cachesin the service group.

• If the service group is configured to redirect HTTP traffic, routers in the service
group send HTTP requests to caches in the service group.

• When an HTTP request arrives at a router in the service group, the touter chooses
one of the caches in the service group to serve the request (based on either a hash
on the request's IP address or a mask/value set pairing scheme).

• The router sends the request packets to the cache, either by encapsulating the
packets with the cache's IP address or by IP MAC forwarding.

• If the cache cannot serve the request, the packets are returned to the router for
normal forwarding.

• The members of the service group exchange heartbeat messages with one
another, continually verifying one another's availability.

WCCP2 messages

There are four WCCP2 messages, described in Table 20-4.

Table 20-4. WCCP2 messages

ff:~0~~;l~~~~~~W~:ftl~i';~: .. ~'jj~2,~5i~!~~~~~~s;Jt]:;s;;{:;!.••··· ··., ..•• s·.,ut~orma~io'n'<:atr~ietr
WCCP2.,..HERE_I_AM Cache to router

WCCP2_1_SEE_ YOU Router to cache

470 I Chapter 20: Redirection and Load Balancing

These messages tell routers that caches are available to receive
traffic. The messages contain all ofthe cache's service group
information. As soon as a cache joins a service group, it sends
these messages to all routers in the group. These messages
negotiate with routers sending WCCP2_1_SEE_ YOU messages:

These messages respond to WCCP2_HERE_I_AM messages.
They are used to negotiate the packet forwarding method,
assignment method (who is the designated cache), packet
return method, and security.

Table 20-4. WCCP2 messages (continued)

· .. WCCP2_REDIRECT_ASSIGN Designated cache to
router

WCCP2_REMOVAL_QUERY Router to cache that has
not sentWCCP2_HERE_
I_AM messages for 2.5 x
HERE_I_AM_T seconds

These messages make assignments for load balancing; they
send bucket information for hashtable load balancing or mask/
value set pair information for mask/value load balancing.

If a router does not receive WCCP2.: ... HERE_I_AM messages reg­
ularly, the router sends this message to see if the cache should
be removed from the service group. The proper response from a
cache is three identical WCCP2~HERE_I_AM messages, sepa-.
rated by HERE_I_AM .. J/10 seconds. ·

The WCCP2_HERE_I_AM message format is:

WCCP Message Header
Security Info Component
Service Info Component
Web..,cache Identity Info Component
Web-cache View Info Component
Capability Info .Component (optional)
Command Extension Component (optional)

The WCCP2_1_SEE_YOU message format is:

WCCP Message Header
Security Info Component
Service Info Component
Router Identity Info Component
Router Viewinfo Component
Capability Info Component (optional)
Command Extension Component (optional)

The WCCP2_REDIRECT_ASSIGN messageformat is:

WCCP Message Header
Security Info Component
Service Info Component
Assignment Info Component, or Alternate Assignment Component

The WCCP2...,..REMOVAL_QUERY message format is:

WCCP Message Header
Security Info Component
Service Info Component
Router Query Info Component

Message components

Each WCCP2 message consists of a header and components. The WCCP header infor­
mation contains the message type (Here I Am, I See You, Assignment, or Removal
Query), WCCP version, and message length (not including the length of the header).

The components each begin with a four-octet header describing the component type
and length. The component length does not include the length of the component
header. The message components are described in Table 20-5.

Cache Redirection Methods I 471

Table 20-5. WCCP2 message components

Security Info

Service Info

Router Identity Info

Web Cache Identity Info

Router View Info

Web Cache View Info

Assignment Info

Router Query Info

Capabilities Info

Alternate Assignment

Assignment Map

Command Extension

Service groups

Contains the security option and security implementation. The security option can be:
WCCP2_NO_SECURTrY (0)

· WCCP2'-MDS_SECURITY (1)

lfthe option is no security, the security implementation field does not exist If the option is
MDS, the security implementation field is a 16-octetfield containing the message check~
sum and Service Group password. The password can be no more than eight octets.

Describes the service group. The service typeiD can have two values:
WCCP2 SERVICE STANDARD (o)
WCCP2)ERVIC(DYNAMIC (1)

If the service type is standard, the service is a well-known service, defined entirely by ser-
·. ·· vice I D. HTTP is ali example of a well-known service.lf the service type is dynamic, the fol­

lowing settings define the service: priority, protocol, service flags (which determine
hashing), and port.

Contains the router IP address and ID, and lists (by IP address) all of the web caches with
which the router intends to communicate.

Contains the web cache IP address aild redirection hash table mapping.

Contains the router's view ofthe service group (identities of the routers and caches).

Contains the web cache's view of the service group.

Shows theassignment ofa web cache to a particular hashing bucket.

Contains the router's IP address, address of the web cache being queried, and ID of the last
router in the service group that received a Here I Am message from the web cache.

Used by routers to advertise supported packet forwarding, load balancing, and packet return
methods; used by web caches to let routers know what method the web cache prefers.

Contains hash table assignment information for load balancing.

Contains mask/value set elements for service group.

Used by web caches to tell routers they are shutting down; used by routers to acknowledge
. a cache shutdown. ·

A service group consists of a set of WCCP-enabled routers and caches that exchange
WCCP messages. The routers send web traffic to the caches in the service group. The
configuration of the service group determines how traffic is distributed to caches in
the service group. The routers and caches exchange service group configuration
information in Here I Am and I See You messages.

GRE packet encapsulation

Routers that support WCCP redirect HTTP packets to a particular server by encap­
sulating them with the server's IP address. The packet encapsulation also contains an
IP header proto field that indicates Generic Router Encapsulation (GRE). The exist­
ence of· the proto field tells the receiving proxy that it has an encapsulated packet.

472 . I Chapter 20: Redirection and Load Balancing

Because the packet is encapsulated, the client IP address is not lost. Figure 20:.-12
illustrates GRE packet encapsulation.

Proto:GRE

~--·······························;·······-·········j
Figure 20-12.Howa WCCP router changes an HTTPpacket's destinationiP address

WCCP load balancing

In addition to routing, WCCP routers can balance load among several receiving serv~
ers. WCCP routers and their receiving servers exchange heartbeat messages to let one
another know they are up and running. If a particular receiving server stops sending
heartbeat messages; the WCCP touter sends request traffic directly t:o the Internet,
instead of redirecting it to that node. When the node returns to service, the WCCP
router begins receiving heartbeat messages again and resumes sending request traffic
to the node.

Internet Cache Protocol
The Internet Cache Protocol (ICP) allows caches to look for content hits in sibling
caches. If a cache does not have the content requested in an HTTP message, it can
find out if the content is in a nearby sibling cache and, if so, retrieve the content from
there, hopefully avoiding a more costly query to an origin server. ICP can be thought
of as a cache clustering protocol. It is a redirection protocol in the sense that the final
destination of an HTTP request message can be determined by a series of ICP queries.

ICP is an object discovery protocol. It asks nearby caches, all at the same time, 1£ any
of them have a particular URL in their caches. The nearby caches send back a short
message saying "HIT" if they have that URL or "MISS" if they don't. The cache is
then free to open an HTTP connection to a neighbor cache that has the object.

ICP is simple and lightweight. ICP messages are 32-bit packed structures in net­
work byte order, making them easy to parse. They are carried in UDP datagrams for

Internet Cache Protocol I 473

efficiency. UDP is an unreliable Internet protocol, which means that the data can get ·
destroyed in. transit, so programs that speak ICP need to have timeouts to detectlost
datagrams. -

Hereis a brief description of the parts of an ICP message: _

Opcode _
The opcode is an 8-bit value that describes the meaning of the ICP message~
Basic opcodes are ICP_OP _QUERY request messages and ICP _OP _HIT and
ICP_OP _MISS response messages.

Version
The 8-bit version number describes the version number of the ICP protocol. The
version ofiCP used by Squid, documented in Internet RFC2186, is Version 2.

Message length
The total size in bytes of the ICP message; Because there are only 16 bits, the ICP
message size cannot be larger than 16,383 bytes. URLs usually are shorterthan

· 16 KB; if they're longer than that, many web applications will not process them.

Request number
ICP-enabled caches use the request number to keep track of multiple simulta- .
neous requests and replies. An ICP reply message always must contain the same
request number as the ICP request message that triggered the reply.

Options
The 32-bit ICP options field is a bit vector containing flags that modify ICP
behavior. ICPv2 defines two flags, both of which modify ICP _OP _QUERY
requests. The ICP_JLAG_HIT_OBJ flag enables and disables the return of docu­
ment data in ICP responses. The ICP _FLAG_SRC_RTT flag requests an esti­
mate of the round-trip time to the origin server, as measured by a sibling cache.

Option data
The 32-bit option data is reserved for optional features. ICPv2 uses the low 16
bits of the option data to hold an optional round-trip time estimate from the sib­
ling to the origin server.

Sender host address
A historic field carrying the 32-bit IP address of the message sender; not used in
practice.

Payload
The contents of the payload vary depending on the message type. For ICP -'-OP _
QUERY, the payload is a 4-byte original requester host address followed by a
NUL-terminated URL. For ICP _OP _HIT_OBJ, the payload is a NUL..,terminated
URL followed by a 16 bit object size, followed by the object data.

For more information about ICP, refer to informational RFCs 2186 and 2187. Excdl­
lent ICP and peering references also are available from the U.S. National Laboratory
for Applied Network Research (http://www.nlanr.net/Squid!).

474 _ I Chapter 20: Redirection and Load Balancing

Cache Array Routing Protocol
Proxy se.r\rers greatly reduce traffic to the Internet by intercepting requests from indi­
vidual users and serving cached copies of the requested web objects. However; as
the number of users grows, a high volume of traffic can overload the proxy servers
themselves.

One solution to this problem 1s to use multiple proxy servers to distribute the load to
a collection of servers. The Cache Array Routing Protocol (CARP) is a standard pro­
posed by Microsoft Corporation and Netscape Communication Corporation to

administer a collection of proxy servers such that an array of proxy servers appears to

clients as one logical cache.

CARP is an alternative to ICP. Both CARP and ICP allow administrators to improve
performance by using multiple proxy servers. This section discusses how CARP dif­
fers from ICP, the advantages and disadvantages of using CARP over ICP, and the
technical details of how the CARP protocol is implemented.

Upon acache miss in ICP, the proxy server queries neighboring caches using an ICP
message format to determine the availability of the web object. The neighboring
caches respond with either a "HIT" or a "MISS," and the requesting proxy server
uses these responses to select the most appropriate location from which to retrieve
the object. If the ICP proxy servers were arranged in a hierarchical fashion, a miss
would be elevated to the parent. Figure20-13 diagrammatically shows how hits and
misses are resolved using ICP.

Hit or miss reply~
(time n+1) ,/

./ Sibling

/ ·-f ""?:
: •<1J:
i .g:
'., ;;;;;-: Parent of proxy is polled if the
\ ~ 1 siblings return a MISS · ... : /

·~.---..l I.
Q·g!!!!!!!!l!!~!.,. ~·:;'L~!.1Y.!g.lP.!!!.~±!L.,.

~--'··<T·
Browser //cachin~ proxy Parent

; =~

! !j
\ l~
\, '

Hit or missre;;;l
(time n+1)

Sibling

Figure 20-13. ICP queries

Cache Array Routing Protocol I 475

Note that each of the proxy servers, connected together using the I CP protocol, is a
standalone cache server with redundant mirrors of content, meaning that duplicate
entries of web objects across proxy servers is possible. In contrast, the collection of
servers connected using CARP operates as a single, large server with each compo­
nent server containing only a fraction of the total cached documents. By applying a
hash function w the URL of a web object, CARP maps web objects to a specific
proxy server. Because each web object has a unique home, we. can detennine the
location of the object by a single lookup, rather than polling each of the proxy serv­
ers configured in the collection. Figure 20-14 summarizes the CARP approach. ·

I
· Sibling

.IBI.~!(~q-~f~~~~~• ~--~:; .. ~~9.~~S!.{t!r!!~??:t.?l ...• ,.
~ . -~-------.:]..
Browser . . //Cachin~ proxy · Parent

: :-....
: : ==t

Hash function used to decide ; l ~
which sibling proxy cache · \ =~
to contact ••••• j

Respo.nse···~
(timen+7)

. Sibling

Figure 20-14. CARP redirection

Although Figure 20-14 shows the caching proxy as being the intermediary between
-clients and proxy servers that distributes the load to the various proxy servers, it is
possible for this function to be served by the clients themselves. Commercial brows­
ers such as Internet Explorer and Netscape Navigator can be configured to compute
the hash function in the form of a plug-in that determines the proxy server to which
the request should be sent.

Deterministic resolution of the proxy server in CARP means that it isn't necessary to
send queries to all the neighbors, which means that this method requires fewer inter­
cache messages to be sent out. As more proxy servers are added to the configura­
tion, the collective cache system will scale fairly well. However, a disadvantage of
CARP is that if one of the proxy servers becomes unavailable, the hash function
needs to be modified to reflect this change, and the contents of the proxy servers
must be reshuffled across the existing proxy servers. This can be expensive if the.
proxy server ·crashes often. In contrast, redundant content in ICP proxy servers

476 .. I Chapter 20: Redirection and load Balancing

means, that reshuffling is not required. Another potential problem is that, because
CARP is a new protocol, existing proxy servers running only the ICP protocol may
not be included readily in a CARP collection. ,

,Having,described the difference between CARP and ICP, let us now describe CARP
in a little more detail. The CARP redirection method involves the following tasks:

• Keep a table of participating proxy servers. These proxy servers are polled peri­
odically to see which ones are still active;

• For each participating proxy server, compute a hash function. The value
returned by the hash function takes into account the amount of load this proxy
can handle. '

• Define a separate hash function that returns a number based oh the URL of the
requested web object.

• Take the sum of the hash function of the URL and the hash function of the
proxy serv~rs to get an array of numbers. The maximum value of these numbers
determines the proxy server to use for the URL. Because the computed value~ are
deterministic, subsequent requests for the same web object will be forwarded to
the same proxy server.

These four chores can either be carried out on the browser, in a plug-in, or be com­
p:uted on an intermediate server.

For each collection of proxy servers, create a table listing all of the servers in the col­
lection. Each entry in the table should contain information aboutload factors; time"'
to-live (TTL) countdown values, andglobal parameters suchas how often members
should be polled. The load factor indicates how much load that machine can han~
dle, which depends on the CPU speed and hard drive capacity of that machine. The
table can be maintained remotely via an RPC interface. Once the fields in the tables
have been updated by RPC, they can be made available or published to, downstream
clients and proxies. This publication is done in HTTP, allowing any client or proxy
server to consume the table information without introducing another inter-proxy
protocoL Clients and proxy servers simply use a well~known URL to retrieve the
table.

The hash function used must ensure that the web objects are statistically distributed
across the participating proxy servers. The load factor of the proxy server should be
used to determine the statistic probability of a web object being assigned to that
proxy.

In summary, the CARP protocol allows a group of proxy servers to beviewed as sin­
gle collective cache, instead of a group of cooperating but separate caches (as in ICP).
A deterministic request resolution path finds the home of a specific web object
within a singlehop. This eliminates the inter-proxy traffic that often is generated to

Cache Array Routing Protocol I 477

find the web object in a group of proxy servers in ICP; CARP also avoids duplicate
copies of web objects being stored on different proxy servers, which has the advan­
tage that the cache system collectively has a larger capacity for storing web objects
but also has the disadvantage that a failure in any one proxy requires reshuffling
some of the cache contents to existing proxies.

Hyper Text Caching Protocol
Earlier, we discussed ICP, a protocol that allows proxy caches to query siblings
about the presence of documents. ICP, however, was designed with HTTP/0.9 in
mind and therefore allows caches to send just the URL when querying a sibling
about the presence of a resource. Versions 1.0 and 1.1 of HTTP introduced many
new request headers that, along with the URL, are used to make decisions about
document matching, so,simply sending the URL in a request may not result in accu­
rate responses. ·

The Hyper Text Caching Protocol (HTCP) reduces the probability of.false hits by
allowing siblings to query each other for the presence of documents using the URL
and all of the request and response headers. Further, HTCP allows sibling caches to
monitor and request the addition and deletion of selected documents in each
other's caches and to make changes in the caching policies of each other's cached
documents.

Figure 20-13, which illustrates an ICP transaction, alsocan be used to illustrate an
HTCP transaction-HTCP is just another object discovery protocol. If a nearby
cache has the document, the requesting cache can open an HTTP connection to the
cache to geta copy of the document. The difference between an ICP and an HTCP
transaction is in the level of detail in the requests and responses.

The structure of HTCP messages is illustrated in Figure 20~15. The Header portion
includes the message length and message versions. The Data portion starts with the
data length and includes opcodes, response codes, andsome flags and IDs, and it ter­
minates with the actual data. An optional Authentication section may follow the
Data section.

Details of the message fields are as follows:

Header
The Header section consists of a 32-bit message length, an 8-bit major protocol

. version, and an 8-bit minor protocol version. The message length includes all of
the header, data, and authentication sizes.

Data
The Data section contains the HTCP message and has the structure illustrated in
Figure20-15. The data components are described in Table 20~6.

478 I ·Chapter 20: Redirection and load Balancing

Figure 20-15. HTCP message format

Table 20-6. HTCP data components

Data length

Opcode

Response code

F1

RR

Transaction 10

Opcodedata

A 16-bit value of the number of bytes in the Data section including the lengthof the length field
~~ .

The 4-bit operation code for the HTCP transaction. The full list ofopcodes is provided in
Table 20-7.

A 4-bit key indicating the success or failure of the transaction. The possible values are:
• 0-Authentication was not used, but is needed
• 1-Authentication was used, but is hot satisfactory
• 2-Unimplemented opcode
• 3-..,-Major version not supported
• 4-Minor version not supported
• 5-lnappropriate, disallowed, orundesirable opcode

F1 is overloaded-if the message is a request, Flis a 1-bitflag set by the requestor indicating that it
needs a response (Fl== 1);if the message is a response, F1 is a 1-bit flag indicating whether the
response is to be interpreted as a response to the overall message (F1==1) or just as a response to
the Opcode data fields (F1 ==0).

A 1-bitflag indicating that the message is a request (RR==O) or a response (RR==1).

A 32-bit value that, combined with the requestor's network address, uniquely identifies theHTCP
transaction.

Opcode data is opcode-dependent. See Table 20-7.

HyperText Caching Protocol I 479

Table 20-7lists the HTCP opcodes and their corresponding data types.

Table 20-7. HTCP opcodes

NOP

TST

MON

SET

ClR

0

2

3

4

Essentially a "ping" operation. AlwaysO

0 if entity is present; 1 if
entity is not present

0 if accepted, 1 if refused

The SET message allows caches to ·. 0 if accepted, 1 if ignored .
request changes in caching policies.
See Table 20~9 for a listofthe headers
that can be used in SH messages;

0 if I had it, but it's now gone;
1 iflhad it, but I am keeping
it; and 2 iff didn't have it ·

None

Contains the URl and
request headers in the
request and just
response headers in.
the response

HTCP Authentication ·
The authentication portion of the HTCP message is optional. Its structure is illus­
trated in Figure 20-15, and its components are described in Table 20-8.

Table 20-8. HTCP authentication components

""~;a~;;;······
'·!·.:,/:';::;;:::i'i::

Auth length .·

Sigtime

Sigexpire

Key name

Signature

The 16-bit number of bytes in the Authentication section of the message, including the length of
the length field itself.

A 32-bit number representing the number of seconds since 00:00:00 Jan 1, 1970GMT at the time
thatthe signature is generated.

A 32-bit number representing the number of seconds since 00:00:00 Jan 1, 1970 GMT when the sig­
nature will expire.

A string that specifies the name of the shared secret. The Key section has two parts: the 16-bit length
in bytes of the string that follows, followed by the stream of uninterrupted bytes of the string.

The HMAC -MD5 digest with a B value of 64 (representing the source and destination IP addresses
and ports), the major and minor HTCP versions of the message, the Sig time and Sig expires values,
the full HTCP data, and the key. The Signature also has two parts: the 16-bit length in bytes of the
string, followed by the string.

Setting Caching Policies
The SET message allows caches to request changes in the caching policies of cached
documents; The headers that can be used in SET messages are described in Table 20-9.

480 I Chapter 20: Redirection and Load Balancing

Table 20-9. List of Cache headers for modifying caching policies

Cache-location
Cache-Policy

Cache-Flags

Cache~ Expiry

Cache-MDS

Cache-to-Origin

The requestor has learned that the content varies on a set of headers different from the set in the
response Vary header.This header overrides the response Vary header.

The list of proxy caches that also may have copies of this object.

The requestor has learned the caching policies for this object in more detail than is specified in the
response headers. Possible values are: //no-cache," meaning that the response is not cacheable but
may be shareable among simultaneous requestors; "no-share/' meaning that the object is not
shareable; and "no-cache-cookie," meaning that the content may change as a result of cookies and
caching therefore is not advised. ·

The requestor has modified the object's caching policies and the objectmay have to betreated spe­
cially and not necessarily in accordance with the object's actual policies.

The actual expiration time for the document as learned by the requestor.

The requestor~computed MDS checksum of the object; which may be different from the value inthe
Content-MDS header, or may be supplied because the object does not have a Content-MDS header.

The requestor-measured round-trip time to an origin server. The format of the values in this neader
is <origin server name or ip> <average round-trip time in seconds> <number
of samples> <number of router hops between requestor and origin server>.

By allowing request and response headers to be sent in query messages to sibling
caches, HTCP can decrease the false-hit rate in cache queries. By further allowing
sibling caches to exchange policy information with each other, HTCP can improve
sibling caches' ability to cooperate with each other.

For More Information
For more information, consult the following references:

DNS and Bind
Cricket Liu, PaulAlbitz, and Mike Loukides, O'Reilly & Associates, Inc.

http://www.wrec.org/Draftsldraft-cooper-webi-wpad-OO.txt
"Web Proxy Auto-Discovery Protocol."

http://home. netscape.com/ eng/mozilla/2. 0/relnotes/ demo/proxy-live. html
"Navigator Proxy Auto-Config File Format."

http://www. ietf orglrfc/rfc2186. txt
IETF RFC 2186, "Intercache Communication Protocol (ICP) Version 2," by D.
Wessels and K. Claffy. ·

http :1/icp. ircache. net/carp. txt
"Cache Array Routing Protocol vl.O."

http://www.ietforglrfc!rfc2756.txt
IETF RFC 2756, "Hyper Text Caching Protocol (HTCP/0.0)," by P. Vixie and D.
Wessels.

For More Information ·1 481

http://www.ietforglinternet-draftsldraft-wilson,.wrec-wccp-v2-00.txt
draft~wilson-wrec-wccp-v2-0l.txt, "\Veb Cache Communication Protocol V2.0,"
by M. Cieslak, D. Forster, G. Tiwana, and R. Wilson.

http://www. ietf org/rfc!rfc2131. txt?number=2131
"Dynamic Host Configuration Protocol."

http://www.ietforglrfc!rfc2132.txt?number=2~32
"DHCP Options and BOOTP Vendor Extensions."

http://www. ietforg!rfc!rfc2608. txt?number= 2608
"Service Location Protocol, Version 2."

http://www.ietforg!rfc!rfc2219.txt?number=2219
"Use of DNS Aliases for Network Services."

482 ·1 ·Chapter 20: . Redirection and load Balancing

CHAPTER21
. . . .

Logging and Usage Tracking

Almost all servers and proxies log summaries of the HTTP transactions they process.
This is done for a variety of reasons: usage tracking, security, billing, error detection,
and so on. In this chapter, we take a brief tour of logging, examining what informa­
tion about HTTP transactions typically is logged and what some of the common log
formats contain.

What to Log?
For the most part, logging is done for two reasons: to look for problems on the server
or proxy (e.g., which requests are failing), and to generate statistics about how web
sites are accessed. Statistics are useful for marketing, billing, and capacity planning
(for instance, determining the need for additional servers or bandwidth).

You could log all of the headers in an HTTP transaction, butfor.servers and proxies
that process millions of transactions per day, the sheer bulk of all of that data quickly
would get out of hand. You also would end up logging a lot of information that you
don't really care about and may never even look at.

Typically, just the basics of a transaction are logged; A few examples of commonly
logged fields are:

• HTTP method

• HTTP version of client and server

• URL of the requested resource

• HTTP status code of the response

• Size of the request and response messages (including any entity bodies)

• Timestamp of when the transaction occurred

• Referer and User-Agent header values

483

The HTTP method and URL tell what the request was trying to do-for example,
GETting a resource or POSTing an order form. The URL can be used to track popu­
larity of pages on the web site.

The version strings give hints about the client and server, which are useful in debug,..
ging strange or unexpected interactions between clients and servers. For example, if
requests are failing at a higher-than-expected rate, i:he version information may point
to a new release of a browser that is unable to interact with the server. .

The HTTP status code tells what happened to the request: whether it was success­
ful, the authorization attempt failed, the resotlrce was found, etc. (See "Status
Codes" in Chapter3 for a list of HTTP status codes;)

The size of the request/response and the timestamp are used mainly for accounting
purposes; i.e., to track how many bytes flowed into, out of, or through the applica­
tion. The timestamp also can be used to correlate observed problems with the
requests that were being made at the time.

log Formats
Several log formats have become standard, and we;ll discuss some of the most com­
mon formats in this section. Most commercial and open source HTTP applications
support logging in one or more of these common formats. Many of these applica­
tions also support the ability of administrators to configure log formats· and create
their own custom formats. .

One of the main benefits of supporting (for applications) and using (for administra­
tors) these rriore standard formats rests in the ability to leverage the tools that have
been built to process and generate basic statistics from these logs. Many open source
and commercial packages exist to crunch logs for reporting purposes, and by utilizing
standard formats, applications and their administrators can plug into these resources.

Common log Format
One of the most common log formats in use today is called, appropriately, the
Common Log Format. Originally defined by NCSA, many servers use this log for­
mat as a default. Most commercial and open source servers can be configured to use
this format, and many commercial and freeware tools exist to help parse common
log files. Table 21-llists, in order, the fields of the Common Log Format.·

Table 21-1. Common Log Format fields

remotehost

use rna me

The hostname or IP address of the requestors machine (IP if the server was not configured to perform
reverse DNS or cannot look up the requestor's hostname)

If an ident lookup was performed, the requestor's authenticated usernamea

484 I Chapter 21: logging and Usage Tracking

. .

Table 21-1. Common Log Format fields (continued)

timestamp.

request -line

response-code

response-size

If authentication was performed, the username with which the requestor authenticated

The dateand time ofthe request

The exact text of the HTTP request line, "GET /index.html HTTP/1.1"

The HTTP status code that was returned in the response

The Content-length of the response entity-'-if no entity was returned in the response, a zero is logged

a RFC 931 describes the ident lookup used in this authentication. The ident protocol was discussed in ChapterS.

Example 21-llists a few examples of Common Log Format entries.

Example 21-1. Common Log Format

209.1.32.44- - [03/0ct/1999:14:16:00 -0400) "GET I HTTP/1.0" 200 102A
http-guide.com - dg [03/0ct/1999:14:16:32 -0400] ·:GET I HTTP/1.0" 200 477
http-guide.com - dg [03/0ct/1999:14:16:32 -0400] "GET /foo HTTP/1.0" 404 o

In these examples, the fields are assigned as follows:

~{\~itt
· remotehost

username

auth-username

timestamp

request-line

response-code

response-size

209.1.32.44

<empty>

<empty>

03/0ct/1999:14:16:00 -0400

. GET /HTTP/1.0

200

1024

http-guide.com

<empty>

dg

03/0ct/1999:14:16:32 -0400

GET I HTTP /1.0

200

477

http-guide.com

<empty>

dg

03/0ct/1999:14:16:32 -0400

GET /foo HTTP/1.0

404

0

Note that the remotehost field can be either a hostname, as in http-guide.c_om, or an
IP address, such as 209.1.32.44. .

The dashes in the second(username) and third (auth-username) fields indicate that
the fields are empty. This indicates that either an ident lookup didnot occur (second
field empty) or authentication was not performed (third field empty). .

Combined log Format
Another commonly used log format is the Combined Log Format. This format is
supported by servers such as Apache. The Combined Log Format is very similar to
the Common Log Format; in fact, it mirrors it exactly, with the addition of two fields
(listed in Table 21-2). The User-Agent field is useful in noting which HTTP client
applications are making the logged requests, while the Referer field provides more
detail about where the requestor found this URL. .

log Formats I 485

T able21-2. Additional Combined Log Formatfields

Referer The contents of the Referer HTTP header

---'-Us_er_-A;.:;:_g_en_t ____ The cont~nts of the User-Agent HTTP header

Example 21-2gives an example of a Combined Log Fortnat entry.

Example 21-2. Combined Log Format

209.1.32.44- - [03/0ct/1999:14:16:00 .:.0400] "GET I HTTP/1.0" 200 1024 "http://www.joes­
hardware.com/" "5.0: Mozilla/4.0 (compatible; MSIE s.o; Windows 98)"

In Example 21-2, theReferer and User-Agent fields are assigned as follows:

Referer

User-Agent

http://www.joes-hardware.com/

5.0: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98)
-----'--·-----:-------·---..,.......,--------·----~-----k·-

The first seven fields of the example Combined Log Format entry in Example 21-2
are exactly as they would be in the Common Log Format (see the first entry in
Example 21-'1). The twonew fields, Refererand User-Agent, are tacked onto the end
of the log entry. ·

Netscape Extended Log Format
When Netscape entered into the commercial HTTP application space, it defined for
its servers many log formats that have been adopted by other HTTP application
developers. Netscape's formats derive from the NCSA Common Log Format, but
they extend that· format to incorporate fields relevant to HTTP applications such as
proxies and web caches. ·

The first seven fields in the Netscape Extended Log Format are identical to those in
the Common Log Format (see Table 21-1). Table 21-3 lists, in order, the new fields
that the Netscape Extended Log Format introduces.

Table 21-3. Additional Netscape Extended Log Format fields

proxy-response-code

proxy-response-size

client-request-size

proxy~request -size

client-request-hdr-size

If the transaction went through a proxy, the HTTP response code from the server to the proxy

If the transaction went through a proxy, the Content-length ofthe server's response entity sent
to the proxy

The Content-length of any body or entity in the client's request to the proxy

lfthe transaction went through a proxy, the Content-length of any body or entity in the proxy's
request to the server

The length, in bytes, of the client's request headers

486 I Chapter21: Logging and Usage Tracking

Table21-3. Additional Netscape Extended Log Format fields (co11tinued)

proxy-response-hdr-size

proxy-request-hdr-size

server-response-hdr-size ·

proxy-timestamp

· If the transaction went through a proxy, the length, in bytes, of the proxy's response headers
that were sent to the requestor
If the transactionwentthrough a proxy, the length, in bytes, ofthe proxy's request headers
that were sent to the server·

The length, in bytes, ofthe server's response headers

If the transaction went through a proxy, the elapsed time for the request and response to travel
through the proxy, in seconds

--~---------·~----~ ·-----

Example 21-3 gives an example of a Netscape Extended Log Format entry.

Example 21-3. Netscape Extended Log Format

209.1.32.44- - [03/0ct/1999:14:16:00-0400] "GET I HTTP/1.0" 2001024 200 1024 0 0 215 260
279 254 3

In this example, the extended fields are assigned as follows:

The first seven fields of the example Netscape Extended Log Format entry in
Example 21-3 mirror the entries in the Common Log Format example (see the first
entry in Example 21-1).

Netscape Extended 2 Log Format
Another Netscape log format, the Netscape Extended 2 Log Format, takes the
Extended Log Format and adds further information relevant to HTTP proxy and web
caching applications. These extra fields help paint a better picture of the interactions
between an HTTP client and an HTTP proxy application.

The Netscape Extended 2 LogFormat derives from the Netscape Extended Log For­
mat, andits initial fields are identical to those listed in Table 21-3 (it also extends the
Common Log Format fields listed in Table 21-1).

Log Formats I 487

Table 21A lists, in order, the additional fields of the Netscape Extended 2 Log Format.

Table 21-4. Additional Netscape Extended 2LogFormat fields

route

client -fin ish-status-code

proxy~finish-status-code

cache~result-code

The routethatthe proxy used to make the request for the client(see Table 21-5)

The client fin ish status code; specifies whether the client request to the proxy completed suc­
cessfully (FIN) or was interrupted (INTR)

The proxy finish status code; specifies whether the proxy request to the server completed suc­
cessfully (FIN) or was interrupted (INTR)

The cache result code; tells how the cache responded to the requesta

a Table 21-71ists the Netscape cache result codes ..

Example 21-4 gives anexample of a Netscape Extended 2 Log Format entry.

Example 21-4. Netscape Extended2 Log Format

209.1.32.44 - - [03/0ct/1999:14:16:00-0400] "GET I HTTP/1.0" 200 1024 200 1024 0 0 215 260
279 254 3 DIRECT FIN FIN WRITTEN

The extended fields in this example are assigned as follows:

route

client -fin ish-status-code

proxy-finish-status-code

cache-result-code

DIRECT

FIN

FIN

WRITIEN

The first 16 fields in the Netscape Extended 2 Log Format entry in Example 21-4 mir­
ror the entries in the Netscape Extended Log Format example (see Example 21-3).

Table 21-5lists the valid Netscape route codes.

Table 21-5. Netscape route codes

DIRECT

PROXY(host:port)

SOCKS(socks: port)

The resource was fetched directly from the server.

The resource was fetched through the proxy //host.//

The resource was fetched through the SOCKS server //host.//

Table 21-6lists the valid Netscape finish codes.

Table 21-6. Netscape finish status codes

The request never even started.

FIN The request was completed successfully.

488 I Chapter21: logging and Usage Tracking

. Table 21-6. Netscape finish status codes (continued)

INTR

TIMEOUT

The request was interrupted by the client or ended by a proxy/server.

The request was timed out by the proxy/server.

Table 21-7liststhe valid Netscape cache codes.*

Table 21-7. Netscape cache codes

WRITTEN

REFRESHED

NO-CHECK

UP-TO-DATE

HOST -NOT -AVAilABlE

Cl-MISMATCH

ERROR

The resource was uncacheable.

The resource was written into the cache.

The resource was cached and it was refreshed;

Thecached resource was returned; no freshness check was done;

. The cached resource was returned; a freshness check was done.

The cached resource was returned; no freshness check was done because the remote server was
not available.

The .resource was not written to the cache; the write was aborted because the Content-length
did not match the resource size.

The resource'was not written to the cache due to some error; forexample, a timeout occurred or
the client aborted the transaction.

Netscape applications, like many other HTTP applications; have other log formats
too, including a Flexible Log Format and a means for administrators to output cus­
tom log fields. These formats allow administrators greater control and the ability to
customize their logs by choosing which parts of the HTTP transaction (headers, sta-
tus, sizes, etc.) to report in their logs. ·

The ability for administrators to configure custom formats was added because it is
difficult to predict what information administrators will be interested in getting
from their logs. Many other proxies and servers also have the ability to emit custom
logs.

Squid Proxy log Format
The Squid proxy cache (http://www.squid-cache.org) is a venerable part ofthe Web. Its
roots trace back to one of the early web proxy cache projects (jtp:l!ftp.cs.colorado.edu!
pub!techreports/schwartz/Harvest.Confps.Z). Squid is an open source project that has
been extended and enhanced by the open source community over the years. Many
tools have been written to help administer the Squid application, including tools to
help process, audit, and mine its logs. Many subsequent proxy caches adopted the
Squid format for their own logs so that they could leverage these tools.

• Chapter 7 discusses HTTP caching in detail.

log Formats · I 489

The format of a Squid log entry 1s fairly simple. Its fields are summarized m
Table 21-8.

Table 21-8. Squid Log Format fields

timestamp

time-elapsed

host-ip

result -code/status

size

method

uri

rfc931-idente

hierarchy/from

content-type

The timestamp when the request arrived, in seconds since January 1, 1970 GMT.

The elapsed time for request and response to travel through the proxy, in milliseconds.

The IP address of the client's (requestor's) host machine.

The result field is a Squid-ism that tells what action the proxy took during this requesta; the
code field is the HTTP response code that the proxy sent to the client.

The length of the proxy's response to the client, including HTTP response headers and body,
in bytes.

The HTTP method of the client's request.

The URL in the client's request.b

The client's authenticated username.d

Like the route field in Netscape formats, the hierarchy field tells what route the proxy used to
make the request for the client. e The from field tells the name of the server that the proxy
used to make the request.

The Content-Type ofthe proxy response entity.

a ·Table 21-91ists the various result codes and their meanings.
b Recall from Chapter 2 that proxies often log the entire requested URL, so if a username and password component are in the URL, a proxy

can inadvertently record this information.
c The rfc931-ident, hierarchy/from, and content-type fields were added in Squid 1.1. Previous versionsdid not have these fields ..
d RFC 931 describes the ident lookup used in this authentication.
e http://squid.nlanr.net!DodFAQIFAQ-6.html#ss6.61ists all of the valid Squid hierarchy codes.

Example 21-5 gives an example of a Squid Log Format entry.

Example 21-5. Squid Log Format

99823414 3001 209.1.32.44 TCP_MISS/200 4087 GET http://www.joes-hardware.com- DIRECT/
proxy.com text/html

The fields are assigned as follows:

timestamp

time-elapsed

host-ip

action-code

status

size

method

URL

99823414

3001

209.1.32.44

TCP _MISS

200

4087

GET

http://www.joes-hardware.com

490 I Chapter 21: Logging and Usage Tracking

RFC 931 ident

hierarchy

from

content-type

DIRECTa

proxy.com

text/html
---------------------~ -------------------
a The DIREa Squid hierarchy value is the same as the DIRECT route value in Netscape log formats.

Table 21-9lists the various Squid result codes.*

Table 21-9. Squid result codes

TCP _HIT

TCP _MISS

TCP _REFRESH_HIT

TCP _REF _FAil_HIT

TCP '-REFRESH_MISS

A valid copy of the resource was served out of the cache.

The resource was not in the cache.

The resource was in the cache but needed to be checked for freshness. The proxy revalidated
the resource with the server and found that the in-cache copy was indeed still fresh. _

The resource was in the cache but needed to be checked for freshness. However, the revalida­
tion failed (perhaps the proxy could not connect to the server), so the "stale" resource was
returned.

The .resource was in the cache but needed to be checked for freshness. Upon checking with
the server, the proxy learned that the resource in the cache was out of date and received a
new version.

TCP _CUENT_REFRESH_MISS The requestor sent a Pragma: no-cache or similar Cache-Control directive, so the proxy was
forced to fetch the resource. ·

TCP _IMS_HIT The requestor issued a conditional request, which was validated against the cached copy of
the resource.

TCP _SWAPFAil_MISS The proxy thought the resource was in the cache but for some reason could not access it.

TCP _NEGATIVE_HIT A cached response was returned, but the response was a negatively cached response. Squid
supports the notion of caching errors for resources-for example, caching a 404 Not Found
response-so if multiple requests go through the proxy-cache for an invalid resource, the
error is served from the proxy cache.

TCP _MEM_HIT A valid copy of the resource was served out of the cache, and the resource was in the proxy
cache's memory (as opposed to having to access the disk to retrieve the cached resource).

TCP _DENIED The request for this resource was denied, probably because the requestor does not have per­
mission to make requests for this resource.

TCP _OFFUNE_HIT The requested resource was retrieved from the cache during its offline mode. Resources are
not validated when Squid (or another proxy using this format} is in offline mode.

UDP _ * The UDP _*codes indicate that requests were received through the UDP interface to the
proxy. HTTP normally uses the TCP transport protocol, so these requests are not using the
HTTP protocol. a

• Several of these action codes deal more with the internals of the Squid proxy cache, so not all of them are
used by other proxies that implement the Squid Log Format.

log Formats I 491

Table21-9. Squid result codes (continued)

UDP _MISS

UDP _DENIED

UDP _INVALID

UDP _MISS_NOFETCH

NONE

TCP _CUENT_REFRESH

TCP _SWAPFAIL

UDP _RELOADING

The resource was not in the cache.

The request for this resource was denied, probably because the requestor does not have per­
mission to make requests for this resource.

The request that the proxy received was invalid.

Used by Squid during specific operation modes or in the cache of frequent failures. A cache
miss was returned and the resource was not fetched.

logged sometimes with errors.

See TCP _CUENT_REFRESH_MISS.

See TCP:.SWAPFAIL_MISS.

See UDP _MISS_NOFETCH.

a Squid has its own protocol for making these requests: ICP. This protocol is used for cache-tNache requests. See http://www.squid-cache.org
for more information.

Hit Metering
Origin servers often keep detailed logs for billing purposes. Content providers need
to know how often URLs are accessed, advertisers want to know how often their ads
are shown, and web authors want to know how popular their content is. Logging
works well for tracking these things when clients visit web servers directly.

However, caches stand between clients and servers and prevent many accesses from
reaching servers (the very purpose of caches).* Because taches handle many HTTP
requests and satisfy them without visiting the origin server, the server has no record
that a client accessed its content, creating omissions in log files.

Missing log data makes content providers resort to cache busting for their most impor­
tant pages. Cache busting refers to a content producer intentionally making certain
content uncacheable, so all requests for this content must go to the origin serV'er. t
This allows the origin server to log the access. Defeating caching might yield better
logs, but it slows down requests and increases load on the origin server and network.

Because proxy caches (and some clients) keep their own logs, if servers could get
access to these logs-· or at least have a crude way to determine how often their con­
tent is served by a proxy cache--cache busting could be avoided. The proposed Hit
Metering protocol, an extension to HTTP, suggests a solution to this problem. The
Hit Metering protocol requires caches to periodically report cache access statistics to

origin servers.

* Recall that virtually every browser has a cache.

t Chapter 7 describes how HTTP responses can be marked as uncacheable.

492 I Chapter 21: logging and Usage Tracking

RFC 2227 defines the Hit Metering protocol in detail. This section provides a brief
tour of the proposal.

Overview
The Hit Metering protocol defines an extension to HTTP that provides a few basic
facilities that caches and servers can implement to share access information and to
regulate how many times cached resources can be used.

Hit Metering is, by design, not a complete solution to the problem caches ppse for
logging access, but it does provide a basic means for obtaining metrics that servers
want to track. The Hit Metering protocol has not been widely implemented or
deployed (and may never be). That said, a cooperative scheme like Hit Metering
holds some promise of providing accurate access statistics while retaining caching
performance gains. Hopefully, that will be motivation to implement the Hit Meter­
ing protocol instead of marking content uncacheable.

The Meter Header
The Hit Metering extension proposes the addition of a new header, Meter, that
caches and servers can use to pass to each other directives about usage and report­
ing, much like the Cache-Control header allows caching directives to be exchanged.

Table 21-10 defines the various directives and who can pass them in the Meter header.

Table 21-10. Hit Metering directives

·:.,6ir~&i\l~'.'·~••-;::t.';::. ;:'-•\AI>bt~viation .:~w~~:'[.;?i#e~ir~#oQ·:.••··J.··•
will-report-and-limit

wont-report

wont-limit

count

max-uses

max-reuses

do-report

dont-repor:t

timeout

wont-ask

w Cache The cache is capable of reporting usage and obeying any usage limits
the server specifies.

x Cache The cache is able to obey usage limits but won't report usage.

y

c

u

d

e

t

n

Cache The cache is able to report usage but won't limit usage.

Cache The reporting directive, specified as "uses/reuses" integers-for
example, ":count=2/4".a

Server Allows the server to specify the maximum number of times a response
can be used by a cache-for example, "max-uses=100".

Server Allows the server to specify the maximum number of times a response
can be reused by a cache-for example, "max-reuses= 1 00".

Server The server requires proxies to send usage reports.

Server The server does not want usage reports.

Server Allows the server to specify a timeout on the metering of a resource.
The cache should send a report at or before the specified timeout, plus
or minus 1 minute. The timeout is specified in minutes-for example,
"timeout=60".

Server The server does not want any metering information.
·-----

a Hit Metering defines a use as satisfying a request with the response, whereas a reuse is revalidating a client request.

Hit Metering I 493

Figure 21-1 shows an example of Hit Metering in (lction. The first part of the transac­
tion is just a normal HTTP transaction between a client and proxy cache, but in the
proxy request, note the insertion of the Meter header and the response from the
server. Here, the proxy is informing the server that it is capable of doing Hit Meter­
ing, and the server in turn is asking the proxy to report its hit counts.

Request message

Q
Client·

GET http:lljoes-hardware.coml HTTPI1.1 GET I HTTPI1.1
Host: www.joes-hardware.com Host: www.joes-hardware.com
Accept: * ------ Meter: will-report-and-limit
'--------'~-,..=-.::-.-. --------' Connection: Meter

----------- ~~--·-----/!-: -----------'
·:::: ... < .. :{···'"

Proxy

...... -
-.---- • • ·-- · ~w.joes·hardware.com

••• -~- •••••••••••• <-"R~::<:s~..:c.~::..::~:.;,;.:::..:~s::..:;a~g;~;_o_o -0-K----__,....----,

Q•-------------Responses~~~~~ii:~t,cached,and g~~i~n~:fen~~h~e~1~~96 18
:
44

:
29

GMT

Cl
·•ent usedforsubsequentrequests Content-type: text/html

HTTPI1.1 200 OK
Date: Fri, 06 Dec 1996 18:44:29 GMT
Content-length: 3152
Content-type: text/html

[...]

Connection: Meter
ETag: "v1.27"
Meter: do-report

[...]

lot" the Cll(he IPWJ!idm5 th• 0-........... .
response and atthe same time Proxy • • • • •••••••
reportsthehitcount GET 1 HTTPI1. 1 ······-_

Host: www.joes-hardware.com : __ -~
Meter: 1214 ~~~~
If-None-Match: "vi. 27" ••
Connection: Meter •• ------~.joes·hardware.com

Figure 21-1. Hit Metering example

-­.Jilt'"",,.
.--· .­--

--__ .-· HTTPI1.1 304 Not Modified

[...]

The request completes as it normally would, from the client's perspective, and the
proxy begins tracking hits to that resource on behalf of the server. Later, the proxy
tries to revalidate the resource with the server. The proxy embeds the metered infor­
mation it has been tracking in the conditional request to the server.

494 I Chapter 21: logging and Usage Tracking

A Word on Privacy
Because logging really is an administrative function that servers and proxies per­
form, the whole operation is transparent to users. Often, they may not even be aware
that their HTTP transactions are being logged-in fact, many users probably do not
even know that they are using the HTTP protocol when accessing content on the
Web.

Web application developers and administrators need to be aware ofthe implications
of tracking a user's HTTP transactions. Much can be gleaned about a user based on
the information he retrieves. This information obviously can be put to bad use­
discrimination, harassment, blackmail, etc. Web servers and proxies that log must be
vigilant in protecting the privacy of their end users.

Sometimes, such as in work environments, tracking a user's usage to make sure he is
not goofing off may be appropriate, but administrators also should make public the
fact that people's transactions are being monitored.

In short, logging is a very useful tool for the administrator and developer-· just be
aware of the privacy infringements that logs can have without the permission or
knowledge of the users whose actions are being logged.

For More Information
For more information on logging, refer to:

http://httpd. apache. orgl docs/logs. html
"Apache HTTP Server: Log Files." Apache HTTP Server Project web site.

http://www.squid-cache.org!Doc/FAQ!FAQ-6.html
"Squid Log Files." Squid Proxy Cache web site.

http://www.w3.org!Daemon!User!Config/Logging.html#common-logfile-format
"Logging Control in W3C httpd."

http://www. w3. org/TRIWD-logfile. html
"Extended Log File Format."

http://www. ietforg!rfc!rfc222 7. txt
RFC 2227, "Simple Hit-Metering and Usage-Limiting for HTTP," by]. Mogul
and P. Leach.

For More Information I 495

PART VI

Appendixes

This collection of appendixes contains useful reference tables, background informa­
tion, and tutorials on a variety of topics relevant to HTTP architecture and imple­
mentation:

• Appendix A, URI Schemes

• Appendix B, HTTP Status Codes

• Appendix C, HTTP Header Reference

• Appendix D, MIME Types

• Appendix E, Base-64 Encoding

• Appendix F, Digest Authentication

• Appendix G, Language Tags

• Appendix H, MIME Charset Registry

APPENDIX A

URI Schemes

Many URI schemes have been defined, but few are in common use. Generally speak­
ing, those URI schemes with associated RFCs are in more common use, though there
are a few schemes that have been developed by leading software corporations (nota­
bly Netscapeand Microsoft), but not formalized, that also are in wide use.

The W3C maintains a list of URI schemes, which you can view at:

http://www. w3. org!Addressing!schemes. html

The lANA also maintains a list of URL schemes, at:

http:! lwww. iana. org/ assignments/uri-schemes

Table A-1 informally describes some of the schemes that have been proposed and
those that are in active use. Note that many of the approximately 90 schemes in the
table are not widely used, and many are extinct.

Table A-1. URI schemes from the W3C registry

. :scli~~e>E·,>···· ···o~ssriptioo-:><···-~-- ·r<RfCs:;
about Netscape scheme to explore aspects of the browser. For example: about by itself is the same as I

choosing "About Communicator" from the Navigator Help menu, about:cache displays disk­
cache statistics, and about:plugins displays information about configured plug-ins. Other
browsers, such as Microsoft Internet Explorer, also use this scheme.

a cap

afp

afs

callto

chttp

Application Configuration Access ProtocoL

For file-sharing services using the Apple Filing Protocol (AFP) protocol, defined as part of the
expired IETF draft-ietf-svrloc-afp-service-Ol.txt.

Reserved for future use by the Andrew File System.

Initiates a Microsoft NetMeeting conference session, such as:
callto: ws3.joes-hardware.com/joe@joes-hardware.com

The CHTTP caching protocol defined by Real Networks. ReaiPiayer does not cache all items
streamed by HTTP.Instead, you designate files to cache by using chttp:l /instead of http:! lin
the file's URL When ReaiPiayer reads a CHTTP URl in a SMil file, it first checks its disk cache for
the file. If the file isn't present, it requests the file through HTTP, storing the fife in its cache.

2244

499

Table A-1. URI schemes from the W3C registry (continued)

cid

clsid

data

date

The use of [MIME] within email to convey web pages and their associated images requires a
URl scheme to permit the HTMl to refer to the images or other data included in the message.
The Content-ID URl, "cid:", serves that purpose.

Allows Microsoft OLE/COM (Component Object Model) classes to be referenced. Used to insert
active objects intoweb pages.

2392
2111

Allows inclusion of small, constant data items as "immediate" data. This URL encodes the text/ 2397
plain string "A brief note":

data:A%20brief%20note

Proposal for scheme to support dates, as in d(J(e:1999-03-04T20:42:08.

dav To ensure correct interoperation based on this specification, the lANA must reserve the URI 2518

dns

eid

namespaces starting with "DAV:" and with "opaquelocktoken:" for use by this specification, its
revisions, and related WebDAV specifications.

Used byREBOUoftware.
See http://www.rebol.com/users!va/url.html.

The externai.ID (eid) scheme provides a mechanism by which the local application can refer­
ence data that has been obtained by other~ non-URL scheme means. The scheme is intended to
provide a general escape mechanism to allow access to information for applications that are too
specialized to justify their own schemes. There is some controversy about this URI.
See http:/ /www.ics.uci.edu/pub/ietf!uri!drafHinseth-uri-OO.txt.

fax The "fax'' scheme describes a connection to a terminal that can handle telefaxes (facsimile 2806
machines).

file Designates files accessible on a particular host computer. A hostname can be included, but the 1738
scheme is unusual in that it does not specify an Internet protocol or access method for such
. files; as such, its utility in network protocols between hosts is limited.

finger The finger URl has the form:
fingeri lhost{:port]{l<request> 1

The <request> must conform with the RFC 1288 request format.
See http:! !www.ics.uci.edu/pub!ietf!uri! draft-ietf-uri-url-finger-03.txt.

free net URis for information in the Freenet distributed information system.

ftp

gopher

gsm-sms

h323,h324

hdl

hnews

See http:/ /freenet.sourceforge.net.

FileT ransfer Protocol scheme.

The archaic gopher protocol.

URis for the GSM mobile phone short message service.

Multimedia conferencing URI schemes.

See http:!lwww.ics.uci.edu/pub/ietf!uri/draft-cordell-sg 7 6-conv-uri-OO.txt.

The Handle System is a comprehensive system for assigning, managing, and resolving persis­
tent identifiers, known as "handles," for digital objects and other resources on the Internet.
Handles can be used as URNs.
See http:/ /www.handle.net.

HNEWS is an HTIP-tunneling variant of the NNTP news protocol. The syntax of hnews URLs is
designed to be compatible with the current common usage of the news URL scheme.

See http://www.ics.uct:edu!pub/ietf/uri/draft-stockwell-hnews-uri-OO.txt.

500 I Appendix A: URI Schemes

1738

1738

Table A-1. URI schemes from the W3C registry (continued)

https

The HTTP protocol. Read this book for more information.

HTTP over SSL
See http:/ !sitesearch.netscape.com!eng!ssl3/draft302.txt.

iioploc CORBA extensions. The Interoperable Name Service defines one URl-format object reference,
iioploc, that can be typed into a program to reach defined services at remote locations, includ­
ing the Naming Service. For example, this iioplocidentifier:

ilu

imap

lOR

ire

isbn

java

javascript

jdbc

ldap

lid

lifn

livescript

lrq

mailto

mailserver

iioploc:!!www.omg.org/NameService
would resolve to the CORBA Naming Service running on the machine whose IP address corre­
sponded to the domain name www.omg.org.

See http:/ /www.omg.org.

The lnter~LanguageUnification (ILU) system is a multilingual object interface system. The.
object interfaces provided by ILU hide implementation distinctions between different lan­
guages, different address spaces, and different operating system types. fLU can be used to build
multilingual object-oriented libraries {"class libraries11

) with well-specified,
language-independentinterfaces.lt also cari be used to implement distributed systems.
See ftp:l!parcftp.parc.xerox.com!pub/ilu!ilu.html.

The I MAP URL scheme is used to designate I MAP servers, mailboxes, messages, MIME bodies
[MIME], and search programs on Internet hosts accessible using the I MAP protocol.

CORBA interoperable object reference.

See http:/ /www.omg.org.

The ire URL scheme is used to refer to either Internet Relay Chat {IRC) servers or individual enti­
ties (channels or people) on IRC servers.
See http:! /www. w3.org!Addressing!draft-mirashi-url-irc-Ol.txt.

Proposed scheme for ISBN book references.
See http:/1/ists. w3.org! Archives!Public/www-talk/1997 NovDec!OOOB.html.

Identifies Java classes.

The Netscape browser processes javascript URls, evaluates the expression after the colon(:), if
there is one, and loads a page containing the string value of the expression, unless it is
undefined.

Used in the Java SQl API.

Allows Internet clients direct access to the LDAP protocol.

The Local Identifier {lid:) scheme.
See draft-blackketter-lid-00.

A Location-Independent File Name (liFN) for the Bulk File Distribution distributed storage sys-
tem developed at UTK. ·

Old name for JavaScript.

See h323.

The mailto URL scheme is used to designate the Internet mailing address of an individual or
service.

Old proposal from 1994-1995 to let an entire message be encoded in a URL, so that (for exam­
ple) the URL can automatically send email to a mail server for subscribing to a mailing list.

2192

2255

2368

URI Schemes I 501

Table A-1. URischemes from the W3C registry (continued)

MDS is a cryptographic checksum. md5

mid The mid scheme uses {a part of) the message-id of an email message to refer to a specific 2392
message. 2111

See javascript. mocha

modem The modem scheme describes a connection to a terminal that can handle incoming data calls. 2806

mms,mmst,
mmsu

Scheme for Microsoft Media Server(MMS) to stream Active Streaming Format {ASF) files. To
force UDP transport, use the mmsu scheme. To force TCP transport, use mmst.

news The news URl scheme is used to refer to either news groups or individual articles of USENET 1738
news. A news URl takes one of two forms: news:<newsgroup-name> or news:<message-id>. 1036

nfs Used to refer to files and directories on NFS servers. 2224

nntp An alternative method of referencing news articles, useful for specifying news articles from 1738
NNTP servers. An nntp URllooks like: 977

nntp:/l<host>:<port>l<newsgroup-name>l<artide-num>
Note that while nntp URls specify a unique location for the article resource, most NNTP servers
currently on the Internet are configured to allow access only from local clients, and thus nntp
· URls do not designate globally accessible resources. Hence, the news form of URL is preferred
as a way of identifying news articles.

opaquelocktoken A WebDAV lock token, represented as a URI, that identifies a particular lock. A lock token is
returned by every successful LOCK operation in the lockdiscovery property in the response body
and also can be found through lock discovery on a resource. See RFC 2518.

path The path scheme defines a uniformly hierarchical namespace where a path URN is a sequence
of components and an optional opaque string.

phone

pop

See httpJ lwww.hypernews.org/ ~fiberte!www/path.html.

Used in "URls for Telephony"; replaced with tel: in RFC 2806.

The POP URL designates a POP email server, and optionally a port number, authentication
mechanism, authentication ID, and/or authorization I D.

pnm Real Networks's streaming protocol.

pop3 The POP3 URL scheme allows a URL to specify a POP3 server, allowing other protocols to use a
general "URl to be used for mail access" in place of an explicit reference to POP3. Defined in
expired draft-earhart-url-pop3-00.txt.

printer Abstract URls for use with the Service location standard.

See draft-ietf-srvloc-printer-scheme-02.txt.

2384

prospero

res

Names resources to be accessed via the Prospero Directory Service. 1738

rtsp

rvp

Microsoft scheme that specifies a resource to be obtained from a module. Consists of a string or
numerical resource type, and a string or numericaiiD.

Real-time streaming protocol that is the basis for Real Networks's modern streaming control 2326
protocols.

URls for the RVP rendezvous protocol, used to notify the arrival of users on a computer
network.

See draft -ca/syn-rvp-07.

502 I Appendix A: URI Schemes

Table A-1, URI schemesfrom the W3C registry (continued)

rwhois RWhois is an Internet directory access protocol, defined in RFC 1714 and RFC 2167. The RWhois
URlgives clients direct access to rwhois.

See http:!/www.rwhois.netlrwhois/docs!.

rx An architecture to allow remote graphical applications to display data inside web pages.
See http:! lwww. w3.org!People/danield!papers!mobgui/.

sdp Session Description Protocol (SDP)URts. See RFC 2327.

service The service scheme is used to provide access information for arbitrary network services. These j 2609
URts provide ail extensible framework for client-based network software to obtain configura-
tion information required to make use of network services.

sip The sip* family of schemes are used to establish multimedia conferences using the Session lni- 2543
tiation Protocol (SIP).

shttp 5-HTTP is a superset of HTTP designed to secure HTTP connections and provide a wide variety of
mechanismsto provide for confidentiality, authentication, and integrity.lt has not been widely
deployed, and it has mostly been supplanted with HTTPS SSt-encrypted HTTP;
See http://www.homeport.org/ ~adam!shttp.htmf.

snews SSt-encrypted news.

STANF Old proposal for stable network filenames. Related to URNs.
See http://web3.w3.org/Addressing/#STANF.

t120 See h323.

tel

telephone

tel net

tip

URL to place a call using the telephone network. 2806

Used in previous drafts of tel.

Designates interactive services that may be accessed by the Tel net protocol. A telnet URt takes 1738
the form:

te/net:/1 <user> :<password>@<host>:<port>l

Supports TIP atomic Internet transactions. 2371
2372

tn3270 Reserved, as per ftp:l!ftp.isi.edu/in-notes!iana!assignmentslurl-schemes.

tv

uuid

The TV URL names a particular television broadcast channel. 2838

Universally unique identifiers (UUIDs) contain no information about location. They also are
known as globally unique identifiers (GUIDs). They are persistent over tiine, like URNs, and con-
sist of a 128-bit unique I D. UUID URis are useful in situations where a unique identifier is
required that cannot or should not be tied to a particular physical root namespace (such as a
DNS name).
See draft-kinde/-uuid-uri-OO.txt.

urn Persistent, location-independent, URNs. 2141

vemmi Allows versatile multimedia interface (VEMMI) client software and VEMMI terminals to connect 2122
to VEMMI-compliant services; VEMMI is an international standard for online multimedia

videotex

services.

Allows videotex client software or terminals to connect to videotex services compliant with the
ITU-T and ETSI videotex standards.
See http://www.ics.uci.edu/pub/ietf/uri/draft-mavrakis-videotex-url-spec-01.txt.

URI Schemes I 503

Table A-1. URI schemes from the W3C registry (continued)

wais

whois++

whodp

z39.50r, z39.50s

Netscape Navigator source viewers. These view-source URls display HTML that was generated
with Java Script.

The wide area information service-an early form of search engine.

URLs for the WHOIS++ simple Internet directory protocol.
See http://martinh.net/wip/whois-ur/.txt.

The Widely Hosted Object Data Protocol (WhoOP) exists to communicate the current location
' and state of large numbers of dynamic, relocatable objects. A WhoOP program "subscribes" to

locate and receive information aboutan object and "publishes" to control the location and visi­
ble state of an object.
See draft-mohr-whodp-OO.txt.

1738

1835

Z39.50 session and retrieval URLs. Z39.50 is an information retrieval protocol that does not fit 2056
neatly into a retrieval model designed primarily around the stateless fetch of data. Instead, it
models a general user inquiry as a session~oriented, multi-step task, any step of which may be
susp~n~edtemporarily while the server requests additional p. arameters from the client before J
contmumg.

·-----.-----.-. ------c---------------- ----~-

504 I Appendix A: URI Schemes

APPENDIX 8

HTTP Status Codes

This appendix is a quick reference of HTTP status codes and their meanings.

Status Code Classifications
HTTP status codes are segmented into five classes, shown in Table B-1.

Table B-1. Status code classifications

,'t:Q~~r~if~~ge, ;l(oiflll~drangJ ·> " •' .. ·, . jt(~teg~ij •..
100-199 100-101 Informational

200-299 200-206 Successful

300-399 300-305 Redirection

400-499 400-415 Client error

500-599 500-505 Server error

Status Codes
Table B-2 is a quick reference for all the status codes defined in the HTTP/1.1 speci­
fication, providing a brief summary of each. "Status Codes" in Chapter 3 goes into
more detailed descriptions of these status codes and their uses.

Table B-2. Status codes

··st~tutC:§~f:>> ·n~~a~Q~phr~sf .•... · .. ·

100

101

200

201

Continue

Switching Protocols

OK

Created

An initial part of the request was received, and the client should
continue.

l The server is changing protocols, as specified by the client, to one
· listed in the Upgrade header.

I
The request is okay. ·

1
The resource was created (for requests that create server objects).

505

Table B~2. Status codes (continued)

202

203

204

205

206
-~---·------~--~--

300

301

302

303

304

305

306

307

400

401

402

403

404

405

406

407

Accepted

Non-Authoritative Information

No Content

Reset Content

The request was accepted, butthe server has not yet performed any
action with it.

Thetransaction was okay, exceptthe information contained in the
entity headers was not from the origin server, but from a copy of the
resource.

The response message contains headers and a status line, but no
entity body.

Another code primarily for browsers; basically means that the
browser should clear any HTML form elements on the current page.

Partial Content A partial request was successful.
.,..,..._,....._.__.. _____ ~-~-·-·-:---...-- ~---·---'--~---~·-----------~-------------
Multiple Choices A client has requested a URL that actually refers to multiple

resources. This code is returned along with a list of options; the user
can then select which one he wants.

Moved Permanently

Found

See Other

Not Modified

Use Proxy

(Unused)

Temporary Redirect

The requested URL has been moved. The response should contain a
Location URL indicating where the resource now resides.

Like the 301 status code, but the move is temporary. The client
should use the URl given in the location header to locate the
resource temporarily.

Tells the client that the resource should be fetched using a different
URL This new URL is in the location header of the response message.

Clients can make their requests conditional by the request headers
they include. This code indicates that the resource has not changed.

The resource must be accessed through a proxy, the location of the
proxy is given in the Location header.

This status code currently is not used.

like the 301 status code; however, the client should use the URL
given in the location header to locate the resource temporarily.

------·--------~------------
Bad Request

Unauthorized

Payment Required

Forbidden

Not Found

Method Not Allowed

Not Acceptable

Proxy Authentication Required

Tells the client that it sent a malformed request.

Returned along with appropriate headers that ask the client to
authenticate itself before it can gain access to the resource.

Currently this status code is not used, but it has been set aside for
future use.

The request was refused by the server.

The server cannot find the requested URL

A request was made with a method that is not supported for the
requested URL The Allow header should be included in the
response to tell the client what methods are allowed on the
requested resource.

Clients can specify parameters about what types of entities they are
willing to accept. This code is used when the server has no resource ·
matching the URl that is acceptable for the client.

like the 401 status code, but used for proxy servers that require
authentication for a resource.

506 I Appendix B: HTTP Status Codes

Table B-2. Status codes (continued)

408

409

410

411

412

413

414

415

416

417

500

501

502

503

504

505

Request Timeout

Conflict

Gone

Length Required

Precondition Failed

Request Entity Too Large

Request URI Too long

Unsupported MediaType

Requested Range Not Satisfiable

Expectation Failed

Internal Server Error

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

HITP Version Not Supported

If a client takes too long to complete its request, a server can send
back this status code and close down the connection.

The request is causing some conflict on a resource.

like the 404 status code, except that the server once held the
resource.
Servers use this code when they require a Content-length header in
the request message. The server will not accept requests for the
resource without the Content-length heade.r. ·

If a client makes a conditional request and one of the conditions
fails, this response code is returned.

The client sent an entity body that is larger than the server can or
wants to process.
The client sent a request with a request URL that is larger than what
the server can or wants to process.

The client sent an entity of a content type that the server does not
understand or support.

The request message requested a range of a given resource, and
that range either was invalid or could not be met.

The request contained an expectation in the Expect request header
that could not be satisfied by the server.

The server encountered an error thatprevented it from servicing the
request.

The client made a request that is beyond the server's capabilities.

A server acting as a proxy or gateway encountered a bogus response
from the next link in the request response chain.

The server cannot currently service the request but will be able to in
the future.

Similar to the 408 status code, except that the response is coming
from a gateway or proxy that has timed out waiting for a response
to its requestfrom another server.

The server received a request in a version of the protocol that it can't
or won't support. ________ __Jc.___ ___ . _______ ...____ ______________________ _

Status Codes I 507

APPENDIX(

HTTP Header Reference

It's almost amusing to remember that the first version of HTTP, 0.9, had no headers.
While this certainly had its down sides, its fun to marvel in its simplistic elegartce.

Well, back to reality. Today there are a horde of HTTP headers, many part of the
specification and still others that are extensions to it. This appendix provides some
background on these official and extension headers. It also acts as an index for the
various headers ih this book, pointing out where their concepts and features are dis­
cussed in the running text. Most of these headers are simple up-front; it's the interac­
tions with each other and other features of HTTP where things get hairy. This
appendix provides a bit of background for the headers listed and directs you to the
sections of the book where they are discussed at length.

The headers listed in this appendix are drawn from the HTTP·specifications, related
documents, and our own experience poking around with HTTP messages and the
various servers and clients on the Internet.

This list is far from exhaustive. There are many other extension headers floating
around on the Web, not to mention those potentially used in .private intranets.
Nonetheless, we have attempted to make this list as complete as possible. See RFC
2616 for the current version of theHTTP/1.1 specification anda list of official head­
ers and their specification descriptions.

Accept
The Accept header is used by clients to let servers know what media types are acceptable.
The value of the Accept header field is a list of media types that the client can use. For
instance, your web browser cannot display every type of multimedia object on the Web. By
including an Accept header in your requests, your browser can save you from downloading
a video or other type of object that you can't use.

The Accept header field also may include a list of quality values (q values) that tell the
server which media type is preferred, in case the server has multiple versions of the media
type. See Chapter 17 for a complete discussion of content negotiation and q values.

508

Type

Notes

Examples

Accept-Charset

Request header

"*" is a special value that is used to wildcard media types. For example,
"*/*" represents all types, and "image/*" represents all image types .. ·

Accept: text/*, image/*
Accept:. text/*, image/gif, image/jpeg;q=1

The Accept-Charset header is used by clients to tell servers what character sets are accept­
able or preferred, The value of this request header is a list of character sets and possibly
quality values for the listed character sets. The quality values let the server know which
character set is preferred, in case the server has the document in multiple acceptable char­
acter sets. See Chapter 17 for a complete discussion of content negotiation and q values.

Type

Notes

Basic Syntax

Example

Request header

As with the Accept header, "*" is a special character. If present; it repre­
sents all character sets, except those that also are mentioned explicitly in
the value. If it's not present, any charset not in the value field has a
default q value of zero, with the exception of the iso-latin-1 charset,
which gets a default of 1.

Accept-Charset: 1# ((charset I "*") [";" "q" "=" qvalue])

Accept-Charset: iso-latin-1

Accept-Encoding
The Accept-Encoding header is used by clients to tell servers what encodings are accept­
able. If the content the server is holding is encoded (perhaps compressed), this request
header lets the server know whether the client will accept it. Chapter 17 contains a
complete description of the Accept-Encoding header.

Type Request header

Basic Syntax Accept-Encoding: 1# ((content-coding!"*") [";" "q" "=" qvalue])

Examples* Accept-Encoding:
Accept-Encoding: gzip
Accept-Encoding: compress;q=0.5, gzip;q==l

* The empty Accept-Encoding example is not a typo.lt refers to th·e identity encoding-that is, the unencoded
content. If the Accept-Encoding header is present and empty, only the unencoded content is acceptable.

Accept-Encoding I 509

Accept-Language
The Accept-Language request header functions like the other Accept headers, allowing
clients to inform the server about what languages (e.g., the natural language for content)
are acceptable or preferred. Chapter 17 contains a complete description of the Accept­
Language header.

Type

Basic Syntax

Examples

Accept-Ranges

Request header

Accept-Language: 1# (language-range[";" "q" "=" qvalueJ)
language-range= ((1 *8ALPHA * ("-" 1 *8ALPHA)) I"*")

Accept-Language: en
Accept-Language: en;q=0.7, en-gb;q=0.5

The Accept-Ranges header differs from the other Accept headers-it is a response header
used by servers to tell clients whether they accept requests for ranges of a resource; The
value of this header tells what type of ranges, if any, the server accepts for a given resource.

A client can attempt to make a range request on a resource without having received this
header. If the server does not support range requests for that resource, it can respond with
an appropriate status code* and the Accept-Ranges value "none". Servers might want to
send the "none" value for normal requests to discourage clients from making range
requests in the future.

Chapter 17 contains a complete description of the Accept-Ranges header.

Type

Basic Syntax

Examples

Age

Response header

Accept-Ranges: 1# range-unit I none

Accept~Ranges: none
Accept-Ranges: bytes

The Age header tells the receiver how old a response is. It is the sender's best guess as to how
long ago the response was generated by or revalidated with the origin server. The value of the
header is the sender's guess, a delta in seconds. See Chapter 7 for more on the Age header.

Type Response header

Notes HTTP /1.1 caches must include an Age header in every response they send.

* For example, status code 416 (see "400-499: Client Error Status Codes" in Chapter 3).

510 I Appendix(: HTTP Header Reference

Basic Syntax

Example

Allow

Age: delta-seconds

Age: 60

The Allow header is used to inform clients what HTTP methods are supported on a partic­
ular resource.

Type

Notes

Basic Syntax

Example

Authorization

Response header

AnHTTP /1.1 server sending a 405 Method Not Allowed response must
include an Allow header.*

Allow: #Method

Allow: GET, HEAD

The Authorization header is sent by a client to authenticate itselfwith a server. A client will
include this header in its request after receiving a 401 Authentication Required response
from a server. The value of this header depends on the authentication scheme in use. See
Chapter 14 for a detailed discussion of the Authorization header.

Type Response header

Basic Syntax Authorization:. authentication-scheme #authentication-param

Example Authorization: Basic YnjpYW4tdG90dHk6T3ch

Cache-Control
The Cache-Control header is used to pass information about how an object can be cached.
This header is one of the more complex headers introduced in HTTP /1.1. Its value is a
caching directive, giving caches special instructions about an object's cacheability.

In Chapter 7, we discuss caching in general as well as the specific details about this header.

Type General header

Example Cache-Control: no-cache

* See "Status Codes" in Chapter 3 for more on the 405 status code.

Cache-Control I 511

Client-ip
The Client-ip header is an extension header used by some older clients and some proxies to
transmit the IP address of the machine on which the client is running.

Type

Notes

Basic Syntax

Example

Connection

Extension request header

Implementors should be aware that the information provided in the
value of this header is not secure.

Client.,ip: ip-address

Client-ip: 209.1.33.49

The Connection header is a somewhat overloaded header that can lead to a bit of confu­
sion. This header was used in HTTP /1.0 clients that were extended with keep-alive
connections for control information." In HTTP /Ll, the older semantics are mostly recog­
nized, but the header has taken on a new function.

In HTTP/1.1, the Connection header's value is a list of tokens that correspond to header
names. Applications receiving an HTTP/1.1 message with a Connection header are
supposed to parse the list and remove any of the headers in the message that are in the
Connection header list. This is mainly for proxies, allowing a server or other proxy to
specify hop-by-hop headers that should not be passed along.

One special token value is "close". This token means that the connection is going to be
closed after the response is completed. HTTP/1.1 applications that do not support persis­
tent connections need to insert the Connection header with the "close" token in all
requests and responses.

Type

Notes

Basic Syntax

Examples

General header

While RFC 2616 does not specifically mention keep-alive as a connec­
tion token, some browsers (including those sending HTTP /1.1 as their
versions) use it in making requests.

Connection: 1# (connection-token)

Connection: close

• See Chapter 4 for more on keep-alive and persistent connections.

512 I Appendix C: HTTP Header Reference

Content -.Base
The Content-Base header provides a way for a server to specify a base URL for resolving
lJRLs found in the entity body of a response.* The value of the Content-Base header is an
absolute URL that can be used to resolve relative URLs found inside the entity.

Type

Notes

Basic Syntax

Example

Entity header

This header is not defined in RFC 2616; it was previously defined inRFC
2068, an earlier draft of the HTTP/1.1 specification, and has since been
removed from the official specification.

Content-Base: absoluteURL

Content-Base: http://www.joes-hardware.com/

Content-Encoding
The Content-Encoding header is used to specify whether any encodings have been
performed on the object. By encoding the content, a server can compress it before sending
the response. The value of the Content-Encoding header tells the client what type or types
of encoding have been performed on the object. With that information, the client can then
decode the message.

Sometimes more than one encoding is applied to an entity, in which case the encodings
must be listed in the order in which they were performed.

Type

Basic Syntax

Examples

Entity header

Content-Encoding: 1# content-coding

Content-Encoding: gzip
Content-Encoding: compress, gzip

Content-Language
The Content-Language header tells the client the natural language that should be under­
stood in order to understand the object. For instance, a document written in French would
have a Content-Language value indicating French. If this header is not present in the
response, the object is intended for all audiences. Multiple languages in the header's value
indicate that the object is suitable for audiences of each language listed.

One caveat about this header is that the header's value may just represent the natural
language of the intended audience of this object, not all or any of the languages contained

* See Chapter 2 for more on base URLs.

Content-Language I 513

in the object. Also, this header is not limited to text or written data objects; images, video,
and other media types can be taggedwith their intended audiences' natural languages.

Type

Basic Syntax

Examples

Entity header

Content-Language: 1# language-tag .

Content-Language: en
Content-Language: en, fr

Content-length
The Content-Length header gives the length or size ofthe entity body. If the header is in a
response message to a HEAD HTTP request, the value of the header indicates the size that
the entity bodywould havebeen had it beensent.

Type Entity header

Basic Syntax Content-Length: 1 *DIGIT

Example Content-Length: 2417

Content-location
The Content-Location header is included in an HTTP message to give the URL corre­
sponding to the entity in the message. For objects that may have multiple URLs, a response
message can include a Content-Location header indicating the URL of the object used to

generate the response. The Content-Location can be different from the requested URL.
This generally is used by servers that are directing or redirecting a client to a new URL.

If the URL is relative, it should be interpreted relative to the Content-Base header. If the
Content-Base header is not present, the URL used in the request should be used.

Type Entity header

Basic Syntax Content-Location: (absoluteURL / relativeURL)

Example Content-Location: http://www.joes-hardware.com/index.html

Content-MDS
The Content-MDS header is used by servers to provide a message-integrity check for the
message body. Only an origin server or requesting client should insert a Content-MDS

514 I Appendix(: HTIPHeaderReference

header in the message. The value of the header is an MD5 digest' of the (potentially
encoded) message body.

The value of this header allows for an end-to-end check on the data, useft1l for detecting
unintentional modifications to the data in transit. It is not intended to be used for security
purposes.

RFC 1864 defines this header in more detail.

Type

Notes

Basic Syntax

Example

Content-Range

Entity header

The MD5 digest value is a base-64 (see Appendix E) or 128-bit MD5
digest, as defined in RFC 1864.

Content~MD5: md5-digest

Content-MD5: Q2hlY2sgSW51ZwDIAXR5IQ==

The Content-Range header is sent as the result of a request that transmitted a range ofa
document. It provides the location (range) within the original entity that this entity repre­
sents. It also gives the length of the entire entity.

If an "*" is present in the value instead of the length of the entire entity, this means that the
length was not known when the response was sent.

See Chapter 15 for more on the Content-Range header;

Type

Notes

Example

Content-Type

Entity header

Servers responding with the 206 Partial Content response code must not
include a Content-Range header with an"*" as the length.

Content-Range: bytes 500-999 I 5400

The Content-Type header tells the media type of the object in the message.

Type

Basic Syntax

Example

Entity header

Content-Type: media-type

Content-Type: text/html; charset=iso-latin-1

• The MD5 digest is defined in RFC 1864.

Content-Type I 515

Cookie
The Cookie header is an extension header used for client identification and tracking.
Chapter 11 talks about the Cookie header and its use in detail (also see "Set-Cookie").

Type

Example

Cookie2

Extension request header

Cookie: ink= IU 0 K164y59BC7083 78908CFF890 E5573998A115

The Cookie2 header is an extension header used for client identification and tracking.
Cookie2 is used to identify what version of cookies a requestor understands. It is defined in
greater detail in RFC 2965.

Chapter 11 talks about the Cookie2 header and its use in detail.

Type Extension request header

Example Cookie2: $version=" 1"

Date
The Date header gives the date and time at which the message was created. This header is
required in servers' responses because the time and date at which the server believes the
message was created can be used by caches in evaluating the freshness of a response. For
clients, this header is completely optional, although it's good form to include it.

Type

Basic Syntax

Examples

General header

Date: HTTP-date

Date: Tue, 3 Oct 1997 02:15:31 GMT

HTTP has a few specific date formats. This one is defined in RFC 822
and is the preferred format for HTTP /1.1 messages. However, in earlier
specifications of HTTP, the date format was not spelled out as well, so
server and client implementors have used other formats, which need to
be supported for the sake of legacy. You will run into date formats like
the one specified in RFC 850, as well as dates in the format produced by
the asctime() system call. Here they are for the date represented above:

Date: Tuesday, 03-0ct-97 02:15:31 GMT RFC850format
Date: Tue Oct 3 02: 15: 31 1997 asctime() format

The asctime() format is looked down on because it is in local time and it
does not specify its time zone (e.g., GMT). In general, the date header
should be in GMT; however, robust applications should handle dates
that either do not specify the time zone or include Date values in non­
GMT time.

516 I Appendix(: HTTPHeaderReference

ETag
The ETag header provides the entity tag for the entity contained in the message. An entity
tag is basically a way of identifying a resource.

Entity tags and their relationship to resources are discussed in detail in Chapter 15.

Type

Bask Syntax

Examples·.

Expect

Entity header

ETag: entity-tag

ETag: ''lle92a-457b-31345aa"
ETag: W/"lle92a-457b-3134b5aa11

The Expect header is used by clients to let servers know that they expect certain behavior.
This header currently is closely tied to the response code 100 Continue (see "100~199:
Informational Status Codes" in Chapter 3).

If a server does not understand the Expect header's value, it should respond with a status
code of 417 Expectation Failed.

Type

Basic Syntax

Example

Expires

Request header

Expect: 1# ("100.:.continue" I expectation-extension)

Expect: 100-continue

The Expires header gives a date and time at which the response is no longer valid; This
allows clients such as your browser to cache a copy and not have to ask the server if it is
still valid until after this time has expired.

Chapter 7 discusses how the Expires header is used-in particular, how it relates to caches
and having to revalidate responses with the origin server.

Type Entity header

Basic Syntax Expires: HTTP-date

Example . Expires: Thu, 03 Oct 199717:15:00 GMT

From
The From header says who the request is coming from. The format is just a valid Internet
email address (specified in RFC 1123) for the user of the client.

From I 517

There are potential privacy issues with using/populating this header. Client implementors
should be careful to inform their users and give them a choice before including this header
in a request message. Given the potential for abuse by people collecting email addresses for
unsolicited mail messages, woe to the implementor who broadcasts this header unan­
nounced and has to answer to angry users.

Type

. Basic Syntax

Example

Host

Request header

From: mailbox

From: slurp@inktomi.com

The Host header is used by clients to provide the server with the Internet hostname and
port number of the machine from which the client wants to make a request. The hostname
and port are those from the URL the client was requesting.

The Host header allows servers to differentiate different relative URLs based on the host­
name, giving the server the ability to host several different hostnames on the same machine
(i.e., the same IP address).

Type

Notes

Basic Syntax

Example

Request header

HTTP/1.1 clients must include a Host header in all requests. All HTTP/
1.1 servers must respond with the 400 Bad Request status code to
HTTP /1.1 clients that do not provide a Host header.

Host: host[":" port]

Host: www.hotbot.com:80

If-Modified-Since
The If-Modified-Since request header is used to make conditional requests~ A client can use
the GET method to request a resource from a server, having the response hinge on whether
the resource has been modified since the client last requested it. .

If the object has not been modified, the server will respond with a 304 Not Modified
response, instead of with the resource. If the object has been modified, the server will
respond as if it was a non-conditional GET request. Chapter 7 discusses conditional
requests in detail.

Type

Basic Syntax

Example

Request header

If-Modified-Since: HTTP -date

If-Modified-Since: Thu, 03 Oct 199717:15:00 GMT

518 I Appendix C: HTIP Header Reference

If-Match
Like the If-Modified-Since header, the If-Match header can be used to make a request
conditional. Instead of a date, the If-Match request uses an entity tag. The server compares
the entity tag in the If-Match header with the current entity tag of the resource and returns
the object if the tags match.

The server should use the If-Match value of"*" to match any entity tag it has for a resource;
"*"will always match, unless the server no longer has the resource.

This header is useful for updating resources that a client or cache already has. The resource
is returned only if it has changed-that is, if the previously requested object's entity tag
does not match the entity tag of the current version on the server. Chapter 7 discusses
conditional requests in detail.

Type Request header

Basic Syntax If-Match: ("*" /1# entity-tag)

Example If-Match: "lle92a-457b-31345aa"

If-None-Match
The If-None-Match header, like all the If headers, can be used to make a request condi­
tional. The client supplies the server with a list of entity tags, and the server compares those
tags against the entity tags it has for the resource, returning the resource only if none
match.

This allows a cache to update resources only if they have changed. Using the If-None­
Match header, a cache can use a single request to both invalidate the entities it has and
receive the new entity in the response. Chapter 7 discusses conditional requests ih detail.

Type

Basic Syntax

Example

If-Range

Request header

If-None-Match: C'*" ll# entity-tag)·

If-None-Match: "lle92a-457b-31345aa"

The If-Range header, like all the If headers, can be used to make a request conditional. It is
used when an application has a copy of a range of a resource, to revalidate the range or get
the complete resource if the range is no longer valid. Chapter 7 discusses conditional
requests in detail.

Type Request header

Basic Syntax If-Range: (HTTP-date I entity-tag)

If-Range I 519

Examples If-Range: Tue, 3 Oct 1997 02:15:31 GMT
If-Range: "11e92aA57b-3134b5aa"

If-Unmodified-Since
The If-Unmodified-Since header is the twin of the If-Modified-Since header. Including it in
a request makes the request conditional. The server should look at the date value of the
header and return the object only if it has not been modified since the date provided.
Chapter 7 discusses conditional requests in detaiL .

Type Request header

Basic Syntax If-Unmodified-Since: HTTP-date

Example If-Unmodified-Since: Thu, 03 Oct 199717:15:00 GMT

last-Modified
The Last-Modified header tries to provide information about the last time this entit)r was
changed. This could mean a lot of things. For example, resources typically are files on a
server, so the Last-Modified value could be the last-modified time provided by the server's
filesystem. On the other hand, for dynamically created resources such as those created by
scripts, the Last-Modified value could be the time the response was created.

Servers need to be careful that the Last-Modified time is not in the future. HTTP/1.1
servers should reset the Last-Modified time ifit is later tha11 the value that Would be sent in
the Date header.

Type

Basic Syntax

Example

location

Entity header

Last-Modified: HTTP-date

Last-Modified: Thu, 03 Oct 199717:15:00 GMT

The Location header is used by servers to direct clients to the location of a resource that
either was moved since the clientlast requested it or was created in response to the request.

Type

Basic Syntax

Example

Response header

Location: absoluteURL

Location: http:/ /www.hotbot.com

520 I Appendix C: HTTP Header Reference

Max-Forwards
This header is used only with the TRACE method, to limit the number of proxies· or other
intermediaries that a request goes through. Its value is an integer. Each application that
receives a TRACE request with this header should decrement the value before it forwards
the request along. .

If the value is zero when the application receives the request, it should send back a 200 OK
response to the request, with an entity body containing the original request. If the Max­
Forwards header is missing from a TRACE request, assume that there is no maximum
number of forwards.

For other HTTP methods, this header should be ignored. See "Methods" in Chapter 3 for
more on the TRACE method.

Type Request header

Basic Syntax Max-Forwards: 1 *DIGIT

Example Max-Forwards: 5

MIME-Version
MIME is HTTP's cousin. While they are radically different, some HTTP servers do
construct messages that are valid under the MIME specification. When this is the case, the
MIME-Version header can be supplied by the server.

This header has never been part of the official specification, although it is mentioned in the
HTTP/1.0 specification. Many older servers send messages with this header, however,
those messages often are not valid MIME messages, making this header both confusing and
impossible to trust.

Type Extension general header

Basic Syntax MIME-Version: DIGIT"." DIGIT

Example MIME-Version: LO

Pragma
The Pragma header is used to pass directions along with the message. These directions
could be almost anything, but often they are used to control caching behavior. Proxies and
gateways must not remove the Pragma header, because it could be intended for all applica­
tions that receive the message.

The most common form of Pragma, Pragma: no-cache, is a request header that forces
caches to request or revalidate the document from the origin server even when a fresh copy
is available in the cache. It is sent by browsers when users click on the Reload/Refresh
button. Manyservers send Pragma: no-cache as a response header (as an equivalent to

Pragma I 521

Cache-Control: no-cache), but despite its common use, this behavior is technically
undefinded. Not all applications support Pragma response headers.

Chapter? discusses the Pragma header and how it is used by HTTP/1.0 applications to
control caches.

Type

Basic Syntax

Example

Request header

Pragma: 1# pragma-directive·

Pragma: no-cache

Proxy-Authenticate
The Proxy-Authenticate header functions like the WWW-Authenticate header. It is used by
proxies to challenge an application sending a request to authenticate itself. The full details
of this challenge/response, and other security mechanisms of HTTP, are discussed in detail
in Chapter 14 ..

If an HTTP /1.1 proxy server is sending a 407 Proxy Authentication Required response, it
must include the Proxy-Authenticate header.

Proxies and gateways must be careful in interpreting all the Proxy headers. They generally
are hop-by-hop headers, applying only to the current connection. For instance, the Proxy­
Authenticate header requests authentication for the current connection.

Type

Basic Syntax

Example

Response header

Proxy-Authenticate: challenge

Proxy-Authenticate: Basic realm="Super Secret Corporate Financial
Documents"

Proxy-Authorization
The Proxy-Authorization header functions like the Authorization header. It is used by
client applications to respond to Proxy-Authenticate challenges. See Chapter 14 for more
on how the challenge/response security mechanism works.

Type

Basic Syntax

Example

Request header

Proxy-Authorization: credentials

Proxy-Authorization: Basic Ynjp YW 4tdG90dHk6T3ch

* The only specification-defined Pragma directive is "no-cache"; however, you may run into other Pragma
headers that have been defined as extensions to the specification.

522 I Appendix C: HTTP Header Reference

Proxy~Connection

The Proxy-Connection header was meant to have similar semantics to the HTTP/1.0
Connection header. It was to be used between clients and proxies to specify options about
the connections (chiefly keep-alive connections).* It is not a standard header and is viewed
as an ad hoc header by the standards committee. However, it is widely used by browsers
and proxies.

Browser implementors created the Proxy-Connection header to solve the problem of a
client sending an HTTP/1.0 Connection header that gets blindly forwarded by a dumb
proxy. A server receiving the blindly forwarded Connection header could confuse the capa­
bilities of the client connection with those ofthe proxy connection.

The Proxy-Connection header is sent instead of the Connection header when the client
knows that it is going through a proxy. Because servers don't recognize the Proxy­
Connection header, they ignore it; allowing dumb proxies that blindly forward the header
to do so without causing harm.

The problem with this solution occurs if there is more than one proxy in the path of the
client to the server. If the first one blindly forwards the header to the second, which under­
stands it, the second proxy can suffer from the same confusion the server did with the
Connection header.

This is the problem that the HTTP working group had with this solution-they saw it as a
hack that solved the case of a single proxy, but not the bigger problem. Nonetheless, it
does handle some ofthe more common cases, and because older versions of both Netscape
Navigator and Microsoft Internet Explorer implement it, proxy implementors need to deal
with it. See Chapter 4 for more information.

Type General header

Basic Syntax Proxy-Connection: 1# (connection-token)

Example Proxy-Connection: close

Public
The Public header allows a server to tell a client what methods it supports. These methods
can be used in future requests by the client. Proxies need to be careful when they receive a
response from a server with the Public header. The header indicates the capabilities of the
server, not the proxy, so the proxy needs to either edit the list of methods in the header or
remove the header before it sends the response to the client.

Type Response header

* See Chapter 4 for more on keep-alive and persistent connections.

Public I 523

Notes

Basic Syntax

Example

Range

This header is not defined in RFC 2616; It was previously defined inRFC ·.
2068, an earlierdraft of the HTTP/1.1 specification, but it has since been
removed from the official specification.

Public: 1# HTTP-method

Public: OPTIONS, GET, HEAD, TRACE, POST

The Range header is used in requests for parts or ranges of an entity. Its value indicates the
range of the entity that is included in the message.

Requests for ranges of a document allow for more efficient requests of large objects (by
requesting them in segments) or for recovery from failed transfers (allowing a client to
request the range ofthe resource that did not make it). Range requests and the headers that
make the requests possible are discussed in detail in Chapter 15.

Type Entity header

Example Range: bytes=S00-1500

Referer
The Referer header is inserted into client requests to let the server know where the client
got the URL from. This is a voluntary effort, for the server's benefit; it allows the server to
better log the requests or perform other tasks. The misspelling of "Referer" hearkens back
to the early days of HTTP, to the frustration of English-speaking copyeditors throughout
the world.

What your browser does is fairly simple. If you get home page A and click on a link to go to
home page B, your browser will insert a Referer header in the request with value A. Referer
headers are inserted by your browser only when you click on links; requests for URLs you
type in yourself will not contain a Referer header.

Because some pages are private, there are some privacy concerns with this header. While
some of this is unwarranted paranoia, this header does allow web servers and their admin­
istrators to see where you came from, potentially allowing them to better track your
surfing. As a result, the HTTP /1.1 specification recommends that application writers allow
the user to decide whether this header is transmitted.

Type

Basic Syntax

Example

Request header

Referer: (absoluteURL I relativeURL)

Referer: http:/ /www.inktomi.com/index.html

524. I Appendix C: HTIP Header Reference

Retry-After
Servers can use the Retry~ After header to tell a client when to retry its request for a
resource. It is used with the 503 Service Unavailable status code to give the client a specific
date and time (or number of seconds) at which it should retry its request.

A server can also use this header when it is redirecting clients to resources, giving the client
a time to wait before making a request on the resource to which it is redirected.* This can
be very useful to servers that are creating dynamic resources, allowing the server to redirect
the client to the newly created resource but giving time for the resource to be created.

Type

Basic Syntax

Examples

Server

Response header

Retry~After: (HTTP-date I delta-seconds)

Retry-After: Tue, 3 Oct 1997 02:15:31 GMT
Retry-After: 120

The Server header is akin to the User-Agent header; it provides a way for servers to identify
themselves to clients. Its value is the server name and an optional comment about the
server.

Because the Server header identifies the server product and can contain additional
comments about the product, its format is somewhat free-form. If you are writing software
that depends on how a server identifies itself, you shouldexperiment with the server soft­
ware to see what it sends back, because these tokens vary from product to product and
release to release.

As with the User-Agent header, don't be surprised if an older proxy or gateway inserts what
amounts to a Via header in the Server header itself.

Type

Basic Syntax

Examples

Set-Cookie

Response header

Server: 1" (product I comment)

Server: Microsoft-In temet-Information -Server/1. 0
Server: websitepro/l.lf (s/n wpo-07 dO)
Server:apache/1.2b6 via proxy gateway CERN-HTTPD/3.0 libwww/2.13

The Set-Cookie header is the partner to the Cookie header; in Chapter 11, we discuss the
use of this header in detail.

* See "Redirection status codes and reason phrases" in Chapter 3 for more on server redirect responses.

Set-Cookie I 525

Type

Basic Syntax

Examples

Set-Cookie2

Extension response header

Set~Cookie: command

Set-Cookie: lastorder=00183; path=/orders
Set-Cookie: private_id=519; secure

The Set-Cookie2 header is an extension of the Set-Cookie header; in Chapter 11, we
discuss the use of this header in detail.

Type

Basic Syntax

Examples

TE

Extension response header

Set-Cookie2: command

Set-Cookie2: ID=;'29046"; Domain=".joes-hardware.com"
Set-Cookie2: color=blue

The poorly named TE header functions like the Accept-Encoding header, but for transfer
encodings (it could have been named Accept-Transfer-Encoding, but it wasn't). The TE
header also can be used to indicate whether a client can handle headers in the trailer of a
response that has been through the chunked encoding. See Chapter 15 for more on the TE
header, chunked encoding, and trailers.

Type

Notes

Basic Syntax

Examples

Trailer

Request header

If the value is empty, only the chunked transfer encoding is acceptable.
The special token "trailers" indicates that trailer headers are acceptable
in a chunked response.

TE: # (transfer-codings)
transfer-codings= "trailers" I (transfer-extension [accept-params])

TE:
TE: chunked

The Trailer header is used to indicate which headers are present in the trailer of a message~
Chapter 15 discusses chunked encodings and trailers in detail.

Type General header

526 l Appendix C: HTIP Header Reference

Basic Syntax

Example

Title

Trailer: 1 #field-name

Trailer: Content-Length

The Title header is a non-specification header that is supposed to give the title of the entity.
Thisheader was part of an early HTTP/1.0 extension and was used primarily for HTML
pages, which have clear title markers that servers can use. Because many, if not most,
media types on the Web do not have such an easy way to extract a title, this header has
limited usefulness. As a result, it never made it into the official specification, though some
older servers on the Net still send it faithfully.

Type

Notes

Basic Syntax

Example

Response header

The Title header is not defined in RFC2616. It was originally defined in
the HTTP/1.0 draft definition (http://www;w3.org/Protocols!HTTPI
HTTP2.html) but has since been removed from the officialspecification.

Title: document-title

Title: CNN Interactive

Transfer-Encoding
If some encoding had to be performed to transfer the HTTP message body safely, the
message will contain the Transfer-Encoding header. Its value is a list of the encodings that
were performed on the message body. If multiple encodings were performed, they are listed
in order.

The Transfer-Encoding header differs from the Content-Encoding header because the
transfer encoding is an encoding that was performed by a server or other intermediary
application to transfer the message.

Transfer encodings are discussed in Chapter 15.

Type

Basic Syntax

Example

General header

Transfer-Encoding: 1# transfer-coding

Transfer-Encoding: chunked

UA-{CPU, Disp, OS, Color, Pixels)
These User-Agent headers are nonstandard and no longer common. They provide informa­
tion about the client machine that could allow for better content selection by a server. For

UA-(CPU, Disp, OS, Color, Pixels) I 527

instance, if a server knew that a user's machine had only an 8-bit color display, the server
could select images that were optimized for that type of display.

With anyheader that givesinformation about the client that otherwise would be unavail­
able, there are some security concerns (see Chapter 14 for more information).

Type

Notes

Basic Syntax

Examples

Upgrade

Extension request headers

These headers are not defined in RFC 2616, and their use is frowned
upon.

"UA" "-"("CPU" I "Disp" I "OS" I "Color" I "Pixels")":" machine-value
machine-value =:: (cpu I screensize I os-name I display-color-depth)

UA·CPU: x86
UA~Disp: 640, 480, 8
UA-OS: Windows 95
UA-Color: colorS
UA-Pixels: 640x480

CPU of client's machine
Size and color depth of client's display
Operating system of client machine
Color depthof client's display
Size of client's display

The Upgrade header provides the sender of a message with a means of broadcasting the
desire to use another, perhaps completely different, protocol. For instance, an HTTP /1.1
client could send an HTTP/1.0 request to a server and include an Upgrade header with the
value "HTTP/1.1", allowing the client to test the waters and see whether the server speaks
HTTP/1.1.

If the server is capable, it can send an appropriate response letting the client know that it is
okay to use the new protocol. This provides an efficient way to move to other protocols.
Most servers currently are only HTTP/1.0-compliant, and this strategy allows a client to
avoid confusing a server with too many HTTP/1.1 headers until it determines whether the
server is indeed capable of speaking HTTP /1.1.

When a server sends a 101 Switching Protocols response, it must include this header.

Type General header

Basic Syntax Upgrade: 1# protocol

Example Upgrade: HTTP/2.0

User-Agent
The User-Agent header is used by client applications to identify themselves, much like the
Server header for servers. Itsvalue is the product name and possibly a comment describ~ng
the client application.

528 I Appendix C: HTTP Header Reference

This header's format is somewhat free-form. Its value varies from client product to product
and release to release. This header sometimes even contains information about the machine
on which the client is running.

As with the Server header, don't be surprised if older proxy or gateway applications insert
what amounts to a Via header in the User-Agent header itself.

Type; Request header

Basic Syntax User-Agent: 1 * (product I comment)

Example User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; WindowsNT 5.0)

Vary
The Vary header is used by servers to inform clients what headers from a client's request
will be used in server-side negotiation.* Its value is a list of headers that the server looks at
to determine what to send the client as a response.

An example of this would be a server that sends special HTML pages based on your web
browser's features. A server sending these special pages for a URL would include a Vary
header that indicated that it looked at the User-Agent header of the request to determine
what to send as a response.

The Vary header also is used by caching proxies; see Chapter 7 for more on how the Vary
header relates to cached HTTP responses.

Type Response header .

Basic Syntax Vary: ("*" 11# field-name)

Example Vary: User-Agent

Via
The Via header is used to trace messages as they pass through proxies and gateways. It is
an informational header that can be used to see what applications are handling requests
and responses.

When a message passes through an HTTP application on its way to a client or a server, that
application .can use the Via header to tag the message as having gone via it. This is an
HTTP/1.1 header; many older applications insert a Via-like string in the User-Agent or
Server headers ofrequests and responses.

If the message passes through multiple in-between applications, each one should tack on
its Via string. The Via header must be inserted by HTTP /1.1 proxies and gateways.

* See Chapter 17 for more on content negotiation.

Via I 529

Type

Basic Syntax*

Example

Warning

General header

Via: 1# (received-protocol received~by [comment])

Via: 1.1 joes-hardware.com (Joes-Server/1.0)

The above says that the message passed through the Joes Server Version
1.0 software running on the machine joes-hardware.com. Joe;s Server
was speaking HTTP 1.1. The Via header should be formatted like this:

HTTP;.Version machine-hostname (Application-Name-Version)

The Warning headeris used to give a little more information about what happened during
a request. It provides the server with a way to send additional information that is not in the
status code or reason phrase. Several warning codes are defined in the HTTP /1.1
specification:

101 Response Is Stale
When a response message is known to be stale-for instance, if the origin server is
unavailable for revalidation-this warning must be included.

111 Revalidation Failed
If a cache attempts to revalidate a response with an origin server and the revalidation
fails because the cache carmot reach the origin server, this warning must be included in
the response to the client.

112 Disconnected Operation
An informative warning; should be used if a cache's connectivity to the network is
removed.

113 Heuristic Expiration
Caches must include this warning if their freshness heuristic is greater than 24 hours
and they are returning a response with an age greater than 24 hours.

199 Miscellaneous Warning
Systems receiving this warning must not take any automated response; the message
may and probably should contain a body with additional information for the user.

214 Transformation Applied
Must be added by any intermediate application, such as a proxy, if the application
performs any transformation that changes the content encoding of the response.

299 Miscellaneous Persistent Warning
Systems receiving this warning must not take any automated reaction; the error may
contain a body with more information for the user.

* See the HTTP/1.1 specification for the complete Via header syntax.

530 I Appendix C: HTIP Header Reference

Type

Basic Syntax

Example

Response header

Warning: 1# warning-value

Warning: 113

WWW-Authenticate
The WWW-Authenticate header is used in 401 Unauthorized responses to issue a chal­
lenge authentication scheme to the client. Chapter 14 discusses the WWW-Authenticate
header and its use in HTTP's basic challenge/response authentication system.

Type Response header

Basic Syntax WWW-Authenticate: 1# challenge

Example WWW-Authenticate: Basic realm="Y our Private Travel Profile"

X-Cache
The X headers are all extension headers. The X-Cache header is used by Squid to inform a
client whether a resource is available.

Type Extension response header

Example X-Cache: HIT

X-Forwarded-For
This header is used by many proxy servers (e.g., Squid) to note whom a request has been
forwarded for. Like the Client-ip header mentioned earlier, this request header notes the
address from which the request originates.

Type Extension request header

Basic Syntax X-Forwarded-For: addr

Example X-Forwarded-For: 64.95.76.161

X-Pad
This header is used to overcome a bug related to response header length in some browsers;
it pads the response message headers with extra bytes to work around the bug.

X-Pad I 531

Type Extension general header

Basic Syntax X-Pad: pad-text

Example X-Pad: bogosity

X-Serial-Number
The X-Serial-Number header is an extension header. It was used by some older HTTP
applications to insert the serial number of the licensed software in the HTTP message.

Its use has pretty much died out, but it is listed here as an example of the X headers that are
out there.

Type Extension general header

Basic Syntax X-Serial-Number: serialno

Example X-Serial-Number: 010014056

532 I . Appendix C: HTTP Header Reference

APPENDIXD

MIME Types

MIME media types (MIME types, for short) are standardized names that describe the
contents of a message entity body (e.g., text/ht'rnl, image/jpeg). This appendix
explains how MIME types work, how to register new ones, and where to go for more
information.

In addition, this appendix contains 10 convenient tables, detailing hundreds of
MIME types, gathered from many sources around the globe. This may be the most
detailed tabular listing of MIME types ever compiled. We hope these tables are use­
ful to you.

In this appendix, we will:

• Outline the primary reference material, in "Background."

• Explain the structure of MIME types, in "MIME Type Structure.';

• Show you how to register MIME types, in "MIME Type IANA Registration."

• Make it easier for you to look up MIME types.

The following MIME type tables are included in this appendix:

• application/*-Table D-3

• audio/*-T able D-4

• chemical!*-Table D-5

• image/*-. Table D-6

• message/*-T able D-7

• model/*-T able D-8

• multipart/*-Table D-9

• text/*-Table D-10

• video/*-Table D-11

• Other-Table D-12

533

Background
MIME types originally were developed for multimedia email (MIME stands for Mul­
tipurpose Internet Mail Extensions), but they have been reused for HTTP and sev­
eral other protocols that need to describe the format and purpose of data objects.

MIME is defined by five primary documents:

RFC 2045, "MIME: Format of Internet Message Bodies"
Describes the overall MIME message structure, and introduces the Content­
Type header, borrowed by HTTP

RFC 2046, "MIME: Media Types"
Introduces MIME types and their structure

RFC2047, "MIME: Message Header Extensions for Non-ASCII Text"
Defines ways to include non-ASCII characters in headers

RFC 2048, "MIME: Registration Procedures"
Defines how to register MIME values with the Internet Assigned Numbers
Authority (lANA)

RFC 2049, "MIME: Conformance Criteria and Examples"
Details rules for compliance, and provides examples

For the purposes of HTTP, we are most interested in RFC 2046 (Media Types) and
RFC 2048 (Registration Procedures).

MIME Type Structure
Each MIME media type consists of a type, a subtype, and a list of optional parame­
ters. The type and subtype are separated by a slash, and the optional parameters
begin with a semicolon, if they are present. In HTTP, MIME media types are widely
used in Content-Type and Accept headers. Here are a few examples:

Content-Type: video/quicktime
Content-Type: text/html; charset="iso-8859-6"
Content-Type: multipart/mixed; boundary=gcOp4JqOM2Yt08j34cOp
Accept: image/gif

Discrete Types
MIME types can directly describe the object type, or they can describe collections or
packages of other object types. If a MIME type describes an object type directly, it is
a discrete type. These include text files, videos, and application-specific file formats.

Composite Types
If a MIME type describes a collection or encapsulation of other content, the MIME
type is called a composite type. A composite type describes the format of the enclosing

534 I Appendix D: MIMETypes

package. When the enclosing package is opened, each enclosed object will have its
own type.

Multipart Types
Multipart media types are composite types. A multipart object consists of multiple
component types. Here's an example of multipart/mixed content, where each com­
ponent has its own MIME type:

Content-Type: multipart/mixed; boundary=unique-bounda:ty-1

--unique~boundary-1

Content-type: text/plain; charset=US-ASCII

Hi there, I'm some boring ASCII text .•.

~-unique-boundary-1

Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2
Content-Type: audio/basic

8000 Hz single-channel mu-law-format
audio data goes here

--unique-boundary-2
Content-Type: image/jpeg

.•. image data goes here

--unique-boundary-2--

--unique-boundary-1
Content-type: text/enriched

This is <bold><italic>enriched.</italic></bold>
<smaller>as defined in RFC 1896</smaller>

Isn't it <bigger><bigger>cool?</bigger></bigger>

--unique-boundary-1
Content-Type: message/rfc822

From: (mailbox in US-ASCII)
To: (address in US-ASCII)
Subject: (subject in US-ASCII)
Content-Type: Text/plain; charset=IS0-8859-1
Content-Transfer-Encoding: Quoted-printable

... Additional text in IS0-8859-1 goes here

--unique-boundary-1--

MIME Type Structure I 535

Syntax
As we stated earlier, MIME types consist of a primary type, a subtype, and an
optional list of parameters.

The primary type can be apredefined type, an IETF-defined extension token, or an
experimental token (beginning with "x-"). Some common primary types are
described inTable D-1.

Table D-1. Common primary MIME types

application

audio

chemical

image

message

model

multipart

text

video

Application-specific content format {discrete type)

Audio format (discrete type)
- -

Chemical data set (discrete IETF extension type)

Image format (discrete type)

Message format (composite type)

3-D model format (discrete IETF extension type)

Collection of multiple objects (composite type)

Text format (discrete type)

format (discrete type)

Subtypes can be primary types (as in "text/text"), lANA-registered subtypes, or
experimental extension tokens (beginning with "x-").

Types and subtypes are made up of a subset of US-ASCII characters. Spaces and cer­
tain reserved grouping and punctuation characters, called "tspecials,'' are control
characters and are forbidden from type and subtype names.

The grammar from RFC 2046 is shown below:

TYPE :"' "application" I "audio_" I "image" I "message" I "multipart" I
"text" I "video" I IETF-TOKEN I X- TOKEN

SUBTYPE := IANA-SUBTOKEN I IETF-TOKEN I X-TOKEN

IETF-TOKEN :=<extension token with RFC and registered with IANA>
IANA-SUBTOKEN :=<extension token registered with IANA>
X.,.TQKEN !=<"X-" or "x-" prefix, followed by any token>

PARAMETER := TOKEN "=" VALUE
VALUE := TOKEN I QUOTED-STRING
TOKEN := l*<any (US-ASCII) CHAR except SPACE, CTLs, or TSPECIALS>
TSPECIALS := "(" I ")" I "<" I ">" I "@" I

' I '';If. I ''·'' I ''\'' I <''> I
''!'' I ''('' I '~J'' I ''?'' I ''=''

536 I Appendix 0: MIME Types

MIME Type lANA Registration
The MIME media type registration process is described in RFC 2048. The goal of the
registration process is to make it easy to register new media types but also to provide
some sanitychecking to make sure the new types are well thought out.

Registration Trees
MIME type tokens are split into four classes, called "registration trees," each with its
own registration rules. The four trees-IETF, vendor, personal, and experimental-.
aredescribed in Table D-2.

Table D-2. Four MIME media type registration trees

IETF

Vendor

(vnd.)

Persona INanity

(prs.)

Experimental

(x- or x.)

text/html

(HTMLtext)

image/vnd.fpx

(Kodak Flash Pix image)

image/prs.btif

(internal check­
management format
used by Nations Bank)

application/x-tar

(Unix tar archive)

Registration Process

The IETF tree is intended for types that are of general significance to the
Internet community. New IETF tree media types require approval by the
Internet Engineering Steering Group (IESG) and an accompanying
standardHrack RFC.

IETF tree types have no periods(.) in tokens.

The vendor tree is intended for media types used by commercially available
products. Public review of new vendor types is encouraged but not
required.

Vendor tree types begin with 11Vnd.".

Private, personal, or vanity media types can be registered in the personal
tree. These media types will not be distributed commercially.

Personal tree types begin with "prs.".

The experimental tree is for unregistered or experimental media types.
Because it's relatively simple to register a new vendor or personal media
type, software should not be distributed widely using x- types. ·

Experimental tree types with "x." or "x-~~.

Read RFC 2048 carefully for the details of MIME media type registration.

The basic registration process is not a formal standards process; it's just an adminis­
trative procedure intended to sanity check new types with the community, and record
them in a registry, without much delay. The process follows the following steps:

1. Present the media type to the community for review.

Send a proposed media type registration to the ietf-types@iana.org mailing list
for a two-week review period. The public posting solicits feedback about the
choice of name, interoperability, and security implications. The "x-" prefix spec­
ified in RFC 2045 can be used until registration is complete.

MIME Type lANA Registration I 537

2. IESG approval (for IETF tree only) .

. . If the media type is being registered in the IETF tree; it must be St1bmitted to the
· IESGfor approval and must have an accompanying standards-track RFC.

3. lANA registration~

·As soon as the media type meets the approval requirements, the author ca,n sub.:
mit .·the registration request 'to the lANA, using the email · template in
Example D-1 and mailing the information to ietf-types@iana.org. The lANA will
register the media type and make the. media type application available to the

. community at http:l/www.isi.edu/in..,notesliana!assignm(mts/media-types!.

Registration Rules
.

The lANA will register media types in the IETF tree only in response to a c:ommuni-
cation from the iESG stating that a given registration has been approved. · ·

Vendor and personal types will be registered by the lANA automatically and with­
out any formal review as long as the following minimal conditions are met:

1. Media types must function as actual media formats. Types that act like transfer
encodingsor characr~r sets may notberegistered as media types. .

2~ All media types must have proper type and subtype names. All type names must
be defined by standards-track RFCs. All subtype names must be unique, must
conform to the MIME grammar for such nai:nes, and must contain the proper
tree prefixes. ·

3. Personal tree types mtist provide a formatspecification or a pointer to one.
' ' '

4. Any security considerations given must not be obviously bogus. Everyone who is
. developing Internet software needs to do his part to prevent security holes.

Registration Template
The actual lANA registration is done via email. You complete a registration form.
using the template shown in Example D-1, and mail it to ietf-types@iana.org.*

Example D-1. IANAMIME registration email template

To: ietf-types@iana.org
Subject: Registration of MIME media type XXX/YYY

MIME media type name:

• The lightly structured nature of the form makes the submitted information fine for human consumption but
difficult for machine processing. This is one reason why it is difficult to find a readable, well-organized sum­
mary of MIME types, and the reason we created the tables that end this appendix ..

538 I · Appendix D: MIME Types

· ·Example D-1. IAN A MIME registration email template (continued) . ·

MIME subtype name:· ·

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications which use this media type:

Additional infoi~ation~

Magic number(s):
File extension(s):
Macintosh File Type Code(s):

Person & email address to contact for further information:
\

Intended usage:

(One of COMMON, LIMITED USE or OBSOLETE)

Author/Change controller:

(Any other information that the author deems interesting may be added below this line.)

MIME Media Type Registry·
The submitted fmms areaccessible from theiANA website (http://www.iam:i.org). At
the time of writing,. the actual· database of MIME media types· is stored on an lSI web
server, at http://www. isi.edu!in-notes/iana/assignments/media:-typesl

The media types are stored in a directory tree, structured. by primary type and sub­
type, with one leaf file per media type. Each file contains the email submission.
Unfortunately, each person completes the registration template slightly differently,
so the quality and format of information varies across submissions. (In the tables in
this appendix, we tried to fill in the holes omitted by registrants.) ..

MIME Type Tables
This section summarizes hundreds of MIME types in 10 tables. Each table lists the
MIME media types within a particular primary type (image, text, etc.).

· MIME Type Tables . I 539

';.'_

The information is gathered from many sources; including the lANA media type reg"'
. istry, the Apache mime. types file, and assorted Internet web pages. We spent several ..
. days refining the data, plugging holes, and including descriptive summaries from

cross-references to 'make the. data more usefuL
. ·. .

This may well be the most detailed tabular listing of MIME types ever compiled. We
hope you find it handy!

application/*
TableD-3 describesmany of the application-specific MIME media types ..

. .

TableD-3; "Application" MIME types

~~~~tM:fi~~~. . 
application/activemessage 

application/andrew-inset 

application/applefile 

application/atomicmail 

application/batch-SMTP 

application/beep+xnil 

Supportsthe Active Mail groupware 
system. 

Supports the creation of multimedia 
content with the Andrew toolkit. 

Permits MIME-based transmission of 
data with Apple/Macintosh-specific 

· information, while allowing general 
·access to nonspecific user data .. 

ATOMICMAIL was anexperimental. · 
research project at Bellcore, designed 
for including programs in electronic 
mail messages that are executed · 
when mail is read. ATOMICMAIL is 
rapidly becoming obsolete in favor of 
safNcL 

Defines a MIME content type suitable 
for tunneling an ESMTP mail transac-

. tion through any MIME-capable 
transport. 

Supports the interaction protocol 
called BEEP. BEEP permits simulta-
neous and independent exchanges of 
MIME messages between peers, 
where the messages usually are XML­
structured text. 

540 I Appendix 0: MIME Types 

ez 

"Active Mail: A Framework for Inte­
grated Groupware Applications" In 
Readings in Groupware and 
. Computer-Supported Cooperative 
Work, Ronald M~ Baecker, ed., 
Morgan Kaufmann, ISBN 
1558602410 

··Multimedia Applications Develop-. 
ment with theAndrew Toolkit, 
Nathaniel S. Borenstein, Prentice 
Hall, ASIN 0130366331 

nsb@bellcore.com 

RFC 1740 

"ATOMICMAIL Language Reference 
Manual," Nathaniel S. Borenstein, 
Bellcore Technical Memorandum 
TM ARH-018429 

RFC2442 

RFC 3080 



Table D-3: "Application" MIME types (continued) . 

application/commonground· 

application/cybercash 

application/dca~rft 

application/dec -dx 

application/dvcs 

application/EDI{onsent 

application/EDI-X12 

application/EDIFACT 

application/eshop 

application/font-tdpfr 

Supports MIME email exchanges of 
U.S. Department ofDefense digital .. 
data that w~s previously exchanged by 
tapem, as defined by Mll-STD-1840. . . .. 

Common Ground is an electronic doc­
ument exchange and distribution pro­
gram that lets users create documents 
that anyone can view, search, and . 
print, without requiring that they 
have the creating applications or . 
fonts on their systems. 

Supports credit card payment through 
the CyberCash protocol. When ,a user 
starts payment, a message is sent by 
the merchant to the customer as the . 
body of a message of MIME type · 
application/cybercash. · 

iBM Document Content Architecture. 

DEC Document Transfer Format. 

Supports the protocols used by a Data 
Validation andCertification Server 
(DVCS), which acts as a trusted third 

. party in a public -key security 
infrastructure;· .. 

·Supports bilateral trading via elec­
tronic data interchange .(EDI), using 
nonstandard specifications. 

Supports bilateral trading via elec- · 
tronic data interchange (EDI), using 
the ASC X12 EDI specifications. · 

Supports bilateral trading via elec­
tronic data interchange (EDI), using 
the EDIFACT specifications. 

Unknown. · 

Defines a Portable Font Resource (PFR) · 
that contains a set of glyph shapes; 
each associated with a character code. 

Nick Gault 
No Hands Software 
ngault@nohands.com 

RFC1898 

. . . . . . .· .· .. 

"IBM DocumentContent Architec- · 
ture/Revisable Form Text Refer­
ence," documentnumber SC23-
0758-1, International Business 
Machines 

"Digital Document Transmission 
(OX) Technical Notebook," docu-· 
mentnumber EJ29141-86, Digital 
. Equipment Corporation · 

RFC 3029 

httpJ!WV&.isi.edu/in-notes/ianal 
·assignments/media-types/ 
application/EDI-Consent 

http://www.isi.edu/in-notes!ianal 
assignments/media-types/ . 

· application/EDI-X12 

httpJ/www.isi.edu/in-notes!ii:Jnal · 
. assignments/media-types!. 
application!EDIFAa 

Steve Katz 
· System Architecture Shop· 

steve_katz@eshop.com 

RFC 3073 · 

• . MIME Type Tables J 541 



Table D-3. ·"Application" MIME types (continued) 

. Used to enclose a pipeline of one or 
more HTTP requestor response mes- · 

. sages (not intermixed). 

application/hyperstudio Supports transfer of HyperStudio edu- stk http:/ !www.hyperstudio.com 
cational hypermedia files, 

application/iges A commonly used format for CAD .· "ANS/US PRO/IP0-100" 
. model interchange. U.S. Product Data Association 

2722 Merrilee Drive; Suite 200 
Fairfax, VA i2031-4499 

application/index Support the Common Indexing Proto- RFC 2652, and RFCs 2651, 1913, 
application/index.cmd ·· col (CIP). CIP is an evolution of the and 1914 
application/index.obj . WhoiS++ directory service, used to 
application/index.response pass indexing information from server 
application/iridex.vnd to server in order to redirect and repli- · 

cate queries through a distributed 
database system •. 

application/iotp Supports Internet Open Trading Pro- RFC 2935 
tocol (IOTP) messages over HTTP. · 

application/ipp Supports Internet Printing Protocol RFC 2910 
(IPP) over HTTP. . · 

application/mac-binhex40. Encodes a string of 8-bit bytes into a hqx RFC 1341 . 
· string of 7 -bit bytes, which is safer for 

some applications (though not quite 
as safe as the 6-bit base:..64 encoding). 

application/mac~compactpro From Apache mime.types. cpt 

application/macwriteii . Claris MacWfite II. 

application/marc MARC objects are Machine-Readable mrc .. RFC2220 
Cataloging records.:__standards for · 

· the representation and communica-
tion of bibliographic and related 
information. 

application/mathematica Supports Mathematica and Math- · nb,ma, TheMathematica Book, Stephen 
application/mathematica~old ·Reader numerical analysis software. mb Wolfram, Cambridge University · 

Press, ISBN 0521643147 

application/msword Microsoft Word MIME type. doc 

application/news-message-id RFCs 822 (message IDs), 1036 
(application to news), and 977 
(NNTP) 

appliCation/news- Allows transmission of news articles RFC 1036 
transmission by email or other transport. 

application/ocsp-request Supports the Online Certificate Status orq RFC2560 
Protocol (OCSP), which provides a 
way to check on the validity of a digi-
tal certificate without requiring local 
certificate revocation lists. 

542 I Appendix D: MIME Types 



·Table D-3. "Application" MIME types (continued) _ 

~J..~JMl;::-::" 
application/ocsp-response .Same as a_bove: ors RFC2560 

application/octet-stream Unclassified binary data. 'bir;dms, - RFC 1341 
lha,lzh, 

- exe, class 

application/ada Used for information encoded accord- oda RFC 1341 
ing to the Office Document Architec- ISO 8613; "Information Processing: 
ture (ODA) standards, using the Office Text and Office System; Office Doc~ 
Document Interchange Format (ODIF) umentArchitecture (ODA) and _ 
representation format. The Content- Interchange Format (ODIF)~" Part 
Type line also should specify an 1-8, 1989 
attribute/value_ pair that indicates the 

- document application profile (DAP), 
as in: 

Content-Type: application/ada; 
profile=Q112 

application/parityfec Forward error correction parity encod- RFC 3009 
· ing for RTP data streams. 

application/pdf Adode PDF files. pdf . See Portable Document Format Ref-
erence Manual; Adobe Systems, Inc., 
Addison Wesley, ISBN 0201626284 

application/pgp-encrypted PGP encrypted data. RFC2015 . . 

application/pgp-keys PGP public-key blocks. RFC 2015 

application/pgp-signature -· PGP cryptographic signature. RFC 2015 

application/pkcs10 Public Key Crypto System #10-the plO RFC2311 
application/pkcs1 0 body type must be 
used to transfer a PKCS #10 certifica-
tion request. 

-_ application/pkcs7-mime Public Key Crypto System #7-this p7m RFC2311 
type is used to carry PKCS #7 objects 
of several types including enveloped-
Data and signed Data. 

application/pkcs7-signature Public Key (rypto System #?_:_this p7s RFC2311 
type always contains_ a single PKCS#7 
object of type signedData. 

application/pkix-cert Transports X.509 certificates. cer RFC2585 

application/pkiHrl Transports X.509 certificate revoca- _ crl RFC2585 
tion lists. 

application/pkixcmp Message format used by X.509 Public pki RFC2510 
Key Infrastructure Certificate Man-
agement Protocols. 

application/postscript An Adobe PostScript graphics file ai, ps, RFC2046 
(program). -- eps 

application/prs.alvestrand. "TimeT racker" program by Harald T. http://domen.uninett.no/~hta/ · 
titrax-sheet Alvestrand. titrax! 

-MIME Type Tables . I · -543 



Table D~3. "Application'' MIME types (continued) 

~i~L t~ir~n~~[ 
application/prs.cww. · CU-Writedor Windows. cw,cww· Dr. Somchai Prasitjutrakul 

.. somchaip@chtilkn.car.chula.ac.th 

application/prs.nprend. Unknown. rnd, ret · John M. Doggett 
jdoggett@tiac.net 

application/remote-printing Contains meta information used RFC 1486 
when remote printing,for theprinter Marshall T.Rose 
cover sheet. ·.mrose@dbc.mtview.ca.us 

application/riscos · Acorn RISC OS binaries, RISC OS Programmer's Reference 
. Manuals, Acorn Computers, ltd., 
. ISBN1852501103 

application/sdp . SDP is intended for describing live .RFC 2327 
mul.timedia sessions for the purposes · HenningSchulzrinne 
of session announcement, session hgs@cs.columbia.edu 
invitation, and other forms of multi-
media session initiation. 

application/set-payment Supports the .SET secure electronic http} /www. visa.com 
. application/set-payment~ transaction payment protocol. http:! !www.mastercard.com 

initiation 
application/set-registration 
application/set-registration~ 
initiation 

· application/sgml"open- Intended for usewith systems that . SGMlOpen 
catalog . support theSGML Op~n TR9401 :1995 910 Beaver Grade Road, #3008 

"Entity Management" specification. CoraopolistPA 15109 
. info@sgmlopen.org 

application/sieye Sieve mail filtering script RFC3028 

application/slate The BBN/Siate document format is BBN/Siate Product Mgr 
published as part of the standard doc~ BBN Systems and Technologies . 
umentation set distributed with the 10 Moulton Street 
BBN/Siate product Cambridge, MA 02138 

application/smil The Synchronized Multimedia lnte- smi,smil http://www.w3.org/AudioVideo/ 
·. gration language (SMil) integrates a 

set of independent multimedia 
objects into a synchronized multi-
media presentation. 

application/tve-trigger .· Supports embedded URls in "SMPTE: Declarative Data Essence, 
· enhanced television receivers. Content level1 ," produced by the 

. · Society of Motion Picture and 
Television Engineers 
http:! /www.smpte.org 

application/vemmi · Enhanced videotex standard. RFC2i22 

application/vnd.3M.Post-it- Used by the "Post-it® Notes for Inter- pwn · http://www.JM.com!psnotes! 
Notes net Designers" Internet control/ 

· plug~in. 

544 I . Appendix D: MIME Types · 



Takle D~3. "Appliciltio17,'; MIMEtypes (continued) 

application/vnd.accpac. Simply Accounting v7.0 and higher. 
· simply.aso Jiles of this type conform to Open 

Financial Exchange v1.02 
specifications . 

application/vnd.accpac. · . Used by Simply Accounting v7~0 and imp httpJ/www.ofx.net . 
simply .imp · higher, to import its own data. 

· application/vnd.acucobol ACUCOBOL-GT Runtime: · .· Dovidlubin 
' 

dovid@acucobol.com 

application/vnd.aether.imp Supports airtime-efficient Instant Wireless Instant Messaging Proto-
· Message communications between col (IMP) specification available 

an Instant Messaging service, such as • from AetherSystems by lic~nse 
AOL Instant Messenger, Yahoo! Mes-
senger, or MSN Messenger, and a spe- · 
cia I set of Instant Messaging client · 
software on a wireless device. 

application/vnd.anseH.iJeb.:· ·Trigger for web browsers to launch cii . Hiroyoshi Mori 
·certificate-issue-initiation the ANSER-WEB Terminal Client. mori@mm.rd.rittdqta.co.jp . 

. application/vnd.anser"web~ . Same as above. fti Same as above 
funds-transfer-initiation 

application/vnd.audiograph AudioGraph. aep Horia Cristian · 
H. CS/usanschi@massey.ac.nz 

application/vnd.bmi . BMI graphics format by CAD AM bmi TadashiGotoh 
Systems. tgotoh@cad~msysiems;co.jp 

. . 

application/vnd. BusinessObjects 4.0 and higher. rep 
. busi~essobjects 

application/vnd;canon-cpdl Supports Canon, Inc. office imaging Shin Muto 
application/vrid.canon-lips products. shinmuto@pure.cpdc.canon,co.jp 

application/vnd.claymore Claymore.exe. cia Ray Simpson 
ray@cnation.com 

application/vnd.commerce- Supports a generic mechanism for ica, icf, David C. Applebaum 
battelle delimiting smart card-based infor~ icd, icc, applebau@737.167;52.75 

mation, for digital commerce, identi- . icO, icl, 
fication, authentication, and. . · ic2, ic3, 
exchange ofsmart card-based card . k4, ic5, 
holder information. ic6, ic7, 

ic8 

application/vnd. Allows for proper transmission of csp,cst .Ravinder Chandhok 
commons pace Common Space™ documents via chandhok@within .com 

MIME-based processes. Commori~ 
Space is published by Sixth Floor·. · · 
Media, part of the Houghton-Mifflin 
Company . 

. application/vnd.contact.cmsg . Used for CONTAG software's CIM cdbcmsg ·. Frank Patz 
DATABASE. fp@contact.de 

·· http://www.contact.de 

· MIMETypeTables . I 545 



.. 
·Table D~3. "Application'' MIME types (continued)· 

application/vnd.cosmocaller Allows for files containing connection.· erne . ·Steve Dellutri 
parameters to be downloaded from sdellutri@cosmocom.com 

·web sites, invokes the CosmoCaller 
application to interpret the para me-
ters,.and initiates connections with 
the CosmoCaiiACD server. 

a pplication/vnd.ctc -posrril ··Continuum Technology's PosML pml . Bayard Kohlhepp 
bayardk@ctcexchange.com 

application/vnd.cups- · Supports Common UNIX Printing Sys- · http://www.cups.org 
postscript tem(CUPS) servers and clients, 
application/vnd.cups-raster 
applieation/vnd.cups-raw 

application/vnd.cybank Proprietary data type for Cybank data. · Nor Helmee B. Abd. Halim 
helmee@cybank.net 
http:! /www.cybank.net 

application/vnd.dila .. DNA is intended to easily Web-enable dna Meredith Searcy · 
any 32-bitWindows application; msearcy@newmoon.com 

application/vnd.dpgraph Used by DPGraph 2000 and Math~ dpg, . David Parker 
Ware Cyclone. mwc, · http://www.davidparker.com 

dpgraph 

application/vnd.dxr · Digital Xpress Reports by PSI dxr · Michael Duffy 
Technologies. miked@psiaustin.com 

application/vnd.ecdis-update Supports ECDIS applications. http:/ /www.sevencs.coni 

application/vnd.ecowin;chart EcoWin. mag Thomas Olsson 
application/vnd.ecowin. thomas@vinga.se 
filerequest 
application/vnd.ecowin. 
fileupdate 
application/vnd.ecowin.series 
application/vnd.ecowin. 
seriesrequest · 
application/vnd.ecowin. 
seriesupdate 

application/vnd.enliven. Supports delivery of Enliven interac- · nml Paul Santinelli 
· tive multimedia. psantinelli@narrative.com 

application/vnd.epson.esf Proprietary content for Seiko Epson esf . Shoji Hoshina 
QUASS Stream Player. Hoshina.Shoji@excepson.co.jp 

application/vnd.epson.msf Proprietary content for Seiko Epson · msf Same as above 
QUASS Stream Player. 

application/vnd.epson. Proprietary content for Seiko Epson qam YuGu 
quickanime QuickAnime Player. guyu@rd.oda. epson.coJp 

application/vnd.epson.salt Proprietary content for Seiko Epson sit Yasuhito Nagatomo 
· SimpleAnimelite Player. . naga@rd.oda.epson.coJp 

application/vnd.epson.ssf. Proprietary content for Seiko Epson ssf Shoji Hoshina 
QUASS Stream Player. Hoshina.Shoji@exc.epson.co.jp 

546 I . Appendix D:. MIME Types 



Table p,J. "Application'; MIME types (continued) 

application/vnd.ericsson. Phone Doubler Quick Call. qcall,qca Paul Tidwell . · 
quickcall paul.tidwell@etic5son.com 

. http://www.ericsson.com 

application/vnd.eudora.data .Eudora Version 4.3 and later. Pete Resnick 
presnick@qualcomm.com 

application/vnd.fdf Adobe Forms Data Format. "~orms Data Format," Technical 
.. Note 5173, Adobe Systems 

application/vnd.ffsns Used for application .communication MaryHolstege . 
with FirstFioor's Smart Delivery. holstege@firstfloor.com 

• application/vnd.FioGraphlt · · NpGraphlt. ·· gph 

application/vnd.framemaker Adobe FrameMaker files. fm,mif, http:! lwww.adobe.com 
book 

application/vnd.fsc. Supports Friendly Software Corpora, fsc Derek Smith 
weblaunch . tion's golf simulation software. · derek@friendlysoftware.com · 

application/vnd.fujitsu,oasys Supports Fujitsu's OASYS software, oas Nobukazu Togashi 
application/vnd.fujitsu.oas¥s2 togashi@ai.cs.fujitsu.co.jp . 

application/vnd.fujitsli.oasys2 Supports Fujitsu's OASYS V2 software. oa2 Same as above 

· application/vndJujitsu.oasys3 Support's Fujitsu's OASYS VS software. oa3 Seiji Okuda ira 
okudaira@candy.paso.fujitsu.co.jp 

application/vnd.fujitsu. Supports Fujitsu's OASYS GraphPro fg5 Masahiko Sugimoto 
oasysgp software. · sugimoto@sz.s~l.fujitsu.co.jp 

·.application/vnd.fujitsu. Support's Fujitsu's OASYS Preseota, bh2 . Masumi Ogita .. 
. oasysprs tion software. ogita@oa.tfl.fujitsu.co.jp . 

application/vnd.fujixerox.ddd Supports Fuji Xerox's EDMICS 2000 ddd .. Masanori Onda 
and DocuFile. Masanori.Onda@fujixerox.co.jp 

· application/vnd.fujixerox. Supports Fuji Xerox's DocuWorks Desk xdw Yasuo Taguchi 
d()cuworks and DocuWorks Viewer software. yasuo~taguchi@fujixerox.co.jp 

application/vnd.fujixerox. ·Supports Fuji Xerox's DocuWorks Desk xbd Same as ab.ove. 
docuworks.binder and DocuWorks Viewer software. 

a pplication/vnd. fut ,misnet Unknown. Jaan Pruulmann ' 

jaari@fut.ee · 

application/vnd.grafeq lets users of GrafEq exchange GrafEq . . gqf, gqs . http://www.peda.com 
documents through the Web and 
emaiL 

.• 

application/vnd.groove~ Groove is a peer,to,peer communica" gac. .Todd Joseph·. 
· account tion system implementing a virtual todd_joseph@groove.net 

space for small group interaction. 

. application/vnd.groove, Same as above. gim Same as above 
identity,message 

application/vnd.groove, Same as above. grv Same as above 
injector 

application/vnd.groove,tool, Same as above. gtm Same as above .. 
message 

MIME Type Tables I 547 



Table D.;J. "Application" MIME types (continued)· • 

application/vnd.groove-tool-
template 

· application/vnd.groove~vcard . Same as above. vcg Same as above 

application/vnd.hhe.lesson- · Supports the LessonPiayer and Pre- les . Randy Jones 
player sentationEditor software. Harcourt E-Learning 

randy_jones@archipelago.com 

. application/vnd.hp-HPGL HPGL files. The HP-GU2 andHP RTL Reference 
Guide,AddisonWesley,ISBN 
0201310147 

application/vnd.hp-hpid · Supports Hewlett-Packard's Instant hpi, hpid .·. http} /www.instant -delivery. com . 
· · Delivery Software. 

application/vnd.hp-hps Supports Hewlett-Packard;s Web- hps http:/ /www.hp;com/gol 
PrintSmart software .. webpdntsmart_mimetype_specs! 

.. . . 

application/vnd.hp-PCL PCL printer files. pel "PCL-PJL Technical Reference Man-
application/vnd.hp-PCLXL ual Documentation Package," HP 

Part No; 5012-0330 

application/vnd~httphone HTTPhone asynchronous voice over IP Franck LeFevre 
system; · franck@k1 info. com 

. application/vnd.hzn-3d- . Used to encode crossword puzzles by x3d . James Minnis 
crossword Horizon, A Glimpse ofT omorrow. james_minnis@glimpse-of-

tomorrow.com 

application/vnd.ibm. Print Services Facility (PSF), AFPCon- Roger B11is 
afplinedata . version and lpdexing Faeility (ACIF). buis@us.ibm.com 

·application/vnd.ibm.MiniPay MiniPay authentication and payment mpy Amir Herzberg 
softY/are. amirh@vnet.ibm;com 

application/vnd.ibm.modcap Mixed Object Document Content list3820, Reinhard Hohensee 
listafp, rhohensee@vnet.ibm.Com 
afp, "Mixed Object Document Content 
pseg3820 Architecture Reference," IBM publi-

cation SC31-6802 

application/vnd.informix- lnformix Visionary. vis Christopher Gales 
visionary christopher.gales@informix.com 

application/vnd.intercon. . Supports lntercon Associates Form Net xpw,xpx Thoinas A. Gurak 
form net software .. assoc@intercon.roc.servtech.com 

application/vnd.intertrust. · Supports Inter Trust architecture for lnterT rust Technologies 
digibox .. secure electronic commerce and digi- 460 Oakmead Parkway. 
application/vnd.intertrust. tal rights management. Sunnyvale, CA 94086 USA 
nncp info@intertrust.coin 

httpJ!www.intertrust.com 

application/vnd.intu.qbo . Intended for use only with Quick- qbo Greg Scratchley 
Books 6.0 (Canada). greg_scraichley@intuit.com 

. Format of these files discussed in 
. the Open Financial Exchange specs, 

availablefr<im httpJ/www.ofx.'net 

548 I· Appendix D:. MIME Types 



. .· . 

Table D-3. "Application" MIME types (continued). 

application/vnd.intu.qfx Intended for use only with Quicken 99 qfx Same as above . · 
and follo\:Ving versions. · 

application/vild.is~xpr Express by lnfoseek. xpr Satish Natarajan . · 
.·.satish@infoseek.com 

application/vnd.japannet- .· Supports Mitsubishi Electric's Japan- Juri Yoshitake 
directory-service· · Net security, authentication, and pay- yositake@iss;is/.me/co.eojp 
application/vnd.japannet- · ment sofWtare. 
jpnstore~wakeup 
application/vrid.japannet~ 
payment"wakeup · 
application/vnd.japannet-. 
registration 
application/vnd.japannet-
registration-wakeup 
application/vnd.japannet~ 
setstore~wakeup 
application/vnd.japannet-
verification 
application/vnd.japannet- . 
verification-wakeup 

application/vnd.koan Supports the automatic playback of skp, skd, Peter Cole. 
Koan music files over the Internet, by skm; skt ·pcofe@sseyoddemon.co.uk 
helper applications such as SSEYO 
Koan Netscape Plug in. 

application/vnd.lotusc 1" 2-3 Lotus 1+3 and Lotus approach. 123, Paul Watteilberger 
wk1, PauLWattenberger@foius.com . 
wk3, 
wk4 

application/vnd.lotus- Lotus Approach. apr, vew Saine as above 
approach 

· application/vnd.lotus- Lotus Freelance. prz, pre Same as above 
freelance 

application/vnd.lotus~notes . Lotus Notes. nsf, ntf, . Michael Laramie 
ndl, ns4, .· /aramiem@btv.ibm.com 
ns3, ils2,· 

. nsh,nsg 

application/vnd.lotus- Lotus Organizer. · or3, or2, .· Paul Wattenberger 
organizer org PauLWattenberger@fotus.com 

applicatiori/vnd.lotus- Lotus ScreenCam. scm Same as above · 
screen cam 

application/vnd.lotus- Lotus Word Pro. lwp, sam·· Same as above .. 
word pro 

application/vnd.mcd Micro CAD AM CAD software. mcd .T adashi Gotoh . 
.tgotoh@cadamsystems.co.jp 
http://www.cildamsystems.cojp 

MIMEType Tables 1· 549 



TableD-3. "Application" MIME types (continued) 

application/vnd. Supports Media Station'sCDKey cdkey Henry flurry .. 
mediastatioh.cdkey remote CDROM communications henryf@mediastation.com 

protocol. 

application/vnd.meridian- · Slingshot by Meridian Data. Eric Wedel 
slingshot Meridian Data, Inc. · 

5615 Scotts Valley Drive 
Scotts Valley, CA 95066 
ewedel@meridian-data.com 

application/vnd.mif FrameMaker interchange format. mif .• ftpJ !ftp.frame.com/pub/techsup/ 
·recliinfo/doslmif4.zip 

Mike Wexler 
Adobe Systems, Inc 
333 W. San Carlos St. 
San Jose, CA 9511 0 USA 
mwexfer@adobe.com 

application/vnd.minisoft- .. NetMail3000 save format. Minisoft, Inc. 
hp3000-save support@minisoft.com 

ftpJ/ftp.3k.com!DO(Jms92-save-
format. txt 

· application/vnd.mitsubishL ·Supports Mitsubishi Electric's Manabu Tanaka 
misty~guard.trustweb Trustweb software. mtana@iss.is/.melco.eo.jp 

application/vnd.Mobius.DAF Supports Mobius Management Sys- daf Celso Rodriguez 
terns software. crodrigu@mobius.com 

Greg Chrzaon 
gchrzao@mobius.com 

application/vnd.Mobius~DIS ·· Same as above. dis Same as above 

application/vnd.Mobius.MBK . Same as above. mbk Same as above . 

application/vnd.Mobius.MQY Same as above. · mqy ·Same as above 

application/vnd.Mobius.MSL Same as above. msl Same as above 

application/vnd.Mobius.PLC Same as above. pic . Same as above 

a pplication/vnd.Mobius. TXF Same as above .. txf Same as above 

· application/vnd.motorola. FLEXsuite™ is a collection of wireless Mark Patton 
. flexsuite messaging protocols. This type is used Motorola Personal Networks Group 

by the network gateways of wireless . fmp074@email.mot.com 
messaging service providers as well as FLEXsuite TM specification available 

·wireless OSs and applications: from Motorola under appropriate 
licensing agreement 

application/vnd.motorola. FLEXsuite™ is a collection of wireless Same as above 
flexsuite.adsi messaging protocols. This type pro-

vides a wireless-friendly format for 
enabling various data-encryption 
solutions. 

550 1. Appendix D: MIME Types 



Table D-3. "Application" MIMEtypes (continued) .• 

application/vnd.motorola. 
flexsuite.fis 

application/vnd.motorola. · 
flexsuite.gotap 

·· application/vnd.motorola. 
flexsuite.kmr · 

application/vnd;motorola .. 
flexsuite.ttc 

· application/vnd.motorola. 
flexsuite. wem 

application/vnd.mozilla. 
xul+xml 

. application/vnd.ms-artgalry 

application/vnd.ms~asf · 

. a pplication/vnd.ms-excel 

application/vnd;ms-lrm 

application!vnd.ms­
powerpoint 

application/vnd.ms-project 

FLEXsuite™ is a collection of wireless 
messaging protocols. This type is a 

. wireless-friendly formatfor the effi­
_cierit delivery of structured informa­

..•.. tion (e.g., news, stocks, weather) to a 
. wireless device. · · 

FLEXsuiterM is a collection of wireless 
messaging protocols. This type pro­
vides a cqmmon wireless-friendly for­
mat for the programming of wireless 
device attributes via over-the-air 
messages. 

FLEXsuite™ is a collection of wireless 
messaging protocols. This type pro- . 
vides a wireless-friendly format for 
encryption key management. 

· FLEXsuite™ is a ~ollection of wireless 
messaging protocols. This type sup­
ports a wireless-friendly format for 
the efficient delivery of text using 
token text compression. 

FLEXsuite TM is a collection of wireless 
. messaging protocols. This type pro-· 

vides a wireless~ friendly format for . 
the communication of Internet email 
to wireless devices. - · 

Supports the Mozilla Internet applica- xul 
tion suite. 

Supports Microsoft's Art Gallery. cil 

ASF is a multimedia file format whose asf 
contents are designed to be streamed 

· across a network to support distrib­
uted multimedia applications. ASF 
content may include any combination 
of any media type (e.g., audio, video, 
images, URls, HTMl content, MIDI, 
2-D and 3-D modeling, scripts, and 
objects of various types). 

Microsoft Excel spreadsheet. 

Microsoft proprietary. 

Microsoft PowerPoint presentation. 

Microsoft Project file. 

xis 

lrrii 

ppt 

mpp 

·Same as above 

• Same as above 

. Same as above 

Same as above 

Same as above 

Dan Rosen2 
dr@netscape.com 

deansl@microsoft.com 

Eric Fleis(hman 
ericf@microsoft.com 

. http:/ /www.microsoft.com/ 
· mind/0997/netshow/netshow.asp 

SukvinderS. Gill 
sukvg@microsoft.com 

Eric Ledoux 
ericle@microsoft.com 

Sukvinder S. Gill 
sukvg@microsoft.com 

Same as above. 

. MIME Type Tables I · 551 



Table D-3. "Application" MIME types (continued).· 

Identifies an attachment that in gen- · · 
· eralwould be processable only by a 
. MAPI-aware application. This type is 

an encapsulated format of rich MAPI 
properties, such as Rich Text and Icon 

· information, that may otherWise be · 
degraded by the messaging transport .. 

application/vnd.ms-works Microsoft Works software. Same as above 

application/vnd.mseq MSEQ is a compact multimedia format mseq Gwenaelle Bodie 
suitable for wireless devices. Gwenael.le_bodic@alcatel.fr 

.· http://www.3gpp.org 

application/vnd.msign .· Used by applications implementing · Malte Borcherding . 
the msign protocol, which requests Malte.Borcherding@brokat.com 
signatures from mobile devices. 

. application/vnd.music -niff · N IFF music files. Cindy Grande 
72723. 7 272@compuserve.com 
ftp://blackbox.cartah~ washington. 
edu/pub/NIFF/NIFF6A. TXT 

application/vnd;musician . ·• MUSICIAN scoring language/encoding mus Robert G. Adams 
conceived and developed by Renai" .. · gadams@renaiscience.com 
Science Corporation. 

application/vnd.netfpx Intended for dynamic retrieval of fpx Andy Mutz 
multiresolution image information, as andy_mutz@hp.com 
used by Hewlett-Packard Company. 
Imaging for Internet. 

application/vnd.noblenet- Supports the Noble Net Directory soft- nnd hitp:l/www.noblenei.com 
directory · ·. ware, purchased by RogueWave. 

· application/vnd.noblenet- Supports the Noble Net Sealer soft- nns http:/ /www.noblenet.com 
sealer ware, purchased by RogueWave. 

application/vnd.noblenet- Supports the NobleNet Web software, .. nnw http://www.noblenet.com 
web purchasedby RogueWave. 

application/vnd.novadigm. Supports Novadigm's RADIA and EDM edm Phil Burgard 
EDM products. · pburgard@novadigm.com 

application/vnd.novadigm. · Same as above .. edx Same as above 
EDX 

. application/vnd.novadigm. · Same as above. ext Same as above 
EXT 

application/vnd.osa. Supports the Open Software Associ- ndc Steve Klos 
. netdeploy · · ates netDeploy application deploy- stevek@osa.com 

ment software. http:/ /www.osa.com 

application/vnd.palm Used by PalmOS system software and pre, pdb, Gavin Peacock 
~pplications-this new type, "appli- pqa, oprc gpeacock@palm.com 
t:ation/vnd.palm," replaces the old 
type "application/x-pilot." 

552 I · Appendix D: MIME Types 



· TableD-3. "Application" MIME types (wntinued) 

application/vnd.pg.format ·· · · . Proprietary Proctor & Gamble Stan­
. dard Reporting System. 

application/vnd.pg~osasli 

applicati6n/Vnd. 
powerbuilder6 
applicaticin/vnd . 

. powerbuilder6~s 
application/vnd . 
. powerbuilder7 
application/vnd. 
powerbuilder7-s 
application/vnd. 
powerbuilder75 
application/vnd. 
po\1/erbuilder 75-s 

· application/vnd. 
previewsystems.box 

application/vnd.publishare­
delta-tree 

· application/vnd.rapid 

application/vnd.s3sms 

application/vnd.seemail. 

application/vnd.shana. 
informed.formdata 

applieation/vnd.shana. 
informed.formtemp · 

·. . . 

application/vnd.shana. 
.· informed.interchange 

application/vnd.shana. 
informed. package 

Proprietary Proctor & Gamble Stan- . 
dard Reporting System. 

Used only by Sybase PowerBililder 
release 6, 7, and 7.5 runtime environ­
ments, non secure and secure. 

Preview Systems Ziplock/VBox 
produq. 

Used by Capella Computers' 
PubliSh are runtime environment. 

Emultek's rapid packaged 
applications. 

Integrates the transfer mechanisms of 
the Son era SmartT rust products into 
the Internet· infrastructure. 

Supports the transmission of SeeMail 
files. SeeMail is an application that 
captures video and sound and uses 
bitwise compression to compress and 
archive the two pieces into one file .. 

Shana e-forms data formats. 

Sha na e-forms data formats. 

Shana e-forms data formats. 

Shana e-forms data formats. 

application/vnd.streeHtream Proprietary to Street Technologies. 

str April Gandert 
TN152 . 
Procter & Gamble Way 
Cincinnati, Ohio 45202 
(513) 983-4249 . 

ei6 Same as above 

pbd · Reed Shilts 
reedshilts@sybtise.com 

box, Roman Smolgovsky 
vbox romans@previewsystems.com 

· . http:!lwww.previewsystems.com 

qps Oren Ben-Kiki 
-pilblishare-delta-tree@tapella.co.il 

zrp ltay Szekely 
etay@emultek.co.il 

lauri Tarkkala 
La uri~ Tarkkafa@sonera.corri 

· http:!!www;smarttrust.com .. · 

see Steven Webb 
steve@Wynde.com 
. http:!!www.realmediainc.coin 

ifm Guy Selzler 
Shan a Corporation 
gselzler@shana.com 

itp Same as above 

iif, iifl Same as above 

ipk, ipkg · Same as above . 

Glenn levitt 
Street Technologies 
streetdl @ix.netcom.com 

MIME Type Tables · I .. 553 



Table D-3. "Application" MIME types (continued) 
t:if-.·:'t_,.-::s,.-

cijlif~ct7~;~~iNt~!ti~. i;iMIME; 
L~~~~·::::. i ::.~;-t.-~;· 

application/vnd.svd Dateware Electronics SVO.files; Scott Becker 
dataware@compumedia.com 

apj>lication/vnd.swiftview-ics ·· Supports SwiftView® .. · · Randy Prakken 
tech@ndg.com 
http://www.ndg.com/svm;htm 

application/vnd. triscape. mxs Supports T riscape Map Expiorer. mxs· Steven Simonoff 
scs@triscape.com 

application/vnd.trueapp True BASIC files. tra J. Scott Hepler 
scott@truebasic.com 

application/vnd.truedoc · Proprietaryto Bitstream, Inc. · Brad Chase 
brad_chase@bitstream.com 

application/vnd.ufdl UWI's UFDL files. ufdl, ufd, pave Manning 
frm dmanning@uwi.com · 

http://www.uwi.com/ 

. application/vnd.uplanet.alert Formats used by Unwired Planet (now icina-registrar@uplanet.com 
application/vnd.uplanet Open wave) UP browser micro- http://www.openwave:com. . 
alert-wbxml browser for mobile devices. 
application/vnd.uplanet. 

.·· bearer-choi-wbxml 
application/vnd.uplanet. 
bearer-choice 
application/vnd.uplanet. 
cacheop 
application/vnd.uplanet. 
cacheop-wbxml 
application/vnd.uplanet. 
channel 
application/vnd.uplimet. . 
channelcwbxml 
application/vnd.uplanet.list · 
application/vnd.uplanet.list-
wbxml 

· application/vnd.uplanet. 
listcmd 
application/vnd.uplanet. 

.listcmd-wbxml 
application/vnd.uplanet. 
signal 

application/v~d.vcx VirtuaiCatalog. vex Taisuke Sugimoto 
sugimototi@noanet.nttdata.co.jp 

application/vnd.vectorworks VectorWorks graphics files. mcd Paul C. Pharr 
pharr@diehlgraphsoft.com 

application/vnd.vidsoft.. · VidConference format. . vsc Robert Hess . 
vidconference hess@vidsoft.de 

application/vnd.visio . Visio files. . vsd, vst, Troy Sandal 
vsw, vss troys@visio.com 

554 I Appendix D: MIMETypes 



Table D-3. "Applicatiori"MIME types (continued) 

application/vnd.vividence. · Vividence files. · vsf,.vtd, Mark Risher 
. scriptfile vd. ··. markr@vividence.com . 

application/vnd~wap.sic WAP Service Indication format. sic,_ · WAP Forum ltd 
wbxml ·. httpJ!www.wapforum~org 

application/vnd.wap.slc WAP Service loading format. sic; ... Same as above 

Anything that conforms to the Service wbxml 

loading specification, available at 
http:/ /www.wapforum.org. 

application/vnd.wap.wbxml WAP WBXML binary XML format for wbxml Same as above 
wireless devices. "WAP Binary XMl Content . 

Format~WBXML version 1.1" 

application/vnd.wap.wmlc WAP WML format for wireless wmlc,, Same as above 
devices . wbxml 

.. 

application/vnd.wap. · WAP WMLScript format. wmlsc · Same as above 
wmlscriptc 

application/vnd.webturbo Web Turbo format. wtb YaserRehem 
Sapient Corporation 
yrehem@sapient.com 

application/vnd.wrq-hp3000- Supports HP3000formats. support@wrq.com 
labelled support@3k.com 

.·application/vnd.wt.stf Supports Worldtalk software. stf Bill Wohler 
wohler@woridtalk.com 

application/vnd.xara Xara files are saved by CoreiXARA, an xar David Matthewman 
. object-oriented vector graphics pack- david@xara.com 

age written by Xara limited (and . http://www.Xara.com 
marketed by Corel). 

application/vnd.xfdl UWI's XFDL files. xfdl, xfd, DaveManning · 
frm dmanning@uwi.com 

http://www.uwi;com 

application/vnd.yellowriver- Supports the Yel.low River Custom- cmp ·. .yellowdversw@yahoo.coin 
custom-menu Menu plug-in, which provides cus" 

tomized browser drop~down menus. 

application/whoispp-query . Defines WhoiS++ protocol queries RFC2957 
within MIME. 

application/whoispp- Defines Who iS++ protocol responses RFC2958 
response within MIME. 

application/wita Wang Information Transfer Document number 715-00SOA, 
Architecture. Wang laboratories 

· campbell@redsox.bsw.com 

application/wordperfect5.1 WordPerfect documents. 

application/x400-bp Carries any X.400 body part for which RFC 1494 
there is no registered lANA mapping. 

MIME Type Tables .· I 555 



·. TableD-3. "Application" MIMEtypes(continued) 

application/x-cdlink · Allows integration of CD~ ROM media vcd ·http:! /www.cdlink.com 
·within web pages. 

. application/x-chess-pgm From Apache mime. types . .pgn 

. application/x-compress Binary data from Unix coin press. z 

. application/x-cpio CPIO archive file. cpio 

application/x-csh CSH scripts. csh 
application/x-director Macro media director files. dcr, dir, 

. dxr 

application/x-dvi · T eX DVI files. dvi 

application/x-futuresplash · From Apache mime. types. spl 

application/x-gtar GNU tar archives. gtar 

application/x-gzip GZIP compressed data. gz 

application/x~hdf . · From Apachemime.types. hdf 

application/x-javascript Java Script files, js 

application/x~koan Supports the automatic playback of skp, skd, 
Koan music files over the Internet, by . skt, skm 
helper applications such as SSEYO 
Koan Netscape Plug in. 

application/x-latex laTeX files. latex 

application/x-netcdf NETCDF files. nc, cdf 

application/x-sh SH scripts. sh 

application/x-shar SHAR archives. shar . 

application/x~shockwave- Macromedia Flash files. . swf 
flash 

application/x-stuffit Stufflt archives. sit 

application/x-sv4<:pio Unix SysV R4 CPIO archives. sv4cpio· 

application/x-sv4<:rc . · Unix SysV R4 CPIO w/CRC archives .. sv4crc 

application/x-tar TAR archives. tar 

application/x-tcl_ TCL scripts. tel 

application/x-tex leX files. tex · 

application/x~texinfo TeX info files. . texinfo, 
texi 

application/x-troff TROFF files.· t, tr, roff 

application/x-troff-man TROFF Unix manpages. · man 

application/x~troff-me TROFF+me files. me 

application/x-troff-ms TROFF+ms files ms 

556 I Appendix D: MIMETypes · 



Table Dc3. "AjJplicatio"n" MIME types (continued) 

application/x-ustar The extended tar interchange format. . ustar . 

WAIS source structure. · · src . . - . . . 

See the IEEE 10011(1990) 
specifications 

application/x-wais-source · 

application/xml · Extensible Markup language format xml, dtd . RFC 2376 
file {use text/xml ifyouwant the file 
treated as plain text by browsers, etc.). 

application/zip PKWARE zip archives. zip 

audio/* 
TableD-4 summarizes audio contenttypes. 

Table D-4. "Audio" MIME types 

audio/32kadpcm 8kHz ADPCM audio encoding. . RFC242l 

audio/basic Audio encoded with 8-kHz monaural . au, srid RFC 1341 
8-bit ISDN u-law PCM. 

audio/G.772.1 G.722.1 compresses 50Hz~ 7kHz audio RFC3047 
signals into 24 kbit/s or 32 kbit/s.lt 
may be used for speech, music; and 
other types of audio. 

audio/l16 Audio/l16 is based on l16, described RFC2586 
in RFC 1890.l16 denotes uricom-
pressed audio data, using 16-bit 
signed representation. 

audio/MP4A-lATM MPEG-4 audio. . RFC 3016 

audiO/midi . MIDI music files. mid, 
midi, kar 

audio/mpeg MPEG encoded audio files. mpga, . RFC3003 
mp2, 
mp3 

audio/parityfec Parity-based forward error correction .RFC3009 
for RTP audio. 

audio/prs.sid Commodore 64 SID audio files. sid, psid http://www.geocities.Com/ 
SiliconValley/Lakes/5147isidp/ay! 
docs.html#fileformats 

audio/telephone-event · logical telephone event. · RFC 2833 

audio/tone Telephonic sound pattern. ..RFC2833 

audio/vnd.cns.anpl Supports voice and unified messaging Ann Mclaughlin 
application features available on the · · Comverse Netwqrk Systems 
Access NP network services platform amdaughfin@comversens.com 
from Comverse Network Systems. 

MIME Type Tables · I 557 



. Table D"4. "Audio" MIME types (continued) 

Supports voice and unified messaging 
application features available on the .. 
TRILOGUE Infinity network services 
platform fromComverse Network 

.··systems. 

.audio/vnd.digital-winds · Digital Winds music is never-ending, eo I Armands Strazds 
reproducible, and interactive MIDI armands.strazds@medienhaus-

- ·;- ·: ' 
music in very small packages ( <3K). bremen.de 

audio/vnd.everad.plj · Proprietary Ever AD audio encoding. plj Tomer Weisberg 
tomer@everad.com 

· audio/vnd.hicent.voice Voice messaging including Lucent lvp Frederick Block 
Technologies' lntuity TM AUDIX® Mul- · rickblock@lucent.coni · · 
timedia Messaging System and the http:/ lwww.lucent.com/lvp/ 
Lucent Voice Player. 

audio/vnd.nortel.vbk ·Proprietary Nortel Networks Voice vbk Glenn Parsons 
Block audio encoding. Glenn.Parsons@Norte/Networks.com 

audio/vnd.nuera.ecelp4800 Proprietary Nuera Communications ecelp4800 Michael Fox 
audio and speech encoding, available mfox@nuera.com 
in Nuera voice-over-IP gateways, ter-
minals, application servers, and as a 
media service for various host plat-

· .. forms and OSs. 

a udio/vnd.nuera;ecelp7 470 Same as above. ecelp7470 Same as above 

audio/vnd.nuera.ecelp9600 ·Same as above. ecelp9600 Same as above 

audio/vnd.octel.sbc Variable-rate encoding averaging 18 .JeffBouis 
kbps used for voice messaging in jbouis@lucent.com 
Lucent Technologies' Sierra ™, Over-
ture™, and IMA™ platforms. 

audio/vnd.qcelp Qualcomm audio encoding. qcp Andy Dejaco 
adejaco@qualcomm.com 

audio/vnd~rhetorex. 32-kbps Rhetorex™ ADPCM audio JeffBouis 
32kadpcm encoding used in voice messaging jbouis@lucent.com 

products such as Lucent T echnolo-
. gies's CaiiPerformer™, Unified Mes-
senger™, and other products. 

audio/vnd.vmx.cvsd Audio encoding used in voice messag- · Same as above 
ing products including Lucent Tech-
nologies' Overture200™, Overture 

. 300™, and VMX 300™ product lines. 

audio/x-aiff AIFF audio file format. aif, a iff, 
aifc 

audio/x-pn-realaudio ReaiAudio metafile format by Real ram, rm 
Networks (formerly Progressive 
Networks). 

audio/x-pn-realaudio-plugin From Apache mime.types. rpm 

558 I Appendix D: MIME Types 



•. . . . . 

TableD~4. "Audio" MIME types (continued) 

audio/Healaudio 

audio/x~wav . 

chemical/* . . . . 

ReaiAudio audio format by Real 
Networks (formerly Progressive . 
Networks) .. 

WAV audio files. . 

. . . 

ra 

. wav 

Much of the information in Table D-5 was obtained courtesy of the "Cherhical 
MIME Home Page" (http:llwww.ch.ic.ac.uk!chemime/). 

Table D-5. "Chemical" MIME types 

~:~I~f':,:.#··i ··~~~i~~,~~ 
. chemical/x-alchemy 

chemical/x-cache-csf · 

chemical/x-cactvs-binary 

chemical/x-cactvs-asdi 

chemical/x-cactvs-table 

chemical/x-cdx 

chemical/x-cerius . 

chemical/x-chemdraw · 

chemical/x-cif 

ale · http://www.camsoft.com 

csf 

CACTVS binary format cbin 

. CACTVS ASCII format . cascii 

CACTVS table format ctab 

ChemDraw eXchange file cdx 

MSI Cerius II format cer 

·chemDraw file chm 

Crystallographic Interchange Format cif ·· 

chemical/x-mmcif MacroMolecular CIF .· mcif · 

chemical/x-chem3d Chem3D format c3d 

chemical/x-cmdf CrystaiMaker Data Format crndf 

chemical/x-compass Compass program of the Takahashi cpa 

chemical/x-crossfire Crossfire file bsd 

chemical/x-cml. Chemical Markup language cml 

chemical/x-csml Chemical Style Markup Language csml, 
csm 

chemical/x-ctx · · Gasteiger group CTX file format ctx 

chemical/x-cxf cxf 

chemical/x-daylight-smiles Smiles format smi 

chemical/x-embl-dl~ EMBl nucleotide format emb 
nucleotide 

chemical/x-galactic -spc SPC format for spectral and spc 
chromatographic data 

httpl!cactvs.cit.nih.gov 

httpl/cactvs~cit.nih.gov · 

· httpl!cactvs.cit.nih.gov 

http://www.camsoft.com 

. httpl/www.msi.com 

· http://www.camsoft;Com 

·httpl!www.bernstein-plus-
. sons.com/softwarelrasmol/ 

http://ndbserver;rutgers.edu/NDBI 
mmcif!examples/index.html 

Same as above 

http://www.camsoft.com 
. .. . 

http://www.crystalmaker.co.uk 

httpllwww.xml-cml.org 

httpl/www.mdli.com 

http:llwww.daylight.com/dayhtml/ 
smiles!index.html 

.. httpl/mercury.ebi.ac.uk 

httpl!www.galactic.com/galactid. 
· Data/spcvue.htm · 

MIME Type Tables I 559 



Table D-5. "Chemical" MIME types(continued) 

chemical/x-gamess~input . GAMESS Input format inp,gam .. http://www.msg.ameslab.gov/ 
GAM£55/Graphics/ 
MacMo/Pit.shtml 

chemical/x-gaussian-input . Gaussian Input format gau http://www.indli.com 

chemical/x-gaussian, Gaussian Checkpoint format fch, fchk http://products.Camsoft.com 
checkpoint 

chemicallx~gaussian-cube . Gaussian Cube (Wavefunction) format cub http://Www.md/Lcoin 

.chemical/x-gcg8-sequence gcg 

chemical/x-genbank T oGenBank format gen 

chemical/x-isostar · I so Star library of intermolecular istr, ist http://www.ccdc.cam.ac.uk 
. interactions 

chemical/x-jcamp-dx · JCAMP Spectroscopic Data Exchange jdx, dx http://www.mdli.com 
·format 

chemical/x-jjc-review~surface Re_View3 OrbitaiContourfiles rv3 http://www.brunel.ac.uk!depts/ 
chem!ch241s/re.:,.. view/rv3.htm 

chemical/x-jjc -review-xyz Re_:_View3 Animation files xy b http:l/wWw.brunel.ac.uk/depts/ 
chem/ch241slre_view/rv3.htin 

. chemical/x-jjc"review-vib Re_;;View3 Vibration files · rv2, vib http://www.brunel.ac.uk/depts/ 
chem/ch241s/re_view/rv3.htm 

chemical/x-kinemage Kinetic (Protein Structure) Images kin http:/ /www.faseb.org/protein/ 
kinemages!MogeSoftware.html . 

chemical/x-macmolecule MacMolecule file format mcm 

chemical/x-macromodel- MacroModel Molecul~r Mechanics mmd, http:/ /www.columbia.edu/cul 
input mmod chemistry! 

chemical/x-mdl-molfile · MDL Molfile .. mol ·http:/ /www.mdli.com 

chemical/x-mdl-rdfile Reaction data file rd http://www.mdli.com 

chemical/x-mdl-rxnfile MDL Reaction format rxn http://www.mdli.com. 

chemical/x-mdl-sdfile MDL Structure data file sd http:/ /www.mdli.com 

chemical/x-mdl-tgf MDL Transportable Graphics Format tgf http://Www.mdli.coin 

chemical/x"mif mif 

chemical/x-mol2 . Portable representation of a SYBYL · moll http://www.tripos;com 
molecule.· 

chemical/x-molconn-Z Molconn-Z format b http://www.eslc. vabiotech.coml 
· molconn/mo/connz.html· 

chemical/x-mopac -input MOPAC Input format mop http:/ /www.md!J:com 

chemical/x-mopac-graph MOPAC Graph format gpt http:/ !products.camsoft.com 

chemical/x-ncbi-asnl asn (old 
form) 

chemical/x~ncbi-asn 1-binary val 

chemical/x-pdb Protein DataBank pdb pdb http://Www.mdli.com 

560 I Appendix D: MIME Types 



Table D-5. "Chemical" MIME types (continued) 

. SWISS-PROT protein sequence 
database 

chemical/x-vamas~iso14976 · Versailles Agreement on Materials 
and Standards 

chemical/x-vmd Visual Molecular Dynamics 

chemical/x-xtel Xtelpiot file format · 

chemical/x-xyz . · Co-ordinate Animation format 

image/*-·· 

vms 

vmd 

xtel 

xyz 

http:lfwWw,expasy.ch!spdbv!textl . 
· download.htm · · · 

http:!lwww.acolyte.co.uk!JISOI 

http://www.ks.uiucedu/Research! 
· vmd/ ···. · · · 

· http://www.recipnet.indiana.edu/ 
.graphics!xtelplot/xtelplot.htm 

http://www.mdli.com · 

Table D.:6. summarizes some of the image types commonly.exchanged by email and 
HTTP. 

Table D-6. "Image" MIME types 

~~iMf~~:Rlli~l, 
image/bmp 

image/cgm 

image/g3fax 

image/gif 

image/ief 

image/jpeg 

image/naplps 

image/png 

image/prs.btif 

image/prs.pti-

image/tiff 

-¥i~ffi9i~Mi 
Windows BMP image format. 

Computer Graphics Metafile {CGM}is 
an lnternationalStandard for thepor­
table storage and transfer of2-D 
illustrations. 

G3 Facsimile byte streams. 

Compuserve GIF images. 

JPEG images. 

North American Presentation layer 
Protocol Syntax (NAPLPS) images, 

Portable Network Graphics {PNG} 
images. 

Format used by Nations Bank for BTIF 
image viewing of checks and other 
applications. 

PTI encoded images. 

TIFF images. 

.· . . . . . 

:, ¥I~1~~j~t ~;~~e.Fl~~~~~ .. 
bmp 

Alari Francis 
A,H.Fraricis@open.ac.uk 
See ISO 8632:1992; IS 8632:1992 

·Amendment 1 (1994), and IS 8632: 
· 1992 Amendmt:nt 2 {1995) 

RFC 1494 

gif RFC 1341 

ief RFC 1314 

jpeg,jpg, . JPEG Draft Standard ISO 10918-1 
jpe, jtif . CD 

ANSI X3.11 0·1983 CSA TS00-1983 

png Internet draft draft~boutell-png­
spec-04.txt, "Png {Portable 

·. NetworkGraphics) Specification 
Version 1.0" 

btif, btf ·Arthur Rubin 
arthurr@crt.com 

pti . Juern laun 
. juern.laun@gmx.de 

http://server.hvzgymn. wn.schule­
bw.de!ptil 

tiff, tif .. I RFC2302 

MIMEType Tables I · 561 



Table D~6. "Image" MIME types(wntinued) 

. r~~~wir ~ :i :~-:[£~i[J{.:1: 

·::.-J~r,~ptiO . :!a~ffi.~Jl{~~£1~ ('H1f!~Im&;:, 
image/vnd.cns.inf2 

image/vnd,dxf. 

image/vndJastbidsheet. 

image/vnd.fpx 

image/vnd.fst 

image/vnd.fujixerox.edmics­
mmr 

image/vnd.fujixerox.edmics­
rlc 

image/vnd.mix ' 

image/vnd.net-fpx 

image/vnd,wap.wbmp 

image/vnd.xiff 

image/x-cmu-raster 

image/x-portable-anymap 

image/x-portable-bitinap ·. 

image/x~portable-graymap 

image/x-portable-pixmap 

image/x-rgb 

irriage/x-xbitmap 

image/x-xpixmap · 

image/x-xwindowdump 

------

Supports application features avail-
. able on the TRILOGUE Infinity network 
services platform from Comverse Net­
work Systems. 

DXFvector CAD files. dxf 

·A FastBid Sheet contains a raster or fbs 
vector image that represents an engi-
neering or architectural drawing. · 

Kodak FlashPix images. fpx 

Image format from FAST Search and 
Transfer. 

·Fuji Xerox EDMICS MMR image 
format. · 

Fuji Xerox EDMICS RlC image format. 

MIX files contain binary data in 
streams that are used to represent 
images and related information: They 

. are used by Microsoft PhotDraw and 
Picturelt software. 

Kodak FlashPix images. 

From Apache miine.types. 

Extended Image Format used by Pagis 
software. 

·From Apache mime. types. 

PBM generic images .. 

PBM bitmap images. 

PBM grayscale images. 

PBM color images. 

Silicon Graphics's RGB images. 

X-Window System bitmap images. 

X-Window System color images. 

. . X-Window System screen capture 
images. 

----

fst 

mmr 

ric 

wbmp 

xif 

ras 

.pnm 

pbm 

pgm 

ppm. 

rgb 

xbm 

xpm 

xwd 

562 I Appendix D: ·MIME Types 

I 

Ann Mclaughlin 
Com verse NetWork Systems 
amclaughlin@comv~rsens.com 

Scott Becker 
. scottb@bxwa.com 

Chris Wing 
format_changcrequest@kodak. 
com 
http:/ /www.kodak.com 

Arild Fuldseth . 
· Arild.Fuldseth@fast.no 

Masanori Onda 
. ' 

. Masanori.Onda@fujixerox.co.jp 

Same as above 

Saveen Reddy2 
saveenr@microsoft.com 

Chris Wing 
format_change_request@kodak. 
com 
http:/ lwww.kodak.com 

Steve Martin 
smartin@xis.xerox.com 

Jeff Poska nzer 
http:/ /www.acme.com/software/ 
pbmplus! . 

Same as above 

Same as above 

Same as above 



message/* 
Messages are composite types used to communicate data objects (through email, 
HTTP, or other transport protocols). Table D-7 describes the common MIME mes­
sage types. 

Table D-7. "Message" MIME types 

!,~1Mi~~~ 
message/delivery-status 

message/disposition­
notification 

message/external-body 

message/http· 

message/news 

message/partial 

message/rfc822 

message/s-http 

model/* 

Defines a way to transmit news arti­
cles via email for human reading.-:: 
message/rfc822 is not sufficient 
because news headers have seman­
tics beyond those defined by RFC 822. 

Permits the fragmented transmission 
of bodies that a rethought to be too· 
large to be sent directly by email.. 

A complete email message. 

Secure HITP messages, an alternative 
to HITP over SSL. 

RFC2298 

RFC 1341 

RFC2616 

RFC 1036 

RFC 1341 

RFC 1341 

RFC2660 

The model MIME type is an IETF-registered extension type. It represents mathemati­
cal models of physical worlds, for computer-aided design,· and 3-D , graphics. 

· Table D-8 describes some of the model formats. 

Table D-8. "Model" MIME types 

\)~!~1~11~ 
model/iges 

model/mesh 

model/vnd.dwf 

. 'f;~sc~i~tid.~'>C'C . 

The Initial Graphics Exchange Specifi­
cation (IGES) defines a neutral data 
format that allows for the digital 
exchange of information between 
computer-aided design (CAD) systems. 

DWF CAD files. 

.. ~~K~~~~~effi: ',is~~tl!li9MI~~i~l~u~· 
igs, iges RFC 2077 

msh, 
mesh,· 
silo 

dwf 

RFC2077 

Jason Pratt 
jason.pratt@autodesk.com 

model/vnd.flatland.3dml Supports 3DML models supported by · 3dml, . Michael Powers 
pow@flatland.com 
http://www.flatland,com 

Flatland products. 3dm 

MIMEType Tables I 563 



. . 
.· . . . . 

Table D-8. ''Model" MIME types (continued). 

model/vnd.gs~gdl 

model/vnd.gtw 

model/vnd.mts 

model/vnd.parasolid.trans­
mit.binary 

· model/vnd.parasolid.trans­
mit.teXt 

model/vnd. vtu 

model/vrml 

multipart/* 

The Geometric Description language . 
(GDl) is a parametric object definition .. 

·language for ArchiCADby Graphisoft. 

Gen-T rix models. 

MTS model format by Virtue ... 

.. Binary Parasolid modeling file. 

TextParasolid modeling file. 

VTU model format by Virtue.·· 

Virtual Reality Markup language 
format files.·· · 

msm, 
ism 

Attila Babits 
· ababits@graphisoft.hu 
http.!/www.graphisoft,com 

gtw Yutaka Ozaki 
· yutaka_ozaki@gen.co.jp 

mts Boris Rabinovitch. 
boris@virtue3d.com 

x_b http.!/www.ugsolutions.com/ 
produas!parasolidl · 

. x_t http://www.ugsolutioils.com/ 
produas/paraso/id/ 

vtu Boris Rabinovitch 
boris@virtue3d.com 

wrl, vrml RFC 2077 

. . . . . 

Multipart MIME types are composite objects that contain other objects. The sub­
. type describes the implementation of the multipart packaging and how to process 

the components. Multipart media types are s'ummarized in Table D-9. 

Table D-9. "Multipart" MIME types 

I~M'M~i~p~~~(,,,,,~"·--- ~£~~ijm~; 
multipart/alternative The content consists of a list of alter~ 

multipart/appledouble 

niultipart/byteranges 

native representations, each with its 
·own ContenHype.The client can 
select t~e best supported component. 

Apple Macintosh files contain 
"resource forks" and other desktop 
data that describes the actual file con­
tents. This multipart content sends 
the Apple metadata in one part and 
the actual content In another part .. 

. When an HTIP message includes the 
content ofmultiple ranges, these are 
transmitted in a "multipart/byter­
anges" object. This media type 

· includes two or more parts, separated 
· by MIME boundaries, each with its 

own Content-Type and Content" .. 
Range fields. 

564 I . Appendix D: MIME Types 

http.! /www.isi.edu/in-notes!iana! 
assignments/media-types! 
multipart!appledouble. 

RFC2068 



Table D-9. ''Multipart" MIME types (continued) 
. -

multipart/digest 

multipart/encrypted 

multipart/form-data 

multipart/header-set 

.multipart/mixed 

multipart/parallel 

multipart/related 

multipart/report 

. multipart/signed 

multipart/voice-,message 

text/* 

Contains a collection of individual 
email messages, in an easy~ to-read 
form. · 

··Uses two parts to support crypto" 
graphically encrypted content.Th e 
first part containsthe control in for-
. matioil necessary to decrypt the data 
in the second bOdy part and is labeled 
according to the value of the protocol 
parameter. The second part contains 
the encrypted data in type applica­
tion/octet-stream. · 

Used to bundle up a set of values as 
the result of a user filling out a form. . 

Separates user data from arbitrary 
descriptive metadata. 

A collection of objects; 

. Syntactically identicalto multipart/ 
mixed, but all of the partsare intended 
to be presented simultaneously,on 
systems Capable of doing so; 

Intended for compound o~jects con-
.· sisting of several interrelated body · 
parts. The relationships between the 
body parts distinguish them from 
other object types. These relation~ 
ships often are represented by links 
internal to the object's components 
that reference the other components. 

Defines a general container type for · 
electronic mail reports of any kind . 

Uses two parts to support crypto-
. graphically signed content. The first 

part is the content, including its MIME 
· headers. The second part contains the 

information necessary to verify the 
digital signature. 

· Provides a mechanism for packaging 
a voice message into one container 
that is tagged as VPIM v2-compliarit. _· 

-· - RFC 1341 

RFC1847 -. 

.RFC2388 

http:/ /www.isi.edu/in-notes/iana! 
assignmetits/media~types/ 

.. milltipartlheader~set 

RFC 1341 

RFC 1341 . 

RFC 2387 

RFC 1892 

RFC 1847 

. RFCs 2421 and 2423 

Text media types contain characters and potential formatting information. Table D-10 
summarizes text MIME types. -

MIME Type Tables . ·.I 565 



Table D-10. "Text" MIMEtype.s 

text/calendar Supports the iCalendar calendaring. RFC2445 
and scheduling st~ndard. · 

text/css Cascading Style Sheets. · css RFC2318 

text/directory . Holds record data from a directory RFC2425 . 
database, such as lDAP. 

•. 

text/enriched Simple formatted text, supporting · RFC 1896 · · 
fonts, colors, and spacing. SGMl~like 
tags are used to begin and end 
formatting. 

text/html HTMl file. html, RFC2854 
htm 

. text/parityfec Forward error correction for text RFC 3009 
. streamed in an RTP stream. 

·text/plain Plain old text. asc, txt 

· text/prs.lines.tag Supports tagged forms, as used for tag, dsc John lines 
email registration .. john@palddin.demon.co.uk . 

http://W'Nw.paladin.demon.co.uk/ · 
tag-types/ 

text/rfc822-headers Used to bundle a set of email headers, RFC 1892 
such as when sending mail failure 
reports. · 

text/richtext Older forin of enriched text. See text/ rtx RFC 1341 
enriched. 

text/rtf The Rich Text Format (RTF) is a rtf 
method of encoding formattedtext · 
and graphics for transfer between 
applications. The format is widely 
supported by word-processing appli-
cations on the MS-DOS, Windows, 
OS/2, and Macintosh platforms. 

text/sgml SGMl markup files. . sgml,· RFC 1874 
sgm 

text/tl40. Suppoits standardized T.140 text, as RFC2793 
used in synchronized RTP multimedia. 

text/tab-separated-values· TSV is a popular method of data inter- tsv http:! /www.isi.edu/in-notes/iana/ 
change among databases and spread- assignments/media-types/text/tab-
sheets and word processors. It sepa;ated-values 
consists of a set of lines, with fields 
separated by tab characters. 

text/uri-list Simple, commented lists of URls and uris; uri RFC 2483 
URNs used by URN resolvers, and any 

· other applications that need to com-
municate bulk URI lists. 

566 I Appendix D: MIME Types 



Table D-10. "Text"·MIME types (continued). 
. . 

text/vnd.abc · ABC files are a human-readable for~ abc . http://WwW.gre.ac.uk! 
mat for musical scores. ~c.watshaw!a6d 

· http://home7.swipnet.se/ 
~ w-7 7 382/abcbnf.htm 

text/vnd.curl Provides a setof content definition curl · Ti.lll Hodge 
. languages interpreted by the CURL . thodge@curl.com 
runtime plug-in. . . . 

text/vnd;DMCiientScript CommonDM Client Script files are. dins • Dan Bradley . 
used ashyperlinks to non-http sites dan@dantom.com 
(such as BYOND, IRC, or tel net) · http://www~byond.comkode/ref! 
accessed by the Dream Seeker client 

· application. 

· text/vnd.fly . Fly is a text preprocessor that uses a fly John~Mark Gurney 
simple syntax to create an interface jmg@ftyidea.com 
between databases .and web pages. http://www.flyidea.com 

text/vnd.fmi.flexstor · For use in the SUVDAMA and flx · http:! lwww.ozone.fmi.fi/ 
UVRAPPF projects. .SUVDAMA/ 

· http://www.ozone.fmi.fi/UVRAPPFI 

text/vnd.in3d.3dml For In 3D Player. · 3dml, Michael Powers 
3dm powers@insideout.nei 

. text/vnd.in3d.spot For ln3D Player. spot, spo · · Same as above 

text/vnd.IPTC.NewsMl NewsML format specified by the xml David Allen 
· International Press Telecommunica- m_ director_,_iptc@dial.pipex.com 

tions Council (IPTC). http://wWw.iptc.org 

text/vnd.IPTC.NITF · NITF format specified by the IPTC. xml · Same as above 

http:! /www.nitf.org 

text/vnd.latex-z · Supportsla leX documentscontain- · http:l(www.comlab.ox.ac.ukj 
ing Z notation. Z notation (pro- archive/z/ · 
nounced "zed"), is based on Zermelo-
Fraenkel set theory and first order 
predicate logic, and it is useful for-
describing computer systems. 

text/vnd;motorola.reflex Provides a common method for sub- Mark Patton 
mitting simple text messages from fmpO 14@email.mot.com 
ReFLEX™ wireless devices. Part ofthe FLEXsuite™ of Enabling 

· Protocols specification available 
from Motorola under the licensing 
agreement 

text/vnd.ms-mediapackage This type is intended to be handled by mpf Jan Nelson. 
the Microsoft application programs jann@miaosoft.com 
MStore.exe and 7 storDB.exe. 

MIMETypeTables ·1 . 567 



. . ·. . . . . . . . . 

Table D-10. "Text" MI¥E types (continued). 

text/vnd.wap~si 

text/vnd.wap.sl 

text/vnd.wap.wml 

text/vnd.wap.wmlscript 

text/x-setext 

text/xml 

video/* 

·Service Indication (51) objects contain 
a message describing aii eventand a · 
URI describing where to load the cor-
responding $ervice. ·. · 

· The Service loading (Sl) contenttype 
provides a means to convey~ URI to a 
user agent in a mobile client. The eli-

. ent itself automatically loads the 
content indicated by that URI and 
executes it in the addressed user 
agent without user intel'l(ention 
when appropriate. 

Wireless Markup language (WMl) is 
· .·a markup language, based on XMl, 

that defines content and user inter-
face for narrow-band devices, includ-
ing cellular phones and pagers. 

. . 

WMlScript is an evolution of Java- . 
Script for wireless devices. 

From Apache mime.types. • 

Extensible Markup language format 
file (use application/xml if you want 

· the browser to save to file when 
·· downloaded)~ 

si, xrril WAPForum ltd 
http://www.wapforum.org 

sl,xml Same as above 

wml ·Same as above 

· wmls Same as above 

etx 

xml RFC 2376 

Table D-11 lists some popularvideo movie formats. Note thatsome video formats 
are classified as application types. 

Table P-11. "Video" MIME types 

video/MP4V-ES 

video/mpeg 

video/pa rityfec . 

video/pointer 

video/quicktime 

video/vnd.fvt 

~~gt!ifil!ipJ~ 
MPEG-4 video payload, as carried by 
RTP. 

Video encoded per the ISO 11172 CD 
MPEG standard .. 

Forward error correcting video format 
for data carried through RTP streams. 

Transporting pointer position infor­
mation for presentations. · 

· Apple Quicktime video format. 

Video formatfrom FAST Search & 
Transfer. 

568 · I Appendix 0: MIME Types 

" ~~t~¢~~f?c11 :;~~~[i!g~~~~~r~\~~~,;~~~ 

mpeg, 
mpg, 
mpe 

qt, mov 

fvt 

. RFC3016 

RFC 1341 

RFC3009 

RFC2862 

http://www.apple.com 

Arild Fuldseth 
Arild.Fuldseth@fast.no 

_·.:.:._ 



.. Table D" 11. "Video" MIME types (continued) 

video/vnd.motorola.video 
video/vnd.motorola.videop 

Proprietary formats used by products 
from Motorola ISG. 

. JomMcGinty 
Motorola ISG . . 

·.tmcg/nty@dma.isg:mot 

video/vnd.mpegurl This media type consists of a series of mxu Heiko Recktenwald 
uzs 7 06@uni-bonn.de 

video/vnd.nokiaJnterleaved- . 
multimedia 

video/x-msvideo 

. video/x-sgi-movie 

URls of MPEG Video files. 

Used in Nokia 9210 Communicator 
video player and related tools. . 

Microsoft AVI movies. 

Silicon Graphics's movie format. 

Experimental. Types. · · 

· nim 

a vi 

movie 

"Powerand Responsibility: Coiwer­
sations with Contributors," Guy van 
Belle, et al., lMJ 9 (1999), 127..,- · 
133; 129 (MIT Press). 

Petteri Kangaslampi 
· petteri.kangasldmpi@nokia.com 

· http://www.microsoft.com . 

http://W..VW.sgi.com 

The set of primary types supports .most content types. Table D-12 lists one· experi­
. mental type, for conferencingsoftware, that is configured in som,e web servers .. 

Table D-12 .. Extension MIME types 

:~~~~L~& 'i~~i!: 
ice 

MIMEType Tables I · 569 



APPENDIX E 

. Base-64 Encoding 

Base-64 encoding is used by HTTP, for basic and digest authentication, and by sev­
eral HTTP extensions. This appendix explains base-64 encoding and provides con­
version tables and pointers to Perl software to help you correctly use base-64 
encoding in HTTP software. 

Base-64 Encoding Makes Binary Data Safe 
The base-64 encoding converts a series. of arbitrary bytes into a longer sequence of 
common text characters that are all legal header field values. Base-64 encoding lets 
us take user input or binary data, pack it into. a safe format, and ship it as HTTP 
header field values without fear of them containing colons, newlines, or binary val­
ues that would break HTTP parsers. 

Ba:se-64 encoding was developed as part of the MIME multimedia electronic mail· 
standard, so MIME could transport rich text and arbitrary binary data between·differ­
ent legacy email gateways: Base-64 encoding is similar in spirit, but more efficient in 
space, to the uuencode and BinHex standards for textifying binary data. Section 6.8 
of MIME RFC 2045 details the base-64. algorithm. 

Eight Bits to Six Bits 
Base-64 encoding takes a· sequence of 8-bit bytes, breaks the sequence into 6-bit 
pieces, and assigns each 6-bit piece to one of 64 characters comprising the base-64 
alphabet. The 64 possible output characters are common and safe tO place in HTTP 
header fields. The 64 characters include upper- and lowercase letters, numbers, +, 

• Some mail gateways would silently strip many "non-printing" characters with ASCII values between 0 and . 
31. Other programs would interpret some bytes as flow control characters or other special control charac­
ters, or convert carriage returns to line feeds and the like. Some programs would experience fatal errors upon 
receiving international characters with a value above 127 because the software was not "8-bit clean." 

570 



and /. The special character = also lS used. The base~64 alphabet .is shown· in 
Table E~l. 

: .-

·. 

Note that because the~base"-64 -_encoding uses s~bit characters to represent 6 b~ts of 
information, base 64~encoded strings are about 33% larger th~m the original values. 

Table E"i. Base~64 alphabet _. 

0 A 8 I 16 Q 24 y 32 40 
.. 48 .w -· 56 4 g 0 

B 9 J 17 . R 25 z 33 h 41 p 49 .·X 57 5 

2 c 10 K 18 s 26 a 34 42 q 50 y 58 6 

3 0 11 l 19 T - 27 b .. 35 j 43_. r . 51 'z 59 7 

4 E 12 M 20 u 28 ( 36 k 44 s 52 0 60 8 

5 F 13 N 21 v 29 d 37 I. 45 t 53 61 9 

6 G 14 0 22 w 30 e 38 -m 46 .U 54 2 62 + 
7 H 15 p 23 X 31 f 39 n 47 v 55 3 . 63 I 

_ Figure E-1 shows a simple example of base:..64 encoding.- Here, the three-character 
input value "Ow!" is base 64-:-encoded, resulting in the four-character base 64-
encoded value "T3ch". It works like this: · 

1. The string ''Ow!" is broken into 3 8-bit bytes (Ox4F, Ox77,0x21). 

2. The 3 bytes create the 24-bit binary value 01001111011i011100100001. 

3. These bits are segmented into the 6-bit sequences 010011; .110111, 01110, 
100001.. 

4. Each of these 6-bit values represents a number from 0 to 63, corresponding to 
· one of 64 characters in the. base-64 alphabet. The resulting base 64-encoded 

string is the 4-character string "T3ch", which can then be sent across the wire as 
"safe" 8-bit characters, because only the most portable characters are used (let­
ters, numbers, etc.). 

8-bit characte~ Q w I • 

8-bit v~lue (hexidecim~l) $4 F $77 $21 

8-bitvalue(binary)- 010011110111011100100001 

6-bit value (decimal) 19 

Base-64 character T 

Figure E-1. Base-64 encoding example 

55 

3 

28 

c 
33 
h 

Eight Bits to Six Bits I 571 



Base-64 Padding 
. .. ' . . 

Base-64 encoding takes a seque~ce of 8-bit bytes. and segments the bit s~ream into· 6- · 
bit chunks. It is unlikely t:hat the sequence of bits will divide evenly into 6-bit pieces. 
When the bit sequence does not divide evenly into 6-bit pieces,· the bit sequence is 
padded with zero bits at the end to make the length of the bit sequence a multiple of . 
24 (the least common multiple of 6and 8 bits). · 

When encoding the padded bit string, any group of 6bits that is completely padding. 
(containing no bits from the original data) is represented by a special 65th symbol: 
"=". If a grou:p of Kbits is partially padded, the padding bits are set to zero. 

table E-2 shows examples of padding. The initial input string "a: a" is 3 bytes long,· 
or 24 bits. 24 is a multiple of6 and 8; so no padding is required. The resulting base 
64-encoded string is "YTph". · . 

Table E~2~ Base-64paddingexarriples 

a:a 
a:aa 
a:aaa 
a:aaaa 

011000 010011 101001 100001 
' ' 

011000 010011 101001 100001 011000 01xxxx xxxxxx xxxxxx . . . . 

011000 010011 101001 10000i 011000 010110 0001XX. XXXXXX 

011000 010011 101001 100001 011000 010110 000101 100001 

YTph 
YTphYQ== 
YTphYWE= 
YTphYWFh 
~--

. . . . .· . ·:' . . . . .· . 

However, when another character is added, the input string grows to32 bits long. 
The next smallest multiple of6 and 8 is 48 bits, so 16 bits of padding are added. The · 
first 4 bits of padding are mixed with data bits~ The resulting 6-:-bitgroup, Olxxxx, is 
treated as 010000, 16 decimal, or base-64 encoding Q. The remaining two 6-bit 
groups are all padding and are represent_edby "=" . 

. Peri Implementation 
MIME: :Base64 is a Perl module for base-64 encoding and decoding. You can read 
about. this module at http://www. perldoc. com!perl5. 6~ 1/lib!MIME/Base64. html. 

You can encode and decode strings using the MIME: :Base64 encode~base64 and 
decode_base64 methods: 

use MIME:~Base64; 

$encoded = encode_base64('Aladdin:open sesame'); 
$decoded =decode base64($encoded); - . 

572 I Appendix E: Base-64 Encoding 



For More Information 
For more information on base-64 encoding, see: 

http://www.ietforg!rfc!rfc2045.txt . . 
Section 6$ of RFC 2045, "MIME Part 1: Format of Internet Message Bodies," 
provides an official specification of base-64 encoding. 

http://wivw.perldoc.com/perl5.6.1/lib!MIME/Base64.html . 
This web site contains documentation for the MIME: :Base64 Perl module that 
provides encoding and decoding of base-"64 strings. 

For More Information I 573 



APPENDIXf 

Digest Authentication·· 

. . . . ,· 

This appendix contains supporting data and source code for implementing HTTP 
digest authentication facilities .. 

Digest WWW-Authenticate Directives 
WWW-Authenticate directives are described in Table F-:1, paraphrased from the 

·descriptions in RFC 2617. As always, refer to the official specifications for the most 
up-to-date details. 

Table F-1. Digest WWW-Authenticate header directives (jrom RFC 2617) 

~~~~~~#!{:9 
realm

nonce

574

i~pi~~i!~{~~~~~il5@:
A string to be displayed to users so they know which username and password to use. This string should .

· contain at least the name of the host performing the authentication and might additionally indicate the
collection of users who might have access; An example might be "registered_users@gotham.news.com".

A server-specified data string that should be uniquely generated each time a 401 response is made. It is·
recommended that this string be base-64 or hexadecimal data. Specifically, because the string is passed in
the header lines as a quoted string, the double~quote character is not allowed.

The contents of the nonce are implementation-dependent. The quality ofthe implementation depends on
· a good choice. A nonce might, for example, be constructed as the base-64 encoding of: ·

time-stamp H(time-stamp ":" ETag ":" private-key)
·where time-stamp is a server-generated time or other nonrepeating value, ETag is the value of the HTTP
ETag header associated with the requested entity~ and private-key is data known only to the serve_r. With a
nonce of this form, a server would recalculate the hash portion after receiving the clierit Authentication
header and reject the request if it did not match the nonce from that header or if the time-stamp value is
not recent enough. In this way, the server can limit the time of the nonce's validity.The inclusion of the

•. ET ag prevents a replay request for an updated version of the resource. (Note: including the IP address of
the client in the nonce appears to offer the server the ability to limit the reuse oft he nonce to the same cli­
ent that originally got it. However, that would break proxy farms, where requests from a single user often·
go through different proxies in the farm. Also, IP address spoofing is not that hard.)·

An implementation might choose not to accept a previously used nonce or a previously used digest, to
.. protect against replay attacks, or it might choose to use one-time nonces or digests for POST or PUT.

requests arid time-stamps for GET requests. ·

Table F~l. Digest www~Authenticate header directives (from RFC 2617) (continued)

opaque

stale

algorithm·

qop

A quoted; space-separated list of URis (as specified in RFC 2396, "Uniform Resource Identifiers: Generic .
Syntax") that define the protection space. If a URI is an abs_path, it is relative to the canonical root URL of
the server being accessed. An absolute URI in this list may refer to a different server than the one being
accessed. · · -

The.dient can use this listto determine the set of URis for which the same authentication information may
be sent: any URI that has a URI in this list as a prefix (after both have been made absolute) may be
assumed to be in the same protection space. · ·· · · ·

If this directive is omitted or its value is empty, the client should assume that the protection space consists
of all URis oil the responding server. ·

· · This directive is not meaningful in Proxy-Authenticate headers, for which the protection space is always
the ~ritire proxy; if present, it should be ignored~ · · ·

A string of data, specified by the server, that should be returned by the client unchanged in the Authoriza­
tion header of subsequent requests with URis in the same protection space. It is (ecommended that this
string be base-64 or hexadecimal data. · · · ·

A flag indicating that the previous request from the client was rejected because the nonce value was stale.
If stale.isTRUE (case-insensitive), the client may want to retrythe request with a new encrypted response,
without reprompting the user for a new username and passwqrd; The server should set stale to TRUE only
if it receives a request for which the nonce is invalid but has a valid digest(indicating thatthe client knows
the correct username/password).lfstale is FALSE, or anYthing ()therthan TRUE, or the stale directive is not
present, the username and/or password are invalid, and new values must be obtained.

·A string indicating a pair ofalgorithms used to produce the digest and a checksu~.lfthis is not present, it
is assumed to be "MDS;'.Ifthe algorithm is not understood, the challenge should be ignored (and a differ-
ent one used, if there is more than one). ·
In this document, the string obtained by applying the digestalgorithm to the data "data" with secret
"secret" will be denoted by "KD(secret, data)", and th~ string obtained by applying the checksum algo­
rithm to the data "data" will be denoted "H(datat. The notatioil"unq(X)" means the value of the quoted
string "X" withoutthe surrounding quotes. · · · · ·

For the MDS and MDS-sess algorithms:
H(data) = MDS(dat'a)
HD(secret, data) = H(concat(secret, ·":", data))

l.e.,the digest is the MDS ofthe secret concatenated with a colon concatenated with the data. The MDS­
sess algorithm is intended to allow efficient third-party authentication servers.

This directive is optional but is made so only for backward compatibility withRFC 2069 [6]; it should be
used by all implementations complianhvith this version of the digest scheme. ·
If present, it is a quoted string of one or more tokens indicating the "quality of protection" values sup­
ported by the server. The value "auth" indicates authentication; the value ;,auth-int" indicates authentica­
tion with integrity protection. Unrecognized options must be ignored.

<extension>··. This directive allows for future extensions. Any unrecognized directives must be ignored.

Digest Authorization Directives
Each of the Authorization directives is described in Table F-2, paraphrased from the
descriptions in RFC 2617. Refer to the official specifications for the most up~to-date
details.

Digest Authorization Directives I 575

· . Table F-2 .. DigestAuthorization header directives (from RFC 2617)

username

realm

nonce

uri

response

algorithm

opaque

en once

qop

· nc

. <extension> .

The users name in the specified realm.
·. . . .

The realm passed to the client in theWWW-Authenticate header.

The samenonce passed to the client iitthe WWW-Authenticate header.

The URI from the request URI of the request line; duplicated because proxies are allowed to change the
request line in transit, and we may need the original URI for proper digest verification calculations.

This is the actual digest-the whole pointof digest authentication! The response is a string of3~ hexadec­
imal digits, computed by a negotiated digest algorithm, which proves that the user knows the password.

A string indicating a pair of algorithms used to produce the digest and a checksum. If this is not present, it
is assumed to be "MDS".

A string of data, specified by the server in a WWW-Authenticate header, that should be returned by the ·
client unchanged in the Authorization header of subsequent requests with URis in the same protection
space.

This must be specified if a qop directive is sent and must not be specified if the ~erver did not send a qop
. directive in the WWW-Authenticate header field. · ·

The cnonce value is an opaque quoted string value provided by the client and used by both client and
. server to avoid chosen plaintext attacks, to provide mutual authentication, and to proyidesome message~
integrity protection.
Seethe descriptions of the response-digest and request-digest calculations later in this appendix .

. Indicates what "quality.o{protection" the client has applied to the message. If present; ·its value must be
one of the alternatives the server indicated it supports in the WWW-Authenticate header. These values
affect the computation ofthe request digest.
This is a singletoken, not a quoted list of alternatives, as in WWW-Authenticate.
This directive is optional, to preserve backward compatibilitywith a minimal implementation ofRFC
2069, but it should be used if the.server indicated that qop is supported by providing a qop directive in the
WWW-Authenticate header field. . · · · ·

This must be specified if a qop directive is sent and must not be specified if the server did not send a qop
directive in the WWW-Authenticate header field. ·
The value is the hexadecimal count of the number of requests (including the current request) that the eli~
ent has sent with the nonce value in this request. For example, in the first request sent in response to a
given nonce value, the client sends nc="OOOOOOOl".
The purpose of thisdirecti~e is to allow the server to detect request replays by maintaining its own copy of
this count-ifthe same nc value is seen twice, the request is a replay. · · ·

This directive allows for future extensions. Any unrecognized directive must be ignored .

Digest Authentication-Info Directives
Each of the Authentication-Info directives is described in Table F-3, paraphra~ed
fro in the descriptions in RFC 2617. Refer to the official specifications for the most
up-to-date details. .

576 I Appendix F: DigestAuthentication

Table F-3. Digest Authentication-Info header directives (from RFC 26,17)

nextnonce

qop

rspauth

en once

nc

<extt?nsion>

-The value of the nextnonce directive is the nonce the serVer wants the client to use for a future authenti~
cation response. The server may send the Authentication-Info header with a'nextnonte field as'a means of
implementing one~ time or otherwise changing nonces.lf the next nonce field is present the client should
use it when constructing the Authorization headerfor its next request. Failure ofthe client to do so may
result in a reauthentication request from the server with "stale= TRUE". · · · ·

. · Server implementations should carefully considerthe performance implications of the us~ of this mecha­
nism; pipelined requests will not be possible ifevery response includes a nextnonce directive that must be
used on the next request received by the server. Consideration should be given to the performance versus
security trade-offs of allowing an old nonce value to be used for a limited time to permit request pipelin-
. ing. Use of the nonce countcan retain most of the security advantages of a new server nonce without the
· deleterious effects on pipelining. . · · · · ·

lndicatesthe "quality of protection'' options applied to the response by the server. The value "auth" indi~
cates authenticatioil;the value "auth-int" indicates authentication with integrity protection. The server
should use the same value for the qop directive in the response as was sent by the client iri the corre- ·

· sponding request. · · · · ·
. ' .

The optional response digest in the "response auth" directive supports mutual authentication"'-the
. server proves that it knows the user's secret, and, with qop=uauth-int", it also provides limited integrity
protection of the response. The uresponse~digest" value is calculated as for the "request-digest" in the
Authorization header, except that if qop="auth" or qop is not specified in the Authorization header for
the request, A2 is: · ·

A2 ~ ":" digest-uri~value
andifqop="auth-int", A2 is:

A2 = ":"digest-uri-value ":" H(entity-body)
where digest-uri-value is the value of the uri directive on the Authorization header in the request. The
cnonce and nc values must be the same as the ones in the client request to which this message is a
response. The rspauth directive must be present if qop="auth" or qop="auth-int" is specified. ·

The cnonce value must be the same as the one in the client request to which this message is a response.
The cnonce dire.ctive must be present ifqop=uauth" or qop="auth~int" is specified. ·

. The nc value must be the same as the one in the client request to whichthis message is a response. The nc
directive must be present if qop~"auth" or qop="auth-int" is specified. · ·

·This directive allows for future extensions. Any unrecognized directive must be ignored.

Reference Code
The following code implements the calculations of H(Al), H(A2), request-digest, and.
response-digest, from RFC 2617. It uses the MD_S implementation from RFC 1321.

·File "digcalc.h"
#define HASHLEN 16
typedef char HASH[HASHLEN];
#define HASHHEXLEN 32
typedef char HASHHEX[HASHHEXLEN+l];
#define IN

Refere~ce Code I 577

#derine OUT
I* calculate H(Al) ~s ~er HTTP Digest.spec *I
void DigestCalcHA1(.

IN char * pszAlg,
IN char * pszUserName,
IN.char * pszRealm,
IN £har * pszPassword,­
IN char * pszNonce)
IN char * pszCNonce,
OUT HASHHEX SessionKey

.); . .

I* calculate request:digest/response-digest as per HTTP Digest spec *I
void DigestCalcResponse(

IN HASHHEX HAl, · I* H(Al) *I
IN char * pszNonc~, ·. I* nonce from server *I
IN char * pszNonteCount, I* 8 hex digits *I
IN char • pszCNon~e, · I* client ·nonce *I
IN chai * pszQop, I* qop~value: "", ~auth", "auth-int" *I
IN char * pszMethod, I* method from the request *I
IN char * pszDigestUri,. · !* requested URL. *I
IN HASHHEX HEntity,. I* H(entity body) if qop=;'auth-int" */
OUT HASHHEX Response I* request-digest or response-digest *I
); .

File "digcalc.ci'
#include .<global. h>
#include <mdS.h> ·
#include'<string.h>
#include "digcalc.h"·

void CvtHex(

{

IN HASH Bin, _
OUT HASHHEX Hex
)

unsigned ~hort i~
unsigned char j;
for (i = 0; .i < HASHLEN; i++) {

j = (Bin[i] >> 4) & oxf;

};

if (j <= 9)
Hex[i*2] (j + 'o');

else
Hex[i*2l (j + '-a' - 10);

j ~ Bin[i] & Oxf;
if (j <= 9)

Hex[i*2+1] = -(j + 'o');
else

Hex[i*2+l] = (j + 'a' - 10);

Hex[HASHHEXLEN] = '\0';
};

578 I Appendix F: Digest Authentication

I* ~~lculate H(Al)'as··per ~pee *I ·
void DigestCalcHAl(·

{

};

IN ~har * pszAlg,
IN char * pszUserName~
IN. char * pszRealm,
IN char * pszPassword,
IN chai * p~zNonce,
IN char * pszCNonce,
OUT HASHHEX SessionKey
)

MDS_CTX MdSCtx;
HASH HAl; .
MDSinit(&MdSCtx);
MDSUpdate(&MdSCtx, pszUserName, strlen(pszUserName));
MDSUpdate(&MdSCtx; ":", 1);
MDSUpdate(&MdsCtx, pszRealm, strien(pszRealm));
MDSUpdate(&MdSCtx, ": ", 1);
MDSUpdate(&MdSCtx, pszPassword, strlen(pszPassword)); .·.
MDSFinal(HAl, &MdSCtx);
if (stricmp(pszAlg, "mds-sess") ==: o) {

MDSinit(&MdSCtx);
MDSUpdate(&MdSCtx, HAl, HASHLEN);
MDSUpdate(&MdSCtx, ":", i);

};

MDSUpdate(&MdsCtx, pszNonce, strlen(pszNonce));
MDSUpdate(&MdSCt~, ":", 1);
MDSUpdate(&MdSCtx; pszCNonce, strlen(pszCNonce));
MD5Final(HA1; &MdSCtx);

CvtHex(HAl; SessionKey);

I* calculate request-digestlresponse~digest as per HTTP Digest spec *I
void DigestCalcResponse(·

{

IN HASHHEX HAl, I* H(Al) */
IN char * pszNonce, I* nonce from server *I
I~ char * pszNonceCount, I* 8 .hex digits *I
IN char * pszCNonce, I* client nonce *I
IN char * pszQop, I* qop-value: "", "~uth", "auth~int" *I
IN char * pszMethod, /* method from the request *1
IN char * pszDigesturi, I* requested URL *I . .
IN HASHHEX HEntity, I* H(entity body) if qop="auth-int" *I
OUT HASHHEX Response I* request-digest or response~digest.*l
)

MDS_CTX MdSCtx;
HASH HA2;
HASH RespHash;
.HASHHEX HA2Hex;
II calculate H(A2)
MDSinit(&MdSCtx);
MDSUpdate(&MdSCtx, pszMethod, strlen(pszMethod));
MDSUpdate(&MdSCtx, ":", 1);
MDSUpdate(&MdSCtx, pszDigestUri, strlen(pszDige~tUri));
if (stricmp(pszQop, "auth-int") == o) {

Reference Code I 579

};

};

.MD5Updat~(&Md5Ctx, ":", 1);
MD5Update(&Md5Ctx, HEntity, HASHHEXLEN);

MD5Final(HA2, &Md5Ctx);
CvtHex(HA2, HA2Hex);

II calcufG~te response
MD5Init(&Md5Ctx);

· MD5Update(&Md5Ctx, HAl, HASHHEXLEN);
MD5Update(&Md5Ctx, .":", 1);
MD5Update(&Md5Ctx, pszNonce, strlen(pszNonce));
MD5Update(&Md5Ctx, ": ", 1); ·
if (*pszQop) {

MD5Update(&Md5Ctx, pszNonceCount:. strlem(pszNonceCount));
MDSUpdate(&MdSCtx, ":", 1);
MD5Update(&Md5Ctx, pszCNonce, strlen(pszCNonce));
MD5Update(&Md5Ctx, ": ", 1);
MD5Update(&Md5Ctx, pszQop, strlen(pszQop));
MD5Update(&Md5Ctx, ":u,. 1);

h ... · ·. .
MD5Update(&Md5Ctx, HA2Hex, HASHHEXLEN);
MDSFinal(RespHash, &Mdsctx);
.CvtHex(RespHash, Response);~

File "digtest.c"
#include <stdio.h>
#include "digcalc.h"

void main(int argc, char ** argv) {

};

char * pszNonce = ~dcd98b7102dd2fOe8b11dOf6oobfbOc093";
char * pszCNonce = "Oa4f113b";
chai * pszUser. ~ "Mufasa";
char * pszRealm = "testre~lm@host.com";.
char * pszPass = "Circle Of Life";
ch~t * pszAlg = "mds";
char szNonceCount[9] = "00000001";
char * pszMethod = "GET";
char * pszQop = "auth";
char * pszURI = "/dir/index~html";
HASHHEX HAl; .
HASHHEX HA2 = "~;
HASHHEX Response;
DigestCalcHAl(pszAlg, pszUser, pszRealm, pszPass,

pszNonce:, pszCNonce1 HAl);
DigestCalcResponse(HAl, pszNonce, szNonceCount, pszCNonce, pszQop,

pszMethod, pszURI, HA2, Response);
printf("Response = %s\n", Response);

580 I Appendix F: Digest Authentication

. . .

: ... : ·. ~ .. . App· . .. E·N·. ·.o·IX .. · G ..
. . . -: . ,• ... · ··. ,. · ...

languag~ Tags

Language tags are short, standardized strings that name spoken languages-for
example, "fr" (French) and "en-GB" (Great Britain English). Each tag has one or
more parts, separated by hyphens, called subtags. Language tags were described in
detail in the section. "Language Tags and HTTP" in Chapter 16. · .

This appendix summarizes the rules, standardized tags, and registration information
for language tags. It contains the following reference material: - .·

• Rules for the first (primary) subtag are summarized in "First Subtag Rules."

• Rules for the second subtagare summarized in "SecondSubtag Rules."

• lANA-registered language tags are shown in Table G-1.

• ISO 639language codes are shown in Table G-2.

• ISO 3166country codes are shown in Table G-3 .

. FirstSubtag Rules
If the first subtag is:

• Two characters long, it's a language code from the ISO 639* and 639-1 standards

• Three characters long, it's a language code listed in the ISO 639-2t standard-

• The letter "i," the language tag is explicitly IANA~registered ·
• The letter "x," the language tag is a private, nonstandard; extension subtag

TheiSO 639 and 639-2 names are summarized in Table G-2.

• See ISO standard 639, "Codes for the representation of names of languages.~~

t See ISO 639-2, "Codes for the representation of names of langtiages-Part 2: Alpha-3 c~de." .

.. 58l

Second SubtagRules
lf the second subtag is:

· • Two characters long,it's. a cou~try/r~gion defined by ISO 3166*

• Three to eight characters long, it may be registered with the lANA

• One character long, it is illegal

The ISO 3166 country codes are summarizedinTable G-3.

lANA-Registered Language Tags

icbnn Bunun

i-default Default langu~ge context

i-hak· Hakka

i-klingon Klingon

.i-lux luxembourg ish

i-mingo Mingo

i-navajo Navajo

i"pwn Paiwan

i-tao Tao

i-tay Tayal

i-tsu Tsou

no"bok Norwegian "Boo.k language"

no-nyn · Norwegian "New Norwegian"

zh-gan Kan orGan

zh-guoyu · ·Mandarin or Standard Chinese

zh-hakka Hakka

zh-min Min, Fuzhou, Hokkien, Amoy, or Taiwanese

zh-wuu . Shanghaiese or Wu

zh-xiang. Xiang or Hunanese

zh-yue Cantonese

• The country codes AA, QM-QZ, XA-XZ and ZZ are reserved by ISO 3166 as user-assigned codes. These
must not be used to form language tags.

582 I Appendix G: language Tags

. ISO 639 La·nguage Codes ·

Table G-2. ISO 639 and 639-llanguage codes

· ~~~~9-~~a~~~Jfii.{
Abkhazian

· Achinese

Acoli

Adangme

Afar

Afrihili

Afrikaans

. . Afro-Asiatic (Other)

Akan ·

Akka.dian

Albanian

Aleut

. Algonquian languages ·

Altaic (Other)

Amharic-·

Apache languages

Arabic

Aramaic

·Arapaho

Araucanian

Arawak

Armenian

Artificial (Other)

Assamese ··

Athapascan languages

Austronesian (Other)

Avaric .

Avestan

Awadhi

Aymara.

Azerbaijani

·Aztec

Balinese

BaltiC (Oth~r)

·' ~ti$2~J~~'' eJ;,;~g~I~!~t;
ab abk

a a

af

sq

am

ar

hy

· as

ay

az

ace

ach

ada

aar

afh
afr

a fa

aka

akk

alb/sqi

ale

alg

tut

amh

apa
ara

arc

arp

arn

arw

arm/hye

art

asm

ath

map

ava
ave

awa

aym

aze

nah

ban

bat

IS0639language Codes I .583

Table G-2. ISO 639 and 639-2language codes (eontinued) ·.

Bambara

Bamileke languages

Banda

Bantu (Other)

Basa .

Bashkir

Basque·

Beja

· Bemba ·

Bengali

Berber (Other)

Bhojpuri

Bihari

Bikol

Bini

Bislama

Braj ·

Breton

Buginese

Bulgarian

Buriat

Burmese

Byelorussian

Caddo

Carib

Catalan

Caucasian (Other)

Cebuano

CeltiC (Other)

Central American Indian (Other)

· Chagatai

Chamorro

Chechen.

Cherokee

Cheyenne ·

584 I Appendix G: language Tags

~~r~,§ii~~l~~~it~~~!i2.~~~] ·

ba

eu

bn

bh .

bi

be

bg

my

be

ca

. ·bal

bam

bai

bad

bnt

· bas·

bak

· baq/eus

bej

bern

ben

ber

bho

bih

bik

bin

bis

bra

. bre

bug

bul

bua

bur/mya

bel

cad

car

cat

cau

ceb

eel

cai

chg

cha

che

chr

chy

· ·. Table G-2. ISO 639 and 639~2 language codes (continued)

. Chibcha

Chinese.

Chinook jargon

Choctaw

Church Slavic

Chuvash

Coptic

Cornish

Corsican

· Cree

Creek

Creoles and Pidgins (Other)

Creoles and Pidgins, English-based (Other)

Creoles and Pidgins, French"based (Other)

Creoles and Pidgins, Portuguese-based (Other)

Cushitic(Other) .

Croatian

Czech

Dakota ·

Danish

·. Delaware

· Dinka

Dive hi

Dogri

Dravidian (Other)

Duala

Dutch

Dutch, Middle (ca. 1050-1350)

. Dyula

· Dzongkha

Efik

Egyptian(Ancient)

Ekajuk ··

. Elamite

English

English, Middle (ca. 1100-1500)

zh

co

hr

cs

da

nl

dz

en

chb

chi/tho

chn

cho

chu

chv

cop

cor

cos

ere

mus

crp

cpe

cpf

cpp

cus

ces/ae

dak

dan

del

din

div

doL

dra

dua

dut/nla

dum

dyu

dzo

efi

egy

eka

elx

eng

enm

·1s0 639Language Cod~s ., .. 585

TableG-2. ISO 639 and 639-2language codes (continued) .·

~~:l~l~fi' . "~~·or,; ~c?"'-:li!~~J{ ~l~§~!il~Ii~
English, Old (ca. 450-1100) ang

·Eskimo (Other) esk

Esperanto

Estonian

Ewe

. Ewondo

Fang

Fanti

. Faroese

Fijian

Finnish

Finno-Ugrian (Other)

Fon

. French

French, Middle (ca. 1400-1600)

French, Old (842- ca. 1400)

Frisian

Fulah

Ga

·Gaelic (Scots)

Gallegan

Ganda

Gayo

Geez

Georgian

German

German~ Middle High (ca: 1050-1500)

German, Old High (ca. 750-1050)

Germanic (Other)

Gilbertese

Gondi

Gothic

Grebo

Greek, Ancient (to 1453)

Greek, Modern (1453-)

Greenlandic

586 I Appendix G: Language Tags

eo

et

fo

fj

.fi

fr

fy

gl

ka

de

el

kl

epo

est

ewe .

ewo

. fan

fat

fao

fij

fin

fiu

fon

fra/fre

.fmi

fro

fry

ful

gaa

gae/gdh

gig

lug

.·gay

gez

. geo/kat

deu/ger

gmh

goh

gem

gil

gon

got

grb

grc

ell/gre

kal

Table G-2. ISO 639 and 639"2 language codes (continued)

f.l~~~W~1~}~tc If~il?~~l , · ·
· Guarani · gn

· Gujarati gu

Haida hai

Hausa

Hawaiian

Hebrew

Herero

Hiligaynon

· Himachali

·Hindi

Hiri Motu

Hungarian

Hupa,

-lban

·Icelandic

lgbo

ljo

lloko

lndic (Other)

· Indo-European (Other)

Indonesian

lnterlingua (I ALA).

lnterlingue

lnuktitut

lnupiak

iranian (Other)

·Irish

Irish, Old (to 900)

·Irish, Middle (900- 1200)

lroquoian languages

Italian

Japanese

Javanese

Judeo-Arabic

Judeo-Persian

Kabyle

ha

he .

hi

hu

is

id

ia

ie

iu

ik

. ga

it

ja

jv/jw

hau

haw

heb

her

hi I

him

hin

hmo

hun

hup;

iba

ice/isl

ibo

ijo

ilo

inc

ine

ind

ina

irie

· iku

ipk

ira

gai/iri

sga

mga

iro

ita

. jpn

jav/jaw .

jrb

jpr

kab

ISO 639 Language. Codes I ss7

Table G-2. ISO 639and 639-2language codes (continued)

. iJ~~f~i£,
Kachin ·.

Kamba.

Kaimada

Kaimri

Kara-Kalpak

. Karen . ··

Kashmiri

Kawi

Kazakh

Khasi

Khmer

.Khoisan (Other)

Khotanese

Kikuyu

Kinyarvitanda

Kirghiz

Komi

Kongo

Konkani

Korean

Kpelle

Kru

Kuanyama

Kumyk · .. ·

Kurdish·

Kurukh

Kusaie

Kutenai

ladino

lahnda

lamba

·langue d'Oc (post-1500)

lao

Latin

latvian ·

letzeburgesch

588 I Appendix G: Language Tags

kn

ks

kk

km

rw

ky

ko.

ku

oc

lo

Ia
· lv

kam

· kan.

kau

kaa

· . kar

kas

kaw

kaz

kha

khm

khi

kho

kik

kin

kir

kom ·

kon

kok

kor

kpe

kro.

kua

kum

kur

kru

kus

kut

lad

lah

lam

oci

lao

lat

lav

ltz

TableG~2. ISO 639 and 639-2/anguage codes (continued) .

. ~£f~~{;(i.~;
Lezghian· ·

. Lingala

·.Lithuanian

Lozi

Luba~Katanga

Luiseno

Lunda

Luo (Kenya and Tanzania)

Macedon ian

Madurese

Magahi

Maithili

Makasar

Malagasy

Malay

Malaya lam

Maltese

Mandingo

Manipuri ·.

Manobo limguages

Manx

Maori

Marathi

Mari

· Marshall

Marwari

Masai

Mayan languages

Mende

Micmac

Minangkabau

Miscellaneous·(Other)

Mohawk

Moldavian

Mon-Kmer (Other)

Mongo

In

It

mk

mg

ms

ml

mi

mr

mo

'; ~il.l~2!~i1
lez

lin

lit

loz

lub

lui

lun

luo

mac/mak

mad

mag

mai

mak

mig

· may/msa ·

mal

mit

.man

mni

mno

max

· mao/mri

mar

chm

mah

mwr

· mas

myn

men

mic

min

mis

moh

mol

mkh

lol

ISO 639 Language Codes 1· 589

Table G-2; ISO 639 and 639-2language codes (continued)

Mongolian mn mon

Mossi mos

Multiple languages mul

Munda languages mtin

Nauru . na nau

Navajo nav

Ndebele, North ride

Ndebele, South nbl

Ndongo rido

Nepali . ne· nep

Newari new

Niger-Kordofanian (Other) nic

Nilo-Saharan (Other) ssa

Niuean niu .

Norse, Old ·.non

North American Indian (Other} nai

· Norwegian no nor .

Norwegian (Nynorsk) nno

Nubian languages. nub.

Nyamwezi nym

Nyanja nya

Nyankole nyn

Nyciro nyo

Nzima nzi

Ojibwa oji

Oriya or ori

Oromo om orm

Osage osa

Ossetic oss

Otomian languages .· oto

Pahlavi pal

Palauan pau

Pali · pli

Pampanga pam

Pangasinan pag

· Panjabi pa pan

590 I Appendix G: language Tags

.· Table·G-2.·150 639 and639-2langt,tagecodes(continued) .·.

li~n~gi,~~
Papiamentq:

· Papuan-Australian (Other)

Persian

Persian, Old (ca 600- 400 B.C.)

· Phoenician

Polish

Ponape

Portuguese

. Prakrit languages

Provencal, Old (to 1 500) .

Push to

Quechua
- ·. Rhaeto-Romance

. Rajasthani

. Harotongan

Romance (Other)

Romanian

·Romany

.Rundi

·Russian

Salishan languages

Samaritan Aramaic

Sami languages

·Samoan

Sandawe

San go

Sanskrit

Sardinian

Scots

Selkup

·Semitic (Other)

Serbian

· Serbo-Croatian

Serer

Shan

Shona

fa

pi

pt -

ps

qu
rm ·

ro

rn
ru

sm

sg

sa

sr

sh

sn

pap

paa

. fas/per

peo

phn

pol

p9n
por

pra

pro

pus

que

roh

raj

rar

roa

ron/rum

rom

run
rus -

sal

sam

smi

smo

sad

sag

san.

srd

sco
. sel

sem.

scr

srr

shn

sna

· ISO 639 Language Codes ·I 591

Table G-2. ISO 639 and639-2languagecodes (continued) .

~§~~~'~[\,,
Sidamo

Siksika

Sind hi

Singhalese

Sino-Tibetan (Other)

Siouan languages

• Slavic (Other) .

Siswant

Slovak

Sloven ian
Sogdian .·

Somali

Songhai

Sorbian languages

Sotho, Northern

Sotho, Southern

. South American Indian (Other)

Spanish

· Sukuma

Sumerian

Sudanese

Susu

Swahili

Swazi

Swedish

Syriac

Tagalog

Tahitian

Tajik

Tamashek

Tamil

Tatar

Telugu

Tereno

Thai

Tibetan

592 I Appendix G: Language Tags

sd

si

ss

sk

sl

so

st

es

su

sw

sv

tl

tg

ta

tt

te

th

bo

bla

snd

sin

sit.

sio

sla

ssw

slk/slo

slv

sog

som

son

wen

nso

sot

sai

esl/spa

suk

sux

sun

sus

swa

SSW·

sve/swe

syr

tgl

tah

tgk

tmh

tam

tat

tel

ter

tha

bod/tib

Table G~2. ISO 639 and 639~2/anguage codes (co~tinued)

~~~i~l[~~~~:~ 
-... · .. Tigre 

Tigrinya ti tir 

Timne tern 

Tivi tiv 

Tlingit tli 

Tonga (Nyasa) to tog 

Tonga (Tonga Islands) ton 

Truk tru 

Tsimshian tsi 

Tsonga ts tso 

Tswana. tn tsn 

Tumbuka tum 

Turkish tr tur 

Turkish, Ottoman (1500-1928) ota 

Turkmen tk tuk 

Tuvinian tyv 

Twi tw twi 

Ugaritic uga 

Uighur ug uig 

Ukrainian · uk ukr 

Umbundu · umb 

Undetermined und 

Urdu ur urd 

Uzbek uz uzb 

Vai vai 

Venda ven 

Vietnamese.· vi vie 

VolapUk vo vol 

Votic vot 

VVakashanlanguages· wak 

VValamo. wal 

VVaray war 

VVasho was 

VVelsh cy cym/wel 

VVolof wo wol 

Xhosa xh xho 

ISO 639 Language Codes I 593 



Table G~2. ISO 639 and 639-2 language codes (continued) 

~t~~.~~fi~Er 
Yakut 

Yao 

Yap 

. Yiddish 

Yoruba 

Zapotec 

Zenaga 

Zhuang 

·zulu 

Zuni 

yi 

yo 

za 

zu 

------------------·--'----

ISO 3166 Country Codes 
Table G-3. ISO 3166 country codes 

~~~&~·~r~n;!;l?;_· .. 
Afghanistan

Albania

Algeria

American Samoa

Andorra .

Angola

Anguilla

Antarctica

Antigua and Barbuda

Argentina .

Armenia

Aruba ·

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

594 I Appendix G: language Tags

AF

AL
DZ
AS

AD

AO

AI

AQ

AG

AR
AM

AW

AU
AT ..

AZ ·

BS

BH
BD
BB

BY

BE

yao

yap

yid

yor ·

zap

zen

zha

iul

zun

Table G~3. ISO 3166 country codes (continued)

Belize BZ

Benin BJ

Bermuda BM

Bhutan BT

Bolivia BO

. Bosnia and Herzegovina BA

Botswana BW

Bouvet Island BV

Brazil BR

British Indian Ocean Territory 10

Brunei Darussalam BN

Bulgaria BG

Burkina Faso BF

Burundi Bl

Cambodia KH

Cameroon CM

Canada CA

Cape Verde cv
Cayman Islands KY

Central African Republic CF

Chad TO

Chile CL

China CN

. Christmas Island ex
Cocos (Keeling) Islands cc
Colombia· co

·Comoros KM

Congo CG

Congo (Democratic Republic of the) CD

Cook Islands CK

Costa Rica CR

Cote D'lvoire Cl

Croatia · HR

Cuba cu
Cyprus CY

Czech Republic cz

ISO 3166 Country Codes I 595

·Table G-3; ISO 31{56 country codes (con.t{nued)

· • Denmark . OK

Djibouti OJ

Dominica OM

Dominican Republic DO

East Timor TP

Ecuador EC
Egypt EG

El Salvador sv
Equatorial Guinea GQ

Eritrea ER

Estonia. EE

Ethiopia ET

Falkland Islands {Malvinas) FK

Faroe Islands FO

. Fiji FJ

Finland Fl

France FR

French Guiana GF

·French Polynesia PF

French Southern Territories TF

Gabon GA

Gambia GM

Georgia· GE

Germany DE

Ghana GH

Gibraltar Gl

. Greece GR

Greenlarid Gl

Grenada· GO

Guadeloupe GP

Guam GU

Guatemala GT

Guinea GN

Guinea-Bissau GW

Guyana GY

Haiti HT

596 I Appendix G: language Tags

Table G-3. IS03166 country codes (continued)

.· r~i~~[t~I~~] ~ ~· ~.~?i~zy}~~~~J:
Heard Island and Mcdonald Islands HM

HolySee (Vatican City State) VA

Honduras HN

Hong Kong HK

Hungary HU

Iceland IS

.India IN

Indonesia 10 ..

Iran (Islamic Republic of) IR

Iraq IQ

Ireland IE

Israel ll

Italy IT

Jamaica JM .

~~n F

Jordan JO

Kazakstan KZ

Kenya· KE

Kiribati Kl

· Korea (Democratic People's Republic of) KP

Korea (Republic of) KR

~~~ ~ 

Kyrgyzstan KG 

lao People~s Democratic Republic ·LA 

latvia LV 

Lebanon LB 

Lesotho· LS 

liberia LR 

Libyan Arab Jamahiriya LV 

, Liechtenstein Ll 

Lithuania lT 

. Luxembourg . LU 

~~u ~ 

Macedonia (The Former Yugoslav Republic of) MK 

Madagascar · MG 

·Malawi MW 

IS03166(ountryCodes 1• 597 



Table G-3. ISO 3166 country codes (continued) 

Malaysia 

Maldives . 

Mali· 

Malta 

Marshall Islands 

Martinique 

· Mauritania 

Mauritius 

.. Mayotte· 

Mexico 

. Micronesia (Federated States of} 

Moldova (Republic of) 

Monaco 

Mongolia 

Montserrat 

Morocco 

Mozambique 

.. Myanmar· 

Namibia 

Nauru 

Nepal 

Netherlands 

Netherlands Antilles 

New Caledonia 

New Zealand 

Nicaragua 

Niger 

Nigeria 

Niue 

Norfolk Island 

Northern Mariana Islands 

Norway 

Oman 

Pakistan 

Palau 

Palestinian Territory (Occupied) 

Panama 

598 I AppendixG: LanguageTags 

MV 

ML 

MT 

MH 

. MQ. 

MR 

MU 

YT 
. MX 

FM 

MD 

MC 

MN 

MS 

MA 

· MZ 

MM 

NA 

NR 

NP 

Nl 

AN 

NC 

NZ 

Nl 

NE 
NG 

NU 

NF 

. MP 

NO 

OM 

PK 
PW 

PS 

PA 



Table G-3. ISO 3166 country codes(conti~ued) 

~~,~~[~~ 
Papua New Guinea PG 

Paraguay PY 

Peru PE 

Philippines PH 

Pitcairn PN 

Poland Pl 

Portugal PT 

Puerto Rico PR 

Qatar QA 

Reunion .RE 

Romania RO 

Russian Federation RU 

Rw~nda RW 

Saint Helena SH 

Saint Kitts and Nevis KN 

Saint Lucia LC · 

SaintPierre and Miquelon PM 

· Saint Vincent and the Grenadines vc 
Samoa ws 
San .Marino SM 

Sao T orne and Principe ST 

Saudi Arabia SA 

Senegal SN 

· Seychelles sc 
Sierra Leone Sl 

Singapore SG 

Slovakia SK 

Slovenia Sl 

Solomon Islands SB 

Somalia so 
South Africa ZA 

South Georgia and the South Sandwich Islands GS 

Spain ES 

Sri Lanka LK 

Sudan so 
Suriname SR 

Svalbard and Jan Mayen SJ 

ISO 3166 Country Codes I · 599 



. . . . . 

Table G-3. ISO 3166 country codes (continued). 

~~r~~~!: 
Swaziland sz 
Sweden SE 

Switzerland CH 

Syrian Arab Republic SY 

Taiwan, Province of China TW 

Tajikistan TJ 

Tanzania (United Republic of) TZ 

Thailand TH 

. Togo TG 

Tokelau TK 

·Tonga TO 

Trinidad and Tobago n 
Tunisia TN 

Turkey TR 

Turkmenistan · TM 

Turks and Caicos Islands TC 

Tuvalu TV 

Uganda UG 

Ukraine UA 

United Arab Emirates AE 

United Kingdom GB 

United States us 
United States Minor Outlying Islands UM 

Uruguay UY 

Uzbekistan uz 
Vanuatu vu 
Venezuela VE 

·VietNAM VN 

Virgiri lslands(British) VG 

Virgin ISLANDS (U.S.) VI 

Wallis and Futuna WF 

Western Sahara EH 

Yemen YE 

Yugoslavia YU 

Zambia ZM 

600 .I .. Appendix G: Language Tags 



. . . . . 

·. Language Administrative Org_anizations · 
. . ISO 639 defines a maintenance a:gency. for additions to and changes in the list of lan-

guages in ISO 63 9. This agency is: --• . · ·. · 
. . 

Internationalinformation Centre for Terminology (Infoterm) 
P.O. Box 130 
A-1021 Wien 
Austria 

Phone: +43 1 26 75 35 Ext. 312 
Fax: +43 1 216 32 72 

ISO 639-2 defines a maintenance agency for additions to and changes in. the list of 
languages in ISO 639-2.This agency is: 

Library of Congress 
Network Development and MARC Standards Office 
Washington, D.C. 20540 
USA.· 

Phone: + 1 202 707 623 7 
Fax: +1 202 707 0115 
URL: http://www.loc.gov/stan:dar~liso639/. ·. · 

The maintenance agency for ISO 3166 (country codes) is: 

ISO 3166 Maintenance-Agency Secretariat 
c/o DIN Deutsches Institutfuer Normung 
Burggrafenstrasse 6 
Postfach 1107 
D-10787 Berlin 
Germany 

Phone: +49 30 26 01 320 
Fax: +49 30 26 01 231 
URL: http://www.din.de/gremien/naslnabd!iso3166ma/ 

· Language Administrative Organizations · I · 601 



APPENDIXH -. 

MIME CharsetRegistry 

This appendix describes the MIME charset registry maintained by the Internet 
Assigned Numbers Authority (lANA). A formatted table of charsets from the regis­
try is provided inTable H-1. 

MIME Charset Registry 
MIME charset tags are registered with the lANA (http://www.iana.org/numbers.htm). 
The charset registry is a flat-file text database of records. Each record contains a char­
set name, reference citations, a unique MIB number, a source description, and a list 
of aliases. A name or alias may be flagged "preferred MIME name." 

Here is the record for US-ASCII: 

Name: ANSI_X3.4-1968 
MIBenum: 3 
Source: ECMA registry 
Alias: ·iso-ir-6 -

· Alias: ANSI_X3.4-1986 
Alias: IS0_646.irv:1991 
Alias: ASCII 
Alias: IS0646-US 
Alias: US-ASCII (preferred MIME name) 
Alias: us 
Alias: IBM367 
Alias: cp367 
Alias: csASCII 

. -

[RFC1345, KXS2]~-

The procedure for registering a charset with the lANA is documented in RFC 2978 
(http://www. ietf.orglrfc/rfc2978. txt) .. 

602 



Preferred MIME Names 
Of the 235 charsets registered at the time of this writing, ·only.20 indude ''preferred 
MIME names"--common charsetsused by email and web applications. These are: 

Big5 EUC-JP· 
GB2312 IS0-2022-JP 
IS0-2022-KR· IS0-8859-1 
IS0-8859-3 · IS0-8859-4 
IS0-8859-6 IS0-8859-7 
IS0-8859-9 · IS0-8859-10 
Shift-JIS US-ASCII 

Registered Charsets · 

.. EUC~KR 
IS0-2022-]P-'2 
IS0-8859-2 

· IS0-8859-5 
IS0-8859-8 
KOI8-R 

. . 

Table H-I lists the contents of the charset registry as of March2001. Refer directly to 

http://www.iana.org for more information about the contents of this table. 

Table H-LIANA MIMEcharset tags 

m:9~l~&tr~·9;~~tr~;s:• •••..• cc •••.. ,,,.,·""·'·' .~iP~~i~d~ii?.~i~tf'J ~. ~~~t~!1rl!£~~&~:iffl 
US-ASCII 

IS0-1 0646-UTF-1 · 

IS0_646.basic:1983 

INVARIANT 

IS0_646.irv:1983 

B$_4730 

NATS-SEFI 

NATS-SEFI-ADD 

NATS-DANO 

NATS~DANO~ADD 

ANSI_X3.~ 1968, iso-ir-6, 
ANSI_Xl4-1986, 
IS0_646.irv:1991, ASCII, 
IS0646-US, us, IBM367, 
cp36 7, csASCII 

csiS010646UTF1 

ref, csiS0646basic1983 

csiNVARIANT 

iso-ir-2, irv, 
csiS021ntiRefVersion 

iso-iF4, 150646-GB, gb, uk, 
csiS04UnitedKingdom 

iso-ir-8-1, csNATSSEFI 

. iso-ir-8-2,csNATSSEFIADD 

iso-ir-9-1, csNATSDANO 

iso-ir-9-2, csNATSDANOADD 

ECMA registry .. 

Universal Transfer Format (1)-this is 
the multibyteencoding that subsets 
ASCII-7; it does not have byte-ordering 
issues 

ECMA registry 

ECMA registry 

ECMA registry 

ECMA registry 

. ECMA registry 

· ECMA registry 

ECMA registry 

RFC1345, KXS2. 

RFC1345, KXS2. 

.RFC1345,KXS2 

RFC1345,KXS2 

RFC1345,KXS2 

RFC1345,KXS2 

RFC1345, KXS2 

RFC1345,KXS2 

RFC1345,KXS2 

.·. Registered Charsets 1· 603 



Table H-1. IAN A MIME charset tags (continued) 

f~~~~i§:tifj: 
'· 

3i'l~~~t~£ft 
· SEN'-850200_B iso-ir-10, Fl, IS0646-FI, ECMA registry RFCl345,KXS2 

150646-SE, se, 
csiS01 OSwedish 

SEN_850200_C iso-ir-11; IS0646-SE2, se2, ECMA registry RFC1345,KXS2 
csiS011 SwedishforNames 

K$_(_5601-1987 iso-ir-149, K$_(_5601-1989, ECMA registry RFC1345,KXS2 
K$(_5601, korean, 

. csKSC5601l987 

IS0-2022~KR . csiS02022KR RFC1557 (see also K$_(_5601-1987) RFC1557, Choi 

EUC-KR csEUCKR RFC 1557(see also KS_(_5861-1992) RFC1557, Choi 

IS0-2022-JP csiS0202iJP RFC 1468 (see also RFC 2237) RFC1468, 
Murai 

150~2022-JP-2 csiS02022JP2 RFC 1554 RFC1554, Ohta 

IS0-2022-CN RFC 1922 RFC1922 

ISO-2022-CN-EXT · RFC 1922 RFC1922 

Jl$~(6220-1969-jp. JIS_C6220-1969, iso-ir-13, ECMA registry RFCl345,KXS2 
katakana, x0201-7;. 
csiS013JISC6220jp 

115_(6220-1969-ro iso-ir~14, jp, 150646-JP, ECMA registry RFC1345, KXS2 
csi5014JI5C6220ro 

IT iso-ir-15; 150646-IT, ECMA registry RFC1345,KX52 
csl501 Sltalian · 

PT iso-ir-16, 150646-PT, ECMA registr}' . RFC1345,KXS2 
csi5016Portuguese . 

E5 iso-ir-17, 150646-E5, ECMA registry RFC1345, KXS2 
csiS017Spanish 

greek7"old . iso-ir-18, csiS018Greek701d ECMA registry RFC1345,KX52 

latin-greek iso-ir-19, csl5019latinGreek ECMA registry RFC1345, KX52 

DIN_66003 iso-ir-21, de, 150646-DE, ECMA registry RFC1345,KXS2 
csiS021German 

NF _C62-010_(1973) iso-ir-25, IS0646-FR1, ECMA registry RFC1345,KX52 
csi5025French 

latin-greek-1 iso-ir-27, csl5027latinGreek1 ECMA registiy RFC1345,KXS2 

150_5427 iso-ir-37, csiS05427Cyrillic ECMA registry RFC1345, KXS2 

JI5_C6226-1978 iso-ir-42, ECMA registry RFC1345,KXS2 
csiS042JISC62261978 

BS..;Viewdata iso-ir-47, csiS047B5Viewdata ECMA registry · RFC1345, KXS2 

IN IS iso-ir-49, csi50491NIS ECMA registry RFC1345, KXS2 . 

INIS-8 iso-ir-50, csiS0501NIS8 ECMA registry RFC1345, KXS2 

IN IS-cyrillic iso-ir-51, csiS0511NI5Cyrillic ECMA registry RFC1345,KXS2 

604 I Appendix H: MIME Charset Registry 



. Table H-1. lANA MIME.charset tags (continued) 

~~~if~!! ~li~~lt~d:~~~g{' 
150~5427:1981 iso-ir-54,1S05427Cyrillic198l ECMA registry . RFC1345, KXS2

ISO _5428: 1980 iso-ir-55, csi505428Greek · ECMA registr}l RFC1345, KX52

GB_1988"80 iso-ir-57, en, 150646-CN, ECMA registry RFC1345, K5,
csiS057GB1988 ·KXS2

GB_2312-80 iso-ir -58, chinese, . ECMA registry RFC1345, KXS2
csiS058GB231280

NS_ 4551-1. iso-ir-60, 150646-NO, no, ECMA registry . RFC1345, KXS2
csiS060DanishNo!Wegian,
csi5060Norwegian1

N5_ 4551-2 I 150646~N02, iso-ir-61, no2, ECMA registry RFC1345, KXS2
csiS061 Norwegian2

NF .:..Z_62-010 iso-ir-69, 150646-FR, fr, ECMA registry RFC1345, KXS2

I
csiS069French

. videotex-suppl iso-ir-70, ECMA registry RFC1345,KXS2
· csiS070Videotex5upp 1

PT2 . iso-ir-84, IS0646-PT2, ECMA registry RFC1345, KXS2 ·.
csi5084Portuguese2

ES2 iso-ir-85,1S0646-ES2, ECMA registry RFC1345,KX52
csi5085Spanish2

MSZ_7795.3 iso-ir-86, 150646-HU, hu, ECMA registry RFC1345, KX52
csiS086Hungarian

115_(6226-1983 iso-ir-87, x0208, ECMA registry RFCl345, KXS2
JI5_X0208-1983,
csiS087 J15X0208

greek7 iso-ir-88, csi5088Greek7 ECMA registry RFC1345;KX52

ASM0_449 150_9036, arabic?, iso-ir-89, ECMA registry RFC1345, KX52
· csi5089ASM0449 ·

· iso-ir-90 · csl5090 ECMA registry RFC1345, KX52.

JIS_C6229-1984-a iso-ir -91, jp-ocr -a, ECMA registry RFC1345, KXS2 .
csiS091JISC62291984a

Jl$_(6229-1984-b iso-ir-92, 150646-JP~OCR-B, ECMA registry · RFC1345, KX$2
jp-ocr-b;
csiS092JISC62991984b

115_(6229-1984-b-add iso-ir-93, jp-ocrcb-add, ECMA registry RFC1345, KX$2
csiS093JIS62291984badd

JIS_C6229-1984-hand iso-ir-94, jp-ocr-hand, ECMA registry RFC1345, KX52
csi5094JI562291984hand

Jl5_ (6229-1984-hand-add I iso-ir-95, jp-ocr-hand-add, ECMA registry RFC1345, KX52
csiS095JIS62291984handadd

JIS:.J6229-1984-kana iso-ir-96, ECMA registry RFC1345,KXS2
csiS096JISC62291984kana

Registered Charsets . I 605

Table H-1. lANA MIME charset tags (continued)

[~"~~~~!m!':
·~''\~··· .<~'fl.~<'?;;.\f.:\r:· "~ ·);.~,

~tl~;f.{:~1:~ '':Oescrr ti ·.~~:t.J;,s;;:~~>~I,it
150_2033-1983 iso-ir-98, e13b, csiS02033 ECMA registry · RFC1345,KX52

..

ANSI_Xll1 0-1983 iso-ir-99, CSA_T500-1983, · ECMA registry .· RFC1345,KX52
NAPLP5, csi5099NAPLP5

150-8859-1 IS0_8859-l:1987, iso-ir-100, . ECMA registry RFC1345,KX52
150_8859"1,Jatinl, 11,,
IBM819, CP819, csi50Latin1.·

IS0-8859c2 150_8859-2:1987, iso-ir-101, ECMA registry RFC1345,KX52
150_8859-2, latin2, 12;
csl50latin2

T.61-7bit . iso-ir-102, csi50102T617bit · ECMA registry RFC1345,KX52

· T.6Hbit 161, isocir-103, ECMA registry RFC1345, KXS2
csi50103T618bit

150-8859-3 150..:.8859-3:1988, iso-ir-109, ECMA registry RFC1345,KX52
150'-8859-3, latin3, 13,
csi50Latin3

150-8859-4 150_8859-4:1988, iso"ir-110, ECMA registry RFC1345,KX52
. 150_8859-4, latin4, 14,

csl50latin4

ECMA-cyrillic iso-ir-111, ECMA registry RFC1345, KX52
csiSOl11 ECMACyrillic

C5A_Z243.4-1985-1 iso-ir-121, 150646-CA, csa7-1, ECMA registry RFC1345,KX52
ca, csiS0121 Canadian1

CSA_Z243.4-1985-2 iso-ir~ 122, IS0646-CA2, · ECMA registry . RFC1345,KXS2
csa 7-2, csiSO 122Ca nadian2

C5A_Z243.4-1985-gr iso-ir-123, ECMA registry RFC1345,KX52
csi50123C5AZ24341985gr

150-8859-6 150~8859-6:1987, iso-ir-127, ECMAregistry RFC1345, KX52
· 150_8859-6, ECMA-114,

A5M0-708, arabic,
csl50latiriArabic

. 150_8859-6-E csi5088596E RFC 1556 RFC1556, lANA

150_8859+1 csl50885961 RFC 1556 RFC1556, lANA

150-8859-7 150_8859-7:1987, iso-ir-126, ECMA registry RFC1947,
150_8859-7, ElOT_928, RFC1345,KX52
ECMA-118, greek, greekS,.
csiSOlatinGreek ·

T.101-G2 iso-ir-128, csi50128T101G2 E(MA registry RFC1345,KX52

150-8859-8 150_8859-8:1988, iso-ir-138, . ECMA registry RFC1345,KX52
150_8859-8, hebrew,
csl50latinHebrew

150_8859-8-E csi5088598E RFC 1556 RFC1556,
Nussbacher

606 I· Appendix H: MIME Charset Registry

Table H-1. lANA MIME charset tags(continued)

IS0_8859-8"1 csiS0885981 RFC1556 RFC1556, ·
· Nussbacher

CSN_J69103 iso~ir~139, · · ECMA registry RFC1345, KXS2.
csiS0139CSN3691 03

JUS_I.B1.002 . iso-ir-i 41, IS0646~ YU, js, yu, ECMA registry RFC1345, KXS2
csiS0141JUSIB1 002.

IS0_6937-2-add iso-ir-142, csiSOTextComm . ECMAr~igistry and ISO 6937-2:1983 RFC1345,KXS2

IE(_P27-1 iso-ir" 143, csi501431ECP271· ECMA registry RFC1345,KX52

150-8859-5 · 150_8859-5:1988, iso-ir-144, ECMA registry.· RFC1345,KXS2
·IS0_8859c5, cyrillic,
csiSOlatinCyrillic ·

..

JUS..J.B1.003-serb iso-ir-i46, serbian, ECMA registry RFC1345,KXS2
. csiS0146Serbian

JUS_I.B1.003-mac macedoni~n, iso-ir-147; . ECMA registry · RFC1345, KXS2
csi50147Macedonian

150~8859-9 1$0_8859-9:1989, iso-lr-148, ECMA registry RFC1345,KXS2
IS0_8859-9, latinS, 15, ·
csiSOLatinS

greek-cdtt iso-ir-150, csl50150, . ECMA registry RFC1345,KX52
csi50150GreekCCITT

NC:_NC00-10:81 cuba, iso"ir-151; 150646-CU, ECMA registry RFC1345, KX52
csiS0151Cuba

·t50_6937-2-25 iso-ir-152, csiS06937 Add ECMA registry RFC1345,KX52

GOST_19768-74 · $T.;_SEV _358~88, iso-ir-153, ECMA registry RFC1345,KXS2
csi50153GOST1976874

150_8859-supp iso~ir-154, latin1-2-5, ECMA registry RFC1345,KXS2
csiS08859Supp

150_10367-box iso~ir-155, csi5010367Box ECMA registry RFC1345,KX52

150-8859-1 0 iso-ir -157, 16, ECMA registry RFC1345,KXS2
150_8859-10:1992,
csiSOlatin6, latin6

latin-lap lap, iso-ir-158, csl50158lap ECMA registry RFC1345,KX52

JIS...:.X0212-1990 x0212, iso-ir-159, ECMA registry RFC1345, KXS2
csiS0159JISX02121990

DS_2089. 052089, 150646-DK, dk, Danish Standard, OS 2089, February RFC1345,KXS2
csiS0646Danish 1974

us-dk csUSDK RFC1345,KXS2

dk-us csDKUS RFC1345,KXS2

JIS_X0201 X0201, csHalfWidthKatakana JIS X 0201-1976-1 byte only; this is RFC1345, KXS2
equivalent toJIS/Roman (similar to
ASCII) p!us8-bit half-width katakana ·

Registered Charsets I 607

608 I Appendix H: MIMECharset Registry

..

Table H-1. lANA MIME charsettags (continued)

IBM420 · . cp420, ebcdic-war1, IBM NlS RM Vol2 SE09"8002-01, March . RFC1345,KXS2
· csiBM420 1990, IBM NlS RM p 11~11.

IBM423 cp423, ebcdic -cp-gr, · IBM NlS RM Vol2 SE09~8002-01,March RFC1345,KXS2
csiBM423 1990

IBM424 . ·. cp424, ebcdic-cp-he, IBM NlS RM Vol2 SE09-8002~01, March RFC1345,KXS2
. csiBM424 1990

IBM437 cp437, 437, · IBM NlS RM Vol2 SE09~8002-01, March RFC1345,KXS2
-csPC8CodePage437 1990

IBM500 · CP500, ebcdic -cp-be, IBM NlS RM Vol2 SE09-8002-01,March RFC1345,KXS2
ebcdic-cp-ch, csiBM500 1990

IBM775 cp775; csPC775Baltic . HP PCl5 Comparison Guide (PIN 5021~ HP-PCl5. ·
0329) pp B-i3, 1996 · ··

IBM850 cp850,850, IBM NlS RM Vol2 SE09-8002-01, March RFC1345, KXS2
csPC850Multilingual . 1990

IBM851 cp851, 851, csiBM851 .· IBM NlS RMVoi2SE09:8002-01, March RFC1345,KXS2
1990

.. ·.

IBM852 ·. cp852,852,csPCp852· IBM NlS RMVol2 SE09-8002-011 March · RFC1345,KXS2
1990

IBM855 cp855, 855, csiBM855 IBM NlS RM Vol2 SE09-8002~01, March
1990 . . .

RFC1345,KXS2

. .
RFCi345,KXS2 IBM857 · cp857, 857, csiBM857 ·· · IBM NlS RM Vol2 SE09-8002-0l; March

1990

IBM860 .· cp860,860, csiBM860 IBM NlS RM Vol2 SE09-8002-01, March RFC1345,KXS2
1990

IBM861 cp861; 861, cp-is, csiBM861 IBM NlS RM Vol2 SE09-8002~01, March. RFC1345, KXS2
1990

IBM862 cp862, 862, 'IBM NlS RM Vol2 SE09;.8Q02-01, March RFC1345,KXS2
csPC862latinHebrew 1990.

IBM863 cp863, 863, csiBM863 IBM keyboard layouts and code.pages, RFC1345;KXS?
PN 07G4586, June 1991

IBM864 cp864, csiBM864 IBM keyboard layouts and code pages, · · RFC1345,KXS2
PN 07G4586, June 1991

IBM865 cp865, 865, csiBM865 ·. IBM DOS 3.3 Ref (Abridged), 94X9575, RFC1345,KXS2
Feb 1987

IBM866 cp866, 866, csiBM866 IBM NlDG Vol2 SE09~8002-03, A~gust Po rid
1994

IBM868 CP868, cp-ar, csiBM868 IBM NlS RM Vol2 SE09-8002-01, March RFC1345,KXS2
1990

IBM869 cp869, 869, cp-gr, csiBM869 IBM keyboard layouts and code pages, RFC1345,KXS2
PN 07G4586, June 1991 ·

IBM870 CP870, ebcdic ~cp-roece, · IBM NlS RM Vol2 SE09-8002-01, March RFC1345;KXS2
ebcdic -cp-yu, csiBM870 1990

Registered Charsets : · I . 609

Table H-1. IANAMIME charset tags (continued)

IBM NLS RM Vol2 SE09c8002~01, March
1990

IBM880 cp880,EBCDIC -Cyrillic, . IBM NlS RM Vol2 SE09-8002-01, March RFC1345, KXS2 ·
csiBM880 1990

IBM891 cp891, csiBM891 IBM NLS RM Vol2 SE09-8002-01, March RFC1345,KXS2
1990

IBM903 cp903, csiBM903 IBM NLS RM Vol2 SE09-8002-01, March RFC1345,KXS2
1990

IBM904 cp904, 904, csiBBM904 · IBM NLS RM Vol2 SE09-8002-01, March · RFC1345;KXS2
. 1990

IBM905 ·· CP905, ebcdic-cp-tr, csiBM905 IBM 3174Character Set Ref, GA27- RFC1345,KXS2
3831-02, March 1990

IBM918 CP918, ebcdic-cp-ar2, IBM NLS RM Vol2 SE09-8002-01, March RFC1345,KXS2
csiBM918 .1990

. IBM1026 CP1026, csiBM1026 . IBMNLS RM Vol2 SE09-8002-01, March RFC1345, KXS2
1990

EBCDIC-AT ~DE csiBMEBCDICA TOE IBM 3270 Char Set RefCh 10, GA27- RFC1345,KXS2
2837~9, April1987

EBCDIC -AT -DE-A csEBCDICATDEA IBM 3270Char Set RefCh 10, GA27- . RFC1345,KXS2
2837-9, April1987

EBCDIC -CA-FR csEBCDICCAFR IBM 3270 Char Set RefCh 10, GA27- ·RFC1345, KXS2
2837c9, April1987

EBCDIC -OK-NO csEBCDICDKNO IBM 3270(har Set RefCh 10,GA27-. RFC1345,KXS2
2837-9, April1987

EBCDIC -OK-NO-A .csEBCDICDKNOA IBM 3270 Char Set RefCh 10, GA27- RFC1345,KXS2.
2837-9, April1987

EBCDIC -FI-SE csEBCDICFISE · IBM 3270 Char Set Ref Ch 10, GA27- RFC1345,KXS2
2837-9, April1987

EBCDIC -FI-SE-A csEBCDICFISEA· IBM 3270 Char Set RefCh 10, GA27- · RFC1345, KXS2
· 2837-9, April1987

EBCDIC-FR csEBCDICFR IBM 3270 Char Set RefCh 10, GA27- RFC1345,KXS2
2837-9, April1987

EBCDIC-IT csEBCDICIT IBM 3270 Char Set Ref Ch 10, GA27- RFC1345, KXS2
2837-9, April1987 ·

EBCDIC-PT IBM 3270 Char SetRef(h 10, GA27- RFC1345, KXS2
2837-9, April1987

EBCDIC-ES . csEBCD ICES IBM3270CharSetRefCh 10,GA27- · RFC1345,KXS2
· 2837-9, Apri11.987

EBCDIC -ES-A csEBCDICESA IBM 3270 Char Set RefCh 10, GA27- .RFC1345,KXS2
2837-9, April1987.

610 I AppendixH:. MIMECharset Registry

. . Table H-1. IAN A MIME charset tags (cohtinued)

.!J~~~~H91~~~~:
EBCDIC -ES-S .

EBCDIC-UK

EBCDIC-US

UNKNOWN-8BIT

MNEMONIC

MNEM

· VISCII

VIQR

KOI8-R

KOI8-u·

IBM008S8

IBM00924

IBM01140

IBM01141

IBM01142

IBM01143

IBM01144

IBM01145

IBMOl146

IBM01147

IBM01148

csEBCDICUK

csEBCDICUS

csUnknown8BiT

csMilemonic

csMnem.

.csVISCII

csVIQR

csKOI8R

. . .

CCSID00858,CPOOB58,PC­
Multilingual-850+euro · ·

CC$1000924, CP00924, ebcdic­
Latin9--euro

CCSID01140, CP01140, ebcdk­
us-37+euro

CCSID01141, CP01141 I ebcdic­
de-273+euro

CCSID01142, CP01142, ebcdic­
dk-277+euro, ebcdic-no-
277+euro ·

CC$1001143, CP01143, ebcdic­
fi-278+euro, ebcdic-se-
278+euro

CC$1001144, CP01144, ebcdic­
it-280+euro.

CCSID01145, CP01145, ebcdic­
es-284+euro

CCSID01146, CP01146, ebcdic­
gb-285+euro

CC$1001147, CP01147, ebcdic­
fr-297+euro

CCSID01148, CP01148, ebcdic­
international-500+euro

1J~r1,~!t... . .
IBM3270CharSetRefCh 10,GA27- ·
2831-9, April1987 · ·

IBM 3270 Char Set RefCh 10, GA27~
2837-9, ApriL1987

IBM 3270 Char SetRef Ch 10, GA27-
2837-9, April1987

RFC 1345, also known as .
;'mnemonic+ascii+38"

RFC1345, alsoknown as
"mnemonic+ascii+8200"

RFC 1456

RF(1456 ..

RFC 1489, based on GOST-19768-74,
IS0-6937 /8, IN IS-Cyrillic; IS0-5427

RFC2319 .

IBM (see .. ./assignments/charad:er-
set-info/IBM00858) [Mahdi] ·

IBM (see .. ./assignments/charad:er­
set-info/IBM00924) [Mahdi]

IBM (see .. ./assignments/character­
set-info/IBM01140) [Mahdi]

. : . . .

IBM (see .. ./assignments/character­
set-info/IBM01141) [Mahdi]

IBM (see .. ./assignments/character­
seHnfo/IBM01142) [Mahdi]

IBM (see .. ./assighments/character­
set-info/IBM01143) [Mahdi]

IBM (see .. ./assignmelits/character­
set~info/IBM01144) [Mah.dil

IBM (see .. ./assignments/character­
set-info/IBM01145) [Mahdi]

IBM (see .. ./assigninents/character­
set-info/IBMO.l146) [Mahdi]

IBM (see .. ./assignments/character­
set-info/IBM01147) [Mahdi]

IBM (see .. ./assignments/character~
set-info/IBM01148) [Mahdi]

'W€.
:.t.~.;::~t\~~'L«;:

RFC1345,KXS2 .

.·.

RFC1345,KXS2

.RFC1345,KXS2

RFC1428

RFC1345,KXS2

RFC1345,KXS2

RFC1456

HFC1456

RFC1489

RFC2319

Registered.Charsets I · 611

Table H-1. lANA MIME charset tags(continued)

··IBM01149

Big5-HKSCS

UNICODE~ 1-1

scsu

UTF-7 .

UTF-16BE

UTF~16lE

UTF-16

UNICODE-1-1-UTF-7

UTF-8

iso-8859-13

iso-8859-14

IS0-8859-15

JIS_Encoding

Shift_JIS

EUC-JP

It~l1~~~ . ~~~~ff~ig~
CCSID01 i49, CPOl149, ebcdic- IBM (see .. ./assignments/character-
is-871+euro set-info/IBMOl149) [Mahdi]

None·

csUnicode11

None

None

None

.None

None

csUnicode11UTF7

iso-ir-199,
IS0_8859-14:1998,
IS0_8859-14,1atin8;
iso-celtic, 18

IS0_8859-15

csJISEncodlng

MS_Kanji, csShiftJIS

Extended_UNIX_Jode_
Packed_Format_for_

.·Japanese,
·· csEUCPkdFmtJapanese

See (.· .. /assignments/character-set­
info/Big5-H KSCS) [Yick]

RFC1641

SCSU (see .. ./assignments/character­
set-info/SCSU) [Scherer]

RFC 2152

RFC2781

RFC 2781

RFC 2781

RFC 1642 .·

RFC2279

ISO (see ... assignments/character-set­
info/iso-8859~ 13)[Tumasonis]

ISO (see ... assignments/character-set­
info/iso~8859-14) [Simonsen]

ISO
. .

JIS X 0202-1991; uses ISO 2022escape
sequences to shift code sets, as ·
documented in JIS X 0202-1991

This charset is an extension of.
· csHalfWidthKatakana-itadds

graphic characters in JIS X 0208. The

I
CCSs areJ.IS X0201 :1997 and JIS X0208:
1997. The complete definition is shown ·

.1 in Appendix 1 of JISX0208:1997.This
charset can be used for the top-level
media type 1/text".

Standardized by OSF, UNIX
International, and UNIX Systems
laboratories Pacific. Uses ISO 2022
rules to select code set. code set 0: US­
ASCII (a single 7-bit byte set); code set
1: JIS X0208-1990 (a double 8-bit byte
set) restricted to AO-FF in both bytes;
code set 2: half-width katakana (a.
single 7 -bit byte set) requiring SS2 as
the character prefix; code set 1: JIS. ·
X0212-1990 (a double ?~bit byte set)
restricted to AO-H in .both bytes
requiring SS3 as 'the character prefix.

6.12 · I Appendix H: MIME Charset Registry

. RFC1641

RFC2152

RFC2781

RFC2781

RFC2781

RFC1642

RFC2279

. .
. ·.

Table H-1. IANAMIME charset tags (continued)

Extended_UNIX_Jode_
Fixed~Width"_for_
Japanese

. ~A~[~1''
· Used in Japan. Each character is 2
octets. code set 0: US~ ASCII (a single7-
bit byte set); 1st byte= 00,2nd byte=
20.:..7E; code set 1: JIS X0208"1990 (a
double 7 -bit byte set) restricted to A O­
FF in both bytes; code set2: half-width
katakana (a single 7-bitbyte set), 1st
byte= 00,2nd byte= AO-FF; code ~et
3: JIS X0212~1990 (a double7-bitbyte
set) restricted to AO-FF in the first byte

·and 21-7E in the second byte.

IS0-1 0646-UCS-Basic csUnicodeASCII ASCII subset of Unicode. Basic Latin =
collection 1. See ISO 10646, Appendix A.

IS0-10646-Unicode-Latin 1 csUnicodeLatin 1, IS0-1 0646 . ISO Latin-1 subset of Unicode.Basic .

IS0-10646+1

ISO-Unicode-IBM-1261 csUnicodeiBM1261

ISO-Unicode-IBM-1268 csUnidoceiBM 1268

ISO-Unicode-IBM~ 1276 . · csUnicodeiBM1276

ISO-Unicode-IBMc 1264 csUnicodeiBM1264

ISO-Unicode-IBM-1265 . csUhicodeiBM1265

IS0-8859-1 ~Windows-3.().. csWindows30Latin 1
Latin-1

IS0-8859-1-Windows-3.1- csWindciws3lLatin1
Latin-1

IS0-8859-2-Windows- csWindows31Latin2 .
Latin-2

IS0-8859-9-Windows- csWindows31 LatinS
Latin-S

· Adobe-Standard-Encoding . csAdobeStandardEncoding .

. Ventura-US csVenturaUS

. ·Latin and Latin-1. Supplement==
collections 1 and 2. See ISO 10646,
Appendix A, and RFC 1815. · .·· .

ISO 10646 Japanese. See RFC 1815.

IBM Latin-2, -3;-5, Extended
·Presentation Set, GCSGID:.1261

.IBM Latin-4 Extended Presentation Set, ·
GCSGID: 1268

IBM CyrillicGreek Extended · ··
Presentation Set, GCSGID: 1276

IBM Arabic Presentation Set,.GCSGIO:
.. 1264

IBM Hebrew Presentation Set, GCSGID:
1265

Extended ISO 8859-1 Latin-1 for·. .. HPcPCL5
Windows 3.0. PCLSymbol Set 10: 9U.

Extended ISO 8859-1 Latin-1 for . HP"PCLS
WindoWs 3.1. PCL Symbol Set 10: 19U.

Extended ISO 8859-2.Latin-2 for HP-PCLS
Windows 3.1. PCL Symbol Set 10: 9E .

. Extended ISO 8859,9. Latin~5 for HP-PCLS
Windows 3.1. PCL Symbol Set 10: ST.

PostScript language Reference Adobe
Manual. PCL Symbol Set 10: 10J.

Ventura US-ASCII plus characters HP-PCLS
typically used in publishing, such as
pilcrow, copyright, registered, ·

. trademark, section, dagger, and
double dagger in therange AO (hex) to

· FF (hex). PC~ Symbol Set 10: 14J.

Registered Charsets I · 613

Table H-1. lANA MIME charset tags (continued)

Venturaclnternational csVenturalnternational. · • Ventura International. ASCII plus coded HP-PCl5
. characters similar to Romim8. PCl
Symbol Set ID: BJ.

PC8~Danish-Norwegian csPC8DanishNorwegian PC Danish Norwegian 8-bit PC set for HP-PCl5
Danish Norwegian. PCl Symbol Set ID:
11U.

PC8-Turkish . csPC8T urkish PC latin Turkish. PCl Symbol Set ID: 9T .. HP~PCl5

IBM-Symbols· cslBMSyrribols Presentation Set, CPGID: 259 IBM-ClOT

IBM-Thai cslBMThai Presentation Set, CPGID: 838 IBM-ClOT

HP-legal csHPlegal PClSComparison Guide, Hewlett- HP-PCl5
Packard, HP part number 5961-0510,

. October 1992. PCl Symbol Set ID: 1 U.

HP~Pi-font csHPPiFont PCl5 Comparison Guide; Hewlett- HP-PCl5
Packard, HP part number 5961-0510,
October 1992. PCl Symbol Set ID: 15U.

HP-Math8 csHPMath8. · PCL5 Comparison Guide, Hewlett- HP-PCl5
Packard, HP part number 5961-0510,

· October 1992. PCl Symbol Set ID: 8M~

Adobe-Symbol-Encoding csHPPSMath PostScript language Reference Adobe
Manual. PCl Symbol Set ID: SM.

HP-DeskTop csHPDesktop PCl5 Comparison Guide, Hewlett- HP-PCl5
..

Packard, HP part number 5961-0510,
October 1992: PCLSymbol Set ID: 7 J.

Ventura-Math csVenturaMath PCl5 Comparison Guide, Hewlett- HP-PCl5
Packard, HP part number 5961-0510,
October 1992. PCl Symbol Set 10: 6M ..

MicrosofHublishing csMicrosoftPublishing PCl5 Comparison Guide, Hewlett~-· HP-PCl5
· Packard, HP part number 5961-0510,

October 1992. PCl Symbol Set ID: 6J. ·

Windows-31J csWindows31J Windows Japanese. A further
extension ofShift_JISto include NEC
special characters (Row 13), NEC
selection ofiBM extensions (Rows 89 to

· 92), and IBM extensions (Rows 115 to
119). The CCSs are JIS X0201 :1997, JIS·
X0208:1997, and these extensions. This
.charset can be used for the top~level
media type "text", but it is of limited or
specialized use (see RFC 2278). PCL
Symbol Set ID: 19K.

GB2312 csGB2312 Chinese for People's Republic of China
(PRC) mixed 1-byte, 2-byte set: 20-7E
= 1-byte ASCII; A1-FE =2-byte PRC
Kanji. See GB 2312-80. PCl Symbol Set

·m: 18C.

614 I Appendix H: MIME Charset Registry

. · .

. Table H-1~ lANA MIME chq.rset tags (continued)

Chinese for Taiwan Multibyte set. .PCL ·
Symbol Set id: 181.

windows-1250 Microsoft {see .. ./character-set-info/ .
windows-1250) [lazhintseva]

windows-1251 Microsoft {see .. Jcharacter-seHnfo/
windows-1251) [Lazhintseva]

· windows-1252 Microsoft {see :../character-set"infof
windows~1252) [Wendt]

windows-1253 Microsoft {see ... ;/character-set-info/
· windows-1253) [lazhintseva]

windows-1254 Microsoft {see , . ./character~set-info/
windows-1254)[Lazhintseva]

windows-1255 ·Microsoft {see .. ./character-set~info/
windows~ 12S5) [Lazhintseva]

windows-1256 Microsoft {see .. ./character-set-info/
windows-1256) [lazhintseva]

windows~ 1257 Miuosoft {see .. ./character-set-info/ .
windows-1257) [Lazhintseva]

windows-1258 . Microsoft {see .. ;/character-set-info/
windows-1258) [Lazhintseva]

TIS-620 Thai Industrial Standards Institute [Tantsetthi]
{TISI)

HZ-GB-2312 RFC 1842, RFC 1843 [RFC1842,
RFC1843]

Registered Charsets ·1 · 615

Symbols
: (colon), use in headers, 47
={equals sign), base-64 encoding, 572
1- (slash-tilde~, 122

Numbers
8~bit identity encoding, 382
100 Continue status code, 59, 60
100-199 status codes, 59:-60, 505
200-299 status codes, 61, 505
300-399 status codes, 61~64, 506
400-499 status codes, 65-'-66, 506
500-599 status codes, 66, 507
2MSL (maximum segment lifetime), 85

A
absolute URLs, 30
Accept headers, 69, 508

robots and, 225' ·
Accept-Charset headers, 371,375, 509 .

MIME charset encoding tags and, 374
Accept-Encoding headers, 509 . ·
Accept~lnstance-Mariipulation headers, 367
Accept-Language headers, 371, 385, 510

content negotiation and, 398
Accept-Ranges headers, 510
access controls, 124.

proxy authentication, 156
. access proxies, 137
· advertising, hit counts and caches, 194-196

age arid freshness lifetime, 188
Age headers, 510
agents, 19 .

Index

algorithms . .
aging arid freshness, 187-194 ·· ·
document age calculation, 189~ 194 .
instance-manipulation algorithm's, .· 367
LM-Factor, 184 • .· · ·
message digest algorithms,. 291-294

symmetric authentication; 298
Nagle's algorithm, 84 · · •. . •
redirection, enhanced DNS~based, 457
resource-discovery algorithm .·

(WPAD), 143,465 ...
RSA, 317

aliases (URLs), 219
Allow headers, 159, 511
<allprop> element, 437

· anonymizers, 136
anycast addressing, 457 ·
Apache web servers; 110 .

content negotiation, 399
MultiViews directive, 400
type-map files, 399

Directorylndex configuration ·
directive, 123

document root, setting, 121
HostriameLciokups configuration

directive, 115
HTTP headers; control of, 186
IdentityCheck configuration.

directive, 116
magic typing, 126

APls (application programming
· interfaces), 203
server extensions, .205
web services and, 205

We'd like t~ hear your suggestions for improving our. indexes. Send email to index@oreilly.com~

.617

application!* MIME types, 540-557
application programming interfaces (see

. APis) .

application servers, 123,203
ASCII character set, 3 79 .
asymmetric cryptography, 315
attacks, 303-306

hatched brute"force attacks, 305
chosen plaintext attacks, 305
dictionary attacks, 304
enumeration, 313
evidence of, 301
headertampering, 303
hostile proxies, 304
man-in-the~middle attacks, 304
replay attacks, 284, 303

preventing, 289
audio/* MIME types, 557-559
authentication, 277.:.._280

basic (see basic authentic<inion)
challenge/response framework, 278
digest (see digest authentication)
headers, 278
HTCP, 480
multiple authentication schemes, risks

of, 303 ·
protocols, 278
proxy servers, 156
server, using digital certificates, 321
(see also HTTPS)

Authentication-Info directives, 576
Authorization headers, 281, 511

directives, 575
preemptive generation, 295

automatic expansion of URLs, 30

8
bandwidth

bottlenecks, 161
transfer times and; 162

base URLs, 32
base-64 encoding, 570-572 .

alphabet, 571
equals sign(=), 572
HTTP, compatibility with, 570
padding, 572
Perl implementation, 572
purpose, 570
username/password, 282 ·

bases, 31

618 I Index

basic authentication~ 281--:-284
example, 281
headers, 281, 300
insecurity of, 283, 286 .
protection space, 302
by proxy servers, 283
. username/password encoding, 282
web server vs~ proxy, 283
(see also authentication)

hatched brute-force attacks, 305
Binary Wire Protocol, 250, 252
blind relays, 94 .
browsers

Host headers and older versions of, 419 ·
HTTP, use of, 13
parallei connections, maximum, 90.
URLs, automatic expansion of, 34

byte hit rate, 167

(

Cache Array Routing Protocol (see CARP)
Cache-Control headers, 175-177, 182-186,

189,511
directives, 361

caches, 18, 133, 161-196
advertising and, 194-196
aging and freshness algorithms, 187-194
byte hit rate, 167
cachebusting, 492
cache.hits and misses, 165, 168
cache meshes, 170
cache validators, 181
Cache-Control headers, 17 5-177,

. 182-186, 189, 511
directives, 361

cookies and, 273
digest authentication a:nd, 302
distance delays and, 163
DNS caching and load balancing, 456
document expinition, 175
exclusion of documents from, 182
expiration time, setting, 182
Expires headers, 175, 183
flash crowds and, 163
freshness check, 173
heuristic expiration, 184
hit logs, 195
hit rate, 167
HTTP-EQUIV tag, 187

logging, 17 4
lookup, 171
maintaining currency, 17 5
message tn.incation and, 344 ..
network bottlenecks and, 161.·
parent caches, 169
parsing, 172
peering, 171
processing steps, 171-17 5

flowchart,. 17 5
receiving, 172
response creation, 17 4
revalidate hits, 165
revalidations, 16S'-166
sending, 17 4
server revalidation; 175, 177
setting controls, 186
sibling caches, .171
surrogate caches, 421
topologies, 168
uses, 161

caching headers, 68
caching proxies (see caches)
caching proxy servers, 169
canonicalizing of URLs, 3 7, 220
CARP (Cache Array Routing

·Protocol), 475-478
disadvantages, 476
ICP vs., 475

·redirection method, 476
CAs (certificate authorities), 327
case sensitivity, language tags, 386 .
CDNs (content distribution networks), 421
certificate authorities (CAs), 327
certificates (see digital certificates)·
CGI (Common Gateway Interface), 203,204
challenge/response authentication

· model, 278
challenge headers, 72
multiple challenges, 301

character encoding schemes, 3 77, 381
character repertoire, 3 77
charactersets, 35, 371-376

encoding, 370
mechanisms, 36

restriCted characters, 36
characters, 378

URLs, legal in, 35
charset tags, 3 71

·· IANAMIME character set registry
and, 371

chemiCal/* MIME types,. 559-561
child filters, 131
chosen plaintext attacks, 305
chunked encodings, 345
ciphers (see under cryptography)
ciphertext, 310

· cleartext, 310
· client error status codes (400:-499), 65_:_66,

505
.client hostname identification, ·115
client proxy configuration, 141-144

manual, 142
PAC (Proxy Auto-configuration,)
· protocol, ·142, .463
WPAD (Web Proxy Autodiscovery

Protocol), 14 3 .· ·.
client-driven negotiation, 396

disadvantages, 396 .·
Client-ip headers, 258,. 260; 512
clients

100 Continue status code and, 59
. freshness constraints, 185
Host header requirements, 418
identifiCation, 257-276

fat URLs, using .for, 262
IP addresses, using for, 259
user logins, using.for, 260.

· (see also cookies) ·
supported character sets, 375

· dient~side gateways, 199
security accelerator gateways, 202

client-side state, 265
code width, 377
coded char~cter sets; 377, 379
coded characters, 3 7 6 .
coding space, 376
collections, 439
collisions, one-way digests, 288
colon(:), use in headers, 47
Combined Log Format, 485
Common Gatewayinterface (CGI), 203, 204
Common Log Format; 484
composite MIME types, 534 ·
conditional requests, 362

headers, 70, 178-181
configuration URLs (CURLs), 465
CONNECT method;. 206~208, 336
connection handshake delays, 82
Connection headers, 86, 512
connections (see HTTP connections)
conterit distribution networks (CDNs), 421

Index I 619

conte~t encodi~gs, 345,351-354
<:ontent injection, 4.05
content negotiation, 395-403 •

on Apache web servers, 399.
·client-driven negotiation, 396
headers, 397 ·
other protocols arid, 405
performance limitations, 405 ·
quality values, 398
server-driven negotiation, 397-400
techniques, 395
transparent negotiation, 400-403

content routers, 134, 170
Content-Base headers, 513
Content-Encoding headers;. 513
content-injection, 405
Content-Language headers, 371, 384, 513
Content-Length headers, 344-347, 5i 4

content encoding and, 345
persistent connections and, 345

Content-Location headers, 514
. Content~MD5 headers, 347, 514
Content-Range headers; 515 .
Content-Type headers, 348~351, 515

character encodings, 349
charset parameter, 371

META tags and, 375
MIME charset encoding tags and, 374
multipart formsubmissions, 349

continuation lines, in headers, 51
Continue status code (100), 59-60
Cookie headers, 516
Cookie2 headers, 516 ·.
cookies, 263-276

browsers, storage on; 264
caching, 273
domain attributes, 267
functioning, 264
information contained in, 264
Path attributes, 268 ·
privacy and, 275
security and, 275
session tracking, 272 ·
Set-Cookie2 headers, .271 ·
specifications, 268
third~party vendors, use by, 267
types, 264. ·
Version 0, 269
Version 1, 270-272

headers, 272
version negotiation, 272
web site specificity of, 266 .

620 I Index

co:PY m~th~d, 442
. country codes, 388 ·
country tokens, 388 ·
crawlers, 215-224

aliasing, 219
canonicalizing of URLs, 220
checkpoints, 219 · ·
cycles, avoiding, 217-218,222-224
dups, 218

· filesystem link cycles, 220
hash tables, 218
loops, 217
lossy presence bit maps, 218
paititioning, 219
root set, 216
search trees, 218
tracking of visited sites, 218
traps; 220-'224 ·

CRLF, 44
in entities, 343

cryptographic checksums, 289
cryptography, 309-317

asymmetrically keyed ciphers, 315
cipher machines, 311
ciphers, 310-315

· digital, 311
ciphertext, 310
cleartext, 310
enumeration attacks, 313
hybrid cryptosystems, 317
keyed ciphers, 311
keys, 311, 312

·· key length, 3l3
sharing, logistical aspects of, 315

public-key cryptography, 315-317
computation speed, 317
digital signing with, 318

RSA algorithm, 317
symmetric-key ciphers, 313

CURLs (configuration URLs), 465 .
cycles, avoiding (web robots), 217-218,

222-224
filesystem lii1kcycles, 220 .

D
data formats, conversion, 135
date formats, 392
Date headers, 516
DAV headers, 431

compliance classes; 445
decomposing of URLs, 33

dedicated web hosting, 412
delayed. acknowledgements, 83
DELETE method, 58,441
delta encodings, 359, 365~367

server disk space and, 368
delta generators and appliers, 368
<depth> element, 434
Depth headers, 431 ·
Destination headers, 431
dictionary attacks; · 304
digcalc.c file, 578 ·
digcalc.h file, 577
digest authentiCation, 286-306, 57~580

algorithms, .291-295
· input data, 291

authentication process, 287
Authentication-Info directives, 576
Authorization directives; 575 ·
basic authentication, compared tO, 286 ·
caching and, 302

.. digest calculations, 291
error handling,. 301
H(A1) and H(A2) reference code, 577
handshakes, 290
headers, 300
MD5 and MD5~sess, 291
message-related data (A2), 293, 298
nonces, 289
password files, vulnerabilities of, 305
preemptive authorization, 296
protection space, 302
request and response digest reference

code, 577
revalidating a session, 295
rewriting URis, 302
security,· 286

· security-related data (A1), 293
session, 295
symmetric authentication, 298
WWW-Authenticate directives, 574-575
(see also authentication)

. digests; 288
algorithm input data, 291
collisions, 288

digital certificates, 319-322
public-key cryptography and, 320
server authentication, use for, 321
universal standard, lack of, 320
virtual hosting and, 328
X.509v3 certificates, 320

digital cryptography (see cryptography)

digital signatures, 317-319.
example; 318

digtest.c file, 580
directory listings,. 122 ·

disabling, 123
discrete MIME types, 534
distance delays, 163 .
distributed objects (HTTP:NG), 249 ··
DNS

caching, 456
DNS A record looktip, 467
redirection, 453-457

enhanced algorithms for, 457
multiple addresses and round-robin

addressrotation, 455
resolvers, 453
round robin,. 454, 455 ·

load balancing with, 456
docroots (document roots), 120

private, ·122
user home directory, 122
virtuallyhosted, 121

docurri.ent access control, 132
document expiration, 175

setting, 182
document hit rate, 167
document roots (see docroots)
documents

age and freshness·lifetime, 188
age-calculation algorithms, 189-194
caching, preventing, ·182
freshness and aging algorithms, 187'--194
heuristic expiration, 184

Domain Name Sei:Vice (seeDNS) ·
domain names, internationalization of,. 392
downstream message flow, 44
dups (web robots), 218 ·
dynamic content resource mapping, 123

E
egress proxies, 137
embedded web servers, 111
encodings, 3 72 ·

, chunked encodings, 345
content encodings,. 345, 351~354
delta encodings, 359, 365-367

·. impact on server disk space; 368
fixed-width, 381 ·
transfer encodings, 354:-359

end-of-line sequence, 44.

Index. I 621

entities, 342
body length,determining, 346
Content-Length headers, 344-347
CRLF line, 343

entity bodies, 44, 47, 52, 343
MIME types, 348 .

entity digests, 347
entity headers (see under headers)
entity tags (see ETags)
enumeration attacks; 313
equals sign (=), base-64 encoding, 572
escape sequences, 36
ETags (entity tags), 180, 298

headers, 517
using, 181

euc-jp encoding, 383
Expect headers, · 517
experimental MIME types, 569
expiration of documents, setting, 182
Expires headers, 175, 183,517
explicit MIME typing, 126
Extensible Markup Language (see XML)
extension APis, 205 · ·
extension headers, 51,68
extension methods, 58

F.
Fast CGI, 205
fat URLs, 262

. limitation~ of, 263
file scheme, 39. . ..
filesystem link cycles, · 220 .
FindProxyForURL() method, 143 ·
fingerprint functions, 289
first subtag, 387 ·
fixed-width encodings, 381·.
flash crowds, 163
format conversion, 404
FPAdminScriptUrl, 426
FPAuthorScriptUrl, 426
FPShtmlScriptUrl, 426 ·
Fpsrvadm, 428 ·
frag or fragment component, URLs, 30
freshness and aging algorithms, 187-194
freshness lifetime, 188
From headers, 258, 517

. robots and, 225
FrontPage, 424-429

. client and server extension
communication, 426

622 I Index

FrontPage Server Extensions {FPSE), 42 4
HTTP POST requests and; 425

· · . listExploreDocs element, POST request
body, 427

listHiddenDocs element, POST request
body, 427 ·

root web, 425
RPC protocol, 426
security, 428 ..
server administrator utility

. (Fpsrvadm), 428
service_name element, POST request

body, 427
subweb, 426
virtual servers,· 425

ftp scheme, 39
full NAT, 461
full-text indexes, 243

G
gateways, 19, 197--205

client- and server-side, 199
client-side security accelerator

gateways, 202 . . ·
examples, 198
protocol gateways, 200
proxies, contrasted with, 130
resource gateways, 203

· server-side security gateways, 202
server-side web gateways, 200
Via headers and, 153

general headers (see under headers)
general-purpose software web servers, 110
Generic Router Encapsulation (GRE), 472 ·
GETcommand, virtual hosting issues, 414
GET messages, processing steps, 171-175
GET method, 53 ·
getpeername function, 259
glyphs, 378
GRE (Generic Router Encapsulation), 472

H
H(A1) and H(A2) reference code, 577
halfNAT, 461 .
handshake delays, 82
handshakes, digest authentication, 290
hash tables, 218
H(d), one-way hash, 291
HEAD method, 54
HEAD response, 346

. ·. . ·.. .

· .headers; 47, 51, 67-Y3,508:_532
Accept, 69, 508

.. robots and; 225
Accept-Charset, 371, 375, 509

MIME charset encoding tags and, 3 74
Accept..:Encoding, 509
Accept~Language, 371, ~85, 510

. content negotiation and, 398
· Accept-Ranges, 510

Age, 510
Allow, 159, 511 ·
authentication, 278 ·

ba~ic, 281, 300
digest, 300

Authentication-Info directives, 576
Authorization; 281, 511

directives, 575
preemptive generation; 295

Cache-Control, 175:-177, 182-186, 189,
511 .

directives, 361
character set requirements, 392
classification, 51
client identification using, 258
Client-ip, 258, 260, 512
Connection, 86, 512.
content negotiation, 397
Content-Base, 513

· Content-Encoding, 513
Content-Language, 371,384, 5n
Content-:Lehgth, 344-347, 514
Content-Location, 514
Content-MD5, 347, 514
Content-Range, 515
Content-Type, 348-351, 515

charset pararrieter, .371
continuation lines, 51
Cookie, 516
Cookie2; 516
Date, 516
DAV, 431

compliance classes, .445
Depth, 431 ·
Destination, 431
entityheaders, 51, 67, 72

content headers, 72
entity caching headers, 73
HTTP/1.1, 342

ETag, 517
examples, 51 ·

· Expect, 517

Expires, 175, 183,517
. extension headers, 68 '
From;· 517

robots and, 225
. general headers, 51, 67,. 68

caching headers, 68
Heuristic Expiration Warning, 184
Host, .417, 418,419,518

robqts a:nd; 225
HTCP cache headers, 480 ·
If, 431
If-Match, . 519
If-Modified-Since, 166, 178, 518
If-None-Match, 180, 519
If-Range, 519
If-Unmodified~Since; 520
Last-Modified, 520
Location;. 520
Lock-Token, .. 431
niax~age,. 183
Max-Forwards, 155,521
for me.dia types, 348 . ·
Meter, 196, 493
MIME-Version, 521
must-revalidate, 183
no-cache, 182
no-store, 182
Overwrite, 432, 442 ·
Pragma; 68, 182, 521
Proxy-Authenticate, 522
Proxy-Authorization, 522 ·
Proxy-Connection, 96,523
Public, 523
Range, 524
Referer, 259, 524

robots and, 225
requestheaders, 51; 67, 69-71

accept headers, 69
client identification using, 258 ·
conditional request headers, 70
proxy request headers, 70
request security headers, 70

response headers, 51; 67, 71-72
negotiation headers, 71
response security headers, 72

·Retry-After, 525
Server, 525
Set-Cookie, 264, 525

caching and, 273
domain attributes, 267

Set-Cookie2, 271, 526

Index I 623

headers (continued)
syrit,ax, 51
tampering attack, 303 .
TE, 526
Timeout, 432, 435
Title, 527
Trailer, 526
Transfer-Encoding, 527
UA-, 527
for uncachable documents, 182
unsupported headers,·handling, 158
Upgrade, 528
User-Agent, 225, 259, 528 ·
Vary, 402, 529 ·
Via, 151-154; 529
WaiH-Digest, 348
Warning, 530
Warning 13; .184
for WebDAV, 431
WWW-Authenticate, 281, 531, 574--:575
X-Cache, 531 .
X-Foiwarded-For, 260, 531
X~Pad, 531
X-Serial-Number, 532

heartbeat messages, 4 73
heuristic expiration of documents, 184
Heuristic Expiration Warning headers, 184
history' expansion, 34 ·
hit logs, 195
hit metering, 492-494

Meter headers, 493
hit rate, 167
host component, URts, 27

·Host headers, 417,418,518
clients, requirements for;· 418
mi~sing host headers, 419 ·
proxies and, 418, 419
robots and, 225
web servers, interpnitationby, 419

hostile proxies; 304 ·
hosting services, 411

dediCated web hosting, 412
hostname expansion, 34
hostnames, 13
<href> element, 438
.htaccess, 428
HTCP (Hyper Text Caching

· Protocol),· 4 78-481
authentication, 4SO
cache headers, 480
caching policies, setting, 480 .
data components, 479 ·

624 I . Index

message structure, 478.
. opcodes, · 480

HTML (Hypertext Markup Language)
· displaying resources using HTTP, 13
·. documents,relativeURLsin, 31·

·.fragments, referencing, 30
robot-control METAtags, 237

HTTP (Hypertext Transfer Protocol), xiii,
3-11, 247

authentication, challenge/response
framework, 278

. ·. (see also authentication)
authei:ltication schemes, security

. risks, 303
base~64 encoding, compatibility

with, 570
caching (see caches)

.· character sets (see character sets)
· clients and servers, 4

commands, 8
CONNECT method, 206..,..208
connections (see HTTP connections)
entities (see entities)
headers (see headers)
hit metering extension, 492
HTTP-NG (see HTTP~NG)
informational resources, · 21
instance manipulations, 359
international content support, 370
limitations, 248 · ·
messages (see HTTP messages)
methods, 8
performance considerations (see under

TCP).
proxy servers (see HTTP proxy servers)·
redirection, 452-453 ·
relays, 212 .
reliability of, 3 .
revalidations, 165-166
robots, standards for, 225
secure HTTP (see HTTPS)
status codes, 9, 505:_507
TCP, dependency on, 80
textual basis of, 10
transactions, 8

delays, causes of, 80
truncation detection, 344

·versions, 16
HTTP connections, 74,75, 86-'-104

closing, 101-104
Connection headers, 86, 512
establishing, 13, 15-16 .

keep-alive.connections
(HTTP/1.0+), 91-96

parallel (see parallel connections)
persistent (seepersistent connections)
pipelined connections,· 99
Proxy-Connection- headers, 96,523
serial loading, 87
(see also TCP)

HTTP messages, 8, 10, 43-73
entity bodies, 4 7, 52
example, . 11.
flow, 43 --·
GET messages, processing steps, 171-175
headers (see headers)
methods (see methods) .
reas.on phrases, 47,50
redirection of, 450 __
reque~t lines, 48

·robots, setting conditions fpr, 226
request URLs, 46 - ·
response lines, 48

robots, handlingby, 227 ·.
start lines, .47-51
status codes (see status codes) -
struci:ure, 44 ·
syntax, 45
tracing across proxies, 150-157

Via headers, 151-154
Version 0.9 messages, 52
versions, 46, 50

HTTP proxy servers, 129~160 -
authentication, 156
client proxy configuration, 141-144
client traffic acquisition, 140
deploying, 137
interoperation, 157-160
messages, tracing, 150-157
proxy and server requests, handling, 146

-proxy hierarchies, 138
public and private proxies, 130
TRACE method and network

diagnosis, 155
unsupported headers and methods,

handling, 158
URis, in-flight modification of, 14 7
uses, 131.:.-136

http scheme, 38.
HTTP State Management Mechanism, 265
HTTP: The Next Generation (see HTTP-NG)
HTTP/0:9, 16

· HTTP/1.0, 16
server requests to virtual hosts, problems

with, 413 ·
HTTP/1.0+, 17 ..
HTTP/1.1, 17

. enhanced methods, 444 · ·
entity header fields, 342 .. -
Host headers (see Hostheaders)
limitations, 248
request pipelining, 99
TRACE method, 155 .-

HTTP/2.0, 17
HTTP-EQUIVtag, 187
HTTP-NG (HTTP: The· Next

Generation), .. 17, 248~253.
current status, 252>
message transport layer, 249, 250
modularizatiori, 248
object types, 252 -
remote invocation layer, 249, 250
web applicationlayer, 249, 251

HTTPS, 76,308-309,322-336
· authentication, 326

clients, 328:.:_335
OpenSSL example, 329-335

CONNECT method, HTTP, 206-208,
336

connecting, · 324
default port, 323
OpenSSL, 328-335
schemes, 308, 323
. site certificate validation; 327
SSL handshake, 324-326
tunnels (see tunnels)

https scheme; 38
Hyper Text Caching Protocol (see HTCP)
Hypertext Markup Language (see HTML)
Hypertext Transfer Protocol (see HTTP)

lANA (Internet Assigned Numbers
_ Authority) -

instance manipu.lations, registered
types, 367 -

MIME charset registry, 602~615 .
MIME type registration, 53t-539
registered language tags, 386, 582

ICP (Internet Cache Protocol), 473
vs. CARP, 475

ident protocol, 115 _ -

Index· 1 625

If headers, 431
If-Match headers, 519
If-Modified-Since headers, .166, 178,518
If~None~Match headers, 180, 519
If-Range headers, 519
If-Unmodified-Since headers, 520

. image/* MIME types, 561'-562
inbound messages, 43
inbound proxies, 138
indexes, full-text, 243 ·
informational status codes (100-199), 59-60,

505
ingress proxies, 137
instance manipulations, 359, 367-369

delta encodings, · 365
IANAregistered types, 367
range requests, 364

integrity protection, 299
intercepting proxies, 140, 146

. URI resolution with, 149
internationalization ·

date formats, 392 ·
domain names, 392
headers, character set for, 392
ISO 3166 country codes, 594-600
ISO 639language codes, 583-594
languages, administrative

organizations, 601
URL variants, 395

Internet Assigned Numbers Authority (see
lANA)

Internet Cache Protocol (ICP), 473
Internet search engines (see search engines)
IP address forwarding, · 460
lP (Internet protocol) addresses, 13

clients, identification using, 259
virtual hosting and, 416

IP MAC forwarding, 459
IP packets, 76
iPlanet web servers, 110
ISO 3166 country codes, 594-600
ISO 639 language codes, 583-594
iso-2022-jp encoding, 382
iso-8859 character set, 380

J
Japanese encodings, 382, 383
JIS X 0201, 0208, and 0212 character

sets, 380
Joe's Hardware Store web site, xiv

626 . I Index

K
KD(s,d} digest, 291 . ..

·keep-alive connections (HTTP/1.0+), 91-96
(see also persistent connections} ·

keyed ciphers, 311 .
keys, 311, 312

key length, 313

L
language preferences, configuring, . 389
larigmige tags, 370, 384, 581-600

case sensitivity, 386
first subtag rules, 581
lANA-registered tags, 386, 582
reference tables, · 389
second subtag rules, 582
subtags, 386
syntax, 385

Last-Modified dates, using, 181
Last-Modified headers, 520 ··
layering ofprotocols, .. 12
layout delay, preventing, 88
ligatures, 378
listExploreDocs element, POST request·

body, 427
listHiddenDocs element, POST request

body, 427
LM~Factor algorithm, 184
load balancing, 4.49. ·

DNS round robin, 454-457
single clients and, 456

loading, serial, 87
Location headers, 520
LOCK method, 433

status codes, 436
lock refreshes, 435
<lockdiscovery> element, 435
<lockinfo> element, 434
locking, 4 33
<locktoken>element, 434
Lock-Token headers, 431
logging, 483-492.

commonly logged fields, 483
interpretation, 484
log formats, 484-492 ·

Combined Log Format, 485
Common Log Format, 484
NetscapeExtended 2 Log

Format, 487-489

Netscape Extended Log Format, 486
Squid Proxy Log Forrp.at, 489~492

privacy concerns, 495 ·
loops (webrobots), 217

M
MAC (Media Access Control) addresses, 459
magic typing, i26
tnailto scheme, 38
man-in-the-middle attacks, 304
manual client proxy configuration, 142
master origin server, 420
max-age response headers, 183
Max-Forwards headers, 155, 521
MD5, 288,291,293,347
MD5-sess; 291, 293 . · ·
Media Access Control (MAC) addresses,·. 459
media types, 348
. · multipart, 349
message body, 44 .· . .
message digest algorithms, 291-294

symmetric authentication, 298 ·
message integrity protection, 299 ·
message/* MIME types, 563 . . ·
message transport layer (HTTP-NG), 249,

250
message truncation, 344 ··· ·
messages (see HTTP messages)
<META HTTP~EQUIV> tag, 187 .
MET A tag directives, 239 ·
meta-information, 43 ..
Meter headers, ·196~ 493
methods, 46, 48, 53-59

CONNECT, 206-208, 336
DELETE, 58, 441
extension methods, 58
GET, 53
HEAD, 54 ·
OPTIONS, 57, 159,445
POST, 55

. PUT, 54, 444
redirection status codes and, 64
TRACE, 55

· unsupported, handling, 158
Microsoft FrontPage (see FrontPage)
Microsoft Internet Explorer ·

cookie storage, 266 .
. · language preference configuration, 389

Microsoft web servers, 110 ·

MIME (Multipurpose Internet Mail ·
Extensions) ·

charset encoding tags, 374
chatset registry, 602-615

preferred MIME.names, 603
''multipart" email messages, 349 ·
(see also MIMEtypes) .•·

MIME types, 5, 533-569
application/* wpes, 540-557
audio/' types, 55T-559 .
chemical/* types,· 559i.561

. composite types, 534
discrete types, 534 .
documentation, 534
experimental types, 569 .
lANA registration, 537-539

media type registry, 539
process, .537
registration trees, 537

.. rul~s, 538 ·
template, 538

·. imager types, 561...:.562
message/* types, 563
model/* types, 563
multipart/* types, 535, 564
primary types, 536
structure, 534

· syntax, 536
tables, 539~569
text/* types, 565-568
video/* types, 568

MIMEtyping, 125
MIME::Base64 Perl module, 572
MIME-Version headers, 521
mirrored serverfarms, 420
MKCOLmethod, 440
mod_cern_metairiodule, Apache 'web

server, 186
model!* MIME types, 563.
mod-.,.expires module, Apache web

· server, 186
mod_headers module, Apache web

server, 186
MOVE method, 442
multi-homed servers, 425.
multipardorm-data encodings, 349 .
multipart!" MIME types, 535,564
multiplexed architectures, 119

I/0 web servers, 119 .
multithreaded webservers, 119

Index I 627

multiprocess, multithreaded web
servers, 118 . . .· .

Mtdtipurpose Internet Mail Extensions (see
. MIME; MIME types)·

<multistatus> element, 438
MultiViews directive, 400
must-revalidate response headers, 183

N
Nagle's algorithm, 84 .
namespace management, 439-444

methods used for, 440
status codes, 443

namespac~s, 388.
·language subtags, 387.:....389.
XML,430

NAT (Network Address Translation), 460
NECP (Network Eleinent Control· .

Protocol), 461 .
negotiationheaders, 71
NetscapeExtended 2 Log Format, 48T-489
Netscape Extended Log Format, 486 ·
Netscape Navigator

cookies
storage, 265
Version 0, 269

language preference configuration; 389
Network Address Translation (NAT), 460
network bottlenecks, 161
Network Element Control Protocol

(NECP), 461 .
network exchange proxies,·. 13 7
news scheme, 39 ·
no-cache response headers, 182
nonces, 289-298

next ri.once pregeneration, 297
reuse, 297
selection, 298
time~synchronized generation, 2~7

no-store response headers, 182
.nsconfig, 428

0
object types, HTTP~NG, 252
one-way digests; 288 .
one-way hashes, 291

functions, 289
opa:quelockwken scheme, 433, 434 ·
OpenSSL, · 328-335 ·

example-client, 329.:....335

628 · I Index

OPTIONS method, 57, 445
. requests, 159

response headers to, 445
origin servers, 420 ..

· outbound messages, 43
outbound proxies, 138
OverW.rite headers, 432, 442

p
PAC::files, 142

autodiscovery, 465
PAC (Proxy Auto-Configuration)

. protocol; 463
parallel connections, 88-90

impression of speed, 90
hiding speed, 88

. open conne<:;tion limits, 90
persistent connections vs~, 91

parameters component, URLs, 28
parent and child relationships, 138
parent caches, 169 -
password component, URLs, 27
passwords . ·

digest authentication password file,
risks, 305

digest authentication, security, 287
path component, URLs, 28 .
Perl code for interaction with robots. txt

files,· 235
Perl web server, 111
persistent connections, 90:_99

Content-Length headers and, 345
keep-alive connections

(HTTP/1.0+), 91-96
. parallel connections vs., 91
restrictions and rules, 98

persistent uniform resource locators
(PURLs), 40

pipelined connections, 99
plaintext, security and, :no
port component, URLS, 27
port exhaustion, 85 ·

· port numbers, 13, 77
default values, 13

· · virtual hosting and, 415
POST method; 55
POST requests, FrontPage and, 425
Pragma headers, 68, 182, 521

Pragma: no-cacheheaders, 182
precompiled dictionary attacks, 305

..

preemptive authorization, 295
presence bit arrays (web robots), 218
presentation forms, 378
primary subtags, 386
privacy, 495

cookies and, 275
robots and, 229

private caches, 168
private docroots, 122
private proxies, 130
<prop> element, 43 7
<propertyupdate> element, 438
PROPFIND method, 437

. server response elements, 438
XML elements, used with, 437

<propname> element, 437
PROPPATCH method, 438-439

XML elements, used with, 438
<propstat> element, 438
"protecting the header", 87
protection spa.ces, 295; 301
protocol gateways, 200
protocolstack, 76
protocols, layering of, 12
proxies

100 Continue status code and, 60
authentication, 156
·deploying, 13 7
egress proxies, 13 7
gateways, contrasted with, 130

· hostile, 304
HTTP proxies (see HTTP proxy servers)
ingress proxies, 13 7
intercepting proxies, 140, 146

URI resolution with, 149
interoperation; 157--:160
messages, tracing, 150-157
"missing scheme/host/port"

problem, 146 ·
proxy and server requests, handling, 146
proxy hierarchies, 138

contentrouting, 139
dynamic parent selection, 140

public and private, 130
redirection and, 449
surrogates, 146
transparent negouatwn, 400
transparent proxies, 140
tunnels and, 335

URis, in-flight modification of, 147
uses, 131-136
(see also HTTP proxy servers)

Proxy-Authenticate headers, 522
proxy authentication, 283 · ·
Proxy-Authorizationheaders, 522
Proxy Auto-configuration (PAC)

protocol,·. 142, 463
(see also PAC files)

proxy cache hierarchies, 169
proxy caches, 169
Proxy-Connection headers, 96, 523
proxy redirection

CARP (Cache Array Routing
Protocol), 475-478

HTCP ·(Hyper Text Caching
Protocol), 4 78~481

ICP (Internet Cache Protocol), 473
proxy redirection methods, 462-469

explicit browser configuration, 463
disadvantages, 463

PAC (Proxy Auto-configuration)
protocol, 463

WPAD (see WPAD)
proxy request headers, 70
proxy servers, 18

networks, use in securing,· 335
(see also HtTP proxy servers)

proxy URis vs. server URis, ·144
public caches, 169
Public headers, 523
public proxies, 130
public~ key cryptography (see under ·

cryptography)
publishing systems

FrontPage (see FrontPage)
WebDAV (see WebDAV)
(see also web publishing)

PURLs (persistent uniform resource
locators), 40

PUT method, 54, 444

Q
qop (quality of protection), 293

· enhancements, 299 .·
quality factors, 371
quality of protection (see qop)
quality values, 398
query component, URLs, 29

Index I 629

R
Range headers, 524
range requests, 363
realm directive, 280' .
realms (protection spaces), '301
reason phrases, 9, 47, 50, 505:--507
redirection, 126, 448-481 · · ·

anycast addressing, 457 · · . ·
. enhanced DNS-based algorithms, 457
IP address forWarding; 460

· IP MAC for-Warding, 459 ·
load balancing and, 127, 449
methods, 450 · .

· DNS redirection, 453-457
HTTP redirection, 452-453 .
proxy methods, 462--:-469
proxy techniques, 451

NECP (Network Element Control
Protocol), 461 ·

protocols, 450 ·
proxies, role in, 449

· purpose, 449
techniques, 448
temporary redirect, 126
transparentredirection, 469
URL augmentation, 126
WCCP (Web Cache Coordination

Protocol), 470.:...473
redirection status codes (300-399), 61-64,

. 5~ . . :

Referer headers, 259, 524
robots and, 225

relative URLs, 30-34
bases, 31
resolving, 33

relays, 212
keep-alive connections and, 212

relevancy ranking, 2 4 5
reliable bit pipe, 7 5 · ·
remote invocation layer (HTTP-NG), 249,

250
remote procedure call (RPC) protocol,

FrontPage, 426 .
<remove> element, 439 .
replay attacks, 284, 289, 303

preventing, 289
replica origin servers, 420
request digest reference code, 577
request digests, 294
request headers (see under headers)
request lines, 48

630 · I .· Index

request messages, 10, 45, 47
methods,. 46 ·

. requestURLs, 46 .
request method (HTTP), 294
request pipelining, 99
request security headers, 70
reserved characters (see restricted characters)
resource gateways, 203
resource locator servers, 40
resource paths, 24
resources, mapping and accessing of, 120
response digest reference code, 577
response entities, 125
response headers (see under headers)
response lines, 48 · · ·
response messages, 10, 45,125
restricted characters, 36
Retry-After headers, 525
revalidate hits, 165
revalidate misses, 166.
revalidations, 165-166
reverse proxies, 134, 137
RobotRules object, 235
robots .

conditional HTTP requests, 226
entities and, 227

·etiquette, 239-241
excluding from web sites, 229-239 ·.
HTML robot control META tags,.· 237
HTTP and, 225 . ·. ·. .·

· request headers,idemifying; 225
MET A directives, 23 7
Meta HTML tags and, 227 ·
privacy and, 229 ·
problems caused by,. 228
response handling, 22 7
search engines, 242-246
status codes, handling of, 227
(see also robots. txt files)

Robots Exclusion Standard, 230
robots.txt files, 229 · ·

caching and expiration, 234
comments, 234
disallow and allow lines 233

· example, 236 '
fetching, 231
records, 232
specification, changes in, 234
status codes for retrievals 231 . ,
syntax, 232
User-Agerit line, 232
web sites and, 231

root set, 216
root web, 425
round.:.robin load bahmcing, 453 ·

· DNS round robin, 454-457 ·
routers arid anycast addressing, 457
RPC protocol, Front'Page, 426
RSA algorithm, 317
rtsp, rtspu schemes, 39

s
schemes, 7, 24, 27

common formats, 38
URis for, 499:-504

search engines, 242-246 ·•
architecture, 242 ·
full-text indexes, 243
queries, 244
relevancy ranking; 245 .· ·
results, sorting and.formatting, 244
spoofing, 245 ·· ·

search trees, 218
second subtag, 388 .
Secure Sockets Layer (see SSL)
security ·

basiC authentication and 283
cookies. and, 275 ' · .
digest authentication and, 286
firewalls, 132 . ·
FrontPage, security model, 428
HTTP authentication schemes, associated

risks, 303 ·
key length and, 314
multiple authentication schemes,

risks, 303
security realms, 280
WPAD security hole, 468

segments, 7 6
"sender silly window syndrome" 84
serial loading, 87 ·· '
serial transaction delays, 87
server error status codes (500~599), 66, 505
server farms, 413

mirrored servers, 4 20
Server headers, 525
Server response header field, 154
server URis vs. proxy URis, 144
server-driven negotiation, 397-400

server-side extensions, 400
servers

100 Continue status codes and, .60
accelerators, 134
certificates, 326

delta encodings, impact ori, 368
error status codes (500-599), 66
extension APis,. 205 ·
FrontPage Server Extensions (FPSE), 424
Host headers, interpreting, 419 ·
multi-horried servers, 425
revalidation, ·177
server farms, 413

master orig~n sel'Vers, 420
replica origin servers, 420

supported functionality, identifying,. 159
validation, 175 · .

server-side extensions 400 . . . ·.. . '
server-side gateways, ·199

security gateways, 202
web gateways, 200 ·.

server~side includes (SSis), 124
service groups, 472
service_name elerrient, POST request ··

. · body, 42T . .
sessions, cookies and, 264 .

trackingwith, 272
<set> element, 438
Set-Cookie headers, 264, 525

caching and, 273
domain attributes, 267

Set-Cookie2 headers, 271, 526
shared hosting, 413~419 · .
shared keys, 315
shared proxies, 130
sibling caches, 171
S~mple Object Access Protocol (SOAP), 206
smgle-threaded web servers, 118 ·
site certificate validation, 327
slow hits, 165 .
s-maxage response headers, 183
SOAP (Simple ObjectAccess Protocol), 206
sockets API, 78 ·

calls, 78 . ..
software web servers; 110
spiders, 215 ·

· spoofing, 245
Squid Proxy Log Format, 489-492 ·
SSis (server-side inCludes), 124
SSL (Secure Sockets Layer), 308

authentication, 326 .
handshakes, 324-326
HTTPS, integration in, 323

· OpenSSL, 328-335
site certificate validation, 327
tunnels, 209

vs. HTTP/HTTPS gateways, 210

Index I 631

SSLeay, 329.
(see also OpenSSL)

start lines, 47-51
status codes, 9, 49, 59-67.

classes; 49 • · .
client error codes (400-499), · 65-66, 505
HTTP codes, 505-507
informational status codes

(100-199), 59'-'-60, 505
LOCKmethod, 436
narnespace management methods, 443
redirection status codes

(300-399), 61-'64, 505
robots, handling by, 227 .
server error codes (500~599), · 66,505
success status codes (200-299), 61, 505
UNLOCK method, 436

<status> element, 438
strong validators, 181,363
subtags, 386, 389.

first sub tag, 387 ·
second subtag, 388

subweb, 426 ·
success status codes {200-299), 61, 505
surrogate caches, 421 ·
surrogate proxies, 137
surrogates, 134, 146
symbolic links and cycles, · 220
symmetric authentication, 298
symmetric-key ciphers, 313
syntax, headers, 51

T
TCP slow ~tart (see under TCP) ·
TCP (Transmission Control

Protocol), · 7 4-86
connections, 75

distinguishing values, 77
establishing, 13, 79
web server handling of, 115
·(see also HTTP connections)

·network delays, causes, 80 .
performance considerations, 80-86

connection handshake delays, 82
delayed acknowledgemeius, 83
delays, most common causes, 81-86
Nagle's algorithm, 84

. port exhaustion, 85 ·
TCP slow start, 83 .
TCP_NODELAY, 84
TIME.:.... WAIT accumulation, 85

632 I Index

. port numbers and, 77
·.reliability, 74.
serialloading, 87
sockets API, 78
TCP slow start, 83

TCP/IP (Transmission Control.
· Protocol/Internet Protocol), 11

.. TCP _NODELAYparameter, 84
TE headers, 526
Telnet example, 15-16
telnet scheme, 40
text/* MIME types, 565-568
<timeout> element, 434
Timeout headers, 432, 435
TIME_W AIT accumulation, 85
Tide headers, 527
TLS (Transport Layer Security), 308

(see also SSL)
TRACE method, 55, 155-157

Max-Forwards headers and, 155
Trailer headers, 526. ·
transactional direction, messages, 43
transactions, 8
transcoders, 135
transcodings, 395, 403-406

content injection, 405
format conversion, .404
information synthesis, 404
types, 404 .
vs, static pregenerated content, 405

transfer encodings, 354-359
Transfer-Encoding headers, 527
Transmission Control Protocol/Internet.

Protocol (TC~!IP), 11
transparent negotiation, 400-403

caching, 401 ·
Vary headers, 402

transparent proxies, 140
transparent redirection, 469
Transport Layer Security (see TLS)
trees, 218
truncation detection, 344 ·
tunnels, 19, 206-212

authentication, 211
HTTPS SSL; 335-,J36
security, 211
SSL tunnels vs. HTTP /HTTPS

gateways; 210
type negotiation, 126
type-map files, 399
type-a-serve web server, 112

u
UA- headers, 527 . ·
UCS (U~ivers~l CharacterSet), 381
uncachable doc].lments, 182 .
uniform resource identifiers (see URis)
uniform rescn:irce locators (see URLs) .
uniform iesow:ce names (see URNs)
Universal Character Set (UCS), 381
UNLOCK method, 435 .

status codes, 436
Upgrade headers, 528
upstream message flow, 44
uri,directive-value, 294
URis (uniform resource identifiers),· 6, 24

Client autoexpansion and hostname
· resolution, 147

intercepting proxies, resolution with, 149
internationalization, 389-391
resolution, 144-150 .

proxy vs. server, 144
with a proxy, explicit, 149
without a proxy, 14~

· rewriting, 302 ·
schemes, 499-504

URLs (uniform resource locators), 6, 23--42
advantages of, 25
aliases, 219
·augmentation, 126
automatic expansion, 34
canonical form, 37
canonicalizing, 220
character sets, 35,35-38 .
CURLs,- 465 ·

· examples, 13
fat URLs, client identification using, 262
informational resources, 41
portability, 35 .
PURLs, 40.·
relativeURLs, 3Q-34
restricted characters, 36

· scheines, 7
schemes (see schemes)
shortcuts, 30
structure, 2 4

. syntax, 26-30
URis, as a subset of, 24
variants, 395

virtual hosting, paths, 415
URNs (uniform resource names), 7, 40

standardization, 41
US-ASCII character set, 379

user agents, 19
usercomponerit, URLs, 27
user home directory docroots, 122
User-Agent headers, 225, 259, 528
user-tracking systems, content injection-·

and, 405
UTF-8 encoding, 382 ·

v
validators, 362 .

La.st-Modifieddates, using, 181 _· ·
strong and weak, 181,363

variable-length codes, 372 . .
variable-width modal encodings, 381
variable-width nonmodal encoding$, 381.
Vary headers, 402, 529. ·
Vermeer Technologies, Inc., 424
version numbers, HTTP messages, _50
Via headers, 151-154, 529

gateways and, ·153 _
privacy and security, 154
request and response paths, 153
Server responseheader fields and, 154
syntax, 152 ·

video/* MIME types, 568
virtual hosting, 225,413-419

. digital certificiltes ~nd, 328
docroots, 121
GET command, problems with, 414
Host headers, by, 417 ·

(see also Host h~aders)
IP addresses, by, 416

problems_ for hosters, 417
port numbers, by, 415.
server requests, absence of host

information in HTTP/1.0, · 413
fixes, 415

URL paths, by, 4LS
virtual servers, 4 25

w
Want-Digest headers, 348
Warning headers, 530

Heuristic Expiration Warning, 184 ··
WCCP (Web Cache Coordination

Protocol), 470-473
GRE packet encapsulation, 472
heartbeat messages, 473
load balancing, 4 73 -
operation~ 470

-·Index I 633

WCCP (continued)
service groups, 472
versions, 4 70
WCCP2 messages, 470-472

header and components, .4 71
weak validators, 181,363
web application layer (HTTP-NG), 249, 251
webarchitecttire, 17-20 ·
Web Cache Coordininion Protocol (see .

WCCP)
web cache~, 18,.161 ..

(see also caches)
web clients and servers, 4
Web Distributed Authoring and Versioning

(see WebDA V) ·

web hosting, 411-:-422
hosting services, 411 ·
shared or virtual hosting; 413-419

web pages, 9 · .
Web ProxyAutodiscovery Protocol (see

. WPAD) .

web proxy servers, 129
web publishing ·

collaborative authoring, 429
publishing systems, 424

web resources, 4.
web robots, 215--246 · ·

crawlers (see crawlers)
examples, 215 .
spiders, 215 · .

web servers, 109
access controls, 124
appliances, 111
client hostname identification, 115
client identification,. 257-276

cookies, using,· 263.:._276
fat URLs, using, 262
headers, using, 258 ·
IP address, using, 259 · ·

· user login, using, 260 ··
·connection input/output processing

architectures, 117 · ·
connections; handling new, 115
directory listings, 122.
docroots, 120
dynamic content resource mapping, 123

·embedded web servers; 111 ·
· explicit typing, 126 .
HTTP proxy servers (see HTTP proxy

servers)
idem protocol, 115

634 1 · h1dex

implementations, 109
logging, 12 7
MIME typing, 125
multiplexed 1/0 servers, 119 · ·

· multiplexed multithreaded servers, 119
multiprocess, multithreaded servers, 118
Perl example, ill ·
redirection responses, 126

· request handling, 449
request messages

receiving, 116
structure of, .117

resources, mapping arid accessing of, 120
response entities, . 125
response messages, 125
responses, sending, 127

. single-threaded servers, 118
software web servers, 110
SSls (server-side includes), 124
tasks .of, 113-114
type negotiation, 126
type-o-serve, 112
user authentication (see authentication)

web services, 206
web sites

personalizing of user experience, 257
reliability, improving, 419.:._422

mirrored server farms; 420
robots, exclusion, 229-239
robots.txtfiles, 231
speed, improving,.422 ·

·web tunnels (see tunnels) .
WebDAV (Web Distributed Authoring and

Versioning), 429-446
collaborative authoring and, 429 ·
collections, 439-444 .
DAV header, 431
Depth header, 431
Destination header, 431
enhanced HTTP/1.1 methods, 444
headers, 431
Ifheader, 431
LOCK method, 433
locking, 432
Lock-Token headers, 431
META data, embedding, 436-439
methods, 429
namespace management, 439-444
OPTIONS method,. 445
Overwrite headers, 432
overwrites, preventing, 432

PROPATCH method, 438-439
.propenies, 436-439
PROPFIND meth~d,. 437
PUT method, 444
Timeout headers, 432 · ··
UNLOCK method, 435
version management, · 446 ·
XML and, 430 ·

WebMUX protOcol, 250,251
WPAD (Web Proxy Atitodiscovery

. Protocol), 143,464-469
administration, 469
CURLs,. 465

DHCP discovery, 467
DNS A record lookup, 467 .

· PAC file retrieval, 467
PAC file autodiscovery, 465 ·
resource-discovery algorithm, 143, 465
spoofing, 468 · · ·

timeouts, 468 ·
timing, 468

WWW-Authenticate he;:!dets, 281, 531
directives, 57 4-57 5

WWW::RobotRules object, 235

X
X.509v3 certificates, 320
X-Cache headers, 531

. X-Forwarded-For headers, 260, 531
XML (Extensible Markup Language), 206,

430 .
·.elements used in kicking, 434
namespace; 430
schema definition, XMLdocuments, 430
WebDAV and, 430

X-Pad headers, 531
X-Serial-Number headers, 532

Index I 635

About the Authors
. . .

. .

David Gourley is .. the Chief Technology Officer of E.ndeca, ·where· he leads the
research and development . of Endeca' s products .. Endeca develops Imernet and
intranet information-:-access solutions that prov!de new ways to .navigate .and explore
enterprise data. Prior to working at. Endeca, David was a member of the founding
engineering team at Inktomi, where he helped develop Inktomi's Intei'netsearch
database and was a keydeveloper of Inkto~i 'sweb caching products'. . ..

· David earned a B.A. in Computer Science from the University of California at
Berkeley, and he holds several patents in web technologies.

· B'rianTotty was most recently the Vice President ~f R&Dat Inktomi Corporation(a
company he helped found in 1996), where he.led research and develorment of web
caching, streaming media, and Internet search techn.ologies. Formerly, he was a
scientist at Silicon Graphics, where he designed and optimized software for high-

.. performance networking and supercomputing systems~ .Before that, he held an engi­
neering position at Apple Computer's Advanced Technology Group.

Brian holds a Ph.D. in Computer Science from the University of Illinois at Urbana­
. Champaign and <l B.S. degree in Computer Science and Electrical Engineering from
MIT, where he received the Organick award for computer systems research. He also
has developed and taught award-winning courses on Internet· technology for the
University of California Extension system.

Marjorie Sayer writes about network caching software at Inktomi Corporation. After
earning M.A. and Ph. C. degrees in Mathematics at the University of California at
Berkeley, she worked on mathematics curriculum reform. Since 1990 she-has written
about energy resource management, parallel systems software, telephony, and
networking.. · ·

Sailu Reddy currently leads the development of embedded performance-enhancing
HTTP proxies at Inktomi Corporation. Sailuhas been developingcomplex ~ofi:ware
systems for 12 years and has been deeply involved inweb infrastructure research and
development since 1995. He was a core engineer of Netscape's first web server and
web proxy products and of several following generations. His technical experience
includes HTTP applications, data compression techniques, ·database engines, and
collaboration management. Sailu earned an M.S. in· Information Systems from the
University of Arizona and holds several patents in web technologies. . ·

Anshu Aggarwal is a Director of Engineering at Inktomi Corporation. He leads the
protocol-processing engineering teams. for Inktomi's web caching products, and he
has been involved in the design of web technologies at Inktomi since 1997. Anshu
holds M.S. and Ph.D. degrees in Computer Science frmn the University of Colorado
at Boulder, specializing in memory-consistent techniques for distributed multipro­
cessor machines. He also holds M.S. and B.S. degrees in Electrical Engineedng.
Anshu is the author of several technical papers and holds two patents.

Colophon·
.

Our look is the result of reader comments; our own experimentation, and fee~ back
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

• The animal on the cover of HTTP: The Definitive Guide is a thirteen-lined ground
squirrel (Spermophilus tridecemlineatus), common to ceritralNorth America. True to
its name, the thirteen-lined ground squirrel has thirteen stripes with rows of light
spots that run the length of its back. Its color pattern blends into its surroundings,
protecting it from predators. Thirteen-Jined ground squirrels are members of the
squirrel family, which includes chipmunks, ground squirrels, tree squirrels, prairie
dogs, and woodchucks. They are similar in size to the eastern chipmunk but smaller
than the common gray squirrel, averagingabout 11 inches in length (including a 5-6
inch tail).

Thirteen-lined ground squirrels go into hibernation in O~tober and emerge in late
March or early April. Each female usually produces one litter of 7--10 young each
May. The young leave the burrows at four to five weeks of age and are fully grown at
six weeks: Ground squirrels prefer open areas with short grass and well-drained
sandy or loamy soils for burrows, and they avoid wooded areas-mowed lawns, golf
courses, and parks are common habitats. ·

Ground squirrels can cause problems when. they create burrows, dig up newly
planted seeds, and damage vegetable gardens .. However, they are important prey to
several predators, including badgers, coyotes,. hawks, weasels, and various snakes,
and they benefit humans directly by feeding on many harmful weeds, weed seeds,
and insects. · · · · · · ·

Rachel Wheeler was the production editor and· copyeditor for HTTP: The Definitive
Guide. Leanne Soylemez, Sarah Sherman, and Mary Anne Weeks Mayo provided
quality control, and Derek Di Matteo and Brian Sawyer provided production assis­
tance. John Bickelhaupt wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original illustration created by Lorrie Lejeune;
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font.

David Futato and Melanie Wang designed the interior layout, based on a series
design by David Futato. Joe Wizda prepared the files for production in FrameMaker
5.5.6. The textfont is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by
Rachel Wheeler.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CPSIA infonnation can be obtained at www.ICGtesting.com
Printed in the USA

·BVOW09s06372709!6

463309BV00006BA/9/P. · · IIIII I IIIII II
9 781565 ·. 925090

Web Programming

O'REILLY®

HTTP: The Definitive Guide
Behind every successful web transaction lurks the Hypertext Transfer Protocol (HTTP),
the language by which web clients and servers exchange documents and information.
HTTP is commonly known as the workhorse behind the browsers we use every day to
access our company intranets, locate out-of-print books, or research census information.

But HTTP is used for far more than browsing the Web: the simplicity and ubiquity of HTTP also
have made it the choice protocol for many other networked applications, most notably through
web services such as SOAP and XML-RPC.

As the title suggests, HITP: Tbe Definitive Guide explains the HTTP protocol: how it works and
how to use it to develop web-based applications. However, this book is not just about HTTP;
it's also about all the other core Internet technologies that HTTP depends on to work effectively.
Although HTTP is at the center of the book, the essence of HTTP: Tbe Definitive Guide is in
understanding how the Web works and how to apply that knowledge to web programming and
administration. The book explains the technical workings, motivations, performance considerations,
and objectives of HTTP and the technologies around which it revolves.

HITP: Tbe Definitive Guide is the bible for the HTTP protocol and related web technologies.
Topics covered include:

• HTTP methods, headers, and status codes

• Optimizing proxies and caches

• Strategies for designing web robots and crawlers

• Cookies, authentication, and Secure HTTP

• Internationalization and content negotiation

• Redirection and load-balancing strategies

Written by experts with years of practical experience, this book uses clear, concise language and a
plethora of detailed illustrations to help readers visualize what goes on behind the scenes, providing
a complete understanding of the story behind each query on the Web.

. All web programmers, administrators, and application developers need to be familiar with HTTP
in order to work effectively. There are many books that explain how to use the Web, but this is the
book that explains how the Web works.

www.oreilly.com
us $54.99 CAN $63.99

ISBN: 978-1-56592-509-0

IIIIIIIIIIIIIIIIIIDIIIIIIIIIIIIilliiMiil
9 781565 925090

