Note that the basic authentlcatlon protocol does not make use of the Authenucauon—-
Info header we showed in Table 12-1. : :

Base-64 Username/Password Encodmg

HTTP basic' authentication packs the username and password together (separated by
a colon), and encodes them using the base-64 encoding method. If you don’t know
what base-64 encoding is, don’t worry. You don’t need to know much about it, and
if you are curious, you can read all about it in Appendix E. In a nutshell, base-64
encoding takes a sequence of 8-bit bytes and breaks the sequence of bits into 6-bit
chunks. Each 6-bit piece is used to pick a character in 2 spec1a1 64-character alpha-
bet, c0n51st1ng mostly of letters and numbers

v Fxgure 12-4 shows an example of usmg base-64 encodmg for basic authenucatlon
Here, the username is “brian- -totty” and the- password is “Ow!”. The browser joins the
username and password with a colon, yielding the packed string “brian-totty:Ow!”.
This string is then base 64—encoded into this mouthful: “YnJpYW4tdGO0dHk6T3ch”.

S G brian-totty
(a) Prompt for username and password
N .Ow!
E brian-totty-"
(b) Pack username and password with colon brian-totty:0w!
: S oWl
(¢) Base 64 encode © BASEG4ENC(brian-totty:Ow!)--p YanYW4’chQOde6T3 ch
{d) Send authorization ' Q
. . lient Server
GET /family/jeff.jpg HTTP/1.0
Authorization: BasSic YnJpYW4tdGIOdHKET3ch |---mmrmmmsmre

Figure 12-4. Generating a basic Authorization header from username and password

- Base-64 encoding was invented to take strings of binary, text, and international char-
acter data (which caused problems on some systems) and convert them temporarily
into a portable alphabet for transmission. The original strings could then be decoded
on the remote end without fear of transmission corruption.

Base 64 encodmg can be useful for usernames and passwords that contain interna-
tional characters or other characters that are illegal in HTTP headers (such as quo- -
tation- marks, colons, and carriage returns). Also, because base-64 encoding
trivially scrambles the username and password, it can help prevent administrators

282 | Chapter12: Basic Authentication

Exhibit 2002
IPR2016-01431 - Part 2 of 2

B from acc1dentally v1ew1ng usernames and passwords Whlle admmlstermg servers
~and networks :

Proxy Authentlcatlon

Authentlcatlon also can be done by 1ntermed1ary proxy servers. Some organmatlons
use Proxy servers to authenticate users before letting them ‘access servers, LANs, or
wireless networks: Proxy servers can be a convenient way to provide unified access
control across an organization’s resources, because access policies can be centrally
administered on the proxy server. The first step in this process is to establish the
identity via proxy authentication.

The steps involved in proxy authentication are 1dent1ca1 to that of Web server r identifi-
cation. However, the headers and status codes are different. Table 12-3 contrasts the
status codes and headers used in web server and proxy : authentlcatlon :

Table 12-3. Web .ser'v_er versus proxy authentication

| Unauthorized status code: 401 . Unauthorized status code: 407
WWW-Authenticate. o 8 Proxy-Authenticate .
Authorization .‘ | Proxy-Authorization
Authentication-fnfo_ _ | Proxy'-Abuthentication-Info)

The Securlty Flaws of Basic Authentlcatlon

Basic authentication is simple. and convenient, but it is not secure It should only be
used to prevent unintentional access from nonmalicious parties or used in. combma-
tion with an encryption technology such as SSL.

Consider the following security flaws:

1. Basic authentication sends the username and password across the network in a
form that can trivially be decoded. In effect, the secret password is sent in the
- clear, for anyone to read and capture. Base-64 encoding obscures the username
* and password, making it less likely that friendly parties will glean passwords by
accidental network observation. However, given a base 64—encoded username
and password, the decoding can be performed trivially by reversing the encod-
ing process. Decoding can even be done in seconds, by hand, with pencil and
paper! Base 64—encoded passwords are effectively sent “in the clear.” Assume
“that motivated- third parties will intercept usernames and passwords' sent by
basic authentication. If this is a concern, send all your HTTP transactions over
SSL encrypted channels, or use a more secure authentication protocol, such as
digest authentication.

- The Security Flaws of Basic Authentication | 283

2. Even if the secret password were encoded in a scheme that was more compli— _
cated to decode, a third party could still capture the garbled username and pass-
word and replay the garbled 1nformat10n to origin servers over and over again to
gain access. No effort is made to prevent these replay attacks. :

3. Even if basic authentrcatton is used for noncritical apphcauons, such as corpo-
rate intranet. access control or personalized content, social behavior makes this
'dangerous ‘Many users, overwhelmed by a multitude of password protected ser-
vices, share usernames and passwords. A clever, malicious party may capture a
username.and password in the clear from a free Internet email site, for example,-
and find that the same username and password allow access to crmcal online

" banking sites! ’ ‘ '

4. Basic authentication offers no protectlon against prox1es or 1ntermed1ar1es that
act as middlemen, leaving authentication headers intact but modifying the rest of
the message to dramatically change the nature of the transaction.

5. Basic authentication is vulnerable to spoofing by counterfeit servers. If a user can

be led to believe that he is connecting to a valid host protected by basic authenti-

“cation when, in fact, he is connecting to a hostile server or gateway, the attacker
can request a password, store it for- Iater use, and feign an error. '

This all said, basic authentlcatlon still is useful for providing convenient personaliza-
‘tion or access control to documents in a friendly-environment, or where privacy is
desired but not absolutely necessary. In this way, basic authentication is used to pre-
vent accidental or casual access by curious users.’ ‘

For example inside a corporatron product management may password-protect
future product plans to limit premature distribution. Basic authentication makes it
sufficiently inconvenient for friendly parties to access this data.t Likewise, you might
password-protect personal photos or private web snes that aren’t top-secret or don t
contain valuable information, but really aren’t anyone else’s business either.

Basic authentication can be made secure by combining it with encrypted data trans-
mission (such as SSL) to conceal the username and password from mahc1ous individ-
uals. Thisis a common techmque

“We discuss secure encryption in Chapter 14. The next chapter explains a more
sophlstlcated HTTP authentication protocol, digest authentication, that has stron- -
ger securlty propertles than basic authentication.

* Be careful that the username/password in basic authentication is not the same as the password on your more
secure systems, or malicious users can use them to break into your secure accounts!

+ While not very secure, internal employees of the company usually are unmotivated to maliciously capture
passwords. That said, corporate espionage does occur, and vengeful, disgruntled employees do exist, so itis
wise to place any data that would be very harmful if maliciously acquired under a stronger security scheme.

284 | - Chapter12: Basic Authentication

For More Information
For more. 1nformat10n on basm authenucatlon and LDAP, see:

http hww. 1etf orglrfc/rfc2617.txt
" RFC 2617, “HTTP Authentlcatlon Basic and Dlgest Access Authentlcauon 7

http:/fwww.ietf.org/rfc/rfc2616.txt ,
'_ RFC 2616 “Hypertext Tr_ansfer Protocol—HTTP/1.1.”

 ForMore Information | 285

| CHAPTER 13
D|gest Authentlcatlon

Basic authéntiéation is convenient and flexible but completely insecure. Usernames
and passwords are sent in the clear,” and there is no attempt to protect messages
from tampering. The only way to use basic authent1cat1on securely is to use it in con-
junction with SSL.

Digest authentication was developed as a compauble, more secure alternative to
basic authentication. We devote this chapter to the theory and. practice of digest
authentication. Even though digest authentication is not yet in wide use, the con-
cepts still are important for anyone implementing secure transactions.

The Improvements of Digest Authentication

Digest authentication is an alternate HTTP authentication protocol that tries to fix
~ the most serious flaws of basic authentication. In parucular digest authentlcanon

. Never sends secret passwords across the network in the clear

* Prevents unscrupulous individuals from capturing and replaying authenncauon
handshakes ’

. Opmonally can guard against tampering with message contents

* Guards: agamst several other common forms of attacks

Digest authentlcatlon is not the most secure protocol poss1ble T Many needs. for
secure HTTP transactions cannot be met by digest authentication. For those needs,
Transport Layer Security (TLS) and Secure HTTP (HTTPS) are more appropriate
- protocols.

* Usernames and passwords are scrambled using a trivial base-64 encoding, which can be decoded easily. This
protects against unintentional accidental viewing but offers no protection against malicious parties.

1 For example, compared to public key—based mechanisms, digest authentication does not provide a strong
authentication mechanism. Also, digest authentication offers no confidentiality protection beyond protect-
ing the actual password—the rest of the request and response are available to eavesdroppers.

26 .

"bHowever drgest authentlcatlon is 51gn1f1cantly stronger than ba31c authentlcatlon :
which it was designed to replace. Digest authentication. also is stronger than many
popular schemes proposed for other Internet services, such as CRAM MDS, which
has been proposed for use with LDAP, POP, and IMAP. o

To date, drgest authentlcauon has not been widely deployed. However, because of the
security risks inherent to basic authentication, the HTTP architects. counsel in RFC
2617 that “any service in present use that uses Basic should be switched to Digest as
soon as practrcal " Itis not yet clear how successful this standard will become '

Using Dlgests to Keep Passwords Secret

The motto of digest authentication is “never send the password across the network »
Instead of sending the password, the client sends a “fingerprint” or “digest” of the
password which is an 1rreversrble scrambhng of the password. The client and the
server both know the secret password so the server can verify that the digest pro-
vided a correct match for the password. Given only the digest, a bad guy has no easy
way to find what password it came from, other than gomg through every password
in the universe, trying each onel? -

Let’s see how this works (this is a srmphfred version):

* In Figure 13-1a, the client requests a protected document.

* In Figure 13-1b, the server refuses to serve the document until the chent authen-
ticates its identity by proving it knows the password. The server issues a chal-
lenge to the client, asking for the username and a drgested form of the password

* In Figure 13-1¢, the client proves that it knows the_. password by passing along
the digest of the password. The server knows the passwords for all the users,* so
it can verify that the user knows the password by comparing the chent—supphed

- digest with the server’s own internally computed digest. Another party would
not easily be able to make up the right digest if it didn’t know the password.

¢ In Figure 13-1d, the server compares the client-provided digest with the server’s
internally computed digest. If they match, it shows that the client knows the
'password (or made a really lucky guess!). The digest function can be set-to gen-
erate so many digits that lucky guesses effectively are impossible. When the
server verifies the match, the document is served to the client—all without ever
sending the password over the network.

* There has been 31gn1f1cant debate about the relevance of digest authentication, given the populanty and
widespread adoption of SSL-encrypted HTTP. Time will tell if drgest authentication gains the crrtrcal mass
required.

1 There are techmques such as dictionary attacks, where common passwords are tried first. These cryptanal-
ysis techniques ¢an dramatically ease the process of cracking passwords.

In fact, the server really needs to know only the digests of the passwords.

The Improvements of Digest Authentication | 287

(a) Request

Please give me the internal sales forecast.

Server

. (b) Challenge 3 You requested asecret fi nancral document.
_ v § Please tell me your username and
password digest. ’

' 'CIrent
Ask userforusernameand password .
drgest("Ow"’)— A3F5

(c) Authorization .

PIease givemethe internal sales forecast)
§ My username is “bri”
My digested password is ”A3F5”

' Server

drgest(”Ow"’)— A3F5 \/
This is a match! '

i (K. The drgest you sent me matches the
digest of my internal password,so here is
8 the document.

Server -

| {d) Success -

Client -

Figure 13-1. Using digests for passruord-obscured auihentication

We'll discuss the partrcular headers used in drgest authenucatlon in more detarl in
Table 13-8. '

| vOne-Way'Diges'ts “ |
A digest is a “condensation of a body of information.” Drgests act as one-way func-
tions, typically converting an infinite number of possible input values into a finite

range of condensations.” One popular digest function, MD5,# converts any arbitrary
sequence of bytes, of any length into a 128-bit digest.

128 bits = 2128, or about 1,000,000,000,000,000,000,000,000,000, OOO 000 ,000, OOO .
possible distinct condensations.

* Merriam-Webster dlcuonary, 1998.

. 1 Intheory, because we are convemng an infinite number of input values into a finite number of output values,
it is possible to have two distinct inputs map to the same digest. This is called a collision. In practice, the
number of potential outputs is so large that the chance of a collision in real life is vanishingly small and, for
the purpose of password matching, unimportant. »

1 MD5 stands for “Message Digest #5,” one in a series of digest algonthms The Secure Hash Algorithm (SHA)
is another popular digest funcnon

288 | Chapter13: Digest Authentication

What is 1mportant about these digests is thatif you don’t know the secret password
youll have an awfully hard time guessing the correct digest to- send to the server.
And likewise, if you have the digest, you'll have an awfully hard time ﬁgurmg out
which of the effectrvely 1nf1mte number of input values generated it.

The 128 bits of MD5 output often are written as 32 hexadec1mal characters each
character représenting 4 bits.- Table 13-1 shows.a few examples of MD5 digests of
sample inputs. Notice how MDS takes arbrtrary 1nputs and yrelds a flxed-length '
digest output :

Table 13-1. MD35 dzgest examples ,

Hi . © C1A5298F939EB7EBFI62ASEDFC206918
Diow” . - BEAAAOE34EBDBO72F8627C038AB211F8 |
Mse6sIBT o 47SBO77E1GECEE70335BCEDF4GFAFEDE
: ”http//www http—guldecom/mdexhtm o S C617COC7D1D0.5'F66F595E2_2A4BoEAM5'
“WE hold these Truths to be self-evident, that all Men are created equai 66C4EFSBDA7CBIS6BD04233F B'B__64EOA4 »

 that they are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the Pursuit of Happiness—That to
sécure these Rights, Governments are instituted among Men, deriving their
just Powers from the Consent of the Governed, that whenever any Form of
Government becomes destructive of these Ends, itis the Right of the People
to alter or to abolish it, and to institute new Government, laying its Founda-
tion on such Principles, and organizing its Powers in such Form, as to them
shall seem most likely to effect their Safety and Happmess

Digest functlons sometimes are called cryptographrc checksums, one-way hash func-
tions, or fingerprint functrons :

| Using Nonces to Prevent Replays

One-way digests save us from having to send passwords in the clear. We can just
send a digest of the password instead, and rest assured that no mahcrous party can
easily decode the original password from the digest.

‘Unfortunately, obscured passwords alone do not save us from danger because a bad
guy can capture the digest and replay it over and over again to the server, even
though the bad guy doesn’t know the password The dlgest is just as good as the
password.

To prevent such replay attacks, the server can pass along to the client a special t'o.ken :
called a nonce,” which changes frequently (perhaps every millisecond, or for every

~ * The word nonce means “the present occasion” or “the time being.” In a computer-security sense, the nonce
captures a parucular point in time and figures that into the security calculatrons

'T_he Imprdvements of Digest Authenticatipn_») '_'289.

' authentlcatlon) The chent appends thls nonce. token to the password before com-
_puting the drgest -

Mixing the nonce in with the password causes the d1gest to change each time the
nonce changes This prevents replay attacks, because the recorded password digest is
valid only for a particular nonce value, and without the secret password the attacker
cannot compute the correct digest. S

Digest: authentication requires the use of nonces, because a trivial replay-weakness
- would make un-nonced digest authentication effectively as weak as basic authentica-
tion. Nonces are passed from' server to client in the WWW-Authenticate challenge.

The Dlgest Authentlcatlon Handshake

~The HTTP digest authentrcatron protocol is an enhanced version of authentlcatron
that uses headers similar to those used in basic authentication. Some new options are
added to the traditional headers, and one new optional header Authorlzatlon Info, is
added.

- The - s1mphf1ed three-phase handshake of dlgest authenttcatlon is depxcted in
Figure 13-2.. - '

i Server

(1) Server generates nonge

(3) Choose algorithm from se
[generate response digest
[generate client-nonce

5) Server venf jes digest
generate rspauth digest] .
= [generate next nonce]

{7) Client verifies rspauth dige

Figure 13-2. Digest authentication handshake

Here’s what’s happening in Figure 13-2:

* In Step 1, the server computes a nonce value. In Step 2, the server sends the
nonce to the client in a WWW-Authenticate challenge message, along with a list
of algorithms that the server supports.

290 | Chapter13: Digest Authentication

. In Step 3, the client selects an algorithm and"compute_s the digest of the secret

- password and the other data. In Step 4, it sends the digest back to the serverin

“an Authorization message. If the client wants to authenucate the server, 1t can
send a client nonce.

* In Step 5, the server receives the digest, chosen algorlthm and supporting data
and computes the same digest that the client did: The server then compares the -
locally generated digest with the network-transmitted digest and validates that
they match. If the client symmetrically challenged the server with a client nonce,
a client digest is created. Additionally, the next nonce can be precomputed and
handed to the client in advance so the client can preempttvely issue the nght

- digest the next t1me : : :

Many of these pieces of 1nformat10n are optional and have defaults, To clarify things,
Figure 13-3 compares the messages sent for basic authenncanon (Figure 13-3a—d)
with a simple example of digest authentication (Figure 13-3e-h).

Now let’s look a bit -mnre elosely at the internal workings of digest authentication.

Digest Calculatlons

The heart of dlgest authentlcatlon is the one-way digest of the mix of pubhc informa-
tion, secret information; and a time-limited nonce value. Let’s look now at how the
digests are computed. The digest calculations generally are straightforward.” Sample
source code is prov1ded in Appendlx F. :

Digest Algorithm Input Data
Digests are computed from three components

* A pair of functions consisting of a one-way hash function ‘H(d) and dlgest
KD(s,d), where s staids for secret and d stands for data o .

* A chunk of data contamlng security information, mcludmg the secret password
called A1

* A chunk of data containing nonsecret attributes of the request message, called A2

The two pieces of data, Aland A2, are prdcessed by H and KD to yield a digest.

The Algonthms H(d) and KD(s,d)

Digest authentlcatlon supports the selection of a variety of digest algonthms The
two algorithms suggested in RFC 2617 are MDS and MD35-sess (where “sess” stands
for session), and the algorithm defaults to MD5 if no other algorithm is specified.

* However, they are made a little more complicated for beginners by the optional compatibility modes of RFC
2617 and by the lack of background material in the specifications. We’ll try to help...

- Digest Calculations *| 291

| Basicauthentication

HTTP/1.1 401 Unauthorized o
WwW-Authenticate: Basic realm="Shopping Cart™

. GET /cgi-bin/checkout?cart=17854 HTTP/1.1 | o o o
- Client | Authorization: Basic YnJpYW4tdG9odHkéT3ch Server

{d) Success

Digest authentication |

(€) Query’
,,;_'l{'lGET /cgi—bin/checkout?cart=17854.HTTP/1¥£1
Cient . ' ’
(f) Challenge EA o
- HTTP/1.1 401 Unauthorized -
-/ ~ Client _ www-ll\uthgﬂtlcqtezcm est
e - realm="Shopping Cart""
" Shopping Cart qop="auth‘,gﬂth§in‘c" -
sername nonce="66C4EF58DA7CBG56BD04233FBBA4EOAL"
Password: : ' T

Sy
~ {g) Response

GET- /cgi-bin/checkout?cart=17854 HTTP/1.1
Authorization: Digest
username="bri"
" realm="Shopping Cart"
'~ nonce="66C4EF58DA7CBI56BD04233FBBEAEOAL"
»uri="/c§1-b1n/checkout?cart=17854"
. q0p="au hn) -
nc=0000001,
cnonce="CFA9207102EA210EA210FFC1120F6001110D073"
response="E483C94F0B3CA29109A7BA83D10FE519"

" (h) Success

HTTP/1.4 200 0K = =

Authorization-Info: nextnonce=
"29FE72D109C7EF23841AB914F0C3B331"

q0p= “au.‘thn
rspauth="89F5A4CE6FA932F6C4DA120CEB754290"
cnonce="CFA9207102EA210EA210FFC1120F6001110D073"

Figure 13-3. Basic versus digest authentication syntax

1292 | Chapter13: Digest Authentication

I elther MDS or MD5- sess is used the H function computes the MDS of the data | o
and the KD digest function computes the MD5 of the colon~]omed secret. and nonse— :
cret data. In other words: - v o

_ H(<data>) = MD5(<data>)
KD(<secret> <data>) = H(concatenate(<secret> <data>))

The Secunty—ReIated Data (A1)

The chunk of data called Alisa product of secret and protect1on mformanon such
as the username, password, protection realm, and nonces. Al pertains only to secu-
rity information, not to the underlying message 1tself Alis used along w1th H, KD
and A2.to compute digests. :

RFC 2617 defines two ways of computmg Al dependmg on the algonthm chosen

MD 5 o _ _
One-way hashes are run for every request Alis the Colon-]omed mple of user-
name, realm, and secret password ,

- MD35-sess - |

The hash function is run only once, on the ﬁrst WWW Authentlcate hand-
shake; the CPU-intensive hash of username, realm, and secret password is' done
once and prepended to the current nonce and client nonce (cnonce) values

The def1n1t1ons of Al are shown in Table 13-2.

Table 13—2. D_eﬁmtzo_ns for Al by algorzthm

_ A1 = <user>: <rea1m> <password>] v
MD5-sess " A1 = MD5(<user> <realm> <password>) <nonces: <cnonce>

The Messa’gé-ReIated Data (A2)

The chunk of data called A2 represents information about the message itself, such as
the URL, request method, and message entity body. A2 is used to help protect
against method, resoutce, or message tampering. A2 is used along w1th H, KD, and
Al to compute d1gests

REC 2617 defmes two schemes for A2, depending on the quahty of protectlon (qop)
chosen: -

~+ The first scheme involves only the HTTP request method and URL ThlS is usecl
when qop=“auth”, which is the default case. :

e The second scheme adds in the message entity body to provide a degree of mes-
- sage integrity checking. This is used when qop="auth-int”.

Digest Calculations | 293

- The definitions of A2 are shown in Table 13-3 .

Table 13-3. Definitions for A2 by algorithm (r'equeSt digests)

" undefined érequest-methods : curi-directive-values
Ccauth . <request-method>:<uri-directive-value>
. auth-int o <request -methods: <uri- d1rect1ve values: H(<request entl’cy body>)

- The request-method is the HTTP request method. The uri- dlrectzve value is the
request URI from the request line. This may be “*,” an “absoluteURL,” or an. “abs_
path,” but it must agree with the request URL In parucular it must be an- absolute
URL if the request URI is an absoluteURL

Overall Dlgest Algonthm
RFC 2617 defmes two ways of computmg d1gests glven H, KD Al, and A2

* The first vvay is intended to be compatxble with the older specification. RFC
2069, used when the qop option is missing. It computes the digest usmg the»
hash of the secret information and the nonced message data.

* The second way is the modern, preferred approach—it includes support for nonce
o countmg and symmetric authentication. This approach is used whenever qop is
“auth” or “auth-int”. It adds nonce count, qop, and cnonce data to the digest.

~ The definitions for the resulting digest function are shown in Table 13-4. Notlce the
resultmg d1gests use H, KD, A1, and A2. :

Table 13-4. Old and new dzgest algonthms

undefined - KD(H(Al), <nonces:H(A2)) . ~ Deprecated
authorauth-int ~ KD(H(A1), <honce>:<nc>:<cnonces:<qops:H(A2)) ' Preferred

It’s a bit easy to get lost in all the layers of derivational encapsulation. This is one of
the reasons that some readers have difficulty with RFC 2617. To try to make it a bit
easier, Table 13-5 expands away the H and KD definitions, and leaves- digests in
terms of Al and A2. '

Table 13-5. Unfolded dzgest algorzthm cheat sheet

_, jorithm. Unfolded algonthm
undefined <undefined> MDS(MDs(A1) <nonce>:MD5(A2))
S MD5
~ MD5-sess

204 | Chapter 13: Digest Authentication

Table 13-5. Unfolded digest algorithm cheat sheet (continued)

auth <undefined> - MD5(MD5(A1):<nonce>:<nc>:<cnonce>:<qop>:MD5(A2))
) L MDS _ _ .‘
. © MD5-sess o ’ , .
auth-int. .~ <undefined> MDs,(MDs(Al,):<nonce>:<nc>:<cnonce‘>:<q0p>:MD5(A2))
o MDS. : o |
MD5-sess

Dlgest Authentlcatlon Sessmn

The client response to a WW W-Authenticate challenge for a protectlon space starts
an authentication session with that protection space (the realm combined with the
canomcal root of the server being accessed defines a “protection space’).

The authentication session Iasts until the client receives another WWW- Authenu-
 cate challenge from any server in the protection space. A client should remember the
username, password, nonce, nonce count, and opaque values associated with an
authentication session to use to construct the Authonzatlon header in future
requests ‘within that protect1on space.

When the nonce expires, the server can choose to accept the old Authorization
header information, even though the nonce value included may not be fresh. Alterna-
tively, the server may return a 401 response with a new nonce value, causing the cli-
ent to retry the request; by specifying “stale=true” with this response, the server tells
the client to retry with the new nonce without promptmg for a new username and
password.

Preemptlve Authorlzatlon

In normal authent1cat10n, each request requ1res a request/challenge cycle before the
transaction can be completed. This is depicted in Figure 13-4a.

This request/challenge cycle can be eliminated if the client knows in advance what
the next nonce will be, so it can generate the correct Authorization header before the
server asks for it. If the client can compute the Authorization header before it is
requested, the client can preemptively issue the Authorization header to the server,
without first going through a request/challenge The performance 1mpact is depicted
in Figure 13-4b.

Preemptive authorlzatlon is trivial (and common) for basic authentication. Browsers
commonly maintain client-side databases of usernames and passwords. Once a user
authenticates with a site, the browser commonly sends the correct Authorization
header for subsequent requests to that URL (see Chapter 12). '

' Digest Calculations | 295

- (a) Normal request/challenge b) Preemptive authorization .

Chalenge .o -

Figure 13-4. Preemptive authorization reduces message count

Preemptive authorization is a bit more complicated for digest authentication,
because of the nonce technology intended to foil replay attacks. Because the server
generates arbitrary nonces, there isn’t always a way for the client to determine what -
Authorization header to send until it receives a challenge. :

Digest authentication offers a few means for preemptive authorization while retain-
ing many of the safety features. Here are three potential ways a client can obtain the
correct nonce without waiting for a new WWW-Authenticate challenge:
~ s Server pre-sends the next nonce in the Authentication-Info success header.

* Server allows the same nonce to be reused for a small window of time.

* Both the client and server use a synchronized, predictable nonce-generation
algorithm. o

296 | Chapter13: Digeét Authentication

Next nonce pregeneratlon

The next nonce Value can be provided in advance to the client by the Authenttcatron— -
Info success header. ‘This header is sent along with the 200 OK response from a pre— :
vious successtul authentlcatton : S , :

Authentlcatlon Info nextnonce— <nonce-value>"

Given the next nonce, the chent can preemptrvely issue an Authorlzatron header

Whﬂe this preemptlve authorization avoids a request/challenge cycle (speedlng up)
the transaction), it also effectively nullifies the ability to pipeline multiple requests to

the same server, because the next nonce value must be- received before the next

request can be issued. Because pipelining is expected to be a fundamental technol—-

ogy for latency avoidance, the performance penalty may be large. . '

L|m|ted nonce reuse

Instead of pregeneratmg a sequence of nonces, another approach is to. allow 11m1ted '
reuse of nonces. For example a server may aﬂow a nonce to be reused 5 times, or for
10 seconds. - - .

In this case, the client can freely issue requests with the Authorlzatlon header and it
can pipeline them, because the nonce is known in advance. When the nonce finally
expires, the server is expected to send the client a 401 Unauthonzed challenge with
the WWW-Authenticate: stale-—true directive set: SRR
www-Authent1cate. Dlgest .

realm="<realm-value>"

nonce="<nonce-value>"

stale=true : -
Reusing nonces does reduce security, because it makes’ 1t easier for an attacker to
succeed at replay attacks. Because the lifetime of nonce reuse is controllable, from
strictly no reuse to potentially long reuse, trade offs can be made between windows
of vulnerability and performance. : ‘ '

Addmonally, other features can be employed to make replay attacks more dtfﬁcult
including incrementing counters and IP address tests. However, while making
attacks more inconvenient, these techniques do not eliminate the vulnerability.

Synchromzed nonce generatlon

It is possible to employ time-synchronized nonce-generation algonthms where both
the client and the server can generate a sequence of identical nonces, based on a
shared secret key, that a third party cannot easily predict (such as secure ID cards).

These algorlthms are beyond the scope of the digest authentlcatlon spec1f1cat10n

 Digest Calculations | . 297 -

Nonce Selectlon

 The contents of the rionce are opaque and 1mplementanon-dependent However the :
“quality of performance secunty, and convenience depends on a smart cho1ce

- RFC 2617 suggests this hypothencal nonce formulation:
BASE64(time- stamp H(tlme—stamp ":" ETag ":" private- key))

where time-stamp is a server-generated time or other nonrepeaung value ETag is the
value of the HTTP ETag header assocxated vv1th the requested ent1ty, and prrvate key
is data known only to the server.

With a nonce of this form, a server will recalculate the hash pornon after recelvmg
the client authentication header and reject the request if it does not match the nonce
from that header or if the time-stamp value is not recent enough In this way, the
server can Jimit the duration of the nonce’s vahdlty

The inclusion of the ETag prevents a replay request for an- updated version of the
resource. (Note that mcludrng the IP address of the client in the nonce would appear
to offer the server the ability to limit the reuse of the nonce to the same client that orig-
inally got it. However, that would break proxy farms, in which requests from a single
user often go through different proxies. Also, IP address spooflng is not-that hard)

An implementation might choose not to accept a previously used nonce or drgest to
protect against replay attacks. Or, an implementation might choose to use one-time
nonces or digests for POST or PUT requests and time-stamps for GET requests. '

Refer to “Security Consrderanons for practrcal security cons1deratlons that affect
nonce selectlon

Symmetric Authentication | |
RFC 2617 extends digest authentication to allow the client to authenticate the server.
It does this by providing a client nonce value, to which the server generates a correct

response digest based on correct knowledge of the shared secret information. The
server then returns this digest to the client in the Authorization-Info header,

This symmetnc authentication is standard as of RFC 2617. It is opnonal for back-
ward compatibility with the older RFC 2069 standard, but, because it provides
Jimportant security enhancements, all modern clients and servers are strongly recom-
mended to implement all of RFC 2617’s features. In particular, symmetric authenti- -
cation is required to be performed whenever a qop directive is present and required
not to be performed when the qop directive is missing,

The response digest is calculated like the request digest, except that the message
body information (A2) is different, because there is no method in a response, and the
message entity data is different. The methods of computation of A2 for request and
response digests are compared in Tables 13-6 and 13-7. |

298 | Chapter 13: Digest Authentication

Table 13-6. DefinitiOnS fOf_AZ_ by algorithm (request digests)

* undefined <request-method>: <uri-directive-value>
auth : - <request- -methods : <uri-directive-value> ‘ :
auth-int = <reques‘c method> <ur1 -directive-value>: H(<reques’t entlty body>)_

Table 13-7. Defzmtzons for A2 by. algorzthm (response dzgests)

undefined _ <uri-directive-values
auh - © :curi-directive- values
~ auth-int <ur1 -directive-value>:H(<response- entlty body>)

The cnonce value and nc Value must be the ones for the client request to which this
message-is. the Tesponse. The response auth, cnonce, and nonce count directives
must be- present 1f qop= auth or qop— “auth-int” is spec1f1ed

Quallty of Protectlon Enhancements

The qop field may be present in all three chgest headers WWW-Authentlcate
Authorization, and Authentlcatlon Info. :

The qop field lets clients and servers negotiate for different types and quahtles of pro-
tection. For example, some transactions may want to sanity check the integrity of
message bodies, even if that slows down transmission 51gn1f1cantly

The server first exports a comma-separated list of qop options in the WWW-Authen-
ticate header. The client then selects one of the options that it supports and that
meets its needs and passes it back to the server in its Authorization qop field.

Use of qop is optional; but only for backward compatibility with the older RFC
2069 specification. The gop option should be supported by all modern digest
implementations. '

RFC 2617 defines two initial quality of protection values: “auth,” indicating authen-
tication, and “auth-int,” indicating authentication with message integrity protecuon
Other qop OpthIlS are expected in the future.

Message Integrity Protection

If integrity protection is applied (qop="“auth-int”), H (the entity body) is the hash of
the entity body, not the message body. It is computed before any transfer encoding is
applied by the sender and after it has been removed by the recipient. Note that this
includes multipart boundaries and embedded headers in each part of any multipart
content type. -

Quality of Protection Enhancements | 299

| 'Dlgest Authentlcatlon Headers

Both the basic and dlgest authentlcatlon protocols contain an authorlzatlon chal- .
‘1enge carried by the WWW-Authenticate header, and an authorization response,
carried by the Authorization header. Digest authentication adds an optional Authori-
zation-Info header, which is sent after successful authentication, to complete a three- .
phase handshake and pass along the next nonce to use. The basic and digest - authen- ‘
tication headers are shown in Table 13-8. ' -’ '

Table 13-8. 'H TT-P authentication headers

(hallenge WWW-Authenticate: Basic - WWW-Authenticate: Digest-
: S realm="<realm-value>" . realm="<realm-value>"
o " nonce=' "¢<nonce-value>"
[domain="¢list-of-URIs>"]
[opaque="<opague-token-value>"] -
[stale=<true-or-falses] .
[algorithm=<digest-algorithms>]
[qop="<1ist-of-qop-values>"]
v : o , [<extension- d1rect1ve>]
‘Response - Authorization: Basic Authorlzatlon Digest ’
' . <baseb4(user:pass)> username="<username>"
: ' ' realm="<realm-value>"
- nonce="<nonce-value>"
uri= <request uri> '
response="¢<32-hex-digit-digest>"
[algorithm=<digest-algorithms]
* [opaque="<opaque-token-value>"]
[cnonce="<nonce-value>"] =
[qop=<qop-value>] -
[nc=<8-hex-digit-nonce- count>]
[<extension-directive>]

Info n/a : Authentication-Info:
- ~ nextnonce="<nonce-value>"
[gop="<list-of-qop-values>"]
[rspauth="c<hex-digest>"]
[cnonce="<nonce-value>"]
[nc=<8—hex~digit—honce-count>]

| The dlgest authentication headers are quite a bit more comphcated They are
descnbed in detail in Appendix F.

Practical Considerations

There are several things you need to consider when working with digest authent1ca~
tion. This section discusses some of these issues.

300 | Chapter13: Digest Authentication

Multlple Challenges

A server can issue multrple challenges for a resource. For example if a server does' '
not know the capabilities of a client, it may provide both basic and digest authentica-
tion challenges. When faced with multiple challenges, the client must choose to.
answer with the strongest authentication mechamsm that it supports

User agents must take spec1al care in parsing the WWW-Authentlcate or Proxy~
Authenticate header field value if it contains more than one challenge or if more than
one WWW-Authenticate header field is provided, as a challenge may itself contain a
comma-separated list of authentication parameters. Note that many browsers recog-
nize only basic authentrcatlon and require that it be the flrst authentlcatlon mecha—
nism presented : ’

There are obv1ous Weakest link” securrty concerns when prov1d1ng a spectrum of
authentication options. Servers should includé basic authentication only if it is mini-
mally acceptable and administrators should caution users about the dangers of shar-
ing the same. password across systems ‘when drfferent levels of securlty are bemg
employed.- : C

Error Handlmg

In digest authentication, if a directive or its value is 1mproper or lf a requrred drrec-"
tive is missing, the proper response is 400 Bad Request. -

If a request’s digest does not match, a logm failure should be logged Repeated farl- :
ures from a client may 1nd1cate an attacker attemptmg to guess passwords '

. The authentrcatmg server must assure that the resource de51gnated by the “uri” direc- -
tive is the same as the resource specified in the request line; if they are different, the
server should return a 400 Bad Request error. (As this may be a symptom of an attack,
server de51gners may want to consider logging such errors.) Duplicating information
from the request URL in this field deals with the possibility that an intermediate
proxy may alter the client’s request line. This altered (but, presumably, semantically
equivalent)'request Would not result in the same digest as that calculated by the client.

Protectlon Spaces

The realm value, in combmatlon with the canonical root URL of the server belng
accessed, defines the protection space. :

Realms allow the protected resources on a server to be partrtloned into a set of pro-
tection spaces, each with its own authentication scheme and/or authorization- data-
base. The realm value is a string, generally assigned by the origin server, which may
have additional semantics specific to the authentication scheme. Note that there may
‘be multiple challenges with the same authorization scheme but different realms.

Practical Considerations | 301

vThe protection space determmes the domain over which credentials can be automati-

cally ‘applied. If a prior request has been authorized, the same credentials may be
reused for all other requests within that protection: space for a period of time deter-
'mined by the authentication scheme, parameters, and/or user preference. Unless oth-
erwise defined by the authentication scheme a smgle protection space cannot extend
outside the scope of its server. -

The spec1f1c calculation of protecuon space depends on the. authentlcatlon mechamsm B

* In basic authentlcatlon clients assume that all paths at or below the request URI
are within the same protection space as the current challenge. A client can pre-
emptively authorize for resources in this space without waiting for another chal-
lenge from the server. -

* In digest authentlcatlon the challenge s WWW—Authentlcate domain field more -
- precisely defines the protection space. The domain field is a quoted, space-sepa-
rated list of URIs. All the URIs in the domain list, and all URIs logically beneath
these preﬁxes are assumed to be in the same protection space. If the domain field
is missing or empty, all URIs on the challengmg server are in the protectlon space.

Rewriting URIs

Proxies may rewrite URIs in ways that change the URI syntax but not the actual
resource being described. For example:

* Hostnames may be normalized or replaced with IP addresses.
. Embedded characters may be replaced with “%” escape forms.

* Additional attributes of a type that doesn’t affect the resource fetched from the
‘particular origin server may be appended or 1nserte_d into the URL

Because URIs can be changed by proxies, and becauée' digest authe'ntication sanity
checks the integrity of the URI value, the digest authentication will break if any of
these changes are made. See “The Message-Related Data (A2)” for more information.

Caches

When a shared cache receives a request containing an Authorization header and a
response from relaying that request, it must not return that response as a reply to any
other request, unless one of two Cache-Control directives was present in the response:

* If the original response included the “must-revalidate” Cache-Control directive,
the cache may use the entity of that response in replying to a subsequent request.
However, it must first revalidate it with the origin server, using the request head-
ers from the new request, so the origin server can authenticate the new request.

* If the original response included the “public” Cache-Control directive, the
~ response entity may be returned in reply to any subsequent request.

302 | Chapter13: Digest Authentication

Secunty ConS|derat|ons

RFC 2617 does an admlrable job of summarlzmg some of the secunty rrsks inherent
in HTTP authentrcauon schemes. This section describes some of these risks.

Header Tampermg

To provide a foolproof system against header tampermg, you need either end-to-end
* encryption or a digital signature of the headers—preferably a combination of both!
Digest authentication is focused on providing a tamper-proof authentication scheme,
but it does not necessarily extend that protection to the data. The only headers that '
have some level of protectlon are WWW Authenticate and Authorrzatlon

Replay Attacks

A replay attack, in the current context, is when someone uses 2 set : of snooped
authentication credentials from a given transaction for another transaction. While
this problem is an issue with GET requests, it is vital that a foolproof method for
avoiding replay attacks be available for POST and PUT requests. The. ability to suc-
cessfully replay previously used credentials while transportlng form data could cause
security nlghtrnares

Thus, in order for a server to accept “replayed” credentials, the nonce values must be
repeated. One of the ways to mitigate this problem is to have the server generate a
nonce containing a digest of the client’s IP address, a time-stamp; the resource ETag,
and a private server key (as recommended earlier). In such a scenario, the combina-
tion of an IP address and a short timeout value may provrde a huge hurdle for the
attacker L : -

However this solutron has a ma]or drawback As we dlscussed earher using the cli-

ent’s IP address in creating a nonce breaks transmission through proxy farms, in

- which requests from a single user may go through dlfferent proxies. Also, 1P spoof-
ing is not too difficult. : SR

~One way to cornpletely avoid replay attacks is to use a unique nonce value for every
* transaction. In this implementation, for each transaction, the server issues a unique
nonce along with a timeout value. The issued nonce value is valid only for the given
transaction, and only for the duration of the timeout value. This accounting may
increase the load on servers; however, the increase should be miniscule.

M_ultiple Authentication Mechanisms
When a server supports multiple authentication schemes (such as basic and digest),
it usually provides the choice in WWW-Authenticate headers. Because the client is

Security Considerations | 303

“not requrred to opt for the strongest authentlcatron mechamsm the ‘strength of- the
resulting authentication i is only as good as that of the weakest of the authentrcauon'
schemes. - : v ' v '
-+ The obvious ways to avoid this problem is to have the dients always choose the
'strongest authentication scheme available. If this is not practical (as most of us do
use commercially available clients), the only other option is to-use a proxy server to -
retain only the strongest authentication scheme. However, such an approach is feasr—‘ '
~ ble only in a domain in which all of the clients are known to be able to support the
chosen authentication scheme———e g a corporate network :

| chtlonary Attacks

-D1ctlonary attacks are typical password- -guessing attacks. A mahcrous user can eaves-
- drop on a transaction and use a standard password-guessing program agdinst nonce/
response pairs. If the users are using relatively simple passwords and the servers are
using simplistic nonces, it is quite possible to find a match. If there is no password
" aging policy, given enough time and the one-time cost of cracking the. passwords it-
 is easy to collect enough passwords to do some real damage.

There really is no good way to solve this problem, other than using relatwely com-
plex passwords that are hard to crack and a good password aging policy.

Hosti'le ProXies and' Man-in-theQMiddIe Attacks |

Much Internet traffic today goes through a. proxy at one point or another W1th the

advent of redirection techniques and intercepting proxies, a user may not even real- .
ize that his request is going through a proxy. If one of those proxies is hostile or com-
promised, it could leave the client vulnerable to a man-in-the- mlddle attack. '

- Such an attack could be i in the form of eavesdropping, or altering: available authentl-
cation schemes by removing all of the offered choices and replacing them with the
weakest authentlcatron scheme (such as basic authentlcatlon) :

One of the ways.to compromise a trusted proxy is though its extension 1nterfaces
Proxies sometimes provide sophisticated programming interfaces, and with such
proxies it may be feasible to write an extension (i.e., plug-in) to intercept and modify
the traffic. However, the data-center security and security offered by proxies them-
selves make the possibility of man-in-the-middle attacks via rogue plug—ms quite
remote. :

There is no good way to fix this problem Possible solutions include clients provid-
ing visual cues regarding the authentication strength, configuring clients to always
use the strongest possible authentication, etc., but even when using the strongest
possible authentication scheme, clients still are vulnerable to eavesdropping. The
only foolproof way to guard against these attacks is by using SSL.

304 | Chapter13: Digest Authentication

Chosen Plamtext Attacks

. Chents using dlgest authentlcauon use a nonce supphed by the server to generate the
- response. However, if there is a compromised or malicious proxy in the middle
intercepting the trafﬁc (or a malicious origin server), it can easily supply a nonce for
response computation by the- client. Using the known key for ~computing the
response may make the cryptanalysis of the response easier. This is called a chosen
plaintext attack. There are a few variants of chosen plaintext attacks ' '

Precomputed dictionary attacks :
This is a combination of a dictionary attack and a chosen plaintext attack. First,
the attacking server generates a set of responses, using a predetermmed nonce
‘and common password variations, and creates a dictionary. Once a sizeable dic-
_tionary is available, the attacking server/proxy can complete the interdiction of
the traffic and start sending predetermined nonces to the clients. When it gets a -
response from a client, the attacker searches the generated dictionary for marches.
If a there is a match, the attacker has the passvvord for that partlcular user.

Batched brute force attacks

* The difference in'a batched brute-force attack is in the computatlon of the pass-
word. Instead of trying to match a precomputed digest, a set of machines goes to

- work on enumerating all of the possible passwords for a given space. As the
machines get faster, the brute-force attack becomes more and more viable.

In general, the threat posed by these attacks is easily countered. One way to prevent
them is to configure clients to use the optional chonce directive, so that the response
is generated at the client’s discretion, not using the nonce supplied by the server
(which could be compromised by the attacker). This, combined with policies enforc-
ing reasonably strong passwords and a good password aging. mechanism;, can miti-
gate the threat of chosen plaintext attacks completely S

Stormg Passwords

The digest authentication mechanism compares the user response to what is stored
internally by the server—usually, usernames and H(A1) tuples, Where H(Al) is
derived from the digest of username, realm, and password :

Unlike with a traditional password file on a Unix box, if a dlgest authentication pass-
word file is compromised, all of the documents in the realm immediately are avail-
able to the attacker; there is no need for a decrypting step.

Some of the ways to mitigate this problem are to:

* Protect the password file as though it contained clear-text passwords.

. Méke sure the realm name is unique among all the realms, so that if a password
file is compromised, the damage is localized to a particular realm. A fully quali-
fied realm name with host and domain included should satisfy this requirement.

 Security Considerations |- 305

While digest authenucanon provides 2 much more robust and secure solution than |
basic authentication, it still does not provide any protection for security of the con-

~ tent—a truly secure transaction is feas1ble only through SSL, whxch we describe in -
the next chapter :

For'M.ore Informati_on
For more information on authentication, see: -

http:/fwww.ietf.org/rfc/rfc2617. txt
'RFC 2617, “HTTP Authentlcauon Basic and Dlgest Access Authentication.”

306 | Chapter13: Digest Authentication

- ~ CHAPTER 1-.4
~ Secure HTTP

The previous three chapters reviewed features of HTTP that help identify and
authenticate users. These technlques work well in a fr1end1y community, but they
aren’t strong enough to protect important transactions from a commumty of moti-
vated and hostile adversarles : o :

This chapter presents a more comphcated and aggressive technology to secure HTTP
- transactions from eavesdropping and tampering, usmg digital cryptography

Makmg HTTP Safe

People use web transactions for serious things. Wlthout strong security, people
wouldn’t feel comfortable doing online shopping and banking. Without being able
to restrict access, companies couldn’t place important documents on web servers.
The Web requires a secure form of HTTP.

The previous chapters talked about some lightweight ways of prov1d1ng authennca-
tion (basic and digest authentication) and message integrity (digest qop="“auth-int”).
These schemes are good for many purposes, but they may not be strong enough for
large purchases, bank transactions, or access to confidential data. For these more
serious transactions, we combine HTTP with digital encryptlon technology

A secure version of HTTP needs to be efficient, portable easy to admlnlster and
adaptable to the changing world. It also has to meet societal and governmental
requirements. We need a technology for HTTP security that provides:

~* Server authentication (clients know they’re talking to the real server, not a phony)
* Client authentication (servers know they’re talking to the real user, not a phony)

¢ Integrity (chents and servers are safe from their data being changed) '
* Encryption (clients and servers talk privately without fear of eavesdropping)

e Efﬁciency_ (an algorithm fast enough for inexpensive clients and servers to use)

* Ubiquity (protocols are supported by virtually all clients and servers)

307

. Adm1mstrat1ve scalab1hty (mstant secure commumcauon for anyone anywhere)
. Adaptab1hty (supports the best known security methods of the day)
* Social v1ab111ty (meets the cultural ar_ld political needs of the soc1ety)

HTTPS

"HTTPS is the most popular secure form of HTTP. It was ptoneered by Netscape
Commumcatlons Corporatlon and is supported by all major browsers and servers.

You can tell if a web page was accessed through HTTPS mstead of HTTP because
the URL will start with the scheme https:/ instead of http:// (some browsers also dis- B
play iconic security cues, as shown in Figure 14-1). : .

' https scheme

i N e e R e i
£ ictoss (] betps D oes-herdware.com

N

Welcome to
“Joe's Hardware
Store

(www joes-hardware.com)

{ Joe's Hardware is a hypothetical online hardware store.

i

The website is a live test case for the O'Reilly and
‘Associates reference book "HTTF: The Definitive Guide".

security icon

Fzgure 14-1. Browsmg secure web sites

When using HTTPS, all the HTTP request and response data is encrypted before
being sent across the network. HTTPS works by providing a transport-level crypto-
graphic security layer—using either the Secure Sockets Layer (SSL) or its successor,
Transport Layer Security (TLS)—underneath HTTP (Figure 14-2). Because SSL and
TLS are so similar, in this book we use the term “SSL” loosely to represent both SSL
and TLS.

Because most of the hard encoding and decoding work happens in the SSL libraries,
web clients and servers don’t need to change much of their protocol processing logic

308 | Chapter14: Secure HTTP

Application layer

Transport layer

Data link layer

(@) HTTP

()] HTTPS

Figure 14 2. HTTPS is HTTP layered over a security layer, layered over TCP

to use secure HTTP For the most part, they simply need to replace TCP 1nput/out—
put calls with SSL calls and add a few other calls to confrgure and. manage the secu-

rity mformatron

Dlgltal Cryptography

Before we talk in detall about HTTPS, we need to prowde a httle background about
the cryptographrc encodmg techniques used by SSL and HTTPS. In the next few sec-
tions, we'll give a speedy primer of the essentials of digital cryptography. If you
already are familiar with the technology and terminology of drgltaI cryptography, feel

free to jump ahead to “HTTPS: The Detaﬂs ”
In thrs digital cryptography prlmer we’ll talk about

Ciphers -

Algorithms for encodmg text to make it unreadable to voyeurs -
Keys . : ’
Numeric parameters that change the behavior of ciphers

Symmetric-key cryptosystems
Algorithms that use the same key for encoding and decochng

Asymmetric-key cryptosystems

- Algorithms that use different keys for encodlng and decodmg

* Public-key cryptography

_ A system makmg it easy for millions of computers to send secret messages

Digital signatures
Checksums that verify that a message has not been forged or tampered with

Digital certzfzcates
Identifying mformatron verified and signed by a trusted organization

Digital Cryptography

309

'The Art and Scnence of Secret Codmg

' Cryptography is the art and science of encodlng and decoding messages. People have
used. cryptographic methods to send secret messages for thousands of years. How-
ever, cryptography can do more than just encrypt messages to prevent reading by
"nosy folks; it also can be used to prevent tampering with messages. Cryptography
~ even can be used to prove that you indeed authored a message or transaction, just
hke your handwrltten signature on a check or an embossed wax seal on an envelope.

Clphers

Cryptography is based on secret codes called czphers A cipher is a coding scheme——a
‘particular way to encode a message and an accompanying way to decode the secret
later. The original message, before it is encoded, often is called plaintext or cleartext.
The coded message, after the crpher is apphed often is caHed czphertext Frgure 14 3
shows a srmple example. = - :

- Plaintext. - Ciphertext Plaintext
| Meet me at the pier | = Phhw ph dw wkh sthu | Meet me at the pier
| atmidnight - | dw plgglikw ‘ at midnight

Encoder " Decoder

Figure 14~3. Plaintext and ci‘phe’rtext

Ciphers have been used to generate secret messages for thousands of years Legend has
it that Julius Caesar used a three-character rotation cipher, where each character in the
message is replaced with a character three alphabetic positions forward. In our mod-
ern alphabet, “A” would be replaced by “D,” “B” would be replaced by “E,” and so on.

For example, in Figure 14-4, the message “meet me at the pier at midnight” encodes
into the ciphertext “phhw ph dw wkh sthu dw plgglikw” using the rot3 (rotate by 3
characters) cipher.” The ciphertext can be decrypted back to the original plaintext
message by applying the inverse coding, rotating —3 characters in the alphabet.

Gho ABCDEFGHIIKLMNOPORSTUVHXYZ

pimec MEET ME AT THE AT PIER AT MIDNIGHT
Gohertet: PHHW PH DW WKH DW SLHU D PLGQLIKW

Figure 14-4. Rotdte—by-3 cipher example

* For simplicity of example, we aren’t rotating punctuation or whitespace, but you could.

310 |- Chapter14: Secure HTTP

C|pher Machlnes

' Ciphers began as relatlvely srmple algorithms, because human beings needed to do '
the encoding and decodlng themselves. Because the ciphers were simple, people
could work the codes using pencrl and paper and code books. However, it also was
possible for clever people to crack” the codes fairly easily. . '

As technology advanced, people started making machines that could qulckly and
accurately encode and decode messages using much more complicated ciphers.
Instead of j]ust doing simple rotations, these cipher machines could substitute charac- -
ters, transpose the order of characters, and slice and dice rnessages to rnake codes
much harder to crack.’

Keyed Clphers

Because code algorithms and machmes could fall into enemy ‘hands, most machines
had dials that could be set to a large number of different values that changed how the
cipher worked. Even if the machine was stolen, without. the rlght dial settings (key
values) the decoder wouldn’t work.t '

These cipher parameters were called keys. You needed to'enter the rlght key into the
cipher machine to get the decoding process to work correctly. Cipher keys make a
single cipher machine act like a set of many virtual cipher machlnes, each of which
behaves differently because they have different key values. ‘

Figure 14-5 illustrates an example of keyed c1phers The cipher algonthm is the triv-

ia] ¢ rotate-by—N” cipher. The value of N is controlled by the key. The same input
message, “meet me at the pier at midnight,” passed through the same encoding
machine, generates different outputs depending on the value of the key. Today, vir-
tually all cipher algorithms use keys. : :

Digital Ciphers
With the advent of digital computation, two major advances occurred:

* Complicated encoding and decoding algorithms became possible, freed from the
speed and functron limitations of mechanical machinery.

* Perhaps the most famous mechamcal code machine was the World War Il German Emgma code machine.
Despite the complexity of the Enigma cipher, Alan Turing and colleagues were able to crack the Enigma
codes in the early 1940s, using the earliest digital computers.

1 In reality, having the logic of the machine in your possession can sometimes help you to crack the code,
‘because the machine logic may point to patterns that you can exploit. Modern cryptographic algorithms usu-
ally are designed so that even if the algorithm is publicly known, it’s difficult to come up with any patterns
that will help evildoers crack the code. In fact, many of the strongest ciphers in common use have their
source code available in the public domain, for all to see and study!

" Digital Cryptography | M

@ Paitet

o Meetmeatthep:er -
, atmldmght _ ‘ _
R ' Cphertert
| Key=1 " nffu nf bu uif gjfs |
Pom-| m bu njeojhiu -
o ’Hotéte('n) ehc_bgler_

v o e mn s i e ovm e vt e e e e me w s e g e st mms s e e et e

®) Pairtert |
| Meet meat the pier |-
at mldmght

Ciphertext

0ggv.0g €V vj
tkat cv okfpkt(})v .

(@ Plaintext
' Meet me at the pier |
atmldmght '
b Ciphertext
=3 e b | phhw ph dw wkh
%,_T,g w slhu dw plgglijkw
: - Rotate(n) enco'der

Fzgure 14-5. The rotate-by-N czpher using different keys .

* It became possible to support very large keys, so that a smgle c1pher algorithm
could yield trillions of virtual cipher algorithms, each differing by the value of
the key. The longer the key, the more combinations of encodings are possible,
and the harder it is to crack the code by randomly guessing keys.

Unlike physical metal keys or dial settings in mechanical devices, digital keyS are just -

numbers. These digital key values are inputs to the encodmg and decoding algo-
rithms. The coding algorithms are functions that take a chunk of data and encode/ _
decode it based on the algonthm and the value of the key. ‘

Given a plaintext message called P, an encoding function called E, and a digital
encoding key called e, you can generate a coded ciphertext message C (Figure 14-6)..
You can decode the ciphertext C back into the original plaintext P by using the
decoder function D and the decoding key d. Of course, the decoding and encoding
‘functions are inverses of each other; the decoding of the encoding of P gwes back the
original message P.

312 | . Chapter 14: Secure HTTP

- PlaintextP

v EntoderE

' Figure 1446.,Plaint_ext' is encoded u/ith_fencoding Ieey e, and decoded using detodi_rzg' key d o

‘ Symmetrlc-Key Cryptog raphy

Let’s talk in more detail about how keys and ciphers work together ‘Many d1g1tal
cipher algorithms are called symmetric-key ciphers, because they use the same key
value for encodlng as they do for decoding (e = d). Let s just call the key k

In a symmetric key c1pher, both a sender and a receiver need to have the same shared
secret key, k, to communicate. The sender uses the shared secret key to encrypt the
message and sends the resulting ciphertext to the receiver. The receiver takes the
ciphertext and applies the decrypting function, along with the same shared secret '
key, to recover the orlgmal plamtext (Figure 14-7). B :

Decoder D

Fzgure 14-7. Symmetrtc key cryptography algorzthms use the same key for encodzng and decodmg |

Some popular symmetnc-key cipher algonthms are DES, Trlple—DES RCZ and RC4

Key Length and Enumeration Attacks

It’s very important that secret keys stay secret. In most cases, the encodlng and
decoding algorithms are public knowledge, so the key is the only thlng that’s secret!

A good c1pher algonthm forces the enemy to try every single possible key value in the
“universe to crack the code. Trying all key values by brute force is called an enumera-
tion attack. If there are only a few possible key values, a bad guy can go through all of
them by brute force and eventually crack the code. But if there are a lot of possible
key values, it might take the bad guy days, years, or even the lifetime of the universe
to go through all the keys, looking for one that breaks the cipher.

Symmetric-Key Cryptography | 313

. The number of possible key values depends on the number of bits in the key and how
many of the possible keys are valid. For symmetric-key ciphers, usually all of the key
values are valid." An 8-bit key would have only 256 possible keys, a 40-bit key would

~ have 240 possible keys (around one trillion keys), and a 128-bit key would generate

around 340,000 OOO 000,000,000, OOO 000,000,000, 000, 000,000 possible keys.

For conventional symmetnc -key- aphers 40-bit keys are considered safe enough for .
‘small, noncritical transactions." However, they are breakable by today’s hlgh speed
workstations, which can now do billions of calculations per second. :

In contrast, 128-bit keys are considered very strong for symmetnc key cryptography
In fact, long keys have such an impact on cryptographic security that the U.S. gov-
ernment has put export controls on cryptograph1c software that uses long keys, to
‘prevent potentially antagonistic organizations from creating secret codes that the U.
S. National Security Agency (NSA) would itself be unable to crack. :

Bruce Schneier’s excellent book, Applzed Cryptography (John. Wlley & Sons),
includes a table describing the time it would take to crack a DES cipher by guessing
all keys, using 1995 technology and economics.t Excerpts of this table are shown in
Table 14-1. : :

Table 14-1. Longer keys-_take more effort to crack (1995 data, from “Applied Cryptogra_phy”)

-.2-s‘ecs | § 35h0urs " 1yé5f »— 70‘,000“y-ee‘1rs 1059'years

$100,000

$1,000,000 200 msecs 3,5 hours 37 days 7,000 years - 108 years
Y 0,000,000 - 20msecs * 21 mins 4days 700years 1077 years

$100,000,000 2 msecs "~ 2mins 9hours - 70years 1076 years

$1,000,000,000 - 200 usecs 13 secs ~ Thour 7 years 105 years

- Given the speed of 1995 microprocessors, an attacker willing to spend $100,000 in
1995 could break a 40-bit DES code in about 2 seconds. And computers in.2002
already are 20 times faster than they were in 1995. Unless the users change keys fre-
quently, 40-bit keys are not safe against motivated opponents.

The DES standard key size of 56 bits is more secure. In 1995 economlcs, a $1 mil-
lion assault still would take several hours to crack the code. But a person with access
to supercomputers could crack the code by brute force in a matter of seconds. In

* There are ciphers where only some of the key values are valid. For example, in RSA, the best-known
asymmetric-key cryptosystem, valid keys must be related to prime numbers in a certain way. Only a small
number of the possible key values have this property.

+ Computation speed has increased dramatically since 1995, and cost has been reduced. And the longer it
takes you to read this book, the faster they’ll become! However, the table still is relatively useful, even if the

 times are off by a factor of 5, 10, or more.

314 | Chapter14: Secure HTTP

contrast 128- b1t DES ke}'S, sumlar in size to Trlple DES keys, are belleved to be“ B
effectlvely unbreakable by anyone, at. any cost, using a brute- force attack o

,Estabhshmg Shared Keys

One d1sadvantage of symmetric-key ciphers is that both the sender. and receiver have
tohavea shared secret key before they can talk to each other ' :

If you wanted t0 talk securely with Joe’s Hardware store, perhaps to order some wood-
working tools after watching a home-improvement program on. public television,
you’d have to establish a private secret key between you and www.joes-hardware.com
before you could order anything securely. You’d need a way to generate the secret key
and to remember it. Both you and Joe’s Hardware, and every other Internet user,
would have thousands of keys to generate and remember. :

Say that Alice (A), Bob (B) and Chris (C) all wanted to talk to Joe s Hardware (J) A,
B, and C each would need to establish their own secret keys with J. A would need
key kaJ, B would need key kBJ, and C would need key kCJ. Every pair of communicat-
ing parties needs its own private key. If there are N nodes, and each node has to talk
securely with all the other N—1 nodes, there are roughly N2 total secret keys: an
administrative mghtmare : :

Public-Key Cryptography

Instead of a smgle encoding/decoding key for every palr of hosts pubhc key cryptog~
raphy uses two asymmetric keys: one for encoding messages for a host, and another
for decoding the host’s messages. The encoding key i publicly known to the world
(thus the name public-key cryptography), but only the host knows the private decod-
ing key (see Figure 14-8). This makes key establishment much easier, because every-
one can find the public key for a particular host. But the decodlng key is kept secret,
so only the recipient can decode messages sent to it.

Node X can take its encoding key ex and publish it pubhdy t Now anyone Wantmg
to send a message to node X can use the same, well-known public key. Because each
host is assigned an encoding key, which everyone uses, public- key cryptography
avoids the N2 explosion of parrwrse symmetric keys (see Figure 14- 9)

* Alarge key does not mean that the cipher is foolproof, though! There may be an unnoticed flaw in the cipher
algorithm or implementation that provides a weakness for an attacker to exploit. It’s also possible that the
attacker may have some information about how the keys are generated, so that he knows some keys are more
likely than others, helping to focus a brute-force attack. Or a user might leave the secret key someplace where

~ an attacker might be able to steal it. ' .

t As we'll see later, most public-key lookup actually is done through digital certificates, but the details of how
you find public keys don’t matter much now—just know that they are publicly available somewhere.

»'Public-KeyCryptography | 315

Client -
Plaintext

Plaintext

- Server - -

Figure 14-8. 'Public~key cryptbgraphy is asymmetric, using dz'fférent keys for e.ncodz'ng and decoding

C

[
{
i
|
{
i
i
13
!
|
}
{
i
!
i
{
i
i
i
|
t
1
|

{a) Symmetric-key cryptography)

(b) Publicey cryptography

Figure 14-9. Public-keyvcryptography'assigns a single, public encoding key to each host

Even though everyone can encode messages to X with the same key, no one other
than X can decode the messages, because only X has the decoding private key dx.
Splitting the keys lets anyone encode a message but restricts the ability to decode
messages to only the owner. This makes it easier for nodes to securely send mes-
sages to servers, because they can just look up the server’s public key. |

Public-key encryption technology makes it possible to deploy security protocols to
" every computer user around the world. Because of the great importance of making a

316 | Chapter14: Secure HTTP

' standard1zed pubhc key technology suite, a massive Pubhc—Key Infrastructure (PKI)
standards initiative has been under way for well over a decade. S

RSA | |
The challenge of any pubhc—key asymmetric cryptosystem is to make sure no bad guy
can compute the secret, private key—even if he has all of the followmg clues

~+ The pubhc key (which anyone can get, because it’s publlc)
‘¢ A piece of 1ntercepted crphertext (obtarned by snooping the network)

* A message and its assocrated crphertext (obtalned by runnmg the encoder on any’
text) ' : :

One popular: pubhc-key cryptosystem that meets all these needs is the RSA algo-
rithm, invented at MIT and subsequently commercialized by RSA Data Security,
Given a public key, ‘an arbitrary piece of plaintext, the assocxated ciphertext from
encoding the plaintext with the public key, the RSA algonthm itself, and even the
source code of the RSA implementation, cracklng the code to find the correspondmg
private key is believed to be as hard a problem as computing huge prime numbers—
believed to ‘be one of the hardest problems in all of computer science. So, if you can
find a fast way of factoring large numbers into primes, not only can you break into
Swiss bank accounts, but you can also win a Turrng Award. -

The details of RSA cryptography involve some tricky mathematlcs so we won'’t go '
into them here. There are plenty of libraries available to let you perform the RSA
algorlthms without you needing a Ph D.in number theory. ’

Hybrid Cryptosystems and Session Keys

Asymmetric, public-key cryptography is nlfty, because anyone can send secure mes-
sages to a public server, just by knowing its public key. Two nodes don t first have to
negotiate a private key in order to communicate securely

- But public-key cryptography algorithms tend to be computatlonally slow In prac-
tice, mixtures of both symmetric and asymmetric schemes are used. For example it
is common to use public-key cryptography to conveniently set up secure communi-
cation between nodes but then to use that secure channel to generate and communi-
cate a temporary, random symmetric key to > encrypt the rest of the data through
faster, symmetric cryptography. o

Digital Signatures

So far, w_e’_ye been talking about various kinds of keyed ciphers, using symmetric and
asymmetric keys, to allow us to encrypt and decrypt secret messages.

Digital Signatures. | 317

" In addmon to encrypting and decryptlng messages cryptosystems can be used to.
sign messages, proving who wrote the message and proving the message hasn’t been
tampered with. This technique, called digital signing, is important for Internet secu-
rity certificates, which we dlscuss in the next section,

Signatures Are Cryptographlc Checksums

Digital s1gnatures are special cryptographlc checksums attached to a message They
have two beneflts

. Slgnatures prove the author wrote the message. Because only the author has the
author’s top-secret private key," only the author can compute these checksums
The checksum acts as a personal “signature” from the author. :

~* Signatures prevent message tampering. If a malicious assailant modified the mes-
sage in-flight, the checksum would no longer match. And because the checksum
involves the author’s secret, private key, the intruder will not be able to fabncate

-~ a correct checksum for the tampered-with message.

A Dlgn:al signatures often are generated using asymmetric, pubhc-key technology The
~ author’s private key is used as a kind of “thumbprint,” because the private key is
known only by the owner. ‘ ‘ -

Figure 14-10 shows an example of how node A can send a rhessage to node B and
_51gn it:

* Node A distills the vanable—length message into a flxed sized digest.

« Node A apphes a “signature” function to the digest that uses the user’s private
key as a parameter. Because only the user knows the private key, a correct signa-
ture function shows the signer is the owner. In Figure 14-10, we use the decoder
function D as the signature function, because it involves the user’s private key.t

* Once the signature is computed, node A appends it to the end of the message
and sends both the message and the signature to node B.

* On receipt, if node B wants to make sure that node A really wrote the message,
and that the message hasn’t been tampered with, node B can check the signa-
ture. Node B takes the private-key scrambled signature and applies the inverse
function using the public key. If the unpacked digest doesn’t match node B’s
own version of the digest, either the message was tampered with in-flight, or the
sender did not have node A’s private key (and therefore was not node A).

* This assumes the private key has not been stolen. Most private keys expire after a while. There also are “revo-
. cation lists” that keep track of stolen or compromised keys. :

t With the RSA cryptosystem, the decoder function D is used as the signature function, because D already
takes the private key as input. Note that the decoder function is just a function, so it can be used on any
input. Also, in the RSA cryptosystem, the D and E functions work when applied in either order and cancel
each other out. So, E(D(stuff)) = stuff, just as D(E(stuff)) = stuff.

318 | Chapter14: Secure HTTP

’ Plaintéxt i
message |
Message — : 1y Message Y Message digest -
ft ya 1 '] digest . :
/ ign ; > -
% D%} s Slg ature | ‘
| — o o
] 5
Pr/vate i Public
| key=eh
% ,

key=dA

Figure 14-1 0. Unencrypted ‘.digital signature

Dlgltal Certlﬁcates

In thls section, we talk about digital certificates, the' “ID cards” of the Internet. Digi-
tal certificates (often called “certs,” like the breath mints) contain information about
a user or firm that has been vouched for by a trusted orgamzatlon

We all carry many forms of 1dent1f1catlon Some IDs such as passports and drlvers

licenses, are trusted enough to prove one’s identity in many situations. For example,

a U.S. driver’s license is sufficient proof of identity to let you board an airplane to

New York for New Year’s Eve, and it’s sufficient proof of your age to 1et you dnnk
intoxicating beverages with your friends when you get there.

More trusted forms of identification, such as passports, are 51gned and stamped- by a
government on special paper. They are harder to forge, so. they inherently carry a
higher level of trust. Some corporate badges and smart cards include electronics to
help strengthen the identity of the carrier. Some top-secret government: organiza-
tions even need to match up your fingerprints or retinal capillary patterns with your
ID before trusting it!

Other forms of ID, such as busmess cards, are relatwely easy to forge O people trust
this information less. They may be fine for professional interactions but probably are
not enough proof of employment when you apply for a home loan.

The Guts of a Certificate

Digital certificates also contain a set of information, all of which is digitally signed by
an official “certificate authority.” Basic digital certificates commonly contain basic
thlngs common to printed IDs, such as:

. Sub]ectsname (person, server, orgamzauon etc.)

s Expiration.date

Digital Certificates | 319

¢ Certificate i 1ssuer (who is vouchmg for the certlﬁcate)

¢ Digital 51gnature from the certlﬁcate issuer

Additionally, digital certificates often contain the pubhc key of the sub)ect as Well as
descriptive information about the subject and about the signature algorithm used.
Anyone can create a digital certificate, but not everyone can get a well-respected sign-
- ing authority to vouch for the certificate’s information and ‘sign the certificate with
its private key. A typical certificate structure is shown in Figure 14-11.

Pigure 14-11. Typital digital signature format

X.509v3 Certificates

Unfortunately, there is no single, universal standard for digital certificates. There are
many, subtly different styles of digital certificates, just as not all printed ID cards con-
tain the same information in the same place. The good news is that most certificates
in use today store their information in a standard form, called X.509 v3. X.509 v3 cer- -
tificates provide a standard way of structuring certificate information into parseable
fields. Different kinds of certificates have different field values, but most follow the
© X.509 v3 structure. The fields of an X.509 certificate are described in Table 14-2:

Tableb__1»4;2._-X..509 certificate fields

| Version The').(509 cenif cété vérsmn ‘nu»rvn.ber for fhls certificate. Usually version 3 today

~ Serial Number Aunique integer generated by the certification authority. Each certificate from a CA must
' ' - haveaunique serial number.
Signature Algorithm ID The cryptographlc algorithm used for the signature. For example, “MD2 dlgest withRSA
- encryption”,
~ Certificate Issuet ' The name for the organization that issued and signed this certificate, in X.500 format.
Validity Period- . When this certificate is valid, defined by a start date and an end date.

320 | Chapter14: Secure HTTP

 Table 14-2. X.509 certificate fields (continued)

Subject’s Name ' - Theentity described in the certificate; suchasa person oran orgamzatlon The subject
. © - namedsin X.500 format, ' o

Subject’s Public Key Information * The public key for the certificate’s subject, the algorlthm used fOf the PUb"C key, andany -
. - - additional parameters, '

Issuer Uniqhe D (optional‘)’ S An optlonal unique identifier for the certificate lssuer, to allow the potenttal reuse of the
- L same issuer name. : o
Subject Unique D (optional) ~ ~ An optional un ique identifier for the certificate subject to aIIow the potentxal reuse of the
: S same subject name. - »
Extensions ' An optional set of extension fields (inversion 3and hlgher) Each extensmn field lsﬂagged

* as critical or noncritical. Critical extensions are important and must be understood by the
-certlf cate user. If a certificate user doesn’t recognize a ritical extension field, it must
re;ect the certificate. Common extension fields in- use mclude : -

Basic Constraints

Subject’s refationship to certifi catlon authonty ,
Certificate Policy

The policy under which the certifi cate is granted
KeylUsage

Restricts how the pubhc key can be used

Certification Authority Signature The certification authority’s digital sngnature of all of the above fi eIds usmg the specn" ed
: ' signing algorithm. . y

There are several flavors of X. 509'based certificates, including (among others) web
server certificates, client email certificates, software code-51gn1ng certificates, and cer-
ttftcate authorlty certificates. : : ’

Using Certificates to Authenticate Servers

When you establish a secure web transaction through HTTPS, modern browsers
automatically fetch the digital certificate for the server being- connected to. If the -
server does not have a certificate, the secure connection fails. The server certlﬁcate
contains many fields, including: -
¢ Name and hostname of the web site

* Public key of the web site

* Name of the signing authority

. Slgnature from the signing authority

When the browser receives the certificate, it checks the signing authority.” If it is.a
public, well-respected signing authority, the browser will already know its public key

* Browsers and other Internet applications try hard to hide the details of most certificate management, to make
browsing easier. But, when you are browsing through secure connections, all the major browsers allow you
to personally examine the certificates of the sites to which you are talking, to be sure all is on the up-and-up.

* Digital Certificates | 321

(browsers ship with certificates of many signing authorities. preinstalled), so it can
~verify the signature as we discussed in'the previous section; “Digital Slgnatures
F1gure 14- 12 shows how a cert1f1cate s mtegrlty is verified usmg its d1g1ta1 s1gnature

e -'Cemﬁcate ISSUG!_
' (5lqmm@onty

&8 . : Messagedlgest
' ~ Message
/ dlgest
fifego -
. Signing authority’s
publlckey

Figure 14-12. Verzfyzng that a szgnature is real

If the signing authority is unknown, the browser isn’t sure if it should trust the sign-
ing authority and usually displays a dialog box for the user to read and see if he trusts
the signer. The signer might be the local IT department, or a software vendor.

HTTPS The Detalls

HTTPS is the most popular secure version of HTTP. It is Wldely implemented and
available in all major commercial browsers and servers. HTTPS combines the HTTP
protocol with a powerful set of symmetric, asymmetric, and certificate-based crypto-
graphic techniques, making HTTPS very secure but also very flexible and easy to
administer across the anarchy of the decentralized, global Internet.

HTTPS has accelerated the growth of Internet applications and has been a. ma]or‘
force in the rapid growth of web-based electronic commerce. HTTPS also has been
crltlcal in the wide-area; secure administration of distributed web applications.

HTTPS Overwew

HTTPS is just HTTP sent over a secure transport layer. Instead of sendlng HTTP
messages unencrypted to TCP and across the world-wide Internet (Figure 14-13a),
HTTPS sends the HTTP messages first to a security layer that encrypts them before
sending them to TCP (Figure 14-13b).

322 | Chapter14: Secure HTTP

Application layer '
.Sérurity/arer
-Transbortldyer :
NerWarklayer _ |

Dam_l)’nk /ayer

{a} HTTP

Figure 14- 13 HTTP transport level securzty

Today, the HTTP security layer is 1mplemented by SSL and its. modern replacement,
- TLS. We follow the Common practice of using the term SSL” to mean either SSL or
TLS. : : :

HTTPS SchemeS

‘Today, secure HTTP is optional. Thus, when making a requeSt to a web server, we
need a way to tell the web server to perform the secure protocol version of HTTP.
- This is done in the scheme of the URL. - :

' In normal, nonsecure HTTP, the scheme prefix of the URL is http, as in:
hitp:/fwww.joes-hardware.com/index.html

In the secure HTTPS protocol, the scheme prefix of the URL is https as in:
_ https: Mcajun- shop securesites. com/Merchant2/merchant mv?Store_ Code—-AGCGS

-When a client (such as a web browser) is asked to perform a transactlon on a Web
resource, it examines the scheme of the URL: : :

* If the URL has an http scheme, the client ojpensb a connect'ron to the server on
port 80 (by default) and sends it plain-old HTTP commands (Figure 14-14a).

« If the URL has an https scheme, the client opens a connection to the server on
port 443 (by default) and then ° ‘handshakes” with the server, exchangmg some

SSL security parameters with the server in a binary format, followed by the
encrypted HTTP commands (Figure 14-14b).

Because SSL traffic is a binary protocol, completely different from HTTP, the traffrc
is carried on different ports (SSL usually is carried over port 443). If both SSL and
HTTP traffic arrived on port 80, most web servers would interpret binary SSL traffic
as erroneous HTTP and close the connection. A more integrated layering of security
services into HTTP would have eliminated the need for multiple destination ports,
but this does not cause severe problems in practice. |

 Let’slooka bit more closely at how SSL sets up connectlons with secure servers.

HTTPS: The Details | 323

- (@) HTTP request

(b,)jHT}TPS request

- Client Secureserver

(<) HTTPS over HTTP tunnel

Client o A . " .. Secureserver

vFigu're 14-14. HTTP and HTTPS port numbers .'

Secure Transport Setup

In unencrypted HTTP, a client opens a TCP connection to port 80 on a web server_
sends a request message, receives a response message, and closes the connection.
This sequence is sketched in Figure 14-15a. .

The procedure is shghtly more comphcated in HTTPS because of the SSL security -
layer. In HTTPS, the client first opens a connection to port 443 (the default port for

secure HTTP) on the web server. Once the TCP connection is established, the client

and server initialize the SSL layer, negotiating cryptography parameters and exchang-

ing keys. When the handshake completes, the SSL initialization is done, and the cli-
ent can send request messages to the security layer. These messages are encrypted

before being sent to TCP This procedure is depicted in Figure 14 15b.

SSLHandShake | |
Before you can send encrypted HTTP messages, the client and server need to do an
SSL handshake, where they: - »

- » ‘"Exchange protocol version numbers

Select a cipher that each side knows

L]

Authenucate the 1dent1ty of each side
* Generate temporary session keys to encrypt the channel .

324 | Chapter14: Secure HTTP

{a) Unencrypted HTTP transaction N (b) Encrypted HTTPS transaction

" Server

; SSL secunty parameters. handsha e

Client -

HTTP request sent- overT(P

1
Client Server | Client

HTTP response sent over TCP
Server

Client

TCP connection close

Figure 14-15. HTTP and HTTPS transactions

Before any encrypted HTTP data flies across the network, SSL already has sent a.
bunch of handshake data to establish the communication. The essence of the SSL
handshake is shown in Figure 14-16.

This is a simplified version of the SSL handshake Depending on how SSL is bemg
used, the handshake can be more complicated, but this is the general idea.

HTTPS: The Details | 325

Internet ~ Server
(1) Client sends cipher choices and requests certifi catnon

I |

! 1

I |

| |

1 |

P o

o |

/ » | - Jeertificate ; -

§ . iEE =2

- | |
’ ¢ I

' ! [

!]

|

|

“Client - " Internet ' Server
(2) Server sends chosen cipher and certificate

- : erver
Client) Internet — Py 1
SSL security parameters handshake \ : |y Mo a
' \ - 1 Client = - Internet - Server '
\\ - : (3) Client sends secret; client and server make keys :
(N B : |
\\) | B
W | 1
V! % v |7 !
\ Client ' Internet © Saerver I
\\: (4) Client and server tell each other to start encryptlon _ :

Figar,e 14-16. SSL handshake (simplified)

Server Certificates

SSL supports mutual authentication, carrying server certificates to clients and carry-
ing client certificates back to servers. But today, client certificates are not commonly
used for browsing. Most users don’t even possess personal client certificates.” A Web
server can demand a client certificate, but that seldom occurs in practice.t

On the other hand, secure HTTPS transactions always require server certificates.
When you perform a secure transaction on a web server, such as posting your credit

card information, you want to know that you are talking to the organization you
~ think you are talking to. Server certificates, signed by a well-known authority, help
you assess how much you trust the server before sending your credit card or per-
sonal information. '

The server certificate is an X.509 v3—derived certificate showing the organization’s
name, address, server DNS domain name, and other information (see Figure 14-17).
You and your client software can examine the certificate to make sure everythmg '
seems to be on the up-and-up.

* Client certificates are used for web browsing in some corporate settings, and client certificates are used for
secure email. In the future, client certificates may become more common for web browsing, but today
they’ve caught on very slowly.

1 Some organizational intranets use client certificates to control employee access to information.

326 | Chapter14: Secure HTTP

Certificate serial number | 35:DEF4:CF.

| Certificate expiration date | Wed, Sep 17,2003

Site's organization name | Joe's Hardware Online
Site's DNS hostname | www.joes-hardware.com

Site's public_-key o - ol .

'Ce,rtiﬁcateissue,r name - | RSAData Security
Certificate issuer signature | Jown Doe

Figure 14-17. HTTPS 'certz‘ficaies are‘X;5 09 certificates with site information

Site Certlﬁcate Valldatlon

SSL 1tself doesn’t require you to examine the web server certlflcate but most mod-
ern browsers do some simple sanity checks on certificates and provide you with the
means to do more thorough checks. One algorithm for web server certificate valida-
tion, proposed by Netscape, forms the basis of most brovvsers validation tech-
niques. The steps are:. :

Date check
First, the browser checks the certificate’s start and end dates to ensure the certlﬁ—
cate is still valid. If the certificate has expired or has not yet become active, the
certificate validation fails and the browser displays an error.

Szgner trust check
Every certificate is signed by some certificate authonty (CA), who vouches for
the server. There are different levels of certificate, each requiring different levels
of background verification. For example, if you apply for an e-commerce server
certificate, you usually need to provide legal proof of incorporation as a business.

Anyone can generate certificates, but some CAs are well-known organizations
with well-understood procedures for verifying the identity and good business
behavior of certificate applicants. For this reason, browsers ship with a list of
signing authorities that are trusted. If a browser receives a certificate signed by

* some unknown (and possibly malicious) authority, the browser usually displays

- a warning. Browsers also may choose to accept any certificates with a valid sign-
ing path to a trusted CA. In other words, if a trusted CA signs a certificate for
“Sam’s Signing Shop” and Sam’s Signing Shop signs a site certificate, the
browser may accept the certificate as deriving from a valid CA path.

HTTPS: The Details | 327

Szgnature checle ' v
Once the srgmng authonty is Judged as trustworthy, the browser cheeks the cer-
tificate’s integrity by applying the ! srgmng authonty s pubhc key to the srgnature
and. comparing it to the checksum ' '

Site zdentzty check . :
To prevent a server from copyrng someone else’s certificate or mterceptmg their |

- traffic, most browsers try to verrfy that the domain name in the certificate matches' '

~ the domain name of the server ‘they talked to. Server certificates usually containa -

- single domain name, but some CAs create certificates that contain’ lists of server

" names or wildcarded domain names, for clusters or farms of servers. If the host-
- name does not match the identity in the certtﬁcate user-oriented clients must -

either notrfy the user or termlnate the connectton Wlth abad certrfrcate error '

Vlrtual Hostmg and Certlﬁcates

1t’s sometimes tricky to deal with secure trafﬁc on sites that are v1rtually hosted (mul-
_ tiple hostnames on a single server). Some popular web server programs support only
a single certificate. If a user arrives for a virtual hostname that does not strtctly match :
the certificate name, 2 warning box is displayed. : '

For example consider the Louisiana- themed e-commerce site Cajun- Shop com. The
site’s hosting prov1der provided the official name cajun-shop.securesites.com. When

~ users go to https://www.cajun-shop.com, the official hostname listed in the server cer-

 tificate (*securesites.com) does not match the virtual hostname the user browsed to
(www. ca]un—shop com) and the warmng in Figure 14-18 appears.

‘To prevent this problem, the owners of Cajun-Shop.com ‘redirect all users to. ca]un-
shop.securesites.com when they begin secure transactions. Cert management for vir-
tuaﬂy hosted sites can be a httle trtcky o

A Real HTTPS Cllent

SSLis a comphcated bmary protocol Unless you are a crypto expert you shouldn t
send raw SSL traffic directly. Thankfully, several commercial and open source hbrar— -
ies exist to make it easier to program SSL clients and servers. ' '

OpenSSL

OpenSSL is the most popular open source 1mplementatlon of SSL and TLS The
OpenSSL Project is a collaborative volunteer effort to develop a robust, commercial-
grade, qu featured toolkit implementing the SSL and TLS protocols, as well as a full-
strength, general-purpose cryptography library. You can get 1nformatlon about
OpenSSL and download the software, from http: //www openssl org.

328 ll, Chapter14: Secure HTTP -

(a) The hostname in this URL (wwwcajun shop (om)
does not match the name in the certificate, because the
site is virtually hosted, and the cemt' cate is made out
i to *securesites.com. .

(b} Adialog box warns the user that the site’s certtﬁcate has

. avalid date and is from a valid certificate authonty, but the
name listed in the certificate does not match the site -
requested in the URL.

5 This certificate s lntend:d forthe folnvolnq purpuse(s): X

"sEnsuresthe iy of emoke conpiter _ : (c)To get more details the User presses the “View Certxﬁcate”

: button; and sees that the certificate is a wildcard certificate .
v v . : . made out to “*.securesites.com’ With this information, the user
Issuedbys Thavk Sever CA : ‘ o ~ can decide whether to accept or dedline the certificate.

issuedto: *.ssarestesom

Validfrom 11/19/2001 to 11/19/2002°

.(d) Accepting the certificate Ioads the page through the secure

Rt st o, Gratg s ke, M, ;cthh,qmm.a‘,mm o g it n;ﬂi;ca-.wmmw HTTPS protoco]

o : . To avoid this kind of user error, this pamcularsne directs aII
~ s il - A a0 HTIPSwraffic to the hostname alias cajun-shop.securesites.com.
: CAJUI.’.f&HQP ZCOM | This virtual hostname matches the name on the certificate -

3 GOURNET CAJUR GROCKRY SHop prowded bythelSPas part of their commerce package

Accatmt Seoxch -Prodoct List Bostet Semtents | c -0 . Checkost

Figure 14418. Certificate name >misma'tches bring up _certificate error dialog boxes

You mlght also hear of SSLeay (pronounced S-S-L-e-a-y). OpenSSL is the successor
to the SSLeay library, and it has a very similar interface. SSLeay was originally devel-
- oped by Eric A. Young (the ¢ eay ” of SSLeay).

A Slmple HTTPS Client

In this section, we’ll use the OpenSSL package to write an extremely primitive
HTTPS client. This client estabhshes an SSL connecnon w1th a server, prints out

AReal TIPS Client | 329

- some 1dent1f1catlon mformatlon from the site server, sends’ an HTTP GET request
across the secure channel, recelves an HTTP response, and prints the response.

The C program shown below is an OpenSSL 1mplementatron of the trivial HTTPS .
client. To keep the program simple, error—handhng and certrﬁcate-processrng logrc‘
has not been included. - : : -

‘ Because error handhng has been removed from th1s example program you should :
- use it only for explanatory value. The software will crash or othervwse rmsbehave in
normal error conditions. R
/** S

* https client.c --- very simple HTTPS client with no error checklng

*. usage:. https client servername
**/

>#inc1ude <stdio.h>.
~ #include <memory.hs
- #include <errno.h>
- #include <sys/types.h>
#include <sys/socket.h>
" #include <netinet/in.h>
‘#include <arpa/inet.h>
#include <netdb.h> -

#include <openssl/crypto.h>-
#include <openssl/x509.h>
#include.<openssl/pem.h>
#include <openssl/ssl.h>
#include <openssl/err.h>.

void main(int argc, char **argv)
{ _ . v .
SSL *ssl;
" SSL_CTX *ctx;
SSL_METHOD *client method
X509 *server_cert;
int sd,err; R
char *str, *hostname, outbuf[4096],1nbuf[4096] host_header{s512];
- struct hostent *host_entry; ‘
struct sockaddr_in sserver socket_address;
struct in_addr ip;.

s ‘ S - .y
/* (1) initialize SSL library */
/* : : == : */

SSLeay_add_ssl_algoxithms();
client_method = SSLv2_client_method();
SSL_load_error_strings();

ctx = SSL_CTX new(client_method);

30 | Chapter14: Secure HTTP

printf("(z) SSL context initialized\m\n");

/* (2) convert SETver hostname into IP address. */

[Has S —— X

hostname argv[l],

host_entry = gethostbyname(hostname),

bCOPy(hOSt entry 2>h addr, &(1p s addr), host_entry- >h 1ength), |
printf("(2) '%s’ as Ip. address %s'\n\n", hostname, inet ntoa(lp)),

/* _ o . —-_;_;;;-;— : » o */

o /*(3) open a TCP connectlon ‘to port 443 on server */
) /* T B T = “—""===*_/)

sd = socket (AF INET, SOCK STREAM 0);

memset(&server_socket_addre_ss, \0', sueof(server socket address))
sexver;socket_address;sin_family AF_INET; .
- server_socket_address,sin_port = htons(443),
memcpy(&(server socket _address.sin_addr.s_addr), .
host entry ->h addr, host entry ->h 1ength),

err = connect(sd (struct sockaddr*) &server socket address,_
. sizeof(server_socket address)), A :
if (err < 0) { perror(" can't connect to server port"), ex1t(1) }

printf("(3) TCP,connect10n-open~to host.'%s , port.Ad\n\n 5
; hostname, server_socket_address.sin_port); - -~ -

/* (4) 1n1tlate the SSL -handshake over the TCP connectlon */
[*== s _ ==== - ====*/
ssl = SSL_new(ctx); - /* create SSL stack_endpointV*/
SSL_set_fd(ssl, sd); = /* attach SSL stack to socket */
err = SSL connect(ssl); - /* initiate SSL handshake */

printf(“(4)-SSL endpoint created & handshake-completea\n\n");

/*__. T S U UO SO SN */
/* (5) print out the negotlated cipher chosen */
/*:::::——'— —=—'—‘———*/

priﬁtf("(s) SSL connected with cipher: %s\n\n", SSL_get cipher(ssl));

Yo S - ==*/

/* (6) print out the server's certificate */
/*= : S———

- server_cert = SSL_get_peer_certificafe(ssl);

ARea]HTTPSCﬁent

331

}

prlntf("(e) server 5 certlflcate was recelved \n\n"),»

str = X509 NAME onellne(X509 get . subject name(server cert), 0, 0),
-prlntf(" - subject %s\n"; str),

©ostr = X509 NAME onellne(XSOQ get issuer name(servex cert), 0, o),

printf(" issuer: /s\n\n , str);

‘/* certlflcate verlflcatlon would happen here */

X509 free(server cert),‘

/******************************#*************#************/
/* (7) handshake complete --- send HTTP request over SSL */ -

./*%***/

sprlntf(host header;"HOSt %s:443\1\n" ,hostname);

strcpy(outbuf,"GET / HTTP/1. O\I\n"),
strcat(outbuf,host _header);
strcat(outbuf, "Connection: close\r\n"),
strcat(outbuf "\r\n“)

err = SSL wrlte(ssl outbuf, strlen(outbuf)),
shutdown (sd, 1); /* send EOF to server */

vprintf("(7) sent HTTPbrequest over encrypted channel:\n\n%s\n",outbuf);

/************************#*************************/

/* (8) read back HTTP response from the SSL stack */
/**/

err = SSL read(ssl inbuf, 51zeof(1nbuf) - 1);
1nbuf{err] "\0';

- printf ("(8) got back %d bytes. of HTTP response:\n\n%s\n" ,err 1nbuf),

./**/

/* (9).all done, so close connection & clean up */
/**/

SSL_shutdown(ssl);
close (sd);
SSL_free (ssl);
SSL_CTX_free (ctx);

printf("(9) all done, cleaned up and closed connection\n\n");

This example compiles and runs on Sun Solaris, but it is illustrative of how SSL pro-
grams work on many OS platforms. This entire program, including all the encryp-
tion and key and certificate management, fits in a three-page C program, thanks to
the powerful features prov1ded by OpenSSL.

332 | Chapter14: Secure HTTP

Let s walk through the program section by section:

The top of the program mcludes support files needed to support TCP network- .
ing and SSL. - - o '

Section 1 creates the local context that keeps track of the handshake parameters’
and other state about the SSL connection, by calling SSL_ CTX_new.

Section 2 converts, the input hostname (provrded as a command-hne argument)
to an IP address, using the Unix gethostbyname function. Other platforms may
have other ways to provide this fac1hty

Section 3 opens a TCP connection to port 443 on the server by creatmg a local.-
socket, setting up the remote address information, and connectmg to the remote
server. :

‘Once the TCP connection is establtshed we attach the SSL layer to the TCP con-

nection using SSL_new and SSL_set_fd and perform the SSL handshake with the
server by calling SSL_connect. When section 4 is done, we have a funct1on1ng ,
SSL channel established, with ciphers chosen and certlftcates exchanged

“Section 5 prtnts out the value of the chosen bulk—encryptlon c1pher

Section 6 prints out some of the information contained in the X.509 certificate

sent back from the server, including information about the certificate holder and

the organization that issued the certificate. The OpenSSL library doesn’t do any-
thing special with the information in the server certificate. A real SSL apphca--
tion, such as a web browser, would do some sanity checks on the certificate to
make sure it is signed properly and came from the right host. We dlscussed What .
browsers do with server certificates in “Site Certificate Vahdatlon

At this pornt ‘our SSL connection is ready to use for secure data transfer In séc-
tion 7, we send the simple HTTP request “GET / HTTP/1.0” over the SSL chan-
nel using SSL_write, then close the outbound half of the connection.

In section 8, we read the response back from the connection using SSL.. "read 'and

print it on the screen. Because the SSL layer takes care of all the encrypuon and

decryption, we can]ust write and read normal HTTP commands

Finally, we clean up in section 9.

Refer to http: //www openssl org for more 1nformat10n about the OpenSSL llbrarres

| Executmg Our Slmple OpenSSL Cllent

The following shows the output of our simple HTTP client when pointed at a secure

server. In this case, we pointed the client at the home page of the Morgan Stanley -

Onhne brokerage Online tradlng companies make extensive use of HTTPS.

" % https_client clients1,online.msdw. com
(1) Sst context 1n1tlallzed

AReal HTTPS Client | 333.

(2)_'elient51.online.mde:eomf has,inaddress f63.15i.15{i1"

v(3') TCP connection .open to hdst 'cl.ients'-i.on-vli'ne;'msdw.corrt'-, 'p'ort'_'44‘3 o
(4) ssL endp01nt created & handshake completed |
‘:(5) SSL connected with c1pher DES-CBC3-MD5

'(6)_server s certlflcate was Iecelved'

subject: /C= US/ST—Utah/L =Salt Lake C1ty/O =Morgan Stanley/OU =0Online/CN=
c11ent51 online.msdw.com
issuer: /C=US/0=RSA Data Securlty, Inc /OU Secure Server Certlflcatlon

_ Authorlty
' (7),sent HTTPgrequest over encrypted'channel:

GET / HTTP/1 0
Host: cllentsl online.msdw,com: 443
Conneetlon close

(8) got back 615 bytes of HTTP response:

HTTP/1.1 302 Found

‘Date: Sat, 09 Mar 2002 09:43:42 GMT '

Server: Stronghold/3.0 Apache/1.3.14 RedHat/3013c (Uan) mod_ss1/2.7.1 OpenSSL/0.9.6
‘Location: https: //clients.online.msdw. com/cg1 bin/ICenter/home

Connection: close . |

Content- Type text/html charset is0-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2. 0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>

'</HEAD><BODYs
<H1>Found</H1> : :
The document has moved <A HREF "https //cllents onllne msdw, com/cgl bln/ICenter/
home">here .<P>

<HRy
<ADDRESS>StIonghold/3 0 Apache/l 3.14 RedHat/3013c Server at clientsi. onllne msdw. com
Port 443</ADDRESS>

- </BODY></HTML>

(9) all done, cleaned up and closed connection

As soon as the first four sections are completed the client has an open SSL connec-
tion. It can then inquire about the state of the connection and chosen parameters
and can examine server certificates. :

In this example the client and server negotiated the DES- CBC3- MD5 bulk-encrypuon
cipher. You also can see that the server site certificate belongs to the organization
“Morgan Stanley” in “Salt Lake City, Utah, USA”. The certificate was granted by RSA
Data Security, and the hostname is “clients1.online.msdw.com,” which matches our
request. ‘

334 | Chapter14; Secure HTIP

‘Once the SSL channel is estabhshed and the chent feels comfortable about the site
certificate, it sends its HTTP request over the secure channel. In our example the cli-
ent sends a simple “GET / HTTP/1.0” HTTP request and receives back a 302 Redi-
rect response requestmg that the user fetch a different URL

Tunnellng Secure Trafﬁc Through Proxms

Clients often use web- proxy servers to access web servers on thelr behalf (prox1es are
discussed in Chapter 6). For example, many corporations place a proxy at the secu-

 rity perimeter of the corporate network and the public Internet (Figure 14-19). The
proxy is the only dev1ce permitted by the firewall routers to exchange I—ITTP traffic,
and 1t may- employ virus checkmg or other content controls -

y - int

lient Flrewall .
' proxy 1
1

Security
perimeter.

Flgure 14 19. Corporate fzrewall proxy

But once the client starts encryptmg the data to the server, usmg the server’s pubhc
key, the proxy no longer has the ability to read the HTTP header! And if the proxy can-
not read the HTTP header, it won’t know where to forward the request (Figure 14-20).

cliént'l?;mycompany.com - : proxy mycompany om _ .www.cajun-gif_ts.com ’
bdfwr73yt1'60uyd01w687e 1dewvd76wet176f1g287hd19
8r82yr87pfdy72y8719383 PDUyqe719eyty3gee98y8787

Figure 14-20. Proxy can’t proxy an encrypted_request

To rnake HTTPS work with proxies, afew tnodifications are needed to tell the ptoxy
where to connect. One popular technique is the HTTPS SSL tunneling protocol.

 Tunneling Secure Traffic Through Proxies | 335

_.-Usmg the HTTPS tunnehng protocol the chent first tells the proxy the secure host'
-and port to which it wants to connect. It does this in plamtext before encryptlon :
 starts, so the proxy can read this information. : E

HTTP is used to send the plamtext endpomt 1nformat10n usmg a new extensmn‘ .
method called CONNECT. The CONNECT method tells the Proxy to open a con- '
nection to the desired host and port number and, when that’s done, to tunnel data
directly between the client and: server. The CONNECT method is a one-line text
‘command that prov1des the hostname and port of the secure origin server, separated
by a colon. The host:port is followed by a space and an HTTP version string fol-

lowed by a CRLF. After that there is a series of zero or more HTTP request header

lines, followed by an empty line. After the empty line, if the handshake ‘to eStablish
the connection was successful, SSL data transfer can begin. Here is an example:

CONNECT home. netscape com: 443 HTTP/1.0
User-agent: Mozilla/1.aN -

<réw>SSL-encrypted'déta would follow here...> ,

After the empty line in the request, the client will wait for a response from the proxy.
The proxy will evaluate the request and make sure that it is valid and that the user is -
authorized to request such a connection. If everything is in order, the proxy will
make a connection to the destmatlon server and, 1f successful send a 200 Connec-,
tion Established response to the client. ' o ‘

HTTP/1.0 200 Connectlon establlshed v
Proxy-agent: Netscape Proxy/1.1

For more information about secure tunnels and security prox1es refer back to “Tun-
nels in Chapter 8. '

For More lnformation | |
Security and cryptography are hugely important and hugely cbmplieated topics. If
you'd like to learn more about HTTP security; digital cryptography, d1g1tal cemfl-
cates, and the Public-Key Infrastructure, here are a few startlng pomts

‘ HTTP 'Security |

Web Securzty, Przvacy C?’ Commerce :
Simson Garfinkel, O’Reilly & Associates, Inc. This is one of the best; most read-
able introductions to web security and the use of SSL/TLS and dlgltal certlflcates v

| http:/www.ietf. org/rfe/rfc2818.txt
RFC 2818, “HTTP Over TLS,” spec1f1es how to implement secure HTTP over
Transport Layer Security (TLS), the modern successor to SSL. ' ’

336 | Chapter14: Secure HTTP

| http //www zetf org/rfc/rfc281 7.txt

RFC 2817, “Upgrading to TLS Within HTTP/ 1.1,7 "explams how to use the "

Upgrade mechanism in HTTP/1.1 to initiate TLS over an existing TCP connec-
tion. This allows unsecured and secured HTTP traffic to share the same well-
* known port (in this case, http: at 80 rather than https: at 443). It also. enables
virtual hosting, so a single HTTP+TLS server can dlsambrguate traffrc 1ntended ,
_ for several hostnames at a smgle IP address. '

SSL and TLS

http: www. ietf. org/rfc/rf62246 txt
RFC 2246, “The TLS Protocol Version 1.0,” spec1f1es Versmn 1.0 of the TLS pro- :
tocol (the successor to SSL). TLS provides communications privacy over the
Internet, The protocol allows client/server applications to communicate in-a way
~ thatis de51gned to prevent eavesdropping, tampering, and message forgery.

http://developer.netscape. com/docs/manuals/securzty/sslzn/contents htm
“Introduction to SSL” introduces the Secure Sockets Layer-(SSL) protocol. Or1g1— '
nally developed by Netscape, SSL has been universally accepted ‘on the World

-~ Wide Web for authenticated and encrypted communication. between chents and
servers.

http /www:netscape. com/eng/sslj’/dmft302 bt
“The SSL Protocol Version 3.0” is Netscape s 1996 spec1f1cat10n for SSL.

http://developer.netscape.com/tech/security/ssl/howitworks.html -
“How SSL Works” is Netscape’s introduction to key cryptography

hitp:/fwww.openssl. org

The OpenSSL Project is a collaborative effort to develop a robust, commerc1al-
‘grade, full-featured, and open source toolkit implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols, as well as a
full-strength, general-purpose cryptography library. The project is managed by a
worldwide community of volunteers that use the Internet to communicate, Pplan,
and develop the OpenSSL toolkit and its related documentation. OpenSSL is
based on the excellent SSLeay library developed by Eric A. Young and Tim 7J.

* Hudson. The OpenSSL toolkit is licensed under an Apache-style licence, which
basically means that you are free to get and use it for commercial and noncom-
mercial purposes, subject to some simple license conditions.

Public-Key Infrastructure
http:/fwww.ietf.org/html.charters/pkix-charter. html
The IETF PKIX Working Group was established in 1995 with the intent of

developing Internet standards needed to support an X.509-based Public-Key
Infrastructure This is a nice summary of that group’s activities.

" ForMoreInformation. | 337

http //www zetf org/rfc/rfc2459 txt . ' o
" REC 2459, “Internet X.509. Public Key Infrastructure C ertrfrcate and CRL Pro- o
-~ file,” contams detarls about X. 509 v3 dlgltal certrfrcates

| Digita'l Cryptography‘ :
Applied Cryptography - o ‘ |
- Bruce Schneier, John Wlley &: Sons ThlS is a classrc book on cryptography for
~ implementors. :

The Code Book: The Sczence of Secrecy from Anczent Egypt to Quantum Cryptography
Simon Smgh ‘Anchor Books. This entertaining book is a cryptography primer.
While it’s not intended for technology experts, it is a hvely hrstoncal tour of

) secret codmg : ’

338 | Chapter14: Secure HTIP

S __ PARTIV:»
Entltles, Encodmgs and
Internatlonallzatlon _

Part IV is all about the ent1ty bodles of HTTP messages and the content that the
entity bodies Shlp around as cargo: -

. Chapter 15, Entztzes and Encodings, descnbes the formats and syntax of HTTP -
‘content. . _

+ Chapter 16, Internatzonalzzatzon surveys the web standards that allow people to
exchange content in different languages and dlfferent character sets, around the
globe. : :

* Chapter 17 Content Negotiation and Transcodmg, explalns rnechamsms for
negotlatmg acceptable content. :

CHAPTER 15 o

Entltles and Encodmgs N

HTTP ships billions of media objects of all kinds every day. Images, text, movies,
' software programs... you name it, HTTP ships it. HTTP also makes sure that its

messages can be properly transported, identified, extracted and processed In partic-
ular HTTP erisures that its cargo: : _ .

+ Can be identified correctly (using Content-Type medla formats and Content-

Language headers) so browsers and other clients can process the content properly
Can be unpacked properly (using Content-Length and Cont‘enrv.Enc‘oding.headers)
Is fresh (using .entiry validators and cache -expiration controls) | |
Meets the user’s needs (based on content-negotiation Accept headers)

Moves qulckly and efﬁcrently through the network (usrng range requests delta_

encoding, and other data compression)
Arrives complete and untampered with. (usmg transfer encodlng headers and

_Content-MDS5 checksums)

To make all this happen HTTP uses Well labeled entltles to carry content..

This chapter dlscusses entities, their assocrated entity headers and how they work to
transport web cargo. We’ll show how HTTP provides the essentlals of content size,
type, and encodings. We'll also explain some of the more complicated and powerful
features of HTTP entities, including range requests, delta encoding, dlgests, and
chunked encodmgs : : :

Thrs chapter covers:

The format and behav1or of HTTP message entities as HTTP data contamers

:How HTTP describes the size of entity bodies, and what HTTP requires in the

way of sizing
The entity headers used to describe the format, alphabet, and language of con-

tent, so clients can process it properly -

oM

. Revers1b1e content encodings, used by senders to transform the content data for- B
mat before sendlng to make it take up less space or be more secure
-« Transfer encoding, which modlﬁes how HTTP ships data to enhance the commu-

nication of some kinds of content, and chunked encoding, a transfer encoding -
that chops data into multlple pieces to deliver content of unknown length safely

* The assortment of tags, labels, times, and checksums that help chents get the lat-
est version of requested content :

* The validators that act like version numbers on content, so web applications can
ensure they have fresh content, and the HTTP header fields designed to control
object freshness-

* Ranges, Wthh are useful for continuing aborted downloads where- they left off

* HTTP delta encoding extensions, which allow clients to request just those parts
of a web page that actually have changed since a prev1ously viewed revision

e Checksums of entity bodies, which are used to detect changes in ent1ty content :
“asit passes through proxies

vMessa_geSAre _Crates, Entities Are Cargo

If you think of HTTP messages as the crates of the Internet shipping system, then
HTTP entities are the actual cargo of the messages. Figure 15-1 shows a simple
entlty, carried inside an HTTP response message.

HTTP/ 1.0 200 OK
Server: Netscape- Enterpr15e/3 6 .
‘Date: Sun, 17 Sep 2000 00; 01 05 GMT

——— 5]

- Content-type: text/plaln v E,,,,ly,«,eade,s:
v Content length 18 N ”if
o ety

H1| I ma messagel e Enmybody:

__

Figure 15-1. -Message entity is made up of entity headers and entity body

The entity headers indicate a plaintext document (Content- Type text/plain) that is a
mere 18 characters long (Content-Length: 18). As always, a blank line (CRLF) sepa-
rates the header fields from the start of the body.

HTTP entity headers (covered in Chapter 3) describe the contents of an HTTP mes-
sage. HTTP/1.1 defines 10 primary entity header fields: :
Content-Type

The kind of object carried by the entity.
Content-l,ength

The length or size of the message being sent.

342 | Chapter15: Entities and Encodings

Content—Language -. - L
The human language that best matches the object bemg sent.

Content-Encoding
Any transformation (compressmn etc.) performed on the ob]ect data

Content—Locatzon .
An alternate locatlon for the ob]ect at the time of the request

Content- -Range S
If thisis a part1a1 entity, thlS header defmes Whlch pleces of the Whole are mcluded.

Content-MD5
A checksum of the contents of the entlty body

Last-Modified _
The date on Wthh this partlcular content was created or modlfled at the server..

Expzres -
The date and time at Wthh th1s ent1ty data will become stale

Allow S '
What request methods are legal on this 1 resource; e. g GET and HEAD

ETag - :
A unique vahdator for thlS particular instance” of the document The ETag
“header is not defined formally as an entity header, but it is an 1mportant header
for many operations involving entities. :

Cache-Control : :
Directives on how thlS document can be cached The Cache—Control header hke '
the ETag header, is not defined formally as an entity | header L '

Entlty Bodles

The entity body just contains ‘the raw cargo.t Any other descnptwe 1nformat10n is
contained in the headers. Because the entity body cargo is just raw data, the entity
headers are needed to describe the meaning of that data. For example, the Content-
Type entity header tells us how to interpret the data (image, text, etc.), and the Con-
tent-Encoding entity header tells us if the data was compressed or otherw13e recoded.
We talk about all of this and more in upcoming sections.

The raw content beglns 1mmed1ately after the blank CRLF line that marks the end of
the header fields. Whatever the content is—text or binary, document or image, com-
pressed or uncompressed, English or French or Japanese—lt is placed rlght after the
CRLF

* Instances are described later in this chapter, in the section “Time-Varying Instances.”

1 If there is a Content-Encoding header, the content already has been encoded by the content-encoding algo-
~ rithm, and the first byte of the entity is the first byte of the encoded (e.g., compressed) cargo.

- Messages Are Crates, Entities Are Cargo. | 343

Flgure 15-2 shows two examples of real HTTP messages ‘one carrymg a text. ent1ty,
the other carrying an image entity. The hexadec1ma1 values show the exact contents

“of the message:

* In Frgure 15- 2a, the entlty body begms at byte number 65, rrght after the end-of-
headers CRLF. ‘The entrty body contains the ASCII characters for “‘Hi! 'ma

- message!”
* In Figure 15- 2b the entity. body begms at byte number 67. The entity body con-
 tains the binary contents of the GIF image. GIF files begin with 6- -byte version
signature, a 16-bit width, and a 16- b1t herght You can see all three of these

‘dlrectly in the entrty body

(a) Text/plain .enrity in HTTP response message'

HTTP/1.0 200 OK 00: 4854 5450 2£31 2e30 2032 3030 204f 4b0od [HTTP/1.0 200 OK.

| Content ’Cype text/plain 16: 0ad3 6f6e 7465 6e74 2474 7970 653a 2074 .Co‘nt_:ent~type: ¥

Content- 1ength 18 32: 6578. 742f 706C,6169‘6606_Qa43 6f6e 7465 |ext/plain..Contg
48: 6e74 2d6¢ 656e 6774 683a 2031 3804 020d mnt- length 18,

64 0a48 6921 2049 2764 2061 206d 6573 7361 i oy

6765\210a : ' ' L

Hil ’m a'message1 f

i naI IF (OXOA—- <LF>) ’ start—of—con_tent (0x48="H")

(b) Imége/gif entity i'n HTTP res_ponse message

HTTP/1.0 200 0K | 00: 4854 5450 2£31 2e30 2032 3030 204F. 4bo_d [TTB71,0 200 oK.

Content-Type: image/ 1f 16: 0a43 6f6e 7465 6e74 2d74 7870 653a 2068 |.Content-type:
Content - Lghgth 3%86§ +32: 6461 6765 267 6966 0dla 436f 6e74 656e mage/gif..Conte
1 48y 7424 6c65 6e€7 7468 3a20 3334 3836 370d (t-length: 34867
64: 0a0d 0ald7 4946 3837 637 0Aps 0YE7 0000

80: 040210404 8204 8482 (2fc|fe(d 8202 0404 “’ .
- 96: 42ad adca £484 8284 dce2{dcSc a2Re 444a
=8 . . .) o
finalLF . start-of-content =~ Width ~ Height _
' (0x0A= <lF>) ("GIF8T7") (0x0227‘=_ 551) (0x0206=518) '

Fzgure 15 2. Hex dumps of real message content (raw message content follows blank CRLF)

Content- Length The Entlty s Size

“The Content- -Length header indicates the size of the entity.body in'the message, in
bytes. The size includes any content encodings (the Content-Length of a gzrp-' »
compressed text file will be the compressed size, not the orrgmal size).

The Content- Length header is mandatory for messages with entity bodles unless the
message is transported using chunked encoding. Content-Length is needed to detect
premature message truncation when servers crash and to properly segment messages

that share a per51stent connection. '

Detecting Truncation

- Older versions of HTTP used connection close to delimit the end of a message. But,
without Content-Length, clients cannot distinguish between successful connection

44 | Chapter 15: Entities and Encodings

close at the end of a message and connection close due to a server crash in the m1d—__ o
dle of a message Chents need Content—Length to detect message truncatlon

Message truncation is espec1a11y severe for caching proxy servers. Ifa cache receivesa -
truncated message and doesn’t recognize the truncation, it may store the: defective
content and serve it many times. Caching proxy servers generally do not cache HTTP
bodies that don’t have an explicit Content—Length header, to reduce the I‘lSk of cach-
mg truncated messages ' _

Incorrect Content Length

An incorrect Content—Length can cause even more damage than a mlssmg Content- :
Length. Because some early clients and servers had well-known bugs with respect to
Content-Length calculations, some clients, servers, and proxies contain algorlthrns to
try to detect and correct interactions with broken servers. HTTP/1.1 user agents offi-
Clally are Supposed to notify the user when an invalid 1ength is I'€C€1V6d and detected

-Content-Length and Per5|stent Connectlons

Content-Length is essentlal for per51stent connect1ons If the response comes across a
persistent connection, another HTTP response can immediately follow the current
response. The Content-Length header lets the client know where one message ends
and the next begins. Because the connection is persistent, the client cannot use con-
nection close to 1dent1fy the message’s end. Without a Content- Length header, HTTP
apphcatlons won’t know where one entity body ends and the next message beglns

As we will see in “Transfer Encodlng and Chunked Encodmg, there is one situation
where you can use persistent connections without having a Content-Length header:
when you use chunked encoding. Chunked encoding sends the data in a series of
chunks, each with a specified size. Even if the server does not know the size of the
entire entity at the time the headers are generated (often because the entity is being
generated dynamically), the server can use chunked encodmg to transmlt pieces of
well- defmed size. : S

Content Encodmg

"HTTP lets you encode the contents of an entity body, perhaps to make it more
secure or.to compress it to take up less space (we explain compression in detail later
in this chapter). If the ‘body has been content-encoded, the Content—Length header
specifies the length, in bytes, of the encoded body, not the Iength of the onglnal

- unencoded body.

Some HTTP apphcations have been known to get this wrong and to send the size of
“the data before the encoding, which causes serious errors, especially with persis-
tent connections. Unfortunately, none of the headers described in the HTTP/1.1

Content-Length: The Entity's Sze | 345

Spec1f1cat10n can be used to send the length of the original, unencoded body, Whlch
makes it difficult for chents to verify the i mtegrlty of their un encodmg processes.”

Rules for Determmmg Entlty Body Length

The following rules describe how-to correctly determine the length and end of an
entity body in several different circumstances. The rules should be apphed in order

the first match applies.

1.1 a partlcular HTTP message type is not allowed to have a body, ignore the
Content-Length header for body calculations. The Content-Length headers are
- informational in this case and do not describe the actual body length. (Naive -
" HTTP applications can get in trouble if they assume Content—Length alwaysv

- means there is a body).

- The most important example is the HEAD response. The ‘HEAD method

~ requests that a server send the headers that would have been returned by an
equivalent GET request, but no body. Because a GET response would send back

- a Content-Length header, so will the HEAD response—but ‘unlike the GET
response, the HEAD response will not have a body. 1XX, 204, and 304
responses also can have informational Content-Length headers but no entity

* body. Messages that forbid entity bodies must terminate at the first’ empty hne
after the headers, regardless of which entity header fields are present.

2. If a message contains a Transfer-Encodmg header (other than the default HTTP
“identity” encoding), the entity will be terminated by a special pattern called a
“zero-byte chunk,” unless the message is terminated first by closing the connec-

tion. We 1l discuss transfer encodings and chunked encodings later in this chapter.

3. If a message has a Content—Length header (and the message type allows entity
bodies), the Content-Length value contains the body length, unless there is a
non-identity Transfer-Encoding header. If a message is received with both a
Content-Length header field and a non-identity Transfer-Encoding header field,
you must ignore the Content-Length, because the transfer encoding will change
‘the way entity bodies are represented and transferred. (and probably the number
of bytes transmltted) :

4. If the message uses the ¢ multlpart/byteranges rnedla type and the entity length
is not otherwise specified (in the Content-Length header), each part of the multi-
part message will specify its own size. This multipart type is the only entity body
type that self-delimits its own size, so this media type must not be sent unless the
sender knows the recipient can parse it.t

* Even the Content-MD35 header, which can be used to send the 128-bit MD5 of the document, contains the
MDS5.of the encoded document. The Content-MD5 header is described later in this chapter.

t Because a Range header might be forwarded by a more primitive proxy that does not understand mulnpart/
byteranges, the sender must delimit the message using methods 1, 3, or 5 in this section if it isn’t sure the
receiver understands the self- delimiting format.

346 | Chapter15: Entitiesand Encodings

5, If none of the above rules match the entity ends when the connection closes
In practice, only servers can use connection close to indicate the end of a
message. Clients can’t close the connection to signal the end of client mes-
sages, because that Would leave no way for the server to send- back a
response ' : : -

Entlty Dlgests

Although HTTP typlcally is 1mplemented over a reliable transport protocol such
as TCP/IP, parts of messages may get modified in transit for a variety of reasons,
such as noncomphant. transcoding proxies or buggy intermediary proxies. To
detect unintended (or undesired) modification of entity body data, the sender can
generate a checksum of the data when the initial entity is generated and- the
receiver can sanlty check the checksum to catch any unintended entity modification.t

The Content-MD5 header is used by servers to send the ‘result of running the
MDS3 algorithm on the entity body. Only the server where the response origi-
nates may compute and send the Content-MD5 header. Intermediaté proxies and
caches may not modify or add the header—that would violate the whole pur-
pose of venfymg end-to-end integrity. The Content-MDS5 header contains the
MDS5 of the content after all content encodlngs have been applied to the entity
body and before any transfer encodings have been apphed to it. Clients seeking
to verify the integrity of the message must first decode the transfer encodings,
then compute the MD5 of the resulting unencoded entity body. As.an example,; if
- a document is compressed using the gzip algorithm, then sent with chunked
encoding, the MD5 algonthm is run on the full gripped body.

In addition to checkmg message integrity, the MDS5 can be used as a key into a
hash table to quickly locate documents and reduce duplicate storage of content
Despite these p0551b1e uses, the Content-MDS5 header is not sent often.

Extensions to HTTP have proposed other digest algorithms in IETF drafts. These
extensions have proposed a new header, Want-Digest, that allows clients to specify
the type of digest they expect with the response. Quality values can be used to sug-
gest multiple digest algorithms and indicate preference.

*.The client could do a half close of just its output connection, but many server applications aren’t designed
to handle this situation and will interpret a half close as the client disconnecting from the server. Connection
management was never well specified in HTTP. See Chapter 4 for more details.

+ This method, of course, is not immune to a malicious attackthat replaces both the message body and digest
header. It is intended only to detect unintentional modification. Other facilities, such as digest authent1ca~
tion, are needed to provxde safeguards against mahcwus tampering. -

Entity Digests | 347

Medla Type and Charset

The Content -Type header- fleld descrrbes the MIME type of the entlty body -The
MIME type is a standardized name that describes the underlying type of media
carried as cargo (HTML file, Microsoft Word document, MPEG video, etc.). Cli-
~ent applications use the MIME type to properly decipher and process the con-
tent. . - :

~ The Content -Type’ values are standardrzed MIME types reg1stered with the
Internet A551gned Numbers Authority (IANA). MIME types consist of a primary
media type (e.g., text, image, audio), followed by a slash, followed by a subtype
that further specifies the media type. Table 15-1 lists a few common MIME types
’ for the Content- Type header. More MIME types are hsted in Appendix D.

Table 15-1. Common medza types

text/html Entity body is an HTML document

i 'text/plain . S Entity,body isa ddcurnent in plain text o

_ image/gif o v"Entit'y'body is an image of type GIF _ .
rmageljpeg | - ':Entrty body isan image of type JPEG -
audio/x-way . bEntrty body contains WAV sound data
modelvmt - Entity body is a three—dlmensronal VRML model
application/vnd.ms-powerpoint Entity body is a Microsoft PowerPomt presentation . -
mu!tipart/byteranges : Entity body has multiple parts each contammg a different range (in bytes) of the full doc—

_ S o ument _ _ ~

: message/http B - : Entlty body contalns a complete HTTP message (see TRACE)

It is important to note that the Content—Type header specifies the media type of the
original entity body. If the entity has gone through content encoding, for example,
| the-Content-Type head_er- will still specify the entity body type before the encoding. -

| Character Encodmgs for Text Media

The Content-Type header also supports optlonal parameters to further specify the -
‘content type. The “charset” parameter is the primary example, spec1fy1ng the mecha-
nism to convert bits from the entity into characters in a text file:

Content-Type: text/html; charset=iso-8859-4
We talk about character sets in detail in Chapter 16.

* In the case of the HEAD request Content-Type shows the type that would have been sent if it was a GET
request ,

348 __llv Chapter 15: Entities and Encodings

Multlpart Medla Types

MIME “multlpart” email messages contain multiple- messages stuck together and :
sent as a single, complex message. Each component is self—contamed with its own
set of headers describing its content the different components are concatenated
‘together and delimited by a string. | : :

HTTP also supports multipart bodies; however, ‘they typrcally are sent in only one of
two situations: in fill-in form subm1851ons and in range responses carrymg preces of a
document . I

Multlpart Form Submlssmns

When an HTTP fill-in form is submitted, Varlable-length text fields and uploaded
objects are sent as separate parts of a multrpart body, allovvmg forms to. be filled out
with values of dlfferent types and lengths, For example, you may. choose to fill out a
form that asks for your name and a description with your nlckname and a ‘small
photo, while your friend may put down her full name and a long essay descrrbrng her
passion for fixing Volkswagen buses. S :

HTTP sends such requests with a Content-Type multlpart/form data header or a
Content-Type: multipart/mixed header and a multipart body, like this:

Content-Type: multlpart/form data; boundary—[abcdefghljklmnopqrstuvwxyz]

where the boundary specrﬁes the delimiter string between the dlfferent parts of the
body 5 '

- The followrng example 1llustrates multtpart/form data encoding. Suppose we have
thlS form: SR

<FORM action= "http //server com/cgl/handle
' enctype="multipart/form- data

. method= "post >

<P> ' : o
What is your name? <INPUT type="text" name="submit- name">
 .
What- files .are you sending? <INPUT type="file" name="files">

<INPUT - type="submit" value~"Send"> <INPUT type-“reset"> '
</FORM>

If the user enters “Sally in the text-input field and selects the text file ¢ essayftle txt,”
the user agent mrght send back the following data: :

' Content ~Type: multlpart/form data; boundary-AaBO3x
- --AaB03x
Content-Disposition: form- data, name= submlt name"
Sally
~--AaB03x

~ MediaType and C_harset-b | 349

Content Dlsp051tlon form data,:name—"flles filename="essayfile.txt"

Content-Type: text/plain o L
..contents of essqyflle txt

~-AaBo3x~- ' '

If the user selected a second (1mage) file, b‘imagefile.gi‘f,” the us_,erva'geritbmi._ght_ cbn-
struct the parts as follows: ' S SR

Content-Type: multlpart/form data, boundary-AaBOBx
-~AaB03x

. Content-Disposition: form- data, riame="submit- name
* Sally

--AaB0o3x
Content-Disposition: form- -data; name—"flles
Content-Type: multipart/mixed; boundary=BbC04y

--BbCo4y

Content-Disposition: file; fllename— essayflle txt"
Content-Type: text/plain
oo Contents of essayfile.txt..

. --BbCO4y

~ Content-Disposition: file; fllename— imagefile. glf“
Content-Type: image/gif

Content-Transfer-Encoding: blnary
..contents of 1magejﬁle glf
--Bbco4y--

' -~AaBO3x--

'Multlpart Range Responses

HTTP responses to range requests also can be multlpart Such responses come with a
Content-Type: multipart/byteranges header and a multipart body with the different
ranges. Here is an example of a multipart response to a request for dlfferent ranges of
adocument: :

HTTP/1.0 206 Partial content

Server: Microsoft-II1S/5.0

Date: Sun, 10 Dec 2000 19:11:20 GMT

Content-Location: http://www.joes- -hardware. com/gettysburg txt

Content-Type: multipart/x-byteranges; boundary~--[abcdefghljklmnopqrstuvwxyz]-~-
Last- Modlfled Sat, 09 Dec 2000 00:38:47 GMT

-~[abcdefghljklmnopqrstuvwxyz]--

. Content-Type: text/plain

Content-Range: bytes 0-174/1441

Fourscore-and seven years ago our fathers brough forth on this continent

a new nation, .conceived in liberty and dedicated to-the prop051t10n that
all men are created equal.

_--[abcdefghijkImnopqrstuvwxyz]--

Content-Type: text/plain
Content-Range: bytes 552-761/1441

350

| Chapter 15: Entities and Encodings

- But in a 1arger sense, we can not dedlcate, we can not consecrate,'
we. can not -hallow this ground. The brave men, living and dead who -
struggled here. have consecrated it far above our poox power to addp',
or detract. '

v»--[abcdefghljklmnopqrstuvwxyz]--
Content-Type: text/plain. '
_Content Range bytes 1344- 1441/1441

_and that government of the people, by the people, for the people shall -
not perish from the earth

[abcdefghljklmnopqrstuvwxyz]-- R

Range requests are dlscussed in more detail later in thlS chapter

Content Encodmg

HTTP applications sometlmes want to encode content before sendmg it. For exam-
ple, a server might compress a large HTML document before sending it to-a client
that is connected over a slow connection, to help lessen the time it takes to transmit
the entity. A server might scramble or encrypt the contents in a way that prevents
unauthorized third parties. from v1ew1ng the contents of the document

These types of encodings are applied to the content at the sender. Once the content
is content-encoded, the encoded data is sent to the receiver in the entity body as
usual.

The Content—Encodmg Process

The content—encodmg process is:

1. A web server generates an original response message w1th or1g1na1 Content—
Type and Content-Length headers. - :

2. A content-encoding server (perhaps the origin server or a downstream proxy)
creates an encoded message. The encoded message has the same Content-Type
but (if, for example, the body is compressed) a different Content—Length The
content-encoding server adds a Content-Encoding header to the encoded mes-
sage, so that a recelvmg application can decode it. - '

3. A receiving program gets the encoded message, decodes it, and obtams the
original. :

Figure 15-3 sketches a conrent;enc0ding example.

Here, an HTML page is encoded by a gzip content—encoding_function, to produce a
smaller, compressed body. The compressed body is sent across the network, flagged

ContentEncoding | 351

Originalcontent - Content-encoded content - - FOngmaIcontent
Content-type: text/html. - - Content-type: ‘text/html = - Content-typer text/html;

Content-length: 12480 Content-length: 3907 - . Content-length: 12480 "
Content -encoding: gzip =

- [oroot0]
© oo

0

-~ Gzip content
decoder

" Gzip content
encoder

Fzgure 15-3. Content encodzng exampl

with the g21p encodmg The receiving client decompresses the entlty using the g21p
'decoder

This. response smppet shows another example of an encoded response (a com-
pressed image): : :

HTTP/1.1 200 0K .

Date: Fri, 05.Nov 1999 22:35:15 GMT

Server:’ Apache/1.2.4

Content-Length: 6096

Content-Type:- image/gif

Content-Encoding: gzip

[...]1 ' . . .
Note that the Content-Type header can and should still be present in the message. It
describes the original format of the entity—information that may be necessary for
displaying the entity once it has been decoded. Remember that the Content- Length‘ '

header now represents the length of the encoded body

Content -Encoding Types

HTTP defines a few standard content-encoding types and allows for addlnonal .
encodings to be added as extension encodings. Encodings are standardized through
the IANA, which assigns a unique token to each content-encoding algorithm. The
Content-Encoding header uses these standardized token values to describe the algo-

rithm used in the encoding. B

Some of the common content-encoding tokens are listed in Table 15-2.

352 | Chapter 15: Entities and Encodings

T ablé 15-2. Coﬁtent-—eﬂcoding_ toléene '

gzip _ Indicates that the GNU zip encodmg was applied to the entity.?

compress o - Indicates that the Unix file compression program has been run on the entnty

deflate Indlcates that the entity has been compressed into the zlib format.b .
identity R _ " Indicates thatno encodmg has been performed on the entlty When a Content Encodmg header

_isnot present this can be assumed.

a RFC 1952 describes the gzup encodmg
b RFCs 1950 and 1951 descnbe the zlib format and deflate compression.

The gzip, compress and deﬂate encodmgs are lossless compresswn algonthms used
to reduce the size of transmitted messages without loss of information. Of these, gzip
typ1cally is the most effecnve compre551on algorithm and is the most deely used.

Accept—Encodmg Headers

Of course, we don’t want servers encodmg content in ways that the cl1ent can’t dec1-
pher. To prevent servers from using encodings that the client doesn’t support, the
client passes. along a list of supported content encodmgs in- the Accept-Encoding
request header. If the HTTP request does not contain an Accept-Encoding header, a
server can assume that the chent W111 accept any encoding (equlvalent to' passing.
Accept-Encoding:)

Figure 15-4 shows an example of Accept—Encodmg in an HTTP transactlon., -

" Request message

GET /logo.gif HTTP/1. 1
Acce?t encoding: gzip .

e

HTTP/1.1 200 OK

Content-type: image/gif
b . Content -encoding: gzip
dguzp a2 g
i Response message v

...011010011...

OREILLY ¥ -

A

...011010011. .

The server compresses the image with gzip to transgor’t asmaller file over the thin
network connection between itself and the client. This saves network bandwidth

and reduces the amount of time that the dlient waits for the transfer.Though,the -
client will have to spend time decompressing the image once the image is served,

Figure 15-4. Content encoding _

Content Encoding | 353

“The Accept- Encodmg field o contarns a comma—separated hst of supported encodmgs

Here are a few examples o :

‘ Accept Encodlng: compress, g21p
Accept-Encoding: - .

_ Accept-Encoding: * . Co .
Accept-Encoding: compress;g=0.5, gzip;g=1.0 ,

_ Accept Encodlng gzip;g=1.0,. 1dent1ty, q=0.5, *;q=0 N »
Clients can indicate preferred encodings by attaching Q (quahty} values as parame— ‘
ters to each encoding. Q values can range from 0.0, indicating that the client does
not want the associated encoding, to 1.0, indicating the preferred. encodrng The
token “*” means “anything else.” The process of selecting which content encoding to
apply is part of a more general process of deciding which content to send back to a
client in a response. This process and the Content-Encoding and Accept—Encodmg
headers are discussed in more detail in Chapter 17. ' :

The identity encodlng token can be present only in the Accept—Encodmg header and is
used by chents to specify relative preference over other content—encodmg algorithms.

Transfer Encodmg and Chunked Encodlng

The previous section dlscussed content encodlngs—-—rever51ble transformanons apphed
to the body of the message. Content encodings are tightly associated with the details
of the particular content format. For example, you might compress a text file with
gzip, but not a JPEG file, because JPEGs don’t compress well with gzip.

This section discusses transfer encodings. Transfer encodrngs also are reversible
transformations performed on the entity body, but they are applied for architectural
reasons and are independent of the format of the content. You apply a transfer
encoding to a message to change the way message data is transferred across the net-
work (Figure 15-5).

Safe Transport

- Historically, transfer encodings exist in other protocols to provide “safe transport” of
messages across a network. The concept of safe transport has a different focus for
HTTP, where the transport infrastructure is standardized and more forgiving. In
HTTP, there are only a few reasons why transporting message | bodres can cause trou-
ble. Two of these are:

Unlenown size
Some gateway applications and content encoders are unable to determine the
final size of a message body without generating the content first. Often, these
- servers would like to start sending the data before the size is known. Because

354 | Chapter 15: Entities and Encodings

O

. Content-encoded response

Normal header block

Normalenttty v '
A Content—encoded message just encodes the entity
' ' o (just encoded) . section of the message. With fransfer-encoded
s e e e - - messages the encodingis a function of the entire
' ' » ' message,changmg the structure ofthe message itself.

Transfer-encoded response .

Figure 15 5. Content encodzngs versus' trcmsfer encodzngs

HTTP. requtres the Content Length header to precede the data some servers
apply a transfer encoding to send the data Wlth a spec1al termmatmg footer that
indicates the end of data : : :

Security
“You m1ght use a transfer encodmg to scramble the message content before send-
ing it across a shared transport network. However, because of the popularlty of
' .transport layer security schemes like SSL, transfer- encodmg security isn’t very
common.- : : :

Transfer-Encoding Headers - |
There are just two defined headers to describe and control transfer encodmg
Transfer~Encodmg " |

‘Tells the receiver what encodmg has been performed on the message in order for
it to be safely transported

TE
Used in the request header to tell the server what extension transfer encodmgs
are okay to uset

* You could close the connectton as a “poor man’s’ end—of-rnessage 51gnal but this breaks persistent
" connections. »

T The meaning of the TE header would be more intuitive if it were called the Accept-Transfer-Encodmg header.

Transfer Encoding and_(hunked Encoding | 355

- In the followmg example the request uses the TE header to tell the. server that it
- accepts the chunked encoding (which it must if it's an HTTP 1.1 apphcatlon) andis -
' w1lllng to accept tra1lers on the end of chunk-encoded messages ’ S
GET /new_products.html HTTP/1.1 ' '
. Host: www.joes-hardware.com"

User-Agent: Mozilla/4.61 [en] (NlnNT 1)
TE: trallers, chunked

~The response 1ncludes a Transfer~Encodmg header to tell the receiver that the mes-
sage has been transfer—encoded with the chunked encodmg '
HTTP/1.1 200 OK

Transfer Encodlng chunked
Server: Apache/3.0

After this initial header, the structure of the message will change.

Al transfer4encodi'ng values are case-insensitive. HTTP/1.1 uses transfer~enCOding |
values in the TE header field and in the Transfer-Encoding header field. The latest .
HTTP specrﬁcatlon defines only one transfer encoding, chunked encodmg o

The TE header, like the Accept Encodmg header can have Q values to descnbe pre-
ferred forms of transfer encoding. The HTTP/1.1 specification, however forbids the
association of a Q value of 0.0 to chunked encoding. - '

Future extensions to HTTP may drive the need for additional transfer encodings: If
and when this happens, the chunked transfer encoding should always be applied on
top of the extension transfer encodings. This guarantees that the data will get

neled” through HTTP/1.1 appllcauons that understand chunked encodmg but not
* other transfer encodlngs

Chunked Encoding‘ |

Chunked encoding breaks messages into chunks of known size. Each chunk is sent
one after another, ehmmatmg the need for the size of the full message to be known
~ before it is sent. : :

Note that chunkedvencoding is a form of transfer errcoding: and therefdre is an
attribute of the message, not the body. Multipart encoding, described earlier in this
chapter, is an attribute of the body and is completely separate from chunked encoding.

Chunking and persistent connections

When the connection between the client and server is not persistent, clients do not

“need to know the size of the body they are reading—they expect to read the body

until the server closes the connection.

356 | Chapter15: Entities and Encodings

Wlth pers1stent connectlons the- size of the body must be. known and sent in- the‘ k
Content-Length header before: the body can be written. When content is dynamla :
cally created at a- server, it may not be poss1b1e to know the 1ength of the body before :
sending it. : : BT

Chunked encodlng provides a solution for this d1lemma by allowmg servers to send,
the body in chunks, spec1fy1ng only the size of each chunk. As the body is dynaml-'
cally generated, a server can buffer up a portion of it, send its size and the chunk,
and then repeat the process until the full body has been sent. The server can 51gnal '
the end of the body with a chunk of size O and still keep the conneeuon open and :
ready for the next response. x : :

Chunked encodmg is fairly simple. Figure 15-6 shows the basic anatomy of a chunked ‘
message. It begins with an initial HTTP response header block, followed by a stream
of chunks. Each chunk contains a length value and the data for that chunk. The length
value is in- hexadeamal form and is separated from the chunk data with-a CRLF. The
size of the chunk data is measured in bytes and includes neither the CRLF sequence
between the length value and the data nor the CRLF sequence at the end of the chunk.
The last chunk is spec1a1———1t has a length of zero, which s1gn1f1es end of body

o _ " HTTP/1.1 200 OK<CR><LF> _—
Response " | Content-type: text/p1a1n<CR><LF> .
stream " | Transfer-encoding: chunked<CR><LF>
| Trailer: Content- MD5<CR><LF>
<CR><LF> -

Hexadeamal chunk size (27 hex=> 39 characters)

27<CR><LF>
| We hold these truths to be self ev1dent<CR><LF>

26<CR><LF>
, that all men are created equal that<CR><LF> _

84<CR><LF> :

they are endowed by their Creator w1th certain
unalienable Rights, that among these are Life, -

Liberty and the pursuit of Happiness.<CR><LF>

O<CR><LF>

“| Content-MD5 : gjqeisap26t jisgi3pautigris3<CR><LF>

o *Optional-only present if there is a Trailer header in the message headers.

Figure 15-6. Anatomy of a chunked message

- Transfer Encoding and,_Chunk_e:d Encoding | 357

A client also may send chunked data to a server. Because the client doés not know
‘beforehand whether the server accepts chunked encoding (servers do-not send TE
headers in responses to clients), it must be prepared for the server to re]ect the
chunked request w1th a 411 Length Required response. :

Trallers in chunked messages

A trader can be added to-a chunked message 1f the chent s TE header indicates that it
accepts trailers, or if the trailer is added by the server that created- the orlgmal
response and the contents of the traller are. opt10r1al metadata that it is not necessary
for the client to understand and use (it is okay for the client to 1gnore and discard the
contents of the trailer).” : : :

The trailer can-contain addmonal header flelds whose values mlght not have been
known at the start of the message (e.g., because the contents of the body had to be
generated first). An example of a header that can be sent in the trailer is the Content-
'MDS5 header—it would be difficult to calculate the MD5 of a document before the
document has been generated. Figure 15-6 illustrates the use of trailers. The message
headers contain a Trailer header listing the headers that will follow the chunked mes-
sage. The last chunk is followed by the headers listed in the Trailer header. '

Any of the HTTP headers can be sent as trailers, except for the Transfer-Encodmg,
Tra11er and Content-Length headers. - '

Combining Content and Transfer Encodings -

Content encoding and transfer encoding can be used simultaneously. For example

Figure 15-7 illustrates how a sender can compress an HTML file using a content

encodlng and send the data chunked using a transfer ‘encoding. The process to
“reconstruct” the body is reversed on the receiver.

Transfer—Encoding Rules |
When a transfer encoding is applied to a message body, a few rules .must be followed:
* The set of transfer encodings must include “chunked.” The only exceptlon is if
the message is terminated by closmg the connection.

"+ When the chunked transfer encoding is used, it is requ1red to be the last transfer
encoding applied to the message body.
* The chunked transfer encoding must not be applied to a message body more
than once.

* The Trader header was added after the initial chunked encoding was added to drafts of the HTTP/1.1 spec-
ification, so some applications may not understand it (or understand trailers) even if they claim to be
HTTP/1.1- comphant v :

358 ! Chapter15; Entities and Encodings .

Content-type: text/ html

Content-type: text/html - [oBF2578ERa) ’ - |oBr2s78EMdA |
Content- encodlng gzip _ 2670CD) - 2670CD

Trabsfer encoding
. &hunkhuv

Content type text/html
Content-encoding: gzip
Transfer-encoding: chunked

Fzgure 15-7. Combznzng content encodzng wzth transfer encodzng

These rules allow the re01p1ent to determme the transfer length of the message

Transfer-encodings are a relatwely new feature of HTTP, introduced in Version 1.1.
Servers that implement transfer encodmgs need to take special care not to send
transfer-encoded messages to non-HTTP/1.1 applications. Likewise, if a server
receives a transfer-encoded message that it can not understand, it should respond
with the 501 Unlmplemented status code. However, all HTTP/ 1 1 apphcatlons must
at least support chunked encodmg

Time- Varymg Instances

Web objects are not static. The same URL can, over time, pomt to dxfferent versions of
an object. Take the CNN home page as an example—going to “http://www.cnn.com”
several times in a day is likely to result in a slightly different page being returned each
time. _

Think of the CNN home page as being -an object and its different versions as being
different instances of the object (see Figure 15-8). The client in the figure requests the
same resource (URL) multiple times, but it gets different instances of the resource as
it changes over time. At time (a) and (b) it has the same instance; at time (c) it has a
different instance.

The HTTP protocol specifies operatlons for a class of requests and responses, called
instance manipulations, that operate on instances of an object. The two main
instance-manipulation methods are range requests and delta encoding. Both of these
methods require clients to be able to identify the exact copy of the resource that they
have (if any) and request new instances conditionally. These mechamsms are dis-
cussed later in this chapter.

Time-Varying Instances | 359

R 17 -v iR A2
430pm. ooM2tam 9:.07a.m. 1A8 p.m.

 Version? - Version2 C . lesion3 - Versiond - www.cnm.com

Time

Figure 15-8. Instances afe '“Snapshots ? of a resource in time

| -Valldators and Freshness

Look back at Flgure 15 8. The client does not 1n1t1ally have a copy of the resource, so
it sends a request to the server asking for it. The server responds with Version 1 of
the resource The client can now cache this copy, but for how long?

Once the document has explred” at the client (i.e., once the client can no longer

consider its copy a valid copy), it must request a fresh copy from the server. If the

~ document has not changed at the server, however, the client does not need to receive
it again—it can just continue to use its. cached copy. ' =

 This special request, called a conditional request, requlres that the client tell the server
which version it currently has, using a validator, and ask for a copy to be sent only if
its current copy is no longer valid. Let’s look at the three key concepts—freshness
 validators, and condltlonals——m more detail. :

g Freshness

Servers are- expected to give clients information about how long clients can cache
their content and consider it fresh. Servers can prov1de thls 1nformat10n using one of
two headers: Expires and Cache-Control. ' :

The Explres header specifies the . exact date and time when the document
“expires”—when it can no longer be considered fresh. The syntax for the Expires -
header is: '

Expires: Sun Mar 18 23 59:59 GMT 2001

For a client and server to use the Expires header correctly, their clocks must be syn—
chronized. This is not always easy, because neither may run a clock synchronization
protocol such as the Network Time Protocol (NTP). A mechanism that defines expi-
ration using relative time is more useful. The Cache-Control header can be used to
specify the maximum age for a document in seconds—the total amount of time since
the document left the server. Age is not dependent on clock synchromzatlon and '
 therefore is l1kely to yield more accurate results.

360 | »ChapterlSi_ Entities and Encodings

- The Cache- Control header actually is very powerful. It can be used by both servers:
and clients to describe freshness using more directives than just specifying an age or
expiration time. Table 15-3 lists some of the directives that can accompany the
Cache-Control header . . g o

Table vl 5 -3. Ca_che-.Cdnt_rol header directives

no-cache .- Request - Do not return a cached copy of the document wrthout fi rst revahdatmg it with the
- server. : o
no-store - . Request . Do not return a cached copy of the document Do not store the response from the
: - server, :
. max-age © Request - The document i in the cache must not be olderthan the specrﬂed age.
max-stale Request The document may be stale based on the servet-specified exprratron mformatron, '
' I . butit must not have been expired for longer than the value in this directive. -
minfresh -~ Request -~ Thedocument's age mustnot be more than its age plus the specrﬂed amount.In
. - - ~otherwords, the response must be fresh for at least the specrf‘ ed amount of trme
no-transform ~ Request . The document must not be transformed before being sent. o
only-if-cached ~ Request ~ Send the document only if it is in the cache, w1thout contactmg the ongm server
pubic - Response Response may be cached by any cache. ' o ‘
private ' o Response B Response may be cached such that it can be accessed onIy by a smgle cllent
no-cache: " Responise If the directive is accompamed bya fistof header fi elds, the content may be

cached and served to clients, but the listed header fields must first be removed. If
no header fields are specified, the cachied copy must not be served wrthout revalr-- ,

‘ dation with the server.
no-store - Response Response must not be cached. .
no-transform - - Response Response must not be modn‘" ed in any way /before belng served
must-revalidate Response - ’ Response must be revahdated wrth the server before bemg served
proxy-revalidate Response . Shared caches must revahdate the response with the ongrn server before servrng
S This directive can be rgnored by private caches. : »
max-age - ~ Response Specifies the maximum Iength of tlme the document can be cached and still con— :
o } sidered fresh. _ . . o
s-max-age Response Specifies the maximum age of the document as rtapplres to shared caches (over- .
riding the max-age directive, if one is present) This drrectrve can be |gnored by:
pnvate caches.

Caching and freshness were discussed in more detail in Chapter 7. |

Conditionals and Validators

When a cache’s copy is requested, and it is no longer fresh, the cache needs to make
sure it has a fresh copy. The cache can fetch the current.copy from the origin server,
but in many cases, the document on the server is still the same as the stale copy in
the cache. We saw this in Figure 15-8b; the cached copy may have expired, but the

: '.Va_lida'torsand;FreshneSs | 361

_server content still is the same as-the cache content. If a cache always fetches a -
server’s document, even if it’s the same as the expired cache copy, the cache wastesj
network bandwidth, places. unnecessary load on the cache and server, and slows

- - everything down.. : : :

To fix this, HTTP provides a way for clientsto request a copy only zf the resource has
changed, using special requests called conditional requests. Conditional requests are
normal HTTP request messages, but they are performed only if a particular condi-
tion is true. For example, a cache might send the following conditional GET message
to a server, asking it to send the file /announce.html only if the file has been modified
since June 29, 2002 (the date the cached document was last changed by the author)

GET /announce., html HTTP/1 0
If-Modified- Slnce ‘Sat; 29 Jun 2002, 14:30: 00 GMT _
Conditional requests are 1mplemented by conditional headers that start with “If-”. In
the example above, the conditional header is If-Modified-Since. A conditional header
allows a method to execute only if the condition is true. If the condmon is not true,
- the serversends an HTTP error code back. -

Each conditional works on a particular validator. A validator is a particular attribute -
of the document instance that is tested. Conceptually, you can think of the validator -
like the serial number, version number, or last change date of a document. A wise cli-
ent in Figure 15-8b would send a conditional validation request to the server saying,
“send me.the resource only if it is no longer Version 1; I have Version 1.” We dis-
cussed conditional cache revalidation in Chapter 7, but we’ll study the detaﬂs of
entity validators more carefully in thlS chapter ' L

The If-Modified-Since conditional header tests the last-modified date of a document
instance, so we say that the last-modified date is the validator. The If-None-Match
conditional header tests the ETag value of a document, which is a special keyword or
version-identifying tag associated with the entity. Last-Modified and ETag are the
two primary validators used by HTTP. Table 15-4 lists four of the HTTP headers
used for conditional requests. Next to each condmonal header is the type of valida-
tor used with the header. ‘

Table 15-4. Condi‘tzv'.onal request types

I-Modified-Since Last-Modified Send a copy of the resource if the version that was last modified at the time in your
previous Last-Modified response header is no longer the latest one.

If-Unmodified-Since Last-Modified ~ Send a copy of the resource only if it is the same as the version that was last modi-
fied at the time in your previous Last-Modified response header,

) If-Match - Hag Send a copy of the resource if its entity tag is the same as that of the one in your
: o previous ETag response header,

If-None-Match ETag Send a copy of the resource if its entity tag is different from that of the one in your '
' a previous ETag response header, .

362 | Chapter15: Entitiesand Encodings

HTTP groups vahdators into two classes weak valzdators and strong validators.
Weak validators may not. always uniquely identify an instance of a resource; strong -
validators must. An example of a weak validator is the size of the object in bytes. The
resource content might change even though the size remains the same, so a hypothet--
ical byte-count validator only weakly indicates a change. A cryptographlc checksum
of the contents of the resource (such as MD3), however is a, strong vahdator it
changes when the document changes : '

The 1ast—mod1f1ed time is consuiered a-weak vahdator because although it spec1f1es
the time at which the resource was last modified, it specifies that time to an accuracy
of at most one second. Because a resource can change multlple times in a second,
and because servers can serve thousands of requests per second, the last- modified
date might not always reflect changes. The ETag header is considered a strong vali-
dator, because the server can place a distinct value in the ETag header every time a
value changes. Version numbers and digest checksums are good candidates for the
ETag header, but they can contain any arbitrary text. ETag headers are flexible; they
take arbitrary text values (“tags”), and can be used to dev1se a Varlety of chent and
server validation strategles : - :

~ Clients and servers may sometimes Want to adopt a looser version of entlty—tag vali-
dation. For example a server may want to make cosmetic changes to a large, popu-
lar cached document without trlggerlng a mass transfer when caches revalidate. In
this case, the server might advertise a “weak” entity tag by prefixing the tag with
“W/”. A weak entity tag should change only when the associated entity changes in a
semantically significant way. A strong entity tag. must change Whenever the associ-
ated entity value changes in any way. '

The followmg example shows how a client rmght revahdate with a server usmg a
weak entity tag. The server would return a body only if the content changed in a
meaningful way from Version 4.0 of the document:

GET /announce.html HTTP/1.1

If-None-Match: W/"v4. 0" _
In summary, when clients access the same resource more than once, they first need
to determine whether their current copy still is fresh. If it is not, they must get the lat-
est version from the server. To avoid receiving an identical copy in the event that the
resource has not changed, clients can send conditional requests to the server, specify-
ing validators that uniquely identify their current copies. Servers will then send a
copy of the resource only if it is different from the client’s copy. For more details on
cache revalidation, please refer back to “Cache Processing Steps” in Chapter 7.

Range Réquésts- |

We now understand how a client can ask a server to send it a resource only if the cli-
ent’s copy of the resource is no longer valid. HTTP goes further: it allows chents to
actually request)ust part or a range of a document.

Range Requests | 363

* Imagine if you were three- fourths of the way through downloadmg the latest hot soft—* :
‘ware across-a slow modem link, and a network glitch interrupted your connection.
- You would have been waiting for a while for the download to complete, and now you"
Would have to start all. over agaln hoping the same- thing does not happen again.

With 1 range requests, an HTTP client can resume downloadlng an entity by askmg
for the range or part of the entity it failed to get (provided that the object did'not
- change at the origin server between the time.the chent first requested it and its subse-
quent range request). For example : ' ' ’
' GET /bigfile.html HTTP/1.1
Host: www.joes-hardware.com .

Range bytes=4000- - - o '
User Agent M02111a/4 61 [en] (WinNT; I)

In thrs example the client is requestrng the remamder of the document after the first

© 4,000 bytes (the end bytes do not have to be specified, because the size of the docu-

" ment may not be known to the requestor). Range requests of this form can be used for
a failed request where the clienit received the first 4,000 bytes before the failure. The

" Rarige header also can be used to request multiple ranges (the ranges can be specified

in any order and may overlap)—for example, imagine a client connecting to multiple

servers simultaneously, requesting different ranges of the same document from differ- -

ent servers in order to speed up overall download time for the document. In the case

- where clients request multiple ranges in a single request, responses come back as a -

single entity, with a multipart body and a Content-Type: multipart/byteranges header.

Not all servers accept range requests, but many do. Servers can advertise to clients
that they accept ranges by including the header Accept Ranges in their responses.
The value of thls header is the unit of measure, usually bytes For example '
~ HTTP/1.1 200 OK '
Date: Fri, 05 Nov 1999.22:35: 15 GMT

Server: Apache/1.2.4
Accept-Ranges: bytes

Figure 15-9 shows an exanﬁple of a set of HTTP transactions involving ranges. .

Range headers are used extensively by popular peer-to-peer file-sharing client software
to download different parts of multimedia files simultaneously, from different peers.

Note that range requests are a class of instance manipulations, because, they are
exchanges between a client and a server for a particular instance of an object. That is,
“a client’s range request makes sense only if the client and server have the same ver-

sion of a document.]

* The HTTP/1.1 spec1frcat10n defines only the bytes token, but server and client implementors could come up
- .with thelr OWn units to measure Or chop up an entity.

364 | Chapter15: Entitiesand Encodings

. Requestmessage .
] ([]ET fblgflle html HTTP/1 1]

-~
-
~
-~
-~
~
.......
- .
~ -
-
-
-

Response message

HTTP/1.1 206 Partial Content
‘Content-type: text/html
Content-length: 65537

] ?cce?t ranges: bytes

| www,joes-hardware.com -

110001
111011

010111
1000101 RangefeqUC’Sfmessage

' Cemtrecavedony. | GET /bigfile.htil HTTP.1.1 |
thefirst 20224 bytes | Range: bytes=20224-
oftheresource. | Le-vd 5

* Range response message

»The dients ongmal request was Eglg éﬁthgggeOKby’ces =20224-

interrupted, but a second request :
for the part of the message that Accept-ranges: bytes

" was not received allows the “11...]
dlient to resitme from the poinf Teed
ofthe interrup_tion

' wwwijoes-hardware.com

Fzgure 15-9. Entzty range request example

Delta Encodmg

We h‘ave_described different versions of a web page as different instances of a page. If
~a client has an expired copy of a page, it requests the latest instance of the page. If
- the server has a newer instance of the page, it will send it to the client, and it will .
- send the full new instance of the page even if only a small pomon of the page actu— |
ally has changed.

Rather than sending it the entire new page, the client would get the page faster if the

server sent just the changes to the client’s copy of the page (provided. that the num-

ber of changes is small). Delta encoding is an extension to the HTTP protocol that

optimizes transfers by communicating changes instead of entire objects. Delta encod-

ing is a type of instance manipulation, because it relies on clients and servers

exchanging information about partlcular instances of an object. RFC 3229 descrxbes
- delta encoding.

Figure 15-10 ﬂlustrates more clearly the mechanism of requesting, generating, receiv-
-ing, and applymg a delta-encoded document. The client has to tell the server which
version of the page it has, that it is willing to accept a delta from the latest version of

page and Wthh algorithms it knows for applying those deltas to its current version. |

Deltakncoding | 365

‘ The server has to check if it has the client’s. version of the page and how to compute
deltas from the latest version and the client’s version (there are several algorithms for
computing the difference between two objects). It then has to compute the delta, -
send it to the client, let the client know that it’s sending a delta, and specify the new
identifier for the latest version of the page (because this is the version that the client
“will end up with after it apphes the delta to.its old version).

Request message :

1 GET /bigfile.html HTTP/1.1
Date: Mon, 01 Feb 2001 12:03:00 GMT

Page on Monday
Feb 1,2001 at-12: 03p m.

.
LR

" Hello,welcome to

Response message . . | _;.-— Joe's Hardware store,

HTTP/2.1 200 OK R A Toda%sspeaahson
(lient recewesthls response and -} ’ . " Server ammers
cachesit. The next day, the client - | Content-type:. text/ ht"ﬂ : :

triestoaccessthesame pageand | Expires: Mon, 01 Feb 2001 12: 00 00 GMT | .
seesits cached copy has expired, g1 Etag adeEfgh109876AF :
s0 it sends a request to the Server
Lequestmhg ahe latest c?lpy hSmce it
as a cached copy, it tells the server _
which copy ithas and indicates ~... Deltarequestmessage

: ltswﬂimgnesstoacceptadefta GET /bigfile.html HTTP.1.1 . o .

: , _ iflmonslgi‘éch abcde-th109876AF v Pageon Tiesday

Date: Tue, 02 Feb 2001 03:03:00 GHT gy Fe02, 2001 at3:03a.m

Hello, welcome to
Joe's Hardware store.

Delta Taday's special is on
: chisels.
15¢. :
chisels. w
Delta response message L o
. 2 4 = Delta génergtor
HTTP/1.1 226 IM Used : .
IM: diffe

(lient receives the deita and apphes J Eta§ zywxtuv123456BG

ittoits cached version of the =~ Delta-base: abcdefghi09876AF
page, generating the fatest version
of the page.The dlient also updates its
ETag to that of the new version of the page.

Dt pplier

Helfo, welcome to
“Joe's Hardware store,
- Today's specialis on -
© chisels,

Pigdre 15-10. Mechanics of delta-encoding

The client uses the unique identifier for its version of the page (sent by the server in
its previous response to the client in the ETag header) in an If-None-Match header.
This is the client’s way of telling the server, “if the latest version of the page you have

366 | Chapter 15: Entities and Encodings

does not have this same ETag,‘ send me the latest ver:sio"n of.the page.” Just the If-
None-Match header then, would cause the server to send the chent the full 1atest o
version of the page (if it was dtfferent from the client’s versmn) ' C p

The client can tell the server, however, that it is willing to accept a delta of the page
by also sendmg an A-IM header. A-IM is short for Accept-Instance- Man1pu1at1on
(“Oh, by the way, I do accept some forms of instance manipulation, so if you apply
one of those you will not have to send me the full document.”). In the A-IM header,
the client specifies the algorithms it knows how to apply in order to generate the lat-
est version of a page given an old version and a delta. The server sends back the fol-
lowing: a special response code (226 IM Used) telling the client that it is sending it
an instance manipulation of the requested object, not the full object itself; an IM
(short for Instance-Manipulation) header, which specifies the algorithm used to com-
pute the delta; the new ETag header; and. a Delta-Base header, which specifies the
ETag of the document used as the base for computing. the delta (1dea11y, the same as
the ETag in the client’s If-None-Match request') The headers used in delca encodlng
are summanzed in Table 15—5 ' . . :

Table 15-5. _Delta-encodzng.headers. .

ETag Unique identifier foreach instance of a document. Sent by the server in the response, used by clientsin sub-

sequent requests in If-Match and If-None-Match headers.

if-None-Match Request header sent by the dlient, asking the serverfor a document if and only rf the chent sversron of the .
: document s different from the server’s. :

MM Client request header indicating types ofi mstance mampulatlonsaccepted

IM ' - Server response header specrfymg the type of instance mampulatron apphed t0 the response This header rs_ A
' - sentwhen the response code is 226 IM Used. : .

Delta-Base -~ Server response header that specifies the ETag of the base document used for generatmg the delta (should
' be the same as the ETag in the client request’s If-None-Match header).

Instance Mampulatlons Delta Generators
and Delta Appliers

Clients can specify the types of ir 1nstance manipulation they accept using the A-IM
header. Servers specify the type of instance manipulation used in the IM header. Just
what are the types of instance manipulation that are accepted, and what do they do?
Table 15-6 lists some of the IANA registered types of instance manipulations.

Table 15-6. JANA regiétered types of instance manipulations

vediff Delta using the vediff algorithm
diffe ~ Deltausing the Unix diff -e command
gdiff - Delta using the gdiff algorithmb

- DeltaEncoding | 367

- Table 15-6. IANA_registefed types.of instance manipulations (continued)

gzip Compression using the gzip algorithm _

deflate Compression usirig the deflate algonthm o

»range © Usedi in a server response to indicate that the response is partial content asthe, result ofa range selectlon
, identity' o ~ Usedina client request’s A—IM header to |nd|cate that the clientis WIIlmg to acceptan |dent|ty mstance

manipulation

2 Internet draft draft korn-vcdiff-01 describes the VCdIff a!gonthm This specn’ catmn was approved by the IESG in early 2002 and .
- should be released in RFC form shortly. v ‘ .
b. http //www w3org/T R/NOTE-gd:ff- 1 9970907 html descnbes the GDIFF algorlthm

“delta generator at the server, as.in Flgure 15- 10, takes the base document and
the latest instance of the document and computes the delta between the two using
the algorithm specified by the client in the A-IM header. At the client side, a “delta
“applier” takes the delta and applies it to the base document to generate the 1atest |
~ instance of the document. For example, if the algorithm used to generate the deltais
the Unix diff -e command, the client can apply the delta using the functionality of the
Unix ed text editor, because diff -e <filel> <file2> generates the set of ed commands
that will convert <ﬁ el> into <file2>. ed is a very simple editor with a few supported .
‘commands. In the example in Figure 15-10, 5¢ says delete line 5 in the base docu-
ment, and chisels.<cr>. says add “chisels.”. That’s it. More complicated instructions -
can be generated for bigger changes. The Unix diff -e algorithm does a line-by-line
- comparison of files. This obviously is okay for text files but breaks down. for binary
files. The vcdiff algorithm is more powerful, working even for non-text files and gen-
erally producmg smaller deltas than diff -e. :

The delta encodlng spec1f1cat10n defines the format of the A IM and IM headers in
~ detail. Suffice it to say that multiple instance manipulations can be specified in these
headers (along with corresponding quality values). Documents can go through multi-
ple instance manipulations before being returned to clients, in order to maximize
~ compression. For example, deltas generated by the vediff algorithm may in turn be -
compressed using the gzip algorithm. The server response would then contain the
header IM: vcdiff; gzip. The client would first gunzip the content, then apply the
results of the delta to its base page in order to generate the final document. -

Delta éncoding can ‘reduce transfer times, but it can be tr1cky to implement. Imagine
a page that changes frequently and is accessed by many different people. A server
supporting delta encoding must keep all the different copies of that page as it
changes over time, in order to figure out what’s changed between any requesting cli-
ent’s copy and the latest copy. (If the document changes frequently, as different cli-
- ents request the document, they will get different instances of the document. When
“they make subsequent requests to the server, they will be requesting changes
~between their instance of the document and the latest instance of the document. To

be able to send them just the changes, the server must keep copies of all the previous

368 | Chapter15: Entitiesand Encodings

instances that the clients have.) Tn exchange for reduced latency in serving docu-

ments, servers need to increase disk space to keep old instances of documents o

around. The extra disk space necessary to do so may qurckly negate. the benefrts from_.
the smaller transfer amounts. - : :

For More Informatlon

For more 1nformatron on entmes and encodrngs see:

hitp: [hwww. zetf org/rfc/rf62616 txt :
The HTTP/1.1 specification, RFC 2616 is the pnmary reference for entlty body ‘
management and encodings. - .

http:/fwww.ietf. org/rfc/rfc3229 txt
RFC 3229, “Delta Encoding in HTTP,” describes how delta encodlng can be '
supported as an extension to HTTP/1.1. SR v

Introduiction to Data Compresszon
Khalid Sayood, Morgan Kaufmann Publishers. This book eXplalns some of the
compression algorithms supported by HTTP content encodmgs

http: Jhwww.ietf.org/rfc/rfcl 521 txt -
RFC 1521, “Multipurpose Internet Mail Extensmns Part. One Mechanrsms for '
Specifying and Describing the Format of Internet Message Bodles descrrbes the
format of MIME bodies. This reference material is useful because HTTP bor-
rows heavily from MIME. In particular, this document is designed to provide
facilities to include multiple objects in a single message, to represent body text in
character sets other than US-ASCII, to represent formatted multi-fonit text mes-
sages, and to represent nontextual material such as 1mages and audro fragments

hitp:/fwww.ietf. org/rfc/rfc2045 txt. : S
RFC 2045, “Mulnpurpose Internet Mall Extenswns Part One: Format of Inter-
net Message Bodies,” specifies the various headers used to describe the structure -
of MIME messages, many of which are similar or identical to HTTP. | B

http:/fwww.ietf.org/rfc/rfc1864.txt

RFC 1864, “The Content-MD5 Header Freld prov1des some hlstorrcal detarl
about the behavior and intended use of the Content-MDS5 header field in MIME
‘content as a message integrity check.
http:/fwww.ietf. org/rfc/rfc3230.txt
RFC 3230, “Instance Digests in HTTP,” describes i 1mprovements to HTTP entity-
: drgest handhng that fix weaknesses present in the Content-MDS5 formulatlon

" For More Information] 369

CHAPTER16 | R
- -Internatlonallzatlon

Every day, b1ll1ons of people write documents in hundreds of languages To live up
to the vision of a truly world-wide Web, HTTP needs to support the transport and

processing of 1nternat10nal documents, in many languages and alphabets

This chapter covers two primary 1nternat10nahzatlon issues for the Web: character
'~ set encodings and _language tags. HTTP applications use character set encodings to
request and display text in different alphabets, and they use language tags to describe
and restrict content to languages the user understands. We f1n1sh with a.brief chat
about multilingual URIs and dates

" This chapter:

. Explams how HTTP interacts with schemes and standards for multlhngual
alphabets ' :

* Gives a rapld overview of the termmology, technology, and standards to help
HTTP programmers do things right (readers familiar with character encodings
can skip this section) :

. Explams the standard naming system for languages, and how standard1zed lan-
guage tags describe and select content

* Qutlines rules and cautions for international URIs

. Brleﬂy dlscusses rules for dates and other 1nternat10nahzatlon issues

HTTP Support for International Content

HTTP messages can carry content in any language, just as it can carry images, mov-
ies, or any other kind of media. To HTTP, the entity body is just a box of bits.

To support international content, servers need to tell clients about the alphabet and
languages of each document, so the client can properly unpack the document bits
into characters and properly process and present the content to the user. :

370

Servers tell cl1ents about a - document’s alphabet and language w1th the HTTP
Content-Type charset parameter and Content-Language headers. These- headers
describe what’s in the entity body’s “box of bits,” how to convert. the contents into
the proper characters that can be displayed onscreen, and what spoken language the
words represent. : : :

At the same time, the client needs to tell the server Wthh languages the user under- ‘
stands and which alphabetic coding algorithms the browser has installed. The client
sends Accept-Charset and Accept-Language headers to tell the server which charac-
ter set encoding algorrthms and languages the client understands and: Wl’llCh of them
are preferred : - ' -

The followmg HTTP Accept headers mrght be sent by a French speaker Who prefers
his native language (but speaks some English in a pinch) and who uses a browser
that supports the is0-8859-1 West European charset encodlng and the UTF-8 Uni-
code charset encochng _ , ,
Accept Language fr, en; ;0=0.8.

~ Accept-Charset: iso-8859-1, utf 8 : . .
The parameter q-O 8”isa qualzty factor g1v1ng lower priority to Enghsh (0.8) than
to French (1.0 by default) ' . _ o

Character Sets and HTTP

'So, let’s jump nght into the most 1mportant (and. confusmg) aspects of web interna-
t10nal1zat10n——mternatlonal alphabenc scrlpts and their character set encochngs

Web character set standards cani be pretty confusing. Lots of people get frustrated
when they first try to write mternatlonal web software, because of complex and
inconsistent terminology, standards documents that you have to pay to read, and
unfamiliarity with foreign languages. This section and the next section should make
it easier for you to use character sets with- HTTP : ’

Charset Isa Character—to Bits Encodmg

The HTTP charset values tell you how to convert from entity content b1ts into char-
acters in a particular alphabet. Each charset tag names an algorrthm to translate bits
to characters (and vice versa). The charset tags are standardized in the MIME charac-
ter set registry, maintained by the IANA (see http://www.iana. org/asszgnments/
character—sets) Appendix H summarizes many of them.

The followmg Content-Type header tells the receiver that the content is an HTML -
file, and the charset parameter tells the receiver to use the is0-8859-6 Arabrc charac-
ter set decoding scheme to decode the content bits into characters:

Content-Type: text/html; charset=iso-8859-6 -

Character Setsand HTTP | N

~ The is6-8859-6 encoding scheme maps 8-bit values into both the Latin and Arabic -

- alphabets, including numerals, punctuation and- other symbols.” _For example, in
Figure 16-1, the highlighted bit pattern has code value 225, which (under is0-8859-6)
maps into the Arabic letter “FEH” (a sound like the English letter “F”). - o

150-8859-6 decoding

HTTP/1.1 200 OK.

Content-type: text/html; & 1;)%%51
| 18572 : '
Content-length: 1857 (decimal 29

Content-language: ar . -

00100101110100100101001001111101 [
01010010100111101001111 ;
01010101011100000101010

-

01011111001000010101111101010..,] Arabft/etterfeh'
Entity body ‘ o
Code bits in HTTP response o o (Character

Fzgure 16 1. The charset parameter tells the cltent how to go from bits to characters

Some character encodlngs (e.g., UTF-8 and iso- -2022-jp) are more comphcated vari-
able-length codes, where the number of bits per character varies. This type of coding
lets you use extra bits to support alphabets with large numbers of characters (such as
Chinese and Japanese), while using fewer bits to support standard Latin characters.

How Character Sets and Encodings Work

Let’s see what charaeter sets and eneddings really do.
“We want to convert from bits in a document into characters that we can display
onscreen. But because there are many different alphabets, and many different ways

of encodmg characters into bits (each with advantages and disadvantages), we need a
standard way to describe and apply the bits-to-character decodlng algorithm.

Bits- to-character conversions happen in two steps, as shown in Figure 16-2:

« In Figure 16-2a, bits from a document are converted into a character code that
identifies a particular numbered character in a particular coded character set. In
the example, the decoded character code is numbered 225. '

* In Figure 16-2b, the character code is used to select a partlcular element of the
‘coded character set. In is0-8859-6, the value 225 corresponds to “ARABIC LET-
TER FEH.” The algorithms used in Steps a and b. are determmed from the

- MIME charset tag.

A key goal of internationalized character systems is the isolation of the semantics
(letters) from the presentation (graphical presentation forms). HTTP concerns itself

* Unlike Chinese and Japanese, Arabic has only 28 characters. Eight bits provides 256 unique values, which
gives plenty of room for Latin characters, Arabic characters, and other useful symbols. o

372 | Chapter16: Interationalization

(is0-8859-6 coded
- character set)

- 3

165 - | LATIN CAPITALLETTER A -
66 | LATINCAPTALLETTERB
224" | ARABIC TATWEEL
1225 | ARABICLETTERFEH
1226 | ARABICLETTERQAF
227 | ARABICLETTERKAF °

.
e
.

Character code Unique character

B 225 |

‘ (ih'iso-8859-6 set)

- Data bit_s' _

'. . .inoooo , "ARABIC LETTER FEH

encadmgscheme " (Coded character set N : Fantsandpresentatmnlog/c A
(usrngrso~8859 6senc0drng) - N : S

Y (a) Decode usrng encodrngscheme (b)Frndcharacterusmgcoded A (c)FrnddrspIayshape usrngfontsand
~ v) characterset = __.7 - formattmgsoftware :

MIME charset 1ag descnbes the combmatron of character
encoding scheme and coded character set mapprng

Figure 16-2. H TTP “charset” combznes a character encoding scheme and a coded character set

only with transportrng the character data and the assocrated Ianguage and charset
labels. The presentation of the character shapes is handled by the user’s graphics dls-
play software (browser operatmg system fonts) as shown in Frgure 16-2c ' '

The Wrong Charset Gives the Wrong Characters

If the client uses the wrong charset parameter, the client wrll drsplay strange, bogus
‘characters. Let’s say a browser got the value 225 (binary 11100001) from the body:

o If the browser thinks the body is encoded with is0-8859- 1 Western European
character codes it will show a lowercase Latin “a” with acute accent:

e If the browser 1s using is0-8859-6 Arabic codes, it will show “FEH”:

*

« If the browser is usin'g i50-8859-7 Greek, it will show a small “Alpha”:

o

Character Setsand HTTP | 373

* If the browser is'uéi_ng iso-.8859_-‘8'Hebrew‘_codes', it will show “BET”:

Standardrzed MIME Charset Values

The combination of a particular character encodmg and a particular coded character
set is called a MIME charset. HTTP uses standardized MIME charset tags in the Con-
tent-Type and Accept-Charset headers. MIME charset values are registered with the
IANA." Table 16-1 lists a few MIME charset encoding schemes used by documents
and browsers. A more complete list is prov1ded in Appendlx H -

| Table 16-1. MIME charset encoding tags |

us-asci - " The famous character encoding standardized in 1968 as ANSI_X3.4-1968. It is also named ASCHI, but
: ' the “US" prefix is preferred because of several international variants in 150 646 that modify selected
characters. US-ASCIE maps 7-bit values into 128 characters The high bit isunused.

is0-8859-1 - iso- -8859-1isan 8-bit extension to ASCli to support Westem European Ianguages It uses the high bit
: - toinclude many West European characters, while Ieavmg the ASCHI codes (0—127) rntact Also called
rso -latin-1, ornicknamed “Latin1,” .

| iso-8859—2'. © Extends ASCl o include characters for Central and Eastem European !anguages, rncludmg Czech
o , . Polish, and Romanian. Also called iso-fatin-2. S
is0-8859-5 . Extends ASCH to include Cyrillic characters, for languages rncludmg Russran, Serbran, and Bulganan

i50-8859-6 . - Extends ASCH to include Arabic characters. Because the shapes of Arabic characters change depend-
: ~ ingontheir position in a word, Arabic requires a display engme thatanalyzes the context and gener-
- ates the correct shape for each character.

- 150-8859-7 - Extends ASCll to include modern Greek characters. Formerly known as ELOT-928 or ECMA 118:1986,
is0-8859-8 - .~ Extends ASCHl to inlude Hebrew and Yiddish characters, -

is0-8859-15 = Updates is0-8859-1, replacing some less-needed punctuation.and fraction symbols with forgotten
. - French and Finnish letters and replacing the international currency sign with the symbol for the new
- Euro currency. This character set is nicknamed “Latin0” and may one day replace 150-8859-1asthe
preferred default character set in Europe, :

is0-20224p is0~2022-jp is a widely used encoding for Japanese email and web content. It is a variable-length
' encoding scheme that supports ASCH characters with single bytes but uses three-character modal
escape sequences to shift into three different Japanese character sets. - '

euc-jp I euc-jp is an 150 2022~compliant variable- -length encoding that uses explicit bit patterns to iderrtify
’ each character, without requiring modes and escape sequences, It uses 1-byte, 2-byte, and 3-byte
sequences of characters to identify characters in multiple Japanese character sets.

Shift_JIS } This encoding was originally developed by Microsoft and sometimes is called SHS or MS Kanji. Itis a
- hit complicated, for reasons of historic compatibility, and it cannot map all characters, but it still is
common. '

* See htip:/fwww.iana.org/mumbers.him for the list of registered charset values.

374 | (Chapter16: Internationalization

Table 16-1. MIME charset encoding tags (continued)

 KOI8-Ris a popular 8-bit Internet character set encoding for Russian, defined in IETF RFC 1489. The
* initials are transliterations of the acronym for “Code for lnformatlon Exchange, 8 bit, Russian.”

ut-8 - UTF-8isacommon vanable -length character encoding scheme for representing UCS (Unicode),
' - Whichis the Universal Character Set of the world's characters. UTF-8 uses a variable-length encoding
.~ for character code values, representing each character by from one to-six bytes. One of the pnmary
features of UTF-8 is backward compatibility with ordmary 7-bit ASCH text.

windows;1252 *Microsoft call its coded character sets “code pages " Windows code page 1252 (a ka. ”CP1252” or
g ”WmLatmT”) is an extension of i50-8859-1. : '

Content- Type Charset Header and META Tags

Web servers send the client the MIME charset tag in the Content-Type header usmg
the charset parameter , -

Content- -Type: text/html charset =150- 2022 -ip

If no charset is exphc1tly listed, the receiver may try to 1nfer the character set from
the document contents. For HTML content, character sets might be found in
<META HTTP EQUIV—"Content -Type"> tags that describe the charset. '

Example 16-1 shows how HTML META tags set the charset to the Japanese encod~
ing iso-2022-jp. If the document is not HTML, or there is no META Content-Type
tag, software may attempt to infer the character encoding by scanning the actual text
for common patterns 1nd1cat1ve of languages and encodmgs

Example 16-1. Character encodzng can be speczfzed in HTML META tags

<HEAD>
<META HTTP- EOUIV-"Content -Type" CONTENT "text/html charset iso- 2022 Jp"
<META LANG="3p">
- <TITLE>A Japanese Document</TITLE>
</HEAD> '
<BODY>

If a client cannot infer a character encoding, it assumes iso-8859-1.

The Accept-Charset Header
There are thousands of defined character encoding and decoding methods, devel-

oped over the past several decades. Most clients do not support all the various char-
acter coding and mapping systems.

HTTP clients can tell servers precisely which character systems they support, using
the Accept-Charset request header. The Accept-Charset header value provides a list
of character encoding schemes that the client supports. For example, the following
HTTP request header indicates that a client accepts the Western European iso-8859-1

o _Character‘Se‘ts'and HTTP | 375

.character system as well as the UTF 8 varlable length Unicode compat1b1l1ty system
A server is free to return content in elther of these character encodlng schemes '

Accept- Charset 150-8859- 1 utf-8

Note that there is no Content Charset response header to match the Accept—Charset
request header. The response. character set is: «carried back from the server by the
" charset parameter of the Content-Type response header, to be compatible with

| MIME It’s too bad this i isn’t symmetnc but all the 1nformat10n strll is there.

| Multllmgual Character Encodlng Prlmer

The prevrous section descnbed how the HTTP. Accept Charset header and the
Content-Type charset parameter Carry character-encoding information from the cli-
ent and server. HTTP programmers who do a lot of work with international applica-
tions and content need to have a deeper understanding of multilingual character sys-
tems to understand technlcal specrhcatlons and properly unplement software.

[t isn’t easy to learn mult1hngual character systerns——the termmology is complex and
inconsistent, you often have to pay to read the standards documents, and you may
be unfamiliar with the other languages with which you’re working. This section is an
overview of character systems and standards. If you are already comfortable with
character encodings, or are not interested in this cletall feel free to jump ahead to
“Language Tags and HTTP.” :

Character Set Termlnology
Here are eight terms about electronic character systems that you should know

Character :

- An alphabetic letter, numeral, punctuation mark, ideogram (as il Chmese) sym-
bol, or other textual “atom” of writing. The Universal Character Set (UCS) ini-

- -tiative, known informally as Unicode,” has developed a standardized set of
textual names for many characters in many languages, which often are used to
conveniently and umquely name characters T :

Glyph
A stroke pattern or unrque graph1cal shape that describes a character. A charac-
ter may have mult1ple glyphs if it can be written differerit ways (see Figure 16- 3)

Coded character
- A unique number assrgned to a character so that we can work wrth it.

Coding space.
A range of i mtegers that we plan to use as character code: values

** Unicode is acommercial consortium based on UCS that drives commercial products.
T The names look like “LATIN CAPITAL LETTER 5” and “ARABIC LETTER QAF.” -

376 | - Chapter 16: Internationalization

' '.Code wzdth _ :
The number of bits in each (fixed- srze) character code

'Character repertozre . _
A partlcular workrng set of characters (a subset of all the characters in the world)

Coded character set - :
A set of coded characters that takes a character repertorre (a selectlon of charac—
ters from around. the world) and assigns each character a code from a coding
space. In other words, it maps numeric character codes toreal characters.‘

Character encoding scheme o : :
An algorithm to encode muimeric character codes into a sequence of content bits
(and to decode them back). Character encoding schemes can be used to reduce
the amount of data requrred to identify characters (compression), work around '
_ transmission restrictions, ‘and umfy overlappmg coded character sets.

Charset Is Poorly Named

Technically, the MIME charset tag (used in the Content-Type charset parameter and
the Accept-Charset header) doesn’t specify a character set at all. The MIME charset
value names a total algorlthm for mapping data bits to codes to unique characters. It
combines the two separate concepts of character encoding scheme and coded charac-
ter set (see Figure 16-2). :

This termrnology is sloppy and confusing, because there already are pubhshed stan-
dards for character encoding schemes and for coded character sets.” Here’s what the
HTTP/1.1 authors say about their use of termrnology (in RFC 2616) ’

The term character set” is used in this document to refer to a method . to convert a
‘sequence of octets into a sequence of ch_aracters Note: This use of the term “charac- -
ter set” is'more commonly referred to as'a character encoding,” However, since

~ HTTP and MIME share the same registry, it’s important that the terrrunology also be' -
shared.

The IETF also adopts nonstandard termlnology in RFC 2277

This document uses the term “charset” to mean a set of rules for mapping from a.
sequence of octets to a sequence of characters, such as the combination. of a coded .
* character set and a character encodlng scheme; this is also what is used as an idéntifier
~ in MIME “charset=" parameters, and registered in the JANA charset regrstry (Note
that this i is NOT a term used by other standards bod1es, such as ISO). .

So, be careful when reading standards documents so you know exactly what’s be1ng
defined. Now that we’ve got the terminology sorted out, let’s look a bit more closely
at characters glyphs character sets, and character encodmgs

* Worse, the MIME charset tag often co-opts the name of a particular coded character set or encodmg scheme.
For example i50-8859-1 is a coded character set (it assigns numetic codes to a set of 256 European characters),
but MIME uses the charset value “iso-8859-1” to mean an 8-bit identity encoding of the coded character set.
This i 1mprec1se termmology isn’t fatal, but when reading standards documents be clear on the assumptions.

5 Multil}iﬁgualCha_récterEncoding Primer | 377_

| Characters

Characters are the most ba51c building blocks of wrmng A character represents an
alphabetic letter, numeral, punctuation mark, 1deograrn (as in Chmese), mathematl—
cal symbol, or other basic unit of writing. : :

Characters are independent of font and style Flgure 16-3 shows several variants of
the same character, called “LATIN SMALL LETTER A.” A native reader of Western
European languages would immediately recognize all five of these shapes as the same
character even though the stroke patterns and styles are qurte dlfferent :

aaanw

Pzgure 16-3. One chamcter can have many dszerent written forms-

Many writing - systems also have dlfferent stroke shapes for a single character
depending on the position of the character in the word. For example, the four
strokes in Figure 16-4 all represent the character “ARABIC LETTER AIN.”
Figure 16-4a shows how “AIN” is written as a standalone charac_ter., Figure 16-4d
shows “AIN” at the beginning of a word, Figure 16-4c shows “AIN” in the middle of
a word, and Figure 16-4b shows “AIN” at the end of a word.

'(a)Stahdalqne (b)FinaI position (c)Media! position - (d) Initial postion

. { Th'ese differe'h't glyphs represent the same charactet, "ARABIC LETTER AIN")

Figure 16-4. Four'position'al forms of the single character “ARABIC LETTER AIN”

Glyphs, ngatures and Presentatlon Forms

Don’t confuse characters with glyphs Characters are the unique, abstract “atoms’ of
language. Glyphs are the particular ways you draw each character. Each character
has many different glyphs, depending on the artistic style and script.®

‘Also, don’t confuse characters with presentatlon forms. To make wrrtmg 1ook
nicer, many handwritten scripts and typefaces let you join adjacent characters into
pretty ligatures, in which the two characters smoothly connect. English-speaking

* The sound “AIN” is pronounced something like “ayine,” but toward the back of the throat.
t Note that Arabic words are written from right to left.

I Many people use the term “glyph” to mean the final rendered bitmap image, ‘but technically a glyph is the
inherent shape of a character, independent of font and minor artistic style. This drstmctron isn tvery easy to
apply, or useful for our purposes.

378 | Chapter16: Interationalization ~ -

-typesetters often]Oln “F” and “I” into an “FI hgature (see Figure 16- Sa—b) and
Arabic writers often]orn the ‘LAM? and “ALIF” characters. into an. attractive hga—
- ture (Figure 16-5¢~d). o : ,

(a) Without Fi ligature (b)WithFiligature - () Without LA ligatwre (d) With LA ligature -

ﬁcle ﬁ Ze - AL’F\JW | YMMMAUF |

Fzgure 16-5. ngatures are stylzstzc presentatzon forms of ad]acent characters, not new characters .

Here s the general rule if the meaning of the text changes whenyou replace one
glyph with another, the glyphs are different characters Othervwse they are the same
characters, w1th a dlfferent styhstlc presentation.” ' : :

Coded Character Sets

Coded character sets, defrned in RECs 2277 and 2130, map integers to characters
Coded character sets often are implemented as arrays,* 1ndexed by code number (see
Figure 16-6). The array elements are. characters o0

US-ASCll coded characterset

7 G s e B uaes st aey O
e O A N ! e] .{_ I S T
U I it as - St~y < el Tt iy iy e ey ke ’ .
tlelwistowl&i "t iy b+t -1, 17
Z o = = bt .
68| - Ta e PP ls e lalelo . Vi Telalsly “LATIN CAPTIAL LETTER D"
- A Gr v o 0 2 23 o i 0 CA TR S X .
S f@elalslcelpielrlelnjrlaiglLiminio . o
: S R e e B Il 0 S Son Bt i s T S
(ode 68 (0x44) coteflelelsTelulviwlxlPylz v)]
I s~ mam o e s oy e e T o .
. N a b 3 o [T g L i i k l m n 1o
42) fcey i 2 [is” o 3 {1 & &3 3 {T £3 ity K
Lptadr bs b ie LYy WX voix 1. 4. | SR % o

Figure 16-6. COded'c_haracter_sets can be thought of as arrays that map numeric codeé to characters

Let’s look at a few important coded character set standards, -inclnding the historic
US-ASCII character set, the is0-8859 extensions to ASCII, the Japanese JIsX 0201
charaeter set, and the Un1versa1 Character Set (Unlcode)

US-ASCII: The mother of all character sets

ASCII is the most famous coded character set, standardlzed back in 1968 as ANSI
standard X3.4 “American Standard Code for Information Interchange.” ASCII uses

* The division between semantics and presentation isn’t always clear. For ease of implementation, some pre-
sentation variants of the same characters have been assigned distinct characters, but the goal is to avoid this.

t The arrays can be multidimensional, so different bits of the code number index different axes of the array.

1 Figure 16-6 uses a grid to represent a coded character set.Each element of the grid contains a character
image. These images are symbolic. The presence of an image “D” is shorthand for the character “LATIN
CAPITAL LETTER D,” not for any partrcular graphical glyph. :

- MultilingualCh_aracterEncoding Primer | 379

only the code Values 0—127 SO only 7 bits are required to cover. the code space The
preferred name for ASCII is “US ASCII ” 10 dtstmgulsh it from mtemanonal variants
~of the 7-bit characterset. - - -

o HTTP messages (headers URIs etc.) use US—ASCII

: |so—8859

The is0-8859 character set standards are 8-bit supersets of US ASCII that use the‘

- high bit to add characters for international writing. The additional space provided by
the extra bit (128 extra codes) isn’t large enough to hold even all of the European

: characters (not to mention Asian characters) 50 iso- 8859 provrdes customrzed char-'
acter sets for drfferent regions: : 3 o '

| is0-8859-1 . . Western European Ianguages(eg Englrsh French)

©is0-8859-2 Centraland Eastern European languages (eg (zech, Polrsh)
 is0-8859-3 . . Southern European languages - _ :
i50-8859-4 Northern European languages (e.g., Latvian, Lithuanian, Greenlandrc)
i50-8859-5 . Cyrillic (e.g., Bulgarian, Russian, Serbian) ' :
50-8859-6 Arabic ' |
' i50-8859-7 Greek
is0-8859-8 Hebrew
is0-8859-9 Turkish
i50-8859-10 Nordic languages {e.g., Icelandic, Inuit)
i50-8859-15 -+ Modifi catron t0 is0-8859:1 that includes the new Euro currency character

is0-8859-1, also known as Lannl is the default character set for HTML. It can be
used to represent text in most Western European languages. There has been some-
discussion of replacing iso0-8859-1 w1th i50-8859-15 as the default HTTP coded char-
acter set, because it includes the new Euro currency symbol. However, because of _
the widespread adoption of is0-8859-1, it’s unlikely that a W1despread change to-iso- -
8859-15 will be adopted for quite some time.

JIS X 0201

JIS X 0201 is an extremely minimal character set that extends ASCII wrth]apanese’
half width katakana characters. The half-width katakana characters were originally
used in the Japanese telegraph system. JIS X 0201 is often called “JIS Roman 7 JIS is
“an acronym for “Japanese Industrial Standard.” '

JIsX 0208 and JISX 0212

" Japanese includes thousands of characters from several writing systems. Whlle it is’
possible to limp by (painfully) using the 63 basic phonetic katakana characters i in]IS
X 0201 a much more complete character set is required for practical use.

380 | Chapter16: Intemationalization

The JIS X 0208 character set. was. the first multi-byte japanese character set; it:)
defined 6,879 coded characters, most of which' are Chlnese-based kan]1 The JIS X :
0212 character set adds an addmonal 6,067 characters

ues . _ . v

The Umversal Character Set (UCS) is a worldwide standards effort to combrne all of '
the world’s characters into a single coded character set. UCS is defined by ISO
10646. Unicode is a commercial consortium that tracks the UCS standards. UCS has
coding space for mllhons of characters, although the basic set consists of only about
50, OOO characters . v -

Character Encodmg Schemes

Character encodmg schemes pack character code numbers into content bits and
unpack them back into character codes at the other end. (Figure 16-7). There are

three broad classes of character encodmg schemes

Fixed wzdth
Fixed-width encodmgs represent each coded character Wlth a flxed number of
bits. They are fast to process but can waste space ' '

Variable width (nonmodal)
Variable-width encodings use different numbers of brts for drfferent character .
code numbers. They can reduce the number of bits required-for common charac-
ters, and they retain compatibility with legacy 8-bit character sets whlle allowmg
the use of multiple bytes for international characters S

Varzable wzdth (modal) _ o
» Modal encodings use spec1al escape patterns to shift between drfferent modes :
For example, a modal encoding can be used to switch between multiple, over-
lapping character sets in the middle of text. Modal encodings are complicated to
process, but they can efficiently support complicated writing systems.

HTTP/1.1 200 OK -
Content-type: text/html; ch
| Content-length: 4198
Content-lanuage: jp

00100101210100100101001001111101 ,
01010010100111101001010011010010
Fl 01010101011100000101010001010011
01011111001000010101111101010. ..

- Entity body

Character decoder

- Character encoder

Figure 16-7. Chatacter encoding scheme encodes character codes into bits and back again

Let’s Jook at a few common encoding schemes.

Mult_ilingu_alCharacter_Encoding Primer | '38_1_‘

Cgbit | _ |
The 8-bit f1xed-w1dth 1dent1ty encodmg simply encodes each character code w1th its

corresponding 8- bit value. It supports only character sets with a code range of 256 -
.characters The 150-8859 farmly of. character sets uses the 8-bit 1dent1ty encodlng

'[urrs

UTF-8is a popular character encodmg scheme designed for ucs (UTF stands for
“UCS Transformation Format”). UTF-8 uses a nonmodal, varlable-length encoding
for the character code values, where the leading bits of the first byte tell the length of
the encoded character in bytes and any subsequent byte contains six bits of code
value (see Table 16-2).. - '

If the first encoded byte has a hlgh bit of 0, the Iength is just 1 byte and the remain-
ing 7 bits contain the character code. This has the nice result of ASCII compatlblhty
' (but not iso- 885 9 compatrblhty, because iso- 8859 uses the high blt) '

Table 16-2. UTF- 8 variable- wzdth nonmodal encodzng

C0-7 Occeccee - _ - -

811 o 1M0c T0ccccee - - -
12-16 CoMOecce T0ceece . Weew - -

- ',111'10ccc 10cccccc 10ccceec 10cccttc - |

22-26 - ' - 111M0cc - v' 10cccece T0cccccc - - T0cecccc 10cecec

27-31 ' 1111110¢ " 10ccccce - 10ceeeec _10cccccc 10ccccee _ 10ccccct '

For example, character code 90 (ASCII “Z7) would .be encoded as 1 byte (0101 1.010)
while code 5073 (13-bit bmary value 10011 11010001) would be encoded into 3 bytes:

11100001 10001111 10010001

i50-2022-jp |
i50-2022-jp is a widely used encoding for Japanese Internet-documents. iso- 20'22-jp is

a variable-length, modal encoding, with all values less than 128 to prevent problems
with non~8-bit-clean software.

The encoding context always is set to one of four predefined character sets.” Special
“escape sequences” shift from one set to another. is0-2022-jp initially uses the US-
ASCII character set, but it can switch to the JIS X 0201 (JIS-Roman) character set or
the much larger JIS X 0208-1978 and JIS X 0208-1983 character sets using 3-byte

escape sequences.

* The i50-2022-jp encoding is tightly bound to these four character sets, whereas some other encodings are
mdependent of the partlcular character set. :

382 | Chapter16: Internafionalization-

The escape sequences are. shown in Table 16-3. In practlce]apanese text begms W1th ‘. |
“ESC $ @” or “ESC $ B” and ends with “ESC (B” or “ESC (J” :

Table 16-3. zso 2022-]p chamcter set swztchzng escape sequences -

ESC(B L B | 1
BCO - JISX0201-1976 (IS Roman) o

ESCS0 C o USX02087078 T
BCGSB Jlsxozos-1933. S 2‘_ |

When in the US-ASCII or JIS Roman modes, a srngle byte is used per character
When using the 1arger JIS X 0208 character set, two bytes are used per character
code. The éncoding restricts the bytes sent to be between 33 and 126

euc-jp _ _ A
euc-jp is. another popular Japanese encoding. EUC stands for “Extended Unrx
Code,” first developed to support Asian characters on Unix operating systems.

Like iso- 2022—]p, the euc-jp encodlng isa var1able~1ength encodlng that allows the
use of several standard Japanese character sets. But unlike iso- 2022-p, the euc-jp
encoding is not modal. There are no escape sequences to shift between modes.

euc-jp supports’ four coded character sets: JIS X 0201 (JIS-Roman, ASCII wrth a few
Japanese substitutions), JIS X 0208, half-width katakana (63 characters used in the
original Japanese telegraph system) and JISX 0212. . .

One byte is used to encode JIS Roman (ASCII compatlble) two bytes are used for JISX
0208 and half-width katakana, and three bytes are used for JIS X 0212. The codrng isa
bit wasteful but is 51mp1e to process.

The encodlng patterns are outhned in Table 16 4,

Table 16-4. euc-jp encoding values

: JISX0201 (94 coded characters)

Isthyte : i 33-126
JISX 0208 (6879 coded characters) o :
st byte . 161254
ndbyte o 161-25

* Though the bytes can have only 94 values (between 33 and 126), this is sufficient to cover all the characters
in the JIS X 0208 character sets, because the character sets are orgamzed into a 94 x94 grid of code values
enough to cover all JIS X 0208 character codes.

* Multilingual Character Encoding Primer | 383

- Table 16-4, euc-jp encoding values (continued)

Half-width katakana (63 coded characters)

lsthyte S W
ndbge 16123
-~ JISX 02126067 coded characters) :

st byte o o ;e
ndbyte 161-254
ELL _‘ o - 161-254

This wraps up our survey of character sets and encodings. The next section explains -
language tags and how HTTP uses language tags to target content to audiences.
Please refer to Appenchx I—I for a detailed listing of standardlzed character sets.

-Language Tags and HTTP

Language tags are short standarchzed strmgs that name spoken languages

We need. standardrzed names, or some people will tag French documents as.
“French,” others will use “Frangals others still might use “France,” and lazy people
might just use “Fra” or “F.” Standardlzed language tags avoid this confus1on '

, There are language tags for Enghsh (en) German (de), Korean (ko), and many other
languages. Language tags can'describe regional variants and dialects of languages,
such as Brazilian Portuguese (pt-BR), U.S. English (en-US), and Hunan Chinese (zh-
xrang) There is even a standard language tag for Khngon (i- khngon) -

The.Content-LangUag'e_ Header_

The Content-LangUage entity header field describes the target audience languages for
the entity. If the content is intended primarily for a French audience, the Content- -
Language header field would contain:

Content- Language fr

The Content—Language header isn’t limited to text documents Audio clips, movies,
and applications might all be intended for a particular language audience. Any media
type that is targeted to particular language audiences can have a Content- Language'
header. In Figure 16-8, the audio file is tagged for a Navajo audience.

- If the content is intended for multiple audiences, you can list multlple languages As
suggested in the HTTP specification, a rendition of the “Treaty of ‘Waitangi,” pre-
sented simultaneously in the original Maori and English versions, would call for:

» Content-Language: mi, en .

384 | Chapter16: Intemationalization -

" hitp//www.canyonrecords.com/wav/534.wav

HTTP/1.1 200 OK =~ :
Content-type: .audio/x-wav

00100101110100100101
01010010100111101001
01010101011100000101
.01011111001000011. ..

Pzgure 16—8 Content -Language header marks a “Razn Song” audio cltp for Nava]o speakers o

However, just because multiple languages are present within an ‘eritity does not mean
that it is intended for. multiple llIlgU.lStIC audiences. A beginner’s language primer,
such as “A First Lesson in Latin,” which clearly is 1ntended to be used by an Engllsh-
: _hterate audlence would properly mclude only “en” :

The Accept Language Header

‘Most of us know at Jeast one language. HTTP lets us pass our language restrictions .
and preferénces along to web servers. If the web server has multiple versions of a
resource, in d1fferent languages it can give us content in our preferred language

" Here, a client requests Spanish content:

Accept-Language: es _ .
You can place multiple language tags in the Accept-Language header to enumerate all
supported languages and the order of preference (left to right). Here, the client pre-
fers Enghsh but will accept Swiss German (de- CH) or other Vanants of German (de):

Accept Language: en, de-CH,- de

Clients use Accept-Language and Accept-Charset to request content they can under-
stand. We Il see how this Works in more detall in Chapter 17.

Types of Language Tags

Language tags have a standardrzed syntax, documented in REC 3066 “Tags for the
Identification of Languages Language tags can be used to represent
* General language classes (as in “es” for Spanish)
* Country-specific languages (as in'“en-GB” for English in Great Britain).

. Dlalects of languages (as in “no-bok” for Norwegian * ‘Book Language”)

3
* Servers also can use the Accept- Language header to generate dynamic content in the language of the user or
1o, select i 1mages of target language—appropnate merchandising prornotlons

Language Tag_s_ andHTTP | E 385

. Reglonal Ianguages (as in “sgn- US MA” for Martha s Vmeyard 51gn language)
- ¢ Standardized nonvariant languages (e.g. n I nava]o”) '
K3 Nonstandard languages (e. g x—snowboarder-slang”*)

Subtags
.Language tags have one or more parts, separated by hyphens called subtags

_' * The first subtag called the primary subtag. The values are standardlzed
- * The second subtag i is optional and follows its own naming standard
* Any trallmg subtags are unreglstered

The pnmary subtag contalns only letters (A—-Z) Subsequent subtags can contain let-
ters or numbers up to elght characters in 1ength An example is shown in Figure 16-9.

»Mnrtha’sVineyard sign language B
sgrUSMA-

Firstsubtag ~ Second subtag Third subtag
(sign language) (America) = (Massachusetts
“regional variant)

L

» Figure 16-9. Language tags are separated into subtags

Capltallzatlon

All tags are case-insensitive—the tags “en’ > and “eN” are equivalent. However low-
ercasing conventionally is used to represent general languages, while uppercasing is
used to signify particular countries. For example, “fr” means all languages classified
as French, whﬂe “FR” signifies the country France T

IANA Language Tag Reglstratlons

The values of the first and second language subtags are deﬁned by various standards |
documents and their maintaining organizations. The IANA# administers the list of
standard 1anguage tags, usmg the rules outlined in REC 3066.

Ifa language tag is composed of standard country and language values, the tag doesn’t
have to be specially registered. Only those language tags that can’t be composed out
of the standard country and language values need to be registered specially with the

* Describes the unique dialect spoken by “shredders.”
t This convention is recommended by ISO standard 3166.
1 See http:/fwww.iana.org and RFC 2860.

386 . | Chapter16: Internationalization

'_'IANA The followmg S€Ct101’18 outlme the RFC 3066 standards for the fll’St and sec-
ond subtags IR

Flrst Subtag Namespace

The first subtag usually is a standardlzed language token, chosen from the ISO 639
set of language standards. But it also can be the letter “i” to identify IANA-reglstered
names, or “x” for prlvate extens1on names. Here are the rules:

If the first subtag has

s Two charaeters itis a Ianguage code from the ISO 639T and 639 1 standards

* Three characters, it is a language code listed in the 1SO 639-235 standard and
extensions :

({34 ”

o The letter “i
* The letter ° X, the language tag is a private, nonstandard, extension subtag

the language tag is exphc1tly IANA-reglstered

The ISO 639 and 639-2 names-are summarlzed in Appendlx G A few examples are
shown here in Table 16-5.

Table 16-5. Sample ISO 639 and 639-2 language codes

' Arabic ar - ar
Chinese o -~ th ' chilthe
Dutch o » nl ‘ "_'dut/nla‘ |
English ' o en o 3 g
French - o) fra/fre'bﬂ‘
German o de - : o deu/ger
Greek (Modern) : el : ~ ell/gre
Hebrew S he ' heb
Italian - it il
Japanese ja o jpn
Korean ko ; kor
Norwegian o ~no - nor
Russian w ’ s
Spanish e . esl/spa

* At the time of writing, only 21 language tags have been explicitly registered with the IANA, inclnding Can-
tonese (“zh-yue”), New Norwegian (“no-nyn”), Luxembourgish (“i-lux”), and Klingon (“i-klingon”). The
hundreds of remaining spoken languages in use on the Internet have been composed from standard compo-
nents,

T See ISO standard 639; “Codes for the representation of names of languages.” »
1 See ISO 639-2, “Codes for the representation of ‘names of languages—Part 2: Alpha-3 code.”

. Language Tagsand HTTP | 387

" Table 16-5. Sémpl_e 1SO 639 and.63992 _Z,aﬁguage codes (continued)

Swedish - W SRR - sve/swe
Turki'sh" o ' ot) ' o

Second Subtag Namespace

- The second subtag usually is a standardlzed country token, chosen from the ISO
3166 set of country code and region standards. But it may also be another stnng,
which you may register with the IANA Here are the rules: :

If the second subtag has: | |

* Two characters, it’s a country/reglon defmed by ISO 3166
~ * Three to eight characters, it - may be reg1stered with the IANA

* One character, it is 1llegal

Some of the ISO 3166 country codes are shown in Table 16-6. The complete hst of
country codes can be found in Appendlx G. o

Table 16-6. Sample ISO 31 66 country codes

Brazil o .

Canada ' (A
China |
Fane - R
Germany. - _ DE -
Holy See (Vatican City State) VA
Hong Kong | o | HK
India } IN
taly m
Japan ' B
Lebanon .. - 1B
Meio - MX
Pakistan PK
Russian Federation - R
United Kingdom - GB

United States . . Us-

* The country codes AA, QM—QZ XA-XZ and ZZ are reserved by ISO 3166 as user-3551gned codes. These
must not be used to form language rags.

388 | Chapter16: Internationalization

Remammg Subtags. Namespace

There are no rules for the thlrd and followmg subtags, apart frorn belng up to e1ght
; characters (letters and d1g1ts) S _

Conﬁgurmg Language Preferences

You can conﬁgure language preferences in your browser proflle

Netscape Nav1gator lets you set language preferences through Edit Preferences..
- Languages..., and Microsoft Internet Explorer lets you set- languages through
Tools — Internet Optlons Lo Languages :

Language Tag Reference Tables

Appendix G contams convenient reference tables for language tags

+ JANA- reglstered language tags are shown i in Table G-1.
* ISO 639 language codes are shown in Table G-2.-
N 3166 country codes are shown in Table G-3.

Internationalized URIs

Today, URIs don’t prov1de much support for 1nternat1onahzat10n With a few
(pootly defined) . exceptions, today’s URIs are comprlsed of a subset of US-ASCII
characters. There are efforts underway that might let us include a richer set of char-
acters in the hostnames and paths of URLs, but right now, these standards have not
- been Wldely accepted or deployed Let’s review today’s practlce o o

Global Transcnbablhty Versus Meanmgful Characters

The URI designers wanted everyone around the world to be able to share URISs with
each other—by email, by phone, by billboard, even over the radio. And they Wantecl
URISs to be easy to use and remember. These two goals are in confllct ' :

To make it easy for folks around the globe to enter, manlpulate and share URIs, the
de31gners chose a very limited set of common characters for URISs (basic Latin alpha-' '
bet letters, digits, and a few special characters). This small repertoire of characters is
supported by most software and keyboards around the world:

Unfortunately, by restrlctlng the character set, the URI de51gners made it much
harder for people around the globe to create URIs that are easy to use and remem-
ber. The majority of world citizens don’t even recognize the Latin alphabet, makmg
it nearly 1mp0551ble to remember URIs as abstract patterns

' v'-"'lnternationalized‘URlS | 389

The URI authors felt it was more important to ensure transcribability and sharablhty :

~ of resource identifiers than to have. them consist of the most meaningful characters. So- - -

. we have URIs that (today) essentlally consist of a restricted subset of ASCII _charac_ters ‘

URI Character Repertmre

The subset of US-ASCII characters perrmtted in URIs can be d1v1ded into reserved
unreserved, and escape character classes. The unreserved character classes can be
used generally within any component of URIs that allow them. The reserved charac-
ters have special meanings in many URISs, so they shouldn’t be used in general. See
Table 16-7 for a hst of the unreserved reserved, and escape characters ’

- Table 16—7‘ URI chamct_er syntax

Unreserved] [A_Za_zo 9] | I u onjun I lllll] " 0| e l ann | l(" | ")”
. Resen’ed ‘ . . " I /1/1/ l 117” l i I II@II I II&II u_n l ”+” ”$,, l W
Escape - %" <HEX> <HEX> :

Escapmg and Unescapmg

URI “escapes™ prowde a way to safely insert reserved characters and other- unsup-

~ported characters (such as spaces) inside URIs. An escape is a three-character
sequence, consisting of a percent character (%) followed by two hexadecimal digit
characters. The two hex digits represent the code for a US—ASCII character.

For example to insert a space (ASCII 32) in a URL, you could use the escape “%20”
because 20 is the hexadecimal representation of 32. Similarly, if you wanted to
include a percent sign and have it not be treated as an ‘escape, you could enter -
“%25”, where 25 is the hexadecimal value of the ASCII code for percent

Figure 16-10 shows how the conceptual characters for a URI are turned into code
bytes for the characters, in the current character set. When the URI is needed for
processing, the escapes are undone, yielding the underlying ASCII code bytes.

Internally, HTTP apphcatlons should transport and forward URIs with the escapes
in place. HTTP applications should unescape the URIs only when the data is needed.
And, more importantly, the applications should ensure that no URI ever is unes-
caped twice, because percent signs that might have been encoded in an escape will
themselves be unescaped, leading to loss of data. ' ~

Escaping Internatidnal Characters

Note that escape values should be in the range of US-ASCII codes (0-127). Some
applications attempt to use escape values to represent iso-8859-1 extended charac-
ters (128-255)—for example, web servers might erroneously use escapes to code

390 | Chapter16: Internationalization

"~ Conceptual characters , URI code bytes . Unescaped ASCl code byte =
: ' [see 1 xS .
g 0=111 ; L
g m=109 i . 109 -
1 /=47 t 47.
s b=98 | 98
i 1=105 N 105 -
R £=103 wimm f——p 103"
‘ =37 7 o ,
’ 2=50 ‘ 32
3 | - 0-48 _| i M
R B ! $=115 § -‘ 115 ’
. 1 .
N v . e ;
External form -1 Whatyou enterandsend P What(you process
(emall web, b/llbaard radlo) © . ({incurrent character set} : (m Us-As Icharacterset)

Fzgure 16-10. URI characters are transported as escaped code bytes but processed unescaped

filenames that contain mternatronal characters. Thls is mcorrect and may cause
problems with some apphcatlons '

For example, the frlename Sven Olssen.html (containing an umlaut) mlght be
encoded by a web server as Sven%20%D6lssen.html. It’s fine to encode the space
with %20, but is technically illegal to encode the O with %D6, because the code D6
(decimal 214) falls outside the range of ASCII. ASCII deflnes only codes up to Ox7F
(decrmal 127).

Modal SW|tches in URIs

Some URIs also use sequences of ASCII characters to represent characters in other
character sets. For example, is0-2022-jp encoding might be used to insert “ESC (]J”
to shift into JIS-Roman and “ESC (B” to shift back to ASCII. This works in some
local circumstances, but the behavior is not well defined, and there is no standard-
ized scheme to 1dent1fy the particular encodrng used for the URL. As the authors of
RFC 2396 say:

“For original character sequences that contain non-ASCII characters, however, the situ-
ation is more difficult. Internet protocols that transmit octet sequences intended to' .
represent character sequences are expected to provide some way of 1dent1fymg the
charset used, if there mlght be more than one [RFC2277]. :

However, there is currently no provision within the generic URI syntax to accomplish
this identification. An individual URI scheme may require a single charset, define a

 default charset, or provide a way to indicate the charset used. It is expected that a Sys-
tematic treatment of character encoding within URI w1ll be developed as a future mod-
ification of this spec1f1cat10n

Currently, URIs are not very 1nternatlonal frrendly The goal of URI portabrhty out-
‘weighed the goal of language flexibility. There are efforts currently underway to
internationalize URIs, but in the near term, HTTP applications should stick W1th
ASCIL I’s been around since 1968, so it can’t be'all that bad

‘Internationalized URs | 391

'Other ConSIderatlons

' »_Thrs section drscusses a few other thmgs you should keep in mmd when ertmg”
1nternatlonal HTTP apphcattons :

. Headers and Out-of—Spec Data

HTTP headers must consist of characters from the US—ASCII character set. How- -
ever, not all clients and servers implement this. correctly, so you may on occasron :
receive illegal characters with code values 1arger than 127, :

' :-Many HTTP applications use- operatlng—system and hbrary routines for processmg
~ characters (for example, the Unix ctype character classification library). Not.all of
these hbrarres_ support character codes outs_r_de of the ASCII range (0~127).

In some circumstances (generally, with older implementations), these libraries may -
return improper results or crash the application when given non-ASCII characters.
Carefully read the documentation for your character classification libraries before
: nsing them to process HTTP messages, in case the messages contain illegal data.

| Dates

The HTTP specrﬁcatron clearly defines the legal GMT date formats, but be aware
that not all web servers and clients follow the rules. For example, we have seen Web
‘servers send invalid HTTP Date headers with months expressed in local languages

- HTTP apphcatlons should attempt to be tolerant of out-of—spec dates and not crash

on receipt, but they may not always be able to interpret all dates sent. If the date is
not parseable servers should treat it conservauvely :

Domain Names

DNS doesn’t currently support international characters in domain names There are
standards efforts under way to support multilingual domain names, but they have
not yet been widely deployed '

For More Informatlon

The Very success of the World W}de Web means that HTTP applications. wrll con-
tinue to exchange more and more content in different languages and character sets.
For more information on the important but slightly complex topic of. rnultrhngual
, multrmedra please refer to the following sources.

302 | Chapter16: Int_emativqnal'ization

| Append|xes

e IANA—reglstered charset tags are hsted in Table H-1.
¢ 1ANA-registered language tags are shown in Table G- 1.
. 1SO 639 language codes are shown in Table G-2.
« 1SO .3 1_66 country codes are _shovvn in Table G-3.

Internet Internationalization -

hitp:/www.w3. org/Internatzonal/ S S
“Making the WWW Truly World ‘Wide”—the W3C Internationalization and

 Localization web site. . o .

htp: S www. ietf. org/rfc/rfc2396 txt o
RFC 2396, “Uniform Resource Identifiers (URI): Generrc Syntax 1s'the defin--

ing document of URIs. This document includes sectlons descrrbmg character set
~ restrictions for 1ntematronal URIs. :

CJKV Information Processing
Ken Lunde, O’Reilly & Associates, Inc. CJKV is the brble of Asian electromc
character processing. Asian character sets are varied and complex, but this book
prov1des an excellent 1ntroductron to the standards technologres for large charac—
ter sets.

hitp:/lwww. 1etf org/rfc/rchZ 77.txt ' ’ ‘
RFC 2277, “IETE Policy on Character Sets and Languages, documents the cur-
rent policies being applied by the Internet Engineering Steermg Group (IESG)
toward the standardization efforts in the Internet Engrneerrng Task Force (IETF)
in order to help Internet protocols mterchange data in. multrple languages and
: characters : : -

InternationaI:Standards

http /www.iana. org/numbers.htm
‘The Internet Assigned Numbers Authority (IANA) contains repositories of regis-
tered names and numbers. The “Protocol Numbers and Assignments Directory”
contains records of registered character sets for use on the Internet. Because
much work on international communications falls under the domain of the ISO,
and not the Internet community, the IANA hstmgs are not exhaustive. '

hitp://www.ietf.org/rfc/rfc3066. txt

RFC 3066, “Tags for the Identification of Languages,” describes language tags,
their va_lues and how to construct them. :

- For More Information - | 393

' “Codes for the representatzon of names of languages _ ' o
- ISO 639:1988 (E/F), The Internauonal Orgamzauon for Standard1zat10n ﬁrst i
edmon -

“Codes for the representatzon of names of anguages—Part 2: Alpha-3 code . |
ISO 639-2:1998, Jomt Workmg Group of ISO TC46/SC4 and ISO TC37/SC2 |
first edition. ~ _ :

“Codes for the representatzon of names of countries”

18O 3166:1988 (E/F), The Internatlonal Orgamzauon for Standardlzauon thlrd
edmon

394 -| Chapter16: Internationalization

CHAPTER 17
Content Negotlatlon and Transcodmg

Often a smgle URL may need to correspond to dlfferent TeSOuICes.. Take the case of
a web site that wants to offer its content in multiple languages If a site such as Joe’s
Hardware has both French- and English-speaking users, it might want to offer its
web site in both languages. However, if thlS is the case, when one of Joe’s customersk
requests. ‘http //www joes-hardware.com,’ Wthh version should the server send?
French or Enghsh? : :

Ideally; the server will send the English version to an Enghsh speaker and the French
version to a French speaker—a user ¢ould go to Joe’s Hardware’s home page and get
content in the language he speaks. Fortunately, HTTP provides content-negotiation
methods that allow clients and servers to make just such determinations. Using these
methods; .a single URL can correspond to different resources (e.g., a French and
English version of the same web page). These different versions are called variants.

Servers also can make other types of decisions about Whét,content is best to send to a
client for a particular URL. In some cases, Servers even can aUtomatiCaHy' generate
customized. pages—for instance, a server can convert an. HTML page into a WML
page for your handheld device. These kinds of dynamic content transformations are
called transcodings. They are done in response to content negottatlon between HTTP
chents and servers. : : I

In this chapter, we will discuss content negotlatlon and how Web apphcatlons go
about thetr content—negottatton dutles :

Content-Negotiation Techniques B
There are three distinct methods for deciding which page at a server is the nght one
for a client: present the choice to the client, decide automatically at the server, or ask

an mtermedlary to select. These three techniques are called client-driven negotiation,
server—drwen negottauon and transparent negotiation, respectively (see Table 17-1).

395

In this chapter, we will look at the mechamcs of each techmque as Well as the1r B
advantages and dlsadvantages

Table 17—1 Summary of content-negotlatzon techmques

. Client-driven * Client makes a request, - Easiest to implement at server side. (lientcan - Adds latency: at least two
' " server sends list of choices -make best chmce : : requests are neededto.
, - todlient,client chooses, - DR get the correct content.
Server-driven - - Server examines client’s -~ Quicker than client-driven negotiation. HTTP - Ifthe decisionis not obvi-
' reéquest headers and provides a g-value mechanism to allow serv- -ous (headers don’t match
- decides what version to ers to make approximate matchesand aVary up), the server must.
serve. _header for servers to tell downstream devices ~ guess. ‘
S o how to evaluate requests.. S
Transparent Anintermediatedevice Offloads the negotiation from the web server. - Noformal specifications
~ (usuallyaproxy cache)- . Quicker than client-driven negotiation. - for how to do transparent
does the request negotia- e ~. negotiation. '

- tion on the client's behalf.

Client-Driven Negotiation

The ea51est thing for a server to do when it receives a chent request is to send back a
response listing the available pages and let the client decide which one it wants to
see. This, of course, is the easiest to implement at the server and is likely to result in-
the best copy bemg selected (provided that the list has enough information to allow
the client to pick the right copy). The disadvantage is that two requests are needed -
for each page—one to get the list and a second to get the selected copy. This is a
slow and tedious process, and i it’s likely to become annoymg to the client. o

Mechamcally, there are actually two ways for servers to present the choices to the cli-
- ent for selection: by sending back an HTML document with links to the different ver-
sions of the page and descriptions of each of the versions, or by sending back an
HTTP/1.1 response with the 300 Multiple Choices response .code. The client
browser may receive this response and display a page with the links, as in the first
method, or it may pop up a dialog window asking the user to make a selection. In
' any case, the decision is made manually at the client side by the browser user.

In addition to the increased latency and annoyance of muluple requests per page
this method has another drawback: it requires multiple URLs—one for the main
page and one for each specific page. So, if-the original request was for - www.joes-
hardware.com, Joe’s server may respond with a page that has links to-www.joes-
hardware.com/english and www.joes-hardware.com/french. Should clients now book-
mark the original main page or the selected ones? Should they tell their friends .
about the great web site at www.joes-hardware.com or tell only their English-speak-
ing friends about the web site at www.joes-hardware.com/english?

396 | Chapter17: Content Negotiation and Transcoding

__Server-Drlven Negotlatlon

* Client-driven negotiation has several drawbacks as dlscussed in the prewous sec-"'
tion. Most of these drawbacks center around the increased communication between

the client and server to decide on the best page in response to a request. One way to
reduce this extra communication is to let the server decide which page to send.
back—but to do this; the client must send enough information about its preferences

to allow the server to make an informed decision. The server. gets thlS rnformatron_

- from the chent s request headers. : -

~ There are two mechamsms that HTTP servers use to evaluate the proper response to
send to a cllent : S

. Exammmg the set of content-negotlatlon headers. The server looks at the chent s
Accept headers and tries to match them wrth corresponding response headers

* Varying on other (non—content—negotratron) headers. For example the server
could send responses based on the chent s User-Agent header

These two mechanisms are explalned in more detall in the followmg sectrons

Content-Negotlatlon Headers

Clients may send their preference mforrnatlon using the set of HTTP headers hsted
in Table 17-2. - -

Table 17—2..‘Ac'cept headers -

Accept o , Used to tell the server what media types ate bka’y to. send
Accept—Language' S Usedtotelltheserverwhatlanguagesareokaytosend
- Accept-Charset - - Usedtotell the server what charsets are okay to send '
Accept~Encodmg - Usedto_tell theserverwhatencodmgsare okayto send _

Notice how similar these headers are to the entity headers drscussed in Chapter 15.
However, there is a clear distinction between the purposes of the two types of head-

~ ers. As mentioned in Chapter 15, entity headers are like shipping labels—they spec-.
ify attributes of the message body that are necessary during the transfer of messages
from the server to the client. Content-negotiation headers, on the other hand, are
used by clients and servers to-exchange preference information and to help choose
between different versions of a document, so that the one most closely matchmg the
client’s preferences is served.

 Servers match clients” Accept headers Wrth the correspondmg entity headers hsted in

- Table 17 3

“Server-Driven Negotiation | 397

B Table 17-3 .\A_'ccepvt and'ma'tching dbcument headers.

Accept _ _‘Conteh‘t_-Typé‘
Accept-language ~ Content-Language
Acept-Charset ~~ * Content-Type
Ac_cébt—Enc’oding” n _’Content-Encodmg

Note that because HTTP is a stateless protocol (meaning that servers do not keep'
track of client preferences across requests) chents must send thelr preference 1nfor—'
mation with every request.” - :

If both clients sent Accept-Language header information spec1fy1ng the language in
which they were interested, the server could decide which copy of www.joes-hard-
ware.com to send back to each- client. Letting the server automatically pick which
document to send back reduces the latency associated with the back—and forth com-
munication requ1red by the client-driven model. :

However, say that one of the clients prefers Spanish. Which version of the page
should the server send back? English or French? The server has just two choices:

either guess, or fall back on the client-driven model and ask the client to choose.

However, if the Spaniard happens to understand some English, he might choose the
English page—it wouldn’t be ideal, but it would do. In this case, the Spaniard needs
the ability to pass on more information about his preferences, conveying that he does
have minimal knowledge of English and that, in a pinch, English will suffice,

Fortunately, HTTP does. prov1de a mechanism for letting clients like our Spamard
give richer descrlptlons of their preferences, usmg qualz_ty values (“q values” for short).

Content—Negotlatlon Header Quallty Values

The HTTP protocol defines quahty values to allow clients to list multiple ch01ces for
each category of preference and associate an order of preference with each ch01ce
For example, clients can send an Accept-Language header of the form:

. Accept-Language: en;g= =0. 5, fr;9=0.0, nl;q=1.0, tr;q=0.0 -

Where the q values can range from 0.0 to 1.0 (with 0.0 being the lowest preference
and 1.0 being the highest). The header above, then, says that the client prefers to
-~ receive a Dutch (nl) version of the document, but an English (en) version will do.
Under no-circumstances does the client want a French (fr) or Turkish (tr) version,
though. Note that the order in which the preferences are 11sted is not important; only
the g values associated w1th them are. :

Occasionally, the server may not have any documents that match any of the client’s
preferences. In this case, the server may change or transcode the document to match
the client’s preferences. This mechanism is discussed later in this chapter.

398 [Chapter 17: Co_ntén’t Negotiation and Transcoding

| Varymg on Other Headers

Servers also can attempt to match up responses with other chent request headers
such as User-Agent. Servers may know that old versions of a browser do not support
JavaScrlpt for example, and may therefore send back a version of the page that does
not contain JavaScnpt . . _

In this case, there is no q-value mechanism to look for approx1mate “best” matches.
The server either looks for-an exact match or 51mply serves whatever it has (depend-
ing on the 1mplementatlon of the server) ' '

Because caches must attempt to serve correct “best” versions of cached documents
the HTTP protocol defines a Vary header that the server sends in responses; the Vary
header tells caches (and clients, and any downstream prox1es) which headers the
server is using to determine the best version of the response to. send The Vary header
is dtscussed in more detail later in this chapter ' :

| Content Negotlatlon on Apache

Here is an overview of how the Apache web server supports content negotlatlon Itis
up to the web site content provider—]Joe, for example—to prov1de different versions
of Joe’s index page. Joe must put all his index page flles in the appropnate directory
on the Apache server corresponding to his web site. F here are two ways. to enable
content negotiation: ' :

* In the web site dtrectory, create a-type-map file for each URI in the web site that
‘has variants. The type-map file lists all the variants and the content—negotlatlon
headers to whlch they correspond. o :

* Enable the MultiViews directive, which causes Apache to create type map fﬂes
- for the dlrectory automatlcally : -

Usmg type- map files

The Apache server needs to > know what type-map files look hke To conf1gure this,
set a handler in the server conflguranon file that spec1f1es the flle sufﬁx for type- map
files. For example: :

AddHandler type-map .var. _ v v
This line indicates that files with the extension .var are type-map files.
Here is a sample type-map file:

URT: joesihardware;html
 URI: joes-hardware.en.html

Content-type: text/html
Content-language: en

~ Server-Driven Negotiation | 399

URT: Joes'hardware:fr de.html
Conterit- -type: text/html; charset 150 8859 2
- Content- language fr, de”

From this type-map file, the Apache server knows to send joes- hardware én. html to

clients requesting English and joes- hardware fr.de.html to clients requesting French. "
Quahty values also are supported see the Apache server documentatlon S

Using MultiViews

To use MulttVrews you must enable it for the dlrectory containing the web site, usmg
an Optlons directive in the appropriate section of the access.conf file (<Dzrectory> -
-<Locatzon> or <lees>) : o

f MulthlCWS is enabled and a browser requests a resource named j]oes -hardware, the :
server looks for all files with “joes-hardware” in the name and creates a type-map file
for them. Based on the names, the server guesses the appropriate content—negotlatron o
headers to which the files correspond. For example a French—language version of
]oes hardware should contain fr ' : .

Server—Slde Extensmns

Another way to 1mplement content- negotlatlon at the server is by server-side exten-
sions, such as Microsoft’s Active Server Pages (ASP) See Chapter 8 for an overview
of server-side extensions. '

Transparent Negotlatlon

Transparent negotlauon seeks to move the load of server-drwen negotlatlon away
from the server, while minimizing message exchanges w1th the client by having an
intermediary proxy negotiate on behalf of the client. The proxy is assumed to have
knowledge of the client’s expectations and be capable of performing the negotia-
tions on its behalf (the proxy has received the client’s expectations in the request for -
content). To support transparent content negotiation, the server must be able to tell . -
proxies What request headers the server examines to determine the best match for the
client’s request. The HTTP/1.1 specification does not define any. mechanisms for
transparent negotiation, but it does define the Vary header. Servers send Vary héad-
~ers in their responses to tell 1ntermed1ar1es what request headers they use for content
negotiation.

Caching proxies can store different copies of documents accessed via a single URL. If
~ servers communicate their decision-making processes to caches, the caches can nego-
tiate with clients on behalf of the servers. Caches also are great places to transcode
content, because a general-purpose transcoder deployed in a cache can transcode
content from any server, not just one. Transcoding of content at a cache is illus--
trated in Figure 17-3 and discussed in more detail later in the chapter. 5

400 | '_Chapter'17:" Content Negotiation and Transcoding

"Cachmg and Alternates

Cachmg of content assumes that the content can be reused 1ater However caches .
- must employ much of the decision-making logic that servers do when sending back a
. response to ensure that they send back the correct cached response to a client request

The prevrous section descnbed the Accept headers sent by clients and the correspond—f‘
ing entity headers that servers ‘match them up against in order to choose the best
- response to each request. Caches must use these same headers to dec1de Wthh cached ‘

 response. to send back. - - - .

Figure 17-1 illustrates both a correct and incorrect sequence of operatlons mvolvrng
a cache. The first request results in the cache forvvardmg the request to the server
and storing the response. The second response is looked up by the cache, and a doc- .
ument matching the URL is found. This document, however, is in. French, and the

- requestor wants a Spanish document. If the cache just sends back the French docu—
ment to the requestor it will be behavmg 1ncorrectly

GET/HTTP/11 - - o ———
Host: www.joes- ~hardware . com : -7 | Hil Welcome-to
User-agent: spiffy multimedia browser - | Joe's Hardware

Accept- 1anguage fr;g=1.0 = N - | Store. .

Hola"Bithen1do .
a Joe's. Hardware
‘Store e

Bonjour _ .
French-speaking A Bonjour! '
user A -Bienvenue a Joe's
L E et ' "~ | Hardware Store
Cache ' ’ ’ '

"GET / HTTP/1.1

Host: www.joes-hardware.com - ‘
User-agent: spiffy multimedia browser

Accept language: es;q=1.0

‘Holal! Bienwenldo
»l 2 Joe's Hardware
| Store. -

Spanish-speaking
user

» Figure 17-1. C_aches'use content-negotiation headers to send back correct responses to clients

The cache must therefore forward the second request to the server as well, and store
both the response and an “alternate” response for that URL. The cache now has two

- Transparent Negotiation | 401

 different documents for the: same URL, just as the server does. These different ver-
_51ons are called variants or alternates. Content negotiation can be thought of as the
process of selectmg, frorn the vanants, the best match for a client request. '

The Vary Header

'Here sa typrcal set of request and response headers from a browser and server:

GET http: //www joes-hardware. com/ HTTP/1 0
- Proxy-Connection: Keep-Alive - = -
User-Agent: Mozilla/4.73 [en] (wlnNT W)
Host: www.joes-hardware.com
Accept: image/gif, 1mage/x xbitmap, 1mage/3peg, 1mage/pjpeg, 1mage/png,
Accept- Encodlng g21p v
. Accept-language: en, pdf _
vAccept Charset iso- 8859 1, * utf- 8

HTTP/l 1 200 OK .

Date: Sun, 10 Dec 2000 22: 13 40 GMT

Server: Apache/1.3.12 OpenSSL/0.9.5a (Unix) FrontPage/4 0.4.3

Last-Modified: Fri, 05 May 2000 04:42:52 GMT

Etag: "1b7ddf-48-3912514c"

Accept-Ranges: Bytes

.Content-Length: 72

Connection: close ‘

Content-Type: text/html
‘What happens, however, if the server’s decision was based on headers other than the
Accept headers, such as the User-Agent header? This is not as radical as it may
sound. Servers may know that old versions of a browser do not support JavaScript,
for example, and may therefore send back a version of the page that does not have .
JavaScript in it. If servers are using other headers to make their decisions about
which pages to send back, caches must know what those headers are, so that they

can perform parallel logic in choosmg which cached page to send back

The HTTP Vary response header lists all of the client request headers that the server
considers to select the document or generate custom content (in addition to.the regu-
lar content-negotiation headers). For example, if the served document depends on the
User-Agent header the Vary header must include “User-Agent”.

When a new _request arrives, the cache finds the best match using the content-negoti-
ation headers. Before it can serve this document to the client, however, it must see
whether the server sent a Vary header in the cached response. If a Vary header is
present, the header values for the headers in the new request must match the header
values in the old, cached request. Because servers may vary their responses based on
client request headers, caches must store both the client request headers and the cor-
responding server response headers with each cached variant, in order to implement .
transparent negotiation. This is illustrated in Figure 17-2.

- 402 | " Chapter17: Content Negotiation and Transcoding

GET / HTTP/1 1 s " {Ineed to send her a French document,
Host: www.joes-hardware.com "+ |Since she has such a cool browser, Il
User-agent® spiffy multimedia browser send her a medig-rich version of
~Accept language -Fr,q 1.0 © |thepage.

HTTP/1.1 200 OK-
Content-language: fr

F““‘L‘;‘:? o | Vary: -User- agent Web server
e i1 | Bonjour - - B
Cache J1:. medla rich content] ‘
GET / HTTP/ 1.1] e wantsaFrenchc0pyofthedocument
Host: www.joes-hardware. com and [have it in my cache, but I better

7| User-agent: wimpy wireless device not send it to him. The server said my
Accept language:” fr ,q =1.0 . cached copy was for a spiffy browser. This
: ' iuyhasa wimpy wireless one. ! had
: ; etter ask the server for a French veision
[S —— forthe wireless browser,

Bonjour

HTTP/1.1 200 0K .

- llIIIIlI" cs?

. \ ¢ | Content- language fr | e
: »French-spgakmg ur = Vary User-agent 4 Webserver
- user2 - : A :
Bonjour-

[.. 51mple text content]

Figure 17-2." If servers vary on specific request headers, caches must match those request headers
in addition to the regylar content- negotzatzon headers before sending back cached responses

If a server’s Vary header looked like thlS the huge number of dlfferent User-Agent
and Cookle values could generate many variants:
Vary User- Agent Cookie ’

A cache would have to store each document version correspondmg to each vanant
When the cache does a lookup, it first does content matching with the content-nego-
tiation headers, then matches the request’s variant with cached variants. If there is no
match, the cache fetches the document from the origin server.

Transcoding
We have discussed in some detail the mechanism by which clients and servers can
choose between a set of documents for a URL and send the one that best matches the

~ Transcoding |- 403

- client’s needs. These mechamsms rely on the presence of documents that match the
client’s needs———whether they match the needs perfectly ornotsowell.

‘What happens, however, When a server does not have a document that matches the
' client’s needs at all? The server thay have to respond. with an error, but theoretically,

the server may be able.to transform one of its existing documents into somethlng
' that the client can use. ThlS option is called transcoding. - -

Table 17 4 lists some hypothetlcal transcodmgs

Table 17-4. Hypothetical transcodmgs

 HTML document - . WML document
QvHigh-résqution’image ~ Low-resolution image_
'Image|n64KcoIors " Black-and-whiteimage
COmplex page with frames Simple text page without frames or images
~ HTML page with Javaapplets . HTML page without Java applets

Pagewith_ads s 'Pagew1th adsremoved

There are three categorles of transcodmg format conversion,; 1nformatlon synthests '
and content 1n]ect10n :

Format Conversmn

Format conversion is the transformatlon of data from one format to another to make it
viewable by a client. A 'wireless device seeking to access a'document typlcally viewed
by a desktop client may be able do so with an HTML-to-WML conversion. A client
accessing a web ‘page over a slow link that is not very interested in high-resolution
images may be able to view an image- -rich page more easily if the images are reduced
in size and resolutlon by converting them from color to black and whlte and shrmk—

ing them. .

Format conversion is driven by the content- negotlatlon headers listed in Table 17-2,
although it may also be driven by the User-Agent header. Note that content transfor-
mation or transcodmg is different from content encoding or transfer eencoding, in
- that the latter two typically are used for more efficient or safe transport of content
whereas the former is used to make content v1ewable on the access dev1ce

Informatlon Synthe5|s

The extraction of key pieces of information from a document————known as mforma—
tion syntheszs-——can be a useful transcoding process. A simple example of this is the
generation of an outline of a document based on section headings, or the removal of
advertisements and logos from a page.

404 ,I _Chapter17: ContentNegotiationand Transcoding

~ More sophlstlcated technologles that categonze pages based on keywords in content o

'~ also-are useful in summarizing the essence of a document. This technology often’is - -

-~ used by automatic web page—classrﬁcauon systems, such as web-page dlrectorles at
_.portal 51tes : : : ’

. _Content Injectlon

The two categories of transcodmgs descnbed so far typlcally reduce the amount of
content in web documents, but there is another category of transformations that -
" increases the amount of content content-injection transcodings. Examples of content-
injection transcodlngs are automatlc ad generators and user-trackmg systems

Imaglne the appeal (and offence) of an ad- insertion transcoder that automatlcally
adds advertisements to each HTML page as it goes by. Transcodmg of this type has to
be dynamic—it must be done on the fly in order to be effectlve in addlng ads that cur-
rently are relevant or somehow have been targeted for a partrcular user. User-trackmg.
systems also can be built to add content to pages dynamically, for the purpose of col:
lecting statlstlcs about how the page is viewed and how clients surf the Web '

'Transcodlng Versus Statlc Pregeneratlon

© An alternative to transcodlngs is to build different copies of web pages at the web
server———for example, one with HTML, one with WML, one with high-resolution
images, one with low-resolution images, one with multimedia content, and one with-
- out. This, however, is not a very practical technique, for-many réasons: any small
change in a page requires multiple pages to be modified, more space is necessary to
store all the different versions of each page, and it’s harder to catalog pages and pro-
gram web servers to serve the right ones. Some transcodmgs such as ad insertion
(especrally targeted ad insertion), cannot be done stancally——the ad 1nserted W1H
depend upon the user requesting the page. 2 '

~ An on-the-fly transformation of a single root page can be an easier solutlon than static
pregeneration. It can come, however, at the cost of increased latency in serving the
content. Some of this computation can, however, be done by a third party, thereby off-
loadmg the computation from the web server—the transformation can be done by an
external agent ata proxy or cache. Figure 17-3 1llustrates transcodmg ata proxy cache

Next Steps

- The story of content negotiation does not end Wlth the Accept and Content headers,
for a couple of reasons: :

~* Content negotiation in HTTP incurs some performance limits. Searching through
many variants for appropriate content, or trying to “guess” the best match, can

Next Steps |- 405

| GET / HTTP/1 1 '

‘Host: www. joes- hardware com :
User-agent: wimpy wireless device |
Accept 1anguage fr,q 1.0

' have a French capy of the document _

TR S - | that he wants, but my copy is very media- |
P "L rich and he has a wimpy wireless browser.
: : o w:llstrlpoural/ofthemult/medfacontent '

% . | andsenditto him.

Web server

% Tr_ansmogri_ﬁer _

French-speakihg _
user.

Since 1 have transformed this

| document for a wireless device,
| Hwill store the transformed
copy as an alternate in case

someone else wants it as well

HTTP/1.1 200 OK
Content-language: fr
' Vary User- agent

BonJour '
1. .s1mple text content] '

Figure 17-3. Content transformation or ,t_ranscoding ata proxy éqché

be costly. Are there ways to streamline and focus the content-negotiation proto-
col? RFCs 2295 and 2296 attempt to address this questlon for transparent HTTP
- content negotiation..

* HTTP is not the only protocol that needs to do content negotlatlon Streammg
media and fax are two other examples where client and server need to discuss
the best answer to the client’s request. Can a general content-negotiation proto-
col be developed on top of TCP/IP application protocols? The Content Negotia-
tion Working Group was formed to tackle this question. The group is:now
closed, but it contributed several RFCs See the next section for a hnk to the

~ group’s web site.

For More Information

The following Internet drafts and online documentatlon can give you more detalls
about content negouanon :

http Hwww.ietf. org/rfc/rch 616.txt :
RFC 2616, “Hypertext Transfer Protocol——HTTP/ 1. 1 ” is the off1c1a1 spec1f1ca-
tion for HTTP/1.1, the current version of the HTTP protocol. The specification
is a well-written, well-organized, detailed reference for HTTP, but it isn’t ideal
for readers who want to learn the underlying concepts and motivations of HTTP
or the differences between theory and practice. We hope that this book fills i in
“the underlying concepts, so you can make better use of the specification.

406 | Chapter17: Content Negotiation and Transcoding -

hitp: //search 1etf org/rfc/rfc2295 txt '
’ RFC 2295, “Transparent Content Negomatlon in HTTP,” is a riemo descnbmg a
transparent content-negotiation protocol on top. of HTTP The status of th1s
memo remains experimental. : o

hitp://search.ietf.org/rfc/rfc2296.txt
RFC 2296, “HTTP Remote Variant Selection Algonthm——RVSA L. O s a memo
describing an algorlthm for the transparent selection of the “best” content for a
particular HTTP request. The status of this memo remains expenmental

hitp://search.ietf.org/rfc/fc2936.txt .
RFC 2936, “HTTP MIME Type Handler Detectmn, is a memo descnbmg an
approach for determmmg the actiial MIME type handlers that a browser sup-
ports. This approach can help if the Accept header is not spec1f1c enough
http:/fwww.imc.orglietf- medfree/mdex htm. '
This is a link to the Content Negotiation (CONNEG) Workmg Group, ‘which

looked into’ transparent content negotlatlon for HTTP, fax ~and prmt Thls
group is now closed ' :

- For More Information | 407

| PA.R.T Vf -
Content Publlshmg_. |
- and Distribution

Part V talks all about the technology for pubiishing and disseminating Wéb”content‘

* Chapter 18, ‘Web Hosting, discusses the ways people deploy servers in modern
web hosting environments, HTTP support for virtual web hostlng, and how to "
replicate content across geographlcaﬂy distant servers. T »

e Chapter 19, Publzshmg Systems, discusses the technologles for creatlng web con-
tent and installing it onto web servers. : -

* Chapter 20, Redirection and Load Balancing, surveys the tools and techmques for
~ distributing incoming web traffic among a collection of servers.

¢ Chapter 21, Logging and Usage Tracking, covers log" formats and commonf
questions. : S

CHAPTER 18

Web Hostmg

When you place resources, ona pubhc web server, you make them available to the

Internet community. These resources can be as 51mple as text flles or images, or as

comphcated as real-time driving maps Or e-Commerce shoppmg gateways It’s criti-

cal that this rich variety of resources, owned by different organizations, can bé conve-

-~ niently pubhshed to Web sues and placed on Web servers that offer good performance
at a fair price. : :

The collective duties of stonng, brokermg, and admlmstermg content resources is
called web hosting. Hosting is one of the primary functions of a web server. You need
a server to hold, serve, log access to, and administer your content. 1f you don’t want
to manage the required hardware and software yourself, you need a hosting service,
or hoster. Hosters rent you serving and web-site administration services and provide
various degrees of security, reporting, and ease of use. Hosters typically pool ‘web
sites on heavy-duty web servers for cost- efﬁcrency, reliability, and performance

- This chapter explains some of the most important features of web hostmg services
and how they interact with HTTP applications. In particular, this chapter covers:

* How different web sites can be * v1rtually hosted” on the same server “and how
this affects HTTP :

* Howto make web sxtes more rehable under heavy traffrc

* Howto make web 51tes load faster

Hosting Se’rvi;ces
In the early days of the World Wide Web, 1nd1v1dua1 organizations purchased their

own computer hardware, built their own computer rooms; acquired their own net-
work connections, and managed their own web server software.

As the Web quickly became mainstream, everyone wanted a web site, but few peo-
ple had the skills or time to build air-conditioned server rooms, register domain

A1

‘names, or purchase network bandw1dth To save the day, many. new busmesses,

-emerged, offering professionally managed web hosting services. Many levels of ser- -
- vice are available, from physical facilities management (providing space, air condl-v o

tioning, and wiring) to full-service web hosting, where all the customer does is
- provide the content. ' '

. This chapter focuses on what the hostmg web server provrdes Much of what makes
a web site work—as well as, for example, its ability to support different languages
and its ability to do secure e-commerce transactrons———depends on what capablhtres
the hostmg Web server supports.

V'A Slmple Example‘ Dedlcated Hostmg

Suppose that Joe’s. Hardware Online and Mary’s Antique Auction both want fairly
' hrgh~volume web sites. Irene’s ISP has racks and racks full of identical, high-
performance web servers that it can lease to Joe and Mary, instead of havrng Joe and)
Mary purchase thelr own servers and maintain the server software.

In Frgure 18-1, both Joe and Mary sign up for the dedlcated web. hostmg service
~offered by Irene’s ISP. Joe leases a dedicated web server that is purchased and

- maintained by Irene’s ISP. Mary gets a different dedicated server from Irene’s ISP.

Irene’s ISP gets to buy server hardware ih'volurjne and can select hardware that is
reliable, time-tested, and low-cost. If either Joe’s Hardware Online or Mary’s
Antique Auction grows in popularity, Irene’s ISP can offer]oe or Mary additional

servers 1mmed1ately _ _
v . Irene’s ISP : i
www.joes-hardware.com G
ontent
www.cajun-gifts.com %
www.marys-antigues.com Content
%
www.irenes-isp.com%

Fzgure 18-1. Outsourced dedicated hosting

In this example browsers send HTTP requests for wiww]oes hardware com to the P
‘address of Joe’s server and requests for www.marys-antiques.com to the (drfferent) P
address of Mary’s server.

412 | Chapter18: Web Hosting

" Vlrtual Hostmg

Many. folks want to have a Web presence but don’t have hlgh trafﬁc web sites. For'
~ these people, prov1d1ng a dedicated web server may be a waste, because they re pay-
~ing many hundreds of- dollars a month to lease a server that is. mostly 1dle'

 Many web- hosters offer lower~cost web hosting services by sharing one: computer
between several customers. This is called shared hosting ot virtual hosting. Each web-
site appears to be hosted by a different server, but they really are hosted on the same
physical server. From the end user’s perspective, virtually hosted Web sites should be
, mdlstmgulshable from sites hosted on separate dedicated servers: :

For cost efﬁcxency, space, and management reasons, a. Vlrtua] hostmg company
wants to host tens, hundreds, or thousands of web sites on the same server—but this
does not necessarily mean that 1 ,000 web sites are served from only one PC, Hosters
can create banks of rephcated servers (called server farms).) and spread the load across
the farm of servers. Because each server in the farm is a clone of the others, and hosts
many virtual web sites, administration is. much easier. (We 11 talk more: about server
farms in Chapter 20.) : X o

‘When Joe and Mary started their businesses, they mtght have chosen v1rtual hostmg
. 10 save money until their traffic. levels made a dedlcated server worthwhﬂe (see -
: Flgure 18-2). ‘

. Content -

“Client .

Fz’gute 1 8-2. Outsourced virtual hosting

'Vlrtual Server Request Lacks Host Information

Unfortunately, there is a de51gn flaw in HTTP/1.0 that makes virtual hosters pull
their hair out. The HTTP/1.0 specification didn’t give any means for shared web
‘servers to tdenttfy which of the virtual web sites they re hostmg is bemg accessed

- VirtuaI;Hos'.ting] 4B

| Recall that HTTP/ 1.0 requests send only the path component of the URL in the
request message. If you try to get http:/fwww.joes-hardware.com/index. himl; the
~ browser connects to the server www.joes-hardware.com, but the HTTP/1.0 request
says “GET /index.html”, ‘Wlth no further mention of the hostname. If the server is
virtually hosting multiple sites, this isn’t enough information to figure out what vir-
tual web site is being accessed. For example in Figure 18-3: . '

o If chent A tries to access http Swww]oes—hardware com/zndex html the request
“GET /index html” will be sent to the shared web server. :

e If client B tries to access http://www. marys-antiques. comlindex. html the 1dent1—
cal request “GET /mdex html” w111 be sent to the shared web server.

_ (A gettlng http//www /oes-hardware com/mdex html)

GET /index.hty
User-agent oz

wwwvotmg mfo gov
T vi.3 _ www.joes-hardware.com
: . o wwwmarys—anthues com

E | /wting /mary

. .

1.0 HTTP/1 0 requests do not contain hostname mformatlon, 50
User-agent: We fer 2000 | theydo not support web servers that host multiple web sites.

(3 gett/ng http /W TayS-artgues. com//ndex hieml) {HTTP/11 supports a Host header to fix thls problem.)’

' ItB

Figure 18—3. H TTP/I 0 server 'requests don’t contain hbsthame informatz’on :

As far as the web server is. concerned there is not enough mformatlon to determme
which web site is being accessed! The two requests look the same, even though they
are for totally different documents (from different web sites). The problem is that the
web site host 1nformat10n has been stripped from the request.

As we saw in Chapter 6, HTTP surrogates (reverse proxies) and 1ntercept1ng proxres
also need site-specifying information.

Making Virtual Hosting Work

The missing host information was an oversight in the original HTTP specification,
which mistakenly assumed that each web server would host exactly one web site.
HTTP’s designers didn’t provide support for virtually hosted, shared servers. For this

reason, the hostname information in the URL was viewed as redundant and strlpped
away; only the path component was required to be sent.

Because the early specifications did not make provisions for virtual hostmg, web
hosters needed to. develop workarounds and conventions to support shared virtual
hosting. The problem could have been solved simply by requiring all HTTP request

414 | Chapter 18: Web Hosting

messages to send the full URL 1nstead of just the path component HTTP/ 1.1 does '

~ require servers to handle full URLSs in the request lines of HT TP miessages, but it will

‘bea long time before all legacy applications are upgraded to tl‘llS specrﬁcauon In the v
meantime, four techmques have emerged - L

Virtual hostzng by URL path . . _
‘Adding a spec1al path component to the URL so the server can determme the site.

_Vzrtual hostmg by port number - -
~ Assigning a different port number to each site, so requests are handled by sepa- n
rate instances of the web server. - : :

' Virtual hosting by IP address '

Dedicating different IP addresses for dlfferent virtual sites and bmdmg all the IP
~-addresses to a single machine. This allows the Web server to 1dent1fy the site
name by IP address.. : : S

Vzrtual hosting by Host header :
Many web hosters pressured the HTTP desrgners 0 solve this problem
- Enhanced versions of HTTP/1.0 and the official version of HTTP/1.1 define a
Host request header that carries the site name: The Web server can identify the
vrrtual site from the Host header. -

Let s take a closer look at each technique.

Virtual hosting by URL path

You can use brute force to isolate virtual sites on a shared server by a551gn1ng them
different URL paths. For example you could give each loglcal Web site a special path
preflx L v

¢ Joe’s Hardware store could be http Swww]oes hardware com/]oe/mdex html
* Mary’s Anthues store could be http: //www marys~antzques com/mary/zndex himl.

When the requests arrive at the server, the hostname information is not present in
the request, but the server can tell them apart based on the path-'

* The request for Joe’s hardware is “GET /JOC/ indexheml”,
. The request for Mary’s antiques is “GET /mary/index. html”

This is not a good solution. The “/]oe and “/mary” prefixes are redundant and con-
fusing (we already mentioned “joe” in the hostname). Worse, the common conven-
tion of specifying http:./fwww]oes-hardware com or http:/fwww]oes -hardware.com/
index.html for the home page won’t work : : :

In general, URL—based virtual hostlng is a poor solution and seldom is used.

Vlrtual hosting by port number

Instead of changmg the pathname, Joe and Mary could each be assigned a different
port number on the web server. Instead of port 80, for example Joe could get 82 and

. \ﬁrtualesting |’415

~ Mary .co'ul'dhave 83 But this solution has the same problem an end user would
expect to find the resources WlthOut havmg to spec1fy a nonstandard port in the URL

: -Vlrtual hostmg by IP address

A much better approach (in common use) is vrrtual IP addressmg Here each Vrrtual

web site gets one or more unique IP addresses. The IP addresses for all of the virtual
web sites are attached to the same shared server. The server can look 1 up the destina-
tion IP address of the HTTP connection and use that to determme what web site the .
‘client thinks it is connected to.

Say a hoster assigned the IP address 209.172. 343 to www.joes- hardware com,

assigned 209.172.34.4 to www.marys-antiques.com, and tied both IP addresses to the”

same physical server machine. The web server could then use the destination IP
~ address to 1dent1fy which virtual site is being requested as shown in Flgure 18-4:

. Chent A fetches http: //www Joes- hardware. com/mdex html.
. Chent A fmds the IP address for www joes- hardware com gettmg 209. 172 34 3
* Client A opens a TCP connecuon to the shared web server at 209 172.34.3.
e Client A sends the request “GET /index. html HTTP/1.0”.

« Before the web servér serves a response it notes the actual destlnauon IP address
(209.172.34.3), deterrnmes that th_rs is a virtual IP address for Joe’s web site, and -
fulfills the request from the /joe subdirectory. The page /joe/index.html is returned.

Dest IP address Directory
- 1209.172.34.2 fvoting
1209172343 fjoe

1209172344 /mary

wwwvoting-infogov=209.172.34.2
www,joes-hardware.com= 209,172,
www.marys-antiques.com= 209

,,,,,,,,,,

“ClientB

- Figure 18-4. Virtual Ip hosting

Similarly, if client B asks for http:/fwww.marys- antiques.com/index. html:

e Client B frnds the IP address for www.marys- antiques.com, getting 209, 172. 34. 4.
* Client B opens a TCP connection to the web server at 209.172.34.4. -
Client B sends the request “GET /index.html HTTP/1.0”.

- The web server determines that 209.172.34.4 is Mary’s web site and fulfﬂls the
request from the /mary subdirectory, returning the document /mary/zndex html

416] Chabter18ﬁ- Web Hosting

Virtual. IP hostmg works, but it causes some dtfftcultles, especrally for large hosters

e Computer systems usually have a limit on how many. virtual IP addresses can be o
bound to a machine. Hosters that want hundreds or thousands Of vrrtual sites to
be hosted on a shared server may be out of luck. ' "

« IP addresses are a scarce commodity. Hosters with many v1rtual sites mtght not ,
be able to obtain enough virtual IP addresses for the hosted: web sites. :

o The IP address shortage is made worse when hosters. tephcate therr servers for -
‘additional capacity. Different virtual IP addresses may be needed on each reph-
cated server, dependmg on the load-balancing archttecture, SO the number of IP-

- addresses needed can multiply by the number of replicated: servers.

Despite the. address consumptton problems with vrrtual IP hostrng, itis used w1dely ’

Vlrtual hostmg by Host header

To avoid excessive address consumptlon and virtual IP limits, we d like to share the.
same IP address among virtual sites, but still be able to tell the sites- apart. But as
we’ve seen, because most browsers send just the path component of the URL to serv-
ers, the critical virtual hostname mformatton is lost ' -

To solve this problem browser and server implementors extended HTTP to provide
the original hostname to: servers But browsers couldn’t just send a full URL,
because that would break many Servers that expected to receive onlya path compo-
nent. Instead, the hostname (and port) is passed in a Host extensron header in all'
requests: : ' = -

In Frgure 18-5 client A and cltent B both send Host headers that carry the ongmal

hostname being accessed. When the server gets the request for /zndex html it can use .
the Host header to decrde Wthh resources to use. - : -

(A gemng http://www, /oes~hardware cam//ndex html)

) ‘www.voting-info.gov
‘bwser vi.3 | www,joes-hardware.com
www, marys anthues com

S,

,_ClientA i s
: /v_oting “fmary fjoe
i 0 O O

“ClientB

GET /index.html
User-agent: We
Host: marys- anthues com

(B getting hltp.//www marys- antiques.com/index.htmi)

The HTTP Host fieader carries the hostname information that would
otherwise be lost in normal server requests, allowing name-based
virtual hosting.

Figure 18-5. Host 'headers‘distinguish virtual host requests

. Virtual Hosting | 417

* Host headers were first introduced with HTTP/1.0+, a vendor-extended superset of
HTTP/1.0. Host headers are required for HTTP/1.1 compliance. Host headers are
supported by most modern browsers and servers, but there are still a few chents and
servers (and robots) that don t support them

_HTTP/1 1 Host Headers

The Host headet is an HTTP/1.1 request header defined in RPC 2068. Vlrtual serv-
€IS are $O cCommon that most HTTP chents even if they are not HTTP/1. 1—comphant
implement the Host header = : : : :

Syntax and usage

The Host header specrfles the Internet host and port number for the resource berng
requested, as obtained from the or1g1na1 URL: . ’

. Host = "Host” ":" host [N port]
In partrcular - _ v

. 'If the Host header does not. contam a port the default port for the scherne is
assumed. .

e If the URL contalns an 1P address the Host header should contatn the same -
address. ' : | _ '

* If the URL contains a hostname, the Host header must contain t_he same name.

* If the URL contains a hostname, ‘the Host header should not contain the IP

address equivalent to. the URL’s hostname, because this will break virtually
hosted servers, which layer multiple virtual sites over a single IP address.

o If the URL contains a hostname, the Host header should not contain another
alias for this hostname, because this also will break virtually hosted servers.

o If the client is using an exphc1t proxy server, the chent must include the name
and port of the origin server in the Host header, not the proxy server. In the past,
several web clients had bugs where the outgoing Host header was set to the host-
name of the proxy, when the client’s proxy setting was enabled. This 1ncorrect
behavior causes proxies and origin servers to misbehave. -

¢ Web clients must include a Host header field in all request messages

~* Web prox1es must add Host headers to request messages before forwarding them.
» HTTP/1.1 web servers must respond with a 400 status code to any HTTP/ 1.1

 request message that lacks a Host header field.

Here is a sample HTTP request message used to fetch the horne page of www]oes- :

hardware.com, along with the required Host header field:

GET http.//www,Joes-hardware.com/lndex.html HTTP/1.0
Connection: Keep-Alive ,
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22)

418 | Chapter18: Web Hosting

Accept 1mage/g1f 1mage/x xbltmap, 1mage/3peg, 1mage/p]peg, 1mage/pﬁg, */* S
_Accept-Encoding: g21p , _ _
Accept-Llanguage: en ,

Host:. www. Joes hardware com

Missing Host headers SR

A small percentage of old browsers in use do not send Host headers Ifa virtual host-
ing server is using Host headers to determine. which web site to serve, and no Host
header is present, it probably will either direct the user toa default web page (such as
the web page of the ISP) or return an error page suggestmg that the user upgrade her
browser. : S

lnterpretmg Host headers

An origin server that isn’t Vrrtually hosted and doesn’t allow resources to differ by
the requested host, may ignore the Host header field value. But any origin server that
does differentiate resources based on the host must use the followmg rules for deter-
mining the requested resource on an HTTP/1.1 request:

1. If the URL in the HTTP request message is absolute (i.e., contains a scheme and
~ host component) the value in the Host header i is 1gnored in favor of the URL.

2. If the URL in the HTTP request message doesn’t have a host, and the request con-
tains a Host header, the value of the host/port is obtamed from the Host header.

3. If no vahd host can be determmed through Steps 1 or 2 a 400 Bad Response
response is returned to the client.

Host headers and proxies

Some browser versions send incorrect Host headers, espec1ally when configured to
use proxies. For example, when configured to use a proxy, some older versions of
Apple and PointCast clients mistakenly sent the name of the proxy instead of the ori-
gin server in the Host header :

Making Web Sites Reliable
There are several times during which web sites commonly break:

. Server downtime

e Traffic spikes: suddenly everyone wants to see a partrcular news broadcast or
“rush to a sale. Sudden spikes can overload a web server, slowmg it down or stop-
pmg it completely.

. Network outages or losses

This section presents some > ways of ant1c1pat1ng and deahng with these common
problems.

~ Making Web Sites Reliable. | 419

.M|rrored Server Farms

A server farm is a bank of 1dent1cally conflgured web servers that can cover for each
‘other. The conterit on each server in the farm can be mlrrored so that 1f one has a
problem, another can fill in. o

Often, mirrored servers follow a hlerarchrcal relatlonshlp One server mrght act as
the “content authorrty *—the server that contains the. original content (perhaps a

~ server to which the content authors post) This server is called the master orzgm ’
~ server. The mirrored servers that receive content from the master origin server are
called replica origin servers. One srmple way to deploy a server farm is to use a net-
work switch to distribute requests to the servers. The IP address for each of the web
sites hosted on the servers is the IP address of the switch., ‘

In the mlrrored server. farm shown in Figure 18- 6, the master orlgln server is respon-
sible for sending content to. the replica origin servers. To the outside world, the IP
address for this content is the IP address of the sw1tch The sw1tch is responsible for
sendmg requests to the servers.

OB

~ Client

Replica origin server

Client

Replica origin servers

Figure 18-6. Mirrored sefver farmv

Mirrored web servers can contain copres of the exact same content at. drfferent loca-
tions. Figure 18-7 illustrates four mirrored servers, with a master server in Chicago
“and replicas in New York, Miami, and Little Rock. The master server serves clients
in the Chlcago area and also has the]ob of propagating its content. to the replica
servers.

In the Figure 18-7 scenario, there are a couple of ways that chent requests Would be
directed to a particular server: o

: HTTP redirection :
The URL for the content could resolve to the IP address of the master server,
whrch Could then send redirects to replica servers.

420 »l' Chapter 18: Web Hosting

Newlork

Chicago (HQ) |
Replica origin server -

~ Master origin server

.liIeRotk S ‘ S . 'Mlaml
~ Replicaoriginserver - : Repllca ongm server

Figure 18-7. Dispersed mirrored servers

DNS. redzrectzon '
The URL for the content could resolve to four IP addresses and the DNS server
could choose the IP address that it sends to clients.

See Chapter 20 for more detalls

Content Dlstnbutlon Networks

A content distribution network (CDN) is simply a network whose purpose is the dis-
tribution of specific content. The nodes of the network can be web servers, surro-
gates or proxy caches. :

_Surrogate Cachesin CDNs

Surrogate caches can be used in place of replica origin servers. in F1gures 18 6 and
18-7. Surrogates, also known as reverse proxies, receive server. requests for content
just as mirrored web servers do. They receive server requests on behalf of a specific
set of origin servers (this is possible because of the way IP addresses for content are
advertised; there usually is a working relationship between origin server and surro-
gate, and surrogates expect to receive requests aimed at specific origin servers)

The difference between a surrogate and a mirrored server is that surrogates typlcally
are demand-driven. They do not store entire copies of the origin server content; they
store whatever content their clients request. The way content is distributed in- their
caches depends on the requests that they receive; the origin server does not have the
responsibility to update their content. For easy access to “hot” content (content that
is in high demand), some surrogates have “prefetching” features that enable them to
pull content in advance of user requests. -

‘An added complexity in CDNs with surrogates is the possibility of cache hierarchies.

Making Web Sites Reliable | 421

| Proxy Caches in CDNs

Proxy caches also can be deployed in configurations srmrlar to those in- Flgures 18 6
and 18-7. Unlike surrogates; traditional proxy caches can receive requests aimed at '
any Web servers (there need not be any ‘working relationship or IP address agree-
ment between a proxy cache and. an origin server). As with surrogates, however,
proxy cache content typically is demand-driven and is not expected to be an exact
duplrcate of the origin server content. Some proxy caches also can be preloaded Wlth
hot content : : '

: Demand driven proxy caches can be deployed in other klnds of confrguratrons——-m
particular, interception configurations, where a layer-2 or -3 device (switch or router)
mtercepts web traffic and sends it toa proxy cache (see Frgure 18-8).

Ciet

Client -

Figure 18-8. Client requests zntercepted by a switch and sent 1o a proxy

~An mterceptron conflguratron depends on belng able to set up the network between
clients and servers so thatall of the appropriate HTTP requests are physically chan-
neled to the cache. (See Chapter 20). The content is distributed in the cache accord~
1ng to the requests it receives. :

'Maklng Web Sltes Fast

Many of the technologles mentloned in the previous section also help web sites load
faster. Server farms and distributed proxy caches or surrogate servers distribute net-
- work traffic, avoiding congestion. Distributing the content brings it closer to end
users, so that the travel time from server to client is lower. The key to speed of
resource access is how requests and responses are directed from client to server and
back across the Internet. See Chapter 20 for details on redirection methods.

Another approach to speeding up web sites is encoding the content for fast transpor-
tation. This can mean, for example, compressing the content, assuming that the
receiving chent can uncompress it. See Chapter 15 for details.

422 | Chapter18: Web Hosting

For More Informatlon

See Part 111, Identzfzcatzon Authorzzatzon and Securzty, for detaﬂs on how to make
web sites secure. The following Internet drafts and documentatron can glve you more
details about web. hostlng and content dlstnbutlon o

http /fwww.ietf.org/rfc/rfc3040,txt . o :
. RFC 3040, “Internet Web Replication and Caching Taxonomy, is a reference
for the vocabulary of web replication and caching applications.

http://search.ietf. org/znternet—dmfts/draft-zetf cdi-request- routzng—reqs OO txt
“Request-Routing Requirements for Content Internetworkmg S

Apache: The Definitive Guide ’ o :
Ben Laurie and Peter Laurie, O’Reilly & Assoc1ates Inc Thrs book descrrbes
how to run the open source Apache web server, -

-For More Information | 423

 CHAPTER19
| Publlshlng Systems

- How do you create web pages and get them onto a web server? In the dark ages of -
the Web (let’s say, 1995), you might have hand-crafted your HTML in a text editor
~and manually uploaded the content to the web server using FTP. This procedure was
~ painful, difficult to coordinate with coworkers, and not particularly secure.

- ‘Modern-day publishing tools make it much more convenient to create, publish, and -
manage web content. Today, you can interactively edit web content as you'll see it

on the screen and. pubhsh that content to servers with a smgle click, whilé being noti-
fied of any files that have changed

Many of the tools that support remote publishing of content use extensions to the
HTTP protocol. In this chapter, we explain two important technologles for web-
- content pubhshmg based on HTTP FrontPage and DAV. '

| FrontPage Server Extensrons
for Publlshmg Support

FrontPage (cornmonly referred to as FP) is a versatile web authoring and pubhshmg |
toolkit provided by Microsoft Corp. The original idea for FrontPage (FrontPage 1.0)

was conceived in 1994, at Vermeer Technologies, Inc., and was dubbed the first

product to combine web site management and creation into a single, unified tool.
‘Microsoft purchased Vermeer and shipped FrontPage 1.1 in 1996. The latest ver-
sion, FrontPage Version 2002, is the sixth version in the line and a core part of the
Mlcrosoft Ofﬁce suite. .

__ FrontPage Server Extensions

As part of the “publish anywhere” strategy, Microsoft released a set of server-side soft-
ware called FrontPage Server Extensions (FPSE). These server-side components inte-
grate with the web server and provide the necessary translation between the web site
and the client running FrontPage (and other clients that support these extensions).

04

| Our prlmary interest 11es in the pubhshmg protocol between the FP chents and FPSE.
This protocol provides an example of designing extensions to the core serv1ces avail-
.able in HTTP without changmg HTTP semantics. -

The FrontPage pubhshmg protocol 1mp1ements an RPC layer on top of the HTTP :
POST request. This allows the FrontPage client to send commands’ to the server to-

update documents on the web- site, perform searches, collaborate amongst the web _
authors, etc. Flgure 19-1 gives an overview of the commumcatlon IR

' HITPrequestmessa econtams
the command an the URL

FrontPage clients: g

fontPage, .
MSWord, Excel, etc..
EFrontl’ageServer- .
. ;Extensmns(FPSE).)

Figure 19-1.:ErontPage publishing architecture |

The web server sees POST requests -addressed to the FPSE (implemented as a set of
CGI programs, in the case of a non-Microsoft 11S servet) and directs those requests
accordingly. As long as intervening firewalls and proxy servers are conflgured to
allow the POST method, FrontPage can contlnue commumcatlng with the server.

FrontPage Vocabulary

Before we dive deeper into the RPC layer defined by FPSE it may help to estabhsh
the common vocabulary: -

Virtual server _ }

One of the multiple web sites running on the same server, each with a unique
domain name and IP address. In essence, a virtual server allows a single web
server to host multiple web sites, each of which appears to a browser as being
hosted by its own web server. A web server that supports virtual servers is called
a multi-hosting web server.. A machine that is configured with multiple IP
addresses is called a multi-homed server (for more detalls please refer to ‘V1r—
tual Hosting” in Chapter 18). : :

Root web _
The default, top—level content directory of a web server, or, in a multi-hosting
environment, the top-level content directory of a virtual web server. To access
 the root web, it is enough to specify the URL of the server without specifying a
page name. There can be only one root web per web server. |

_FrontPa_ge.ServerlExtens'ions-for Publishing Support | 425

Subweb : : R L
A named subdlrectory of the oot Web or- another subweb that is a complete
- FPSE extended web. A subweb can be a complete 1ndependent entity with the

ability to specify its own administration and authoring permissions. In addition,

'subwebs may prov1de scopmg for methods such as searches.

The FrontPage RPC Protocol

The FrontPage client and FPSE communicate using a proprietary RPC protocol This
protocol is layered on top of HTTP POST by embedding the RPC methods and the1r
: assoc1ated variables in the body of the POST request.

To start the process, the client needs to. determlne the locatxon and the name of the
target programs on the server (the part of the FPSE package that can execute the
POST request) It then issues a spec1al GET request (see thure 19- 2)

HrTP requestmessa e contains
the command and the URL

GET /_vti_inf.hitml HTTP/1. 1
Date: Sat] 12 Au§ 2000 20:31:24 GMT -
User-agent: Mozilla/2. o (compatlble,MS FrontPage 4, D)
Host: taskserver:80
Accept: auth/sicily
Content- length 0

FrontPage clients §

: E FrontPage Server ! !
! Extensmns (FPSE): :

Figure 19-2. Initial .request :

When the file is returned, the FrontPage client reads the response and fmds the val-
ues associated with FPShtmlScriptUrl, FPAuthorScriptUrl; and FPAdmlnScrlthrl
Typically, this may look like:

© FPShtmlScriptUrl="_vti_bin/_vti_rpc/shtml.dll”

FPAuthorScnthrl-" vti_bin/ vti_aut/author.dll"
FPAdmlnScrlthrl-" vti_bin/_vti_adm/admin.dll”

FPShtmlScriptUrl tells the client where to POST requests for “browse time” com-
~ mands (e.g., getting the version of FPSE) to be executed.

FPAuthorScriptUrl tells the client where to POST requests for authormg time” com-
mands to be executed. Similarly, FPAdminScriptUrl tells FrontPage where to POST
v requests for administrative actions.

42 | ' Chapter 19; Publishing Systems

Now that we know where the various programs are located we are ready to send a
» request S o : -

-Request

The body of the POST request contains the RPC - command in the form of
“method=<command>"" and' any required parameters. For example con31der the
RPC message requestlng a list of documents, as follows '
POST /_vti_bin/_vti_ aut/author dll HTTP/1.1 '

© Date: Sat, 12 Aug 2000 20:32:54 GMT
User;Agent:"MSFrontPage/4;0 '

<BODY> ' ’

method= 11st+document543a442eo%2e2%2e3717&serv1ceésfname—&l1stH1ddenDocs false&llstExp

lorerDocs=falsedlistRecurse=false8listFiles= true&llstFolders true&llstLlnkInfo—true&l

istIncludeParent=truedlistDerived=false

&listBorders=false&listChildwWebs= true&lnltlaIUrl &folderLlst /5b%3bTW/7c12+Aug+2000+2

: 043a33/3a04+/2doooo/5d IR o

The body of the POST command contains the RPC command bemg sent to the
FPSE. As with CGI programs, the spaces in the method are encoded as plus sign (+)
characters. All other nonalphanumeric characters in the method are encoded using
%xX format, where the XX stands for the ASCII representation of the character. Using
this notation, a more readable version of the body Would look like the following:

method llst+documents :4.0.1,3717 :

&serv1ce_name— ,

31istHiddenDocs=false

8listExplorerDocs=false.

Some of the elements listed are:
service_name

The URL of the web site on which the method should act. Must be an ex1st1ng
folder or one level below an ex1st1ng folder :

lzstszdenDocs v
Shows the hldden documents ina Web if i its value is. “true” ' The “hldden” docu-
- ments are designated by URLs w1th path components startlng with “_” '

lzs_tExploreDocs »
If the value is “true”, lists the task lists.

' Response

‘Most RPC protocol methods have return values Most common return values. are for
successful methods and errors. Some methods also have a third subsection, “Sample
Return Code.” FrontPage properly interprets the codes to provide accurate feedback
to the user. : S ’

FrontPagé Serv’_ervExten's‘iqns for Publishing Support | 427

Continuing with our example the FPSE processes the “hst+documents requestand
returns the necessary mformauon A sample response follows: ’ o
CHTTP/1.1 200 OK ' ‘
Server: Microsoft-IIS/s. 0 :
‘Date: Sat, 12 Aug 2000 22:49:50 GMT

‘Content-type: application/x-vermeer- pC
X- FrontPage ~User-Name: IUSER MINSTAR

’<htm1><head><t1tle>RPC packet</t1t1e></head>
<body> S
- <p>method=1ist documents 4.0;2.3717 ,
<p>document_ llst— '
<uly o :
- <lisdocument_ name help glf
<\ul> . o _
As you can see from the response a formatted hst of documents avallable on the web.

server is returned to the FP client. You can find the complete list of commands and
responses at the Mlcrosoft web site.

| 'FrontPage Secunty Model

Any publishing system directly accessmg web server content needs to be very con-
scious of the security implications of its actions. For the most part, FPSE depends on
the web server to provide the security. : :

“The FPSE securlty model defines three kinds of users: admmlstrators authors and
browsers, with administrators having complete control. All permissions are cumula-
tive; i.e., all administrators may author and browse the FrontPage web. Slmllarly, all.
authors have browsing permissions. :

~ The list of administrators, authors, and browsers is defmed for a glven FPSE
extended web. All of the subwebs may inherit the permissions from the root web or
set their own. For non-IIS web servers, all the FPSE programs are required to be
stored in directories marked “executable” (the same restriction as for any other CGI
program). Fpsrvadm, the FrontPage server administrator utility, may be used for this
_ purpose. On IIS servers, the integrated Windows security model prevails. =~

On non-IIS servers, web server access-control mechanisms specify the users who are
allowed to access a given program. On Apache and NCSA web servers, the file is .
named .htaccess; on Netscape servers, it is named .nsconfig. The access file associ-
ates users, groups, and IP addresses with various levels of permissions: GET (read),
POST (execute), etc. For example, for a user to be an author on an Apache web
server, the .htaccess file should permit that user to POST to author.exe. These access-
specification flles often are defined on a per-directory basis, providing greater ﬂex1—
bility in deflnmg the permlssmns

428 | Chapter19: Publishing Systems

. On IIS servers, the permlssmns are checked against the ACLs for a gwen root or sub-_ |
root. When IIS gets-a request, it ﬁrst Jogs on and impersonates the user, then sends -

the request to one of the three extension dynamic link hbrarles (DLLS) The DLL .

checks the impersonation credentials ‘against the ACL defined for the destmauon
folder. 1f the check is successful, the requested operatlon is executed by the exten-
“sion DLL. Otherwise, a “permission denied” message is sent. back to_the client,

Given the tight integration of Windows security w1th IIS the User Manager may be
“used to define fine-grained control. : :

In spite of th1s elaborate security model enabling FPSE has galned nOtorlety asa
“nontrivial security risk. In most cases, this is due to sloppy practices adopted by web
site administrators. However, the earlier versions of FPSE did have severe security
loopholes and thus contributed to the general perception of security risk. This prob-
lem also was exacerbated by the arcane practtces needed to fully 1mplement a tight
.securlty model : : : :

‘WebDAV and Collaboratlve Authorlng

Web Dlstrlbuted Authorlng and Vers1on1ng (WebDAV) adds an extra dtmenswn to
- web publishing—collaboration. Currently, the most common practice of collabora-
tion is decidedly low-tech: predominantly email, sometimes combined with distrib-
~uted fileshares. This practice has proven to be very inconvenient and error-prone,
with little or no control over the process. Consider an example of launchmg a multi-
‘national, -multilingual - web site for an automobile manufacturer. It’s easy to see the
need for a robust system with secure, reliable pubhshlng pnmmves, along Wlth col-
laborauon primitives such as locking and versioning. : o

WebDAV (published as REC 2518) is focused on extendmg HTTP to prov1de a suit- .
-able platform for collaborative authoring. It currently is an IETF effort with support
from various vendors, 1nclud1ng Adobe, Apple IBM, Microsoft, Netscape, Novell,
- Oracle, and Xerox. : :

- WebDAV Methods

WebDAV deflnes a set of new HTTP methods and: modlﬁes the operatlonal scope of
a few other HTTP methods The new methods added by WebDAV are:

PROPFIND - :
‘Retrieves the properties»of a resource.

PROPPATCH
- Sets one or more propertles on one or many resources:

MKCOL
~ Creates collections.

WebDAV and Collaborative Authoring | 429

copy . , o R -
Coples a resource or a collectlon of resources frorn a-given source toa g1ven des--
- tination. The destmatlon need not be on the same machine. '

'MOVE

: tmatxon The destmatlon need not be on the same machme
LOCK
” Locks a resource or multlple resources.
UNLOCK :
Unlocks a prev1ously locked resource.

HTTP methods modified by WebDAV are DELETE PUT, and OPTIONS. Both the
‘new and the modlfled methods are dlscussed in detail later in this chapter ‘

 WebDAV and XML

WebDAV’s methods generally require a great deal of mformanon to be’ associated
with both requests and responses. HTTP usually communicates this information in
message headers However, transporting necessary information in headers alone
imposes some limitations, including the difficulties of selective application of header
mformanon to multiple resources in a request, to represent hierarchy, etc.

To solve thlS problem WebDAV embraces the Extensible Markup Language (XML)'
a meta-markup language that provides a format for describing structured data XML
provides WebDAV with: - :

* A method of formattmg instructions descrrblng how data is to be handled

* A method of formattrng complex responses from the server

* A method of communicating customized 1nformat10n about the collectlons and
resources handled :

A flexible Vehlcle for the data itself

A robust solutlon for most of the internationalization issues

Tradrtronally, the schema definition for XML documents is kept in a Document Type
Definition (DTD) file that is referenced within the XML document itself. Therefore,
when trying to interpret an XML document, the DOCTYPE definition entity gives
the name of the DTD file associated with the XML document in question.

 WebDAYV defines an explicit XML namespace, “DAV:”. Without going into many
details, an XML namespace is a collection of names of elements or attributés. The
‘namespace qualifies the embedded names uniquely across the domain, thus avoid-
ing any name colllslons - ' -

* The complete XML schema is defined in the WebDAV spec1f1cat10n RFC 2518. The
presence of a predefined schema allows the parsing software to make assumptions on
the XML schema without having to read in DTD files and interpret them correctly. -

430 | Chapter19: Publishing Systems

. Moves a resource or a collectron of resources from a given source to a g1ven des-

| 'WebDAV Headers

WebDAV does 1ntroduce several HTTP headers to augment the functronahty of the
new methods. This section provrdes a brief overvrew, see RFC 25 18 for more infor-
mation. The new headers are: . . . v v

DAV . :
Used to communicate the WebDAV capabrhues of the server. All resources sup~
- ported by WebDAV are required to return this header in the response to the
OPTIONS request See “The OPTIONS method” for more detalls

DAV = "DAV" "M mqt [n,r o] £, 1#extend]
Depth ’ : _
The crucial element for extendmg WebDAV to grouped resources w1th multrple_
levels of hierarchy (for more detailed explanation about collecttons, please refer
to “Collections and Namespace Management”).. : -
~ Depth = "Depth” ":" ("0" | "1" | "infinity") :

Let’s look at'a srmple example Consider a dlrectory DIR_A wrth files lee 1. html
and file 2. himl. If a method uses Depth: 0, the method applies to the DIR_A direc-
tory alone; and Depth: 1 apphes to- the DIR A dlrectory and its flles file_1. html
and file- 2. html.

The Depth header modrﬁes many WebDAV-defmed methods Some of the
methods that use the Depth header are LOCK COPY and MOVE '

Destination _ ’
Defined to assrst the COPY or MOVE methods in 1dent1fymg the destmatlon
URL. : :

Destination = “Destination" f:“_absoluteURI
The only defined state token is a lock token (see “The LOCK Method”). The If
header defines a set of conditionals; if they all evaluate to false, the request will -
 fail. Methods such as COPY and PUT conditionalize the applicability by specify-
ing preconditions in the If header. In practice, the' most common precondition to
be satrsﬁed is the prior acquisition ofalock.”
If = "If" " (1*No- ~tag-list | 1*Tagged llst)
. No-tag- llst = List
Tagged-list = Resource 1HList
. Resource = Coded-URL '
Clist = "(" 1*(["Not"](State-token | "[" entity-tag "]")) ")"
State-token = Coded-URL '
Coded-URL = "<" absoluteURI ">"
Lock-Tokén - _) ‘
Used by the UNLOCK method to specrfy the lock that needs to be removed A
response to a LOCK method also has a Lock-Token header, carrying the neces-
~ sary - mformatlon about the lock token.

Lock- Token = 'Lock Token' “en Coded URL -

" WebDAV and Collaborative Authoring | 431

P

.Overwrzte
- Used by the COPY and MOVE methods to de51gnate whether the destmatlon
: should be overwrltten See the- dlscuss1on of the COPY and MOVE methods.

later in this chapter for more details. -
OVGIWIl‘te) "OVEIW.'(l'te" 10 II (nTn | nFn)

szeout e
CA request header used by a chent to spec1fy a desired lock timeout value. For
more 1nformat10n refer to the section “Lock refreshes and the T1meout header.”
”TlmeOut = “Tlmeout" o 1#T1meType - '
TimeType = ("Second-" DAVTlmeOutVal | "Inflnlte" [Other)

DAVTimeOutVal = 1*digit
Other = “Extend" fleld value

'Now that we have sketched the intent and 1mplementat10n of WebDAV let s look o
~ more closely at the functlons prov1ded

~

) -_WebDAV Lo'cki'ng’ and Ovérwrite Prevention

By definition, collaboration requires more than one person Worklng on a given docu-

ment. The 1nherent problem assoc1ated with collaboratlon is 1llustrated in Flgure 19-3.

- Kscopy

AuthorB

" Author A

“B” also publishes and
overwrites ‘A”s changes

- uihor_l!- | ' Sharedlerepos:tory " AuthorB

Figure 1 9-3. Lost update problem

In this example, authors A and B are jointly writing a specification. A and B indepen-
dently make a set of changes to the document. A pushes the updated document to -
the repository; and at a later point, B posts her own version of the document into the
repository. Unfortunately, because B never knew about A’s changes, she never

.merged her version W1th A’s version, resulting in A S work bemg lost

432 | Chapter19: Pliblish"ing Systems '

T 0 amehorate the problem WebDAV supports the concept of locklng Lockmg . .
alone will not fully solve the problem Versmnlng and messagmg support are needed
to complete the solutlon : -

_ WebDAV supports two types of locks

. Excluswe write locklng of a resource or a collect1on

-+ Shared write locking of a resource or a collection

An exclusive write lock guarantees write privileges only to the lock owner. Thrs type
of locking completely eliminates potential conflicts. A shared write lock allows. a
group of people to work on a given document. This type of locking works well in an
environment where all the authors are aware of each other’s activities. WebDAV pro-
vides a property dlscovery mechanism, via PROPFIND, to determme the support for
locking and the types of locks supported :

WebDAV has tWO new methods to support locking: LOCK and UNLOCK

To accomphsh lockmg, there needs to be a mechanism for 1clent1fy1ng the- author '
- WebDAV reqmres dlgest authentlcatlon (discussed in Chapter 13)." ' :

When a lock is granted the server returns a token that is umque across the domain
to the client. The specification refers to this as the opaquelocktoken lock token URI
scheme. When the client subsequently wants to perform a write, it connects to the
server and completes the digest authentication sequence. Once the authentication is
complete, the WebDAV client presents the lock token, along with the PUT request.
- Thus, the comblnatlon of the correct user and the lock token is requrred to complete
the write. : : :

The LOCK Method

A powerful feature of WebDAV is its abrhty to lock mult1ple resources wrth a smgle
LOCK request. WebDAV locklng does not require the chent to stay connected to the
server. : :

For example here sa 51mple LOCK request:

. LOCK /ch-publish.fm HTTP/1.1

“Host: minstar

~Content-Type: text/xml
User-Agent: Mozilla/4.0 (compatlble, MSIE 5. o, Windows NT)
Content-Length: 201

<oxml version="1.0"?>
<a:lockinfo xmlns:a="DAV:"> :
- <a:lockscope><a:exclusive/></a:lockscope>
<a:locktype><a:write/></a:locktype>
_ <a:owner><a:href>AuthorA</a:hrefs</a:owner>
_</a locklnfo> '

' WebDAVand.qulaborative Aut_horlng |- 433

' The XML bemg submltted has the <1ock1nfo> element as its base element Wlthm |
the <lockinfo> structure, there are three subelements :

-<locktype> - :
- Indicates the type of lock Currently there is only one, “write.

»

' -<lockscope>
Indicates whether thrs is an exeluswe lock ora shared lock

<owner> :
Freld is set with the person who holds the current lock

Here’s a successful response to.our LOCK request

HTTP/1.1 200 OK

Server: Microsoft-IIS/s. 0 -
Date: Fri, 10 May,2002_20 56:18 CMT
Content-Type: text/xml :
Content-Length: 419

<?xml version="1.0"?>

<a:prop xmins:a="DAV:">-

<a:lockdiscovery><a: activelocks

- <a:locktypes<a:write/></a: locktype>

~<a:lockscope><a:exclusive/></a:lockscope> -

<a:owner xmlns:a="DAV:"><a:href>AutherA</a:hrefs></a:owner>

<a:locktokeny<a: href>opaquelocktoken *****</a href></a: locktoken>

'<a:depth>0</a:depth>

<a:timeout>Second-180</a: timeout>

</a:activelock></a: lockdlscovery>

</a:prop> : _ ,
The <lockdiscovery> element acts as a container for information about the lock.
Embedded in the <lockdiscovery> element is an <activelock> subelement that holds
the information sent with the request (<locktype>, <lockseope> and <owner>) In

addition, <act1velock> has the following subelements

<locktoken>
Uniquely identifies the lock in a URI scheme called opaquelocktoken Given the
stateless nature of HTTP, this token is used to 1dent1fy the ownershlp of the lock
in future requests.

<depth>
Mirrors the value of the Depth header.
<timeout>

Indicates the timeout associated with the lock. In the above response
(Figure 19-3), the timeout value is 180 seconds.

The opaquelocktoken scheme

The opaguelocktoken scheme is designed to provide a unique token across all resources
for all times. To guarantee uniqueness, the WebDAV specification mandates the use of
the universal unique identifier (UUID) mechanism, as described in 1SO-11578.

434 | Chapter19: PubliShihg Systems

When it comes to actual 1mplementat10n there is some leeway The server has-the
choice of generating a UUID for each LOCK request, or generating a single UUID
and maintaining the uniqueness by appending extra characters at the end. For per-
formance considerations, the latter choice is better. However, if the server chooses to
implement the latter choice, it is requlred to guarantee that none of the added exten-
sions will ever be reused.

The <lockd|scovery> XML element

The <loekd1scovery> XML element provides a mechanism for active lock dlscovery
If others try to lock the file while a lock is in place, they will receive a <lockdiscov-
ery> XML element that indicates the current owner. The <1ockdlscovery> element
lists all outstandmg locks along wtth their properues 5

Lock refreshes and the Tlmeout header

To refresh a lock, a client needs to resubmlt a lock request w1th the lock token in the
If header The timeout value returned may be different from the earher timeout values.

Instead’ of accepting the timeout value given by the server, a client may indicate the
timeout value required in the LOCK request. This is done through the Timeout
header. The syntax of the Timeout header allows the client to. spec1fy a few options
in a comma- separated list. For example:

Tlmeout Inflnlte, Second-86400

The server is not obligated to honor either of the opt1ons However it is required to
provide the lock expiration time in the <timeout> XML element. In all cases, lock
timeout is only a guideline and is not necessarily binding on the server. The adminis-
trator may do a manual reset, or some other extraordinary event may cause the
Server to reset the lock. The clients should avoid taking lengthy locks '

In spite of these primitives, we may not completely solve the “lost update problem
illustrated in Figure 19-3. To completely solve it, a cooperatwe event system thh a
versioning control is needed. :

The UNLOCK Method
The UNLOCK method removes a lock on a resource, as follows:

UNLOCK /ch-publish.fm HTTP/1.1

Host: minstar.inktomi.com

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; W1ndows NT)
Lock-Token:

opaquelocktoken: ¥¥¥rkix

HTTP/1.1 204 OK
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 20:56:18 GMT

WebDAV and Collaborative Authoring | 435

 As with most resource. management requests WebDAV has two requlrements for
"UNLOCK to succeed:. prior completion of ‘a -successful digest -authentication
sequence and matching the lock token that is sent in the Lock-Token header.

| If the unlock is successful a 204 No Content status code is returned to client.
Table 19-1 summarlzes the p0551ble status codes w1th the LOCK and UNLOCK -

- methods. -

Table 19-1. Status codes for LOCK and UNLOCK:méthodS' ‘

200 0K _ . HTTP LOCK Indicates successful locking,
201Created TP 10K lnd;catesthatalockonanonexmtent resource succeeded bycre-
o - atingtheresource.
204 No Content - . HIP ~ UNLOCK Indicates successful,‘unlocking. o _ _
207 Multi-Status - WebDAV LOCK The request was for locking multiple resources. Not all status

' C S -+ codes returned were the same. Hence, they are all encapsulated

} L : o in 2 207 response. ‘ : -

403Forbidden - HTTP LOCK ~ Indicates that the client does not have permtssmn to Iockthe -
' I o " resource.

412 Precondition Failed '> WP L0CK ' Fitherthe XMLsent with the LOCKcommand mdlcatedacondl-

 tionto be satisfied and the server failed to complete the required :
‘condition, or the lock token could not be enforced. -

. 422 Unprocessable Property -~ WebDAV LOCK - Inapplicable semantics—an example may be specifying a non-
' ' ‘ * zero Depth for a resource that is nota coIIectlon

423 Locked WebDAV LOCK - Alreadylocked.

424 Failed Dependency 'Web.DAV . _UNLOC_K UNLOCK specifies otheracttonsandthetrsuccess as a condition
S ' - forthe unlocking. Thlserrorlsreturned tfthedependencyfatlsto,

complete

Propertles and META Data

Properties descrlbe 1nformat10n about the resource, including. the author s name,
‘modification date, content rating, etc. META tags in HTML do prov1de a mecha-
nism to embed this information as part of the content; however, many resources -
(such as any binary data) have no capability for embedding META data. ’

A distributed collaboratlve system 'such as WebDAV adds more complexity to the
~* property requirement. For example, consider an author property: when a document -

~ gets edited, this property needs to be updated to reflect the new authors. WebDAV
terms such dynamically modifiable properties “live” properties. The more perma-
nent, static properties, such as Content-Type, are termed “dead” propertles

To support discovery and modification of properties, WebDAV extends HTTP to
include two new methods, PROPFIND and PROPPATCH. Examples and._cor_re-
sponding XML elements are described in the following sections.

436 | Chapter19: Publishing Systems -

'The PROPFIND Method » o L
The PROPFIND (property frnd) method is used for retrieving. the propernes of a

-, given file or a group of files (also known as a collectlon”) PROPFIND supports' o

three types of operatrons ‘

a Request all propertres and their values.
* . Request a selected set of propertres and values.
. Request all property names. '

Here’s the scenario where all the properties and their values are requested

PROPFIND “/ch- publ1sh fm HTTP/1.1

Host: minstar.inktomi.com

User-Agent:. M02111a/4 0 (compatlble, MSIE 5.0; W1ndows NT)
- Depth: 0 :

Cache=Control: no- cache

Connection: Keep-Alive -

Content Length 0

The <propfrnd> request element specrfres the propertres to be returned from a
PROPFIND method. The following hst summarizes a few XML elements that are
used with PROPFIND requests o : :

<allprop> : :

* Requites all property names and values to be returned To request all properties
and their values, a WebDAV client may either send an <allprop> XML subele-
ment as part of the <propf1nd> elemerit, or subm1t a request with no body.”

<propname> ‘ o a '
Specifies the set of property names to be returned

<prop> ' : _

A subelement of the <propfrnd> element Specrfres a specrfrc propetty Whose,

value is to be returned. For example: “<a:prop> <a:owner />..... </a:prop>”.

Here’s a response to a sample PROPFIND request

HTTP/1.1 207 Multi-Status
- Server: Microsoft-IIS/5.0

<¥xml version="1.0"7> . '
<a:multistatusxmlns:b="urn: uu1d rokRRkk /1 xmlns c="xml:" xmlns:a="DAV:"> -
<a:response> :
_<a:href>http: //m1nstar/ch -publish. rm </a: href>
<a:propstat>
- <arstatus>HTTP/1.1 2000K</a:status>
<a:prop> :
<a: getcontentlength b:dt= "int">1155¢/a:getcontentlength>

......................

* WebDAVand Collaborative Authoring | _'.437»

~

" <a:ishidden b:dt="boolean’ >o</a.ishidden>
<a: 1scollect10n b:dt= "boolean >0</a:iscollection>
</aiprop> : ’

_ </a: propstat>

© </a:responsey</a: mult15tatus> ,
In this example, the server responds w1th a 207 Multr-Status code. WebDAV uses the
207 response for PROPFIND and a few other WebDAV methods that act simulta-
neously on multiple resources and potentially have different responses for each

- resource..
A few XML elements in the 1 response need to be deﬁned

<multistatus>
A container for multrple Tesponses.

<href>
Identlfles the resource s URL

<status> :

Contarns the HTTP status code for the partrcular request

‘ <propstat> ' o =

Groups one <status> element and one <prop> element The <prop> element
may contam one ormore property name/value pairs for the given resource.

In the sample response listed above, the response is for one URI, http: //mmstar/ch—
 publish.fm. The <propstat> element embeds one <status> element and one <prop>
element. For this URL, the server returned a 200 OK response, as defined by the <sta-
tus> element. The <prop> element has several subelements; only some are hsted in
the example :

One instant apphcatron of PROPFIND is the support for drrectory hstlng Given the
expressability of a PROPFIND request, one single call can retrieve the entire hlerar-
chy of the collectron w1th all the propertres of individual entities:

The PROPPATCH Method

The PROPPATCH method prov1des an atomic mechanism to set or remove multiple
properties on'a given resource. The atomicity will guarantee that either all of the
requests are successful or none of them made it.

The base XML element for the PROPPATCH method is <proper‘tyupdate>,. It acts as
‘a coht’ainer'fOr_ all the properties that need updating. The XML elements <set> and
<remove> are used to specify the operation:

<set> -
Specifies the property values to be set. The <set> contains one or more <prop>
- subelements, which in turn contains the name/value pairs of the properties to be
set for the resource. If the property already exists, the value is replaced.

438 _v | Chapter19: Publishing Systems

<remove>
Specxﬁes the- propertles that are to be removed Unhke w1th <set>, only the
names of the properties are hsted in the <prop>. container.

‘ Th1s tr1v1al example sets and removes the “owner’ > property:

<d: propertyupdate xmlns: d "DAV " xmlns 0—"http / Iname- space/scheme/"
<d:sety - S :
<d:prop> - ,
<o:owner>Author. A</o owners
</diprop>
</d:set>

~ <d:remove>
<d:prop>.
. <o:owner/>
</d.prop> -
-</d:removey
</d: propertyupdate>

The response to PROPPATCH requests is very snmlar to - that for PROPFIND
requests. For more 1nformatlon refer to RFC 2518. .

Table: 19 2 summarizes the status codes for the PROPFIND and PROPPATCH
methods

Table 19-2, Status codes for PROPFIND and PROPPATCH methods

2000 CHTTP .~ - PROPFIND, © Command success. .
‘ S - PROPPATCH I o S _
207 Multr-Status ©_WEBDAV. PROPFIND, - Whenactingon one or more resources (or a collection), the status
' PROPPATCH for each object rsencapsulated into one 207 response Thisisa-
: S _ typical success response. . e
401Unauthorized ~ HTTP~ PROPATCH Requires authorization to completethe propertymodrf cation
S - operation,
403 Forbidden -~ - HTIP . PROPFIND, ForPROPFIND, thedrentrsnotallowedtoaccessthe property For .
: ’ PROPPATCH - PROPPAT(H, the client may not change the property.
- 404NotFound . HTIP - PROPFIND - Nosuchproperty.
409 Conflic- ~ ~ HIIP PROPPATCH Conflict of update semantrcs—forexample,trymgto updatea
: S _ read-only property.
423 Locked " WebDAV - PROPPATCH Destination resource s locked and thereis no Iocktoken orthe
' ' lock token does not match. - : :

- 507 Insuff cient Storage WebDAV PROPPATCH Not enough space for registering the modified p_roperty.

Collectrons and Namespace Management

A collection refers to a logical or physical grouping of resources ina predefined hier-
achy. A classic example of a collection is a directory. Like directories in a filesystem,

vWebDA_Vand Collaborative Authoring | ~ 439

’collecmons act as contalners of other resources 1nclud1ng other collectlons (equwa—, o
~lentto dlrectorles on the frlesystem) : :

’WebDAV uses the XML namespace mechamsm Unhke traditional namespaces
- XML namespace’ partltlons aﬂow for prec1se structural control whlle preventmg any
namespace collisions. 2

WebDAV prov1des f1ve methods for mampulatmg the namespace DELETE
MKCOL, COPY, MOVE, and PROPFIND. PROPFIND was dlscussed prev1ously in
this chapter but let’s talk ahout the other methods '

' The MKCOL Method |
- The MKCOL method allows clients to create a collection at the indicated URL on
the server. At first sight, it may seem rather redundant to define an entire new
~ method just for creating a collection. Overlaying on top of a PUT or POST method
seemns like a perfect alternative. The designers of the WebDAV protocol did consider
these alternatives and still chose to deﬁne anew method. Some of the reasons behmd _
that decision are: ' : : : :

e To have a PUT ora POST create a collectlon the client needs to send some extra
“semantic glue” along with the request. While this certamly is fea31b1e defining
an ad hoc protocol may become tedious and error-prone.

e Most of the access-control mechanisms are based on the type of methods—-—-only-
a few are allowed to create and delete resources in the repository. If we overload
other methods these access-control mechanlsms will not vvork ’

For example, a request mlght be

. MKCoL /publlshlng HTTP/1 1
Host: minstar
Content-Length: 0
Connection: Keep-Alive

| And the response might be:

HTTP/1.1 201 Created . -

Server: Microsoft-IIS/5.0 :

Date: Fri, 10 May 2002 23:20:36 GMT

~ Location: http://minstar/publishing/
Content Length: 0

Let us éxamine a few patholog1cal cases:

o Suppose the collection already exists. If a MKCOL /colA request is made and
colA already exists (i.e., namespace conﬂlct) the request erl fail with a 405
Method Not Allowed status code.

* If there are no write permrssmns the MKCOL request will fail Wlth 2 403 For-
bldden status code.

a0 | .Chapter19:'-Publishing Systems

. If a request SUCh as. MKCOL /colA/colB is made and colA does not ex1st the' o
- request will fail w1th a 409 Conﬂlct status code . S

R Once the flle or collectlon is created we can delete it w1th the DELETE method

The DELETE Method

We already saw the DELETE method in Chapter 3. WebDAV extends the semanttcs
to cover collectlons _ S

If we need to delete a dlrectory, the Depth header is needed If the Depth header is
not specified, the DELETE method assumes the Depth header to be set to infinity—
that is, all the files in the directory and any subdirectories thereof are deleted. The
response also has a Content-Location header 1dent1fy1ng the collect1on that]ust got
deleted. The request might read: . : :

DELETE /publishing HTTP/l.O
Host: minstar

And the response might read:

HTTP/1.1 200 OK
Server: Microsoft- IIS/S 0 _
Date: Tue, 14 May 2002 16:41:44 GMT
Content-Location: http //mlnstar/publlshlng/
Content-Type: text/xml.

. Content-Length: 0.

When removing collections, there always is a chance that a file i in the collection is
locked by someone else and can’t be deleted. In such a case, the collection itself can’t
be deleted, and the server rephes w1th a 207 Mulu—Status status code. The request-
might read: - : : e

DELETE /publlshlng HTTP/1 O
" Host: m1nstar o

And the response might read: |

- HTTP/2.1 207.Multi-Status -
Server; Microsoft-IIS/5.0
Content-Location: “http: //mlnstar/publlshlng/
- <Ixml ve151on—“1 0"?>
<a: multlstatus xmlns:a="DAV:">
<a:response>
<a:href>http: //m1nstar/1ndex3/ch -publish. fm</a href>
<a:status> HTTP/1.1 423 Locked </a: status> .
</a:response>
</a:multistatus>

In this transactton the <status> XML element contains the status code 423 Locked
mdlcatmg that the resource ch-publish.fm is locked by another user.

"~ WebDAV and Collaborative Authoring | 441

The COPY and MOVE Methods

“As with MKCOL there are alternatives to deﬁmng new methods for COPY and
MOVE operations. One such alternative for the COPY method is to do a GET
request on the source, thus downloadmg the resource, and then to upload it back to -
the server with a PUT request. A similar scenario could be envisioned for MOVE
(with the additional DELETE operation). However, this process does not scale |
well—consider all the issues 1nvolved in managmg a COPY or MOVE operatlon ona
multilevel collection. : .

Both the COPY and MOVE methods use the request URL as the source and the con-

tents of the Destination HTTP header as the target. The MOVE method performs

somie additional work beyond that of the COPY method: it copies the source URL to

the destination, checks the integrity of the newly created URI and then deletes the ‘

source. The request might read: :
{copy, MOVE} /publishing HTTP/1.1
Destination: http: //mlnstar/pub -new
-Dépth: infinity -

Overwrite: T
Host: minstar

And the re’sp_onse might read:

HTTP/1.1 201 Created -

Server: Microsoft-IIS/5.0

Daté: Wed, 15 May 2002 18:29:53 GMT -

Location: http://minstar.inktomi. com/pub ~new/

Content-Type: text/xml

Content-Length: 0
When acting on a collection, the behavior of COPY or MOVE is affected by the
Depth header. In the absence of the Depth header, infinity is assumed (i.e., by
default, the entire structure of the source directory will be copied or moved) If the
Depth is set to zero, the method is applied just to the resource If we are doing a copy -
or a move of a collection, only a collection with properties identical to those of the
source is created at the destmatron—-«no internal members of the collecuon are cop-
ied or moved. . : ' :

For obvious reasons, only a Depth value of infinity is allowed Wlth the MOVE
method

Overwrite header effect

The COPY and MOVE methods also may use the Overwrlte header. The Overwnte
header can be set to either T or F. If it’s set to T and the destination exists, a DELETE -
with a Depth value of infinity is performed on the destination resource before a
COPY or MOVE operation. If the Overwrite flag is set to F and the destmatlon
resource exists, the operation will fail.

442 | Chapter19: Publishing Systems

COPY/MOVE of propertles |

When a collectlon or an element is copied, all of its propertles are copled by default
However, a request may contain an optional XML body- that supplies. add1t1onal A
information for the operation. You can specify that all properties must be copied suc-
cessfully for the operation to succeed, or defme whrch propertles must be copred for
the operatlon to succeed. ' :

A couple of pathologlcal cases to cons1der are:

'+ Suppose COPY or MOVE is applied to the output of a CGI program or other

- script that generates content. To presetve the semantics, if a file generated by a

- CGI script is to be copied or moved, WebDAV prov1des src” and “link” XML
‘elements that point to the location of the - program that generated the ‘page.

* The COPY and MOVE methods may not be able to completely duplicate all_of
the live properties. For example, consider a CGI program. If it is copied away
from the cgi-bin directory, it may no longer be-executed. The current specifica-
tion of WebDAV makes COPY and MOVE a “best effort” solutton copymg all

the static propert1es and the appropnate live propertles .

Locked resources and COPY/MOVE

If a resource currently is. locked, both COPY and MOVE 2 are prohlblted from mov-
ing or duplicating the lock at the destination. In both cases, if the destination is to be
created under an existing collection with its own lock; the duplicated or moved
resource is added to the lock. Consider the followmg example '

CoPY /publishing HTTP/1.1

Destination: http: //m1nstar/arch1ved/pub115h1ng “old-
Let’s assume that /publzshzng and /archzved already are under two dlfferent locks '
lock1-andock2. When the COPY operation completes; /publishing continues to be
under the scope of lock1, while, by virtue of moving into a collection that’s already
locked by lock2, publishing-old gets added to lock2. If the operation was a MOVE
just publzshmg old gets added to lock2.

Table 19-3 lists most of the possrble status codes for the MKCOL DELETE COPY
and MOVE methods

Table 19-3. Status codes for the MKCOL, DELETE, COPY, and MOVE methods

-102 Processing WebDAV If the request takes longer than 20 seconds, the server sends

copy this status code to keep dlients from timing out. This usuallyis
: : ' seen with a COPY or MOVE of a farge collection. -
201 Created ~ HTTP MKCOL, For MKCOL, a collection has been created. For COPY and MOVE,
- (opy, a resource/collection was copied or moved successfully,
MOVE o

‘WebDAV and Collaborative Authoring | 443

Table 19-3. Status codes for the.MKCOL,’DELETE,‘_COPY, and MOVE methods _(continu_ed)j, L

| COPY,” ~theresource was copred oversuccessfullyor moved to replacev o
_ . , - MOvE an existing entity. :
* 207 Multi-Status © WebDAV MKCOL, ForMKCOL, atypical SUCCeSs Fesponse. For(OPYand MOVE if -
' : ' COPY, - an error-is associated with a resource other than the request -

" MOVE URI, the server returns a 207 response with the XML body
: S detallmg the error. B

L 403_.Forbidden . E HTTP _ MKCOL, _‘ For MKCOL, the serverdoes notallow. creatlon ofa collectron at
' ' - (oY, the specified location, For COPY and MOVE the source and
o , MOVE . . destination are the same, :
409 Conflict - - HTTP © MKCOL, . Inaallcases, the methods are trymg to create a collectron ora
S ’ ’ : © COPY, - resource when an intermediate coflection does not exist—for
: , , - MOVE . example, trying to create colA/colB when colA does not exist.
412Precondition Failed -~ HTTP COPY, . Eitherthe Overwrite. headeris set to F and the destination

CMOVE exists, or the XML hody specifies a certain requirement (such
© " askeeping the "liveness” property) and the COPY or MOVE
methods are nbt able to retain the property. -

| 415 Unsupported Media Type CHTIP . MKCOL The server does not support or understand the creatron of the ,
o : o . " request entity type :
422 Unprocessable Entity .~ WebDAV . MKCOL The server does not understand the XML body sent wrth the
o SR request ,
423Locked . - WebDAV DELETE, The source or the destmatlon resource is locked, or the Iock
’ o K - (OPY, token supplied wrth the method does not match,
MOVE _

502 Bad Gateway WP COPY, The destmatron is on a different server and permrsswns are
S ~MOVE missing. L ,

507 Insufficient Storage ~ WebDAV ~ MKCOL - Thereis not enough free space to,c,reate the resource.' ‘

' S o © o opY ' o o '

Enhanced HTTP/1 1 Methods

WebDAV modifies the semantics of the HTTP methods DELETE PUT, and
 OPTIONS. Semantics for the GET and HEAD methods remain unchanged. Opera— :
tions performed by POST always are defined by the specific server implementation,
- and WebDAV does not modify any of the POST semantics. We already covered the
~ DELETE method, in “Collections and Namespaee Management We 1l drscuss the
PUT and OPTIONS methods here. -

The PUT method

~ Though PUT is ot defined by WebDAYV, it is the only way for an author to trans- <
port the content to a shared site. We discussed the general functionality of PUT in
Chapter 3. WebDAV modifies its behavior to support locking.

44 | Chapter19:»Publishing Systems

Con51der the followmg example

PUT /ch- publlsh fm HTTP/1 1 '

Accept: */*- ' :
If:<http: //minstar/index. htm>(<opaquelocktoken ********>)
User-Agent: DAV Client (C)
Host: minstar.inktomi.com -

" Connection: Keep-Alive '
Cache-Control: no-cache '
Content- Length 1155

To support lockmg, WebDAV adds an If header to the PUT request. In the above a
transaction, the semantics of the If header state that if the lock token .specified with
the If header matches the lock on the resource (in this case, ch-publish.fm), the PUT
operation should be performed. The If header also is used with a few other methods,
such as -PROPPATCH, DELETE, MOVE, LOCK, UNLOCK, etc. .- o

The OPTIONS method

We dlscussed OPTIONS in Chapter 3. ThlS usually is the first. request 4 WebDAV-
enabled client makes. Using the OPTIONS method, the client tries. to establish the
capablllty of the WebDAV server. Consider a transaction in Wthh the request reads

OPTIONS /ch- publlsh fm HTTP/1 1
Accept: */* -
"Host: minstar. 1nktom1 com

And the response reads:

HTTP/1.1 200 OK
Server: Microsoft-I115/5.0
- MS-Author-Via: DAV
DASL: <DAV:sgl> -
DAV: 1, 2 ' ' ' ' ‘
Public: OPTIONS, TRACE, GET, HEAD, DELETE PUT, POST, COPY MOVE, MKCOL PROPFIND
PROPPATCH, LOCK, UNLOCK SEARCH :
Allow: OPTIONS,. TRACE, GET, HEAD, DELETE, PUT, COPY, MOVE PROPFIND PROPPATCH
'SEARCH, LOCK, UNLOCK

There are several mterestmg headers in the response to the OPTIONS method A
shghtly out-of-order examination follows: :

¢ The DAV header carries the information about DAV comphance classes There
are two classes of compliance:

Class 1 compliance : _
Requires the server to comply with all MUST requlrements in all sections of
REC 2518. If the resource comphes only at the Class 1 level it w111 send 1
with the DAV header. ' . .

Class 2 compliance
Meets all the Class 1 requirements and adds support for the LOCK method.
Along with LOCK, Class 2 compliance requires support for the Timeout and

~ WebDAV and Collaborative Authoring I""445

Lock Token headers and the <supportedlock> and <lockdlscovery> XML
elements. A value of 2 in the DAV header indicates Class 2 compliance. - -
- In the above example the DAV header indicates. both Class s and Class 2
~ compliance. L D B
¢ The Public header 11sts all methods supported by thIS partlcular server.

*« The Allow header usually contains a subset of the Public header methods. Tt lists
only those methods that are allowed on thlS particular resource (ch-publzsh fm).
* The DASL header provides the type of query grammar used in the SEARCH
~ method. In this case, it is sql. More detalls about the DASL. header are provided
_at http:/fwww. webdav org. '

Version Managem’ent in WebDAV

- It may be ironic, given-the “V” in “DAV,” but ver51omng is a feature that did not
make the first cut. In a multi-author, collaborative environment, version manage-
ment is critical. In fact, to completely f1x the lost update problem (illustrated in
* Figure 19-3), locking and versioning are essential. Some of the common features
associated with versmmng are the ability to store and access previous document ver-
sions and the ability to manage the change hlstory and any assoc1ated annotations
detailing the changes. : : C e

~ Versioning was added to WebDAV in RFC 3253.

Future of WebDAV

WebDAV is well supported today Worklng 1mplementat1ons of chents 1nclude IE 5.
x and above, Windows Explorer, and Microsoft Office. On the server side, imple-
mentations include IIS5.x and above, Apache with mod_dav, and many others. Both
Windows XP and Mac OS 10.x provide support for WebDAV out of the box; thus,
any applications written to run on these operating systems are WebDAV-enabled
. natlvely -

For More Information
For more information, refer to:.
-http'//ofﬁceupdate microsoft.com/frontpage/wpp/serk/
- Microsoft FrontPage 2000 Server Extensions Resource Kit.

http /hwww.ietf.org/rfc/rfc2518.txt?number=251 8

“HTTP Extensions for Distributed Authormg—-WEBDAV ” by Y. Goland]
Whitehead, A. Faizi, S. Carter, and D. Jensen. . v .

446 | Chapter19: Publishing Systems

~ http: //www zetf org/rfc/rfc3253 txt’number—-3253

'“Verswmng Extensions to- WebDAV ” by G. Clemm J Amsden T Elhson C. ‘
Kaler, and J. Whltehead . .

http Mwrvw.i iCS.UCi. edu/pub/zetf/webdav/mtro/webdav mtro pdf

“WEBDAV: IETF Standard for Collaborative Authoring on the Web ” by J.l
Whitehead and M. Wiggins. :

| hitp:/fwww.ics.uci.edu/~ejw/http future/whztehead/http_pos_paper html

“Lessons from WebDAV for the Next Generation Web Infrastructure ” by J.
Wh1tehead : : .

http:/fwww.microsoft. com/m51/0699/dav/davtop htm

“Distributed Authoring and Versioning -Extensions for. HTTP Enable Team
Authoring,” byL Braginski and M. Powell. '

http:/lwww. webdav org/dasl/protocol/draft dasl—protocol OO heml

“DAV Searching & Locatmg,” by S Reddy, D. Lowry, S Reddy, R. Henderson
J. Davis, and A. Bablch

~ ForMore Information - | 447

CHAPTER zo | :
'Redlrectlon and Load Balancmg

HTTP does not walk the Web alone. The data in an HTTP message is governed by
many protocols on its journey. HTTP cares only about the endpoints of the journey—
the sender and the receiver—but in a world with mirrored servers, web proxies, and
caches, the destination of an HTTP message is not necessarlly stralghtforward '

" This chapter is about redirection technolog1es—network tools, techmques and pro- .
tocols that determine the final destination of an HTTP message. Red1rect1on technol-
ogies usually determine whether the message ends up at a proxy, a cache, or a
particular web server in a server farm. Redirection technologies may send your mes-

-sages to places a client didn’t exphc1tly request. '

In this chapter, we’ll take a look at the following redirection techmques how they.
work, and What their load—balancmg capablhtles are (1f any):
* HTTP redirection
+ DNS redlrectlon
~ e Anycast routing
* Policy routing
o IP MAC forwarding
* IP address forwarding
* The Web Cache Coordination Protocol (WCCP)
"« The Intercache Communication Protocol (ICP)
e The Hyper Text Caching Protocol (HTCP)
¢ The Network Element Control Protocol (NECP)
- The Cache Array Routing Protoc‘ol (CARP)
* The Web Proxy Autodiscovery Protocol (WPAD)

48 .

o Why Redlrect" el
) _Redrrectlon is a fact of hfe in the modern Web because HTTP apphcanons always L
~want to do three thmgs :

. Perform HTTP transactlons rellably
e Mlmmlze delay
Conserve network bandwrdth

For these reasons, web content often is distributed in mult1ple locatlons This.is done
for reliability, so that if one location fails, another is avallable it is' done to lower
response times, because if clients can access a nearer . resource, they receive their
requested: content faster; and it’s done to lower network congestion, by spreading
out target servers. You can think of redlrectron as a set of techmques that help to find
the “best” distributed content. :

.The subject of load balancmg is mcluded because red1rect1on and load balancmg
coexist. Most redirection deployments include some form of load balancmg, that is,
they are capable of spreading incoming message load among a set of servers. Con-
versely, any form of load balancing involves redirection, because i mcommg messages
must somehow be somehow among the servers sharmg the load

Where to Redlrect

Servers, prox1es caches, and gateways all appear to clients as servers,. in the sense
that a client sends them an HTTP request, and they process it. Many redirection |
techniques work for servers, proxies, caches, and gateways because of their com- -
mon, server-like traits. Other redirection techniques are specially designed for a par-
ticular class of endpoint and are not generally applicable. We'll see general
techmques and specialized techniques in later sections of this chapter ‘

Web . servers handle requests on a per—IP basis. Distributing requests to cluphcate
servers means that each request for a specific URL should be sent to an optimal web
 server (the one nearest to the client, or the least-loaded one, or some other optimiza-

' tion). Redirecting to a server is like sending all drivers i in search of gasolme to the _
 nearest gas station. o o -

Proxies tend to handle requests on a per—protocol basis. Ideally, all HTTP trafﬁc in the
neighborhood of a proxy should go through the proxy. For instance, if a proxy cache
is near various clients, all requests ideally will flow through the proxy cache, because
the cache will store popular documents and serve them directly, avoiding longer and
more expenswe trips to the origin servers. Redirecting to a proxy-is like siphoning off
traffic on a main access road (no matter where it is headed) to a local shortcut

Where to Redirect - | 449

Overwew of Redlrectlon Protocols

The goal of I‘CdlI‘eCtIOl’l is to send’ HTTP messages to ava1lable Web Servers as qulekly
as possible. The direction that an HTTP message takes on its way through the Inter-
net is affected by the HTTP apphcat1ons and routmg devices it passes from, through
and tovvard For example:

¢ The browser application that creates the client’s message could be conflgured to -
“send it to a proxy server. .

o DNS ‘resolvers choose the IP address that is used for addressmg the message.

" This IP address can be dlfferent for dlfferent clients in dlfferent geographmal'
locations. '

* As the message passes ‘through networks it is dmded into addressed packets;
* switches and routers examine the TCP/IP addressmg on the packets and rnake
decisions about routing the packets on that basis. : :

« Web servers can bounce requests back to different web servers w1th HTTP
redirects: ‘

Browser conflguratxon DNS TCP/IP routmg, and HTTP all prov1de mechamsms for
redirecting thessages. Notice that some methods, such as browser configuration,
make sense only for redirecting traffic to proxies, while others such as DNS redlrec-
tion, can be used to send traffic to any server.

Table 20-1 summarizes the redirection methods used to redirect messages to Servers,
each of which is discussed later in this chapter. -

Table 20-1 General rbedire,c'tion v'rr'zelthods

" HTTP redirection Initial HTTP request goes to a first web Many options, from (an be slow-—every trans-
server that chooses a “best” web server ~ round-robin load action involves theextra
to serve the content. The first web balancing, to minimizing - redirect step. Also, the first
server sends the clientan HTTP redirect latency, to choosingthe ~ server must be able to han-

_tothechosen server. The client resends shortest path. - dlethe request load.
~ therequest to the chosen server. o o ' '
DNSredirection . DNS server decides which IP address, Many options, from - Need to configure DNS
' among several, to return for the host— round-robin load server.
name in the URL. balancing, to minimizing
‘ latency, to choosing the
. , . shortest path. _
Anycast addressing - Several servers use the same IP address. ~ Routersuse built-in -~ - Need to own/configure
o _Each server masquerades as a backbone shortest-path routing routers. Risks address con-
router. The other routers send packets capabilities. flicts, Established TCP con-
addressed to the shared IP to the near- _ “nections can breakif routing
est server (believing they are sending changes and packets associ-
packets to the nearest router). ated with a connection get. -

sent to different servers.

450 |- Chapte; 20: Redirection and Load Balancing

forv\‘N'a‘,rding |

IP address
forwarding

) Table 20-1. -Gene‘ra-l fedifecfiori m'eihods (continued)

A network element such as a switch or

 router reads a packet's destination
- address; if the packet should be redi-
rected, the switch gives the packet the

destination MAC address of a server or

- proxy.

Layer-4 switch evaluates a packet's des-

tination port and changes the IP address -
“of aredirect packet to that of a proxy or

mlrrored server,

Save bandwidt and :

improve QOS. Load

balance.

Save bandwidthand
improve QOS. Load .
halance.

Serveror proxy must be one

: hop away

1P address of the client can

belost to the server/proxy.

Table 20 2 summarizes the red1rect10n methods used to redlrect messages to proxy

servers

Table 20-2. Proxy and cache redirection techniques _'

- Explicit browser
configuration

Proxy auto- :
configuration (PAC)

" Web Proxy
Autodiscovery
Protocol (WPAD)

- Web Cache‘_
~ Coordination -
Protocol (WCCP)

Internet Caché :
Protocol {ICP)

Cache Array Rout-

ing Protocol (CARP)

~ Web browser is configured to send HTTP

messages to a nearby proxy, usually a

cache. The configuration can be done by -
the end user or by a service that man-

ages the browser.

 Web browser retrieves a PAC _ﬁfe froma
- configuration server. The PACfile tells the
. browserwhat proxy to use for each URL.

~ Web browser asks a configuration server

for the URL of a PAC file. Unlike PAC -
alone, the browser does not have to he
configured with a spedific configuration

" server.
~ Router evaluates a packet’s‘ destination

address and encapsulates redirect pack-

ets with the IP address of a proxy or mir- -

rored server. Works with many exustmg
routers. Packet can be encapsulated, so
the client’s IP address s not lost. -

A proxy cache can query a group of sib-

ling caches for requested content, Also- -

supports cache hierarchies."

- Aproxy cache hashing protocol. Allows a
. cache to forward a request to a parent

cache. Unlike with ICP; the content on

the caches is disjoint, and the group of

caches acts as a single large cache.

balance.

Save bandwidth and-
improve Q0S. Load

Save bandwidth and
* improve QOS. Load
bafance.

The conﬁguration-server '
bases the URL oninfor- .
“mation in client HTTP-. -
* request headers. Load

balance. -

Save bandwidth and
improve Q0S. Load
balance. -

Obtaining content from
asibling or parent cache
* is faster than applying to
. the origin server.

Obtaining content froni_
anearby peer cache is
faster than applying to

- the origin server,

Depen\d-s on ability to con-

- figure the browser.

* Browser must be config-
ured to query the conﬂgura- ‘
‘tion server.

Only a few browsers support

' WPAD

Must use routers that sup-
port WCCP. Some topologl-
al IImItatIOHS

False cache hits,can'arise

because only the URLis used

. to request content.

g _CAR_P cannot support sib-
 ling relationships. All CARP

clients must agree on the
configuration; otherwise,
different clients will send
the same URI to different
parents, reducing hit ratios.

' -_’:OVer_vieWofRedire_ction Protocols | 451

" Table 20-2. Proxy and Cache'redi‘rection techniques (continued)

HyperTextCaching Participating proxy cachescanquerya - Obtaining content from R

* Protocol (HTCP) group of sibling caches for requested ~ asibling or parent cache -
- content. Supports HTTP 1.0and 1.1~ - is faster than applyingto
C headerstof ine-tune cache queries. theongln server.. ’

| General Redlrectlon Methods | |

In this section, We will delve deeper'irito the various redirection "’methods that are
commonly used for both servers and proxies. These techniques can be used to redi--
rect traffic to a different (presumably more optimal) server or to vector trafﬁc

through a proxy. Specrflcally, we’ll cover HTTP redirection, DNS red1rectron any-
cast addressmg, IP MAC forwardrng, and IP address forwardlng B '

HTTP Redlrectlon

Web servers can send short redlrect messages back to, chents telhng them to try "
someplace else. Some web sites use HTTP redirection as a simple form of load bal-
ancing; the server that handles the redirect (the redirecting server) finds the least-
loaded content server available and redirects the browser to that server. For widely
distributed web sites, determining the “best” available server gets more complicated,
taking into account not only the'servers’ load but the Internet distance between the
‘browser and the server. One advantage of HTTP redirection over some other forms
of redirection is that the redirecting server knows the chent s IP address; in theory, it
may be able to make a ‘more informed chorce ' ‘

Here’s how HTTP redirection works In Figure 20 1a Ahce sends a request to
 www.joes-hardware.com: : o
GET /hammexrs.html HTTP/1.0
Host: www.joes-hardware. com
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22) . ‘
- In Figure 20-1b, instead of sending back a web page body with HTTP status code -
200, the server sends back a redlrect message with status code 302; ’ '
HTTP/1.0 302 Redirect
- Server: Stronghold/2.4.2 Apache/1.3.6
Location:. http://161.58.228.45/hammers. html
Now, in Flgure 20-1c, the browser resends the request usmg the redlrected URL, thls -
time to host 161.58.228.45:" :
CET /hammers,html HTTP/l.O
Host:-161.58.228.45
User-Agent: Mozilla/4.51 fen] (X11; U; IRIX 6.2. IP22)
‘Another client could get redirected to a different server. In Figure 20- ld-—f Bob’s
request gets redlrected t0 161.58.228.46.

. -452 I ‘ChapterZO: ‘Redirection and Load Balancing

161 }52._228.45- 161 .58.228_.46 161.58.228.47

Fzgure 20- 1 HTTP redzrectzon

HTTP redlrectlon can vector requests across servers, ‘butit has several dlsadvantages

* A significant amount of processing power is. requlred from the original server to
determine which server to redirect to. Sometimes almost as much server horse-
- power is required to issue the redirect as would be to serve up the page itself.

* User delays are increased, because two round trips are requlred to access pages

. ‘If the redirecting server is broken, the site will be broken:

‘Because of these weaknesses, HTTP redirection usually is used in comb1nat10n Wlth
some of the other red1rect10n techniques. -

-DNS Redlrectlon

Every time a client tries to access Joe’s Hardvvare s web site, the domam name
www.joes-hardware.com must be resolved to an IP address. The DNS resolver may
be the client’s own operating system, a DNS server in the client’s network, or a
more remote DNS server. DNS allows several IP addresses to be associated to a sin-
gle domain, and DNS resolvers can be configured or programmed to return varying.
IP addresses. The basis on which the resolver returns the IP address can run from
.the 51mple (round robin) to the complex (such as checkmg the load on several serv— -
ers and returmng the IP address of the least-loaded server) o

General Redirection Met_hods- | 453

‘In Flgure 20 2, Joe runs four servers S for www]oes hardware com. The DNS server'
has to decide which of four IP addresses to return for www]oes—hardware com ‘The
easiest DNS de0131on algonthm isa snnple round robin. =~ . - . o

- www.joes-hardware.com -

§ Decides whether
el {0 1esolve to e
- 10,1010, S .
3 10.10.10.2, o {0 10.10.104
v 10.10.10.3, i Server 4 137

www.joes-hardware.com -

1010101
Server1 .

www.joes-hardware.com -

e 0002
» ' o : ' ServerZ

10.10.10.3
Server 3

Figure 20-2. DNS-based redirection

For a run- through of the DNS resolutlon process see the DNS reference listed at the
end of thlS chapter. : . - :

DNS round robm

One of the most common redirection techmques also is one of the simplest. DNS
round robin uses a feature of DNS hostname resolution to balance load across a farm
of web servers. It is a pure load-balancing strategy, and it does not take into account
any factors about the locatlon of the client relative to the server or the current stress
on the server. ' o

Let’s look at what CNN.com really does. In early May of 2000, we used the:hslooku‘p
Unix tool to find the IP addresses associated with CNN com. Exarnple 20-1 shows

the results.”

E_Xam?le 20-1. 1P gidd%esses for www.cnn.com

% nslookup www.cnn.com
Name: cnn.com

* DN results as of May 7, 2000 and resolved from Northern California. The particular values likely will
change over time, and some DNS systems return different values based on client location.

454 | Chapter20: Redirection and Load Balancing

- Example 20-1.IP addresses for www.cnm.com (contmued)

~Addresses: . 207.25. 71 5, 207.25.71.6, 207.25. 71.7, 207.25. 71 8
.- 207.25.71.9, 207.25.71.12, 207.25.71.20, 207.25.7L. 22 207.25.71. 23
. 207.25.71.24,207.25.71.25, 207.25.71.26, 207.25. 71.27, 207.25.71. 28
-+ 207.25.71; 29,\207 25.71.30, 207.25. 71.82, 207 75. 71 199, 207, 25 71. 245
- 1207.25.71.246 :
Aliases: www. cnn com.

The web site www.cnn.com actually is a farm of 20 dlStlnCt IP addresses‘ Each Ip
address mlght typ1cally translate toa dlfferent phy51cal server.

Multlple addresses and round-robm address rotatlon

Most DNS clients just use the first address of the multl-address set. To balance load
most DNS servers totate the addresses each time a lookup is done. ThlS address rota-
tion often is called DNS round robin. ' :

For example, three consecutive DNS lookups of www.cnn.com rmght return rotated
lists of P addresses like those shown in Example 20- 2 ' :

Example 20-2. _Rotating DNS ad'dress lists

% nslookup Wy . CIN. COM
Name: ~ cnn.com
Addresses: 207.25.71.5, 207 .25.71.6, 207 25 71. 7, 207.25. 71 8
207.25.71.9, 207.25.71.12, 207. 25.71. 20, 207. 25.71.22, 207 25.71. 23
207.25.71.24, 207. 25.71. 25, 207.25.71.26, 207.25.71. 27, 207.25.71.28
207.25.71.29, 207.25.71.30, 207.25.71.82, 207. 25 71.199, 207 25 71, 245 _
"_207 25.71.246

% nslookﬂp WWW, Cnin. com
Name: cnn.com
Addresses 207.25.71.6, 207.25.71.7, 207.25.71. 8 207.25.71. 9
207.25. 71 12, 207.25.71. 20, " 207. 25. 71. 22, 207. 25. 71.23, 207. 25 71 24
- 207.25.71.25, 207.25.71.26, 207.25.71, 27, 207.25. .71.28, 207.25.71.29
©207.25.71. 30 207. 25 71.82, 207.25.71.199, 207.25.71.245, 207.25.71.246
207. 25 71.5 T . R CoL -

% nslookup'www.cnn.com
Name: cnn.com . : ;
Addresses: 207.25.71.7, 207.25.71.8, 207.25.71.9, 207.25.71.12
' 207.25.71.20, -207.25.71.22, 207.25.71.23, 207.25.71.24, 207.25.71.25
207.25.71.26, 207.25.71.27, 207.25.71.28, 207.25.71. 29, 207.25.71.30
207.25.71.82, 207.25.71.199, 207.25.71.245, 207.25.71.246, 207. 25 71.5°
207.25.71.6". ‘

In Example 20-2:
~* The first address of the first DNS lookup is 207.25.71.5.

e The first address of the second DNS lookup is 207.25.71.6.
* The first address of the third DNS lookup is 207.25.71.7.

* General Redirection Methods | 455

- DNS round robin for Ioad balancmg

Because most DNS chents just use the flrsr address the DNS rotanon serves to’ bal-
ance load among servers. If DNS did not rotate the addresses, most chents would.' '
always send load to the first chent :

Figure 20-3 shovvs how DNS round robrn rotatron acts to balance 1oad

* When Alice tries to connect to www.cnn.com, she looks up the IP address usmg'
DNS and gets back 207. 25.71.5 as the ﬁrst IP address. Ahce contiects to the web
-~ server 207.25.71.5 in Figure 20- 3c. :

" * When Bob subsequently tries to connect to www.cnn.com, he also looks up the
IP address using DNS, but he gets back a different result because the address list -
has been rotated one position, ‘based on Alice’s previous request. Bob gets back .
207.25. 71 6 as rhe tirst IP address, and he connects to thrs server in Frgure 20-3f.

W55 05716 N75717

20725715 20725716 20725717

e

................................

* Figure 20-3. DNS round robin load balances across servers in'a server farm

The impact of DNS caching
DNS address rotation spreads the load around, because each DNS lookup to a'server
gets a different ordering of server addresses. However, this load balancing isn’t per-

fect, because the results of the DNS lookup may be memorized and reused by applica-
tions, operating systems, and some primitive child DNS servers. Many web browsers -

456 | '- Chapte,r 20 -Rediréction and Load Balancing

_ perform a DNS lookup for a host but then use the s same address over and over again,

~ to eliminate the cost of DNS lookups and because some servers prefer to keep talking

" to the same client. Furthermore, many operating systems perform the DNS lookup
‘automatically, and cache the result, but don’t rotate the addresses." Consequently,
DNS round robin generally doesn’t balance the load of smgle chent—-—one chent typ— _
ically will be stuck to one server for a long period of time. : :

. But, even though DNS doesn’t deal out the transacnons of a smgle chent across' o
server rephcas, it does a decent job of spreadmg the aggregate load of multlple cli-
ents. As long as there is a modestly large number of clients with- 51m11ar demand the
load w1ll be relatlvely well distributed across servers.

Other DNS based redlrectlon algorlthms

We've already dlscussed how DNS rotates address hsts with each request However,
- some -enhanced DNS servers use other techmques for choosmg the order of the

_ ’addresses

" Load-balancing algorzthms _ : :
Some DNS servers keep track of the load on the Web Servers and place the least-
- loaded web servers at the front of the hst '

Proxzmzty routzng algorzthms :
DNS servers can attempt.to direct users to nearby web servers, when the farm of
“web servers is geographically dlspersed : : '

Fault—maskmg algorithms : S _
DNS servers can monitor the health of the network and route requests away
from service 1nterrupt10ns or other faults. :

,Typrcally, the DNS server that runs sophlstlcated server-trackmg algorlthms is an
-authoritative server that is under the control of the content provrder (see Figure 20-4).

Several distributed hosting services use thls DNS redirection model. One drawback

of the model for services that look for nearby servers is that the only information that

the authoritative DNS server uses to make its decision is the i address of the local .
- DNS server, not the IP address of the chent ' :

Anycast Addressmg

‘In anycast addressmg, several geographrcally dlspersed web servers have the exact
same IP address and rely on the “shortest-path” routing capabilities of backbone
~ routers to send client requests to the server nearest to the client. One way this
- method can work is for each web server to advertise itself as a router to a neighbor-
ing backbone router. The web server talks to its neighboring backbone router using a
“router communication protocol. When the backbone router receives packets aimed
at the anycas‘t address, it looks (as it usually would) for the nearest “router” that

" General Redirection Methods | ' 457 -

(e) Returns IP address 207 25.71. 5

T - Authoritative DNS server
< momtors cnn servers

WWWOIMOM WWW.LOM WWW.COn.com
{207.25.71.5) - (207.25.7]‘6) (207.25.71.7)

Pzgure 20-4. DNS request znvolvmg authoritative server

accepts that IP address. Because the server will have advertrsed itself as a router for
that address, the backbone router will send the server the packet '

In Figure 20-5 three servers front the same IP address, 10.10.10.1. The Los. Angeles
(LA) server advertises this address to the LA router, the New York (NY) server adver-
tises the same address to the NY router, and so on. The _,servers-comrnun-icat_e with

the routers using a router protocol. The routers automatically route client requests
aimed at 10.10.10.1 to the nearest server that advertises the address In Frgure 20-5
a request for the IP address 10.10. 10 1 will be routed to server 3.

www joes-hardwate.com

10.10:101
- Server1

................

1010101
Server 2

10.10.10.1
Server3

Figure 20—5 . Distributed anycast addressing

458 | Chapter20: Redirection and Load Balancing

Anycast addressmg is stﬂl an’ experlmental technique. For dlstnbuted anycast to
 work, the servers must “speak router language” and the rouiters must be able to han-
dle possible address conflicts; because Internet addressing’ basically assumes one.
server for one address. (If done improperly, this can lead to serious problems known
as “route leaks.”) Distributed anycast is an emerging technology and might be a solu~
t10n for content prov1ders who control their own backbone networks

IP MAC Forwardmg

In Ethernet networks, HTTP messages are sent in the form of addressed data pack-
ets. Each packet has a layer-4 address, consisting of the source'and destination IP -
address and TCP port numbers; this is the address to which layer 4-aware devices
pay attention. Each packet also has a layer-2 address, ‘the Media Access Control
(MAC) address, to which layer-2 devices (commonly switches and hubs), pay atten-
tion. The job of layer-2 devices is to receive packets with partlcular 1ncommg MAC
addrésses and forward them to partlcular outgoing MAC addresses.

In Figure 20-6, for example, the SWltch is- programmed to- send all traffrc from MAC
address “MAC3 ” to MAC address “MAC4 »o v

Client MACT -
R To Internet
Hub MAG3

Switch MAC4 R 4
o s Gateway MAC5:
Client MAQ2 o

Figure 20-6. Layer-2 switch sending client requests to a gateway

A layer 4-aware switch is able to examine the layer-4 addressing (IP addresses and
TCP port numbers) and make routing decisions based on this information. For
example, a layer-4 switch could send all port 80-destined web traffic to a proxy. In
Figure 20-7, the switch is programmed to send all port 80 traffic from MAC3 to
MACE (a proxy cache). All other MACS trafic goes to MAC5

Typrcally, if the requested HTTP content is in the cache and is fresh the proxy cache
serves it; otherwise, the proxy. cache sends an HTTP request to the origin server for
the content, on the client’s behalf. The switch sends port 80 requests from the proxy
(MACS) to the Internet gateway (MACS).

~ Layer-4 switches that support MAC forwarding usually can forward reduests to sev-
eral proxy caches and balance the load among them. Likewise, HTTP trafflc also can
be forwarded to alternate HTTP servers. : :

- General Redirection Methods | ~ 459

HUbMAG o
I Gateway MAC5
Port 80 traffic }.- ; -

Cachmg proxy MAC6

Pzgure 20-7. MAC forwardzng using a layer~4 swztch

Because MAC address forwardmg is pomt—to-pomt only, the server or’ proxy has to
be located one hop away from the sw1tch

| VIP Address Forwardlng

In 1P address forwardmg, a sw1tch or other layer 4—aware device examines TCP/IP
addressing on incoming packets and routes packets accordingly by changing the des-
tination IP address, instead of the destination MAC address. An advantage over -
MAC forwardmg is that the destination server need not be one hop awayj; it just
needs to be located upstream. from the switch, and the usual layer-3 end-to-end
Internet routing gets the packet to the right place.. Th1s type of forwardmg also is-
called. Network Address Translatmn (NAT).

~ There is a catch, however routmg symmetry. The switch that accepts the incoming
TCP connection from the client is managing that connection; the switch must send
the response back to the client on. that TCP connection. Therefore, any response .
from the destination server or proxy must return to the switch (see Figure 20-8).

Destination .
proxy

............
......
.t

Joe's edge
network

Switch

Client edge
networ

Figure‘ 20-8. A switch doing IP forwarding to a caching p_rox)t or mirrored web server -

460 | Chapter20: Redirection and Load Balancing

Two Ways to control the return path of the response are:

. Change the source IP address of the. packet to the IP address of the swrtch That
~ way, regardless of the network configuration between the switch. and server, the -
response packet goes to the switch. This is called full NAT, where the IP for-
warding device translates both destination and source IP addresses Plgure 20-9
-shows the effect of full NAT on a TCP/IP datagram. The consequence is that the.
client IP address is unknown to the web server, which might vvant it for: authentl-.
cation or b1llmg purposes, for example.’ - o

« If the source IP address remains the client’s IP address make sure (from a hard—'
ware perspective) that no routes exist directly from server to client. (bypassmg
the sw1tch) ‘This sometimes is called half NAT. The advantage here is that the
server obtains the client IP address, but the disadvantage is the requlrement of
some control of the entire: network between chent and server :

Passes through network address

Figure“ 20-9. Full NAT of a TCP/IP datagram

Network Element Control Protocol

The Network Element Control Protocol (NECP) allows: network elements (NEs)~———
- devices such as routers and switches that forward 1P packets—to talk with server ele-
ments (SEs)—devices such as web servers and proxy caches that serve application
layer requests. NECP does not explicitly support load balancing; it only offers a way
for an SE to send an NE load-balancing information so that the NE can load balance
as it sees fit. Like WCCP, NECP offers several ways to’ forward packets MAC for-
warding, GRE encapsulatron and NAT.

NECP s‘upports the idea of exceptions. The SE can decide that it"cannot service' par-"
ticular source IP addresses, and send those addresses to- the NE. The NE can then
forward requests from those IP addresses to the origin server.-

‘Messages |
The NECP messages are described in Table 203

‘General Redirection Methods | 461

Table 20-3. NECP messqgeé‘

P_NOOP - : , Nooperatxon_do nothmg o
s NECP_INIT o oSk - © - SEinitiates communication with NE. SE sendsthxsmessage to NEaﬁer _
' . - ~ opening TCP connection with NE. SEmustknowwhuch NE porttocon- n
o . hectto. :
NECP_INT_ACK. ~ - NE Adowledges NECP_INIT,
»NECP;KEEPALIVE ‘ NEorSE -~ Asksifpeerisalive. | _
,NE(P_KEEPALIVE_ACK. NEorSE - Answers keep-alive message. , .
NECP_START . " ', o SE SE says “l am here and refady,to accept networktrafﬁc.,"’ Gan speciﬁa
: . . . port. . -
. NECP_START_ACK CONE Acknowledges NECP_ START
CNEPSTOP - SE . SEtellsNE“stop sending metrafﬁc
- NECP_STOP_ACK - N . NEacknowledgesstop. o
NECP_EXCEPTION_-ADD SE . ' SE says to add one or more exceptions to NE's list. Exceptions can be
S - based on source IP, destination IP, protocol {aboveIP), orport
NE(P_EX(EPTION_ADD_‘ACK - NE Confirms EX(EPTION ADD. o
. NE_CP_EXCEP_TION__DEL SE Asks N,EtoAdelete one or more éxceptiorisfrom itslist.
NECP_EXCEPTION_DEL_ACK ~ NE Confirms EXCEPTION_DEL, |
NECP_EXCEPTION_RESET ~ SE Asks NE to delete entire exception list,
NECP_EXCEPIION;RESET AK NE Confirms EXCEPTION _RESET.
NECP_EXCEPTION_QUERY SE - Queries NE's entire exception list. -
NECP. EXCEPTION_ RESP - NE | Respondstoexception query.

Proxy Redlrectlon Methods

So far, we have talked about general redirection methods. Content also ‘may need to
be accessed through various proxies (potentially for security reasons), or there might
be a proxy cache in the network that a client should take advantage of (because it
likely will be much faster to retrieve the cached content than it would be to go
dlrectly to the origin server) : ' ‘

But how do clients such as web browsers know to go to a proxy? There are three
ways to determine this: by explicit browser configuration, by dynamic automatic
configuration, and by transparent interception. We will discuss these three tech-
niques in thlS section.

A proxy can, in turn, redirect client requests to a different proxy. For example, a proxy -
cache that does not have the content in its cache may choose to redirect the client to
another cache. As this results in the response coming from a location different from
the one from which the client requested the resource, we also will discuss several pro-
tocols used for peer proxy-cache redirection: the Internet Cache Protocol (ICP), the
Cache Array Routing Protocol (CARP), and the Hyper Text Caching Protocol (HTCP).

462 | Chapter20; Redirection and Load Balancing

Expllat Browser Conﬁguratlon

Most. browsers can be- configured to contact a proxy server for content———there is a
pull-down menu where the user can enter the proxy’s name or IP address and port
~ number. The browser then contacts the proxy for all requests. Rather than relying on
users to correctly conflgure their browsers to use proxies, some service providers
require users to download preconﬁgured browsers. These browsers know the address
of the proxy to contact

:Exphcrt browser confrguratlon has two main dlsadvantages

. Browsers conflgured to use proxies do not contact the orlgm server even if the
_proxy is not responding. If the proxy is down or if the browser is 1ncorrectly con—
figured, the user experiences connectivity problems. -

¢ It is difficult to make changes in network archltecture and propagate those
changes to all end users. If a service provider wants to add more proxies or take
some out of service, browser users have to change thelr proxy settmgs '

Proxy Au,t_o-.c'onﬁ'gu_ra_tioin"' |

Explicit configuration of browsers to contact specific proxies can restrict changes in
network architecture, because it depends on users to intervene and reconfigure their
browsers. An automatic configuration methodology that allows browsers to dynami-
cally configure themselves to contact the correct proxy server solves this problem.
Such a methodology exists; it is called the Proxy Auto-configuration (PAC) protocol.
PAC was defined by Netscape and is supported by the Netscape Nav1gator and
Microsoft Internet Explorer browsers. .

The ba51c idea behind PAC is to have browsers retrieve a spec1a1 file, called the PAC
file, which specifies the proxy to contact for each URL. The browser must be config-
ured to contact a specific server for the PAC file. The browser then fetches the PAC
file every time it is restarted. :

The PAC file is a JavaScript file, which must deﬁne the function:
function F1ndProxyForURL(ur1 host) v .

Browsers call this functron for every requested URL, as follows
return_value = FlndProxyForURL(url_of_request, host_ln_url),

where the return value is a string specifying where the browser should request this
URL. The return value can be a list of the names of proxies to contact (for example,
“PROXY proxyl.domain.com; PROXY proxy2.domain.com”) or the string
“DIRECT?”, which means that the browser should go dlrectly to the origin server,
bypassmg any proxies.

The sequence of operations that illustrate the request for and response to a browser’s
request for the PAC file are illustrated in Figure 20- 10 In this example the server

-~ Proxy Redirection Methods | = 463

sends back a PAC f11e wrth a JavaScrrpt program. The JavaScrlpt program has a func- .
tion called ‘FmdProxyForURL” that tells the browser to contact the origin server -
drrectly if the host in the requested URL is in the “netscape.com” domain, and to go
to “proxy1 joes-cache.com” for all other requests. ‘The browser calls this function for
each URL it requests and connects accordmg to the results returned by the functron

.............

“Hi, I've been configured to -

askyouforthePA(file. ' —
" Pleasesend it to me. - »;PACs_-erver
A HTTP/1.0 200 oK
3 Content-type: appllcatlon/x ns-proxy- autoconflg

| Content-length: 176
functlon FlndProxyFOIURL(url host)

if (dnsDomaln(host, .netscape com") -
- return- "DIREC

return "PROXY proxyl joes-cache.com:8080; DIRECT";

‘Browser else

Requests to netscape.com domain are : Gototheproxyl 1f1tlsavallable
sentd/rectlyto theserver - ~© orgodirectly to the origin server
rfproxy7 is not reacha le

. Origin server

' =_Requeststoallotherdomainéare i3

sentto pr_oxyi.cachel.com Proxyl '

Figure 20- 10. Proxy auto- conﬁguratzon

~ The PAC protocol is quite powerful the JavaScript program can ask the browser to
choose a proxy based on any of a number of parameters related to the hostname, such
as the DNS address and subnet, and even the day of week or time of day. PAC allows
browsers automatically to contact the right proxy with changes in network architec-
ture; as long as the PAC file is updated at the server to reflect changes to the proxy
~ locations. The main drawback with PAC is that the browser must be configured to |
know which server to fetch the PAC file from, so it is not a completely automatic con-
'flguratlon system. WPAD, discussed i in the next section, addresses this problem

PAC, like preconfrgured browsers, is used by some ma]or ISPs today

- Web Proxy Autod|scovery Protocol

" The Web Proxy Autodiscovery Protocol (WPAD) aims to prov1de a way for web
browsers to find and use nearby proxies, without requiring the end user to manually

464 | Chapter20: Redirection and Load Balancing

~ configure a proxy- settlng and without relyrng on transparent traffrc lnterceptron The
general problem of defining a web proxy autodiscovery protocol is complicated by
the existence of many dlscovery protocols to choose from and the differences in
"proxy-use conftgurattons in different browsers. '

“This ‘section contains an abbreviated and shghtly reorgamzed version- of the WPAD
Internet draft. The draft currently is being developed as part of the Web Intermedrar- .
ies: Workmg Group of the IETF. : : S

PAC file autodlscovery

"WPAD enables HTTP chents to locate a PAC file and use the PAC flle to drscover the o

*_name of an appropriate proxy server. WPAD does not drrectly determine the name of
the proxy server, because that would circumvent the additional capablhtles prowded
by PAC files (load balancing, request routing to an array of servers; automated
farlover to backup proxy servers and so on). : o

As shown in- Figure 20- 11 the WPAD protocol drscovers a. PAC flle URL also._
known as a configuration URL (CURL). The PAC file executes a]avaScnpt program
that returns the address of an appropnate proxy server.

; @WPAD | § () Access server
i ydiscovery i through proxy

_ HTTP client

Pzgure 20-11. WPAD determines the PAC URL, whzch determines the proxy server -

An HTTP client that 1mp1ements the WPAD protocol:

Uses WPAD to find the PAC fﬂe CURL

Fetches the PAC file (a k.a. conﬁguratlon file, or CFILE) correspondmg to the _ |
CURL

* Executes the PAC frle to determine the proxy server

.

Sends HTTP requests to the proxy server returned by the PAC file

WPAD algonthm

| WPAD uses a series of resource-discovery techniques. to determine the proper PAC
file CURL. Multiple discovery techniques are specified, because not all organizations

y Proxy».Redi_re'ctibn Methods | 465

can use all techmques WPAD chents attempt each techmque, one by one, until they
succeed in obtammg a CURL. :

The current WPAD spec1f1cat1on defines the followmg techmques, in order

. DI—ICP (Dynamlc Host Conﬁgurauon Protocol)

SLP (Service Locatlon Protocol)

'DNS well-known hostnames '_

DNS SRV records - |

DNS service URLs i 1n TXTrecords

Of these five mechanisms, only the DHCP and DNS well known hostname tech-

niques are required for WPAD clients.. We present more detalls in subsequent
sections. _

.

...

The WPAD chent sends a series of resource- d1scovery requests using the d1scovery _
mechanisms mentioned above, in order. Clients attempt only mechanisms that they
support. Whenever a discovery attempt succeeds, the client uses the 1nformat1on
obtained to construct a PAC CURL. - :

If a PAC file is retrieved successfully at that CURL, the process completes If not, the
client resumes where it left off in the predefined series of resource-discovery requests.
If, after trying all discovery mechanisms, no PAC file is retneved the WPAD proto-
col fails and the client is configured to use no proxy server.

The client tries DHCP first, followed by SLP. If no PAC file is retr1eved the chent ,
moves on to the DNS-based mechamsms : .

The client . cycles through the DNS SRV well-known hostnames and DNS TXT
record methods multiple times. Each time, the DNS query QNAME is made less and
less specific. In this manner, the client can locate the most specific configuration
information possible, but still can fall back on less specific information. Every DNS
lookup has the QNAME prefixed with “wpad” to indicate the resource type being
requested.

Consider a client with hostname johns-desktop. development foo.com. ThlS is the
sequence of dtscovery attempts a complete WPAD client would perform

* DHCP
e SLP |
~« DNS A lookup on “QNAME=wpad.development.foo.com”
« DNS SRV lookup on “QNAME=Wpad.development.foo.com”
* DNS TXT lookup on “QNAME=wpad.development.foo.com”
"+ DNS A lookup on “QNAME=wpad.foo.com” |
~* DNS SRV lookup on “QNAME=wpad.foo.com”
. :DNS TXT lookup on “QNAME=wpad.foo.com”

466 | Chapter20: Redirection and Load Balancing

.-Refer to the WPAD specrfrcatron to get detailed pseudocode that addresses the entire
sequence of operations: The following sections discuss the two requlred mecha-
nisms, DHCP and DNS A lookup. For more details about the remmder of the CURL :
d1scovery methods refer to the WPAD specrfrcauon ' o Lo

" CURL dlscovery usmg DHCP

For. this mechanrsm to work the CURLs must be. stored on DHCP servers: that
WPAD clients can query. The WPAD client obtains the CURL by sending a DHCP
query to a DHCP server. The CURL is contained in DHCP option code 252 (if the
DHCP server is conflgured with this information). All WPAD client implementa-
tions- are required to support DHCP. The DHCP protocol is detarled in RFC 2131.
- See RFC 2132 for a list of existing DHCP options.

If the WPAD client already has conducted DHCP querles durmg its. 1n1t1ahzat10n the
DHCP server might already have supplied that value. If the value is not available
through a client OS API, the client sends a DHCPINFORM message to query the
DHCP server to obtain the value. _

The DHCP optlon code 252 for WPAD is of type STRING and is of arbrtrary size.
This string contains a URL that points to an approprlate PAC flle For example

| "http: //server. domaln/proxyconflg pac

DNS A record Iookup :

For this rnechamsm to work the IP addresses of suitable proxy servers must be
stored on DNS servers that the WPAD clients can query. The WPAD client obtains
the CURL by sending an A record lookup to a DNS server. The result of a successful
lookup contains an IP address for an appropriate proxy server. _

WPAD client 1mp1ementat10ns are required to support this mechamsm This should
be straightforward, as only basic DNS lookup of A records is required. See RFC 2219
for a description of using well-known DNS aliases for resource discovery. For WPAD,
the specification uses “well known alias” of “wpad” for web proxy autodrscovery

The client performs the followmg DNS lookup
ONAME wpad TGTDOM OCLASS IN QTYPE=A -

A successful lookup contains an IP address from which the WPAD client constructs
the CURL. '

Retnevmg the PAC ﬁle -

- Once a candidate CURL is created the WPAD client usually makes a GET request
to the CURL. When making requests, WPAD clients are required to send Accept
headers with appropriate CFILE format information that they are capable of han-
- dling. For example: - :

Accept: application/x-ns-proxy-autoconfig

o .:ProXy-Redirection Methods | - 467

In addltlon if the CURL results ina redrrect the chents are requ1red to- follow the |
redrrect to its fmal destrnatron - o S

. 'When to execute WPAD

The web proxy autodrscovery process is requrred to occur at least as frequently as-
one of the followmg : _

e Upon startup of the web chent———WPAD is performed only for the start of the
. first instance. Subsequent instances inherit the settings.

"« Whenever there is an 1nd1catron from the netvvorklng stack that the IP address of -
the client host has changed

A web chent can use either option, dependlng on What makes sense in its environ- -
ment. In addition, the client must attempt a discovery cycle upon expiration: ofapre-
viously downloaded PAC file in accordance with HTTP expiration. It’s important that
the client obey the timeouts and rerun the WPAD process when the PAC frle expires.

: Opt1ona11y, the client also may implement rerunning the WPAD process on fallure of
the currently confrgured proxy if the PAC file does not provide an alternative.

Whenever the client dec1des to mvahdate the current PAC file, it must rerun theV
entire WPAD protocol to ensure it dlscovers the currently correct CURL. Specifi-
cally, there is no provision in the protocol to do an If—Modrfled-Smce conditional
fetch of the PAC file.

A number. of network round trips might be required durmg the WPAD protocol -
broadcast and/or multicast ¢ communications. The WPAD protocol should not be -
mvoked ata more frequentrate than specified above (such as per-URL retrlev_al)

WPAD spooﬁng

The IE 5 implementation of WPAD enabled Web clients to detect proxy settlngs' ,
automatically, without user intervention. The algorithm used by WPAD prepends-
the hostname “wpad” to the fully qualified domam name and progressively removes . -
subdomains until it either finds a WPAD server answering the hostname or reaches
the third-level domain. For instance, web clients in the domain a.b. mzcrosoft com
would query wpad.a.b. mzcrosoft ‘wpad.b.microsoft.com, then wpad. mzcrosoft com..

~This exp_osed a securrty hole, because in international usage (and certain other con-

figurations), the third-level domain may not be trusted. A malicious user could setup . -

a WPAD server and serve proxy configuration commands of her choice. Subsequent
- versions of IE (5 01 and later) rectified the problem. >

Timeouts

WPAD goes through multrple levels of discovery, and clients must make sure that
each phase is time-bound. When possible, limiting each phase to 10 seconds is

468 | Chapter20: Redirectionand Load Balancing

- con51dered reasonable but 1mplementors may choose a dlfferent value that is more'_
~appropriate to ‘their network properties. For example, a device 1mplementat10n
" operating over a w1re1ess network, mlght use a much larger tlmeout to account for
_ Iow bandwrdth or hlgh latency ‘ '

| Admmlstratorconmderatnons o

Administrators should conﬁgure at least one of the DHCP or DNS A record lookup
methods in their environments, as those are the only two that all compatlble clients
are required to implement. Beyond that, configuring to support mechamsms earlier
in the search order will i 1mprove client startup time. : -

One of the ‘major motivations for this protocol structure was to support client 1oca—
tion of nearby proxy servers. In.many environments, there are several proxy servers
(workgroup, corporate gateway, ISP, backbone) :

. There are a number of possrble pomts at which nearness decrsrons can be made in
the WPAD framework ’

* DHCP servers for drfferent subnets can return drfferent answers. They also can
~ base decisions on the client cipaddr field or the client 1dentrf1er opuon

* DNS servers can be configured to return different SRV/A/TXT resource Irecords
" (RRs) for different domain suffixes (for example, QNAMES wpad marketzng big-
corp.com and wpad. development bigcorp. com) :

* The web server handhng the'CURL request can make decisions based on the.
User-Agent header, Accept header, client IP address/subnet/hostname, topologl-
cal distribution of nearby proxy servers, etc. This can occur inside a CGl execut-
able created to handle the CURL. As mentioned earlier, it even can be a proxy
server handling the CURL requests and making these decisions.

¢ The PAC file may be expressive enough to select from a set of alternatlves at run-
time on the client. CARP is based on this premise for an array of caches; It is not
inconceivable that the PAC file could compute some network distance or- frtness
metrics to a set of candidate proxy servers and then select the closest or most

~ responsive” server. :

Cache Redirec'tion-Methods

We’ve discussed techmques to redrrect trafﬁc to general servers and spec1ahzed tech-
niques to vector traffic to proxies and gateways. This final section will explain some
of the more sophisticated redirection techniques used for caching proxy servers.
These techniques are more complex than the previously discussed protocols. because
they try to be reliable, high-performance, and content- aware——drspatchmg requests
‘to locations hkely to have particular pieces of content.

. Cache Redirection Methods . | 469

WCCP Redlrectlon

“Cisco Systems developed the Web Cache Coordlnatlon Protocol (WCCP) to enable'. |

routers to redirect web traffrc to proxy. caches. WCCP governs eommumcatlon

between routers and caches so that routers can verify caches (make sure they are up

- and running), load balance : among caches, and send specific types of traffic to specific
caches WCCP Versron 2 (WCCPZ) is an open protocol we'll dlscuss WCCPZ here

| | How WCCP redlremon works

Here s a brief overview of how WCCP redlrectton works for HTTP (WCCP redtrects
other protocols similarly):

Start Wlth a network contalmng WCCP enabled routers and caches that can
communicate with one another. : '

A set of routers and their target caches form a WCCP service group. The conﬁg- ‘

" uration of the service group specifies what traffic is sent where, how traffic is

sent, and how load should be balanced among the caches in the service group.

If the service group is configured to redtrect HTTP traffic, routers in the service
group send HTTP | requests to caches in the service group.

When an HTTP request arrives at a router in the service group, the router chooses

one of the caches in the service group. to serve the request (based on either a hash

on the request s IP address or a mask/value set pairing scheme).

The router sends the request packets to the cache, either by encapsulatrng the
packets with the cache’s IP address or by IP MAC forwardmg :

If the cache cannot serve the request the packets are returned to the router for
normal forwardtng :

The members of the service group exchange heartbeat messages thh one

- another, continually verifying one another’s availability.

WCCPZ messages
There are four WCCPZ messages descr1bed in Table 20- 4

Table 20-4. WCCPZ messages

- Cache to router These messages tell routers that caches are available to receive
' : traffic. The messages contain all of the cache’s service group
information. As soon as a cache joins a service group, it sends
these messages to all routers in the group. These messages
negotiate with routers sending WCCP2_{_SEE_YOU messages.

'WCCP'Z__I_SEE__YOU Router to cache These messages respond to WCCP2_HERE_{_AM messages.

They are used to negotiate the packet forwarding method,
assignment method (who is the designated cache) packet
return method, and secunty

470

| Chapter20: Redirection and Load Balancing

Table 2.0-_4. '_W_CC'-PZInéess‘ages (continued)

 Designated cache to
. orouter -

Router o cache that has
~ notsent WCCP2_HERE_
- 1_AM messages for 2.5 x

WCCP2_REMOVAL_QUERY

These messages make assngnments for load balancing; they
send bucket information for hash table load balancing or mask/
value set pair information for. mask/value foad balancing.

" Ifa router does not receive WCCPZ__.HEREJ__AMme»s_sages reg-
 ularly, the router sends this message to see if the cache should-

be removed from the service group. The proper response froma -
cache is three identical WCCP2_HERE_| _AM messages, sepa-

* HERE_|_ AM_T seconds
' rated byHERE I AM T/10$econds

The WCCPZ_HER_E I AM message format is:

WCCP Message Header o

- Security Info Component
Service Info Component
Web-cache Identity -Info Component
Web-cache View Info Component.
Capability Info Component (optional)

- Command Exten51on Component (optlonal)

The WCCPZ I SEE YOU message format is:

WCCP Message Header -
Security Info Component
Service Info Component
- Router Identity Info Component
Router View Info Component: ,
. Capability Info Component (optlonal)
Command Extension Component (optlonal)

The WCCPZ REDIRECT_ASSIGN message format is:

_ WeeP ‘Message Header ,
Security Info Component
Service Info Component
Assignment Info Component, or Alternate A551gnment Component

The WCCP2 REMOVAL QUERY message format is:

WCCP Message Header

" Security Info Component
Service Info Component

" Router Query Info Component

Message components -

Each WCCP2 message consists of header and components. The WCCP header infor-
mation contains the message type (Here I Am, I See You, Assagnment, or Removal
Query), WCCP version, and message length (not including the length of the header).

- The components each begin with a four-octet header describing the component type
and length. The component length does not include the length of the component
header. The message components are described in Table 20-5.

Cache Redirection Methods |~ 471

' _Table 20-5. WCCP2 meSSage_ cdmponents

Security Info -

' Service Info -

B Routerldenthylnfo

- Web Cache I_dentit)r fnfo

Router View Info
Web Cache View Info
Assignment Info’
Router Query Info

(apabilities Info

. _Contams the security option and security rmplementatron The securrty optron can be:

~ WCCP2_NO_SECURITY (0)
"WCCP2_MDS_SECURITY (1)

If the option is no securrty, the security rmplementatron field does not exist; If the option is

" MD5, the security implementation field is a 16-octet field containing the message check- '
- sum and Service Group password The password can be-no more than erght octets.

. Describes the service group The service type. (D can have two values

* WCCP2_SERVICE_STANDARD (0).
WCCP2_SERVICE_DYNAMIC (1)

 Ifthe service type'is standard, the service s a well-known service, defi ned entirely by ser-
“ vice ID. HTTP is an example of a well-known service. If the service type is dynamic, the fol- -

lowing settings define the service: priority, protocol service ﬂags (whrch determrne
hashing), and port. - _

: Contains the router IP address and ID, and fists (by P address) all of the web caches wrth
» whrch the router intends to communrcate

Contarns the web cache IP address and redrrectron hash tab!e mappmg
Contains the router’s view of the service group (|dentrtres of the routers and caches)

, Contarns the web cache’s view of the service group.
. Shows the assignment of a ‘web cache to a particular hashing bucket. .

Contains the router's IP address, address of the web cache being qrreried,vand ID of the last
router in the service group that received a Here | Am message from the web cache.

Used by routers to advertise supported packet forwarding, load balancing, and packet retum
methods; used by web caches to let routers know what method the web cache prefers

Alternate Assignment - Contains hash table assrgnment rnformatron for load balancrng
- Assignment Map Contains mask/value set elements for service group.
Command Extension . Used by web caches to tell routers they are shuttmg down; used by routers to acknowledge'
: ~acache shutdown. : :
Service groups

A service group consists of a set of WCCP enabled routers and caches that exchange -
WCCP messages. The routers send web traffic to the caches in the service group. The
configuration of the service group determines how traffic is distributed to caches in
the service group. The routers and caches exchange service group conflguratlon

_ 1nformat10n in Here I Am and I See You messages. :

'»GREpacketencapﬂﬂauon

Routers that support WCCP redlrect HTTP packets to a partlcular server by encap-
sulating them with the server’s IP address. The packet encapsulation also contains an
IP header proto field that indicates Generic Router Encapsulation (GRE). The exist-
ence of the proto field tells the receiving proxy that it has an encapsulated packet.

472 | Chapter 20: Redirection and Load Balancing

Because the packet is encapsulated the client i address is. not lost Flgure 20 12
: 111ustrates GRE packet encapsulatlon ' : : . v o

ToProxy: .. Proto:GRE: -
3333 S '

Passes through WCCP oute

Pigdré 20—12._H0w'a WCCP router changes an HTTP packet’s destination IP address -~

, WCCP Ioad balancmg

In addition to routing, WCCP routers can balance load among several recelvmg serv-
ers. WCCP routers and their receiving servers exchange heartbeat messages to let one
‘another know they are up and running. If a particular receiving server stops sending
“heartbeat messages, the WCCP touter sends request traffic directly to the Internet,
instéad of redirecting it to that node When the node returns to service, the WCCP
‘router begins receiving heartbeat messages agaln and resumes sendmg request trafﬁc .
to the node.. : :

| Internet Cache Protocol

The Internet Cache Protocol (ICP) allows caches to look for content h1ts in sﬂohng'»
caches. If a cache does not have the content requested in an’ HTTP message, it can
find out if the content is in a nearby sibling cache and, if so, retrieve the content from

there, hopefully avoiding a more costly query to an origin server. ICP can be thought
of as a cache clustering protocol. It is a redirection protocol in the sense that the final
destination of an HTTP request message can be determmed by a series of ICP queries.

ICP is an object dlscovery protocol. It asks nearby caches all at the same time, if any
of them have a particular URL in their caches. The nearby caches send back a short
message saying “HIT” if they have that URL or “MISS” if they don’t. The cache is
then free to open an HTTP connection toa neighbor cache that has the object.

ICP is 51mple and lightweight. ICP messages are 32-bit packed structures in net-
- 'Work byte order, making them easy to parse. They are camed in UDP datagtams for

- Internet Cache Protocol | 473.

~ efficiency. UDP is anunreliable Internet protocol, which means that the data can get
destroyed in transit, so programs that speak ICP need to have tlmeouts to detect lost
: datagrams '

Here is a brtef descr1pt10n of the parts of an ICP message: .

Opcode -
The opcode is an. 8-bit value that descrrbes the meaning of the ICP message
~ Basic opcodes are ICP_ OP__QUERY request messages and ICP_ OP _HIT and
ICP OP_MISS response messages.. _ '

- Version - - :
The 8-bit version number descrlbes the version number of the ICP protocol. The
version of ICP used by Squrd documented in Internet RFC 2186, is Versmn 2.

Message length | .
The total size in bytes. of the ICP message Because there are only 16 brts the ICP
message size cannot be larger than 16,383 bytes. URLSs usually are shorter than
- 16 KB; if they’re longer than that, many web apphcatrons will not process them.

Request number : :
1CP-enabled caches use the request number to keep track of multlple snnulta— .
‘neous requests and replies. An ICP reply message always must contain the same
‘request number as the ICP request message that trrggered the reply.

Options
The 32-bit ICP options field is a bit vector contalnmg flags that modify ICP
_ behavior. ICPv2 defines two flags, both of which modify ICP_OP_QUERY
- requests. The ICP_FLAG_HIT_OB] flag enables and disables the return of docu-
- ment data in ICP responses. The ICP_FLAG_SRC_RTT flag requests an esti-
mate of the round-trip time to the origin server, as measured by a sibling. cache

Option data
The 32-bit option data is reserved for optional features. ICPv2 uses the low 16
bits of the option data to hold an optional round-trip time estimate from the sib-
~ ling to the origin server. - :

Sender host address - o ,
A historic ﬁeld carrying the 32-bit IP address of the message sendet; not used in
practice. - _ '

Payload ’

‘The contents of the payload vary depending on the message type. For ICP_OP_
QUERY, the payload is a 4-byte original requester host address followed by a
NUL-terminated URL. For ICP_OP_HIT_OB], the payload is a NUL-terminated

" URL followed by a 16 bit object size, followed by the object data.

For more i_nfo'rrnat_ion about ICP, refer to informational RFCs 2186 and 2187. Excel-
lent ICP and peering references also are available from the U.S. National Laboratory
for Applied Network Research (http://www.nlanr.net/Squid/).

474 | Chapter20: Redirection and Load Balaning

Cache Array Routlng Protocol

Proxy servers greatly reduce traffic to the Internet by 1ntercept1ng requests from indi-
vidual users and serving cached copies of the requested web objects. However, as
the number of users grows a high volume of traffic can overload the PIOXY Servers
' themselves : : :

One solution to thlS problem is to use mult1p1e DIOXY Servers to dlstnbute the Ioad to
a collection of servers. The Cache Array Routing Protocol (CARP) is a standard pro-
posed' by Microsoft Corporation and Netscape Communication. Corporation to
administer a collection of proxy servers such that an array of proxy Servers appears to
clients as one logical cache ' :

‘CARP is an alternatlve to ICP. Both CARP and ICP allow administrators to improve
performance by using multlple proxy servers. This section dlscusses how CARP dif-
fers from ICP, the advantages and disadvantages of using CARP over ICP, and the
technical details of how the CARP protocol is implemented.

'Upon a cache miss in ICP, the proxy server queries nelghborlng caches using an ICP
message format to determine the availability of the web object. The neighboring

-~ caches respond Wlth either a “HIT” or a “MISS,” and the requesting proxy server
uses these responses to select the most appropriate location from which to retrieve
the object. If the ICP proxy servers were arranged in a hierarchical fashion, a miss
would be elevated to the parent. Figure 20- 13 dIagrammatlcally shows how hits and
misses are resolved usmg ICP.

Hitor miss reply
" (timen+1) o

L
#
:

Parent of proxy is polled if the
siblings retuma MISS

............................

“Browser . Cachmg proxy . Pae

iz
=
=
i3
:fB
IS

Hit or miss reply”
(time n+1)

Figure 20-13. ICP queries

Cache Array Routing Protocol | 475

~ Note that each of the proxy servers, connected together using the ICP protocol, isa
staridalone cache server with redundant mirrors of content, meaning that duplicate
entries of web objects across proxy servers is possible. In contrast, the collection of
~ servers connected using CARP operates as a single, large server with each compo- -
| nent server contammg only a fraction of the total cached documents. By applying a’
hash function to the URL of a web object, CARP maps web objects to a specific
proxy server. Because each web object has a unique home; we can determine the
location of the object by a single lookup, rather than polling each of the proxy serv- -
ers conﬁgured in the collectlon Flgure 20-14 summarizes the CARP approach '

Browser. - Cachmg proxy : - 'Par
') : '
. Hash function usedtodecnde] iR
: whlchsfblmg proxycache Y S
to contact S
Respanse
(time n+1)

blmg

Flgure 20-14. CARP redu'ectzon S

,Although Flgure 20 14 shows the caching proxy as being the 1ntermed1ary between
“clients and proxy servers that distributes the load to the various proxy servers, it is
-posmble for this function to be served by the clients themselves. Commercial brows-
ers such as Internet Explorer and Netscape Navigator can be configured to compute
- the hash function in the form of a plug-in that determines the proxy server to which
* the request should be sent. '

Determmlstlc resoluuon of the proxy server in CARP means that it isn’t necessary to
send queries to all the neighbors, which means that this method requires fewer inter-
cache messages to be sent out. As more proxy servers are added to the configura-
tion, the collective cache system will scale fairly well. However, a disadvantage of
CARP is that if one of the proxy servers becomes unavailable, the hash function
needs to be modified to reflect this change, and the contents of the proxy servers
must be reshuffled across the existing proxy servers. This can be expensive if the.
proxy server -crashes often. In-contrast, redundant content in ICP proxy servers

- 476 | ChapterZO_: Redirectio_n and Load Balanding

. means. that reshufﬂmg is not requrred Another potenual problem is that because N
CARP is a new protocol, existing proxy servers runmng only the ICP protocol may o
" notbe 1ncluded readﬂy in a CARP collection. : ’ '

: '-Havmg descrlbed the dlfference between CARP and ICP let us S now descnbe fe ARP .
in a little more detail. The CARP red1rect1on method mvolves the followmg tasks

* Keep a table of ParUClpatlng proxy servers. These proxy servers are polled pen-f_'
: odlcally to see which ones are still active. S : -

‘e For each participating proxy server, compute a hash funcuon The value
returned by the hash functron takes into account the amount of load this proxy
can handle. ' B

-+ Define a separate hash functron that returns a number based on the URL of the
- requested web object. ' L . -

"« Take the sum of the hash functlon of the URL and the hash function of the
Proxy servers to.get an array of numbers. The maximum value of these numbers
~ determines the proxy server to use for the URL. Because the computed values are
- deterministic, subsequent requests for the same web ob]ect Wﬂl be forwarded to
the same PIOXy Server. ’ - :

These four chores can either be carrled out on the browser in‘a plug -in, or be com-
puted on an 1ntermed1ate server. ' :

For each collecnon of proxy servers, ‘create a table hstmg all of the servers in the col-
lection. Each entry in the table should contain information about load factors, time=
to-live (TTL) countdown values, and global parameters such as how often members
should be polled. The load factor indicates how much load that machine can han-
- dle, which depends on the CPU speed and hard drive capacity of that machine. The
table can be maintained remotely via an RPC interface. Once the fields in the tables
have been updated by RPC, they can be made available or published to downstream
clients and proxies. This publication is done in HTTP, allowing any client or proxy
‘server to consume the table information without mtroducmg another inter-proxy -

protocol. Clients and proxy servers s1mp1y use a well-known. URL to retrieve the
table. : :

The hash function used must ensure that the web objects are statrstically'distributed
across the participating proxy servers. The load factor of the proxy server should be
used to determme the statistic probablhty of a web object bemg a531gned to that

' proxy
In summary, the CARP protocol allows a group of proxy servers to be viewed as sin-
gle collective cache, instead of a group of cooperating but separate caches (as in ICP).

‘A deterministic request resolution path finds the home of a specific web object
within a single hop. This eliminates the inter-proxy traffic that often is generated to

(ache Array Routing Protocol |, 477

e fmd the web object ina group of proxy -servers in ICP. CARP. also avoids duphcate
copies of web objects being stored on different proxy servers, which has the advan- -
tage that the cache system collectively has a. larger capacity for storing web objects :
~ but also has the dlsadvantage that a failure in ‘any one proxy. requires reshuffhng
“some of the cache contents to ex1st1ng proxies, :

Hypér Te’xt' Cachi_ng Protocol |

- Earlier, we discussed ICP, a protocol that allows proxy caches to query siblings
‘about the presence of documents. ICP, however, was designed with- HTTP/0.9 in
mind and therefore allows caches to send just the URL when querying a sibling
about the presence of a resource. Versions 1.0 and 1.1 of HTTP introduced many
new request headers that, along with the URL, are used to make decisions about -
document matching, so.simply sendlng the URL in a request may not result in accu-
rate responses. : .

The Hyper Text Cachmg Protocol (HTCP) reduces the- probablhty of false hltS by
allowing siblings to query each other for the presence of documents using the URL
and all of the request and response headers. Further, HTCP allows sibling caches to
monitor and request the addition and deletion of selected documents in each
‘other’s caches and to make changes in the caching pohc1es of each other’s cached
documents

Figure 20-13, which illustrates an ICP transaction, also can be used to illustrate an
HTCP transaction—HTCP is just another object discovery protocol. If a nearby
cache has the document, the requesting cache can open an HTTP connection to the
cache to get a copy of the'document. The difference between an ICP and an HTCP
 transaction is in the level of detail in the requests and responses.

The structure of HTCP messages is illustrated in Figure 20-15. The Header portlon
includes the message length and message versions. The Data portion starts with the
dara length and includes opcodes, response codes, and some flags and IDs, and it ter-
minates with the actual data An optional Authentication section may follow the
Data section.

Details of the message fields are as follows:

Header : :
The Header section consists of a 32-bit message length, an 8-bit- ma]or protocol
- version, and an 8-bit minor protocol version. The message length includes all of
the header data, and authent1cat1on sizes. :

Data
‘The Data section contains the HTCP message and has the structure illustrated in
Figure 20- 15. The data components are described in Table 20-6.

478 | Chapter20: Redirectionand Load Balancing

Figure 20-15. HTCP message format

Table 20-6. HTCP data components

Data length

" Opcode

Response code

F1-

RR
Transaction [D

Opcode data

it value of the number of bytes inthe Data section inclu _mgt e _engt of the Lengt, e

: bThe4-b|toperatlon codeforthe HTCPtransactlon The ful Ilstofopcodes nsprowded in - '
- Table 20-7.

A4-bitkey mdlcatmg the success orfallure ofthe transactlon The possxble values are: ‘

» 0—Authentication was not used, but is needed -
» 1—Authentication was used, but is not satisfactory

-+ 2—Unimplemented opcode

» 3—Major version not supported
* 4—NMinor version not supported _
-+ 5—Inappropriate, disallowed, or undesirable opcode '

F1is overloaded—if the message is a request, F1is a 1-bitflag set by the requestor indicating that it
needs a response (F1=1);.if the message is a response, F1is a 1-bit flag indicating whether the

_ response is to beinterpreted as a response to the overall message (Fi=1)orjustasa response to

the Opcode data fields (F1=<0).
A 1-bit flag indicating that the message is a request (RR=0)oraresponse (RR= 1)

- A 32-bit value that, comblned with the requestor’s network address, uniquely identifies the HTCP
. transaction,

Opcode data is opcode-dependent. See Table 20-7.

~ Hyper Text Caching Protocol | 479

o Table 20-7. HTCP opcodes

Table 20 7 hsts the HTCP opcodes and the1r correspondmg data types o

NOP Essentially a “ping” operation. Aways0 _ |
STST “Oifentityis present, 1if Contains the URL and
N ' R ; entity is not present - request headersin the
: ' request and just
response headers in-
_ . v , _ o . the response
CMON 2 I . - Oifaccepted, 1if refused ' :
B N The SET message allows cachesto . Oif accepted, 1 ifignored.

request changes in caching policies. .
SeeTable 20-9 for a list of the headers
. that can be used in SET messages - .
QR 4 R - Oifthadit, butit'snowgone; -
- ' : o ' * 1iflhad it, but | am keeping
it and 2if | didn’t haveit -

HTCP Authentlcatlon

The authentication pomon ‘of the HTCP message is optional. Its structure is illus-
trated in Figure 20-15, and its components are described inTable 20-8.

Table 20-8. HTCP authentication corﬁponentS’

Auth length The 16-bit number of bytes in the Authentication section of the message, mdudmg the length of
: _ * the Length field |tself : _

Sig time- . A32-bit number representing the number of seconds since 00:00:00 Jan 1, 1970 GMT at the time
- ' ' that the signature is generated. :

Sigexpire - A32-bit number representing the number of seconds since 00:00:00 Jan 1, 1970 GMT when the sig-

' nature will expire.
" Keyname =~ Astring that specifies the name of the shared secret. The Key section has two parts the 16- blt length
’ ’ - inbytes of the string that follows, followed by the stream of uninterrupted bytes of the stn_ng
Signature ~ The HMAC-MDS5 digest with a B value of 64 (representing the source and destination IP addresses

and ports), the major and minor HTCP versions of the message, the Sig time and Sig expires values,
the full HTCP data, and the key. The Signature also has two parts: the 16-bit Iength in bytes of the
stnng, followed by the string. ,

Setting Cachmg Pollqes

_ The SET message allows caches to request changes in the caching policies of cached'
documents. The headers that can be used in SET messages are described in Table 20-9.

480 | Chapter 2'_0:’Redirect’ion,and Load Balancing

Table 20-9. List of Cache headers for rnodr;j’ji'ng caching p:olicies,

Gache-Vary The réquestor has leamed that the content varies onasetofheadersdrfferentfromtheset rnthe .

_ R response Vary header. Thrs header overrides the response Vary header
. Cache—Loea_tion ' The hst of proxy caches that also may have copres of this ob;ect

Cache-Policy o The requestor has learned the caching policies for this object in more detail than i is specrf jed in the :
R ~ response headers. Possible values are: “no-cache,” meamng that the response.is not cacheable but
- may.be shareableamong simultaneous requestors; “no- ~share,” meanmgthattheobjectrs not
-+ shareable; and “no-cache-cookie,” meaning thatthe content maychange asaresult ofcookresand :
cachrngtherefore is not advised. : C

 Cache-Flags - The requestor has modified the object’s cachmg pohcres and the, object may have to be treated spe— ‘
* dially and not necessarrly in accordance with the object’s actual policies. - -

Ca_che'-Expiry ' The actual exprratlon time for the document as learned by the requestor. : _
Cache-MD5 The requestor-computed MDS checksum of the object, which may be different from the value inthe
IR ‘ Content-MDS header, or may be supplied because the object does not have a Content-MDS header.
(ache-to-Origin =~ - The requestor-measured round-trip time to an origin server, The format of the values in this header

is <origin server name or ip> <average round-trip time in seconds> <number
of samples> <number of router hops between requestor and orrgm server>.

By allowing request and responsé headers to be sent in query méssagé's to sibling _
caches, HTCP can decrease the false-hit rate in cache queries. By further allowing

sibling caches to exchange policy information with each other; HTCP can improve
- sibling caches’ ability to cooperate with each other. '

For More Information |
For more information, Consult the followmg references

DNS and Bind :
Cricket L1u ‘Paul Albitz, and Mike Louk_rdes O Reﬂly &c Assoc1ates Inc o

http Jhww.wrec. org/Drafts/draft-cooper-webi- wpad—OO txt
- “Web Proxy Auto-Discovery Protocol.”

http:/fhome.netscape.com/eng/mozilla/2. O/relnotes/demo/proxy live. html
- “Navigator Proxy Auto-Config File Format.”

hitp:/lwww.ietf.org/rfc/rfc2186.txt |
IETF RFC 2186, “Intercache Communication Protocol (ICP) Ver31on 2,7 by D.
Wessels and K. Claffy. -

http://ch.zrcache.net/carp.txt
“Cache Array Routing Protocol v1.0.”

http:/fwww.ietf.orglrfc/rfc2756.txt
-IETE RFC 2756 “Hyper Text Cachmg Protocol (HTCP/O 0),” by P Vixie and D.
Wessels

* For More Information | - 481

B http //www ietf. org/mternet drafts/dmft-wz son- wrec-wccp -v2-00.txt
draft-wilson-wrec-wecp-v2-01.txt, “Web Cache Communication Protocol V2 0,”
byM Cieslak, D. Forster, G. Tiwana, and R. Wilson. ' '

http Hwww.ietf. org/rfc/rfc2131 txt?number—213_1 |
~ “Dynamic Host Conﬁguratlon Protocol.”
http:/fwww.ietf. org/rfc/rfc.2132 txt?number=21\32
' “DHCP Options and BOOTP Vendor Extensions.”
http:/lwww. zetf org/rfc/rf62608 txt?number—-2608 |

- “Service Location Protocol, Version 2.” ‘

http:/twww.ietf.org/rfc/rfc2219.txt>number=2219 ..
“Use of DNS Al'iases for Network Services.”

482 | Chapter20; Redirection and Load Balancing

CHAPTER a
Loggmg and Usage Trackmg\

Almost all servers and prox1es log sumimaries of the HTTP transact1ons they process.
* This is done for a variety of reasons: usage tracking, security, billing, error detection,

and so on. In this chapter, we take a brief tour of logging, examining what informa-
 tion about HTTP transactions typlcally is logged and what some of the common log
~ formats contain. : :

What to Log7

For the most part, loggmg is done for two reasons: to look for problems on the server
or proxy (e.g., which requests are failing), and to generate statistics about how ‘web
sites are accessed. Statistics are useful for marketing, bllhng, and capacuy plannmg
(for instance, determmmg the need for addmonal servers or bandWLdth)

You could log all of the headers in an HTTP transaction, but for servers and proxies
~ that process millions of transactions per day, the sheer bulk of all of that data quickly
would get out of hand, You also would end up logging a lot of 1nformat10n that you
don’t really care about and may never even look at.

Typically, just the basics of a transaction are logged. A few examples of commonly
logged fields are:

* HTTP method
« HTTP version of client and server
* URL of the requested resource
* HTTP status code of the response v
- Size of the request and response messages (1ncludmg any entity bodies)
* Timestamp of when the transaction occurred ' ‘
~* Referer and User—Agenf header values

483

-‘The HTTP method and URL tell what the request was trying to do———for example |
- GETting a resource or. POSng an order form The URL can be used to track popu-'
vlarlty of pages on the web site. ‘ : - : '

_ The version strmgs give hints. about the chent and server, which are useful in debug- .
ging strange or unexpected interactions between clients and servers. For example, if ’
requests are failing at a higher-than-expected rate, the version information may pomt
to a new release of a browser that is unable to interact with the server.

The HTTP status code tells what happened to the request: whether it was success-
ful, the authorization' attempt failed, the resource was found,. etc. (See “Status
Codes m Chapter 3 for a list of HTTP status codes) :

The size of the request/response and the trmestamp are used marnly for accountmg" -
purposes; i.e., to track how many bytes flowed into, out of, or through the applica-
tion. The timestamp also can be used to correlate observed problems with the'
requests that were bemg made at the ume. : -

‘Log Formats

Several log formats have become standard and we’ll discuss some of the most com- -
mon formats in this section. Most commercial and open source. HTTP applications.
support logging in one or more of these common formats. Many of these applica-
tions also support the ability of admmrstrators to conflgure log formats and create
their own. custom formats. ' : ‘

One of the main benefits- of : supportmg (for appheattons) and usmg (for administra- v
tors) these more standard formats rests in the ability to leverage the tools that have -
~ been built to process and generate basic statistics from these logs. Many open source .
and commercial packages exist to crunch logs for reporting purposes, and by utilizing
standard formats, apphcatlons and their admlmstrators can plug mto these resources.

Common Log Format

One of the most common log formats in use today is called, approprrately, the

Common Log Format. Originally defined by NCSA, many servers use this log for-

mat as a default. Most commercial and open source servers can be confrgured to use .
this format, and many commercial and freeware tools exist to help parse common

log files. Table 21-1 lists, in order, the flelds of the Common Log Format.'

Table 21-1. Common Log Format fzelds

remotehost - ‘The hostname or IP address of the requestor's machine (IP if the server was not confi gured to perform
.~ reverse DNS or cannot look up the requestor’s hostname)

username - If an ident lookup was performed, the requestor’s authenticated username?

484 | Chapter21: Logging and Usage Tracking

| Tdble 21-1. _behmon, Log Format fields (éonttnued)

: a_uth.-username - authenucatlon was performed; the username with which the requestoraut entlcate :

timestamp - The date and time of the request - -
requestline Theexact text of the HTTP request line, “GET /index html HTTP/1 1” o
' tesponse—code ~ The HTTP status code that was returned in the response
response-size ~ The Content—Length of the response entity-—if no entity was returned in the response azero s Iogged

2 REC931 descnbesthe /dentlookup used in this authenttcatlon The/dentprotocol was discussed in (hapterS
Example 21_-1 lists a few examples of Common Log Format entrte_s.-_ :

Example 21-1. Common Log Format .

$209.1.32.44 - - [03/0ct/1999:14:16:00 -0400] "GET / HTTP/1.0" 200 1024 ~ *
http-guide.com - dg [03/0ct/1999:14:16:32 -0400] "GET / HTTP/1.0" 200 477
http-guide.com - dg [03/Oct/1999 14:16:32 0400] "GET /foo HTTP/1 0" 404 0

In these examples the flelds are a531gned as follows

‘remotehost ©209.132.44 http-guide.com - hittp- gusde com

uwername - <empty> <empty> O <empty>
auth-username ~ <empty> dg o dg : .
fimestamp 03/0ct/1999:14:16:00-0400 - 03/0ct/1999:14:16:32 -0400- 03/Oct/1999 1416320400
fquestine . GET/HTIPAO — GET/HTIP/10 GET/foo HTTPA0
fesponse-code 200 200 a4

response—'size 04 , 417 - Y

Note that the remotehost field can be elther a hostname asin http-guzde com, or an
IP address, such as 209 1.32. 44 :

The dashes in the second (username) and thlrd (auth username) ﬁelds 1nd1cate that
- the fields are empty. This indicates that either an ident lookup did not occur (second '
field empty) or authentlcatton was not performed (third fteld empty) ’

Combmed Log Format

Another commonly used log format is the Combined Log Format. Thts format is

- supported. by servers such as Apache. The Combined Log Format is very similar to

the Common Log Format; in fact, it mirrors it exactly, with the addition of two fields

(listed in Table 21-2). The User-Agent field is useful in noting which HTTP client

applications are making the logged requests, while the Referer field prov1des more
‘detail about Where the requestor found this URL..

Log Formats - | - 485

o Tc_zbl}eZl-Z(Addit_iolnal Corﬁbihed_Log Format f:iel_ds'

Referer : fhe contents of the Referer HTTP header
' U_'ser—A_geni o Thecontents of the User-Agent HTTP header

| Example 21-2 gwes an example of a Combmed Log Format entry ,

Example 21 2 Combzned Log Format

209.1. 32 44 - - [03/0Ct/1999 14: 16 00 0400] "GET / HTTP/1.0" 200 1024 "http //v\rww joes~
hardware com/" "5 0: M02111a/4 0 (compatlble, MSIE 5. 0, Windows 98)"

In Example 21 2 the Referer and User—Agent fields are a551gned as follows

Referer - http://www.joes-hardware.com/ -
User-Agent' B 5. 0 Molela/4 0 (compatlble MSIE5.0; Wmdows 98)

The f1rst seven fields of the example Combmed Log Format entry in Example 21 2
are exactly as they would be in the Common Log Format (see the first entry in
Example 21-1). The two new flelds Referer and User-Agent, are tacked onto the end
of the log entry.

Netscape Extended Log. Format

When Netscape entered into the commercial HTTP application space, it defined for
its servers many log formats that have been adopted by other HTTP application
developers. Netscape’s formats derive from the NCSA Common Log Format, but
they extend that format to 1ncorporate flelds relevant to HTTP apphcatlons such as
proxies and web caches.

The first seven fields in the Netseape Extended Log F'orrﬁat are identical to those in -
the Common Log Format (see Table 21-1). Table 21-3 lists, in order, the new fields
that the Netscape Extended Log Format introduces. '

Table 21-3, Additional Netscape Extended Log Format fields

_proxy~response-code - f the transactlon went through a proxy, the HTTP response code from the serverto the proxy
proXy-response—size ‘ Ifthe transact;on went through a proxy, the Content-Length of the server's response entlty sent '
: to the proxy : '
-~ client-request-size The Content-Length of any body or entity in the client’s request to the proxy o
proxy-request-size If the transaction went through a proxy, the Content-Length of any body or entity in the proxy’s
- " request to the server
client-request-hdr-size The length, in bytes, of the dlient’s request headers

486 | Chapter2l: _Logging and Usage Tracking

Table 21-3. Additienal Netscape Extended ng Format fields _(coﬁttnued)». -

proxy-response-hdr-size . Ifthe transaction went through a proxy, the Iength in bytes, of the proxy 5 response headers
o .. thatweresent to the requestor - :
proxy—request—hdr—size . Ifthe transaction went through a proxy, the length, in bytes, of the proxy s request headers

5 ... thatweresenttothe server ,
server—response—hdt—size- ~ The length in bytes .of the server's response headers

proxy-timestamp - ’Ifthetransacttonwentthroughaproxy,theelapsedttmefortherequestand responsetotravel
. o ’throughtheproxy, inseconds

_ Example 21-3 glves an example of a Netscape Extended Log Format entry

Example’ 21-3. Netscape Extended Log Format

209.1.32.44 - - [03/0ct/1999:14:16:00-0400]. "GET / HTTP/1.0" 200 1024 200 1024 0 0 215 260
279 254 3 ' ~ . _

In this example,. the extended fields are assigned as follows: =~

proxy-response-code

proxy-response-size 1024
lient-requestsize 0
proxy-request-size -0
client-request-hdr-size 215

proxy-response-hdr-size . 260
. proxy-request-hdr-size 9
‘server-response-hdr-size 254

' proxy—timestamp 3

The first seven ﬁelds of the example Netscape Extended Log Format entry in
Example 21-3 mirror the entries in the Common Log Format example (see the first
entry in Example 21-1). : :

Netscape Extended 2 Log Format

Another Netscape log format, the Netscape Extended 2 Log Format, takes the
Extended Log Format and adds further information relevant to HTTP proxy and web
caching applications. These extra fields help paint a better picture of the interactions
between an HTTP client and an HTTP proxy application. :

The Netseape Extended 2 Log Format derives from the Netscape Extended Log For-
mat, and its initial fields are 1dent1ca1 to those listed in Table 21-3 (it also extends the
Common Log Format fields listed in Table 21-1).

. LogFormats | 487

Table 21-4 hsts in order the addmonal f1elds of the Netscape Extended 2 Log Format. o

| Table 21 4 Addztzonal Netscape Extended 2 Log Format fields

route Theoute that the proxy used to make the request for the dlient (see Table 21-5)

'client-ﬁnish-Statu's-cdde - The client finish status code; specifies whether the chentrequesttothe proxycompleted suc-
: . o cessfully(FlN)orwasmterrupted(INTR)

-proxy;ﬁnish-StatUS-codev ~ The proxy finish status code; specifies whetherthe proxy requestto the server completed suc-
BN ~ cessfully (FIN) or was mterrupted (INTR)

‘ cache¥re$ult¥code | The cache resultcode tells howthe cache responded to the requesta

2 Table 2]—7 lists the Netscape cache result codes

Example 21 4 glves an ‘example of a Netscape EXtended 2 Log Format entry

Example 214, Netscape Extended 2 Log Format

209.1.32.44 - - [03/0ct/1999 14:16:00- -0400] "GET / HTTP/1 0" 200 1024 200 1024 0 0 215 260. '
279 254 3 DIRECT FIN FIN WRITTEN o

.The extended frelds in 'thlbs‘exar_-‘np‘le are dseigrtéd’as follows:

route DIRECT
client-finish-status-code BN
proxy-finish-status-code - FIN

cache-result-code » WRITTEN -~

~ The first 16 flelds in the Netscape Extended 2 Log Format entry in Example 21-4 mit-
ror the entries in the Netscape Extended Log Format example (see Example 21-3).

Table 21-5 lists the valid Netscape route codes.

Table 21-5. Netscape route codes

DIRECT _— The resource was fetched directly from the server.
PROXY(host:port) : The resource was fetched through the proxy “host.”
SOCKS(socks:port) _ The resource was fetched through the SOCKS server “host.”

Table 21-6 lists the valid Netscape finish codes.

Table 21-6. NetSCelpe finish status codes

- : - Therequest never even started.

FIN - The request was completed successfully.

488 | Chapter_ZTf Logging and Usage Tracking

 Table 21-6. Netsccipe finish status codes (contz'rmed)

‘mm
TtMEOUT . _' ., The requestwastrmed out by the proxy/server

The request was rnterrupted by the clrent or ended bya proxy/server. .

Table 21-7 lists. the vahd Netscape cache codes."

Table 21- 7. Netscape cache codes

- ' The resource was uncacheable.

' WRITTEN o The fesource was written into the cache.
REFRESHED : The resource was cached and it was refreshed. .
NO-CHECK ~ The cached resource was returned; no freshness checkwas done
UP-TO-DATE The cached resource was retumed; afreshness checkwas done.
- HOST-NOT-AVAILABLE .-~ The cached resource was returned no freshnesscheckwas done because rhe remote serverwas
' R | avarlable e '
(L—MISMAT_CH Thes resource was not wrrtten to the cache; the wrrte was aborted because the Content—Length
. : - didnot match the resource size. o
ERROR - o The resource was not written to the cache due to some error; forexample atimeout occurred or

- the client aborted the transaction.

Netscape applications, l.ike many other HTTP applications, have other log formats
- 100, including a Flexible Log Format and a means for administrators to output cus-
tom log fields. These formats allow administrators greater control ‘and the ability to
customize their logs by choosing which parts of the HTTP transaction (headers sta-
tus, sizes, etc) to report in their logs. ' : :

The ability for administrators to conftgure custom formats was added because it is
difficult to predict what information administrators will be interested in getting:
from their logs. Many other proxres and servers also have the abrhty to emrt custom
logs

| Squrd Proxy Log Format

The Squid proxy cache (http://www.squid-cache. org) is a venerable part of the Web Its

roots trace back to one of the early web proxy cache projects (ftp://ftp.cs.colorado.edu/
publtechreports/schwartz/Harvest.Conf.ps.Z). Squid is an open source project that has

been extended and enhanced by the open source community over the years. Many

tools have been written to help administer the Squid application, including tools to

help process, audit, and mine its logs. Many subsequent proxy caches adopted the

Squrd format for their own logs so that they could leverage these tools.

. Chapter 7 discusses HTTP caching in detail.

Log Formats. | 489

The format of a Squrd log -entry is fairly srmple Its frelds are summarized in
‘Table 21 8. . ‘

Table 21 -8. Squid Log .Fbrmat fz’elds-

 timestam p The timestamp when the request arrived, in seconds since January 1, 1970 GMT.
time-elapsed - The elapsed time for request a'nd response to travel through the proxy, in milliseconds.
host-ip - - The IP address of the dlient’s (requestor s} host machine.” ‘
result-code/status . ~ Theresult field is Squid-ism that tells what action the proxy took during this request?; the.
: _ code field is the HTTP response code that the proxy sent to the dlient..
size ‘ The length of the proxy’s response to the dlient, including HTTP response headers and body,
. o ~ inbytes.
o method , The HTTP method of the dlient’s request. _
url E The URL in the client’s request. '
fc931-idente v The client’s authentrcated username.d
hierarchy/from ~ Liketheroute field in Netscape formats, the hrerarchy field tells what route the proxy used to .
‘ make the request for the client.¢ The from fi eld tells the name of the server that the proxy -
_ _ _ used to make the request.
content-type } The Content-Type of the proxy response entity. '

3 Table 219 lists the various result codes and their meanings. :

b Recall from Chapter 2 that proxies often log the entire requested URL, 50 rf a username and password component are in the URL, a proxy
caninadvertently record this information.

¢ The rfc931-ident, hierarchy/from, and content-type fields were added in Squrd 1.1. Previous versions drd not have these fi etds.

4 RFC931 describes the ident lookup used in this authentication. : :

e http //squid. nlanr net/l)oc/FAO/FA() 6. html#ssé 6 lists all of the valid Squid hrerarchy codes. .

Example 21-5“ g_iv_es an example of a Squid Log Format entry.

Example 21-5. Squid Log Format

199823414 3001 209.1.32.44 TCP _MISS/200 4087 GET http: //www joes-hardware.com - DIRECT/ .
_proxy.com text/html

The fields are assigned as follows:

| _' tirrrestamp 99823414

time-elapsed - o 3001
host-ip 20913244
action-code o TCP_MISS
status ‘ 200

- size A 4087
method GET

URL ~ http://www.joes-hardware.com

490 'I_' Chapter 21: Logging and Usage Tracking

- RFC931 ident :
hierarchy

“from

content-type

DIRECT2
proxy.com
text/html

a The DIRECT Squid hierarchy value is the same as the DIRECT route value in Netscape log formats.

T_ab_le 21-9 lists the'vacious Squid‘vresul.t codes.”

TCP_HIT
TCP_MISS
TCP_REFRESH_HIT

TCP_REF_FAIL_HIT
TCP_REFRESH_MISS

TCP_CLIENT_REFRESH_MISS
TCP_IMS_HIT

- TCP_SWAPFAIL_MISS
TCP_NEGATIVE_HIT

TCP_MEM_HIT
TCP_DENIED
TCP_OFFLINE_HIT

ubp_*

‘Table 21-9. Squid result codes

A valid copy of the resource was served out of the cache..

) The resource was not in the cache.
The resource was in the cache but needed to be checked for freshness The proxy revahdated ‘

the resource with the server and found that the in-cache copy was indeed still fresh. .
The resource was in the cache but needed to be checked for freshness. However, the revalida-

‘tion failed (perhaps the proxy could not connect to the server) 50 the 'stale” resource was

returned. .
The resource was in the cache but needed to be checked for freshness Upon checking with -

the server, the proxy leamed that the resource in the cache was out of date and received a

new versron

The vequestor sent a Pragma: no- -cache or similar Cache-Control drrectrve, sothe| proxy was -
forced to fetch the resource. . ‘

The requestor issued a conditional request, which was validated against the cached copy of

- the resource.

The proxy thought the resource was in the cache but for some reason could not access it.

A cached response was returned, but the response was a negatively cached response. Squid
supports the notion of caching errors for resources—for example, caching a 404 Not Found
response—so if multiple requests go through the proxy-cache for an rnvahd resource, the
error is served from the proxy cache.

A valid copy of the resource was served out of the cache, and the fesource wasin the proxy
cache’s memory {as opposed to having to access the disk to retrieve the cached resource).

The request for this resource was denied, probably because the requestor does not have per-
mission to make requests for this resource.

The requested resource was retrieved from the cache during its offline mode. Resources are '
not validated when Squid (or another proxy using this format} s in offline mode.

The UDP_* codes indicate that requests were received through the UDP rnterfece to the
proxy. HTTP normally uses the TCP transport protocol, so these requests are not usrng the
HTTP protocol.2

* Several of these action codes deal more with the internals of the Squid proxy cache, so not all of them are
used by other proxies that implement the Squid Log Format.

Log Formats | 491

Table 21-9. Squid result codés' (continued)

~UDP_HIT * Avalid copy of the resource was served outofthe cache.
UDP_MISS : " The resource was notin the cache.
UDP_DENIED : The request for this resource wasdenled probably because the requestordoes not have per-
© missionto’ make requests forthls resource. :
UDP_INVALID . . The requestthatthe proxy recelved was mvahd
UDP_MISS_NOFETCH Used by Squid during specific operation modes or in the cache of frequentfallures A cache
o _ : miss was returned and the resource was not fetched. : :

NONE | Logged sometimes with errors.

- TCP_CLIENT_REFRESH - See TCP_CLIENT_REFRESH_MISS. -

(TCP_SWAPFAIL - SeeTCP_ SWAPFAIL MISS. -
UDP_| RELOADING See UDP MISS NOFETCH.

3 Squid hasi itsown protocol formakmg these requests 1P, This protocol is used for cache-to-cache requests Seehitp: //www squid- cache org -
~ formore mformatlon S

Hit Metering

Origin servers often keep detailed logs for b1lhng purposes. ‘Content prov1ders need
to know how often URLs are accessed, advertisers want to know how often their ads
are shown, and web authors want to know how popular their content is. Logging
* works well for tracking these things when clients visit web servers directly.-

However, caches stand between clients and servers and prevent many accesses. from -
reaching servers (the very purpose of caches).” Because caches handle many HTTP
requests and satisfy them without visiting the origin server, the server has no record
that a client accessed its content, creating omissions in log files. '

~ Missing log data makes content providers resort to cache busting for their most impor-
tant pages. Cache busting refers to a content producer intentionally making certain
content uncacheable, so all requests for this content must go to the origin server.t
‘This allows the origin server to log the access. Defeating caching might yield better
logs, but it slows down requests and increases load on the origin server and network.

Because proxy caches (and some clients) keep their own logs, if servers could get
access to these logs—or at least have a crude way to determine how often their con-
tent is served by a proxy cache—cache busting could be avoided. The proposed Hit
Metering protocol, an extension to HTTP, suggests a solution to this problem. The
Hit Metering protocol requires caches to penodlcally report cache access statistics to
origin servers.

* Recall that virtually every browser has a cache. A
t Chapter 7 describes how HTTP responses can be marked as uncacheable.

492 | Chapter21: Logging and Usage Tracking

RFC 2227 deﬁnes the Hit Metermg protocol in detail. Th1s secuon prov1des a brlef
tour of the proposal . o o

OverVIew

The Hit Metermg protocol defines an extension to HTTP that prov1des a few basu,
facilities that caches and servers can implement to share access information and to
regulate how many times cached resources can be used. S

Hit Meterlng is, by design, not a complete solution to the problem caches pose for
logging access, but it does provide a basic means for obtaining metrics that servers
want to' track. The Hit Metering protocol has not been widely 1mplemented or

* deployed (and may -never be). That said, a cooperative scheme like Hit Metering
~ holds some promise of providing accurate access statistics while retaining caching
performance gains. Hopefully, that will be motivation to implement the Hit Meter-
ing protocol instead of marking content uncacheable

The Meter Header

The Hit Metermg extension proposes the addition of a new header Meter that
caches and servers can use to pass to each other directives about usage and report-
ing, much like the Cache-Control header allows caching directives to be exchanged. -

Table 21-10 defines the various directives and who can pass them in the Meter header.

Table 21-10. Hit Metering directives

will-report-and-limit. ~ w . Cache The cache is capable of repomng usage and obeymg any usage hmnts
~ the server specifies,

wont-report X ' - Cache The cache is able to obey usage li'mits but won't report usage.

wont-limit oy Cache The cache is able to report usage but won't limit usage.

count o« Cache The reporting directive, specified as “uses/reuses” integers—for
example, “:count=2/4".2

max-uses u Server Allows the server to specify the maximum number of times a response

' can be used by a cache~for example, “max-uses=100",

max-reuses r Server Allows the server to specify the maximum number of times a response.

: can be reused by a cache—for example, “max-reuses=100".

do-report d Server The server requires proxies to send usage reports. '

dont-report e Server The server does not want usage reports.

timeout : 1 Server Aliows the server to specify a timeout on the metering of a resource.
The cache should send a report at or before the specified timeout, plus
of minus 1 minute, The timeout is specified in minutes—for example,
“timeout=60".

wont-ask n Server The server does not want any metering information.

2 Hit Metering defines a use as satisfying a request with the response, whereas a reuse is revalidating a client request.

© HitMetering | 493

Figure 21-1 shows an example of Hit Metering in action. The first part of the transac-
tion is just a normal HTTP transaction between a client and proxy cache, but in the
proxy request, note the insertion of the Meter header and the response from the
server. Here, the proxy is informing the server that it is capable of doing Hit Meter-
ing, and the server in turn is askmg the proxy to report its hlt counts.

- Request message _
GET http://joes-hardware. com/ HTTP/1 1 1GET / HTTP/1.1 ,
Host: w. joes-hardware.com - Host: www.joes-hardware.com
Accept ______ ' Meter: will-report-and-limit
Client BRI Connection: Meter -

Response message

: HTTP/1.1 200 OK .
Prox Date: Fri, 06 Dec 1996 18:44:29 CMT
Responsesenttocllent cached, and Content-length: 3152

Content-type: text/html
used for subsequent requests Comnee tlonp Metar

HTTP/1.1 200 OK ETag: "vi.27"

Date: Fri, 06 Dec 1996 18:44:29 GMT | | Meter: do-report
Content-length: 3152 .
Content-type: text/html [...]

[..]

Later, the cache revalidates the g
response and at the same time Proxy

| reports the hit count GET / HTTP/1.1

Host: www.joes-hardware.com
Meter: 12/4

If-None-Match: "vi1.27"
Connection: Meter

-~
-~ -
-
-
~~~~~
-
~ -
- -
-
-

--*"" www.joes-hardware.com
HTTP/1.1 304 Not Modified

-~ - [...]

Figure 21-1. Hit Me;ering example

The request completes as it normally would, from the client’s perspective, and the
proxy begins tracking hits to that resource on behalf of the server. Later, the proxy
tries to revalidate the resource with the server. The proxy embeds the metered infor-
mation it has been tracking in the conditional request to the server.

494 _'I_ Chépter 21 Logging and Usage Tracking



A Word on Privacy |

Because logging really is an administrative function that servers and proxies per—
form, the whole operation is transparent to users. Often, they may not even be aware
that their HTTP transactions are being logged—in fact, many users probably do not
even know that they are usmg the HTTP protocol When accessing content on the

Web.

- Web applicémon developers and administrators need to be aware of the implications
of tracking a user’s HTTP transactions. Much can be gleaned about a user based on
the information he retrieves. This information obviously can be put to bad use—
discrimination, harassment, blackmail, etc. Web servers and proxies that log must be
vigilant in protecting the privacy of their end users.

Sometirmes, such as in work environments, tracking a user’s usage to make sure he is
not goofing.off may be appropriate, but administrators also should make public the
fact that people’ s transactions are being monitored. :

In short, logging is a very useful tool for the administrator and developer—just be
aware of the privacy infringements that logs can have w1thout the permission or
knowledge of the users whose actions are being logged.

For More Information

For more information on logging, refer to:

http://httpd._apache.org/docs/logs;html
“Apache HTTP Server: Log Files.” Apache HTTP Server Project web site.
http:/fwww.squid-cache.org/Doc/FAQ/FAQ-6.html
“Squid Log Files.” Squid Proxy Cache web site.
http:/fwww.w3.0rg/Daemon/User/Config/Logging. html#common-logfile-format
“Logging Control in W3C httpd.” ’
http:/fwww.w3.0rg/TR/WD-logfile.html
“Extended Log File Format.”
hitp:/fwww.ietf.org/rfc/rfc2227.txt _
REC 2227, “Simple Hit-Metering and Usage-Limiting for HTTP,” by J. Mogul
and P. Leach.

For More Information | 495






 PARTVI »
Appendlxes' |

This collection of appendixes contains useful reference tables, background informa-
tion, and tutorials on a Varlety of topics relevant to HTTP architecture and 1mple-
mentation: , : ' ’

* Appendix A, URI Schemes

* Appendix B, HTTP Status Codes

* Appendix C, HTTP Header Reference

* Appendix D, MIME Types

* Appendix E, Base-64 Encoding

* Appendix F, Digest Authentication

* Appendix G, Language Tags

 Appendix H, MIME Charset Registry






APPENDIX A

URl Schemes

Many URI schemes have been defmed but few are in common use. Generally speak—
ing, those URI schemes with associated RECs are in more common use, though there
are a few schemes that have been developed by leading software corporations (nota-
bly Netscape and Mlcrosoft) but not formalized, that also are in w1de use.

The W3C maintains a list of URI'schemes, Whlch you can v1ew at

: http.//www.wj’.org/Addressmg/schemes.html

The IANA also maihtains a list of URL schemes, at: -

http://www.iana.org/assignmentsfuri-schemes

Table A-1 informally describes some of the schemes that have been proposed and
those that are in active use. Note that many of the approximately 90 schemes in the
table are not widely used, and many are extinct. :

Table A-1. URI schemes from the W3C Iregistry

abouf

‘acap
afp

afs
callto

- chttp

Netscape scheme to explore aspects of the browser. For example: about by itself is the same as
choosing “About Communicator” from the Navigator Help menu, about:cache displays disk-
cache statistics, and about:plugins displays information about configured plug-ins. Other
browsers, such as Microsoft Internet Explorer, also use this scheme

Appllcatlon Confi guratlon Access Protocol,
Forfile-sharing services using the Apple Filing Protocol (AFP) protocol, defined as part of the

' expired IETF draft-ietf-svrioc-afp-service-01.txt.

Reserved for future use by the Andrew File System.
Initiates a Microsoft NetMeeting conference session, such as:
callto: ws3 joes-hardware.com/joe@joes-hardware.com

The CHTTP caching protocol defined by Real Networks. RealPlayer does not cache all items
streamed by HTTP. Instead, you designate files to cache by using chitp//instead of http.//in
the file’s URL. When RealPlayer reads a CHTTP URL in a SMIL file, it first checks its disk cache for

v the file. If the file isn’t present, it requests the file through HTTP, storing the file in its cache.

2244

499



Table A-1. URI schemes from the W3C regiStry (continued)

ad

dsid
data
date
dav -

-dns

eid

fax

file -

finger

freenet

fip
gopher
gsm-sms

h323,h324 -

hdl

hnews

The use of [MIME] within email to convey web pages and their associated images requires a
URL scheme to permit the HTML to refer to the i images oy other data included in the message.
The Content-1D URL, “cid:”, serves that purpose.

Alfows Microsoft OLE/COM (Component Object Model) classes to be referenced Used toinsert

active objects info.web pages.
Allows inclusion of small, constant dataitems as |mmed|ate” data. This URL encodes the text/

plain stnng “A brief note”:

data:A%20brief%20note
Proposal for scheme to support dates, as in date:7999-03-04720:42:08.

To ensure correct interoperation based on this specification, the IANA must reserve the URI
namespaces starting with “DAV:"and with “opaquelocktoken:” for use by this specification, its
revisions, and related WebDAV specifications. -

 Used by REBOL software, -

See http://www.rebol.com/users/valurl htm.

The external ID (eid) scheme provides a mechanism by Whl(h the Iocal application can refer-
ence data that has been obtained by other, non-URL scheme means. The scheme is intended to

- provide a general escape mechanism to allow access to information for applications that are too

specialized to justify their own schemes. There is some controversy about this URL -
See hitp://www.ics.uci edu/pub/ietf/uri/draft-finseth-url-00.txt.

The “fax” scheme describes a connection to a terminal that can handle tefefaxes (facsnmlle
machines).

Designates files accessible on a particular host computer. A hostname can be included, but the
scheme is unusual in that it does not specify an Internet protocol or access method for such

files; as such, its utility in network protocols between hosts is limited.
The finger URL has the form:

finger:/thostl.port]l/<request>]

The <request> must conform with the RFC 1288 request format.

See hitp://www.ics.uci.edu/pub/iett/uri/draft-ietf-uri-url-finger-03.txt.
URls for information in the Freenet distributed information system.
See http://ﬁeenet.sourceforge.net.

File Transfer Protocol scheme.

. The archaic gopher protocol.

URIs for the GSM mobile phone short message service.
Multimedia conferencing URI schemes.
See hitp://www.ics.uci.edu/pub/iett/uri/draft-cordell-sq 16-conv-url-00.xt.

The Handie System is a comprehensive system for assigning, managing, and resolving persis-
tent identifiers, known as “handles,” for digital objects and other resources on the Internet.
Handles can be used as URNs.

See http://www.handle.net.

HNEWS is an HTTP-tunneling variant of the NNTP news protocol. The syntax of hnews URLs is
designed to be compatible with the current common usage of the news URL scheme.

See http.//www.ics.uci.edu/pub/ietl/uri/draft-stockwell-hnews-url-00.txt.

2392
211

2397

2518

2806

1738

1738
1738

500 | AppendixA: URISchemes



- http
https

iioploc

Cilu -

imap
I0R

irc

ishn
java

javascript

jdbe

Idap

lid

fifn

livescript
" g

mailto

-mailserver

" Table A-1. URI s}cheniels from the W3C registry (co'ntinued) s

The HTTP protocol. Read this book for moe information.

: HTTP over SSL.

See http//s:tesearch netscape. com/eng/ssl3/draft302 i,

CORBA extensions, The Interoperable Name Service defines one URL-format object reference,
noploc, that can be typed into a program to reach defined services at remote locations, includ-
ing the Nammg Service. For example, this ifoploc identifier.

fioploc: 7w, omg.org/NameService
would resolve to the CORBA Naming Service running on the machme whose iP address corre-

| sponded to the domain name www.omg.org.

See hitp.//www.omg.org.

The Inter-Language Unification () system isa multlhngual obyect interface system The
object interfaces provided by ILU hide implementation distinctions between different lan-
guages, different address spaces, and different operating system types, ILU can be used to build
multilingual object-oriented libraries (“class libraries”) with well-specified, -
language-independent interfaces. It also can'be used to implement distributed systems,

 See fip://parcfip. parc.xerox. com/pub/llu/llu htm. e
' The IMAP URL scheme is used to designate IMAP servers, mailboxes, messages, MIME bodies

[MIME], and search programs on Internet hosts accessmle usmg the IMAP protocol.
CORBA interoperable object reference.
See http.//www.omg.org.

The irc URL scheme is used to refer to either Internet Relay Chat (IRC) servers or individual enti-
ties {channels or people) on IRC servers, : :

See http://www.w3.0rg/A ddressmg/draft—mirashi-url-irc—0I.txt.

Proposed scheme for ISBN book references.

See http Slists.w3.org/Archi ves/Publlc/www talk/1991NovDec/0008. html
{dentifies Java classes.

The Netscape browser processes javascript URLS, evaluates the expression after the colon (), if
there is one, and loads a page containing the strlng value of the expression, unless it is
undefined,

Used in the Java SQL API.

AMlows Internet clients direct access to the LDAP protocol.

The Local Identifier (lid:) scheme.
See draft-blackketter-lid-00.

ALocation-Independent File Name (LIFN) for the Bulk File Distribution distributed storage sys-
tem developed at UTK.

Old name for JavaScript.
See h323.

The mailto URL scheme is used to designate the Internet mailing address of an individual or
service.

0ld proposal from 1994-1995 to let an entire message be encoded in a URL, so that (for exam-
ple) the URL can automatically send email to a mail server for subscribing to a mailing list.

| %16

2192

2255

2368

CURI S_chemes

| 501



Table A-1. URI schemes from the WBC registry (continued)

m

50 |

MDS is.a cryptographlc ¢ ecksum .
" mid The mid scheme uses (a part of) the message Id of an email message torefertoa specxﬁc _ 2392
, message. . . 2111
mocha See javascript.
modem The modem scheme descnbes a connection to a termmal that can handle i mcommg data calls 2806
mms, mmst, Scheme for Microsoft Media Server (MMS) 10 stream Active Streaming Format (ASF) files. To
mmsu force UDP transport, use the mmsu scheme. To force TCP transport, use mmst,
" news The news URL scheme is used to refer to either news groups or individual articles of USENET - 1738
, ' news. A news URL takes one of two forms news: <newsgr0up—name> or news:<message-id>. | 1036
nfs Used to refer to files and directories on NFS servers. _ ’ 2224
antp An altematlve method of referencmg news.articles, useful for spec:fymg news artlcles from - 1738
NNTP servers. An nntp URL looks like: 977
nntp://<host>: <port>/<newsgroup-name>/<amde-num>
. Note that while nntp URLS specify a unique location for the-article resource, most NNTP servers
currently on the Internet are configured to allow access only from local clients, and thus nntp
URLs do not designate globally accessible resources. Hence, the news form of URL is preferred
_ as a way of identifying news articles. -
opaquelocktoken | AWebDAV lock token, represented as a URI, that Identlf iesa pamcular lock. A Iock token is
returned by every successful LOCK operation in the lockdiscovery property in the response body
and also can be found through lock discovery on a resource. See RFC2518.
path The path scheme defines a uniformly hierarchical namespace where a path URN is a sequence
of components and an optional opaque string.
_ " See http//www.hypeme_ws.org/~/1bendwww/path.html. :
‘ ' vphone Used in “URLs for Telephony”; replaced with tel: in RFC 2806.
pop The POP URL designates-a POP email server, and optionally a port number, authenucatwn 2384
mechanism, authentication ID, and/or authorization ID, '
pnm Real Networks's streaming protocol.
pop3 The POP3 URL scheme allows a URL to specify a POP3 server, allowing other protocols to use a
general “URL to be used for mail access” in place of an explicit reference to POP3. Defined in
expired draft-earhart-url-pop3-00.txt. '
printer Abstract URLS for use with the Service Location standard.
See draft-ietf-srvioc-printer-scheme-02.txt.
prospero Names resources to be accessed via the Prospero'Directory Service, | 1738
res Microsoft scheme that specifies a resource to be obtained from a module. Consists of a string or
numerical resource type, and a string or numevical ID.
1tsp Real-time streaming protocol that is the basis for Real Networks’s modern streaming control 2326
protocols.
vp URLs for the RVP rendezvous protocol, used to notify the arrival of users on a computer
network.
See draft-calsyn-rvp-01.
Appendix A: URI Schemes



Table A-1. URI schemes from the W3C registry (continued)

~ - rwhois RWhois s an Internet directory access protocol, defined in RFC 1714and RFC 2167 The Rthns :
‘ ' URL gives clients direct access to rwhols. :
See http://www.rwhois.net/rwhois/docs/, _ :
%  Anarchitecture to allow remote graphical applications to display data msnde web pages
See http.//www. W3, org/PeopIe/dameld/papers/mobgu:/ :
sdp Session Description | Protocol (SDP) URLs. See RF( 2327. \ :
service The service scheme is used to provide access information for arbitrary network services. These | 2609
' URLs provide an extensible framework for client-based network software to obtam conﬁgura-
tion information required to make use of network services. _
sip The sip* family of schemes are used 1o establlsh multimedia conferences usmg the Session Ini- | 2543
: tiation Protocof (SIP). v . :
shttp S-HTTP is a superset of HTTP des1gned £0 secure HTTP connections and provade a wrde variety of
v mechanisms to provide for confidentiality, authentication, and integrity. It has not been widely
deployed, and it has mostly heen supplanted with HTTPS SSL-encrypted HTTP,
- See http//www homeport org/~adam/shtp.htm,
snews S'SL-encryp_ted news,
- STANF 0ld proposal for stable network filenames. Related to URNs.
See http://web3. w3.0rg/A ddressing/#STANF.
120 Seeh323.
el -URL to place a call using the telephone network, 2806
telephone Used in previous drafts of tel. .
telnet Designates interactive services that may be accessed by the Telnet protocol. A telnet URL takes | 1738
the form: '
telnet://<user>:<password>@<host>:<port>/
tip Supports TIP atomic Internet transactions. 2371
: 2372
tn3270 Reserved, as pet ftp://ftp.isi.edu/in-notes/iana/assignments/url-schemes.
tv The TV URL names a particular television broadcast channel. : 2838
uuid - Universally unique identifiers (UUIDs) contain no information about location. They also are
known as globally unigue identifiers (GUIDs}. They are persistent over time, like URNs, and con-
sist of a 128-bit unique ID. UUID URIs are useful in situations where a unique identifier is
required that cannot or should not be tied to a particular physical root namespace (such asa
DNS name).
See draft-kindel-uuid-uri-00.txt ,
~um Persistent, location-independent, URNs, 2114
vemmi Allows versatile multimedia interface (VEMMI) dlient software and VEMMI terminals to connect | 2122
- to VEMMI-compliant services. YEMMI is an international standard for online multimedia
services.
videotex Allows videotex dlient software or terminals to connect to videotex services compliant with the
[TU-T and ETSI videotex standards. 4
See http//www.ics.udi.edu/pub/ietf/uri/draft-mavrakis-videotex-url-spec-01.txt.
. URISchemes | 503



Table A-1. URI schemes ﬁfom ihe'W3 C registry (éontinﬁed)

view-source

wais
- whois-++

whodp

- Netscape Navigator source viewers. These view-source URLS display HTML that was generated :

with JavaScript.
The wrde area mformatron service—an early form of search engine.
URLs for the WHOIS++ srmple lnternet directory protocol.

“See http://martinh.net/wip/whois-url.txt. _ »
The Widely Hosted Object Data Protocol (WhoDP) exists to communicate the current location .

and state of large numbers of dynamic, relocatable objects. A WhoDP program “subscribes” to

‘locate and receive information aboutan object and “publishes” to control the location and visi-

ble state of an object.

| See draft-mohr—whodp-oo .-

z39.50r, 739.50s -

739.50 session and retrieval URL. 239. 50 is-an mformatron retneval protocol that does not fit
-neatly into a retrieval model designed pnmanly around the stateless fetch of data. Instead, it

- models a general user inquiry as a session-oriented, multi-step task, any step of which may be

suspended temporanly while the server requests additional parameters from the chent before
continuing. . v

1738
1835

2056

504 | . AppendixA: URISchemes



 APPENDIX B_-

HTTP Status Codes '

-~ This app_endix is a quick reference of HTTP status codes and .'tvheir. meanings.

Status_Codé Classiﬁcatidns

HTTP étatus codes are segmented into fivé classes, shown in Table B-1.

Table B-1. Status code classifications

200-299

- 300-399

400499
500599

100-199

00-101

200206
300-305
400415
500--505

Informétional
Successful
Redirection
(lient error
Server efror

Status Codes

Table B-2 is a quick reference for all the status codes defined in the HTTP/1.1 speci-
fication, providing a brief summary of each. “Status Codes” in Chapter 3 goes into
more detailed descriptions of these status codes and their uses.

Table B—Z. Status codes

An initial part of the request was received, and the client should

201

100 | Continve
o o continue.
01 Switching Protocols The server is changing protocols, as specified by the client, to one
o listed in the Upgrade header.
200 0K The request is okay.
(reated The resource was created (for requests that create server objects).

505



Table B-2. Status-v codes (continued)

202 - -Accepted The request was accepted, but the server has not yet performed any
o | action withit, _
203 | Non-Authoritative Information | The transaction was okay, except the information contained in the
- ' entity headers was not from the origin server, but from a copy of the
v _ v resource. .
204 No Content The response message contams headers and-a status hne but no
' entity body. :
205 - Reset Content Another code primarily for browsers; basncally means that the
o _ browser should clear any HTML form elements on the current page.
206 -Partial Content A partiai request was successful. ’
300 Multiple Choices Adlient has req uested a URL that actually refers to multiple
: ‘ L resources, This code is returned along with a list of options; the user
. can then seiect WhICh one he wants.
301 Moved Permanently The requested URL has been moved. The response should containa
» : Location URL indicating where the resource now resides. ‘
302 Found - Like the 301 status code, but the move is temporary. The client .
' should use the URL given in the Location headerto locate the
resource temporarily.
303. See Other Tells the client that the resource should be fetched using a different
: URL. This new URL s in the Location header of the response message.
304 Not Modified Clients can make their requests conditional by the request headers
they include. This code indicates that the resource has not changed.
305 Use Proxy The resource must be accessed through a proxy, the Iocation of the
. proxy is given in the Location header,
306 {Unused) This status code currently is not used. -
307 Temporary Redirect Like the 301 status code; however, the client should use the URL
‘ given in the Location header to locate the resource temporarily.
400 Bad Request Tells the client that it sent a malformed request. - '
401 Unauthorized Returned along with appropriate headers that ask the client to
authenticate itself before it can gain access to the resource.
- 402 Payment Required Currently this status code is not used, but it has been set aside for
future use.
403 Forbidden The request was refused by the server.
404 Not Found The server cannot find the requested URL.
405 Method Not Aliowed Arequest was made with a method that is not supported for the
' -requested URL. The Aliow header should be included in the
response to tell the client what methods are allowed on the
requested resource. ,
406 Not Acceptable Clients can specify parameters about what types of entities they are
willing to accept. This code is used when the server has no resource
, » matching the URL that is acceptable for the client.
407 Proxy Authentication Required Like the 401 status code, but used for proxy servers that require

authentication for a resource.

506 | AppendixB: HTTP Status Codes



i Table B-2. Status cddes (continued)

If a client takes too long to complete its request, a server can send

408 ‘Request Timeout ;
B o ’ back this status code and close down the connection.
409. Conflict The request is causing some conflict on a resource. -
410 Gone - Like the 404 status code, except thatthe server once held the
o : resource. :
4N Length Required Servers use this code when they requirea (ontent-Length header in
: the request message. The server will not accept requests for the
o | resource without the Content-Length header.
412 Precondition Failed If a client makes a conditional request and one of the condmons
L } fails, this response code is returned.
413 Request Entity Too Large The client sent an entity body that is. largerthan the server can or
o ' v _ wants to process ' v o
414 Request URI Too Long - The dlient sent a request with a request URL that s Iarger than what
' o o the server can or wants to process. -
415 Unsuppbrted Media Type The chent sent an entity of a content type that the server does not
. _ understand or support. _
416, ~ Requested Range Not Satisfiable The request message requested arange of a given resource, and
' L that range either was mvahd or could not be met,
47 Expectation Failed The request contained an expectation in the Expect request header
: thatcould not be satisfied by the server. .~~~
500 Internal Server Error The server encountered an error that prevented it from servicing the
» request, ‘ '
501 Not Implemented The client made a request thatis beyond the server's capabilities,
502 Bad Gateway A server acting.as a proxy of gateway encountered a bogus response
. from the next link in the request response chain.
503 Service Unavailable The server cannot currently service the request but wifl be able toin
} the future, -
504 Gateway Timeout Similar to the 408 status code 'except that the response is coming
from a gateway or proxy that has timed out waiting for a response
‘ to its request from another server. ,
505 HTTP Version Not Supported The server received a request in a version of the protocol that it can't

or won't support.

‘Status Codes | 507



APPENDIXC
HTTP Header Reference

It’s almost amusing to remember that the first version of HTTP, 0.9, had no headers.
While this certamly had its down sudes, its fun to marvel in its simplistic elegance. -

Well, back to reality. Today there are a horde of HTTP headers, many part of the :
§pec1f1catlon and still others that are extensions to it. This appendix provides some
background on these official and extension headers. It also acts as an index for the
various headers in this book, pointing out where their concepts and features are dis-
cussed in the running text. Most of these headers are simple up-frong; it’s the interac-
tions with ‘each other and other features of HTTP where things get hairy. This
' appendix provides a bit of background for the headers listed and dlrects you to. the
sections of the book where they are discussed at length

The headers listed in this appendix are drawn from the HTTP spec1f1cat1ons related
“documents, and our own experience poking around with HTTP messages and the
various servers and clients on the Internet.

This list is far from exhaustive. There are many other extension headers floating -
around on the Web, not to mention those potentially used in private intranets.
Nonetheless, we have attempted to make this list as complete as possible. See RFC
2616 for the current version of the HTTP/1.1 spec1f1cat10n and a list of official head-
ers and their specification descriptions. :

Accept

The Accept header is used by clients to let servers know what media types are acceptable.
The value of the Accept header field is a list of media types that the client can use. For
instance, your web browser cannot display every type of multimedia object on the Web. By
including an Accept header in your requests your browser can save you from downloading
a video or other type of object that you can’t use.

The Accept header field also may include a list of quality values (q values) that tell the
server which media type is preferred, in case the server has multiple versions of the media
type. See Chapter 17 for a complete discussion of content negotiation and q values.

508



Type & - '_Req'uest header

Notes ~ ~ « is a special Value that is used to thdcard media types. For example,
' _ “*/*” represcnts all types, and “1mage/*” represents all 1mage types

Examples : Accept: text/*, 1mage/*
Accept: text/*, image/gif, image/jpeg;q=1

-Accept Charset

The Accept-Charset header is used by clients to tell servers what character sets are accept-
able or preferred. The value of this request header is a list of character sets and possibly -
quality values. for the listed character sets. The quality values let the server know which
character set is preferred, in case the server has the document in multiple acceptable char-
acter sets. See Chapter 17 for a complete dtscussmn of content negottatton and q values.

Type - _Reque'st header
Notes As with the Accept header, “*” is a special character. If present, it repre-
‘ ' ~ sents all character sets, except those that also are mentioned explicitly in.
the value. If it’s not present, any charset not in the value field has a

 default q value of zero, with the exception of the iso- -latin-1 charset
which gets a default of 1. :

' Basic Syntax Accept-Charset: 1# ((charset l "*") gt =" qvalue])

Example Accept-Charset: iso-latin-1

- Accept-Encoding o
The Accept-Encoding header is used by clients to tell servers what encodings are accept-
able. If the content the server is holding is encoded (perhaps compressed), this request
header lets the server know whether the client will accept it. Chapter 17 contains a
complete description of the Accept-Encoding header.

Type " Request header
BasicSyntax Accept—Encodmg 1# ((content-coding | ") [";" "q" "=" qvalue])
Examples® Accept-Encoding:

Accept-Encoding: gzip
- Accept-Encoding: compress;q=0.5, gzip;q=1

* The cmpty.Acccpt-Enc'oding example is not a typo. It refers to the identity encoding—that is, the unencoded
content. If the Accept-Encoding header is present and empty, only the unencoded content is acceptable.

* Accept-Encoding | 509



Accept Language

The Accept-Language request header functions hke the other Accept headers, allowmg
clients to inform the server about what languages (e.g., the natural language for content)
-are acceptable or preferred. Chapter 17 contains a complete description of the Accept—
Language header. :

Type . ~ Request header -

o n H__"

Basic Syntax‘ ‘Accept-Language: 1# (language- range ";""q qvalue])
o  language-range = ((1'8ALPHA * (" 1"8ALPHA)) | ")

Examples : Accept-Language en
- o Accept~Language en; q—O 7, en—gb,q—OS

Accept-Ranges

The Accept-Ranges header differs from the other Accept headers—it i is-a response header
used by servers to tell clients whether they accept requests for ranges of a resource; The
value of this header tells what type of ranges, if any, the server accepts for a glven resource.

A client can attempt to make a range request on a resource without havmg received. this
header. If the server does not support range requests for that resource it can respond with
an appropnate status code” and the Accept-Ranges value “none”. Servers might want to
send the “none” value for normal requests to discourage chents from makmg range
requests in the future. -

Chapter 17 contains a complete description of the Accept-Ranges header.
Type Response header
Basic Syntax Accept-Ranges: 1# range-unit | none

Examples " Accept-Ranges: none
: Accept-Ranges: bytes

Age

The Age header tells the receiver how old a response is. It is the sender’s best guess as to how
long ago the response was generated by or revalidated with the origin server. The value of the
header is the sender’s guess, a delta in seconds. See Chapter 7 for more on the Age header.
Type Response header

Notes - -~ HTTP/1.1 caches must include an Age header in every response they send.

* For example, status code 416 (see “400-499: Client Error Status Codes” in Chapter 3).

510 | Appendix(: HTTP Header Reference



- Basic Syntax_ Age: delta-séconds

Example  Age: 60

Allow
- The Allow header is used to inform clients what HTTP methods are supported on a partic-
ular resource.

Type Response header

Notes An HTTP/ 1.1 server sending a 405 Method Not Allowed response must
- include an Allow header.”

Basic Syntax Allow: # Method'

Example ~~  Allow: GET, HEAD

Authorization

The Authorization header is sent by a client to authenticate itself with a server. A client will
include this header in its request after receiving a 401 Authentication Required response
from a server. The value of this header depends on the authentication scheme in use. See
Chapter 14 for a detailed discussion of the Authorization header. :

Type Response header
Basic Syntax Authbrization:_authentication-scheme #authentication—pafam .
Example Authorization: Basic YnJpYW4tdG90dHk6T3ch

Cache Control

The Cache-Control header is used to pass information about how an object can be cached
This header is one of the more complex headers introduced in HTTP/1.1. Its value is a
caching directive, giving caches special instructions about an object’s cacheability.

In Chapter 7, we discuss caching in general as well as the specific details about this header.
Type General header

Example ‘Cache-Control: no-cache

* See “Status Codes” in Chapter 3 for more on the 405 status code, -

Cache-Control. | 511



>'C|Ient-lp

The Client-ip header is an extension header used by some older clients and some proxies to
transmit the IP address of the machine on which the chent is running.

Type Extension request header

Notes - Implementors should be aware that the information provzded in the
value of this header is not secure.

Basic Syntax : Clieht—.ip: ip~address'

Example Client-ip: 209.1.33.49

Connecuon

The Connecnon header is a somewhat overloaded header that can lead to a blt of confu-
sion. This header was used in HTTP/1.0 clients that were extended with keep-alive

~ connections for control information.” In HTTP/1.1, the older semantics are mostly recog:

~ nized, but the header has taken on a new function.

In HTTP/1.1, the Connection header’s value is a list of tokens that correspond to header
names. Apphcanons receiving an HTTP/1.1 message with a Connection header are
supposed to parse the list and remove any of the headers in the message that are in the
Connection header list. This is mainly for proxies, allowing a server or other proxy to

specify hop-by-hop headers that should not be passed along.

One special token value is “close”. This token means that the connection is going to be.
closed after the response is completed. HTTP/1.1 applications that do not support persis-
tent connections need to insert the Connection header with the “close” token in all
requests and responses. o

Type General header

Notes ~ While RFC 2616 does not specifically mention keep-alive as a connec-_. .

- tion token, some browsers (mcludmg those sending HTTP/1. 1 as their
versions) use it in making requests.

Basic Syntax Connection: 1# (connection-token)

Examples Connection: close

* See Chapter 4 for more on keep-alive and persistent connections.

512 | AppendixC: HTTP Header Reference



” Content Base |

" The Content-Base header prov1des a way for a server to spec1fy a base URL for resolvmg

URLs found in the. entity body of a response.” The value of the: Content-Base header is an
: absolute URL that can be used to resolve relative URLs tound 1n51de the enmy

Type Entity header
Notes o Thls header is not defined in RFC 2616; it was previously defined in RFC ,
’ 2068, an earlier draft of the HTTP/1.1 spec1f1cat10n and has since been
removed from the official specification.

| Basi_c‘}Synt'ax - Content-Base: absoluteURL

Example ~ Content-Base: http://wwwfjoes—h_ardware.com/'

Content—Encodmg

The Content-Encoding header is used to specify whether any encodmgs have ‘been
performed on the object. By encoding the content, a server can compress it before sendlng
the response. The value of the Content-Encoding header tells the client what type or types
of encoding have been performed on the object. With that information, the client can then
decode the message.

Sometimes more than one encoding is applied to an-entity, in Wthh case the encodings
must be hsted in the order in which they were performed. -

_ Type Entity header
Basic Syntax . Content—Eheoding: 1# content-coding -
Examples - Content-Encoding: gzip

Content-Encoding: compress, gzip

Content-Language

The Content-Language header tells the client the natural language that should be under—

stood in order to understand the object. For instance, a document written in French would

have a Content-Language value indicating French. If this header is not present in the

response, the object is intended for all audiences. Multiple languages in the header’s value
indicate that the object is suitable for audiences of each language listed.

- One caveat about this header is that the header’s value may just represent the natural
~ language of the intended audience of this object, not all or any of the languages contained

* See Chapter 2 for more on base URLs.

: __C_obntent-Language' 1 513



in the ob]ect Also, this header is not hmlted to text or written data objects; images, Vld€0
and other media types can be tagged with their intended audiences’ natural languages

Type : Ent-ity heade"r-
BasicSyntax  Content-Language: 1# language-tag - -

Examples Content-Language: en -
Content-Language: en, fr

Content-Length

The Content-Length header gives the length or size of the entity body. If the header isin a
response message to a HEAD HTTP request, the value of the header 1nd1cates the size that
the entity body would have been had it been sent.

Type | Entity header
BasicSyntax Content-Length 1*DIGIT

Example Content~Length 2417

Content-Location

The Content-Location header is included in an HTTP message to give the URL corre-
sponding to the entity in the message. For objects that may have multiple URLs, a response
message can include a Content-Location header indicating the URL of the object used to
generate the response. The Content-Location can be different from the requested URL.
This generally is used by servers that are directing or redirecting a client to a new URL.

If the URL is relative, it should be interpreted relative to the Content-Base header. If the
Content-Base header is not present, the URL used in the request should be used.

Type Entity header
Basic Syntax Content-Location: (absoluteURL | relativeURL)

Example ' _Co_ntent—Location: http://www.joes—hardwar_e.com/index.htinl .

Content-MD5
The Content-MDS5 header is used by servers to provide a message-integrity check for the
message body. Only an origin server or requesting client should insert a Content-MD5

514 | Appendix(: HTTP Header Reference



~ header in the message The value of the header is an MDS dlgest of the (potenaally
encoded) message body.

The value of this header allows for an end-to-end check on the data, useful for detecting
unmtentlonal modlflcatlons to the data in transit. It is not 1ntended to be used for security
purposes. -

RFC 1864 defines thlS header in more detad
Type Entity header v

Notes The MDS5 digest value is a base-64 (see Appenchx E) or 128 b1t MDS
digest, as. defmed in RFC 1864.

Basic Syntax ‘ Content_—MDS‘: mdS-digest

Bxample  Content-MDS: Q2h1Y2sgSW51ZwDIAXRSIQ==

Content-Range
The Content-Range header is sent as the result of a request that transmitted a range of a

document. It provides the location (range) within the original entlty that this entity repre-
sents. It also gives the length of the entire entity. -

Ifan “*” is present in the value instead of the length of the entire entlty, this means that the
length was not known When the response was sent..
& P

See Chapter 15 for more on the Content-Range header:

Type * Entity header

Notes Servers responding with the 206 Parual Content response code must not
' include a Content- Range header with an “*” as the length. '

Example ' Content—Range: bytes 500-999 / 5400

Content-Type

The Content—Type header tells the media type of the object in the message.
Type ~ Entity header
Basic Syntax Content-Type: media-type

Example , Content—Type: text/html; charset=iso-latin-1

. The MD5 digest is defined in RFC 1864.

Content-Type | 515



| Cookie

The ‘Cookie header is an extension header used for client 1dent1f1cat10n and trackmg
.Chapter 11 talks about the Cookie header and 1ts use in detail (also see“Set- Cookle”)

. Type

Extensmn request header
- Example Cookie: ink=TUOK164y59BC708378908 CFF89OES5573998A115
Cookie2

The Cookie2 header is an extension header used for client ldenuﬁcanon and trackmg
Cookie2 is used to identify what version of cookies a requestor understands. It is defined in
greater detail in RFC 2965. : :

_Chap‘ter 11 talks about the Cookie2 header and its use in derail.

Type Extension request header
Example | v CookieZ; $Versbion="1"'
Date

The Date header gives the date and time at which the message was created. This header is
required in servers’ responses because the time and date at which the server believes the
message was created can be used by caches in evaluating the freshness of a response. For
clients, this header is completely optional, although it’s good form to include it.

Type
Basic Syntax

Examples

- General header

- Date: HTTP-date

Date Tue, 3 Oct 1997 02 15:31 GMT

HTTP has a few specific date formats. This one is defmed in RFC 822
and is the preferred format for HTTP/1.1 messages. However, in earlier
specifications of HTTP, the date format was not spelled out as well, so
server and client implementors have used other formats, which need to
be supported for the sake of legacy. You will run into date formats like
the one specified in RFC 850, as well as dates in the format produced by

the asctime() system call. Here they are for the date represented above:

Date: Tuesday, 03-Oct-97 02:15:31 GMT  RFC 850 format
Date: Tue Oct 3 02:15:31 1997 asctime() format

The asctime( )' format is looked down on because it is in local time and it
does not specify its time zone (e.g., GMT). In general, the date header

* should be in GMT; however, robust applications should handle dates

that either do not specify the time zone or include Date values in non-
GMT time.

516 | Appén_dix'c: HTTP Header Reference



Flag

The ETag header provides the entity tag for the ennty contamed in the message An entlty
- tag is basically a way of identifying a resource. - : S

_ Entlty tags and their relauonshlp to resources atre discussed in detall in Chapter 15.
Type o Entlty header -
Basic Syntax . ETag: entity-tag

Examples.  ETag: "11e92a-457b-31345aa"
- ETag: W/"11€922-457b-3134b5aa"

Expect

The Expect header is used by clients to let servers know that they expect certain behavior.
- This header currently is closely tied to the response code 100 Contmue (see “100 199:
Informational Status Codes” in Chapter 3).

If a server does not understand the Expect header s value, it should respond w1th a status
code of 417 Expectatlon Failed. o

Type Request header

‘Basic Syntax Expect: 1# ("100-continue" | expectation-extension)
v_ Example .' ‘Expect: 100-continue

Expires

The Expires header gives a date and time at which the response is no longer valid. This
allows clients such as your browser to cache a copy and not have to ask the server if it is
still valid until after this time has expired.

Chapter 7 discusses how the Expires header is used—in particular, how it relates to caches
and havmg to revalidate responses with the origin server.

Type Entity header
Basic Syntax Expires: HTTP-date

‘Example  Expires: Thu, 03 Oct 1997 17:15:00 GMT

From
The From header says who the request is comiﬁg from. The format is just a valid Internet
email address (specified in RFC 1123) for the user of the client. '

From | 517



There are potential privacy issues with using/populating this header. Client implementors
“should be careful to inform their users and give them a choice before including this header -
in a request message. Given the potential for abuse by people collecting email addresses for
unsolicited mail messages, woe to the implementor who broadcasts this header unan-

nounced and has to answer to angry users.

Type» - Request header
_Basic Syntaxv From: mailbox

Example * From: slurp@inktomi.com

Host

The Host header is used by chents to provide the server with the Internet hostname and
port number of the machine from which the client wants to make a request. The hostname

and port are those from the URL the client was requesting.

The Host header allows servers to differentiate different relative URLs based on the host-
‘name, giving the server the ablhty to host several different hostnames on the same machine
(e, the same IP address)..

Type | Request header

Notes HTTP/1.1 clients must include a Host header in all requests. All HTTP/
1.1 servers must respond with the 400 Bad Request status code to
HTTP/1.1 clients that do not provide a Host header.

BasicSyntax ~ Host: hos_t [ port]

Example Host: www.hotbot.com:80

If-Modified-Since

The If-Modified-Since request header is used to make conditional requests. A client can use
the GET method to request a resource from a server, having the response hinge on Whether
the resource has been modified since the client last requested it.

If the object has not been modified, the server will respond with a 304 Not Modified
response, instead of with the resource. If the object has been modified, the server will
respond as if it was a non-conditional GET request. Chapter7 discusses conditional
requests in detail.

Type - Request header
Basic Syntax If-Modified-Since: HTTP-date

Example If-Modified-Since: Thu, 03 Oct 1997 17:15:00 GMT

518 | AppendixC: HTTP Header Reference



| If—Match

Like the If-Modified-Since header, the If-Match header can be used to ‘make a request.
- conditional. Instead of a date, the If-Match request uses an entity tag. The server compares
the entity tag in the If-Match header with the current entity tag of the resource and returns
the object if the tags match. -

- The server should use the If-Match value of “*” to match any ennty tag it has fora resource;
“*» will always match, unless the server no longer has the resource.

This header is useful for updaung resources that a client or cache already has. The resource
is returned only if it has changed—that is, if the previously requested object’s entity tag
does not match the entity tag of the current version on the server. Chapter7 discusses
conditional requests in detail.

Type : _Request header
BasicSyntax } If-Match: ("*" | 1# entity-tag)

Example ~ If-Maich: "11e92a-457b-31345aa"

If-None-Match - | I
- The 1f-None-Match header, like all the If headers, can be used to make a request condi-
tional. The client supplies the server with a list of entity tags, and the server compares those

tags -against the entity tags it has for the resource, returmng the resource only if none
match.

This allows a cache to update resources only if they have changed Using the. If None~
Match header, a cache can use a single request to both invalidate the entities it has and
receive the new entity in the response. Chapter 7 discusses conditional requests in detail.
Type Request header

Basic Syntax If-None-Match: (™" | 1# entity-tag) -

Example If-None-Match: "11€92a-457b-313452a"

If-Range

The If-Range header, like all the If headers, can be used to make a request conditional. Itis -
used when an application has a copy of a range of a resource, to revalidate the range or get
the complete resource if the range is no longer valid. Chapter 7 discusses conditional
requests in detail.

Type Request header

BasicSyntax  If-Range: (HTTP-date | entity-tag) -

lf-Range | 519



Examples If-Range: Tue, 3 Oct 1997 02:15:31 GMT
' If‘-Range: "11e92a-457b-3134b5aa"

If-Unmod|f' ed- Smce |

‘The If-Unmodified-Since header is s the twin of the If- Modrﬁed—Smce header. Includmg itin
a request makes the request conditional. The server should look at the date value of the
-header and return the object only if it has not been modrfled since the date provrded
Chapter 7 discusses conditional requests in detail. :

Type Request header
_jBaSic Syntax  If- Unmodlfled Since: HTTP-date

Example  1f-Unmodified-Since: Thu, 03 Oct 1997 17:15:00 GMT

Last-Modified | |

‘The Last-Modified header tries to provide information about the Jast time this entity was
changed. This could mean a lot of things. For example, resources typically are files on a
server, so the Last-Modified value could be the last-modified time provided by the server’s
filesystem. On the other hand, for dynamically created resources such as those created by
scripts, the Last-Modified value could be the time the response was created. :
Servers need to be careful that the Last-Modified time is not in the future. HTTP/1.1
servers should reset the Last—Modlfred time if it is later than the value that would be sentin
the Date header. -

Type ~ Entity header
BasicSyntax = Last-Modified: HTTP-date

Example  Last-Modified: Thu, 03 Oct 1997 17:15:00 GMT

Location

The Location header is used by servers to direct clients to the location of a resource that
either was moved since the client last requested it or was created in response to the request.

Type : Response header
Basic Syntax Location: absoluteURL

Example Location: http://www.hotbot.com

520 | AppendixC: HTTP Header Reference



- ,Max—Forwards

This header is used only with the TRACE method to hmrt the number of proxies or other
intermediaries that a request goes through. Its value is an integer. Each application that’
receives a TRACE request w1th this header should decrement the value before it forwards
the request along. : '

If the value is zero when the application receives the request, it should send back a 200 OK
 response to-the request, with an entity body. containing the original request. If the. Max- -

Forwards header is missing from a TRACE request, assume that there is no maximum -
number of forwards. : -

. For other HTTP methods, this header should be ignored. See “Methods” in C hapter 3 for
“more on the TRACE method ‘ . :

"Type.- . Request header
Basic Syntax Max~ForWerd‘s‘: 1*DIGIT

Exam_plé Max-Forwards: 5

3 ’MIME Version o

MIME is HTTP’s cousin. While they are radlcally dlfferent somie HTTP servers . do
construct messages that are valid under the MIME spec1f1cat10n When thlS is the case, the
MIME-Version header can be supplied by the server.

This header has never been part of the official specification;, although it is mentioned in the

HTTP/1.0 specification. Many older servers send messages with this header, however,
those messages often are not valid MIME messages, making this header both confusmg and
impossible to trust. '

Type . Extension general header
‘Basic Syntax MIME-Version: DIGIT "." DIGIT

‘Example = MIME-Version: 1.0

Pragma

The Pragma header is used to pass directions along with the message. These directions
~could be almost anything, but often they are used to control caching behavior. Proxies and
gateways must not remove the Pragma header, because it could be intended for all applica-
~ tions that receive the message.

The most common form of Pragma, Pragma: no-cache, is a request header that forces
“caches to request or revalidate the document from the origin server even when a fresh copy
is available in the cache. It is sent by browsers when users click on the Reload/Refresh
button. Many servers send Pragma: no-cache as a response header (as an equivalent to

 Pragma _'l 521



Cache-Control no-cache), but despn:e its common use, this behavror is techmcally-
undefinded. Not all applications support Pragma response headers.

Chapter 7 dlSCUSbCS the Pragma header and how it is used by HTTP/1.0 apphcatrons o
control caches.

Type '-Request header
Basic Syntax  Pragma: 1# pragma~directive*

Example - Pragrrla: no-cache

Proxy- Authentlcate

The Proxy-Authentrcate header functlons like the WWW-Authenticate header Itis used by
proxies to challenge an application sending a request to authenticate itself. The full details
of this challenge/response, and other security mechamsms of HTTP, are discussed in detail
in Chapter 14...

If an HTTP/1.1 proxy server is sendmg a 407 Proxy Authentication Required response, it
must include the Proxy-Authenticare header.

Proxies and gateways must be careful in interpreting all the Proxy headers. They generally
are hop-by-hop headers, applying only to the current connection. For instance, the Proxy-
Authenticate header requests authentication for the current connection. :

Type ’ Response header

Basic Syntax Proxy-Authenticate: challenge

Example Proxy—Authent1cate Basic realm="Super Secret Corporate Financial
Documents"
Proxy-Authonzatlon

The Proxy-Authorization header functions like the Authorization header It is used by
client applications to respond to Proxy-Authenticate challenges. See Chapter 14 for more
on how the challenge/ response secunty mechanism works.

Type Request header
Basic Syntax Proxy-Authorization: credentials

: Example Proxy-Authorization: Basic YnJpYW4tdG90dHk6T3ch

* The only specification-defined Pragma directive is “no-cache”; however, you may run into other Pragma
headers that have been defined as extensions to the specification.

522 | AppendixC: HTTP Header Reference



”' ‘Proxy-Connectlon

- The Proxy-Connection header was meant. to have s1m11ar semantics to the HTTP/ 1 0
Connection header. It was to be used between clients and proxies to specify options about
the connections (chiefly keep-alive connections).” It is not a standard header and is viewed
as an ad hoc header by the standards committee. However, it is Wrdely used by browsers
and proxies. : :

Browser implementors- created the Proxy-Connectlon header to solve the problem of a
client sending an HTTP/1.0 Connection header that gets blindly forwarded by a dumb
proxy. A server receiving the blindly forwarded Connection header could confuse the capa-
bilities of the client connection with those of the proxy connection.

The Proxy—C onnection header is sent instead of the Connecuon header when the client
knows that it is going through a proxy. Because servers don’t recognize. the Proxy-
Connection header, they ignore it; allowing dumb proxres that bhndly forward the header
to do so without causing harm.

The problem with this solution occurs if there is more than one proxy in the path of the
client to the server. If the first one blindly forwards the header to the second, which under-
stands it, the second proxy can suffer from the same confusion the server d1d with the
Connection header.

This is the probler_n that the HTTP working group had With*thjS solution—they saw it as a
hack that solved the case of a single proxy, but not the bigger problem. Nonetheless, it
does handle some of the more common cases, and because older versions of both Netscape
Navigator and Microsoft Internet Explorer implement it, proxy rmplementors need to deal
‘with it. See Chapter 4 for more mformatwn '

Type . General header
Basuc Syntax Proxy-Connection: 1# (connectior1~token)

Example Proxy-Connection: close

Public

The Public header allows a server to tell a client what methods it supports. These methods
can be used in future requests by the client. Proxies need to be careful when they receive a
response from a server with the Public header. The header indicates the capabilities of the
server, not the proxy, so the proxy needs to either edit the list of methods in the header or
remove the header before it sends the response to the client.

Type R_eé”ponse header

* See Chapter 4 for more on keep-alive and persistent connections.

Public | 523



the§ - This header is not defined in RFC 2616. It was previously defined in RFC
S 2068, an earlier draft of the HTTP/1.1 specrfrcatron but it has since been
removed from the official specrﬁcatlon

Basic Syntax Pubhc 1# HTTP- method

Example - Public: OPTIONS, GET, HEAD, TRACE, POST

Range

The Range header is used in requests for parts or ranges of an ennty Its value 1nd1cates the
range of the entity that is included in the message. -

Requests for ranges of a document allow for more efficient requests of large objects (by
requesting. them in segments) or for recovery from failed transfers (allowing a client to
request the range of the resource that did not make it). Range requests and the headers that
make the requests poss1hle are chscussed in detail in Chapter 135. ' '

~ Type Entity header
Example ~ Range: bytes=500-1500
Referer

The Referer header is inserted into client requests to let the server know where the client
got the URL from. This is a voluntary effort, for the server’s benefit; it allows the server to
better log the requests or perform other tasks. The misspelling of “Referer” hearkens back
to the early days of HTTP to the frustration of English- speakmg copyedrtors throughout
the world.

What your browser does is fairly simple. If you get home page A and chek onalinktogoto
home page B, your browser will insert a Referer header in the request with value A. Referer
headers are inserted by your browser only when you click on links; requests for URLs you
type in yourself will not contain a Referer header.

Because some pages are private, there are some privacy concerns with this header. Whrle
some of this is unwarranted paranoia, this header does allow web setvers and their admin-

istrators to see where you came from, potentially allowing them to better track your - -

surfing. As a result, the HTTP/1.1 specification recommends that apphcatron writers allow
the user to decide whether this header is transmitted.

Type - Request header
| Basic Syntax Referer: (absoluteURL | reiativeURL)

Example Referer: http://www.inktomi.com/index.htrul

524 | Appéndix C: HTTP Header Reference



| Retry—After -

Servers can -use the Retry—After header to tell a client- when to retry its- request for-a
resource. It is used with the 503 Service Unavailable status code to give the chent a spec1f1c
date and time (or number of seconds) at which it should retryits request.

A-server can also use this header when it is redirecting clients to resources, grvrng the client
a time to wait before making a request on the resource to which it is redirected.” This can
 be very useful to servers that are creating dynamic resources, allowing the server to redirect

the client to the newly created resource but giving time for the resource.to be created

Type . Response header ,
Basic Syntax - RetrjI;After: (HTTP~date | delta-seconds)

- Examples Retry-After: Tue, 30ct 1997 02:15:31 CMT
s Retry~After 120

Server

_ The Server header is akin to the User-Agent header it provides a way for servers to identify
themselves to chents Its value is the server name and an optronal comment about the
server. ‘

Because the Server header identifies the server product and can contain additional
comments about the product, its format is somewhat free-form. If you are writing software
‘that depends on how a server identifies itself, you should experiment with the server soft-
ware to see what it sends back, because these tokens vary from product to product and
release to release. :

- As with the User-Agent header, don’t be surprised if an older proxy or gateway inserts what
amounts to a Via header in the Server header itself.

Type: -~ Response header
| Basic Syntax Server: 1* (product | comment)
Examples ‘Server: Microsoft-Internet-Information-Server/1.0

Server: websitepro/1.1f (s/n wpo-07d0)
Server: apache/1.2b6 via proxy gateway CERN- HTTPD/3. 0 hbWWW/Z 13

| Set-Cookle

The Set-Cookie header is the partner to the Cookre header; in Chapter 11, we discuss the
use of this header in detad

* See “Redirection status codes and reason phrases” in Chapter 3 for more on server redirect responses.

Set-Cookie. | 525



Type - Extension fespovnse headef .
Basic Syntax Set-Cookie: command

Examples - Set-Cookie: lastc')rder=001v83;pathz/o'rders
Set-Cookie: private_id=519; secure

Set-CookleZ

The Set-Cookie2 header is an extension of the Set- Cookle header in Chapter 11, we
discuss the use of this header in detail.

Type | : Extension response header
Basic Syntax | ~ Set-Cookie2: command

Examples Set—Cook1e2 ID= "29046" Domain=" ]oes—hardware com"
Set-Cookie2: color=blue :

TE

The poorly named TE header functions like the Accept-Encoding header, but for transfer
encodings (it could have been named Accept-Transfer-Encoding, but it wasn’t). The TE
header also can be used to indicate whether a client can handle headers in the trailer of a
response that has been through the chunked encoding. See Chapter 15 for more on the TE
header, chunked encoding, and trailers. -

Type ' Req‘uest header

Notes If the value is empty, only the chunked transfer encoding is acceptable
The special token “trailers” indicates that trailer headers are acceptable
in a chunked response. : :

BasicSyntax  TE: # (transfer-codings)
transfer-codings= "trailers" | (transfer-extension [accept-params])

Examples = TE:
' TE: chunked

Trailer
The Trailer header is used to indicate which headers are present in the trailer of a message.
Chapter 15 discusses chunked encodings and trailers in detail.

Type - General header

526 | AppendixC: HTTP H’eade‘rReferen_ce'



‘ ;Bas!( Syntax ‘ Traile-r: l#field-narne»

Example . Traile_r:- ConrentQLength

Title , o

The Title header is a non- specrﬁcatron header that is supposed to give the title of the entity.
This header was part of an early HTTP/1.0 extension and was used primarily for HTML
pages, which have clear title markers that servers can use. Because many, if not most,
media types on the Web do not have such an easy way to extract a title, this header has
limited usefulness. As a result, it never made it into the otf1c1al specrﬁcatlon though some
older servers on the Net still send it faithfully.

T_ype ‘ ' Response header

Notes _ '- - The Tltle header is not defined in RFC 26 16 It was Orlgmally defmed in
: the HTTP/1.0 draft definition (http: [Prwww3. org/Protocols/HTTP/
- HTTP2.html) but has since been removed from the off1e1a1 speerﬁcatron

Basic Synta'x Title: document~tit1e -

Example Title: CNN .Interactive

Transfer-Encodmg

If some encoding had to be performed to transfer the HTTP message body safely, the
message will contain the Transfer-Encoding header. Its value is a list of the encodings that
were performed on the message body. If multiple encodmgs were performed they are hsted
in order. :

The Transfer-Encoding header differs from the Content-Encoding header because the
transfer encoding is an encoding that was performed- by a server or other 1ntermed1ary
application to transfer the message.

Transfer encodings are discussed in Chapter 15.
Type " General header
Basic Syntax Transfer-Encoding: 1# transfer-coding

Example Transfer-Encoding: chunked

UA-(CPU, Disp, 05, Color, Pixels)

These User-Agent headers are nonstandard and no longer common. They provide informa-
tion about the client machine that could allow for better content selection by a server. For

UA-(CPU, Disp, 05, Color, Pixels) | 527



1nstance, if a server knew that a user’s rnachlne had only an 8-bit color dlsplay, the server
could select images that were optlmlzed for that type of display. ’

With any header that gives information about the client that otherwise Would be unavall-
~ able, there are some security concerns (see Chapter 14 for more information).

Type ' Extension request’header‘s
Notes These headers are not defined in RFC 2616, and their use is frowned
' upon. ' ' ‘

Basic Syntax "UA" . ("CPU" | "Disp" | "OS" | "Color" | "Piiels") "." machine-value =
' ' machine-value = (cpu | screensize | os-name | display-color-depth)

Examples = UA-CPU: x86 "~ CPU of client’s machine
' UA-Disp: 640, 480, 8 Size and color depth of client’s display
- UA-OS: Windows 95 Operatmg system of client machine:
 UA-Color: color8 Color depth of client’s display
UA-Pixels: 640x480 Size of client’s display

Upgrade

The Upgrade header prowdes the sender of a message with a means of broadcastmg the
desire to use another, perhaps completely different, protocol. For instance, an HTTP/1.1
client could send an HTTP/1.0 request to a server and include an Upgrade header with the

“value “HTTP/1.1”, allowing the client to test the waters and see whether the server speaks
HTTP/1.1.

If the server is capable, it can send an appropriate response letting the client knOW that itis
okay to use the new protocol. This provides an efficient way to move to other protocols.
Most servers currently are only HTTP/1.0-compliant, and this strategy. allows a client to
avoid confusing a server with too many HTTP/1.1 headers until it determines whether the
server is indeed capable of speaking HTTP/1.1.

When a server sends a 101 Switching Protocols response, it must include ’[hlS header
Type ~ General header
Basic Syntax Upgrade: 1# protocol

Example Upgrade: HTTP/2.0

User-Agent
The User-Agent header is used by client applications to identify themselves, much like the

Server header for servers. Its value is the product name and possibly a comment describing
the client application.

528 | AppendixC: HTTP Header Reference



‘This header’s format is somewhat free-form. Its value varies from client product to product
" and release to release. This header sometimes even contains 1nformat10n about the machine .
on which the client is running. :

As with the Server header, dom’t be surprised if older proxy or gateway apphcatrons insert .
vwhat amounts to a'Via header in the User-Agent header 1tse1f :

Type; - Request header -
- Basic Syntax = User-Agent: 1* (product l_comment)

EXample o User-Agent: Mezilla/4.0 (compatible; MSIE'S.S; Windows NT 5.0) ’

Va y

The Vary header is used by servers to inform clients what headers from a client’s request
will be used in server-side negotiation.” Its value is a list of headers that the server looks at
to determine what to send the client as a response.

An. example of this would be a server that sends spec1a1 HTML pages based on your web
: browser s features. A server sending these special pages for a URL would include a Vary
header that indicated that it looked at the User- Agent header of the request to determine
what to send as a response. :

The Vary header also is used by caching proxies; see Chapter 7 for more on how the Vary
header relates to cached HTTP responses.

: T)’Pe R_esponse header
Basic Syntax - Vary: ("*" | 1# field-name)

' Example Vary: User-Agent

Via T
‘The Via header is used to trace messages as they pass through proxies and gateways. It is

an informational header that can be used to see what applications are handling requests
-and responses.

When a message passes through an HTTP application on its way to a client or a server, that
application can use the Via header to tag the message as having gone via it. This is an
HTTP/1.1 header; many older applications insert a Via-like string in the User-Agent or
- Server headers of requests and responses. :

If the message passes through multiple in-between applications, each one should tack on
its Via strlng The Via header must be inserted by HTTP/1.1 proxies and gateways.

* See Chapter 17 for more on content negotiation.

Via | 529



Type - General header |

*

Basic Syntax Viéﬁ 1# '(received—p'ro.tocol réceivedehy [com_ment]) :
E‘Xample Via: 1.1 ]oes—hardware com (Joes-Server/ 1 0) »
. The above says that the message passed through the Joes Server Version
1.0 software running on the machine joes-hardware.com. Joe’s Server
was speaking HTTP 1.1. The Via header should be formatted hke thlS
HTTP-Version machine-hostname (Appllcatlon -Name- Versmn) '
Warning

The Warning header is used to give a little more information about what happened during
a request. It provides the server with a way to send additional information that is not in the
status code or reason phrase Several warmng codes are defined in the HTTP/1. 1

specification:

101 Response Is Stale
- When a response message is known to be stale—for instance, if the ongm server is
~ unavailable for revalidation—this Warmng must be mcluded : :
111 Revalidation Failed :
If a cache attempts to revahdate a response with an origin server and the revalidation
fails because the cache catinot reach the origin server, this warning must be included in
the response to the client. - - -
112 Disconnected Operation - :
An mformatwe warning; should be used 1f a cache’s connectivity to the network is
removed. - :
113 Heuristic Expzratlon
Caches must include this warmng if their freshness heuristic i is greater than 24 hours '
and they are returning a response with an age greater than 24 hours. -

199 Miscellaneous Warning
Systems receiving this warning must not take any automated response; the message
may and probably should contain a body with additional information for the user.

214 Transformation Applied ' :
Must be added by any intermediate application, such as a proxy, if the application
performs any transformation that changes the content encoding of the response.

299 Miscellaneous Persistent Warning
Systems receiving this warning must not take any automated reaction; the error may
contain a body with more information for the user.

* See the HTTP/1.1 specification for the complete Via header syntax.

530 | AppendixC: HTTP Header Reference



Type ~ Response header
‘Ba‘sic Syntax R Warning: 1# wa:ding—va’lue

- »’Ex‘a_m'ple : 'Wam_ing: 113

WWW Authentlcate

The WWW- Authentlcate header is used in 401 Unauthorized responses to issue a chal-
lenge authentication scheme to-the client. Chapter 14 discusses the WWW-Authenticate
header and its use in HTTP’s basic challenge/response authentication system.

~ Type - Response header

- Basic Synta‘x WWW-Authenticate: 1# challenge

Example = . WWW—Authentieate: Basic realm="Your Private Travel Profile"- - “

X-Cache

The X headers are all extension headers. The X—Cache header is used by Squld to inform a
client whether a resource is available. : :

Type Extension response header

Example X-Cache: HIT

X-Forwarded-For

This header is used by many proxy servers (e.g., Squid) to note whom a request has been
forwarded for. Like the Client-ip header mentioned earher, this request header notes the
address from which the request originates.

Type Extension request header

Basic Syntax X-Forwarded-For: addr

Example X-Forwarded-For: 64.95.76.161

X-Pad
This header is used to overcome a bug related to response header length in some browsers;
it pads the response message headers with extra bytes to work around the bug,

X-Pad | 531



Type  Extension general header
Basic Syntax X-Pad: pathext :

Example - X-Pad: bogosity

X-Serial-Number.

‘The X-Serial-Number header is an extension header. It was used by some older HTTP
applications to insert the serial number of the licensed software in the HTTP message.

~ Its use has pretty much died out, butit is listed here as an example of the X headers that are
- out there. ' ’

Type EXtehéion general header
B_aSiC Syntax X—S'eriaLNumber: .s_erialno

Example X-Serial-Number: 010014056

532 | AppendixC: HTTP Header Reference



 APPENDIXD

MIME Typ e 5'_ |

MIME media types (MIME types, for short) are standardized names that describe the
contents of a message entity. body (e.g., text/html, image/jpeg): This appendix
explains how MIME types work how to reglster new ones, and where to go for more
information. - : o

In addition, this appendix contains 10 convenient tables, detailing hundreds of

MIME types, gathered from many sources around the globe. This may be the most

- detailed tabular hstmg of MIME types ever complled We hope these tables are use-
ful to you. : :

In this appendix, we will:
* Outline the primary reference material, in “Backg‘round.”b
« Explain the structure of MIME types, in “MIME Type Structure.”
e Show you how to register MIME types, in “MIME Type IANA Reg1strat10n
. Make it easier for you to look up MIME types -
The following MIME type tables are included in this appendlx
* application/*—Table D-3
¢ audio/*—Table D-4
- ¢ chemical/*—Table D-5
. image/*—.——Table D-6
* message/*—Table D-7
¢ model/"~—Table D-8
~* multipart/ *—Table D-9
e text/*—Table D-10
* video/*—Table D-11
« Other—Table D-12

533



N Background

MIME types ongmally were developed for mulumedla emaﬂ (MIME stands for Mul- v
tipurpose Internet Mail Extensions), but they have been reused for HTTP and sev-
eral other protocols that need to describe the format and purpose of data ob]ects

MIME is defined by five prlmary documents

RFC 2045, “MIME: Format of Internet Message Bodzes
Describes the overall MIME message structure, and introduces the Content-
Type header, borrowed by HTTP :

REC 2046, “MIME: Media Types”
Introduces MIME types and their structure

RFC 2047, “MIME: Message Header Extensions for Non-ASCII Text”
- Defines ways to include non-ASCII characters in headers

RFC 2048, “MIME: Registration Procedures”
Definés how to register MIME values with the Internet Assigned Numbers
Authority IANA) :

RFC 2049, “MIME: Conformance Criteria and Examples”
Details rules for compliance, and provides examples

For the purposes of HTTP, we are most interested in RFC 2046 (Media Types) and
RFC 2048 (Registration Procedures).

MIME Type Structure

Fach MIME media type consists of a type a subtype and a list of opuonal parame-
ters. The type and subtype are separated by a slash, and the optional parameters
begin with a semicolon, if they are present. In HTTP, MIME media types are widely
used in Content-Type and Accept headers. Here are a few examples:

Content-Type: video/quicktime

Content-Type: text/html; charset="iso-8859-6"

Content-Type: multipart/mixed; boundary=gcOp4JqOM2Yt08334c0p -
Accept: image/gif

Discrete Types

MIME types can directly describe the object type, or they can describe collections or
packages of other object types. If a MIME type describes an object type directly, it is
a discrete type. These include text files, videos, and application-specific file formats.

Composite Types

If a MIME type describes a collection or encapsulation of other content, the MIME
type is called a composite type. A composite type describes the format of the enclosing

534 | AppendixD: MIME Types



‘package. When the enclosmg package is opened, each endosed ob]ec:t W111 have its
own type :

Mu|t|part Types

Multlpart med1a types are composu:e types. A multlpart ob)ect con51sts of multlple
component types. Here’s an example of multipart/mixed content, where each com-
ponent has its own MIME type:

Content -Type: multlpart/mlxed boundary-unlque boundary -1

_--unique-boundary-1 -
Content-type: text/plain;’ charset US-ASCII

H1 there, I m-some borlngvASCII text...

~-unique- boundary 1 '
Content - Type multlpart/parallel boundary= unlque boundary 2

--unique- boundary -2
Content-Type: ‘audio/basic

. 8000 Hz single-channel mu-Law-format
audio data goes here ...

--unique-boundary-2
Content-Type: image/jpeg

. image data goes here ..
--unigue-boundary-2--

--unique-boundary-1
Content-type: text/enriched

This is <bold><ita11c>enriched.</ita1ic></bold>
<smaller>as defined in RFC 1896</smaller>

Isn't it <bigger><bigger>cool?</bigger></bigger>

--unique-boundary-1
Content-Type: message/rfc822

From: {mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=IS0-8859-1
Content-Transfer-Encoding: Quoted-printable

. Additional text in IS0-8859-1 goes here ...

--unique-boundary-1--

 MIME Type Structure | 535



Syntax

As we stated earlier, MIME types consist of a prlmary type, a subtype and an
optional list of parameters. '

- The primary type can be a predeﬁned type an IETF- defmed extension token, or an |
experimental token (beginning with “x-). Some common prrmary types are
described in Table D-1.

Table D-1. Commo.ﬁ primary. MIME types

application - Applrcatron—specrf ic content format (discrete type)
audio - - ‘Audro format (drscrete type)
chemical | Chemical data set (discrete IETF extension type) |

| image Imége_f‘ormat (discrete type)‘ '
message | Message format (com:posite type) '
model | 3-Dmodelformat (discrete IETF extension type)
multipart Collection of multi'ple objects (composite type)
text Text format (discrete type)
video | Video movie format (discrete type)

Subtypes can be primary types (as in text/text”), IANA- regrstered subtypes, or
experimental extension tokens (beginning with “x

Types and subtypes are made up of a subset of US-ASCII characters. Spaces and cer-
tain reserved grouping and punctuation characters, called tspec1als are control
characters and are forbidden from type and subtype names.

The grammar from RFC 2046 is shown below:

TYPE := "application" | "audio” | "image" | "message" | "multipart” |
"text" | "video” | IETF-TOKEN | X-TOKEN
SUBTYPE := IANA-SUBTOKEN | IETF-TOKEN | X-TOKEN

IETF-TOKEN := <extension token with RFC and registered with IANA>
IANA-SUBTOKEN := <extension token registered with IANA>
X-TOKEN := <"X-" or "x-" prefix, followed by any token»

PARAMETER = TOKEN "=" VALUE
VALUE := TOKEN / QUOTED-STRING .
TOKEN := 1*<any (US-ASCII) CHAR except SPACE, (TLs, or TSPECIALS>
TSPECIALS := "(" | ")' Lo ] re |
N ]
VAR IO R R

536 | AppendixD: MIME Types



MIME Type IANA Reglstratlon

The MIME media type registration process is described in REC 2048 The goal of the _
registration process is to make it easy to register new media types but also to prov1de ,
some sanity checking to make sure the new types are well thought out.

| Reglstratlon Trees

MIME type tokens are spht into four classes, called “registration trees,” each with its-
own registration rules. The four trees—IETF, vendor, personal, and experimental—
are described in Table D-2. ' '

Table D-2. Four MIME media type registration trees

IETF | text/html The IETF tree is intended for types that are of general significance to the .
S : (HTML.'text) .| Internet community. New IETF tree media types require approval by the -
: Internet Engineering Steering Group (IESG) and an accompanying
standards-track RFC. v v

_ | IETF tree types have no periods () intokens. _ }
Vendor | imagefvndfpx The vendor tree is intended for media types used by commercially available
(wnd) . (Kodak FlashPix image) products. Public review of new vendor types is encouraged but not '

' - ' | required.
, Vendor tree types begin with “vnd.". B
Personal/Vanity .image/prs.btif Private, personal, or vanity media types can be reglstered in the personal
(prs.) (internal check- - tree. These media types will not be distributed commercially.
management format | Personal tree types begin with “prs.”.

, | used by Nations Bank)
Experimental - application/x-tar - The experimental tree is for unregistered or experimental media types.
(-orx) . (Unix tar archive) Because it's relatively simple to register a new vendor or personal media

type, software should not be distributed WIdely using x- types.

Hn " ", "

Experimental tree types begin with “x.” or “x-

Registration Process |
" Read RFC 2048 carefully for the details of MIME media type registration.

The basic registration process is not a formal standards process; it’s just an adminis-
trative procedure intended to sanity check new types with the community, and record
them in a registry, without much delay. The process follows the following steps: -

1. Present the media type to the community for review.

- Send a proposed media type registration to the ietf-types@iana.org mailing list
for a two-week review period. The public posting solicits feedback about the
choice of name, interoperability, and security implications. The “x-” prefix spec-
ified in RFC 2045 can be used until registration is complete. :

- MIME Type JANA Registratioh | 537



2. IESG approval (for IETF tree only)

If the media 1 type is berng regrstered in the- IETF tree; it must be submrtted to the» |
- IESG for approval and must have an accompanying standards track RFC

. 3 IANA regtstratlon

- As soon as the medla type meets the approval requlrements the author can sub-’ "
" mit -the registration request to the IANA, using the email | template in
Example D-1 and mailing the information to ietf-types@iana.org.- The IANA will
register the media type and make the media type application ava1lable to the
: commumty at http //www isi.edufin- no_tes/zana/asszgnmen_ts/medza types/..

Reglstratlon Rules

The IANA will register media types in the IETF tree only in response to a communi--
cation from the IESG statmg that a glven reglstratlon has been approved '

Vendor and personal types. will be registered by the JANA automatlcally and w1th-
out any formal review as long as the followmg minimal conditions are met:

1. Media types must function as- actual media formats. Types that act like transfer
encodings or character sets may not be reglstered as media types.

2. All media types must have proper type and subtype names. All type names must
be defined by standards-track RFCs. All subtype names must be unique, must
conform to the MIME grammar for such names, and must contain the proper
_tree preﬁxes o :

3. Personal tree types must provrde a forrnat spec1f1cauon ora pornter to one.

4. Any security considerations given must not be obviously bogus Everyone who is
-developing Internet software needs to do his part to prevent security holes.

Registration Template
The actual IANA registrationv'is done via email. You complete a registration form

usmg the’ template shown in Example D-1, and mail it to ietf- types@zana org.’

Example D-1. IANA MIME regzstratzon emazl template -

To: ietf- -types@iana. org
Subject Reglstratlon of MIME media type XXX/YYY

MIME medla_type-name.

* The hghtly structured nature of the form makes the submitted information fme for human consumptron but
" difficult for machine processing. This is one reason why it is difficult to find a readable, well-organized sum-
mary of MIME types, and the reason we created the tables that end this appendix. :

538 | AppendixD: MIME Types



- Example D-1. IANA MIME regzstratton emazl temp ate (contmued)
MIME subtype name

""Requ1red parameters:
Optional parameters:
Encoding,eoneiderétiooezi_ o
Secority consideratibn;:
' Interooerability_consioeratioos:'
..Published specificatioh:
Applications;which‘ose thig'media'typef
Additionel ioforﬁation:A |
g Meglc'oumber(e)} R
File ‘extension(s):
Macintosh File Type Code(s):
Person & email addreeé to contact for furthervinformation:
Intended usage "\ R
(One O'F COMMON LIMITED USE or OBSOLETE)

Author/Change Controller:

(Any other 1nformat1on that the author deems 1nterest1ng may be added below thls line.)

MIME Medla Type Reglstry

The submitted forms are accessible from the IANA web site (http //www iana. org) At
the time of writing, the actual database of MIME media types is stored on an ISI web
server, at http://fwww.isi. edu/m notes/zana/asszgnments/medza types/.

The media. types are stored in a directory tree, structured. by | prlmary type ‘and sub-
type, with one leaf file per media type. Each file contains the email submission.

Unfortunately, each person completes the reglstratlon template slightly differently,
so the quality and format of 1nformat10n varies across submissions. (In the tables in
this appendlx we tried to fill in the holes omltted by reglstrants ) |

MIME Type Tables

This section summarizes hundreds of MIME types in 10 tables Each table lists the
MIME media types within a particular primary type (image, text, etc.).

" MIME Type Tables |- 539



" The information is gathered from many sources, 1nc1ud1ng the IANA medla type reg—
istry, the Apache mime.types file, and assorted Internet web pages. We spent several
--days refining the data, plugging holes, and 1neludmg deSCI‘lptIVC summarles from |
Cross- references to make the.data more useful ' - o

~ This may well be the most detalled tabular hstmg of MIME types ever complled We
hope you find it handy'

appllcatlon/* . |
.'Table D-3 descrlbes many of the apphcatlon spec1f1c MIME medla types. |

Table D-3. ‘Applzcatzon” MIME types

application/activemessage’ | Supports the Active Mail groupware 1 .| - “Active Mail: A Framework for Inte-
. o ' system . L - | grated Groupware Applications” in

: S : I | ReadingsinGroupwareand -

.Computer-Supported Cooperat/ ve

| Work, Ronald M. Baecker, ed.,
Morgan Kaufmann, ISBN

_ A . A e /| 1558602410 - N
application/andrew-inset - S'upports the creation of multimedia ez "Mu/timedid Applications Dekelop- .
: ' -|- content with the Andrew toolkit. . | - | ment with the Andrew Toolkit,

Nathaniel S. Borenstein, Prentice
"1 Hall, ASIN.0130366331

C - | | nsb@bellcore.com
application/applefile . Permits MIME-based transmissionof | =~ RFC1740
.. . . | datawith Apple/Macintosh-specific S
{_information, while allowing general
_ : | aceess to nonspecific user data. - _ } o
application/atomicmail ~ | ATOMICMAIL was an‘experimental. - | - ”ATO'MICMAILLanguage'Reference
S - | research project at Bellcore, designed : Manual,” Nathaniel S. Borenstéin,
forincluding programs in electronic "~ | Bellcore Technical Mernorandum
-mail messages that are executed - : TMARH-018429  ~  ~° -
when mail is read, ATOMICMAIL is : ' ‘
rapidly becommg obsolete in favor of
e safetd. o
‘application/batch-SMTP .~ Defines a MIME content type suntable - | RFC2442 -
S _ . | fortunneling an'ESMTP mail transac- '
_ tion through any MIME-capable
A | transport. . _ .
‘ appllication/beep+'xml o Supports the interaction protocol RFC 3080

called BEEP. BEEP permits simulta-
“neous and independent exchanges of
MIME messages between peers,
A where the messages usually are XML-
| structured text.

540 | AppendixD: MIME Types



Table D-3: “Application” MIME types (continued)

application/cals-1340

- application/commonground

application/cybercash

application/dca-rft )

application/dec-dx :

applicatiqn/dvcs

application/EDl;ansent
_ applicatioh./EDl-X12
appliéation/jéblf{\q '-
: applica.tio_n/esho'b

application/font-tdpfr

Supports MIME email exchanges of
U.S. Department of Defense digital
datathat was previously exchanged by
tapem, as defi ned by MIL-STD-1840.

Common Ground is an electroriic doc-

-ument exchange and distribution pro-
-gram that lets users create documents
- that anyone can view, search, and .
- print, without requiring that they

have the creating appllcatlons or.

~fonts on their systems. -

- Supports credit card, paymentthrough
- the CyberCash protocol When a user’

starts payment, a message is sent by
the merchant to the customer as the
body of a message of MIME type

' application/cybercash.
. iBM Document (ontent Archltecture I

| DEC Document Transfer Format.

Supports the protocols used by a Data

1 Validation and-Certification Server
(DVCS), which acts as a trusted third

~ partyina publlc-key secunty '

mfrastructure

| -Supports bilateral trading Via elec-

tronic data interchange (EDI), using

| nonstandard specifications.
~ | Supports bilateral trading via elec- -

tronic data interchange (EDI), usmg
the ASCX12 EDI specifications.

 Supports bilateral tradmg via.elec-

tronic data interchange (EDI), using
the EDIFACT specifications.

Unknown. * -

Defines a Portable Font Resource (PFR)

that contains a set of glyph shapes;

each associated with a character code. |

Nick Gault . -

No Hands Software

| RFC1898

“|" “IBM Document Content Architec-

ture/RevnsabIe Form Text Refer-
ence,” document number 5C23-

. 0758-1, International Busmess
..Machmes o

“Digital Document Transmission

| (DX) Technical Notebook,” docu-
| ment number E129141-86, Digital
Equipment Corporation

| REC3029

htto:/iewwsi.edu/in-notes/iand/

| assignments/media-types/

|- application/EDI-Consent _
| http://wwwisi.edufin-notes/iana/
- assignments/media-types/

g appllcatlon/EDl-XIZ '

| http://www.isi.edu/ n—notes//ana/ :
»aSSIgnments/medla fypes/

application/EDIFACT -

’ ‘Steve-Ka_tz o
* System Architecture Shop-
|- steve katz@eshop om .-

: 'RFC 3073

. MIMETypeTables | 541



: Table D-3..A‘_‘Ap'plic;1tion""MfME-iyp_es (continued) .~

application/http

' .applicat.‘ior_p/hyper'studio
application/iges -
applicaﬁon/jind—ex‘ '

application/index.cmd
application/index.obj

application/index.response

application/index.vnd

.applicaﬁon/iotp- ‘
'appl,icvétion/'ipp

application/mac-binhex40. 4

application/mac-compactpro
application/macwriteii
application/marc

application/mathematica . -
application/mathematica-old

application/msword

' 'appI_ication/neWs—messége-id 3

application/news- -
transmission
application/ocsp-request

. Used to endose a pnpehne of oneor
- more HTTP request of response mes-
.sages (not mterm|xed)

Supports transfer of HyperStudlo edu-
cational hypermedla files: - -

A commonly used format for CAD

“|. model mterchange

" | Support the Common Indexihé Proid—

col (CIP). CIP is an evolution of the

| Whois++ directory service, usedto |
passindexing information from server |

to server in order to-redirect and repli-- |
" cate queries through a dlstnbuted k

database system.

| Supports Internet Open Tradmg Pro- ‘
1 tocol (10TP) messages over HTTP. -

’ Supports Internet Prmtmg Protocol

(IPP) over HTTP. .
Encodes a string of 8 bit bytesintoa

* string of 7-bit bytes, which is safer for

some applications (though not quite

- as safe as the 6-bit base-64 encoding).
From Apache mime.types.
- Claris MacWrite Il

- MARC objects are .Machihe-Readab.I'e, _
- (ataloging records—standards for
" the representation and communica-

tion of bibliographic and related -
information.

| Supports Mathematica and Math-
‘Reader numerical analysis software. -

Microsoft Word MIME type.

Allows transmission of news articles

by email or other transport. -
Supports the Online Certificate Status -

Protocol {OCSP), which provides a
way to check on the validity of a digi-

| tal certificate without requiring local
certificate revocation lists.

stk -

hgx

ot

I mrc.

nb, ma,

mb

“doc

orq

RFC2616

" http//www.hyperstudio.com '

“ANS/US PRO/IPO-100"

-1~ US. Product Data Association
| 2722 Merrilee Drive; Suite 200

' Fairfax, VA 22031-4499

RFC 2652 and RFCs 2651, 1913
and 1914

RFC2935

RFC2910

RFC1341°

“| RFC2220

The Mathematica Book, Stephen
Wolfram, Cambridge University -

Press, ISBN 0521643147 - .

- RFGs 822 (message IDs), 1036
(application to news), and 977

(NNTP)
RFC 1036

RFC 2560

542 |

AppendixD: MIME Types




" Table D-3. “Application” MIME types (continued)

application/ocsp-response

application/octet-stream |

application/oda

application/parityfec

-appIi_catiori/pdf -

epplication/pép-encrypted
application/pgp-keys '

applrcatron/pgp srgnature o

appllcatlon/pkcs10

3 applicarion/pkcs%rrrime

application/pkcs7-signature

appllcatron/per -cert ..
applrcatron/pklx-crl

application/pkixcmp ST

appIicatiqn/posts_c_ript _

application/prs.alvestrand. _
titrax-sheet =

'_Sémevas‘a})ove._ o
‘Undassified binary data, - -

*Used for information encoded accord- -
ing to the Office Document Architec-
- ture (ODA) standards, using the Office

Document Interchange Format (ODIF)
representation format. The Content-

'|” Type line-also should specify an
.| " attribute/value pair that indicates the
b documentapplrcatron profile (DAP),, .

as in:

Content—Type applrcatron/oda
- profile=Q112 ‘

"Forward error correction parrty encod-' -
' _rng for RTP data streams. o

. | Adode PDF files,

PGP encrypted data.
*| PGP public-key blocks.

P,GPc'ry‘p_tographicsigrratrrreT C
Public Key Crypto System #10—the

B application/pkes10 body type mustbe |
-used to transfer a PKCS #10 certifica- |
- tion request .

-Public Key Crypto System #7-—this

type is used to carry PKCS #7 objects

" | of several types including enveloped
- | Data and signedData. - :

Public Key Crypto System #7—this

ors

4 bin; dms, -
lha,lzh, -
- exe, dass.,

oda

pdf

pl0

pm-

., s p7s '

type always contains a single PKCS#7 | -

object of type- srgnedData
Transports X.509 certificates. -

Transpdrts X.509 certificate revoca-
tion [ists.

Message format used by X.509 Public
Key Infrastructure Certificate Man-
agement Protocols.

- An Adobe PostScript graphrcs file
(program). .

“TimeTracker” program by Harald T.
Alvestrand. '

cer -

al

pki

ai, ps,
- eps

RFC 2560

RFC1341

RFC 1341

.|-150 8613; "Informatron Processmg
- Text and Office System; Office Doc-

ument Archi itecture (ODA) and .

1. Interchange Format (ODIF) " Part
- 8 1989 - .

| RFC3009.

See_ Portable Document Format Ref-
erence Manual, Adobe Systems, Inc.,
Addison Wesley, ISBN 0201626284

| RFC2015.
{ RFC2015

RFC2015

RRC231T

REC2311

RFC231T

RFC 2585

| REC2585

RFC2510

RFC 2046

http://domen.uninett.no/~hta/ :

| ity

* MIME Type Tables .| 543



Table D-3 _“Applicatibﬁ?’ MIME types (co_ntinued)

application/prs.cww.

application/prs.nprend.

application/remote-printing . |
N - " when remote printing, for the pnnter .

: application/riscos

applicaﬁon/sdp ; _,

application/set-payment

. appllcatlon/set-payment-
initiation

application/set-registration

appllcatlon/set-reglstratlon-
" initiation

- application/sgml-open-
catalog :

application/sieve
application/slate-

application/smil

application/tve-trigger - .

application/vemmi -

application/vnd.3M.Post-it-
Notes

-~ (U-Writer for Windows

‘Unknown.

Contains meta information used

cover sheet.

1. Acom RISC OS binaries, -

- SDPis intended for describing live

/| multimedia sessions for the purposes -
| of session announcement, session A
invitation, and other forms of multi- -

| ‘media session initiation.

: Su‘pport‘s the SET secure electronic
| transaction payment protocol. -

Intended for use with systems that

‘support the SGML Open TR9401:1995
.1 “Entity Management speaf catlon

Sieve m'a_i'l ﬁItering sc_ri'p_t._ -

: -TheBBN/SIate'documentformatis ‘
- published as part of the standard doc- |

umentation set distributed with the
BBN/Slate product. -

The Synchronized Multimedia Inte-

"'gration Language (SMIL) integrates a,

set of independent multimedia -

- objects into a synchronized multi-

media presentation,
Supports embedded URLs in

- enhanced television receivers.

' Enhanced videotex standard.

Used bi/ the “Post-it® Notes for Inter-
~ net Designers” Internet control/
Iug in.

| md,rct

smi, smil -

pwn

W, (Ww'

Dr. Somchai Prasitjutrakul

|- somchaip@chulkn.car.chula.acth -

John M. Doggett
jdoggett@tiac.net .

RFC1486

Marshall T.Rose

 mrose@dbc.mtview.ca.us

| RISCOS Programmer’s Referenee '
Manuals, Acorn Computers, Ltd
' ISBN1852501 103

RFC2327

| Henning Schulzrinne

hgs@cs.columbia.edu

| http://www. nisa.com |

http://www.mastercard.com

, SGML Open ,
1 910 Beaver Grade Road #30(_)8

Coraopolis, PA 15109

- info@sgmlopen.org <
| RFC3028°

BBN/Slate Product Mgr
BBN Systems and Technologies -

~ | 10 Moulton Street
- Cambridge, MA 02138

http:/fwww.w3, arg/Audio Video/

“SMPTE: Dedlarative Data Essence,
Content Level 1,” produced by the

- Society of Motion Picture and

Television Engineers
http://www.smpte.org

RFC2122

L http //www 3M. com/psnates/

.54 |

AppendixD: MIME Types




le;lé- D}3 . ‘_‘Appl icatiop’5 MIME '.types (continued) |

application/vnd.accpac..
' simply.aso

applicatibn/vnd.a_ccbac. :
© simply.imp

“appication/vnd.acucobol " -

apbIicatioh/vnd;aeth_er.imp

applicat_ioﬁ/\_/nd.anser-_Wébi
'certif cate-issue-initiation

appllcatlon/vnd anser-web ,
'funds-transfer-lmtlatlon L

‘ appllcatxon/vnd.audlograph
application/vnd.bmi
aﬁblicatibn/vnd; _
‘businessobjects .

' ,applicatiori/\inchaaon-cpdl
application/vnd.canon-lips

~ application/vnd.claymore .

application/vnd.commerce-
battelle .

- application/vnd. -
commonspace

 application/vnd.contact.cmsg

Simply-Accounting v7.0 and higher..
Files of this type conform to Open -
 Finandial Exchange v1.02
 specifications.

. Used by Simply Accounting v7.0 and
| higher, toimport its own data.

ACUCOBOL-GT Runtime;

Supports airtime-efficient Instant

* Message communications between

an Instant Messaging service, such as

- AOL Instant Messenger, Yahoo! Mes- -
- | senger, or MSN Messenger, and a spe--
| cial set of Instant Messaging client

software on a wireless device.

' Trigge( for web brow_s'ers tofaunch
 the ANSER-WEB Terminal Client,

Same as above. -

AudioGraph,

_BMI graphlcs format by (ADAM
: Systems

‘_ BusmessObjects 40and hlgher

Supports Canon,, Inc off' ice |mag|ng

products.

_ Claymore.exe.

Suppobrts'a generic mechanism for
delimiting smart card—based infor-

mation, for digital commerce, identi- -

fication, authentication, and

exchange of smart card— based card

holder mformatlon

1 Allows for proper transmission of

CommonSpace™ documents via
MIME-based processes. Common- -
Space is published by Sixth Floor-
Media, part of the Houghton Mifflin
Company.

Used for CONTACT software SOM
DATABASE.

| aep

" ic8
ot

imp

Gii.

i

bmi.

- rep

da

- ica, icf,

icd, icc,
ic0, ic1,

-~ ie2,i63,
- ic4,ic5,

ic6, ic7,

" cdbemsg

| http:/fwww.ofniet -

'ﬁttp//www;bﬁ(.net_ o

“\" Dovid Lubin

dowd@acucobdl om

| Wireless Instant Messagmg Proto-

col (IMP) specification available

from Aether Systems by license -~ |

: ‘-Vleoyoshl Mori -
_‘ mori@mm.rd. nttdata co. /p

_ Same asabove :

Hona (nstlan o ,
H.C Slusanschi@massey.ac.nz

_Tadashl,Gotoh_ }
| tgotoh@cadamsystems.co.jp = .

Shin Muto 4 o

sh/nmuro@pure (pdc.canon.co. jp

’ Ray Sumpson
' ray@cnatlon com

' David C. Applebaum
| applebau@131.167.52.15

‘Ravinder Chandhok

chandhok@within.com -

b Frank Patz :

fo@contact.de

:"http://Www.contd_ct.de '

- MIMEType Tables . | 545



) Table D-}. “Appliéatipn” MIME #ypés'.(co_ntiﬁued) -

application/vnd.cosmocaller

appIica’tion/vnd.ct_c-bosrﬁl -

: application/vhd c'up's-
postscript

- application/vnd. cups—raster .

application/vnd.cups-raw
- application/vnd.cybank -

applicationvnd.dna - -

épplitation/vnd.dpgraph :

épplicatioﬁ/v_nd.dxr N

applicatio'n/vnd.ecdis-ubdate

application/vnd.ecowin;chart
application/vnd.ecowin.
filerequest B
application/vnd.ecowin. -
-fileupdate

apphcatlon/vnd ecowin.series.

application/vnd.ecowin.
seriesrequest”
application/vnd.ecowin.
seriesupdate

“application/vnd.enliven. -

application/vnd.epson.es_f '

application/vnders’on.msf
applicatibn/vnd.epson. .
guickanime

application/vnd.epson.sa_It '

application/vnd.epson.ssf.

Allows for files containing connection

parameters to be downloaded from
~web sites, invokes the CosmoCaller

application to interpret the parame-

 ters,.and initiates connections with-
the CosmoCallACD server.

_-;_(ontinuum Teéhnéldgy’s PosML.

"'Supports Common UNIX Printing Sys- |

tem (CUPS) servers and cllents

Proprietary data type for (ybénk data. -

_ DNAisintended to easily Web-enable
any 32-bit. Wlndows appllcanon
" Used by DPGraph 2000 and Math- '

Ware Cyclone

| -D|g|tal Xpress Reports by PSI

Technologies.

- Supports ECDIS appllcatlons

Econ

Supports delivery of Enliven interac- -
-tive multimedia. :

Prdpriétary content fof Seiko Epson
QUASS Stream Player.

Proprietary content for Seiko Epson -
QUASS Stream Player.

Proprietary content for Seiko Epson
QuickAnime Player.

Proprietary content for Seiko Epson

‘SimpleAnimeLite Player.

Proprietary content for Seiko Epson

QUASS Stream Player.

cme

pmi

dna

dpg,
mwc, .

dpgra'ph_

dxr -

mag -

nml

esf

_msf

qam '

st

ssf

~Steve Dellutri A
.| sdellutri@cosmocom.com

BayardKohlhepp
bqyardk@ctcexchange.com

- http//www.cups.org

.Nor Helmee B. Abd. Halim

helmee@cybanknet
http//vrww.cybank.net

1 Meredith Searcy -
msearcy@newmoon.com

David Park‘er‘
- http//www.davidparker.com ‘

 Michael Duffy

miked@psiqustin.com
http//www.sevencs.com

| Thomas Olsson
- | thomas@vinga.se

Paul Santinelli
psantinelli@narrative.com

' *Sheji Hoshina

Hoshina.Shoji@exc.epson.co.jp -
Same as above

Yu Gu .
~ guyu@rd.oda.epson.co.jp

- Yasuhito Nagatomo -
. naga@rd oda.epson.cojp -

Shoji Hoshina
Hoshina. Sho;r@exc epson .jp

546 |

- Appendix D: MIME Types



Table D3 _;‘Applica'tioh * MIME typés (cbntiﬁued)

application/vnd.ericsson.
. quickeall

appiitat_idn/ynd.éudora.data -

application/vnd.fdf - -

.’application/vnd.ffsné .

: appiication/v_nd.FIoG_raphlt e

apblication/vnd.f_ramemakér.

application/vnd.fsc. ~
weblaunch '

apphcatson/vnd fUJItSU 0asys.

application/vnd.fujitsu.oasys2 .
application/vnd fujitst.oasys2
-application/vad.fujitsu.oasys3’

application/vnd. fujitsu.
0asysgp
-application/vnd: fuptsu
 0asysprs

apphcatlon/vnd fuuxerox ddd

~application/vnd fuuxerox
docuworks

' appllcatlon/vnd fujixerox. ..
.docuworks binder

apphcanon/vnd fut-mlsnet :

application/vnd.g_raféq‘ '

application/vnd.groove-
“account | -

, appiicatibn/vhd.grooVe- :
identity-message
application/vnd.groove-

+ injector
 application/vnd.groove-tool-
‘message

- Phone Doubler Quick Cal,
Eudora Version 4.3 and later.
| Adobe Forms Data Format.

Used for application communication -

with FirstFloor's Smart Delivery.
NpGraphit.” - |
Adobe FtaméMa ker files.

0 Suppprté Friendiy Software Corpora-
| tion's goif simulation software.

‘Supports Fujitsu’s OASYS software,

SUpports Fujitsu’s OASYS V2 software.
Support’s Fuji_téu"s 0ASYS VS softwa e

| _Supports Fuutsu sOASYS GraphPro

software

1 . SupportsFuutsu sOASYS Presenta—
| tion software. '

 Suppots Fuji XeroXsEDMICS 2000

and DocufFile.

Supports Fuji Xerox's DocuWorks Desk -
. and DocuWorks Viewer software.

‘Supports Fuji'Xerox’s 'D'ocuWor,ks Desk

and DocuWorks Viewer software.

tUnkann.

Lets users of Graftq éxchange Graftq .

documents through the Web and
email,

Groove s a peer—to—p_eer communica-.

tion system implementing a virtual -
space for small group interaction.

 Same as above.

Same as above.

Same as above.

: s

xdwf

¥bd

. gac: .

qeall g |

Paul TldweII

| paul. tldwell@encsson com

goh -
fm, mif,

fsc -

-0as

0a2

023

By

ddd- -

gafgas

{ gim

g

gtm

o .http S/ www. encsson om

Pete Resnick

?presnlck@qualcomm om

5 "’Forms Data Format,” Techmcal
1 Note 5173 Adobe Systems :

Mary. Holstege

 holstege@fi rstfloor.com

| htp/fwww.adobe.com
book | - S
| Derek Smith

- | derek@friendlysoftware.com

Nobukazﬁ Togashi

- togashz@a: ¢s.fujitsu.co; jp
‘Sameasabove - -

Seiji Okudaira

okudaira@candy.paso.fujitsu.co.jp

| Masahiko Sugimoto- _
- sugimoto@sz.sel. fu1/tsu ¢, jp

 Masumi Ogita .
og/ta@oa tl. fu;:tsu €, jp

‘ ,MasanonOnda o

Masanori, 0nda@fu11xerox €. jp '
Yasuo Taguchi '

| yasuo. taguch/@fujixérox.co.jp -
‘Sameasabove.

Jaan Pruulmani -
Jjaan@fut.ee -

. http//www peda. com

| ToddJoseph -

todd_joseph@groove.net B

Same as above -
Same as above

-Same as.above

© MIME Type Tables . | 547



template

: applrcatron/vnd groove-vcard_
application/vnd.hhe. Iesson- K

player

_ appIication/vnd.hp-HPG_L'

apphcatlon/vnd hp-hpld
o applucatron/vnd hp—hps .

' application/vnd.hp-PCL

application/nd hp-PCLXL: |~

' vappli_cation/vnd-.nt_tphone

,applrcatron/vnd hzn-3d-
crossword

application/vnd._ibm. :
afplinedata _
-application/vnd.ibm.MiniPay

- applica'_tion/vnd.ibm.modcap

apphcatlon/vnd mformlx- .

visionary

appllcatlon/vnd.’mtercon.
formnet . -

apphcatron/vnd mtertrust

- digibox.. .. o
applrcatron/vnd mtertrust
nncp

application/vnd.intu.qbo "

_ Table D-3. “Applic'at_i'on’; MIME ty?és:(corttiﬁued) o

1Same as above

Supports the LessonPIayer and Pre-
sentationEditor software,

-'HPG_L files.

- Supports Hewlett-Packard’s Instant
g Delrvery Software. '

. ' Supports Hewlett-Packard’s Web-
‘ PrmtSmartsoftware ‘

PCL‘pri_nterﬂIes. :

_HTTPhone asynchronous voice over IP
- system.

: 'U_sed to encode crossword puzzles by
1 Horizon, A Glimpse of Tomorrow.

| Print Serviceﬁ"FaciIity (PSF), AFP Con-
| version and Indexing Facility (ACIF). -
| MiniPay authentication and payment

software.

' Mlxed Object Document Content

I_nformix_Visionary.

.Supports Intercon Associates FormNet

software.

. Supports InterTrust architecture for

secure electronic commerce and digi-

| “tal rights management.

1 Intended for use only wrth Quick-
‘ Books 6.0 ((anada)

" hps

Vg
i les

pd .

-x3d.

mpy.
list3820,
listafp,
afp,

pseg3820

vis

'xpw‘, XpX

gbo

Same as aboveti Jo

Same as above

 Randy Jones - -
- Harcourt E-Leaming- -

randy_jones@archipelago.com -

The HP-GL/2 and HP RTL Reference
Guide, Addison Wesley, ISBN -

‘ . 1 0201310147
| hpi, hoid | hetp://www.instant-delivery.com

_ http://Www.hp;com/go/

| webprintsmart_mimetype_specs/ .
- | “PCL-PJL Technical Reference Man-

ual Documentation Package,” HP

| Part No. 50120330

FranckLeFevre = .

'fra'nck@klinfo com' ‘

. 'James Minnis
james_ mmms@gl/mpse-of

tomorrow.com -

‘Roger Buis -

-buis_@us.ibm.com
Amir Her'zberg '

“amirh@vnet.ibm:com

Reinhard Hohensee -

| thohensee@vnet.ibm.com
““Mixed Object Document Content .

Architecture Reference,” IBM publi-

| cation SC31-6802

’ Chrrstopher Gales
| christopher.gales@informix. com

»Thomas A.Gurak = - .
'} assoc@intercon,roc.servtech.com

- InterTrust Tecnnologies- -

460 Oakmead Parkway
Sunnyvale, CA 94086 USA

" info@intertrust.com

http://www. intértruSt. com
Greg Scratchley

. _greg_scratchley@mturtcom _ ,:,
[Format of these files discussed in

the Open Finandial Exchange specs,

1 available from http://www.of.net A

548 |

Appendix D: MIME Types



 Table D-3. “Appli‘c'aiiori”‘MIME types (cbntinu_ed),

ap‘;»)l'icat:ion/:\'md.intuv._qfx

applitation/vnd.is=xpr'-. N

appllcanon/vnd japannet- .

directory-service " -

application/vnd Japa,nn‘et-v o

jpnstore-wakeup

application/vnd.japénne_t-‘ o

payment-wakeup
application/vnd Japannet-
. Tegistration .
‘ 'apphcatlon/vndjapannet- ’
registration-wakeup

application/vnd japannet-'

setstore-wakeup .
application/vnd japannet-
‘verification.
application/vnd japannet- .
verification-wakeup -
-application/vnd.koan

‘ application/vnd.lotus41—-2—3‘

applicatioh/vnd.lotus-".
approach -

: applncatnon/vnd Iotus—
freelance

application/vnd.lotus_-notes

application/vnd.lotus-
organizer

‘ abplication/vnd.lotus-
. screencam . ‘

applic'ation/vnd..lo_tu's-
.wordpro

- application/vnd. mcd A

‘ ntended for use only wnth Quncken 99
* |- and following versions. :

: I_Expres; by Infoseek.
| Supports Mitsubishi Electric’s Japan-

Net security, authentication, and pay- -
" ment sofwtare

Supports the automatic playback of

Koan music files over the Internet, by
helper applications such as SSEYO-
Koan Netscape Plugin. L

Lotus 1-2-3and Lotusapproach

| Lotus Approach.

Lotus Freelance.

- Lotus Notes. . - -

Lotus Organizer.

Lotus ScreenCam.

thus Word Pro.

Micro CADAM CAD software.

-Xpr

skp, skd;

skm; skt

13,

1 wkl,

wk3,

wka
apr, vew

prz, pre

nsf, nff, .
ndi, ns4,
ns3,ns2, |
" nsh,nsg

o3, 012,

org
scm

“lwp, sam

'n'icd‘

S_ame asabove -

Satish Natara;an _
sansh @infoseek.com .

Jun Yosh|take '

yositaké@iss;isl.melto.co.jp

| PeterCole. .
" peole@sseyod.demon.co.uk -

Paul Wattenberger .

Paul_Wattenberger@lotus.com

Sameasabove . -
| Same as above
Michael Laramie

laramiem@btv.ibm.com - .

_ Paul Wattenberger

Paul_ Watténbergér@/oi‘us.com
Same as.above '

Same as above

"Tadashi Gotoh . _
- tgotoh@cadamsystems.cojp
. http//www.cadamsystems.co.jp

. MIMETypeTables |~ 549



Ta‘ble_ D-3. “Applic;LtiQn” _MIME_type§ (&ontihued),

" mediastation, cdkey

' 'appllcatlon/vnd mendlan-
shngshot

application/vnd.mif

a'pplic'ation/vhd.'mAinisoft—
hp3000-save o

- application/vnd. mltsublshl
misty-guard.trustweb -

application/vnd.Mobius.DAF

application/vhd Mobius: DIS - :
apphcatlon/vnd Mobius. MBK -

application/vnd.Mobius. MQY

appl|cat;on/vnd.Moblus.MSL -
application/vnd.Mobius.PLC -
application/vnd.Mobius.TXF -~

-application/vnd.motorola.
flexsuite

application/vnd.motorola.
flexsuite.adsi

Supports Medla StatlonsCD ey .

 remote CDROM communications -

protocol

' Slmgshot by Mendlan Data

FrameMaker interchange‘format.

. NetMail 3000 save format.

‘ Subpbrts Mitsubishi Electric’s .

Trustweb software

Supports Moblus Management Sys-
~ tems software. ;

Same as above.

Same as above.

| Same as above. -

Same as above.
Same as above. .
Same as above..

FLEXsuite™ is a collection of wireless
messaging protocols, This type is used

1 - by the network gateways of wireless

messaging service providers as well as

wireless 05s and applications,

FLEXsuite™ is'a collection of wireless

‘messaging protocols. This type pro-
- vides a wireless-friendly format for -

enabling various data-encryption
solutions. -

cdkey

mif

daf.

dis

mbk

may
msl-

txf

Henry urry C g
henryf@medlastatlon om

‘EricWedel o

Meridian Data, Inc.
5615 Scotts Valley Drive

* | Scotts Valley, CA95066
ewedel@meridian-data.com

. fip://fp.frame. com/pub/techsup/ '
_ 'tech/nfo/dos/m/f4z/p

“‘Mike Wexler -
1 Adobe Systems, inc

333 W. San Carlos St.

|- SanJose, CA 95110 USA -

mwexler@adobe.com

Minisoft, Inc. _
support@minisoft.com :
fp://ftp.3k.com/DOC/ms92-save-
formatt ,

Manabu Tanaka

| mtana@iss.isl.melco.co.jp

Celso Rodriguez

crodrigu@mobius.com

Greg Chrzczon
gchrzczo@mobius.com

Same as above

‘Sameasabove. .
_-Same as above

Same as above

- Same as above
| Same as above -
| MarkPatton -~

Motorola Personal Networks Group

,fmp014@email.mot.c_om_ '

FLEXsuite™ speciﬁ_cation available
from Motorola under appropriate
licensing agreement

Same as above

550 ‘| AppendixD: MIME Types



- Table D-3. "“Applieqtidn ” MIME types (cont_inued-)‘ .

_flexsuite.fis

application/vnd.motorola. -

 flexsuite.gotap

"appllcatlon/vnd motorola;
ﬂexsmte kmr

application/vd:motorola..

flexsuite.ttc

- application/vnd.motorola.

flexsuite.wem . -

application/vnd.mozilla.
xul+xmi

 application/vnd.ms-artgalry -

application/vnd.ms-asf

.a_pvplicat'ion_/\_md.ms—éxcel
applicati'on/vhd.'ms-lrm
application/vnd.ms-

‘ powerpqint_
application/vnd.ms-project

application/vnd.motorola. ~

FLEXsuite™ is a collection of wireless
messaging protocols. This typeisa

. Wireless-friendly format for the effi-
cient delivery of structured informa-
| . tion (e.g., news, stocks, weather) toa

- wireless device. -

‘_FLEXsUite‘M is a collection df wireless
-messaging protocols. This type pro-
- vides a common wireless-friendly for-
‘mat for the programming of wireless

device attributes via over-the-air -

© messages. -
- FLEXsuite™ s a collection of wireless

messaging protocols. This type pro-

.| vides a wireless-friendly format for
| encryption key management.

| FLEXsuite™ is a collection of wireless
- messaging protocols. This type sup- -

ports a wireless-friendly format fo‘r

L -the efficient delivery of text using

token text compress:on

FLEXsuite™ is a collection of wureless V
- messaging protocols. This type pro--

vides a wireless-friendly format for
the communication of Internet emanl
to wireless devices, *

Supports the Mozilla Internet apphca—
tion suite. B

Supports Microsoft’s Art Gallery
ASF is a multimedia fi Ie format whose

'~ contents are designed to be streamed

~ across a network to support distrib--

- uted multimedia applications. ASF .
content may include any combination -

of any media type (e.g., audio, video,

images, URLs, HTML content, MIDI,

2-D and 3-D modeling, scripts, and
objects of various types).

Microsoft Excel spreadsheet,

Microsoft proprietary.

- Microsoft PowerPoint presentation. -

Microsoft Project file,”

xul . L

' dl

asf

“Xls
lrnj .
ppt

mpp

‘Same as above

‘| -Same as above

- Same as above

- Same as above

Same asabove

Dan Rosén2

~dr@netscape.com -

deansi@microsoft.com

Eric Fleischman
ericf@microsoft.com

- http://www.microsoft.com/
| mind/0997/netshow/netshow.asp .

“Sukvinder . Gill

sukvg@microsoft.com -
Eric Ledoux

ericle@microsoft.com
‘Sukvinder S. Gill

sukvg@microsoft.com

Same as above.

MIME Type Tables | 551



' Table D-3. “Applibtitiqn” MIME types (continued) - S

- appligat_ibn/vnd.mﬁ-thef

| Identifies an a_t_tachhtﬁent that in gen-
- | -'eralwould be processable only bya .-

" | MAPI-aware application. This typeis

applicatidh/vn@.ms-\&érks ;

a'pplic'ation/v'nd.mseq

application/vnd.msign' ‘

.. application/vnd.music-niff -

- applica_tion_/vhd;musi;ian

application/vnd.netfpx

apphcatlon/vnd noblenet- o

directory

' appl:catvon/vnd noblenet- |

sealer -

apphcatlon/vnd noblenet—
web

o _' appllcatlon/vnd novadlgm.

EDM
EDX
EXT
appllcatlon/vnd 053.

_ netdeploy .

application/vnd.paim

apphcatlon/vnd novadlgm. i

.fapphcatlon/vnd novadlgm. :

an encapsulated format of rich MAPI -
‘properties, such as Rich Text and lcon
 information, that may otherwise be -
degraded by the mess’aging transport. .

Mlcrosoft Works software

MSEQis acompact multimedia format_

suitable for wlreless de_vuces

~,"Used by appllcatlons |mp|ement|ng .
the msign protocol, which requests
| signatures from mobile dewces _

"NIFF music files.

' .-i'MUSl(lANsconnglanguage/encodmg
|- conceived and developed by Renai- -
_ Science Corporatlon

Intended for dynamic retrieval of

‘Supports the NobIeNet Difecftcry soﬁ-
. -ware_, purchased by RogueWavg.'

Supports the NobleNet Sealer soft-
‘ware, purchased by ngueWa‘ve.

 Supports the NobleNet Web software,

purchaSed by RogueWave.

. 'Supports Novadigm's RADIA and EDM

products

. Same as above. -
- Same as above.

o vSuppo.rt_s the Oben Software Associ-
1 ates netDeploy application deploy-

ment software.

Used by PalmOS system software and
applications—this new type, “appli-

_ cation/vnd.palm,” replaces the old
| type “application/x-pilot.”

mseq

mus

prx
" multiresolutionimage information,as | -
- used by Hewlett-Packard Company. .~
_Imagmg for Internet.
~nnd
ms
nw
‘edm
1 edx

ext

ndc

: prc; pdb,
Pga, oprc

Same as above

* Same as above

Gwenael Le Bodic
Gwenael.le_bodic@alcatel.fr

|+ http://www. 3gpp.org

Malte Borcherding - .
Malte.BOrche_rding@brokat. com’

'Cmdy Grande

72723.1272@compuserve. com

| fip://blackbox.cartah. washington.

edu/pub/NlFF/N/FFMLTXT o
Robert G. Adams

' gadams@renaiscien(e._cam

o AndyMutz -
‘ andy_mutz@hp com

ht‘tp://wWwfnoblénei.com
| http//www.nbblenet. com

http://www.nob/éhét.tom '

Phil Burgard -

B  pburgard@novadigm.com
| Sameasabove -

 Same as above.

Steve Klos

| stevek@osa.com
- http//www.o05a.com

Gavin Peacock
gpeacock@palm.com

552 |,

‘AppendixD: MIME Types




| a_ppl'icati_(}n/vnd;pg,dsasli ‘

application/vnd.

" powerbuilder6 -
application/vnd.”

. powerbuilder6-s
application/vnd. ~
_powerbuilder?
application/vnd.

- powerbuilder7-s
application/vnd.

- powerbuilder75
application/vnd.. -
powerbuilder75-s

' épplication/vnd. -
pr'evigwsystems.box

appllcatlon/vnd publlshare-
delta-tree

‘application/vnd.rapid

application/vnd.s3sms

application/vnd.seemail

| .applicatibn/vnd.shana.
_informed.formdata

_ appllcatlon/vnd shana.
* informed. formtemp

apphcatton/vnd.shana.
:' informed.interchange

application/vnd.shana,
mformed package.

apphcatlon/vnd street-stream

' Tdb.lle»_D:-_3.’ %Applibqt_ior_z"’ MIME types (c’»'oniinued)j

|- Proprietary Proctor & Gamble Stan-
.| “dard Reporting System.

 Proprietary Proctor & Gamble Stan- .
dard Reporting System.

Used only by Sybase PowerBuilder
release 6, 7, and 7.5 runtime environ-

_ments, nonsecure and secure.

Prevuew Systems Z|pLock/VBox '

product.

Used by (_apella Computers’
PubliShare runtime environment.

Emultek's rapid:patkaged

applications.

Integrates thetransfer mechanismsof |

the Sdnera SmartTrust 'prod_ucts into
the Internet infrastructure.

Supports the transmission of SeeMail
files. SeeMail is an application that
captures video and sound and uses
bitwise compression to compress and

- archive the two pieces into one file. -

Shana e-forms data formats.

Shana e-forms data formats.
Shana e-forms data formats.

Shana e-forms data formats.

Proprietary to Street Technologies.

ei61

pbd

box,
vbox

aps

| . B

see

ifm

Titp -

if, i1

'ipk,_ ipkg -

April Gandert - - - - .
N2
Procter & Gamble Way
Cincinnati, Ohio 45202 .

: (513) 983-4249 _
: 'Sameasabove I

| ReedShis
- reed.shilts@sybase.com -

' ROman_Sm_olgbV_sky
" romans@previewsystems.com
" http//www.previewsystems.com

Oten Ben-Kiki *

‘ publlshare—delta—tfee@capélla . I/

Itay Szekely ,
etay@emultek.co.il

Lauri Tarkkala

| Lauri. Tarkkala@sonera com
, 'http//wwwsmarttrust com ..

Steven Webb

steve@wynde.com - -

“http:/fwww.realmediainc.com

‘ ‘:.Guy Selzler

Shana Corporation
gselzler@shana.com

‘| Sameasabove . -
~Sameasabove . -
-Same as above

|- Glenn Levitt

Street Technologiés

streetd1@ix.netcom.com

- MIMETypeTables | 553



: aabllcatlon/vnd.svd

‘application/vnd swiftview-ics

application/vnd.triscape.mxs.

application/Ynstmeapp»
. application/vnd._truedoc

: abpli'c_ation'/vnd.ufdl

application/vnd. uplanet.alert

application/vnd. uplanet
alert-wbxml
application/vnd.uplanet;

" bearer-choi-whxml
application/vnd.uplanet.

~ bearer-choice

. application/vnd.uplanet. -
cacheop :
application/vnd.uplanet.
cacheop-whxml
application/vnd. uplanet. ’
channel :
application/vnd. uplanet
channel-whxml .
 application/vnd.uplanet list
‘application/vad.uplanet. Ilst-
wbxm| '
' appllcatlon/vnd.uplanet. '
listemd
application/vnd.uplanet.
listemd-wbxml
application/vnd. uplanet
S|gnal :

application/vnd.vex
application/vnd.vectorworks
~ application/vnd.vidsoft.- -

vidconference
application/vnd.visio -

{ “Dateware Electronics SVD files:

- Table D-3. “Ap‘plicvat'ion"’ MIME types (cohtinued). ,

* Supports SwiftViews,

S_uppbfts_ Triscape Map Explorer, -
True BAS_I( files. -~
- Prdprie'tary”to Bitstream, Inc.

| UWL's UFDL files,

Formats used by Unwired Planet (now

Openwave) UP browser micro-

“browser for mobile devices.

Virthal(ataldg.

VectorWorks graphics files.

VidConference format.

Visiofiles.

tr_a

1 mxs -

ufdl, ufd,

frm

VX,

med

"~ VsC

- vsd, vst,

VSW, VSS

| 'Scott Becker

dataware@compumedia.com '

s Randy Prakken

tech@ndg.com
http://www.ndg.com/svm:htm

Steven Simonoff
scs@riscape.com

! Scott Hepler

scott@truebasic.com

1. Brad'(hase

brad_chase@bitstream.com

Dave Manning
dmanning@uwi.com

| http/fwww.uwi.com/
' lana-reglstrar@uplanet com

http://www.openwave.com. -

Taisuke Sugimoto _ :
sugimototi@noanet.nttdata.cojp

Paul C. Pharr o
pharr@d/ehlgraphsoft om

Robert Hess. - -

 hess@vidsoft.de
- Troy Sandal

troys@visio.com

554 |

- Appendix D: MIME Types



: apphcatlon vnd vividence.
scriptfile

apphcatlon/vnd wapsic -

application/vnd.wap.sic .  -' ‘

application/vnd wap.whxm!

 application/vnd.wapwmlc -

. application/vnd.wap.
wmlscriptc

» "application/vnd.webturbo -

appli_éation/vhd.w_rq-hp3000—
labelled
application/nd.wt.stf

application/vnd.xara -

application/vnd.xfdl

application/vnd.yellowriver-

custom-menu .
épplication/whoispp-duery_,-
application/whoispp-

response
~ application/wita

_ appIic_ation/wordperfectS.1
_application/x400-bp '

: V|V|dence fi les

- marketed by Corel). -
UWFSXFDL files.

E Ta‘blev':D-3". épr'plic;.'ztio‘r‘i.r"’,I_\'/I'I"Z‘\/I'I‘i types (continued)

| WAP Senice Indicatonformat

WAP Service Loading format.
| Anything that conforms to the Service

1 Loading specification, available at
"1 - http/fwww.wapforum.org.

WAP WBXML binary XML format for -
| wireless devices.

WAP WML format_.forwirelless
| devices.

| WAPWMLSriptformat

'We’b_Turbo format.

Supports HPBQOO_formats.

 Supports Worldtalk software.

*Xara files are saved by CorelXARA, an
. object-oriented vector graphics pack-

age written by Xara Limited (and

Supports thie Yellow River Custom-
Menu plug-in, which provides cus-
tomized browser drop-down menus.

Defines Whois++ protocol quenes
within MIME.

Defines Wh0|s++ protocol responses

" within MIME

Wang Information Transfer
Architecture,

WordPerfect documents.
Carries any X.400 body part for which

there is no registered IANA mapping. |

‘whxml

'markr@wwdence com .

WAP ForumLtd

e htTp//wWw,wapfqrum,brg‘ _
| Same-as above -

Same asvabo‘ve'
“WAP Binary XML Content -

e -Format—WBXMLversronT 1"

1 wmle, |

whxml

| wmlsc

W

Xar
L e, i,
frm -

-anp

. Sameasabqve o
Same as above -

Yaser Rehem

Sapient Corporation
yrehem@sapient.com

_ | v 'Support@qu.cbm
| support@3k.com

Bill Wohler
- wohler@worldtalk.com

‘| David Matthewman

david@xard.com

http://www.xara.com

 Dave Marining °

 dmanning@uwi.com

| http:/fwww.uwicom .
. yellownversw@yahoo. com

RFC2057

RRC2958

Document number 715-0050A, |
- Wang Laboratories B
campbell@redsax bsw. com

RFC 1494

. MIMEType Tables | - 555



. Table D-3. ' »“Avpplic'ation_ ” MIME types. (Coﬁtinued) :

' application/x-cdlink

application/x-chess-pgm
. application/x-compress
application/x-cpio
application/x-csh
‘applica_tion/x-director, N

' apphcatlon/x-dw

appllcatlon/x-futuresplash‘. -

' apphcatlon/x-gtar _
apphcatlon/x-gnp
o apphcatlon/x-hdf

apphcatlon/x-javascnpt_ -

application/x-koan

application/x-latex
: application/x-netcdf
application/x-sh

o _application/x shar

- flash
appl_lcation/x-Stufﬁt
application/x-svdcpio -
application/x-svdcre
application/x-tar
applicdtiqn/x-tcl_ .
application/x-tex
application/x-.texinfo

' application/x-troff -
applicatioh/x-troff?mén‘
application/x-troff-me
appliéation/x-trdff—_ms

: apphcatlon/x-shockwave- o

Old- style bmary (PI0 archlves _

" | Allows integration of CO-ROM medla -
“within web pages.

.| From Apache m/me types .
| Bmary data from Umx compress _

CPIOarchlvef . -
(SH scripts. -

‘Macromedia director files, .

TeX DV i,

. From Apache}nime.g/pés.

GNU tar archives.
GZIP compressed data.

‘Fro'm'Abache mih7e types.
: _JavaScnpthes '

iSupports the automatlc playback of .
"~ Koan music files over the Internet, by
helper applications such as SSEYQ

Koan Netscape Plugin.

| LaTeX files.
* | NETCDF files,
* | -SH scripts.

SHAR archives.

‘Macromedia Flash files. -

| vStufﬂtarchives._

| Unix SysV R CPIO archives.
| Unix SysV R4 CPIO w/CRC archives.

| TARarchives. - |

TCL scripts.

| TeXfiles.
{ TeXinfofiles. -

. TROFF files.

TROFF Unix manpages. -

 TROFF-+me files.

TROFF-+ms files

cpio

| ch

| dar, dir,
Ldxr -

dvi

-spl
| gtar
*hdf
s
*skp, skd,
,sk_t, skm

1 latex
1 ongcdf

sh -

| shar
wf

sit

svéepio - .
Sv4crc

tar

A
tex -

texinfo,
texi

t, tr, roff
man

me

ms

-h&p://www.cdlink.tam '

556 |

: App_endix D: MIME Types



Table D-3. “Applicatioh ” MIME t_:ypes: (centinued)

application/x-ustar The_extended tar_inte_rchange format. | ustar - | SeetheIEEE 1003.1(1990)
T _ : “specifications
'applic'ation/x-waiS-_sburce‘ 'WAISsourcestructure e -
application/xml” | Extensible Markup Languageformat xmi,dtd | RFC2376
S file (use text/xml if you want the file. -
R treated as plamtext by browsers etc). _
. application/zip -PKWAREzaparchlves zip
-audio/*

Table D 4 summanzes audlo content types

- audio/32kadpcm
- audio/basic

audio/G.772.1
audio/L16

* audio/MP4A- LATM
audlo/mldu

audio/mpeg

: audte/patityfet
audio/prs.sid
éudio/telephone-event :

audio/tone -
* audio/vnd.cns.anpl '

Table D 4 “Audzo” MIME types

8 kHz ADPCM audio encoding. .
Audio encoded with 8-kHz monaufal
8-bit ISDN u-law PCM.

67221 compresses 50Hz—7kHz audio

signals into 24 kbit/s or 32 kbit/s. It

may be used for speech, music; and
othertypes of audio.

Audlo/L16 is based onL16, descnbed
in RFC 1890. 116 denotes uncom-

| pressed audio data, using 16-bit
' sngned representation.

MPEG-4 audio.

MiDI music files. |

MPEG encoded audiofiles

Parity-based forward error correctlon 1
for RTP audio.

Commodore 64 SID'audio ﬂles. '

| Logical telephone event. -

Telephonic sound pattern.

~ Supports voice and unified messaging
application features available on the ~

Access NP network services platform
from Comverse Network Systems.

-au, snd .

mid, "
 midi, kar

mpga, .
mp2,

mp3 . A L
| RRC3009

sid, psid

RFC241
| REC38T

RFC3047

\' RFC2586.
| RrC30%6

RFC3003

” zhttp‘//Www.'geocities'.c'om/ o
| SiliconValley/Lakes/5147/sidplay/

~ docs.html#fi Ieformats
RFC 2833
RE( 2833

{ Ann McLaughlin
-Comverse Network Systems
.amdlaughlin@comversens.com

© MIMETypeTables - | 557



. Table D+4. “Aﬁdiof’ MIME types (¢ontin‘ued‘)',"

e audio/vnd.cns.inf1

 audiofmd digital-winds

éudio/vnd.tzverad.plj- :

- audio/vnd.hicent.voice

audio)vnd.nortel.vbk o

audib/vnd.nuevra.ecelp4800

audit)/vnd.nuera.'ecelp7470
audio/vnd.nuera.ecelp9600
audio/vnd.octel.sbc

-~ audio/vnd.qcelp

audio/vnd.rhetorex.
32kadpcm

audio/vnd.vmx.cvsd

audio/x-aiff

audio/x-pn-reallaudio

audio/x-pn-realaudio-plugin |

Supports voice and umﬁed messaging

. apphcattonfeaturesavallableonthe ,
| TRILOGUE Infinity network services -

“platform from Comverse Network
Systems ' :

B Digital Winds music is never—endmg,

reproducible, and interactive MID|

© musicin very smalt packages (<3K).
| Proprietary EverAD audio encoding.

Voice messaging including Lucent

Technologies' Intuity™ AUDIX® Mul--

timedia Messaging System.and the

- Lucent Voice Player.
' vPropnetary Nortel Networks Voice

Block audio encoding.
Proprietary Nuera Communications

| audio and speech encoding, available
1 in Nuera voice-over-IP gateways, ter-
~ minals, application servers, and as a

media service for various host plat-

. forms and 05s.

Same as above.

.| -Same as aboVe
Variable-rate encoding averaging 18 ,

kbps used for voice messaging in

' _ :LucentTechnoIogles Sierra™, Over-
ture™, and IMA™ platforms,

Qualcomm audio encoding.

32-kbps Rhetorex™ ADPCM audio

encoding used in voice messaging

1 - products such as Lucent Technolo-
gies's CallPerformer™, Unified Mes-

senger™, and other products.

| ‘Audio encoding used in voice messag--

ing products including Lucent Tech-
nologies' Overture200™, Qverture

- 300™, and VMX 300™ p_toduct lines. -
AIFF audio file format.

RealAudio metafile format by Real

" Networks {formerly Progressive

Networks).
From Apache mime.types.

Vb

eol

plj

ecelp4800

1 ‘ecelp7470-
-ecelp9600

qcp

aif, a‘iff,
aifc

fam, /rm

rp_m'_z.

Same as above

 Armands Strazds
- armands. strazds@medlenhaus-

bremen de

Tomer Weisberg
tomer@everad.com

Frederick Block ~
rickblock@lucent.com =
http//www.[ucent.com/lvp/

o ',Glenn Parsons :
: »Glenn Parsons@NortelNetworks com

Michael Fox
mfox@nuera.com

Same as above

Same as above

.Jeff Bouis
Jjbouis@ucent.com

Andy Dejaco
adejaco@qualcomm.com

Jeff Bouis
jbouis@lucent.com

Same.as above

558 hE

Appendix D: MIME Typés



- Table D-4. “Audio” MIME types (continued)

realaudlo +| RealAudio audio format by Real
~Networks (formerly Progressive .

L Neworks). 1
'audio/x-wav-_v_- 0 'WAVaudiofiles. - | wav

chemlcaI/*

Much of the mformauon in TableD 5 was obtalned courtesy of the “Chem1cal
MIME Home Page” (http Swww. ch ic.ac. uk/chemzme/) ' : '

Table D.-SZ “Chemical ’f 'MIME types

- chemical/x-alchemy | Alchemy format ale - http/fwww.camsoft.com -
chemical/s-cache-cst | [V " RS AT
c’hemical/)'(-cactv's-binary: .| CACTVS binary format - | chin’ http//cadvs cit.nih.gov
chemicai/x—tactvs—astii_ “CA(TVS-ASCII'format_ o asdi - http//cactvs dtnih. gov -
chemical/x-cactvs-table | CACTVStable format ~ ab * http/fedctvs.cit.i.gov-

chemicalix-cdx . ChemDrav‘v.eX'change file- o lde _h_ttp/,/www.camsoft.com
chemical/x-cerips.- _ : | MSI Cerius Il format - . S er .http//www.mki.com
chemical/x-chemdraw - | ChemDrawfile . A chm | hetp//www.camsoft.com

'chemicaI/x‘-cif , ' Crystallographic Interchange Formét_ |df '_/)ﬂp://wWw.bernstein-p/us-‘

: : |, sons.com/software/rasmol/ -

| http://ndbserver.rutgers.edu/NDB/
- mmif/examples/index.html

chemical/x-mmaif | MacroMolecular CIF mdf | Sameasabove

chemical/x-chem3d | Chem3D format ad | https//www.camsoft.com
chemical/x-cmdf - | CrystalMaker Data Format - { cmdf } -http//www.cr_:ys_talmdker.co.uk'
chemical/x-compass : ‘~Compass program of the Takahashi | cpa : ' -
chemical/x-crossfire - Crossfirefile . | bsd o
__chem,i'c'al/x-cm_ls | Chemical Markup Language al http://www.xml-cml.org
chemical/x-csml ) Chemical Style Markup Language | csml, - _http://wwm’rhdli.tom
S : sm : :

: chemical/x-ctx © 7 |- Gasteiger group (TX file format = . ctx

chemicaliwod R
_ chemical/x-daylight-smiles Smiles format ~ . Aomi | http//wwwdayllghtcom/dayhtml/

' o : ' smiles/i ndexhtml _
t'hemi_cal/x—emb!-dl.- ' EMBL nucleotide format -, emb _,http//mercu:y.ebl.ac.ukh_ o
nucleotide o ' ' ' o

chémical/x-galac_ticéspc | SPCformat for spectral and © | spc | http//www.galactic. com/galactld

chromatographic data . o Data/spcvuehtm

MIME TypeTables | 559



» Tabfé D-5. “Chemical” MIME typ_esi(gvolﬁiiriuad) ’

ché'ralcall)%;;amess input- . GAMESS Inputformat Viap,_gamw..v hetp://www.msg.ameslab.gov/
' e | GAMESS/Graphics/
o ‘ : ‘ : » _ MacMolPlt.shtm!
chem_icai/x-gaussian-input ,Gaussnanlnputformat _ _ | gau . http://www.mdli.com
' " chemical/x-gaussian- - Gaussmn Checkpomtformat | feh, fehk http://products.camsoft.com
checkpoint R s T
chemicaI/x-.gaussian-cube' ' -Gaussian(ub_e (Wavefunction)fqrmat cub : httpj/Www.mdli.’com h
‘chemical/x-geg8-sequence - | o T T 9g o
- chemical/x-genbank | ToGenBankformat - . gen o .
chemical/x-isostar - - " IsoStar Library of intermolecular - | istr,ist | https//www.ccdc.cam.ac.uk
) o - .| interactions : . o .
- chemical/x-jcamp-dx- .~ | JCAMP Spectroscopic Data Exchange jdv,dx | http//www.mdli.com

- .| format A R
ch'emicaI_/x-jjc-review-’su'rface. Re V|ew3 Orbltal Contourf les n o http//wwwaunel ac. Uk/depts/ :
IR S _ S chem/ch241s/re_view/3htm
chemical/x-jjc-review-xyz © Re'_View3_Animati0n ﬂle_s Clxb http//www brunel. ac. uk/depts/ _

S ‘ | chem/ch241s/re_view/rv3.htm
. chemical/x-jjc-'review-vib' _ 'Re;ViéwS’_ Vibrationfiles - - | n2, vib | http://www.brunel. ac uk/depts/
‘ B [ R o chem/ch241s/re view/rv3htm
- chemical/x-kinemage Kinetic (P_roteinfStructure) Images | kin . . | http://www.faseb.org/protein/
SO o : , L ' kinemages/MageSoftwar’a.html .
_chemical/x-macmoleculé | MacMolecule file format - ~l'mem
chemical/x-macromodel- - | MacroModel Molecular Mechanics - | mmd, http//wwwcolumbla edu/cu/
input - SRR A B _ | mmod . | chemistry/
- chemical/x-mdl-molfile ~* - | MDL Molfile - mol " http://wiw.mdli.com
'-chemipal/x-mdl-rdﬁle7"'- ~ | Reactiondatafile | d | httpdfwiw.mdlicom
chemical/x-mdl-rxnfile | Mo Reaction format o hzi_p.‘//www.mdlﬁcam-
chemical/x-mdl-sdfile ' MDL Structure data file sd http//www.mdli.com
' chemical/x-mdl-tgf - MDLTransp_ort'abIe Graphics Format ~ | tgf - http://viww.mdli.com "
chemical/x-mif . S mif R
chemical/x-mol2 . '.'_-Portable representanon ofaSYBYL mol2 "\ http//www.tripos.com
S | -molecule - : R ‘ : ,
chemical/x-molconn-Z | Molconn-Z format b httpk//Www.eslc.vabiotech.com/

' - ' B DR _ ) -_mqlconn/molcannz.html-',
chemical/x-‘mopac-input : MOPACInput format - mop- http//www.mdli.com
chemical/x-mopac-graph - MOPAC Graph format ' gpt | http//products.camsoft.com -
chemical/x-ncbi-asn1 P P asn (old '

o - - form)
chemical/-nchi-asn-binary | - | val o
© chemical/x-pdb - L Protein DataBank pdb opdb htth/Www.mdli.tam

560 |- AppendixD: MiME.Typgs '



. -chemical/x-swissprot -

' chémic'a!/x—vémés'—_i_sﬂ4976 B

" chemical/x-vmd -

* chemical/x-xtel

Table D-5. “Chemical” MIME types (continued)

_.'SWISS -PROT protein sequence
'_.'database - :

PR SLERE TR AT

 Versailles Agreementon Matenals_ '

and Standards - -

* Visual Molecular Dynamics-

Xtelpiot file format

vmso

vmd

“xtel

. _:http//www expasy ch/spdbv/text/
downloadhtm: " -

http//www acolyte (. uk/JISO/

' .‘http //wwwks uruc edu/Research/ .
' ”http//www reapnet indiana. edu/ :
' 4'graph/c5/xtelplot/xtelplot htm

_ chemital/x—xyz

|mage/*

* Co-ordinate. Animation format

http//wwwmdll com o

Table D6 summarizes some of the image types commonly exchanged by ema1l and

' HTTP.

Table D-6. “Image"f MIME types

image/bmp
~ image/cgm

image/g&fax

image/Qif _
" imagefief

image/jpeg

_ imagé/naplps

image/png

imége/prs.btif '

" image/prs.pti-

- image/tiff

‘| Windows BMP image format.
Computer Graphics Metafile (CGM) is

an International Standard for the por-

table storage and transfer of 2- D

|Ilustrat|ons

G3 Facsimile byte streams.
Compuserve GIF images.

JPEG images.

“North American Presentation Layer -

Protocol Syntax (NAPLPS) images

Portable Network Graphics (PNG) .
images. - .

Format used by Nations Bank for BTIF
image viewing of checks and other
applications.

PTl encoded images.

TIFF images.

bmp

gif
ief
jpeg,jpa,

jpe, jfif -
| png

| biif, btf

it

tiff, tf -

"~ Alan Frandis -

A,H.Francis@open.ac.uk '
See 150 8632:1992, IS 8632:1992

|- Amendment 1(1994), and IS 8632;
1992 Amendment 2 (1995)

RFC1494
RFC1341
'~RF(1314

‘ JPEG Draft Standard ISO 10918-1
) :

AN X3.110v1983CSAT500-_1983 |

- Internet draft draft- boutel/ png-

spec-04.txt, “Png. (Portable

| Network Graphics) Specification

Version 1.0

: Arthur.Rubln
' Harthurr@crt.com

. JuernLaun
. juern.Jaun@qmy.de- :
http//server.hvzg ymn.w. schule-

bw. de/ptl/

1 RFC2302

- MIME Type Tables . | - 561



Table D-6. “Image” MIME types (continued)

. image?vhdicns.infi :

‘ ,lmage/vnd dxf
- nmage/vnd fastbldsheet

Cimagefvndfpx :

i i’mag'e/'vnd.fse

|mage/vnd fu1|xerox edmlcs-

mmr

“ e ,
|mage/vnd.mix :

image/vnd.net-fpx

'image/vnd-.wap.wbmp
image/vnd_.‘x_iff

image/x-cmu-réster_
image/x-portable-anymap

image/x-portable-bitmap -

lmage/x-portable-graymap "

|mage/x-portab|e plxmap
'lmage/x-;gb
i'm'age/x-xbitmap ‘

" image/x-xpixmap - -
image/x-xwindowdump -

lmage/vnd fupxerox edmics- )

Supports application features avail

| -ableon the TRILOGUE Infinity netwaork _ |
- services platform from Comverse Net- i
‘work Systems. :

DXF vector CAD files.

 AFastBid Sheet contams arasteror
: vectorlmagethat represents anengi- |
~ 1 neering or architectural drawmg

| Kodak FlashPlx images.

" Image format from FAST Searchand
Transfer. '

-Fuji Xerox EDMICS MMR lmage

format A
Fuu Xerox EDMICS RLC |mage format

MIX files contaln blnary data in
streams that are used to represent -

images and related information: They |
- | are used by Microsoft PhotDraw and
| Picturelt software.

_KodakFIashP|X|mages. |

'From Apache mime. types.

Extended Image Format used by Pagls

software.

-From Apache mime.types.

PBM generic ibmag'es. ,

PB'M bitm.ap images.
PBM grayscale images.

. PBM color images.

Silicon Graphics's RGB im‘dges.
X-Window System bitmap images,
X-Window System color images.

|, X-Window System screen capture '

images.

fpx

e
o

fst

| mmr

ric

wbmp =
xif

ras

.pnm

pbm
pgm .
ppm

gh . -

xbm
Xpm
xwd

“Ann Mclaughlin - -~
_Comverse Network Systems

amdaughlin@comversens.com

1 Scott Becker
, scottb@bxwa.com

| Chris W|ng

format_change_ request@kodak '
com

 http://www.kodak.com” -

Arild Fuldseth -

| Arild.Fuldseth@fast.no

‘Masanori Onda

| “Masanori.Onda@fujixerox.cojp
| Sameasabove )

Saveen Reddy?

| saveenr@microsoft.com

Chns Wing - : ,
format_change_ request@kodak
com :
http//www kodak.com

Steve Martin

smartin@xis.xerox.com

Jeff Poskanzer

http://www.acme. com/software/

' _p_bmplus/

Same as above
Same as above

‘Same as above

562 |

Appendix D: -MIME Types



: message/*

Messages. are - comp051te types’ used to communicate data ob]ects (through emall
HTTP, or other transport protocols) Table D-7 descnbes the common MIME mes-

- sage types.

Table D-7.' “Message” MIME types

‘ message/délivery—status

message/disposition-

notification

rﬁessage‘/eXternanddy
_ messagé/http-,

‘message/news

message/partial

message/rfc822
message/s-hitp

Deﬁnes a way to transmit news arti-

| cles via email for human reading—

message/rfc822 s not sufficient
because news headers have seman- -
tics beyond those defined by RF( 822.

Permits the fragmented transmission .

of bodies that are thought to be too

- large to be sent directly by email..

A complete email message. -

Secure HTTP messages, an alternatlve
| to HTTP over SSLL. '

| RrC29s

| ReC1341

RFC2616

| Rec1036

RFC 1341.

RFC 1341

- RFC2660

model/*

The rnodel MIME type is an IETF reglstered extension type It represents matheman-
~cal models of physical worlds, for computer-alded de51gn and 3- D graph1cs

Table D-8 descnbes some of the model formats.

model/iges

model/mesh

model/vnd.dwf

model/vnd.flatland.3dmi

Table D-8. “Modelf’ MIME types

The Initial Graphics Exchange Specifi-
cation (IGES) defines a neutral data - -
format that allows for the digital

| exchange of information between .
computer-aided design (CAD) systems.

DWF CAD files.

Suppons 3DML models supported by E

Flatfand products.

-igs, iges-

| msh, -
-| mesh,

silo

dwf

- 3dmi,
3dm

RFC2077

RFC 2077

" | Jason Pratt

Jason pratt@autodesk.com

Michael Powers
pow@fatland.com
http://www.flatland.com

" MIMETypeTables |- 563



vTcVzble D-8. ‘*Model’f. MIME types f(cor_ﬁ_t_i’nvuéd) N

modernd.ng - The Geometnc Descnptlon Language ng,'gsm,  Attila. Bablts
g model/vnd.gs-‘gdl' -1 (GDL) is a parametric object definition .| win, dor; 'abablts@graph/soft hu
B '-language for ArchiCAD. by Graphlsoft 1 Imp,rsm, hrtp//www graphlsoftcom
2| msm,
model/vnd.gtw Gen-Trix models. . gw | YutakaOzaki .-
S ‘ L . «f - yutaka_ozaki@gen.cojp
' model/vnd.m_ts' MTS model format by Virtue. - - mts Boris Rabinovitch.

' - o : boris@virtue3d.com _
quel/vnd.parasolid.trans- _‘Bi'nary Pafa_solid modeling ﬁle.‘ x_b http//www.Ugsolution;.cdm/
mit.binary : : ' products/parasolid/ '

: '_modeI/vnd parasohd trans-‘ Text Parasohd modellng fi le Xt http://wWw.ugso[utiohchom/
.mlt text . : o _ - products/parasolid/
model/vnd.vtu VTU model format by Vutue viu Boris Rabinovitch '

o : ; 0| boris@virtue3d.com

model/vrml Vutual Reahty Markup Language wrl, vrml | RFC2077 ‘

S - formatfles PR
multlpa rt/*

Multlpart MIME types are comp031te objects that contain other objects The sub-
“type describes the implementation of the multipart packaging and how to process
the components. Multlpart medla types are summanzed in Table D-9.

Table D-9. “Multipart” MIME types .

multipart/alternative

 multipart/appledouble -

'mul.tipatt/bytéranges

The content consists of a fist of alter-

native representations, each with its

-own Content-Type. The client can

select the best supported component.

Apple Macintosh files contain
“resource forks” and other desktop

data that describes the actual file con-

tents. This multipart content sends

the Apple metadata in one part and
the actual content in another part.

~When an HTTP message includes the

content of multiple ranges, these are
transmitted in a “multipart/byter-
anges” object. This media type

| includes two or more parts, separated

by MIME boundaries, each with its
own Content-Type and Content- .

Range fields.

http://www.isi.edu/in-note&/iana/
assignments/media-types/ .~ -+
multipart/appledouble

RFC 2068

564 |

AppendixD: MIME Types



' multipart/digest

multipa'rt/encryptéd-

multipart/form-data

multipart/header-set

.multipart/mixed
multipart/paralle!

multipart/related

muitipart/report

: multipért/signed :

multipart/voice-message

" Table D-9.'7'-‘2Mu"ltip_ar"t” MIME _iypes ( COntinuéd)

_ Contains a collectlon of individual

email messages, inan easy-to -read
form. - 4 :

- Uses two parts to support crypto-

graphically encrypted content. The -
firstpart contains the control infor-

‘mation necessary to decrypt the data -

inthe second body part and is labeled

| according to the value of the protocol

parameter. The second part contains
the encrypted data in type appllca-
tion/octet-stream. :

Used to bundle up a set of values as

the result of a user fi Iling outaform. - .
Separates user data from_arbltrary -

descnptlve metadata."

B A collection of objects;
- Syntactically identical to multipart/

mixed, but all of the parts are intended
to be presented simultaneously, on
systems capable of doing so.

Intended for compound objects con-
sisting of several interrelated hody -

parts. The relationships between the
body parts distinguish them from
other object types. These relation-

ships often are represented by links

internal to the object’s components

that reference the other components. |’

Defines a general container type for - -
electronic mail reports of any kind.

Uses two parts to support crypto-

. graphically signed content. The first-

partis the content, including its MIME

* | headers. The second part contains the

information necessary to venfy the
dngvtal signature.

*Provides a mechanism for packaging

a voice message into one container

R

| -RFC2388

: hrtpy/ wWw.isi._édi//in-notes/iana/
| assignments/media-types/ -
. mult/part/header set

RFC 1341

TURFC134T

RFC 2387

RFC1892

RFC 1647

RFCs 2421 and 2423

'text/*

that is tagged as VPIM v2—compliant. - |

Text media types contain characters and potential formatung 1nformat10n Table D 10
summarlzes text MIME types. :

- MIMETypeTables .| 565



" Table D-10. “Text” MIME types

'text/ca]endar’ | Supports the l(alendarcalendanng 4 RFC2445
S | and scheduling standard. _ o
- text/css Cascading Style Sheets. s | RFC2318
text/directory - Holds record data from a directory- ' REC2425
o  database, suchasLDAP. _ S
: text/enriched Simple formatted text, supportmg RFC1896 - -
fonts, colors, and spacing. SGML-like '
tags are used to begin and end -
- | formatting. ]
text/html | HIMLfile, “html, | RFC2854
- text/parityfec Forward error correctidn fortext =+ | RFC3009
S - streamed in an RTP stream. 1 - '
‘text/plain Plainoldtext. S| asc e o
text/prs.lines.tag Supports tagged forms, as used for tag,dsc | John Lines _
o email registration. . S Jjohn@paladin.demon.co.uk
s : http://www.paladin.demon.co.uk/ "
o _ T ' tag-types/
 text/rfc822-headers Used to bundléasetofemailheaders, - | RFC1892
' such as when sending mall fallure :
_ _ reports, - _ , .
text/richtext _ Older form of enriched text. See text/ rnx RFC1341
: ' | enriched, . ‘ ' ‘
text/rtf ' The Rich Text Format (RTF) sa i
: method of encoding formatted text -~ |
and graphics for transfer between
applications. The format is widely
supported by word-processing appli-
-\ cations on the MS-DOS, Windows,
- 05/2, and Macintosh platforms, = 1
text/sgmi  SGML markup files. .. sgml, | RFC1874
| - Cofsme
text/t140- Supports standardized T.140 text, as L RRC2793
: used in synchronized RTP multimedia. _ S _
text/tab-separated-values | TSV isapopularmethod of datainter- | tsv. http://www.isi.edu/in-notes/iana/
: ’ change among databases and spread- ass:gnments/medla—types/text/tab-
sheets and word processors. It - separated-values
consists of a set of lines, with fields
separated by tab characters. ‘ S
text/uri-list Simple, commented lists of URLsand | wris;uri | RFC 2483
| URNs used by URN resolvers, and any
- other applications that need to com-
municate bufk UR! lists.
566 | Appendix D: MIME Types



o . T able D-10 .“Text’.’j_MIM'E typéé'(_continued).

" text/vnd.abc

. text/vnd.curl

text/vnd.DMClientScript

" text/vnd.fly
text/vnd.fmi.flexstor .

* text/vnd.in3d.3dmi
text/vnd.in3d.spot .

text/vnd.IPTC.NewsML . -

text/nd.JPTCNITF

text/vnd.latex-z*
text/vnd:motorola.reflex

text/vnd.ms-mediapackage

|- AB(files are a human-readable for<
- mat for musical scores.

Provides a set of content definition-

languages interpreted by the CURL

runtime plug-in.
CommonDM Client Script files are.

| .used as hyperlinks to non-http sites
((such as BYOND, IRC, or telnet)..

accessed by the Dream Seeker dlient

s appllcatlon

. Fly is a text preprocessor that uses a
simple syntax to create an interface

between databases and web pages.

| For usein the SUYDAMA and -~
|- UVRAPPE projects.

| ForIn3D Player.

For ln3D Player.

NewsML format specified by the

- International Press Telecommunica-
tions Council (IPTC).

| NITF format specified by the IPTC.

" Supports LaTeX documents contain- -
- ing Z notation. Z notation (pro-

nounced “zed"), is based on Zermelo-

1 Fraenkel set theory and first order

predicate logic, and it is useful for.

| - describing computer systems.
Provides a common method for sub-

mitting simple text messages from
ReFLEX™ wireless devices.

This type i intended to be handled by
the Microsoft application programs
MStore.exe and 7 storDB.exe.

——

http/fwww.gre.ac.uk/

| ~cwalshaw/abe/

arl - :
| . thodge@curl.com -

: dms

~3dml,

3dm _

spot, spo

xml™

xmlb -

'http//homel swipnet. s/

| ~w-11382/abcbnf.htm

Tim Hodge -

- Dan Bradley -

dan@dantom.com

| http://www.byond.com/code/ref/

-' *John-MSrk Gurney
.| jmg@flyidéa.com
. http//www flyidea.com

http://www.ozone.fmi, f/ A
SUVDAMA/ -

+ http//www ozone.fmi.fi/U VRAPPF/
| Michael Powers

powers@insideout.net

" Same asabove

Da\}ld Allen

" m_director_iptc@dial. p/pex com
_' http//www.iptc. org

- Same as above

hn‘p//www nitf org

B hrtp//www comlab.ox.ac. uk/

archlve/z/

* Mark Patton

fmp0 14@email mot.com
Part of the FLEXsuuteTM of Enabling

* Protocols specification available

from Motorola under the hcensmg
agreement '

Jan Nelson.

-\ jann@microsoft.com

* MIMETypeTables | ~567




text/vnd.Wap._sl

. text/vnd.wap.wml

text/vnd.wap.wmlscript

o text/x-setext
text/xml

_Tqble. D‘-1 0. “Text”MIME _t}_{p‘es. (continﬁéd) ,

- Service Indication
a message desciibing an eventanda -

URI-describing where to load the cor- -
' Vrespondmg service. '

objecté contain

(sh

L The Service: Loadmg (SL) content type
provides a means toconvey a URIto a :

user agent in a mobile client. The di-

. entitself automatically loads the

content indicated by that URI and

_executes itinthe addressed user

agent without user mterventlon _
when appropriate. '

Wireless Markup Language (WML) is

| - amarkup language, based on XML, -
- that defines content and userinter- - |
o face for narrow-band devices, includ- -

| ing cellular phones and pagers.

WMLScript is an evolution of Java- '
Script for wireless devices.

' From Apache mime.types. 5

Extensible Markup Language format
file (use application/xml if you want

- the browser to save to file when
) downloaded)

slxml -

wml

“wmls

etx

xml

WAP Forum Ltd
http//www wapforum org

Same as above

‘Same as above

Same as above

RFC2376

»vi-de'o/*-

Table D-11 hsts some popular v1deo movie formats. Note that some video formats
are classified as apphcatlon types

*Video/MPAV-ES

video_/mpegv V

vi'd_eo/pa.rityfec :
Vi_deo/pointer

video/quicktime
video/vnd.fvt

Table D—11. “Video” MIME types .

fMPEG 4 video payload as carried by
. RTP.

Video encoded per the IS0 11172 (D .

MPEG'standar_d. .

Forward error correcting video format

for data carried through RTP streams.

Transporting pointer positiod infor-
mation for presentations.

“ Apple Quicktime video format.

Video format from FAST Search &
Transfer. .

mpeg, .

mpg,
mpe

qt, mov -

CRFC3016

RRCT3H

RFC3009

RFC 2862

http://www.apple.com

rild Fuldseth
Arild.Fuldseth@fast.no

'568 -| AppendixD: MIME Types



. video/vnd.motorola.video
. .video/vnd.motorola.videop

B “video/vnd.mpegurl.

video/vnd.nokia.interleaved-

multimedia
 video/x-msvideo
.video/x-sgi-r'novie' ,

Table D-11. “Video” MIME types _(contiﬁited) o

Proprietary formats used by products
from Motorola ISG :

' This media 'type consists of a series of

URLs of MPEG Video files.

Used in Nokia 9210 Communicator
video player and related tools.

chrosoft AVl mowes
Silicon Graphlcs s movie format

mxu -

" nim.

avi

- movie

| TomMcGinty:
Motorola ISG - :
tmcgmty@dma /sg mot B

Heiko Recktenwald

':.u25106@un/-bonn de

"Powerand Respon5|b|hty Conver— '

sations with Contributors,” Guy var_l
| Belle, et al., LM} 9 (1999), 127~
{133, 129 (MIT Press) -
Petteri Kangaslampi

| petteri. kangaslamp/@nok/a com

| http:7/www.microsoft. com .

http//www sg/ com

| Expenmental Types

The set of primary types supports most content types. Table D 12 hsts one expen- .
mental type, for conferencmg software thatis conflgured in some web servers. .

Table D-1-2-..Extension MIME ty’pes '

“x-conference/x-cooltalk -

Collaboration tool f;orﬁ Netscape .

- MIME TypeTables | 569



CAPPENDXE
Base 64 Encodmg

" Base-64 encodmg is used by HTTP, for basic and digest authentication, and by sev-
eral HTTP extensions. This appendix explains. base-64 encodmg and provides con-
version tables and pointers to Perl software to help you correctly use: base 64
encodmg in HTTP software

| Bvase-64 Encoding.Makes-Binary Data Safe

" The base-64 éncoding convefts a series-of arbitrary bytes into a longer sequence of
common text characters that are all legal header field values. Base-64 encoding lets
us take user input or binary data, pack it into a safe format, and ship it as HTTP

header field values without fear of them containing colons, newlines, or binary val-
ues that would break HTTP parsers

Base-64 encodmg was developed as part of the MIME multlmedla electronic mail
standard, so MIME could transport rich text and arbitrary binary data between differ-
ent legacy email gateways." Base-64 encoding is similar in spirit, but more efficient in
space, to the uuencode and BinHex standards for textifying binary data. Sectlon 6.8
of MIME RFC 2045 detalls the base-64 algonthrn

Elght B|ts to Slx.-Blts |
Base-64 encodlng takes a’sequence of 8-bit bytes, breaks the sequence into 6- bit
pieces, and assigns each 6-bit piece to one of 64 characters comprising the base-64

alphabet. The 64 possible output characters are common and safe to place in HTTP
header flelds The 64 characters include 1 upper— and lowercase letters, numbers, ,

* Some mail gateways would silently strip many “non-printing” characters with ASCII values.between 0 and
31. Other programs would interpret some bytes as flow control characters or other spec1al control charac-
ters, or convert carriage returns to line feeds and the like. Some programs would experience fatal errors upon
receiving international characters with a value above 127 because the software was not “8-bit clean.”.

570



~and /. The specral character . also»is used. The _'base,-6"."r_-'a'_lphab€t; 15 shownm
Table E-1. o S

’Note that because the base 64 encodrng uses 8-bit characters to represent 6 b1ts of
rnformatron base 64—encoded strings are about 33% larger than the orrgrnal values

Table E- 1. Base 64 alphabet .
u

A8 16 Q. Y m g 4 0 4w 56 4
B9 J. .R %571 .3 h 4. p 4 .x 5 5
C 10 K 18 S 26 a ¥ i 4 ¢ S0 y "5 6
D M L 19 T 7w b 3% jo M v 5z 597

B MO0 U 28 . 3% k #4 s R 0 6 8
F B N 20V 9 d 3 1 4t B 1 6 9
G W 0 2 W 30 e 3 m 4% u 4 27 6 '+
o5 P X f 3 /

TN Oy U B W N e

3 31 9 0 4 v 5 6
_ Flgure E-1 shows a 31mple example of base 64 encodrng ‘Here, the three-character
input value “Ow!” is base 64—encoded, resultmg in the four-character base 64—

encoded value “T3ch” It works like. tl’llS

1. The string “Ow!” is broken into 3 8 b1t bytes (Ox4F Ox77 0x21).
2. The 3 bytes create the 24-bit blnary value 01001 11101 11011 100100001

3. These bits are segmented into the 6-bit sequences 010011, 110111 01110,
. 100001. _

4. Each of these 6- b1t values represents a number from 0 to 63, correspondmg to

- one of 64 characters in the base-64 alphabet. The resulting base 64—encoded

string is the 4-character string “T3ch”, which can then be sent across the wire as

- “safe” 8-bit characters, because only the most portable characters are used (let-
" ters, numbers, etc.). : :

8-b,¥t(ham;;;,;(j W
e—— $4|: - $77,- .."l$2_1_

state Onay) 010011110111011100100001 =

shivaueedna) 19 |55 28 B3

weasss T 3 k. h

Figure E-1. Base-64 encoding example

. EightBitsto SixBits | 571



Base-64 Paddmg

Base- 64 encodrng takes a sequence of 8 blt bytes and segments the b1t stream 1nto 6-' o

- bit chunks. It is unhkely that the sequence of bits will divide evenly into 6-bit pieces.
When the bit sequence does not divide: evenly into 6-bit pieces, the bit sequence is
~padded with zero bits at the end to make the length of the b1t sequence a multlple of
24 (the least common multlple of6 and 8 blts) :

When encodmg the padded bit stnng, any group of 6 bltS that is completely paddmg_,'
~ (containing no bits from the original data) is represented by a special 65th symbol:
- “=”.1fa group of 6 bits is partially padded, the padding b1ts are set to zero.

Table E- 2 shows examples of padding. The initial input string “a:a” is 3 bytes long, - |
or 24 bits. 24 is a multiple of 6 and 8; SO no paddrng is requlred The resultrng base
64—encoded string 1s YTph”

- Table E‘-‘2,_ Base-_64vpvaddzng_e_xam'ples -

o ) _ 101001 100001 . _
o 011000 010011 101001 1100001 011000 lexxx xxxxxx XXXXxx . YTphYQ==-

011000 010011 101001 100001 011000 010110 0001xX XXXXXX . YTphYWE= ..
011000 010011 101001 100001 011000 010110 000101 100001 .'-.YTthWFh.

However, 'when another char'acter is added, the inp‘tit string gi‘ows to 32 bits long.
The next smallest rrtultiple of 6 and 8 is 48 bits, so 16 bits of padding are added. The -
first 4 bits of padding are mixed with data bits. The resulting 6-bit group, 01xxxx, is
treated as 010000, 16 decimal, or base-64 encodmg Q. The remalmng two 6-bit
groups are all paddrng and are represented by “=”

-Perl Implementatlon

AMIME ‘Base64 is a Perl module for base 64 encodmg and decodmg You can read -
about thlS module at http /lwww.perldoc.com/perl5.6.1/lib/MIME/Base64. himl.

_You can’ encode and decode strlngs using the MIME::Base64 encode_ base64 and
decode base64 methods: . :

use MIME: Base64, -

. $encoded ='encode_base64('A1addin:open~sesame');
$decoded = decode_base64($encoded);

572 -| AppendixE: Base-64 Encoding




For More Information

_ _’For moré 1nformat10n on base 64 encodmg, see:

J-'http //www zetf org/rfc/rf62045 txt _ ' S ' -
~ Section 6.8 of RFC 2045, “MIME Part 1: Format of Internet Message Bod1es '
prov1des an off1c1al spec1f1catlon of base-64. encodlng

http Sfwww. perldoc com/perl5.6.1/lib/MIME/Base64.html . :
‘This web site contains documentation for the MIME: Base64 Perl module that
prov1des encodmg and decodmg of base-64 strlngs '

- ForMore Information | 573




R APPENDIXF
Drgest Authentlcatlon

Thls appendlx contams supportmg data and source code for 1mplement1ng HTTP
digest authentlcatlon facilities.

Drgest WWW Authentrcate Drrectrves

WWW-Authenticate directives are described. in Table F- 1, paraphrased from the
-descriptions in RFC 2617. As always refer to the off1c1al specrflcatrons for the most
up-to-date detalls e :

Table F-1. Digest WWW—Authenticate_header directives (frr)m RFC2617) -

realm  Astring to be displayed to users so they know which username and password to use. This string should .
contain at least the name of the host performing the authentication and might additionally indicate the
collection of users who might have access: An example might be “registered_| users@gotham news.com”,

" nonce ~ | Aserver-specified data strrng that should be uniquely generated each time a.401 response is made. It s -
: | recommended that this string be base-64 or hexadecimal data. Specifically, because the string is passed in
the header lines as a quoted string, the double-quote character is not allowed.

The contents of the nonce are implementation-dependent. The quality of the |mplementatron depends on
" | -agood choice. A nonce might, for example, be constructed as the base-64 encodrng of: '

time-stamp H(time-stamp ":" ETag ":" private-key)

‘where time-stamp is a server-generated time or other nonrepeating value, ETag is the value of the HTTP -
ETag header associated with the requested entity, and private-key is data known only to the server. Witha -
_nonce of this form, a server would recalculate the hash portion after receiving the dlient Authentication
'headerand reject the request if it did not match the nonce from that header or if the time-stamp value is
not recent enough. In this way, the server can limit the time of the nonce’s validity. The inclusion of the

- ETag prevents a replay request for an updated version of the resource. (Note: including the IP address of
the client in the nonce appears to offer the server the ability to limit the reuse of the nonce to the same cli-
ent that originally got it. However, that would break proxy farms, where requests from a single user often’
go through different proxies in the farm. Also, IP address spoofing is not that hard.)-

An implementation might choose not to accepta previously used nonce or a previously used digest, to
. protect against replay attacks, or it might choose to use one-time nonces or digests for POST or PUT.
requests and time-stamps for GET requests,

574



Table F-1. Digest WWW-Authenticate header directives (from RFC 261 7) (continued) S

A quoted, space—separated Jis of URIs (asspeclf ied in REC 239 ,’lUnrfo'rm Resource Identifiers: Generic. _
Syntax") that define the protection space. If a URI is an abs_path, itis relative to the canonical root URL of
the server berng accessed An absolute UR! in thrs lrst may refertoa drfferent server than the one berng
accessed. . SR

Theclient can use thrs lrst to determrne the set of URIs forwhrch the same authentrcatlon rnformatron may
| be sent: any URI that has a UR i this list as a prefix (after both have been made absolute) may be
assumed -to be in the same protection space.

Ifthis drrectrve is omitted or its value is empty, the clrent should assume that the protectron space consrsts
of alf URIs on the responding server. .

|- This directive is not meaningful in Proxy-Authentrcate headers, for whrch the protectron space is always
the entire proxy; if present, it should be ignored. : : : :

' opaque -~ - | Astring of data, specified by the server, that should be returned by the clrent unchanged in the Authorrza-
| tionheader of subsequent requests with URls in the same protectlon space. It s recommended that this
string be base-64 or hexadecimal data. -

“domain

stale - - | Aflag indicating that the | previous request| from the clrent was rejected because the nonce value was stale
. | Ifstale.is TRUE (case- insensitive), the client may want to retry the request with a new encrypted response,
| without reprompting the user for a new username and password: The server should set stale to TRUE only
ifit receives arequest for which the nonce is invalid but has a valid digest (indicating that the client knows
the correct username/password). If stale is FALSE, or anything other than TRUE, or the stale directive is not
’ present the username and/or password are mvalrd and new vaIues must be obtarned :

algorithm - 1A string mdlcatrng a parrof algonthms used to producethe digestand a checksum If this is not present, it
_isassumed to be “MDS". If the algorithm is not understood the challenge should be rgnored (and a differ-
ent one used, if there is more than one). ,

In this document, the string obtarned by applying the digest algorithm to the data “data” with secret
“secret” will be denoted by “KD(secret, data)”, and the string obtained by applying the checksum algo-
rithm to the data “data” will be denoted “H(data)". The notatron ”unq(X)” means the value of the quoted
string ”X” without the surrounding quotes : _ :

- For the MD5 and MD5-sess algorithms:

H(data) = MDS(data)
HD(secret, data) H(concat(secret "o data))

l.e., the digest is the MD5 of the secret concatenated wrth a colon concatenated with the data. The MD5-
sess algorithm is intended to allow efficient third- -party authentrcatron servers.

qQop | This directive is optional buti lS ‘made so only for backward compatrbrlrty with RFC 2069 [6];it should be
o | used by all implementations complrant ‘with this version of the digest scheme. :

“If present, it is a quoted string of one or more tokens mdrcatrng the * qualrty of protectron values sup-
ported by the server. The value “auth” indicates authentication; the value “auth-int” rndrcates authentrca-
tion with rntegnty protection. Unrecognized optrons must be ignored. :

<extension>-. | . This directive allows for future extensions. Any unrecognrzed drrectrves must be ignored.

Digest Aut’horization Directives -
Each of the Authorization directives is described in Table F 2 paraphrased from the

descriptions in RFC 2617. Refer to the off1c1al specrﬁcatrons for the, most up-to- date
detalls '

-DigestAuthorization_Directives | 5'75'



- Tcrble ‘F_—27.'Digest"Auth'orizvati_'_o"rr hédder di'rect_ives'(from RFC 2617)

_ username
realm
nonce
uri
© résponse
algorithm

opaque

- cnonce-

qop

" Nc

s<ex_t_ension> .

The user's name in the’ specrf ed realm.

‘-The realm passed to the dientin the WWW Authentrcate header
‘The same nonce passed to the dientin the WWW Authenticate header.

The URI from the request URI of the request line; duplicated because proxies are aIIowed to change the.
request line in transit, and we may need the original URI for proper digest verification calculatrons

Thisis the actual dlgest—the whole pornt of digest authentication! The responseis a string of 32 hexadec-
imal digits, computed by a negotiated digest algonthm which proves that the user knows the password.

A string indicating a pair of aIgorlthms used to produce the drgest anda checksum If this is not present, |t

is assumed to be “MD5".".

A stnng of data, specified by the serverina WWW Authentrcate header that should be returned. bythe

client unchanged in the Authonzatlon header of subsequent requests with URIs in the same. protectron
space. . e S .

This must be specrﬁed |f aqop dlrectrve is sent and must not be specrﬂed |f the server dld ot send a qop

. drrectrve inthe WWW-Authentlcate header field.

The cnonce valueisan opaque quoted string value provided by the clrent and used by both cllent and

serverto avoid chosen plaintext attacks, to provrde mutual authentrcatron, and to provrde some message-

integrity protection.
See the descnptrons ofthe response dlgest and request drgest calculatrons Iater in this appendrx

Indicates what "quality. of protection” the client has applied to the message If present its value must be -

one of the alternatives the server indicated it supports in the WWW Authentrcate header These values
affect the computatron of the request digest. *

Thisis a single token, nota quoted list of alternatives, as in WWW- Authentrcate

This directive is optronal to preserve backward compatibility with a minimal implementation of RFC
2069, but it should be used if the server indicated that qop is supported by provrdlng agop drrectrve inthe
WWW- Authenticate header field.

| This must be specified if a qop directive is sent and must not be specrf jed rf the server d|d not send a qop

drrectrve in the WWW- Authenticate header field.

The value is the hexadecimal count of the number of requests (rncludmg the current réquest) that the cli-

ent has sent with the nonce value in this request. For example, in the first request sentin response toa
given nonce value, the client sends nc="00000001". '

The purpose of this directivei isto allow the server to detect request replays by mamtarnmg itsown copy of

" this count——rf the same nc value is seen twice, the request is a replay

: Thrs drrectrve aIIows for future extensions. Any unrecogmzed directive must be |gnored

'Drgest Authentrcatron Info Drrectrves

Each of the Authentication-Info dlrectlves is- described in Table F 3, paraphrased
" from the descriptions in REC 2617. Refer to the off1c1a1 spec1f1catrons fot the most"
up-to-date details.

. 576 | Y'Appendi'xF: Digest Authentication




N Tdble F-3. Digest Authentiadtr"ondﬁfo header directives (from RFC 261 7)

nextnonce.

gop

-rspauth

. once

n¢

.<ext_ension> ,

The value of the nextnonce directive i rs the nonce the servér wants the chent touse fora future authenti- -

| cation response. The server may send the Authentication-Info header with a nextnonce field as a means of
_ implementing one-time or.otherwise changing nonces. If the nextnonge field is present the dient should -

use it when constructing the Authorization header for its next request. Failure of the drent to do 50 may .

| “resultin a reauthentication request from the server with “stale=TRUE". - _
~ Server rmplementatrons should carefully ¢ consider the performance 1mphcatrons of the use of thrs mecha- ,

nism; pipelined requests will not be possible if every response includes a nextnonce directive that must be
used on the next request received by the server. Consideration should be given to the performance versus.

 security trade-offs of allowing an old nonce value to be used for a limited time to permrt request pipelin-
ing. Use of the nonce count-can retarn most of the securrty advantages of anew server nonce wrthout the .'
deleterious effects on prpehnrng : -

lnd_rcates.the "quality of protectron optrons applred t0 the response by: the Server. The value "auth" rndr
cates authentication; the value “auth-int” indicates authentication with integrity protection. The server
should use the same value for the qop drrectrve in the response as was sent by the chent in the corre- -

“sponding request.

The optional response digest in the response auth” drrectrve supports mutual authentrcatron—the
- server proves that it knows the user's secret, and, with qop="auth-int", it also.provides limited integrity

protection of the response. The response-digest” value is calculated as for the “request-digest” in the

- Authorization header, except that if qop—"auth” orqop is not specrﬁed in the Authorrzatron header for
the request, A2is:

A2 = ":" dlgest uri- value

and if qop—”auth -int”, A2 is:.

A2 = "t dlgest uri-value ":" H(entlty bOd)’)

where d/gest-ur/-value is the value of the uri drrectrve on the Authorization header in the request The _
cnonce and nc values must be the same as the ones in the clint request to which-this messageisa - .
response. The rspauth directive must be present if qop-—”auth” or qop— “auth-int” s spectﬂed

| The cnonce value must be the same as the one in the client request to which thrs message is a response

The cnonce drrectrve must be present |f qop—”auth" or qop="auth-int" is specrﬂed

| The nc value must be the same as the one n the client request to which thrs message is a response The ne
'drrectrve must be present if qop="auth” or qop= “auth-int” is specified. '

| “This drr_ectrve allows for future extensions. Any unrecognized directive must be |gnored. :

Reference Code

“The followmg code tmplements the calculations of H(AL), H(AZ) request—dlgest and_
response dlgest from RFC 2617. It uses the MDS 1mplementat10n from RFC 1321

'File ”digcalc h”

‘#deflne HASHLEN 16

typedef- char HASH{HASHLEN];

#define HASHHEXLEN 32

typedef char HASHHEX[HASHHEXLEN+1]

#deflne IN

Reference Code | 577



#define OUT o o a
/* calculate H(A1) as per HTTP Dlgest spec */

- void DigestCalcHA1( .

IN char * pszAlg,.‘v

- IN char * pszUserName, -
IN char * pszRealm, -
.IN,chaI * pszPassword,
IN char * pszNonce,

IN char * pszCNonce,
out HASHHEX Se551onKey

)

/* calculate request dlgest/response dlgest as per HTTP Dlgest spec */
void DigestCalcResponse(

IN HASHHEX HA1, = /* H(A1) * ,
JIN char *. pszNonce,: " /* nonce from server */
IN char * pszNonceCount /* 8 hex digits */
IN char * pszCNonce, " /* client nonce */ . o
IN char * pszQop, /* qop-value: "", "auth", "auth-int" */
.- IN char * pszMethod, - : /* method from the request */
“IN char * pslegestUrl, ~ /* requested URL. */
IN HASHHEX HEntity, = /* H(entity body) if qop—"auth _int" ¥/ i_
'OUT HASHHEX Response - /* request-digest or response- digest */
File “digcalc.c”

#include <global.h> -
“#include <md5.h>

#include ¢string.h>

#include "digcalc.h™

'ydid CvtHex(
IN HASH Bin,

- OUT HASHHEX Hex
) a

" unsigned short i
unsigned char j; -
for (i = 0; i < HASHLEN; 1++) {
= (Bin[i] »> 4) & 0xf;
if (<=9 .
Hex[i*2] = (J + '0");
else '
Hex[i*2]"= (j + "a' - 10);
] Bln[ ] & oxf;
f (<=9
Hex[i*2+1] =‘(j +"0');
else '
_ Hex[1*2+1] = (j + 'a' - 10);
b
: Hex[HASHHEXLEN] "\0';
b .

578 | -AppendixF: Digest Authentication



e calculate H(A1) as per spec A
void DigestCalcHA1(:

IN char * pszAlg,

"IN char * pszUserName;.

IN char * pszRealm,

IN char * pszPassword,

IN char * pszNonce,

IN char * pszCNonce,
OUT HASHHEX SessionKey

)

MD5_CTX MdsCtx;

HASH HAZ1;

MDSInlt(&MdSCtx), .

MDsUpdate(&MdsCtx, pszUserName, strlen(pszUserName)),

MDsUpdate(8Md5Ctx; ":", 1);

- MDsUpdate(&MdsCtx, pszRealm, strlen(pszRealm)),

MDsUpdate(&MdsCtx, ":™, 1); ..

MDSUpdate(8Md5Ctx, pszPassword, strlen(pszPassword)),.¢

MDSFinal(HA1, &MdSCtx),, . :

if. (strlcmp(pszAlg, "mds- sess")-—— 0) {
MD5Init(8Md5Ctx);. .

- MDSUpdate(8Md5Ctx, HAL, HASHLEN);
MDsUpdate(&MdSCtx,,".", 1);
MD5Update(&Mds5Ctx, - pszNonce, strlen(pszNonce)),

~ MDsUpdate(&MdsCtx, ":", 1);

MD5Update(&MdsCtx; pszCNonce, strlen(pszCNonce)),
MDSFlnal(HAl &MdsCtx); '
S
Cthex(HAl Se551onKey),
b

/* calculate request- dlgest/respo
void DigestCalcResponse(

IN HASHHEX HA1, /*
IN char * pszNonce, . - /%
~ IN char * pszNonceCount, 7*
IN char * pszCNonce, /*
IN char * pszQop, /*
IN char * pszMethod, /*
IN char * pszDigestUri, /*
"IN-HASHHEX HEntity, /¥

OUT HASHHEX Response /*
) : '

MD5_CTX Md5Ctx;
HASH HA2;

HASH -RespHash;
"HASHHEX HA2Hex;
// calculate H(A2)
MD5Init(&Md5Ctx);

. MDsUpdate(&Md5Ctx, pszMetho
MDSUpdate(&MdsCtx, ":", 1);
MDsUpdate(&Md5Ctx, psleges

" -if (stricmp(pszQop, "auth-i

nse- dlgest as per HTTP Dlgest spec */

H(A1) -*/ : '

nonce from server */

8 hex digits */

client nonce */ . o
qop-value: "", "auth", "auth-int" */
method from the request */ . -
requested URL */ -
H(entity body) if ‘qop="auth- -int" */
request-digest or response-digest. */

d, strlen(pszMethod)),

turi, strlen(pslegestUrl)),
int") == 0) {

Reference Code

I

-579



MD5Update(&Md5Ctx,'".“, 1), ;
MDSUpdate(&MdSCtx, HEntlty, HASHHEXLEN),'i
S o '
\':MDSFlnal(HAz &MdSCtx),-
- CvitHex(HA2, HA2Hex);
// calculate response
MDSInit(8MdsCtx); : :
K MDSUpdate(&MdSCtx, HA1, HASHHEXLEN),
MD5Update(8MdsCtx, . ":", 1); -
- MD5Update(&MdsCtx, ‘pszNonce, strlen(pszNonce));
MD5Update(&MdsCtx,. ":", 1);- S
1f (*pszQop) { _ ' , : ’

' MD5Update(&Md5Ctx, pszNonceCount, strlen(pszNonceCount));
MD5Update(&MdSCtx, ":", 1);

MD5Update(8MdsCtx, pszCNonce, strlen(pszCNonce)),

- MDsUpdate(&MdsCtx, ":", 1); :
MD5Update(&Md5Ctx, pszOop, strlen(pszOop)),
M05Update(&Md5Ctx,'"'" 1),

},.
: MDSUpdate(&MdSCtx, HA2Hex, HASHHEXLEN),
MDSFlnal(RespHash 8MdsCtx);
_Cthex(RespHash Response),

_:}; '

File ”di_gtest.cf’
#include <stdio.h>
#include "digcalc.h” S

v01d ‘main(int argc, char ** argv) { - :
char *. pszNonce = "dcd98b7102dd2f0e8b11d0+600bfb0c093";
char * pszCNonce = "0a4f113b";
‘char * pszUser. = "Mufasa”;
.char * pszRealm = testrealm@host com";.
char * pszPass = "Circle Of Life";
char * pszAlg = "mds";.
char - szNonceCount[9] = "00000001"
char * pszMethod = "GET"; :
char * pszQop = "auth”;
‘char * pszURI. = "/dir/index, html"'
HASHHEX HAL; . '
HASHHEX HA2 =-"";
- HASHHEX Response,
: DlgestCachAl(pszAlg, pszUser, pszRealm, pszPass,
pszNonce, pszCNonce, HA1);
DigestCalcResponse(HA1, pszNonce, szNonceCount, psz(CNonce, pszOop,
‘ pszMethod, pszURI, HA2, Response);
printf("Response = %s\n", Response);

b

580 .| AppendixF: Digest Authentication



IR ~ APPENDIX G]_;’_f- -
Langu399T395~t'

Language tags are short standardrzed strings that name- spoken languages———for

 example,  “fr” (French) and “en GB” (Great Britain- English). Each tag has one or

~ more paits, separated by hyphens, called subtags. Language tags were’ descrlbed in
“detail in the sectlon Language Tags and HTTP” in Chapter 16 '

This appendlx summarizes the rules, standardized tags, and reglstratron 1nformatron
+ for language tags. It contains the following reference matenal

* Rules for the frrst (pnmary) subtag are summarlzed in ¢ Flrst Subtag Rules

Rules for the second subtag are summarrzed in “Second Subtag Rules.”

IANA regrstered language tags are shown in Table G-1.

ISO 639 language codes are shown in Table G-2. -
ISO. 3166 country codes are shown in Table G-3.

.‘_F|rst Subtag Rules

If the flI‘St subtag is:

 Two characters long, it’s a language code from the ISO 639" and 639-1 standards
* Three characters long, it’s a language code listed in the ISO 639-21 standard
. The letter

(( ))

the language tag is explicitly IANA- regrstered

* « The letter © x,” the language tag is a private, nonstandard extension subtag '

The ISO 639 and 639-2 names are summarized in Table G-2. -

" SeelSO standard 639, “Codes for the representatlon of names of languages.”
¥ See ISO 639- 2, “Codes for the representatlon of names of languages———Part 2; Alpha-3 code

s .5_811:\



: Second Subtag Rules

y ’:-If the second subtag is:

e Two characters long, it’s a country/regron deflned by ISO 3166°
* Three to eight characters long, it may be registered with’ the IANA'
* One character long, i it is illegal

The ISO 3166 country codes are sumrriér'izedi.ir‘r'Table G-3.

IANA Reglstered Language Tags

Table G- 1 Language tags

i-ban | Bunun _
- default o Defaultlanguagecontext
ihak - Hakka
i-Klingon - Klingon, |
Cidux : | Luxembourgish
imingo _'Ming:o‘
i-navajo © | Navajo
ipwn | Paiwan
itao : -1 Tao
i-tay ' ‘_ -1 Tayal
i-tsu | Teou _
no-bok - o Norwegi_an “Book Ianguage"
noyn - ' Norwegian “New Norwegian”
zh-gan: " Kan or Gan | |
th-guoyu . - | ‘Mandarin or Standard Chinese
th-hakka | Hakka |
zh-min o 1 Min, Fuzhou, Hokklen Amoy, orTalwanese
thwiy o .S_hanghalese or Wu
zh-xiang . . .Xiéngoernanese
‘ zh-yue C Cantonese

* The country codes AA, QM—-QZ XA-XZ and ZZ are reserved by ISO 3166 as user a551gned codes These
must not be used to forrn language tags ‘ , .

582 | AppendixG: Language Tags



'- | |50639 Language Cédes '-

Table G-2. 1SO 639 and 639-2 lahguage codes "

Abkhazian o ~ ] ab - abk
Achinese : T e
Acoli S - ach
“Adangme ‘ o R ada
Afar - B | aa aar
Al 1 afh

- Afrikaans . . | af | aft

.,"Afro-Asiatic (Other) N - . : afa
Akan ' C | aka
Akkadian -~ - , | akk
'.Albani_an S S S O alb/sqi
CMewt - ' S ale

_ Algonguian Ianguéges . 1 |alg

"~ Altaic (Other) o

~ Amharic.- o » “am amh
Apache languages - ‘apa
Arabic . ar - ana c
Avamaic 1 L
Arapaho o | ' ap”
 Araucanian R . REY
hawak | aw
Armenian’ : iy | amiye
 Artifical (Other) - I | an
Assamese -~ - - : ‘ | as’ -asm
Athapascan languages = | ath B
- Austronesian (Other) - ' | map
Avaric-. : _. . ava:
Avestan A I ave
Awadhi _ ' awa
'Ayma'r_a. S V ay *aym
Azerbaijani . az - aze
‘Aztec ' _ | nah
Balinese - | ban
Baltc (Other) - bat

o .ISQ'639I._ang'L_|ageCodes‘ | 583



Table G-2. 1S0:639.and 639-2 language codes (continued) .-

Baluchi
‘Bambara

~ Bamileke languages
Banda o
‘Bantu (Other)
Basa .
Bashkir
Basque

Beja

.- Bemba .
‘Bengali
Berber (Other)
Bhojpuri
Bihari
Bikol
Bini
Bislama
Braj -

" Breton

Buginese
Bulgarian
Buriat
Burmese
Byelorussian
Caddo
Carib
Catalan
Caucasian (Other)
Cebuano
Celtic (Other)

) Central American Indian (Other)

~ Chagatai
Cha_ihorro .
Chechen,
(Cherokee

Cheyenne -

ba
eu -

bn

bh -

bi

my

be

@

bal..
| bam.

bai |
bad

bnt
~ bas’
- bak
' baq/eus

bej
bem
ben
ber
bho-
bih
bik
bin

“bis

bra

,bre'

bug
bul
bua

| bu'r'_/mya
hel

cad
@r .
@t

‘Qu

ceb
cel

@i

| chg

cha

che

chr
chy.

584 | Appendix G: Language Tags.



. Table 'G-Z.I_I.SO 639 and 639-2 langz?‘age codes (éontinued) )

, Chi_bc_ha
Chinese
‘Chinook jargon

"~ Choctaw

ChurchStavic
Chuvash
Cbptic
Cornish -
(orsican' '

- Cree

Creék

~ Creoles and Pidgins (Other)
| Creoles and Pidgins, English-based (Other)

Creoles and Pidgins, French-based (Other)

" (reolesand Pidgins, Portuguese-based (Other)

Cushitic (Other)
(roatian

(zech

Dakota -

' D'anish, .
" Delaware

Dnghi .

Dogri

‘Dravidian (Other)

Duala -
Dutch. - -
Dutch, Middle (ca. 1050-1350)

. Dyula

" Dzongkha

Efik
vEgyptian_(Ancient)'
Ekajuk =

© Elamite

English. - »
English, Middle (ca. 1100-1500)

A ""zh.-

0

hr

‘da

dz

en

nl-

chb

chizho -

chn
cho

N chu -
chv

cop -
cor
c0s
cre

mus

ap
cpe

-cpf

app -
cus

ces/cze
dak-

.dan
~del

din

- div

doi, -
dra
dua
dut/nla
dum
dyu

“dzo

efi

eqy
eka

“elx

eng

enm .

iR : .,-‘I'S_0639-Lang'u'age._Codes y 58_5‘



L Tab'le‘G-Z.'ISO 639 and’639-2 langﬁage'éodes (continued) .

English, 0ld (ca. 450-1100) - ) . |ang
 Eskimo (Other) o L ek

~ Esperanto | ' 0. | epo

. Estonian - 4 et L est
CEwe o ewe

- Ewondo : , S| ewo

- Fang , oo fan
Fanti o - fat

- Faroese o fo | fao
Fjan | BN fij
Finnish i | fn
Finno-Ugrian (Other) = | f
Fon = o . fon
“French R o fraffre
* French, Middle (ca. 1400-1600) - fm
French, 0ld (842- ca. 1400) | o
Frisian ' Ly | fy
Fulah : S ful.

- Ga . S ~ _ , gaa
Gaelic (Scots) - gae/gdh
 Gallegan L ‘ A | gl - dlg
Ganda I - | g
Gayo _ ' : gy
Geez ' o gez
Georgian , k| geolkat
- German ‘ ' de | deu/ger
German, Middle High (ca: 1050-1500) . : gmh
German, Old High (ca. 750-1050) 1 goh
Germanic (Other) - - gem
 Gilbertese ' i
Gondi L | gon

~ Gothic S : | got
._Grebo . o : o arb
Greek, Ancient (to 1453) 4 gre’
 Greek, Modern (1453-) e ell/gre
Greenlandic S | K kal

586 | Appeqdixﬁ:'tanguégéTags



“Table G-2. ISO. 639 _an'd‘6_39';2 'ldngudge codes (continued). L

' "Guja'rati, :
- Haida -
" Hausa

Hawaiian
 Hebrew
‘Herero
Hiligaynon:
- Himachali - -
Hindi - '
Hiri Motu

- Hungarian
Hupa©
dban
:Icelandic
‘Igbo

‘ijo '

fioko

Indic (Other) ‘

" Indo-European (Other)

Indonesian
Interlingua (IALA)
Interlingue '
Inuktitut

Inupiak

Iranian (Other)

sh
lrish,01d (to 900)

Irish, Middle (900 - 1200) .

. Iroquoianklanguages_
‘talian
Japanese
Javanese
Judeo-Arabic
- Judeo-Persian '.
~ Kabyle -

.gu

ha

'he»

hi

hu -

iro

'hupJ_

iba
icefisl-
‘ibo V
ijo

ilo

inc
ine

ind

ina
ine

" iku
ipk

ira
gaifiri
sga
mga

ita

" jpn

javijaw

jrb
jpr

kab

150 639 Language Codes

| 587



_Table G-2.1SO 639_vdnd 639—2 lang‘p.tage“codes" (;o,niiﬁﬂgd),'v' B |

Kéaun- o o | “kac
Kamba - - S am
' 'KaAnn_a.da' o | ke | kan
,Kéhuri , ' o | kau :
Kafa-KaIpék ' : . ’ kaa
Karen " o | kar
Kashmiri - » ks .| kas
 Kawi - N N
© Kazakh - : ok kaz
Khasi . | kha
Khmer - km | khm
Khoisan(Other) - - | | ki
 Khotanese g ' | kho
Kikuyu - o o kik
Kinyarwanda =~ W kin
Kighz ~ - o y | ki
‘Komi o : kom
Kongo _ : © | kon
~ Konkani _ . : Kok
Korean - ‘_ o kor-
Kpelle R _ i | kpe
Ky IR | o
Kuanyama -~ = ' o ua
 Kumyk-o - ‘ | kum
Kurdish” _ T ke | kur
Kukh - | e
Kusale - SRR fus
Kutenai S kut
ladino o e lad
_Lahnda L Jah
Lamba - ‘ _ ‘ lam
Langue d'Oc (post-1500) oc o
Lao | e o
Latin - __ la lat
latvian - - . - o lav

+ Letzeburgesch o - Itz

.588 " | -AppendixG: Language Tags



_ - ‘ch_zblevG—'Z.'I_SQ' 639 and 639-2 'l_aﬁgu'&ge cb'des v(continued‘)'-l

Lezghian' - :
Lingala
- Lithuanian .~
lodi. }
Luba-Katanga
" Luiseno
Lunda. -
Luo (Kenya and Tanzania)
Macedonian
Madurese
Magahi
Maithili
- Makasar
© Malagasy -
Malay
_ M»a;"l'ayalam‘ ‘
Maltese
- Mandingo
i Manipuri
Manobo languages
 Manx
~ Maori
© Marathi -
Mari
- Marshall. -
'Ma_rWari
Masai - -
Mayan languages
 Mende
Micmac
 Minangkabau
 Miscellaneous (Other)
Mohawk -
- Moldavian
~ Mon-Kmer (Other)
. Mongo

mk

- Mg

ml

mi

mr

mo

lez
fin
it

oz
lub

lui’
lun
luo

‘mac/mak

mad

mag

mai

mak

mig

' may/msa
1 mal
‘mit -

.man

mni
mno
max

“mao/mri

mar
¢hm -

mah

mwr
o mas -
myn

men
mic
min.
mis
moh
mol
mkh
lol

"I$0_639_languagel(igdes.- | 589



T able_, G-2.1SO _639‘ and 639-2 language codes I(coﬁ"tinyed).- o

Mongolianl - _ o mn - mon .
Moés’i : - _ o i o mos -
- Multiple languages . - | mul
 Mundalanguages . - ~ ] mun
Nauru . R nau
Navajo o | _ N | nav
Ndebele, North b nde
Ndebele, South - ' ' | b,
Ndongo - o - | ndo
* Nepali - 1 ne | nep
Newari : '. _ | new
Niger-Kordofanian (Other) - _ | e
Nilo-Saharan (Other) V v : 552
 Nivean o T niu
_Norse,Old ‘ o A . |7non
North American Indian (Other) nai
.~ Norwegian . no . | nor . '
'-NorWegian (Nynorsk). : .y nno
Nubian languages. = S © | nub.
- Nyamwezi o - onym
Nyanja o 1 ya
Nyankole o o loan
Nyoro ‘ . nyo .
Nzima, _ : ni
" Ojibwa : - oji
Oriya . . : or ori
Oromo S om orm
Osége' o o 0sa
Ossetic o o . | oss
Otomian languages =~ - L oto
Pahlavi : ' - pal'
Palaan - - . pau
Pali - phi
' Pampanga _ - pam
Pangasinan ' pag
Panjabi . - pa pan’

590 | Appendix G: Language Tags



 Table G-2. IS0 639 and 639-2 language codes (continued) - -

"'Pavpi_amervttq. .
N Papuah-Aust’_raIian (Other) .
- Persian 8

'- Phoenician

- Polish

- Ponape -

' Port'ugueseb :

. Prakrit Ianguéges

Provencal, 0ld (to 1500)
~ Pushto

Quechua

- Rhaeto-Romance
.Rajastha'ni :

. Rarotongan
Romance (Other)
Romanian
‘Romany
Rundi
“Russian
Salishan I'anguages '
Samaritan Aramaic

~ Sami languages
‘Samoan '
Sandawe
Sango

Sanskiit - -
Sardinian
-Scofs
Selkup A
-Semitic (Other)
Serbian

Serbo-Croatian o
Serer V
Shan
Shona

Persian; 0ld (ca 600 - 40018.(-)7 -

fa

pl..

pt'

ps
u
' m -

o

m
{1

sm

S¢g -

sa

st
st

sn

pap
. ‘paa

| phn
1 pol

. fas/per ,

peo

pon

| por
e
" pro
pus

‘| roh

raj

rar
roa
ron/rum
rom

run

s -
sal
sam

“smi

smo
sad -
5aq
san.
srd

-SCO0 .
csel

sem-.

scr
siT

shn .
sna -

150639 _Lang_ua_ge Codes ] 591



o Tqble..G;Z. ISO 639 dnd 639,-2 lar',zgque- co_des (.cohtinu‘(zd) .

Sidamo - e sd
Siksika , L R bla-
Sndhi o ¢ | snd.
‘Sin‘ghaleseA' : ‘ s sin
Sino-Tibetan (Other) | it
Siouan languages o I lsie

CSvicothed . | |
Si_sw_ant- ' ' o ' ol ssT sswo-

Sk | s slk/slo
Slovenian - o I I sl
Sogdian | g
Somali. S s | sm
Songhai . : ~ | son
So'r_bvian_langua_ges ' ' ‘ wen
Sotho, N_ofrthern ' o) | mso ‘
Sotho, Southern -~ st | st

. South American Indian (Other) S sai
.Spanis_hi L I s esl/spa
Sukuma . o suk .
Sumerian - B T
Sudanese : T sun
Susu ) SR ] sus
Swahili _ oW swa
Sw_éii 4 S| SSW-
 Swedish o ’ v sve/swe
Syriac N _ . : syr
Tagalog I N R

- Tahitian , ] tah
Tk - 11 tgk
Tamashek . _ \ ) tmh
Tamil ' : ta tam
Tatar - B Y
~Telugu S te tel
Tereno ™ o ter
Thai i tha
Tbetan bo bod/tib

592 | AppendixG: LanguageTags



'.f'Tiable G‘-:2.'ISOvZ639 aﬁd'_639;2 ldng_ua_gé codes (cbﬁtinued) |

_J'T|gre
 Tigrinya

_ Timné :

Tivi

- Tingit -
~ Tonga (Nyasa).

" Tonga (Tonga Islands)
Truk - -
Tsimshian
Tsonga -

Tswana. -
Tumbuka -

Turkish

 Turkish, Ottoman (1500-1928)
'Turkmen_ o ' -

| T"uvinian

Twi -

- Ugaritic
Uighur -
Ukrainian -
~Umbundu
Undetermined
Urdu |
Uzbek |
Vai
Venda
Vietnamese :
Volapilk

Votic - .

Waka‘shan langisages -
Wa‘Iam‘o: o
Waray -

" Washo
Welsh

© Walof

Xhosa -

ti -

_(0

ts -

tn

tr

-tk

tw

ug
uk

ur
uz’

vi
Vo

wo
xh

tem
tiv

t

tog
ton
tru

sl

tso
tsn
wm
tur

oia

-tuk -

twi
uga
uig

_ ukr

umb
und
urd

uzb

vai
ven
vie . |
vol

~vot '

wak
wal
war
was
cym/wel
wol

“xho

150639 __larigua'geA_Codes | 593



Table G-2.150 639 and 639-2 language code.s_-‘_(c'on;tiﬁued_) .

Ya'k'ﬁ_tv | o | sah |
Yao B . o
Yap o . - yap.
Yiddish | i fyid

Yowba - o 1y {yor

. lapotec - Al

-~ Zenaga - | zen
Zhuang ' v RN _-‘ zha
Zuly T : n |l
mi ' R -

10 3166 Country Codes

Table G-3. ISO 3166 country codes

WAfgha_mstan , , A
Mbamia | AL
 Ngeria | - | oz

- American Samoa ‘ AS
Andorra ' ‘ - | AD
“Angola L K A0
Anguila . A
* Antarctica .- | AQ
Antigua and Barbuda e
Argentina . : | AR
Armenia | ‘ AM

" Aruba - : AW
Australia A

Austria T AT
Azerbaijan . AZ
Bahamas | BS
Bahrain : - |'BH

 Bangladesh | BD
Barbados _ R . BB

" Belarus T . | BY
Belgium | o BE

594 | - AppendixG: Language Tags



' ‘_Tdble G-3.1S0 3 166 ‘_c‘b'unirﬁy cdd'es.ﬁ“__(c_{ontinued) .

Belize e LB
 Benn e
*Bermuda - B Y

Bhutan S
Bolvia . 80
* Bosniaand Herzegovina - | BA

Botswana ' ' | BW

B'ouvet Island - | BV

Brazil B ' _ | BR

British Indian OceanTerritory .~ |10

- Brunei Darussalam . B BN

Bulgaia 86

Burkina Faso . S| B

Burundi . - Bl

Gmbodia . | KH

-Cameroon ‘ M

(amada = o N

(Cape Verde _ |V

Cayman Islands. ‘ | KY

(entral African Republic ' (F

Chad = - )

- Chile. 4 Q
CChima . .1 (N

. Christmas Island - o Re

- Cocos (Keeling) Islands (C

Colombia- Q)

-Comoros . - B KM

Congo ' (G

* Congo (Democratic Republic of the) o

Cooklslands | 44 _ (K

_Cos}taRi,ca : (R

Cote D'lvoire - L

(roatia - HR

Cuba = o : ®

Qyprus. - ' o

Czech Republic » @

150 3166 Country Codes - | ~ 595



“Table G-3: ISO 3166 country codes (continued). -~

-~ Denmark . o | DK
CDjbosti o
~ Dominica - : M

Dominican Republic | DO
- East Timor i
Ec_uadbr : S B
Egypt. - EG
l Salvador SR V.
Equatorial Guinea : 6Q -
Eritrea o - | ER
Estonia. - : | B
CEhopa o |
Falkland Islands (Malvinas) S
FaroeIslands )
R e
 Finlnd R
France | R

* . French Guiana : , GF

- French Polynesia N A
French Southern_ Territories - | TF

- Gabon o © | GA
Gambia R aM
Gédrgia' . o | GE
Germany ' DE
Ghana . , L GH
 Gibraltar DR N
Greece B S @
- Greenland la
Grenada - S . |6

~ Guadeloupe ‘ o GP
' Guam | - GU
Guatemala _ | GT
Guinea . | GN
Guinea-Bissau S . | GW
Guyana o A I ) {
Haiti - o

5% | Appendix G: Language Tags



'  .- ‘:Table G-3. IS_O:._31v66 cOuhtry co.desv.(continue.‘d)»

Heard Island and Mcdonald Islahdﬁ
. Holy.See (Vatican City State)
 Honduras
Hong Kong
Hungary
lceland.
India
Indonesia
 Iran (Islamic Republic of)
Iraq
Ireland
Israél' .
ftaly -
Jamaica
jépan
Jordan
Kazakstan
Kehya-
Kiribati . _
“ Korea (Democratic People’s Republic of)
 Korea (Republicof)
Kuwait , '
Kyrgyzstan
Lao People’s Democratic Republic
Latvia '
Lebanon
; Lésothp" _
“Liberia
Libyan Arab Jamahiriya -
. Liechtenstein
lithuania
. Luxembourg
Macau | _ : :
Macedonia (The Former Yugoslav Republic of)
Madagascar -
* Malawi

IS_O,3'16_6Cou'ntry Codes | 597 -



a : Téble G-3.1S0 3‘1'6_6 c'ou_ntry‘code_s _(cbntinuéd)

Malaysm : My | .
- Maldives . IR . ' _ " MV.
Mali | ML
Mata T
MarshallIslands .~ _ - MH
Martinique - | +MQ
+ Mauritania | l MR
Mauritius MU
Mayotte o SE
© Mexico - MX
 Micronesia (Federated States of ' M
‘Moldova (Republic of) ' MD
“Monaco . | - MC
~Mongolia . . MN
Montsérfat o M
Morocco o o ma
‘Mozambigue - : - MZ
. Myanmar- - o MM
~ Namibia _ : NA
Nauru e , MR
Nepal - SN
Netherlands : N
Netherlands Antilles . | AN
New Caledonia - NC
 New Zealand _ NZ
"Nicaragua _ N
- Niger - o g : NE
" Nigeria | e
Niee - | N
Norfolk Island o . NF
Nbrthenj Mariana Islands | - MP
Norway . . NO
Oman e oM
Pakistan o PK
Pl | PW
Palestinian Territory (Occupied) PS
Panama | PA

598 | - Appendix G: Language Tags



. f;;ble G3 ISO 31.6‘6 cqﬁnt%y cé_des‘(coﬁtivr'iued)A o

. PapuaNewGuinee - . - - | PG
' 'Pa‘ri_i'guay- . S = “PY
CoPew
Philippines ) N L
' Pitaim I
Poland | ' o PL
Portugal . S | pT
Puerto Rico : » . - .| PR
CQatr . v oA
Reunion R N
Romania ‘ ' RO
Russian Federation . | R
Rwanda - . - . | RW
, SaintHeIena'v . ' SH
SaintKittsand Nevis .. KN
Saintludia - L
Saint Pierre and Miquelon * * - PM
‘Saint Vincent and the Grenadines | |V |
Samoa R WS-
SnMaivo | SM
SabTome'é_nd Principe . | o ST
Saudi Arabia . o _ SA
Sen'egal ' SN
" Seychelles - X
Sierra Leone ' | SL
Singapore S G
Slovakia . .. . - Sk
Slovenia S
~ Solomon Islands o o SB-
Somalia S 0
South Africa V IA .
South Georgia and the South Sandwich Islands | GS
Spain » ES
Srilanka S LK
Sudan - o )
Swiname s
Svalbard and Jan Mayen ' 5)

1503166 Country Codes | - 599



| ’I.'a_blev.‘G—3.‘v_ISO. 3 166 cpﬁniry codes (continued). | '_

SWa_ziiahd - 7
Sweden s
© Switzerland . CH-

Syrian Arab Republic o sY

Taiwan, Province of China , W

Tajikistan o g

'Taniania (United Republic of) o 7

. Thailand - ' 1 TH

Togo - o e

Tokelau - _ R
‘Tonga =~ . A - T0

Trinidad and Tobago . B .

Tunisia - | N

Tokey o m

Turkménistan‘ - - ™

Turks and Caicos Islands I

Tuvalu . ‘ - v

o Uganda o o U6 -
CUkaine LA

United Arab Emirates ~ ' AE

United Kingdom : s | B

United States s

United States Minor Outlying Islands -~ UM

Uruguay - o

Uzbekistan o uz

Vanuatu » B : W

Venezuela R O VE
VietNAM W

Virgin Islands (British) , VG
Virgin ISLANDS (U.S.) | Vi

Walls and Futuna. | W

Western Sahara B o | BE:"

Yemen o : Y
. Yugoslavia . ' IRl

Zambia ‘ o B

600 | Appe‘ndix G: ,_languag_e Tags



- Language Admmlstratlve Organlzatlons

150 639 deﬁnes a mainténance agency for add1t1ons to and changes in the hst of lan-
guages 1n ISO 639 Thls agency is:: : : S :

_ International Informatlon Centre for Termmology (Infoterm)
" P.O. Box 130 :
-A-1021 Wien
'Aus_tri_a' '

Phone: +43 126 75 35 Ext. 312
Fax: +43 121632 72

- ISO 639 2 defmes a maintenance. agency for addltlons to and changes in the list of
. 'languages in ISO 639-2. ThlS agency | is:

" Library of Congress _ o R
Network Development and MARC Standards Ofﬁce Lo
Washlngton D.C. 20540 ‘

USA

Phone: +1 202 707 6237
‘Fax: +1 202 707 0115 ,
URL: http: /hwww.loc. gov/standards/lso639/

The maintenance agency for1SO 3166 (country codes) is:

ISO 3166 Maintenance Agency Secretanat
c/o DIN Deutsches Institut fuer Normung
Burggrafenstrasse 6

Postfach 1107
D-10787 Berlin
Germany .

Phone: +49 30 26 01 320
Fax: +49 30 26 01 231
URL http:/fwww. dm de/gremzen/nas/nabd/zso31 66mal

' 'la'n'guageAdministrativeOrgani'zation_s' |_,76_01



" APPENDIXH
) MIME Charset Reglstry

ThlS appendrx descrlbes the MIME charset registry marntamed by the Internet
Assigned Numbers Authorlty (IANA). A formatted table of charsets from the regls-
try is provided in Table H-1.. : . :

MIME Charset Reglstry

MIME charset tags are reglstered with the TANA (http: //www iana. org/numbers htm)
The charset registry is a flat-file text database of records. Each record contains a char-
set name, reference citations, a unique MIB. number, a source description, and a list
of aliases. A name or alias may be flagged “preferred MIME name.”

Here is the record for US-ASCIL:

Name: ANSI_X3.4- 1968 [RFC1345, KXS2]~ .
MIBenum: 3 = ‘ : ' '
Source: ECMA reglstry
Alias: iso-ir-6 .

- Alias: ANSI_X3.4—1986
Alias: ISO _646.irv:1991

- Alias: ASCIT
Alias: IS0646-US
Alias: US-ASCII (preferred MIME name)
Alias: us

- Alias: IBM367

- Alias: cp367

Alias: csASCII

The procedure for reglstermg a charset with the IANA is documented in RFC 2978
(http //www ietf.org/rfc/rfc2978.1xt).. :

602



Preferred MIME Names

of the 235 charsets reglstered at the time of thrs Wrmng, only 20 mclude preferred
MIME names’ ———comrnon charsets used by email and web apphcatlons These are:

- Bigs. EUCJP |
- GB2312 1SO-2022-JP
1SO-2022-KR' 1SO-8859-1
ISO-8859-3  ISO-8859-4
ISO-8859-6 ' 1SO-8859-7
1SO-8859-9 - - 1SO-8859-10
'Shrft-jIS ' - US-ASCIT
Reglstered Charsets

: EUC KR

1S0-2022-JP2 -

1SO-8859-2
. 1S0O-8859-5

 1SO-8859-8
~ KOI8R

Table H-1 lists the contents of the charset registry as of March 2001. Refer dlrectly to

http://'www.iana. org for more mformatlon about the contents of thrs table.

Table H-1. IANA MIME charset tags

1S0-10646-UTF-1:

150_646.basic:1983
INVARIANT
IS0_646.irv:1983

 BS_4730
NATS-SEFI
NATS-SEFI-ADD -

NATS-DANO
NATS-DANO-ADD

NSI_X3.4:1968, iso-ir-6,

| ANSI_X3.4-1986,
150_646.irv:1991, ASCl,

1S0646-US, us, IBM367,

| cp367, ¢sASCl
cslSOlO64§UTF1 _

| .ref, .csISO646bvasic'1 983 ' ,

CSINVARIANT

iso-ir-2, irv,
cslSOZIntIRef\_/ersion o

iso-ir-4, 150646-GB, gb, uk,
cs1504UnitedKingdom -

iso-ir-8—1,csNAISSEFI ‘

isir-8-2, CSNATSSEFIADD

is0-ir-9-1, CSNATSDANO

_i50-ir-9-2, csNATSDANOADD -

ECMA registry

. ECMA registry. -

Universal Transfer-Format (1)—this is
the multibyte encoding that subsets
ASClI-7, it does not have byte orderrng
issues

ECMA registry

ECMA regiStry

ECMA registry.
"ECMA registry
"ECMA registry
ECMA registry

(1345, KXS2.

RFCT345, KXS2
| RFC1345, KXS2
"1 REC1345, KXS2
RFC1345, KXS2

| RFCT345, KXS2

RFC1345, KXS2
RFC1345, KXS2
RFC1345, KXS2

. Registered Charsets | 603



1. IANA MIME chafset- tags'v(continuéd)

- SEN_850200_8B

SEN_850200_C

KS_C_5601-1987
150-20240R

' EUC-KR' :

150-2022-JP

150-2022-1p-2
150-2022-(N -

©150-2022-CN-EXT

IS (6220-1969-jp

Js_6220-1969-0 |
0
P

| fs

greek7-old
latin-greek
DIN_66003

© NF_Z_62-010_(1973)

Latin-gfeek—l
IS0_5427 |
vJI_S_(6226-1_978 .

BS_viewdata -
INIS

INIS-8
INIS-cyrillic

iso-ir-10,F1, 1S0646-FI, -

150646-SE, se,
| c1S010Swedish-

iso-ir-11;150646-SE2, se2,

¢s1501 1SWedishForNam'es

| iso-ir-149, KS_C_5601-1989,

KSC_5601, korean,

| csKSC56011987
- 51S02022KR

GSEUCKR
(515020220

5150202202

115_.€6220-1969,iso-ir-13,
katakana, x0201-7,
es1S013)I5C6220)p
iso-ir-14, jp, 150646-1P,
«s15014J15C6220r0
iso-ir-15; 150646-IT,
s1S015ltalian
is0-ir-16,150646-PT,
csIS016Portuguese .

- is0-ir-17,150646-ES, -

‘515017 Spanish -

| is0-ir18, s1S018Greek70ld

is0-ir-19, ¢sISO19LatinGreek
is0-ir-21, de, 1S0646-DE,
¢s1S021German

is0-ir-25, 1S0646-FR1,
6sI5025French

| is0-ir-27, ¢sIS027LatinGreek1
| iso-ir-37, 51505427 Cyrillic

iso-ir-42, N
+ | 6s1S042)i5C62261978

is0-ir-47, ¢sIS047BSViewdata
iS0-ir-49, SISO49INIS
is0-ir-50, csIS050INISS
is0-ir-51, csISO51UNISCyrillic

CEMAregisty

E:CMA:r.eQistry

ECMA registry

RFC1557 (see also KS_C_5601-1987)
RFC 1557 (see also KS_C_5861-1992)

RFC 1468 (see also RFC 2237)

|| RFC 1554

RFC1922
RFC1922.

| ECMAregistry -

E(MA. fggistry
ECMA rejisfry
ECMA registr? .
ECMA regsty
ECMA regiﬁﬁy

EMAregistty
ECMAregistry

ECMA registry

ECMA registry
ECMA registry
ECMA registry

ECMA registry -

ECMA registry
ECMA registry
ECMA registry

| RFC1345,KXS2

REC1345, KXS2
| RS2

- RF(1557, Choir -

RFC1557, Choi

 RFC1468,

Murai .-
RFC1554, Ohta ™

| RFC1922 |
R
RFC1345, KXS2.
RFC1345, KXS2
REC1345, KS2
RFC1345, KXS2

RFC1345, KXS2

RFC1345,KXS2
RFC1345, KXS2
RFC1345, KXS2

RF(1345, KXS2'

REC1345, KXS2

RFC1345,KXS2

RFC1345, KXS2

| REC1345, KXS2.

RFC1345, KXS2.
RFC1345, KXS2

RFC1345, KXS2

604 | AppendixH: MIME Charset Registry



. .. * Tabl ¢ H- 1__IANA"MI’MEchqr‘se:tAtags (continued)

1S0_5427:1981

150_5428:1980
GB_1988-80

@
s
N$;4'5'5'i-2'

NF.Z_62:010 |
: .‘vide‘otex-‘su‘pbl
P
82
| Msz;7795.3 |
| Jls_cez_zel1933
ekt
ASMO_449

- is0-ir-90 )
1S _(6229-1984-2

JIS_(6229-1984-b

IS _(6229-1984-b-add
J5_6229-1984-hand
J1S_(6229-1984-hand-add

)5, (6229-1984-kana

- is0-ir-

iso-ir-57,n, IS0646-CN,
;s1S057GB1988
is0-if-58, chinese,
sIS0586B231280

“iso-ir-60, 150646-NO, no,

¢sIS060DanishNorwegian, -

s15060Norwegiant -

1S0646-N02, iso-ir-61, 02,

" ¢sIS061Norwegian2-

is0-ir-69, 150646-FR, fr,

 ¢5IS069French

is0-ir-70, - -

| es1S070VideotexSupp1

| iso-ir-84, 150646-PT2,
cs15084Portuguese2

'is0-ir-85, 150646-E52,

GsIS0855panish2 -
is0-ir-86, 150646-HU, hu,
¢sIS086Hungarian
is0-ir-87, x0208,
JI5_X0208-1983,
sI5087.15X0208

| iso-ir-88, csIS088Greek7

1S0_9036, arabic?, iso-ir-89,

- IS089ASMO449
- 515090

i50-ir-91, jp-ocr-a,
€s15091J150622919844

| s0-ir-92,150646-JP-OCR-B,

jp-ocr-b;, - .
¢s15092J15C62991984b
iso-ir-93, jp-ocr-b-add,
¢5150931562291984badd
is0-ir-94, jp-ocr-hand,
es15094)1562291984hand
is0-ir-95, jp-ocr-hand-add,
¢515095J1562291984handadd
i50-ir-96, :
¢sIS09615C62291984kana

. 54, 1505427 Cyrillic1981
3 iso—ir-SS, ¢s1505428Greek:

ECMA registry

EMAregistty
ECMAregistry ~

ECMA registry

ECMA registry

_ ECMA ?egistry :
‘E(MA‘regis.t.ry o
ECMA re'gisfry_’
ECMA r_egistr? -
ECMA registy
-.ECMAkreg.ist_ry_.
vECMA rggisf&

E(MA»rggi'stryv L
EMAregisty

ECMA registry

ECMATegistry

| ECMA registry

ECMA registry -
ECMA registry’
ECMAregisty -

ECMA registry

| RFCT345, KXS2
| RECI345,KNS2
| RRC1345, K5,

RS2
| RECI3MS, K52

| RRC1345,KX52

‘R_Fdsééf' 02 |
-RF(_1345-, szz
REc:i'345,.KXs.2 :
REC1345, KXS2
Rfci345,‘kxsz'
‘R_FC_1.345; RS2
| '_RFC1345; sz.z'.
) RF§1'3.45,-§.<st |
- RFC1345, KXS2

RFC1345, KXS2'
RFCT345, KXS2

RRC1345, KXS2
RFC1345,KX52
RFCT345, KXS2

RFC1345,KXS2

RECI345, KHS2

~Registered _('ha_r'sets"' |- 603



. ‘Table_ H-

ISO;2_033-1983

- ANSI_X3.110-1983 .

150-8859-1

150-8859-2
1.61-7hit
 T.61-8bit
150-8859-3

IS0-88594

ECMA-cyrillic

© (SA_12434-1985-1

(SA_7243.4-1985-2

- -(SA_7243.4-1985-gr N

150-8859-6

. 150_8859-6-F
IS0_8859-6-1
1S0-8859-7

T101-62
150-8859-8 -

150. 8859-8-E

1. IANA MI'ME{c'harset tags (continued)

is0-ir-98,¢13b, ¢s1502033

is0-1r-99, CSA”T500-1983,
| NAPLPS, csISO99NAPLPS

150_8859-1:1987, s0-ir-100, -

S0_8859-1, latint, 11,

_IBM819,CP819,csISOLatin1':: R .
“ECMAregistry

1S0_8859-2:1987, iso-ir-101,
1S0_8859-2, atinZ, 12, -

~¢sISOLatin2 _
~is0-ir-102, csISO102_T617bit .
T.61, is0-ir-103,

s1501037618bit

150_-8859-3:1988, iso-ir-109,

150__8859-3, latin3, 13, - -
ciSOtatin3 ~ -

1S0_8859-4:1988, iso-ir-110,
. 1S0_8859-4, latind, 14,

csISOLatin4_ "

“iso-ir-111,

csISO111ECMACrillic -

is0-ir-121,150646-CA, csa7-1,

@, ¢s150121Canadian1
is0-ir-122, 150646-CA2, - -
esa7-2, ¢s150122(anadian2
is0-ir-123, ‘

1 csIS0123(SAZ24341985gr

150_8859-6:1987, iso-ir-127,
- 150_8859-6, ECMA-114,

ASMO-708, arabic, .
csISOLatinArabic

csIS088596E
(5150885961 -

1S0_8859-7:1987, iso-ir-126,
IS0_8859-7, ELOT_928,
ECMA-118, greek, greeks,.

| ¢sISOLatinGreek -

is0-ir-128, cs150128T101G2
150_8859-8:1988, is0-ir-138,

150_8859-8, hebrew,

csISOLatinHebrew

_csISO885'98E '

ECMA'registry
"ECMA registry

ECMA registry

~ ECMA regi&iw

ECMA registry

ECMA registry |
EMAregistty
'ECVMA regiﬁtry _
"ECMA registry -
ECMA registry
| ECMA registry

ECMA registry

RFC 1556

RFC1556

ECMA registry

| ECMA registry
ECMA registry

RFC 1556

RFC1345,KX52

RFCI345,KK52

" RFC1345, KXS2

RFC1345, KXS2

RFC1345, KXS2
RFC1345, KXS2

RFC1345, KXS2
RFC1345, KXS2

RFC1345, KXS2

RF(1345, KXS2

RF(1345, KXS2

RFC1345, KXS2

RFC1345, KXS2

RFCI556, [ANA
| REC1556, 1ANA

RFC1947,
RFC1345, KXS2

RFC1345, KXS2
RF(1345, KXS2

RFC1556, -
N_uss’bacher

606 |- AppendixH: MIME»CharsetRegis‘try



" Table H-

1. IANA MIME Vc_hra'rsét iagé , (éontinuéd) )

1150_8859-8-1
| FCSN_-369103
JUS_181.002
|56_’6‘937-2-add5

CIEC_P27-1
1S0-8859-5 -

JUS_1.B1.003-serb

JUS_1.B1.003-mac -

150-8859-9.

greek-ccitt

NC_NC00-10:81

' 150_6937-2-25 -

GOST_19768-74

- 150_8859-supp -

~1S0_10367-box
150-8859-10.

| latin-lap
JIS..X0212-1990

DS_2089 -
us-dk

dk-us
JIS_X0201

5150885981 -

o139, ,
-¢sIS0139CSN369103
is0-ir-141, 150646-YU, s, yu,

cs150141JUSIB1002:

| iso-ir-142, csI'SOTextCom.'m
is0-ir-143, csISO1431ECP271

| 150_8859-5:1988, iso-ir-144,
1 -150_8859-5, cyrillic,
-~ csiSOLatinCyrillic -

|- iso-ir-146, serbian,
. csISO146Serb|an

' _’macedoman iso-ir-147,

¢sI50147Macedonian

10__8859-9:1989, iso-ir-148,

150_8859-9, latin5, I5, -

esiSOLatin5 -
is0-ir-150, csISO150

csISO1SOGreekCCITT

.- | cuba, iso-ir-151; 150646-CU, -
¢s1S0151Cuba

Tiso-it-152, s1S06937Add-

ST_SEV_358-88, iso-ir-153,

| csIS0153G0ST1976874
is0-ir-154, latin1-2-5,

¢sI508859Supp
is0-ir-155, ¢sI15010367Box

is0-ir-157, 16,
150_8859-10:1992,
cslSOLath latin6

lap, iso-ir-158, csISO158Lap

x0212, is0-ir-159,
cs1501591i5X02121990 -

DS2089, 1S0646-DK, dk,
¢s150646Danish

csUSDK
¢sDKUS
X0201, csHalfWidthKatakana

RFC1556

- | ECMAregisty
vE(MArégis’try ‘

ECMA regstry and 150 6937- 2 1983

ECMA reglstry

ECMA registry B
"ECMA registry
ECMA registry

- ECMAregistry .

- ECMA registry

ECMA registry. |

,-E(MA registry

ECMA registry

ECMA registry

ECMA registry
. ECMAregistry

- ECMA registry

ECMA registry

‘Danish Standard, DS 2089 February

1974

115 X 0201-1976—1 byte only; thisis
equivalent to JIS/Roman (similar to

- ASCH) phus 8-bit half-width katakana-

RFC1556,

Nussbacher .
RFC134S KXSZ.

RF(13‘45,- kxs2

RFC1345, KXS2
RFC1345, KXS2
RFC1345, KXS2

RFC1345, KXS2
- RFC1345, KXS2

RFC1345, KXS2

RFC1345, KXS2
RF(1345, KXS2

RFC1345, KXS2
RF(1345, KXS2

RFC1345, KXS2

RFC1345, KXS2

'RFC1345, KXS2

RFC1345,KXS2
RFC1345, KXS2

RFC1345, KXS2

RFC1345, KXS2
RRC1345, KKS2

| RFC1345, KXS2

~ Registered Charsets | 607



»Ta'bléiH-l. IANA MIME charset tags (contimied)

KSC5636 * 150646-KR, csKSCS636 U RRC1345,KXS2
150-10646-U(S-2 - ' sUnlcode The 2-octet Basic Multilingual Plane, o
S a.k.a. Unicode—this needs to specify
“network byte order; the standard does
not specify it (it is a 16-bit mteger
: : : space) -
- 150-10646-UCS-4 - sUCS4- ~ Thefullcodespace(samecomment
S | about byte order; theseare 31-bit .
s o : , ¥ numbers) ' . _ :
DEC_—MCS dec, sDECMCS.- - VAX/VMS User’sManuaI Order - RFC1345:, KXS2.
e Number: Al-Y517A-TE, Apnl1986 -
hp-roman8 romang, 18, csHPRomang LaserJet IP Printer User's Manual P~ | HP-PCLS,
T ' © 07| partno 33471-90901, Hewlett- RFC1345, KXS2
- . ‘ ~| Packard, June 1989~ S '
‘macintosh -~ - | mac, csMacintosh The Unicode Standard v1.0, ISBN RF(1345, KXS2:
. o 0201567881 Oct 1991 S
IBM037 cp037, ebcdic-cp-us, IBMNLS RM Vol2 SE09 8002- 01 March | RFC1345, KXS2
: | ebedic-cp-ca, ebedic-cp-wt, 1990 o :
- . ebedic-cp-nl, ¢sIBMO37 L , E
1BM038 EBCDIC-INT, p038, csIBMO38 | IBM 3174 Character Set Ref, GA27- RFC1345, KXS2
‘ : 3831-02, March 1990 - _
IBM273 (P273, csIBM273 ~|BM NLS RM Vol2 SE09- 8002 01,March | RFC1345,KXS2
_ . - E 1990
1BM274 EBCDIC-BE, (P274, csIBM274 | 1BM 3174 Character et Ref, GA27- - RFC1345, KXS2
, ' . C. | 3831-02, March 1990. _ TR
BM275 | EB(DIC—BR,'cp275, csIBM27_5 IBM NLS RM Vol2 SE09-8002-01, March RFC1345, KXS2
o 1990 . -
IBM277 EBCDIC (P DK EBCDIC (P- NO, IBM NLS RM Vol2 SE09-8002-01, March -RFC1345, KXS2
csIBM277 , 1990 , o
IBM278 (P278, EdelC-(p-ﬁ, - {BM NLS RM Vol2 SEQ9- 8002 01,March | ‘RFC1345,KXS2°
A - ebedic-cp-se, csIBM278 11990 - .
1BM280. - (P280, ebedic-cp-it, ¢sIBM280 IBM NLS RM VolZSE}O9—_800.2—01v,March _RFC1345,KXS2
| S 11990 . - .
IBM281 EBCDIC-JP-E, cp281, csIBM281 lBM3174CharacterSet Ref, GA27— * | RFC1345,KXS2
R A : 13831-02, March 1990 -~ :
1BM284 | (P284, ebcdic-cp-es, IBM NLS RM Vot2 SE09-8002-01, March |- RFC1345, KXS2
' csIBM284 _ 1990 : , .
IBM285. - | (P285, ebcdlc-cp gb | 1BM NLSRM VoIZSE09 8002-01, March RFC1345, KXS2
. sIBM285. , 1990 _ .
-1BM290 p290, EBCDIC-JP-kana, - ~ IBM 3174CharacterSetRef, GA27- RFC1345, KXS2
: , ) olBM290 3831-02, March 1990 ,
iBM297 . _ vcp29'_7, ebedic-cp-fr, csIBM297 | IBM NLS RM Vol2 SE09-8002-01, March - |* RF(1345, KXS2
o 1990
608: .| AppendixH: MIME Charset Registry



. Table H-1. IANA MIME charset tags (continued)

- | pA20,ebeciccprart, IBM NLS RM Vol2.SE09-8002-07, March - ‘RFC1345 \szzf |
. | o clBM420 - | 1990, IBMNLSRMpTTIT o
CIBM423 o | 4B ebedicep-gr, . | IBMNLS RMV0I25E09-8002 01, March __RFC1345, KXs2
olBM423 1990 | 1o
IBM424 . | p424,ebcdic-cp-he, | IBM NLSRMVoIZSE09 8002 o, March' RFC1345, KXS2'
Lo ' : oo olBMA24 1990 - CE
BM437 . | A3T,437, ' IBMNLSRMVoIZSEOQ 8002 01 March RFC1345, KXS2
. | ePC8CodePaged37 - | 1990 » L
IBMs00 . - -(P500, ebcdic-cp-be, . {BM NLSRMVoIZSEO9 8002 01, March 1 RFC1345, KXS2
o ' eb_cdic—cp-__ch,'csIBMSOO 1990 .- - . -
BM775 - -} p775;¢sPC775Baltic HP PCLSCompanson Guude(P/N 5021- _ H_P-P(L5~ ~
AR I o 0329) pp B-13, 1996 S IR
IBM850 - | (p850,850, . . IBM NLS RM Vol2 SE09-8002- 01 March -RFC1345, KXS2
, L ~ | csPC850Multilingual. - 1990 L N
IBMS51 - s €p851, 851, csIBM851 - | 1BM NLSRMVOI25E09 8002 01 March ‘RF(1'34S,'K_XSZ
IR S | 1990 -
BMSS2 L | (p852,852,csP(p8s2 lBMNLSRMVoIZSE09-8002 01, March | RFC1345, KXS2
j ' o 1990 : . o
IBM8s5 . p855, 855, ¢sIBM855 'IBMNLSRMVO|25E09 8002 01 March RFC1345, KXS2
, o T 990 . o
BMSST | cp8s7,857,coBMSST | IBMNLSRMVol2SE09- 8002-01, March RFCT345, KXS2
i T I S
{BM860 - - ‘ c'p860,-860,-cslkBM860 IBM NLS RM Vol2 SEO9 8002 01, March RF(1345,-KXSZ
» ‘ ‘ L ) ' 990 ‘ D
IBM861 | p861;861, cp-i, csIBM861 'IBMNLSRMV0I25E09 8002 01 March.'_ RFC1345, KXS2
S o 1% ~ 1 ;
IBM862 @ . - | 862,862 ~ v "IBMNLSRMVoIZSE09—8002 01 March RFC1345, KXS2
o ' csPC862LatinHebrew 1990 _ ‘ P
1BM863 o cp8_63,863,’c_slBM863 v '.'IBMkeyboard Iayoutsandcodepages RFC1345, KXS2
, . S| PNOTGASS6 Junet99t - o | -

- IBM864- - ' | p864, csIBMB64 - . IBMkeyboardIayoutsandcodepages’]‘ RFC1345, KXS2
' : _ - | PN07G4586,June 1991 | -
IBM865 - |- cp865, 865, csIBM865. . | IBM DOS33Ref(Abndged) 94X9575 »_RF"C1345", KXs2-

o S Feb1987- (.
IBM866-. - . (866, 866, _csIBM8_66 | IBMNLDGVol2 SE09- 8002 03 August _ _Pond
- : S N O [ o
BM868 - _CP868,cp-ar,csIBM868, ~ | IBMNLS RM Vol2 SE09-8002- 01 March | RFC1345,KXS2
: o 1990 T
IBM869 cp869 869, -gr, cslBM869 .| IBM keyboard layoutsand code pages, | RF(1345,KXS2
_ : : - | PNO7GA4586, June 1991 - S .
BMS70 . - -(P870, ebcdlc-cp-roece, IBMNLS RM Vol2 SE09 8002 01, March: | RFC1345, KXS2
' | ebedic-cp-yu, csIBM870 - 1990 ‘ T

Registered Charsets . | 609



* IBM871

IBM80
Mo
1BM03
'IBM90:4
'_'IBM905.
IBM918

. IBM1026 -
ERCDICATDE
.EBCDIC—AT—DE-A

EBODIC-CA-FR

EBCDIC-DK-NO

EBCDIC-DK-NO-A
EBCDIC-FI-SE
 EBCDIC-FI-SE-A
EBCDICR |
EBCDICIT

. EBCDIC-PT
EBCDICES - |

EBCDIC-ES-A.

Table H-1. IANA MIME charset tags.(contiﬁued)_ o

| CP871; ebedic-cp-is, csIBM871

| p880, EBCDIC-Cyrillic,
csIBM380

cp891, csIBMB9T

- p903, csIBM903

(904, 904, csIBBMI04 -

1 CP90S, ebedic-cp-tr, cIBMI05

(P18, ebedic-cp-ar2,
csIBM918 , ‘
(P1026, csIBM1026

| 'csIBMEB(Dl(ATDE
| EBCDICATOEA
* GsEBCDICCARR
| EBCOICDRNO
| SEBCDICDKNOA
al csEBCDI(fiSE-

| cSEBCDICFISEA

CSEBCDICFR

GsEBCDICIT

- GSEBODICES

sEBCDICESA

1BM NLS RM Vol2 SE09-8002-01, March -

1990

BMNLSRMVol2 SE0S-8002-01, March ’
L0

IBM NLS RM Vol2 SE09—8002-01, March-
1990

1BM NLS Ri Vol2 SE09 8002-01, March '

1990

IBMNLS RM Vol2 SE09-8002-01, March'
1990

“1BM 3174 Character Set Ref GA27-
.| 3831-02, March 1990 '

- IBMNLS RM Vol2 SE09 8002 01 March -
.1990 :

IBM NLS RM Vol2 SEO9 8002- 01 March
1990

1BM 3270 Char Set Ref Ch 10, GA27-
2837-9, April 1987

IBM 3270 Char Set Ref Ch 10, GA27-

| 2837-9, April 1987
[BM 3270 Char Set Ref Ch 10, GA27-

2837-9, April 1987
IBM 3270 Char Set Ref Ch 10, 6A27-

| 2837-9, April 1987

IBM 3270 Char Set Ref(h 10, GA27-

. 2837-9, April 1987-

1BM 3270 Char Set Ref Ch 10, GA27-
2837-9, Aprit 1987

IBM 3270 Char Set Ref Ch 10 GA27-

- 2837-9, April 1987

IBM 3270 Char Set Ref Ch 10, GA27-
2837-9, April 1987

IBM 3270 Char Set Ref Ch 10, GA27-
28379, April 1987~

iBM 3270 Char Set Ref Ch 10, GA27-
2837-9, April 1987 -

IBM 3270 Char Set Ref Ch 10, GA27- - -
- 2837-9, April 1987

1BM 3270 Char Set Ref Ch 10, GA27- '
283749, Apnl 1987 .

RFC1 345,_KXSZ

RFCI345,KKS2
'RF(1345 Ks2
RFC1345, KXS2
f RFC1345, KXS2

 RFC1345, KXS2

RFC1345 KX52

" RFC1345 KXS2

RF(1345, KXS2

RFC1345, KXS2

-RFC1345, KXS2

RFC1345, KXS2

RFC1345, KXS2
RFC1345, KXS2
* RFC1345, KXS2

| RRC1345, KXS2

RFC1345, KXS2

 RFC1345, KXS2

RFC1345, KXS2

| RFC1345, KXS2 -

610 |- Appendix H:. MIME Charset Registry



EBCDIC-ES-S
~ EBCDIC-UK

EBCDIC-US

UNKNOWN-8BIT

MNEMONIC -
MNEM

visal
VIR
 KoIs-R

KoI3-U"
IBM00858

IBM00924
IBM01140
C1BM01141

IBM01142
IBM01143

IBMO1144 -

| iBM011_4s
I.BM(‘)1_146
BMOTI47

[BM01148.

CSEBCDICESS

| csEBCDICUK

-' Tabie_‘ H"-l.‘I‘ANA' MIME éharse_‘t'ta‘gé (coﬁtinﬁed). .

(SEBCDICUS -

chnknoWn8BiT L

- csMiemonic

csMnem .

VISl

csVIQR
¢sKOI8R -

CCSID008SS, CPOOS8, PC-
. ‘Multilingual- 850+euro ‘
| CCsID00924, CP00S24, ebcdic-

Latin9--euro .

((SID0114O CP01140 ebedic-
us-37+euro

CCSID01141, CP01141 ebcdnc—
de-273+-euro

CCSID01142, (P01142 ebcdlc-
dk-277+euro, ebedic-no-

277+euro

(CSID01143, CP01143, ebcdic-
fi-278-+euro, ebedic- se-
278+euro

CCSID0T144, CPOT144, ebedic-

it-280+euro .

(CS5ID01145, CP01145, ebedic- -

es-284-+euro

((5ID01146, CPO1146, ebcdic-.
| - gb-285+euro

((5ID07147, CPO1147, ebedic-
fr-297+euro

(CSiID01148, (P01148, ebcdic-
international-500+euro

RFC 1345, also knbwn is

| “mnemonic+ascii+38" -

RFC 1345, also knownas - ._ '

o mnemomc+ascu+8200”
RFC 1456 ’
'RF(1456

RFC 1489, based on GOST-19768 74
1S0- 6937/8 INIS- Cyrllllc ISO 5427

RFC2319

IBM (see.. /assagnments/character-
-set-info/IBM00858) [Mahdi]

- 1BM (see.. /asmgnments/charac’fér’-’

set-info/IBM00924) [Mahdi]
IBM (see.. /a55|gnments/character-

set-info/IBM01140) [MahdI]

“IBM (see .. /a55|gnments/character- )
‘| set-info/IBM01141) [Mah__dl]

IBM (see.. /aSmgn’mérits/éhéracter—
set—mfo/lBM01142) [Mahdn]

1BM (see... /asmgnments/character— _
-set—mfo/lBMO_H43) [Mahdi] -

IBM (see .../assignments/character-
Set¥inf0/lBMQ1_14_4) [Mahdi]
IBM (see .../assignments/character-
set-info/IBM01145) [Mahdi]

- 1BM (see .../assigninents/character-

set-info/IBM01146) [Mahdi]

IBM (see .../assignments/character-
set-info/IBM01147) [Mahdi] =~

IBM (see .../assignments/character-
set-info/IBM01148) [Mahdi]

| 1BM3270 Char Set Réf(h 10, GA27-
~|283749, April 1987: ' '

IBM 3270 Char Set Ref Ch 10, GA27-'
28379, April. 1987 -

, IBM 3270 Char Set Ref(h10 GA27- _
_-'2837 -9 Apnl 1987 S

RFC1345,KXS2

RFC1345, KXS2
RFC1345,KXS2

RFC1428

RFC1345, KXS2

RFC1345,KXS2

| RFC1456 -
RFC1456.

RFC1489

| RFC2319

.. 'Registered Charsets . | 611



g Tablé H-1. JIANA MIME charset tags (continued) :

- IBM01149

~ BigS-HKSCS
UNICODE-1-1
s

UTF-7 .
UTF-16BE
CUTF-16E
UTF-16

UNICODE-1-1-UTF-7

UTF8
is0-8859-13

is0-8859-14

'150-8859-15 -
JIS_Encoding

Shift_JIS .

RGP

None -

,chmcodeH
None

None . -
‘None -~ -
None .

None

sUnicodeT1UTF7

is0-ir-199,

1150 8859-14:1998,
| 150_8859-14, lating;

iso-celtic, 18-
1S0_8859-15

cs)iSEncoding

MS_Kanji, csShifuIs

Extended_UNIX;Code;

Packed Format - for_

|~ Japanese, -
- 'csEU(PdemtJapanese

(C5ID01149, CP01149, ebedic-
‘ ..is-SZ1 +eurg.” -

IBM (see .../assignments/character-

_ set-info/IBM01-149) [Mahdi}

See (. /a55|gnments/character-set-
| info/Big5-HKSCS) [Yick]

| RFCI641

SCSU (see.. /assmnments/character—

set-info/SCSU) [Scherer]

RFC 2152 ‘
RFC 2781

| RRC2781

| RRC2781
RFC1642 . -
' RF(2279

150 (see... assugnments/character-set-
me/ISO 8859-13)[Tumasonis]

150 (see .assignments/charactei-set-

info/is0-8859-14) [Simonsen]

{ 150

| 115X 0202-1991; uses IS0 2022 escape
_sequences to shift code sets,as - -

documented in JIS X 0202-1991
Thls charset is. an extension of

: csHalf\NldthKatakana—|tadds

1 graphic characters in JIS X 0208. The

. (CSs arelIS X0201:1997 and JIS X0208:
1997. The complete definition is shown -

in Appendix 1 of JISX0208:1997. This
charset can be used for the top-level -

 media type “text”.

Standardized by OSF, UNIX .
International, and UNIX Systems
Laboratories Pacific. Uses 150 2022 -
rules to select code set. code set 0: US-

1 ASClI (a single 7-bit byte set); code set.

1: JIS X0208-1990 (a double 8-bit byte
set) restricted to AO—FF in both bytes;
code set 2: half-width katakana (a.
single 7-bit byte set) requiring S52 as
the character prefix; code set 3:JIS -
X0212-1990 (a double 7-bit byte set)
restricted to AO—FF in both bytes
requiring SS3 as the character prefix.

REC1641

| RFC152

RFC2781
RFC2781

RF(2781

RFC1642

| RFC2279

612 | Appendix H: MIME Charset Registry



_ .T,a'ble _H-i; IANA'MIME charset tags '(continﬁed)

B ‘Extended_UNIX_Code_
Fixed__Width_for_
Japanese

150-10646-UCS-Basic

' ISO-tOMﬁTUnicode-Latint

150-10646-J-1.
150-Unicode-1BM-1261

" 1S0-Unicode-1BM-1268-

IS0-Unicode-1BM-1276
1S0-Unicode-IBM-1264
IS0-Unicode-1BM-1265 ’

" 150-8859-1-Windows-3.0-

Latin-1 -

- 1S0-8859-1-Windows-3. 1-.

-~ Latin-1 .

1S0-8859-2- Wmdows—
Latin-2 - '

Latin-5 A
: Adobe-Standard Encodlng

. VenturaaUS L

: csEUCleWIdJapanese

*csUnicodeASCll -

150-8859-9- Wmdows-

'ch_nicode_Latin], 150-10646

| ‘vchnicodeIBM1261. -

csUnidocelBM1268

- " chni_codelBM'12'7,6._ -
'Ichnico‘deIBM1.264 ,'

' c’sUnicodellBM1265

csWinddWs30Lattn1 o

: 'csWindOWS31'Latin_1 -

csWindows31Latin2

. csWindow531Latin5 o

. sAdobeStandardEncoding . |

csVenturalS

-Used in Japan. Each characteris 2 v
octets, code set 0: US-ASCIl (asingle 7-

bit byte set); 1st byte =00, 2nd byte =

_ 20-7E; code set 1: JIS X0208;1990_(a Col
double 7-bit byte set) restricted to A0— |-
FF in both bytes; code set 2: half-width

katakana (a single 7-bit byte set), Tst

byte = 00, 2nd byte = AO-FF; code set -

3:J15X0212-1990 (a double 7-bit byte
set) restricted to AO—FF in the first byte
-and 21-7E in the second byte '

ASCll-subset of Umcode Basuc latin=

o collection 1. See1S0 10646, Appendle._

1 150 Latin-1 subset of Unicode. Basic
. Latin and Latin-1. Supplement = -

collections 1and 2. See ISO10646, '

_Appendix A, and RFC 1815,

150 10646 Japanese See RF( 1815
[BM Latin-2, -3;-5, Exten_ded

Presentation Set, GCSGID: 1261 o
IBM Latin-4 Extended Presentatlon Set '

GCSGID: 1268
IBM Cyrillic Greek Extended

-Presentatlon Set GCSGID 1276

1BM Arablc Presentatlon Set, GCSGID

C1204 0 '
| 1BM Hebrew Presentatlon Set G(SG!D:

1265.

Extended IS0 8859-1 Latin-1 for-
Windows 3.0. PCL Symbol Set 1D: 9U.

Extended 150 8859-1 Latin-1 for

Windows 3.1. PCLSymboI SetiD: 19U. |-

Extended 150 8859- 2’.‘Lat|n -2for .
Windows 3.1. PCL Symbol Set ID: 9E. -

1 Extended IS0 8859-9, Latin-5 for

Windows 3.1. PCL Symbol Set 1D: 5T,

~ PostScript Language Reference

Manual. PCL Symbol Set ID: 10J.

Ventura US-ASCI plus characters
typically used in publishing, such as
pilcrow, copyright, registered,

- trademark, section, dagger,and
- double dagger.in the.range AG (hex) to
 FF (hex). PCL Symbol Set ID: 14J.

HP-PCL5

HP-pCLS

HP-pCLS

HP-PCLS

Adobe

HP-PCLS

_ Registered Charsets |

613



Ventura-International

‘PCSLD_anish-Norv‘ue'gian o

PC8-Turkish
IBM- Symbols

IBM-Thai

HP-LegaI '

HP:Pi-font -

HP-Maths

Adobe-Symbol-Encoding

HP-DeskTop

Ventura-Math_

Microsqft-'Puins_hing

- Windows-31)

GB2312

" Table H-1. IANA MIME charset tags (continued)- '
| esVenturalnternational *

_csPC8DanishNo;wégian

sPCBTurkish

csIBMSymibols. - |
CsIBMThai -
.| ¢sHPLegal

‘csHPPiFont
csHPMaths

| csHPPSMath

CsHPDesktop

csVenturaMath
csMicrosoftPublishing - -

| csWindows31) -

(sGB2312

- Ventura International. ASCH plus coded
. characters similar to Roman8. PCL
-SymboISet ID: 131,

PC Danish NonNeglan 8- bit PC set for ‘
- Danish Norweglan PCL Symbol Set!D:

11U,

PC Latin Turkish. PCL Symbol Set ID; 9T,
| Presentation Set, CPGID; 259
' Presentation Set, CPGID: 838

2 5Comparison Guide, Hewlett-
Packard, HP part number 5961-0510,

- October 1992, PCL Symbol SetID 1u.

PCLS Comparison Guide, Hewlett-
Packard, HP part number 5961-0510,

October 1992. PCL Symbol Set ID: 15U.

PCL'5 Comparison Guide, Hewlett-
Packard, HP part number 5961-0510,

| October 1992. PCL Symbol St ID: &M,

PostScript Language Reference
Manual. PCL Symbol Set ID; 5M :

- PCL5 Comparison Guide, Hewlett-
Packard, HP part number 5961-0510, -

October 1992. PCL Symbol Set1D: 7). -
PCL 5 Comparison Guide, Hewlett-

 Packard, HP part number 5961-0510,
 October 1992. PCL Symbol Set ID: 6M. . -

PCL 5 Comparison Guide, Hewlett-

- Packard, HP part number 5961-0510,

October 1992. PCL Symbol Set ID: 6)."
Windows Japanese. A further

extension of Shift_JISto include NEC :
-special characters (Row 13), NEC

selection of IBM extensions (Rows 89 to

' 92), and 1BM extensions (Rows 115 to

119). The CCSs are JIS X0201:1997, JIS-
X0208:1997, and these extensions, This

charset can be used for the top-level-

media type “text”, but it is of limited or

specialized use (see RFC 2278). PCL

Symbol Set ID: 19K,

Chinese for Péople’s Republic of China. - |

(PRC) mixed 1-byte, 2-byte set: 20-7E

= 1-byte ASCIl; A1—FE =2-byte PRC

Kanji. See GB 2312- 80 PCL Symbol Set

“1D:18C.

HP-PQLS

HP-PCL5

HP-PCLS

1BM-CIDT
1BM-CIDT

HP-PCLS

“HP-PCLS
HP-PCLS

.- Adobe _

HP-PCLS

HP-PCLS -

RP-PCL5

614 | AppendixH: MIME Charset Registry



Bigs

~ windows-1250

‘windows-1251

‘ windoWs-1252
windows-1253

windows-1254

windows-1255

windows-1256 .

“windows-1257
‘windows-1258
TIS-620

HZ-GB-2312

" Table H-1. IANA MIME charset tags (continued)

céBig_S ‘

: ChlneseforTalwan Multlbyteset PCL :
-Symbol Set id: 18T.

| Microsoft (see . /character-set—mfo'/;

windows- 1250) [Lazhmtseva]

Microsoft (see .. /character set-info/

wmdows 1251) [Lazhmtseva]

Microsoft '(see .../character—setvlnfo/ '
windows-1252) [Wendt] -

Microsoft (see..../character-set-info/ -
“ windows-1253) [LaZhintsgva]

| Microsoft (see .../character-set-info/

windows-1254) [Lazhintseva]

| Microsoft (see ../character-set-info/

windows-1255) [Lazhintseya]

‘Microsoft (see .../character-set-info/
‘ windqws-]256).[L_azhints_ev'a] .'-

Microsoft (see .../character-set-info/
windows-1257) [Lazhintseva]

Microsoft (see .../character-set-info/

windows-1258) [Lazhintseva]
Thai Industnal Standards Institute

() |
 RFC1842, RFC 1843 [RF(1842

RFC1843]

[Tantsetthi]

Registered Charsets | -

615






‘Symbols

- (colon), use in headers 47
= (equals sign), base-64 encoding, 572
[~ (slash tilde), 122 E

‘ Numbers

8-bit ldentlty encodmg, 382
100 Continue status code, 59,60 -
100-199 status codes, 59-60, 505
200-299 status codes, 61,505 - - -
~300-399 status codes, 61-64; 506 .-
400-499 status codes, 65-66, 506 .
500-599 status codes, 66, 507
2MSL (maximum segment lifetime), 85
absolute URLs, 30
.Accept headers, 69, 508
robotsand, 225"
Accépt-Charset headers, 371, 375 509
MIME charset encoding tags and, 374
‘Accept-Encoding headers; 509
Accept-Instance-Manipulation headers, 367
Accept-Language headers, 371, 385, 510
content negotiation and, 398. '
Accept-Ranges headers, 510
access controls, 124
proxy authentication, 156
. access proxies, 137 -
advertising, hit counts and caches, 194-196
- age and freshness lifetime,. 188
‘Age headers 510 . ‘
- agents, 19 .

~ Index

algorithms '
aging and freshness 187—194
document age calculation, 189-194 -
instance- mampulatlon algonthms 367
LM-Factor, 184"
message dlgest algonthms 291—294

symmetric : authentication, 298 .
Nagle salgorithm, 84 -
redirection, enhanced DNS- based 457
- résource-discovery algorlthm )
(WPAD), 143 465 .

RSA, 317 -

aliases (URLS), 219 ,

Allow headers, 159,511

' <allprop>_ element, 437 . '
" anonymizers, 136+

anycast addressing,: 457 -~ : .
Apache web servers; 110 -~
content negotiation, 399 ,
MultiViews directive, 400
type-map files, 399
Directorylndex conﬁguratlon
- directive, 123
document root, setting, 121 - _
HostnameLookups conﬁgurauon N
~directive, 115 '
-HTTP headers, control of, 186
IdentityCheck configuration .
directive, 116 - '
magic typing, 126
APIs (application programmmg
interfaces), 203
server. extensions, 205
’ 'web ser.vices‘a_nd,,ZOS

o We’d hke to hear your suggestions for improving our. mdexes Send emall to zndex@orellly com.

617



apphcamon/* MIME types 540—557
application programmmg mterfaces (see :
. ' APIS)
.apphcatlon servers, 123, 203
ASCII character set, 379
asymmetric cryptography, 315
attacks, 303-306 ‘
batched brute-force att_acks, 305
. chosen plaintext attacks, 305
- dictionary attacks, 304
-enumeration, 313 =
evidence of, 301
" -header tampering, 303
“hostile proxies, 304
man-in-the-middle attacks, 304
~ replay attacks, 284, 303
preventing, 289 :
audio/* MIME types, 557-559
a_uthentlcatlon 277-280 -
- basic (see basic atithenticétion)

challenge/response framework, 278

digest (see dxgest authentlcatlon)

headers, 278

HTCP, 480

multiple authentication schemes, rlsks

of, 303
protocols, 278
© proxy servers, 156

server, using digital certificates, 321

(see also HTTPS)
Authentication-Info directives, 576
Authorization headers, 281, 511

directives, 575 '

preemptive generation, 295
automatic expansion of URLs, 30

B

bandwidth
bottlenecks, 161
transfer times and; 162
base URLs, 32 :
base-64 encodmg, 570-572"
alphabet, 571
equals sign (=), 572
HTTP, compatibility with, 570
padding, 572
Perl implementation, 572
purpose, 570
username/password, 282 ’
bases 31

, basm authenncatlon 281-284 -

example, 281
‘headers, 281,300

' .insecurity of, 283,286

* protection space, 302
~ by proxy servers, 283
‘username/password encoding, 282
web server vs. proxy, 283
~ (see also authentication)
batched brute-force attacks, 305

. Binary Wire Protocol, 250 252
- blind relays, 94

browsers
Host headers and older versions of, 419 -
'HTTP, use of, 13
parallel connections, maximum, 90
URLs, automatic expansmn of, 34

byte h1t rate, 167

C

Cache Array Routing Protocol (see CARP)
Cache-Control headers, 175- 177 182186,
189,511
directives, 361.

caches, 18,133, 161-196 -

advertising and, 194-196
aging and freshness algorlthms 187——194
byte hit rate, 167 - : :
cache_busmng, 492
cache hits and misses, 165, 168
cache meshes, 170
cache validators, 181
- Cache-Control headers, 175-177,
- 182-186, 189, 511
directives, 361
cookies and, 273
digest authentication and, 302
distance delays and, 163
DNS caching and load balancmg, 456
document expiration, 175 = -
exclusion of documents from, 182
expiration time, setting, 182
Expires headers, 175, 183
flash crowds and, 163
freshness check, 173
heuristic expiration, 184
hit logs, 195
hit rate, 167
. HTTP-EQUIV tag, 187 .

618 | Index



- logging, 174..
lookup, 173" :
malntammg currency, 175
message truncation and, 344 -
network bottlenecks and, 161
- parent caches, 169
parsing, 172 -
peering, 171 -
processing steps, 171-175
flowchart, 175
- -receiving, 172
response creation, 174
revalidate hits, 165
revalidations, 165-166
sending, 174 :
server revalidation, 175, 177 -+~
setting controls, 186
- sibling caches, .171
surrogate caches, 421
* topologies, 168
uses, 161 .
. caching headers, 68 -
caching proxies (see caches)
caching proxy servers, 169 -
canonicalizing of URLs, 37, 220
CARP (Cache Array Routing -
"Protocol), 475-478. -
* disadvantages, 476
1ICPvs., 475 -
redlrectlon method, 476 ‘
CAs (certificate authorities), 327 -
case sensitivity, language tags, 386 .
CDNis (content distribution networks), 421
certificate authorities (CAs), 327 -
certificates (see digital certificates)’ o
CGI (Common Gateway Interface), 203, 204
challenge/response authentication -
" model, 278
‘challenge headers, 72
‘multiplé challenges, 301
character encoding schemes, 377, 381
character repertoire, 377
character sets, 35,371-376
encoding, 370
mechanisms, 36
restricted characters, 36
characters, 378
URLs, legal in, 35°
charset tags, 371
© IANA MIME character set reglstry
- and, 371.

- chemical/* MIME types 559-561.

child filters, .131 ..
chosen plaintext attacks, 305
chunked encodings, -345

- ciphers (see under cryptography)

ciphertext, 310

cleartext, 310 . '
- client error status ches (400 499) 65—66

505 .

client hosmame 1dent1f1cat10n 115

client proxy conflguratlon 141- 144 -
manual, 142 . S
PAC (Proxy Auto- conflguratlon)
protocol, 142,463 -
WPAD (Web Proxy Autodlscovery
Protocol), 143~
client-driven negotiation, 396.
disadvantages, -396. :
Client-ip headers, 258, 260 512
clients -
100 Contmue status code and 59
_freshness constraints, 185
Host header 1 requirements, 418
' identification, 257-276
. fat URLs, using for, 262
IP addresses, using for, 259
- user logins, using for; 260 -
" (see also cookies)
$upported character sets, 375

client-side gateways, 199

security accelerator gateways 202 .
client-side state, 265 -
code width, 377 ,
coded character sets; 377, 379 -
coded characters, 376 .
coding space, 376 -
collections, 439 -
collisions, one-way digests, 288
colon (:), use in headers, 47
Combined Log Format, 485
Common Gateway Interface (CGI),. 203 204
Common Log Format; 484 '
composite MIME types, 534

* conditional requests, 362 -

headers, 70, 178-181
configuration URLs (CURLs), 465
CONNECT method,. 206-208, 336
connection handshake delays, 82
Connection headers, 86,512 -
connections (see HTTP connections)
conterit distribution networks (CDNs), 421

"~ Index | 619



content encodmgs, 345, 351—354
content injection, 405 .
* content negotiation, 395-403 :
-~ on Apache web servers, 399
‘ 'chent—drlven negotlamon, 396
‘headers, 397
_ other protocols and, 405
-performance limitations, 405
- quality values, 398 _
server-driven negotiation, 397—400
techniques, 395
transparent negouauon 400—403
content routers, 134,170
Content-Base headers, 513
- Content-Encoding headers; - 513 -
content-injection, 405

‘Content-Language headers, 371, 384, 513

Content-Length headers, 344-347, 514
content encoding and, 345
persistent connections and, 345

- Content-Location headers, 514

-Content-MD5 headers, 347, 514.

- Content- -Range. headers, 515 . »

Content-Type headers, 348-351, 515 .
character encodings, 349

- charset parameter, 371
- META tags and, 375
MIME charset encoding tags and, -374
multipart form submissions, 349
continuation lines, in headers, -51 .
* Continue status code (100), 59~60
Cookie headers, 516 ‘
Cookie2 headers, 516
- cookies, 263-276
- browsers, storage on, 264
cachlng, 273
- domain attributes, 267
functioning, 264 .
information contaitied in, 264 .
“Path attributes, 268-
privacy and, 275"
securityand, 275
session tracking, 272
Set-Cookie2 headers, 271
spec1f1cat10ns 268
 third-party vendors, use by, 267
types, 264 :
Version 0, 269 ’,
Version 1, 270-272
- headers, 272 )
version negotiation, 272
web site specificity of, 266

'COPY method, 442
‘country codes,. 388

country tokens, 388
crawlers 215-224
" aliasing, 219 - '
- canonicalizing of URLs, 220
- checkpoints, 219 .
© cycles, avoidirig, 217-218, 222-224
dups, 218 . . -
- filesystem link cycles, 220 o
hash tables, 218 L
- loops, 217 : pe
lossy presence bit maps 218 .
partitioning, 219
root set, 216 -
search trees, 218 o
tracking of visited sites, 218 .
traps, 220-224 :

" -CRLF, 44

_in entities, 343 ‘
cryptographic checksums, 289 -
cryptography, 309-317 o o

asymmetrically keyed ciphers, 315 .
cipher machines, 311 - - S
ciphers, 310-315 -

7 digital, 311

ciphertext, . 310- = -
cleartext, 310 _
enumeration attacks, 313
hybrid cryptosystems, 317 -
keyed ciphers, 311
keys 311,312 .
“key length 313
~ sharing, logistical aspects of, 315
public-key cryptography, 315-317
* computation speed, 317
digital signing with, 318
. RSA algorithm, 317 '
- symmetric-key ciphers, 313
CURLs (conf1gurat10n URLs), 465

cycles, avoiding (web robots), . 217—218 _

. 222-224 _
filesyste__m link.cycles, 220 ,

D

data formats, conversion, 135
date formarts, 392

Date headers, 516 *

DAV headers, 431
compliance classes, 445
decomposing of URLs, 33 -

620 | Index



dedicated web hostmg, 412
- delayed acknowledgements, 83
- DELETE method, 58,441 -
delta encodings, 359, 365-367
- server disk space and, 368
delta generators and appliers, 368
<depth> element, 434
Depth headers, 431 -
" Destination headers, 431
dictionary attacks, 304
- digcalc.c file, 578
- digcalc.h file, 577
digest authentication, 286—306 574—580
algorithms, 291-295
" input data, 291 .~
authentication process, 287
- .Authentication-Info directives, 576
Authorization directives; 575°

basic authentication, compared to, 286

caching and, 302 _
~digest calculations, 291

error handling, 301. '
H(A1) and H(A2). reference code 577
handshakes, 290 -

headers, 300 .

MDS5 and MD35-sess, 291
message-related data (AZ), 293,298
nonces, 289 ..

password files, vulnerabxhnes of, 305
preemptive authonzanon 296 -

. protection space, 302

request and response digest reference ’

 code, 577
revalidating a session, 295
rewrmng URIs, 302
‘security, 286 =
- security-related data (A1), 293
session, 295 ‘
symmetric authentication, 298

WWW-Authenticate drrecrlves, 574575

(see also authentrcanon)

dlgeSts 288 .
algorithm input data, 291"
collisions, 288

digital certificates, 319-322
public-key cryptography and, 320
server authentication, use for, 321
universal standard, lack of, 320
virtual hosting and, 328
+.X.509v3 certificates, 320

dlgltal cryptography (see cryptography)

E d_igital'signatures; 317:—3,19_»

example,; 318

- digtest.c file, 580 -
directory listings, 122~

_ disabling, 123 ..
discrete MIME types, 534
distance delays, 163 .

- distributed- ob]ects (HTTP NG) 249
" DNS '

caching, 456 o

DNS A record lookup,- 467
redirection, 453-457 ©
_enhanced-algorithms for; 457 -

multiple addresses and round- robin. o

- address. rotatlon 455 .
resolvers, 453 . 4
round robln 454 455 -
load balancmg with, . 456
docroots (document roots) 120
- private, 122
user home dlrectory, 122
virtually hosted, 121 -
document’ access control, 132
documient expiration, 175
setting,. 182 '
document hit rate, 167
document roots (see docroots)
documents :
age and freshness’ hfenme 188
age-calculation algorrthrns 189-194
caching, preventing, 182 '

~ fréshness and aging algonthms 187—194

heuristic expiration, 184 -
Domain Name Service (see DNS)

domain names, mrernanonahzanon of, 392

downstream message ﬂow 44
dups (web robots), 218-

dynamlc content resource rnapplng, 123 L

E

egress prox1es 137 :
embedded web servers, 111

“encodings, 372 -

. chunked encodmgs, 345

- content encodings, 345, 351—354 L

delta encodings, 359, 365-367
~ impact on server disk space, 368.°
fixed-width, 381 = - - -
transfer encodings, 354-359
end-of-line sequence, 44. = .

Index. |

o1



entities, 342 , ' '
* body length determlnmg, 346
- Content-Length headers, 344—347 -
- CRLFline, 343 . .~ .
entity bodies,. 44, 47, 52, 343
MIME types, 348 -
enuty digests, 347
entity headers (see under headers)
entity tags (see ETags)
enumeration attacks, 313

equals sign (=), base-64 encoding, 572 y

escape sequences, - 36
‘ETags (entity tags), 180, 298

- headers, 517

using, 181
euc-jp encoding, 383
Expect headers, 517 - :
experimental MIME types, 569
expiration of documents, setting, 182
Expires headers, 175,183, 517
explicit MIME typing, 126
Extensible Markup Language (see XML)
'exten51on APIs, 205
extension headers, 51, 68
extension methods, .58

F.

Fast CGI, 205

fat URLs, 262 |

. limitations of, 263

file scheme, 39 :
filesystem link cycles 220 :
FindProxyForURL() method, 143
fingerprint functions, 289

first subtag, 387 '
fixed-width encodings, 381

flash crowds, 163 '

format conversion, 404
FPAdminScriptUrl, 426
FPAuthorScriptUrl, 426
_FPShtmlScriptUrl, 426"
Fpsrvadm, 428

frag or fragment component, URLs, 30

freshness and aging algorithms, 187-194

freshness lifetime, 188
From headers, 258, 517
robots and, 225 .
FrontPage, 424429
chent and server extension -
commumcanon 426

B FrontPage Server Extenswns (FPSE) 424
HTTP POST requests and, 425 -

" listExploreDocs element, POST request

body, 427
- listHiddenDocs element, POST request
: body, 427 ‘ '
‘root web, 425
RPC protocol, 426
security, 428 . . _
* server administrator utility
.. (Fpsrvadm), 428 -
service_name element, POST request
-~ body, 427
subweb, 426
virtual servers, 425
ftp scheme, 39
full NAT, 461 -
full-text indexes, 243

G

gateways 19, 197-205

client-'and server-side, 199
 client-side security accelerator
. gateways, 202
examples, 198
- protocol gateways, 200 ,
proxies, contrasted with, 130
resource gateways, 203
‘server-side security gateways, 202
server-side web gateways, 200
Via headers and, 153 ’
general headers (see under headers)
general-purpose software web servers, 110
Generic Router Encapsulatlon (GRE), 472
GET command, virtual hosting issues, 414
GET messages, processing steps, 171 175
GET method, 53
getpeername function, 259
glyphs, 378
GRE (Generic Router Encapsulauon) 472

H

H(A1) and H(A2) reference code 577
half NAT, 461 =~

handshake delays, 82 .
handshakes, digest aurhentrcatlon 290
hash tables, 218 V f
H(d), one-way hash, 291-

HEAD method, 54

HEAD response, 346

622 | - Index



headers 47 51, 67—73 508—532
Accept, 69,508 - - .
.. tobots-and; 225 _
Accept—Charset 371, 375, 509

‘MIME charset enicoding tags and 374

Accept -Encoding, 509 R
Accept-Language, 371, 385,510

_ . content negotiation and, 398 -
- Accept-Ranges, 510
Age, 510 '

Allow, _159 511
_authentication, 278 . ..
~ basic, 281, 300
- digest, 300 o
Authentication- Info dlI‘CCthCS, 576
Authorization, 281, 511
. ditectives, 575
' preemptive generation, 295
Cache-Control, 175-177, 182~ 186 189,
© 511 -
d1rect1ves 361
character set requirements, 392
classification, 51 .
client identification using; 258
Client-ip, 258, 260, 512
‘Connection, 86, 512.
content negotiation, -397 . -
Content-Base, 513 - .

“ Content-Encoding, 513 |
Content-Language, 371, 384, 513
Content-Length, 344-347,514
Content-Location, 514

‘Content-MDS35, 347,514 -
Content-Range, 515" .
Content-Type, 348-351, 515

charset parameter, 371
continuation lines, 51
Cookie, 516 =~ ..~
‘Cookie2; 516 - -

Date, 516
DAYV, 431 . _ .

comphance classes, 445
Depth, 431
Destination, 431
eentity headers, 51,67,72 "

content headers, 72

entity caching headers, 73

HTTP/1.1, 342
ETag, 517
examples, 51 -

"Expect, 517

Explres 175 183 517

‘extension headers, 68 -

From; 517 - .
~ robots and, 225

-general headers, 51,67, 68

“caching headers, 68

" Heuristic Exp1rat10n Wamlng, 184'
. Host, 417,418,419, 518 -

robots and; 225

"~ HTCP cache headers 480

If, 431
If- Match ‘519
If- Modlﬁed Since, 166, 178 518

- If-None-Match, 1180, 519

If-Range, 519

" If-Unmodified- Slﬁee 520

Last-Modified, 520 . -
Location,. 520 -
Lock-Token, 431 -
max-age, 183 .
Max-Forwards, 153, 521
for media types, 348
Meter, 196,493
MIME-Version, 521
must-revalidate, 183 = -
no-cache, 182 ,
no-store, 182 -~
Overwrite; 432, 442

" Pragma; 68, 182, 521

Proxy-Authenticate, 522
Proxy-Authorization, 522 -
Proxy-Connection, 96 523
Public, 523 :
Range, 524 -
Referer, 259, 524

robots and, 225

request headers, 51,67, 69-71 -

accept headers, 69
client identification using, 258 -
conditional request headers, 70

© proxy request headers, 70 .

request security headers, 70
response headers, 51;67,71-72

negotiation headers, 71

response security headers; 72

“ Retry-After, 525

Server, 525

“Set-Cookie, 264, 525

caching and, 273
domain attributes, 267

Set-Cookie2, 271, 526

Index | 623



_headers (contmued) '

- syntax, 51 :

© tampering attack 303
TE, 526
Timeout, 432,435
Title, 527 '

Trailer, 526 :
Transfer-Encoding, 527

- UA-; 527
for uncachable documents 182

unisupported headers, handhng, 158 .
Upgrade, 528 -

~“ User-Agent, 225,259, 528
Vary, 402,529

- Via, .151-154; 529

“Want- Digest, 348 -

Warning, 530 .
Warning 13; 184 .

- for WebDAV, 431 -

. WWW-Authenticate, 281 531 574—575
X-Cache, 531 . ' .
X-Forwarded-For, 260 531

. X-Pad, 531 :
X-Serial-Number, 532 .

heartbeat messages, 473

heuristic expiration of documents, 184

Heuristic Expiration Warning headers 184

history expansion, 34 :

hit logs, 195 o

hit metering, 492-494 .

‘Meter headers, 493
hit rate, 167 , '
host component, URLs, 27
-Host headers, 417,418, 518
clients, requirements for;,” 418
~missing host headers, 419 -
proxies and, 418,419 -
robots and, 225 ' :
‘web servers, interpretation by, 419
hostile proxies; 304 '
hosting services, 411 o
* dedicated web hosting, 412 -
. hostname expansion, 34. .
hostnames, 13
<href> element,. 438 .
htaccess, 428 '
HTCP (Hyper Text Cachmg
* Protocol), 478-481
authentication, 480 =~

cache headers, 480 . -

~ caching policies, setting, 480
data components, 479

message structure,. 478 - -
~opcodes, 480 - - o
HTML (Hypertext Markup Language) L
displaying resouirces using HTTP, 13
~ documents, relative URLs in, 31°
-fragments, referencing, 30
robot-control META tags, 237 - -
HTTP (Hypertext Transfer Protocol) xiii,
3-11, 247 ,
authentrcatron challenge/response
framework, 278
- (see also’ authentlcatlon)
authentication schemes, security
_risks, 303 - :
base-64. encodlng, compatlbrhty
with, 570.-
caching (see caches)
- character sets (see character sets)
~ clients and servers 4
* -commands, : -
CONNECT method 206——208 3
connections (see HTTP connections)
entities (see entities) .
headers (see headers)
hit metering extension, 492
HTTP-NG (see HTTP-NG)
informational resources, 21
instance manipulations, 359
international contént support, 370
limitations, 248" :
messages (see HTTP messages)
methods, 8 :
performance con51derat10ns (see under»
TCP)
proxy servers (see HTTP proxy servers);
- redirection, 452-453. ©
relays, 212
reliability of, 3
revalidations, 165—16_6
robots, standards for, 225
secure HTTP (see HTTPS)
status codes, -9, 505-507
TCP, dependency on, 80 .
textual basis of, 10
" transactions, 8
delays, causes of, 80
truncation detection, 344
‘versions, 16
HTTP connections, ‘74, 75 86—-104
- closing, 101-104
Connection headers, 86, 5 12
establishing, 13, 15- 16

624 | Index



- keep-alive connections
, (HTTP/1.0+), 91-96 - =
parallel (see parallel connections) -
persistent (see persistent connecuons)
pipelined connections, 99 -~ o
‘Proxy-Connection-headers, 96, 523
* serial loading, 87
(see also TCP)
HTTP messages, 8, 10, 43— 73
- entity bodies, 47, 52
' example, . 11
~ flow, 43 - S '
GET messages processing steps, 171— 175
headers (see headers)
methods (see methods) -
©reason phrases, 47, 50
S redlrecuon of; 450 -
request lines, 48 ,
robots, setting conditions for, 1226
request URLs, 46 . '
".response lines, 48
‘robots, handling by, 227"
start lines, 47-51 :
status codes (see status codes)
‘structure, 44
syntax, 45
tracing across proxies, 150-157
Via headers, 151-154
Version 0.9 messages, 52
. versions, 46, 50 :
HTTP proxy servers, 129-160
authentication, 156 ,
* client proxy conﬁgﬁration 141-144
client traffic acquisition, 140,
deploying, 137
interoperation, 157-160
messages, tracing, 150-157 :
proxy and server requests, handling, 146
-proxy hierarchies, 138 '
public and private proxies, 130
"TRACE method and network
diagnosis, 155 '
* unsupported headers and methods,
handling, 158
~'URIs, in-flight modification of 147
. uses, 131136 '
http scheme, 38
HTTP State Management Mechamsm 265
HTTP: The Next Generation (see HTTP- NG)
_‘ HTTP/0.9, 16 |

CHTTP/L.0, 16

server requests to v1rtual hosts problems '
- with; 413 -
HTTP/ 1 O+, 17,

. HTTP/1.1, 17 .

_enhanced methods 444
entity header fields, 342 .
Host headers (see Host headers)
‘hmltatlons 248 '
request pipelining, 99
TRACE method,- 155
HTTP/2.0, 17 . .
HTTP-EQUIV tag, 187 -
HTTP-NG:(HTTP: The Next o
Generation), .17, 248 253
current status, 252. - .
message transport layer 249, 250
modularization, 248 - ’
ob]ect types, 252
‘Temote invocation layer, 249, 250
web application layer, 249, 251 -

~ HTTPS, 76,308-309, 322-336

authentication, 326 *. .
clients, 328-335 = .
OpenSSL example; 329-335

CONNECT method, HTTP 206—208
336 . '
' connectmg, 324
default port, 323
OpenSSL 328—3.35 -
schemes, 308,323,
-site certificate vahdatlon 327
-SSL handshake, 324—326
tunnels (see tunnels) -
https scheme; 38 :
Hyper Text Caching Protocol (see HTCP)

‘Hypertext Markup Language (see HTML)

Hypertext Transfer Protocol (see HTTP)

IANA (Internet A551gned Numbers
Authority) ’
instance mampulatlons reglstered_ :
types, 367 - .
MIME charset registry, 602—615 -
MIME type registration, 537-539 -
registered language tags, 386,582 -
ICP (Internet Cache Protocol), 473 v
vs. CARP, 475 =~ =~
ident protocol, 115 -

" index .. | 625



If headers, 431 . o o K 4 :
If-Match headers 519 ‘ ‘KD(s d) dlgest 291

g delfﬁl Slﬁle h(eladersl 8%)621;78 518  keep-alive connéctions (HTTP/L. O+) 91 96
one-MViatch hieacets, (see also persistent connectlons)

If-Range headers, 519 o o
If-Unmodified-Since headers, 520 _.keyed ciphers, 311
H-Unm nee headers, ) keys, 311,312
_image/* MIME types, 561-562 keylength, 313
inbound messages, 43 i y . &t o
-inbound proxies, 138

~indexes, full-text, 243- R , _ R
informational status codes (100- 199), 9—60, language preferences, configuring, . 389
‘505 . - _language tags, 370, 384, 581-600
ingress prox1es 137 ‘ : case sensitivity, 386 -
instance manipulations, 359, 367~369 : first subtag rules, 581
delta encodings, 365 - - -~ IANA-registered tags, 386, 582
‘JANA registered types, 367 L reference tables, 389
range requests, 364 - : . second subtag rules, 582 -
integrity protection, 299 S ‘subtags, 386
intercepting proxies, 140, 146 . _ syntax,. 385 S
'URI resolution with, 149 - , " Last-Modified dates, using, 181
internationalization - - - o - "Last-Modified headers, 520 -
date formats, 392 . * "~ layering of protocols,- 12
dorain names, 392 o layout delay, preventing, 88
“headers, character set for, 392 o ligatures, 378 o
ISO'3166 country codes, 594-600 - listExploreDocs element, POST request
ISO 639 language codes, 583-594 B body, 427
languages, administrative ‘ o hstdedenDocs element, POST request .
. organizations, 601 - o body, 427
URL variants, 395 ' : LM-Factor algorithm, 184
.Internet Assigned Numbers Authonty (see load balancing, 449 :
- IANA) L : DNS round robin, 454-457
Internet Cache Protocol (ICP), 473 - © single clients and, 456
Internet search engines (see search engines) loading, serial, 87
IP address forwarding, 460 - Location headers, 520
IP (Internet protocol) addresses, 13 T LOCK method, 433
clients, identification using, 259 - - _ status codes, 436
virtual hosting and, 416 . . : lock refreshes, 435 s
IP MAC forwarding, 459 IR - <lockdiscovery> element, 435
IP-packets, 76 _ R " <lockinfo> element, 434 . -
-iPlanet web servers, 110 : B locking, 433. - .
- 1SO 3166 country codes, 594-600 - <locktoken>element, 434
1SO 639 language codes; 583-594 . Lock-Token headers, 431
is0-2022-jp encoding, 382 . logging, 483-492
is0-8859 character set, 380 - ' commonly logged fields, 483
. - - " interpretation, 484 -
J : : ' - logformats, 484-492 -
Combined Log Format, 485
Japanese encodmgs 382,383 , e
Jlg X 0201, 0208, and 0212 character ;"mfnon_ Log Forg‘at’ 184
sets, 380 o Netscape Extended 2 Log -

Jde'_’s Hardware Store web site, xiv Format, 487-489

626 .| Index -



Netscape Extended Log Format, 486 ‘

Squld Proxy Log Format 489—492
' pnvacy concerns, 495 - R

" loops (web robots), 217

M
MAC (Medla Access Control) addresses, 459
magic typing, 126 '
mailto scheme, 38
man-in-the-middle attacks, 304
manual client proxy conflguratlon 142 .
master origin server, 420 .
max-age response headers, 183 .
Max-Forwards headers, 155,521
MD5, 288,291,293, 347
MD5-sess, 291,293 '
Media Access Control (MAC) addresses 459
medla types, 348
" multipart, 349"
message body, 44 -
message digest. algorlthms 291—294
symmetric authentication, -298.-
message integrity protection, 299 -
message/* MIME types, 563 .
message transport layer (HTTP NG), 249
250 .
message truncation, 344 -
messages (see HTTP messages)
<META HTTP- EQUIV> tag,. 187 -
META 'tag directives, 239 -
meta-information, 43 .- -
Meter headers, 196,493
methods, 46, 48, 53-59 -
CONNECT, 206-208,336
DELETE, 58, 441
extension methods;, 58
GET, 53
. HEAD 54 -
OPTIONS, 57,159,445
POST, 55 :
'PUT 54, 444
redirection status codes and 64
-TRACE, 55
unsupported, handling, 158
Microsoft FrontPage (see FrontPage)
Microsoft Internet Explorer -
. cookie storage, 266
‘Janguage preference configuration, 389
Mtcrosoft web servers, 110

MIME (Multlpurpose Internet Matl
Extensions) ‘ :
“charset encoding, tags 374
charset registry, 602—615
preferred MIME names, 603 -
“multipart” email messages, 349
(see also MIME types) .. :
~ MIME types, 5,533-569
. application/* types, 540-557
- audio/* types, 557-559 -
~-chemical/* types, 1559561
composite types, 534
discrete types, 534
documentation, 534
_experimental types, 569
IANA registration, 537-539
media type registry, 539 '
process, 537 -
_ registration trees, 537
_-rules,. 538 o
_ template 538 -
~ image/* types; 561562
message/” types, 563 .
model/* types, 563
multipart/* types, 535, 564
primary types, 536
structure, 534 . 7
- syntax, 536 .
. tables, 539-569.
text/* types, 565-568
video/* types, 568
MIME typing, 125 _
MIME::Base64 Perl module 572
MIME-Version headers, 521
mirrored server farms, 420
MKCOL method, 440

" mod_cern_meta module Apache web

server, 186"
model/* MIME types, 563
mod_expires module, Apache web
setver,.186
mod_headers module, Apache web
- server, 186
MOVE method, 442
multi-homed servers, 425:
multipart form-data encodings, 349
multipart/* MIME types, 535, 564
multiplexed architectures, 119
- 1/O web'servers; 119
multlthreaded web servers 119

Index

627



multiprocess, multlthreaded web
: servers, 118 :
Mulupurpose Internet Marl Extensrons (see
MIME; MIME types)- '
<multistatus> element 438 -
~ MultiViews directive, 400 - :
must-revahdate response headers, 183

Nagle s algorlthm 84
namespace management 439—444
. methods used for, 440
status codes"4f43 ,
namespaces, 388 : i
language subtags 387—389
XML, 430 - -

NAT (Network Address Translatlon) 460
NECP (Network Element Control . -
~  Protocol), 461 '

‘negotlatlon headers, 71

- Netscape Extended 2 Log Forrat, 487-489 .

Netscape Extended Log Format, 486-
- Netscape Navigator :
cookies o
© storage, 265 .
Version 0, 269 -
language preference conﬁguranon 389

© Network Address Translation (NAT), 460

network bottlenecks, 161 -
Network Element Control Protocol
(NECP), 461 '
network exchange proxres 137
news scheme, 39 '
no-cache response headers 182
" nonces, 289-298
© next nonce pregeneranon 297 -
reuse, 297
selection, 298
- time- synchromzed generatron 297 ‘
no-store response headers 182
nsconflg, 428

o

object types, HTTP-NG, 252

. one-way digests; 288 -

one-way hashes, 291

.~ functions, 289 .
opaquelocktoken scheme 433 434
- OpenSSL, 328-335 -
example'client, 329-335

* OPTIONS method, 57, 445

requests 159 _
- response headers to, 445 :

- orlgm servers, 420
outbound messages, 43

outbound proxies, 138

Overwrite headers, 432, 442

P

PAC files, 142

* autodiscovery, 465

PAC (Proxy Auto- Conflguratlon)

protocol, 463 -

parallel connectlons 88— 90
impression of speed, 90 -
loading speed, 88 _

.. open connection limits, 90 .

persrstent connections vs:, 91

‘parameters component, URLs, 28

parent and child relationships, 138

~ parent caches, 169
© password’ component URLs 27 :

passwords . o
~digest authentication password flle
- risks, 305
" digest authentication, security, 287
path component, URLs, 28
Perl code for interaction with robots.txt-
files, 235
Perl web server, 111
persistent connections, 90-99
Content-Length headers and, 345
keep-alive connections
(HTTP/1.0+), 91-96
.parallel connections vs., 91
restrictions and rules, 98
persistent uniform resource locators -
(PURLs), 40
pipelined connections, 99
plaintext, security and, 310
port.component, URLS 27
port exhaustion, 85

~ port numbers; 13,77

default values, 13
“vircual hosting and, 415
POST method; 55 . .
POST requests, FrontPage and, 425
Pragma headers, 68,182, 521
Pragma: no-cache headers, 182
precompiled dictionary attacks, 305

628 | Index -



preemptive authorization, 295 :
presence bit arrays (web robots), 218
- presentation forms, 378 '
- primary subtags, 386
privacy, 495
" cookies and, 275
‘robots and, 229
private caches, 168
_private docroots, 122
private proxies, 130
<prop>element, 437
- <propertyupdate> element, 438
PROPFIND method, 437
. server response elements, 438
XML elements, used with, 437
<propname> element 437
- PROPPATCH method, 438-439
XML elements, used with, 438
<propstat> element, 438
“protecting the header”, 87
protection spaces, 295; 301
protocol gateways, 200
. protocol stack, 76
protocols, layermg of, 12
proxies ‘
100 Continue status code and 60
authentication, 156 .
deploying, 137
egress. proxies, 137 :
 gateways, contrasted with, 130
~hostile, 304 o
HTTP proxies (see. HTTP proxy servers)
ingress proxies, 137 -
intercepting proxies,- 140, 146
URI resolution with, 149
interoperation, . 157—160
Messages, tracing, 150-157
“missing scheme/host/port”
problem, 146
proxy and server requests, handhng, 146
~ proxy hierarchies, 138
content.routing, 139
- -dynamic parent selection, 140
public and private, 130
- redirection and, 449
surrogates, 146
transparent negotiation, 400
transparent proxies, 140
~ tunnels and, 335

URIs, m—ﬂlght mod1f1cat10n of 147
uses, 131-136 . -, .
(see also HTTP proxy servers)

.-Proxy-Authenncate headers, 522 .

proxy authentication, 283" -
Proxy—Authorlzatlon headers, 522

Proxy Auto- configuration (PAC) -

‘protocol,- 142, 463
(see also PAC files) .

proxy cache hierarchies, 169

proxy caches, 169
Proxy-Connection headers, 96 523
proxy redirection
CARP (Cache Array Rounng
Protocol) 475478 "
HTCP (Hyper Text Caching
Protocol), 478-481.

ICP (Internet Cache Protocol), 473 .

proxy redirection methods, 462—-469
explicit browser configuration, 463 -
-disadvantages, 463 '
PAC (Proxy Auto- conflguratlon)
protocol, 463
WPAD (see WPAD) -

‘proxy request headers, 70 -

proxy servers, 18

networks, use in securing, 335

(see also HTTP proxy servers)
proxy URIs vs. server URIs, 144
public caches, 169
Public headers 523
public proxies, 130

public-key cryptography (see- under L

~ cryptography) -
publishing systems -
FrontPage (see FrontPage)
WebDAYV (see WebDAV)
(see also web publishing)
PURLs (persistent uniform resource
locators), 40 -

PUT method, 54, 444

Qe o

qop (quality of protecmon), 293
enhancements, 299

quality factors, 371

quality of protection (see qop)

quality values, 398 '

query component URLs, 29

Index.

| 629



Range headers, . 524
range requests, 363
realm directive, 280 o
realms (protection spaces) 301
reason phrases, 9, 47, 50, 505-507.
redirection, 126, 448481 '
anycast addressing, 457 .
enhanced DNS-based algomhms 457
- IP address forwarding, 460 -
- IP MAC forwarding, 459
load balancing and 127, 449
" methods, 450
. 'DNS redirection, 453-457
HTTP redirection, 452-453 -
proxy methods, 462-469
. proxy techniques, 451
NECP (Network Element Control
- Protocol), 461
protocols, 450 - ,
proxies, role in, 449 - -
" purpose, 449 .
techniques, 448 -
temporary redirect, 126 o
transparent redirection, 469
URL augmentation, 126
WCCP (Web Cache Coordination * -
~Protocol), 470-473"

redirection status codes (300 399) 61— 64

505.
‘Referer headers, 259, 524
~ robots and, 225
relative URLs, 30-34
bases, 31
resolving, 33
relays, 212
keep-alive connections and 212
relevancy rankmg, 245
reliable bit pipe, 75 :
remote invocation layer (HTTP NG) 249
2507
remote procedure call (RPC) protocol,
‘FrontPage, 426
<remove> element, 439 :
replay attacks, 284, 289, 303
~ preventing, 289
replica origin servers, 420
request digest reference code, 577
request digests, 294
request headers (see under headers)
request lines, 48

.'-_"requ'es_'t messages, 10, 45, 47

methods, 46
Tequest: URLs, 46

: ‘request method. (HTTP), 294

request pipelining, 99
request security headers, 70

- “reserved characters (see restricted characters)
resource gateways 203

resource locator servers, 40

" resource paths, 24
* resources, mapping and’ accessing of, 120

response digest reference code, 5 77
response entities, 125 -
response headers (see under headers)

response lines, 48
response messages, 10, 45, 125

restricted characters, 36
Retry-After headers, 525

" revalidate hits, 165
‘revalidate misses, 166"

revalidations, 165-166

reverse proxies, 134, 137

RobotRules ob]ect 235
robots . '
conditional HFTP requests 226
entities and, 227
© etiquette, 239-241
excluding from web sites, . 229—239 _
HTML robot control META. tags 237
HTTP and,. 225 .
" request headers, 1dent1fy1ng, 225
" META directives, 237 - :
Meta HTML tags and, 227
privacy and, 229 = =
problems caused by, 228
response handling, 227
search engines, 242-246
status codes, handling of, 227
(see also robots.txt files) =
Robots Exclusion Standard, 230
robots.txt files, 229 g
caching and expiration, 234
comments, 234 :
disallow and allow lines, 233
~example, 236
~ fetching, 231
records, 232
specification, changes in, 234
status codes for retrievals, 231
syntax, 232
User-Agent line, 232 -
web sites and, 231

630 |. Index °



root set, 216 -

- root web, 425 -

round-robin load balancing, 453 :
- DNS round robin, 454-457" . . .
" routers and anycast addressing, 457
RPC protocol, FrontPage; 426
RSA algorithm, 317~
rtsp, rspu schemes, 39
s
" schemes, 7,24,27
- common formats, 38
URIs for, 499-504 .
search engines, 242-—246
architecture, 242" =
full-text indexes, 243
queries, - 244
relevancy ranking; 245. ‘
 results, sorting and. formattmg, 244
spoofing, 245
search trees, 218
second subtag, 388.
Secure Sockets Layer (see SSL)
' security
basic authentication and, 283
cookies and, 275
digest authentication and, 286 '
firewalls, 132
FrontPage security model 48
HTTP authentication schemes assoc1ated
- risks, 303
key length and, 314. . o
- multiple authentication schemes,
- risks, 303
security realms, 280
WPAD security hole 468
segments 76 _
“sender silly window syndrome 84
serial loading, 87 '
serial transaction delays, 87
server error status codes (500- 599) 66, 505
server farms, 413
mirrored servers, 420
Server headers, 525
Server response header field, 154
server URIs vs. proxy URIs, 144
server-driven negotiation, 397-400
. server-side extensions, 400
servers
100 Continue status codes and, 60
accelerators, 134
- certificates, 326

~ . delta encodings, impéct omn, 36.8

'~ “error status codes (500- 599) 66
extension APls, 205 -
FrontPage Server Extensions (FPSE) 424

" Host headers, interpreting, 419 '

- multi-homed servers, 425 . .-
“revalidation, 177 -
server farms, 413 S

master orlgm servers, 420
replica origin servers, 420

o supported functlonahty, 1dent1fy1ng, 159

validation, 175 -
server-side extensions, 400
server-side gateways, 199 .
security gateways 202
web gateways, 200 .

‘ server-side includes’ (SSIs), .124
service groups, 472

service_name element POST request
- body, 427 :
sessions, cookies and, 264
tracking with, 272 '
<set> element, 438 -~
Set-Cookie headers, 264, 525
caching and, 273
domain attributes, 267 .
Set-Cookie2 headers, 271, 526
shared hosting, 413-419"
shared keys, 315
shared proxies, 130
sibling caches, 171 .
Simple Object Access Protocol (SOAP) 206

single-threaded web servers, 118

site certificate validation, 327
slow hits, 165
s-maxage response headers 183
SOAP (Simple Object Access Protocol), 206
sockets*API, 78 h
calls, 78 - v :
software web servers 110
spiders, 215

* spoofing, 245

Squid Proxy Log Format, 489- 492

SSIs (server-side mcludes) 124

SSL (Secure Sockets Layer), 308
authentication, 326 o
handshakes, 324-326
HTTPS, integration in, 323
*OpenSSL, 328-335 .-
site certificate validation, 327
tunnels, 209 . :

Vs HTTP/HTTPS gateways 210

“Index | 631



SSLeay, 329 o
(see also OpenSSL)

- start lines, 47-51 .

status codes, 9, 49 59—67
classes, 49 ‘

- client error codes (400 499) 65 66, 505 ._

" HTTP codes, 505-507 - -
informational status codes
. (100-199), -59-60, 505 °
- LOCK'method, - 436 -

namespace management methods, 443 -

redirection status codes

S '(300-399), - 61-64, 505
robots, handling by, 227 . —
server error codes (500- 599) 66, 505

success status codes (200-299),- 61, 505

~ UNLOCK rethod, 436
<status> element, 438
strong validators, 181,363
: subtags, 386,389 .-
first subtag, 387
second subtag, 388
~ subweb, 426
success status codes (200- 299) 61, 505
surrogate caches, 421 :
surrogate proxies, 137
surrogates, 134, 146 -
symbolic links and cycles, 220 *
symmetric authentication, 298
symmetric-key ciphers, 313
syntax, headers, 51
T | o
TCP slow start (see under TCP) -
" TCP (Transrnission Control _
Protocol), 74-86
~ connections, 75 '
distinguishing values, 77
- establishing, 13,79
web server handling of, 115
, (see also HTTP connections)
‘network delays, causes, 80 -
performance considerations, 80—86
connection handshake delays, 82
delayed acknowledgements, 83
 delays, most common causes, 81-86
Nagle’s algorithm, 84-
_port exhaustion, 85 .
TCP slow start, 83.
TCP_NODELAY, 84 .
TIME. WAIT accumulation, 85

port numbers and, 77
- reliability, 74 .-
senal»loadlng, 87

.. sockets API, 78

TCP slow start, 83

'TCP/IP (Transmission Control

. Protocol/Internet Protoool) 11

' TCP_NODELAY parameter, 84

TE headers, 526
Telnet example, 15-16
telnet scheme, 40

“text/* MIME types, 565-568

<timeout> element, 434.
Timeout headers, 432, 435

TIME_WAIT accumulatlon 85
" Title headers, 527

TLS (Transport Layer Securlty), 308
(see also SSL) -

TRACE method, 55, 155-157
Max—Forwards headers and, 155

Trailer headers, 526 _

transactional direction, messages 43

transactions, 8

transcoders, 135

transcodings, - 395, 403—-406 ,
content injection, 405
format conversion, 404
information synthesis, 404 -
types, 404 :

Vs static pregenerated content, 405

transfer encodings, 354-359

- Transfer-Encoding headers, 527 -

Transmission Control Protocol/Internet .
Protocol (TCP/IP) 1T
transparent negotiation, 400-403
caching, 401
Vary headers, 402 -
transparent proxies, 140 -
transparent redirection, 469
Transport Layer Secunty (see TLS)
trees, 218
truncation detection, 344 -
tunnels, 19, 206-212
authentication, 211
- HTTPS SSL, 335-336
security, 211 '
SSL tunnels vs. HTTP/HTTPS
gateways; 210 =
type negotiation, - 126
type-map files, 399
type-o-serve web server, 112

632 | Index -



'-UA- headers 527

o .UCS (Umversal Character Set), 381 -

uncachable documents 182
~ uniform rtesource 1dent1f1ers (see URIS)
umform resource locators (see URLs)
- _umform resource names- (see URNs)
Univérsal Character Set (UCS), 381
UNLOCK method, 435
- status codes, 436
Upgrade headers, 528
upstream message flow, 44
uri-directive-value, 294
URIs (uniform resourte identifiers), 6, 24
client autoexpansion and hostname
~ resolution, 147
~ intercepting proxies, resolution with, 149
internationalization, 389—391
* resolution, 144-150 .
proxy vs. server, 144"
with a proxy, explicit, 149
_ without a proxy, 148 =
- rewriting, 302 -
schemes, 499-504
URLs (umform resource locators), 6, 23 42
_ advantages of, 25
~ aliases, 219
‘augmentation, 126
~ automatic expansion, 34
- canonical form, 37 '
canoricalizing,” 220
character sets, 35,35-38
CURLs, 465
" examples, 13
fat URLs, client identification using, 262
informational resources, 41
portability, 35 '
PURLSs, 40.
relative URLs, 30-34
"~ restricted characters, 36
* schemes, 7
schemes (see schemes)
shortcuts, 30
- structure, 24
- . syntax, 26-30
URIs, as a subset of, 24
“variants, 395
wvirtual hosting, paths, 415
URNS (uniform resource names), 7, 40
standardization, 41
US-ASCII character set, 379

user agents 19

user component, URLs,’ 27

user home directory docroots 122
User-Agent headers, 225,259, 528

user- trackmg systems, content 1n]ect10n o

. and, 405 .
UTF-8 encod1ng,_38_2_- o

Vo

vvahdators 362

Last-Modified détes | uélng, 181 .
strong and weak, 181,363
variable-length codes, 372"

. variable-width modal encodlngs, 381

variable-width nonmodal- encodlngs, 381' B

Vary headers, 402,529 = -
Vermeer Technologies, Inc., -424_.
version numbers, HT TP messages, 50
Via headers, 151-154, 529 '
gateways and, 153 -
privacy and securlty, 154
request and response paths, 153

Server response header fields and 154_

syntax, 152

" video/* MIME types, 568 =
- virtual hosting, 225, 413-419

digital certificates and, 328 -
docroots, 121 :
GET command, problems w1th 414
Host headers, by, 417
(see also Host headers) .
IP addresses, by, 416
problems for hosters, 417
port numbers, by, 415. N
server requests, absence of host :
information in HTTP/1. O 413
fixes, 415 ..
URL paths, by, 415
virtual servers, 425

W
Want-Digest headers 348
Warning headers, 530 |
Heuristic Expiration Warmng, 184~
WCCP (W eb Cache. Coordmatlon
" Protocol), 470-473
GRE packet encapsulation, 472
heartbeat messages, 473 '

load balancing, 473
" operation, 470 -

~index |

633



- WCCP (continued)
- service groups, 472
versions, 470 v
‘WCCP2 messages, 470-472
header and components, 471.
weak validarors, 181, 363 .
web apphcatlon layer (HTTP NG), 249 251
web architecture, 17-20
- Web Cache Coordination Protocol (see .
WCCP)- '
web caches, 18, 161
(see also caches) .
web clients and servers,- 4 _
Web Distributed Authoring and Versmnmg
(see WebDAV)
‘web hosting, 411-422 - :
hosting services, 411"
shared or virtual hostlng, 413-419
web pages, 9
Web Proxy. Autodlscovery Protocol (see
 WPAD). : |
web proxy servers, 129
web publishing
- collaborative authoring, 429
publishing systems, 424
web resources, 4
web robots, -215-246
crawlers (see crawlers)
“examples, 215
spiders, 215 -
web servers, 109
access controls, 124
appliances, 111
client hostname identification, 115
client identification, 257-276 =
cookiesﬁsing, 263276
“fat URLs, using, 262 '
headers, usmg, 258
IP address, using, 259
user login, using, 260 .
‘connection input/outpit processmg
' architectures, 117~
connections, handling new, 115
directory listings, 122,
docroots, 120 -
- dynamic content resource mapping, 123
‘embedded web servers; 111
“explicit typing, 126 ’
HTTP proxy servers (see HTTP proxy
servers)
~ident protocol, 115 -

- implementations, 109
- logging, 127
MIME typing, 125 :
- multiplexed I/O servers, 119 -
- multiplexed multithreaded servers, 119

* . multiprocess, multithreaded servers, 118

~ Perl example,- 1
* redirection responses, 126
- request handling, 449
request messages
receiving, 116
- :structure of, 117

- resources, mapping and accessing of, 120
_response entities, . 125 -
resporise messages, 125

" responses, sending, 127
.single-threaded servers, 118
software web servers, 110 .

SSIs (server-side includes), 124
tasks of, 113~114 -

. type negotlatlon 126
type-o-serve, 112
'user-authentication (see authentlcatlon)

web services, 206

web sites
_personalizing’ of user expenence 257
reliability, improving, 419-422

mirrored server farms, 420
robots, exclusion, 229-239
robots.txt files, 231 '
- speed, improving,. 422

- 'web tunnels (see tunnels)
“WebDAV (Web Distributed Authoring and

~ Versioning),- 429-446 -
collaborative authoring and, 429
_collections, 439-444
DAV header, 431 -

>~ Depth header, 431 .

- Destination header, 431
enhanced HTTP/1.1 methods 444
~headers, 431
If header, 431 .
LOCK method, 433
locking, 432
- Lock-Token headers, 431 .
-META data, embedding, 436—439
methods, 429
namespace management, 439-444
OPTIONS method, 445 |
Overwrite headers, 432
overwrites, preventing, 432

634 | "Index -



R 'PROPATCH method 438-439.-:._- .

- properties, 436—439
' 'PROPFIND method 437 E
PUT method, 444 -
- Timéout headers, 432
- UNLOCK method, 435
~ version management, 446
"~ XML and, 430"

WebMUX protocol, 250, 251 )
WPAD (Web Proxy Autodiscovery

Protocol), 143, 464-469

. administration, 469

CURLs,. 465
- DHCP discovery, 467 .
DNS A record lookup, 467 -
" PAC file retrieval, 467

PAC file autodiscovery, 465

~ resource-discovery algorithm, 143, 465

spoofmg, 468

tlméoﬁts' 468"
timing, 468

WWW- Authentlcafe headers 281, 531 '

directives, 574-575 o
WWW:: RobotRules ob]ect 235

X :
X.509v3 certificates, 320
' X—Cache headers, 531

X-Forwarded-For headersA 260 531

"~ XML (Extensible Markup Language), 206,

. 430 -
. elements used in locking,. 434
namespace, 430
schema definition, XML documents, 430
WebDAV and, 430
X-Pad headers, 531
X-Serial-Number headers, 532

~Index | 635






» About the Authors :

David Gourley is: the Ch1ef Technology Offrcer of- Endeca Where he leads the
research  and development of Endeca’s products. Endeca develops Internet and
intranet information-access solutions that provide new ways to navigate and. explore'
enterprise data. Prior to working at Endeca, David was a member of the foundlngv
- engineering team at Inktomi, where he ‘helped develop Inktomi’s Internet search,
database and was a key developer of Inktomr s web. cachrng products -

| 'Davrd earned a B.A. in C omputer Science ‘from the University’ of Cahfornra at
Berkeley, and he holds several patents in web technologres T : '

‘Brian Totty was most recently the Vice President of R&D at Inktom1 Corporatlon (

- company he helped found in 1996), where he led research and development of web

caching, streaming media, and Internet search technologies. Formerly, he was a

scientist at Silicon Graphics, where he designed and optimized software for high-

o performance networking and supercomputmg systems: Before that, he held an engré
neering posmon at Apple Computer s Advanced Technology Group. s

“Brian holds a Ph.D. in Computer Science from the Umversrty of Ilhnors at Urbana—
‘Champaign and a B.S. degree in Computer Science and" Electrrcal Engineering from
- MIT, where he received the Organick award for computer systems research. He also
has developed and taught award-winning courses on Internet’ technology for the
Un1vers1ty of California Extension system. - S

Mar]one Sayer writes about network cachrng software’ at Inktomr Corporatlon After_

earning M.A. and Ph.C. degrees in Mathematics at the University of California at-

Berkeley, she worked on mathematics curriculum reform. Since 1990 she- has written

~ about energy resource management parallel systems software telephony, and
networkmg - : ‘

-~ Sailu Reddy currently leads the development of embedded performance enhancmg' '
HTTP proxies at Inktomi Corporation. Sailu has been devéloping complex software
systems for 12 years and has been deeply involved in web infrastructure research and
-development since 1995. He was a core engineer of Netscape s first web server and
web proxy products and of several following generations. His technical experience -

_includes HTTP applications, data compression techniques, database engines, and

- collaboration management. Sailu earned an M:S. in Information Systems from the

University of Arizona and holds several patents in web technologres -

Anshu Aggarwal is a Director of Engineering at Inktomi Corporation. He leads the
- protocol-processing engineering teams, for Inktomi’s web caching products, and he
has been involved in the design of web technologies at Inktomi sinceé 1997. Anshu
holds M.S. and Ph.D. degrees in Computer Science from the University of Colorado
~ at Boulder, specializing in memory-consistent techniques fordistributed multipro-
~ cessor machines. He also holds M.S. and B.S. degrees in Electrrcal Engrneerrng

~ Anshu is the author of several technical papers and holds two patents.



Colophon™

- Our look is the result of reader commients, our own experrmentatlon and feedback

- from distribution channels. Distinctive covers complement our distinctive approach

to techn1cal topics, breathing personality and life into potentrally dry subjects.

- :The anlmal on the cover of HTTP: The Definitive Guide is a thirteen-lined ground

- squirrel (Spermophilus tridecemlineatus), common to cenitral North America. True to

its name, the thirteen-lined ground squirrel has thirteen stripes with rows of light
spots that run the length of its-back. Its color pattern blends into its surroundings,
protecting it from predators. Thirteen-lined ground squirrels are members of the
squirrel family, which includes chipmunks, ground squlrrels tree squirrels, prairie
dogs, and woodchucks. They are similar in size to the eastern chipmunk but smaller
- than the common gray squlrrel averagrng about 11 1nches in length (rncludmg a 5-6
rnch tall) ’ : : :

Thrrteen-lrned ground squlrrels go into hlbernatlon in @ctober and emerge in  late
March or early April. Each female usually produces one litter of 710  young each
May. The young leave the burrows at four to five weeks of age and are fully grown at
six weeks. Ground squrrrels prefer open areas with short grass and well-drained
sandy or loamy soils for burrows, and they avord wooded areas—mowed lawns, golf
courses, and parks are.common habrtats ' :

Ground squirrels can' cause problems when, they create’ burrows, dig up newly
planted seeds, and damage vegetable gardens. However, they are important prey to
- several predators, including badgers, coyotes, hawks, weasels and various snakes,

and they beneflt humans directly by feedrng on many harmful weeds weed seeds
and insects. - : '

Rachel Wheeler was the productron editor and copyedrtor for H TTP The Deﬁmtzve
Guide. Leanne Soylemez, Sarah Sherman, and Mary Anne Weeks Mayo provided
quality control, and Derek Di Matteo and Brian Sawyer provrded productron assis-
tance. John Brckelhaupt wrote the index.

Ellie Volckhausen desrgned the cover of this book based on a series desrgn by: Edre
Freedman. The cover image is an: original illustration created by Lorrie LeJeune:
Emma Colby produced the cover layout w1th QuarkXPress 4.1 using Adobe’s ITC
Garamond font. -~ _

David Futato and ‘Melanie Wang designed the interior layout, based on a series
‘design by David Futato. Joe Wizda prepared the files for production in FrameMaker
5.5.6. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condensed. The illustrations that
‘appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by
Rachel Wheeler S






CPSIA information can be obtained.at www. ICGtestmg com . ' K o i
Printed in the USA L C . : . ’
‘BVOW0950637270916 . - . . : - . : ) = B
463309BV00006BA/9/P ' -




Web Programming

O’REILLY?
HTTP: The Definitive Guide

Behind every successful web transaction lurks the Hypertext Transfer Protocol (HTTP),
the language by which web clients and servers exchange documents and information.
HTTP is commonly known as the workhorse behind the browsers we use every day to
access our company intranets, locate out-of-print books, or research census information.
But HTTP is used for far more than browsing the Web: the simplicity and ubiquity of HTTP also
have made it the choice protocol for many other networked applications, most notably through
web services such as SOAP and XML-RPC.

As the title suggests, HTTP: The Definitive Guide explains the HTTP protocol: how it works and
how to use it to develop web-based applications. However, this book is not just about HTTP;

it's also about all the other core Internet technologies that HTTP depends on to work effectively.
Although HTTP is at the center of the book, the essence of HITP: The Definitive Guide is in
understanding how the Web works and how to apply that knowledge to web programming and
administration. The book explains the technical workings, motivations, performance considerations,
and objectives of HTTP and the technologies around which it revolves.

HTTP: The Definitive Guide is the bible for the HTTP protocol and related web technologies.
Topics covered include:

e HTTP methods, headers, and status codes

e Optimizing proxies and caches

e Strategies for designing web robots and crawlers
e Cookies, authentication, and Secure HTTP

» Internationalization and content negotiation

e Redirection and load-balancing strategies

Written by experts with years of practical experience, this book uses clear, concise language and a
plethora of detailed illustrations to help readers visualize what goes on behind the scenes, providing
a complete understanding of the story behind each query on the Web.

- All web programmers, administrators, and application developers need to be familiar with HTTP
in order to work effectively. There are many books that explain how to use the Web, but this is the
book that explains how the Web works.

www.oreilly.com

US $54.99 CAN $63.99
ISBN: 978-1-56592-509-0

55499
AN 0N o

81565"925090



