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ession of heterologous proteins in microbial hosts frequently leads to the formation of insoluble aggregates. To
t the production capacity of the cells, efficient strategies for further processing have to be developed. While in lab
assisted refolding techniques, especially of histidine-tagged proteins have become very popular, in production scale
dilution is still predominant due to its simplicity. However scaling up dilution processes leads to large volumes and
concentration. This is a heavy burden both for liquid handling and for subsequent downstream processing steps.
elopment aims to operate at uniform, reproducible conditions, to reduce costs to a minimum and to guarantee the
ality of the product. The general refolding kinetics, exploration of appropriate refolding conditions are reviewed.
efolding operations such as dilution, matrix assisted refolding, pressure driven refolding or continuous refolding

are discussed in view of industrial applicability.
vier B.V. All rights reserved.
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