
© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

A Protocol for Packet Network Intercommunication

VINTON G. CERF AND ROBERT E. KAHN,
MEMBER, IEEE

Abstract — A protocol that supports the sharing of resources that exist
in different packet switching networks is presented. The protocol provides
for variation in individual network packet sizes, transmission failures,
sequencing, flow control, end-to-end error checking, and the creation and
destruction of logical process-to-process connections. Some
implementation issues are considered, and problems such as internetwork
routing, accounting, and timeouts are exposed.

INTRODUCTION
IN THE LAST few years considerable effort has
been expended on the design and implementation of
packet switching networks [1]-[7],[14],[17]. A prin-
ciple reason for developing such networks has been
to facilitate the sharing of computer resources. A
packet communication network includes a transpor-
tation mechanism for delivering data between com-
puters or between computers and terminals. To
make the data meaningful, computer and terminals
share a common protocol (i.e, a set of agreed upon
conventions). Several protocols have already been
developed for this purpose [8]-[12],[16]. However,
these protocols have addressed only the problem of
communication on the same network. In this paper
we present a protocol design and philosophy that
supports the sharing of resources that exist in differ-
ent packet switching networks.

After a brief introduction to internetwork
protocol issues, we describe the function of a
GATEWAY as an interface between networks and
discuss its role in the protocol. We then consider the
various details of the protocol, including addressing,
formatting, buffering, sequencing, flow control,
error control, and so forth. We close with a
description of an interprocess communication
mechanism and show how it can be supported by
the internetwork protocol.

Even though many different and complex
problems must be solved in the design of an
individual packet switching network, these
problems are manifestly compounded when
dissimilar networks are interconnected. Issues arise
which may have no direct counterpart in an
individual network and which strongly influence the
way in which internetwork communication can take
place.

A typical packet switching network is composed
of a set of computer resources called HOSTS, a set

of one or more packet switches, and a collection of
communication media that interconnect the packet
switches. Within each HOST, we assume that there
exist processes which must communicate with
processes in their own or other HOSTS. Any current
definition of a process will be adequate for our
purposes [13]. These processes are generally the
ultimate source and destination of data in the
network. Typically, within an individual network,
there exists a protocol for communication between
any source and destination process. Only the source
and destination processes require knowledge of this
convention for communication to take place.
Processes in two distinct networks would ordinarily
use different protocols for this purpose. The
ensemble of packet switches and communication
media is called the packet switching subnet. Fig. 1
illustrates these ideas.

In a typical packet switching subnet, data of a
fixed maximum size are accepted from a source
HOST, together with a formatted destination address
which is used to route the data in a store and
forward fashion. The transmit time for this data is
usually dependent upon internal network parameters
such as communication media data rates, buffering
and signalling strategies, routeing, propagation
delays, etc. In addition, some mechanism is
generally present for error handling and
determination of status of the networks components.

Individual packet switching networks may differ
in their implementations as follows.

1) Each network may have distinct ways of
addressing the receiver, thus requiring that a
uniform addressing scheme be created which can be
understood by each individual network.

2) Each network may accept data of different
maximum size, thus requiring networks to deal in
units of the smallest maximum size (which may be
impractically small) or requiring procedures which
allow data crossing a network boundary to be
reformatted into smaller pieces.

3) The success or failure of a transmission and
its performance in each network is governed by
different time delays in accepting, delivering, and
transporting the data. This requires careful
development of internetwork timing procedures to
insure that data can be successfully delivered
through the various networks.

4) Within each network, communication may be
disrupted due to unrecoverable mutation of the data
or missing data. End-to-end restoration procedures
are desirable to allow complete recovery from these
conditions.

Paper approved by the Associate Editor for Data Communications of the
IEEE Communications Society for publications without oral presentation.
Manuscript received November 5, 1973. The research reported in this pa-
per was supported in part by the Advanced Research Projects Agency of
the Department of Defense under Contract DAHC 15-73-C-0370.
V.G. Cerf is with the Department of Computer Science and Electrical En-
gineering, Standford University, Stanford, Calif.
R.E. Kahn is with the Information Processing Technology Office,
Advanced Research Projects Agency, Department of Defense, Arlington,
Va.

Netflix 1022 - Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

Fig. 1. Typical packet switching network.

5) Status information, routing, fault detection,
and isolation are typically different in each network.
thus, to obtain verification of certain conditions,
such as an inaccessible or dead destination, various
kinds of coordination must be invoked between the
communicating networks.

It would be extremely convenient if all the
differences between networks could be
economically resolved by suitable interfacing at the
network boundaries. For many of the differences,
this objective can be achieved. However, both
economic and technical considerations lead us to
prefer that the interface be as simple and reliable as
possible and deal primarily with passing data
between networks that use different packet
switching strategies.

The question now arises as to whether the
interface ought to account for differences in HOST or
process level protocols by transforming the source
conventions into the corresponding destination
conventions. We obviously want to allow
conversion between packet switching strategies at
the interface, to permit interconnection of existing
and planned networks. However, the complexity
and dissimilarity of the HOST or process level
protocols makes it desirable to avoid having to
transform between them at the interface, even if this
transformation were always possible. Rather,
compatible HOST and process level protocols must be
developed to achieve effective internetwork
resource sharing. The unacceptable alternative is for
every HOST or process to implement every protocol
(a potentially unbounded number) that may be
needed to communicate with other networks. We
therefore assume that a common protocol is to be
used between HOST’S or processes in different
networks and that the interface between networks
should take as small a role as possible in this
protocol.

To allow networks under different ownership to
interconnect, some accounting will undoubtedly be
needed for traffic that passes across the interface. In
its simplest terms, this involves an accounting of
packets handled by each net for which charges are

passed from net to net until the buck finally stops at
the user or his representative. Furthermore, the
interconnection must preserve intact the internal
operation of each individual network. This is easily
achieved if two networks interconnect as if each
were a HOST to the other network, but without
utilising or indeed incorporating any elaborate HOST

protocol transformations.
It is thus apparent that the interface between

networks must play a central role in the
development of any network interconnection
strategy. We give a special name to this interface
that performs these functions and call it a GATEWAY.

THE GATEWAY NOTION

In Fig. 2 we illustrate three individual networks
labelled A, B, and C which are joined by GATEWAYS

M and N. GATEWAY M interfaces network A with
network B, and GATEWAY N interfaces network B to
network C. We assume that an individual network
may have more than one GATEWAY (e.g., network B)
and that there may be more than one GATEWAY path
to use in going between a pair of networks. The
responsibility for properly routing data resides in
the GATEWAY.

In practice, a GATEWAY between two networks
may be composed of two halves, each associated
with its own network. It is possible to implement
each half of a GATEWAY so it need only embed
internetwork packets in local packet format or
extract them. We propose that the GATEWAY handle
internetwork packets in a standard format, but we
are not proposing any particular transmission
procedure between GATEWAY halves.

Let us now trace the flow of data through the
interconnected networks. We assume a packet of
data from process X enters network A destined for
process Y in network C. The address of Y is initially
specified by process X and the address of GATEWAY

M is derived from the address of process Y. We
make no attempt to specify whether the choice of
GATEWAY is made by process X, its HOST, or one of
the packet switches in network A. The packet
traverses network A until it reaches GATEWAY M. At
the GATEWAY, the packet is reformatted to meet the
requirements of network B, account is taken of this
unit of flow between A and B, and the GATEWAY

delivers the packet to network B. Again the
derivation of the next GATEWAY address is
accomplished based on the address of the
destination Y. In this case, GATEWAY N is the next
one. The packet traverses network B until it finally
reaches GATEWAY N where it is formatted to meet the
requirements of network C. Account is again taken
of this unit of flow between networks B and C.
Upon entering network C, the packet is routed to the
HOST in which process Y resides and there it is
delivered to its ultimate destination.

Netflix 1022 - Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

Fig. 2. Three networks interconnected by two GATEWAYS.

Fig. 3. Internetwork packet format (fields not shown to scale).

Since the GATEWAY must understand the address
of the source and destination HOSTS, this information
must be available in a standard format in every
packet which arrives at the GATEWAY. This
information is contained in an internetwork header
prefixed to the packet by the source HOST. The
packet format, including the internetwork header, is
illustrated in Fig. 3. The source and destination
entries uniformly and uniquely identify the address
of every HOST in the composite network. Addressing
is a subject of considerable complexity which is
discussed in greater detail in the next section. The
next two entries in the header provide a sequence
number and a byte count that may be used to
properly sequence the packets upon delivery to the
destination and may also enable the GATEWAYS to
detect fault conditions affecting the packet. The flag
field is used to convey specific control information
and is discussed in the section on retransmission and
duplicate detection later. The remainder of the
packet consists of text for delivery to the destination
and a trailing check sum used for end-to-end
software verification. The GATEWAY does not modify
the text and merely forwards the check sum along
without computing or recomputing it.

Each network may need to augment the packet
format before it can pass through the individual
network. We have indicated a local header in the
figure which is prefixed to the beginning of the
packet. This local header is introduced merely to
illustrate the concept of embedding an internetwork
packet in the format of the individual network
through which the packet must pass. It will
obviously vary in its exact form from network to
network and may even be unnecessary in some
cases. Although not explicitly indicated in the
figure, it is also possible that a local trailer may be
appended to the end of the packet.

Unless all transmitted packets are legislatively
restricted to be small enough to be accepted by
every individual network, the GATEWAY may be
forced to split a packet into two or more smaller
packets. This action is called fragmentation and
must be done in such a way that the destination is
able to piece together the fragmented packet. It is
clear that the internetwork header format imposes a
minimum packet size which all networks must carry
(obviously all networks will want to carry packets

larger than this minimum). We believe the long
range growth and development of internetwork
communication would be seriously inhibited by
specifying how much larger than the minimum a
packet size can be, for the following reasons.

1) If a maximum permitted packet size is
specified then it becomes impossible to completely
isolate the internal packet size parameters of one
network from the internal packet size parameters of
all other networks.

2) It would be very difficult to increase the
maximum permitted packet size in response to new
technology (e.g. large memory systems, higher data
rate communication facilities, etc.) since this would
require the agreement and then implementation by
all participating networks.

3) Associative addressing and packet encryption
may require the size of a particular packet to expand
during transit for incorporation of new information.

Provision for fragmentation (regardless of
where it is performed) permits packet size variations
to be handled on an individual network basis
without global administration and also permits
HOSTS and processes to be insulated from changes in
the packet sizes permitted in any networks through
which their data must pass.

If fragmentation must be done, it appears best to
do it upon entering the next network at the GATEWAY

since only this GATEWAY (and not the other
networks) must be aware of the internal packet size
parameters which made the fragmentation
necessary.

If a GATEWAY fragments an incoming packet into
two or more packets, they must eventually be passed
along to the destination HOST as fragments or
reassembled for the HOST. It is conceivable that one
might desire the GATEWAY to perform the reassembly
to simplify the task of the destination HOST (or
process) and/or to take advantage of the larger
packet size. We take the position that GATEWAY

should not perform this function since GATEWAY

reassembly can lead to serious buffering problems,
potential deadlocks, the necessity for all fragments
of a packet to pass through the same GATEWAY, and
increased delay in transmission. Furthermore, it is
not sufficient for the GATEWAY to provide this
function since the final GATEWAY may also have to
fragment a packet for transmission. Thus the
destination HOST must be prepared to do this task.

Let us now turn briefly to the somewhat unusual
accounting effect which arises when a packet may
be fragmented by one or more GATEWAY. We
assume, for simplicity, that each network initially
charges a fixed rate per packet transmitted,
regardless of distance, and if one network can
handle a larger packet size than another, it charges a
proportionally larger price per packet. We also
assume that a subsequent increase in any network’s
packet size does not result in additional cost per
packet to its users. The charge to a user thus remains

Netflix 1022 - Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

basically constant through any net which must
fragment a packet. The unusual effect occurs when a
packet is fragmented into smaller packets which
must individually pass through a subsequent
network with a larger packet size than the original
unfragmented packet. We expect that most networks
will naturally select packet sizes close to one
another, but in any case, an increase in packet size
in one net, even when it causes fragmentation, will
not increase the cost of transmission and may
actually decrease it. In the event that any other
packet charging policies (than the one we suggest)
are adopted, differences in cost can be used as an
economic lever toward optimisation of individual
network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate
in full duplex with their correspondents using
unbounded but finite length messages. A single
character might constitute the text of a message
from a process to a terminal or vice versa. An entire
page of characters might constitute the text of a
message from a file to a process. A data stream (e.g.
a continuously generated bit string) can be
represented as a sequence of finite length messages.

Within a HOST we assume that existence of a
transmission control program (TCP) which handles
the transmission and acceptance of messages on
behalf of the processes it serves. The TCP is in turn
served by one or more packet switches connected to
the HOST in which the TCP resides. Processes that
want to communicate present messages to the TCP
for transmission, and TCP’s deliver incoming
messages to the appropriate destination processes.
We allow the TCP to break up messages into
segments because the destination may restrict the
amount of data that may arrive, because the local
network may limit the maximum transmissin size,
or because the TCP may need to share its resources
among many processes concurrently. Furthermore,
we constrain the length of a segment to an integral
number of 8-bit bytes. This uniformity is most
helpful in simplifying the software needed with
HOST machines of different natural word lengths.
Provision at the process level can be made for
padding a message that is not an integral number of
bytes and for identifying which of the arriving bytes
of text contain information of interest to the
receiving process.

Mutliplexing and demultiplexing of segments
among processes are fundamental tasks of the TCP.
On transmission, a TCP must multiplex together
segments from different source processes and
produce internetwork packets for delivery to one of
its serving packet switches. On reception, a TCP
will accept a sequence of packets from its serving
packet switch(es). From this sequence of arriving
packets (generally from different HOSTS), the TCP

must be able to reconstruct and deliver messages to
the proper destination processes.

We assume that every segment is augmented
with additional information that allows transmitting
and receiving TCP’s to identify destination and
source processes, respectively. At this point, we
must face a major issue. How should the source
TCP format segments destined for the same
destination TCP? We consider two cases.

Case 1): If we take the position that segment
boundaries are immaterial and that a byte stream
can be formed of segments destined for the same
TCP, then we may gain improved transmission
efficiency and resource sharing by arbitrarily
parceling the stream into packets, permitting many
segments to share a single internetwork packet
header. However, this position results in the need to
reconstruct exactly, and in order, the stream of text
bytes produced by the source TCP. At the
destination, this stream must first be parsed into
segments and these in turn must be used to
reconstruct messages for delivery to the appropriate
processes.

There are fundamental problems associated with
this strategy due to the possible arrival of packets
out of order at the destination. The most critical
problem appears to be the amount of interference
that processes sharing the same TCP-TCP byte
stream may cause among themselves. This is
especially so at the receiving end. First, the TCP
may be put to some trouble to parse the stream back
into segments and then distribute them to buffers
where messages are reassembled. If it is not readily
apparent that all of a segment has arrived
(remember, it may come as several packets), the
receiving TCP may have to suspend parsing
temporarily until more packets have arrived.
Second, if a packet is missing, it may not be clear
whether succeeding segments, even if they are
identifiable, can be passed on to the receiving
process, unless the TCP has knowledge of some
process level sequencing scheme. Such knowledge
would permit the TCP to decide whether a
succeeding segment could be delivered to its
waiting process. Finding the beginning of a segment
when there are gaps in the byte stream may also be
hard.

Case 2): Alternatively, we might take the
position that the destination TCP should be able to
determine, upon its arrival and without additional
information, for which process or processes a
received packet is intended, and if so, whether it
should be delivered then.

If the TCP is to determine for which process an
arriving packet is intended, every packet must
contain a process header (distinct from the
internetwork header) that completely identifies the
destination process. For simplicity, we assume that
each packet contains text from a single process
which is destined for a single process. Thus each

Netflix 1022 - Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

packet need contain only one process header. To
decide whether the arriving data is deliverable to the
destination process, the TCP must be able to
determine whether the data is in the proper sequence
(we can make provision for the destination process
to instruct its TCP to ignore sequencing, but this is
considered a special case). With the assumption that
each arriving packet contains a process header, the
necessary sequencing and destination process
identification is immediately available to the
destination TCP.

Both Cases 1) and 2) provide for the
demultiplexing and delivery of segments to
destination processes, but only Case 2) does so
without the introduction of potential interprocess
interference. Furthermore, Case 1) introduces extra
machinery to handle flow control on a HOST-to-HOST

basis, since there must also be some provision for
process level control, and this machinery is little
used since the probability is small that within a
given HOST, two processes will be coincidentally
scheduled to send messages to the same destination
HOST. For this reason, we select the method of Case
2) as a part of the internetwork transmission
protocol.

ADDRESS FORMATS

The selection of address formats is a problem
between networks because the local network
addresses of TCP’s may vary substantially in format
and size. A uniform internetwork TCP address
space, understood by each GATEWAY and TCP, is
essential to routing and delivery of internetwork
packets.

Similar troubles are encountered when we deal
with process addressing and, more generally, port
addressing. We introduce the notion of ports in
order to permit a process to distinguish between
multiple message streams. The port is simply a
designator of one such message stream associated
with a process. The means for identifying a port are
generally different in different operating systems,
and therefore, to obtain uniform addressing, a
standard port address format is also required. A port
address designates a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in
routeing issues, since a HOST or GATEWAY must
choose a suitable destination HOST or GATEWAY for an
outgoing internetwork packet. Let us postulate the
following address format for the TCP address (Fig.
4). The choice for network identification (8 bits)
allows up to 256 distinct networks. This size seems
sufficient for the foreseeable future. Similarly, the
TCP identifier field permits up to 65 536 distinct
TCP’s to be addressed, which seems more than
sufficient for any given network.

As each packet passes through a GATEWAY, the
GATEWAY observes the destination network ID to
determine how to route the packet. If the destination
network is connected to the GATEWAY, the lower 16
bits of the TCP address are used to produce a local
TCP address in the destination network. If the
destination network is not connected to the
GATEWAY, the upper 8 bits are used to select a
subsequent GATEWAY. We make no effort to specify
how each individual network shall associate the
internetwork TCP identifier with its local TCP
address. We also do not rule out the possibility that
the local network understands the internetwork
addressing scheme and thus alleviates the GATEWAY

of the routing responsibility.

PORT ADDRESSING

A receiving TCP is faced with the task of
demultiplexing the stream of internetwork packets it
receives and reconstructing the original messages
for each destination process. Each operating system
has its own internal means of identifying processes
and ports. We assume that 16 bits are sufficient to
serve as internetwork port identifiers. A sending
process need not know how the destination port
identification will be used. The destination TCP will
be able to parse this number appropriately to find
the proper buffer into which it will place arriving
packets. We permit a large port number field to
support processes which want to distinguish
between many different message streams
concurrently. In reality, we do not care how the 16
bits are sliced up by the TCP’s involved.

Fig. 4. TCP address.

Even though the transmitted port name field is
large, it is still a compact external name for the
internal representation of the port. The use of short
names for port identifiers is often desirable to
reduce transmission overhead and possibly reduce
packet processing time at the destination TCP.
Assigning short names to each port, however,
requires an initial negotiation between source and
destination to agree on a suitable short name
assignment, the subsequent maintenance of
conversion tables at both the source and the
destination, and a final transaction to release the
short name. For dynamic assignment of port names,
this negotiation is generally necessary in any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the
TCP into segments whose format is shown in more
detail in Fig. 6. The field lengths illustrated are

Netflix 1022 - Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

