
EMC v. IV
IPR2017-00338
Ex. 1028

Protection and the

Control of Information

Sharing in Multics
Jerome H. Saltzer

Massachusetts Institute of Technology

The design of mechanisms to control the sharing

of information in the Multics system is described. Five

design principles help provide insight into the tradeolfs

among different possible designs. The key mechanisms

described include access control lists, hierarchical control

of access specifications, identification and authentication

of users, and primary memory protection. The paper
ends with a discussion of several known weaknesses

in the current protection mechanism design.

Key Words and Phrases: Multics, protection, security,

privacy, access control, authentication, computer

utilities, time-sharing systems, proprietary pro grams, pro-

tected subsystems, virtual memory, descriptors

CR Categories: 3.70, 4.30, 6.2

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, October
15-17, 1973.

Work reported herein was conducted by the Computer Systems
Research Division of Project MAC, an M.l.T. research program
sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract number
N00014-70—A—0362-0006. Author’s address: Computer Systems
Research Division, Massachusetts Institute of Technology, Project
MAC, 545 Technology Square, Cambridge, MA 02139.

388

An essential part of a general-purpose computer util-

ity is a set of protection mechanisms which control trans-

fer of information among users of the utility. The Mul-

tics system,‘ a prototype computer utility, serves as a

case study of protection mechanisms which can permit

controlled sharing of information in an on—line, general-

purpose, information—storing system. This paper pro-

vides a survey of the techniques currently used in

Multics to provide controlled sharing, user authentica-

tion, inter—user isolation, supervisor—user protection,

user—written proprietary programs, and control of

special privileges.

Controlled sharing of information was a goal in the

initial specifications of Multics [8, 12], and has in-

fluenced every stage of system design, starting with hard-
ware modifications to the General Electric 635 com~

puter which produced the original GE 645 base for

Multics. As a result, information protection is more

thoroughly integrated into the basic design of Multics

than is the case for those commercial systems whose

original specifications did not include comprehensive

consideration of information protection.

Multics is an evolving system, so any case study must

be a snapshot taken at some specific time. The time

chosen for this snapshot is summer, 1973, at which time

Multics was operating at M.I.T. using the Honeywell

6180 computer system. Rather than trying to document

every detail of a changing environment, this paper con-

centrates on the protection strategy of Multics, with the

goal of communicating those ideas which can be applied

or adapted to other operating systems.

In trying to identify the ideas related to protection

which were introduced by Multics, a certain amount of

confusion occurs. The design was initially laid out in

1964-1967, and ideas were borrowed from many sources

and embellished, and new ideas were added. Since then,

the system has been available for study to many other

system designers, who have in turn borrowed and embel-

lished the ideas they found in Multics while constructing

their own systems. Thus some of the ideas reported here

have already appeared in the literature, and earlier ver-

sions of some ideas have been scattered in previous

papers and books about Multics. However, Multics is

unique in the extent to which information protection has

been permitted to influence the entire system design. By

describing in one place the range of protection ideas

embedded in Multics, and their current design status,

the extent of this influence should become apparent.

1 A brief description of Multics and a more complete bibliogra-
phy of Multics publications are given in the paper by Corbaté,
Saltzer, and Clingen [7].

Communications July 1974
of Volume 17
the ACM Number 7

EMC V. IV

IPR20l7-00338

Ex. 1028f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Design Principles

One of the lessons learned during the development

of Multics was the importance of formulating design

principles and of carefully communicating these design

principles to every project member. Although they were

articulated only during the project rather than in ad-

vance, the following five principles, especially applicable

to protection, are worthy of mention.

1. Base the protection mechanisms on permission

rather than exclusion. This principle means that the de-

fault situation is lack of access, and the protection

scheme identifies conditions under which access is per-

mitted. The alternative, in which mechanisms attempt to

identify conditions under which access should be re-

fused, seems to present a wrong psychological base for

secure system design. A conservative design must be

based on arguments on why objects should be accessible,

rather than on why they should not; in a large system

some objects will be inadequately considered and a
default of lack of permission is more fail-safe. Similarly,

a design or implementation mistake in a mechanism

which gives explicit permission tends to fail by refusing

permission, a safe situation, since it will be quickly de-

tected. A design or implementation mistake in a mecha-

nism which explicitly excludes access tends to fail by not

excluding access, a failure which may go unnoticed.

2. Check every access to every object for current

authority. In a system designed to operate continuously,

this principle requires that, if access decisions are re-

membered for future use, careful consideration be given

to how changes in authority are propagated into such
local memories.

3. The design is not secret. The mechanisms should not

depend on the ignorance of potential attackers, but

rather on possession of specific, more easily protected,

protection keys or passwords. This strong decoupling of

protection mechanisms from protection keys permits the

mechanisms to be examined by many reviewers, without

concern that such review itself may compromise the

safeguards. This principle is not new~—Peters [24] and
Baran [2] discuss it in depth~but its violation sent a

surprising number of design proposals back to the draw-

ing boards.

4. The principle of least privilege. Every program and

' every privileged user of the system should operate using

the least amount of privilege necessary to complete the

job. The purpose of this principle is to reduce the num—

ber of potential interactions among privileged programs

to the minimum necessary to operate correctly, so that

one may develop confidence that unintentional, un-

wanted, or improper uses of privilege do not occur. If

this principle is followed, the effect of accidents is re-

duced. Also, ifa question related to misuse ofa privilege

occurs, the number of programs which must be audited

is minimized. Put another way, if one has a mechanism

available which can provide “firewalls,” the principle of

least privilege provides a rationale for where to install

389

the firewalls. The military security rule of “need-to-

know” is an example of this principle.

5. It is essential that the human interface be designed

for naturalness, ease of use, and simplicity, so that users

will routinely and automatically apply the protection
mechanisms.

In the design of Multics there were two specific func-

tional objectives worth mention. The first of these was to

provide for decentralization of the setting of protection

specifications. If a system design forces too many ad-

ministrative decisions (e.g. protection specifications) to

be set by a single administrator, that administrator can

quickly become a bottleneck and an impediment to

effective use of the system, with the result that users

begin adopting habits which bypass the administrator,

perhaps compromising protection in the bargain. Only

by permitting the individual user some control of his
own administrative environment can one insist that he

take responsibility for his work. Of course, on the other

hand, centralization of authority must also be available

as an option.

The second functional objective was to assume that

some users will require protection schemes not antici-

pated in the original design. This objective requires that

the system provide a set of handholds so that the user,

without exercising special privileges, may construct a

protection environment which can interpret access re-

quests however he desires. The method used in Multics
is to permit any user to construct a protected subsystem,

which is a collection of programs and data with the

property that the data may be accessed only by programs

in the subsystem, and the programs may be entered only

at designated entry points. A protected subsystem can

thus be used to program any desired access control
scheme.

The Storage System and Access Control Lists

The central fixture of Multics is an organized infor-

mation storage system [8]. Since the storage system pro-

vides both reliability and protection from unauthorized

information release, the user is thereby encouraged to

make it the repository for all of his programs and data
files. All use of information in the storage system is im-

plemented by mapping the information into the virtual

memory of some Multics process. Physical storage loca-

tion is automatically determined by activity. As a result,

the storage system is also used for all system data bases

and tables, including those related to protection. The

consequence of these observations is that one access con-

trol mechanism, that of the storage system, handles al-

most all of the protection responsibility in Multics.

Storage is logically organized in separately named

data storage segments, each of which contains up to

262,144 36-bit words. A segment is the cataloging unit

of the storage system, and it is also the unit of separate

protection. Associated with each segment is an access

Communications July 1974
of Volume 17
the ACM Number 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

control list, an open-ended list of names of users who

are permitted to reference the segment? To understand

the structure'of the access control list, first consider that

every access to a stored segment is actually made by a

Multics process. Associated with each process is an un-

forgeable character string identifier, assigned to the

process when it was created. In its simplest form, this

identifier might consist of the personal name of the indi-

vidual responsible for the actions of the process. (This

responsible person is commonly called the principal,

and the identifier, the principal identifier.) Whenever the

process attempts to access a segment or other object

cataloged by the storage system, the principal identifier

of the process is compared with those appearing in the

access control list of the object; if no match is found

access is not granted.

Actually, Multics uses a more flexible scheme which

facilitates granting access to groups of users, not all of

whose members are known, and which may have dy-

namically varying membership. A principal identifier in

Multics consists of several parts; each part of the identi-

fier corresponds to an independent, exhaustive partition

of all users into named groups. At present, the standard

Multics principal identifier contains three parts, corre-

sponding to three partitions.

1. The first partition places every individual user of the

installation in a separate access control group by him-

self, and names the group with his personal name. (This

partition is identical to the simple mechanism of the

previous paragraph.)

2. The second partition places users in groups called

projects, which are basically sets of users who cooperate

in some activity such as constructing a compiler or up-

dating an inventory file. One person may be a member of

several projects, although at the beginning of any in-
stance of his use of Multics he must decide under which

project he is operating. A project administrator decides

which users are to be in his project.

3. The third partition places users in named groups

called compartments. Any user may operate in any of the
named compartments, by designating which compart-
ment he wishes to use at the time he authenticates his

identity. Compartments are useful when borrowing un-

audited programs: a user may indicate that certain of

his files can be accessed only by him, and further only

when he is operating in compartment “a”. He can then

be careful to utilize the borrowed program only when he

is operating in compartment “b”; the borrowed program

cannot access those files restricted to compartment “a”.3

Although the precise description in terms of exhaus-

tive partitions sounds formidable, in practice a rela-

tively easy-to-use mechanism results. For example, the

2 The Multics access control list corresponds roughly to a
column of Lampson’s protection matrix [19].

3 The third partition has not yet been completely implemented.
The current system uses the third partition only to distinguish be-
tween interactive and absentee use of the system. The Multics pro-
tection ring scheme [28] provides an alternative method for safely
executing borrowed programs.

390

user named “Jones” working on the project named

“Inventory” and designating the personal compartment

named “a” would be assigned the principal identifier:

Jones-Inventory- a

Whenever his process attempts to access an object cata-

loged by the storage system, this three-part principal
identifier is first compared with successive entries of the

access control list for the object. An access control list

entry similarly has three parts, but with the additional

convention that any or all of the parts may carry a spe-

cial flag to indicate “don’t care” for that particular par-

tition. (We represent the special fiag with an asterisk in

the following examples.) Thus, the access control list
entry

Jones- Inventory- a

would permit access to exactly the principal of our

earlier example. The access control list entry

Jones-*-*

would permit access to Jones no matter what project he

is operating under, and independent of his personally

designated compartment. Finally, the access control list

entry

* - Inventory- *

would permit access to all users of the “Inventory”

project. Matching is on a part-by—part basis, so there is

no confusion if there happens to be a project named
“Jones”.

Using multicomponent principal identifiers, it is

straightforward to implement a variety of standard

security mechanisms. For example, the military “need-
to—know” list corresponds to a series of access control

list entries with explicit user names but (possibly) aster-

isks in the remaining fields. The standard government

security compartments are examples of additional parti-

tions, and would require a minor change in Multics,

namely extending the principal identifier to four or more

parts, each additional part corresponding to one com-

partment in use at a particular installation. (Every per-

son would be either in or out of each such compartment.)

A restriction of access to users who are simultaneously

in two or more compartments would then be easily

expressed.

We have used the term “object” to describe the en-

tities cataloged by the storage system with the intent of

implying that segments are not the only kinds of objects.

Currently, four kinds of objects are implemented or
envisioned:

l. Segments.

2. Message queues (experimental implementation).

3. Directories (called catalogs in some systems).

4. Removable media descriptors (not yet implemented).

For each object, there are several separately control-

lable modes of access to the object. For example, a seg-

ment may be read, written, or executed as a procedure.

Communications July 1974
of Volume 17
the ACM Number 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table I. Acceptable Combinations of Access Modes for a Segment

Mode Typical use

none access denied
r read-only data
re pure procedure
rw writeable data

rew impure procedure

If we use the letters r, w, and e for these three modes of

access, an access control list entry for a segment may

specify any of the combinations of access in Table 1.

Certain access mode combinations are prohibited either

because there is no widely useful interpretation (e.g.

write access by itself) or correct implementation requires

more sophisticated machinery than implied by the

simple mode settings. (For example, granting execute

access only, while appealing as a method of obtaining

proprietary procedures, leaves unsolved certain prob-

lems of general proprietary procedures, such as protec-

tion of return points of calls to other procedures. The

protection ring mechanism described later is used in

Multics to implement proprietary procedures. The exe-

cute-only mode, while probably useful for less general

cases, has not been pursued.)

In a similar way, message queues permit separate

control of enqueuing and dequeuing of messages, tape

reel media descriptors permit separate control of read-

ing, writing, and appending to the end ofa tape reel, and

directories permit separate control of listing of contents,

modifying existing entries, and adding new entries. Con-

trol of these various forms of access to objects is pro-

vided by extending each access control list entry to in-

clude access mode indicators. Thus, the access control

list entry

Smith- *- * rw

permits Smith to read and write the data segment asso-

ciated with the entry.

It would have been simpler to associate an access

mode with the object itself, rather than with each indi-

vidual access control list entry, but the flexibility of

allowing, for example, some users read-only access while

others can read and write is a powerful capability. It

also makes possible exceptions to the granting of access

to all members of a group. In the case where more than

one access control list entry applies, with different access

modes, the convention is made that the first access con-

trol list entry which matches the principal identifier of

the requesting process is the one which applies. Thus,
the pair of access control list entries:

Smith-Inventory- * (none)

*-Inventory- * rw

would deny access to Smith, while permitting all other

members of the “Inventory” project to read and write

the segment.4 To insure that such control is effective,

391

when an entry is added to an access control list, it is

sorted into the list according to how specific the entry is

by the following rule: all entries containing specific

names in the first part are placed before those with

“don’t cares” in the first part. Each of those subgroups

is then similarly ordered according to the second part,

and so on. The purpose of this sorting is to allow very
specific additions to an access control list to tend to take

precedence over previously existing (perhaps by de-

fault) less specific entries, without requiring that the user

master a language which permits him arbitrary ordering

of entries. The goal is that most common access control

intentions are handled correctly automatically, and only

unusually sophisticated intentions require careful analy-

sis by the user to get them to come out right. As men-

tioned later, under the discussion of weaknesses, this

goal has been achieved only partially.

To minimize the explicit attention which a user must

give to setting access control lists, every directory con-
tains an “initial access control list.” Whenever a new

object is created in that directory, the contents of the,

initial access control list are copied into the access con-

trol list of the newly created objects") Only if the user

wishes access to be handled differently than this does he

have to take explicit action. Permission to modify the

entries in a directory implies also permission to modify
its initial access control list.

The access control list mechanism illustrates an inter-

esting subtlety. One might consider providing, as a con-

venience, checking of new access control list entries at

the time they are made, for example to warn a user that

he has just created an access control list entry for a

nonexistent person. Such checks were initially imple‘

merited in Multics, but it was quickly noticed that they

represented a kind of compromise of privacy: by creat-

ing an access control list entry naming an individual, the

presence or absence of an error message would tell

whether or not that individual was a registered user of

the system, thereby possibly compromising his privacy.

For this reason, a name-encoding scheme which required

checking of access control entry names at the time they
were created was abandoned.

It is also interesting to compare the Multics access

control scheme with that of the earlier CTSS system [6].

In CTSS, each file had a set of access restriction bits, ap-

plying to all users. Sharing of files was accomplished by

permitting other users to place in their directories special
4 This feature violates the design principle that selective exclu-

sion is less desirable than selective permission (because of the risk of
undetected errors), but has been provided nevertheless to avoid the
clumsy alternative oflisting every nonexcluded project member.

An earlier version of Multics did not copy the initial access con-
trol list, but instead considered it to be a common appendix to every
access control list in that directory. That strategy made automatic
sorting of access control list entries ineffective, so sorting was left
to the user. As a result, the net effect of a single change to the com-
mon appendix could be different for every object in the directory,
leading to frequent mistakes and confusion, in violation of the design
principle that calls for naturalness and ease of use. Since in the pro-
tection area, it is essential that a user be able to easily understand the
consequences of an action, this apparently more flexible design was
abandoned in favor of the less flexible but more understandable one.

Communications July 1974
of Volume 17
the ACM Number 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

entries called links, which named the original file, and

typically contained further restrictions on allowable

access modes. In modern terminology, these links were

essentially a form of capability [1 1 J, and the CTSS scheme

had several defects common to capability systems but

not present in the Multics arrangement.

1. Once a link was in place there was no way to remove

it without modifying the borrower’s directory. Thus,
revocation of access was awkward.

2. A single user, using the same file via different links,

could have different access privileges, depending on

which link he used. Allowing access rights to depend on

the name which happened to be used for an object cer-

tainly introduced an extra degree of flexibility, but this

flexibility more often resulted in mistakes than in use-
fulness.

3. As part of a protection audit, one would like to be
able to obtain a list of all users who can access a file. To

construct that list in CTSS, one had to search every direc-

tory in the system to make a list of links. Thus such an

audit was expensive and also compromised other users’

privacy.

Multics retains the concept of a link as a naming con-

venience, but the Multics link confers no access privi-

leges—it is only an indirect address.

Early in the design of Multics [8] an additional ex-

tension was proposed for an access control list entry:

the “trap” extension, consisting ofa one—bit flag and the

name of a procedure.“ The idea was that for all users

whose principal identifier matched with that entry, ifthe

trap flag were on, the procedure named in the trap exten-

sion should be called, in the manner of an interrupt

handler, before access be granted. The procedure, sup-

plied by the setter of the access control list entry, could

supply arbitrary access constraints, such as permitting

access only during certain hours or only after asking

another logged in user for an OK. This idea, like that of

the execute-only procedure, is appealing but requires an

astonishing amount of supporting mechanism. The trap

procedure cannot be run in the requesting user’s address-

ing and protection environment, since he is in control of

the environment and could easily subvert the trap proce-

dure. Since the trap procedure is supplied by another

user, it cannot be run in the supervisor’s protection

environment, either, so a separate, protected subsystem

environment is called for. Since the current Multics pro-

tected subsystem scheme allows a subsystem to have ac-

cess to all of its user’s files, implementation of the trap

extension could expose a user to unexpected threats from

trap procedures on any data segment he touches. There-

fore, at the least, a user should be able to request that he

be denied access to objects protected by trap extensions

rather than be subject to unexpected threats from trap

procedures. Finally, if such a trap occurs on every read

or write reference to the segment, the cost would be high.

On the other hand, ifthe trap occurs only at the time the

segment is mapped into a user’s address space,’ then the

design principle that every reference be validated is vio-

392

lated; revocation of access becomes difficult, especially

if the system is operated continuously for long periods.

The sum total of these considerations led to temporarily

abandoning the idea ofthe trap extension, perhaps until

such time as a more general domain scheme, such as that
suggested by Schroeder [27], is available.

Both backup copying of segments (for reliability)
and bulk 1/0 to printers and other devices are carried

out by operator—controlled processes which are subject

to access control just as are ordinary users. Thus a user

can insure that printed copies of a segment are not acci-

dentally made, by failing to provide an access control

list entry which permits the printer process to read the

segment? Access control list entries permitting backup
and bulk I/0 are usually part of the default initial access

control list. Bulk input of cards is accomplished by an

operator process which reads them into a system direc-

tory and leaves a note for the user in question to move

them to his own directory. This strategy guarantees that
there is no way in which one user can overwrite another

user’s segment by submitting a spurious card input re-

quest. These mechanisms are examples of the design

principle that every access to every object is checked for

authority.

An administrative consequence of the access control

list organization is that personal and project names, once

assigned, cannot easily be reused since the names may

appear in access control lists. In principle, a system ad-

ministrator could, when a user departs, unregister him

and then run a superprivileged program which examines

every access control list of the storage system for in-

stances of that name, and delete them. On the other

hand, such a systematic search would not discover user

programs which initialize access control lists and con-

tain names of now-departed users. Thus, the alternative

scheme was adopted, requiring all user names, once

registered, to be permanent.

Finally, the one most apparent limitation of the

scheme as presently implemented is its “one-way” con-
trol of access. With the described access control list or-

lganization, the owner of a segment has complete control
over who may access it. There are some cases in which

users other than the owner may wish to see access re-
stricted to an object which the owner has declared pub-

lic. For example, an instructor of a class may for peda-

gogical purposes wish to require his students to write a

particular program rather than make use of an equiva-

lent one already publicly available in the system. Alter-

natively, a project administrator concerned about

security may wish to insure that his project members

cannot copy sensitive information into storage areas

belonging to other users and which are not under his

control. He may also want to prevent his project mem-

bers from setting access control lists to permit access by

users outside the project. This kind of control can be ex-

pressed in Multics currently only by going to the trouble

of constructing a protected subsystem which examines

all supervisor calls, thereby permitting complete control

Communications July 1974
of Volume 17
the ACM Number 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

