
1

UNITED STATES DISTRICT COURT
EASTERN DISTRICT OF VIRGINIA

Alexandria Division

LIMELIGHT NETWORKS, INC.,

 Plaintiff,

 v.

XO COMMUNICATIONS, LLC, AND
AKAMAI TECHNOLOGIES, INC.,

 Defendants.

Case No. 3:15cv720-JAG

JURY TRIAL DEMANDED

LIMELIGHT’S FIRST AMENDED COMPLAINT

Pursuant to Federal Rule of Civil Procedure 15(a)(1), Limelight Networks, Inc.

(“Limelight” or “Plaintiff”) hereby alleges for its First Amended Complaint for patent

infringement against Defendants XO Communications, LLC (“XO”) and Akamai Technologies,

Inc. (“Akamai”) (collectively, “Defendants”) on personal knowledge as to its own actions and on

information and belief as to the actions of others, as follows:

NATURE OF THE ACTION

1. This is a patent infringement action by Limelight to end Defendants’ unauthorized

and infringing manufacture, use, sale, offering for sale, and/or importation of products and

methods incorporating Limelight’s patented inventions.

2. Limelight holds all substantial rights and interest in the Patents-in-Suit described

below, including the exclusive right to sue Defendants for infringement and recover damages.

3. Plaintiff Limelight seeks monetary damages, prejudgment interest and injunctive

relief for Akamai’s and XO’s past and on-going infringement of the Patents-in-Suit.

THE PARTIES

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 1 of 57 PageID# 379

AKAMAI
EXHIBIT 1009

2

4. Limelight Networks, Inc. (“Limelight”) is a corporation organized and existing

under the laws of Delaware with its principal place of business at 222 South Mill Ave., Suite 800,

Tempe, Arizona 85281.

5. On information and belief, Defendant XO Communications, LLC. (“XO”) is a

corporation existing and organized under the laws of Delaware and has its principal place of

business at 13865 Sunrise Valley Drive, Herndon, VA 20171.

6. On information and belief, Defendant Akamai Technologies, Inc. (“Akamai,” or

“Defendant”) is a corporation existing and organized under the laws of Delaware and has its

principal place of business at 150 Broadway, Cambridge, Massachusetts 02142.

7. Founded in 2001, Limelight is a leader in digital content delivery. Its content

acceleration technologies and services enable publishers to deliver their digital content (e.g., web

pages, videos, full-length movies and television shows, operating system updates, and online

games) on any device, anywhere in the world.

8. Akamai also sells products and services for digital content delivery. As such,

numerous Limelight products and services compete with those offered by Akamai. For example,

Limelight and Akamai each operate a global Content Delivery Network (“CDN”)—a

geographically distributed network of servers that their customers, such as web sites, software

applications, video-on-demand and streaming media providers, can use to accelerate content

delivery to their end users. Such CDNs accelerate content delivery through a variety of

techniques, such as caching content at numerous servers so that the content can be delivered to

end users from locations close to the user. XO is a telecommunications company that is engaged

in an extensive partnership with Akamai, including as a reseller of Akamai services and as

a partner in deployment and operation of hardware and software components of a CDN.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 2 of 57 PageID# 380

3

9. While Akamai was one of the first to market with a CDN solution, newer entrants

such as Limelight have rapidly innovated and developed new technology contributions—and

obtained patent protection for those contributions—which Akamai has then implemented in

order to remain competitive.

JURISDICTION AND VENUE

10. This action for patent infringement arises under the patent laws of the United

States, Title 35 of the United States Code.

11. This Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and

1338(a).

12. This Court has general and specific personal jurisdiction over Defendant XO. XO

has substantial contacts with the forum as a consequence of establishing its headquarters in

Virginia and in this District, and XO conducts substantial business in Virginia. XO sells, makes,

uses, and offers for sale its products and services, including products and services that infringe

Plaintiff’s patents, within the state of Virginia, including to customers in Virginia. Such

customers include USA Today, a customer it shares with Akamai in connection with use of

systems that infringe the asserted patents. In addition, on information and belief, XO has

established data centers for use in infringing the asserted Limelight Patents in this district,

including at 12100 Sunrise Valley Drive Reston, VA, and at 8613 Lee Highway, Fairfax, VA

22031.

13. XO has committed and continues to commit acts of patent infringement, including

making and using infringing systems, and performing infringing methods, within this district,

including in conjunction with Akamai.

14. This Court has general and specific personal jurisdiction over Defendant Akamai.

Akamai has substantial contacts with the forum as a consequence of conducting substantial

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 3 of 57 PageID# 381

4

business in Virginia and in this District, including establishment of offices at 11111 Sunset Hills

Road, Suite 250, Reston, VA 20190. In addition, Akamai has established a significant presence

in this forum by locating its content delivery servers accused of infringing the patents asserted in

this action in Virginia and in this District. For example, according to publicly available

documentation, Akamai has placed more than 200 racks of its accused content delivery servers

and associated hardware and software at a data center located at 12100 Sunrise Valley Drive

Reston, VA 20191, and has placed an additional 170 racks of its accused content delivery servers

and associated hardware and software at a data center located at 1780 Business Center Drive,

Reston, VA 20190. Akamai has also located its accused content delivery servers in data centers

in Sterling, VA, Manassas, VA, Ashburn, VA, and Vienna, VA, each of which are located in this

District. The operation of these content delivery servers in Virginia and in this District

constitutes infringement of the asserted Limelight patents in this District. In addition, this Court

has jurisdiction over Akamai because Akamai has conducted business with a Virginia-based

corporation, XO, for the purpose of infringing the patents.

15. Akamai has committed and continues to commit acts of patent infringement,

including making and using infringing systems, and performing infringing methods, within this

district, including in conjunction with XO.

16. Venue is proper for XO in this District under 28 U.S.C. §§ 1391(b) and (c), and

1400(b) because, as described above, a substantial part of the events giving rise to Limelight’s

claims occurred in this district, and because XO, which is headquartered in Herndon, Virginia,

resides within this district.

17. Venue is proper for Akamai in this District under 28 U.S.C. §§ 1391(b) and (c),

and 1400(b) because, as described above, Akamai has a regular and established practice of

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 4 of 57 PageID# 382

5

business in this district and has committed acts of infringement in this district, including by

virtue of its far-reaching relationship with XO, whose headquarters are in this district. In 2001,

Akamai and XO entered into a strategic agreement under which “XO will provide co-location

space in its data centers for the deployment of additional Akamai servers,” and “XO’s

interconnection bandwidth related services and hosting capabilities [will] help Akamai to expand

its reach to enable users to benefit from improved performance and accelerated delivery of the

Web’s most popular streaming media, software applications and content served on Akamai’s

globally distributed network”—in short, to co-locate at XO-owned or XO-administered data

centers the products and services accused of infringing the Limelight patents asserted in this

action. “XO Communications and Akamai Announce Strategic Alliance,” dated May 17, 2001, at

http://www.akamai.eu/html/about/press/releases/2001/press_051701.html (last visited November

29, 2015). On information and belief, one such data center is located at 12100 Sunrise Valley

Drive, Reston, VA. XO also resells Akamai’s accused content delivery services to its customers.

18. XO has also entered into agreements with Akamai to provide, among other things,

network connectivity and “peering and transit services” to Akamai servers that form part of

Akamai’s Content Delivery Network.

JOINDER

19. Joinder is proper under 35 U.S.C. § 299 because questions of fact common to

each Defendant will arise in the action. As detailed below, Limelight alleges patent infringement

by Defendants in connection with their making and using systems, and their practice of methods,

for accelerating the delivery of digital content based on hardware and software developed by

Defendant Akamai. As such, factual issues regarding the operation of that hardware and software

are common to Akamai and to XO.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 5 of 57 PageID# 383

6

20. Joinder is further proper because some of Defendants’ infringement arises out of

the same transaction, occurrence, or series of transactions or occurrences relating to the making,

using, importing into the United States, offering for sale, or selling of the same accused product

or process. As described below, while each of XO and Akamai can directly infringe the asserted

claims, when the infringing system includes a combination of XO-deployed components and

Akamai servers, Akamai and XO act jointly or in concert to perform the infringing acts, and in

that instance, the infringement is not complete until both XO and Akamai have provided or

performed their respective parts. For example, the asserted patents include claim elements that

are only satisfied when the components of a CDN server are connected to, and made addressable

on, a network such as the Internet, which is one component supplied to Akamai by XO.

THE ASSERTED PATENTS

21. As a global leader in digital content delivery, Limelight has sought patent

protection for many of its innovations in this field, including the patents asserted in this matter.

THE CONDITIONAL PROTOCOL CONTROL PATENTS

22. On May 11, 2010, the United States Patent and Trademark Office duly and legally

issued U.S. Patent No. 7,715,324 (“the 324 Patent”), entitled “Conditional Protocol Control.” A

copy of the 324 Patent is attached to the Complaint as Exhibit A.

23. On December 10, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,750,155 (“the 155 Patent”), entitled “Conditional Protocol

Control.” A copy of the 155 Patent is attached to the Complaint as Exhibit B.

24. The 324 and 155 Patents arose out of the innovative work performed by Limelight

engineers to utilize selective optimizations of the Transport Control Protocol (“TCP”), a core

Internet protocol that governs how content is delivered over the web, in order to accelerate their

customers’ delivery of Internet content, including web pages, downloadable files, and media

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 6 of 57 PageID# 384

7

content such as images or audio/video, to their end users. The inventors of the 324 and 155

Patents developed ways to use TCP optimizations to accelerate such content conditionally, such

as on a customer-by-customer, or file-by-file basis, in order to optimize this content delivery for

any given set of circumstances.

25. In October 2008, Limelight licensed the basic technology and software for

optimizing TCP connections from FastSoft, Inc., a startup company that developed an algorithm

known as FastTCP, which allowed for accelerating TCP connections on one end (the server end)

of an Internet connection. FastSoft had no experience in content acceleration in the context of

CDNs such as those provided by Limelight and by Akamai, and instead pursued a business

model whereby it sought to sell hardware appliances that implemented its algorithm. On top of

the elementary technology supplied by FastSoft, Limelight engineers developed a complete TCP

optimization solution for CDNs that could analyze a request for content received by a content

server and, based on information obtained from the request, such as the identity of the customer

or the type of content requested, conditionally apply a set of transport protocol optimizations on

a connection by connection basis. Because optimization could be applied conditionally on a

connection-by-connection basis under the Limelight solution, each connection could be

optimized differently, according to a configurable profile.

26. Limelight sought and obtained patent protection for its conditional protocol

control innovations, including the 324 and 155 Patents.

27. Limelight also shared its conditional protocol control innovations with FastSoft,

including providing FastSoft with the functional requirements for its Deliver XD service that

implemented these innovations, and collaborating with FastSoft on the improvement of its

technology for use within a Content Delivery Network.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 7 of 57 PageID# 385

8

28. In September 2012, Akamai announced that it had acquired FastSoft, and had

integrated FastSoft’s engineering team—a team that had been exposed to Limelight’s

innovations—into Akamai. Shortly thereafter, Akamai communicated to Limelight that all

FastSoft products were entering their End Of Life (“EOL”) phase, and support for these products

would be discontinued within one year, or earlier if allowed under the license agreement.

29. At least by September 2013, Akamai had deployed FastSoft-based TCP protocol

optimization in its own Content Delivery Network in a manner strikingly similar to the

implementation created and patented by Limelight. Like Limelight, Akamai’s TCP optimization

does not utilize FastSoft hardware appliances, but instead deploys TCP optimizations in software

at content servers in the Content Delivery Network. Like Limelight, Akamai’s TCP optimization

is conditional, highly configurable via a configuration profile, and can be set connection-by-

connection. Like Limelight, Akamai’s TCP optimization parameters are based on analysis of the

received content request. Each of these aspects is described in Limelight’s conditional protocol

control patents prior to Akamai’s deployment.

OTHER LIMELIGHT PATENTS

30. On October 7, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,856,263 (“the 263 Patent”), entitled “Systems and methods

thereto for acceleration of web pages access using next page optimization, caching and pre-

fetching techniques.” A copy of the 263 Patent is attached to the Complaint as Exhibit C.

31. On March 25, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,683,002 (“the 002 Patent”), entitled “Content delivery network

cache grouping.” A copy of the 002 Patent is attached to the Complaint as Exhibit D.

32. On April 21, 2015, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 9,015,348 (“the 348 Patent”), entitled “Dynamically selecting

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 8 of 57 PageID# 386

9

between acceleration techniques based on content request attributes.” A copy of the 348 Patent is

attached to the Complaint as Exhibit E.

33. On December 24, 2013, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,615,577 (“the 577 Patent”), entitled “Policy based processing of

content objects in a content delivery network using mutators.” A copy of the 577 Patent is

attached to the Complaint as Exhibit F.

34. Limelight owns all substantial right, title, and interest in the 324, 155, 002, 263,

348, and 577 Patents, and holds the right to sue and recover damages for infringement thereof,

including past infringement.

35. Akamai was served with Limelight’s original Complaint, attached as Exhibit G,

on December 2, 2015. A copy of the executed summons and proofs of service for Akamai is

attached as Exhibit H.

36. At least by no later than the date of service of Limelight’s original Complaint,

Akamai had actual notice of each of the Asserted Patents and actual notice that its individual

actions and/or the joint or concerted actions of Akamai and XO constituted and continue to

constitute infringement of at least one claim of each of the Asserted Patents.

37. XO was served with Limelight’s original Complaint, attached as Exhibit G, on

December 2, 2015. A copy of the executed summons and proofs of service for XO is attached as

Exhibit I.

38. At least by no later than the date of service of Limelight’s original Complaint, XO

had actual notice of each of the Asserted Patents and actual notice that its individual actions

and/or the joint or concerted actions of Akamai and XO constituted and continue to constitute

infringement of at least one claim of each of the Asserted Patents.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 9 of 57 PageID# 387

10

COUNT I AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

39. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

40. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 155 Patent, including but not limited to claims 1, 3, 8, 9, 10, 11, 12, 13, 15,

18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by

making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, the Akamai Intelligent Platform, including a

content delivery network with edge servers running Akamai’s TCP optimization functionality, as

well as services associated therewith (the 155 Infringing Products). Based on information and

belief, and publicly available documentation, the 155 Infringing Products perform TCP

optimization by modifying pre-existing TCP settings based upon parameters that are determined

at least in part with reference to information in the URLs of end-user requests processed by

Akamai.

41. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

42. Akamai’s edge servers with TCP optimization meet the requirements of the

claimed content distribution server, as reflected by publicly available Akamai documentation. On

information and belief, to perform their basic role, Akamai’s edge servers, including edge servers

that are co-located with XO, have multiple network ports to send and receive data. For example,

Akamai publishes the following images showing Akamai servers having two Ethernet ports:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 10 of 57 PageID# 388

11

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18_10G_Rear_Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1_2x8_CacheH_Rear_Large.jpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network_Pac

kages.html (last visited November 29, 2015).

43. Further, Akamai’s geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that “allow Akamai

to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

[Akamai Hands and Eyes Guide], available at

https://fieldtech.akamai.com/heguide/Router_Hardware.html. When such equipment is deployed

in a manner that connects Akamai’s edge servers to the Internet, for example by XO in its data

centers, it likewise has multiple ports configured to send and receive data over a connecting

network.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 11 of 57 PageID# 389

12

44. Likewise, Akamai’s servers, including on information and belief servers that are

co-located with XO, include processors:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Server_Hard

ware.html (last visited November 29, 2015). The 155 Infringing Products include a protocol

handler, such as the TCP/IP protocol stack implementation, that establishes and maintains

connections with end-users. The 155 Infringing Products have storage that they use to store

customer content to serve to end-users.

45. The 155 Infringing Products perform TCP optimization in a manner that infringes

the asserted claims. Specifically, the 155 Infringing Products monitor connections with end-users

for requests. When they receive end-user requests, the 155 Infringing Products determine

parameters that relate to processing and memory capabilities in the TCP protocol, such as

maximum buffer space and socket buffer values. These determinations are made by the edge

server, including on information and belief in those cases where the edge server is co-located

with XO, based at least in part on reference to information in the URL of the request (such as for

example, the hostname field or the customer ID). This information is utilized, in addition to other

information, for the Akamai server to determine how aggressive the TCP optimization should be

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 12 of 57 PageID# 390

13

for that connection. Once that determination is made, the TCP settings are altered to put that new

optimization into effect by changing pre-existing TCP values to new values that are consistent

with the correct level of TCP optimization. As Akamai’s documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what’s
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the “slow-start” misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much less aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion-
avoidance (increase by 1 or 2 or higher) phases, as well as how much we back off
when a loss is detected (shrink window by 50%, 30% or even less). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html (last visited November 29, 2015).

46. Akamai’s TCP optimization has at least medium and low settings, which

determine how aggressively TCP is optimized for the connection. Further, the selection of a level

of TCP optimization results in the timing of data transmission at the transport layer being

modified as a function of the rate at which the congestion window is changed. On information

and belief, Akamai’s TCP optimization also results in changing the burst size of the connection.

47. Further, Akamai utilizes latency estimates to select the correct level of TCP

optimization. As Akamai explains: “It’s a reactive protocol. FastTCP, the Akamaized version of

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 13 of 57 PageID# 391

14

FastSoft’s solution, attempts to estimate the correct transmission rate by utilizing latency

estimates, among other things, without actually inducing loss. It’s a proactive protocol.”

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html (last visited November 29, 2015).

48. Further, on information and belief, Akamai makes TCP optimization

determinations based on a predetermined performance profile, for instance, based on the identity

of the customer or the specific customer content provided by Akamai. On information and belief,

this performance profile is stored on at least a customer-by-customer basis and is used to set the

level of TCP optimization (such as medium and low).

49. Further, when an Akamai edge server with TCP optimization does not have

content requested by an end-user in its own cache, the edge server can obtain that content from

the cache or caches of neighboring or “parent” Akamai edge servers, provide that content to the

end-user, and also store that same content in its own cache for future use. When an Akamai edge

server obtains the missing content from the cache of an edge server hosted by XO, or vice versa,

Akamai and XO act in concert or jointly to practice the claimed inventions and the infringement

is not complete until both Akamai and XO have provided or performed their respective parts.

50. On information and belief, Akamai’s TCP optimization, which infringes the

asserted claims, utilizes technology that Akamai received from Limelight by way of its

acquisition of FastSoft, as discussed above at ¶¶ 24-28. As Akamai explains in its public

documentation:

There has been a lot of research on TCP over the last 10–15 years, much of which
has focused on improving some aspect of TCP’s behavior. The key finding is that
TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 14 of 57 PageID# 392

15

the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It’s a reactive protocol. FastTCP, the
Akamaized version of FastSoft’s solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It’s a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html.

51. The making, and operation, of the 155 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 155 Patent pursuant to 35

U.S.C. § 271(a).

52. On information and belief, Akamai has induced and continues to induce

infringement of the 155 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO, to perform the claimed methods for

managing delivery of content in a system, or make and/or use the claimed systems, as described

above. Such performance of the claimed methods, or making and/or use of the claimed systems,

constitutes infringement, literally or under the doctrine of equivalents, of one or more claims of

the 155 Patent by such third parties. Akamai’s acts of encouragement include: providing and

intending that third parties use products and services that utilize the Akamai Intelligent Platform

with Akamai’s TCP optimization functionality; purposefully and voluntarily placing the 155

infringing products and services in the stream of commerce with the expectation that these

products and services will be used by customers in the Eastern District of Virginia; providing

other components of the system that enable and/or make use of these products and services,

including, e.g., servers and other network equipment; advertising these products and services

through its own and third-party websites; providing instructions on how to use these products

and services; and encouraging Network Service Providers such as XO to provide it with network

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 15 of 57 PageID# 393

16

connectivity services to practice the asserted claims. Furthermore, Akamai has actual knowledge

of how its accused products and services work, including how its accused products and services

are used by its customers.

53. Akamai has proceeded in this manner despite its actual knowledge of the 155

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 155 Patent. At the very least, because Akamai has

been and remains on notice of the 155 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

54. Unless enjoined by this Court, Akamai will continue to infringe the 155 Patent.

55. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 155 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT II AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 7,715,324

56. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

57. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 324 Patent, including but not limited to claims 1, 2, 4, 5, 6, 7, 8, 10, and 11,

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, the Akamai Intelligent Platform, including a content delivery

network with edge servers running Akamai’s TCP optimization functionality, as well as services

associated therewith (the 324 Infringing Products). Based on information and belief, and publicly

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 16 of 57 PageID# 394

17

available documentation, the 324 Infringing Products perform TCP optimization by modifying

pre-existing TCP settings based upon parameters that are determined at least in part with

reference to information in the URLs of end-user requests processed by Akamai.

58. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

59. Specifically, Akamai’s edge servers with TCP optimization, including on

information and belief, edge servers that are co-located with XO, manage the delivery of content

over network connections, including network connections owned and operated in part or in

whole by XO, in satisfaction of the asserted claims, on information and belief and based on

publicly available documentation.

60. The 324 Infringing Products include a protocol handler, such as the TCP/IP

protocol stack implementation, that establishes and maintains connections with end-users.

61. On information and belief, to perform their basic role, Akamai’s edge servers,

including edge servers that are co-located with XO, include network ports used to receive and

send communications over a network. For example, Akamai publishes the following images

showing Akamai servers having Ethernet ports:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 17 of 57 PageID# 395

18

r_Hardware/X4i_1-5x18_10G_Rear_Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1_2x8_CacheH_Rear_Large.jpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in Akamai Hands And

Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network_Packages.html (last

visited November 29, 2015).

62. Further, Akamai’s geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that “allow Akamai

to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

[Akamai Hands And Eyes Guide], available at

https://fieldtech.akamai.com/heguide/Router_Hardware.html. When such equipment is deployed

in a manner that connects Akamai’s edge servers to the Internet, for example by XO in its data

centers, it likewise has multiple ports configured to send and receive data over a connecting

network.

63. The 324 Infringing Products perform TCP optimization in a manner that infringes

the asserted claims, including in combination with a network connection that is owned and

operated in part or in whole by XO. Specifically, the 324 Infringing Products monitor

connections with end-users for requests. When they receive end-user requests, Akamai’s 324

Infringing Products determine a level of TCP optimization in part on reference to information in

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 18 of 57 PageID# 396

19

the URL of the request (such as for example, the hostname field, or the customer ID, which

constitute alphanumeric strings). This information is utilized, in addition to other information,

for the Akamai server, including on information and belief, cases where the edge server is co-

located with XO to determine how aggressive the TCP optimization should be for that

connection. Once that determination is made, the TCP settings are altered to put that new

optimization into effect by changing pre-existing TCP values to new values that are consistent

with the correct level of TCP optimization. As Akamai’s documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what’s
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the “slow-start” misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much less aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion-
avoidance (increase by 1 or 2 or higher) phases, as well as how much we back off
when a loss is detected (shrink window by 50%, 30% or even less). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html (last visited November 29, 2015).

64. Thus, Akamai’s TCP optimization has at least medium and low settings, which

determine how aggressively TCP is optimized for the connection. Further, the selection of a level

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 19 of 57 PageID# 397

20

of TCP optimization results in the timing of data transmission at the transport layer being

modified as a function of the rate at which the congestion window is changed.

65. This process of TCP optimization is performed, on information and belief, on

multiple connections, including multiple simultaneous connections, including from different end-

users, where the multiple connections are used to serve different content. On information and

belief, the TCP optimization process employed by Akamai can apply different levels of TCP

optimization to these different connections.

66. Further, Akamai utilizes other attributes such as latency estimates to select the

correct level of TCP optimization. As Akamai explains: “FastTCP, the Akamaized version of

FastSoft’s solution, attempts to estimate the correct transmission rate by utilizing latency

estimates, among other things, without actually inducing loss. It’s a proactive

protocol.” TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TC

P_Optimizations.html (last visited November 29, 2015).

67. Further, on information and belief, Akamai makes TCP optimization

determinations based at least in part on attributes associated with the identity of the customer or

the specific customer content provided by Akamai. On information and belief these attributes

and the information is stored on at least a customer-by-customer basis and is used to set the level

of TCP optimization (such as medium and low).

68. On information and belief, Akamai’s TCP optimization, which infringes the

asserted claims, utilizes technology that Akamai received from Limelight by way of its

acquisition of FastSoft, as discussed above at ¶¶ 24-28. As Akamai explains in its public

documentation:

There has been a lot of research on TCP over the last 10–15 years, much of which
has focused on improving some aspect of TCP’s behavior. The key finding is that

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 20 of 57 PageID# 398

21

TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt
the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It’s a reactive protocol. FastTCP, the
Akamaized version of FastSoft’s solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It’s a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html.

69. The making and operation of the 324 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 324 Patent pursuant to 35

U.S.C. § 271(a).

70. On information and belief, Akamai has induced and continues to induce

infringement of the 324 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO, to perform the claimed methods for

managing delivery of content, or make and/or use the claimed systems, as described above. Such

performance of the claimed methods, or making and/or use of the claimed systems, constitutes

infringement, literally or under the doctrine of equivalents, of one or more claims of the 324

Patent by such third parties. Akamai’s acts of encouragement include: providing and intending

that third parties use products and services that utilize the Akamai Intelligent Platform with

Akamai’s TCP optimization functionality; purposefully and voluntarily placing the 324

infringing products and services in the stream of commerce with the expectation that these

products and services will be used by customers in the Eastern District of Virginia; providing

other components of the system that enable and/or make use of these products and services,

including, e.g., servers and other network equipment; advertising these products and services

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 21 of 57 PageID# 399

22

through its own and third-party websites; providing instructions on how to use these products

and services; and encouraging Network Service Providers such as XO to provide it with network

connectivity services to practice the asserted claims. Furthermore, Akamai has actual knowledge

of how its accused products and services work, including how its accused products and services

are used by its customers.

71. Akamai has proceeded in this manner despite its actual knowledge of the 324

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 324 Patent. At the very least, because Akamai has

been and remains on notice of the 324 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

72. Unless enjoined by this Court, Akamai will continue to infringe the 324 Patent.

73. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 324 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT III AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,683,002

74. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

75. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 002 Patent, including but not limited to claims 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15,

16, 17, 18, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents,

by making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, the Akamai Intelligent Platform, including a

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 22 of 57 PageID# 400

23

content delivery network with edge servers, as well as services associated therewith (the 002

Infringing Products). Akamai’s content delivery network includes a plurality of points of

presence that are distributed geographically. These points of presence include edge servers.

Based on information and belief, and publicly available documentation, edge servers that do not

have user-requested content in their own caches can ask other edge servers whether they have the

requested content in their caches and if so the content is provided to the user.

76. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

77. Specifically, the 002 Infringing Products include edge servers that receive end-

user requests for content in the form of URLs. When such requests are received, if the content is

not in the cache of the edge server, the edge server contacts neighboring edge servers to

determine whether the neighboring edge servers have the user-requested content in their own

caches. If the neighboring edge server has the requested content the content is served to the end

user. As Akamai explains:

The edge server will check its local cache as well as the caches of other machines
in the server deployment to see if the requested object has been seen before. If the
object is found, the edge server will verify that the object is not stale and will
serve it to the user.

If the object is found in the cache but it is stale, the edge server will contact
another Akamai deployment or the origin to see if a newer version has been
uploaded.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt_Edge_Servers_Origin.html (last visited November 29, 2015).

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 23 of 57 PageID# 401

24

78. Further, if the edge server receiving the request for content that it does not have in

its own cache is also unable to get that content from a neighboring edge server, the edge server

requests the content from a server higher in Akamai’s distribution hierarchy, including in some

instances, the origin server, until it is able to retrieve the requested content. On information and

belief, this process is based in part on analysis of the URL of the content request. As Akamai

explains:

When an edge server gets a request for an object that it hasn’t yet seen, it will
download it from either another Akamai deployment or the origin. The customer’s
metadata determines whether the edge contacts the origin directly, or if it applies
some sort of tiered distribution hierarchy.

Tiered distribution is used to provide greater origin offload by allowing many
Akamai edge deployments to go forward to a smaller set of deployments which in
turn go forward to the origin. In the case of Akamai’s Site Shield product, the
Customer’s IT department can program the IP addresses of these top-tier
machines into their firewall and block access to their network from all other
Internet hosts.

At this point, caching rules are applied to the object and the requested bytes are
delivered to the user.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt_Edge_Servers_Origin.html (last visited November 29, 2015).

79. In addition, the edge servers in a given instance of infringement can both be

located within the same point of presence, and the infringement can involve all of the caches in a

given point of presence. Likewise, the servers higher in the distribution hierarchy can also be

located within different points of presence.

80. Further the edge server that received the request can serve the content to an end

user acting as a proxy for the other edge server.

81. Also, on information and belief, the edge server that receives the request can

query more than one edge server in overlapping time.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 24 of 57 PageID# 402

25

82. On information and belief, both Akamai and XO makes and uses infringing

systems with respect to each of the acts of infringement described above. Akamai makes

infringing systems that consist entirely of Akamai servers. Likewise on information and belief,

XO makes and uses infringing systems where all of the servers are XO-hosted or operated

servers. Further, when the infringing system includes a combination of Akamai and XO-hosted

or operated servers, or through network services provided by XO, Akamai and XO act jointly or

in concert to practice the claimed inventions, and the infringement is not complete until both

Akamai and XO have provided or performed their respective parts.

83. The making, and operation, of the 002 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 002 Patent pursuant to 35

U.S.C. § 271(a).

84. On information and belief, Akamai has induced and continues to induce

infringement of the 002 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO, to perform the claimed methods for

retrieving content objects in a content delivery network having a plurality of points of presence

distributed geographically, or make and/or use the claimed systems, as described above. Such

performance of the claimed methods for retrieving content objects in a content delivery network,

or making and/or using the claimed systems, constitutes infringement, literally or under the

doctrine of equivalents, of one or more claims of the 002 Patent by such customers or third

parties. Akamai’s acts of encouragement include: providing and intending that third parties use

content delivery products and services that utilize the Akamai Intelligent Platform content

delivery network; purposefully and voluntarily placing infringing products and services in the

stream of commerce with the expectation that its products and services will be used by customers

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 25 of 57 PageID# 403

26

in the Eastern District of Virginia; providing other components of the system that enable and/or

make use of these products and services, including, e.g., servers and other network equipment;

advertising these products and services through its own and third-party websites; providing

instructions on how to use these products and services; and encouraging Network Service

Providers such as XO to provide it with network connectivity services to practice the asserted

claims. Furthermore, Akamai has actual knowledge of how its accused products and services

work, including how its accused products and services are used by its customers.

85. Akamai has proceeded in this manner despite its actual knowledge of the 002

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 002 Patent. At the very least, because Akamai has

been and remains on notice of the 002 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

86. Unless enjoined by this Court, Akamai will continue to infringe the 002 Patent.

87. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 002 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IV AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,856,263

88. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

89. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 263 Patent, including but not limited to claims 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 26 of 57 PageID# 404

27

of equivalents, by making, using, selling, and/or offering to sell in the United States without

authority and/or importing into the United States without authority, the Akamai Intelligent

Platform, including a content delivery network with edge servers performing prefetching

additional web pages and content to cache, prior to their being requested by an end user, as well

as services associated therewith, also known as the “Akamai Instant” feature (the 263 Infringing

Products). Based on information and belief, and publicly available documentation, Akamai’s

edge servers accelerate delivery of web content by parsing requested web pages to identify

additional web pages that are likely to be requested by a user system, and storing them to cache.

90. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

91. Specifically, Akamai’s edge servers with the Akamai Instant feature meet the

requirements of the claimed systems and methods for accelerating access to resources of web

pages, as reflected by publicly available Akamai documentation. On information and belief,

Akamai’s edge servers include a cache for storing web content that can be used to store web

content that has been “prefetched”—obtained before an end user client has asked for them. For

example, Akamai states the following about the prefetching capabilities of its edge servers:

Before a base page (e.g. home page html) is served from the origin to the client,
the Akamai edge server parses the content and prefetches predefined assets from
the origin before the response is sent to the client, so they can be served from the
edge cache when the client requests them.

“Of Preconnect, Prefetch and Preload,” https://community.akamai.com/community/web-

performance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 27 of 57 PageID# 405

28

92. Akamai’s edge servers with the Akamai Instant feature can parse requested web

pages to identify additional web pages that are likely to be requested by the user system, to

request those web pages and their specific content resources from another server before an end

user requests them from the edge server, and store them in its cache. On information and belief,

this ability includes the ability to obtain and store in cache static (non-dynamic) resources, such

as image files. For example, Akamai states the following about the prefetching capabilities of its

edge servers with Akamai Instant:

In the past, when our customers have had long think-time applications due to
database lookups, Web services calls, or other processing components that slow
down origin response times, there wasn't much we could do to help other than
speed the content once it was ready to be delivered. But by then it is usually too
late. The new Terra Alta feature, Akamai Instant, now lets us tackle that
delivery challenge head on. By designating the most likely next pages to be
visited by users, Terra Alta is able to start the process of gathering content,
making Web service calls, or doing database lookups, before the page is
requested by the user, and pre-fetching that content to the edge of the
Internet, close to users, prior to the user requesting it. We've seen this
improve the performance of these applications by up to 100% over origin delivery.

(emphasis added). “A Few More Tricks From Terra Alta,” https://blogs.akamai.com/2012/03/a-

few-more-tricks-from-terra-alta.html (last visited November 29, 2015).

93. For example, edge servers with Akamai Instant can prefetch web resources

identified in a first web page with the <a> or <link> HTML elements, which can include

additional web pages, as described at https://community.akamai.com/community/web-

performance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

94. As deployed and operated, as for example by XO in its data centers, Akamai edge

servers with Akamai Instant include interfaces that enable communication of one or more user

nodes with one or more web servers, including through network services owned and operated in

part or in whole by XO. For example, Akamai publishes the following images showing Akamai

servers having Ethernet ports:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 28 of 57 PageID# 406

29

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18_10G_Rear_Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1_2x8_CacheH_Rear_Large.jpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network_Pac

kages.html (last visited November 29, 2015).

95. Further, Akamai’s geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that “allow Akamai

to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

Akamai Hands And Eyes Guide, available at

https://fieldtech.akamai.com/heguide/Router_Hardware.html. When such equipment is deployed

in a manner that connects Akamai’s edge servers to the Internet, for example by XO in its data

centers, it likewise has multiple ports configured to send and receive data over a connecting

network.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 29 of 57 PageID# 407

30

96. On information and belief, because Akamai edge servers with Akamai Instant are

designed and intended to respond to repeated requests for web content, both from the same end

user device, and from different end user devices, these servers are able to perform the described

prefetching functions for additional requests from end users, including where common resources

are shared between pages.

97. The making, and operation, of Akamai edge servers with Akamai Instant as

described above constitutes infringement of at least the above-mentioned claims of the 263

Patent pursuant to 35 U.S.C. § 271(a).

98. On information and belief, Akamai has induced and continues to induce

infringement of the 263 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO, to use the claimed methods for accelerating

access to web page resources, including prefetching additional web pages and content to cache

prior to their being requested by an end user, or make and/or use the claimed systems, as

described above. Such performance of the claimed methods for accelerating access to web page

resources, or making and/or using the claimed systems, constitutes infringement, literally or

under the doctrine of equivalents, of one or more claims of the 263 Patent by such third parties.

Akamai’s acts of encouragement include: providing and intending its customers use content

delivery products and services that utilize the “Akamai Instant” feature; purposefully and

voluntarily placing infringing products and services in the stream of commerce with the

expectation that its products and services will be used by customers in the Eastern District of

Virginia; providing other components of the system that enable and/or make use of these

products and services, including, e.g., servers and other network equipment; advertising these

products and services through its own and third-party websites; encouraging Network Service

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 30 of 57 PageID# 408

31

Providers such as XO to provide it with network connectivity services to practice the asserted

claims; and providing instructions on how to use these products and services. Furthermore,

Akamai has actual knowledge of how its accused products and services work, including how its

accused products and services are used by its customers.

99. Akamai has proceeded in this manner despite its actual knowledge of the 263

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 263 Patent. At the very least, because Akamai has

been and remains on notice of the 263 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

100. Unless enjoined by this Court, Akamai will continue to infringe the 263 Patent.

101. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 263 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT V AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 9,015,348

102. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

103. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, 10-16, and 18,

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, the Akamai Intelligent Platform, including a content delivery

network with edge servers that perform automated front end optimization (“FEO”). Based on

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 31 of 57 PageID# 409

32

information and belief, and publicly available documentation, Akamai’s edge servers perform

front end optimization by using attributes associated with content requests to select a set of

content acceleration techniques that will be applied to deliver the requested content and utilize

performance metrics obtained regarding the delivered content to dynamically improve the

subsequent selection of content acceleration techniques for similar content.

104. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

105. Specifically, Akamai’s edge servers with automated front end optimization meet

the requirements of the claimed systems and method for dynamically selecting from among a

plurality of acceleration techniques implemented in a Content Delivery Network (CDN) using

attributes associated with content requests, as reflected by publicly available Akamai

documentation.

106. Based on information and belief, and publicly available documentation, Akamai’s

Accused 348 Products can apply numerous techniques to accelerate the delivery of digital

content to end users, including: combining, compressing, rewriting or otherwise “minifying”

Javascript and CSS elements in web pages; optimizing (including compressing) image and other

media files; running Javascript asynchronously; and reordering web resource delivery. As

Akamai describes:

Front-end optimization reduces the number of requests, makes responses smaller,
and reorders things to optimize rendering in the browser. There are dozens of
different FEO optimization methods available in our service and the list continues
to grow. FEO can reduce the number of requests by combining multiple
JavaScript or CSS files into one download and by embedding small images
directly into CSS. FEO can make responses smaller by minifying JavaScript and

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 32 of 57 PageID# 410

33

CSS, and by optimizing images. FEO also can unblock rendering of your page by
running JavaScript asynchronously. Images can be made to load on demand, only
as they scroll into view.

“FEO Fundamentals,” available at https://developer.akamai.com/stuff/FEO/index.html (last

visited November 29, 2015).

107. Other content acceleration techniques the Accused 348 Products perform include

prefetching web content, optimizing TCP connections, caching the static portions of dynamically

rendered web pages (a feature known as EdgeStart), file versioning, domain sharding, and DNS

prefetching. These and other content acceleration techniques the Accused 348 Products perform

are described in Akamai public documentation, including at

https://www.akamai.com/jp/ja/multimedia/documents/white-paper/front-end-optimization-on-

the-akamai-intelligent-platform-white-paper.pdf (last visited November 29, 2015).

108. On information and belief, and as described in Akamai public documentation, the

Accused 348 Products apply content acceleration techniques to requested content selectively,

based in part on configuration files that are maintained by Akamai and its customers:

Akamai’s edge servers are responsible for processing end user requests and
serving the requested content, as well as for acting as intermediaries in our
overlay network. The platform offers a rich set of functionality and content-
handling features, developed over a decade of experience working with and
supporting many of the most sophisticated websites and applications on the
Internet. These controls not only ensure correct application behavior as
experienced by the end user, but also optimize the performance of Applications
under different scenarios.

An important feature of the edge server platform is its tremendous configurability
via metadata configuration, which allows enterprises to retain fine-grained control
in applying the platform‘s various capabilities to the handling of their content.

“The Akamai Network: A Platform for High-Performance Internet Applications,” available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-

network-a-platform-for-high-performance-internet-applications-technical-publication.pdf (last

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 33 of 57 PageID# 411

34

visited November 29, 2015).

109. On information and belief, and as described in Akamai public documentation, the

Accused 348 Products match attributes of content requests—such as the URL path, or header

data in the request, or other attributes of the request such as end-user location or device type—to

configuration data, to selectively apply content acceleration techniques to requested content:

The metadata system allows these features to be separately configured based on
matching request and response attributes. While the simplest matches are on URL
path components, file extensions, and request methods, more advanced metadata
matches can change behavior based on attributes including end-user geographic
location, connection speed, HTTP request and response headers, cookie values,
and many others.…Metadata configuration can be set across an entire website, a
portion of the site, a specific category of content, or even for individual files.

“The Akamai Network: A Platform for High-Performance Internet Applications,” available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-

network-a-platform-for-high-performance-internet-applications-technical-publication.pdf (last

visited November 29, 2015).

110. On information and belief, and as described in Akamai public documentation, the

Accused 348 Products obtain metrics regarding the performance of content acceleration

techniques applied to specific content requests, and use those metrics to improve the selection

and configuration of acceleration techniques that will subsequently be used for similar requests.

For example, Akamai’s public documentation describes its “automated FEO solution” as

follows:

For every end user request, Akamai’s proven technologies are dynamically
applied in a way that optimizes performance for that unique scenario, taking into
account real-time website, network, and end user conditions. Akamai’s FEO
capabilities are an integrated part of these solutions, working in concert with our
other performance, security, and availability offerings to deliver the best possible
experience for every user, on every device, every time.

Front-End Optimization on the Akamai Intelligent Platform,

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 34 of 57 PageID# 412

35

https://www.akamai.com/jp/ja/multimedia/documents/white-paper/front-end-optimization-on-

the-akamai-intelligent-platform-white-paper.pdf

111. The Accused 348 Products include hardware and software, such as a router, that

provide an interface to a network. For example, Akamai’s geographically distributed

deployments of its edge servers, as deployed and operated for example by XO in its data centers,

include routers that “allow Akamai to direct traffic between Akamai's equipment and the

providers that Akamai connects to.” [Akamai Hands and Eyes Guide], available at

https://fieldtech.akamai.com/heguide/Router_Hardware.html. When such equipment is deployed

in a manner that connects Akamai’s edge servers to the Internet, for example by XO in its data

centers, or through network services owned and operated in part or in whole by XO, it is

configured to receive requests from end users, such as from a device browser.

112. The Accused 348 Products include edge servers distributed throughout the United

States and globally, such as those as deployed and operated by XO in its data centers. These edge

servers include memory, storage devices, a processor, and interfaces to connect with a network

interface, and to other edge servers and Akamai hardware and software located elsewhere in its

content distribution network, and to apply selected content acceleration techniques as described

above.

113. For example, on information and belief, to perform their basic role, Akamai’s

edge servers have multiple network ports to send and receive data. As a further example, Akamai

publishes the following images showing Akamai servers having two Ethernet ports:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 35 of 57 PageID# 413

36

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18_10G_Rear_Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1_2x8_CacheH_Rear_Large.jpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network_Pac

kages.html (last visited November 29, 2015). Likewise, Akamai’s servers include processors:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 36 of 57 PageID# 414

37

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Server_Hard

ware.html (last visited November 29, 2015).

114. The making, and operation, of the Accused 348 products as described above

constitutes infringement of at least the above-mentioned claims of the 348 Patent pursuant to 35

U.S.C. § 271(a).

115. On information and belief, Akamai has induced and continues to induce

infringement of the 348 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO, to use the claimed methods for performing

front end optimization by using content request attributes to dynamically select sets of content

delivery acceleration techniques and using received performance metrics to dynamically update

the selection process, or make and/or use the claimed systems, as described above. Such

performance of the claimed methods for dynamically selecting acceleration techniques, or

making and/or use of the claimed systems constitutes infringement, literally or under the doctrine

of equivalents, of one or more claims of the 348 Patent by such customers or third parties.

Akamai’s acts of encouragement include: providing and intending its customers use products and

services that include the Akamai Intelligent Platform, including a content delivery network with

edge servers that perform automated front end optimization; purposefully and voluntarily placing

infringing products and services in the stream of commerce with the expectation that its products

and services will be used by customers in the Eastern District of Virginia; providing other

components of the system that enable and/or make use of these products and services, including,

e.g., servers and other network equipment; advertising these products and services through its

own and third-party websites; encouraging Network Service Providers such as XO to provide it

with network connectivity services to practice the asserted claims; and providing instructions on

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 37 of 57 PageID# 415

38

how to use these products and services. Furthermore, Akamai has actual knowledge of how its

accused products and services work, including how its accused products and services are used by

its customers.

116. Akamai has proceeded in this manner despite its actual knowledge of the 348

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 348 Patent. At the very least, because Akamai has

been and remains on notice of the 348 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

117. Unless enjoined by this Court, Akamai will continue to infringe the 348 Patent.

118. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 348 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VI AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,615,577

119. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

120. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 577 Patent, including but not limited to claims 1, 2, 3, 4, 5, 6, 8, 9, 11, 16, and

19, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making,

using, selling, and/or offering to sell in the United States without authority and/or importing into

the United States without authority, Akamai’s Image Converter and Image Manager products, as

well as Akamai’s cloud-based video transcoding products (the 577 Infringing Products).

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 38 of 57 PageID# 416

39

121. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO (or another Network Service Provider) in a manner that

satisfies the claims, such joint conduct constitutes direct infringement, pursuant to 35 U.S.C. §

271(a), of the asserted claims.

122. The 577 Infringing Products constitute parts of the Akamai content delivery

network, which Akamai illustrates as follows:

“Object Delivery,” available at https://developer.akamai.com/stuff/Content_Delivery/Object_De

livery.html (last visited November 29, 2015).

123. On information and belief, and from publicly available Akamai documentation,

the 577 Infringing Products allow Akamai’s customers to upload image and video content (a

process known as “ingest”). When the content is uploaded, it is determined (based on criteria that

can be set by the customer) whether policies, that can be defined or customized by Akamai’s

customers, apply to the ingested content. When the policies apply, they determine what kind of

processing will be performed to the ingested content, such as video transcoding, or formatting

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 39 of 57 PageID# 417

40

and alteration of ingested images. The 577 Infringing Products maintain numerous processing

functions that are matched with content by these (premade and customer-defined) policies.

Moreover, the 577 Infringing Products maintain numerous policies that can be applied to

different ingested content. These policies can be triggered based on the processing to be

performed on the content, the location of the content itself, or both.

124. On information and belief, the application of these policies can be based on

metadata (which can be stored in a database) of the content itself, information about the end user

that subsequently requests the content, or information related to the provider of the content using

specialized function calls that the patent refers to as “mutators.” Once it is determined which

policy applies to the ingested content, such as a video or image file, the appropriate processing,

such as video transcoding, or image formatting and alteration, is selected for processing that

content. As Akamai explains with respect to video transcoding:

With Akamai, you simply set the initial configuration in the easy-to-use Luna
Control Center and after that, the workflow is a completely automated process.
Upload content to pre-defined watch folders and Akamai handles the rest.
Whether you’re processing one media file or 20,000, the same automated
processes apply. You can also customize advanced transcoding parameters
including number of renditions, video/audio bitrates, bitrate types (VBR/CBR),
frame rate, keyframe rate, and resolution.

“Media Services On Demand Product Brief,” available at https://www.akamai.com/us/en/multim

edia/documents/product-brief/media-services-on-demand-product-brief.pdf (last visited

November 29, 2015). Akamai illustrates its video transcoding services as follows:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 40 of 57 PageID# 418

41

“Video On Demand Transcoding Product Brief,” https://www.akamai.com/us/en/multimedia/doc

uments/product-brief/vod-transcoding-product-brief.pdf (last visited November 29, 2015).

125. Akamai provides the following explanation of Image Converter capabilities:

Image Converter supports real-time API commands including:
 Downsize – reduce an image’s dimensions.
 Resize – scale images to a specific width and height.
 Crop – crop, or cut out, a section of an image based on dimension and

axis parameters.
 Change Output Quality – compress JPEG images based on a 1 to 100

scale.
 Change Output Format – change JPEG, PNG, GIF & TIFF images to a

specific file type such as JPEG, PNG & GIF.
 Background Color – set the background color for transparent images

using HTML or Hex colors.
 Compose Images – place an image in a specific location on top of another

image e.g. for watermarking.

“Image Converter” available at https://www.akamai.com/us/en/solutions/intelligent-

platform/cloudlets/image-converter.jsp (last visited November 29, 2015). Akamai illustrates

Image Converter as follows:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 41 of 57 PageID# 419

42

Id.

126. As Akamai explains with respect to Image Manager: “Akamai provides

developers with highly customizable policies to accommodate a wide range of image

transformations. Begin with high-quality master images and quickly derive ready-for-web

images that adapt to business, artistic and technical requirements.” “Image Manager Product

Brief,” available at https://www.akamai.com/us/en/multimedia/documents/product-brief/image-

manager-product-brief.pdf (last visited November 29, 2015). Akamai illustrates functionality of

Image Manager as follows:

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 42 of 57 PageID# 420

43

“Image Manager Product Brief,” https://www.akamai.com/us/en/multimedia/documents/product-

brief/image-manager-product-brief.pdf (last visited November 29, 2015).

127. In addition, on information and belief the policies can be triggered by function

calls that are built into template URLs. As Akamai explains: “Image Converter harnesses the

power of the Akamai Intelligent Platform™ to enable organizations to dynamically manipulate

images in the cloud through appending application programming interface (API) commands to

image URLs.” “Image Converter” available at https://www.akamai.com/us/en/solutions/intellige

nt-platform/cloudlets/image-converter.jsp (last visited November 29, 2015).

128. Likewise, as shown above, the functions that process the ingested content can be

an HTTP-based application programming interface (API). See id.

129. The making, and operation, of the 577 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 577 Patent pursuant to 35

U.S.C. § 271(a).

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 43 of 57 PageID# 421

44

130. On information and belief, Akamai has induced and continues to induce

infringement of the 577 Patent pursuant to 35 U.S.C. § 271(b) by encouraging its customers,

their end users, and other third parties including XO to use the claimed methods for processing

ingested content objects with a plurality of specialized processing functionality, or make and/or

use the claimed systems, as described above. Such performance of the claimed methods for

processing ingested content objects, or making and/or using the claimed systems, constitutes

infringement, literally or under the doctrine of equivalents, of one or more claims of the 577

Patent by such customers or third parties. Akamai’s acts of encouragement include: providing

and intending its customers use content delivery products and services that utilize the Akamai

Intelligent Platform content delivery network, including specialized content processing

functionality including the Image Converter, Image Manager, and cloud-based video transcoding

products; purposefully and voluntarily placing infringing products and services in the stream of

commerce with the expectation that its products and services will be used by customers in the

Eastern District of Virginia; providing other components of the system that enable and/or make

use of these products and services, including, e.g., servers and other network equipment;

advertising these products and services through its own and third-party websites; encouraging

Network Service Providers such as XO to provide it with network connectivity services to

practice the asserted claims; and providing instructions on how to use these products and services.

Furthermore, Akamai has actual knowledge of how its accused products and services work,

including how its accused products and services are used by its customers.

131. Akamai has proceeded in this manner despite its actual knowledge of the 577

Patent and that the specific actions it is actively inducing on the part of its customers and other

third parties constitute infringement of the 577 Patent. At the very least, because Akamai has

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 44 of 57 PageID# 422

45

been and remains on notice of the 577 Patent and the accused infringement, it has been and

remains willfully blind regarding the infringement it has induced and continues to induce.

132. Unless enjoined by this Court, Akamai will continue to infringe the 577 Patent.

133. As a result of Akamai’s conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai’s infringement of the 577 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

134. Limelight incorporates and realleges paragraphs 1-38 above as if fully set forth

herein.

135. On information and belief, XO has infringed and continues to infringe one or

more claims of the 155 Patent, including but not limited to claims 1, 3, 8, 9, 10, 11, 12, 13, 15,

18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by

making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, hardware and software, content delivery

servers and networks, and data centers that constitute or include 155 Infringing Products because

of their inclusion and performance of the functionality described above with respect to Count I

and the Akamai Intelligent Platform.

136. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

137. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 155 Infringing Products because they form all or part of CDNs including a

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 45 of 57 PageID# 423

46

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence include edge servers that are operated or hosted by XO.

Based on information and belief, and publicly available documentation, XO-operated or hosted

edge servers perform TCP optimization by modifying pre-existing TCP settings based upon

parameters that are determined at least in part with reference to information in the URLs of end-

user requests as described above with respect to Count I including the specific variations

described therein.

138. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, or provides part or all of the network connection to

perform this functionality, and when it uses such connection, server, network, or data center to

provide services to its customers, these acts constitute acts of direct infringement of the 155

Patent for the same technical reasons explained above with respect to Count I except that in such

instances XO is the direct infringer.

139. Both XO and Akamai make and use infringing systems. On information and

belief, XO makes infringing systems that consist entirely of XO-hosted or operated servers.

Likewise Akamai makes and uses infringing systems where all of the servers are Akamai servers.

Further, when the infringing system includes a combination of XO and Akamai servers, or XO

network services and Akamai servers, Akamai and XO act jointly or in concert to perform the

infringing acts, and the infringement is not complete until both XO and Akamai have provided or

performed their respective parts.

140. Unless enjoined by this Court, XO will continue to infringe the 155 Patent.

141. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 46 of 57 PageID# 424

47

damages as a result of XO’s infringement of the 155 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VIII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 7,715,324

142. Limelight incorporates and realleges paragraphs 1-38 and 56-73 above as if fully

set forth herein.

143. On information and belief, XO has infringed and continues to infringe one or

more claims of the 324 Patent, including but not limited to claims 1, 2, 4, 5, 6, 7, 8, 10, and 11,

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, hardware and software, content delivery servers and networks,

and data centers that constitute or include 324 Infringing Products because of their inclusion and

performance of the functionality described above with respect to Count II and the Akamai

Intelligent Platform.

144. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

145. Specifically, XO provides services, networks, and data centers, which host servers

that constitute 324 Infringing Products because they form all or part of CDNs including a

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence include edge servers that are operated or hosted by XO.

Based on information and belief, and publicly available documentation, XO-operated or hosted

edge servers and network services and in combination with Akamai’s edge servers and the

Akamai Intelligent Platform perform TCP optimization by modifying pre-existing TCP settings

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 47 of 57 PageID# 425

48

based upon parameters that are determined at least in part with reference to information in the

URLs of end-user requests as described above with respect to Count II including the specific

variations described therein.

146. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, or provides part or all of the network connection that

performs this functionality in combination with Akamai’s edge servers and the Akamai

Intelligent Platform, these acts constitute acts of infringement of the 324 Patent for the same

technical reasons explained above with respect to Count II except that in such instances XO is

the direct infringer.

147. Unless enjoined by this Court, XO will continue to infringe the 324 Patent.

148. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO’s infringement of the 324 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IX AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,683,002

149. Limelight incorporates and realleges paragraphs 1-38 and 74-87 above as if fully

set forth herein.

150. On information and belief, XO has infringed and continues to infringe one or

more claims of the 002 Patent, including but not limited to claims 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15,

16, 17, 18, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents,

by making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, hardware and software, content delivery

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 48 of 57 PageID# 426

49

servers and networks, and data centers that constitute or include 002 Infringing Products because

of their inclusion and performance of the functionality described above with respect to Count III

and the Akamai Intelligent Platform.

151. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

152. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 002 Infringing Products because they form all or part of CDNs including a

plurality of points of presence that are distributed geographically and perform functionality

related to the Akamai Intelligent Platform. These points of presence include edge servers that are

operated or hosted by XO, or are connected through a network that is owned and operated in part

or in whole by XO. Based on information and belief, and publicly available documentation, XO-

operated or hosted edge servers that do not have user-requested content in their own caches can

ask other edge servers whether they have the requested content in their caches and if so the

content is provided to the user, including the specific variations described above with respect to

Count III.

153. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, or provides a network connection that comprises a

portion of Akamai’s CDN and enables this functionality, these acts constitute acts of direct

infringement of the 002 Patent for the same technical reasons explained above with respect to

Count III except that in such instances XO is the direct infringer.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 49 of 57 PageID# 427

50

154. Both XO and Akamai, including in combination with XO’s network connection,

make and use infringing systems. On information and belief, XO makes infringing systems that

consist entirely of XO-hosted or operated servers. Likewise Akamai makes and uses infringing

systems where all of the servers are Akamai servers. Further, when the infringing system

includes a combination of XO and Akamai servers, or XO network services and Akamai servers,

Akamai and XO act jointly or in concert to perform the infringing acts, and the infringement is

not complete until both XO and Akamai have provided or performed their respective parts.

155. Unless enjoined by this Court, XO will continue to infringe the 002 Patent.

156. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO’s infringement of the 002 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT X AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,856,263

157. Limelight incorporates and realleges paragraphs 1-38 and 88-101 above as if fully

set forth herein.

158. On information and belief, XO has infringed and continues to infringe one or

more claims of the 263 Patent, including but not limited to claims 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine

of equivalents, by making, using, selling, and/or offering to sell in the United States without

authority and/or importing into the United States without authority, hardware and software,

content delivery servers and networks, and data centers that constitute or include 263 Infringing

Products because of their inclusion and performance of the functionality described above with

respect to Count IV and the Akamai Intelligent Platform.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 50 of 57 PageID# 428

51

159. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

160. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 263 Infringing Products because they form all or part of CDNs including a

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence, including when connected through network services that are

owned and operated in part or in whole by XO, include edge servers that are operated or hosted

by XO. Based on information and belief, and publicly available documentation, XO-operated,

hosted or connected, edge servers perform prefetching of additional web pages and content to

cache, prior to their being requested by an end user, as well as services associated therewith, also

known as the “Akamai Instant” feature as described above with respect to Count IV including

the specific variations described therein.

161. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, or provides a network connection that comprises a

portion of Akamai’s CDN and enables it, and when it uses such connection, server, network, or

data center to provide these services to Akamai’s customers, these acts constitute acts of

infringement of the 263 Patent for the same technical reasons explained above with respect to

Count IV except that in such instances XO is the direct infringer.

162. Unless enjoined by this Court, XO will continue to infringe the 263 Patent.

163. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 51 of 57 PageID# 429

52

damages as a result of XO’s infringement of the 263 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT XI AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 9,015,348

164. Limelight incorporates and realleges paragraphs 1-38 and 102-118 above as if

fully set forth herein.

165. On information and belief, XO has infringed and continues to infringe one or

more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, 10-16, and 18,

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, hardware and software, content delivery servers and networks,

and data centers that constitute or include 348 Infringing Products because of their inclusion and

performance of the functionality described above with respect to Count V and the Akamai

Intelligent Platform.

166. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

167. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 348 Infringing Products because they form all or part of CDNs related to the

Akamai Intelligent Platform including a content delivery network with edge servers that perform

automated front end optimization (“FEO”). Based on information and belief, and publicly

available documentation, XO-operated or hosted edge servers, or servers provided with network

connectivity by XO, perform front end optimization by using attributes associated with content

requests to select a set of content acceleration techniques that will be applied to deliver the

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 52 of 57 PageID# 430

53

requested content and utilize performance metrics obtained regarding the delivered content to

dynamically improve the subsequent selection of content acceleration techniques for similar

content as described above with respect to Count V including the specific variations described

therein.

168. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, or provides a network connection that comprises a

portion of Akamai’s CDN and enables it, and when it uses such connection, server, network, or

data center to provide these services to Akamai’s customers, these acts constitute acts of

infringement of the 348 Patent for the same technical reasons explained above with respect to

Count V except that in such instances XO is the direct infringer.

169. Unless enjoined by this Court, XO will continue to infringe the 348 Patent.

170. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO’s infringement of the 348 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT XII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,615,577

171. Limelight incorporates and realleges paragraphs 1-38 and 119-133 above as if

fully set forth herein.

172. On information and belief, XO has infringed and continues to infringe one or

more claims of the 577 Patent jointly with Akamai, including but not limited to claims 1, 2, 3, 4,

5, 6, 8, 9, 11, 16, and 19, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of

equivalents, by making, using, selling, and/or offering to sell in the United States without

authority and/or importing into the United States without authority, hardware and software,

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 53 of 57 PageID# 431

54

content delivery servers and networks, and data centers that constitute or include 577 Infringing

Products because of their inclusion and performance of the functionality described above with

respect to Count VI and the Akamai Intelligent Platform.

173. Further, when Akamai’s edge servers are combined with network services

supplied in part or in whole by XO in a manner that satisfies the claims, such joint conduct

constitutes direct infringement, pursuant to 35 U.S.C. § 271(a), of the asserted claims.

174. Specifically, on information and belief, XO provides services, networks, and data

centers, that host servers that constitute 577 Infringing Products because they form all or part of

CDNs related to the Akamai Intelligent Platform including a content delivery network including

the Image Converter, Image Manager, and cloud-based video transcoding products, which store

and apply the claimed policies to ingested content in the various manners described above with

respect to Count VI including the specific variations described therein.

175. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, or provides a network connection that comprises a

portion of Akamai’s CDN and enables this functionality, and when it uses such connection,

server, network, or data center to provide services to its customers, these acts constitute acts of

infringement of the 577 Patent for the same technical reasons explained above with respect to

Count VI except that in such instances XO is the direct infringer.

176. Unless enjoined by this Court, XO will continue to infringe the 577 Patent.

177. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO’s infringement of the 577 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 54 of 57 PageID# 432

55

PRAYER FOR RELIEF

178. Limelight respectfully prays for relief as follows:

(a) A judgment that Akamai and XO have infringed and continue to infringe one or

more claims of the Asserted Patents;

(b) A judgment that Akamai has induced infringement and continues to induce

infringement of one or more claims of the Asserted Patents;

(c) A judgment awarding Limelight all damages adequate to compensate for

Akamai’s and XO’s infringement, and in no event less than a reasonable royalty

for Akamai’s and XO’s acts of infringement, including all pre-judgment and post-

judgment interest at the maximum rate allowed by law;

(d) A permanent injunction enjoining Akamai, and its directors, officers, employees,

attorneys, agents, and all persons in active concert or participation with any of the

foregoing, from further acts of infringement of the Asserted Patents;

(e) A permanent injunction enjoining XO, and its directors, officers, employees,

attorneys, agents, and all persons in active concert or participation with any of the

foregoing, from further acts of infringement of the Asserted Patents; and

(f) A judgment awarding Limelight such other relief as the Court may deem just and

equitable.

DEMAND FOR JURY TRIAL

Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Plaintiff Limelight

demands a trial by jury in this action.

Date: February 16, 2016 Respectfully submitted,

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 55 of 57 PageID# 433

56

/s/
Maya M. Eckstein (Va. Bar No. 41413)
HUNTON & WILLIAMS LLP
951 E. Byrd St.
Richmond, Virginia 23219
Telephone: (804) 788-8788
Facsimile: (804) 343-4630
meckstein@hunton.com

Matthew D. Powers (CA Bar No. 104795)
Paul T. Ehrlich (Cal Bar No. 228543)
William P. Nelson (Cal Bar No. 196091)
Aaron M. Nathan (Cal Bar. No. 251316)
Natasha M. Saputo (Cal Bar No. 291151)
TENSEGRITY LAW GROUP, LLP
555 Twin Dolphin Drive, Suite 650
Redwood Shores, CA 94065
Telephone: (650) 802-6000
Facsimile: (650) 802-6001
matthew.powers@tensegritylawgroup.com
paul.ehrlich@tensegritylawgroup.com
william.nelson@tensegritylawgroup.com
aaron.nathan@tensegritylawgroup.com
natasha.saputo@tensegritylawgroup.com

Attorneys for Plaintiff Limelight Networks, Inc.

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 56 of 57 PageID# 434

57

CERTIFICATE OF SERVICE

 I hereby certify that on this 16th day of February, 2016, all counsel of record who have

consented to electronic service and are being served with a copy of this document via the Court’s

CM/ECF system.

 /s/Maya M. Eckstein

 Maya M. Eckstein (Va. Bar No. 41413)
 HUNTON & WILLIAMS LLP
 951 E. Byrd St.
 Richmond, Virginia 23219
 Telephone: (804) 788-8788
 Facsimile: (804) 343-4630
 meckstein@hunton.com

Case 3:15-cv-00720-JAG Document 28 Filed 02/16/16 Page 57 of 57 PageID# 435

	
	

Exhibit	 A	

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 1 of 28 PageID# 436

c12) United States Patent
Harvell et al.

(54) CONDITIONAL PROTOCOL CONTROL

(75) Inventors: Bradley B. Harvell, Chandler, AZ (US);
Joseph D. DePalo, Peoria, AZ (US);
Michael M. Gordon, Paradise Valley,
AZ (US); Jason L. Wolfe, Gilbert, AZ
(US)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 12/625,436

(22) Filed: Nov. 24, 2009

Related U.S. Application Data

(63) Continuation of application No. 12/572,981, filed on
Oct. 2, 2009, which is a continuation-in-part of appli
cation No. PCTIUS2009/038361, filed on Mar. 26,
2009.

(30) Foreign Application Priority Data

Mar. 26, 2009 (AU) 2009201833

(51) Int. Cl.
H04J 1116 (2006.01)
H04L 12/56 (2006.01)

(52) U.S. Cl. 370/252; 370/389; 370/412;
370/466

(58) Field of Classification Search 3 70/252,
370/412, 389, 466

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,029,200 A 212000 Beckerman et a!.

111111 111
US007715324Bl

(10) Patent No.:
(45) Date of Patent:

6,038,603 A 3/2000

6,397,246 B1 5/2002

6,591,304 B1 7/2003
7,367,051 B1 4/2008

7,480,254 B2 112009

2003/0074482 A1 4/2003
2005/0097212 A1 5/2005

2005/0210121 A1 * 9/2005

* cited by examiner

US 7,715,324 Bl
May 11,2010

Joseph

Wolfe

Sitaraman eta!.
Siegrist et a!.

Mayer

Christensen et al.
Engel eta!.

Taylor et al 709/218

Primary Examiner-John Pezzlo
(7 4) Attorney, Agent, or Firm-Townsend and Townsend and
Crew, LLP

(57) ABSTRACT

In one embodiment, a system for adapting the interoperation
of nodes in an information processing system is disclosed.
The system includes a protocol handler, a protocol attribute
information store and a protocol attribute selector. The pro
tocol handler manages a first connection and a second con
nection over the network using a protocol. The protocol
attribute information store holds a plurality of attributes. The
protocol attribute selector evaluates first information related
to a first connection, utilizes the protocol attribute informa
tion store to determine first protocol attributes corresponding
to the first connection, and communicates the first attributes
for the first connection to the protocol handler. Additionally,
the protocol attribute selector evaluates second information
related to a second connection, utilizes the protocol attribute
information store to determine second attributes correspond
ing to the second connection, and communicates the second
attributes for the second connection the protocol handler. The
protocol handler uses first attributes for the first connection
and second attributes for the second connection.

11 Claims, 14 Drawing Sheets

tl'400

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 2 of 28 PageID# 437

110

Content
Delivery
System

FIG. 1

102-1

End User
System(s)

End User
System(s)

1 02-n

•
•
•

End User
System(s)

•
•
•

/100 ~
00
•
~
~
~
~ = ~

~
~
~

N
0
0

rFJ

=('D
('D
0
.j;o.

d
rJl
-....l
~

""""' u.
w
N
~

= """"'

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 3 of 28 PageID# 438

U.S. Patent

..-
I

0
0

~

,!
c.o
0
N

N
0 ..--

00
0
N

......
c
(])

u

(])
..c
(.)
ro
u

c
.Q
(.)
c
:::J

LL

May 11,2010

a_
u
I-

..--
N

......
(])

"0
c
ro
I

Sheet 2 of 14

0
(.)

0
e
a_

N ..--
N

(])
0

:::J
.0 (.)

·;:: (])
...... (]) -<((/)

US 7,715,324 Bl

<(
N

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 4 of 28 PageID# 439

U.S. Patent

N
I

0
0

N~

rl
<D
0
N

N
0
"<""""

00
0
N

......
c
(])

()

c
(]) 0
..c:;:::;
(.) (.)

ro c
() :::J

LL

May 11,2010

.....
a.. (])
()"0

I- ~
I

0
"<""""

N

Sheet 3 of 14

......
c (])
(])..C (.)
c ro
8o

L-••••••••••••••••••••••••••••••••

US 7,715,324 Bl

((}
N .
C)

LL

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 5 of 28 PageID# 440

~------------:~~-~------------------------

210

212

Cache
Function

Protocol
Attribute
Selector

TCP
Handler

~---~

224

228

CPIMDS

Conditional
Protocol
Control

Information

FIG. 2C

200-3

102 ~

Client

~
00
•
~
~
~
~ = ~

~
~
~

N
0
0

rFJ

=('D
('D
.j;o.

0
.j;o.

d
rJl
-....l
~

""""' u.
w
N
~

= """"'

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 6 of 28 PageID# 441

U.S. Patent

-.:::1'"
I

0
0

N~

N
0
.......-

00
0
N

-c
(])

()

c
(]) 0

..c:;:::;
(.) (.)
ro c
() ::J

LL

May 11,2010

N
...--
N

......
a_ (])
()"0

I- ffi
I

...--
N

Sheet 5 of 14 US 7,715,324 Bl

0
N .
C)
u..

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 7 of 28 PageID# 442

U.S. Patent May 11, 2010 Sheet 6 of 14 US 7,715,324 Bl

I"
,./300

304 IV
-

URI Requested
from Server

308 ., ,
..

Determine Any
Attributes for U Rl

, , 31 2

Modify TCP with
Attributes

316
~ ,

.. ,
Deliver Content from

Server to Client

Fig. 3

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 8 of 28 PageID# 443

U.S. Patent May 11,2010 Sheet 7 of 14

U Rl Received
from Node

416

~-------,'------~~420
URI Analyzed for -

Control Information

,, .r424

Table Queried for
Attribute(s)

Attribute(s) Communicated to
TCP Handler

Connection Established
According to Any Attributes

US 7,715,324 Bl

/400

428

432

436

Deliver Content Object
Through Connection

Fig. 4

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 9 of 28 PageID# 444

U.S. Patent May 11,2010 Sheet 8 of 14 US 7, 715,324 Bl

240 ;/500

Global Internet

232-2

102-3

FIG. 5

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 10 of 28 PageID# 445

U.S. Patent May 11,2010 Sheet 9 of 14 US 7,715,324 Bl

/206

r 220 r 248 ...,
,../

Memory

Data store r 244
.,.J

Processor

r 252 -
Network interfaces

I I I
I P1 I I P2 I • • • I I
I I I I I

PN
I

FIG. 6

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 11 of 28 PageID# 446

U.S. Patent May 11,2010 Sheet 10 of 14 US 7,715,324 Bl

,;/700

750-1l Data 750-2l Data ••• 750-N l Data
source 1 source 2 source N

~ 740

~ // APP

"/
760 ~ TCP handler

I
TCP ~ 730

.u: ~ 720

PHY/DATA ~ 710

FIG. 7

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 12 of 28 PageID# 447

U.S. Patent May 11,2010 Sheet 11 of 14 US 7,715,324 Bl

(810 -File name Provider File Size Type ... Attribs

logo.gif ABC 50k image ... attrl=no

lndex.html ABC 100k text ... attrl=no

movie.mpg ABC 1GB video
... attrl =yes

820

Provider Service Level Attribs
ABC Premium ... attr4= 100000, attr6=fast

DEF Standard ... attr4=300000, attr6=slow

FIG. 8A

(830 -IP Address I Prefix AS# Country ... Attribs

123.012.034.0/24 12345 us ... attr3=25

234.079.091.0 /24 34567 us ... attr3=40

169.234.056.078 UNK ASIA ... attr3=35

(840 -AS# Location Service Type Link utilization ... Attribs

12345 Tempe, AZ DSL 43% ... attr6=fast, attr3=25

34567 Chicago, IL Cable 92% ... attr6=slow

34567 Atlanta, GA SAT -- ... attr3=40

FIG. 88

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 13 of 28 PageID# 448

U.S. Patent May 11,2010 Sheet 12 of 14 US 7,715,324 Bl

(850
,

Serve riD BW CPS ... Attribs

E1 725 900 ... attr4= 100000, attr6=fast

E56 937 1877 ... attr4=300000, attr6=slow

FIG. 8C

;-900

Performance Profile Timing Pacing Send Window Comment

P1 25 1 300000 large file, near user

P2 40 1 175000 large file, latent user

P3 25 0 100000 small file

FIG. 9

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 14 of 28 PageID# 449

U.S. Patent May 11,2010 Sheet 13 of 14

1060

1050

Use standard
TCP params

yes

yes

1040 l

Determine large buffer
with less aggressive 1+--<

TCP timing yes

Receive request R1
on connection C1

yes

Determine RTT

FIG. 10

1010

1055

US 7,715,324 Bl

;-1000

TCP pacing;
determine send

buffer size

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 15 of 28 PageID# 450

U.S. Patent May 11,2010 Sheet 14 of 14 US 7,715,324 Bl

1140

Profile=G1

1150

Profile=G2

1160

Profile=G3

1170

Profile=Custom

FIG. 11

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 16 of 28 PageID# 451

US 7,715,324 Bl
1

CONDITIONAL PROTOCOL CONTROL

CONDITIONAL PROTOCOL CONTROL

This application claims priority to Australian Patent Appli
cation Serial No. 2009201833, filed Mar. 26, 2009, which
claims priority to International Patent Application Serial No.
PCT/US2009/038361, filed Mar. 26, 2009; which are both
incorporated herein by reference in their entirety.

This application also claims priority to U.S. patent appli- 10

cation Ser. No. 12/572,981, filed Oct. 2, 2009, which is a
continuation-in-part of International Patent Application
Serial No. PCT/US2009/038361, filed Mar. 26, 2009; which
are both incorporated herein by reference in their entirety.

2
protocol customized components, or possibly both, protocol
customization is used in order to add function, improve per
formance, increase flexibility, or modifY other characteristics
of a standard protocol, or to make available an entirely new
customized protocol. Many customized protocols have been
proposed for use on the Internet.

SUMMARY

In one embodiment, a system utilizing a standard protocol
to enable two or more nodes to intemperate is disclosed. The
protocol attributes specified in the standard protocol are con
ditionally adapted to the circumstances, use, and/or operating
conditions of the interoperation of the nodes. In another

BACKGROUND

This disclosure relates in general to interoperating nodes in

15 embodiment a method is disclosed for utilizing a standard
protocol to enable two or more nodes to intemperate, wherein
the protocol attributes specified in the standard protocol are
conditionally adapted to the circumstances, use, and/or oper-

an information processing system, such as an Internet content
delivery system or an Internet transaction acceleration sys- 20

tern, and, but not by way of limitation, to control of connec
tion protocols.

ating conditions of the interoperation of the nodes.
In one embodiment, a system for supplying content objects

over a network is disclosed. The system includes a protocol
handler, a protocol attribute information store, and a protocol
attribute selector. The protocol handler manages a first con
nection and a second connection over the network using a

In an information processing system, including communi
cations networks such as the Internet, two or more nodes can
work together, for example exchanging information or shar
ing resources, using one or more protocols that enable the
participating nodes to intemperate. Nodes need not be physi
cally distinct from one another, though they may be; nor
mally, however, nodes are at least logically distinct from one
another in at least some respect. Interoperating nodes may be
operated or managed by a single common authority or by
independent, unrelated authorities. Two or more interoperat
ing nodes are often independently operated or managed; the
Internet includes many well known examples of the interop
eration of two or more independently managed nodes.

25 standard protocol. The protocol attribute information store
holds a plurality of attributes defined for a plurality of con
nections. The protocol attribute selector receives first infor
mation based on a first request for content, identifies first
attributes corresponding to the connection that will service

30 the first request for content, provides the protocol handler
with the first attributes for the connection servicing the first
request for content, receives second information based on a
second request for content, identifies second attributes corre
sponding to the connection that will service the second

35 request for content, and provides the protocol handler with
the second attributes for the connection servicing the second
request for content.

A protocol can be standardized such that a node using the
standard protocol should be able to intemperate, at least at the
level of the protocol, with any other node using the standard
protocol. Standard protocols that become widely adopted can
permit a node to intemperate with many other nodes. One
such widely adopted standard protocol on the Internet is the
Transmission Control Protocol (TCP), which today enables
almost every device on the Internet to intemperate with
almost every other device. TCP operates at the connection
layer and enables nodes to intemperate with other nodes by 45

establishing communications connections.

In another embodiment, a network connection method for
delivering content is disclosed. A first request for content is

40 received over a network at a server. The first request for
content is evaluated to select first protocol attributes. A first
connection that sends the content from the server to a first
node is configured according to the first protocol attributes. A

Standard protocols often employ the use of attributes, such
as configurable parameters and selectable algorithms, to per
mit the protocol to operate effectively in various situations.
For example, TCP controls message size, the rate at which 50

messages are exchanged, and factors related to network con
gestion through the use of attributes, including both by the use

second request for content is received over the network at the
server. The second request for content is evaluated to select
second protocol attributes. A second connection that sends
the content from the server to a second node is configured
according to the second protocol attributes, where the first
attributes affect the operation of the protocol differently than
the second attributes affect the operation of the protocol.

In another embodiment, a system for conducting transac
tions over a network is disclosed. The system includes a
protocol handler, a protocol attribute information store, and a
protocol attribute selector. The protocol handler manages a
first connection and a second connection over the network
using a standard protocol. The protocol attribute information
store holds a plurality of attributes defined for a plurality of
connections. The protocol attribute selector receives first
information based on a first transaction, identifies first

of parameters, such as the receive window field used in slid
ing window flow control and the retransmission timer, and by
the use of algorithms, such as slow-start, congestion avoid- 55

ance, fast retransmit, and fast recovery algorithms. It is often
the case, in many standard protocols, that at each node the
initial protocol attribute settings to be used for all the com
munication connections at the node can be independently
specified by the operator of the node.

A protocol can also be customized, which in general
requires that each node have installed customized compo
nents to enable the custom protocol. Without the customized
components, the node would not be able to fully intemperate
with other nodes using the customized protocol. Although it 65

therefore may limit the total number of interoperable nodes,

60 attributes corresponding to the connection that will service
the first transaction, provides the protocol handler with the
first attributes for the connection servicing the first transac
tion, receives second information based on a second transac-

or in the alternative require widespread action to install the

tion, identifies second attributes corresponding to the connec
tion that will service the second transaction, and provides the
protocol handler with the second attributes for the connection
servicing the second transaction.

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 17 of 28 PageID# 452

US 7,715,324 Bl
3 4

the network interface and manages a plurality of connections
to end user computers. The protocol handler establishes the
connections with the end user computers according to pre
configured transport layer parameters of the content distribu
tion server and manages the manner in which data is trans
mitted over the connections. The data source supplies the
requested content. The data source monitors a first connection
for a request, determines one or more modified transport layer
parameters based on the request, and directs the protocol

In another embodiment, a network connection method for
conducting transactions over a network is disclosed. A first
transaction is initiated over a network at a server. The first
transaction is evaluated to select first protocol attributes. A
first connection, servicing the first transaction, between the
server and a first node is configured according to the first
protocol attributes. A second transaction is initiated over the
network at the server. The second transaction is evaluated to
select second protocol attributes. A second connection, ser
vicing the second transaction, between the server and a sec
ond node is configured according to the second protocol
attributes, where the first attributes affect the operation of the
protocol differently than the second attributes affect the
operation of the protocol.

10 handler to modify the first connection independently of the
other connections based on the one or more transport layer
parameters.

In still another embodiment, a content distribution server is
disclosed. The server includes means for sending and receiv
ing data over a connecting network, means for managing a
plurality of connections to end user computers, and means for
establishing a connection with each end user computer
according to preconfigured transport layer parameters. The
server includes means for managing data transmission over

20 the plurality of connections, means for modifying a connec
tion based on one or more transport layer performance param
eters, and means for supplying requested content to the end
user computers over the plurality of connections. The server
also includes means for monitoring a first connection for a

Techniques for modifYing the performance of a transport 15

layer protocol in response to a request for content are dis
closed. A connection can be established between a content
distribution server and an end user computer according to
preconfigured parameters. When a request for content is
received over the connection, the content distribution server
can determine one or more parameters relating to the perfor
mance of the connection using information from the request.
The content distribution server can modifY the connection at
the transport layer according to the one or more parameters.
Thereafter, the transport layer can manage delivery of the
requested content to the end user computer in accordance
with the modified parameters. In various embodiments, the
content distribution server includes a modified TCP protocol
stack which adjusts timing, pacing, and buffer allocation
associated with a connection in response to requests from an 30

application-layer data source.

25 content request, means for determining the one or more trans
port layer performance parameters for the first connection
based on the request, and means for sending the requested
content over the first connection modified by the one or more
transport layer performance parameters.

In yet another embodiment, a computer program product
comprising a computer-readable medium is disclosed. The
computer-readable medium is encoded with one or more
sequences of one or more instructions which, when executed
by a processor, perform steps of establishing a first connec-

35 tion at the server for communicating with an end user com
puter and receiving a request for content from the end user
computer over the first connection. The instructions operate
to determine one or more parameters relating to the perfor-

In one embodiment, a method for managing delivery of
content in a system comprising a server and an end user
computer is disclosed. The method includes establishing a
first connection at the server for communicating with the end
user computer and receiving a request for content from the
end user computer over the first connection. The method also
includes determining one or more parameters relating to the
performance of the first connection using information from
the request and modifYing the first connection at the transport 40

layer based on the one or more parameters. ModifYing the
first connection can be done without notifying the end user
computer. The method also includes sending the requested
content from the server to the end user computer such that the
transport layer manages delivery of the content in accordance 45

with the modified parameters.
Optionally, the method includes retrieving metadata asso

ciated with a requested file and modifying the first connection
based on the metadata. Alternatively or additionally, the
method can include selecting a predetermined performance 50

profile for the first connection using the information from the
request and modifYing the first connection based on the pre
determined performance profile. The method can include
determining a connection type of the end user computer and
a latency characteristic associated with the connection type 55

and modifying the first connection at the transport layer based
on the latency characteristic. The method can also include
determining a data size of the requested content, measuring a
round trip time between the server and the end user computer
when the data size exceeds a predetermined value, and modi- 60

fying the first connection at the transport layer based on the
size of the requested content and the round trip time.

In another embodiment, a content distribution server is
disclosed. The server includes a network interface, a proces
sor, a protocol handler, and a data source. The network inter- 65

face includes a plurality of ports for sending and receiving
data over a connecting network. The processor is coupled to

mance of the first connection based on information from the
request and to modifY the first connection at the transport
layer using the one or more parameters without notifying the
end user computer. Additionally, the instructions operate to
send the requested content from the server to the end user
computer such that the transport layer manages delivery of
the content in accordance with the modified parameters.

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here
inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an embodiment of a
content delivery system.

FIGS. 2A, 2B, 2C, and 2D depict block diagrams of
embodiments of a content download pair that sends content
from a server to a client.

FIG. 3 illustrates a flowchart of an embodiment of a process
for modification of the TCP protocol for various connections
to a server.

FIG. 4 illustrates a flowchart of an embodiment of a process
for modifYing protocol attributes potentially on a connection
by-connection basis.

FIG. 5 shows aspects of a content delivery system.

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 18 of 28 PageID# 453

US 7,715,324 Bl
5

FIG. 6 is a block diagram of an embodiment of a content
distribution server.

FIG. 7 shows an exemplary content distribution server
protocol stack.

FIGS. SA, SB, and SC show exemplary data elements such
as can be used with a content distribution server.

FIG. 9 shows exemplary performance profiles such as can
be used with a content distribution server.

FIG. 10 is a flowchart of a process for modifying transport
layer protocol attributes.

FIG. 11 is a flowchart of process for modifYing transport
layer protocol attributes.

6
RTP, multicast protocols, and other standard protocols in the
transport layer; intemperate using the Internet 104 or a private
network using standard protocols operating in a layer that
underlies the transport layer; intemperate, using standard
protocols and the Internet or a private network, more than two
at a time, such as in clusters or multicast groups; or intemp
erate, using standard protocols and the Internet or a private
network, other than as a client and server, including interop
erating as peers, as collaborative nodes, or as a group of nodes

10 under the common control of one or more other nodes or
under the common control of a controller.

In the primary embodiment, the server 206 conditionally
In the figures, similar components and/or features may

have the same reference label. Further, various components of
the same type may be distinguished by following the refer- 15

ence label by a dash and a second label that distinguishes
among the similar components. If only the first reference
label is used in the specification, the description is applicable

adapts the attributes of the TCP protocol for each TCP con
nection established by a client 102. Conditionally adapting
the attributes of the TCP protocol does not require changes to
standard TCP protocol implementations at every node, does
not require special components be installed in the TCP pro
tocol implementation at every node, and therefore does not
comprise implementing a customized protocol as previously to any one of the similar components having the same first

reference label irrespective of the second reference label.

DETAILED DESCRIPTION OF EMBODIMENTS

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather, the
ensuing description of the preferred exemplary
embodiment(s) will provide those skilled in the art with an
enabling description for implementing a preferred exemplary
embodiment. It being understood that various changes may
be made in the function and arrangement of elements without
departing from the spirit and scope as set forth in the
appended claims.

Referring first to FIG.1, a blockdiagramofanembodiment
of an Internet content delivery system 100 is shown. Gener
ally, one or more nodes request content from one or more
other nodes. In FIG. 1, a number of end users 108 respectively
use their end user system or client 102 to download and view
content objects from the global Internet 104. The content
delivery system 110 has one or more servers that provide
content object downloads. The content delivery system 110
can include any number of cache servers, application servers,
content servers, service servers, and/or database servers to
provide content to the clients 102. Although this embodiment
shows particular communication pairs, other embodiments
could communicate between any pair of nodes on a network,
including between pairs of clients or between pairs of servers,
and yet other embodiments could communicate among more
than two nodes, such as in a broadcast or multicast implemen
tation.

With reference to FIGS. 2A, 2B, 2C and 2D, embodiments
of a content download pair 200 that sends content from a
server 206 to a client 102 are shown. A primary embodiment
described here is the interoperation of two nodes 102, 206 on
the Internet communicating using TCP, one node being a
client 102 that requests information, such as web page con
tent, multimedia, or software downloads, and the second node
being a server 206 that provides information in response to a
request. TCP operates in the transport layer of the seven -layer
Open Systems Interconnection (OSI) model. In other
embodiments, nodes 102,206 intemperate in ways other than
communication in a network, such as sharing data within a
computer or group of computers across an available system or
intersystem interface; intemperate using communications
networks other than the Internet 104, such as a private com
munications network; intemperate using the Internet 104 or a
private network using protocols other than TCP, such as UDP,

20 described; rather, the primary embodiment utilizes the stan
dard TCP protocol and the attributes implemented in it. In
other embodiments, the server conditionally adapts the
attributes of other transport-layer protocols for each session
established by a client 1 02; the server conditionally adapts the

25 attributes of other protocols that underlie the transport layer
for each session established by a client 102; the server 206
conditionally adapts the attributes of the TCP protocol or
other protocol for groups of connections or sessions estab
lished by clients 102; the server 206 conditionally adapts the

30 attributes of the TCP protocol or other protocol for connec
tions or sessions established by groups or subsets of groups of
clients 102; the client 102 conditionally adapts the attributes
of the TCP protocol for each TCP connection established; the
client 102 conditionally adapts the attributes of other proto-

35 cols for each session established; the client 102 conditionally
adapts the attributes of the TCP protocol or other protocol for
groups of connections or sessions; a node conditionally
adapts the attributes of the TCP protocol or other protocol for
each connection or session; a node conditionally adapts the

40 attributes of the TCP protocol or other protocol for groups of
connections or sessions; a node conditionally adapts the
attributes of the TCP protocol or other protocol for connec
tions or sessions established by groups or subsets of groups of
nodes; a controller conditionally adapts the attributes of the

45 TCP protocol or other protocol for each connection or session
of at least one node of an interoperating group of nodes; a
controller conditionally adapts the attributes of the TCP pro
tocol or other protocol for groups of connections or sessions
of at least some nodes of an interoperating group of nodes; or,

50 a controller conditionally adapts the attributes of the TCP
protocol or other protocol for connections or sessions estab
lished by groups or subsets of groups of nodes.

Software, software modifications, or equivalent function,
may optionally be implemented at a server, client, or node that

55 sets the conditionally adapted protocol attributes of a connec
tion or session, but need not be implemented at servers, cli
ents, or nodes that passively participate in a conditionally
adapted protocol connection or session. Such software, soft
ware modifications, or equivalent function will only be

60 needed if existing protocol software or other software on the
server, client, or node does not provide a facility for program
matically or similarly changing attributes of the protocol that
is used; in this event, software, a software modification, or
equivalent facilities to provide such a programmatic or simi-

65 lar interface may be implemented.
Conditionally adapting the protocol for each connection or

session, or collection of connections or sessions, results in at

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 19 of 28 PageID# 454

US 7,715,324 Bl
7

least one node that, concurrently or over time, uses a protocol
for multiple unrelated connections or sessions wherein the
protocol attributes vary, at least initially and sometimes per
sistently, from one connection or session to another, most
often varying differently from any ordinary protocol attribute
variations that naturally occur from one connection or session
to another through use of the standard protocol implementa
tion among heterogeneous nodes.

In the primary embodiment, TCP connections are estab
lished in order to use HyperText Transfer Protocol (HTTP) to
communicate information requests from clients 102 to serv
ers 206 and responses from servers 206 to clients 102. HTTP
is a scheme that operates above, and depends on the presence
of a functioning and reliable protocol at, the transport layer of
the seven-layer model developed in the Open Systems Inter
connection (OSI) initiative. Other embodiments use applica
tion-layer protocols other than HTTP in conjunction with
TCP; use TCP alone, i.e., without HTTP; use other protocols;
or, use other application-layer protocols in conjunction with
other protocols. HTTP utilizes Uniform Resource Locators
(URLs), Uniform Resource Names (URNs), and Uniform
Resource Identifiers (URis) to identify information. URLs
are used in the primary embodiment. Other embodiments use
URis, URNs, other identifiers, or other information. A URL
begins with the scheme identifier, which identifies the
namespace, purpose, and syntax of the remainder of the URL.
In the primary embodiment utilizing HTTP, the typical
scheme is "http". The scheme is followed by a host field,
which contains the IP address or name of the host where the
requested information can be found, optionally followed by a
port number, optionally followed by a path, which is an HTTP
selector, optionally followed by a search portion, which is a
query string. The full URL, then, is an alphanumeric string
containing the scheme, host field, any optional following
strings, and special characters such as":", "/",and"?" that are
reserved for special functions such as designating a hierar
chical structure in the URL. Other embodiments could use
different application-layer protocols such as Telnet, File
Transfer Protocol (FTP), secure HTTP (HTTPS), and Simple
Mail Transfer Protocol (SMTP).

In the primary embodiment, the server 206 bases the con
ditional adaptation of the attributes of the TCP protocol on the
alphanumeric URL string provided by the client 102 in its
information request. In another embodiment, a server, client
or other node bases the conditional adaptation of the attributes
of the TCP protocol or other protocol on the application-layer
protocol specified or on identifYing information, equivalent
to a URL, or other information provided in, or characteristic
of, an information request, connection, or session. In other
embodiments, a server, client or other node bases the condi
tional adaptation of the attributes of the TCP protocol or other
protocol on the IP address of one or more servers, clients, or
nodes; on network information associated with the IP address
of one or more servers, clients, or nodes, including the
Autonomous System (AS) number, identity of network
operator, geographic location, logical or physical network
location, logical or physical network segment, or network
interconnection characteristics associated with the IP
address(es) of one or more servers, clients, or nodes; the
geographic location of the server, client or node; and/or, the
logical or physical network location of the server, client or
node; the logical or physical address of the server, client or
node; the logical or physical name of the server, client or
node; and/or, the network or other path from or to a server,
client or node. In other embodiments a server, client or node
bases the conditional adaptation of the attributes of the TCP
protocol or other protocol on recent network performance

8
measurements, including latency, jitter, packet loss, round
trip time, and/or the measured variance in a network perfor
mance measurement across multiple samples; on recent mea
sures of utilization of a network, network segment, network
interface, or network port; and/or, on recent measurements of
performance or utilization of a server, group of servers, or
server component(s) such as memory, processor, disk, bus,
intersystem interface, and/or network interface. In still other
embodiments, a server, client or node bases the conditional

10 adaptation of the attributes of the TCP protocol or other
protocol on temporal factors, including time of day; day of
week, month, or year; specific date; occurrence of a holiday or
religious observance; occurrence of a temporal event such as
a news event or sports event; seasonal occurrence; and/or a

15 scheduled event or time period.
In the primary embodiment, the protocol attribute selector

212 of the server 206 compares the alphanumeric URL string
provided by the client 102 in its information request to a table
220 containing partial or whole URLs and identifies the most

20 specific match from left to right that it can find in the table
220. In another embodiment, the server 206 compares a sub
set of the alphanumeric string, for example some or all of the
characters in the query string, or the characters following the
host field up to the first subsequent slash (i.e., "/"), to a table

25 220. In another embodiment, the client or node 102 makes a
conditional adaptation of protocol attributes, using the alpha
numeric URL string or a subset of it. In other embodiments,
the alphanumeric URL string or a subset of it is processed to
obtain a value or indicator that is used to determine a condi-

30 tiona! adaptation of protocol attributes. In other embodi
ments, the information used to determine the conditional
adaptation of protocol attributes is identifYing information
equivalent to a URL, one or more IP addresses, network
information associated with one or more IP addresses, net-

35 work interconnection characteristics associated with one or
more IP addresses, or the geographic location, or logical or
physical network location, of a server, client or node. In other
embodiments, the information used to determine the condi
tional adaptation of protocol attributes comprises one or more

40 recent performance measurements or thresholds related to
one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or related to one or more networks, network
segments, network components, or network interfaces, or
groups of network segments, network components, or net-

45 work interfaces; rates or amounts of variation in one or more
performance measurements or thresholds related to one or
more servers, clients, or nodes, or groups of servers, clients,
or nodes, or related to one or more networks, network seg
ments, network components, or network interfaces, or groups

50 of network segments, network components or network inter
faces; rates or amounts of resource utilization, including uti
lization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of

55 servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter
faces, or groups of network segments, network components,
or network interfaces; rates or amounts of variation in
resource utilization, including variation in utilization related

60 to one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or components of one or more servers,
clients, or nodes, groups of components of servers, clients, or
nodes, or related to one or more networks, network segments,
network components, or network interfaces, or groups of

65 network segments, network components, or network inter
faces; and/or, thresholds of resource utilization, including
utilization related to one or more servers, clients, or nodes, or

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 20 of 28 PageID# 455

US 7,715,324 Bl
9

groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter
faces, or groups of network segments, network components,
or network interfaces.

In the primary embodiment, a table 220 containing partial
or whole URLs for comparison by the protocol attribute
selector 212 is stored on the server 206. In other embodi
ments, a table 220 containing partial or whole URLs for
comparison, or subsets of the alphanumeric URL string used
for comparison, is stored remotely from the server 206 such
as the embodiment shown in FIG. 2B and the comparison of
the alphanumeric URL string or subset of the alphanumeric
URL string is made at the server 206, or is made at the remote
table storage location or at another location and the result of
the comparison, or an indicator of the result of the compari
son, or the protocol attributes to be used, are returned to the
server 206. In other embodiments, a table 220 or database of
information used for comparison is stored at the server 206, or
is stored remotely from the server 206 and one or more
comparisons are made at the server 206, or are made at the
remote storage location or at another location, and the results
of the comparisons, or one or more indicators of the results of
the comparisons, or the protocol attributes to be used, are
returned to the server 206. In yet other embodiments, a table
220 containing partial or whole URLs for comparison, or
subsets of the alphanumeric URL string used for comparison,
or a database of information used for comparison is stored at
a client or node 102 as is shown in FIG. 2D, or is stored
remotely from a client or node and one or more comparisons
are made at the client or node 102, or are made at the remote
storage location or at another location and the results of the
comparisons, or one or more indicators of the results of the
comparisons, or the protocol attributes to be used, are
returned to the client or node 102. In other embodiments, a
protocol attribute to be used, or an indicator of a protocol
attribute to be used, is extracted from, or derived from, a URL
or equivalent identifying information used by a server, client,
or node; is extracted from, or derived from, address informa
tion or a whole or partial name of a server, client, or node; is
extracted from, or derived from a user name or identifier, class
or type of user, group of users, or selection of users, optionally
as associated with a service, server, client, or node; is
extracted from, derived from, or associated with, an applica
tion or class or group of applications, a service or class or
group of services, or a database or equivalent source of data or

10
protocol attributes; the server, client, or node will use another
default value for some or all of the attributes; the server,
client, or node will use the last-used values for some or all of
the attributes; or, the server, client, or node will use randomly,
pseudo-randomly, or arbitrarily determined values for some
or all of the attributes.

In the primary embodiment, the server 206 is a cache
server, typically operating in a group of cache servers, and
groups of cache servers are distributed at numerous points on

10 the global Internet. The server 206 includes a cache function
208 coupled to a content cache 210 to provide caching of
content for the server 206. In another embodiment, the server
206 is a cache server operating individually, or independently
from other cache servers. In other embodiments, the server

15 206 is a content server that provides content; a content server
operating in a group of content servers; a content server
operating in a group of content servers distributed at numer
ous points on the global Internet; an application server that
supports one or more applications; an application server oper-

20 ating in a group of application servers; an application server
operating in a group of application servers distributed at
numerous points on the global Internet; a service server that
provides one or more services; a service server operating in a
group of service servers; a service server operating in a group

25 of service servers distributed at numerous points on the global
Internet; a database server that provides data; a database
server operating in a group of database servers; a database
server operating in a group of database servers distributed at
numerous points on the global Internet; a server operating in

30 a heterogeneous group of servers; or, a server operating in a
heterogeneous group of servers distributed at numerous
points on the global Internet.

In the primary embodiment, each server 206 has an iden
tical copy of a table 220 containing partial or whole URLs to

35 which the alphanumeric URL string provided by the client
102 in its information request will be matched if possible,
along with an indicator of the protocol attribute values to be
used when that match occurs or the actual protocol attribute
values themselves to be used when that match occurs. The

40 table 220 can be modified from time to time, including adding
new entries, changing the contents of existing entries, and
deleting entries. Any time that a new version of the table 220
is created, copies of that version are distributed to servers 206
in the global group of cache servers. Optionally, the table 220

45 can have an expiration date and time, after which the server
206 will stop using the table 220 if it is out-of-date and has not
been replaced with an updated table. In the primary embodi
ment, the conditional protocol control information is com
bined with other information distributed to servers 206 so as

a class or group of databases or sources of data; is extracted
from, or derived from, the identifier of a standard protocol, a
standard protocol message (for example, a TCP SYN), the 50

protocol-level content of a message, or protocol message
headers or equivalent information; is derived from all or a part

to minimize to the extent practicable the number of tables 220
that are distributed to, and synchronized among, the global
group of servers; in another embodiment, this combination
and minimization is not implemented; and this combination
and minimization is not done in most or all other embodi-

of the time, all or a part of the date, or all or a part of the
duration since a time or date; is determined according to a
sequence or progression; and/or, is determined randomly or 55

pseudo-randomly.
ments.

In other embodiments, the conditional protocol informa
tion may be in the form of a table 220 as in the primary
embodiment, or may be in the form of multiple tables, or may
be in the form of one or more data files, one or more databases,
one or more calculated or derived elements, one or more
calculated or derived groups of elements, one or more indi-
vidual equations or formulas, one or more groups of equa
tions or formulas, one or more individual expressions, one or
more groups of expressions, one or more individual programs

After one or more comparisons are made, or after the
extraction or derivation of a value, or after an association or
determination is made, the server, client, or node will have
one or more values it can use as protocol attributes or as 60

indicators of which protocol attributes to use; or, if there has
not been a determination of a condition resulting in one or
more protocol attribute values to use, then in the primary
embodiment the server 206 will use the standard values for
the protocol attributes as configured for the server 206, and in
other embodiments, the server, client, or node will use the
standard values as configured for it for some or all of the

65 or routines, one or more groups of programs or routines, one
or more individual listings, one or more groups of listings,
and/or other forms equivalent to any of these.

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 21 of 28 PageID# 456

US 7,715,324 Bl
11

In other embodiments, the conditional protocol control
information contains partial or whole URLs to which the
alphanumeric URL string provided by the client 102 in its
information request will be matched if possible, along with an
indicator of the protocol attribute values to be used when that
match occurs or the actual protocol attribute values them
selves to be used when that match occurs, and is the same for
each server 206 at a location, but varies from one location to
another; is the same for each server in a region, but varies
from one region to another; or, is different at each server. In
other embodiments the conditional protocol control informa
tion contains partial or whole URLs to which the alphanu
meric URL string used by a client or node 102 will be
matched if possible, along with an indicator of the protocol
attribute values to be used when that match occurs or the
actual protocol attribute values themselves to be used when
that match occurs, and the conditional protocol control infor
mation is identical at each client or node 102; is the same for
each client or node 102 in a group, but varies from one group
of clients or nodes 102 to another; is the same for each client
or node 102 in a region, but varies from one region to another;
or, varies from one client or node 102 to another client or node
102.

In other embodiments, the conditional protocol control
information contains other comparison information that will
be matched, if possible, along with a corresponding indicator
of the protocol attribute values to be used when that match
occurs or the corresponding actual protocol attribute values
themselves to be used when that match occurs, and each
server, client, or node has an identical copy of the conditional
protocol control information; the conditional protocol control
information is the same for each server, client, or node at a
location, but varies from one location to another; the condi
tional protocol control information is the same for each
server, client, or node in a region, but varies from one region
to another; the conditional protocol control information is the
same for each server, client, or node in a group, but varies
from one group to another; or, the conditional protocol con
trol information varies from one server, client, or node to
another. In these embodiments, the comparison information
can include subsets of the alphanumeric URL string; identi
fying information equivalent to a URL; one or more IP
addresses; network information associated with one or more
IP addresses; network interconnection characteristics associ
ated with one or more IP addresses; the geographic location,
or logical or physical network location, of a server, client, or
node; a value of a performance measurement or threshold; a
rate or amount of variation in a performance measurement or
threshold; a rate or amount of resource utilization; a rate or
amount of variation in resource utilization; a threshold of
resource utilization; addresses, names, classes, types, or
group identifiers of servers, clients, nodes, users, applica
tions, services, databases, or other data sources; protocol
identifiers, protocol message identifiers or attributes, or pro
tocol message headers or attributes; times, dates, or intervals;
and/or, sequences, ratios, progressions, equations, randomly
generated data, or arbitrarily determined data.

In embodiments where the conditional protocol control
information is not identical at all servers, clients, or nodes,
optionally a system can create conditional protocol control
information for each location, region, server, client, or node,
and optionally can manage the distribution of the conditional
protocol control information to each location, region, server,
client, or node. For partial or whole URLs, subsets of a URL
alphanumeric string, or other comparison information that
will be compared, a conditional protocol information man
agement and distribution system (CPIMDS) optionally gen-

12
erates, or stores, or generates and stores, protocol attributes
for any or all of a server, all servers, a subset of servers, a
location, all locations, a subset of locations, a region, all
regions, a subset of regions, a group, all groups, a subset of
groups, an application, all applications, a subset of applica
tions, a service, all services, a subset of services, a database or
data source, all databases or data sources, a subset of data
bases or data sources, a protocol, all protocols, a subset of
protocols, a client, all clients, a subset of clients, a node, all

10 nodes, a subset of nodes, or a combination of some, a subset
of, a subset of some of, or all of, servers, locations, regions,
groups, applications, services, databases or data sources, pro
tocols, clients, or nodes; and optionally generates, or stores,
or generates and stores, default protocol attributes to be used

15 in the absence of a matching comparison for any or all of a
server, all servers, a subset of servers, a location, all locations,
a subset oflocations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, an application, all
applications, a subset of applications, a service, all services, a

20 subset of services, a database or data source, all databases or
data sources, a subset of databases or data sources, a protocol,
all protocols, a subset of protocols, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some, a subset of, a subset of some of, or all

25 of, servers, locations, regions, groups, applications, services,
databases or data sources, protocols, clients, or nodes. The
CPIMDS also optionally generates, or stores, or generates
and stores, one or more rules for determining which of the
server, location, region, group, application, service, database

30 or data source, protocol, client, node, or combined values to
use when determining a comparison to be included in the
conditional protocol control information for a server, all serv
ers, a subset of servers, a location, all locations, a subset of
locations, a region, all regions, a subset of regions, a group, all

35 groups, a subset of groups, an application, all applications, a
subset of applications, a service, all services, a subset of
services, a database or data source, all databases or data
sources, a subset of databases or data sources, a protocol, all
protocols, a subset of protocols, a client, all clients, a subset of

40 clients, a node, all nodes, a subset of nodes, or a combination
of some, a subset of, a subset of some of, or all of, servers,
locations, regions, groups, applications, services, databases
or data sources, protocols, clients, or nodes; optionally gen
erates, or stores, or generates and stores, one or more rules for

45 determining when to create, or distribute, or create and dis
tribute, conditional protocol control information for or to a
server, all servers, a subset of servers, a location, all locations,
a subset oflocations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, a client, all clients, a

50 subset of clients, a node, all nodes, a subset of nodes, or a
combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes; optionally generates, or stores, or generates and

55 stores, one or more rules for determining whether, and if so
when, any conditional protocol control information shall
expire; optionally includes an expiration value with some or
all of the conditional protocol control information; and,
optionally distributes conditional protocol control informa-

60 tion to a server, all servers, a subset of servers, a location, all
locations, a subset oflocations, a region, all regions, a subset
of regions, a group, all groups, a subset of groups, a client, all
clients, a subset of clients, a node, all nodes, a subset of nodes,
or a combination of some or all of servers, locations, regions,

65 groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes.

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 22 of 28 PageID# 457

US 7,715,324 Bl
13

In embodiments where the conditional protocol control
information is maintained separately from each server, client,
or node, the conditional protocol control information can
optionally include, or can optionally correlate to, an indica
tion of for which servers, locations, regions, groups, applica
tions, services, databases or data sources, protocols, clients,
nodes, or supersets, subsets, or combinations thereof, the
conditional protocol control information can be used in
adapting protocol attributes. The conditional protocol control
information can be maintained at a single location or multiple
locations; if maintained at multiple locations, each location
can maintain a complete copy of all conditional protocol
control information, or each location can maintain a copy of
a subset of the conditional protocol control information.
Optionally, a conditional protocol information management
and distribution system can create conditional protocol con
trol information for, and optionally distribute conditional pro
tocol control information to, each conditional protocol con
trol information location, groups of conditional protocol
control information locations, or all conditional protocol con
trol information locations. If conditional protocol control
information locations store a subset of the conditional proto
col control information, participating servers, clients, or
nodes can optionally use a table, ordered table, shuffled table,
directory, logical name translation system, or information
obtained from, or received from, another server, client, node,
or controller, to determine which conditional protocol control
information location to receive conditional protocol control
information from.

Referring next to FIG. 3, an embodiment of a process 300
for modification of the TCP protocol for various connections

14
is compared with entries in the table 220 to determine the
attributes to use for the connection as described further below.

In the primary embodiment, in block 312 the server 206
conditionally adapts the attributes of the TCP protocol for
each TCP connection established by a client 102. Condition
ally adapting the attributes of the TCP protocol does not
require changes to standard TCP protocol implementations at
every node, i.e., any client 102 that supports standard TCP
(which virtually all Internet and all World Wide Web clients

10 do) can communicate with the server 206 to get the object via
a conditionally adapted TCP connection, but may require a
modification to the server's TCP protocol handler to allow
changes to be made to the TCP protocol attributes by another
program, or on a per-connection basis, or both. Where the

15 TCP protocol handler provides a facility for programmati
cally making these changes, the content serving application
may require an interface enabling it to communicate condi
tionally adapted TCP protocol attributes to the TCP protocol
handler. In the primary embodiment, a set sockets statement

20 can be used to communicate conditionally adapted TCP pro
tocol attributes from the content serving application to the
TCP handler 214, which can be a modified TCP software
stack that accepts and implements changes to the TCP proto
col attributes on a per-connection or per-request basis. In

25 various embodiments, the TCP handler could be imple
mented in software or hardware or both, and can be imple
mented as part of a node or separately from the node, for
example in a switch or other device that provides protocol
serv1ces.

30

to a server 206. In summary, in the primary embodiment two
nodes on the Internet communicate using TCP, one node
being a client 102 that requests information in block 304, such 35

as web page content, and the second node being a cache server
206 that provides information in response to a request. The
cache server 206 operates as one of a group of cache servers,
and groups of cache servers are distributed at numerous
points on the global Internet. TCP connections are established 40

in order to use HTTP to communicate information requests
from clients 102 to servers 206 in block 304 and responses
from servers 206 to clients 102. HTTP utilizes URLs; each
URL begins with the scheme "http", which is followed by a
host field containing the IP address or name of the host where 45

the requested information can be found, followed by a path,
which will be used at the server 206 to locate the requested
object or information, optionally followed by a query string.
Thus, the full URL typically is an alphanumeric string con
taining the scheme, host field, path, and any optional query 50

string, each part of which is separated from the other parts by
special characters such as":","/", and"?". Thus, an example
URL referencing content that can be served by the cache
server 206 in the primary embodiment might look like:

Conditionally adapting the protocol for each connection
results in the server 206 concurrently using the TCP protocol
for multiple unrelated connections, wherein the TCP protocol
attributes vary, at least initially and sometimes persistently,
from one connection to another. At block 316, the requested
object or information is sent from the server 206 to the client
102. When a requested object or information is delivered
without any change to the TCP protocol attributes, the stan
dard TCP protocol attributes pre-configured for the TCP pro
tocol handler are used; but when the requested object or
information is delivered with conditionally adapted TCP pro
tocol attributes, the conditionally determined TCP protocol
attributes are used instead of the standard pre-configured TCP
attributes.

A typical caching content server 206 in actual operating
use in a web hosting service provider environment may typi
cally service 2,000 to 3,000 requests per second, across 100 to
200 (or more) customers. If half of these requests will use
changed TCP protocol attributes and half will not, then on
average, half of the connections managed by the server 206 at
any one point in time would use the changed TCP protocol
attributes and half would use the standard TCP protocol
attributes as pre-configured in the TCP handler 214. Addi
tionally, if there are five separate (different) changed TCP
protocol attribute sets across which those requests using

http:/ /customer1.webserving.com/folderB/directory/
logo.gif

optionally followed by"?" and a query string. A client 102
requesting this object would send an HTTP message using an
HTTP method called "GET" to the server 206 identified by
the hostname "customerl.webserving.com" in block 304.
The server identification is accomplished through a DNS
translation of the hostname into one or more IP addresses. The
Domain Name System (DNS) is the name translation system
used in the Internet. The HTTP GET message sent to the
server 206 typically includes part or all of the URL that the
client 102 is requesting. In block 308, some or all of the URL

55 changed TCP protocol attributes are evenly distributed, then
on average at any one point in time a server 206 would
concurrently be operating TCP connections with six different
sets ofTCP protocol attributes: 50% of the connections would
utilize standard pre-configured TCP protocol attributes, and

60 10% would utilize each of the five possible changed TCP
protocol attribute sets.

In the primary embodiment, the server 206 bases the con
ditional adaptation of the attributes of the TCPprotocol on the
alphanumeric URL string provided by the client 102 in the

65 HTTP GET message. In the primary embodiment, the condi
tiona! protocol control information is in the form of a table
220 containing partial and/or whole URLs for comparison,

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 23 of 28 PageID# 458

US 7,715,324 Bl
15

the table 220 is stored on the server 206, and the table 220 is
generally kept reconciled on all servers 206. The server 206
compares the alphanumeric URL string provided by the client
102 in the GET request to the table 220 and identifies the most
specific match from left to right that it can find in the table 220
in block 308. Taking our earlier example and assuming a
simplified table, the sole Table shows mappings from whole
and/or partial URLs into TCP attribute sets comprising spe
cific protocols attributes (identified as "attrl", "attr2",
"attr3", etc.) to be used and the appropriate value or setting for 1 o
that use of that attribute.

16
the server's location or other factors. In other embodiments,
as discussed, the conditional protocol control information can
vary from one server 206 to another.

Referring to FIG. 4, an embodiment of a process for poten
tially modifYing protocol attributes on a connection-by-con
nection basis is shown. The depicted portion of the process
begins in block 416 where a uniform resource indicator (URI)
is requested by the client 102. The cache function 208 of the

Table Mapping to TCP attribute sets

Partial URL TCP Attribute Set

http:/ /customer1.webserving.com/folderA/ attr1 ~yes, attr3 ~ 25,
attr4 ~low

http:/ /customer1.webserving.com/folderB/ attn = no, attr2 = 1,
attr4 ~high

server 206 receives the request for the content object. The
URI is evaluated by the protocol attribute selector 212 to find
a match to something in the table 220. The table 220 is queried
in block 424 for any attributes. Retrieved attributes are com
municated to the TCP handler 214 in block 428. The connec
tion is established in block 432 according to the selected

15 attributes to connect the end user system 102 with the server
206. The content object is delivered in block 436. This pro
cess is performed on each URI such that each connection or
socket can be independently controlled, if desired. Indeed,
two different end user systems 102 could request the same

20 content object and it could be delivered in a very different
manner with different selected protocol attributes for each fastnet.com

http:/ /customer2.webserving.com/
http:/ /customer3 .webserving.com/

attr3 ~50, attr6 ~fast

attr1 ~yes, attr3 ~ 25,
attr4 ~low

user.
Referring to FIG. 5, a block diagram of an embodiment of

The URL in the example above, "http://
customer1.webserving.com/folderB/directory/logo.gif,"

25
a content delivery system 500 is shown. Content delivery
system 500 operates in a manner that is similar to the content
delivery systems of FIGS. 1-2 and therefore the description of
those systems is also applicable to the present embodiment.
While continuing reference will be made to the preceding

would be matched against the second line-entry in the table.
The TCP protocol attribute set (group of TCP protocol
attributes) to be used for the TCP connection that services, or
responds to, this HTTP GET message from this client 102
would be "attrl =no, attr2=1, attr4=high" and the TCP proto
col attributes for this TCP connection would be set accord
ingly. This simplified table example also illustrates that the
scheme and host name may be sufficient for a matching entry, 35

such as in the case of the entry "http://
customer3 .webserving.com," or the host name alone may be
sufficient, such as in the case of the entry "fastnet.com." This
simplified table example also illustrates that there may be a
null entry in the table, as in the case of "http:// 40

customer2.webserving.com"; in this simplified table
example, the null entry signifies use of the standard pre
configured TCP protocol attributes. Note that an actual table

30
embodiments, in the interest of clarity, the discussion of com
mon elements and functionality will not be repeated.

in the primary embodiment would contain more information
than the simplified example table shown here, as discussed. 45

The table 220 can be modified from time to time, including
adding new entries, changing the contents of existing entries,
and deleting entries. When a new version of the table 220 is
created, copies of the new version of the table 220 are distrib
uted to the servers 206 in the global group of cache servers. 50

Optionally, the table 220 can have an expiration date and time,
after which the server 206 will stop using the table 220 if it is
out-of-date and has not been replaced with an updated table
220; under this condition, the server 206 would then use the
standard TCP protocol attributes for connections until the 55

server 206 received an updated or unexpired table 220.
In the primary embodiment, the conditional protocol con

trol information is combined with other information, such as
customer billing codes and other customer-specific informa
tion, that is distributed to all servers 206, in order to minimize 60

the number of tables that are distributed to, and reconciled
throughout, the global group of servers. This embodiment has
the advantage of simplifying administration, change manage
ment, and rollback in the event that distribution of a new table
220 causes a problem or error condition, but the disadvantage 65

that the conditional protocol adaptation is the same for any
given entry in the table 220 at every server 206, regardless of

As illustrated, end user computers 102 access the global
internet 104 through autonomous systems 232. Autonomous
systems 232 may include internet service providers which
offer end users access to the global internet 104 over a private
communication network. Different providers may offer dif
ferent types of service and may serve different geographic
areas. For example, autonomous systemAS1 can represent a
DSL communication network such as those operated by
AT&T or Qwest Communications, or it could be a cable
access network such as those operated by Cox Commnnica
tions in the United States, or by Rogers Communications in
Canada. Autonomous system AS2 could be a satellite com
munication network, a cellular network, a WiMAX (IEEE
802.16)network, Wi-Fi™ (IEEE 801.11) access, and the like.
Depending upon the underlying communications technology,
autonomous systems 232 can present different network char
acteristics that are relevant to the performance of a transport
layer protocol such as TCP.

Content delivery servers 206 are also connected to the
global internet 104 and can be connected to corresponding
autonomous systems 232. As shown, content server 206-1 is
connected to autonomous system 232-1 by router 236-1 and
content server 206-2 is connected to autonomous system
232-2 by router 236-2. Routers 236 thus provide direct links
L1, L2 between servers 206 and their corresponding autono
mous systems 232. In some embodiments, servers 206-1,
206-2 can be edge servers that are collocated with the autono
mous system network infrastructure and provide large band
width and fast response times for content distribution to end
users in a particular location. In an exemplary embodiment,
each server 206 is configured to handle approximately 2000
connections per second and can support a 10 Gbps link to its
corresponding autonomous system. Of course, the number of
servers, number of connections, and data rates may vary
based on the location served, traffic patterns, hardware capa
bilities, and other factors.

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 24 of 28 PageID# 459

US 7,715,324 Bl
17 18

based on their header information. With transport control
protocol, network layer 720 sends TCP messages to the trans
port layer 730 which, in tum, passes application messages to
data sources 750 in the application layer 740.

In operation, an end user computer 102 can establish a TCP
connection with content server 206. The connection can be
created using a collection of TCP parameters which are pre
configured at the server and do not necessarily reflect infor
mation about the end user or the way in which the end user

Servers 206 also communicate with origin server 240. Ori
gin server 240 can act as a source of the content distributed to
end users. For example, servers 206 may cache content
received from origin server 240 and may use the cached
content to fulfill end user requests. If requested content is not
found in their respective caches, servers 206 can send a
request for the missing content to origin server 240. When
requesting content, servers 206 can report information about
the content request as well as the conditionally adapted pro
tocol parameters to the origin server 240. The origin server
240 can collect, compile, and distribute information to servers
206 for use in adapting connection parameters. For example,
the origin server 240 can function as part of a CPIMDS and
can distribute URL tables 220 and other protocol perfor
mance information to servers 206 as previously discussed.

10 computer is connected to the server. For example, referring
again to FIG. 5, computer 102-1 can initiate a connection
C2.1 with server 206-1 to start a TCP session. Once the
connection is established, the end user can send a content
request over the connection. As illustrated, a single end user

15 computer 102 can establish multiple connections to a given
server 206 and each connection can carry multiple content
requests. Protocol stack 700 is configured such that TCP
settings can be adjusted on a per-connection or even a per-

FIG. 6 is a functional block diagram of content distribution
server 206 according one embodiment of the present inven
tion. As shown, server 206 includes a processor 244, memory
248, one or more network interfaces 252, and a data store 220.
Although not shown, server 206 can also include a cache 20

function 208 and a content cache 210 as previously described.
Network interfaces 252 can include a plurality of ports

(P1, ... , PN) for sending and receiving data over a connecting
network. In some embodiments, at least one network inter
face is dedicated to providing a high-bandwidth link to an 25

autonomous system and can be matched to its particular net
work characteristics. Additional ports and/or network inter
faces can provide access to the global internet 104, origin
server 204, or other parts of a content delivery system.

Processor 244 executes programmable instructions for 30

managing the delivery of content to end user computers 102
and can include one or more general purpose microprocessors
or application-specific hardware elements.As shown, proces
sor 244 is coupled to memory 248 which can include any
combination of volatile or non-volatile computer-readable 35

storage such as random access memory (RAM), read only
memory (ROM), magnetic disk storage, and the like.
Memory 248 can provide a data store 220 which, as previ
ously described, can be a table or other data structure includ
ing information for modifYing transport layer performance 40

parameters. Data store 220 is discussed further in connection
with FIG. 8.

Server 206 can include a number of data sources which

request basis.
When a content request is received at server 206, it is

conveyed through protocol stack 700 to an appropriate data
source 750 in the application layer 740. For example, a web
server 750-1 can respond to requests for web pages, a caching
application 750-2 can respond to file requests, and an appli
cation server 750-N can respond to requests for application
services. Server 206 can include any number or arrangement
of data sources 750 and each data source can respond to
multiple content requests.

Each data source 750 can interact with a TCP handler 760
at the transport layer 730 to modify its connections. In one
embodiment, TCP handler 760 enables the data sources to
modifY the timing at which packets are sent to the end user
computer to be more or less aggressive based on information
gathered from the content request. TCP handler 760 can also
modifY the pace at which packets are sent. Pacing can indicate
that a burst of packets should be sent as soon as possible or
that data transmission should be spread out over time. The
maximum TCP send window ("send buffer size") for a con
nection can also be adjusted. For example, in some embodi
ments, TCP handler 760 can adjust the maximum send buffer
to be a multiple of a standard size and can permit buffer
utilization to increase until it reaches the maximum size.
Alternatively, TCP handler 760 can vary the number of bytes
allocated for a particular connection directly.

Generally speaking, each content request has at least two
pieces of information. These include a source address of the
end user computer and an identifier corresponding to the
requested content. For example, a data source 750 that
responds to the request for sample URL, http://

respond to content requests from end users. In one embodi
ment, processor 244 supports a protocol stack that enables 45

changes affecting the performance of the transport layer to be
made from higher layers in the stack on a per-connection or
per-request basis. This enables server 206 to receive a content
request from an end user computer over an existing connec
tion, gather information about the request, and intelligently
modifY the performance of the connection based on informa
tion from the request. In this way, for example, server 206 can
modifY TCP performance parameters based on known char
acteristics of the connecting network, the geographic location

50 customerl.webserving.com/folderB/directory/logo.gif,
would know the IP address of the requesting computer (e.g.,
abc.def.ghi) as well as the file name of the requested content
(logo.gif). From this starting point, server 206 can obtain
additional information from data store 220 with which to

of the end user, metadata associated with the requested con
tent, a service level of the content provider, link utilization, or
any combination of these and other factors.

55 modifY the transport layer parameters of the TCP connection.

FIG. 7 illustrates a modified TCP protocol stack 700 such
as can be included as part of content server 206 according to
one embodiment of the present invention. As shown, layers 60

710-740 correspond roughly to layers of the standard OSI
network model. At the lowest layers 710 in the protocol stack
(physical and data link layers), data bits are received at the
network interface hardware and assembled into data units for
delivery to the next higher layer. Here, a network layer 720 65

includes an IP module that receives IP packets from the lower
layers and determines an appropriate transport layer protocol

FIGS. 8A-8C illustrate partial exemplary data elements
810-850 such as can be maintained in data store 220 and used
for determining modified parameters for a TCP connection.

FIG. SA illustrates exemplary data corresponding to a
requested content object. In particular, table 810 can repre
sent a collection of metadata 810. Metadata for each
requested object can include a file name, file size, file type,
and content provider as well as TCP attributes associated with
the content object. For example, attrl can represent pacing on
the TCP connection. In some embodiments, pacing is dis
abled for small files and enabled for large files. This can
permit content requests involving a large number of small

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 25 of 28 PageID# 460

US 7,715,324 Bl
19

files to be fulfilled with quick bursts and can facilitate a more
even delivery oflarge content. TCP attributes can also corre
spond to the type of data such as whether the requested
content is text or video information.

Table 820 includes information about content providers.
Each content object can be associated with a content provider.
The associated content provider can be identified in the file
meta data or it can be determined from the URL of the content
request. In some cases, content providers can select a service
level for the distribution of their content on the content deliv- 10

ery system. Among other possibilities, requests for content
from providers that choose a premium service level can be
biased in favor of increased performance. For example,
requests for provider ABC's content can be preferentially
modified (e.g., attr6=fast) and, when appropriate, can be allo- 15

cated a relatively larger send buffer (e.g., attr4=300,000). By
contrast, requests for provider DEF's content at the standard
service level can be assigned a smaller send buffer (attr4=100,
000) and modified only on a best efforts basis (attr6=slow).
Service level can also set on a per-request basis. For example, 20

a customer can elect a high level of service by adding infor
mation to the request query string.

FIG. 8B illustrates exemplary data corresponding to the
network address of an end user computer. Table 830 provides
an association between IP address, geographic location, and 25

autonomous system number. A source IP address can be
obtained from TCP header information and used to identifY a
geographic region of the end user computer. The geographic
region can be a city, state, country, or continent and can
provide a rough estimate of the distance or round trip time 30

from the server 206 to the end user computer. In addition,
geographic location can also be a rough indicator of service.
For example, network communications in Asia may be char
acterized by a higher latency than network connections in
Europe or some other location. These differences can be 35

factored into the TCP attributes so that, for example, more
aggressive timing parameters can be used with Asia-based IP
addresses.

20
When server 206 is collocated at an AS data center, link

statistics can be maintained and used to determine TCP
parameters. As a link nears full capacity, for example, it may
be inappropriate to increase the timing or send buffer size of
connections. In some embodiments, the preconfigured TCP
parameters are used when link utilization exceeds a predeter
mined threshold. Thus, among other possibilities, the
attributes associated with AS information can indicate
whether or not TCP parameters should be modified and, if
modification is appropriate, which parameters are best suited
for known characteristics of the AS network.

FIG. 8C illustrates exemplary data corresponding to server
utilization. In some embodiments, each content distribution
server 206 has a limited amount ofbandwidth and is intended
to support a certain network load. As the server approaches its
limits, it may be appropriate to scale back on resource allo
cation to TCP connections. Conversely, when the server expe-
riences a light load, it may be appropriate to allocate more
system resources to improving the performance of TCP con
nections. Table 850 provides information for judging load at
a content distribution server, including a bandwidth alloca-
tion (BW) measures and a connection rate (CPS).

By way of illustration, assume that a particular server 206
can support up to 2,000 connections per second and has
available bandwidth of 1 Gbps. When connection rates and
bandwidth usage are low, more resources are available for
modifYing connections. In that case, it may be appropriate to
use more aggressive timing, larger buffers and other perfor
mance enhancements. Thus, for example, connections to
server E1 may be modified by increasing the maximum send
buffer size to 300,000 bytes and biasing towards aggressive
timing and/or pacing utilization. On the other hand, server
E56 is nearing full capacity and may therefore bias new
connections to the preconfigured TCP parameters.

As will be readily appreciated, many different combina-
tions of factors can affect when and how a TCP connection is
modified. Different weights and precedence can be assigned
to the different types of information available from the data
store 220. For example, system resources may have the high-Table 830 can also store information about primary routes

to particular locations. For example, a considerable amount of
network traffic destined for South America passes through
servers in Florida and other primary gateway locations. The
attributes in table 830 can be biased to optimize TCP perfor
mance based on conditions at these gateway servers. For
example, TCP timing parameters may be adjusted based on
traffic statistics and load along a primary route such that
transmit timing for South American connections is made
more or less aggressive. Many other location-specific adjust
ments are possible within the scope of the present invention.
In some embodiments, cost and path information can also be
included. As an example, transit charges and other direct costs
of providing service can be tracked as well as indirect or
resource costs.

40 est precedence, followed by service level, and then by meta
data and AS factors, and finally by geographic considerations.
Across categories, different weights may be assigned to the
attributes so that a data source 750 can determine modified
TCP parameters based on the net effect of some or all of the

Table 840 provides information about the autonomous sys
tems. Server 206 can determine an autonomous system (AS)
number for an end user computer based on the source address
of a content request. The AS number, in tum, can be used to
obtain additional information for modifying TCP parameters.
For example, if it is known that a particular AS is associated
with a type of network, the characteristics of the network
technology can be used to determine appropriate TCP param
eters for a connection. Cable networks can have a relatively
high bandwidth and may be less prone to saturation than DSL
networks. Satellite connections, on the other hand, are typi
cally associated with high latency. Server 206 can take advan
tage of these characteristics by matching timing and pacing
parameters to the particular type of network.

45 available information.
FIG. 9 shows exemplary performance profiles 900 such as

can be utilized to modifY TCP parameters according to
embodiments of the present invention. Rather than determin
ing parameters by combining individual factors, server 106

so can include predetermined profiles for content requests. In the
example, profile P1 provides TCP settings for sending large
files to nearby (low-latency) users. As illustrated, a perfor
mance increase can be realized by pacing such connections
and allowing the TCP send buffer to grow very large. Rela-

55 tively less aggressive timing adjustments are needed due to
the low latency factor. Profile P2, on the other hand, repre
sents large file transfers to a latent user. In that case, pacing is
still used with the transfer, but more aggressive transmit tim
ing may help to compensate for latency and an intermediate

60 send buffer may be appropriate. Profile P3 can be used to
transfer small files. With small files, it may be desirable to
disable pacing and transmit files in bursts. As a result, a large
send buffer may not be needed.

FIG.10 shows an embodiment of a process 1000 formodi-
65 tying protocol attributes on a connection-by-connection or

request-by-request basis. Process 1000 can be performed by a
data source 750 or by the caching function 208 of a content

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 26 of 28 PageID# 461

US 7,715,324 Bl
21

distribution server 206.At block 1010, a content request R1 is
received over an existing connection C1 at the server. The
request can include the URI of a content object. The content
object may be available in content cache 210, or from origin
server 240, or from some other server accessible through the
content delivery system.

The content request R1 can be conveyed through the lower
layers of protocol stack 700 to the appropriate data source 750
in the application layer 740. Since server 206 is capable of
modifYing transport layer parameters on a connection-by
connection and even a request-by-request basis, the present
process can be repeated for each new request (e.g., R2/C1)
and/or each new connection (e.g., Rl/C2) as determined by
the data source 750 or caching function. Note also that that
server 206 need not be dedicated to serving a particular type
of content but can deliver files, images, video, or any other
content available through the content delivery system.

After the request for content is received, the responding
data source 750 determines whether the transport layer
parameters used with the connection and/or request should be
modified. Modifying the transport layer parameters is com
pletely transparent to the end user; the end user is not required
to install software or monitoring applications to receive a
performance benefit.

At block 1015, the server 206 makes an initial determina
tion as to whether system load exceeds a predetermined
threshold THl. For example, the responding data source 750
can query the information in table 850 to determine current
bandwidth usage and system load. If the system is experienc
ing a heavy load, pre-configured TCP parameters may be
used. In that case, the process ends at block 1060. On the other
hand, if system load is below threshold TH1, a further deter
mination is made as to link utilization. This can involve, for
example, accessing the information in table 840. If link uti
lization exceeds a predetermined threshold TH2, then the
process can terminate at block 1060 and preconfigured TCP
parameters can be used with the connection/request.

22
source or cache function modifies the connection through the
TCP handler for the large file transfer.

FIG. 11 shows an additional embodiment of a process 1100
for modifYing protocol attributes. Process 1100 can be per
formed by a data source 750 or by the caching function of
content distribution server 206. The process begins at block
1110 when a request R1 is received from an end user com
puter over connection Cl. As previously noted, the process
can be repeated for each new request (e.g., R2/C1) and/or

10 each new connection (e.g., Rl/C2) as determined by the data
source 750 or caching function.

At block 1115, the IP address of the client is determined
and the data source or cache function begins to gather infor
mation for modifYing the connection. Initially, a geographic

15 location and autonomous system of the end user computer are
determined based on the IP address (blocks 1120-1125). If the
server has a dedicated link to the AS, link utilization is deter
mined at block 113 0 and compared to a predetermined thresh
old TH2. When the link capacity is below the threshold, the

20 process terminates and the standard or pre-configured TCP
parameters are used for the connection/request. If link utili
zation does not apply to the connection, or iflink utilization is
below threshold TH2, the process continues.

In this embodiment, a predetermined profile is selected
25 based on the geographic location of the client and the type of

connection. For locations in the United States served by cable
access networks, blocks 1135-1140, a first geographic per
formance profile G1 can be used. Relatively low latency may
be assumed for US locations and this profile can adjust TCP

30 timing to take advantage of the relatively high burst capability
of cable networks. For locations in the United States served
by digital subscriber line (DSL) networks, blocks 1145-1150,
a second geographic performance profile G2 can be used.
This profile may use slightly less aggressive timing with a

35 relatively large send buffer. Finally, for US locations served
by satellite networks, blocks 1155-1160, a third geographic
profile G3 can be used. This profile may assume high latency
but reliable delivery and therefore use relatively more aggres-

When there is sufficient system resources and link capac
ity, a determination can be made regarding the TCP param- 40
eters based on file size. The size of a requested file can be
determined by accessing the metadata of table 810. At block
1025, the file size is compared to a threshold value TH3 to
determine if it is a "large" file. If the file is not a large file, then

sive TCP timing and an intermediate send buffer size.
Customized profiles can be used for non-US locations or

when autonomous system information is not available as
shown by blocks 1165-1170. For example, a China-specific
profile or an Asia-specific profile can be developed based on
historical network performance measures. Similarly, where a

at block 1030 it is compared to another threshold TH4 to
determine ifit is a "small" file. If the requested file does not fit
in either category, then the preconfigured TCP settings may
be used. Otherwise, for small files, pacing can be disabled and

45 primary route to a particular destination is known, profiles
may be developed that are customized for the appropriate
connecting network elements. When the appropriate geo
graphic performance profile has been selected, the data store

an appropriate send buffer size can be determined at block
1035. Thereafter, at block 1065, the responding data source or 50
cache application directs the TCP handler to modifY the con
nection for the small-file transfer.

With large files, it can be useful to make a further determi
nation as to latency. At block 1045, a round trip time (RTT)
from the server to the end user computer is determined. This 55

can be done by sending ICMP messages to the end user's
address and measuring the response time. If RTT is less than
a predetermined threshold TH5, then the connection may be
characterized as low-latency. In that case, a relatively large
send buffer size and less aggressive TCP timing may be 60

appropriate. At block 1050, these settings are determined by
the data source or cache application either based on informa
tion from individual items in data store 220 or by selecting a
performance profile. On the other hand, if RTT exceeds the
threshold, the connection may be characterized as high-la- 65

tency. At block 1055, parameters for the large-file, high
latency transfer are determined. At block 1065, the data

or cache function modifies the connection accordingly.
Throughout this document, the terms content delivery and

content download are used and can mean either file download
or streaming delivery. Additionally, a content object can be
either a file or a stream. For example, the content object could
be a voice call stream, a video stream, an image file, a music
file, a live concert, an animation, an advertisement, a web
page, a slide show, data file, hosted software, transactions,
executable software or the like. Content can be static or
dynamic, can pre-exist on the server, can be created on the
server, or can be created or obtained elsewhere in response to
a request from a client.

A number of variations and modifications of the disclosed
embodiments can also be used. For example, some of the
above embodiments discuss use of the TCP protocol or a
transport-layer protocol. Other protocols could be modified
on a connection-by-connection or request-by-request basis in
other embodiments. Also, connection parameters can be
modified based on additional information gathered from or

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 27 of 28 PageID# 462

US 7,715,324 Bl
23

associated with content requests such as HTTP request head
ers (e.g., content-length, cookies, content-type, user agent,
etc.), transport layer security (e.g., HTTPS), layer 2 address
ing (e.g., the MAC address of the router from which the
request was received), port number, IP properties (e.g., TOS
-terms of service), hostname, and whether or not a request
successfully passed through a rewrite process.

While the principles of the disclosure have been described
above in connection with specific apparatuses and methods, it
is to be clearly understood that this description is made only 10

by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:
1. A network connection method for delivering content, the

network connection method comprising:
receiving a first request for content from a network at a

server;

15

analyzing the first request for content to determine first
attributes, wherein analyzing the first request comprises
comparing a first uniform resource indicator (URI) with 20

an alphanumeric string to correlate the first URI with the
first attributes;

configuring a first connection for serving the content
between the server and a first node;

configuring a protocol of the first connection according to 25

the first attributes, wherein the protocol that is config
ured is a transport layer protocol;

24
analyzing limitation is different from the content in the sec
ond-listed analyzing limitation.

6. A system for managing delivery of content over a net
work, the system comprising:

protocol handler managing a first connection and a second
connection over the network using a protocol, wherein:
the protocol operates at an transport layer,
the protocol handler is configured to use first attributes

for the first connection, and
the protocol handler is configured to use second

attributes for the second connection;
a store holding a plurality of attributes; and
a protocol attribute selector, configured to:

receive first information relating to a first request for
content wherein the first information is derived from a
first uniform resource indicator (URI) associated with
the first request for content,

query the store for first attributes corresponding to the
first information,

program the protocol handler with the first attributes for
the first connection,

receive second information relating to a second request
for content,

query the store for second attributes corresponding to
the second information, and

program the protocol handler with the second attributes for
the second connection. receiving a second request for content from the network at

the server;
analyzing the second request for content to determine sec

ond attributes;

7. The system for managing delivery of content over the

30 network as recited in claim 6, wherein the protocol is trans
mission control protocol (TCP).

configuring a second connection for serving the content
between the server and a second node; and

configuring the protocol of the second connection accord
ing to the second attributes, wherein the first attributes
affect operation of the protocol differently than the sec
ond attributes affect operation of the protocol.

2. The network connection method for delivering content
as recited in claim 1, wherein the protocol is transmission
control protocol (TCP).

3. The network connection method for delivering content
as recited in claim 1, wherein the processes of analyzing the
first request and analyzing the second request are both per
formed away from the server.

8. The system for managing delivery of content over the
network as recited in claim 6, further comprising a protocol
stack that sends the content to a first node using the first

35 connection and a second node using the second connection.
9. The system for managing delivery of content over the

network as recited in claim 6, wherein:

40

the protocol handler is part of a server, and
at least one of the store and the protocol attribute selector

is located away from the server.
10. The system for managing delivery of content over the

network as recited in claim 6, wherein the first connection and
second connection serve the content at least partially coex
tensive in time.

4. The network connection method for delivering content 45

as recited in claim 1, wherein the first connection and second
connection serve the content at least partially coextensive in
time.

11. The system for managing delivery of content over the
network as recited in claim 6, wherein the content of the first
connection is different from the content in the second con-
nection.

5. The network connection method for delivering content
as recited in claim 1, wherein the content in the first-listed * * * * *

Case 3:15-cv-00720-JAG Document 28-1 Filed 02/16/16 Page 28 of 28 PageID# 463

	
	

Exhibit	 B	

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 1 of 28 PageID# 464

c12) United States Patent
Harvell et al.

(54) CONDITIONAL PROTOCOL CONTROL

(75) Inventors: Bradley B. Harvell, Chandler, AZ (US);
Joseph D. DePalo, Peoria, AZ (US);
Michael M. Gordon, Paradise Valley,
AZ (US); Jason L. Wolfe, Gilbert, AZ
(US)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 169 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 13/595,904

(22) Filed: Aug. 27, 2012

(65)

(63)

(51)

Prior Publication Data

US 2013/0060893 Al Mar. 7, 2013

Related U.S. Application Data

Continuation of application No. 12/572,981, filed on
Oct. 2, 2009, now Pat. No. 8,274,909, which is a
continuation-in-part of application No.
PCT/US2009/038361, filed on Mar. 26, 2009.

Int. Cl.
G01R 31108
G06F 11100
G08C 15100
H04J 1116
H04J3/14
H04L 1100
H04L 12126
H04L 12156

110

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Content
Delivery !+----~
System

111111 111
US008750155B2

(10) Patent No.: US 8,750,155 B2
(45) Date of Patent: *Jun. 10,2014

(52) U.S. Cl.
CPC H04L 471193 (2013.01)
USPC 370/252; 370/389; 370/412; 370/466

(58) Field of Classification Search
CPC H04L 47/193; H04L 69/326; G06F 15/16
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0099844 A1 *
2007/0067424 A1 *
2008/0031149 A1 *
2008/0225721 A1 *
2010/0131671 A1 *

* cited by examiner

7/2002 Baumann eta!. 709/232
3/2007 Raciborski et al 709/223
2/2008 Hughes eta!. 370/252
9/2008 Plamondon 370/235
5/2010 Kohli eta!. 709/233

Primary Examiner- Jay Y Lee
(74) Attorney, Agent, or Firm- Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

Techniques for modifYing the performance of a transport
layer protocol in response to a request for content are dis
closed. A connection can be established between a content
distribution server and an end user computer according to
preconfigured parameters. When a request for content is
received over the connection, the content distribution server
can determine one or more parameters relating to the perfor
mance of the connection using information from the request.
The content distribution server can modifY the connection at
the transport layer according to the one or more parameters.
Thereafter, the transport layer can manage delivery of the
requested content to the end user computer in accordance
with the modified parameters. In various embodiments, the
content distribution server includes a modified TCP protocol
stack which adjusts timing, pacing, and buffer allocation
associated with a connection in response to requests from an
application-layer data source.

•
•
•

20 Claims, 14 Drawing Sheets

•
•
•

"100

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 2 of 28 PageID# 465

110'~ ..

Content
Delivery
System

1 {)2~-1
··-~~

End User
r'""""""''f1 Sy s h:~m (s}

End User
System(s)

•
• •

•
• • , i02--n _.

~ """\ i !)H.{u!n """"'""' ~ ~ :_:... . ""4..")
~ !:l"///~/////////..w'#//"Ar/"#Q1 \

! End User ~ ·--. End ~
! ___ ,,,,,,,1 . . . ,,,,,,,,,,,,, .. ~ ' . ·~· l .

Sysh}m{s} ~ ser\s;
W~h»"H"~ , '~ .

o::.-,.,~4-" ... q...:qp;;

f"'!("• -1
........ ~ ' '-'l ~

~1., ,-Q~ ~

/ 100
z

1\l

~
00
•
~
~
~
~ = ~

2'
:=
~0

N
0
.j;o.

rFJ

=('D
('D
0
.j;o.

d
rJl
00
~ u.
-..=
""""' u. u.

= N

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 3 of 28 PageID# 466

U.S. Patent Jun. 10,2014 Sheet 2 of 14 US 8,750,155 B2

I ! l L~~~=l
•·---------L---·····- ·-···-------------------------------------· s i ~ * ! ~ 8
~. ! ~ 8 * $
~ ~ ~

~ $... ..

! 0...())
~ ·o
~ () c
! t--m ,r I

" c 8
(:) ,...._

' '"" @ 0 s t5 .i ~··· 't5 0 .!.":! t> e ·~ <.0 \C

J
<:C c d) }··~ () :J Q. < u~ u. ,.

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 4 of 28 PageID# 467

U.S. Patent Jun.10,2014 Sheet 3 of 14 US 8,750,155 B2

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 5 of 28 PageID# 468

U.S. Patent

,,f-~-"!1'--.a
<:::;}

Jun. 10,2014 Sheet 4 of 14

U)
0
2
0::
0

-~f
, "iS
6 <...-:<

;..-.::. 0
'>::5; ·e c
<..i CL
u

US 8,750,155 B2

, •. '<
\......_)

.:··· (,'""J
~ -~~ c.: .. ~,. s CJ
0 r::

<...
(.) 0 ~)(

~··· S..J.... ...
c:

---,

•
~
s
s
s

~~
<t::.~ ~
(j $
t"'-j ~

• • s
s
s
s
s
*

0 ,.....
' "'
L~--~--------

s
•
*

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 6 of 28 PageID# 469

2f)f; ,.)

f" ~ ,_ q; VI~W » 101 O'i ®'h »: 1101 « 0«'~ Y.IO: «VI 00-» Y-" Y.<« '»«>'» :QlO(«,0"!1') »'« o!Y.>«o'» "''*
e *
~ ~
~ 208 !
!:: ' 'Y ~

~

~ ~

~ *
~ r··~r-r··~· ~
: '-,/(1 -.1 1t:} _,...,.,.,~..N'JV,.....,.U..uo;;.o.-.;;;.;~,""~~-------{
l * ~~·
~ ·-- ~ i
~ * l
~ ~ l : jj' i ~ t
~ '1 • .,..., * • ,._iQ .(0 8
; \ , r·

~ •·l>mrl!i:":<r ~
~ ~ , -..A, I•"""' V • *
e 1
~ 8

* I
~ 8
t I
~ 8
8 I

* 8 8 I
I 8
·~~~~~0~~-~*~~**~~***~***~*~«*****~*~~*~~M~

i04··-.,

YP ~ v :.0;\
... ~('-...:

' Giobai internet

.. -. > "'"' •) [''~ r· 1\ .. ;;, L ,)

102
~ ..

'j
~«T.v.o9W'FF,HFF ... HF"l

·+ Client

r-

212·· '1
ProtouJ!
.A.ttnbwe
Selector

22 ()
\..-...,.

"""
THble

......._ __ _ _ _..

200-4

tl

~
7J).
•
~
~
~
~ = ~

2'
:=
~0

N
0
.j;o.

rFJ

=('D
('D
Ul
0
.j;o.

d
rJl
00
~ u.
-..=
""""' u. u.

= N

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 7 of 28 PageID# 470

U.S. Patent Jun.10,2014 Sheet 6 of 14 US 8,750,155 B2

UR! Requested
from Server

~,. (

,)
~,308

DHtermlne Any
/\ttdbutes for U R!

, (3
,#'

Modify TCP with
l\ttritJutes

~I' j

Deliver Content frotTl
Server to C!iHnt

Fip. 3

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 8 of 28 PageID# 471

U.S. Patent Jun.10,2014 Sheet 7 of 14 US 8,750,155 B2

r
UR! Received

from Node

! ~~4-:?{

UR! .Anaiyz.ed for
)

c:{)r1lrol Information

.. ,..,..,.:+:>~4 (' ..

Table Queried for
)

Attribute(s)

, J
i-"

..--428

/\ttribute(s) Cornrnunicated to
TCP Handler

~~

Estab!ist1ed
f.-'

Connection
i\ccording to Any l\ttributes

H'
('~

Deliver Content Object
Through Connection

Fig. 4

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 9 of 28 PageID# 472

U.S. Patent Jun.10,2014 Sheet 8 of 14 US 8,750,155 B2

Global !ntemet

FIG.5

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 10 of 28 PageID# 473

U.S. Patent Jun.10,2014 Sheet 9 of 14

.~ 2:?0

FIG, 6

US 8,750,155 B2

ll~ :?()f)
¥.'''''\,/

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 11 of 28 PageID# 474

U.S. Patent Jun.10,2014 Sheet 10 of 14 US 8,750,155 B2

Data

..?''
t l t /""_.,/"""""'"""'"•' A~~t=~

J /"/
~!,_,

I

~
~
~
~
~
~ .- 140
}'i
~
~
~
~
~

i
~ I ,. //

7GO

~
~
~
~
~
~

tf~ ?30

~
~
~
~

I
,,,

..t::

~

tr 't?O

~
j

~
~

~/"~ 7':0

I §

FIG. 7

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 12 of 28 PageID# 475

U.S. Patent Jun.10,2014 Sheet 11 of 14 US 8,750,155 B2

F~G. 8A

FIG. BB

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 13 of 28 PageID# 476

U.S. Patent Jun.10,2014 Sheet 12 of 14 US 8,750,155 B2

FIG. 8C

,_.-···DOO
... .;)

FIG. 9

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 14 of 28 PageID# 477

U.S. Patent Jun.10,2014

·;04G

Sheet 13 of 14

FIG. 10

US 8,750,155 B2

(.... ··;ooo
«)

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 15 of 28 PageID# 478

U.S. Patent Jun.10,2014 Sheet 14 of 14 US 8,750,155 B2

....... 1-~00
..)

r'~~~::~~=~:~~:~ ·3~Are~....... ("""''
~ · . ..):.~~·=~~~ ~ ~~- ..;. ~,.,~.")

"'-------..---

FIG, 11

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 16 of 28 PageID# 479

US 8,750,155 B2
1

CONDITIONAL PROTOCOL CONTROL

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 12/572,981, filed Oct. 2, 2009 which is a con
tinuation-in-part claiming priority benefit under 35 U.S.C.
§365(c) oflntemational Patent Application Serial No. PCT/
US2009/038361, filed Mar. 26, 2009. Each of the above
listed applications is hereby incorporated by reference in its
entirety for all purposes.

BACKGROUND

This disclosure relates in general to interoperating nodes in
an information processing system, such as an Internet content
delivery system or an Internet transaction acceleration sys
tem, and, but not by way of limitation, to control of connec
tion protocols.

2
formance, increase flexibility, or modifY other characteristics
of a standard protocol, or to make available an entirely new
customized protocol. Many customized protocols have been
proposed for use on the Internet.

SUMMARY

Techniques for modifying the performance of a transport
layer protocol in response to a request for content are dis-

10 closed. A connection can be established between a content
distribution server and an end user computer according to
preconfigured parameters. When a request for content is
received over the connection, the content distribution server
can determine one or more parameters relating to the perfor-

15 mance of the connection using information from the request.
The content distribution server can modifY the connection at
the transport layer according to the one or more parameters.
Thereafter, the transport layer can manage delivery of the
requested content to the end user computer in accordance

20 with the modified parameters. In various embodiments, the
content distribution server includes a modified TCP protocol
stack which adjusts timing, pacing, and buffer allocation
associated with a connection in response to requests from an

In an information processing system, including communi
cations networks such as the Internet, two or more nodes can
work together, for example exchanging information or shar
ing resources, using one or more protocols that enable the
participating nodes to intemperate. Nodes need not be physi- 25

cally distinct from one another, though they may be; nor
mally, however, nodes are at least logically distinct from one
another in at least some respect. Interoperating nodes may be
operated or managed by a single common authority or by
independent, unrelated authorities. Two or more interoperat
ing nodes are often independently operated or managed; the
Internet includes many well known examples of the interop
eration of two or more independently managed nodes.

application-layer data source.
In one embodiment, a method for managing delivery of

content in a system comprising a server and an end user
computer is disclosed. The method includes establishing a
first connection at the server for communicating with the end
user computer and receiving a request for content from the

30 end user computer over the first connection. The method also
includes determining one or more parameters relating to the
performance of the first connection using information from
the request and modifYing the first connection at the transport
layer based on the one or more parameters. ModifYing the

35 first connection can be done without notifYing the end user
computer. The method also includes sending the requested
content from the server to the end user computer such that the
transport layer manages delivery of the content in accordance

A protocol can be standardized such that a node using the
standard protocol should be able to intemperate, at least at the
level of the protocol, with any other node using the standard
protocol. Standard protocols that become widely adopted can
permit a node to intemperate with many other nodes. One
such widely adopted standard protocol on the Internet is the
Transmission Control Protocol (TCP), which today enables 40

almost every device on the Internet to intemperate with
almost every other device. TCP operates at the connection
layer and enables nodes to intemperate with other nodes by
establishing communications connections.

with the modified parameters.
Optionally, the method includes retrieving metadata asso-

ciated with a requested file and modifying the first connection
based on the metadata. Alternatively or additionally, the
method can include selecting a predetermined performance
profile for the first connection using the information from the

Standard protocols often employ the use of attributes, such
as configurable parameters and selectable algorithms, to per
mit the protocol to operate effectively in various situations.
For example, TCP controls message size, the rate at which
messages are exchanged, and factors related to network con
gestion through the use of attributes, including both by the use
of parameters, such as the receive window field used in slid
ing window flow control and the retransmission timer, and by
the use of algorithms, such as slow-start, congestion avoid
ance, fast retransmit, and fast recovery algorithms. It is often
the case, in many standard protocols, that at each node the
initial protocol attribute settings to be used for all the com
munication connections at the node can be independently
specified by the operator of the node.

A protocol can also be customized, which in general
requires that each node have installed customized compo
nents to enable the custom protocol. Without the customized
components, the node would not be able to fully intemperate
with other nodes using the customized protocol. Although it
therefore may limit the total number of interoperable nodes,
or in the alternative require widespread action to install the
protocol customized components, or possibly both, protocol
customization is used in order to add function, improve per-

45 request and modifYing the first connection based on the pre
determined performance profile. The method can include
determining a connection type of the end user computer and
a latency characteristic associated with the connection type
and modifYing the first connection at the transport layer based

50 on the latency characteristic. The method can also include
determining a data size of the requested content, measuring a
round trip time between the server and the end user computer
when the data size exceeds a predetermined value, and modi
:tying the first connection at the transport layer based on the

55 size of the requested content and the round trip time.
In another embodiment, a content distribution server is

disclosed. The server includes a network interface, a proces
sor, a protocol handler, and a data source. The network inter
face includes a plurality of ports for sending and receiving

60 data over a connecting network. The processor is coupled to
the network interface and manages a plurality of connections
to end user computers. The protocol handler establishes the
connections with the end user computers according to pre
configured transport layer parameters of the content distribu-

65 tion server and manages the manner in which data is trans
mitted over the connections. The data source supplies the
requested content. The data source monitors a first connection

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 17 of 28 PageID# 480

US 8,750,155 B2
3

for a request, determines one or more modified transport layer
parameters based on the request, and directs the protocol
handler to modify the first connection independently of the
other connections based on the one or more transport layer
parameters.

4
FIG. 10 is a flowchart of a process for modifying transport

layer protocol attributes.
FIG. 11 is a flowchart of process for modifying transport

layer protocol attributes.
In the figures, similar components and/or features may

have the same reference label. Further, various components of
the same type may be distinguished by following the refer
ence label by a dash and a second label that distinguishes
among the similar components. If only the first reference

10 label is used in the specification, the description is applicable
to any one of the similar components having the same first
reference label irrespective of the second reference label.

In still another embodiment, a content distribution server is
disclosed. The server includes means for sending and receiv
ing data over a connecting network, means for managing a
plurality of connections to end user computers, and means for
establishing a connection with each end user computer
according to preconfigured transport layer parameters. The
server includes means for managing data transmission over
the plurality of connections, means for modifying a connec
tion based on one or more transport layer performance param
eters, and means for supplying requested content to the end 15

user computers over the plurality of connections. The server
also includes means for monitoring a first connection for a
content request, means for determining the one or more trans
port layer performance parameters for the first connection
based on the request, and means for sending the requested 20

content over the first connection modified by the one or more
transport layer performance parameters.

DETAILED DESCRIPTION OF EMBODIMENTS

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather,
the ensuing description of the preferred exemplary embodi
ment(s) will provide those skilled in the art with an enabling
description for implementing a preferred exemplary embodi-
ment. It being understood that various changes may be made
in the function and arrangement of elements without depart
ing from the spirit and scope as set forth in the appended
claims.

In yet another embodiment, a computer program product
comprising a computer-readable medium is disclosed. The
computer-readable medium is encoded with one or more 25

sequences of one or more instructions which, when executed Referring first to FIG. 1, a block diagram of an embodiment
of an Internet content delivery system 100 is shown. Gener
ally, one or more nodes request content from one or more
other nodes. In FIG. 1, a number of end users 108 respectively
use their end user system or client 102 to download and view
content objects from the global Internet 104. The content
delivery system 110 has one or more servers that provide
content object downloads. The content delivery system 110
can include any number of cache servers, application servers,

by a processor, perform steps of establishing a first connec
tion at the server for communicating with an end user com
puter and receiving a request for content from the end user
computer over the first connection. The instructions operate 30

to determine one or more parameters relating to the perfor
mance of the first connection based on information from the
request and to modifY the first connection at the transport
layer using the one or more parameters without notifYing the
end user computer. Additionally, the instructions operate to
send the requested content from the server to the end user
computer such that the transport layer manages delivery of
the content in accordance with the modified parameters.

35 content servers, service servers, and/or database servers to
provide content to the clients 102. Although this embodiment
shows particular communication pairs, other embodiments
could communicate between any pair of nodes on a network,
including between pairs of clients or between pairs of servers, Further areas of applicability of the present disclosure will

become apparent from the detailed description provided here
inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an embodiment of a
content delivery system.

FIGS. 2A, 2B, 2C, and 2D depict block diagrams of
embodiments of a content download pair that sends content
from a server to a client.

FIG. 3 illustrates a flowchart of an embodiment of a process
for modification of the TCP protocol for various connections
to a server.

FIG. 4 illustrates a flowchart of an embodiment of a process
for modifying protocol attributes potentially on a connection
by-connection basis.

FIG. 5 shows aspects of a content delivery system.
FIG. 6 is a block diagram of an embodiment of a content

distribution server.
FIG. 7 shows an exemplary content distribution server

protocol stack.
FIGS. SA, SB, and SC show exemplary data elements such

as can be used with a content distribution server.
FIG. 9 shows exemplary performance profiles such as can

be used with a content distribution server.

40 and yet other embodiments could communicate among more
than two nodes, such as in a broadcast or multicast implemen
tation.

With reference to FIGS. 2A, 2B, 2C and 2D, embodiments
of a content download pair 200 that sends content from a

45 server 206 to a client 102 are shown. A primary embodiment
described here is the interoperation of two nodes 102,206 on
the Internet communicating using TCP, one node being a
client 102 that requests information, such as web page con
tent, multimedia, or software downloads, and the second node

50 being a server 206 that provides information in response to a
request. TCP operates in the transport layer of the seven-layer
Open Systems Interconnection (OSI) model. In other
embodiments, nodes 102, 206 intemperate in ways other than
communication in a network, such as sharing data within a

55 computer or group of computers across an available system or
intersystem interface; intemperate using communications
networks other than the Internet 104, such as a private com
munications network; intemperate using the Internet 104 or a
private network using protocols other than TCP, such as UD P,

60 RTP, multicast protocols, and other standard protocols in the
transport layer; intemperate using the Internet 104 or a private
network using standard protocols operating in a layer that
underlies the transport layer; intemperate, using standard
protocols and the Internet or a private network, more than two

65 at a time, such as in clusters or multicast groups; or intemp
erate, using standard protocols and the Internet or a private
network, other than as a client and server, including interop-

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 18 of 28 PageID# 481

US 8,750,155 B2
5

erating as peers, as collaborative nodes, or as a group of nodes
under the common control of one or more other nodes or
under the common control of a controller.

6
In the primary embodiment, TCP connections are estab

lished in order to use HyperText Transfer Protocol (HTTP) to
communicate information requests from clients 102 to serv
ers 206 and responses from servers 206 to clients 102. HTTP
is a scheme that operates above, and depends on the presence
of a functioning and reliable protocol at, the transport layer of
the seven-layer model developed in the Open Systems Inter
connection (OSI) initiative. Other embodiments use applica
tion-layer protocols other than HTTP in conjunction with

In the primary embodiment, the server 206 conditionally
adapts the attributes of the TCP protocol for each TCP con
nection established by a client 102. Conditionally adapting
the attributes of the TCP protocol does not require changes to
standard TCP protocol implementations at every node, does
not require special components be installed in the TCP pro
tocol implementation at every node, and therefore does not
comprise implementing a customized protocol as previously
described; rather, the primary embodiment utilizes the stan
dard TCP protocol and the attributes implemented in it. In
other embodiments, the server conditionally adapts the
attributes of other transport-layer protocols for each session
established by a client 1 02; the server conditionally adapts the
attributes of other protocols that underlie the transport layer
for each session established by a client 102; the server 206
conditionally adapts the attributes of the TCP protocol or
other protocol for groups of connections or sessions estab
lished by clients 102; the server 206 conditionally adapts the
attributes of the TCP protocol or other protocol for connec
tions or sessions established by groups or subsets of groups of
clients 102; the client 102 conditionally adapts the attributes

10 TCP; use TCP alone, i.e., without HTTP; use other protocols;
or, use other application-layer protocols in conjunction with
other protocols. HTTP utilizes Uniform Resource Locators
(URLs), Uniform Resource Names (URNs), and Uniform
Resource Identifiers (URis) to identify information. URLs

15 are used in the primary embodiment. Other embodiments use
URis, URNs, other identifiers, or other information. A URL
begins with the scheme identifier, which identifies the
namespace, purpose, and syntax of the remainder of the URL.
In the primary embodiment utilizing HTTP, the typical

20 scheme is "http". The scheme is followed by a host field,
which contains the IP address or name of the host where the
requested information can be found, optionally followed by a
port number, optionally followed by a path, which is an HTTP
selector, optionally followed by a search portion, which is a

25 query string. The full URL, then, is an alphanumeric string
containing the scheme, host field, any optional following
strings, and special characters such as":", "/", and"?" that are
reserved for special functions such as designating a hierar
chical structure in the URL. Other embodiments could use

of the TCP protocol for each TCP connection established; the
client 102 conditionally adapts the attributes of other proto
cols for each session established; the client 102 conditionally
adapts the attributes of the TCP protocol or other protocol for
groups of connections or sessions; a node conditionally
adapts the attributes of the TCP protocol or other protocol for 30

each connection or session; a node conditionally adapts the
attributes of the TCP protocol or other protocol for groups of
connections or sessions; a node conditionally adapts the
attributes of the TCP protocol or other protocol for connec
tions or sessions established by groups or subsets of groups of 35

nodes; a controller conditionally adapts the attributes of the
TCP protocol or other protocol for each connection or session
of at least one node of an interoperating group of nodes; a
controller conditionally adapts the attributes of the TCP pro
tocol or other protocol for groups of connections or sessions 40

of at least some nodes of an interoperating group of nodes; or,
a controller conditionally adapts the attributes of the TCP
protocol or other protocol for connections or sessions estab
lished by groups or subsets of groups of nodes.

Software, software modifications, or equivalent function, 45

may optionally be implemented at a server, client, or node that
sets the conditionally adapted protocol attributes of a connec
tion or session, but need not be implemented at servers, cli
ents, or nodes that passively participate in a conditionally
adapted protocol connection or session. Such software, soft- 50

ware modifications, or equivalent function will only be
needed if existing protocol software or other software on the
server, client, or node does not provide a facility for program
matically or similarly changing attributes of the protocol that
is used; in this event, software, a software modification, or 55

equivalent facilities to provide such a programmatic or simi-
lar interface may be implemented.

Conditionally adapting the protocol for each connection or
session, or collection of connections or sessions, results in at
least one node that, concurrently or over time, uses a protocol 60

for multiple unrelated connections or sessions wherein the
protocol attributes vary, at least initially and sometimes per
sistently, from one connection or session to another, most
often varying differently from any ordinary protocol attribute
variations that naturally occur from one connection or session 65

to another through use of the standard protocol implementa
tion among heterogeneous nodes.

different application-layer protocols such as Telnet, File
Transfer Protocol (FTP), secure HTTP (HTTPS), and Simple
Mail Transfer Protocol (SMTP).

In the primary embodiment, the server 206 bases the con
ditional adaptation of the attributes of the TCPprotocol on the
alphanumeric URL string provided by the client 102 in its
information request. In another embodiment, a server, client
or other node bases the conditional adaptation of the attributes
of the TCP protocol or other protocol on the application-layer
protocol specified or on identifYing information, equivalent
to a URL, or other information provided in, or characteristic
of, an information request, connection, or session. In other
embodiments, a server, client or other node bases the condi
tional adaptation of the attributes of the TCP protocol or other
protocol on the IP address of one or more servers, clients, or
nodes; on network information associated with the IP address
of one or more servers, clients, or nodes, including the
Autonomous System (AS) number, identity of network
operator, geographic location, logical or physical network
location, logical or physical network segment, or
network interconnection characteristics associated with the
IP address(es) of one or more servers, clients, or nodes; the
geographic location of the server, client or node; and/or, the
logical or physical network location of the server, client or
node; the logical or physical address of the server, client or
node; the logical or physical name of the server, client or
node; and/or, the network or other path from or to a server,
client or node. In other embodiments a server, client or node
bases the conditional adaptation of the attributes of the TCP
protocol or other protocol on recent network performance
measurements, including latency, jitter, packet loss, round
trip time, and/or the measured variance in a network perfor-
mance measurement across multiple samples; on recent mea
sures of utilization of a network, network segment, network
interface, or network port; and/or, on recent measurements of
performance or utilization of a server, group of servers, or
server component(s) such as memory, processor, disk, bus,
intersystem interface, and/or network interface. In still other

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 19 of 28 PageID# 482

US 8,750,155 B2
7

embodiments, a server, client or node bases the conditional
adaptation of the attributes of the TCP protocol or other
protocol on temporal factors, including time of day; day of
week, month, or year; specific date; occurrence of a holiday or
religious observance; occurrence of a temporal event such as
a news event or sports event; seasonal occurrence; and/or a
scheduled event or time period.

In the primary embodiment, the protocol attribute selector
212 of the server 206 compares the alphanumeric URL string
provided by the client 102 in its information request to a table 10

220 containing partial or whole URLs and identifies the most
specific match from left to right that it can find in the table
220. In another embodiment, the server 206 compares a sub-
set of the alphanumeric string, for example some or all of the
characters in the query string, or the characters following the 15

host field up to the first subsequent slash (i.e., "/"),to a table
220. In another embodiment, the client or node 102 makes a
conditional adaptation of protocol attributes, using the alpha
numeric URL string or a subset of it. In other embodiments,
the alphanumeric URL string or a subset of it is processed to 20

obtain a value or indicator that is used to determine a condi
tional adaptation of protocol attributes. In other embodi
ments, the information used to determine the conditional
adaptation of protocol attributes is identifYing information
equivalent to a URL, one or more IP addresses, network 25

information associated with one or more IP addresses, net
work interconnection characteristics associated with one or
more IP addresses, or the geographic location, or logical or
physical network location, of a server, client or node. In other
embodiments, the information used to determine the condi- 30

tiona! adaptation of protocol attributes comprises one or more
recent performance measurements or thresholds related to
one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or related to one or more networks, network
segments, network components, or network interfaces, or 35

groups of network segments, network components, or net
work interfaces; rates or amounts of variation in one or more
performance measurements or thresholds related to one or
more servers, clients, or nodes, or groups of servers, clients,
or nodes, or related to one or more networks, network seg- 40

ments, network components, or network interfaces, or groups
of network segments, network components or network inter
faces; rates or amounts of resource utilization, including uti
lization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or 45

more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter
faces, or groups of network segments, network components,
or network interfaces; rates or amounts of variation in 50

resource utilization, including variation in utilization related
to one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or components of one or more servers,
clients, or nodes, groups of components of servers, clients, or
nodes, or related to one or more networks, network segments, 55

network components, or network interfaces, or groups of
network segments, network components, or network inter
faces; and/or, thresholds of resource utilization, including
utilization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or 60

more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter
faces, or groups of network segments, network components,

8
selector 212 is stored on the server 206. In other embodi
ments, a table 220 containing partial or whole URLs for
comparison, or subsets of the alphanumeric URL string used
for comparison, is stored remotely from the server 206 such
as the embodiment shown in FIG. 2B and the comparison of
the alphanumeric URL string or subset of the alphanumeric
URL string is made at the server 206, or is made at the remote
table storage location or at another location and the result of
the comparison, or an indicator of the result of the compari
son, or the protocol attributes to be used, are returned to the
server 206. In other embodiments, a table 220 or database of
information used for comparison is stored at the server 206, or
is stored remotely from the server 206 and one or more
comparisons are made at the server 206, or are made at the
remote storage location or at another location, and the results
of the comparisons, or one or more indicators of the results of
the comparisons, or the protocol attributes to be used, are
returned to the server 206. In yet other embodiments, a table
220 containing partial or whole URLs for comparison, or
subsets of the alphanumeric URL string used for comparison,
or a database of information used for comparison is stored at
a client or node 102 as is shown in FIG. 2D, or is stored
remotely from a client or node and one or more comparisons
are made at the client or node 102, or are made at the remote
storage location or at another location and the results of the
comparisons, or one or more indicators of the results of the
comparisons, or the protocol attributes to be used, are
returned to the client or node 102. In other embodiments, a
protocol attribute to be used, or an indicator of a protocol
attribute to be used, is extracted from, or derived from, a URL
or equivalent identifYing information used by a server, client,
or node; is extracted from, or derived from, address informa
tion or a whole or partial name of a server, client, or node; is
extracted from, or derived from a user name or identifier, class
or type of user, group of users, or selection of users, optionally
as associated with a service, server, client, or node; is
extracted from, derived from, or associated with, an applica
tion or class or group of applications, a service or class or
group of services, or a database or equivalent source of data or
a class or group of databases or sources of data; is extracted
from, or derived from, the identifier of a standard protocol, a
standard protocol message (for example, a TCP SYN), the
protocol-level content of a message, or protocol message
headers or equivalent information; is derived from all or a part
of the time, all or a part of the date, or all or a part of the
duration since a time or date; is determined according to a
sequence or progression; and/or, is determined randomly or
pseudo-randomly.

After one or more comparisons are made, or after the
extraction or derivation of a value, or after an association or
determination is made, the server, client, or node will have
one or more values it can use as protocol attributes or as
indicators of which protocol attributes to use; or, if there has
not been a determination of a condition resulting in one or
more protocol attribute values to use, then in the primary
embodiment the server 206 will use the standard values for
the protocol attributes as configured for the server 206, and in
other embodiments, the server, client, or node will use the
standard values as configured for it for some or all of the
protocol attributes; the server, client, or node will use another
default value for some or all of the attributes; the server,
client, or node will use the last-used values for some or all of
the attributes; or, the server, client, or node will use randomly,
pseudo-randomly, or arbitrarily determined values for some

or network interfaces. 65 or all of the attributes.
In the primary embodiment, a table 220 containing partial

or whole URLs for comparison by the protocol attribute
In the primary embodiment, the server 206 is a cache

server, typically operating in a group of cache servers, and

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 20 of 28 PageID# 483

US 8,750,155 B2
9

groups of cache servers are distributed at numerous points on
the global Internet. The server 206 includes a cache function
208 coupled to a content cache 210 to provide caching of
content for the server 206. In another embodiment, the server
206 is a cache server operating individually, or independently
from other cache servers. In other embodiments, the server
206 is a content server that provides content; a content server
operating in a group of content servers; a content server
operating in a group of content servers distributed at numer
ous points on the global Internet; an application server that 10

supports one or more applications; an application server oper
ating in a group of application servers; an application server
operating in a group of application servers distributed at
numerous points on the global Internet; a service server that
provides one or more services; a service server operating in a 15

group of service servers; a service server operating in a group
of service servers distributed at numerous points on the global
Internet; a database server that provides data; a database
server operating in a group of database servers; a database
server operating in a group of database servers distributed at 20

numerous points on the global Internet; a server operating in
a heterogeneous group of servers; or, a server operating in a
heterogeneous group of servers distributed at numerous
points on the global Internet.

In the primary embodiment, each server 206 has an iden- 25

tical copy of a table 220 containing partial or whole URLs to
which the alphanumeric URL string provided by the client
102 in its information request will be matched if possible,
along with an indicator of the protocol attribute values to be
used when that match occurs or the actual protocol attribute 30

values themselves to be used when that match occurs. The
table 220 can be modified from time to time, including adding
new entries, changing the contents of existing entries, and
deleting entries. Any time that a new version of the table 220
is created, copies of that version are distributed to servers 206 35

in the global group of cache servers. Optionally, the table 220
can have an expiration date and time, after which the server
206 will stop using the table 220 ifit is out-of-date and has not
been replaced with an updated table. In the primary embodi
ment, the conditional protocol control information is com- 40

bined with other information distributed to servers 206 so as

10
another; is the same for each server in a region, but varies
from one region to another; or, is different at each server. In
other embodiments the conditional protocol control informa
tion contains partial or whole URLs to which the alphanu
meric URL string used by a client or node 102 will be
matched if possible, along with an indicator of the protocol
attribute values to be used when that match occurs or the
actual protocol attribute values themselves to be used when
that match occurs, and the conditional protocol control infor
mation is identical at each client or node 102; is the same for
each client or node 102 in a group, but varies from one group
of clients or nodes 102 to another; is the same for each client
or node 102 in a region, but varies from one region to another;
or, varies from one client or node 102 to another client or node
102.

In other embodiments, the conditional protocol control
information contains other comparison information that will
be matched, if possible, along with a corresponding indicator
of the protocol attribute values to be used when that match
occurs or the corresponding actual protocol attribute values
themselves to be used when that match occurs, and each
server, client, or node has an identical copy of the conditional
protocol control information; the conditional protocol control
information is the same for each server, client, or node at a
location, but varies from one location to another; the condi
tional protocol control information is the same for each
server, client, or node in a region, but varies from one region
to another; the conditional protocol control information is the
same for each server, client, or node in a group, but varies
from one group to another; or, the conditional protocol con
trol information varies from one server, client, or node to
another. In these embodiments, the comparison information
can include subsets of the alphanumeric URL string; identi
fYing information equivalent to a URL; one or more IP
addresses; network information associated with one or more
IP addresses; network interconnection characteristics associ-
ated with one or more IP addresses; the geographic location,
or logical or physical network location, of a server, client, or
node; a value of a performance measurement or threshold; a
rate or amount of variation in a performance measurement or
threshold; a rate or amount of resource utilization; a rate or
amount of variation in resource utilization; a threshold of
resource utilization; addresses, names, classes, types, or
group identifiers of servers, clients, nodes, users, applica-

to minimize to the extent practicable the number of tables 220
that are distributed to, and synchronized among, the global
group of servers; in another embodiment, this combination
and minimization is not implemented; and this combination
and minimization is not done in most or all other embodi-
ments.

45 tions, services, databases, or other data sources; protocol
identifiers, protocol message identifiers or attributes, or pro
tocol message headers or attributes; times, dates, or intervals;
and/or, sequences, ratios, progressions, equations, randomly In other embodiments, the conditional protocol informa

tion may be in the form of a table 220 as in the primary
embodiment, or may be in the form of multiple tables, or may 50

be in the form of one or more data files, one or more databases,
one or more calculated or derived elements, one or more
calculated or derived groups of elements, one or more indi
vidual equations or formulas, one or more groups of equa
tions or formulas, one or more individual expressions, one or
more groups of expressions, one or more individual programs
or routines, one or more groups of programs or routines, one
or more individual listings, one or more groups of listings,
and/or other forms equivalent to any of these.

In other embodiments, the conditional protocol control
information contains partial or whole URLs to which the
alphanumeric URL string provided by the client 102 in its
information request will be matched if possible, along with an
indicator of the protocol attribute values to be used when that
match occurs or the actual protocol attribute values them
selves to be used when that match occurs, and is the same for
each server 206 at a location, but varies from one location to

generated data, or arbitrarily determined data.
In embodiments where the conditional protocol control

information is not identical at all servers, clients, or nodes,
optionally a system can create conditional protocol control
information for each location, region, server, client, or node,
and optionally can manage the distribution of the conditional

55 protocol control information to each location, region, server,
client, or node. For partial or whole URLs, subsets of a URL
alphanumeric string, or other comparison information that
will be compared, a conditional protocol information man
agement and distribution system (CPIMDS) optionally gen-

60 erates, or stores, or generates and stores, protocol attributes
for any or all of a server, all servers, a subset of servers, a
location, all locations, a subset of locations, a region, all
regions, a subset of regions, a group, all groups, a subset of
groups, an application, all applications, a subset of applica-

65 tions, a service, all services, a subset of services, a database or
data source, all databases or data sources, a subset of data
bases or data sources, a protocol, all protocols, a subset of

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 21 of 28 PageID# 484

US 8,750,155 B2
11

protocols, a client, all clients, a subset of clients, a node, all
nodes, a subset of nodes, or a combination of some, a subset
of, a subset of some of, or all of, servers, locations, regions,
groups, applications, services, databases or data sources, pro
tocols, clients, or nodes; and optionally generates, or stores,
or generates and stores, default protocol attributes to be used
in the absence of a matching comparison for any or all of a
server, all servers, a subset of servers, a location, all locations,
a subset oflocations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, an application, all
applications, a subset of applications, a service, all services, a
subset of services, a database or data source, all databases or
data sources, a subset of databases or data sources, a protocol,
all protocols, a subset of protocols, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some, a subset of, a subset of some of, or all
of, servers, locations, regions, groups, applications, services,
databases or data sources, protocols, clients, or nodes. The
CPIMDS also optionally generates, or stores, or generates
and stores, one or more rules for determining which of the
server, location, region, group, application, service, database
or data source, protocol, client, node, or combined values to
use when determining a comparison to be included in the
conditional protocol control information for a server, all serv
ers, a subset of servers, a location, all locations, a subset of
locations, a region, all regions, a subset of regions, a group, all
groups, a subset of groups, an application, all applications, a
subset of applications, a service, all services, a subset of
services, a database or data source, all databases or data
sources, a subset of databases or data sources, a protocol, all
protocols, a subset of protocols, a client, all clients, a subset of
clients, a node, all nodes, a subset of nodes, or a combination
of some, a subset of, a subset of some of, or all of, servers,
locations, regions, groups, applications, services, databases
or data sources, protocols, clients, or nodes; optionally gen
erates, or stores, or generates and stores, one or more rules for
determining when to create, or distribute, or create and dis
tribute, conditional protocol control information for or to a
server, all servers, a subset of servers, a location, all locations,
a subset oflocations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes; optionally generates, or stores, or generates and
stores, one or more rules for determining whether, and if so
when, any conditional protocol control information shall
expire; optionally includes an expiration value with some or
all of the conditional protocol control information; and,
optionally distributes conditional protocol control informa
tion to a server, all servers, a subset of servers, a location, all
locations, a subset oflocations, a region, all regions, a subset
of regions, a group, all groups, a subset of groups, a client, all
clients, a subset of clients, a node, all nodes, a subset of nodes,
or a combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes.

12
adapting protocol attributes. The conditional protocol control
information can be maintained at a single location or multiple
locations; if maintained at multiple locations, each location
can maintain a complete copy of all conditional protocol
control information, or each location can maintain a copy of
a subset of the conditional protocol control information.
Optionally, a conditional protocol information management
and distribution system can create conditional protocol con
trol information for, and optionally distribute conditional pro-

10 tocol control information to, each conditional protocol con
trol information location, groups of conditional protocol
control information locations, or all conditional protocol con
trol information locations. If conditional protocol control
information locations store a subset of the conditional proto-

15 col control information, participating servers, clients, or
nodes can optionally use a table, ordered table, shuffled table,
directory, logical name translation system, or information
obtained from, or received from, another server, client, node,
or controller, to determine which conditional protocol control

20 information location to receive conditional protocol control
information from.

Referring next to FIG. 3, an embodiment of a process 300
for modification of the TCP protocol for various connections
to a server 206. In summary, in the primary embodiment two

25 nodes on the Internet commnnicate using TCP, one node
being a client 102 that requests information in block 304, such
as web page content, and the second node being a cache server
206 that provides information in response to a request. The
cache server 206 operates as one of a group of cache servers,

30 and groups of cache servers are distributed at numerous
points on the global Internet. TCP connections are established
in order to use HTTP to communicate information requests
from clients 102 to servers 206 in block 304 and responses
from servers 206 to clients 102. HTTP utilizes URLs; each

35 URL begins with the scheme "http", which is followed by a
host field containing the IP address or name of the host where
the requested information can be found, followed by a path,
which will be used at the server 206 to locate the requested
object or information, optionally followed by a query string.

40 Thus, the full URL typically is an alphanumeric string con
taining the scheme, host field, path, and any optional query
string, each part of which is separated from the other parts by
special characters such as":","/", and"?". Thus, an example
URL referencing content that can be served by the cache

45 server 206 in the primary embodiment might look like:
http:/ I customer l.webserving.com/folderB/ directory/

logo.gif
optionally followed by"?" and a query string. A client 102
requesting this object would send an HTTP message using an

50 HTTP method called "GET" to the server 206 identified by
the hostname "customerl.webserving.com" in block 304.
The server identification is accomplished through a DNS
translation of the hostname into one or more IP addresses. The
Domain Name System (DNS) is the name translation system

55 used in the Internet. The HTTP GET message sent to the
server 206 typically includes part or all of the URL that the
client 102 is requesting. In block 308, some or all of the URL
is compared with entries in the table 220 to determine the
attributes to use for the connection as described further below.

In embodiments where the conditional protocol control 60

information is maintained separately from each server, client,
In the primary embodiment, in block 312 the server 206

conditionally adapts the attributes of the TCP protocol for
each TCP connection established by a client 102. Condition
ally adapting the attributes of the TCP protocol does not
require changes to standard TCP protocol implementations at

or node, the conditional protocol control information can
optionally include, or can optionally correlate to, an indica
tion of for which servers, locations, regions, groups, applica
tions, services, databases or data sources, protocols, clients,
nodes, or supersets, subsets, or combinations thereof, the
conditional protocol control information can be used in

65 every node, i.e., any client 102 that supports standard TCP
(which virtually all Internet and all World Wide Web clients
do) can communicate with the server 206 to get the object via

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 22 of 28 PageID# 485

US 8,750,155 B2
13 14

cific protocols attributes (identified as "attr1", "attr2",
"attr3 ", etc.) to be used and the appropriate value or setting for
that use of that attribute.

Table Mapping to TCP attribute sets

Partial URL TCP Attribute Set

10 http://customerl.webserving.com/
folderA/

a conditionally adapted TCP connection, but may require a
modification to the server's TCP protocol handler to allow
changes to be made to the TCP protocol attributes by another
program, or on a per-connection basis, or both. Where the
TCP protocol handler provides a facility for programmati
cally making these changes, the content serving application
may require an interface enabling it to communicate condi
tionally adapted TCP protocol attributes to the TCP protocol
handler. In the primary embodiment, a set sockets statement
can be used to communicate conditionally adapted TCP pro
tocol attributes from the content serving application to the
TCP handler 214, which can be a modified TCP software
stack that accepts and implements changes to the TCP proto
col attributes on a per-connection or per-request basis. In 15
various embodiments, the TCP handler could be imple
mented in software or hardware or both, and can be imple
mented as part of a node or separately from the node, for
example in a switch or other device that provides protocol
serv1ces.

attr1 ~yes, attr3 ~ 25, attr4 ~low

http:/ /customer1.webserving.com/
folderB/fastnet.com
http://customer2.webserving.com/
http://customer3.webserving.com/

attr1 ~no, attr2 ~ 1, attr4 ~high

attr3 ~50, attr6 ~fast
attr1 ~yes, attr3 ~ 25, attr4 ~low

The URL in the example above, "http://
customer1.webserving.com/folderB/directory/logo.gif,"
would be matched against the second line-entry in the table.

20
The TCP protocol attribute set (group of TCP protocol
attributes) to be used for the TCP connection that services, or
responds to, this HTTP GET message from this client 102
would be "attr1 =no, attr2=1, attr4=high" and the TCP proto
col attributes for this TCP connection would be set accord-

Conditionally adapting the protocol for each connection
results in the server 206 concurrently using the TCP protocol
for multiple unrelated connections, wherein the TCP protocol
attributes vary, at least initially and sometimes persistently,
from one connection to another. At block 316, the requested
object or information is sent from the server 206 to the client
102. When a requested object or information is delivered
without any change to the TCP protocol attributes, the stan
dard TCP protocol attributes pre-configured for the TCP pro
tocol handler are used; but when the requested object or
information is delivered with conditionally adapted TCP pro
tocol attributes, the conditionally determined TCP protocol
attributes are used instead of the standard pre-configured TCP
attributes.

A typical caching content server 206 in actual operating
use in a web hosting service provider environment may typi
cally service 2,000 to 3,000 requests per second, across 100 to
200 (or more) customers. If half of these requests will use
changed TCP protocol attributes and half will not, then on
average, half of the connections managed by the server 206 at
any one point in time would use the changed TCP protocol
attributes and half would use the standard TCP protocol
attributes as pre-configured in the TCP handler 214. Addi
tionally, if there are five separate (different) changed TCP
protocol attribute sets across which those requests using
changed TCP protocol attributes are evenly distributed, then
on average at any one point in time a server 206 would
concurrently be operating TCP connections with six different
sets ofTCP protocol attributes: 50% of the connections would
utilize standard pre-configured TCP protocol attributes, and
10% would utilize each of the five possible changed TCP
protocol attribute sets.

In the primary embodiment, the server 206 bases the con
ditional adaptation of the attributes of the TCP protocol on the
alphanumeric URL string provided by the client 102 in the
HTTP GET message. In the primary embodiment, the condi
tional protocol control information is in the form of a table
220 containing partial and/or whole URLs for comparison,
the table 220 is stored on the server 206, and the table 220 is
generally kept reconciled on all servers 206. The server 206
compares the alphanumeric URL string provided by the client
102 in the GET request to the table 220 and identifies the most
specific match from left to right that it can find in the table 220
in block 308. Taking our earlier example and assuming a
simplified table, the sole Table shows mappings from whole
and/or partial URLs into TCP attribute sets comprising spe-

25 ingly. This simplified table example also illustrates that the
scheme and host name may be sufficient for a matching entry,
such as in the case of the entry "http://
customer3.webserving.com," or the host name alone may be
sufficient, such as in the case of the entry "fastnet.com." This

30 simplified table example also illustrates that there may be a
null entry in the table, as in the case of "http://
customer2.webserving.com"; in this simplified table
example, the null entry signifies use of the standard pre
configured TCP protocol attributes. Note that an actual table

35 in the primary embodiment would contain more information
than the simplified example table shown here, as discussed.

The table 220 can be modified from time to time, including
adding new entries, changing the contents of existing entries,
and deleting entries. When a new version of the table 220 is

40 created, copies of the new version of the table 220 are distrib
uted to the servers 206 in the global group of cache servers.
Optionally, the table 220 can have an expiration date and time,
after which the server 206 will stop using the table 220 if it is
out-of-date and has not been replaced with an updated table

45 220; under this condition, the server 206 would then use the
standard TCP protocol attributes for connections until the
server 206 received an updated or unexpired table 220.

In the primary embodiment, the conditional protocol con
trol information is combined with other information, such as

50 customer billing codes and other customer-specific informa
tion, that is distributed to all servers 206, in order to minimize
the number of tables that are distributed to, and reconciled
throughout, the global group of servers. This embodiment has
the advantage of simplifYing administration, change manage-

55 ment, and rollback in the event that distribution of a new table
220 causes a problem or error condition, but the disadvantage
that the conditional protocol adaptation is the same for any
given entry in the table 220 at every server 206, regardless of
the server's location or other factors. In other embodiments,

60 as discussed, the conditional protocol control information can
vary from one server 206 to another.

Referring to FIG. 4, an embodiment of a process for poten
tially modifYing protocol attributes on a connection-by-con
nection basis is shown. The depicted portion of the process

65 begins in block 416 where a uniform resource indicator (URI)
is requested by the client 102. The cache function 208 of the
server 206 receives the request for the content object. The

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 23 of 28 PageID# 486

US 8,750,155 B2
15

URI is evaluated by the protocol attribute selector 212 to find
a match to something in the table 220. The table 220 is queried

16
240 can collect, compile, and distribute information to servers
206 for use in adapting connection parameters. For example,
the origin server 240 can function as part of a CPIMDS and
can distribute URL tables 220 and other protocol perfor
mance information to servers 206 as previously discussed.

FIG. 6 is a functional block diagram of content distribution
server 206 according one embodiment of the present inven
tion. As shown, server 206 includes a processor 244, memory
248, one or more network interfaces 252, and a data store 220.

in block 424 for any attributes. Retrieved attributes are com
municated to the TCP handler 214 in block 428. The connec
tion is established in block 432 according to the selected
attributes to connect the end user system 102 with the server
206. The content object is delivered in block 436. This pro
cess is performed on each URI such that each connection or
socket can be independently controlled, if desired. Indeed,
two different end user systems 102 could request the same
content object and it could be delivered in a very different
manner with different selected protocol attributes for each
user.

10 Although not shown, server 206 can also include a cache
function 208 and a content cache 210 as previously described.

Referring to FIG. 5, a block diagram of an embodiment of

Network interfaces 252 can include a plurality of ports
(P1, ... , PN) for sending and receiving data over a connecting
network. In some embodiments, at least one network inter-

15 face is dedicated to providing a high-bandwidth link to an
autonomous system and can be matched to its particular net
work characteristics. Additional ports and/or network inter
faces can provide access to the global internet 104, origin

a content delivery system 500 is shown. Content delivery
system 500 operates in a manner that is similar to the content
delivery systems ofFIGS. 1-2 and therefore the description of
those systems is also applicable to the present embodiment.
While continuing reference will be made to the preceding
embodiments, in the interest of clarity, the discussion of com- 20

mon elements and functionality will not be repeated.

server 204, or other parts of a content delivery system.
Processor 244 executes progrmable instructions for

managing the delivery of content to end user computers 102
and can include one or more general purpose microprocessors
or application-specific hardware elements.As shown, proces
sor 244 is coupled to memory 248 which can include any

25 combination of volatile or non-volatile computer-readable
storage such as random access memory (RAM), read only
memory (ROM), magnetic disk storage, and the like.
Memory 248 can provide a data store 220 which, as previ
ously described, can be a table or other data structure includ-

As illustrated, end user computers 102 access the global
internet 104 through autonomous systems 232. Autonomous
systems 232 may include internet service providers which
offer end users access to the global internet 104 over a private
communication network. Different providers may offer dif
ferent types of service and may serve different geographic
areas. For example, autonomous system AS1 can represent a
DSL communication network such as those operated by
AT&T or Qwest Communications, or it could be a cable
access network such as those operated by Cox Communica
tions in the United States, or by Rogers Communications in
Canada. Autonomous system AS2 could be a satellite com
munication network, a cellular network, a WiMAX (IEEE
802.16) network, Wi-Fi™ (IEEE 801.11) access, and the like. 35

Depending upon the underlying communications technology,
autonomous systems 232 can present different network char
acteristics that are relevant to the performance of a transport
layer protocol such as TCP.

30 ing information for modifYing transport layer performance
parameters. Data store 220 is discussed further in connection
with FIG. 8.

Content delivery servers 206 are also connected to the 40

global internet 104 and can be connected to corresponding
autonomous systems 232. As shown, content server 206-1 is
connected to autonomous system 232-1 by router 236-1 and
content server 206-2 is connected to autonomous system
232-2 by router 236-2. Routers 236 thus provide direct links 45

L1, L2 between servers 206 and their corresponding autono
mous systems 232. In some embodiments, servers 206-1,
206-2 can be edge servers that are collocated with the autono
mous system network infrastructure and provide large band
width and fast response times for content distribution to end 50

users in a particular location. In an exemplary embodiment,
each server 206 is configured to handle approximately 2000
connections per second and can support a 10 Gbps link to its
corresponding autonomous system. Of course, the number of
servers, number of connections, and data rates may vary 55

based on the location served, traffic patterns, hardware capa
bilities, and other factors.

Servers 206 also communicate with origin server 240. Ori
gin server 240 can act as a source of the content distributed to
end users. For example, servers 206 may cache content 60

received from origin server 240 and may use the cached
content to fulfill end user requests. If requested content is not
found in their respective caches, servers 206 can send a
request for the missing content to origin server 240. When
requesting content, servers 206 can report information about 65

the content request as well as the conditionally adapted pro
tocol parameters to the origin server 240. The origin server

Server 206 can include a number of data sources which
respond to content requests from end users. In one embodi
ment, processor 244 supports a protocol stack that enables
changes affecting the performance of the transport layer to be
made from higher layers in the stack on a per-connection or
per-request basis. This enables server 206 to receive a content
request from an end user computer over an existing connec
tion, gather information about the request, and intelligently
modifY the performance of the connection based on informa-
tion from the request. In this way, for example, server 206 can
modifY TCP performance parameters based on known char
acteristics of the connecting network, the geographic location
of the end user, metadata associated with the requested con
tent, a service level of the content provider, link utilization, or
any combination of these and other factors.

FIG. 7 illustrates a modified TCP protocol stack 700 such
as can be included as part of content server 206 according to
one embodiment of the present invention. As shown, layers
710-740 correspond roughly to layers of the standard OSI
network model. At the lowest layers 710 in the protocol stack
(physical and data link layers), data bits are received at the
network interface hardware and assembled into data units for
delivery to the next higher layer. Here, a network layer 720
includes an IP module that receives IP packets from the lower
layers and determines an appropriate transport layer protocol
based on their header information. With transport control
protocol, network layer 720 sends TCP messages to the trans-
port layer 730 which, in turn, passes application messages to
data sources 750 in the application layer 740.

In operation, an end user computer 102 can establish a TCP
connection with content server 206. The connection can be
created using a collection of TCP parameters which are pre
configured at the server and do not necessarily reflect infor
mation about the end user or the way in which the end user
computer is connected to the server. For example, referring

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 24 of 28 PageID# 487

US 8,750,155 B2
17

again to FIG. 5, computer 102-1 can initiate a connection
C2.1 with server 206-1 to start a TCP session. Once the
connection is established, the end user can send a content
request over the connection. As illustrated, a single end user
computer 102 can establish multiple connections to a given
server 206 and each connection can carry multiple content
requests. Protocol stack 700 is configured such that TCP
settings can be adjusted on a per-connection or even a per
request basis.

18

When a content request is received at server 206, it is
conveyed through protocol stack 700 to an appropriate data
source 750 in the application layer 740. For example, a web
server 750-1 can respond to requests for web pages, a caching
application 750-2 can respond to file requests, and an appli
cation server 750-N can respond to requests for application
services. Server 206 can include any number or arrangement
of data sources 750 and each data source can respond to
multiple content requests.

ery system. Among other possibilities, requests for content
from providers that choose a premium service level can be
biased in favor of increased performance. For example,
requests for provider ABC's content can be preferentially
modified (e.g., attr6=fast) and, when appropriate, can be allo
cated a relatively larger send buffer (e.g., attr4=300,000). By
contrast, requests for provider D EF' s content at the standard
service level can be assigned a smaller send buffer (attr4= 100,
000) and modified only on a best efforts basis (attr6=slow).

10 Service level can also set on a per-request basis. For example,
a customer can elect a high level of service by adding infor
mation to the request query string.

FIG. SB illustrates exemplary data corresponding to the

Each data source 750 can interact with a TCP handler 760

15
network address of an end user computer. Table 830 provides
an association between IP address, geographic location, and
autonomous system number. A source IP address can be
obtained from TCP header information and used to identifY a
geographic region of the end user computer. The geographic

20 region can be a city, state, country, or continent and can
provide a rough estimate of the distance or round trip time
from the server 206 to the end user computer. In addition,
geographic location can also be a rough indicator of service.
For example, network communications in Asia may be char-

at the transport layer 730 to modify its connections. In one
embodiment, TCP handler 760 enables the data sources to
modifY the timing at which packets are sent to the end user
computer to be more or less aggressive based on information
gathered from the content request. TCP handler 760 can also
modifY the pace at which packets are sent. Pacing can indicate
that a burst of packets should be sent as soon as possible or
that data transmission should be spread out over time. The
maximum TCP send window ("send buffer size") for a con
nection can also be adjusted. For example, in some embodi
ments, TCP handler 760 can adjust the maximum send buffer 30

to be a multiple of a standard size and can permit buffer
utilization to increase until it reaches the maximum size.
Alternatively, TCP handler 760 can vary the number of bytes
allocated for a particular connection directly.

25 acterized by a higher latency than network connections in
Europe or some other location. These differences can be
factored into the TCP attributes so that, for example, more
aggressive timing parameters can be used with Asia-based IP
addresses.

Table 830 can also store information about primary routes
to particular locations. For example, a considerable amount of
network traffic destined for South America passes through
servers in Florida and other primary gateway locations. The
attributes in table 830 can be biased to optimize TCP perfor
mance based on conditions at these gateway servers. For
example, TCP timing parameters may be adjusted based on
traffic statistics and load along a primary route such that
transmit timing for South American connections is made
more or less aggressive. Many other location-specific adjust-

Generally speaking, each content request has at least two 35

pieces of information. These include a source address of the
end user computer and an identifier corresponding to the
requested content. For example, a data source 750 that
responds to the request for sample URL, http://
customerl.webserving.com/folderB/directory/logo.gif, 40 ments are possible within the scope of the present invention.
would know the IP address of the requesting computer (e.g.,
abc.def.ghi) as well as the file name of the requested content
(logo.gif). From this starting point, server 206 can obtain
additional information from data store 220 with which to

In some embodiments, cost and path information can also be
included. As an example, transit charges and other direct costs
of providing service can be tracked as well as indirect or
resource costs.

modifY the transport layer parameters of the TCP connection. 45

FIGS. 8A-8C illustrate partial exemplary data elements
810-850 such as can be maintained in data store 220 and used
for determining modified parameters for a TCP connection.

Table 840 provides information about the autonomous sys-
tems. Server 206 can determine an autonomous system (AS)
number for an end user computer based on the source address
of a content request. The AS number, in tum, can be used to
obtain additional information for modifying TCP parameters. FIG. SA illustrates exemplary data corresponding to a

requested content object. In particular, table 810 can repre
sent a collection of metadata 810. Metadata for each
requested object can include a file name, file size, file type,
and content provider as well as TCP attributes associated with
the content object. For example, attrl can represent pacing on
the TCP connection. In some embodiments, pacing is dis
abled for small files and enabled for large files. This can
permit content requests involving a large number of small
files to be fulfilled with quick bursts and can facilitate a more
even delivery oflarge content. TCP attributes can also corre
spond to the type of data such as whether the requested
content is text or video information.

Table 820 includes information about content providers.

50 For example, if it is known that a particular AS is associated
with a type of network, the characteristics of the network
technology can be used to determine appropriate TCP param
eters for a connection. Cable networks can have a relatively
high bandwidth and may be less prone to saturation than DSL

55 networks. Satellite connections, on the other hand, are typi
cally associated with high latency. Server 206 can take advan
tage of these characteristics by matching timing and pacing
parameters to the particular type of network.

When server 206 is collocated at an AS data center, link
60 statistics can be maintained and used to determine TCP

Each content object can be associated with a content provider.
The associated content provider can be identified in the file
meta data or it can be determined from the URL of the content 65

request. In some cases, content providers can select a service
level for the distribution of their content on the content deliv-

parameters. As a link nears full capacity, for example, it may
be inappropriate to increase the timing or send buffer size of
connections. In some embodiments, the preconfigured TCP
parameters are used when link utilization exceeds a predeter
mined threshold. Thus, among other possibilities, the
attributes associated with AS information can indicate
whether or not TCP parameters should be modified and, if

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 25 of 28 PageID# 488

US 8,750,155 B2
19

modification is appropriate, which parameters are best suited
for known characteristics of the AS network.

FIG. 8C illustrates exemplary data corresponding to server
utilization. In some embodiments, each content distribution
server 206 has a limited amount of bandwidth and is intended
to support a certain network load. As the server approaches its
limits, it may be appropriate to scale back on resource allo
cation to TCP connections. Conversely, when the server expe
riences a light load, it may be appropriate to allocate more
system resources to improving the performance ofTCP con
nections. Table 850 provides information for judging load at
a content distribution server, including a bandwidth alloca
tion (BW) measures and a connection rate (CPS).

By way of illustration, assume that a particular server 206
can support up to 2,000 connections per second and has
available bandwidth of 1 Gbps. When connection rates and
bandwidth usage are low, more resources are available for
modifYing connections. In that case, it may be appropriate to
use more aggressive timing, larger buffers and other perfor
mance enhancements. Thus, for example, connections to
server E1 may be modified by increasing the maximum send
buffer size to 300,000 bytes and biasing towards aggressive
timing and/or pacing utilization. On the other hand, server
E56 is nearing full capacity and may therefore bias new
connections to the preconfigured TCP parameters.

As will be readily appreciated, many different combina
tions of factors can affect when and how a TCP connection is
modified. Different weights and precedence can be assigned

20
modifYing transport layer parameters on a connection-by
connection and even a request-by-request basis, the present
process can be repeated for each new request (e.g., R2/C1)
and/or each new connection (e.g., Rl/C2) as determined by
the data source 750 or caching function. Note also that that
server 206 need not be dedicated to serving a particular type
of content but can deliver files, images, video, or any other
content available through the content delivery system.

After the request for content is received, the responding
10 data source 750 determines whether the transport layer

parameters used with the connection and/or request should be
modified. Modifying the transport layer parameters is com
pletely transparent to the end user; the end user is not required

15
to install software or monitoring applications to receive a
performance benefit.

At block 1015, the server 206 makes an initial determina
tion as to whether system load exceeds a predetermined
threshold THl. For example, the responding data source 750

20 can query the information in table 850 to determine current
bandwidth usage and system load. If the system is experienc
ing a heavy load, pre-configured TCP parameters may be
used. In that case, the process ends atblock1060. On the other
hand, if system load is below threshold TH1, a further deter-

25 mination is made as to link utilization. This can involve, for
example, accessing the information in table 840. If link uti
lization exceeds a predetermined threshold TH2, then the
process can terminate at block 1060 and preconfigured TCP
parameters can be used with the connection/request.

When there is sufficient system resources and link capac-
ity, a determination can be made regarding the TCP param
eters based on file size. The size of a requested file can be
determined by accessing the metadata of table 810. At block
1025, the file size is compared to a threshold value TH3 to

to the different types of information available from the data
store 220. For example, system resources may have the high- 30

est precedence, followed by service level, and then by meta
data and AS factors, and finally by geographic considerations.
Across categories, different weights may be assigned to the
attributes so that a data source 750 can determine modified
TCP parameters based on the net effect of some or all of the
available information.

35 determine ifitis a "large" file. If the file is not a large file, then
at block 1030 it is compared to another threshold TH4 to
determine ifit is a "small" file. If the requested file does not fit
in either category, then the preconfigured TCP settings may
be used. Otherwise, for small files, pacing can be disabled and

FIG. 9 shows exemplary performance profiles 900 such as
can be utilized to modifY TCP parameters according to
embodiments of the present invention. Rather than determin
ing parameters by combining individual factors, server 106
can include predetermined profiles for content requests. In the
example, profile P1 provides TCP settings for sending large
files to nearby (low-latency) users. As illustrated, a perfor
mance increase can be realized by pacing such connections
and allowing the TCP send buffer to grow very large. Rela
tively less aggressive timing adjustments are needed due to
the low latency factor. Profile P2, on the other hand, repre
sents large file transfers to a latent user. In that case, pacing is
still used with the transfer, but more aggressive transmit tim
ing may help to compensate for latency and an intermediate
send buffer may be appropriate. Profile P3 can be used to
transfer small files. With small files, it may be desirable to
disable pacing and transmit files in bursts. As a result, a large
send buffer may not be needed.

FIG. 10 shows an embodiment of a process 1000 for modi
fying protocol attributes on a connection-by-connection or
request-by-request basis. Process 1000 can be performed by a
data source 750 or by the caching function 208 of a content
distribution server 206.At block 1010, a content request R1 is
received over an existing connection C1 at the server. The
request can include the URI of a content object. The content
object may be available in content cache 210, or from origin
server 240, or from some other server accessible through the
content delivery system.

The content request R1 can be conveyed through the lower
layers of protocol stack 700 to the appropriate data source 750
in the application layer 740. Since server 206 is capable of

40 an appropriate send buffer size can be determined at block
1035. Thereafter, at block 1065, the responding data source or
cache application directs the TCP handler to modifY the con
nection for the small-file transfer.

With large files, it can be useful to make a further determi-
45 nation as to latency. At block 1045, a round trip time (RTT)

from the server to the end user computer is determined. This
can be done by sending ICMP messages to the end user's
address and measuring the response time. If RTT is less than
a predetermined threshold TH5, then the connection may be

50 characterized as low-latency. In that case, a relatively large
send buffer size and less aggressive TCP timing may be
appropriate. At block 1050, these settings are determined by
the data source or cache application either based on informa
tion from individual items in data store 220 or by selecting a

55 performance profile. On the other hand, if RTT exceeds the
threshold, the connection may be characterized as high-la
tency. At block 1055, parameters for the large-file, high
latency transfer are determined. At block 1065, the data
source or cache function modifies the connection through the

60 TCP handler for the large file transfer.
FIG. 11 shows an additional embodiment of a process 1100

for modifYing protocol attributes. Process 1100 can be per
formed by a data source 750 or by the caching function of
content distribution server 206. The process begins at block

65 1110 when a request R1 is received from an end user com
puter over connection Cl. As previously noted, the process
can be repeated for each new request (e.g., R2/C1) and/or

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 26 of 28 PageID# 489

US 8,750,155 B2
21

each new connection (e.g., Rl/C2) as determined by the data
source 750 or caching function.

At block 1115, the IP address of the client is determined
and the data source or cache fnnction begins to gather infor
mation for modifYing the connection. Initially, a geographic
location and autonomous system of the end user computer are
determined based on the IP address (blocks 1120-1125). If the
server has a dedicated link to the AS, link utilization is deter
mined at block 1130 and compared to a predetermined thresh
old TH2. When the link capacity is below the threshold, the 10

process terminates and the standard or pre-configured TCP
parameters are used for the connection/request. If link utili
zation does not apply to the connection, or iflink utilization is
below threshold TH2, the process continues.

In this embodiment, a predetermined profile is selected 15

based on the geographic location of the client and the type of
connection. For locations in the United States served by cable
access networks, blocks 1135-1140, a first geographic per
formance profile G1 can be used. Relatively low latency may
be assumed for US locations and this profile can adjust TCP 20

timing to take advantage of the relatively high burst capability
of cable networks. For locations in the United States served
by digital subscriber line (DSL) networks, blocks 1145-1150,
a second geographic performance profile G2 can be used.
This profile may use slightly less aggressive timing with a 25

relatively large send buffer. Finally, for US locations served
by satellite networks, blocks 1155-1160, a third geographic
profile G3 can be used. This profile may assume high latency
but reliable delivery and therefore use relatively more aggres-
sive TCP timing and an intermediate send buffer size. 30

Customized profiles can be used for non-US locations or
when autonomous system information is not available as
shown by blocks 1165-1170. For example, a China-specific
profile or an Asia-specific profile can be developed based on
historical network performance measures. Similarly, where a 35

primary route to a particular destination is known, profiles
may be developed that are customized for the appropriate
connecting network elements. When the appropriate geo
graphic performance profile has been selected, the data store
or cache fnnction modifies the connection accordingly. 40

Throughout this document, the terms content delivery and
content download are used and can mean either file download
or streaming delivery. Additionally, a content object can be
either a file or a stream. For example, the content object could
be a voice call stream, a video stream, an image file, a music 45

file, a live concert, an animation, an advertisement, a web
page, a slide show, data file, hosted software, transactions,
executable software or the like. Content can be static or
dynamic, can pre-exist on the server, can be created on the
server, or can be created or obtained elsewhere in response to 50

a request from a client.
A number of variations and modifications of the disclosed

embodiments can also be used. For example, some of the
above embodiments discuss use of the TCP protocol or a
transport-layer protocol. Other protocols could be modified 55

on a connection-by-connection or request-by-request basis in
other embodiments. Also, connection parameters can be
modified based on additional information gathered from or
associated with content requests such as HTTP request head-

22
is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:
1. A method for managing delivery of content in a system

comprising a server and an end user computer, comprising:
establishing a first connection at the server for communi

cating with the end user computer;
receiving a request for content from the end user computer

over the first connection, the request include a universal
resource locator (URL);

determining one or more parameters relating to the perfor-
mance of the first connection using information from the
request, wherein the determined one or more parameters
relate to utilization of available processing or memory
capabilities of part or all of a system supporting the first
connection;

determining one or more first values of attributes based on
the URL and the one or more parameters;

modifying second values of attributes for the first connec
tion at a transport layer to result in the determined one or
more first values, the second values of the attributes for
the first connection thereafter influencing utilization of
the available processing or memory capabilities of the
part or all of the system supporting the first connection;

changing, on a connection-specific basis, a connection pro-
tocol stack operator based upon the modified values of
the attributes; and

sending the requested content from the server to the end
user computer such that the transport layer manages
delivery of the content in accordance with the modified
second values of the attributes.

2. The method of claim 1, wherein the one or more first
values of attributes are further based on an estimated location
of the end user computer.

3. The method of claim 1, further comprising determining
a latency characteristic of the first connection, wherein at
least one of the second values of the attributes for the first
connection is modified based on the latency characteristic.

4. The method of claim 1, further comprising:
determining a connection type of the end user computer;

and
determining a latency characteristic associated with the

connection type, wherein at least one of the second
values of the attributes for the first connection is modi
fied based on the latency characteristic associated with
the connection type of the end user computer.

5. The method of claim 1, further comprising:
determining the size of the requested content; and
measuring a ronnd trip travel time between the server and

the end user computer when the data size exceeds a
predetermined value, wherein at least one of the second
values of the attributes for the first connection is modi
fied based on the size of the requested content and the
round trip travel time.

6. The method of claim 1, further comprising determining
an autonomous system from which the first connection is
received, wherein at least one of the second values of the
attributes for the first connection is modified based on net-
work characteristics of the autonomous system.

7. The method of claim 1, further comprising determining
a link utilization between the server and an autonomous sys
tem of the end user computer, wherein at least one of the
second values of the attributes for the first connection is

ers (e.g., content-length, cookies, content-type, user agent, 60

etc.), transport layer security (e.g., HTTPS), layer 2 address
ing (e.g., the MAC address of the router from which the
request was received), port number, IP properties (e.g.,
TOS-terms of service), hostname, and whether or not a
request successfully passed through a rewrite process. 65 modified based on the link utilization.

While the principles of the disclosure have been described
above in connection with specific apparatuses and methods, it

8. The method of claim 1, further comprising determining
a predetermined performance profile for the first connection

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 27 of 28 PageID# 490

US 8,750,155 B2
23

using the information from the request, wherein at least one of
the second values of the attributes for the first connection is
modified based on the predetermined performance profile.

24
15. The content distribution server of claim 13 further

~omprisi~g a pr?tocol attribute information stor~ having
mformatJon relatmg data associated with a content request to
one or more connection parameters, wherein the data source
determines at least one of the first values based on informa
tion retrieved from the protocol attribute information store.

9. The method of claim 1, further comprising:
determining whether the requested content is available at

the server;
obtaining the requested content from a second server when

the requested content is not available at the server and
caching the requested content at the server for at l~ast a

predetermined time.
10. The method of claim 1, wherein modifYing the second

values of the attributes for the first connection thereafter
adjusts a timing of data transmission at the transport layer in
accordance with the one or more parameters.

16. The content distribution server of claim 13, wherein the
data s?urc.e determines a geographic region corresponding to
a destmatJon address of the first connection, and wherein at

10 least one of the one or more first values is further based on the
geographic region.

11. The method of claim 1, wherein modifYing the second 15

values of the attributes for the first connection thereafter
adjusts a transport layer send window associated with the first
connection.

17. The content distribution server of claim 13, wherein the
data source determines an autonomous system associated
with the first connection, and wherein at least one of the one
or more first values is further based on network characteristics
of the autonomous system.

18. The content distribution server of claim 13, wherein the
data source determines a latency characteristic associated
with the first connection based on the information from the
request and directs the protocol attribute selector to modify at
least one of the second values of the attributes based on the
latency characteristic.

12. The method of claim 1, wherein modifYing the second
values of the attributes for the first connection thereafter 20

adjusts a burst size of the first connection so as to pace data
transmission according to the one or more parameters.

19. The content distribution server of claim 13, wherein the
protocol handler is configured to adjust a timing of data

25 transmission at a transport layer based on the one or more first
values.

13. A content distribution server, comprising:
a network interface having a plurality of ports configured to

send and receive data over a connecting network;
a processor coupled to the network interface and config

ured to manage a plurality of connections to end user
computers;

a protocol handler configured to establish the plurality of
connections with the end user computers according to 30

predetermined transport layer parameters of the content
distribution server and to manage data transmission over
the plurality of connections; and

a data source configured to supply requested content to the
end user computers over the plurality of connections, 35

wherein the data source is configured to monitor a first
connection for a request to:
determine one or more parameters for the first connec

tion based on the request, the determined one or more
transport layer parameters relating to utilization of 40

available processing or memory capabilities of part or
all of a system supporting the first connection;

determine one or more first values of attributes based on
a URL and the one or more parameters, the request
including the URL; 45

direct the protocol handler to modify second values of
attributes for the first connection to result in the deter
mined one or more first values, the second values of
the attributes for the first connection thereafter influ
encing utilization of the available processing or 50

memory capabilities of the part or all of the system
supporting the first connection; and

change a connection protocol stack operator based upon
the modified second values of the attributes.

14. The content distribution server of claim 13 wherein the 55

one or more first values of attributes are further' based on an
estimated location of the end user computer.

20. A computer program product comprising a non-transi
tory computer-readable medium encoded with one or more
sequences of one or more instructions which, when executed
by a processor, cause a computer to:

establishing a first connection at the server for communi
cating with an end user computer;

receiving a request for content from the end user computer
over the first connection, the request include a universal
resource locator (URL);

determining one or more parameters relating to the perfor
mance of the first connection using information from the
request, wherein the determined one or more parameters
relate to utilization of available processing or memory
capabilities of part or all of a system supporting the first
connection;

determining one or more first values of attributes based on
the URL and the one or more parameters;

modifying second values of attributes for the first connec
tion at a transport layer to result in the determined one or
more first values, the second values of the attributes for
the first connection thereafter influencing utilization of
the available processing or memory capabilities of the
part or all of the system supporting the first connection;

changing, on a connection-specific basis, a connection pro
tocol stack operator based upon the modified values of
the attributes; and

sending the requested content from the server to the end
user computer such that the transport layer manages
delivery of the content in accordance with the modified
second values of the attributes.

* * * * *

Case 3:15-cv-00720-JAG Document 28-2 Filed 02/16/16 Page 28 of 28 PageID# 491

	
	

Exhibit	 C	

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 1 of 16 PageID# 492

c12) United States Patent
Fainberg et al.

(54) SYSTEMS AND METHODS THERETO FOR
ACCELERATION OF WEB PAGES ACCESS
USING NEXT PAGE OPTIMIZATION,
CACHING AND PRE-FETCHING
TECHNIQUES

(71) Applicant: Limelight Networks, Inc., Tempe, AZ
(US)

(72) Inventors: Leonid Fainberg, Tel Aviv (IL); Ofir
Ehrlich, Tel Aviv (IL); Gil Shai, Tel
Aviv (IL); Ofer Gadish, Rishon LeZion
(IL); Amitay Dobo, Tel Aviv (IL); Ori
Berger, Tel Aviv (IL)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/137,598

(22) Filed: Dec. 20, 2013

(65)

(60)

(60)

Prior Publication Data

US 2014/0237066 Al Aug. 21, 2014

Related U.S. Application Data

Continuation of application No. 13/731,438, filed on
Dec. 31, 2012, now Pat. No. 8,661,090, which is a
continuation of application No. 13/471,211, filed on
May 14, 2012, now Pat. No. 8,346,885, which is a
division of application No. 12/848,611, filed on Aug.
2, 2010, now Pat. No. 8,321,533.

Provisional application No. 61/213,959, filed on Aug.
3, 2009, provisional application No. 61/308,951, filed
on Feb. 28, 2010.

c12o-l

!
Web Page I

111111 111
US008856263B2

(10) Patent No.: US 8,856,263 B2
Oct. 7, 2014 (45) Date of Patent:

(51)

(52)

(58)

(56)

Int. Cl.
G06F 151167
H04L29/08
U.S. Cl.

(2006.01)
(2006.01)

CPC H04L 6712847 (2013.01);
H04L 67102 (2013.01)

USPC 709/213; 709/219; 709/203; 715/827
Field of Classification Search
USPC 709/200, 203, 213, 219; 715/827
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,182,133 B1 *
7,363,291 B1 *
7,689,663 B2 *
8,156,419 B2 *

112001 Horvitz 709/223
4/2008 Page 707/706
3/2010 Kinnan et al 709/217
4/2012 Choudhary eta!. 715/209

2003/0110296 A1 *
2004/0088375 A1 *
2004/0205149 A1 *

6/2003 Kirsch eta!. 709/246
5/2004 Sethi eta!. 709/218

10/2004 Dillon et al 709/217

(Continued)

Primary Examiner- El Hadji Sail
(74) Attorney, Agent, or Firm- Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A method and system for acceleration of access to a web page
using next page optimization, caching and pre-fetching tech
niques. The method comprises receiving a web page respon
sive to a request by a user; analyzing the received web page
for possible acceleration improvements of the web page
access; generating a modified web page of the received web
page using at least one of a plurality of pre-fetching tech
niques; providing the modified web page to the user, wherein
the user experiences an accelerated access to the modified
web page resulting from execution of the at least one of a
plurality of pre-fetching techniques; and storing the modified
web page for use responsive to future user requests.

20 Claims, 5 Drawing Sheets

[100

&~~" ~ . \
IP Network

•
Web Page

Server

liO

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 2 of 16 PageID# 493

(56) References Cited

U.S. PATENT DOCUMENTS

US 8,856,263 B2
Page 2

2008/0228772 A1 *
2010/0017696 A1 *
201110087966 A1 *

2008/0195712 A1 * 8/2008 Lin eta!. 709/206 * cited by examiner

9/2008 Plamondon 707/10
112010 Choudhary eta!. 715/205
4/2011 Leviathan 715/745

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 3 of 16 PageID# 494

U.S. Patent

Web Page
Server

• • •
Web Page

Server

,..···'120-1

\\leb Page
Server

• • •
\Veb Page

Scn/CT

Oct. 7, 2014 Sheet 1 of 5

IP Net<.vork

.liO

Web Page Access
• Accelerator .140

FIG, 1

144 142

Server
Back
End

Cache
(BEC)

US 8,856,263 B2

(100

130-1

Node

140
130-1

• Front • End • Cache 130-m
(FEC)

User
Node

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 4 of 16 PageID# 495

U.S. Patent

FIG. 3

Oct. 7, 2014 Sheet 2 of 5

Cache received web page in
the back~cnd cache

Analyze page for possible
~tceleration imvrovement:;;

Apply acceleration
methods to a modified

web pa~e of the received

page to user node
"'----·---

Store (modified) web page in
front-end cache

US 8,856,263 B2

300
__)

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 5 of 16 PageID# 496

U.S. Patent Oct. 7, 2014 Sheet 3 of 5

START

S4l1

Rece.ive a query

Compute the diff and
output a list nfuon·

rnatching data bkHcks

S4l8

Advance pointe1·

FIG.4A

Yes

US 8,856,263 B2

S417
Send to client side a list
ofncnHnatching data

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 6 of 16 PageID# 497

U.S. Patent Oct. 7, 2014

S427

,...-----""----"~

Sheet 4 of 5

S425

d:.e list dcsc ribc
a blo~k in page

!?

US 8,856,263 B2

S426

t\prend to the mniaim:r
the data !rom th<:: bklck

l Advance to the ne;(t enlrv '
1 ir1 :he list .. !+--------------------...8 I

FIG. 4B

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 7 of 16 PageID# 498

U.S. Patent Oct. 7, 2014 Sheet 5 of 5 US 8,856,263 B2

Block Index ' Block type Block Content
' ----~----------~ 0 --~--T New Data yx

L.~~--------J'------~~~~~~~~~~~
IG.SA

.------,---,----~----------,--------~~- --~----~~-~------,

1 Block Index Block type Start Position End Position
,..............
i Old Data 3
'

FIG.5B

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 8 of 16 PageID# 499

US 8,856,263 B2
1 2

nodes and operative to cache information associated with
requests directed from the one or more the user nodes to the
acceleration server; a second cache connected to the accel
eration server and the one or more web servers and operative

SYSTEMS AND METHODS THERETO FOR
ACCELERATION OF WEB PAGES ACCESS

USING NEXT PAGE OPTIMIZATION,
CACHING AND PRE-FETCHING

TECHNIQUES

CROSS-REFERENCES TO RELATED
APPLICATIONS

5 to cache information associated with requests directed from
the one or more web servers to the acceleration server; and a
memory coupled to the acceleration server and containing a
plurality of instructions respective of the at least one pre-

This application is a continuation of U.S. patent applica- 10

tion Ser. No. 13/731,438, filed Dec. 31,2012, entitled "SYS
TEMS AND METHODS THERETO FOR ACCELERA
TION OF WEB PAGES ACCESS USING NEXT PAGE
OPTIMIZATION, CACHING AND PRE-FETCHING
TECHNIQUES," which is a continuation of U.S. patent 15

application Ser. No. 13/471,211, filed May 14, 2012, entitled
"SYSTEMS AND METHODS THERETO FOR ACCEL
ERATION OF WEB PAGES ACCESS USING NEXT PAGE
OPTIMIZATION, CACHING AND PRE-FETCHING
TECHNIQUES," which is a divisional application of U.S. 20

patent application Ser. No. 12/848,611, filed Aug. 2, 2010,
which is a non-provisional application claiming the benefit
and priority under 35 U.S.C. §119(3) of U.S. Provisional
Patent Application 61/213,959, filed Aug. 3, 2009, and U.S.
Provisional Patent Application 61/308,951, filed Feb. 28, 25

2010. The entire disclosure of each of the above-listed appli
cations is incorporated herein by reference for all purposes.

FIELD OF THE INVENTION

fetching technique.
Certain embodiments of the invention further include a

method for acceleration of access to a web page. The method
comprises receiving a web page responsive to a request by a
user; analyzing the received web page for possible accelera
tion improvements of the web page access; generating a
modified web page of the received web page using at least one
of a plurality of pre-fetching techniques; providing the modi-
fied web page to the user, wherein the user experiences an
accelerated access to the modified web page resulting from
execution of the at least one of a plurality of pre-fetching
techniques; and storing the modified web page for use respon
sive to future user requests.

Certain embodiments of the invention also include a
method for acceleration of access to a web page. The method
comprises receiving a request to access a web page; generat
ing a query that includes at least a URL of the requested web
site and one more URLs of web pages similar to the requested
web page; generating a list of non-matching data blocks
between the requested web page and at least one of the similar
web pages; and generating a web page respective of the

The present invention relates generally to accesses to web
pages, and more specifically to the acceleration of access to
such web pages from the user's experience perspective.

30 requested web page by combining common data blocks with
non-matching data blocks, wherein the common blocks are
retrieved from the at least one similar web page and the
non-matching blocks are retrieved from the requested web
page.

BACKGROUND OF THE INVENTION

The traffic over the world-wide-web (WWW) using the
Internet is growing rapidly as well as the complexity and size

35

of the information moved from sources of information to
users of such information. Bottlenecks in the movement of 40

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention will be
apparent from the following detailed description taken in
conjunction with the accompanying drawings.

data from web servers of the content suppliers to the users,
delays the passing of information and decreases the quality of
the user's experience. Traffic is still expected to increase
faster than the ability to resolve data transfers over the Inter
net.

FIG. 1 is a schematic block diagram of a system for accel-
45 eration of web pages access;

Prior art suggests a variety of ways in an attempt to accel
erate web page content delivery from a supplier of the content
to the users. However, there are various deficiencies in the
prior art still waiting to be overcome. It would be therefore
advantageous to overcome these limitations, as it would result 50

in a better user experience and reduction of traffic load
throughout the WWW. It would be further advantageous that
such solutions be applicable with at least all popular web
browsers and/or require neither a plug-in nor a specific
browser configuration. 55

BRIEF SUMMARY OF THE INVENTION

FIG. 2 is a schematic diagram of the data flow in a system
for acceleration of web pages access;

FIG. 3 is a flowchart of the processing performed for the
purpose of generating web pages that accelerate access;

FIGS. 4A and 4B are flowcharts illustrating the operation
one of the perfecting acceleration technique in accordance
with an embodiment of the invention; and

FIGS. SA, SB, and SC illustrate an exemplary data struc
ture created by the technique shown in FIGS. 4A and 4B.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments disclosed by the invention are only
examples of the many possible advantageous uses and imple-Certain embodiments of the invention include a system for

acceleration of access to web pages. The system comprises a
network interface enabling communication of one or more
user nodes with one or more web servers over a network for
accessing web pages stored in the one or more web servers; an
acceleration server coupled to the network interface for accel
erating access to the web pages to the one or more user nodes
using at least one pre-fetching technique; a first cache con
nected to the acceleration server and the one or more user

60 mentations of the innovative teachings presented herein. In
general, statements made in the specification of the present
application do not necessarily limit any of the various claimed
inventions. Moreover, some statements may apply to some
inventive features but not to others. In general, unless other-

65 wise indicated, singular elements may be in plural and vice
versa with no loss of generality. In the drawings, like numer
als refer to like parts through several views.

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 9 of 16 PageID# 500

US 8,856,263 B2
3

In an exemplary but non-limiting embodiment of the inven
tion, a web access acceleration system is placed in the path
between the user nodes and the web servers and is responsible
for integrating the acceleration mechanisms to the web pages
selected for acceleration.

4
a web page from, for example, web page server 120. Option
ally in S320, the received web page is stored in a cache, for
example, the BEC 144. In S330, the received web page is
analyzed by acceleration server 142 using one or more accel
eration and perfecting techniques (methods), to determine
whether acceleration improvements may be achieved. In
S340, it is checked whether improvements were determined
to be achievable, and if so execution continues with S350;
otherwise, execution continues with S360. In S350, the

FIG. 1 depicts an exemplary and non-limiting schematic
block diagram of a system 100 for acceleration of web pages
access in accordance with an embodiment of the invention. A
network 110 is connected to one or more web page servers
120, each providing content typically using formatted docu
ments using, for example, the hypertext markup language
(HTML). The network may be a local area network (LAN), a
wide area network (WAN), a metro area network (MAN), the
Internet, the world-wide-web (WWW), the like, and any
combination thereof. One or more user nodes 130 that are
viewers of such web pages content are also connected to the
network 110. A user of a user node 130 typically browses the
content using a web browser that is enabled to display the web
pages. By using, for example but not by way oflimitation, a
uniform resource locator (URL) the browser is capable of
accessing a desired web page.

10 received web page is modified into a modified web page that
contains one or more acceleration techniques discussed
herein below in more detail. In S360, the modified or the
received web page is provided to the user node 130 that
requested the web page. Optionally in S370, the modified

15 web page or the received web page, as may be appropriate, is
stored ina cache, for example FEC 146. In S380, it is checked
whether additional pages are to be handled and if so execution
continues with S310; otherwise, execution terminates.

While reference is made hereinabove to web pages, it can
20 equally refer to portions of web pages, resources of a web

page, and the like, without departing from the scope of the
invention. Resources of a HTML web page include, but are
not limited to, stylesheet files, Javascript and other script files,
images, video and any other parts of the pages which are not

The network 110 is also connected a web page access
accelerator (WPAA) 140. In accordance with the invention
instead of providing web page content directly from a web
page server, for example, a web page server 120-1, to a user
node, for example, a user node 130-1, traffic is directed
through the WPAA 140, when applicable, i.e., when config
ured for accelerated access. Accordingly, a request for web
page content is directed through WPAA 140 that is equipped
with various acceleration mechanisms as further detailed 30

herein below. In one embodiment of the disclosed invention,
the web servers 120 are part of a server farm (not shown). In

25 embedded in the HTML.

a further embodiment thereof, the WPAA 140 is provided as
part of the server farm. In yet another embodiment of the
invention, the WPAA 140 is integrated as an integral part of a 35

web page server 120.
FIG. 2 shows an exemplary and non-limiting schematic

diagram of the data flow in a system for acceleration of web
pages access in accordance with an embodiment of the inven
tion is shown. In addition, the details of the structure of the 40

WPAA 140 are also shown. For simplicity reasons the net
work interface is removed, however, a network type interface
is the typical way for such components to communicate with
each other. The WPAA 140 comprises of an acceleration
server 142 that is coupled to storage 148. The storage 148 45

typically holds instructions for the execution of one or more
acceleration techniques, described herein below in more
detail, that result in accelerating the transfer of web pages
content to a user wishing to access such content. Under the
control of the acceleration server 142, there is a back-end 50

cache (BEC) 144, connected to the acceleration server 142
and to the one or more web page servers 120-1 through 120-n.
The BEC 144 handles requests directed from the acceleration
server 142 to the one or more web page servers 120. By
caching information in BEC 144, overall access to web page 55

content is accelerated. Under the control of acceleration
server 142 there is a front-end cache (FEC) 146, connected to
the acceleration server 142 and to the one or more user nodes
130-1 through 130-m. The FEC 146 handles requests directed
from the one or more user nodes 130 to the acceleration server 60

142. By caching information inFEC 146, the overall access to
web page content is further accelerated.

FIG. 3 shows an exemplary and non-limiting flowchart 3 00
of the processing performed for the purpose of generating
web pages that accelerate access in accordance with an 65

embodiment of the invention. In S310, a page is received, for
example by the WP AA 140, in response to a request to receive

The method disclosed above may be performed by the
WPAA 140, but without limitations. May be used in other
web acceleration embodiments of the invention, including,
integration in a web page server such as a web page server
120.

While the description hereinabove was made with respect
to one particular system, other systems may be deployed to
benefit from the teachings hereinabove and herein below. In
one exemplary and non-limiting embodiment of the inven
tion, a system that works as a plug-in/filter/extension to one or
more web servers is used. The flow of data through the system
is the same as described with respect of the system in FIG. 1,
however, it may also utilize knowledge about the data stored
on the web site, such as but not limited to, page template and
images. In yet another exemplary and non-limiting embodi
ment, the disclosed pre-fetching acceleration techniques may
be implemented in whole or in part as one or more plugins of
a web site integrated development environment (IDE). Using
a plugin, the inventions herein are integrated into the web site
during its development. The plugin therefore enables at
"compilation" or "build" process of the IDE, changes to the
web site coding made by the user of the web site developer
according to the inventions. This may take place during devel
opment or automatically implemented during development.
In yet another exemplary and non-limiting embodiment of the
invention, a utility containing, for example and without limi
tation, a command line component, a user interface (UI)
component or any other interface, is run on the designed web
site code after it is ready, and/or in one or more points-in-time
during the development thereof, to transform the web site
code by employing the inventions herein.

Following are descriptions of acceleration techniques used
with respect to, for example, S350, discussed above. How
ever, the use of such techniques may be a part of other
embodiments which are specifically included herein.
I. Web-Site and Browser Transparent Pre-Fetching

Conventional pre-fetching of resources in web pages may
be implemented in one of the following ways: a) installing a
browser plug-in or any other desktop software which fetches
resources and pages in the background using its own algo
rithms; b) introducing new tags and syntax into the HTML,
HTTP and J avascript to provide "hints" to the browser regard-

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 10 of 16 PageID# 501

US 8,856,263 B2
5

ing a potential pre-fetch, however, modern popular browsers
do not provide any kind of support to such "hint language";
and c) designing, as a part of the website, a mechanism which
pre-fetches resources with a mechanism that the browsers
support, however, this puts a burden on the designer of the
website to write and maintain this pre-fetch code.

6
are the HTML itself and a few resources which have not been
seen on previous pages yet. In such cases, loading the HTML
from the network is a big percentage ofloading the entire web
page, even when the HTML is loaded very quickly.

In accordance with an embodiment of the invention, the
pre-fetching is performed by deploying the WPAA 140 in the
communication path between the web page server 120 and the
client or user node 130. In other embodiments of the inven- 10

According to the principles of the invention there is added
a script, for example, Javascript, which detects the mouse
presence over a link, a button, or any other means pointing by
means of a URL, or other applicable means, to another page.
This script may be further enabled to detect whether the focus
is on the link, the button, or otherwise point of entry to another
URL, which is particularly relevant to cases when the navi-tion, pre-fetching of web-pages' resources can be done using

a proxy, which is a component running on the same machine
as the web server 120 or any other appropriate solutions
capable of achieving the teachings below. Neither the web
page server 120 nor the browser on the user node 130 is ware
that this component exists, i.e., the WPAA 140 is transparent
to the operation of web page servers 120 and user nodes 130.
The WPAA 140 analyzes the pages going through it and
changes the web page to contain the pre-fetch code that may
be created using methods and mechanisms described herein.
The definition of which resources to pre-fetch and where on
the page to locate the code may be defined in configuration,
reached by static analysis of pages or dynamic analysis of
pages and traffic, determined using changing statistics, or
other applicable techniques as well as any combination of
thereof. The code generated instead of the original code of the
web page is designed to be understood and processed by
modern browsers and does not require any additions to it.

One advantage over prior art, is that even if the web site has
not changed, the same page can contain code to pre-fetch
different resources every time. This may be advantageous, for
example, if or when the usage pattern of a web page changes.
Moreover, the fact that neither the user 120 nor the web page
server 130 needs to be aware of the existence ofthe WPAA
140 between them.

In one embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to a user node 130.
The original web page may reside in the BEC 144. The
acceleration server 142 based on instructions contained in
storage 148 parses the web page in accordance with the inven
tion described above and provides a modified web page,
which may also be stored in the FEC 146 for future use by
other user nodes 130.
II. Pre-Fetching Resources of Subsequent or Other Pages

Today' s pre-fetch techniques, pre-fetch either whole pages
or the HTML part of the web page. This is problematic if
when the exact next pages are not necessarily known. For
example, if the web page has a dynamic component it may
change between accesses to the web page.

gation is done using the keyboard and not the mouse. After the
detection, the script, might or might not wait a while to reduce
the number of false positives, before it pre-fetches the rel-

15 evant page. If, during this time, the mouse moved from loca
tion of a URL, or has otherwise lost its focus of the web page,
the pre-fetch is canceled. If the page pointed to by the link is
small and the server is fast, many times it is possible to bring
the page to the browsers cache before the link is actually

20 clicked, thus substantially reducing the load time of that page
as it appears to the user.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for adding a
detection script implementing the principle described above.

25 In another embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to the user. The
original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention

30 described above and provides the web page with the detection
script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.
IV. a Path Dependent Web Page Delivery to a User

On the same web site, many pages have common
35 resources. Thus, it is important to know on a page whether the

resources are already in the browser's cache or not. For
example, different optimizations should be applied on the
page to load it faster.

As for most web sites the resources in the cache typically
40 expire within several hours, it is usually correct to assume that

if the page was reached from a different page in the same web
site, the common resources will be in the browser's cache and
if not, most of them will not. Thus, according to an embodi
ment of the invention, a web page is processed differently for

45 a case where it was reached from within the web site and for
the case it was reached from without the web site. The con
clusion about where the page was reached is determined
according, for example but without limitation, the HTTP
headers of the web page, a special cookie, the existence of a
"referrer" header, a configuration or any other technique.

In one embodiment, the WPAA 140 intercepts the web
page and sends the user a different version thereof. The origi
nal web page may reside in the BEC 144. The acceleration
server 142 based on instructions contained in storage 148

According to the principles of the invention there is per- 50

formed pre-fetching of the resources of other or subsequent
pages, with or without the HTML page itself. As many of the
resources are common to several or all the pages that may be
fetched and therefore pre-fetching such resources is likely to
save fetching them for other pages. 55 parses the web page in accordance with the invention

described above and provides the web page with the detection
script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.

In one embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to the user. The
original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in the storage
148 parses the web page in accordance with the invention 60

described above and provides a modified web page, which
may also be stored in the FEC 146 for future use by other user
nodes 130.
III. Fetching Linked Pages on Demand Prior to Link Access

In some cases, after browsing a site for a while, some of the 65

new pages load very quickly. Most of their resources are
already in the browser's cache, so the only non-cached items

Other implementations may include, without limitations,
having a component as part of the web page server 120
enabled to perform this acceleration technique, or installing a
software utility on the user node 130, enabled to transform the
web page differently according to its origin.
V. Caching of Dynamic Data

There are several levels of server-side caching that a web
server (e.g., a server 120) can use to increase its performance.
If the web page is generated every time it is requested, one of

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 11 of 16 PageID# 502

US 8,856,263 B2
7 8

this cache levels can be, and many times is, to keep a gener
ated version of the page and serve it every time, re-creating it
only when the content of the page is changed. If the HTML
content of the page contains a part which differs between
several instances of the page, and the number of such different
instances is great, it is impossible to keep a cache of the
described type as on the HTML level, every different bit
means a different page. Some web sites solve it by putting all
the dynamic data, which changes between the instances, into
a separate HTML page and load it as a "subpage". However,
many sites have this type of data embedded into their HTML
document, thus cannot maintain a cache of the described type.

Any file type, such as but not limited to, HTML, Javascript,
images, and CSS, may be affected therefrom. In a second
aspect of operation, once a resource's time in the browser's
cache is expired, and the browser needs the resource, the
browser sends a request to the web server along with some
information about the resource that it has in its cache, for
example, its last modification time. Then the server may
return, instead of the content of the request a message con
firming that the existing resource that is up to date and may be

10 used.

According to an embodiment of the invention, caching of
dynamic data includes separating the static parts of the
HTML page from the dynamic parts. This can be performed 15

by configurations, for example, "marking" parts of the
HTML as static or dynamic, or automatically, by studying
instances of the same page and deducing which parts are
common. Once the static and dynamic parts of the page have
been marked, this information can be used in two ways: a) the 20

static part can be processed, for example, to achieve optimi
zations using, for example, techniques discussed in this docu
ment or otherwise, and the processed data kept in cache. Once
a request for the page is accepted, the original page is
requested and then the dynamic parts of it are "applied" on the 25

processed static parts. The resulting page is then sent to a user
node 130; and b) the static part, processed or not, is sent to a
user node 130 from the cache, without a request to the web
server to obtain the original page. However, a code is injected
into the page which directs the browser, without any need of 30

additional support, to asynchronously send additional one or
more requests to retrieve the dynamic data (see, for example,
techniques to read resources into the cache). When the addi
tion data is retrieved, it is injected into the DOM to the
relevant places. In a preferred embodiment, this technique 35

can be utilized web pages in which the dynamic part is rela
tively small, for example, the dynamic part includes fields
where the usemame of a user is entered. In such web page, the
entire page is first read from the server-side cache (e.g., BEC
144) and only the usemame's value is read from the web 40

server (e.g., one of web servers 120) and is displayed later in
the page. As the dynamic data is brought in an asynchronous
way, this technique does not delay the loading of the common
data.

A severe limitation is that once a resource is in a browser's
cache, it cannot be invalidated, except for explicitly doing so
by the user by clicking "clear cache" in the browser. As for
this resource, requests to the web server (e.g., one of web
servers 120) are not sent, and furthermore, the server cannot
even send a message indicating that the resource is not up to
date. Thus, a web server cannot set too long of an expiration
time as the resource may change and the browser will not be
cognizant of it. On the other hand, any request, even when
resulting with the server sending a message indicating that the
resource is up to date, is time consuming and often delays the
loading time of the web page, thus setting too short an expi
ration period hurts performance.

In accordance with the invention, every resource is
equipped with a version indication and this version is
increased every time when the resource is changed. Every
whole web page, i.e., a web page along with all its resources,
also has a version. This version is a tuple, or otherwise a
combination of the versions of all its resources, including the
HTML page itself. In one example, a hash function may be
used to change the resource's version every time any resource
is changed. The version of the page, or an identifier that stands
for this version, is sent to the user along with the web page
every time it is requested. If the user has already accessed that
page once or more, the version of the page the user has, or an
identifier which stand for this version, is sent with the request.
In one embodiment, this is achieved by means of cookies. All
the resources are sent with a very long expiration time. Thus,
when the browser encounters these resources it will take them
from the browser cache.

Once the web server (e.g., one of web servers 120) receives
a request for web page, the WPAA 140 intercepts the request
and checks the difference between the user's version and the

45 current version of a resource in the requested web page. All
the resources that have not changed are referenced "as is" and
the references to resources which have changed are rewritten
to point to the new references. This is done by changing the
filename of the pointed resource or its query string. For

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for separating
static and dynamic parts of the HTML page in accordance
with the principle described above. In another embodiment,
the WPAA 140 intercepts the web page and parses it prior to
sending the page out to a user node 130. The original web
page may reside in the BEC 144. The acceleration server 142
based on instructions contained in storage 148 parses the web
page in accordance with the invention described above and
separating static and dynamic parts of the HTML page for the
modified web page. The modified web page may also be 55

stored in the FEC 146 for future use by other user nodes 130.
VI. Intelligent Caching of Resources

The cache in browsers operates in two ways. In a first
aspect of operation, once a resource is loaded to the browser,
the resource may include a header which instructs the browser
how long it should be in its cache (either a period of time of
the time of the expiry of the cache). While this resource is in
the browser's cache, every time the browser needs it, the
browser reads the resource from the cache and does not send

50 example, but not by way oflimitation, changing the reference
of"image.l.jpg" to point to "image.2.jpg" which is the newer
version or changing the reference of "image.jpg?ver=l" to
point to "image.jpg?ver=2". This way requests are made to
the new versions of the changed resources.

The disclosed technique can also be applied to parts of
resources. For example, if the difference between the new
version of the HTML and the version the user has is only one
line and the HTML is big, the browser can request only this
one line and run a client-side code which applies this line into

60 the cached data. In order to use this technique on HTML
pages, a stub can be used in the following sequence: a) the
browser requests a file. This file is very small and the web
server directs the browser never to cache it. Along with the

a request for this resource. One the cache expires, the resource 65

is deleted from the cache and the next time the browser needs

request the version of the web page is sent; and, b) the server
then directs the browser (can be used in a number of ways: a
response "redirect" header or a code embedded in the

the resource, the browser sends a request to get the resource. response which forces the browser to request a new page or to

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 12 of 16 PageID# 503

US 8,856,263 B2
9

bring the difference and apply it). The redirected page
depends on the version and may be cached.
VII. Processing Links in the Background

When prior to serving a page a web server(e.g., one of web
servers 120), or a proxy, has to do some processing, for
example, generate or optimize the page. Such processing
delays the loading of the page. In some cases, processing of a
page can be performed in the background, but there are web
sites with a huge amount of pages, for example, results of
different queries, and they cannot be all processed in the 10

background in a reasonable time.
When a page is served by a web server or proxy, the pages

which are candidates for being the next pages to be server for
the same user nodes are also processed. The candidate web
pages can be deduced either statically from analyzing the 15

current page, for example, by looking at all the links, or by
collecting statistics and choosing accordingly, by a configu
ration or a combination, for example, checking if there are
many links and the order of their processing is defined by the
statistics. This can be done recursively to any depth and 20

repeating the process on all the chosen pages.
VIII. Sending the Common Part of a Plurality of Web Pages
Once

10
FIGS. 4A and 4B are non-limiting and exemplary flow

charts illustrating the operation of the "sending the common
part of a plurality of web pages once" acceleration technique
in accordance with an embodiment of the invention. This
technique is performed by a client side which may be one of
the use nodes 130 and a server side which may be the WPAA
140.

The processing of a web page according to this technique is
initiated once a user clicks on a link. The link may be in a form
of a URL directing to another page. According to this embodi
ment, the user action (i.e., clicking on the linking) invokes an
AJAX query to the server side. The query contains the current
URL, the URL that the user wants to navigate to, and infor-
mation about which additional URLs from the same website
the user's browser cache contains.

The AJAX query initiates the process performed by the
server side and further depicted in FIG. 4A. In S411, the
server side receives the AJAX query.At S412, it is determined
which of the URLs that the user already accessed, has the
smallest diff from the requested URL. The (old) page that
corresponds to the URL is marked as "page-1" and the page
that corresponds to the URL that the user navigates to is
marked as "page-2". Thereafter, a pointer is created and fur-Typically, pages of a particular web site contain common

data. This is done mostly to keep a consistent look and feel to
the web site. This is notable for pages derived from the same
template, but also in the case of pages from different tem
plates. Every time a browser requests a page, the response
contains the entire page, including the common parts. This is
repeated over and over again and of course burdens the band
width requirements and slows it urmecessarily as no new data
is in fact transferred to the viewer. According to an embodi
ment of the invention, the common data between pages is sent
only once.

25 therpointed to the beginning ofpage-2 (S413 and S414). The
pointer is used for sequentially scanning ofpage-2 when the
diff is computed. Once the pointer reaches the end of page-2,
the process terminates (S415 and S418).

At S416, the diffbetween page-1 and page-2 is computed
30 to create a list of non-matching data blocks and their positions

in-page 1. In exemplary embodiment of the invention, S416
can be performed using any rsync-like algorithms. One with
ordinary skill in the art would be familiar with the operation
of such algorithms. At S417, the server side sends to the client

Therefore, in accordance with the principles of the inven
tion only the non-common data of a page is sent to the user
every time that the user requests the page, while the common
data is sent only once. This requires a server side component,

35 side the created list and the URL of page-1.
The client side, upon receiving the list of non-matching

data blocks, applies the diffto page-1 to create the modified
page which should is identical to page-2. That is, the nee page
to be viewed is a combination of the content of page-1 and the or a proxy in the pathway between the user node (e.g., a user

node 130) and a web server (e.g., one of the web servers 120).
In an embodiment of the invention, this acceleration tech
nique is performed by the WPAA 140.

40 diff as contained in the received list. The client side can use a

Specifically, the WPAA 140 computes the differences (also
referred to herein as "diff') between the requested pages and
sends only such differences to a browser of a user 130. In 45

addition, only for the first time that the page was requested the
common portions are sent as well. A client side component
(e.g., a user node 13) receives the common parts once, and
then creates the entire data item using the common parts and
differences for a specific page. It should be noted that either 50

item itself or its representation, for example, in DOM format,
may be sent.

The diff can be created in various levels and using a variety
of algorithms. The diff can be created from the text of the web
pages, or from any logical representations thereof, for 55

example and without limitation, the DOM of the page can be
used to create a diff, when the pages are compared on the
DOM elements level. One example of creating a diff is using
a "rsync" -like algorithm. The diff of a page the user navigates
to, or for that matter any other page, can be calculated using 60

the current page the user is at or any other pages the algorithm
recognizes or can assume that the user has. This way a page
for which the diff is the smallest can be chosen. The diff can
be applied by loading the non-common part using a synchro
nous connection and then applying the diff, or using asyn- 65

chronous communication such as AJAX and then when the
diff is ready, adding the diff to the web page.

rsync mechanism to combine the received diff and page-1. It
should be noted thatpage-1 is stored in the client side's cache.

FIG. 4B shows a non-limiting and exemplary flowchart
illustrating the process performed by the client side (e.g., a
user node 130) in accordance with an embodiment of the
invention. The process creates a modified page-2 that con
tains the content of page-1 and non-matching blocks. In S421,
a list of non-matching block as computed by the server side
(e.g., WPAA 140) is received. In S422, an empty container for
the modified page-2 is created. The process scans the received
list from its beginning unit its end when filling the container
(S423, S424 and S428). In S425 it is checked if a current
selected entry is the received list describes a data block in
page-1, if so, in S426, the respective data block from page-1
is append to the container; otherwise, in S427, the respective
data block from the received list is appended to the container.
At S429, once all entries in the created list have been checked,
the container including the contents of the modified page-2 is
output.

This acceleration technique can be used in combination
with the use of the browser's cache, with resource combining,
or in-lining. When resources are being in-lined inside an
HTML page, or for that matter any other container, the cache
of the browser is less efficient than when the resources are
taken from external files. However, using the described tech
nique, when the same resource is in-lined in two or more
different pages, it is not loaded from the server twice, as the

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 13 of 16 PageID# 504

US 8,856,263 B2
11

"rsync" algorithm, or another appropriate algorithm, com
presses it to several bytes only.

Following is a non-limiting example describing this accel
eration technique as applied on resources contained in a web
page. In this example, an old resource (resource-!) contains
the data "zabcd1234" and a new resource contains (resource-
2) the data "yxabc34". The process for creating a list of
non-matching data blocks (e.g., as shown in FIG. 4A) outputs
the list in a form of a data structure illustrated in FIG. SA
through FIG. SC. 10

The process, as described with reference to FIG. 4B, uses
that created list and resource-! (containing "zabcd1234") to
generate a modified resource-2 as follows: after processing
block 0, the modified resource-2 container contains "yx",
after processing block 1, the modified resource-2 container 15

includes "yxabc", where the new data added being "abc" as it
is the data which is located between positions 1 and 3 of
resource-!. Then, upon processing of block 2, the modified
resource-2 container includes "yxabc123", where the new
data being added is "123" located between positions 5 and 7 20

of the resource-!. As can be noticed the container include the
content of the resource-2.

It should be noted that this process accelerates the access to
the new page/resource (page-2/resource-2) as instead ofload
ing the new page only differences should be retrieved from 25

the server-side as the content of the old page/resource (page-
1/resource-1) is cached at the client side.
IX. A Technique for Measuring the Load Time of a Web Page

The load sequence of a typical web page consists of many
different resources. Some of the resources are visible while 30

others are not. Some of the visible resources are part of the
viewport and others are not. Additionally, the speed a web
page loads, is that which is perceived by a user once the
viewport is complete. It is close to impossible to deduce when
the page has finished loading from the user's point of view 35

based merely upon network analysis. Current measurement
techniques either calculate such time once all the components
of the page have finished loading, including those that are
invisible, or check the "onload" event of the HTML docu
ment, which also has only a small correlation to the actual 40

user perceived load time.
In most web sites, the last item to be loaded in the viewport

is a graphic item, such as an image of a Flash object. This
happens because the size of graphic items is big and takes
time to load. Furthermore, graphic items are often loaded 45

later than the textual, i.e., HTML, JavaScript, CSS, etc., ele
ments. Using this assumption, the following acceleration
techniques measures the actual perceived load time of a web
page:

For every background image, the server creates invisible 50

d=y images that are marked as loaded when the
background image finishes loading.

The time the page starts loading is saved in memory.
Once every predefined time interval, that can be set to

different values, depending on the desires granularity of 55

the result, the following is performed:
All the graphical elements in the web page are checked,

for example, by scouting the DOM of the web page,
by lists exported by the browser, such as document
images, or by any other means. The elements can be 60

images, Flash objects, or any other type of element.
For every element found, its position is calculated, for

example, by using all the elements starting from the
desired elements and finishing at the root of the
DOM tree, or by any other way. 65

If the element's position is in the viewport, it is added
to the known viewport element list.

12
Save to storage, persistent or not, a graphical snapshot of

the screen that may contain only the browser, or any
other part of the screen, along with the elapsed time
passed since the start load time. These snapshots can
be later analyzed to determine the exact time the view
port has finished rendering.

Repeat the process for all the known element lists pre
viously created.
If any of the elements has not finished loading yet,

which can be determined by a readyState property
or any other way, then wait for the next iteration.

If all the elements are loaded, check if enough time
has passed since the last element in the list was
loaded and since the list was last changed. If
enough time passed, where "enough time" can be
defined to be any suitable value, the time the last
resource in the list was loaded is marked as the time
the page ended loading.

Return, display, or otherwise store in memory the load time
which is the end of loading time minus the start of
loading time, in addition to marking the snapshot corre
sponding to the time the document perceived to be fully
loaded.

X. Using Versioning to Cache Combined Files
One technique to reduce latency when reading multiple

resources is to combine resources files, and thereby reducing
the overall latency. When creating combined resource files,
one loses the advantage of the browser cache. Thus, the same
resource which is part of two or more files now combined will
not be cached between these different files.

Every resource from a combined file is assigned a unique
identifier which includes its version. This can be any unique
number and it can be any hash function of the content or the
name or URL of the file. For example, the popular hash
function MD5 can be used to assign a unique identifier to a
hash function. Either the use node 130 or the web server 120
holds in their internal storage the identifiers of the resources
already read and have in the respective cache. In case of a user
node 130, the identifiers may be stored in a browser cache, a
Flash storage, a local storage, or any other storage type. In
case the server holds this data, it holds it for every client,
either in memory, or in storage such as a disk or any other
location. In this case, every user is uniquely identified (for
example using an identification cookie), thus this data can be
saved for any user separately.

In the case where the user node 130 (or client) stores the
resources data, the web server 120 adds a script at the begin
ning of every web page that performs the following actions:

For every relevant resource on the page:
Check if this resource, including version, is present in

the storage.
If it exists, replace the URL of the resource pointed to

by the cached inline file, and as may be applicable
to a position in it.

If it does not exist, add its path to the list of missing
resources and replace the URL of the resource
pointed to by a new combined file which contains
all the missing resources, and as may be applicable
to a position in it.

Send the list of all the missing resources as part of a request
to the server. This request asks for an inlined file with all
the missing resources. The names or identifiers of the
missing resources may be passed in the query string or in
any other way.

This way all the resources which were already seen by the
browser in previous combined files are taken from there and
all the resources which were not previously seen by the

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 14 of 16 PageID# 505

US 8,856,263 B2
13

browser will arrive in a new single combined file. Another
way to implement this is to save all the information about
every user in the sever side. This way the page which is served
by the server already contains the correct URL's (whether
those which are already in the cache or new ones) and it needs
not to be replaced by a client-side script.

In the case where the web server 120 stores the resources
data, the server 120 performs the following action of the web
page before sending it to the user:

IdentifY the user (for example using a cookie).
If the user was not found, assume that the user does not

have any resource in the browser's cache.

10

If the user is identified, get from the storage (either
memory, or disk or any other storage) the resources that

15
the user has in the browser's cache and the names of the
container that have these resources in them.

Create one or more empty containers, which will be used
for the resources the user does not already have.

Scan the web page for resources and for each resource 20

performs the following:
If the user already has it in the browser's cache, replace

the reference to the resource by the reference of the
resource in the container the user already has.

If the user does not have the resource in the browser's 25

cache, add the resource to one of the prepared con
tainers and change the reference to the resource to
point to the resource in the container.

At the end of the process all the resources the user already
has will be referenced to containers the user has in its 30

cache and the new resources will be referenced to the
resources in the new containers. Thus only the new
resources will be downloaded by the client, combined in
the prepared one or more containers.

14
limitation to the definition of the invention. It is only the
claims, including all equivalents that are intended to define
the scope of this invention.

What is claimed is:
1. A system for accelerating access to resources of web

pages, the system comprising:
a cache for storing resources of web pages;
an acceleration server that:

receives a first web page in response to a request by a
user system;

parses the first web page;
identifies, based at least partially on parsing the first web

page, a second web page, wherein the second web
page is likely to be requested by the user system after
the user system accesses the first web page;

identifies a first resource, wherein the first resource is a
resource of the second web page;

requests the first resource from a server hosting the first
resource before the user system requests the first
resource;

receives the first resource from the server hosting the
first resource;

stores the first resource in the cache; and
provides the first resource to the user system from the

cache in response to a request by the user system for
the first resource; and

a network interface that:
enables communication of one or more user nodes with

one or more web servers over a network for accessing
web pages stored in one or more servers;

receives the request for the first web page, wherein the
request for the first web page originates from the user
system; and

receives a request for the first resource, wherein the
request for the first resource originates from the user
system after the acceleration server requests the first
resource from the server hosting the first resource.

In one embodiment of the invention, the tasks performed 35

by the web server 120 when combining resources can be
performed by the WPAA 140. According to this embodiment,
the WPAA 140 intercepts the page before sending to the user
node 130, determines where the resources data resides, and
modifies the web page based on the location of the resources
data.

The principles of the invention and embodiments thereto
are implemented as hardware, firmware, software or any
combination thereof. Moreover, the software is preferably
implemented as an application program tangibly embodied in 45

a program storage unit, a non-transitory computer readable
medium or a non-transitory machine-readable storage
medium that can be in a form of a digital circuit, an analogy
circuit, a magnetic medium, or combination thereof. The
application program may be uploaded to, and executed by, a 50

machine comprising any suitable architecture. Preferably, the
machine is implemented on a computer platform having hard
ware such as one or more central processing units ("CPUs"),

2. The system for accelerating access to resources of web
40 pages as recited in claim 1, wherein the network interface

receives a request for the second web page and the accelera
tion server provides the second web page to the user system.

3. The system for accelerating access to resources of web
pages as recited in claim 1, wherein:

a memory, and input/output interfaces. The computer plat
form may also include an operating system and microinstruc- 55

tion code. The various processes and functions described
herein may be either part of the microinstruction code or part
of the application program, or any combination thereof,
which may be executed by a CPU, whether or not such com
puter or processor is explicitly shown. In addition, various 60

other peripheral units may be connected to the computer
platform such as an additional data storage unit and a printing
unit.

The foregoing detailed description has set forth a few of the
many forms that the invention can take. It is intended that the 65

foregoing detailed description be understood as an illustra
tion of selected forms that the invention can take and not as a

the acceleration server further identifies a third web page,
such that the first resource is common to both the second
web page and the third web page; and

the acceleration server stores the first resource in the cache
based on the first resource being common to more than
one web page.

4. The system for accelerating access to resources of web
pages as recited in claim 1, wherein the network interface
receives the request for the first web page by intercepting the
request for the first web page.

5. The system for accelerating access to resources of web
pages as recited in claim 1, further comprising a second
cache, separate from the cache, and stores the first web page
in the second cache before the first web page is requested by
the user system.

6. The system for accelerating access to resources of web
pages as recited in claim 1, wherein the first resource is a static
component of the second web page.

7. A method for accelerating access to resources of web
pages, the method comprising:

receiving the request for a first web page, wherein the
request for the first web page originates from the user
system;

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 15 of 16 PageID# 506

US 8,856,263 B2
15

receiving the first web page in response to a request by the
user system;

prov.iding the first web page to the user system;
parsmg the first web page;
identifYing, based at least partially on parsing the first web

page, a second web page, wherein the second web page
is likely to be requested by the user system after the user
system accesses the first web page;

identifYing a first resource, wherein the first resource is a
resource of the second web page;

requesting the first resource from a server hosting the first
10

resource before the user system requests the first
resource;

receiving the first resource from the server hosting the first
resource;

storing the first resource in a cache; and 15

receiving a request for the first resource, wherein the
request for the first resource originates from the user
system after the acceleration server requests the first
resource from the server hosting the first resource; and

providing the first resource to the user system from the 20

cache in response to the request by the user system for
the first resource.

8. The method for accelerating access to resources of web
pages as recited in 7, further comprising determining the
second web page is likely to be accessed after the first web 25

page based on parsing the first web page.
9. The method for accelerating access to resources of web

pages as recited in 7, further comprising identifYing a third
web page, such that the first resource is common to both the
second web page and the third web page. 30

10. The method for accelerating access to resources of web
pages as recited in 7, further comprising:

identifYing a second resource that is common to the second
web page and to a third web page; and

storing the second resource in the cache based on the sec- 35

ond resource being common to more than one web page.
11. The method for accelerating access to resources of web

pages as recited in 7, wherein the first resource is common to
multiple web pages that are configured to be accessed from
the first web page. 40

12. The method for accelerating access to resources of web
pages as recited in 7, wherein the first resource is common to
all other web pages that are configured to be accessed from
the first web page.

13. The method for accelerating access to resources of web 45

pages as recited in 7, wherein the first resource is a static
component of the second web page.

14. The method for accelerating access to resources of web
pages as recited in 7, further comprising analyzing the first
web page for applying an acceleration technique to the first so
web page.

16
15. A memory device having instructions that when

executed cause one or more processors to perform the follow
ing steps for accelerating access to resources of web pages:

receive the request for a first web page, wherein the request
for the first web page originates from the user system;

receive the first web page in response to a request by the
user system;

provide the first web page to the user system;
parse the first web page;
identifY, based at least partially on parsing the first web

page, a second web page, wherein the second web page
is likely to be requested by the user system after the user
system accesses the first web page;

identifY a first resource, wherein the first resource is a
resource of the second web page;

request the first resource from a server hosting the first
resource before the user system requests the first
resource;

receive the first resource from the server hosting the first
resource;

store the first resource in a cache; and
receive a request for the first resource, wherein the request

for the first resource originated from the user system
after the acceleration server requested the first resource
from the server hosting the first resource; and

provide the first resource to the user system from the cache
in response to the request by the user system for the first
resource.

16. The memory device having instructions as recited in
claim 15, that when executed further cause the one or more
processors to identifY a third web page, such that the first
resource is common to both the second web page and the third
web page.

17. The memory device having instructions as recited in
claim 15, wherein the instructions further cause the one or
more processors to determine the second web page is likely to
be accessed after the first web page based on parsing the first
web page.

18. The memory device having instructions as recited in
claim 15, wherein the first resource is common to multiple
web pages that are configured to be accessed from the first
web page.

19. The memory device having instructions as recited in
claim 15, wherein the second web page is an HTML web page
that uses a plurality of resources, and the first resource is one
of the plurality of resources.

20. The memory device having instructions as recited in
claim 15, wherein providing the first resource is performed
without providing the second web page to the user system.

* * * * *

Case 3:15-cv-00720-JAG Document 28-3 Filed 02/16/16 Page 16 of 16 PageID# 507

	
	

Exhibit	 D	

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 1 of 16 PageID# 508

c12) United States Patent
Harvell et al.

(54) CONTENT DELIVERY NETWORK CACHE
GROUPING

(71) Applicant: Limelight Networks, Inc., Tempe, AZ
(US)

(72) Inventors: Bradley B. Harvell, Chandler, AZ (US);
Nils H. McCarthy, Seattle, WA (US)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 13/732,570

(22) Filed: Jan.2,2013

(65) Prior Publication Data

US 2013/0246555 Al Sep. 19, 2013

Related U.S. Application Data

(63) Continuation of application No. 13/525,671, filed on
Jun. 18, 2012, now Pat. No. 8,370,449, which is a
continuation of application No. 13/245,797, filed on
Sep. 26, 2011, now Pat. No. 8,219,647, which is a
continuation of application No. 12/732,942, filed on
Mar. 26, 2010, now Pat. No. 8,219,645.

(60) Provisional application No. 61/248,378, filed on Oct.
2, 2009.

(51) Int. Cl.
G06F 151167 (2006.01)

(52) U.S. Cl.
USPC 709/214; 709/219; 711/122

(58) Field of Classification Search
USPC 709/214, 219, 203, 226, 224, 238;

370/351, 389; 718/105; 711/122
See application file for complete search history.

111111 111
US008683002B2

(10) Patent No.: US 8,683,002 B2
(45) Date of Patent: *Mar. 25, 2014

(56) References Cited

U.S. PATENT DOCUMENTS

6,542,964 B1 *
6,785,704 B1 *
8,028,090 B2 *
8,219,645 B2 *
8,219,647 B2 *
8,370,449 B2 *

2002/0009079 A1 *
2007/0025327 A1 *
2008/0071859 A1 *
2009/0248858 A1 *
2009/0254661 A1 *

* cited by examiner

4/2003
8/2004
9/2011
7/2012
7/2012
212013
1/2002
2/2007
3/2008

10/2009
10/2009

Scharber . 7111122
McCanne 718/105
Richardson eta!. 709/238
Harvell et a!. 709/219
Harvell et a!. 709/219
Harvell eta!. 709/214
Jungck eta!. 370/389
Raciborski et al 370/351
Seed eta!. 709/203
Sivasubramanian et a!. . 709/224
Full agar eta!. 709/226

Primary Examiner- Jungwon Chang
(74) Attorney, Agent, or Firm- Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

One or more content delivery networks (CDNs) that deliver
content objects for others is disclosed. Content is propagated
to edge servers through hosting and/or caching. End user
computers are directed to an edge server for delivery of a
requested content object by a universal resource indicator
(URI). When a particular edge server does not have a copy of
the content object from the URI, information is passed to
another server, the ancestor or parent server to find the content
object. There can be different parents servers designated for
different URis. The parent server looks for the content object
and if not found, will go to another server, the grandparent
server, and so on up a hierarchy within the group. Eventually,
the topmost server in the hierarchy goes to the origin server to
find the content object. The origin server may be hosted in the
CDN or at a content provider across the Internet. Once the
content object is located in the hierarchical chain, the content
object is passed back down the chain to the edge server for
delivery. Optionally, the various servers in the chain may
cache or host the content object as it is relayed.

20 Claims, 7 Drawing Sheets

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 2 of 16 PageID# 509

I- - 1os- - - -~ 106

I
Content ~ (
Provider r

I I
1
112 I
.l .

~~ Origin
1 Server

Content
Site

l! __ _:_~ _ __!__J

1120-~----
11 0) 1 Point of M~f-1'"---------l~,.,_,

Y Presence

I
1120-2

I ~ Point of
Presence

I
I •
I •
l120-n •
I Point of

I Presence

--- -- FIG. 1

102-1

114

102-n

End User
System(s)

End User
System(s)

•
• •

End User
System(s)

100

~

•
• •

~
00
•
~
~
~
~ = ~

~
~
:-:
N
~Ul

N
0
.j;o.

rFJ

=-('D
('D
0
-....l

d
rJl
00
0..,
00 w = = N

= N

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 3 of 16 PageID# 510

U.S. Patent Mar.25,2014 Sheet 2 of7 US 8,683,002 B2

120
POPs

114

248

CON Origin
Server

120 .. L
240

230-1

Fabric

Edge Server

1""""""""""""""'"""""""'"""""""'""11

.....___illl'l Edge Server

I
I
I

230-21

I
I
I
I

230-n 1

I
I

LJ

FIG. 2

110

I

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 4 of 16 PageID# 511

U.S. Patent Mar.25,2014 Sheet 3 of7 US 8,683,002 B2

_________ L 304

I I
I 316 I
I Caclle Parent I
I Engine Group Map I

I 312 I
I I
I I
I I
L_-------- _I

Fig. 3

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 5 of 16 PageID# 512

U.S. Patent Mar.25,2014 Sheet 4 of7 US 8,683,002 B2

Receive U Rl Specifying Content
Object & Group Variable

,.,..404

,.,..408

Ct1eck Cadle for
Content Object

412

Content Object
Available?

YES

NO r420

Obtain Group
Variable

Determine Ancestor Cache
from Group Variable

8........---E Request Content Object
from Ancestor Cache

428

Fig. 4A

~400-1

r432
....

Relay Content Object
Down Through Heirarchy

Deliver Content Object from Cache
that Received URI Original!y

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 6 of 16 PageID# 513

U.S. Patent Mar.25,2014 Sheet 5 of7 US 8,683,002 B2

,.,..404

Receive URI Specifying Content
Object & Group Variabie

1""'406

Re-write URI into
Source URI

,.,..408

Check Cache for
Content Object

412

Content Object
Available?

NO

Retrieve Ancestor Cache
Information for Source URI

'----1

Ancestor Cache(s) are
Found for the Source URI

Request Content Object
from Ancestor Cache(s)

-

YES

,.....416
I

,...422

428

Fig. 48

;/400-2

('432

-Relay Content Object
Down Through Heirarchy

Deliver Content Object from Cache
U1at Received URI Originally

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 7 of 16 PageID# 514

U.S. Patent Mar.25,2014 Sheet 6 of7 US 8,683,002 B2

Receive URI Specifying Content
Object & Group Variable

r-404

r406

Re-write URI into
Source URI

r-408

Check Cache for
Content Object

412

Content Object
Available?

NO

Check Neighboring Caches
for Content Object

Retrieve Ancestor Cache
Information for Source URI

...........,_;

Ancestor Cache(s) are
Found for tt1e Source URI

Request Content Object
from Ancestor Cache(s)

YES

-

.,...422

428

Fig. 4C

~400-3

('432 -Relay Content Object
Down Through Heirarchy

Deliver Content Object from Cache
that Received U Rl Originally

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 8 of 16 PageID# 515

U.S. Patent Mar.25,2014 Sheet 7 of7 US 8,683,002 B2

500~
(516

-
Origin
Server

~ 520

-----------~-----,
~ (512

-
San Jose

POP

("508-i

--..,.,.ll",.~-~

(508-2
11"""""'.......~,..._....,

Edge
Cache A

Los Angeles
POP

i

Denver
POP

i
(504-2 (504-3 (504-4

11"""""' ~_;-....., 11"""""'""""""""~""'1 B""-........JIW,~""'\11

504-1

Edge
"'" Cache B

Edge Edge
Cache C ... Cache D

-Edge
Cact1e E

I
I
I
I
I
I
I
I
I

I
L-----------------~

Fig. 5

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 9 of 16 PageID# 516

US 8,683,002 B2
1

CONTENT DELIVERY NETWORK CACHE
GROUPING

CROSS-REFERENCES TO RELATED
APPLICATIONS

This is a continuation patent application of U.S. patent
application Ser. No. 13/525,671 filed on Jun. 18, 2012, which
is a continuation of U.S. patent application Ser. No. 13/245,
797 filed on Sep. 26, 2011, which is a continuation applica
tion of U.S. patent application Ser. No. 12/732,942 filed on
Mar. 26, 2010, which claims the benefit of U.S. Application
No. 61/248,378 filed Oct. 2, 2009. The entire disclosures of
the above-listed applications are incorporated by reference in
their entirety for all purposes.

BACKGROUND

2
grandparent server, and so on up a hierarchy within the group.
Eventually, the topmost server in the hierarchy goes to the
origin server to find the content object. The origin server may
be hosted in the CDN or at a content provider across the

5 Internet. Once the content object is located in the hierarchical
chain, the content object is passed back down the chain to the
edge server for delivery. Optionally, the various servers in the
chain may cache or host the content object as it is relayed.

Further areas of applicability of the present disclosure will
10 become apparent from the detailed description provided here

inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure.

15

BRIEF DESCRIPTION OF THE DRAWINGS

This disclosure relates in general to content delivery net
works and, but not by way of limitation, to serving content 20

objects from edge server caches of a content delivery net
work.

The present disclosure is described in conjunction with the
appended figures:

FIG. 1 depicts a block diagram of an embodiment of a
content distribution system;

FIG. 2 depicts a block diagram of an embodiment of a
content delivery network (CDN); Content delivery networks (CDNs) are in the business of

delivering content for others. CDNs will either cache and/or
host content for its customers. Efficiently delivering content
for a large number of customers creates difficulty. It would
not be practical to store every possible content object serviced

FIG. 3 depicts a block diagram of an embodiment of a
25 portion of a content delivery network (CDN) that includes a

server coupled to a CDN network;

by the CDN on every edge server. Often caches are used on
the edge servers to store popular or important content at the
edges of the CDN. Popular content is less likely to have 30

delivery latency, while less popular content is more likely to
take a longer time to locate and deliver.

FIGS. 4A, 4B and 4C illustrate flowcharts of embodiments
of a process for finding a content object through various
hierarchies; and

FIG. 5 depicts a block diagram of an embodiment of a
lookup tree.

In the appended figures, similar components and/or fea
tures may have the same reference label. Further, various
components of the same type may be distinguished by fol-

In some cases, the content object is not available on the
edge server. This situation is sometimes referred to as a cache
miss. A universal resource locator (URL) provided to the
CDN from a requestor is used to find the content with a cache
miss. The content may be hosted internal to the CDN or with
a content provider. Finding the content object can be time
intensive and affect the quality of service (QoS) perceived by
the requestor. This is especially true for content that cannot be
located in the CDN and requires a request to an external origin
server to find the content.

35 lowing the reference label by a dash and a second label that
distinguishes among the similar components. If only the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second reference

40 label.

CDNs are typically comprised of a number of different
locations that serve content from, so called points of presence
(POPs). In some cases, these different POPs are intercon- 45

nected using the Internet and/or private backbones. Content
not found in one POP may be readily available from another
POP. Even within a POP, there are typically a number of
different edge servers that each fulfill requests for content.
These different edge servers have different capabilities and 50

different content in their cache. A cache miss at a particular
edge server would be expensive in QoS terms to fulfill from
another server or even outside the CDN.

DETAILED DESCRIPTION

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather,
the ensuing description of the preferred exemplary embodi
ment(s) will provide those skilled in the art with an enabling
description for implementing a preferred exemplary embodi-
ment. It being understood that various changes may be made
in the function and arrangement of elements without depart-
ing from the spirit and scope as set forth in the appended
claims.

Referring first to FIG. 1, a block diagram of an embodiment
SUMMARY

In one embodiment, one or more content delivery networks
(CDNs) deliver content objects for others. Content is propa
gated to edge servers through hosting and/or caching. End
user computers are directed to an edge server for delivery of

55 of a content distribution system 100 is shown. The content
originator 106 offioads delivery of the content objects to a
content delivery network (CDN) 110 in this embodiment. The
content originator 106 produces and/or distributes content
objects and includes a content provider 108, a content site

60 116, and an origin server 112. The CDN 110 can both cache
and/or host content in various embodiments for third parties
to offload delivery and typically provide better quality of
service (QoS) to a broad spectrum of end user systems 102
distributed worldwide.

a requested content object by a universal resource indicator
(URI). When a particular edge server does not have a copy of
the content object referenced in the URI, information is
passed to another server, the ancestor or parent server to find
the content object. There can be different parents servers 65

designated for different URis. The parent server looks for the
content object and if not found, will go to another server, the

In this embodiment, the content distribution system 100
locates the content objects (or portions thereof) and distrib
utes the content objects to an end user system 102. The

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 10 of 16 PageID# 517

US 8,683,002 B2
3

content objects are dynamically cached within the CDN 110.
A content object is any content file or content stream and
could include, for example, video, pictures, data, audio, soft
ware, and/or text. The content object could be live, delayed or
stored. Throughout the specification, references may be made
to a content object, content, content stream and/or content
file, but it is to be understood that those terms could be used
interchangeably wherever they may appear.

4
together. Although this embodiment only shows a single con
tent originator 106 and a single CDN 110, it is to be under
stood that there could be many of each in various embodi
ments.

With reference to FIG. 2, a block diagram of an embodi
ment of a CDN 110 is shown. Although only one POP 120 is
shown in detail, there are a number of POPs 120 similarly
configured throughout the CDN 110. The POPs communicate

Many content providers 108 use a CDN 110 to deliver the
content objects over the Internet 104 to end users 128. The 10

CDN 110 includes a number of points of presence (POPs)
120, which are geographically distributed through the content
distribution system 100 to deliver content. Various embodi
ments may have any number of POPs 120 within the CDN
110 that are generally distributed in various locations around 15

the Internet 104 so as to be proximate to end user systems 102.
Multiple POPs use the same IP address such that anAnycast
routing scheme is used to find a POP likely to be close to the
end user in a network sense for each request. In addition to the
Internet 104, a wide area network (WAN) and/or local area 20

network (LAN) 114 or other backbone may couple the POPs
120 with each other and also couple the POPs 120 with other
parts of the CDN 110.

through a WAN/LAN 114 and/or the Internet 104 when locat
ing content objects. An interface to the Internet 104 to the
POP 120 accepts requests for content objects from end user
systems 102. The request comes from an Internet protocol
(IP) address in the form of a URI.

Switch fabric 240 assigns the request to one of the edge
servers 230 according to a routing scheme such as round
robin, load balancing, etc. In this embodiment, the switch
fabric is aware of which edge servers 230 have what capabili
ties and assigns within the group having the capability to store
and serve the particular content object referenced in the URI.
A protocol such as cache array routing protocol (CARP) is
used in this embodiment to disperse the URis between the
group of edge servers 230. Every time that a particular URI is
requested from the group, it is assigned to the same edge
server 230 using CARP. The caches gathered in a particular
group as neighbors can be the other servers in the current POP,
less loaded servers in the current POP, servers having the

When an end user 128 requests a web page through its
respective end user system 102, the request for the web page 25

is passed either directly or indirectly via the Internet 104 to
the content originator 106. The content originator 106 is the
source or re-distributor of content objects. The content site
116 is an Internet web site accessible by the end user system
102. In one embodiment, the content site 116 could be a web 30

site where the content is viewable with a web browser. In

capability to process the content object, a subset of servers
assigned to a customer using the CDN to serve the content
object, or some other grouping of servers in the POP 120.

In another embodiment, the switch fabric 240 assigns the
request to one of the edge servers 230, which performs CARP
to either service the request or reassign it to a neighboring
edge server 230. The switch fabric 240 sends each packet flow
or request to an edge server 230 listed in the configuration of

other embodiments, the content site 116 could be accessible
with application software other than a web browser. The
content provider 108 directs content requests to a CDN 110
after they are made or formulates the delivery path by embed
ding the delivery path into the universal resource indicators
(URis) for a web page. In any event, the request for content is
handed over to the CDN 110 in this embodiment by using an
Anycast IP address corresponding to two or more POPs 120.

Once the request for a content object is passed to the CDN
110, the request is associated with a particular POP 120
within the CDN 110 using the Anycast routing scheme. The
particular POP 120 may retrieve the portion of the content
object from the content provider 108. Alternatively, the con
tent provider 108 may directly provide the content object to
the CDN 110 and its associated POPs 120 through prepopu
lation, i.e., in advance of the first request. In this embodiment,
the content objects are provided to the CDN 110 and stored in
one or more CDN servers such that the portion of the
requested content may be hosted from the CDN 110. The
CDN servers include edge servers in each POP 120 that
actually serve end user requests. The origin server 112 holds
a copy of each content object for the content originator 106.
Periodically, the content of the origin server 112 may be
reconciled with the CDN 110 through a cache, hosting and/or
pre-population algorithm. Some content providers could use
an origin server within the CDN 110 to host the content and
avoid the need to maintain a copy.

Once the content object is retrieved, the content object is
stored within the particular POP 120 and is served from that
POP to the end user system 102. The end user system 102
receives the content object and processes it for use by the end
user 128. The end user system 102 could be a personal com
puter, media player, handheld computer, Internet appliance,
phone, IPTV set top, streaming radio or any other device that
receives and plays content objects. In some embodiments, a
number of the end user systems 102 could be networked

35 the switch fabric 240. This embodiment does not have aware
ness of the particular capabilities of any edge server 230. The
assignment can be performed by choosing the edge server
with the least amount of connections or the fastest response
time, but the switch fabric in this embodiment assigns the

40 packet flow somewhat arbitrarily using round robin or ran
dom methodologies. When the chosen edge server 230
receives the packet flow, an algorithm like CARP is used by
the chosen edge server 230 to potentially reassign the packet
flow between a group of edge servers to the one dictated by

45 the algorithm. For example, the switch fabric 240 could
choose a second edge server 230-2 being the next in the round
robin rotation. The second edge server 230-2 would perform
CARP on the request and find that the first edge server 230-1
is being assigned this type of request. The request would be

50 reassigned to the first edge server 230-1 to fulfill.
In some cases, the CDN 110 is used to host content for

others. Content providers 108 upload content to a CDN origin
server 248. Although only one CDN origin server 248 is
shown, it is to be understood that there could be many spread

55 among a number of locations. The content object can be
stored in the CDN origin server 248. The CDN origin server
248 serves the content object within the CDN 110 to various
edge servers 230 in various POPs 120. After the content
provider 108 places a content object on the CDN origin server

60 248 it need not be hosted on the origin server 112 redundantly.
Requests from end user systems 102 are assigned to an

edge server 230 that may cache the requested content object.
On occasion, the edge server 230 receiving a request does not
have the content object stored for immediate serving. This

65 so-called "cache miss" triggers a process within the CDN 110
to effectively find the content object (or portion thereof) while
providing adequate QoS. The content may be found in neigh-

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 11 of 16 PageID# 518

US 8,683,002 B2
5

boring edge servers in the same POP 120, in another POP 120,
in a CDN origin server 248, or even an external origin server
112. The various edge and origin servers 230, 248 are grouped
for various URis uniquely. In other words, one URI may look
to one group of servers 230, 248 on a cache miss while
another URI will look to a different group of servers 230, 248.

Referring first to FIG. 3, an embodiment of a portion 3 00 of
a content delivery network (CDN) that includes an edge and/

Prefix

ACME.llnw.net
Smith.llnw.net
ShoeExpress.llnw.com
Vinex.llnw.com
SDDT.llnw.com

6
TABLE I

URI Grou in

Ancestor Server POP

San Jose
Dallas
Phoenix
San Jose
Denver

or origin server 304 coupled to the WAN/LAN 114 is shown. 10

The server could be an edge server, a host server or any other
server that can supply content objects. It may be at the bottom

The URI grouping happens because each server is aware of
its ancestor server to use for each URI. The net effect of each
server knowing the ancestor server to refer to is to have a
hierarchical tree that defines the group. Table I is an example
of grouping that could be stored in the parent group map 324.

of a hierarchy or a topmost position of the hierarchy within
the CDN. Although this embodiment shows the server 304 as 15

operating as a cache, the content objects could be sticky
within the cache such that the server 304 can also act as a host.
Indeed, all the content on the server 304 maybe hosted in one
embodiment.

Each server 304 in a CDN 110 can belong to any number of
groups. The grouping defines where content in the universal
resource indicators (URis) will be searched when not found at
a particular server 304. When the server 304 caunot find a
content object that is requested, it will go to the WAN/LAN
114 or another network to find the content object so long as all
options within the CDN are not exhausted. The URis may or

20

When a URI containing the ACME prefix is not found in a
server, the request is relayed to the San Jose POP 120 where
it is assigned to another server for fulfillment.

Grouping can be used to provide different levels of QoS.
Table II shows sub-groups for a particular prefix that can be
used to specifY a sub-group of servers within a POP 120. For
example, the ACME customer designated with the ACME
prefix in the URI may offer end user systems 102 three pos-

25 sible levels ofQoS.ACME could charge different rates for the
various levels ofQoS. The Q 1 URI variable would specify the
fastest servers with the largest caches in the most favorable
POP 120. The Q2 variable would assign a lower caliber of may not belong to a group, but when they do, a particular

ancestor server will be handed the URI for fulfillment after a 30
server in the most favorable POP 120. User systems 102
presenting the Q3 variable would be assigned a less favorable
POP when the content object is not found. cache miss that is potentially different from ancestor servers

for other groups. At the top of any hierarchy of lookup tree, a
server 304 experiencing a cache miss may go to the Internet
rather than the WAN/LAN 114 to obtain a content object from

TABLE II

35
an origin server of the content provider. The server 304

URI QoS Sub-Grouping

includes a cache engine 316, a parent group map 324, and a
cache 312.

Prefix

ACME ... Q1?

Ancestor Server POP

The cache engine 316 receives the URI or request for
content to fulfill the request by serving the content object to 40

the end user or server down the lookup tree. The cache engine
316 checks the cache 312 for the content object. Where there

ACME ... Q2?
ACME ... Q3?

San Jose -Edge Group A
San Jose- Edge Group B
Denver

Each server looks to the variable from the URI to determine
the next ancestor server up the hierarchy to query to when a
content object is not located locally. Where there is no ances-is a cache miss, the cache engine 316 finds the ancestor server

to check for the content object. The cache engine 316 receives
the group variable that is derived from the original URI or can
derive a tree of ancestor caches from the URI itself.

In one embodiment, a universal resource indicator (URI) is
requested and indicates a content object and optionally a
group variable. In another embodiment, the group variable is
not expressly within the URI, but the URI can be correlated to
ancestor caches or groups using a lookup table. Optionally,
the URI can also include a path, origin location, variable(s), a
prefix, etc. In some form, the URI is passed to various servers
in an attempt to find a requested content object. It is to be
understood that when the term URI is used, it doesn't neces
sarily require any format and just conveys at least where to
find a content object and the file or stream name. The URI
either has the group variable or can be otherwise correlated to
parent cache(s) or host. For example, ACME.llnw.net/videos/
sports/game.mov?lex5 is a URI with an ACME prefix, a lin-

45 tor cache for a URI, each server has a default hierarchy to find
ancestor caches. There can be any number of possible servers
up the hierarchy specified by any number of URis. In effect,
the group variable or URI defines a tree that will specify a
flow that ultimately ends in an origin server or host some-

50 where. These trees can be selected differently for a number of
URis rather than relying on some default lookup tree.

The parent group map 324 stores at least one ancestor
server location for each group variable or URI string. If there
is no ancestor server specific to the particular group variable

55 or URI, a default ancestor server can be used. In any event, the
parent group map 324 returns ancestor server locations or
addresses to the cache engine 316. For example, a parent
cache and grandparent cache would be returned for a particu
lar URI or group variable. Should the parent cache not

60 respond for whatever reason, the grandparent cache would be
queried. The parent group map 324 can be a database or
look-up table that is populated by the CDN to implement a
lookup tree.

w.net domain, a videos/sports path, a game.mov filename,
and a lex5 group variable. The URI itself, the ACME prefix 65

The cache engine 316 requests the content object from the
parent server or grandparent server. Once the ancestor server
responds, it will find the content object locally or will look to
its ancestor servers. This cycle can repeat many times through

and/or lex5 in this example could be used by servers to look
up where to look for a content object when not found locally.

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 12 of 16 PageID# 519

US 8,683,002 B2
7

various levels in a hierarchy to ultimately find the content
object. The content object is relayed back down the hierarchy
to the cache engine 316 that places the content object in the
cache 312 as the content object is passed to the end user or
down the hierarchy.

Although this embodiment uses a chained approach to
finding a server with the content object, other embodiments
could use a star approach. In the star approach, the edge server
receiving the URI would hold the entire lookup tree in its
parent group map 324. The higher levels in the hierarchy 10

could be successively queried for the content object. Those
queries could be done overlapping in time to speed the lookup
process. The content object is provided directly from the
server higher in the hierarchy without involving every level in

15
the hierarchy. The servers at various levels in the hierarchy
could decide to store the content object or not in various
embodiments.

8
processing continues to block 432 and 436 if the content
object is within the edge server cache in the same manner as
the embodiment of FIG. 4A.

Should the content object not be in the cache of the edge
server as determined in block 412, processing continues to
block 416. During the rewrite process of block 406, many
parameters such as the ancestor cache(s) are retrieved for the
source URL and retrieved for use in block 416. The ancestor
cache(s) is the start of a potentially iterative process that
defines the tree of the cache group. In block 422, ancestor
caches are found using the parameters associated with the
source URL. As each source URLs could have different
ancestor caches, different cache groups form on a URI-by
URI basis. The cache group is a function of the POP receiving
the request and ancestor cache preferences for each source
URI.

The ancestor cache for a particular URI may be chosen for
any number of reasons. Which ancestors are used may adjust
on a server, POP-wide or CDN-wide basis with periodic (e.g., With reference to FIG. 4A, a flowchart of an embodiment

of a process 400-1 for finding a content object through various
hierarchies is shown. On a URI-by-URI basis, the lookup tree
can change. The depicted portion of the process begins in
block 404 where the edge server receives a URI. The URI
indicates an address that was used to find the edge server, a
group variable and information to find the content object
along with other information. Initially, the edge server checks
its cache 312 for the content object.

20 hourly, daily, weekly, monthly, or some other period) or real
time updates that react to health and loading of particular
servers and POPs. An ancestor may be chosen based upon
whether the content is hosted and/or cached in the CDN, the
capability of a server to stream or process different content

In block 412, it is determined if the content object is avail
able in the edge server 412. We will cover the scenario where
it is not found initially by progressing to block 420. The group
variable is obtained from the URI or it might be passed by a
prior server lower in the hierarchy. The ancestor server is
determined by referencing the parent group map 324 in block
424 with the group variable value. Although not shown, one

25 objects with different media types, loading of a server, a
server going down, a server having health problems, loading
of network connections of a server, or other issues that would
affect the suitability of a particular ancestor server tempo
rarily or permanently. For example, a data connection

30 between a cache and an ancestor cache may be overloaded
and the ancestor cache would change to one that was suitable.

or more back-up ancestor servers could be queried if the 35

ancestor server does not respond. In block 428, the content
object is requested from the ancestor server determined in
block 424. Next, processing loops back to block 408 to see if
the next higher server in the lookup tree has the content
object. These iterations continue until the content object is 40

found in block 412.
Should the content object be found in the present iteration

A table or database stores ancestor cache information for
each source URL or group of source URLs. Typically, there is
a primary ancestor and at least one back-up should the pri
mary not respond for whatever reason. In block 428, the
source URI is requested of the primary ancestor cache and
any back-up ancestor caches, if necessary. Processing then
loops back to block 408 to repeat block 412, 416, 422, and 428
in a loop to work through the hierarchy. Although not shown,
the highest level in the hierarchy would refer to the origin
server to retrieve the content object.

With reference to FIG. 4C, a flowchart of another embodi
ment of a process 400-3 for finding a content object through
various hierarchies is shown. This embodiment is similar to

or in the higher levels in the hierarchy of the lookup tree in
block 412, processing continues to block 432. In the simple
case, the edge server has the content object already before
ever going through the loop. Where that is not the case, the
content object is relayed down through the hierarchy from the
server that had the content object to the edge server in block
432. Each server in that chain may cache or otherwise store
the content object. In block 436, the edge server that origi
nally received the request for the content object serves the
content object through a stream or download to an end user.

45 the embodiment of FIG. 4B, but adds a block 414 between
blocks 412 and 416. In block 414, neighboring servers are
searched for the content object before resorting to an ancestor
cache out side those neighbors. The neighboring servers
could be a group of the entire POP 120 or a sub-group of the

50 servers within the POP 120. The serving of the content object
may be reassigned to the server holding the content object or
may be relayed or proxied to the server currently assigned to
serve the content in various embodiments. With reference to FIG. 4B, a flowchart of another embodi

ment of a process 400-2 for finding a content object through
various hierarchies is shown. The depicted portion of the
process 400-2 begins in block 402 where a URI request is
received an edge server at the POP that specifies a content
object. The URI is rewritten in block 406. There may be many
different versions of a URI that correspond to a single content
object. A look-up table is used to match as much of the URI as 60

possible to an authoritative name or source URL. The caches
store content objects based upon the source URL, which
points to an origin server that can be used to retrieve a content
object not in the CDN.

Referring to FIG. 5, a block diagram of an embodiment of
55 a lookup tree 500 is shown. This lookup tree 500 is simplified

as there could be hundreds or thousands of blocks on the

It is determined in block 408 if the edge server receiving the 65

request has the content object available locally. In block 412,

lookup tree for a CDN. Embodiments could have different
lookup trees 500 for different customers, content formats,
digital rights management, delivery methods, end user Inter
net service providers, bitrates, loading levels, etc. This
embodiment shows three levels of hierarchy within the CDN
520 prior to requesting a content object an external origin
server 516. By loading the parent group maps 324 for all the
servers in the lookup tree 500 will organize the hierarchy for
a particular group variable.

In the first level of the hierarchy for the lookup tree 500,
there are five edge servers 504 that cache content objects. The a determination is made if the content object is available and

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 13 of 16 PageID# 520

US 8,683,002 B2
9

edge servers 504 could be distributed around the Internet in
different ways. For example, edge cache A and B 504-1,
504-2 could be in the same POP or in different POPs. When a
request goes edge cache A 504-1 and cannot be fulfilled
internally, edge cache B 504-2 is checked next for the content
object. Should the content object not be found in edge cache
B 504-2, the request would go to another POP in Los Angeles
508-1. One or all the caches in the Los Angeles POP 508-1
would be queried for the content object.

10
program, a routine, a subroutine, a module, a software pack
age, a script, a class, or any combination of instructions, data
structures, and/or program statements. A code segment may
be coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, and/or memory contents. Information, argu
ments, parameters, data, etc. may be passed, forwarded, or
transmitted via any suitable means including memory shar
ing, message passing, token passing, network transmission,

Should the Los Angeles POP 508-1 not have the content
object, it would query the POP having the San Jose POP 512.
If not found in the San Jose POP 512, a server of the San Jose
POP 512 would go back to the origin server 516 to retrieve the
content object. In another embodiment, the CDN 520 hosts
the content objects to serve as the origin server 516.

10 etc.
While the principles of the disclosure have been described

above in connection with specific apparatuses and methods, it
is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the

15 disclosure.
In another example, the content object request starts with

edge cache D 504-4. If not found there, a request would be
made by edge cacheD 504-4 to edge cache C 504-3, but not
to edge cache E. For example, edge cache E may be in a
different location or not suited to store and serve the content 20

object. Should the content object not be found in edge cache
C, the Denver POP 508-8 would be queried by edge cache C.
If not found, the next request goes from the Denver POP
508-8 to the San Jose POP 512. Finally, the origin server 516
would be queried if the content object is not found in the San 25

Jose POP 512.
In some cases, the search for a server with the content

object can get caught in a loop. A misconfiguration in the
parent group maps 324 could cause this problem perhaps as a
update to the lookup tree 500 is partially rolled out. When a 30

server receives a request for the content object from another
server, the server checks to see if in the chain of servers
relaying the request the receiving server is already listed. This
would indicate a loop had developed. The loop could be
broken by referring the request to another POP or even to the 35

origin server, for example.
Specific details are given in the above description to pro

vide a thorough understanding of the embodiments. However,
it is understood that the embodiments may be practiced with
out these specific details. For example, circuits may be shown 40

in block diagrams in order not to obscure the embodiments in
unnecessary detail. In other instances, well-known circuits,
processes, algorithms, structures, and techniques may be
shown without unnecessary detail in order to avoid obscuring
the embodiments. 45

Also, it is noted that the embodiments may be described as
a process which is depicted as a flowchart, a flow diagram, a
data flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a
sequential process, many of the operations can be performed 50

in parallel or concurrently. In addition, the order of the opera
tions may be re-arranged. A process is terminated when its
operations are completed, but could have additional steps not
included in the figure. A process may correspond to a method,
a function, a procedure, a subroutine, a subprogram, etc. 55

When a process corresponds to a function, its termination
corresponds to a return of the function to the calling function
or the main function.

Furthermore, embodiments may be implemented by hard
ware, software, scripting languages, firmware, middleware, 60

microcode, hardware description languages, and/or any com
bination thereof. When implemented in software, firmware,
middleware, scripting language, and/or microcode, the pro
gram code or code segments to perform the necessary tasks
may be stored in a machine readable medium such as a star- 65

age medium. A code segment or machine-executable instruc
tion may represent a procedure, a function, a subprogram, a

What is claimed is:
1. A method to retrieve content objects in a content delivery

network (CDN) having a plurality of points of presence
(POPs) distributed geographically by checking one or more
neighboring servers before checking a parent server, the
method comprising:

receiving a first universal resource identifier (URI) at a first
edge server having a first cache wherein:
the first edge server is in a first POP of the plurality of

POPs, and
the first URI specifies a first content object;

determining that the first cache does not hold the first
content object;

querying the one or more neighboring servers for the first
content object, wherein the one or more neighboring
servers each have a cache;

determining that one or more caches of the one or more
neighboring servers stores the first content object;

serving the first content object from the one or more caches
of the one or more neighboring servers;

receiving a second URI at the first edge server, wherein the
second URI specifies a second content object;

determining that the first cache does not hold the second
content object;

querying the one or more neighboring servers for the sec
ond content object;

determining that the one or more caches of the one or more
neighboring servers do not hold the second content
object;

analyzing the second URI to determine the parent server,
and

requesting the second content object from the parent server
after determining that the one or more caches of the one
or more neighboring servers do not hold the second
content object.

2. The method to retrieve content objects in the CDN
having the plurality of POPs distributed geographically as
recited in claim 1, wherein the one or more caches of the one
or more neighboring servers are located within the first POP.

3. The method to retrieve content objects in the CDN
having the plurality of POPs distributed geographically as
recited in claim 2, wherein the one or more caches of the one
or more neighboring servers comprise each cache, for storing
content objects, within the first POP.

4. The method to retrieve content objects in the CDN
having the plurality of POPs distributed geographically as
recited in claim 1, wherein:

the parent server is in a second POP of the plurality of
POPs, and

the second POP is different from the first POP.
5. The method to retrieve content objects in the CDN

having the plurality of POPs distributed geographically as

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 14 of 16 PageID# 521

US 8,683,002 B2
11

recited in claim 1, wherein the serving the first content object
from the one or more caches of the one or more neighboring
servers comprises serving the first content object to an end
user system from the first edge server acting as a proxy for the
one or more neighboring servers.

6. The method to retrieve content objects in the CDN
having the plurality of POPs distributed geographically as
recited in claim 1, wherein serving of the first content object
is reassigned from the first edge server to the one or more
neighboring servers. 10

7. The method to retrieve content objects in the CDN
having the plurality of POPs distributed geographically as
recited in claim 1, wherein querying one or more neighboring
servers for the second content object comprises:

querying a second edge server; and
querying a third edge server, wherein the querying the

second edge server and the querying the third edge
server are performed overlapping in time.

15

8. A content delivery network (CDN) for retrieving content 20

objects from one or more neighboring servers before request
ing content objects from a parent server, the CDN compris
ing:

12
serving the first content object to an end-user system is reas
signed from the first edge server to the one or more neighbor
ing servers.

12. The CDN for retrieving content objects from the one or
more neighboring servers before requesting content objects
from the parent server, as recited in claim 8, the CDN further
comprising:

a first neighboring server, wherein:
the first neighboring server is part of the one or more

neighboring servers, and
the first edge server makes a first query of the first

neighboring server for the first content object; and
a second neighboring server, wherein:

the second neighboring server is part of the one or more
neighboring servers,

the first edge server makes a second query of the second
neighboring server for the first content object, and

the first query and the second query overlap in time.
13. The CDN for retrieving content objects from the one or

more neighboring servers before requesting content objects
from the parent server, as recited in claim 8, wherein the first
URI and the second URI correspond to different content
objects.

a plurality of POPs distributed geographically;
a first edge server having a first cache, wherein:

the first edge server is located within a first POP of the
plurality of POPs,

14. The CDN for retrieving content objects from the one or
25 more neighboring servers before requesting content objects

from the parent server, as recited in claim 8, wherein the first
URI is a portion of a third URI.

the first edge server receives a first universal resource
identifier (URI),

the first URI specifies a first content object,
the first edge server determines that the first cache does

not hold the first content object,

15.A content delivery network (CDN) having a plurality of
points of presence (POPs) for retrieving content objects, the

30 CDN comprising one or more servers programmed for:
receiving a first universal resource identifier (URI) at a first

server having a first cache, wherein:
the first edge server queries one or more neighboring

servers for the first content object, wherein the one or
more neighboring servers each have a cache,

the first edge server receives an indication that the first
content object is stored in one or more caches of the
one or more neighboring servers,

the first edge server receives a second URI,
the second URI specifies a second content object,
the first edge server determines that the first cache does

not hold the second content object,
the first edge server determines that the one or more

caches of the one or more neighboring servers do not
store the second content object, and

the first edge server requests the second content object
from the parent server after determining that the one
or more caches of the one or more neighboring servers
do not hold the second content object; and

a second POP, wherein:
the second POP is different from the first POP, and
the second POP comprises the parent server.

35

40

45

50

9. The CDN for retrieving content objects from the one or
more neighboring servers before requesting content objects
from the parent server, as recited in claim 8, wherein the one 55

or more neighboring servers are located within the first POP.
10. The CDN for retrieving content objects from the one or

more neighboring servers before requesting content objects
from the parent server, as recited in claim 8, wherein an end
user is served the first content object from the one or more 60

caches of the one or more neighboring servers by the first
edge server acting as a proxy for the one or more neighboring
servers.

11. The CDN for retrieving content objects from the one or
more neighboring servers before requesting content objects 65

from the parent server, as recited in claim 8, the CDN further
comprising the one or more neighboring servers, wherein

the first server is in a first POP of the plurality of POPs,
and

the first URI specifies a first content object;
determining that the first cache does not hold the first

content object;
querying one or more neighboring servers for the first

content object, wherein the one or more neighboring
servers each have a cache;

determining that one or more caches of the one or more
neighboring servers stores the first content object;

serving the first content object from the one or more caches
of the one or more neighboring servers;

receiving a second URI at the first server, wherein the
second URI specifies a second content object;

determining that the first cache does not hold the second
content object;

determining that the one or more caches of the one or more
neighboring servers do not hold the second content
object;

analyzing the second URI to determine a cache hierarchy
for the second URI, and

requesting the second content object from the cache hier
archy after determining that the one or more caches of
the one or more neighboring servers do not hold the
second content object.

16. The CDN having the plurality of POPs for retrieving
content objects as recited in claim 15, wherein the one or more
neighboring servers are in the first POP.

17. The CDN having the plurality of POPs for retrieving
content objects as recited in claim 15, wherein:

the cache hierarchy comprises a cache in a second POP;
and

the second POP is different from the first POP.
18. The CDN having the plurality of POPs for retrieving

content objects as recited in claim 15, wherein an end user is

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 15 of 16 PageID# 522

US 8,683,002 B2
13

served the first content object from the one or more caches of
the one or more neighboring servers by the first server acting
as a proxy for the one or more neighboring servers.

19. The CDN having the plurality of POPs for retrieving
content objects as recited in claim 15, wherein querying one
or more neighboring servers for the first content object com
prises:

querying a second server; and
querying a third server, wherein the querying the second

server and the querying the third server is performed 10

overlapping in time.
20. The CDN having the plurality of POPs for retrieving

content objects as recited in claim 15, wherein the first con
tent object is not the same as the second content object.

* * * * *
15

14

Case 3:15-cv-00720-JAG Document 28-4 Filed 02/16/16 Page 16 of 16 PageID# 523

	
	

Exhibit	 E	

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 1 of 29 PageID# 524

c12) United States Patent
Hofmann et al.

(54) DYNAMICALLY SELECTING BETWEEN
ACCELERATION TECHNIQUES BASED ON
CONTENT REQUEST ATTRIBUTES

(71) Applicant: Limelight Networks, Inc., Tempe, AZ
(US)

(72) Inventors: Jason Hofmann, New York, NY (US);
Hemdat Cohen-Shraga, Elkana (IL);
Erez Yaffe, Tel Aviv (IL)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 42 days.

(21) Appl. No.: 13/946,777

(22)

(65)

Filed: Jul. 19, 2013

Prior Publication Data

US 2015/0026239 Al Jan.22,2015

(51) Int. Cl.
G06F 151173
H04L29/06

(2006.01)
(2006.01)

(52) U.S. Cl.
CPC H04L 29106047 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,802,292 A 9/1998 Mogul
5,826,031 A 10/1998 Nielsen
5,884,098 A 3/1999 Mason, Jr.
5,894,554 A 4/1999 Lowery eta!.
6,023,726 A 212000 Saksena
6,055,572 A 4/2000 Saksena

111111 111

KR

US009015348B2

(10) Patent No.: US 9,015,348 B2
Apr. 21, 2015 (45) Date of Patent:

6,067,565 A
6,085,226 A
6,098,064 A
6,272,534 B1
6,338,096 B1
6,385,641 B1
6,553,393 B1
6,578,073 B1
6,654,807 B2

5/2000 Horvitz
7/2000 Horvitz
8/2000 Pirolli et a!.
8/2001 Guha
112002 Ukelson
5/2002 Jiang et a!.
4/2003 Eilbott eta!.
6/2003 Starnes et al.

1112003 Farber et a!.

(Continued)

FOREIGN PATENT DOCUMENTS

20030029244 A 4/2003

OTHER PUBLICATIONS

Bartolini, "A Walk through Content Delivery Networks", Retrieved
on Jul. 4, 2012 from http://wwwusers.di.uniromal.it/-novella/
articoli/CDN_tutorial.pdf, 2012, p. 1-25.

(Continued)

Primary Examiner- Scott B Christensen
(74) Attorney, Agent, or Firm- Kilpatrick Townsend &
Stockton, LLP

(57) ABSTRACT

A system for dynamically selecting from among a plurality of
acceleration techniques implemented in a Content Delivery
Network (CDN) using attributes associated with content
requests may include a network interface that receives a con
tent request from a client system for content, where the
request is associated with one or more attributes. The system
may also include an intermediate server that accelerates
access to the content stored in the CDN edge servers. The
intermediate server may include a processor configured to
access the one or more attributes associated with the content
request, select one or more acceleration techniques from the
plurality of acceleration techniques where the one or more
acceleration techniques are selected based on the one or more
attributes, and use the one or more acceleration techniques to
provide the content to the client system.

19 Claims, 13 Drawing Sheets

7~------
1 I
I I
I I

·~~~I~~
I
I
I

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 2 of 29 PageID# 525

(56) References Cited

U.S. PATENT DOCUMENTS

6,665,658 B1 12/2003 DaCosta eta!.
6,799,214 B1 9/2004 Li
6,834,297 B1 12/2004 Peiffer et al.
6,976,090 B2 12/2005 Ben-Shaul eta!.
6,993,591 B1 112006 Klemm
7,007,237 B1 2/2006 Sharpe
7,012,612 B1 3/2006 O'Neill eta!.
7,084,877 B1 8/2006 Panusopone et a!.
7,100,111 B2 8/2006 McElfresh et a!.
7,107,338 B1 9/2006 Nareddy eta!.
7,113,935 B2 9/2006 Saxena
7,240,100 B1 7/2007 Wein eta!.
7,243,309 B2 7/2007 Koay et al.
7,249,196 B1 7/2007 Peiffer et al.
7,308,490 B2 12/2007 Peiffer et al.
7,337,248 B1 2/2008 Rao eta!.
7,373,599 B2 5/2008 McElfresh et a!.
7,483,941 B2 112009 Carlson et a!.
7,594,003 B2 9/2009 Davidson et al.
7,594,013 B2 9/2009 Wang et al.
7,636,770 B2 12/2009 Bennett et a!.
7,689,663 B2 3/2010 Kinnan et al.
7,814,172 B2 10/2010 Martinet a!.
7,818,686 B2 10/2010 Cooke
7,860,881 B2 12/2010 Haselden et al.
7,886,218 B2 212011 Watson
7,941,483 B2 5/2011 Narayanan eta!.
7,958,232 B1 6/2011 Colton eta!.
8,028,090 B2 9/2011 Richardson eta!.
8,060,518 B2 1112011 Timmons
8,112,703 B2 212012 Kumar et al.
8,122,102 B2 212012 Wein eta!.
8,166,079 B2 4/2012 Lewin eta!.
8,219,633 B2 7/2012 Fainberg et a!.
8,219,647 B2 7/2012 Harvell eta!.
8,250,457 B2 8/2012 Fainberg et a!.
8,346,784 B1 112013 Potekhin et a!.
8,495,171 B1 7/2013 Potekhin et a!.

2002/0063714 A1 5/2002 Haas eta!.
2002/0078087 A1 6/2002 Stone
2002/0078165 A1 6/2002 Genty eta!.
2003/0101412 A1 5/2003 Eid
2004/0030717 A1 2/2004 Caplin
2004/0088375 A1 5/2004 Sethi eta!.
2004/0215665 A1 10/2004 Edgar eta!.
2004/0225562 A1 1112004 Turner
2005/0044491 A1 2/2005 Peterson
2005/0138143 A1 6/2005 Thompson
2005/0154781 A1 7/2005 Carlson et a!.
2005/0198191 A1 9/2005 Carlson
2006/0093030 A1 5/2006 Francois eta!.
2006/0218305 A1 9/2006 Kinnan et al.
2007/0022102 A1 112007 Saxena
2007/0156845 A1 7/2007 Devanneaux et a!.
2007/0162434 A1 7/2007 Alessi eta!.

US 9,015,348 B2
Page 2

2009/0240698 A1
2009/0300111 A1
2010/0017696 A1
2010/0149091 A1
2010/0169455 A1
2010/0269050 A1
2010/0281357 A1
2010/0299589 A1
2010/0306643 A1
201110016180 A1
201110029899 A1
201110066676 A1
201110087966 A1
201110113000 A1
201110276446 A1
201110289486 A1
201110302321 A1
2012/0030224 A1
2012/0054595 A1
2012/0079057 A1
2012/0185370 A1
2012/0198022 A1
2013/0227078 A1 *
2013/0326022 A1

9/2009 Shukla et a!.
12/2009 Rana

112010 Choudhary eta!.
6/2010 Kota eta!.
7/2010 Gorham

10/2010 Kirkbyetal.
1112010 Fu et al.
1112010 Yamada
12/2010 Chabot et al.

112011 Bharadhwaj et a!.
2/2011 Fainberg eta!.
3/2011 Kleyzit et a!.
4/2011 Leviathan et a!.
5/2011 Marlow

1112011 Gupta et a!.
1112011 Revinskaya et a!.
12/2011 Vange et al.
212012 Cohen eta!.
3/2012 Mylroie et a!.
3/2012 Fainberg et a!.
7/2012 Davie eta!.
8/2012 Black eta!.
8/2013 Wei eta!. 709/219

12/2013 Ehrlich et al.

OTHER PUBLICATIONS

Bogdanov et al., "A prototype of online privacy-preserving question
naire system," 2010, 6 pages.
Chen, G., et al., "Building a Scalable Web Server with Global Object
Space Support on Heterogeneous Clusters," Third IEEE International
Conference on Cluster Computing (CLUSTER'01), 2001, 8 pages.
Gardner eta!., "DOM: Towards a Formal Specification," Plan-X ' 08,
Jan. 9, 2008, San Francisco, 2008, 10 pages.
Jansen, "Guidelines on Active Content and Mobile Code", Retrieved
on Jul. 4, 2012 from http://csrc.nist.gov/publications/nistpubs/800-
28-ver2/SP800-28v2.pdf, NIST Special Publication 800-28 Version
2, Mar. 2008, p. 1-62.
Jing, J., et a!., "Client Server Computing in Mobile Environments,"
ACM Computing Surveys, Jun. 1999, pp. 117-157, vol. 31, No.2.
Mor, "Evaluation of Delivery Techniques for Dynamic Web Con
tent", Retrieved on Jul. 2, 2012, http://infolab.stanford.edu/-mor/
research/eodposter.pdf, pp. 1-2.
Pallis et a!., "Insight and Perspectives for Content Delivery Net
work", Retrieved on Sep. 5, 2012 from http://gridsec.usc.edu/files/
EE657/P2P-CDNetworks-Survey-2006.pdf, Jan. 2006, vol. 49, p.
1-6.
Rayburn, "How Dynamic Site Acceleration Works, What Akamai
and Cotendo Offer", Retrieved on Jul. 4, 2012 from http://blog.
streamingmedia.corn/the_business_of_online_ vi/20 10/1 0/how
dynamic-site-acceleration-works-what-akamai-and-cotendo-offer.
htrnl, Oct. 18, 2010, p. 1-4.
Seifert et a!., "Identification of Malicious Web Pages with Static
Heuristics," IEEE, 2008, pp. 91-96.
U.S. Appl. No. 13/245,841, Office Action mailed Mar. 5, 2012, 17
pages.

2007/0208610 A1 9/2007 Pisaris-Henderson et al.
U.S. Appl. No. 13/245,841, Notice of Allowance mailed Jul. 2, 2012,
4 pages.

2007/0256003 A1 1112007
2007/0260748 A1 1112007
2008/0005672 A1 112008
2008/0071859 A1 3/2008
2008/0139191 A1 6/2008
2008/0155425 A1 6/2008
2008/0195712 A1 8/2008
2008/0228772 A1 9/2008
2008/0228911 A1 9/2008
2009/0037454 A1 212009
2009/0125481 A1 5/2009

Wagoner et a!.
Talkington
Mestres et a!.
Seed eta!.
Melnyk et al.
Murthy eta!.
Lin eta!.
Plamondon
Mackey
Sampson et al.
Mendes da Costa et a!.

U.S. Appl. No. 13/245,711, Notice of Allowance mailed Apr. 24,
2012, 10 pages.
U.S. Appl. No. 12/848,559, Office Action mailed Aug. 3, 2012, 26
pages.
U.S. Appl. No. 13/471,211, Office Action mailed Aug. 8, 2012, 14
pages.
Wikipedia, "Web accelerator", Retrieved on Mar. 14, 2012, from
http:/ /en.wikipedia.org/wiki/Web_accelerator, Jan. 11, 2012, p. 1-3.

* cited by examiner

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 3 of 29 PageID# 526

I
I

I 112

I

II Origin
1 Server

108
-
Content
Provider

Content
Site

~106

I
I

1.!---
__ __.

!120-1----

110 l.!
Presence
Point of

I

1120-2 • I I I I
I 1 Point of I• /' I Presence

I
I

•
•

l120-n •

I
I

Point of
Presence

--- I
FIG. 1

102-1

102-2

114

102-n

End User
System(s)

End User
System(s)

•
•
•

End User
System(s)

,r/100

•
•
•

~
00
•
~
~
~
~ = ~

> 'e
:-:
N
~

N
0
Ul

rFJ

=('D
('D
0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 4 of 29 PageID# 527

U.S. Patent Apr. 21, 2015

....- N
I I

0 0
CV) CV)
N N

'- 1-
Q) Q)

c: c:
Q) Q)

(f) (f)
Q) Q)
0> 0>

"'0 "'0 w w

J

0

~
Q) Q)
c
'- ::::l
Q) 0 err::

Sheet 2 of 13

, , ,
.c u
u ·-...... '-
·- .0
:s:: co

(f)LL

0

•

~

•

c
I

0
CV)

N

•

1-z Q)

<("5 s&

'-
Q)

c:
Q)

(f)

Q)
0>

"'0
w

US 9,015,348 B2

N

<.9
LL

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 5 of 29 PageID# 528

U.S. Patent

r
I

0 I N ...-

~ I
I
I

rt
0 l -.:!"
N

...-
I

0
(V)
N

Apr. 21, 2015 Sheet 3 of 13

r
N
N

- Q) Q)
c
.... ::::l
Q) 0
"Eo:::

0 •
N
(V)

-----~---

[] [] ~ d
I I

N Q) N Q)
0 0
(V) co (V) co

"0 "0
Q) Q)

E a> E a> c: ••• c:
2 Q) 20>
t::(f) C(J)

--

....
Q) Q)

c: >
Q) Q)

(f) (f) • • • Q) Q)

0> 0>
"0 "0
w w

I I
0 0
(V) (V)
N N

US 9,015,348 B2

1
I
I
I <(

(")

I .
(9

I u..

I
.J

....
Q)

c:
Q)

(f)
Q)
0>
"0 w

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 6 of 29 PageID# 529

230-1 306

Edge Server I Intermediate
Server

230-

120

/
240

,...'J.... _____ ...,

I 302-1l

Intermediate u
Server 1 I

Edge Server 111111 ., • I

230-

•
•
•

Edge Server 1~ I

• I~ 302-n). • •

1 'Intermediate u
Server

I
L------~

FIG. 38

320 220l

~ Q)

~ ()I o ro Internet • ~'t::
- Q) Router Q)_.

z c

~
00
•
~
~
~
~ = ~

> 'e
:-:
N
~

N
0
Ul

rFJ

=('D
('D
.j;o.

0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 7 of 29 PageID# 530

Edge Server

4~
~

Content ;_14

230

Intermediate
Server

I
Content Request

...
412 s

~6

Accel

- 4~
~

~n?

FIG.4A

Client System

Attributes

Content ;_JS --
Metrics

402

~
00
•
~
~
~
~ = ~

~
:-:
N
~

N
0
Ul

rFJ

=('D
('D
Ul
0
(.H

d
rJl

'"'..c =
""""' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 8 of 29 PageID# 531

Edge Server

- 4~
~

Content, Attributes

230

Intermediate
Server

I
Content Request, Attributes

;54

;J6
Accel

4~

" '<f'l?

FIG. 48

Client System

Content ;J8

Metrics

402

~
00
•
~
~
~
~ = ~

~
:-:
N
~

N
0
Ul

rFJ

=('D
('D
0\
0
(.H

d
rJl

'"'..c =
""""' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 9 of 29 PageID# 532

230-L 240

,....l _____,
I 302-1 I Edge Server 11111 I

I
230-2..._ 11ntermediate u

I

I Server

I Edge Server 11111
... •

IIIII • 302-n •
• I I
• ~ Intermediate u I 230-IL • Server

I I
Edge Server 11111 I L------_...1

FIG. 5

506

r -'""'- - - - 1
I 502 I
I f Simulator I
I I I 504-1

I
1 T Config 1 I I .. I 504-2

I [Config 2 I I •
I 504-n •

I f Con;g n I I I
I _____ _j

~
00
•
~
~
~
~ = ~

> 'e
:-:
N
~

N
0
Ul

rFJ

=-('D
('D
-....l
0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 10 of 29 PageID# 533

602

604-1
,J

I Accel1 I
604-2

.... ~--A-c-ce_l_2--~

604-n

I Accel n (

608

=I

610

~ \ Screen 1

\

\

\.atency 1
\

LC\tency 2

Lat~cy 3

\
\
\
\

\ \

\
\

Browser 1

Accel1

Accel1,2

Accel2

Screen 2

Latency 1

Latency 2

Latency 3

FIG. 6A

612 7
Browser 2 Browser 3

Accel1

Accel1,2 Accel2

Browser 1 Browser 2

Accel1,2

Accel1,2,3 Accel1,2

Accel 2,3 Accel1,2,3

\
\
\
\
\
\

\ \
Browser 3

Accel1

Accel2

Accel3

\
'

~
00
•
~
~
~
~ = ~

~
:-:
N
:-'
N
0
Ul

rFJ

=('D
('D
QO

0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 11 of 29 PageID# 534

602

604-1

I Accel1 r
604-2

,..~--A-c-ce_l_2--~

604-n

I Accel n (

608

=!

610

'\ Screen 1 Browser 1

\.atency 1 Accel1
\ .
L(\tency 2 Accel1,2

Lat~~cy 3 Accel2

\ \ \
\
\ I Screen 2 I
\
\ I Latency 1 I
\
\ I Latency 2

'· Latency 3

FIG. 68

606

612
(

Browser 2 Browser 3

Accel1

Accel1,2 Accel2

Screen 1 I Screen 2

Accel1,2

\
\
\
\
\
\

\
Screen 3

Accel1

\

~
00
•
~
~
~
~ = ~

~
:-:
N
:-'
N
0
Ul

rFJ

=('D
('D
\0
0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 12 of 29 PageID# 535

U.S. Patent Apr. 21, 2015 Sheet 10 of 13

702

Access content
responsive to a
content request

70 4

Receive attributes
associated with the

content request

70 6 ,

Select acceleration
techniques using the

attributes

70 8

Provide content to
the client system

using the selected
acceleration
techniques

7 10 "------I
I Receive metrics

I I

7~-~-[~~
I Update acceleration
I technique selection 1

process

FIG. ?A

US 9,015,348 B2

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 13 of 29 PageID# 536

U.S. Patent Apr. 21, 2015

720

722

724

Sheet 11 of 13

Assign acceleration
profiles to different

attribute
combinations

Provide content using
the acceleration

profiles

Receive timing/
correctness metrics

Update acceleration
profiles and/or
assignments

FIG. 78

US 9,015,348 B2

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 14 of 29 PageID# 537

U.S. Patent Apr. 21, 2015 Sheet 12 of 13 US 9,015,348 B2

,;/800

808

810
818

FIG. 8

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 15 of 29 PageID# 538

995

.:::£. ,_
0

~
(])

z
c:
0

:.;:::;
co
(.)

c
~

E
E

900

~

960
r-

Processor(s)
990

8 1,.. ~1 Communication
Interface

Monitor

950

806

970

Random
Access
Memory

Input
Device(s)

FIG. 9

/
/

/

940

Computer-Program Product

I Instruction Set #1 I
I Instruction Set #21

Instruction Set #3

• • •

Computer-Readable Medium

Non-Volatile
Storage

Drive

Output
Devices

980

r--'802

930

I
I
I
I

905

~
00
•
~
~
~
~ = ~

> 'e
:-:
N
~

N
0
Ul

rFJ

=('D
('D
(.H

0
(.H

d
rJl
\C = """"' u. w
~
00

= N

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 16 of 29 PageID# 539

US 9,015,348 B2
1

DYNAMICALLY SELECTING BETWEEN
ACCELERATION TECHNIQUES BASED ON

CONTENT REQUEST ATTRIBUTES

FIELD OF THE INVENTION

This disclosure relates in general to a content delivery
network (CDN) and, but not by way of limitation, more
specifically to the acceleration of access to content provided
bytheCDN.

BACKGROUND OF THE INVENTION

A content delivery network (CDN) is a large distributed
system of servers deployed in multiple data centers thoughout
the Internet. The goal of a CDN is to serve content to end
users with high availability and high performance. Besides
better performance and availability, CDNs also offload the
traffic served directly from the content provider's origin
infrastructure. CDNs can include geographically distributed
points of presence (POPs) to locate edge servers close to end
users. CDNs are capable of delivering content in high demand
with higher quality of service (QoS). Content can be
requested from a CDN using a universal resource locator
(URL). Various techniques are used to route a URLrequestto
a nearby POP, for example, in order to efficiently retrieve
content.

The traffic over the Internet is growing rapidly as is the
complexity and size of the information moved from sources
of information to users of such information. Bottlenecks in
the movement of data between CDN servers and client sys
tems decrease the quality of the user experience. Traffic is
expected to increase faster than the ability to resolve data
transfers over the Internet. Therefore, improvements in the art
are needed.

BRIEF SUMMARY OF THE INVENTION

In one embodiment, a system for dynamically selecting
from among a plurality of acceleration techniques imple
mented in a Content Delivery Network (CDN) using
attributes associated with content requests may be presented.
The system may include a network interface that receives the
content requests from a plurality of client systems for content
stored in a plurality of edge servers distributed geographically
throughout the CDN. In some embodiments, the content
requests may include a first content request for first content,
the first content request may originate from a first client
system in the plurality of client systems, and/or the first
content request may be associated with one or more
attributes. The system may further include an intermediate
server that accelerates access to the content stored in the
plurality of edge servers. The intermediate server may include

2
In some embodiments, the one or more attributes may

affect a performance of the one or more acceleration tech
niques in providing the first content to a user of the first client
system. The one or more attributes may also be descriptive of
the first client system or a network through which the first
content request is received. The one or more attributes may
include a geographic location of the first client system. The
one or more attributes may include a measurement oflatency
associated with transmitting content from the CDN to the first

10 client system. The one or more attributes may include a
device type of the first client system. The one or more
attributes may include a screen size of the first client system.
The intermediate server may be physically combined with

15
one of the plurality of edge servers of the CDN.

In some embodiments, the memory device may also store a
plurality of acceleration profiles. Each of the plurality of
acceleration profiles may include at least one of the plurality
of acceleration profiles. The one or more acceleration tech-

20 niques selected by the intermediate server may be selected as
one of the plurality of acceleration profiles. The processor
may be further configured to receive metrics from the first
client system, where the metrics are associated with a perfor
mance in providing the first content to a user of the first client

25 system. The processor may be further configured to dynami
cally update a process by which the one or more acceleration
techniques are selected based on the metrics, and use the
updated process to select acceleration techniques for subse
quent requests associated with similar attributes. The first

30 client system may include a testbed simulator that is config
ured to simulate a plurality of client system configurations
and network connections.

In another embodiment, a method of dynamically selecting
from among a plurality of acceleration techniques imple-

35 mented in a CDN using attributes associated with content
requests may be presented. The method may include receiv
ing a first content request for first content through a network
interface. In some embodiments, the network interface may
be configured to receive the content requests from a plurality

40 of client systems for content stored in a plurality of edge
servers distributed geographically throughout the CDN. The
first content request may originate from a first client system in
the plurality of client systems, and the first content request
may be associated with one or more attributes. The method

45 may also include accessing, by an intermediate server, the one
or more attributes associated with the first content request. In
some embodiments, the intermediate server may be config
ured to accelerate access to the content stored in the plurality
of edge servers. The method may additionally include select-

50 ing, by the intermediate server, one or more acceleration
techniques from the plurality of acceleration techniques,
where the one or more acceleration techniques are selected
based on the one or more attributes. The method may further
include using, by the intermediate server, the one or more

55 acceleration techniques to provide the content to the first
client system.

a first interface coupled to the network interface, a second
interface configured to communicate with at least one of the
plurality of edge servers of the CDN, and a memory device
having stored thereon instructions for executing each of the
plurality of acceleration techniques. The intermediate server
may also include a processor configured to access the one or 60

more attributes associated with the first content request, select
one or more acceleration techniques from the plurality of
acceleration techniques. The one or more acceleration tech
niques may be selected based on the one or more attributes.
The processor may be further configured to use the one or 65

more acceleration techniques to provide the content to the
first client system.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages will be apparent from the
following detailed description taken in conjunction with the
accompanying drawings.

FIG. 1 illustrates a block diagram of an embodiment of a
content distribution system.

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 17 of 29 PageID# 540

US 9,015,348 B2
3

FIG. 2 illustrates a block diagram of an embodiment of a
point of presence (POP) that is part of a content delivery
network (CDN).

FIG. 3A depicts a POP arrangement with an intermediate
server for accelerating content, according to some embodi
ments.

FIG. 3B illustrates an alternate system for accelerating
web-based content, according to some embodiments.

FIG. 4A illustrates a flow diagram of content requests and
responsive content processed by an intelligent acceleration
system, according to some embodiments.

FIG. 4B illustrates a second flow diagram of content
requests and responsive content processed by an intelligent
acceleration system, according to some embodiments.

FIG. 5 illustrates a system for simulating webpage load
times, according to some embodiments.

FIG. 6A illustrates a lookup file for determining the opti
mal set of acceleration techniques based on attributes associ
ated with a content request, according to some embodiments.

FIG. 6B illustrates a lookup file using acceleration profiles,
according to some embodiments.

FIG. 7A illustrates a flowchart of a process for selecting
acceleration techniques based on attributes associated with
the content request, according to some embodiments.

FIG. 7B illustrates a method of optimizing acceleration
profiles based on attributes and metrics, according to some
embodiments.

FIG. 8 illustrates an exemplary environment in which some
embodiments may be implemented.

FIG. 9 illustrates one example of a special-purpose com
puter system, according to some embodiments.

DETAILED DESCRIPTION OF THE INVENTION

The ensuing description provides descriptions of exem
plary embodiments only, and is not intended to limit the
scope, applicability, or configuration of the disclosure.
Rather, the ensuing description of the exemplary embodi
ments will provide those skilled in the art with an enabling
description for implementing the embodiments of the claims.
It will be understood that various changes may be made in the
function and arrangement of elements without departing from
the spirit and scope as set forth in the appended claims.

Referring first to FIG.1, a blockdiagramofanembodiment
of a content distribution system 100 is shown. The content
originator 106 offioads delivery of the content objects to a
content delivery network (CDN) 110 in this embodiment. The
content originator 106 produces and/or distributes content
objects and may include a content provider 108, a content site
116, and/or an origin server 112. The CDN 110 can both
cache and/or host content in various embodiments for third
parties, such as the content originator 106, to offload delivery
and typically provide better quality of service (QoS) to a
broad spectrum of end-user systems 102 distributed world
wide.

In this embodiment, the content distribution system 100
locates the content objects (or portions thereof) and distrib
utes the content objects to one or more end-user systems 102.
The content objects can be dynamically cached and/or hosted
within the CDN 110. A content object may include any con
tent file or content stream and could include, for example,
video, pictures, data, audio, software, analytics, and/or text.
The content object could be live, delayed, or stored. Through
out the specification, references may be made to a content
object, content, content stream and/or content file, but it is to
be understood that those terms could be used interchangeably
wherever they may appear.

4
Many content providers 108 may use a CDN 110 or even

multiple CDNs 110 to deliver the content objects over the
Internet 104 to end users 128. The CDN 110 may include a
number of points of presence (POPs) 120, which are geo
graphically distributed through the content distribution sys
tem 100 to deliver content. Various embodiments may have
any number of POPs 120 within the CDN 110 that are gen
erally distributed in various locations around the Internet 104
so as to be proximate to end-user systems 102 in a network

10 sense. Routing requests between the multiple POPs can be
done during the DNS resolution and refined by assignment of
an edge server. Other embodiments use routing, redirection,
Anycast, DNS assignment and/or other techniques to locate
the particular edge server that are able to provide content to

15 the end users 128. In addition to the Internet 104, a wide area
network (WAN), and/or a local area network (LAN) 114 or
other backbone may couple the POPs 120 with each other and
with other parts of the CDN 110.

When an end user 128 requests content, such as a web page,
20 through its respective end-user system 102 while browsing,

the request for the web page can be passed either directly or
indirectly via the Internet 104 to the content originator 106.
The content originator 106 may be defined as the source or
re-distributor of content objects. The content site 116 may

25 include an Internet web site accessible by the end-user system
102. For example, the content site 116 could be a web site
where the content is viewable using a web browser. In other
embodiments, the content site 116 could be accessible with
application software or customized hardware other than a

30 web browser, for example, a set top box, a content player,
video streaming appliance, a podcast player, an app running
on a smart phone, etc. The content provider 108 can redirect
such content requests to the CDN 110 after they are made, or
alternatively can formulate the delivery path by embedding

35 the delivery path into the universal resource indicators (URis)
for a web page. In either case, the request for content can be
handed over to the CDN 110 in this embodiment by having
the end-user system 102 perform a DNS look-up so as to
choose which of the multiple POPs 120 should provide the

40 requested content.
A particular edge server may retrieve the portion of the

content object from the content provider 108. Alternatively,
the content provider 108 may directly provide the content
object to the CDN 110 and its associated POPs 120 through

45 prepopulation, i.e., in advance of the first request. The servers
of the CDN 110 may include edge servers in each POP 120
that are configured to serve end user requests and/or store the
actual content. The origin server 112 may continue to store a
copy of each content object for the content originator 106.

50 Periodically, the content of the origin server 112 may be
reconciled with the CDN 110 through a cache, hosting, and/or
pre-population algorithms. Some content providers could use
an origin server within the CDN 110 to host the content and
thus avoid the need to maintain a separate copy.

55 Once the content object is retrieved from the origin server
112, the content object may be stored within the particular
POP 120 and may be served from that POP 120 to the end
user system 102. The end-user system 102 may receive the
content object and processes it for use by the end user 128.

60 The end-user system 102 could be a personal computer,
media player, tablet computer, handheld computer, Internet
appliance, phone, IPTV set top, video stream player, stream
ing radio, PDA, smart phone, digital music player, or any
other device that can be configured to receive and process

65 content objects. In some embodiments, a number of the end
user systems 102 could be networked together. Although this
embodiment only shows a single content originator 106 and a

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 18 of 29 PageID# 541

US 9,015,348 B2
5

single CDN 110, it will be understood that there could be
many of each in various embodiments. Additionally, in some
embodiments a content originator 106 could have a "captive"
CDN 110 that is optionally used for its content when a third
party CDN is used to shed requests.

With reference to FIG. 2, a block diagram of an embodi
ment of a POP 120 is shown that is part of the CDN 110.
Although only one POP 120 is depicted, there may be a
number of POPs 120 similarly configured and geographically
distributed throughout the CDN 110. The POPs 120 can com
municate through a WAN router 210 and/or an Internet router
220 for locating content objects. An interface to the Internet
104 from the POP 120 accepts requests for content objects
from end-user systems 102. The request comes from an Inter
net protocol (IP) address in the form of a URI.

Edge servers 230 may be implemented using general pur
pose computers loaded with software to perform various
functions for the CDN 110. The edge servers 230 could be
rack mounted or arranged in clusters. Multiple hardware pro
cessors and storage media could be used to implement each
edge server 230. Each edge server 230 can load multiple
instances of the same software and/or a variety of software to
implement various functionalities. For example, software
may be used on edge servers to implement switching fabric,
routing, caching, hosting, DNS lookup, analytics, business
rules, delivery assignment, and/or the like. The software
instances can scale with the size of each POP 120. Different
edge servers 230 may have a different set of functionality as
defined by the software instances that are programmed to run
on each edge server 230.

Switch fabric 240 assigns the request to one of the edge
servers 230 according to a routing scheme such as round
robin, load balancing, Cache Array Routing Protocol
(CARP), random, and/or the like. In this embodiment, the
switch fabric may be aware of which edge servers 230 have
particular capabilities and may assign requests within the
group having the particular capability to store and serve the
particular content object referenced in a requested URI. A
protocol such as CARP may be used in this embodiment to
dispense the URis between the edge servers 230. Every time
that a particular URI is requested from the group, it may be
assigned to the same edge server 230. For purposes of assign
ing a request, edge servers may be grouped together based on
their ability to provide a requested content object, service a
particular type of request, and/or the like.

In another embodiment, the switch fabric 240 assigns the
request to one of the edge servers 230, which can either
service the request or reassign it to a neighboring edge server
230 with software to perform an assignment master function.
The switch fabric 240 sends each packet flow or request to an
edge server 230 listed in the configuration of the switch fabric
240. The assignment can be performed by choosing the edge
server 230 with the least amount of connections or the fastest
response time. In some embodiments, the switch fabric 240
may assign the packet flow somewhat arbitrarily using round
robin or random methodologies. When the chosen edge
server 230 receives the packet flow, an algorithm may be used
by the chosen edge server 230 to potentially reassign the
packet flow between a group of edge servers to the one dic
tated by the algorithm. For example, the switch fabric 240
could choose a second edge server 230-2 being the next in the
round robin rotation. The second edge server 230-2 could
process the request and find that the first edge server 230-1 is
being assigned this type of request. The request could then be
reassigned to the first edge server 230-1 to fulfill.

As described above, the CDN 110 may be used to host
content for others. Content providers 108 may upload content

6
to an edge server 230 that hosts the content and functions as
an origin server. After the content provider 108 places a
content object in the CDN 110 it need not be hosted on the
origin server 112 redundantly. Edge servers 230 can perform
the hosting function within the CDN 110 with other edge
servers 230 perhaps caching the same content that is hosted
by another edge server 230.

Requests from end-user systems 102 are assigned to an
edge server 230 that may cache the requested content object.

10 On occasion, the edge server 230 receiving a request does not
have the content object stored and available for immediate
serving. This so-called "cache miss" triggers a process within
the CDN 110 to effectively find the content object (or portion

15
thereof) while providing adequate Quality of Service (QoS).
The content may be found in neighboring edge servers 23 0 in
the same POP 120, in another POP 120, or even an external
origin server 112. The various edge servers 230 may be
grouped for various URis uniquely. In other words, one URI

20 may look to one group of edge servers 230 on a cache miss
while another URI will look to a different group of edge
servers 230. In various embodiments, a particular URI could
be assigned to one or more edge servers 230 in a single POP,
multiple POPs or even in every POP. Generally, more popular

25 content is stored on more edge servers 230 and more POPs
120.

When servicing requests from end-user systems 102, some
form of content processing may be performed on the
requested content before it is delivered from an edge server

30 230. In some cases, content processing may be performed by
special software/hardware modules that are integrated with
existing devices within the POP 120 or on the origin server
itself 112. If the content processing is performed on an edge
server 230 or on an origin server 112, the software/hardware

35 performing the content processing may need to be distributed
to each edge server 230 and/or each origin server 112.

As modern CDNs proliferate and become more complex,
content processing may become more specialized and pro
gramming intensive. Embodiments described herein may dis-

40 close an intermediate content processing server that can be
used to process and deliver content from edge servers 230 to
the client systems requesting the content. One particular type
of content processing that may significantly improve the user
experience is content acceleration. Acceleration is an accu-

45 mulation of processing techniques to optimize the end user
experience when viewing web pages. The most interesting
content in the web page may be sped up using a number of
techniques. These techniques can optimize different portions
of the delivery chain. For example, acceleration can optimize

so gathering information from the origin server along with
accelerating how that information is provided to the client
system. Acceleration can also optimize gathering content
from other POPs. In some embodiments, frontend and back
end acceleration engines can have additional caching func-

55 tionality that is separately indexed.
Embodiments herein may use acceleration techniques that

can speed up the delivery of content to a client system. Client
systems may include the end-user systems of FIG. 1. While it
is beyond the scope of this disclosure to exhaustively recite all

60 possible acceleration techniques, a short overview of anum
ber of different acceleration techniques may be provided
herein to provide a sampling of different embodiments. It will
be understood by one having skill in the art that these recited
acceleration techniques are merely exemplary and not meant

65 to be limiting. The embodiments described herein for select
ing among a plurality of acceleration techniques based on
attributes of the client system, delivery networks, and client

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 19 of 29 PageID# 542

US 9,015,348 B2
7

software should be interpreted as being compatible with all
possible web acceleration techniques.

Some acceleration techniques selected by embodiments
described herein may include caching, or pre-caching, con
tent based on predictive algorithms. Frequently accessed
documents may then be sent to the client system at a faster
transfer rate than a more remote edge server could provide.
Similarly, cache refreshing techniques can ensure that fre
quently accessed content is available to client systems when
it is most likely to be requested.

Many CDNs may resolve URis in order to locate content
on an edge server. Some acceleration techniques may pre
emptively resolve URis that are identified in a webpage in
order to reduce transfer time. The webpage may be pre
scanned or pre-processed to identify URis in the HTML or
JavaScript. In addition to preemptively resolving URis, pre
dictive algorithms may determine which content items are
likely to be accessed in the near future and prefetch those
documents to be delivered to the client system.

Some acceleration techniques may also use data compres
sion in order to facilitate rapid data transfer. By preemptively
compressing data packages, they can be delivered to client
systems more efficiently. Images and other types of media
files may be compressed such that their quality is reduced if
they are not immediately viewable on a device's screen. In
other cases, reduced quality images may be preemptively
transmitted to a client device, and additional image informa
tion may be transmitted upon an actual request to re-create a
high-quality image.

Many acceleration techniques used herein may edit or oth
erwise optimize the actual HTML or J avaScript used to define
a webpage or access content. For example, content requests
may be grouped together such that repeated requests are
minimized. Requests for content stored in common locations
in edge servers may also be grouped together. JavaScript may
be edited such that the default conditions are immediately
processed and available, while alternate conditional state
ments can be evaluated after a page is loaded. TCP accelera
tion techniques may also be used. For example, an edge server
may maintain a persistent TCP connection between the client
device and the edge server.

FIG. 3A illustrates a system for accelerating web-based
content, according to some embodiments. The system may be
part of a CDN, and may be located within one POP 120 of the
CDN. The pop may be connected to other networks, including
the Internet, through an Internet router 220. The Internet
router 220 may have, or may also be referred to as, a network
interface 320. The network interface 320 may be configured
to receive requests from client systems for content, and to
provide content from edge servers of the CDN to the client
systems in response to such requests. The network interface
320 may generically refer to any gateway, router, interface,
system, and/or terminal through which such requests are
passed between client systems and any device on the CDN.

8
through the POP 120, appropriate acceleration techniques
may be identified by the intermediate servers 302, and these
acceleration techniques may be applied to the content as it is
routed to the client systems.

The intermediate servers 302 may include one or more
acceleration engines configured to apply acceleration tech
niques. The intermediate servers may also include storage
devices, such as hard disks, flash memory, databases, and/or
the like that are configured to store instructions for carrying

10 out the various acceleration techniques. The intermediate
servers may also include communication interfaces config
ured to communicate with the edge servers 230 as well as the
network interface 320 and/or Internet router 220.

Although many embodiments described herein make par-
15 ticular reference to edge servers within a CDN, the invention

should not be limited to only CDN environments. Other
embodiments may also include server farms of which the
intermediate servers 302 are a part. Some embodiments may
be implemented using cloud computing environments that

20 deliver both content and application services. Some embodi
ments may be simple web servers equipped with web accel
eration software.

Although FIG. 3A illustrates intermediate servers 302 that
are separate from the edge servers 230, other embodiments

25 may combine the intermediate servers 302 with the edge
servers 230. FIG. 3B illustrates an alternate system for accel
erating web-based content, according to some embodiments.
The system ofFI G. 3 B may be very similar to that ofF I G. 3A;
however, one or more of the edge servers 230 may be physi-

30 cally or logically integrated together with an intermediate
server. For example, edge server 230-1 could be physically or
logically integrated with intermediate server 306. The two
"servers" may share storage space, processing and computing
resources, and communication ports. The two servers may be

35 physically integrated together in the same server rack, or even
in the same mainframe computing device. In some embodi
ments, the intermediate server 306 may be implemented in
software and referred to as a web accelerator.

In this configuration, some edge servers may be integrated
40 with intermediate servers while others are not. Content pro

vided by edge server 230-1 may be accelerated by the inter
mediate server 306, as well as any of the other intermediate
servers 302. For example, certain acceleration techniques
may be implemented by intermediate server 306 that may

45 apply only to content stored on edge server 230-1. After being
processed by intermediate server 306, the content provided
by edge server 230-1 may also be processed by intermediate
server 302 according to different acceleration techniques. In
other cases, edge servers that are not coupled with interme-

50 diate servers may send content to intermediate server 306 for
processing. In other words, intermediate server 306 may
accelerate content from edge server 230-1 as well as any of
the other edge servers 230, depending upon the particular
embodiment.

POP configurations according to FIG. 3A and/or FIG. 3B
may be geographically distributed throughout the CDN. In
some cases, web acceleration techniques may be distributed
throughout the CDN. For example, web acceleration tech
niques that take place on edge servers or origin servers that are

Within the POP 120 the switching fabric 240 may be com- 55

municatively coupled to one or more intermediate servers
302. The intermediate servers may also be referred to as a web
page access accelerator (WPA), and acceleration server, a
web accelerator, and/or the like. Instead of providing
webpage content directly between the edge servers 230 and a
client system, traffic may instead be routed through one or
more of the intermediate servers 302 when the content can be
configured for accelerated access. Accordingly, a request for
webpage content may be directed through a particular one of
the intermediate servers 302 that is equipped with various
acceleration mechanisms as described herein. As the switch
ing fabric 240 routes content requests and content deliveries

60 further away from the client system may be referred to as
"back-end" acceleration techniques, while acceleration tech
niques that take place on edge servers that are closer to the
client systems or that directly deliver content to client systems
may be referred to as "front-end" acceleration techniques.

65 Bifurcating the acceleration process between front-end and
back-end systems is described fully in the commonly-as
signed U.S. patent application Ser. No. 13/571,320 entitled

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 20 of 29 PageID# 543

US 9,015,348 B2
9

"Inter Point of Presence Split Architecture" filed on Aug. 9,
2012, which is hereby incorporated by reference for all pur
poses.

Some acceleration techniques have been particularly
designed to operate using the POP configurations according
to FIG. 3A and/or FIG. 3B. Some of these acceleration tech
niques are described fully in the commonly-assigned U.S.
patent application Ser. No. 12/848,611 entitled "Systems and
Methods Thereto for Acceleration of Web Pages Access
Using Next Page Optimization, Caching and Prefetching
Techniques" filed on Aug. 2, 2010, which is hereby incorpo
rated by reference for all purposes. For example, one accel
eration technique may include prefetching resources of sub
sequent or additional webpage requests. Many of the
resources are common to several or all the pages that may be
fetched, and therefore pre-fetching such resources is likely to
save fetching them for other pages. In some cases, the inter
mediate servers 302 can intercept webpage code and parse it
prior to sending it out to client systems.

In some cases, after browsing a site for a while, newly
requested pages load very quickly because most of their
resources are already in the browser's cache. The only non
cached items are the HTML itself and a few resources which
have not been seen on previous pages yet. In such cases,
loading the HTML from the network represents a large per
centage ofloading the entire web page, even when the HTML
is loaded very quickly. Therefore, a script may be added that
detects the mouse presence over a link, a button, or any other
means of selecting a URL. This script may be enabled to
detect whether the focus is on the link, button, or other con
trol. After the detection, the script, might or might not wait a
while to reduce the number of false positives, after which it
pre-fetches the relevant page. If, during this time, the mouse
moved from the location of a URL, or has otherwise lost its
focus of the web page, the pre-fetch is canceled. If the page
pointed to by the link is small and the server is fast, many
times it is possible to bring the page to the browser's cache
before the link is actually clicked, thus substantially reducing
the load time of that page as it appears to the user.

10
into the page which directs the browser, without any need of
additional support, to asynchronously send additional
requests to retrieve the dynamic data. When the addition data
is retrieved, it can be injected into the DOM in the correct
locations.

In another acceleration technique, resources may be intel
ligently cached. Every resource may be equipped with aver
sion indicator, and this version may be increased every time
the resource is changed. Every whole web page, i.e., a web

10 page along with all its resources, may also have a version
indicator. The version of the page, or an identifier that stands
for this version, may be sent to the client system along with
the web page every time it is requested. If the client system
has already accessed that page, the version of the page

15 received by the client system, or an identifier which repre
sents the current version, may be sent with the request. In one
embodiment, this may be achieved by using cookies. All the
resources may be associated with a very long expiration time.
Thus, when the browser encounters these resources it will be

20 able to retrieve them from the browser cache.
In another acceleration technique, when a page is served by

a web server or proxy, the pages that are candidates for being
the next pages to be served for the same client system may
also be processed. The candidate web pages can be deduced

25 either statically from analyzing the current page, for example,
by looking at all the links, or by collecting statistics and
choosing accordingly. A configuration or a combination may
be used, for example, by determining whether there are many
links and ordering their processing according to calculated

30 statistics. This can be done recursively to any depth and
process may be located on all the selected pages.

Typically, pages of a particular web site will contain com
mon data. In another acceleration technique, the common
data between pages is sent only once. Only the non-common

35 data of a page is sent to the user every time that the user
requests a new page, while the common data is sent only once.
The intermediate servers 302 may compute a difference
between the requested pages and send only such differences
to the client system.

As stated above, these acceleration techniques are merely
exemplary, and not meant to be limiting. Many additional
acceleration techniques may be used by embodiments
described herein.

Embodiments described herein may focus on dynamically

Another acceleration technique may leverage the fact that 40

on the same web site, many pages have common resources. A
web page may be processed differently for a case where it was
reached from within the web site compared to a case where it
was reached from outside of the web site. The conclusion
about how the page was reached may be determined accord
ing to the HTTP headers of the web page, a special cookie, the
existence of a "referrer" header, a configuration, or any other
technique. The intermediate servers 302 may intercept the
webpage and send the client system to a different version
thereof.

45 selecting a set of acceleration techniques from a plurality of
possible acceleration techniques based on attributes associ
ated with a content request. These attributes may indicate a
particular connection type, a hardware description such as
screen size and/or device type, a software characteristic such

so as browser type and/or browser version, a data carrier or ISP,
a latency metric, a geolocation, and/or the like. Each of these
attributes may cause particular acceleration techniques to be
more or less effective, depending on how they are combined
and evolving over time. Some embodiments may heuristi-

According to another acceleration technique, caching of
dynamic data may include separating the static parts of the
HTML page from the dynamic parts. This can be performed
by, for example, "marking" parts of the HTML as static or
dynamic, or automatically, by studying instances of the same
page and deducing which parts are common. Once the static
and dynamic parts of the page have been marked, this infor
mation can be used to accelerate page loading. First, the static
part can be processed to achieve optimizations using tech
niques discussed in this document or otherwise, and the pro- 60

cessed data may be kept in cache. Once a request for the page

55 cally determine the optimal set of acceleration techniques for
any client system configuration. The client system configu
ration may be determined by evaluating the received
attributes and a set of acceleration techniques may then be

is accepted, the original page may be requested, and then the
dynamic parts of it can be "applied" to the processed static
parts. The resulting page can then sent to a client system. The
static part, processed or not, can be sent to a client system
from the cache, without requiring a request to the web server
to obtain the original page. However, a code may be injected

applied dynamically as the request for content is serviced.
Currently, individual web sites are analyzed extensively to

determine which acceleration techniques should be applied
when providing associated content in response to a client
system request. The HTML code may be analyzed, the con
tent objects may be analyzed, business rules may be applied to

65 website content, JavaScript functions may be optimized, and/
or the like. However, while the content and web code may be
extensively analyzed and optimized on the server side of the

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 21 of 29 PageID# 544

US 9,015,348 B2
11

transaction, current acceleration techniques are applied in a
one-size-fits-all fashion to the many different client system
configurations that may request content.

One problem with this approach is that many client system
configurations may particularly benefit from some accelera
tion techniques that may not be universally applied on the
server side. Other client system configurations may interfere
with some acceleration techniques and thereby reduce their
effectiveness, or even slow down the transaction.

12
attributes. These attributes may be associated with the trans
mission network, a request type, device characteristics, and/
or the like. For each particular request, the attributes may be
analyzed, and a a set of acceleration techniques may be
selected from a group of possible acceleration techniques and
applied on a per-request basis.

By analyzing each request individually, the best set of
acceleration techniques may be applied and the user experi
ence can be improved. For example, a user may request a

10 webpage using a desktop computer connected through a Tl
connection with a 1 024x2048 screen size. These attributes

Another problem is that it takes a tremendous amount of
time and analysis to tailor a website to effectively use the
currently available acceleration techniques. This process may
take multiple months to complete. However, by the time a
fully optimized website is made available using tailored
acceleration techniques, client system configurations may 15

have evolved to the point where the website acceleration
scheme is now obsolete. Network characteristics and bottle
necks may have changed, new operating system versions may
have been released, new network topologies and technologies
may have been developed or improved, latency may have
changed over time, browsers may have been upgraded, and/or
the like. Each of these client system configuration changes
may affect the optimization of the acceleration techniques
that was painstakingly developed only a few weeks earlier.

may dictate that a first set of acceleration techniques may be
used. The same user may next request the same website using
a smart phone connected through a mobile 4G network with
approximately a 2"x4" screen size. Even though the user may
be sitting in the same room for both requests, the second
request to the smart phone for the same website may utilize a
completely different set of acceleration techniques that are
applied in real time as the request is serviced by the content

20 delivery network.
FIG. 4A illustrates a flow diagram of content requests and

responsive content processed by an intelligent acceleration
system, according to some embodiments. A client system 402
may send a content request to a website. For example, a user

25 may enter a URL into a navigation field of a web browser or
may click on a link within a web browser. In some cases, the
web browser may be directed to a website at an origin server,
and the origin server may redirect the request or portions of
the request to locations within the CDN. Alternatively, ele-

For example, modern web browsers are now being
equipped with acceleration techniques of their own to
increase the speed at which web content is rendered in the
browser display. Browser updates may be distributed to client
systems rapidly and frequently. Some acceleration tech
niques used by browsers may interfere with acceleration tech
niques implemented by a CDN. For example, browser soft
ware may apply an acceleration technique whereby it stops
downloading resources until it resolves a line of JavaScript.
On the other end, the server-side HTML code may have been
optimized to continuously execute JavaScript while content is 35

downloaded. These two conflicting paradigms may act to
cancel out the benefits of each to the detriment of the user
experience.

30 ments of the URL itself may direct the web browser to first
contact the CDN.

The CDN may receive the request for content and may
intelligently determine the best edge server(s) to provide the
content. A particular edge server 230 may be identified and
receive the content request (410). Note that FIG. 4A illus
trates the content request originating from the client system
402 and eventually reaching the edge server 230. The inter
mediate transactions that may involve an origin server and
other server/devices within the CDN have been omitted for In another example, certain acceleration techniques may be

particularly useful in long-latency situations. Geolocations of
the client systems that are far away from the corresponding
edge server may be used as a proxy for latency in some
situations. However, when a client system is located near the
corresponding edge server in either a network latency or
geographic sense, acceleration techniques used to reduce
latency may simply add unnecessary overhead to the content
transmission. A fast network that is very close to the data
origin edge server may actually be slowed down by using
acceleration techniques, such as image bundling. Counterin
tuitively, the best acceleration technique may be to do nothing
for the limited subset of customers who are close to the data
origin.

In another example, device characteristics of a client sys
tem may make some acceleration techniques more useful
than others. Depending on the screen size, processing power,
and/or operating system, content can be optimized accord
ingly.

Currently, acceleration techniques require developers to
bet on the right techniques to use given the commonly used
browsers, networks, and devices at the time of development.
However, once websites are rolled out that implement the
selected acceleration techniques, the website may be only two
to three months from being obsolete given the rapid change in
client system configurations and transmission networks.

Therefore, the embodiments described herein may analyze
each request individually as they are received. The content
request may include or may be otherwise associated with

40 clarity.
As the content is sourced from the edge server 230, the

CDN may pass the content through an intermediate server
302 as described above. Note that in some embodiments (not
shown) the function of the intermediate server 302 may be

45 implemented on the same physical hardware as the edge
server 230. The intermediate server 302 may intercept the
content (414) and apply one or more acceleration techniques
(416).

The intermediate server 302 may select the acceleration
50 techniques to apply from a plurality of available acceleration

techniques. The selection process may be based on attributes
that are associated with the request. In one embodiment, the
attributes may be transmitted from the client system 402 to
the intermediate server 302 directly (412). The intermediate

55 server 302 may intercept the request and extract attributes
therefrom. The intermediate server 302 may also directly
query the client system 402. In some embodiments, JavaS
cript generating a URL for the client system 402 may also be
configured to provide information to the intermediate server

60 302. In some embodiments, the attributes may be automati
cally determined based on the content request. For example,
an IP address associated with the content request may be
analyzed to determine a geolocation. Some embodiments
may query a third-party service to obtain information associ-

65 a ted with the IP address, such as a business, a connection type,
and/or the like. Network timing information may be ascer
tained to determine a latency metric. "Pings" may also be sent

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 22 of 29 PageID# 545

US 9,015,348 B2
13

between the CDN and the client system to determine the
latency metric. Tags provided in the request may identifY a
browser type and/or client system configuration. Other tech
niques for ascertaining attributes not specifically listed may
also be used. The acceleration technique selection process
and the particular attributes that may be used will be
described further herein below.

14
snapshots can be later analyzed to determine the exact time
the viewport has finished rendering. This process can be
repeated for all known elements in the lists previously cre
ated. The load time can then be estimated, stored, and later
retrieved by the intermediate server for analysis.

Another method of retrieving metrics related to site loading
times and correctness may involve fingerprinting sites. A
fingerprint for each website can be generated based on a
numberofimages, types ofJavaScript, lengthofHTML code,

The intermediate server 302 can then apply the selected
acceleration techniques to the content and provide the content
to the client system 402 using the selected acceleration tech
niques (418). In this configuration, neither the edge server
230 nor the client system 402 need be aware that the interme
diate server 302 is applying acceleration techniques to the
content during delivery. Therefore, different acceleration
techniques and intermediate servers 302 may be swapped in
and out of the CDN as they are developed or become obsolete.

10 number of linked sites and/or content, advertising sources,
and/or the like, in order to generate a unique signature for
each webpage. The fingerprint generation algorithm could be
invoked at regular time intervals as the webpage is loading
and compared to the known fingerprint. When the current

In some embodiments, there may be a feedback loop asso
ciated with the content delivery to client systems 402. The
feedback loop may collect metrics describing the speed and
correctness with which the content was provided and dis
played on the client system 402. Generally, two different
types of metrics may be provided. First, metrics related to
latency may be collected. Second, metrics related to how
correctly the website/content was displayed on the client
system may be collected.

15 fingerprint of the webpage sufficiently matches the known
fingerprint, the webpage may be considered loaded from the
user's perspective.

Another method of retrieving metrics related to site loading
times and correctness may involve using a browser API that

20 implements the standard Navigation Timing Specification
provided by W3C. The Navigation Timing Specification is a
Java API detailing the timing information of the page load.
Available in most newer browsers, it helps developers test
user experiences remotely. The Navigation Timing Specifi-

25 cation can be used to retrieve metrics such as the time when
Webpage metrics may be gathered by a number of different

means. In one embodiment, the load sequence of a typical
web page may include many different resources. Some of the
resources may be visible while others may not be visible.
Therefore, some of the visible resources may be part of the 30

viewport while others are not, depending upon the screen size
and/or the device type. Additionally, the speed at which a web
page loads may be measured as perceived by a user once the
viewport is complete. It is therefore very difficult to deduce
when the page has finished loading from the user's point of 35

view based merely upon network analysis. Current measure
ment techniques either calculate this time once all the com
ponents of the page have finished loading, including those
that are invisible, or check the "onload" event of the HTML
document, which also has only a small correlation to the 40

actual user perceived load time.
In most web sites, the last item to be loaded in the viewport

is a graphic item, such as an image or a Flash object. This
happens because the size of graphic items is relatively large
and takes more time to load than the smaller-sized campo- 45

nents. Therefore, graphic items are often loaded later than the
textual, i.e., HTML, JavaScript, CSS, etc., elements. Using
this assumption, the actual perceived load time of the page
may be estimated.

For every background image, the server may create invis- 50

ible durmny images that are marked as loaded when the
background image finishes loading. The time the page starts
loading is saved in memory. Once every predefined time
interval (which can be set to different values depending on the
desires granularity of the result) all of the graphical elements 55

of the web page can be checked, for example, by scouting the
DOM of the web page, by lists exported by the browser such
as document images, or by any other means. The elements can
be images, Flash objects, or any other type of element. For
every element found, its position may be calculated, for 60

example, by using all the elements starting from the selected
element and finishing at the root of the DOM tree. If the
element's position is in the viewport, it is added to the known
viewport element list.

A graphical snapshot of the screen can be stored that may 65

contain only the browser, or any other part of the screen, along
with the elapsed time passed since the start load time. These

the user begins a navigation to a new page, a time when the
first requested page returns to the browser, the time when the
page is then parsed into a DOM, the time when the page has
completed loading, and/or other timing-related information.

Newer browsers may also use the W3C Resource Timing
Specification. While the Navigation Timing Specification
addresses timing information associated with a navigation
event, the Resource Timing Specification interface may allow
JavaScript mechanisms to collect complete timing informa
tion related to resources within a webpage. The specification
may be particularly useful for resources within a single
webpage that are stored as content objects at various servers
within the CDN. The Resource Timing Specification may be
used to determine when each image or other content object on
a webpage is loaded by retrieving the XY coordinates and the
load times of every object on a webpage. An intermediate
server could then perform an in-memory simulation of the
page rendering and determine overall load times and metrics.

Another method for measuring metrics related to site load
ing times and correctness may involve taking screenshots and
comparing RGB histograms of the webpage as it is loaded to
known values. By comparing the incremental screenshots to a
known RGB histogram value of the webpage when it is com
pletely loaded, a numerical score can be derived representing
the difference between the first and last RGB histogram to
determine how far along the webpage is in the download and
rendering process. In some embodiments, this value may be
between 0.0 and 1.0. These values can be plotted over time to
form a visual curve, the area above which can be calculated as
a metric of how quickly the the webpage, or a part of the
webpage, has been loaded that is visible to the user.

Using RGB values may be difficult to receive through a
beacon-type data response because it may require screenshots
rather than numerical values. However, the RGB values have
been found to be related to numbers available through the
W3C timing specifications. The numbers available through
the timing specifications are easier to receive through a bea
con-type data response. These numbers may then be used as
a proxy to determine approximately what the RGB values
would be for the visual portion of the webpage.

As used herein, a "beacon" may include any software rou
tine configured to send information from the client system to

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 23 of 29 PageID# 546

US 9,015,348 B2
15 16

may be selected based on the attributes of the particular
configuration under simulation.

A configuration may include the attributes that are used by
the intermediate servers 302 to select from among the avail
able acceleration techniques. For example, a configuration
may include attributes that indicate a particular browser type
or version. A configuration may also include attributes that
indicate a particular type of computer system. A configuration
may also include attributes that include network latency, net-

a content source, CDN, edge server, and/or intermediate
server where the information includes metrics on webpage
load times and/or correctness. For example, a beacon may
include a small snippet of JavaScript at the bottom of a source
code page of HTML for a website. The JavaScript may post
values to the intermediate server or may store values for later
retrieval. The beacon may wait for a time interval after the
page is finished loading so as not to compete for resources and
affect the loading of the webpage. In some embodiments, the
browser may make an AJAX call to send metric information
using XML back to the intermediate servers. This informa
tion may also include coordinates of each image on the page,
which can then be analyzed to determine whether they were
correctly loaded.

10 work type, ISP, or mobile provider. A configuration may also
include hardware specifications, such as a screen size,
memory size, processing power, and/or the like. A configu
ration may also include an attribute indicating whether the
client system is using mobile cellular technology or a fixed

15 landline device. A configuration may also include an attribute
indicating client-side acceleration techniques that may be
used by the client system. In short, configurations may
include any or all of the attributes described herein that may
be used by the intermediate server 302 to select acceleration

Many of the methods described in the preceding para
graphs for retrieving timing-related metrics from a webpage
may also be used to provide metrics related to the correctness
with which a webpage is rendered on the client system. For
example, final RGB values of the webpage may be transmit
ted and compared to an expected RGB value. The beacon may
transmit XY coordinates for each of the images and/or text
segment on webpage, and these values may be compared to
expected values. It should also be noted that the Resource
Timing Specification may be used to retrieve the XY coordi- 25

nates of every object on a webpage in addition to retrieving
the load times. In some embodiments, the beacon may
acquire periodic screen captures or snapshots of the webpage

20 techniques.

as it is loading on the client device. The screen captures can be
transmitted back to the intermediate server, or alternatively, 30

values derived from the screen captures can be transmitted
back to the intermediate server. For example, the above
described fingerprint may be derived from a screenshot and
send back to the intermediate server to be compared to an
expected value. Other methods may also be used to retrieve 35

metrics related to correctness.
FIG. 4B illustrates a second flow diagram of content

requests and responsive content processed by an intelligent
acceleration system, according to some embodiments. This
flow diagram may be very similar to the flow diagram of FIG. 40

4A. In this case, the attributes may be sent as part of the
original content request (422). When servicing the content
request, the edge server 230 may send the content along with
the attributes to the intermediate server 302 (424).

When the simulation testbed 506 receives the content from
the CDN, the simulation engine 502 may download the con
tent and render the content as it would be rendered on a
corresponding real-world client system. One advantage of the
simulation testbed 506 over using metrics collected from real
world client systems is that a more complete set of metrics
may be available. For example, the simulation testbed 506
may collect precise loading times, as well as precise image
locations and granular timing data for each content object
loaded in a webpage.

In many cases, customers of the CDN may supply their
website and content objects to the CDN to be heuristically
optimized using the simulation testbed 506. Each intermedi
ate server 302 may be loaded with a lookup file that is popu
lated using the results of the simulation testbed 506. The
lookup file may be indexed using an identifier for the particu-
larwebsite or content object and the attributes associated with
the content request. The lookup file may then return a par
ticular set of acceleration techniques that have been identified
as optimal for the particular client system configuration.

FIG. 6A illustrates a lookup file for determining the opti
mal set of acceleration techniques based on attributes associ
ated with a content request, according to some embodiments.
A memory element, such as a database 602, may be config
ured to store instructions that cause the processor to execute
one or more acceleration functions 604. Each acceleration
function may be independent of the others such that multiple
acceleration functions may be applied to a single content
object. Additionally, some acceleration functions may be
dependent on others such that certain acceleration function
should be paired or executed in a certain order.

A look up table 606 may be comprised of a multidimen
sional data structure, such as a data cube or multidimensional
array. Lookup table 606 may include a dimension corre-

FIG. 5 illustrates a system for simulating webpage load 45

times, according to some embodiments. In the systems of
FIG. 4A and FIG. 4B, the metrics in the feedback loop are
supplied by actual client systems making requests for content
from the CDN. In contrast, the system of FIG. 5 receives
metrics in the feedback loop from a testbed simulator 506. In so
one embodiment, a customer's website may be analyzed
according to the traditional methods of identifying accelera
tion techniques on the server side. The acceleration tech
niques may be used as a default or baseline set of techniques
before beginning the runtime analysis.

The simulation testbed 506 may include a simulation
engine 502 configured to mimic a client system making
requests for content such as a webpage from the CDN. The
simulation engine 502 may receive as inputs a plurality of
different configurations 504 that may be used by real-world 60

client systems. Each of the configurations 504 may be run by
the simulation engine 502 and may provide a request to the
CDN for content. From the perspective of the CDN, the
request may be indistinguishable from real-world client sys
tem requests. In other words, the request may be routed to 65

edge servers 230 and content may be routed through one or
more intermediate servers 302 where acceleration techniques

55 sponding to each attribute use by the intermediate server(s) to
select acceleration functions. In this example, the lookup
table 606 includes at least three dimensions. The first dimen
sion may correspond to to a browser type 612. The second
dimension may correspond to a latency measurement 608.
The third dimension may correspond to a screen size 610. It
will be understood that these three dimensions are merely
exemplary and not meant to be limiting. In practice, many
other dimensions may also be used that correspond to
attributes associated with the content request.

In some embodiments, one dimension of the lookup table
606 may represent detected proxy configurations associated
with the client system. For example, some embodiments may

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 24 of 29 PageID# 547

US 9,015,348 B2
17

detect whether a client system is behind a transparent proxy
and use this information to select acceleration techniques.
Proxies may apply their own acceleration techniques or filter
unrecognized or unexpected data from their data streams.
Therefore, understanding proxy information related to a cli
ent system can be beneficial in selecting acceleration tech
niques. In some cases, proxies may control access to certain
geographic locations such as countries like China. Accelera
tion techniques may be selected based on the behavior of
these control proxies, and take into account any access con
trols or data filtering operations conducted by the proxies.

18
owner, may make continuous changes to their website content
and the acceleration system of the CDN will automatically
adjust itself to continually optimize the acceleration tech
niques applied for each client system or request type. The
content provider need not inform the CDN when changes are
made to the website, nor does the CDN need to detect when
changes are made to the website. After a website change, the
received metrics may indicate that some of the acceleration
profiles in the lookup table 606 are no longer optimal, and

10 adjustments can be made on the fly.
In addition to updating acceleration profiles, the lookup

table 606 itself may also be restructured. Attribute categories
may become irrelevant as technology evolves and may be
substituted, added, or removed from the lookup table. For

15 example, screen size may may play a smaller role in accel
eration technique performance in some embodiments. The
screen size entry 610 in the lookup table 606 may be replaced
with another attribute type, such as geolocation, network

In some cases, dimensions may be subdivided into discrete
values. For example, the browser type 612 may be divided
into discrete values, each of which corresponds to a particular
browser type, such as Microsoft™ Internet Explorer,
Google™ Chrome, Mozilla™ Firefox, and/or the like. In
other cases, dimensions representing continuous or near con
tinuous values may be quantized into discrete buckets. For
example, the latency measurement 608 may be received as
near-continuous time values. Depending on the number of 20

subdivisions within this dimension, the time domain may be
quantized into a series of buckets. For example, Latency 1
may represent 0 to 100 ms, Latency 2 may represent 100 ms

type, and/or the like.
In some embodiments, different versions of a lookup table

may be available for particular customers. For example a
customer account may be associated with a level of service
that the user has chosen to pay for. More expensive service
levels may offer a more expansive set of acceleration tech-to 200 ms. Latency 3 may represent more than 200 ms, and so

forth.
Each entry in the lookup table 606 may include an indica

tion of which acceleration functions should be used for the
corresponding set of attributes. When content responsive to a
request is received by the intermediate server, the attributes
associated with the request may be used to index a set of
acceleration functions in the lookup table 606. For example,
a request associated with Browser 2, Latency 3, and Screen 2
may correspond to acceleration functions 1, 2, and 3. Each
entry in the lookup table 606 may include a designation of
acceleration functions, as well as an order in which they
should be applied.

FIG. 6B illustrates a lookup file using acceleration profiles,
according to some embodiments. Such acceleration tech
niques selected from the plurality of acceleration techniques
may be grouped together to form acceleration profiles.
Instead of listing acceleration functions and the order and
manner in which they are applied, each entry in the lookup
table 606 may instead reference acceleration profile. In some
embodiments, the acceleration profiles may be stored in an
acceleration profile database 614.

When a content object is initially stored in the CDN. A
lookup table 606 may be constructed using attributes that are
expected to affect the transmission of the content object. The
lookup table 606 may be populated using default acceleration
profiles that are believed to be the most effective for the
particular configurations based on past experience or the pre
dictive intuition of the designer. The default acceleration pro
files may initially be used to provide the content object to
client systems. Alternatively, the default profiles may be used
as a starting point for operating within a simulation testbed.

As feedback metrics describing the load time and correct
ness of the content object are received, the lookup table 606
may be dynamically adjusted to optimize the acceleration
profiles assigned to each entry in the lookup table 606. If the
received timing and/or correctness metrics indicate that the
default acceleration profile is performing worse than
expected, a new acceleration profile may be generated that
combines acceleration functions 604 in ways that remedy the
performance shortfall.

As timing and/or correctness metrics are received over
time, the entries in the lookup table 606 may be continuously
adjusted. Therefore, a content provider, such as a website

25 niques or acceleration profiles that combine acceleration
techniques in unique ways or allow for more acceleration
techniques to be applied.

FIG. 7A illustrates a flowchart of a process for selecting
acceleration techniques based on attributes associated with

30 the content request, according to some embodiments. This
process may be carried out by an intermediate server, or
acceleration server. Alternatively, this process may be carried
out by an edge server that is configured to apply acceleration
functions to content as it is provided to a client system. The

35 method may include accessing content responsive to a con
tent request (702). If the content is provided by an edge server
to an intermediate server, the intermediate server may access
the content as it is provided by the edge server. Alternatively,
if the edge server is performing this function, then the content

40 may be accessed as it is stored at the edge server and provided
to the client system.

The method may also include receiving attributes associ
ated with the content request (704). The attributes may be
provided as part of the content request. The attribute may also

45 be provided directly by the client system in a separate trans
action from the content request. The attributes may also be
stored locally on the intermediate server or the edge server.
For example, a content request may be identified using an IP
address. The IP address may then be used to look up a set of

50 attributes associated with content requests from the request
ing client system. The stored attributes may be been provided
in the past during a registration procedure, or in association
with prior content requests. Some attributes may also be
received from third parties, such as entities that provide busi-

55 ness information, connection information, and/or latency
associated with a particular IP address. As described above,
the attributes may include information descriptive of a screen
size, a network type, a device type, a latency measure, a
geolocation, and/or any other type of information that may

60 affect how the selected acceleration techniques perform.
The method may also include selecting acceleration tech

niques based on the attributes (706). In some embodiments,
the attributes may be used to select a set of acceleration
techniques stored as an acceleration profile. In some embodi-

65 ments, the selection acceleration techniques may be based on
information in addition to the attributes. For example, net
work load statistics, load balancing requirements, storage

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 25 of 29 PageID# 548

US 9,015,348 B2
19

space availability, and/or other characteristics of the CDN
may be used to select acceleration techniques.

20
The method may further include receiving timing and/or

correctness metrics (724). As described above, these metrics
may include any information that indicates timing events
associated with loading the content object on the client sys
tem. These metrics may also include information describing
how correctly the content object was rendered, displayed, or
made available by the client system. These metrics may be
received around the time when the content is provided to the
client system or testbed simulator. Alternatively, these met-

The method may further include providing content to the
client system using the selected acceleration techniques
(708). The edge server and/or intermediate server may pro
cess the content according to acceleration techniques. In
some cases, this may involve creating a new version of the
content object, such as an HTML source file, that is optimized
according to one or more of the selected acceleration tech
niques. Therefore, multiple versions of the content object
may be stored, each of which corresponds to one or more
acceleration profiles associated with the original content
object.

10 rics may also be received later after the client system or
testbed simulator has finished processing the requested con
tent.

The method may additionally include determining whether
the profiles are optimally assigned (726). This determination Where a feedback loop is operational, the method may

additionally include receiving metrics that are descriptive of
the timing and/or correctness with which the content object
was received and loaded by the client system (71 0). Any of the
techniques described above herein may be used to receive
these metrics. The method may further include updating the
acceleration technique selection process based on the metrics
(712). This step may include adding or replacing acceleration
profiles in a lookup table. This step may also include chang
ing the attributes that are used in the selection process. In
some cases, this step may include creating new pre-cached
content objects that correspond to new acceleration profiles.

15 may be made by comparing the receiving metrics to threshold
values. These threshold values may be expected values deter
mined statistically for each combination of acceleration tech
niques. The threshold values may also be based on historical
data collected and analyzed within the CDN. If the metrics

20 fall within an acceptable range in relation to the threshold
values, the method may again provide content using the accel
eration profiles in response to different attribute combinations
provided by the simulation testbed or client system. Alterna
tively, if it is determined that the acceleration profiles are not

25 optimally assigned, the acceleration profile under test may be
updated or reassigned in order to provide a better combination
of acceleration techniques (728). The acceleration profile
under test may be edited according to a sequence of possible
acceleration techniques determined experimentally using his-

FIG. 7B illustrates a method of optimizing acceleration
profiles based on attributes and metrics, according to some
embodiments. The method may include assigning accelera
tion profiles to different attribute combinations (720). These
acceleration profiles may be comprised of one or more accel
eration functions, or acceleration techniques. Each accelera
tion profile may also include instructions describing how the
acceleration technique should be implemented, including an
order in which they should be implemented. The acceleration
profiles may populate a lookup table that is indexed by the 35

various attribute combinations. These initial acceleration pro
files may be default profiles, and may be assigned based on
historical information stored and analyzed within the CDN.
The initial acceleration profiles may also be assigned based

30 torical and/or statistical data from within the CDN.

on administrator preferences, client system preferences, or 40

user subscription account levels.
In some embodiments, the method may also include insert

ing new acceleration techniques into one or more of the
acceleration profiles or entries in a lookup table. This method
may be useful in testing the effectiveness of new acceleration 45

techniques in various client system configurations. For
example, a new acceleration technique may be inserted into
each of the lookup table entries in order to analyze its perfor
mance in each system configuration type. In some cases,
testing new acceleration techniques can be limited to a testing 50

environment and restricted from live use with real client
systems. Therefore, the method may include detecting
whether a testing environment is operational, and selectively
activating new acceleration techniques while the testing envi
ronment is active. The method may also include detecting 55

when real client systems are being serviced by the interme
diate server, and selectively deactivating new acceleration
techniques accordingly.

The method may also include providing content using the
acceleration profile (722). The content may be provided to 60

actual requesting client systems. Alternatively, the content
may be provided to a simulation test bed that simulates vari
ous client system configurations and network connections for
the purpose of optimizing the process for selecting among the
various acceleration techniques. In some cases, simulation 65

data may be combined with real-world data in the optimiza-
tion process.

Referring next to FIG. 8, an exemplary environment with
which embodiments may be implemented is shown with a
computer system 800 that can be used by a user 804 to
program, design or otherwise interact with the computer sys
tem 800. The computer system 800 can include a computer
802, keyboard 822, a network router 812, a printer 808, and a
monitor 806. The monitor 806, processor 802 and keyboard
822 are part of a computer system 826, which can be a laptop
computer, desktop computer, handheld computer, mainframe
computer, etc. The monitor 806 can be a CRT, flat screen, etc.

A user 804 can input commands into the computer 802
using various input devices, such as a mouse, keyboard 822,
track ball, touch screen, etc. If the computer system 800
comprises a mainframe, a user 804 can access the computer
802 using, for example, a terminal or terminal interface.
Additionally, the computer system 826 may be connected to
a printer 808 and a server 810 using a network router 812,
which may connect to the Internet 818 or a WAN.

The server 810 may, for example, be used to store addi
tional software programs and data. In one embodiment, soft
ware implementing the systems and methods described
herein can be stored on a storage medium in the server 810.
Thus, the software can be run from the storage medium in the
server 810. In another embodiment, software implementing
the systems and methods described herein can be stored on a
storage medium in the computer 802. Thus, the software can
be run from the storage medium in the computer system 826.
Therefore, in this embodiment, the software can be used
whether or not computer 802 is connected to network router
812. Printer 808 may be connected directly to computer 802,
in which case, the computer system 826 can print whether or
not it is connected to network router 812.

With reference to FIG. 9, an embodiment of a special
purpose computer system 900 is shown. The above methods
may be implemented by computer-program products that
direct a computer system to perform the actions of the above
described methods and components. Each such computer-

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 26 of 29 PageID# 549

US 9,015,348 B2
21

program product may comprise sets of instructions (codes)
embodied on a computer-readable medium that directs the
processor of a computer system to perform corresponding
actions. The instructions may be configured to run in sequen
tial order, or in parallel (such as under different processing
threads), or in a combination thereof. After loading the com
puter-program products on a general purpose computer sys
tem 926, it is transformed into the special-purpose computer
system 900.

22
may be physically integrated on the motherboard of computer
802, and/or may be a software program, or the like.

RAM 970 and non-volatile storage drive 980 are examples
of tangible computer-readable media configured to store data
such as computer-program product embodiments of the
present invention, including executable computer code,
human-readable code, or the like. Other types of tangible
computer-readable media include floppy disks, removable
hard disks, optical storage media such as CD-ROMs, DVDs,

Special-purpose computer system 900 comprises a com
puter 802, a monitor 806 coupled to computer 802, one or
more additional user output devices 930 (optional) coupled to
computer 802, one or more user input devices 940 (e.g.,
keyboard, mouse, track ball, touch screen) coupled to com
puter 802, an optional communications interface 950 coupled

10 bar codes, semiconductor memories such as flash memories,
read-only-memories (ROMs), battery-backed volatile memo
ries, networked storage devices, and the like. RAM 970 and
non-volatile storage drive 980 may be configured to store the
basic progrming and data constructs that provide the func-

15 tionality of various embodiments of the present invention, as
described above. to computer 802, a computer-program product 905 stored in a

tangible computer-readable memory in computer 802. Com
puter-program product 905 directs system 900 to perform the
above-described methods. Computer 802 may include one or
more processors 960 that communicate with a number of 20

peripheral devices via a bus subsystem 990. These peripheral
devices may include user output device(s) 930, user input
device(s) 940, communications interface 950, and a storage
subsystem, such as random access memory (RAM) 970 and
non-volatile storage drive 980 (e.g., disk drive, optical drive, 25

solid state drive), which are forms of tangible computer
readable memory.

Software instruction sets that provide the functionality of
the present invention may be stored in RAM 970 and non
volatile storage drive 980. These instruction sets or code may
be executed by the processor(s) 960. RAM 970 and non
volatile storage drive 980 may also provide a repository to
store data and data structures used in accordance with the
present invention. RAM 970 and non-volatile storage drive
980 may include a number of memories including a main
random access memory (RAM) to store of instructions and
data during program execution and a read-only memory
(ROM) in which fixed instructions are stored. RAM 970 and
non-volatile storage drive 980 may include a file storage
subsystem providing persistent (non-volatile) storage of pro
gram and/or data files. RAM 970 and non-volatile storage
drive 980 may also include removable storage systems, such
as removable flash memory.

Bus subsystem 990 provides a mechanism to allow the
various components and subsystems of computer 802 com
municate with each other as intended. Although bus sub
system 990 is shown schematically as a single bus, alternative
embodiments of the bus subsystem may utilize multiple bus
ses or communication paths within the computer 802.

A number of variations and modifications of the disclosed

Computer-program product 905 may be stored in non
volatile storage drive 980 or another computer-readable
medium accessible to computer 802 and loaded into memory 30

970. Each processor 960 may comprise a microprocessor,
such as a microprocessor from Intel® or Advanced Micro
Devices, Inc.®, or the like. To support computer-program
product 905, the computer 802 runs an operating system that
handles the communications of product 905 with the above- 35

noted components, as well as the communications between
the above-noted components in support of the computer
program product 905. Exemplary operating systems include
Windows® or the like from Microsoft® Corporation,
Solaris® from Oracle®, LINUX, UNIX, and the like.

User input devices 940 include all possible types of devices
and mechanisms to input information to computer system
802. These may include a keyboard, a keypad, a mouse, a
scanner, a digital drawing pad, a touch screen incorporated
into the display, audio input devices such as voice recognition 45

systems, microphones, and other types of input devices. In
various embodiments, user input devices 940 are typically
embodied as a computer mouse, a trackball, a track pad, a
joystick, wireless remote, a drawing tablet, a voice command
system. User input devices 940 typically allow a user to select 50

objects, icons, text and the like that appear on the monitor 906
via a command such as a click of a button or the like. User
output devices 930 include all possible types of devices and
mechanisms to output information from computer 802. These
may include a display (e.g., monitor 906), printers, non-visual 55

displays such as audio output devices, etc.

40 embodiments can also be used. For example, embodiments
show the DNS function being resident within a POP with
edge servers, but other embodiments could place the DNS
function geographically separate from any content serving

Communications interface 950 provides an interface to
other communication networks and devices and may serve as
an interface to receive data from and transmit data to other
systems, WANs and/or the Internet 918. Embodiments of 60

communications interface 950 typically include an Ethernet
card, a modem (telephone, satellite, cable, ISDN), a (asyn
chronous) digital subscriber line (DSL) unit, a FireWire®
interface, a USB® interface, a wireless network adapter, and
the like. For example, communications interface 950 may be 65

coupled to a computer network, to a Fire Wire® bus, or the
like. In other embodiments, communications interface 950

functions. Other embodiments could place multiple DNS
functions in a POP to divide the work load for those DNS
requests received by the POP.

Specific details are given in the above description to pro-
vide a thorough understanding of the embodiments. However,
it is understood that the embodiments may be practiced with
out these specific details. For example, circuits may be shown
in block diagrams in order not to obscure the embodiments in
unnecessary detail. In other instances, well-known circuits,
processes, algorithms, structures, and techniques may be
shown without urmecessary detail in order to avoid obscuring
the embodiments.

Implementation of the techniques, blocks, steps and means
described above may be done in various ways. For example,
these techniques, blocks, steps and means may be imple
mented in hardware, software, or a combination thereof. For
a hardware implementation, the processing units may be
implemented within one or more application specific inte-
grated circuits (ASICs), digital signal processors (DSPs),
digital signal processing devices (DSPDs), programmable
logic devices (PLDs), field programmable gate arrays (FP
GAs), processors, controllers, micro-controllers, micropro
cessors, other electronic units designed to perform the func-
tions described above, and/or a combination thereof.

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 27 of 29 PageID# 550

US 9,015,348 B2
23

Also, it is noted that the embodiments may be described as
a process which is depicted as a flowchart, a flow diagram, a
swim diagram, a data flow diagram, a structure diagram, or a
block diagram. Although a depiction may describe the opera
tions as a sequential process, many of the operations can be
performed in parallel or concurrently. In addition, the order of
the operations may be re-arranged. A process is terminated
when its operations are completed, but could have additional
steps not included in the figure. A process may correspond to
a method, a function, a procedure, a subroutine, a subpro- 10

gram, etc. When a process corresponds to a function, its
termination corresponds to a return of the function to the
calling function or the main function.

Furthermore, embodiments may be implemented by hard
ware, software, scripting languages, firmware, middleware, 15

microcode, hardware description languages, and/or any com
bination thereof. When implemented in software, firmware,
middleware, scripting language, and/or microcode, the pro
gram code or code segments to perform the necessary tasks
may be stored in a machine readable medium such as a star- 20

age medium. A code segment or machine-executable instruc
tion may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software pack
age, a script, a class, or any combination of instructions, data
structures, and/or program statements. A code segment may 25

be coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, and/or memory contents. Information, argu
ments, parameters, data, etc. may be passed, forwarded, or
transmitted via any suitable means including memory shar- 30

ing, message passing, token passing, network transmission,
etc.

24
rality of edge servers distributed geographically
throughout the CDN, wherein:
the content requests comprise a first content request for

first content;
the first content request originates from a first client

system in the plurality of client systems; and
the first content request is associated with one or more

attributes; and
an intermediate server that accelerates access to the content

stored in the plurality of edge servers, the intermediate
server comprising:
a first interface coupled to the network interface;
a second interface configured to communicate with at

least one of the plurality of edge servers of the CDN;
one or more memory devices having stored thereon:

instructions for executing each of the plurality of
acceleration techniques; and

a plurality of acceleration profiles, wherein each of
the plurality of acceleration profiles specifies at
least one of the plurality of acceleration techniques;
and

a processor configured to:
access the one or more attributes associated with the

first content request;
select one or more acceleration techniques from the

plurality of acceleration techniques, wherein:
the one or more acceleration techniques are

selected based on the one or more attributes; and
the one or more acceleration techniques modifY the

content;
use the one or more acceleration techniques to pro

vide the content to the first client system;
receive metrics from the first client system, wherein

the metrics are associated with a performance in
providing the first content to a user of the first client
system;

dynamically update a process by which the one or
more acceleration techniques are selected based on
the metrics; and

use the updated process to select acceleration tech
niques for subsequent requests associated with
similar attributes.

For a firmware and/or software implementation, the meth
odologies may be implemented with modules (e.g., proce
dures, functions, and so on) that perform the functions 35

described herein. Any machine-readable medium tangibly
embodying instructions may be used in implementing the
methodologies described herein. For example, software
codes may be stored in a memory. Memory may be imple
mented within the processor or external to the processor. As 40

used herein the term "memory" refers to any type of long
term, short term, volatile, nonvolatile, or other storage
medium and is not to be limited to any particular type of
memory or number of memories, or type of media upon
which memory is stored.

Moreover, as disclosed herein, the term "storage medium"
may represent one or more memories for storing data, includ
ing read only memory (ROM), random access memory
(RAM), magnetic RAM, core memory, magnetic disk storage
mediums, optical storage mediums, flash memory devices 50

and/or other machine readable mediums for storing informa
tion. The term "machine-readable medium" includes, but is
not limited to portable or fixed storage devices, optical stor
age devices, and/or various other storage mediums capable of
storing that contain or carry instruction(s) and/or data.

2. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN

45 using the attributes associated with the content requests of
claim 1, wherein the one or more attributes comprises a geo
graphic location of the first client system.

While the principles of the disclosure have been described
above in connection with specific apparatuses and methods, it
is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:
1. A system for dynamically selecting from among a plu

rality of acceleration techniques implemented in a Content
Delivery Network (CDN) using attributes associated with
content requests, comprising:

a network interface that receives the content requests from
a plurality of client systems for content stored in a plu-

3. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 1, wherein the intermediate server is physically com-
bined with one of the plurality of edge servers of the CDN.

4. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN

55 using the attributes associated with the content requests of
claim 1, wherein the one or more acceleration techniques
selected by the intermediate server are selected as one of the
plurality of acceleration profiles.

5. The system for dynamically selecting from among the
60 plurality of acceleration techniques implemented in the CDN

using the attributes associated with the content requests of
claim 1, wherein the first client system comprises a testbed
simulator that is configured to simulate a plurality of client

65

system configurations and network connections.
6. The system for dynamically selecting from among the

plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 28 of 29 PageID# 551

US 9,015,348 B2
25

claim 1, wherein the one or more attributes are received by the
intermediate server separately from the first content request.

7. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 1, wherein the one or more attributes are received by the
intermediate server together with the first content request.

8. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of 10

claim 1, wherein a first acceleration technique in the plurality
of acceleration techniques is dependent on a second accelera
tion techniques in the plurality of acceleration techniques
such that the first acceleration technique and the second
acceleration technique are executed in a predetermined order. 15

9. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 1, wherein each of the plurality of acceleration profiles
comprises a multidimensional data structure, wherein each 20

dimension of the multidimensional data structure is associ
ated with a corresponding one of the one or more attributes.

10. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of 25

claim 1, wherein the plurality of acceleration techniques com
prises preemptively compressing media files to be transmitted
to the client device.

11. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN 30

using the attributes associated with the content requests of
claim 1, wherein the plurality of acceleration techniques com
prises optimizing code associated with the first content.

12. The system for dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN 35

using the attributes associated with the content requests of
claim 1, wherein the plurality of acceleration techniques com
prises identifying portions of the content that are dynamic and
caching portions of the content that are static.

13. The system for dynamically selecting from among the 40

plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 1, wherein the processor is further configured to
dynamically select one or more acceleration techniques from
the plurality of acceleration techniques based attributes for 45

each request received by the intermediate server.

26
accessing, by an intermediate server, the one or more

attributes associated with the first content request,
wherein:
the intermediate server is configured to accelerate access

to the content stored in the plurality of edge servers;
selecting, by the intermediate server, one or more accelera

tion techniques from the plurality of acceleration tech
niques, wherein:
the one or more acceleration techniques are selected

based on the one or more attributes;
the one or more acceleration techniques modify the con

tent; and
the one or more acceleration techniques form a first

acceleration profile in a plurality of acceleration pro
files;

using, by the intermediate server, the one or more accel
eration techniques to provide the content to the first
client system

receiving, by the intermediate server, metrics from the first
client system, wherein the metrics are associated with a
performance in providing the first content to a user of the
first client system;

dynamically updating, by the intermediate server, a pro
cess by which the one or more acceleration techniques
are selected based on the metrics; and

using, by the intermediate server, the updated process to
select acceleration techniques for subsequent requests
associated with similar attributes.

15. The method of dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 14, wherein the one or more attributes affect a perfor-
mance of the one or more acceleration techniques in provid
ing the first content to a user of the first client system.

16. The method of dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 14, wherein the one or more attributes are descriptive of
the first client system or a network through which the first
content request is received.

17. The method of dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 14, wherein the one or more attributes comprises a
measurement oflatency associated with transmitting content
from the CDN to the first client system.

18. The method of dynamically selecting from among the

14. A method of dynamically selecting from among a plu
rality of acceleration techniques implemented in a Content
Delivery Network (CDN) using attributes associated with
content requests, the method comprising:

receiving a first content request for first content through a
network interface, wherein:

50
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 14, wherein the one or more attributes comprises a
device type of the first client system. the network interface is configured to receive the content

requests from a plurality of client systems for content
stored in a plurality of edge servers distributed geo- 55

graphically throughout the CDN;
the first content request originates from a first client

system in the plurality of client systems;
the first content request is associated with one or more

attributes;

19. The method of dynamically selecting from among the
plurality of acceleration techniques implemented in the CDN
using the attributes associated with the content requests of
claim 14, wherein the first client system comprises a testbed
simulator that is configured to simulate a plurality of client
system configurations and network connections.

* * * * *

Case 3:15-cv-00720-JAG Document 28-5 Filed 02/16/16 Page 29 of 29 PageID# 552

	
	

Exhibit	 F	

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 1 of 33 PageID# 553

c12) United States Patent
Black et al.

(54) POLICY BASED PROCESSING OF CONTENT
OBJECTS IN A CONTENT DELIVERY
NETWORK USING MUTATORS

(75) Inventors: Bryan Black, Tempe, AZ (US); Jacob S.
Roersma, Grand Rapids, MI (US);
Jared Boelens, Tempe, AZ (US); Luke
Knol, Tempe, AZ (US); Neil Dunbar,
Bristol (GB); Sig Lange, Tempe, AZ
(US); Wylie Swanson, Tempe, AZ (US)

(73) Assignee: Limelight Networks, Inc., Tempe, AZ
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 57 days.

(21) Appl. No.: 13/336,915

(22) Filed: Dec. 23, 2011

(65) Prior Publication Data

US 2012/0198041 Al Aug. 2, 2012

Related U.S. Application Data

(63) Continuation of application No.
PCT/US2011/023410, filed on Feb. 1, 2011.

(51) Int. Cl.
G06F 151173 (2006.01)

(52) U.S. Cl.
USPC 709/223; 709/201; 709/225; 709/232

(58) Field of Classification Search

(56)

USPC 709/201-203,217-219,223-226,
709/231-232

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,064,968 A 5/2000 Schanz
6,658,467 B1 12/2003 Rice et al.

111111 111
US008615577B2

(10) Patent No.: US 8,615,577 B2
Dec. 24, 2013 (45) Date of Patent:

KR
wo

6,757,740 B1
6,792,399 B1
6,918,120 B2
6,952,737 B1
7,072,863 B1

6/2004 Parekh eta!.
9/2004 Phillips eta!.
7/2005 Riedel

10/2005 Coates eta!.
7/2006 Phillips eta!.

(Continued)

FOREIGN PATENT DOCUMENTS

10-2002-0076028 A 10/2002
WO 2009/061829 A1 5/2009

OTHER PUBLICATIONS

U.S.Appl. No. 13/336,831, Final OfficeActionmailedFeb. 11,2013,
12 pages.

(Continued)

Primary Examiner- Bharat N Barot
(74) Attorney, Agent, or Firm- Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A method for processing content objects with resources asso
ciated with a content delivery network (CDN) having a plu
rality of geographically distributed points of presence (POPs)
is disclosed. The resources are enrolled to be accessible from
the CDN. Each resource is categorized using tags that catego
rize the resources. Selection of a policy from a plurality of
policies is received, where the plurality of policies define
processes to perform on content objects. The selected policy
includes an applicability criteria and a call to the resource.
Metadata is received at the CDN, the metadata being related
to a content object, a requester of the content object and/or a
provider of the content object. It is determined that the policy
is applicable through analysis of the metadata and/or appli
cability criteria. The resource is called according to the call in
the policy to cause the resource to perform specified process
ing on the content object.

20 Claims, 19 Drawing Sheets

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 2 of 33 PageID# 554

(56) References Cited

US 8,615,577 B2
Page 2

U.S. PATENT DOCUMENTS

2008/0222291 A1
2009/0150518 A1
2010/0023693 A1
2010/0250710 A1 *
2010/0293185 A1
2010/0325264 A1
201110138394 A1
201110218946 A1
201110252082 A1 *
201110283304 A1
201110320715 A1
2012/0030170 A1
2012/0054303 A1
2012/0066352 A1 *
2012/0198070 A1
2012/0246472 A1 *
2012/0303735 A1 *
2013/0132366 A1

9/2008 Weller eta!.
6/2009 Lewin et a!.
112010 Dilley eta!.

7,136,922 B2
7,266,556 B1
7,272,654 B1
7,376,727 B2
7,376,736 B2
7,627,391 B2
7,664,839 B1
7,840,667 B2
7,860,964 B2
7,904,541 B2
8,023,429 B2 *
8,041,809 B2
8,069,182 B2
8,108,507 B2
8,151,317 B2
8,156,243 B2
8,165,122 B2
8,255,557 B2 *
8,291,083 B2 *

200110034795 A1
2002/0091801 A1
2002/0133491 A1
2002/0138652 A1
2002/0147774 A1
2003/0079027 A1
2003/0126233 A1
2003/0149581 A1
2003/0217365 A1
2005/0005025 A1
2007/0156845 A1
2007/0250468 A1
2008/0065724 A1
2008/0072264 A1
2008/0077682 A1
2008/0155086 A1
2008/0155386 A1
2008/0195664 A1

1112006 Sundaram et al.
9/2007 Coates
9/2007 Brendel
5/2008 Weller et al.
5/2008 Sundaram et al.

12/2009 Key
2/2010 Karr et al.

1112010 Welleretal.
12/2010 Bradyetal.
3/2011 Swildens et al.
9/2011 Briscoe eta!. 709/226

10/2011 Sundaram et al.
1112011 Pieper

112012 Weller et al.
4/2012 Hinton eta!.
4/2012 Richardson eta!.
4/2012 Kotalwar et al.
8/2012 Raciborski eta!. 709/219

10/2012 Black eta!. 709/226
10/2001 Moulton eta!.
7/2002 Lewin eta!.
9/2002 Sim eta!.
9/2002 Taylor

10/2002 Lisiecki et a!.
4/2003 Slocombe et a!.
7/2003 Bryers eta!.
8/2003 Chaudhri et al.

1112003 Caputo
112005 Harville eta!.
7/2007 Devanneaux eta!.

10/2007 Pieper
3/2008 Seed eta!.
3/2008 Crayford
3/2008 Nair eta!.
6/2008 Jensen
6/2008 Jensen
8/2008 Maharajh eta!.

9/2010 Cadwell eta!. 709/219
1112010 Rosado eta!.
12/2010 Crowder eta!.
6/2011 Ravishankar eta!.
9/2011 Stern eta!.

10/2011 Cobb et al 709/203
1112011 Roberts eta!.
12/2011 Ickman eta!.
212012 Bernbo et al.
3/2012 Priyadarshan eta!.
3/2012 Cadwell eta!. 709/219
8/2012 Black eta!.
9/2012 Berengoltz et al 713/165

1112012 Raciborski et al 709/212
5/2013 Pieper

OTHER PUBLICATIONS

"Content delivery network", retrieved from the internet at web
address: http:/ /web.archive.org/web/20 10 1229031436/http:/ /en.
wikipedia.org/wiki/Content_delivery _network, 6 pages.
International Search Report dated Oct. 21, 2011 for International
PCT Application No. PCT/US20 111023410, 11 pages.
U.S. Appl. No. 13/336,743, Office Action mailed Oct. 15, 2012, 15
pages.
U.S. Appl. No. 13/344,263, Office Action mailed Jan. 11, 2013, 8
pages.
U.S. Appl. No. 13/341,724, Office Action mailed Jan. 4, 2013, 23
pages.
U.S. Appl. No. 13/336,831 Office Action mailed Aug. 14, 2012, 15
pages.
U.S. Appl. No. 13/336,893 Office Action mailed Aug. 13, 2012, 9
pages.
U.S. Appl. No. 13/336,831, Notice of Allowance mailed Jul. 8, 2013,
36 pages.

* cited by examiner

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 3 of 33 PageID# 555

..,y_....,..,....,..,...,. ~ y..-... u.-» ;.r.r..-..-hl"l ..,..,.,..nrh

I
I
I
1112

I Origin

I Server
'Y.H//H//////.H.JU/fh

b..===

'1 08 [W/~m77Q~

j Content
\._ Provider

!Y//.H/..-/H////f/..Qj/"/n

116

--.1 ~////////1/~
~~ ...

i rll Content
· S''"'

!="'".:"::.:''
Y/.H.JI".Uj//.H/..I'..I'.H///H'..I'..I'.HA

V"NIO» w.m9'h l"h»7» ~

~106
,1100

11 Q

~-1~ rA i 20::~ r_,;= ,= ~ ~ --li r·· . t , \.. -'O:n 01 I r~rpc~r·~rp
'1..-'>./V '•'·~

I ·~n;,.,..,-~--.... -...;.

I 130-2·
120i

I ..
.134-2

I

102-1

43<1-1

W//~/-£N~ r·----··--+

I I l .-~~~,~
Resource l

1
!
! ... ;. ,......;.,..;.,..;.,..,;1'-;

128-~':0 -,. ...
End

--- , lscwi<.:\
1

. t!, >v: U '~<~.-
~,..,..,..,.~

t Fnd 128-Z~~
L ____ ----------+ U:r(s)

i 14
~

e
w2-n e

~

@

~ I
I
I

~

~ F<esource ·--}---·-~·-'
~ End User

*' Systern(s)

! 120-n ,-illlj. j

I) ! ~:;,,.,,.,,. (';0 \.~ (~ ··(~· ., .
(~Jresence

I L,~'"'~H
~ I5ULN/Ao 'iFHHNl ~ "TflTT7J

l
I
I

FIG. 1

130-1

~
00 •
~
~
~
~ = ~

c
('D

~
N
~ ...
N
0
(,H

rFJ

=('D
('D
0
\0

d
rJl

"'010
0'1

""""' "'u. u.
-....l
-....l

= N

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 4 of 33 PageID# 556

U.S. Patent

120-\

I~ Landing
PaLi{s)

>

Leg<:>cy
Adapter

L-~-.J

Legacy
Landing
Pad(s)

Dec. 24, 2013

215

Sheet 2 of 19

Metadata
Directory

F~G. 2A

US 8,615,577 B2

Legacy
Edge

Servers

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 5 of 33 PageID# 557

U.S. Patent Dec. 24, 2013 Sheet 3 of 19 US 8,615,577 B2

r- 260
!

~-===~~ ~
l
!

~~--------~.. Poficy
~ Reconciliation
~ ~ ~3ervice
~~~~--------------~ 

FiG. 28 

Case 3:15-cv-00720-JAG   Document 28-6   Filed 02/16/16   Page 6 of 33 PageID# 558



U.S. Patent 

245 

~ 
~ Mapper 

Dec. 24, 2013 

r 
Legacy 
Edge 

Cache 

T 

304 

T ' 1__;-316 
L~gacy ~~ 
~?ge ~ 
~-'"lOSt 

Sheet 4 of 19 

Lookup 
Listener 

328-n 

US 8,615,577 B2 

$ 

~-------------------------------~ 

F~G. 3A 

_ 130-n 
{ 

Case 3:15-cv-00720-JAG   Document 28-6   Filed 02/16/16   Page 7 of 33 PageID# 559



U.S. Patent 

(:312 

f~ ~ 

Dec. 24, 2013 

.,-305 
l 

Sheet 5 of 19 US 8,615,577 B2 

220 
~ --~- · ~ ~ ~ t: Z1::]E.: 

8'------l~:_ ! ~' 
' ~ ~ F-------4 

~~-~--o-------~@-»~~-----w~•~ 

l : Looku::-_; ~ M··""''"''. ~ 
' l' ~~ ----~ <-·l'-·~·""'' ~ 
!, ! ~ .. Listener ~ C:~minet ~ 
~ ~ ~-~-~--~~~ ~ ) 
~ ~ ~ ~ ~--~~--.."<!o..~ @ ~ ... -.. ....... vq.. ... .,..,""" 

l,~ ~ ~ $ @ 
~. ~ ~ ~ $ 

Metadata [~ ! ! ~ ~ 

Dkectory ~ l I ~ r 328-n 

' ' ~ 0 -----4 I ! .,~f ~s" ~ 
· , · ,.L.o?ku_'P_ ~: ----l ~ L--A~~~~----~-----------:r·~~-~ , , ~-~~l 1 1 ~ >..~s,ene.r ~ 

~ li......... ___ ,...J 

.275 

Edge 
Host 

! 

FIG. 38 

Case 3:15-cv-00720-JAG   Document 28-6   Filed 02/16/16   Page 8 of 33 PageID# 560



U.S. Patent Dec. 24, 2013 Sheet 6 of 19 US 8,615,577 B2 

F!G.4A 

~--""'---«> 
• • • 
~ 

• • • 
~ 

• • • • • s 

Native 
Resource 
lnterface 

_409 
( 

... 

• s 
• s 
~-~~~~~~~~~---ft---~~~~~~~*~~~~~a---~~~8~~~~~~~----a~~~w~~w~~w~-----~~-

FIG. 48 

-532 
.«~Q~~~--Q--~~-~~----W~W~MW~~ 
: Ci ABS Movie Channel : 
~ " CJACI\!lE Town lnfo ~ 
e wPrescott 

CJ Flagstaff 
C::JTempe 

:±, wPhoenix 
:+ L:J\1'./ins!ow 
:t L.JScui! VaHey 
'"'" CJTucson 
'"" CJScottsdaie 

+ CJ ZBS Radio 
L::J ReaJure eBooks 

• • • • • • • • • • s 
• 

L-----------~-~------·-····-J 

~600 

r-604 
~~~-o~~*~~~~~~~w---~w~~ 
s ~
s Silverthorne Traiis.epub •
~ .
: Keystone Bcarding.epub ~
: Adventneer.epub :
: Adventneer Audio.rnp3 :
~~~-*•~~w~~~~~~~~----M~~ 

FIG. 6 

Case 3:15-cv-00720-JAG   Document 28-6   Filed 02/16/16   Page 9 of 33 PageID# 561



U.S. Patent Dec. 24, 2013 Sheet 7 of 19 US 8,615,577 B2 

• • • ~ 

• • 
~ 

~ 532 
s 
s 
s 
s 
s 
I 

• • • • ; 
I 

• • • • • • • • • s 
s 
s 
s 
s 
s 
s 
s 

260") 
~'ft' __ .__ 'i!ll' --W~ ..... ~ ...... W"""AQo W\W;l!~·o;J;~o«>.O a><U.- ---"'I Oo;oQC!o U<~Qo«:o 00.: OO<)Oo '«' .;o 10o! ~ .;o "01'..;11;>"'10 ""'...,. .,.._...,..._._._ ~ 

,..-528 520 ,.-518: 
! • 

Cornpiier 

r516 

UUiD 
Generator 

Reg·i.strat!on 
!nteriaee 

Policy 
Manatlef 

544 r 

Information 

-504 

540 

524 

~ 
~ 
~ 
~ 
~ 

• • s 
s 
$ 
$ 
$ 
s 

,,:L 275 
(!o)lo(!lo ------«~-s 

* r-508 : 
~-.. -"""'-~,!~--~- : 

Infrastructure ~ 
Tags & Tagsets ~ 

---~~~~~ 

~ Struc.tun.~.: 
~ t.,..__ _ ___... 

Resource/Brick 
Report interface 

• • • • • • • • • • • • s 
t 
s 
t 
s 
s 
s 
s 
s 
s 
~ 
~ 

~ 
~ 
~ 
~ 
~ 
s 
s 
s 
s 
g 
s 
s 
s 
s 
s 
s 
s 
s 
s 
~ 

~-~-------~~*~*~-~~--~-~~~~~~~~~-~-~~~~~*~~~~~~~-~~~~*~~~~Q~~g~~~~~~~-J 

FIG. 5 

Case 3:15-cv-00720-JAG   Document 28-6   Filed 02/16/16   Page 10 of 33 PageID# 562



U.S. Patent Dec. 24, 2013 Sheet 8 of 19 US 8,615,577 B2 

Legacy Edge 
Server :Mapper Transport: Content Dkectory 

704! 
F"'-f':;(_e_c_E:i_v_e_U_T-{L-k-Jr_F_i!_e_f'""r,"'lrr-1 """"!! ! 

End U..:;er Sy~~tem ! 

r70B I 
! 

f'{equest FHe from Mapper ~ 
~ § 

! 
! 

C•YiVert Request to Lookup § 

L1stener Request ~ 

! .t\si1 Lookup Ust€mer for f:le §-§ ~~ Receive Path & Fi!1;, 
! Location(s) ~ Request at Lookup Listener 

File F~ecE>iv·ed by Edge 
Serv<c.r 

! 
! 
! 
! 
! 
! ~ 
I 
! L-----~~~----~ 

I ====-----~~----_.~~ 
I ~eter~nine Brick for RequM;t 
I ~- . ~ 
I l i'~j2 
I ""l' 

RE:qunst UUlD from Brick ~ 
§ 

Edge Server 

FIG. 7 

~~~~ 

">"4 t £''~'

()u Ei ry IVlaooer Cabinet for ~
U~J~D & Br~ck A'jdrt:iSS~s

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 11 of 33 PageID# 563

U.S. Patent Dec. 24, 2013 Sheet 9 of 19 US 8,615,577 B2

Edge Server Content Directory

I .- s2o

-D-e--t-e-rrr-1-in_e_U_l.ll..l-i D"""""o""r """'La:';]

~

End Use!· System

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 12 of 33 PageID# 564

U.S. Patent Dec. 24, 2013 Sheet 10 of 19

~

~ Customer Account &
~
.~ Servlces Configured
~

~

.. I {'9os
Receive File & rv1etadata frorn Custor-ner 1

~
with Landing Pad or Other 1\Pl ~

~

Determine Potential
Policies

~
~ Select I Applicable Policy
t~~-............ ..s

Execute PRS Pararneters ~
to !mplernent Polley ~ J

~~--------~~===-~---l~ !
~

Support CDN Functions
Related to Processed File

912

924

NO

F!G. 9

YES

US 8,615,577 B2

/
900

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 13 of 33 PageID# 565

U.S. Patent Dec. 24, 2013 Sheet 11 of 19

§ 1
Custorner Connects~

to CDN ~
§

"1008

§

~Landing Pad(s) Selected
~ & Customized

~ i 012 * --4
I POPs to Host Landing ~
~ . ., '' ~
~ eao Lnosen ~
~ ~

!
Directory Structure ~

~
~ Designed for Custorner

~-----~~--------~

r(('J«((O{~ ~-~~.;s....-----~

~ Policies Chosen, Desjgned
~ and/or Custornized
§

~.----~------r---------=~

Policies Assigned to Hierarchy
and Other,vise Prioritized

'1020

i022

.,.... 1024
!

Landing Pad Hosted at
Selected POPs

Directory Structure and Files
Displayed Through Landing Pads

US 8,615,577 B2

904

~

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 14 of 33 PageID# 566

U.S. Patent Dec. 24, 2013 Sheet 12 of 19

r-1104

·~------------------------~~· -
Locate All Policies Applicable to

File Throughout Hierarchy

Prioritize
Policies

~ Gather Tags, Metadata & ~
Criteria for PRS Parameters ~

~------------~------~--~J

Rerm::n;e !napplicab!e or
Conflicting Policies

Policies Checked
for Syntax Errors

F !!ii I Invalid Policies ~
§ R:.e'"1Q\tPd ~ ~ ~·) L ~~ ~

F!G. 11

"i 120

US 8,615,577 B2

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 15 of 33 PageID# 567

U.S. Patent

·12.16 .,.,. ' . ' .•

)

Directory
Policies l

.• 'J2!1 r ~~ ·"
;

Sub··6rectory
Policies

F~G. 12A

Dec. 24, 2013 Sheet 13 of 19

'"1200~

r 1204

I

CDN
Poiic!es

~ r·12oe
!
!J

POP
Policies

,..-1208
J

Custorner
Po!ic1es

! ,...

! 1216

~~tL

~
~
I
~

Directory
Policies

r1220
~~)

.S ub~d irectory
Policies

J 1224

l'v1lME-Type
Policies

J "1228

File
Policies

FIG. 128

US 8,615,577 B2

1200~

'

National
Policies

!203

Regional
Policies

1204

CDN

Customer ~
I Policies
~

J12i2

Sub-Customer
Poi!cles

,..-12"16
)

Directory
Pc.:tfcies

'!''20 r· L.
l

Su~)-d irectory
PoHciE!S

FIG. 12C

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 16 of 33 PageID# 568

U.S. Patent Dec. 24, 2013 Sheet 14 of 19 US 8,615,577 B2

~ '{ 0,.<
PRG Optionally Receives PRS ~(.s '+

Parameter with Criteria J

YES

Address of Resource Parsed
from fvlutator & Resolved

?-=------------~----------~~~ §

~ URI Requestc~d from Resource I.Nith
~ Embedded Variabie{s}
~

1320

Source Fiie Location Information Parsed from

Content ()bject Retrieved by
Resource

YES

NO 1344

!

NO

r i342
... sr 1

~ Policy r
l

Cornp!ete ~.
l
l

~ ~ ,__ __ J Processed Content Object Stored According !!--~ _________ _.

~ to Disposition Options, Metadata & Tag(s) I
~ " . FIG. 13

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 17 of 33 PageID# 569

U.S. Patent Dec. 24, 2013 Sheet 15 of 19

r 1404

~--------------------------~~ New Resource or Brick Identified
'for !nc!us!on in System

~ (1408

~--=---------~--------~~~~
~ Unique ldentifier (or Address)
I Assigned to Resource/Brick

L--,----~----~------------~
,.......·1412

------.....o.~<--- . .) ~
lnfrastructure Tags for Resource/~

Brick Entered into System ~
§
§

Resource/Brick Name or Address !
,Added to Tags & T agsets I

~ -~
~
~
!
~

" ~ Resource/Brick
§

~ Coupied to System
§

("" 1424

§
§ R 'B . k D rt H ''h Q ~ , esourcei nc . hepo s .ea!(Q;

~Other Status to Metadata Directory
~

FIG. 14

US 8,615,577 B2

1~100

;/'

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 18 of 33 PageID# 570

U.S. Patent Dec. 24, 2013 Sheet 16 of 19 US 8,615,577 B2

i504 1500

~ End User Queries for
Content from CDN

~ s·~ 2 (""' .

~ Caching or Hostin-g Edge
Serv-er Assigned

VVhere Request Cannot Be Satisfied ~
Loca!lv, Reouest to Gl\l1A for Content ~ :s .f ~ :-;:

1516

Satisfied
I 0('.-'H\l ~ (.. '"'".r ~

~

I -- 1 ~
(1520

~
!

I
I

Brick or Other Resource Located &
Content Relayed to Edge Server

Edge !erver !-or-"'-~ 5_2&_~ _· ___ __~I
Fulfills Request ~

1
End User ~

~
Plavs Content ~

0 ~
~

FiG. 15

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 19 of 33 PageID# 571

U.S. Patent Dec. 24, 2013 Sheet 17 of 19 US 8,615,577 B2

Periodically Run Policy to Determine Big
Velocity Ct:anges in Content Object Requests

!

! .~~1608
'l:

Input Content Object with Large Change into Po!tcy that ~
Determines Ootimum Footprint in POPs of CON ~ ,- ~

~----~----------~------~------------=-=--=---~
~ r-"16-t2

~--~--------~~
Pass Variables to Polley that t.,;1anages

Propagation for Content Otljects

~
~
~

~
~

F'"" " t ,__,w .r
~ . ~
~ Deterrnine Bricks Affected by lncrease or Decrease~
s . ~

~ in Number o·f Caples of Content Object ~
~ ~

Policy Adds or Deletes
Copies of Content Object

FIG, 16A

'1620

!

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 20 of 33 PageID# 572

U.S. Patent Dec. 24, 2013 Sheet 18 of 19

'

Perlodlcal!y Run Policy to Determine !f there is
Veiocity Changes in Content Object Requests

l
~

,ut Content Object witt: Large Change into Policy that
Determines Optimum Footprint in POPs of CON

! ~ Ci ,..,

- *
r· :o L.

~ ·'t
Pass Variables to Policy that ~v1anages

~

~ ~

I
~

Propagation for Content Objects §
§
§
§

~

1616 ... _,"""""""'

Execute
Policy

~ De~a·n"ll·ne B-r<ck"' A. ff. E··~ted b'V !r'crea"-'e 0" r)ecr"''"''~o ~ ~'-.;..:t.:::.: ~ , _., .,.,) .,. ,~ . ~ .. t.. ., ~ ~ ~ . . v · ·1. t~ ~ . '\..•C'l..:><:,.

I in Number of Copies of Content Object

~----~----------r---~------~~------~
r 1624

~--------~------~~ I Policy Adds or Deletes
~ Copies of Content Object
~
~

FIG. 168

US 8,615,577 B2

,.--1608
J

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 21 of 33 PageID# 573

U.S. Patent Dec. 24, 2013 Sheet 19 of 19

r ·r?04
.}

Customer Provides Content
Object to Landing Pad

1708 r" .
F---------~~--------~~ ~ .
~.Jurisdictional Polley Actlve ~
j for Content Object ~
~ §

~
! -l ·y~ 2
~ r' '

...._.._"~ _t • J
I Determine Jurisdictional I . ~
~ Domain to Perforrn Policy ~
~ ~

Send Content Object to Brick or
Resource in Jurisdictional Zone

i
! -1720

~--_,.l!', --~
Processing the Content Object in ~

~ the Chosen ,Jurisdictional Zone ~
~~-.~~--------~--------------~ !

~ 1724
~ r

--------~--~--~~
Determining Where to Store I

§

I Processed Content Object ~
§

Propagate Content Object to
Brick(s} for Storage

FIG. 1?

1728

US 8,615,577 B2

1700

~

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 22 of 33 PageID# 574

US 8,615,577 B2
1

POLICY BASED PROCESSING OF CONTENT
OBJECTS IN A CONTENT DELIVERY

NETWORK USING MUTATORS

BACKGROUND

This disclosure relates in general to content delivery net
works (CDNs) and, but not byway oflimitation, to managing
assets associated with the CDN.

Content providers (i.e., customers) offload their content
delivery to CDN s for any number of reasons. CDN s special
ize in a range of content delivery and hosting options opti
mized for performance so that end users get a desired quality
of service (QoS). Different CDNs have different topologies
relying on more or less points of presence (POPs) distributed
geographically across the Internet. CDNs with more POPs
tend to have less resources in each POP, while those with less
POPs tend to have more resources in each one. The topology
and asset allocation in a particular CDN is inflexible.

Customers are using CDNs and cloud services in more
creative ways. Applications, storage and other services are
being provided remotely. CDNs have not provided the flex
ibility to adapt to all the needs of customers yet have an
excellent topology of distributed POPs with fast interconnec
tivity between those POPs. Currently, limited interfaces to the
CDN with little or no customization results in lost opportu
nity.

SUMMARY

In one embodiment, the present disclosure provides a
method and system for flexibly processing content objects.
The processing is performed with a content delivery network
(CDN) having a number of geographically distributed points

2
graphically distributed points of presence (POPs) for process
ing content objects with a plurality of resources. The CDN
includes a landing pad to receive a content object from a
client, one or more databases comprising a list of the plurality
of resources, each of the plurality of resources being associ
ated with one or more tags, and each tag indicating a charac
teristic of the associated resource. The CDN also includes a
policy reconciliation service (PRS) for maintaining and pro
cessing policies, the PRS being coupled to the one or more

10
databases. The PRS includes a policy store comprising a
plurality of policies, each of the plurality of policies defining
specific processing of content objects, the plurality of policies
including a first policy and a second policy. Each of the first
policy and the second policy includes an applicability param
eter indicating criteria that a content object must satisfy in

15 order for the content object to be processed in accordance
with the respective first or second policy, the criteria indicated
in the first policy's applicability parameter being different
from the criteria indicated in the second policy's applicability
parameter. The first policy comprises a disposition parameter

20 indicating criteria that a resource must satisfY in order for the
resource to effect the first policy, and the first policy com
prises one or more mutators, each mutator comprising a tem
plate for inclusion of an address of a resource and/or a loca
tion of a received content object. The CDN also includes a

25 policy manager configured to determine that the first policy is
applicable to the received content object and that the second
policy is not applicable to the received content object, the
determination being based on the first policy's criteria and
metadata related to the received content object, a requester of

30 the received content object and/or a provider of the received
content object at the CDN. The policy manager is further
configured to identifY a resource of the plurality of resources
for effecting the first policy based on the disposition param-
eter and a tag associated with the first policy.

In another embodiment, the present disclosure provides a
content delivery network (CDN) having a plurality of geo
graphically distributed points of presence (POPs) for process
ing content objects with a plurality of resources. The CDN
includes two or more hardware servers progrmed for

of presence (POPs). Content objects are ingested through 35

landing pads and stored or otherwise processed in a flexible
way where storage bricks and other resources are chosen
flexibly by characterization tags. Policies are used to describe
which content objects are processed by which categories of
resources. A group of resources characterized by the tag are
chosen when the processing is performed. When retrieving
content, the content object can be stored on any storage brick
found through the tag analysis process. A query is translated

40 enrolling the plurality of resources to be accessible from the
CDN; categorizing each of the plurality of resources using a
plurality of tags that categorize the plurality of resources,
where the plurality of resources includes a resource; receiving
selection of a policy from a plurality of policies, where the to addresses for the chosen storage brick(s).

In another embodiment, the present disclosure provides a
method for processing content objects with a plurality of
resources associated with a content delivery network (CDN)
having a plurality of geographically distributed points of
presence (POPs). The plurality of resources are enrolled to be
accessible from the CDN. Each of the plurality of resources is
categorized using a plurality of tags that categorize the plu
rality of resources, and the plurality of resources includes a
resource. Selection of a policy from a plurality of policies is
received, and the plurality of policies define processes to
perform on content objects stored at the CDN. The selected
policy includes an applicability criteria and a call to the
resource. Metadata is received at the CDN related to the
content object, a requester of the content object and/or a
provider of the content object. The content object is received
for storage at the CDN. It is determined, through analysis of
the meta data and/or the applicability criteria, that the policy is
applicable and that other policies are not applicable to the
received content object. The resource is called according to
the call in the policy to cause the resource to perform specified
processing on the received content object.

In another embodiment, the present disclosure provides a
content delivery network (CDN) having a plurality of geo-

45 plurality of policies define processes to perform on content
objects stored at the CDN, wherein the selected policy
includes an applicability criteria and a call to the resource;
receiving, at the CDN, metadata related to a content object, a
requester of the content object and/ or a provider of the content

50 object; receiving the content object for storage at the CDN;
determining that the policy is applicable and that other poli
cies are not applicable to the received content object through
analysis of the metadata and/or the applicability criteria; and
calling the resource according to the call in the policy to cause

55 the resource to perform specified processing on the received
content object.

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here
inafter. It should be understood that the detailed description

60 and specific examples, while indicating various embodi
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure.

65

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in conjunction with the
appended figures:

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 23 of 33 PageID# 575

US 8,615,577 B2
3

FIG. 1 depicts a block diagram of an embodiment of a
content distribution system;

FIGS. 2A and 2B depict block diagrams of embodiments of
a point of presence (POP);

FIGS. 3A and 3B depict block diagrams of embodiments of
a content management architecture;

FIGS. 4A and 4B depict block diagrams of embodiment of
a content brick or resource;

4
redistribute and/or host content in various embodiments for
third parties such as the content originator 106 to offload
delivery and typically provide better quality of service (QoS).

FIG. 5 depicts a block diagram of an embodiment of the
policy reconciliation service interacting with a metadata 10

directory;

In this embodiment, the content distribution system 100
locates the content objects (or portions thereof) and distrib
utes the content objects to end user systems 102. A content
object is any content file or content stream and could include,
for example, video, pictures, data, audio, software, and/or
text. The content object could be live, delayed or stored.
Throughout the specification, references may be made to a
content object, content, content stream and/ or content file, but
it is to be understood that those terms could be used inter
changeably wherever they may appear. FIG. 6 depicts a diagram of an embodiment of a directory

structure;
FIGS. 7 and 8 illustrate swim diagrams of embodiments of

a process for using the content management architecture to
retrieve a content object;

FIG. 9 illustrates a flowchart of an embodiment of a process
for applying policies to a content object;

FIG. 10 illustrates a flowchart of an embodiment of a
process for configuring a customer account;

FIG. 11 illustrates a flowchart of an embodiment of a
process for disambiguation of policies;

FIGS. 12A, 12B and 12C depict block diagrams of
embodiments of policy prioritization hierarchies;

FIG. 13 illustrates a flowchart of an embodiment of a
process for performing a policy;

FIG. 14 illustrates a flowchart of an embodiment of a
process for enrolling a resource or brick into the content
distribution system;

Many content providers 108 use a CDN 110 to deliver the
content objects over the Internet 104 to end users 128. The

15 CDN 110 includes a number of points of presence (POPs)
120, which are geographically distributed through the content
distribution system 100 to deliver content. Various embodi
ments may have any number of POPs 120 within the CDN
110 that are generally distributed in various locations around

20 the Internet 104 to be proximate to end user systems 102.
Multiple POPs 120 use the same IP address such that an
Anycast routing scheme is used to find a POP 120 likely to be
close, in network terms, to the end user for each request. In
addition to the Internet 104, a wide area network (WAN) 114

25 or other backbone may couple the POPs 120 with each other
and also couple the POPs 120 with other parts of the CDN
110.

FIG. 15 illustrates a flowchart of an embodiment of a 30

When an end user 128 requests a web page through its
respective end user system 102, the request for the web page
is passed either directly or indirectly via the Internet 104 to
the content originator 106. The content originator 106 is the process for delivering a content object using the content man

agement architecture;
FIGS. 16A and 16B illustrate flowcharts of embodiments

of a process for elastically managing propagation of content
objects; and

FIG. 17 illustrates a flowchart of an embodiment of a
process for using policies to change the jurisdiction used to
process a content object.

In the appended figures, similar components and/or fea
tures may have the same reference label. Further, various
components of the same type may be distinguished by fol
lowing the reference label by a dash and a second label that
distinguishes among the similar components. If only the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second reference
label.

DETAILED DESCRIPTION

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather, the
ensuing description of the preferred exemplary
embodiment(s) will provide those skilled in the art with an
enabling description for implementing a preferred exemplary
embodiment. It is understood that various changes may be
made in the function and arrangement of elements without
departing from the spirit and scope as set forth in the
appended claims.

Referring first to FIG.1, a blockdiagramofanembodiment
of a content distribution system 100 is shown. The content
originator 106 offioads delivery of the content objects to a
content delivery network (CDN) 110 in this embodiment. The
content originator 106 produces and/or distributes content
objects and includes a content provider 108, a content site
116, and an origin server 112. The CDN 110 can cache,

source or re-distributor of content objects. The content site
116 is a web site accessible by the end user system 102. In one
embodiment, the content site 116 could be a web site where

35 the content is viewable with a web browser. In other embodi
ments, the content site 116 could be accessible with applica
tion software other than a web browser. In this embodiment,
the content provider 108 directs content requests to a CDN
110 after they are made or formulates the delivery path to the

40 CDN 110 by embedding the delivery path into the URLs for
a web page. In any event, the request for content is handed
over to the CDN 110 by using an Anycast IP address corre
sponding to one, two or more POPs 120.

Once the request for a content object is passed to the CDN
45 110, the request is associated with a particular POP 120

within the CDN 110 using the Anycast routing scheme. The
particular POP 120 may retrieve content object from the
content provider 108 if not already within the CDN 110.
Alternatively, the content provider 108 may directly provide

so the content object to the CDN 110 and its associated POPs
120 through pre-population or hosting in advance of the first
request. The CDN servers include edge servers that actually
serve end user requests. The origin server 112 holds a copy of
each content object for the content originator 106. Periodi-

55 cally, the content of the origin server 112 may be reconciled
with the CDN 110 through a cache, hosting and/or pre-popu
lation algorithm. Some content providers 108 could use an
origin server within the CDN 110 to host the content and
avoid the need to maintain an accessible copy of the content

60 object at the origin server 112 of the content originator 106.
Once the content object is retrieved from the origin server

112 by the CDN 110, the content object is stored in a mauner
accessible to the CDN to allow processing by that POP 120 to
service the end user systems 102. For example, the content

65 object could be stored on a brick 130. Streamed content
objects can have real time or near real time information or can
be previously stored. The end user system 102 receives the

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 24 of 33 PageID# 576

US 8,615,577 B2
5

content object and processes it for use by the end user 128.
The end user system 102 could be a personal computer, media
player, handheld computer, Internet appliance, phone, IPTV
set top, web server, processing system, streaming radio or any
other device that receives and/or plays content objects. In
some embodiments, a number of the end user systems 102
could be networked together. Although this embodiment only
shows a single content originator 106 and a single CDN 110,
it is to be understood that there could be many of each in
various embodiments. 10

Storage accessible to the CDN 110 includes bricks 130 in
this embodiment. A brick 130 is any storage medium inside or
outside the CDN 110 that is part of a content management
architecture (CMA). The storage medium includes a layer of

15
software to accommodate commands for the brick. Any stor
age array, network attached storage, drive, flash media, or
other non-volatile memory could act as a brick 130 with the
proper layer of software. In this embodiment, one of the end
user systems 102-1 has a brick 130-1 coupled to it. The CDN 20

110 could store content on any brick 130 to implement a
policy, regardless of whether the brick is internal or external
to the CDN 110.

6
The switching fabric 240 is used for several functions.

Incoming requests for content objects are routed to the edge
servers 230, 235 using the switching fabric. This could be
done using routing, redirection or domain name service
(DNS). Load balancing, round-robin, and/or other techniques
could be used by the switching fabric 240 to route requests to
edge servers 230, 235. Communication within the POP 120
also uses the switching fabric 240. Edge servers 230, 235
could have multiple software applications running that com
municate with other edge servers 230, 235.

There are legacy landing pads 215 and landing pads 210
supporting CMA. The legacy landing pads 215 use a legacy
adapter 285 to integrate with the CMA. The legacy adapter
285 includes a portable operating system interface for Unix
("POSIX") adapter to allow backward compatibility to legacy
landing pads 215. Many applications are designed to directly
interface with the AMA without requiring the POSIX func
tionality of the legacy adapter 285. A universal namespace
and directory space is provided by the legacy adapter 285 for
the CMA to abstract the legacy storage interface from the
native storage. There can be multiple landing pads 210, 215 in
multiple POPs 120 for a given customer to provide an ingest
point for content objects.

A content directory 205 is provided for the CMA to allow Other resources 134 are available to the CDN 110 to pro
cess content. Resources 134 can be internal or external to the
CDN 110. A brick 130 is just a resource, but it is broken out
separately since the processing it performs is largely limited
to storage. Generally, a resource 134 is any hardware or
software function that can store or process a content object.
Examples include, transcoders, cryptographic processors,
compression engines, content processors (e.g., image proces
sors, video processors or audio processors), thumbnail gen
erators, media syndication services, video/audio ad insertion
engines, video processing services, metadata insertion
engines, or anything that can process content objects and can
be interfaced with an API from the CDN 110. In this example,
there is a first resource 134-1 available to the CDN 110 over
the Internet 104 and a second resource 134-2 within the CDN
110, but it is to be understood there could be many more
resources available to the CDN 110.

25 locating, processing and storing content. The content direc
tory 205 includes a metadata directory 275 and a content
mapper 220. The metadata directory 275 manages through
selection of resources and bricks that are members of tag and
tagset groups, which resources and bricks are selected for

30 particular processing task. The content mapper 220 is just a
database storing UUID and corresponding path and filename
along with the brick addresses that store the file referenced by
a particular UUID. The health of bricks 130 and resources
134, metadata, tags, and other information is maintained by

35 the metadata directory 275. All bricks 130 and resources 134
have various tags associate with them. For each tag or tagset,
the bricks 130 or resources 134 that have that tag ortagset are
known to the metadata directory 275 to allow selection of a
brick 130 or resource 134 for a particular processing task

40 performed on a content object.
The content mapper 220 is a distributed database or data

structure that translates path and filename to a universal
unique identifier (UUID). In this embodiment, the UUID is a
256-bit number that is randomly, pseudorandomly, sequen-

45 tially, or unpredictably assigned to each content object file
stored in the CDN 110. It is extremely unlikely that two files
would have the same UUID and a check could be performed
prior to assigrnnent to be sure the UUID generated hasn't

With reference to FIG. 2A, a block diagram of an embodi
ment of a POP 120-1 is shown. There are both legacy edge
servers 235 that don't natively support the CMA and edge
servers 230 that do in this embodiment. Legacy edge servers
235 use a mapper transport 245 that supports the CMA to
gather any content requested from CDN 110 and present the
content like an origin server. The mapper transport 245 makes
the calls necessary to locate the content and pass it to the
legacy edge server 235. Requests are made to bricks 130 by
the mapper transport 245 that acts as a reverse proxy to return 50

the requested content. Typically, the software on the legacy
edge server 235 does not require any rewriting to allow inte
gration with the CMA because of the mapper transport 245.

already been used within the CDN 110.
A policy reconciliation service (PRS) 260 maintains and

processes policies. Each policy defines processing to perform
on one or more content objects. The operation of a policy is
affected by criteria based upon metadata and tags/tagsets.
Where there are multiple policies applicable to content, the

55 PRS disambiguates the situation based upon a hierarchy or by
picking the lowest or highest common denominator for the
applicable policies.

The various edge servers 23 0, 235 are coupled to each other
and the Internet 104 and WAN 114 using switching fabric
240. Edge servers 230,235 number in the thousands ina given
POP 120. The edge servers 230, 235 could be divided by
function and/or customer. Loading algorithms can be used to
divide load among the edge servers 23 0, 235 in any number of
ways. The edge servers 230 perform caching, streaming,
hosting, storage, and/or other functions within the POP 120.
An edge server 230, 235 is typically a rack-mounted com
puter that could have varying levels of processing power,
memory and storage. Software rum1ing on the edge server
230, 235 includes, for example, HTTP proxy caching, media 65

servers, Flash™ servers, Java™ application servers, Silver
light™ servers, etc.

Within each POP 120 or elsewhere in the CDN, there are a
number of bricks 130 that store content objects and resources

60 134 that process the content objects. A policy can define the
classes ofbricks suitable for storage and the processing that a
resource 134 would perform on a content object. Parameters
are passed to a resource 134 using a mutator that is part of a
policy.

With reference to FIG. 2B, a block diagram of an embodi
ment of a POP 120-2 is shown. The edge servers 230 and
landing pads 210 in this embodiment natively support the

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 25 of 33 PageID# 577

US 8,615,577 B2
7

CMA without any translation or interfaces required. Calls are
made to the content directory 205 to find the UUID for a
content object and the brick names or identifiers that hold the
content object. When storing content objects, the content
directory 205 uses the tags and metadata to choose one or 5

more bricks 130 that would store a particular content object.
With reference to FIG. 3A, a block diagram of an embodi

ment that shows portions of a content management architec
ture (CMA) using legacy edge servers 235. This embodiment
has only legacy edge hosts 316 and legacy edge caches 304 10

instantiated on the legacy edge servers 235. Other embodi
ments could additionally include edge caches and/or edge
servers that natively support the CMA.

8
cache 305 or edge host 315 can directly request the content
object from a brick address by providing it the UUID. Where
there are multiple bricks with the content object, they could
be queried according to different schemes, for example, que
rying in parallel or sequentially. The bricks 130 may be inside
or outside the CDN 110. Where a name of a brick is returned
instead of an address, a domain name lookup service could be
used to find the address.

Referring next to FIG. 4A, a block diagram of an embodi
ment of a content brick 130 is shown. A brick 130 is con
nected to the switching fabric 240 in some way to be managed
the CMA. The brick daemon 404 is a software layer that is
between the switching fabric 240 and the native file interface
408 to translate communication with the CMA to allow stor
age on the native storage 412. Since there are many native file
interfaces and host platforms, the brick daemon 404 is cus
tomized for the host platform. This embodiment of the brick
daemon 404 only does translation, but other embodiments
could perform authentication and/or encryption. Files are
stored on the native storage 412 with the UUID as the file
name.

When a content object or portion thereof is not found on the
legacy edge server 235, reference to a mapper transport 245 is 15

made. The mapper transport 245 acts as an origin server for all
the content in the CMA. The mapper transport 245 interacts
with the lookup listeners 328 to get names or addresses of the
bricks 130 that hold the content object along with its UUID.
The mapper transport 245 then proxies the content object 20

back to the requesting legacy edge cache 304 or legacy edge
host 316. The protocol and handshaking expected by the
legacy edge cache 304 or legacy edge host 316 is performed

Referring next to FIG. 4B, a block diagram of an embodi-
25 ment of a resource 134 is shown. The resource 134 could be

by the mapper transport.
The metadata directory 275 and content mapper 220 col

lectively form the content directory 205. The metadata direc
tory 275 translates a path and filename to a UUID when
originally storing a content object. To find out a UUID or
brick addresses, the path and filename is sent to the content
mapper 220, by multicasting using multiple unicast charmels 30

to some or all the lookup listeners 328. The namespace is
divided between the lookup listeners 328 in addition to hav
ing multiple alternative lookup listeners 328. Multiple lookup
listeners 328 that receive the request will respond, but the
requester only uses the first lookup listener 328 to respond. 35

Where there are multiple lookup listeners distributed around
the CDN, a distributed database protocol is used to keep all of
them reconciled.

The mapper cabinet 324 stores the UUID and brick names

any hardware or software that processes a content object. A
resource API 405 receives mutators and other commands. The
resource API 405 interfaces with a native resource interface
409 to command a native resource 413 to perform processing
on a content object. In some cases, the resource 134 has a
native API the is suitable for integration with the CMA with-
out the need for a resource API layer.

With reference to FIG. 5, a block diagram of an embodi
ment of the PRS 260 interacting with a metadata directory
275 is shown. The PRS 260 includes a policy manager 504
that controls a policy compiler, a policy store 520, and a
policy mapping store 518. The policy compiler 528 performs
disambiguation to resolve conflicts when multiple policies
apply to the same content object. Conflicts can be resolved by
a hierarchical scheme where policies higher in the hierarchy
take precedence. In another embodiment, the policy compiler
chooses the most or least stringent of the conflicting policies.
For example, a policy that requires all JPEG files be deleted

or addresses for each path and filename combination. The 40

lookup listener 328 queries the mapper cabinet 324 with the
path and filename, to get the UUID for that path and filename
that is returned with all the brick names that hold the content
file. The lookup listener 328 with the answer passes the UUID
and brick information back to the mapper transport 245.
Where there are multiple bricks 130 with the UUID, the
mapper transport 245 chooses one and confirms it is there.
Additional, bricks 130 could be queried if unsuccessful. The
mapper transport 245 proxies the content object back to the
requesting legacy edge cache 304 or legacy edge host 316, but
other embodiments could redirect the request directly to the
brick 130.

45 after two weeks and another policy that requires all files to be
deleted when not requested for a day could be resolved either
most stringently to delete the JPEG file after not being used
for a day or least stringently to be deleted after two weeks.
Additionally, any syntax errors in the policies are found and

50 identified by the policy compiler 528.

The policy store 520 holds all the policies in the CMA. The
policies are applicable to many customers and each have
various levels of alterations for a particular customer. There

With reference to FIG. 3B, a block diagram of another
embodiment that shows portions of a CMA. This embodi
ment uses edge caches 305 and edge hosts 315 that support
the CMA. Where the content object is not found locally, the
edge server 230 will request the path and file from the content
mapper 220. Through multicast to the lookup listeners 328,
one with the answer returns it after a query to its respective
mapper cabinet 324. The edge server 230 can make an edu
cated guess on what lookup listeners 328 are likely to respond
first instead of querying all of them within the CDN each
time. The guess could be based upon which returned answers
quickly in the past or based upon an estimate of the closest
ones in a network sense.

The UUID and brick names or addresses are returned by
the content mapper 220 to the edge server 230. The edge

55 are policies for ingest, replication, hosting, transcoding,
encryption, compression, thumbnailing, various workflows,
aging content in/out of system, and other processing for a
content object. Each policy is a function with defined with
PRS parameters that include criteria, variables, storage dis-

60 position and optional mutators. Table I below shows
examples of some policies with the PRS parameters that
implement the policy and the variables used. For example, a
transcode policy retrieves a source URL and places it in an
intake subdirectory for the transcoder. The transcoder per-

65 forms any number of different transcodes on the source files
as specified and stores the resulting files as the specified
transcode URLs.

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 26 of 33 PageID# 578

US 8,615,577 B2

Policy

Ingest

9
TABLE I

Example Ingest and Hosting Policies

PRS Parameters

Ingest API
Information

Transcoder
Format(s)

Variable(s)

Origin URL, Content Tags,
Transcode Options,
Storage Options, Purge Date
Transcode Options, URL,
Content Tags

10
URL The thumbnailer resource 134 is an HTTP-based API
which is called with this URI: http://www,imagetransfor
m,org/thumbnailer?path=<full path to source
image>&size=<size of image>, The resource is located at the
address of the imagetransform,org domain, which may or
may not be within the CDN 110,

In this example, all known bricks 130 have infrastructure
tags 508 for their geographical locations (e,g,, city, metro
politan area, country, supranational entity), For example, a

Replication

Transcode

Store File(s)
Automatic Purging
File Copy

Retrieve Source
n Transcodes

File Name, Storage Options
Purge Date
Nwnber of Copies, Content
Tags, Infrastructure Tags
Source URL
Transcode Options, Different
Transcodes, Source URL, Content
Tags

10 brick 130 in London would be tagged with the tags LON
DON, UK, EU, and EMEA A brick in 130 Paris would be
tagged with PARIS, FRANCE, EU, and EMEA A brick 130
in Chicago would be tagged CHICAGO, IL, USA, NA, and
AMERICAS, and so on,

15 The one or more databases or data structures hold the

Host
Store Results
Hosting API
Information

Transcode URLs
Origin URL, Content Metadata,
Customer Metadata,

infrastructure tags and tagsets 508 and addresses of all bricks
130 or resources 134 that comply with each tag or tagset The
tagset could be named to be the same as the tag, by conven
tion, i,e,, LONDON, USA, etc, Tagsets could be conjunctions

Store File(s)
File Aging

Storage Options, Purge Date
Stored URL, Storage Options
Purge Date 20 of two or more tags, For example, a tagset called LOND

HPERF could contain both the LONDON and HIGH-PER-
FORMANCE tags, A query to the metadata service 524 for a
given tag or tagset would return all bricks 130 and resources
134 that have the tag(s),

All known bricks 130 or other resources 134 are arbitrarily
grouped with a tagset having any number of tags, For geo
graphic tags, a brick 130 cannot be in London and somewhere
else at the same time, so generally a geographic tag are not
conjoined with other geographic tags in a tagset, Not all the

Policies are preformulated or custom designed by content
providers or content receivers, The policy could be in any
format (e,g,, XML, text, etc,) and could be command line 25
instructions, run-time executed source code or compiled into
object code, Policies can age into or out of system, A PRS
parameter acts as an instruction in a CDN-specific program
ming language, A policy can be assigned to an end user who
receives content, a customer who provides content, a content
object, a class of content objects, a directory, and/or any other
tag or metadata demarcation,

30 tags which exist need to be in a tagset-some might be
reserved for future use, Similarly, not all tagsets need be
utilized in any policy,

This example policy is expressed in a pseudo language
below as four PRS parameters, The first PRS parameter is the

Criteria for a policy define its applicability to the content
objects in the CMA Criteria allow size-based processing,
MIME type workflows, or any metadata or tag qualifier
before performing the policy, For example, a compression
policy could be applied to a particular MIME type stored in a
particular POP that has not been requested for some period of
time,

35 policy name, For the second PRS parameter, one or more
criteria can be specified as positive or negative logic to test for
a condition before applying the policy, In this example, the
criteria defines applicability to content files of the JPG MIME
type, The disposition in the third PRS parameter is the storage

Each policy has PRS parameter that defines a disposition
for the content object to be performed after any processing,
The disposition can say what type bricks 130 or resources 134

40 conditions specifying tags and the minimum number of cop-

to use, The number of copies of the content object to have and
what geographic spread to place on those copies can also be
defined, A deletion date can be defined in the PRS parameter, 45

Jes,
Policy: "ExamplePol"
Criteria: [{name=',* ,jpg$'}]
Disposition: [{Tagset="USA", MinBricks=2},

{Tagset="EU", MinBricks=l}]
Thumbnail Mutator=[http :/ /www,imagetransform,org/

thumbnailer?path=%p&size=%s]
In order to decide the applicability of this policy, the PRS 260
would first would look at the name extension of the file as a
criteria, If it matches the regular expression',* ,jpg$' (that is,
it ends with the text 'jpg'), then this policy applies, Any other
files would not be deemed to be covered by this policy,

When executing the policy, the PRS 260 would select two
bricks which have all the tags in the tag set USA, and one brick

A mutator indicates a resource 134 that will process the
content object The API to the resource typically includes the
source path and filename for content file and any number of
variable that affect processing by the resource 134, The muta
tors are in the form of a URL in this embodiment, but other 50

embodiments could use any format, The mutator URL iden
tifies the address of the resource 134, a source content object
location that is being operated upon and a number of vari
ables, The mutator URL can perform conditional actions
based upon prior mutators and/or variables,

The functionality of a policy is demonstrated with an
example thumbnailing policy that uses a thumbnailing
resource to create thumbnail images for an image content
object, In this example, the policy would store any files which
end in the file name extension is 'jpg' in three different loca- 60

tions, One of the locations is in the European Union and two
are stored in the United States, Once all copies have been
made, a call to the thumbnailer resource 134 is made, which
generates a small thumbnail image of the source JPEG file
that is stored in a predetermined location, The thumbnailer 65

resource 134 uses the pathname of the source JPEG file as
well as its size in bytes passed as variables in the mutator

55 from the set which have all the tags in tagset EU The bricks
could be chosen by any criteria such as randomly, round
robin, available space, cost of storage, proximity in network
terms, bandwidth cost to transport the file, etc, Once three
receipts come back from those bricks marked COMPLETE,
the source JPEG file itself goes into the COMPLETE state,
and the thumbnail mutator in the PRS parameter list gets
called, substituting the metavariables% p with the full path to
the object, and% s with the size in bytes of the image object,
Other policies could have any number of mutators for storage,
transcoding, replication, or other processing for a file or asset,

The policy mapping store 518 records which policies are
mapped to various levels of the hierarchy, Various embodi-

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 27 of 33 PageID# 579

US 8,615,577 B2
11

ments could map policies to the national jurisdiction, regional
jurisdiction, CDN-wide, POP-applicable, customer, sub-cus
tomer, directory, sub-directory, MIME-type, individual file,
etc. to achieve any level of granularity. FIGS. 12A, 12B and
12C, show embodiments of a different policy prioritization
hierarchies 1200. Each block represents a level in the hierar
chy and can have a number of policies assigned to it. The
policies for a particular level can be organized in a priority as
between the others at that level. Policies in a higher block take
precedence over those in a lower block during the disambigu- 10

ation processes performed by the policy compiler 528. The
present embodiment only has two levels in the hierarchy as
illustrated in FIG. 12A. Some policies disassociate them
selves with a particular level of the hierarchy once performed.
For example, a policy could be used to update coding on the 15

content library from a legacy format where all new content is
received in the updated coding. After running the policy once,

12
directory structure 532 in this embodiment, but could be
stored with other customer metadata 516 in other embodi-
ments.

Also stored is user metadata 540 that is discerned about the
end user 128. Typically, the end user 128 does not intention
ally interface with the CDN 110 so the user metadata 540 is
largely discerned indirectly. Metadata includes usage habits,
content preferences, demographic information, user identi-
fier, POP location receiving request, and end user system
location. The content player, IP address, cookies or other
techniques may be used to discern one user from another.
Privacy concerns can limit the availability of user metadata
540.

Infrastructure tags and tagsets 508 are assigned to bricks
130 and resources 134. The number of tags increase ascus
tomers want greater granularity in applying policies. Infra
structure tags include: carbon use, energy use, storage type
(e.g., solid state, magnetic, optical, spinning, tape), equip
ment manufacturer, reliability (e. g., dual-location replication,

it can be disassociated from the customer with a PRS param
eter in the policy that removes the association in the policy
mapping store 518. 20 RAID level, tape archive), write only, write once, interface

speed (e.g., SATA, SAS, Ethernet, 10Gb), retrieval latency,
storage cost, physical security surrounding equipment, geo
graphical location of content, various performance discrimi-

The directory structure 53 2 for this example is illustrated in
FIG. 6 where each customer has a directory with optional
subdirectories. Each directory or subdirectory can hold file
names 604 for content objects of the customer. The directory
structure 532 is stored in the metadata directory 275 in this 25

embodiment. Table II shows an example of a portion of the
policy mapping 518 for the hierarchy in FIG. 12A and the
directory structure of FIG. 6. The /ZBS_Radio client has
subdirectories for /streams and /podcasts. All the files in the
/ZBS_Radio/streams path has both ingest and host policies 30

that are applied, while all the files in the /ZBS_Radio/pod
casts path has ingest, transcode and host policies that are
applied.

Directory

ABS Movie
Channel

ZBS Radio

Realure
eBooks

Subdirectory

Streams
Podcasts

TABLE II

File

Silverthorne
Trails.epub
Keystone
Boarding.epub
Aventneer.epub
Aventneer
Audio.mp3

Policy

Ingest, Replication,
Host

Ingest, Host
Ingest, Transcode,
Host
Ingest, Replication

Ingest, Replication

Ingest
Ingest, Replication,
Trans code

A UUID generator 532 assigns a 256 bit code to each path
and filename stored in the CMA. The UUID becomes the file
name for content objects stored with the various bricks 130
associate with the CMA. The UUID is a one-way function in
that the path and file name cannot be determined from the
UUID alone, but a query to the mapper cabinet 324 can give
the bricks storing a particular UUID and the path and file
name.

The metadata directory 275 maintains metadata, tags and
tagsets that are used by the policies to process content objects.
There is customer metadata 516 describing details about the
customer. The customer metadata 516 is entered when the

nators, equipment location to city, region, or country, POP,
IPV 4 or IPV6 compatibility, CDN hosted, user hosted, level
of QoS. The tags can be applied to bricks and resources
regardless of them being inside or outside the CDN 110.

Content metadata 512 relates to content objects with the
CMA. The content metadata 512 can additionally be stored in
the content object itself and/or its file name. The content
metadata includes MIME type, encoding, container format,
copyright terms, cost terms, copyright year, actors, director,
studio, program summary, content rating, critical review
ranking, title, transcript, ad insertion locations, encryption,

35 request popularity, etc. Some content metadata 512 is not
stored in the database or store, but is discerned through inter
action with the content file. For example, MIME type is
readily discernable from the file itself without refereeing the
content metadata 512 in the store or database.

40 Bricks 130 and resources 134 are expressly enrolled to
work with the CMA. A registration interface 536 is used to
enter the address or domain name for the brick 130 or
resource 134 that is stored in a brick/resource information
store 544. The bricks 130 and resources 134 periodically

45 report health and status information through a report interface
548 that is also stored in the brick/resource information store
544. The metadata directory 275 can periodically request
status and health information using the report interface 548 or
can test the brick 130 or resource 134. Where calls to the brick

50 130 or resource 134 fail or perform poorly, the brick/resource
information 544 can be updated to reflect status.

With reference to FIG. 7, a swim diagram of an embodi
ment of a process for using the CMA to retrieve a content
object with a legacy edge server 235 is shown. The depicted

55 portion of the process begins in block 704 where the end user
system 102 requests a file from an the legacy edge server 235.
Where the legacy edge server 235 cannot fulfill the request,
the file is requested from the mapper transport 245 in block
708. The request from the legacy edge server 235 is typically

60 a URL which is converted by the mapper transport 245 in
block 712. A multicast query is made to the lookup listeners
328 in block 714 that is received in block 716. To achieve
parallel requests to the lookup listeners 328, multiple unicast

customer configures their account with the CDN and includes
account holding personal information, account, any sub-ac- 65

count(s), zone, channel, confidentiality level, etc. The direc
tory and subdirectory structure for a customer is stored in the

requests are made overlapping in time.
In block 724, a query is made from the lookup listener 328

to the mapper cabinet 324. The first lookup listener 328 to find
the result in its respective mapper cabinet 324, responds to the

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 28 of 33 PageID# 580

US 8,615,577 B2
13

mapper transport 245 with the brick addresses and UUID in
block 728 that receives them in block 734. The mapper trans
port 245 determines which of the brick addresses to use where
there are multiple ones in block 748. The determination can
be random or according to some other scheme. The UUID is 5

requested from the address of the selected brick in block 752.
If unsuccessful as determined in block 756, another address is
attempted by looping back to block 748.

Where the file with the UUID for the name is found on the
brick 130, the file is renamed and sent to the legacy edge 10

server 235 in block 760. The file is received in block 764 and
returned to the end user system 102 in block 768. In this way,
the CMA is used like an origin server by any legacy process
with the mapper transport 245 translating the interaction.

14
the content object file such that it qualifies for more or less
policies so that is reanalyzed in block 912. At some point, it is
determined block 922 that all policies have been performed
and the normal operation of the CDN 110 utilizes the content
object file in its processed form is performed in block 924.

Upon changes to user, customer or content metadata 540,
516, 512 referenced in the applicable policies or tags 508
associate with where a content object file is stored, the poli
cies are run again. For each content object, the relevant input
metadata 512, 516, 540 or tags 508 used in the policies are
tracked. Where there are changes to any of the metadata 512,
516, 540, tags 508 or policies as determined in block 928,
processing loops back to block 912 to rerun the policies.

Referring next to FIG. 10, a flowchart of an embodiment of
Referring next to FIG. 8, a swim diagram of another

embodiment of a process for using the CMA to retrieve a
content object is shown. This configuration does not use the
mapper transport 245 as the edge server 230 knows how to
interact with the content directory 205 directly. In block 804,

15 a process 904 for configuring a customer account is shown.

a request for a file is made by the end user system 102 to the 20

edge server 230. The path and filename is requested using
multicast to the looknp listeners 328, where the content object

The depicted portion of the process begins in block 1004
where the customer connects to the CDN 110 and authenti
cates their identity. Certain demographic and payment
options may be entered along with customer metadata 516. In
block 1008, a landing pad 210 is selected and customized. A
landing pad 210 is an ingest point and can be configured in
any number of ways to efficiently provide content objects to
the CDN 110. is not found on the edge server 230 in block 814. The content

directory 205 receives the request in block 816, determines or
looks-up the UUID in block 820 and the brick names in block
824 from the mapper cabinet 324 to respond first with the
answer.

In block 1012, the customer can choose the number of
25 POPs and/or their location that will host the landing pad. The

customer can select that each POP would have an instantiated
landing pad 210 or instantiate one upon request. To provide
for high volume accounts, there can be a number of landing
pads per POP that even scales up or down with demand. The

The brick addresses and UUID are sent by the content
directory 205 in block 828 and received by the edge server
230 in block834. The edge server230 determines which brick
address to try first in block 848 before requesting that UUID
from the brick 130 in block 852. If not found in block 856,
another brick address is attempted by looping back to block
848. Where the file is found in block 856, it is renamed and
returned to the end user system 102 in block 868.

30 customer can design the directory structure 532 for their
account by renaming directories and adding sub-directories
nested down any number oflevels in block 1016.

The customer can customize policy templates, design new
policies or modify their existing policies in block 1020. The

35 policies are mapped to the hierarchy 1200 in block 1022.
With reference to FIG. 9, a flowchart of an embodiment of Where there are multiple policies for a particular level in the

hierarchy, they are put in order of importance to allow resolv
ing potential conflicts during disambiguation. In block 1024,
the landing pads 210 start normal operation at the selected

40 POP(s) 120. The directory structure and loaded files for the
customer can be viewed and modified through the landing pad
in block 1028.

a process 900 for applying policies to a content object is
shown. The depicted portion of the process begins in block
904, where the customer account, services and policies are
configured, which is explained in greater detail in relation to
FIG. 10 below. In block 908, a content object file is received
from the customer using a landingpad210, 215 or other API.
Some embodiments can add content object files when
requested from the CDN 110 and are located after a cache
miss. Other embodiments can designate a path that is auto- 45

matically reconciled with the CDN 110 using a policy.
Some policies are triggered by an action such as intake,

user request, or other action that would affect the content
object file. Other policies are run periodically or according to
a schedule, for example, checking a directory for newly 50

encoded files and moving the file back out to the origin server
112 of the content originator 106. In any event, the potential
policies are determined in block 912, which is explained in
greater detail in relation to FIG. 11. The policies generally
applicable to the content file is determined by analysis of all 55

policies associated with the hierarchy 1200 in block 916.
Where there are more than one policy, a disambiguation pro
cess is performed by the policy compiler 528 to find the policy
that has the highest priority.

In block 920, the policy is interpreted and performed. The 60

policy is represented as a number ofPRS parameters that are
interpreted to perform some processing on the content object
file. The functionality of block 920 is explained in greater
detail in relation to FIG. 13 below. If there are more policies
applicable to the content object file that are still waiting to 65

complete as determined in block 922, processing loops back
to block 912. The just performed policy may have changed

With reference to FIG.11, a flowchart of an embodiment of
a process 912 for disambiguation of policies is shown. The
process 912 is best understood in reference to one hierarchy
from FIG. 12A, 12B or 12C. The depicted portion of the
process 912 begins in block 1104 where all policies possibly
applicable to the file are found throughout the hierarchy. The
policies are all prioritized in block 1108. The tags, metadata
and criteria of the PRS parameters in the policies are gathered
in block 1112. Criteria can and other filters in the policies can
make many policies irrelevant to a particular content file.

In block 1116, the inapplicable and conflicting policies are
removed from the list. Each policy has a criteria that may
make the policy inapplicable to the file. Additionally, there
can be conflicting policies where the lower priority policy is
removed. The policy compiler 528 also checks for syntax
errors or other problems in block 1120. The invalid policies
are removed from the list in block 1124. The list of potential
policies are known at the point so that the highest priority can
be executed.

With reference to FIG.13, a flowchart of an embodiment of
a process 920 for performing a policy is shown. The depicted
portion of the process begins in block 1302 where the policy
compiler 528 checks the policy for errors prior to running the
policy after being loaded by the policy manager 504. The
policy manager 504 checks the policy for any criteria identi-

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 29 of 33 PageID# 581

US 8,615,577 B2
15

fied in a PRS parameter. Where there is a criteria, a determi
nation is made in block 1308 to see if the criteria is satisfied to
allow further evaluation of the policy. Should the criteria
exclude further processing, processing passes from block
1308 to block 1312 where processing of the policy is com- 5

plete.
Should the policy criteria be satisfied in block 1308, pro

cessing continues to 1316 to see if there is a mutator PRS
parameter in the policy. Where there is no mutator, processing
goes to block 1344 where the content object a disposition PRS 10

parameter defines how the resulting content object is stored.
The storage may be dependent on variables, metadata and/or
tags. The metadata directory 275 can be queried for bricks
130 that comply with a given tag that can be specified in the
disposition PRS parameter to find the one or more bricks 130 15

to use. For example, the disposition could be to store the
content object in three locations with a USA tag. A query
would be made to the metadata directory 275 and it would
choose three from all the bricks 130 with the USA tag and
specifY those bricks 130. The policy manager 504 would 20

write the content object to the addresses specified by the
metadata directory 275. Where there is one or more mutators
as determined in block 1316, processing continues to block
1320.

16
though it may be inside or outside the CDN 110. Periodically,
when polled or according to a schedule, the resource 134 or
brick 130 reports health and other status to the metadata
directory 275 in block 1424 for retention in the resource
information store 544. The metadata directory 275 can avoid
assigning new content objects to a resource 134 or brick 130
that is less healthy or more overloaded than the other mem
bers in the tag or tagset group.

With reference to FIG.15, a flowchart of an embodiment of
a process 1500 for delivering a content object using the CMA
is shown. The depicted portion of the process begins in block
1504 where the end user system 102 queries for content from
the CDN 110. Through Anycast, redirection, switching, or
DNS resolution, the request finds its way to a 'nearby' POP
120. Closeness is a function of network proximity which
generally corresponds to geographic proximity, but not nec-
essarily so.

In block 1512, a caching or hosting edge server 230 is
assigned. Where the edge server 230 cannot satisfY the
request locally, a request is made to the CMA for the content
object. Through the process outlined in FIGS. 7 and 8 above,
the resource 134 or brick 130 is located and the content is
relayed or proxied to the edge server 230 in block 1520. In
block 1524, the edge server fulfils the request. The end user

In block 1320, the address of the resource is parsed from
the mutator URL. Where the address is a domain name, that is
resolved to an IP address using a domain name service
(DNS). The resource 134 API uses a URL in this embodiment

25 plays the content in block 1528.

so that requesting the URL in block 1324 passes the source
file location and other embedded variables. In some embodi
ments, the mutator specifies a group of resources that comply
with a tag. The metadata directory 275 is queried to choose
from the group of resources with the tag and return the
address of the particular resource to use. For example, the
mutator may specifY using a transcoder service in Russia. The
metadata directory would find all transcoder services with a
Russia tag and return one. The one chosen could be random,
round robin, based upon loading status from the resource
information database 544 or some other algorithm.

Referring next to FIG. 16A, a flowchart of an embodiment
of a process 1600-1 for elastically managing propagation of
content objects is shown. This workflow is implemented with
the CMA using various policies to scale-up or scale-down the

30 propagation of content objects in a fluid manner. The depicted
portion of the process 1600 begins in block 1604 where a
policy measures popularity content metadata 512 for a con
tent object. A counter in the CDN tracks the popular content
and updates the content metadata 512 in the metadata direc-

35 tory 275 accordingly. Popularity could be measured on a scale
of one to one hundred with the most popular being at one
hundred and the least popular being at one. The policy mea
sures acceleration in popularity by keeping a number of past
data points for the content objects.

In block 1608, the quickest changes are addressed by add-
ing the name of the content file to a list in a policy. The
footprint algorithm could be run separately in each POP 120
to measure local popularity or could be run to measure popu
larity in all POPs 120. The footprint is a function ofhow many

The resource 134 parses the source file location from the 40

URL in block 1328. The content object is retrieved by the
resource 134 in block 1332. In block 1336, the resource 134
performs the requested processing according to any other
variables passed in the URL or other API. If there is another
mutator in the policy as determined in block 1340 processing
loops back to block 1320 for processing. Where it is deter
mined in block 1340 that there are no additional mutators in
the policy, processing goes to block 1344 for execution of the
disposition PRS parameter. In this way, a policy is performed

45 requests are likely, the size of the content object, the QoS
desired for delivery, and the level of CDN service ordered by
the customer. In block 1612, the policy is passed variables
that manage propagation of the content objects to accomplish
a desired footprint. The variables would updates a disposition

to process a content object file. 50 PRS parameter accordingly in the policy.
Referring next to FIG. 14, a flowchart of an embodiment of In block 1616, the policy implementing the footprint

change for the content objects experiencing the quickest
changes is performed by the policy manager 504. The bricks
130 to store or delete in each tag or tagset group are deter-

55 mined in block 1620. The tag and tagsets chosen as criteria
define the footprint even though the metadata directory 275
chooses the individual bricks 130 that have the tag or tagset
assigned to it. The policy adds or deletes copies of the content

a process 1400 for enrolling a resource 134 or brick 130 into
the CMA is shown. The metadata directory 275 knows
addresses for the enrolled resources 134 and bricks 130 along
with the infrastructure tags 508 associate with each. The
depicted portion of the process 1400 begins in block 1404
where a new resource 134 or brick 130 is identified for inclu
sion in the CMA. A unique identifier or name or an address is
assigned to the resource 134 or brick 130 in block 1408. The
address can be a virtual one that is resolved through DNS. 60

Infrastructure tags for the new enrollee are entered into the
CMA in block 1412.

The resource 134 or brick 130 is added to the tag or tagset
groups in block 1416. A query for a tag or tagset can quickly
return all the addresses for resources 134 or bricks 130 by
arranging those groups beforehand. The resource is added to
the CMA by being coupled to the switching fabric 240 even

objects with the highest acceleration accordingly.
Referring next to FIG. 16B, a flowchart of an embodiment

of a process 1600-1 for elastically managing propagation of
content objects is shown. Unlike the embodiment of FIG.
16A, this embodiment measures the velocity as a function of
the popularity metadata. When the velocity changes, a policy

65 triggers a reevaluation of the footprint in block 1603. The
velocity may have to change by a certain percentage before
triggering the reevaluation or may be checked periodically.

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 30 of 33 PageID# 582

US 8,615,577 B2
17

Other embodiments could measure poor QoS feedback from
end user systems 102 or complaints before modifying the
footprint in block 1608. When the footprint changes, process
ing continues through the remainder of the blocks in a manner
similar to FIG. 16A.

With reference to FIG.17, a flowchart of an embodiment of
a process 1700 for using policies to change the jurisdiction
used to process a content object is shown. The POP 120 where
the content object lands can be different from where it is
processed and stored. Policies are used to accomplish cus
tomized processing for the different movements of a source
file and its various processed versions. Resources 134 or
bricks 130 may be less costly or underutilized in different
parts of the CDN 110. For example, transcoder resources in
India could be underused in the middle of the day in the
United States due to the time differences. A policy could
move transcodes to resources 134 in India.

The depicted portion of the process 1700 begins in block
1704 where the customer manually or automatically provides
the content object to a landing pad 210 in one jurisdiction. A
jurisdiction could be any legal, geographical or political
boundary in this embodiment. The demarcations of a juris
diction can be a custom geography perhaps defined in a
license or other agreement. It is determined in block 1708 that
a jurisdictional policy is active and applicable to the content
object. In block 1712, the jurisdictional domain to perform
the processing defined in the policy is determined. The pro
cessing could be a resource 134 and/or a brick 130. The
content object is sent to brick 130 and/or resource 134 in
target jurisdictional zone or domain. In block 1720, the con
tent object is processed in the chosen jurisdictional zone
1720.

In block 1724, the disposition PRS parameter defining how
to store the content object is analyzed. The jurisdictional zone
for storage of the processed file can be different from the
jurisdictional zone that received the file and processed the file.
Bricks 130 with the proper tags or tag sets of the jurisdictional
zone are selected from to assign individual bricks 130. In
other examples, the policy may require that certain files be
processed in the same jurisdictional zone as received. Further,
embodiments may require receipt, processing and storage to
be in the same jurisdictional zone. Without a policy restricting
movement, processing and storage could choose resources
and bricks outside the jurisdictional zone based upon, for
example, those resources and bricks being nnder utilized.

A number of variations and modifications of the disclosed
embodiments can also be used. For example, the above
embodiments have a particular arrangement of the CMA, but
blocks could be combined or split in any manner to still
achieve the same functionality. Additionally, portions of the
CMA could reside outside of the CDN. For example, the PRS,
metadata directory, and/or content mapper could be main
tained outside of the CDN.

18
implemented within one or more application specific inte
grated circuits (ASICs), digital signal processors (DSPs),
digital signal processing devices (DSPDs), programmable
logic devices (PLDs), field programmable gate arrays (FP
GAs), processors, controllers, micro-controllers, micropro
cessors, other electronic units designed to perform the func
tions described above, and/or a combination thereof.

Also, it is noted that the embodiments may be described as
a process which is depicted as a flowchart, a flow diagram, a

10 data flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a
sequential process, many of the operations can be performed
in parallel or concurrently. In addition, the order of the opera-

15 tions may be re-arranged. A process is terminated when its
operations are completed, but could have additional steps not
included in the figure. A process may correspond to a method,
a function, a procedure, a subroutine, a subprogram, etc.
When a process corresponds to a function, its termination

20 corresponds to a return of the function to the calling function
or the main function.

Furthermore, embodiments may be implemented by hard
ware, software, scripting languages, firmware, middleware,
microcode, hardware description languages, and/or any com-

25 bination thereof. When implemented in software, firmware,
middleware, scripting language, and/or microcode, the pro
gram code or code segments to perform the necessary tasks
may be stored in a machine readable medium such as a stor
age medium. A code segment or machine-executable instruc-

30 tion may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software pack
age, a script, a class, or any combination of instructions, data
structures, and/or program statements. A code segment may

35
be coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, and/or memory contents. Information, argu
ments, parameters, data, etc. may be passed, forwarded, or
transmitted via any suitable means including memory shar-

40 ing, message passing, token passing, network transmission,
etc.

For a firmware and/or software implementation, the meth
odologies may be implemented with modules (e.g., proce
dures, functions, and so on) that perform the functions

45 described herein. Any machine-readable medium tangibly
embodying instructions may be used in implementing the
methodologies described herein. For example, software
codes may be stored in a memory. Memory may be imple
mented within the processor or external to the processor. As

50 used herein the term "memory" refers to any type of long
term, short term, volatile, nonvolatile, or other storage
medium and is not to be limited to any particular type of
memory or number of memories, or type of media upon

Specific details are given in the above description to pro
vide a thorough understanding of the embodiments. However, 55

it is understood that the embodiments may be practiced with
out these specific details. For example, circuits may be shown

which memory is stored.
Moreover, as disclosed herein, the term "storage medium"

may represent one or more memories for storing data, includ
ing read only memory (ROM), random access memory
(RAM), magnetic RAM, core memory, magnetic disk storage
mediums, optical storage mediums, flash memory devices

in block diagrams in order not to obscure the embodiments in
unnecessary detail. In other instances, well-known circuits,
processes, algorithms, structures, and techniques may be
shown without unnecessary detail in order to avoid obscuring
the embodiments.

Implementation of the techniques, blocks, steps and means
described above may be done in various ways. For example,
these techniques, blocks, steps and means may be imple
mented in hardware, software, or a combination thereof. For
a hardware implementation, the processing units may be

60 and/or other machine readable mediums for storing informa
tion. The term "machine-readable medium" includes, but is
not limited to portable or fixed storage devices, optical stor
age devices, wireless channels, and/or various other storage
mediums capable of storing that contain or carry

65 instruction(s) and/or data.
While the principles of the disclosure have been described

above in connection with specific apparatuses and methods, it

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 31 of 33 PageID# 583

US 8,615,577 B2
19

is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:

20
databases comprise the meta data related to a content object, a
requester of the content object and/ or a provider of the content
object at the CDN.

6. The CDN having a plurality of geographically distrib
uted POPs for processing content objects with a plurality of
resources as recited in claim 1, wherein one of the one or more
mutators comprises a template for inclusion of the address of
the resource and a location of the received content object.

1. A content delivery network (CDN) having a plurality of
geographically distributed points of presence (POPs) for pro
cessing content objects with a plurality of resources, the CDN
comprising:

a landing pad to receive a content object from a client;
one or more databases comprising a list of the plurality of

resources, each of the plurality of resources being asso
ciated with one or more tags, each tag indicating a char
acteristic of the associated resource; and

7. The CDN having a plurality of geographically distrib-
10 uted POPs for processing content objects with a plurality of

resources as recited in claim 1, wherein the resource com
prises a storage device located outside of the CDN.

a policy reconciliation service (PRS) for maintaining and
processing policies, the PRS being coupled to the one or
more databases, the PRS comprising:

8. A method for processing content objects with a plurality

15
of resources associated with a content delivery network
(CDN) having a plurality of geographically distributed points
of presence (POPs), the method comprising:

a policy store comprising a plurality of policies, each of
the plurality of policies defining specific processing 20

of content objects, the plurality of policies including a
first policy and a second policy,
wherein each of the first policy and the second policy

comprises an applicability parameter indicating
criteria that a content object must satisfY in order 25

for the content object to be processed in accordance
with the respective first or second policy, the crite-
ria indicated in the first policy's applicability
parameter being different from the criteria indi
cated in the second policy's applicability param- 30

eter,
wherein the first policy comprises a disposition

parameter indicating criteria that a resource must
satisfy in order for the resource to effect the first
policy, and

wherein the first policy comprises one or more muta
tors, each mutator comprising a template for inclu
sion of an address of a resource and/or a location of
a received content object; and

a policy manager configured to:
determine that the first policy is applicable to the

received content object and that the second policy

35

40

is not applicable to the received content object, the
determination being based on the first policy's cri
teria and metadata related to the received content 45

object, a requester of the received content object
and/or a provider of the received content object at
theCDN; and

identifY a resource of the plurality of resources for
effecting the first policy based on the disposition 50

parameter and a tag associated with the first policy.

Enrolling, using a registration interface, the plurality of
resources to be accessible from the CDN;

categorizing each of the plurality of resources using a
plurality of tags that categorize the plurality of
resources, and the plurality of resources includes a
resource;

receiving selection of a policy from a plurality of policies,
wherein the plurality of policies define processes to per
form on content objects stored at the CDN, wherein the
selected policy includes an applicability criteria and a
call to the resource;

receiving, at the CDN, metadata related to a content object,
a requester of the content object and/or a provider of the
content object

receiving the content object for storage at the CDN;
determining, with a policy manager, that the policy is appli-

cable and that other policies are not applicable to the
received content object based on an analysis of the meta
data and the applicability criteria of the policy; and

calling, with the policy manager, the resource according to
the call in the policy to cause the resource to perform
specified processing on the received content object.

9. The method for processing content objects with the
plurality of resources associated with the CDN having the
plurality of geographically distributed POPs as recited in
claim 8, wherein calling the resource comprises embedding a
delivery path into a uniform resource locator (URL).

10. The method for processing content objects with the
plurality of resources associated with the CDN having the
plurality of geographically distributed POPs as recited in
claim 8, further comprising:

detecting a change to the metadata or one of the plurality of
resources associated with one of the tags; and

determining if the policy still applies to the received con
tent object.

11. The method for processing content objects with the
plurality of resources associated with the CDN having the

2. The CDN having a plurality of geographically distrib
uted POPs for processing content objects with a plurality of
resources as recited in claim 1, wherein the mutator com
prises a template for a universal resource locator.

3. The CDN having a plurality of geographically distrib
uted POPs for processing content objects with a plurality of
resources as recited in claim 1, wherein the resource com
prises an HTTP-based application progrannning interface.

55 plurality of geographically distributed POPs as recited in
claim 8, further comprising choosing the resource from a
larger group of resources all associated with a tag from the
plurality of tags, wherein the tag is identified in the policy.

4. The CDN having a plurality of geographically distrib
uted POPs for processing content objects with a plurality of
resources as recited in claim 1, wherein the specific process
ing defined in the first policy comprises storing the content
object.

12. The method for processing content objects with the
60 plurality of resources associated with the CDN having the

plurality of geographically distributed POPs as recited in
claim 8, further comprising the resource:

parsing a file location for the received content object from
the call;

5. The CDN having a plurality of geographically distrib- 65

uted POPs for processing content objects with a plurality of
resources as recited in claim 1, wherein the one or more

parsing a variable from the mutator;
reading the received content object from the file location;

and

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 32 of 33 PageID# 584

US 8,615,577 B2
21

processing the received content object according to the
variable with the resource.

13. The method for processing content objects with the
plurality of resources associated with the CDN having the
plurality of geographically distributed POPs as recited in
claim 8, further comprising resolving overlap between the
policy and the other policies found applicable to the content
object.

22
form on content objects stored at the CDN, wherein the
selected policy includes an applicability criteria and a
call to the resource;

receiving, at the CDN, metadata related to a content object,
a requester of the content object and/or a provider of the
content object;

14. The method for processing content objects with the
plurality of resources associated with the CDN having the 10

plurality of geographically distributed POPs as recited in
claim 8, wherein:

receiving the content object for storage at the CDN;
determining that the policy is applicable and that other

policies are not applicable to the received content object
based on an analysis of the metadata and the applicabil
ity criteria of the policy; and

calling the resource according to the call in the policy to
cause the resource to perform specified processing on
the received content object. the applicability criteria specifies a tag, and

the tag is used to select the resource from a plurality of
resources.

15. The method for processing content objects with the
plurality of resources associated with the CDN having the
plurality of geographically distributed POPs as recited in
claim 8, wherein the specified processing includes storing the
received content object on a storage medium that has a tag
specified in the policy.

16.A content delivery network (CDN) having a plurality of
geographically distributed points of presence (POPs) for pro
cessing content objects with a plurality of resources, the CDN
comprising two or more hardware servers having one or more
processors for:

enrolling the plurality of resources to be accessible from
theCDN;

17. The CDN having the plurality of geographically dis-
15 tributed POPs for processing content objects with a plurality

of resources as recited in claim 16, wherein the resource is a
storage brick.

18. The CDN having the plurality of geographically dis
tributed POPs for processing content objects with a plurality

20 of resources as recited in claim 16, wherein at least some of
the plurality of resources are located outside the CDN.

19. The CDN having the plurality of geographically dis
tributed POPs for processing content objects with a plurality
of resources as recited in claim 16, wherein the resource is a

25 storage medium, an application program interface (API) to a
software processor, a transcoder, a compression engine, an ad
insertion function, a syndication engine, an cryptoengine, a
thumbnail generator, an ad insertion engine, or a content
syndication service.

categorizing each of the plurality of resources using a 30

plurality of tags that categorize the plurality of
resources, and the plurality of resources includes a
resource;

20. The CDN having the plurality of geographically dis-
tributed POPs for processing content objects with a plurality
of resources as recited in claim 16, wherein the policy further
includes a storage disposition defining how to store the
received content object. receiving selection of a policy from a plurality of policies,

wherein the plurality of policies define processes to per- * * * * *

Case 3:15-cv-00720-JAG Document 28-6 Filed 02/16/16 Page 33 of 33 PageID# 585

Exhibit	 G	

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 1 of 48 PageID# 586

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 1of47 PagelD# 1

F11 i:-n
iL-!... .. --

l}NITED STATES DISTRICT COURT
EASTERN DISTRICT OF VIRGINIA

LIMELIGHT NETWORKS, INC.,

Plaintiff,

Alexandria Division 1 z~!C • 1 0~' "O A 10: 1 q • J II. I -·

JURY TRIAL DEMANDED
v.

XO COMMUNICATIONS, LLC., AND
AKAMAI TECHNOLOGIES, INC.,

Defendants.

COMPLAINT

Limelight Networks, Inc. ("Limelight" or "Plaintiff') hereby alleges for its Complaint

against Defendants XO Conununications, LLC ("XO") and Akamai Technologies, Inc.

("Akamai") (collectively, "Defendants") on personal knowledge as to its own actions and on

information and belief as to the actions of others, as follows:

NATURE OF THE ACTION

1. This is a patent infringement action by Limelight to end Defendants' unauthorized

and infringing manufacture, use, sale, offering for sale, and/or importation of products and

methods incorporating Limelight's patented inventions.

2. Limelight holds all substantial rights and interest in the Patents-in-Suit described

below, including the exclusive right to sue Defendants for infringement and recover damages.

3. Plaintiff Limelight seeks monetary damages, prejudgment interest and injunctive

relief for Akamai's and XO's past and on-going infringement of the Patents-in-Suit.

1

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 2 of 48 PageID# 587

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 2 of 47 PagelD# 2

THE PARTIES

4. Limelight Networks, Inc. ("Limelight") is a corporation organized and existing

under the laws of Delaware with its principal place of business at 222 South Mill Ave., Suite 800,

Tempe, Arizona, 85281.

5. On information and beJief, Defendant XO Communications, LLC. ("XO") is a

corporation existing and organized under the laws of Delaware and has its principal place of

business at 13865 Sunrise Valley Drive, Herndon, VA 20171.

6. On information and belief, Defendant Akamai Technologies, Inc. ("Akamai," or

"Defendant") is a corporation existing and organized under the laws of Delaware and has its

principal place of business at 150 Broadway, Cambridge, Massachusetts, 02142.

7. Founded in 2001, Limelight is a leader in digital content delivery. Its content

acceleration technologies and services enable publishers to deliver their digital content (e.g., web

pages, videos, full-length movies and television shows, operating system updates, and online

games) on any device, anywhere in the world.

8. Akamai also sells products and services for digital content delivery. As such,

numerous Limelight products and services compete with those offered by Akamai. For example,

Limelight and Akamai each operate a global Content Delivery Network ("CDN'')-a

geographically distributed network of servers that their customers, such as web sites, software

applications, video-on-demand and streaming media providers, can use to accelerate content

delivery to their end users. Such CDNs accelerate content delivery through a variety of

techniques, such as caching content at numerous servers so that the content can be delivered to

end users from locations close to the user. XO is a telecommunications company that is engaged

in an extensive partnership with Akamai, including as a reseller of Akamai services and as

a partner in deployment and operation of hardware and software components of a CDN.

2

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 3 of 48 PageID# 588

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 3 of 47 PagelD# 3

9. While Akarnai was one of the first to market with a CDN solution, newer entrants

such as Limelight have rapidly innovated and developed new technology contributions-and

obtained patent protection for those contributions-which Akamai has then implemented in

order to remain competitive.

JURISDICTION AND VENUE

10. This action for patent infringement arises under the patent laws of the United

States, Title 35 of the United States Code.

11. This Court has subject matter jurisdiction pursuant to 28 U .S.C. §§ 1331 and

1338(a).

12. This Court has general and specific personal jurisdiction over Defendant XO. XO

has substantial contacts with the forum as a consequence of establishing its headquarters in

Virginia and in this District, and XO conducts substantial business in Virginia. XO sells, makes,

uses, and offers for sale its products and services, including products and services that infringe

Plaintiff's patents, within the state of Virginia, including to customers in Virginia. Such

customers include USA Today, a customer it shares with Akarnai in connection with use of

systems that infringe the asserted patents. In addition, on information and belief, XO has

established data centers for use in infringing the asserted Limelight Patents in this district,

including at 12100 Sunrise Valley Drive Reston, VA, and at 8613 Lee Highway, Fairfax, VA

22031.

13. XO has committed and continues to commit acts of patent infringement, including

making and using infringing systems, and performing infringing methods, within this district,

including in conjunction with Akamai.

14. This Court has general and specific personal jurisdiction over Defendant Akamai.

Akamai has substantial contacts with the forum as a consequence of conducting substantial

3

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 4 of 48 PageID# 589

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 4 of 47 PagelD# 4

b_usiness in Virginia and in this District, including establishment of offices at 11111 Sunset Hills

Road, Suite 250, Reston, VA 20190. In addition, Akamai has established a significant presence

in this forum by locating its content delivery servers accused of infringing the patents asserted in

this action in Virginia and in this District. For example, according to publicly available

documentation, Akamai has placed more than 200 racks of its accused content delivery servers

and associated hardware and software at a data center located at 12100 Sunrise Valley Drive

Reston, VA 20191, and has placed an additional 170 racks of its accused content delivery servers

and associated hardware and software at a data center located at 1780 Business Center Drive,

Reston, VA 20190. Akamai has also located its accused content delivery servers in data centers

in Sterling, VA, Manassas, VA, Ashburn, VA, and Vienna, VA, each of which are located in this

District. The operation of these content delivery servers in Virginia and in this District

constitutes infringement of the asserted Limelight patents in this District. In addition, this Court

has jurisdiction over Akamai because Akamai has conducted business with a Virginia-based

corporation, XO, for the purpose of infringing the patents.

15. Akamai has committed and continues to commit acts of patent infringement,

including making and using infringing systems, and performing infringing methods, within this

district, including in conjunction with XO.

16. Venue is proper for XO in this District under 28 U.S.C. §§ 139l(b) and (c), and

1400(b) because, as described above, a substantial part of the events giving rise to Limelight's

claims occurred in this district, and because XO, which is headquartered in Herndon, Virginia,

resides within this district.

17. Venue is proper for Akamai in this District under 28 U.S.C. §§ 139l(b) and (c),

and 1400(b) because, as described above, Akamai has a regular and established practice of

4

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 5 of 48 PageID# 590

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 5 of 47 PagelD# 5

business in this district and has committed acts of infringement in this district, including by

virtue of its far-reaching relationship with XO, whose headquarters are in this district. In 2001,

Akamai and XO entered into a strategic agreement under which "XO will provide co-location

space in its data centers for the deployment of additional Akamai servers," and "XO's

interconnection bandwidth related services and hosting capabilities [will] help Akamai to expand

its reach to enable users to benefit from improved performance and accelerated delivery of the

Web's most popular streaming media, software applications and content served on Akamai's

globally distributed network"-in short, to co-locate at XO-owned or XO-administered data

centers the products and services accused of infringing the Limelight patents asserted in this

action. "XO Communications and Akamai Announce Strategic Alliance," dated May 17, 200 l, at

http://www.akamai.eu/html/aboutlpress/releases/200 I /press 051701.html (last visited November

29, 2015). On information and belief, one such data center is located at 12100 Sunrise Valley

Drive, Reston, VA. XO also resells Akarnai's accused content delivery services to its customers.

JOJNDER

18. Joinder is proper under 35 U.S.C. § 299 because questions of fact common to

each Defendant will arise in the action. As detailed below, Limelight alleges patent infringement

by Defendants in connection with their making and using systems, and their practice of methods,

for accelerating the delivery of digital content based on hardware and software developed by

Defendant Akamai. As such, factual issues regarding the operation of that hardware and software

are common to Akamai and to XO.

19. Joinder is further proper because some of Defendants' infringement arises out of

the same transaction, occurrence, or series of transactions or occurrences relating to the making,

using, importing into the United States, offering for sale, or selling of the same accused product

5

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 6 of 48 PageID# 591

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 6 of 47 PagelD# 6

or process. For example, as described below, while each of XO and Akamai can directly infringe

the asserted claims, when the infringing system includes a combination of XO-deployed and

Akamai servers, Akamai and XO act jointly or in concert to perform the infringing acts, and in

that instance, the infringement is not complete until both XO and Akamai have provided or

performed their respective parts.

THE ASSERTED PATENTS

20. As a global leader in digital content delivery, Limelight has sought patent

protection for many of its innovations in this field, including the patents asserted in this matter.

THE CONDITIONAL PROTOCOL CONTROL PATENTS

21. On May 11, 2010, the United States Patent and Trademark Office duly and legally

issued U.S. Patent No. 7,715,324 ("the 324 Patent"), entitled "Conditional Protocol Control." A

copy of the 324 Patent is attached to the Complaint as Exhibit A.

22. On December 10, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,750,155 ("the 155 Patent"), entitled "Conditional Protocol

Control." A copy of the 155 Patent is attached to the Complaint as Exhibit B.

23. The 324 and 155 Patents arose out of the innovative work performed by Limelight

engineers to utilize selective optimizations of the Transport Control Protocol ("TCP"), a core

Internet protocol that governs how content is delivered over the web, in order to accelerate their

customers' delivery of Internet content, including web pages, downloadable files, and media

content such as images or audio/video, to their end users. The inventors of the 324 and 155

Patents developed ways to use TCP optimizations to accelerate such content conditionally, such

as on a customer-by-customer, or file-by-file basis, in order to optimize this content delivery for

any given set of circumstances.

6

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 7 of 48 PageID# 592

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 7 of 47 PagelD# 7

24. In October 2008, Limelight licensed the basic technology and software for

optimizing TCP connections from FastSoft, Inc., a startup company that developed an algorithm

known as FastTCP, which allowed for accelerating TCP connections on one end (the server end)

of an Internet connection. FastSoft had no experience in content acceleration in the context of

CDNs such as those provided by Limelight and by Akamai, and instead pursued a business

model whereby it sought to sell hardware appliances that implemented its algorithm. On top of

the elementary technology supplied by FastSoft, Limelight engineers developed a complete TCP

optimization solution for CDNs that could analyze a request for content received by a content

server and, based on information obtained from the request, such as the identity of the customer

or the type of content requested, conditionally apply a set of transport protocol optimizations on

a connection by connection basis. Because optimization could be applied conditionally on a

connection-by-connection basis under the Limelight solution, each connection could be

optimized differently, according to a configurable profile.

25. Limelight sought and obtained patent protection for its conditional protocol

control innovations, including the 324 and 155 Patents.

26. Limelight also shared its conditional protocol control innovations with FastSoft,

including providing FastSoft with the functional requirements for its Deliver XD service that

implemented these innovations, and collaborating with FastSoft on the improvement of its

technology for use within a Content Delivery Network.

27. In September 2012, Akamai announced that it had acquired FastSoft, and had

integrated FastSoft's engineering team-a team that had been exposed to Limelight's

innovations-into Akamai. Shortly thereafter, Akamai communicated to Limelight that all

7

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 8 of 48 PageID# 593

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 8 of 47 PagelD# 8

FastSoft products were entering their End Of Life ("EOL'') phase, and support for these products

would be discontinued within one year, or earlier if allowed under the license agreement.

28. At least by September 2013, Akamai had deployed FastSoft-hased TCP protocol

optimization in its own Content Delivery Network in a manner strikingly similar to the

implementation created and patented by Limelight. Like Limelight, Akamai's TCP optimization

does not utilize FastSoft hardware appliances, but instead deploys TCP optimizations in software

at content servers in the Content Delivery Network. Like Limelight, Akamai's TCP optimization

is conditional, highly configurable via a configuration profile, and can be set connection-by

connection. Like Limelight, Akamai's TCP optimization parameters are based on analysis of the

received content request. Each of these aspects is described in Limelight's conditional protocol

control patents prior to Akamai's deployment.

OTHER LIMELIGHT PATENTS

29. On October 7, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,856,263 ("the 263 Patent"), entitled "Systems and methods

thereto for acceleration of web pages access using next page optimization, caching and pre

fetching techniques." A copy of the 263 Patent is attached to the Complaint as Exhibit C.

30. On March 25, 2014, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,683,002 (''the 002 Patent"), entitled "Content delivery network

cache grouping." A copy of the 002 Patent is attached to the Complaint as Exhibit D.

31. On April 21, 2015, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 9,015,348 (.. the 348 Patent"), entitled "Dynamically selecting

between acceleration techniques based on content request attributes." A copy of the 348 Patent is

attached to the Complaint as Exhibit E.

8

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 9 of 48 PageID# 594

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 9 of 47 PagelD# 9

32. On December 24, 2013, the United States Patent and Trademark Office duly and

legally issued U.S. Patent No. 8,615,577 ("the 577 Patent"), entitled "Policy based processing of

content objects in a content delivery network using mutators." A copy of the 577 Patent is

attached to the Complaint as Exhibit F.

33. Limelight owns all substantial right, title, and interest in the 324, 155, 002, 263,

348, and 577 Patents, and holds the right to sue and recover damages for infringement thereof,

including past infringement.

COUNT I AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

34. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

35. On infonnation and belief, Akamai has infringed and continues to infringe one or

more claims of the 155 Patent, including but not limited to claims l, 3, 8, 9, 10, 11, 12, 13, 15,

18, 19, and 20 pursuant to 35 U.S.C. § 271(a), literally or W1der the doctrine of equivalents, by

making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, the Akamai Intelligent Platfonn, including a

content delivery network with edge servers running Akamai's TCP optimization functionality, as

well as services associated therewith (the 155 Infringing Products). Based on information and

belief, and publicly available documentation, the 155 Infringing Products perfonn TCP

optimization by modifying pre-existing TCP settings based upon parameters that are determined

at least in part with ref ere nee to infonnation in the URLs of end-user requests processed by

Akamai.

36. Further, Akamai's edge servers with TCP optimization meet the requirements of

the claimed content distribution server, as reflected by publicly available Akamai documentation.

9

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 10 of 48 PageID# 595

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 10 of 47 PagelD# 10

On infonnation and belief, to perfonn their basic role, Akamai's edge servers, including edge

servers that are co-located with XO, have multiple network ports to send and receive data. For

example, Akamai publishes the following images showing Akamai servers having two Ethernet

ports:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r Hardware/X4i l-5x18 lOG Rear Large.jpg (Jast visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akaroaj.comlheguide/images/Serve

r Hardware/XI 2x8 CacheH Rear Large.jpg (last visited November 29, 2015). Further

infonnation about Akamai's deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.corn/heguide/Network Pac

kages.html (last visited November 29, 2015).

37. Further, Akamai's geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that "allow Akamai

to direct traffic between Akamai's equipment and the providers that Akarnai connects to."

10

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 11 of 48 PageID# 596

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 11of47 PagelD# 11

[Akamai Hands And Eyes Guide], available at htt;ps://fieldtech.akamai.comlheguide/Router Har

dware.html. When such equipment is deployed in a manner that connects Akamai's edge servers

to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to

send and receive data over a connecting network.

38. Likewise, Akamai's servers, including on infonnation and belief servers that are

co-located with XO, include processors:

Server Clenaratlons

lite f0Howln9 setVer generations are listed from most recently deployed to no longer being deployed. This o brief overview Of eadl 9ene1&tlon's si>edRcatlons.

Generation SpeclMcatloM (Partial Ust)
XS Intel BroadWeJI DE
X7 Intel Skylake Intel ffilswell E3· 1200 vs serl1:$, up to 64 GB Unbuffered DDR4
X6m Intel Huwett ES-2600 V3 series, 16G to 256G ODR4 Registered
K6 Intel Hasweu E3·1200 V3 serle$, 16G or 32G ODR3
XS Intel Sandy 8ridge ES 2600 EP s,erles, 128G6 or 256GB OOR3
Ml lntel Ivy 8rldge E3•1270 V2, 16G DOR.3
X4 Intel Sandy 6r1(1ge E3·1270, 16G OOR.3
X2 Intel Nehalem X3470, BG to 32G ODR3
l'1 Intel Nt!hafimi X3470, 8G ODR3
G10 AMO Opteron 62tl4 Quod Core, 64G OOR3
G9 AMO Opteton 4184 Hexa Core, 8G DDIU
G7 AMD Opteron 1369 QU<ld Core, 8G DOR2
G6 AMI> Opteron 2381 Quad Core, 8G DOR2
GS AMO Atlllon II 24Qe Oual Core, BG DDR3
G4 AMO Opteron 1218 Dual Core, 4G OOR2
G3 AMO Optenm 244, 2G or 4G M ODIU
G2 AMO Optemn 244, 1G or ZG OOR1
Gl AMO Opteron 244, Sl2M ODIU

Akamai Hands And Eyes Guide, available at.https://fieldtech.akamai.com/heguide/Server Hard

ware.html (last visited November 29, 2015). The 155 Infringing Products include a protocol

handler, such as the TCP/IP protocol stack implementation, that establishes and maintains

connections with end-users. The 155 Infringing Products have storage that they use to store

customer content to serve to end-users.

39. The 155 Infringing Products perfonn TCP optimization in a manner that infringes

the asserted claims. Specifically, the 155 Infringing Products monitor connections with end-users

for requests. When they receive end-user requests the 155 Infringing Products determine

parameters that relate to processing and memory capabilities in the TCP protocol, such as

11

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 12 of 48 PageID# 597

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 12 of 47 PagelD# 12

maximum buffer space and socket buffer values. These determinations are made by the edge

server, including on information and belief in those cases where the edge server is co-located

with XO, based at least in part on reference to information in the URL of the request (such as for

example, the hostname field or the customer ID). This information is utilized, in addition to other

information, for the Akamai server to determine how aggressive the TCP optimization should be

for that connection. Once that determination is made, the TCP settings are altered to put that new

optimization into effect by changing pre-existing TCP va1ues to new values that are consistent

with the correct level of TCP optimization. As Akamai's documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what's
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the "slow-start" misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much Jess aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion
avoidance (increase by I or 2 or higher) phases, as well as how much we back off
when a loss is detected (shrink window by 50%, 30% or even Jess). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

TCP Optimizations, available al https://developer.akamai.com/stuff/OptimizationffCP Optimiz

ations.html (last visited November 29, 2015).

40. Akarnai's TCP optimization has at least medium and low settings, which

determine how aggressively TCP is optimized for the connection. Further, the selection of a level

12

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 13 of 48 PageID# 598

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 13 of 47 PagelD# 13

of TCP optimization results in the timing of data transmission at the transport layer being

modified as a function of the rate at which the congestion window is changed. On infonnation

and belief, Akamai's TCP optimization also results in changing the burst size of the connection.

41. Further, Akamai utilizes latency estimates to select the correct level of TCP

optimization. As Akamai explains: "It's a reactive protocol. FastTCP, the Akamaized version of

FastSoft's solution, attempts to estimate the correct transmission rate by utilizing latency

estimates, among other things, without actually inducing Joss. It's a proactive protocol."

TCP Optimizations, available at https://developer.akamai.com/stuffi'OptimizationffCP Optimiz

ations.html (last visited November 29, 2015).

42. Further, on information and belief, Akamai makes TCP optimization

detenninations based on a predetermined performance profile, for instance, based on the identity

of the customer or the specific customer content provided by Akamai. On information and belief,

this perfonnance profile is stored on at least a customer-by-customer basis and is used to set the

level of TCP optimization (such as medium and low).

43. Further, when an Akamai edge server with TCP optimization does not have

content requested by an end-user in its own cache, the edge server can obtain that content from

the cache or caches of neighboring or "parent" Akamai edge servers, provide that content to the

end-user, and also store that same content in its own cache for future use. When an Akamai edge

server obtains the missing content from the cache of an edge server hosted by XO, or vice versa,

Akamai and XO act in concert or jointly to practice the claimed inventions and the infringement

is not complete until both Akamai and XO have provided or performed their respective parts.

44. On information and belief, Akamai's TCP optimization, which infringes the

asserted claims, utilizes technology that Akamai received from Limelight by way of its

13

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 14 of 48 PageID# 599

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 14 of 47 PagelD# 14

acquisition of FastSoft, as discussed above at ~ 24-28. As Akamai explains in its public

documentation:

There has been a lot of research on TCP over the last 10-15 years, much of which
has focused on improving some aspect ofTCP's behavior. The key finding is that
TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt
the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It's a reactive protocol. FastTCP, the
Akamaized version of FastSoft's solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It's a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP Optimiz

ations.html.

45. The making, and operation, of the 155 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 155 Patent pursuant to 3 5

U.S.C. § 271(a).

46. Unless enjoined by this Court, Akamai will continue to infringe the 155 Patent.

47. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai's infringement of the 155 Patent and wilJ continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT II AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 7.715,324

48. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

14

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 15 of 48 PageID# 600

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 15 of 47 PagelD# 15

49. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 324 Patent, including but not limited to claims 1, 2, 4, 5, 6, 7, 8, IO, and 11,

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, the Akamai Intelligent Platform, including a content delivery

network with edge servers running Akamai's TCP optimization functionality, as weJI as services

associated therewith (the 324 Infringing Products). Based on information and belief, and publicly

available documentation, the 324 Infringing Products perform TCP optimization by modifying

pre-existing TCP settings based upon parameters that are determined at least in part with

reference to information in the URLs of end-user requests processed by Akamai.

50. Specifically, Akarnai's edge servers with TCP optimization, including on

information and belief, edge servers that are co-located with XO, manage the delivery of content

over network connections in satisfaction of the asserted claims, on information and belief and

based on publicly available documentation.

51. The 324 Infringing Products include a protocol handler, such as the TCP/IP

protocol stack implementation, that establishes and maintains connections with end-users.

52. On infonnation and belief, to perform their basic role, Akamai's edge servers,

including edge servers that are co-located with XO, include network ports used to receive and

send communications over a network. For example, Akamai publishes the following images

showing Akamai servers having Ethernet ports:

15

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 16 of 48 PageID# 601

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 16 of 47 PagelD# 16

Akamai Hands And Eyes Guide, available al https://fieldtech.akamai.com/heguide/images/Serve

r Hardware/X4i 1-5xl8 JOG Rear Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r Hardware/XI 2x8 CacheH Rear Large.jpg (last visited November 29, 2015). Further

information about Akamai's deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015).

53. Further, Akamai's geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that "allow Akamai

to direct traffic between Akamai's equipment and the providers that Akamai connects to."

[Akamai Hands And Eyes Guide], available at https://fieldtech.akarnai.com/heguide/Router Har

dware.html. When such equipment is deployed in a manner that connects Akamai's edge servers

to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to

send and receive data over a connecting network.

16

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 17 of 48 PageID# 602

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 17 of 47 PagelD# 17

54. The 324 Infringing Products perfonn TCP optimization in a manner that infringes

the asserted claims. Specifically, the 324 Infringing Products monitor connections with end-users

for requests. When they receive end-user requests Akamai's 324 Infringing Products determine a

level of TCP optimization in part on reference to infonnation in the URL of the request (such as

for example, the hostname field, or the customer ID, which constitute alphanumeric strings).

This infonnation is utilized, in addition to other infonnation, for the Akamai server, including on

infonnation and belief, cases where the edge server is co-located with XO to determine how

aggressive the TCP optimization should be for that connection. Once that determination is made

the TCP settings are altered to put that new optimization into effect by changing pre-existing

TCP values to new values that are consistent with the correct level of TCP optimization. As

Akamai's documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what's
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the "slow-start" misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much less aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion
avoidance (increase by 1 or 2 or higher) phases, as weJl as how much we back off
when a loss is detected (shrink window by 50%, 30% or even less). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

17

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 18 of 48 PageID# 603

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 18 of 47 PagelD# 18

TCP Optimizations, available at https://developer.akamai.com/stuff/OptimizationffCP Optimiz

ations.html (last visited November 29, 2015).

55. Thus, Akamai's TCP optimization has at least medium and low settings, which

determine how aggressively TCP is optimized for the connection. Further, the selection of a level

of TCP optimization results in the timing of data transmission at the transport layer being

modified as a function of the rate at which the congestion window is changed.

56. This process of TCP optimization is performed, on information and belief, on

multiple connections, including multiple simultaneous connections, including from different end·

users, where the multiple connections are used to serve different content. On information and

belief, the TCP optimization process employed by Akamai can apply different levels of TCP

optimization to these different connections.

57. Further, Akamai utilizes other attributes such as latency estimates to select the

correct level of TCP optimization. As Akamai explains: "FastTCP, the Akamaized version of

FastSoft's solution, attempts to estimate the correct transmission rate by utilizing latency

estimates, among other things, without actually inducing loss. It's a proactive

protocol." TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TC

P Optimizations.html (last visited November 29, 2015).

58. Further, on information and belief, Akamai makes TCP optimization

determinations based at least in part on attributes associated with the identity of the customer or

the specific customer content provided by Akamai. On information and belief these attributes

and the information is stored on at least a customer-by-customer basis and is used to set the level

of TCP optimization (such as medium and low).

18

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 19 of 48 PageID# 604

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 19 of 47 PagelD# 19

59. On information and belief, Akamai's TCP optimization, which infringes the

asserted claims, utilizes technology that Akamai received from Limelight by way of its

acquisition of FastSoft, as discussed above at 1if 24-28. As Akamai explains in its public

documentation:

There has been a lot of research on TCP over the last 10-15 years, much of which
has focused on improving some aspect ofTCP's behavior. The key finding is that
TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt
the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It's a reactive protocol. FastTCP, the
Akamaized version of FastSoft's solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It's a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Oplimization/TCP Optimiz

ations.html.

60. The making and operation of the 324 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 324 Patent pursuant to 35

U.S.C. § 271 (a).

61. Unless enjoined by this Court, Akamai will continue to infringe the 324 Patent.

62. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai's infringement of the 324 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

19

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 20 of 48 PageID# 605

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 20 of 47 PagelD# 20

COUNT III AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,683,002

63. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

64. On infonnation and belief, Akamai has infringed and continues to infringe one or

more claims of the 002 Patent, including but not limited to claims l, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15,

16, 17, 18, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents,

by making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, the Akamai Intelligent Platform, including a

content delivery network with edge servers, as well as services associated therewith (the 002

Infringing Products). Akamai's content delivery network includes a plurality of points of

presence that are distributed geographically. These points of presence include edge servers.

Based on infonnation and belief, and publicly available documentation, edge servers that do not

have user-requested content in their own caches can ask other edge servers whether they have the

requested content in their caches and if so the content is provided to the user.

65. Specifically, the 002 Infringing Products include edge servers that receive end-

user requests for content in the fonn of URLs. When such requests are received. if the content is

not in the cache of the edge server, the edge server contacts neighboring edge servers to

detennine whether the neighboring edge servers have the user-requested content in their own

caches. If the neighboring edge server has the requested content the content is served to the end

user. As Akarnai explains:

The edge server will check its local cache as well as the caches of other machines
in the server deployment to see if the requested object has been seen before. If the
object is found, the edge server will verify that the object is not stale and will
serve it to the user.

20

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 21 of 48 PageID# 606

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 21of47 PagelD# 21

If the object is found in the cache but it is stale, the edge server will contact
another Akamai deployment or the origin to see if a newer version has been
uploaded.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt Edge Servers Origin.html (last visited November 29, 2015).

66. Further, if the edge server receiving the request for content that it does not have in

its own cache is also unable to get that content from a neighboring edge server, the edge server

requests the content from a server higher in Akamai's distribution hierarchy, including in some

instances, the origin server, until it is able to retrieve the requested content. On information and

belief, this process is based in part on analysis of the URL of the content request. As A.kamai

explains:

When an edge server gets a request for an object that it hasn't yet seen, it will
download it from either another Akamai deployment or1he origin. The customer's
metadata detennines whether the edge contacts the origin directly, or if it applies
some sort of tiered distribution hierarchy.

Tiered distribution is used to provide greater origin offload by allowing many
Akamai edge deployments to go forward to a smaller set of deployments which in
tum go forward to the origin. In the case of Akamai's Site Shield product, the
Customer's IT department can program the IP addresses of these top-tier
machines into their firewall and block access to their network from all other
Internet hosts.

At this point, caching rules are applied to the object and the requested bytes are
delivered to the user.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt Edge Servers Origin.html (last visited November 29, 2015).

67. In addition, the edge servers in a given instance of infringement can both be

located within the same point of presence, and the infringement can involve all of the caches in a

given point of presence. Likewise, the servers higher in the distribution hierarchy can also be

located within different points of presence.

21

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 22 of 48 PageID# 607

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 22 of 47 PagelD# 22

68. Further the edge server that received the request can serve the content to an end

user acting as a proxy for the other edge server.

69. Also, on information and belief, the edge server that receives the request can

query more than one edge server in overlapping time.

70. On information and belief, both Akamai and XO make and use infringing systems

with respect to each of the acts of infringement described above. Akamai makes infringing

systems that consist entirely of Akamai servers. Likewise on information and belief, XO makes

and uses infringing systems where all of the servers are XO-hosted or operated servers. Further,

when the infringing system includes a combination of Akamai and XO-hosted or operated

servers, Akarnai and XO act jointly or in concert to practice the claimed inventions, and the

infringement is not complete until both Akamai and XO have provided or performed their

respective parts.

71. The making, and operation, of the 002 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 002 Patent pursuant to 35

U.S.C. § 27l(a).

72. Unless enjoined by this Court, Akamai will continue to infringe the 002 Patent.

73. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at Jaw. Limelight has also suffered

damages as a result of Akarnai's infringement of the 002 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IV AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,856,263

74. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

22

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 23 of 48 PageID# 608

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 23 of 47 PagelD# 23

75. On infonnation and belief, Akamai has infringed and continues to infringe one or

more claims of the 263 Patent, including but not limited to claims J, 2, 3, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, and 20 pursuant to 35 U.S.C. § 271(a), literally or under the doctrine

of equivalents, by making, using, selling, and/or offering to sell in the United States without

authority and/or importing into the United States without authority, the Akamai Intelligent

Platfonn, including a content delivery network with edge servers perfonning prefetching

additional web pages and content to cache, prior to their being requested by an end user, as well

as services associated therewith, also known as the "Akamai Instant" feature (the 263 Infringing

Products). Based on infonnation and belief, and publicly available documentation, Akamai's

edge servers accelerate delivery of web content by parsing requested web pages to identify

additional web pages that are likely to be requested by a user system, and storing them to cache.

76. Specifically, Akamai's edge servers with the Akamai Instant feature meet the

requirements of the claimed systems and methods for accelerating access to resources of web

pages, as reflected by publicly available Akamai documentation. On infonnation and belief,

Akamai's edge servers include a cache for storing web content that can be used to store web

content that has been "prefetched"-obtained before an end user client has asked for them. For

example, Akamai states the following about the pref etching capabilities of its edge servers:

Before a base page (e.g. home page html) is served from the origin to the client,
the Akamai edge server parses the content and prefetches predefined assets from
the origin before the response is sent to the client, so they can be served from the
edge cache when the client requests them.

"Of Preconnect, Prefetch and Preload," https://community.akamai.com/community/web-

perfonnance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

77. Akamai's edge servers with the Akamai Instant feature can parse requested web

pages to identify additional web pages that are likely to be requested by the user system, to

23

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 24 of 48 PageID# 609

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 24 of 47 PagelD# 24

request those web pages and their specific content resources from another server before an end

user requests them from the edge server, and store them in its cache. On infonnation and belief,

this ability includes the ability to obtain and store in cache static (non-dynamic) resources, such

as image files. For example, Akamai states the following about the prefetching capabilities of its

edge servers with Akamai Instant:

In the past, when our customers have had long think-time applications due to
database lookups, Web services calls, or other processing components that slow
down origin response times, there wasn't much we could do to help other than
speed the content once it was ready to be delivered. But by then it is usually too
late. The new Terra Alta feature, Akamai Instant, now lets us tackle that
delivery challenge head on. By designating the most likely next pages to be
visited by users, Terra Alta is able to start the process of gathering content,
making Web service caJJs, or doing database lookups, before the page is
requested by the user, and pre-fetching that content to the edge of the
Internet, close to users, prior to the user requesting it. We've seen this
improve the performance of these applications by up to 100% over origin delivery.

(emphasis added). "A Few More Tricks From Terra Alta/' https://blogs.akamai.com/2012/03/a-

few-more-tricks-from-terra-alta.html (last visited November 29, 2015).

78. For example, edge servers with Akamai Instant can prefetch web resources

identified .in a first web page with the <a> or <link> HTML elements, which can include

additional web pages, as described at htt,ps://community.akamai.comlcommunity/web-

perfonnance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

79. As deployed and operated, as for example by XO in its data centers, Akamai edge

servers with Akamai Instant include interfaces that enable communication of one or more user

nodes with one or more web servers. For example, Akamai publishes the following images

showing Akamai servers having Ethernet ports:

24

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 25 of 48 PageID# 610

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 25 of 47 PagelD# 25

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/irnages/Serve

r Hardware/X4i 1·5xl8 lOG Rear Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.comlheguide/images/Serve

r Hardware/Xl 2x8 CacheH Rear Large.jpg (last visited November 29, 2015). Further

infonnation about Akarnai's deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.comlheguide/Network Pac

kages.html (last visited November 29, 2015).

80. Further, Akamai's geographically distributed deployments of its edge servers, as

deployed and operated for example by XO in its data centers, include routers that "allow

Akamai to direct traffic between Akarnai's equipment and the providers that Akamai connects to."

Akamai Hands And Eyes Guide, available at htt.Ps://fieldtech.akamai.com/heguide/Router Hard

ware.html. When such equipment is deployed in a manner that connects Akamai's edge servers

to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to

send and receive data over a connecting network.

25

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 26 of 48 PageID# 611

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 26 of 47 PagelD# 26

81. On infonnation and belief, because Akamai edge servers with Akamai Instant are

designed and intended to respond to repeated requests for web content, both from the same end

user device, and from different end user devices, these servers are able to perform the described

prefetching functions for additional requests from end users, including where common resources

are shared between pages.

82. The making, and operation, of Akamai edge servers with Akamai Instant as

described above constitutes infringement of at least the above-mentioned claims of the 263

Patent pursuant to 35 U.S.C. § 271(a).

83. Unless enjoined by this Court, Akamai will continue to infringe the 263 Patent.

84. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injwy, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai's infringement of the 263 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be detennined.

COUNT V AGAINST AKAMAI:

INFRINGEMENT OF U.S. PA TENT NO. 9,015,348

85. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

86. On infonnation and belief, Akamai has infringed and continues to infringe one or

more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, l 0-16, and l 8

pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, the Akamai Intelligent Platform, including a content delivery

network with edge servers that perform automated front end optimization ("FEO"). Based on

infonnation and belief, and publicly available documentation, Akamai's edge servers perform

26

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 27 of 48 PageID# 612

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 27 of 47 PagelD# 27

front end optimization by using attributes associated with content requests to select a set of

content acceleration techniques that will be applied to deliver the requested content, and utilize

performance metrics obtained regarding the delivered content to dynamically improve the

subsequent selection of content acceleration techniques for similar content.

87. Specifically, Akamai's edge servers with automated front end optimization meet

the requirements of the claimed systems and method for dynamically selecting from among a

plurality of acceleration techniques implemented in a Content Delivery Network (CON) using

attributes associated with content requests, as reflected by publicly available Akamai

documentation.

88. Based on information and belief, and publicly available documentation, Akamai's

Accused 348 Products can apply numerous techniques to accelerate the delivery of digital

content to end users, including: combining, compressing, rewriting or otherwise "minifying"

Javascript and CSS elements in web pages; optimizing (including compressing) image and other

media files; running Javascript asynchronously; and reordering web resource delivery. As

Akamai describes:

Front-end optimization reduces the number of requests, makes responses smaller,
and reorders things to optimize rendering in the browser. There are dozens of
different FEO optimization methods available in our service and the list continues
to grow. FEO can reduce the number of requests by combining multiple
JavaScript or CSS files into one download and by embedding small images
directly into CSS. FEO can make responses smaller by minifying JavaScript and
CSS, and by optimizing images. FEO also can unblock rendering of your page by
running JavaScript asynchronously. Images can be made to load on demand, only
as they scroll into view.

"FEO Fundamentals," available at https://developer.akamai.com/stuff/FEO/index.htm1 (last

visited November 29, 2015).

89. Other content acceleration techniques the Accused 348 Products perform include

prefetching web content, optimizing TCP connections, caching the static portions of dynamically

27

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 28 of 48 PageID# 613

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 28 of 47 PagelD# 28

rendered web pages (a feature known as EdgeStart), file versioning, domain sharding, and DNS

prefetching. These and other content acceleration techniques the Accused 348 Products perfonn

are described in Akamai public documentation, including at

https://www.akamai.com/jp/ja/multimedia/documents/wbite-paper/front-end-optimization-on-

the-akamai-intelligent-platfonn-white-paper.pdf (last visited November 29, 2015).

90. On infonnation and belief, and as described in Akamai public documentation, the

Accused 348 Products apply content acceleration techniques to requested content selectively,

based in part on configuration files that are maintained by Akamai and its customers:

Akamai's edge servers are responsible for processing end user requests and
serving the requested content, as well as for acting as intermediaries in our
overlay network. The platfonn offers a rich set of functionality and content
handling features, developed over a decade of experience working with and
supporting many of the most sophisticated websites and applications on the
Internet. These controls not only ensure correct application behavior as
experienced by the end user, but also optimize the performance of Applications
under different scenarios.

An important feature of the edge server platform is its tremendous configurability
via metadata configuration, which allows enterprises to retain fine-grained control
in applying the platform's various capabilities to the handling of their content.

"The Akamai Network: A Platform for High-Performance Internet Applications," available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-

network-a-platform-for-high-performance-intemet-applications-technical-publication.pdf (last

visited November 29, 2015).

91. On information and belief, and as described in Akamai public documentation, the

Accused 348 Products match attributes of content requests--such as the URL path, or header

data in the request, or other attributes of the request such as end-user location or device type-to

configuration data, to selectively apply content acceleration techniques to requested content:

The metadata system allows these features to be separately configured based on
matching request and response attributes. While the simplest matches are on URL

28

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 29 of 48 PageID# 614

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 29 of 47 PagelD# 29

path components, file extensions, and request methods, more advanced metadata
matches can change behavior based on attributes including end-user geographic
location, connection speed, HTTP request and response headers, cookie values,
and many others Metadata configuration can be set across an entire website, a
portion of the site, a specific category of content, or even for individual files.

"The Akamai Network: A Platfonn for High-Performance Internet Applications," available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akarnai-

network-a-platform-for-high-oerformance-intemet-applications-technical-publication.pdf (last

visited November 29, 2015).

92. On infonnation and belief, and as described in Akamai public documentation, the

Accused 348 Products obtain metrics regarding the performance of content acceleration

techniques applied to specific content requests, and use those metrics to improve the selection

and configuration of acceleration techniques that will subsequently be used for similar requests.

For example, Akamai's public documentation describes its "automated FEO solution" as

follows:

For every end user request, Akamai's proven technologies are dynamically
applied in a way that optimizes performance for that unique scenario, taking into
account real-time website, network, and end user conditions. Akamai's FEO
capabilities are an integrated part of these solutions, working in concert with our
other perfonnance, security, and availability offerings to deliver the best possible
experience for every user, on every device, every time.

Front-End Optimization on the Akamai Intelligent Platfonn,

https://www.akamai.com/jp/ja/multimedia/documents/white-paper/front-end-optimization-on-

the-akamai-intelligent-platfom1-white-paper.pdf

93. The Accused 348 Products include hardware and software, such as a router, that

provide an interface to a network. For example, Akamai's geographically distributed

deployments of its edge servers, as deployed and operated for example by XO in its data centers,

29

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 30 of 48 PageID# 615

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 30 of 47 PagelD# 30

include routers that "allow Akarnai to direct traffic between Akamai's equipment and the

providers that Akamai connects to." [Akamai Hands And Eyes Guide], available at

https://fieldtech.akamai.com/heguide/Router Hardware.html. When such equipment is deployed

in a manner that connects Akamai's edge servers to the Internet, for example by XO in its data

centers, it is configured to receive requests from end users, such as from a device browser.

94. The Accused 348 Products include edge servers distributed throughout the United

States and globally, such as those as deployed and operated by XO in its data centers. These edge

servers include memory, storage devices, a processor, and interfaces to connect with a network

interface, and to other edge servers and Akamai hardware and software located elsewhere in its

content distribution network, and to apply selected content acceleration techniques as described

above.

95. For example, on infonnation and belief, to perform their basic role, Akamai's

edge servers have multiple network ports to send and receive data. As a further example, Akamai

publishes the following images showing Akamai servers having two Ethernet ports:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r Hardware/X4i 1-Sx 18 1 OG Rear Large.jpg (last visited November 29, 2015).

30

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 31 of 48 PageID# 616

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 31of47 PagelD# 31

Akarnai Hands And Eyes Guide, available ar ht!;ps://fieJdtech.akamai.com/heguide/irnages/Serve

r Hardware/XI 2x8 CacheH Rear Large.jpg (last visited November 29, 2015). Further

information about Akamai's deployed network interfaces can be found m

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015). Likewise, Akamai's servers include processors:

Server GeneratlonJI

The following server 9'!'1eratlcll5 are listed from most recentty deployed to no longer bdng dellloyed. Thi$" brief overview of each generation's spttlflcallon$.

Generation
XB

Specifications (Partial Ust)
Intel Broadwell OE

X7 Intel Si<ylake Intel Haswell E3·1200 VS se<les, up to 64 GS Unbuffered ODR4

X6m Intel Haswell E5·2600 V3 series, 16G to 256G OOR4 Re!Jlste<ed
)!6 Intel ~well £3·1200 V3 senes, 16G Of 32G DDR3

XS
1!41

Intel Sandy Bridge ES 2600 EP 5er1e$, 128GB Qt 256GB DORJ

tntel Ivy Bridge E3·1270 V2, 16G DOR3
)(4 Intel Sandy Bridge EJ•l270, 16G ODRJ

X2 Intel Nehalem X3470, 8G to 32G DDR3

lU Intel Nehalem X3470, 8G ODR3

GlO AMO Opteron 6204 Quad Core, 64G Dl>lt3

G9 AMO Opteron 4184 Hexa Core, 8G OOR3

G7 AMO Opteron 1389 Quad Core, SG OOR2

G6 AMO Opteron 2381 Quad Core, 8G DDR2

GS AMO Alhlon II 21oe Dual COre, BG ODRJ

G4 AMO Opteron 1218 Dual Core, 1G DDR2

G3 AMO Opteron 244, 2G or 4G M DDRl
G2 AMO Opteron 244, IG or 2G ODRl

GI AMO Opteron 24'1, Sl2M DORI

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Server Hard

ware.html (last visited November 29, 2015).

96. The making, and operation, of the Accused 348 products as described above

constitutes infringement of at least the above-mentioned claims of the 348 Patent pursuant to 35

U.S.C. § 271(a).

31

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 32 of 48 PageID# 617

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 32 of 47 PagelD# 32

97. Unless enjoined by this Court, Akamai will continue to infringe the 348 Patent.

98. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai's infringement of the 348 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VI AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,615,577

99. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

100. On information and belief, Akamai has infringed and continues to infringe one or

more claims of the 577 Patent, including but not limited to claims 1, 2, 3, 4, 5, 6, 8, 9, 11, 16, and

19, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making,

using, selling, and/or offering to sell in the United States without authority and/or importing into

the United States without authority, Akamai's Image Converter and Image Manager products, as

well as Akamai's cloud-based video transcoding products (the 577 Infringing Products).

101. The 577 Infringing Products constitute parts of the Akamai content delivery

network, which Akamai illustrates as follows:

32

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 33 of 48 PageID# 618

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 33 of 47 PagelD# 33

I Akamai Network Overlay ~ x._ttlmmai

PoP#3

PoP#2

"Object Delivery," available at https://developer.akamai.com/stuff/Content Delivery/Object Del

iveiy.html (last visited November 29, 2015).

102. On information and belief, and from publicly available Akamai documentation,

the 577 Infringing Products allow Akamai's customers to upload image and video content (a

process known as "ingest"). When the content is uploaded, it is determined (based on criteria that

can be set by the customer) whether policies, that can be defined or customized by Akamai's

customers, apply to the ingested content. When the policies apply, they determine what kind of

processing wil1 be performed to the ingested content, such as video transcoding, or formatting

and alteration of ingested images. The 577 Infringing Products maintain numerous processing

functions that are matched with content by these (prernade and customer-defined) policies.

Moreover, the 577 Infringing Products maintain numerous policies that can be applied to

different ingested content. These policies can be triggered based on the processing to be

performed on the content, the location of the content itself, or both.

33

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 34 of 48 PageID# 619

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 34 of 47 PagelD# 34

103. On infonnation and belief, the application of these policies can be based on

metadata (which can be stored in a database) of the content itself, information about the end user

that subsequently requests the content, or information related to the provider of the content using

specialized function calls that the patent refers to as "mutators." Once it is determined which

policy applies to the ingested content, such as a video or image file, the appropriate processing,

such as video transcoding, or image fonnatting and alteration, is selected for processing that

content. As Akamai explains with respect to video transcoding:

With Akamai, you simply set the initial configuration in the easy-to-use Luna
Control Center and after that, the work.flow is a completely automated process.
Upload content to pre-defined watch folders and Akamai handles the rest.
Whether you're processing one media file or 20,000, the same automated
processes apply. You can also customize advanced transcoding parameters
including number of renditions, video/audio bitrates, bitrate types (VBR/CBR),
frame rate, keyframe rate, and resolution.

"Media Services On Demand Product Brief," available at https://www.akamai.com/us/en/multim

edia/documents/product-brief/media-services-on-demand-product-brief.pdf (last visited

November 29, 2015). Akamai illustrates its video transcoding services as as follows:

HQW It Wo1ks

~- ... -·. --'.~~\
~ 0)7~:?~,;

........ ,., .4' -~ -~- ... ·
--,...- .;1 ~ ·.,

;.,,,,:,, i;,-,\r:" •. :)

/•- -· ,•

···- - '··~~-:::.:.:.:...:.::·.:.. ..
'.I '·' ~.~· I .· • •• ~ ·•

-,·

34

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 35 of 48 PageID# 620

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 35 of 47 PagelD# 35

"Video On Demand Transcoding Product Brief," https://www.akamai.com/us/en/multimedia/doc

uments/product-brief/vod-transcoding-product-brief.I!df (last visited November 29, 2015).

104. Akamai provides the following explanation of Image Converter capabilities:

Image Converter supports real-time API commands including:
• Downsize - reduce an image's dimensions.
• Resize - scale images to a specific width and height.
• Crop - crop, or cut out, a section of an image based on dimension and

axis parameters.
• Change Output Quality - compress JPEG images based on a 1 to 100

scale.
• Change Output Format - change JPEG, PNG, GIP & TIFF images to a

specific file type such as JPEG, PNG & GIF.
• Background Color - set the background color for transparent images

using HTML or Hex colors.
• Compose Images - place an image in a specific location on top of another

image e.g. for watermarking.

"Image Converter" available at https://www.akamai.com/us/en/solutions/intelligent-

platform/cloudlets/image-converter.jsp (last visited November 29, 2015). Akamai illustrates

Image Converter as follows:

. JM:~., ... ,··,.~.1~4:
• GIF I .. ;;:--·'·
• J.:NG !. ~: ... ,

Raslzo Char~• qualily Crop C!>Ongo bnclcgrouM Ca!?lblnc imogoe Change eutp1Jt lotmtll

Id.

35

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 36 of 48 PageID# 621

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 36 of 47 PagelD# 36

105. As Akamai explains with respect to Image Manager: "Akamai provides

developers with highly customizable po.licies to accommodate a wide range of image

transfonnations. Begin with high-quality master images and quickly derive ready-for-web

images that adapt to business, artistic and technical requirements." "Image Manager Product

Brief," available at https://www.akamai.com/us/en/multimedia/documents/product-brief/image-

manager-product-briefpdf (last visited November 29, 2015). Akamai illustrates functionality of

Image Manager as follows:

G) Upload ruw image

l
®

Hi-Res raw image from Studio

Image Manager

Automatic.:1lly delivers the best
image for 1he end lJser

!

@ Autoin;itically applies
polices to create and
stora"Ready for Web"
image variants

-~--·

Other transformations

106. "Image Manager Product Brief," https://www.akamai.com/us/en/multimedia/docu

ments/product-brief/image-manager-product-brief.pdf (last visited November 29, 2015).

107. In addition, on infonnation and belief the policies can be triggered by function

calls that are built into template URLs. As Akamai explains: "Image Converter harnesses the

power of the Akamai Intelligent Platform™ to enable organizations to dynamically manipulate

images in the cloud through appending application programming interface (API) commands to

36

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 37 of 48 PageID# 622

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 37 of 47 PagelD# 37

image URLs." "Image Converter" available at https://www.akamai.com/us/en/solutions/intellige

nt-platfornlfcloudJets/image-converter.jsp (last visited November 29, 2015).

108. Likewise, as shown above, the functions that process the ingested content can be

an HTTP-based application programming interface (API). See id.

109. The making, and operation, of the 577 Infringing Products as described above

constitutes infringement of at least the above-mentioned claims of the 577 Patent pursuant to 35

U.S.C. § 27l(a).

110. Unless enjoined by this Court, A.kamai will continue to infringe the 577 Patent.

111. As a result of Akamai's conduct, Limelight has suffered and will continue to

suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of Akamai's infringement of the 577 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

112. Limelight incorporates and realleges paragraphs 1-47 above as if fully set forth

herein.

113. On information and belief, XO has infringed and continues to infringe one or

more claims of the 155 Patent, including but not limited to claims 1, 3, 8, 9, 10, 11, 12, 13, 15,

18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by

making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, hardware and software, content delivery

servers and networks, and data centers that constitute or include 155 Infringing Products because

of their inclusion and perfotmance of the functionality described above with respect to Count I

and the Akamai Intelligent Platform.

37

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 38 of 48 PageID# 623

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 38 of 47 PagelD# 38

114. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 155 Infringing Products because they fonn all or part of CDNs including a

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence include edge servers that are operated or hosted by XO.

Based on information and belief, and publicly available documentation, XO-operated or hosted

edge servers perform TCP optimization by modifying pre-existing TCP settings based upon

parameters that are determined at least in part with reference to information in the URLs of end

user requests as described above with respect to Count I including the specific variations

described therein.

115. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

155 Patent for the same technical reasons explained above with respect to Count I except that in

such instances XO is the direct infringer.

116. Both XO and Akamai make and use infringing systems. On information and

belief, XO makes infringing systems that consist entirely of XO-hosted or operated servers.

Likewise Akamai makes and uses infringing systems where all of the servers are Akamai servers.

Further, when the infringing system includes a combination of XO and Akamai servers, Akamai

and XO act jointly or in concert to perform the infringing acts, and the infringement is not

complete until both XO and Akamai have provided or performed their respective parts.

J 17. Unless enjoined by this Court, XO will continue to infringe the 155 Patent.

I 18. As a result of XO's conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

38

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 39 of 48 PageID# 624

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 39 of 47 PagelD# 39

damages as a result of XO's infringement of the 155 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VIII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 7,715,324

119. Limelight incorporates and realleges paragraphs 1-33 and 48-62 above as if fully

set forth herein.

120. On information and belief, XO has infringed and continues to infringe one or

more claims of the 324 Patent, including but not limited to claims l, 2, 4, 5, 6, 7, 8, 10, and 11,

pursuant to 35 U.S.C. § 271 (a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, hardware and software, content delivery servers and networks,

and data centers that constitute or include 324 Infringing Products because of their inclusion and

performance of the functionality described above with respect to Count II and the Akamai

Intelligent Platform.

121. Specifically, XO provides services, networks, and data centers, which host servers

that constitute 324 Infringing Products because they form all or part of CDNs including a

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence include edge servers that are operated or hosted by XO.

Based on information and belief, and publicly available documentation, XO-operated or hosted

edge servers perform TCP optimization by modifying pre-existing TCP settings based upon

parameters that are determined at least in part with reference to information in the URLs of end

user requests as described above with respect to Count II including the specific variations

described therein.

39

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 40 of 48 PageID# 625

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 40 of 47 PagelD# 40

122. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

324 Patent for the same technical reasons explained above with respect to Count II except that in

such instances XO is the direct infringer.

123. Unless enjoined by this Court, XO will continue to infringe the 324 Patent.

124. As a result of XO's conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO's infringement of the 324 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IX AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,683,002

125. Limelight incori:iorates and realleges paragraphs 1-33 and 63-73 above as if fully

set forth herein.

126. On information and belief, XO has infringed and continues to infringe one or

more claims of the 002 Patent, including but not limited to claims 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15,

16, 17, 18, and 20, pursuant to 35 U.S.C. § 271 (a), literally or under the doctrine of equivalents,

by making, using, selling, and/or offering to sell in the United States without authority and/or

importing into the United States without authority, hardware and software, content delivery

servers and networks, and data centers that constitute or include 002 Infringing Products because

of their inclusion and performance of the functionality described above with respect to Count III

and the Akamai Intelligent Platfonn.

127. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 002 Infringing Products because they form alJ or part of CDNs including a

40

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 41 of 48 PageID# 626

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 41of47 PagelD# 41

plurality of points of presence that are distributed geographically and perform functionality

related to the Akamai Intelligent Platform. These points of presence include edge servers that are

operated or hosted by XO. Based on information and belief, and publicly available

documentation, XO-operated or hosted edge servers that do not have user-requested content in

their own caches can ask other edge servers whether they have the requested content in their

caches and if so the content is provided to the user, including the specific variations described

above with respect to Count III.

128. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

002 Patent for the same technical reasons explained above with respect to Count III except that

in such instances XO is the direct infringer.

129. Both XO and Akamai make and use infringing systems. On information and

belief, XO makes infringing systems that consist entirely of XO-hosted or operated servers.

Likewise Akamai makes and uses infringing systems where all of the servers are Akamai servers.

Further, when the infringing system includes a combination of XO and Akamai servers, Akamai

and XO act jointly or in concert to perform the infringing acts, and the infringement is not

complete until both XO and Akamai have provided or performed their respective parts.

130. Unless enjoined by this Court, XO wilJ continue to infringe the 002 Patent.

131. As a result of XO's conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO's infringement of the 002 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

41

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 42 of 48 PageID# 627

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 42 of 47 PagelD# 42

COUNT X AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,856,263

132. Limelight incorporates and realleges paragraphs 1-33 and 74-84 above as if fully

set forth herein.

133. On information and belief, XO has infringed and continues to infringe one or

more claims of the 263 Patent, including but not limited to claims 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine

of equivalents, by making, using, selling, and/or offering to sell in the United States without

authority and/or importing into the United States without authority, hardware and software,

content delivery servers and networks, and data centers that constitute or include 263 Infringing

Products because of their inclusion and performance of the functionality described above with

respect to Count IV and the Akamai Intelligent Platform.

134. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 263 Infringing Products because they form all or part of CDNs including a

plurality of points of presence that perform functionality related to the Akamai Intelligent

Platform. These points of presence include edge servers that are operated or hosted by XO.

Based on information and belief, and publicly available documentation, XO-operated or hosted

edge servers perform prefetching of additional web pages and content to cache, prior to their

being requested by an end user, as well as services associated therewith, also known as the

"Akamai Instant" feature as described above with respect to Count IV including the specific

variations described therein.

135. On infonnation and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

42

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 43 of 48 PageID# 628

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 43 of 47 PagelD# 43

263 Patent for the same technical reasons explained above with respect to Count IV except that

in such instances XO is the direct infringer.

136. Unless enjoined by this Court, XO will continue to infringe the 263 Patent.

137. As a result of XO's conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO's infringement of the 263 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be detennined.

COUNT XI AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 9,015.348

138. Limelight incorporates and realleges paragraphs 1-33 and 85-98 above as if fully

set forth herein.

139. On information and belief, XO has infringed and continues to infringe one or

more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, 10-16, and 18,

pursuant to 35 U.S.C. § 27l(a), literally or under the doctrine of equivalents, by making, using,

selling, and/or offering to sell in the United States without authority and/or importing into the

United States without authority, hardware and software, content delivery servers and networks,

and data centers that constitute or include 348 Infringing Products because of their inclusion and

performance of the functionality described above with respect to Count V and the Akamai

Intelligent Platform.

140. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 348 Infringing Products because they form all or part of CDNs related to the

Akamai Intelligent Platform including a content delivery network with edge servers that perfonn

automated front end optimization ("FEO''). Based on infonnation and belief, and publicly

available documentation, XO-operated or hosted edge servers perform front end optimization by

43

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 44 of 48 PageID# 629

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 44 of 47 PagelD# 44

using attributes associated with content requests to select a set of content acceleration techniques

that will be applied to deliver the requested content, and utilize perfonnance metrics obtained

regarding the delivered content to dynamicaJly improve the subsequent selection of content

acceleration techniques for similar content as described above with respect to Count V including

the specific variations described therein.

141. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

348 Patent for the same technical reasons explained above with respect to Count V except that in

such instances XO is the direct infringer.

142. Unless enjoined by this Court, XO will continue to infringe the 348 Patent.

143. As a result of XO's conduct, Limelight has suffered and wiIJ continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO's infringement of the 348 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT XII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,615.577

144. Limelight incorporates and realleges paragraphs 1-33 and 99-111 above as if fully

set forth herein.

145. On information and belief, XO has infringed and. continues to infringe one or

more claims of the 577 Patent, including but not limited to claims 1, 2, 3, 4, 5, 6, 8, 9, 11, 16, and

19, pursuant to 35 U.S.C. § 27l(a), literally or under the doctrine of equivalents, by making,

using, selling, and/or offering to sell in the United States without authority and/or importing into

the United States without authority, hardware and software, content delivery servers and

44

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 45 of 48 PageID# 630

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 45 of 47 PagelD# 45

networks, and data centers that constitute or include 577 Infringing Products because of their

inclusion and performance of the functionality described above with respect to Count VI and the

Akamai Intelligent Platform.

146. Specifically, on information and belief, XO provides services, networks, and data

centers, that host servers that constitute 577 Infringing Products because they form all or part of

CDNs related to the Akamai Intelligent Platform including a content delivery network including

the Image Converter, Image Manager, and cloud-based video transcoding products, which store

and apply the claimed policies to ingested content in the various manners described above with

respect to Count VI including the specific variations described therein.

147. On information and belief, when XO assembles or configures a server, network,

or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

577 Patent for the same technical reasons explained above with respect to Count VI except that

in such instances XO is the direct infringer.

148. Unless enjoined by this Court, XO will continue to infringe the 577 Patent.

149. As a result of XO's conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

damages as a result of XO's infringement of the 577 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be detetmined.

PRAYER FOR RELIEF

150. Limelight respectfully prays for relief as follows:

(a) A judgment that Akamai and XO have infringed and continue to infringe one or more

claims of the Asserted Patents;

45

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 46 of 48 PageID# 631

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 46 of 47 PagelD# 46

(b) A judgment awarding Limelight all damages adequate to compensate for Akamai's

and XO's infringement, and in no event less than a reasonable royalty for Akamai's and

XO's acts of infringement, including all pre-judgment and post-judgment interest at the

maximum rate allowed by law;

(c) A pennanent injunction enjoining Akamai, and its directors, officers, employees,

attorneys, agents, and all persons in active concert or participation with any of the

foregoing, from further acts of infringement of the Asserted Patents;

(d) A permanent injunction enjoining XO, and its directors, officers, employees,

attorneys, agents, and all persons in active concert or participation with any of the

foregoing, from further acts of infringement of the Asserted Patents; and

(e) A judgment awarding Limelight such other relief as the Court may deem just and

equitable.

DEMAND FOR JURY TRIAL

Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Plaintiff

Limelight demands a trial by jury in this action.

Date: November 30, 2015 Respectfully submitted,

Maya M. Eckstein (Va. Bar No. 41413)
HUNTON & WILLIAMS LLP
95 J E. Byrd St.
Richmond, Virginia 232 l 9
Telephone: (804) 788-8788
Facsimile: (804) 343-4630
meckstein@hunton.com

46

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 47 of 48 PageID# 632

Case 3:15-cv-00720-JAG Document 1 Filed 11/30/15 Page 47 of 47 PagelD# 47

Matthew D. Powers (CA Bar No. 104795) (pro hac
vice motion to be filed)
Paul T. Ehrlich (Cal Bar No. 228543) (pro hac
vice motion to be filed)
William P. Nelson (Cal Bar No. 196091) (pro hac
vice motion to be filed)
Aaron M. Nathan (Cal Bar. No. 251316) (pro hac
vice motion to be filed)
TENSEGRITY LAW GROUP, LLP
555 Twin Dolphin Drive, Suite 650
Redwood Shores, CA 94065
Telephone: (650) 802-6000
Facsimile: (650) 802-6001
matthew.powers@tensegritylawgroup.com
paul.ehrlich@tensegritylawgroup.com
william.nelson@tensegritylawgroup.com
aaron.nathan@tensegritylawgroup.com

Attorneys for Plaintiff Limelight Networks, Inc.

47

Case 3:15-cv-00720-JAG Document 28-7 Filed 02/16/16 Page 48 of 48 PageID# 633

Exhibit	 H	

Case 3:15-cv-00720-JAG Document 28-8 Filed 02/16/16 Page 1 of 3 PageID# 634

Case 3:15-cv-00720-JAG Document 12 Filed 12/11/15 Page 3 of 4 PagelD# 231

AO 440 {Rev. 06112) Summons in a Civil Action

UNITED STATES DISTRICT COURT
for the

Eastern District of Virginia

Limelight Networks, Inc.

P/alntiff(s)

V.

XO Communications, LLC and
Akamai Technologies, Inc.

Defendant(s)

)
)
)
)
)
)
)
)
)
)
)
)

Civil Action No.

SUMMONS IN A CIVIL ACTION

To: (Defendant's name and address)

Akamai Technologies, Inc.
c/o Corporation Service Company (Registered Agent)
Bank of America Center, 16th Floor
1111 East Main Street
Richmond, VA 23219

A lawsuit has been filed against you.

ll

•·'' I £0l5
CLERK, U.S. DISlRICT COURT

RICHMOND. VA

Within 21 days after service of this summons on you (not counting the day you received it) - or 60 days if you
are the United States or a United States agency, or an officer or employee of the United States described in Fed. R. Civ.
P. 12 (a)(2) or (3) - you must serve on the plaintiff an answer to the attached complaint or a motion under Rule 12 of
the Federal Rules of Civil Procedure. The answer or motion must be served on the plaintiff or plaintiff's attorney,
whose name and address are:

Maya M. Eckstein
Hunton & Williams LLP
Riverfront Plaza, East Tower
951 East Byrd Street
Richmond, VA 23219

If you fail to respond, judgment by default will be entered against you for the relief demanded in the complaint.
You also must file your answer or motion with the court.

CLERK OF COURT

Date: _n_EC_0 _1 _20_15_ eM~
Signature of Clerk or Deputy Clerk

Case 3:15-cv-00720-JAG Document 28-8 Filed 02/16/16 Page 2 of 3 PageID# 635

Case 3:15-cv-00720-JAG Document 12 Filed 12/11/15 Page 4 of 4 PagelD# 232

AO 440 (Rev. 06/12) ~ummons in a Civil Action (P113e 2)

Civil Action No.

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 4 (I))

This summons for(nameofindividualandtitle, if any) /~""17.,,4, · ;7£cR~~&,./}FS ..T-o.
was received by me on (date)

0 I personally served the summons on the individual at (place)

on (date) ; or

0 I left the summons at the individual's residence or usual place of abode with (name)

, a person of suitable age and discretion who resides there,
--------------~

on (date) , and mailed a copy to the individual's last known address; or

~I served the summons on (name ofindividUJJ/) KF,,..,....E N~L"'.s.7 , who is

designated by law to accept service of process on behalf of (name of organization) t:ZSC! ----------~ 4. ~ ~..tA?h;p/· ·~,v. ::2;:.e. on {date) ; or

0 I returned the summons unexecuted because ; or

0 Other (specify):

My fees are$ for travel and $ for services, for a total of$ 0.00

I declue under penalty of petjwy that this information is true. ~

,,.2-2__,,s ~-
server's signature

Date:

Serwr's address

Additional infonnation regarding attempted service, etc: ...

Case 3:15-cv-00720-JAG Document 28-8 Filed 02/16/16 Page 3 of 3 PageID# 636

Exhibit	 I	

Case 3:15-cv-00720-JAG Document 28-9 Filed 02/16/16 Page 1 of 3 PageID# 637

Case 3:15-cv-00720-JAG Document 12 Filed 12/11/15 Page 1of4 PagelD# 229

AO 440 (Rev. 06/12) Summons in a Civil Action

UNITED STATES DISTRICT COURT
for the

Eastern District of Virginia

Limelight Networks, Inc.

Plaint/ff(s)

v.

XO Communications, LLC and
Akamai Technologies, Inc.

Defendant(s)

)
)
)
)
)
)
)
)
)
)
)
)

Civil Action No.

SUMMONS IN A CIVIL ACTION

To: (Defendant's name and address)

XO Communications
c/o Corporation Service Company {Registered Agent)
Bank of America Center, 16th Floor
1 1 1 1 East Main Street
Richmond. VA 23219

A lawsuit has been filed against you.

LE

DEC I I 20!5
~------ :..~

CLERK, us r 1 <:~ P:r:r COURT
___ R_l(~~Hi·/~_:':L;. \//\

Within 21 days after service of this summons on you (not counting the day you received it)- or 60 days if you
are the United States or a United States agency, or an officer or employee of the United States described in Fed. R. Civ.
P. 12 (a)(2) or (3) -you must serve on the plaintiff an answer to the attached complaint or a motion under Rule 12 of
the Federal Rules of Civil Procedure. The answer or motion must be served on the plaintiff or plaintiffs attorney,
whose name and address are:

Maya M. Eckstein
Hunton & Williams LLP
Riverfront Plaza, East Tower
951 East Byrd Street
Richmond, VA 23219

If you fail to respond, judgment by default will be entered against you for the relief demanded in the complaint.
You also must file your answer or motion with the court.

Date: _\)_tC._fi __'l_D'_~_

Case 3:15-cv-00720-JAG Document 28-9 Filed 02/16/16 Page 2 of 3 PageID# 638

Case 3:15-cv-00720-JAG Document 12 Filed 12/11/15 Page 2 of 4 PagelD# 230

AO 440(Rcv. 06/12) Summons ina Civil Action (Page 2)

Civil Action No.

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 4 (I))

This swnmons for (name of individual and 1i1/e, if any)

was received by me on (dare) / 7-2-/S-

0 I personally served the summons on the individual at (place)

on (date) ; or

0 I left the summons at the individual's residence or usual place of abode with (name)

, a person of suitable age and discretion who resides there,
~~~~~~~~~~~~~~~ 

on (date) , and mailed a copy to the individuaJ's last known address; or 

..)i6..served the summons on rname ottndtvfduat) R~i! ~~ sr 
designated by law to accept service of process on behalf of (nameo;organz#(),1) ~C!.. 

, who is 

~~~~~~~~~-

Date:

/.2 -4. terz Yt=' ~Uf/H(HllT~.$ on (date) ; or

0 I returned the summons unexecuted because

0 Other (specify):

My fees are$ for travel and $

~~~~~~~~~~~~~~~~~~-

for services, for a total of$ 

Printed name and · e 
/ 

0.00 

; or 

/Z7J ct?~~ 4~. °'Z-:J"z$C:-
Server '!i address 7 

Additional information regarding attempted service, etc: 

Case 3:15-cv-00720-JAG   Document 28-9   Filed 02/16/16   Page 3 of 3 PageID# 639


	28-main
	28-1
	28-2
	28-3
	28-4
	28-5
	28-6
	28-7
	28-8
	28-9



