AO $120($ Rev. 08/10)
TO: Mail Stop 8
Director of the U.S. Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Eastern District of Texas, Marshall Division on the following \square Trademarks or $\quad \square$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|c\|} \hline \text { DOCKET NO. } \\ 2: 16-\mathrm{cv}-61 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DATE FILED } \\ 1 / 17 / 2016 \\ \hline \end{array}$	U.S. DISTRICT COURT Eastern District of Texas, Marshall Division	
PLAINTIFF OPTIS WIRELESS T PATENT MANAGEN	HNOLOGY, LLC and PANO T, LLC	OPTIS	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK
$18,064,919$	11/22/2011		IS WIRELESS TECHNOLOGY, LLC
2 8,199,792	6/12/2012		TIS WIRELESS TECHNOLOGY, LLC
$37,783,949$	8/24/2010	OP	IS WIRELESS TECHNOLOGY, LLC
$4 \quad 6,865,191$	3/8/2005	OP	TIS WIRELESS TECHNOLOGY, LLC
5			

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

DATE INCLUDED	INCLUDED BY		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Amendment	
1		\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading	
2			
3			
4			
5			

In the above - entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

TO $120(\mathrm{Rev} 08 / 10)$	Mail Stop 8
TO: \quad Director of the U.S. Patent and Trademark Office	
	P.O. Box 1450
	Alexandria, VA 22313-1450

REPORT ON THE
 FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been				
\square Trademarks or \square Patents. (\square the patent action involves 35 U.S.C. § 292.):				
$\begin{array}{\|c\|} \hline \text { DOCKET NO. } \\ 2: 16-\mathrm{cv}-62 \\ \hline \end{array}$	DATE FILED $1 / 17 / 2016$	U.S. DISTRICT COURT Eastern District of Texas, Marshall Division		
PLAINTIFF OPTIS WIRELESS TECHNOLOGY, LLC and PANOPTIS PATENT MANAGEMENT, LLC			$\begin{aligned} & \text { DEFENDANT } \\ & \text { BLACKBERRY LIMITED ar } \\ & \text { CORPORATION } \end{aligned}$	BERRY
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK		
$188,064,919$	11/22/2011	OPTIS WIRELESS TECHNOLOGY, LLC		
$288,199,792$	6/12/2012	OPTIS WIRELESS TECHNOLOGY, LLC		
3 7,783,949	8/24/2010	OPTIS WIRELESS TECHNOLOGY, LLC		
4 6,865,191	3/8/2005	OPTIS WIRELESS TECHNOLOGY, LLC		
5				

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Amendment
1		
2		
3		
4		
5		

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT		
CLERK	(BY) DEPUTY CLERK	DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

In the above-entitied case, the following patent(s)/ trademark(s) have been inchoded:

In the above---entitled case, the following decision has been rendered or judgement issued:

DECISION/UDGEMENT

In light of the Parties' Motion, it is hereby ORDERED that all claims brought by
PanOptis against Kyocera in this action are dismissed with prejudice.

CLERK	(BY) DEPUTY CLERK	DATE
Qavid A. $\mathrm{O}^{\text {Proue }}$	Nakisha Love	11/7/16

 Copy 2-- Upon fing document ading patent(s), mail this copy to givector Cogy 4 Case fise copy

Case 2:16-cv-00061 Document 4 Filed 01/18/16 Page 1 of 1 PageID \#: 143
AO 120 (Rev. 08/10)

In the above-entitied case, the following patent(s)/ tradenark(s) have been included:

In the above---entitled case, the following decision has been rendered or judgement issued:

| CLERK | DATE DEPUTY CLERK | |
| :---: | :---: | :---: | :---: |

Case 2:16-cv-00062 Document 4 Filed 01/18/16 Page 1 of 1 PageID \#: 142
AO 120 (Rev. 08/10)

In the above-entitied case, the following patent(s)/ tradenark(s) have been included:

In the above---entitled case, the following decision has been rendered or judgement issued:

CLERK	(BY) DEPUTY CLERK	DATE

KM THE UKITED STATES PATENT AHD TRADEMARK OFFICE

In re Patent Application of
FUKUOKA at al
Patent No.: 8,064,919
Appln. No. $12 / 983,770$
Filed: 01/3/2011
FOR RADIO COMMUNICATION BASE STATIONDEVICE AND CONTROL CMANNEL ARRANGEMENT METHOD
\pm

Commissioner for Patents
P.O. Box 1450

Alexandria, VA $22313-1450$
Sir:

STATEMENT OF SEIGO NAKAO

1, SEIGO NAKAO, am a named inventor of the claims of the above-identiffed patent. I agree to the change of imentorship to debete Seigo Nakao as a named inventor or I have no disagreement in regard to deleting Seigo Nakao as a named inventor.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al
Patent No.: 8,064,919
Appin. No. 12/983,770
Filed: 01/3/2031

Conf. No.: 1020
Atty. Ref: HWe-6103-0311
Art Unit: 2641
Examiner: MCHAEL T. VU

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Commissioner for Patants
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

§TATEMENT OF AKIHHO NISHO

1, AKIHIKO NISHIO, am a named inventor of the claims of the above-identified patent. \{ agree to the change of inventorship bo delete Seigo Nakao as a named inventor or I have no disagreement in regard to deleting Seigo Nakao as a named inventor.
Signed $\frac{\text { Ahitrite Mishio }}{\text { AKIHKO NISHIO }}$
Dated

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al Patent No.: 8,064,919
Appin. No. 121983,770
Filed: 01/3/2011
Conf. No.: 1020
Atty. Ref.: HWE-6103-0311
Art Unit: 2641

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

STATEMENT OF MASARU FUKUOKA

1, MASARU FUKUOKA, am a named inventor of the claims of the aboveidentfied patent. I agree to the change of inventorship to delete Seigo Nakao as a named inventor or I have no disagreement in regard to deleting Seigo Nakao as a named inventor.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al Patent No.: 8,064,919
Appin. No. 12/983,770
Filed: 01/3/2011

Cont. No.: 1020
Atty. Ref.: HWe-6103-0311
Art Unit: 2641
Examiner: MCHAEL T. VU

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

STATEMENT OF ALEXANDER GOLITSCHEK EDLER VON ELBWART

I, ALEXANDER GOLITSCHEK EDLER VON ELBWART, am a named inventor of the clams of the above-identified patent. I agree to the change of inventorship to delete Seigo Nakao as a named inventor or I have no disagreement in regard to deleting Seigo Nakao as a named inventor.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al
Patent No.: 8,064,919
Appin. No. 12/983,770
Filed: 01/3/2011

Cont. No.: 1020
Atty. Ref.: HWB-6103-0311
Art Unit: 2641
Examiner: MICHAEL T. VU

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

STATEMENT OF ASSIGNEE

OPTIS WIRELESS TECHNOLOGY, LLC, states that, for the patent identified above, it is the Assignee of the entire right, title, and interest.

OPTIS WIRELESS TECHNOLOGY, LLC, agrees to the change of inventorship to delete Seigo Nakao as a named inventor of the above-identified patent.

The above-stated interest is evidenced by an Assignment from the following:
MASARU FUKUOKA, AKIHIKO NISHIO, SEIGO NAKAO, and ALEXANDER GOLITSCHEK EDLER VON ELBWART, to PANASONIC CORPORATION, recorded in the U.S. Patent and Trademark Office on December 23, 2009 at Reel/Frame 023695/0736; and an Assignment from PANASONIC CORPORATION to OPTIS WRELESS TECHNOLOGY, LLC, recorded in the U.S. Patent and Trademark Office on February 23, 2014 at Reel/Frame 032326/0707.

The undersigned (whose title is supplied below) is authorized to act on behalf of each of the Assignee.

Tine: President

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al
Patent No.: 8,064,919
Appln. No. 12/983,770
Filed: 01/3/2011

Conf. No.: 1020
Atty. Ref.: HWB-6103-0311
Art Unit: 2641
Examiner: MICHAEL T. VU

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

April 27, 2016
Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

EXPEDITED PETITION TO CORRECT INVENTORSHIP UNDER RULE 1.324

Petition is hereby made to correct the inventors named in the above-identified patent since the actual inventors were not named through error without deceptive intent. The subject patent should have named the following individuals as the actual joint inventors of the subject matter claimed in the above-identified patent:

Masaru Fukuoka;
Akihiko Nishio;
Alexander Golitschek Edler Von Elbwart,

Thus, this Petition seeks to delete Seigo Nakao as an inventor.
Attached are the following in support of this Petition:

FUKUOKA et al
US Patent 8,064,919
Application No.: 12/983,770

EXPEDITED PETITION TO CORRECT INVENTORSHIP UNDER RULE 1.324

(1) A statement from each person who is currently named as an inventor either agreeing to the change of inventorship or stating that he or she has no disagreement in regard to the requested change;
(2) A statement from the Assignee of the parties (Optis Wireless Technology,

LLC, P.O. Box 250649, Plano, Texas 75025) agreeing to the change of inventorship in the patent, which statement complies with the requirements of 37 CFR § 3.73(c); and
(3) The fee set forth in § 1.20(b).
(4) The fee set forth in § 1.17(f) in conjunction with requested expedited handling of the petition under 37 CFR 1.182. A separate Letter requesting expedited handling is filed on same date herewith.

The Commissioner is authorized to charge the undersigned's deposit account \#14-1140 in whatever amount is necessary for entry of this Petition, for the fees aforementioned, or any other fees deemed necessary by the Commissioner.

The undersigned advises that the captioned patent is involved in litigation in the US District Court for the Eastern District of Texas, docket no.: 2:15-cv-00300 filed March 2, 2015, as is noted in conjunction with a 35 USC $\S 290$ statement in the Patent Office file.

It is respectfully requested that this Petition be granted.
Respectfully submitted,
NIXON \& VANDERHYE P.C.
By: /H. Warren Burnam, Jr./
H. Warren Burnam, Jr. Reg. No. 29,366
HWB
901 North Glebe Road, 11th Floor
Arlington, VA 22203-1808
Telephone: (703) 816-4000
Facsimile: (703) 816-4100

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
FUKUOKA et al
Patent No.: 8,064,919
Appln. No. 12/983,770
Filed: 01/3/2011

Conf. No.: 1020
Atty. Ref.: HWB-6103-0311
Art Unit: 2641
Examiner: MICHAEL T. VU

For: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

April 27, 2016
Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

REQUEST TO EXPEDITE PETITION TO CORRECT INVENTORSHIP UNDER RULE 1.324

It is respectfully requested that the Petition Under Rule 324 filed on even date herewith be expedited and made special. The fee set forth in § 1.17(f) in conjunction with requested expedited handling of the petition under 37 CFR 1.182 is paid herewith.

The Commissioner is authorized to charge the undersigned's deposit account \#14-1140 in whatever amount is necessary for entry of this Petition, for the fees aforementioned, or any other fees deemed necessary by the Commissioner.

Respectfully submitted,
NIXON \& VANDERHYE P.C.
By: /H. Warren Burnam, Jr./
H. Warren Burnam, Jr. Reg. No. 29,366
HWB
901 North Glebe Road, 11th Floor
Arlington, VA 22203-1808
Telephone: (703) 816-4000
Facsimile: (703) 816-4100

Electronic Patent Application Fee Transmittal				
Application Number:	12983770			
Filing Date:	03-Jan-2011			
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD			
First Named Inventor/Applicant Name:	Masaru FUKUOKA			
Filer:	H. Warren Burnam			
Attorney Docket Number:				
Filed as Large Entity				
Filing Fees for Utility under 35 USC 111(a)				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Petition fee- 37 CFR 1.17(f) (Group I)	1462	1	400	400
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				

Description	Fee Code	Quantity	AmountSub-Total in USD(\$)	
Extension-of-Time:				
Miscellaneous:				
Correction of Inventorship on Merits	1819	1	600	600

Electronic Acknowledgement Receipt	
EFS ID:	25603003
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	23117
Filer:	H. Warren Burnam
Filer Authorized By:	
Attorney Docket Number:	
Receipt Date:	27-APR-2016
Filing Date:	03-JAN-2011
Time Stamp:	14:56:22
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Credit Card
Payment was successfully received in RAM	$\$ 1000$
RAM confirmation Number	1279
Deposit Account	
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Petition for review by the Office of Petitions	Statements_of_Original_Invent ors.pdf		no	4
Warnings:					
Information:					
2	Petition for review by the Office of Petitions	Executed_Assignee_Consent. pdf		no	1
Warnings:					
Information:					
3	Petition for review by the Office of Petitions	6103-311_Rule_324_Inventors hip_Change_Petition_april_27 _2016.pdf		no	2
Warnings:					
Information:					
4	Petition for review by the Office of Petitions	6103-311_Letter_Make_Special .pdf		no	1
Warnings:					
Information:					
5	Fee Worksheet (SB06)	fee-info.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes):			1850873		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
$16,865, / 91$		HOLDER OF PATENT OR TRADEMARK
2		
3		
4		
5		

In the above--entitled case, the following decision has been rendered or judgement issued:

Copy I-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office ddress: COMMISSIONER FOR PATENTS Alexandria, Virgnia 22313-1450 Alexandria, Viry
www.usptogov

APPLICATION NUMBER	FLLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 983,770$	$01 / 03 / 2011$	Masaru FUKUOKA	

CONFIRMATION NO. 1020
23117
POA ACCEPTANCE LETTER
NIXON \& VANDERHYE, PC
901 NORTH GLEBE ROAD, 11TH FLOOR
ARLINGTON, VA 22203
Date Mailed: 07/02/2014

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 06/17/2014.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.

/rmturner myles/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS Alexandria, Virginia 22313-1450

APPLICATION NUMBER	FLLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 983,770$	$01 / 03 / 2011$	Masaru FUKUOKA	$009289-91681$

52989
James Edward Ledbetter
1875 Eye Street
Suite 1200
Washington, DC 20006
Date Mailed: 07/02/2014

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 06/17/2014.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/rmturner myles/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

"FEE ADDRESS" INDICATION FORM

Address to:	Fax to:	
Mail Stop M Correspondence		$571-273-6500$
Commissioner for Patents	- OR -	
P.O. Box 1450		
Alexandria, VA 22313-1450		

INSTRUCTIONS: The issue fee must have been paid for application(s) listed on this form. In addition, only an address represented by a Customer Number can be established as the fee address for maintenance fee purposes (hereafter, fee address). A fee address should be established when correspondence related to maintenance fees should be mailed to a different address than the correspondence address for the application. When to check the first box below: If you have a Customer Number to represent the fee address. When to check the second box below: If you have no Customer Number representing the desired fee address, in which case a completed Request for Customer Number (PTO/SB/125) must be attached to this form. For more information on Customer Numbers, see the Manual of Patent Examining Procedure (MPEP) § 403.

For the following listed application(s), please recognize as the "Fee Address" under the provisions of 37 CFR 1.363 the address associated with:

Customer Number: 000204
$O R$
The attached Request for Customer Number (PTO/SB/125) form.

PATENT NUMBER (if known)	APPLICATION NUMBER
8064919	$12 / 983770$

Completed by (check one):
Applicant/Inventor
/John R. Lastova/

Attorney or Agent of record 33,149
(Reg. No.)Assignee of record of the entire interest. See 37CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96)Assignee recorded at Reel \qquad Frame \qquad Signature John R. Lastova

Typed or printed name 703-816-4000
Requester's telephone number June 17, 2014

Date

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more that one signature is required, see below*.
\square * Total of _________ forms are submitted.

This collection of information is required by 37 CFR 1.363. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an appl ication. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This colle ction is estima ted to take 5 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Depar tment of Commerce, P.O. Box 1450, Alex andria, VA 22313-1450. DO NOT SEND COMPLETE D FORMS TO THIS A DDRESS. SEND TO: Mail Stop M Correspondence, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

I hereby revoke all previous powers of attomey given in the application identified in the attached statement under 37 CFR 3.73(b).
I hereby appoint:
Practitioners associated with the Customer Number:
 OR

Practitioner(s) nemed below (ff more than ten patent practitoners are to be named, then a customer number must be used);

as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications assigned only to the undersighed adoording to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73 (b).

Please change the correspondence address for the application identified in the aftached statement under $37 \mathrm{CFR} 3.73(\mathrm{~b})$ to:

Assignee Name and Address:
Optis Wireless Technology, LLC
P.O. Box 250649

Plano, Texas 75025

A copy of this form, together with a statement under 37 CFR 3.73 (b) (Form PTOISB/96 or equivalent) is required to be filed in each appllcation In which this form is used. The statement under 37 CFR 3.73(b) may bo completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.

SIGNATURE of Assignee of Record
The individual whose signature and title is supplied below is authorized to act on behalf of the assignee

This collection or information Is required by 37 GFR $1.31,1.32$ and 1.33 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentlatity is governed by 35 U.S.C. 722 and 37 CFR 1.11 and 1.14. This coilaction is astimated to take 3 minutas to complete, Including gathering, preparing, and sutmitting the completed application form to the USPTO. Time will vary dapending upon the individual case. Any comments on the amount of tme you require to complete this form and/or suggestions for reducing this burden, should be sent to the chief inforration Officer, U.3. Patent and Trademark Offce, U.S. Deparment of Commerce, P.D. Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO; Commissioner for Patents, P.O. Box 1460, Alexandria, VA 22313-1450.

Electronic Acknowledgement Receipt	
EFS ID:	19322573
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	John R. Lastova/Margaret Grey
Filer Authorized By:	John R. Lastova
Attorney Docket Number:	009289-91681
Receipt Date:	17-JUN-2014
Filing Date:	03-JAN-2011
Time Stamp:	09:42:36
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Authorization for Extension of Time all replies	919-sb0096.pdf		no	2
Warnings:					
Information:					

2	Maintenance Fee Address Change	919-sb0047.pdf	203834	no	2
			11af2f5frab 17facac17cctal 19651 lada 7 13f 63a		
Warnings:					
Information:					
	Power of Attorney	OPTISWIRELESSPOA.pdf	218416	no	1
			13c919e23f444e259c181a13a913776425c e92cc		
Warnings:					
Information:					
Total Files Size (in bytes)			847744		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components fo an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

STATEMENT UNDER 37 CFR 3.73(b)

Applicant/Patent Owner: Fukuoka, et al.
Application No./Patent No.: 8064919 Filed/lssue Date: $\underline{22-N o v-11}$
Titled:
Radio communication base station device and control channel arrangement method
OPTIS WIRELESS TECHNOLOGY, LLC , a $\frac{\text { corporation }}{\text { (Type of Assignee e.g. corporation, partnership, university, govermment agency etc. }}$
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc
states that it is:

1. X the assignee of the entire right, title, and interest in;
2. $\quad \square \quad$ an assignee of less than the entire right, title, and interest in
(The extent (by percentage) of its ownership interest is \qquad \%); or
3. \square the assignee of an undivided interest in the entirety of (a complete assignment from one of the joint inventors was made)
the patent application/patent identified above, by virtue of either:
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel copy therefore is attached.
OR
B. X A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:
4. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad or for which a copy thereof is attached.
5. From: Panasonic Corporation

To: OPTIS WIRELESS TECHNOLOGY, LLC
The document was recorded in the United States Patent and Trademark Office at
\qquad
3. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel __ Frame__, or for which a copy thereof is attached.

Additional documents in the chain of title are listed on a supplemental sheet(s).
X As required by 37 CFR 3.73 (b)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]
The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.

$\frac{\text { JJohn R. Lastova/ }}{\text { Signature }}$	
June 17, 2014 John R. Lastova	Attorney Printed or Typed Name

This collection of information is required by 37 CFR 3.73(b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

UNITED STATES PATENT AND TRADEMARK OFFICE

 CERTIFICATE OF CORRECTION

 CERTIFICATE OF CORRECTION}

PATENT NO.	$: 8,064,919 \mathrm{~B} 2$
APPLICATION NO.	$: 12 / 983770$
DATED	$:$ November 22, 2011
INVENTOR(S)	$:$ Masaru Fukuoka et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:	

Claim 8, column 23, line 41, incorrectly reads:
"plurality of the hybrid. ARQ indicator channels are mapped,"
and should read:
"plurality of the hybrid ARQ indicator channels are mapped,"

Signed and Sealed this
Twenty-seventh Day of March, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.
: 8,064,919
Page 1 \qquad of 1 \qquad
APPLICATION NO. : 12/983,770
ISSUE DATE : November 22, 2011
INVENTOR(S) : Masaru FUKUOKA, et al.
It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 8, column 23, line 41, incorrectly reads:
"plurality of the hybrid. ARQ indicator channels are mapped,"
and should read:
"plurality of the hybrid ARQ indicator channels are mapped,"

MAILING ADDRESS OF SENDER (Please do not use customer number below):
James E. Ledbetter, Registration No. 28,732
Dickinson Wright PLLC
1875 Eye Street, N.W., Suite 1200 Telephone: 202.457 .0160
Washington, D.C. 20006
Facsimile: 202.659.1559
This collection of information is required by 37 CFR $1.322,1.323$, and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an appication. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you requite to complete this form and/or suggestions for reducing the burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450 , Alexandria, VA $22313-1450$. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

In re the Patent

Patent No.: $\quad 8,064,919$
Inventor: Masaru FUKUOKA, et al.
Art Unit 2617

Appln. No.: $\quad 12 / 983,770$
Exr. M. Vu

Filed: January 3,2011
Conf. No. 1020
For: \quad RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

REQUEST FOR CERTIFICATE OF CORRECTION

PURSUANT TO 35 USC 254 (OFFICE MISTAKE)

Honorable Commissioner of
Patents and Trademarks
Washington, DC 20231

Sir:
A Certificate Of Correction of the above-captioned patent is respectfully requested.
Grant of this Request is respectfully requested in accordance with the provisions of 35
USC 254 which states:
35 U.S.C. 254 Certificate of correction of Patent and Trademark Office mistake. Whenever a mistake in a patent, incurred through the fault of the Patent and Trademark Office, is clearly disclosed by the records of the Office, the Director may issue a certificate of correction stating the fact and nature of such mistake, under seal, without charge, to be recorded in the records of patents. A printed copy thereof shall be attached to each printed copy of the patent, and such certificate shall be considered as part of the original patent. Every such patent, together with such certificate, shall have the same effect and operation in law on the trial of actions for causes thereafter arising as if the same had been originally issued in such corrected form. The Director may issue a corrected patent without charge in lieu of and with like effect as a certificate of correction.

In the Letters Patent issued on November 22, 2011, claim 8, column 23, line 41, incorrectly reads as "plurality of the hybrid. ARQ indicator channels are mapped,".

However, in the present patent, claim 8 , column 23 , line 41 , should read "plurality of the hybrid ARQ indicator channels are mapped," as shown in claim 8, page 4, line 1 of the Preliminary Amendment filed January 5, 2011.

It is submitted that issuance of a Certificate of Correction is warranted under 37 CFR 1.322 and MPEP 1480 in that the above-noted error is consequential, is not of a minor typographical nature, and is not readily apparent to one skilled in the art.

Grant of the attached Request for Certificate of Correction is respectfully solicited.
Respectfully submitted,
/James Edward Ledbetter/

Date: February 25, 2012
JEL/maw

Attorney Docket No. 009289.91681
Dickinson Wright PLLC
International Square
1875 Eye Street, N.W., Suite 1200
Washington, D.C. 20006
Telephone: 202.457 .0160
Facsimile: 202.659.1559

DC 9289-91681 200004

Electronic Acknowledgement Receipt	
EFS ID:	12159755
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	James Edward Ledbetter
Filer Authorized By:	
Attorney Docket Number:	009289-91681
Receipt Date:	25-FEB-2012
Filing Date:	03-JAN-2011
Time Stamp:	14:39:55
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
			35506		
Warnings:					
Information:					

2	Request for Certificate of Correction	REQ-COC.pdf	51671	no	2
Warnings:					
Information:					
		Total Files Size (in bytes)	87177		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 0 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Masaru FUKUOKA, Ishikawa, JAPAN;
Akihiko Nishio, Kanagawa, JAPAN;
Seigo Nakao, Kanagawa, JAPAN;
Alexander Golitschek Edler Von Elbwart, Darmstadt, GERMANY;

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Eax (571)-273-2885

NSTRUCTIONS: This form should be used for leasmiting the ISSUE FEE and POBECATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent advance orders and notification of maintenance fees will be mailed to the current cortespondence address as indicated untess corrected below or directed otherwise in Block 1, by (a) specifying a new cortespondeace address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications

CURRENT CORRESPONDENCE ADERESS (Note: Tise Block 1 for any charge of addess)
Note: A ceraficate of mailing can ony be used for domestic mailings of the Fee(s) Transmitul. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or tomal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certity that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

APPLICATION NO.	FILIVG DA'TE	FRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12983,770	01/03/2011	Masaru FUKUOKA	009289-91681	1020

TTTLE OF TNVENTION: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

APPLN. TYPE	SMALL ENTITY	ISSUEFEE DCE	PUBLICATION FEE DUE	PREV PATD TSSUEREE	TOTAL FEE(S) DTJE	DATEDUE
nonprovisional	NO	$\$ 1510$	\$300	\$0	$\$ 1810$	10121/2011
		ART UNIT	CLASS-SUBCLASS			
VL,	EL T	2617	455-450000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Corresponcence Adtress frm PTO/SB/122) attached. \square "Fee Adriress" indication (or "Fee Address" Indication form PTOISB/47; Rev 03-02 or more recent) attached. Uise of a Customer Namber is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attomeys or agents OR , alternatively,		1 DICKINS 2 \qquad to is 3 \qquad	WRIGHTT

3. ASSIGNEE NAME AND RESTDENCE DATA TO BE PRTNTED ON THE PATENT (print OF YYe)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patedt. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Complation of this form is NOT a substitate for filing ant assignment.
(A) NAME OF ASSIGNEE

PANASONIC CORPORATION

Please check the approptate assignce category or categories (will not be printed on the patent): Individual X Corporation or other private group entity \square Govermment

4a. The following fee(s) are submitted: Lssue Fee Publication Fee (No small entity discoment permilted) Advance Order - \# of Copies	4b. Payment of Fee(s): (Please first reapply any previomsly paid issue fee shown above) A check is enclosed. Payment by credit card. Form PTO-2038 is attached. The Director is hereby authorized to charge the required lee(s), any deficiency, or credit any overpayment, to Deposit Account Number \qquad 04-1061 (enclose an extra copy of this fom).
5. Change in Entity Status (from status indicated above) a. Applicant claims SMALL ENTITY status. See 37 CRR 1.27 .	$\square \mathrm{I}$. Applicant is no longer clatming SMALJ ENTITY status. See 37 CFR 1.27 (g)(2).

(B) RESIDENCE: (CTTY and STATE OR COUNTRY)

OSAKA, JAPAN
\square a. Applicant claims SMALL ENTTTY status. See 37 CRR 1.27. interest as shown by the records of the Thised States Patent and Trademark Office.

Auhorized Siguature /James Edward Ledbetter/ Date October 12, 2011
Typed or printed name James E. Ledbetter
Registration No.
28,732
This collection of information is required by 37 CFR 1.311 . The information is required to obtain or retain a benefit by the public which is to fle (and by the USPTO to provess) an application. Confidentiatity is governed by 35 U.S.C. 122 and 37 CFR 1.14 , This collection is estimated to take 12 minues to complete, including gathering, preparing, and subniting the completed application form to the USPTo. The will vary depending upon the individual case, Any comments on the amount of time you require to conplete this form andor suggestions for reducing this burden, should be sent to the Chiet Information Olficer, U.S. Patent and Trademark Otfce, US. Department of Commerce, PO Box 1450, Alexandra, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995 , no persons are required to respond to a collection of information unless it displays a valid omb controf number.

Electronic Patent Application Fee Transmittal				
Application Number:	12983770			
Filing Date:	03-Jan-2011			
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD			
First Named Inventor/Applicant Name:	Masaru FUKUOKA			
Filer:	James Edward Ledbetter/Jacqueline Black			
Attorney Docket Number:	009289-91681			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Utility Appl issue fee	1501	1	1740	1740
Publ. Fee-early, voluntary, or normal	1504	1	300	300

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	2040		

Electronic Acknowledgement Receipt	
EFS ID:	11173235
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	James Edward Ledbetter
Filer Authorized By:	
Attorney Docket Number:	009289-91681
Receipt Date:	12-OCT-2011
Filing Date:	03-JAN-2011
Time Stamp:	17:36:49
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes				
Payment Type	Credit Card				
Payment was successfully received in RAM	$\$ 2040$				
RAM confirmation Number	4533				
Deposit Account					
Authorized User					
File Listing:					
Document Number	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip		Pages
:---:					
(if appl.)					

NOTICE OF ALLOWANCE AND FEE(S) DUE

$\quad 52989 \quad 07 / 21 / 2011$
James Edward Ledbetter
1875 Eye Street
Suite 1200
Washington, DC 20006

DATE MAILED: 07/21/2011

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 983,770$	$01 / 03 / 2011$	Masaru FUKUOKA	$009289-91681$	

TITLE OF INVENTION: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1510	\$300	\$0	\$1810	10/21/2011

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box $5 b$ on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " $4 b$ " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12 , 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
$52989 \quad 7590$ 07/21/2011
James Edward Ledbetter
1875 Eye Street
Suite 1200
Washington, DC 20006
ote: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying
papers. Each additional paper, such as an assignment or formal drawing, must papers. Each additional paper, such as an assignment

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 983,770$	$01 / 03 / 2011$	Masaru FUKUOKA	$009289-91681$	

TITLE OF INVENTION: RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1510	\$300	\$0	\$1810	10/21/2011
		ART UNIT	CLASS-SUBCLASS			
VU, M	EL T	2617	455-450000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. \square "Fee Address" indication (or "Fee Address" Indication form $\mathrm{PTO} / \mathrm{SB} / 47$; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		1 to is 3	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual \square Corporation or other private group entity $\quad \square$ Government
$\square_{\text {Issue Fee }}$
\square Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies
\qquad
-
4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\square The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number _(enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. \square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27 (g)(2).
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature \qquad Date
Registration No.
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974 , as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

DETAILED ACTION

Priority

1. Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Information Disclosure Statement

2. The information disclosure statement (IDS) submitted on 02/08/2011 is in compliance with the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement is being considered by the examiner.

Allowable Subject Matter

3. Claims 1-18 are allowed.
4. The following is an examiner's statement of reasons for allowance:

With respect to claims 1 and 10, the closest prior arts, fail to anticipate or render obvious, alone or in combination, the features of a mobile station apparatus comprising: a reception unit configured to receive, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and a determination unit configured to determine a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based
on the allocation information, wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which arc inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group, alone or in combination, the limitations of claims 1 and10.

Dependent Claims 2-9, and 11-18 are allowable for the same reason as set forth above.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance".

Conclusion

5. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Skillermark et al (US 6,993,339) discloses the methods and devices for allocation of communication resources in a cellular communication system capable of simultaneously providing a high degree of allocation flexibility, Col. 2 lines 39-54).

Kim et al (US 7,639,660) teaches the traffic channel has resource blocks comprising consecutive time-frequency resources allowing a variation of channel in a time domain almost without a variation of channel in a frequency domain Col. 6 lines 1832).

Han et al (US 2010/0034165) teaches a method for generating/transmitting a transmission-unit symbol sequences and transmission information that is modulated in time and frequency domains on the basis of a predetermined transmission unit.

Cho et al (US 2008/0293424) teaches a method for allocating physical resources to an Acknowledgement (ACK)/Negative Acknowledgement (NACK) signal channel representative of a response signal in a wireless communication system.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael T. Vu whose telephone number is (571) 272-8131. The examiner can normally be reached on 8:00am-6:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Charles N. Appiah can be reached on 571-272-7904. The fax phone number for the organization where this application or proceeding is assigned is 571-272-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/MICHAEL T VU/
Examiner, Art Unit 2617
/NICK CORSARO/
Supervisory Patent Examiner, Art Unit 2617

Notice of References Cited	Application/Control No. $12 / 983,770$	Applicant(s)/Patent Under Reexamination FUKUOKA ET AL.	
	Examiner		
	MICHAEL VU	Art Unit 2617	Page 1 of 1

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Name	Classification
$*$	A	US-6,993,339	$01-2006$	Skillermark et al.	$455 / 447$
$*$	B	US-7,639,660	$12-2009$	Kim et al.	$370 / 343$
$*$	C	US-2010/0034165	$02-2010$	Han et al.	$370 / 330$
$*$	D	US-2008/0293424	$11-2008$	CHO et al.	$455 / 450$
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		
	Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)	

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

$\left.$| Issue Classification | Application/Control No. | 12983770 |
| :--- | :--- | :--- |\quad| Applicant(s)/Patent Under Reexamination |
| :--- |
| FUKUOKA ET AL. | \right\rvert\,

\square	Claims renumbered in the same order as presented by applicant							\square	CPA		\square т.D.	$\square \quad \mathrm{R}$.		R.1.47	
Final	Original														
1	1	17	17												
2	2	18	18												
3	3														
4	4														
5	5														
6	6														
7	7														
8	8														
9	9														
10	10														
11	11														
12	12														
13	13														
14	14														
15	15														
16	16														

/MICHAEL VU/ Examiner.Art Unit 2617	$07 / 15 / 2011$	(Date)

Search Notes	Application/Control No. 12983770	Applicant(s)/Patent Under Reexamination FUKUOKA ET AL.
	Examiner MICHAEL VU	Art Unit 2617

SEARCHED			
Class	Subclass	Date	Examiner
455	$450,451,452.1,455,434,464$,	$7 / 15 / 2011$	MTV
370	$329,328,343,347,330,343$,	$7 / 15 / 2011$	MTV
	See Searched History	$7 / 15 / 2011$	MTV

SEARCH NOTES		
Search Notes	Date	Examiner
Inventor Name: Fukuoka Masaru	$6 / 12 / 2011$	MTV
Assignee: Panasonic Corp.	$6 / 12 / 2011$	MTV
Double Patent Rejected	$6 / 12 / 2011$	MTV
Update EAST Search System	$7 / 15 / 2011$	MTV

INTERFERENCE SEARCH					
Class	Subclass	Date	Examiner		
Interference	Text Searched		$7 / 15 / 2011$	MTV	

United States Patent and Trademark Office

P.O. Box 1450
Alexandria, Virginia 22313-1450
www. uspto. gov

BIB DATA SHEET
CONFIRMATION NO. 1020

SERIAL NUMBER 12/983,770	FILING or 371(c) DATE 01/03/2011 RULE		CLASS 455	GROUP AR 2617		RNEY DOCKET NO. 09289-91681
APPLICANTS Masaru FUKUOKA, Ishikawa, JAPAN; Akihiko Nishio, Kanagawa, JAPAN; Seigo Nakao, Kanagawa, JAPAN; Alexander Golitschek Edler Von Elbwart, Darmstadt, GERMANY;						
** FOREIGN APPLICATIONS \qquad JAPAN 2007-077502 03/23/2007 JAPAN 2007-120853 05/01/2007 JAPAN 2007-211104 08/13/2007 ** IF REQUIRED, FOREIGN FILING LICENSE GRANTED ** 01/18/2011						
Foreign Priority claimed \quadYos 35 Usc $119(a-d)$ conditions met Verified and \quad MICHAELT VU/ No		- $\begin{aligned} & \text { Met after } \\ & \text { Alowance }\end{aligned}$	STATE OR COUNTRY JAPAN	SHEETS DRAWINGS 23	TOTAL CLAIMS 18	INDEPENDENT CLAIMS 2

ADDRESS

James Edward Ledbetter
1875 Eye Street
Suite 1200
Washington, DC 20006
UNITED STATES

TITLE

RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	1	12/983770	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 07 / 15 \\ & 10: 46 \end{aligned}$
\square	0	(mobile phone pda cell cellular portable) and allocat\$4 near2 resource near block\$3 and frequenc\$3 near domain and (determin\$4 detect\$3) near4 downlink and resons\$5 with map\$4 and index with resource near2 block\$3 and consecutive near5 block near3 respectively same different near4 frequenc $\$ 4$ near domain and (subcarrier sub-carrier) near group.clm.	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 07 / 15 \\ & 10: 50 \end{aligned}$
S1	1	12/983770	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 11: 45 \end{aligned}$
S2	3	12/532352	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 11: 48 \end{aligned}$
53	4346	455/450.ccls.	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 08 \end{aligned}$
54	77710	frequenc $\$ 3$ near domain	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 08 \end{aligned}$
55	369	S3 and S4	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 08 \end{aligned}$
S6	234	fukuoka near2 masaru.in.	USPGPUB; USPAT; USOCR;	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 09 \end{aligned}$

			EPO; JPO; DERWENT			
S7	3	S3 and S6	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 30 \end{aligned}$
58	2705	resourc\$3 same frequenc\$3 near domain	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 31 \end{aligned}$
S9	1158	resourc\$3 same frequenc\$3 near domain same allocat\$6	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 31 \end{aligned}$
S10	82	S3 and S9	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	14
S11	178121	"370"/\$.ccls.	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 50 \end{aligned}$
S12	620	S9 and S11	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\frac{2011 / 06 / 13}{14: 50}$
S13	776	resourc\$3 same frequenc\$3 near domain same allocat\$6 and map\$4	US PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$12011 / 06 / 13$
S14	232	resourc\$3 same frequenc\$3 near domain same allocat\$6 same map\$4	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	ON	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 51 \end{aligned}$
S15	141	S11 and S14	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	O	$\begin{aligned} & 2011 / 06 / 13 \\ & 14: 52 \end{aligned}$

7/15/2011 10:51:16 AM
 C: \Users \backslash mvu1 \backslash Documents \backslash EAST \backslash Workspaces $\backslash 12983770$ _Resource_Block.wsp

EXAMINER: Initial if citation is considered, draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SHEET 2 OF 2

EXAMINER: Initial if citation is considered, draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
Michael Vu/

United States Patent and Trademark Office
UNTTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

Alexandria, Virginia 22313-1450 Alexandria, , Viry
wwwusptogov

APPLICATION NUMBER	FLLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 983,770$	$01 / 03 / 2011$	Masaru FUKUOKA	$009289-91681$

52989
PUBLICATION NOTICE
James Edward Ledbetter
1875 Eye Street
Suite 1200
Washington, DC 20006

Title:RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Publication No.US-2011-0110319-A1
Publication Date:05/12/2011

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.
The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Dickinson Wright PLLC
James E. Ledbetter, Esq.
International Square
1875 Eye Street, N.W., Suite 1200
Washington DC 20006
In re Application of
FUKUOKA, MASARU, et al. : DECISION ON REQUEST TO
Application No. 12/983,770
: PARTICIPATE IN PATENT
Filed: January 3, 2011
Attorney Docket No. 009289-91681
: PROSECUTION HIGHWAY
: PROGRAM AND PETITION
: TO MAKE SPECIAL UNDER
: $\quad 37$ CFR 1.102(a)

This is a decision on the request to participate in the Patent Prosecution Highway (PPH) program and the petition under 37 CFR 1.102(a), filed January 5, 2011 to make the above-identified application special.

The request and petition are GRANTED.
A grantable request to participate in the PPH program and petition to make special require:
(1) The U.S. application must validly claim priority under 35 U.S.C. 119(a) to one or more applications filed in the JPO;
(2) Applicant must submit a copy of the allowable/patentable claim(s) from the JPO application(s) along with an English translation thereof and a statement that the English translation is accurate;
(3) All the claims in the U.S. application must sufficiently correspond or be amended to sufficiently correspond to the allowable/patentable claim(s) in the JPO application(s);
(4) Examination of the U.S. application has not begun;
(5) Applicant must submit a copy of all the office actions from each of the JPO application(s) containing the allowable/patentable claim(s) along with an English translation thereof and a statement that the English translation is accurate; and
(6) Applicant must submit an IDS listing the documents cited by the JPO examiner in the JPO office action along with copies of documents except U.S. patents or U.S. patent application publications.

The request to participate in the PPH program and petition comply with the above requirements. Accordingly, the above-identified application has been accorded "special" status.

Telephone inquiries concerning this decision should be directed to Doris To at 571-272-7629.

All other inquiries concerning the examination or status of the application should be directed to Patent Application Information Retrieval (PAIR) system.

/Doris To/

Doris To
Quality Assurance Specialist
Technology Center 2600
Communications

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office．

出 願 年 月 日
Date of Application：2007年 8月13日

出 願 番 号
Application Number：
パリ条約による外国への出願 に用いる優先権の主張の基礎
となる出願の国コードと出願番号
The country code and number of your priority application， to be used for filing abroad under the Paris Convention，is
出 願 人

Applicant（s）：

特願2007－211104

JP2007－211104

パナソニック株式会社

【書類名】	特許願
【整理番号】	2040890157
【提出日】	平成19年8月13日
【あて先】	特許庁長官殿
【国際特許分類】	H04B 7／00
	H04L 12／00
【発明者】	
【住所又は居所】	宮城県仙台市泉区明通二丁目5番地 株式会社パナソニックモバ イル開発研究所内
【氏名】	福岡 将
【発明者】	
【住所又は居所】	大阪府門真市大字門真1006番地 松下電器産業株式会社内
【氏名】	西尾 昭彦
【発明者】	
【住所又は居所】	大阪府門真市大字門真1006番地 松下電器産業株式会社内
【氏名】	中尾 正悟
【発明者】	
【住所又は居所】	ドイツ国 ランゲン 63225 モンツァストラッセ 4 c パナソニック R \＆Dセンター ジャーマニー ゲーエムベーハー
	内
【氏名】	アレクサンダーゴリチェク
［特許出願人］	
【識別番号】	000005821
【氏名又は名称】	松下電器産業株式会社
【代理人】	
【識別番号】	100105050
【弁理士】	
【氏名又は名称】	鴜田 公一
【先の出願に基づく優先権主張】	
【出願番号】	特願2007－77502
【出願日】	平成19年3月23日
【先の出願に基づく優先権主張】	
【出願番号】	特願2007－120853
【出願日】	平成19年5月1日
【手数料の表示】	
【予納台帳番号】	041243
【納付金額】	16，000円
【提出物件の目録】	
【物件名】	特許請求の範囲 1
［物件名】	明細書 1
【物件名】	図面 1
【物件名】	要約書 1
【包括委任状番号】	9700376

【書類名】特許請求の範囲

【請求項 1】
連続する笋数のリソースブロック，または，連続する複数のCCEから構成される第1制御チャネルを無線通信移動局装置に割り当てる割当手段と，

前記復数のリソースブロックまたは前記復数のCCEにそれぞれ対応付けられて周波数軸上に分散配置された复数の第2制御チャネルに前記無線通信移動局装置への制御信号を配惪する配惪手段と，

を具備する無線通信基地局装置。
【請求項 2】
前記配置手段は，前記無線通信移動局装置から送信されるデータに対するACK信号ま たはN A C K 信号を前記複数の第 2 制御チャネルに配置する，請求項1記載の無線通信基地局装置。
【請求項 3】
前記配置手段は，互いに異なる配置パターンで周波数軸上に分散配置された前記複数の第2制御チャネルに前記制御信号を配置する，
請求項 1 記載の無線通信基地局装置。
【請求項 4】
前記配置手段は，周波数軸上にランダムに配置された前記複数の第 2 制御チャネルに前記制御信号を配置する，

請求項 1 記載の無線通信基地局装置。
【請求項 5】
前記配置手段は，隣接セル間または隣接セクタ間において互いに異なる配置パターンを採る前記複数の第 2 制御チャネルに前記制御信号を配置する，
請求項1記載の無線通信基地局装置。
【請求項 6】
前記配置手段は，前記複数のCCEのうち，互いに異なる複数の多重数のいずれにおい ても使用される複数のCCEにそれぞれ対応付けられて周波数軸上に分散配置された前記複数の第2制御チャネルに前記制御信号を配置する，請求項1記載の無線通信基地局装置。
【請求項 7】
自局に割り当てられた複数のリソースブロックまたは自局に割り当てられた第 1 制御チ ャネルを示す割当情報を受信する受信手段と，
前記割当情報に基づいて，前記複数のリソースブロックまたは前記第 1 制御チャネルを構成する複数のCCEにそれぞれ対応付けられて周波数軸上に分散配置された自局用の複数の第2制御チャネルを特定する特定手段と，

を具備する無線通信移動局装置。
【請求項 8】
連続する複数のリソースブロック，または，連続する複数のCCEにそれぞれ対応付け
て複数の制御チャネルを周波数軸上に分散配置する，制御チャネル配置方法。

【書類名】明細書
【発明の名称】無線通信基地局装置および制御チャネル配置方法
【技術分野】
【O O O 1】
本発明は，無線通信基地局装置および制御チャネル配置方法に関する。
【背景技術】
【O 002 2】
移動体通信では，上り回線で無線通信移動局装置（以下，移動局と省略する）から無線通信基地局装置（以下，基地局という）へ伝送される上り回線データに対してARQ（Au tomatic Repeat Request）が適用され，上り回線データの誤り検出結果を示す心答信号が下り回線で移動局ヘフィードバックされる。基地局は上り回線データに対しCRC（Cycl ic Redundancy Check）を行って，CRC＝OK（誤り無し）であればACK（Acknowled gment）信号を，CRC＝NG（誤り有り）であればNACK（Negative Acknowledgment ）信号を応答信号として移動局ヘフィードバックする。

【OOO3】
下り回線の通信リソースを効率よく使用するために，上り回線データを伝送するための上り回線リソースブロック（Resource Block；R B）と，下り回線で応答信号を伝送する ための下り回線制御チャネルとを対応付けることにより，移動局が基地局から通知される R B の割当情報に従って，制御チャネルの割当情報を別途通知されなくても，自局への応答信号が伝送される制御チャネルを判断することができるARQについて最近検討されて いる（例えば，非特許文献 1 参照）。

【0 O O 4 】
また，応答信号の隣接セル間または隣接セクタ間における干渉を平均化するとともに，応答信号に周波数ダイバーシチゲインを得るために，応答信号を拡散し，その拡散した応答信号をさらにレピティションするARQについても最近検討されている（例えば，非特許文献 2 参照）。

【非特許文献1】3GPP RAN WG1 Meeting document，R1－070932，＂Assignment of Do wnlink ACK／NACK Channel＂，Panasonic，February 2007
【非特許文献2】3GPP RAN WG1 Meeting document，R1－070734，＂ACK／NACK Channel Transmission in E－UTRA Downlink＂，TI，February 2007
【発明の開示】
【発明が解決しようとする課題】
【OOO5】
最近検討されている上記 2 つの A R Q を組み合わせて用いることが考えられる。以下，下り回線制御チャネルへの応答信号の具体的な配置例について説明する。以下の説明では ，図 1 に示す上り回線 R B \＃1～RB \＃8 のいずれかを用いて移動局から送信された上り回線データを基地局が受信し，基地局は，図2に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f} 4$ ，サブキャ
 の 4 つの周波数帯に配置されている下り回線制御チャネルCH\＃1～CH\＃8に上り回線 データに対する応答信号（A C K 信号またはN A C K 信号）を配置して移動局へ送信する ものとする。また，基地局は，応答信号を拡散率（Spreading Factor；SF）S F＝4 の拡散符号で拡散し，さらに拡散後の応答信号に対してレピティションファクタ（Repetiti on Factor；RF）RF＝2のレピティションを行う。よって，図2に示すように，下り
 7 ～f20の同一周波数帯にLocalized配置され，下り回線制御チャネルCH \＃5～CH
 calized配置される。

【0 006 6】
また，図 3 に示すように，図 1 に示す上り回線 R B と図 2 に示す下り回線制御チャネル とは 1 対 1 で対応付けられている。よって，図 1 に示す R B \＃1 を用いて送信された上り

回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH \＃1，つま り，図 2 に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア f_{17}～f f_{20} に配置される。同様に，図 1 に示すR B \＃2 を用いて送信された上り回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH\＃2，つまり，図2に示すサブキャリアf ${ }_{1}$ ～f4 およびサブキャリアf17～f 20 に配置される。RB\＃3～RB\＃8についても同様である。

【0 007 7
また，周波数軸上で連続する複数のRBから符号化ブロックが構成され，1符号化ブロ ック単位にRB割当が行われる場合には，基地局は，1符号化ブロックに含まれる複数の上り回線 R B にそれぞれ対応付けられた複数の下り回線制御チャネルに応答信号を配置し て移動局に送信する。例えば，図1に示す上り回線RB\＃1～RB\＃8のうち，RB\＃1 ，R B \＃2 およびR B \＃3 の 3 つの連続した上り回線 R B で 1 符号化ブロックが構成され る場合には，基地局は，図2において，サブキャリアf ${ }_{1} \sim_{f} \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}{ }_{1}$ 7～f20の同一周波数帯にLocalized配置された下り回線制御チャネルCH\＃1，CH \＃2 およびC H \＃3 に拡散後の応答信号を符号多重して配置する。

【OOO8】
このように，下り回線制御チャネルCH\＃1～CH\＃8は16本のサブキャリアf ${ }_{1}$～
例では，応答信号はサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \mathrm{~T}_{\mathrm{f}} \mathrm{f} 20$ の 8 本の サブキャリアにしか配㯰されない。つまり，上記の例では，応答信号は，下り回線制御チ ャネルが配置されている全サブキャリアのうち，半数のサブキャリアにしか配置されない ことになる。

【OOO9】

このように限られた周波数領域に配置された下り回線制御チャネルが用いられる場合，下り回線制御チャネルの配置位置によっては，わずかな周波数ダイバーシチ効果しか得ら れないことがある。

【OO10】
本発明は，かかる点に鑑みてなされたものであり，下り回線制御チャネルの周波数ダイ バーシチ効果を最大限に得ることができる基地局および制御チャネル配置方法を提供する ことを目的とする。
【課題を解決するための手段】
【 0 O 111 1】
本発明の基地局は，連続する複数のRB，または，連続する復数のCCEから構成され る第1制御チャネルを移動局に割り当てる割当手段と，前記複数のRBまたは前記複数の CCEにそれぞれ対応付けられて周波数軸上に分散配置された複数の第2制御チャネルに前記移動局への制御信号を配置する配置手段と，を具備する構成を採る。
【発明の効果】
【OO12】
本発明によれば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること ができる。
【発明を実施するための最良の形態】

【OO13】

以下，本発明の実施の形態について，添付畄面を参照して詳細に説明する。本発明の実施の形態に係る基地局は，OFDM方式により応答信号を送信する。また，本発明の実施 の形態に係る移動局は，DFTs－FDMA（Discrete Fourier Transform spread Freq uency Division Multiple Access）により上り回線データを送信する。DFTs－FDM Aにより上り回線データが送信される場合，上記のように，周波数軸上（周波数領域）で連続する複数のRBから符号化ブロックが構成され，基地局は 1 符号化ブロック単位に各移動局に対するRB割当を行う。

【lllll
（実施の形態1）
本実施の形態に係る基地局 100 の構成を図 4 に示し，本実施の形態に係る移動局 20 0 の構成を図 5 に示す。

【O 015 5】
なお，説明が煩雑になることを避けるために，図 4 では，本発明と密接に関連する上り回線データの受信，および，その上り回線データに対する応答信号の下り回線での送信に係わる構成部を示し，下り回線データの送信に係わる構成部の図示および説明を省略する。同様に，図 5 では，本発明と密接に関連する上り回線データの送信，および，その上り回線データに対する応答信号の下り回線での受信に係わる構成部を示し，下り回線データ の受信に係わる構成部の図示および説明を省略する。

【OO16】
図 4 に示す基地局 1 O O において，R B 割当部 1 O 1 は，周波数スケジューリングによ り各移動局に対して上り回線 R B を割り当て，どの上り回線R B をどの移動局に割り当て たかを示すR B 割当情報（すなわち，R B 割当結果を示す割当情報）を生成して符号化部 102および配置部109に出力する。また，RB割当部101は，1符号化ブロックに含まれる連続する複数のRBを一単位としてRB割当を行う。なお，R B はコヒーレント帯域幅程度に隣接するサブキャリアをいくつかまとめてブロック化したものである。

【O 017 7
符号化部 102 は，R B 割当情報を符号化して変調部 103 に出力する。
【OO18】
変調部 1 0 3 は，符号化後のRB割当情報を変調してRB割当情報シンボルを生成し， S／P 部（シリアル／パラレル変換部）104に出力する。

【OO19】
S／P部104は，変調部103から直列に入力されるRB割当情報シンボルを並列に変換して配置部 109 に出力する。

【0 020 〕
変調部 1 O 5 は，CRC部 1 1 7 から入力される応答信号を変調して拡散部 1 0 6 に出力する。

【0 021 1】
拡散部 1 0 6 は，変調部 1 0 5 から入力される応答信号を拡散して，拡散後の応答信号 をレピティション部107に出力する。

【0022】
レピティション部 1 0 7 は，拡散部1 0 6 から入力される応答信号を複製（レピティシ ョン）して，同一の応答信号を含む複数の応答信号をS／P部 108 に出力する。

【0 O 2 3 】
S／P部108は，レピティション部107から直列に入力される応答信号を並列に変換して配置部109に出力する。

【0 024 】
配置部 1 0 9 は，R B 割当情報シンボルおよび応答信号を，OFDMシンボルを構成す る複数のサブキャリアのいずれかに配置してIFFT（Inverse Fast Fourier Transform ）部 1 1 0 に出力する。ここで，配置部 1 0 9 は，R B 割当部 1 0 1 から入力されるR B割当情報に基づいて，上り回線 R B に対応付けられて周波数軸上に配置された下り回線制御チャネルに応答信号を配置する。例えば，R B 割当部101から上記区 1 に示すR B \＃ $1 ~ R$ B \＃3 が移動局 200 へのRB割当情報として入力された場合，配置部 109 は，図3に示すように，RB\＃1～RB\＃3を用いて移動局200から送信された上り回線デ ータに対する応答信号を下り回線制御チャネルCH\＃1～CH\＃3に配置する。配置部1 09における配置処理の詳細については後述する。

【0 02 5】
IFFT部110は，複数のサブキャリアのいずれかに配置されたRB割当情報シンボ ルおよび応答信号に対してIFFTを行ってOFDMシンボルを生成し，CP（Cyclic P
refix）付加部111に出力する。
［0 026 6］
CP付加部111は，OFDMシンボルの後尾部分と同じ信号をCPとしてOFDMシ ンボルの先頭に付加する。

【O 027 7】
無線送信部 112 は，C P 付加後のOFDMシンボルに対しD／A変換，増幅およびア ップコンバート等の送信処理を行ってアンテナ 113 から移動局 200 へ送信する。

【0 02 8】
一方，無線受信部 1 1 4 は，移動局 2 O O から送信された上り回線データをアンテナ 1 13 を介して受信し，この上り回線データに対しダウンコンバート，A／D 変換等の受信処理を行う。

【OO29】
復調部115は，上り回線データを復調し，復調後の上り回線データを復号部116に出力する。

【0 030 〕】
復号部116は，復調後の上り回線データを復号し，復号後の上り回線データをCRC部117に出力する。

〔0 0 3 1】

CRC部117は，復号後の上り回線データに対してCRCを用いた誤り検出を行って ，CRC＝OK（誤り無し）の場合はACK信号を，CRC＝NG（誤り有り）の場合は NACK信号を応答信号として生成し，生成した応答信号を変調部 1 0 5 に出力する。ま た，CRC部117は，CRC＝OK（誤り無し）の場合，復号後の上り回線データを受信データとして出力する。

【OO 2 2】

一方，図 5 に示す移動局 2 0 0 において，無線受信部 2 0 2 は，基地局 1 0 0 から送信 されたOFDMシンボルをアンテナ 2 0 1 を介して受信し，このOFDMシンボルに対し ダウンコンバート，A／D 変換等の受信処理を行う。

【0 O 3 3】
CP除去部203は，受信処理後のOFDMシンボルからCPを除去する。
【O 034 】
FFT（Fast Fourier Transform）部2 O 4 は，CP除去後のOFDMシンボルに対し てFFTを行ってRB割当情報シンボルおよび応答信号を得て，それらを分離部205に出力する。

【0 O 3 5 】
分離部 205 は，入力される信号を R B 割当情報シンボルと応答信号とに分離して，R B割当情報シンボルをP／S部206に出力し，応答信号をP／S部210に出力する。 ここで，分離部205は，配置特定部209から入力される特定結果に基づいて，入力信号から応答信号を分離する。

【0 0 3 6】
P／S部206は，分離部205から並列に入力されるRB割当情報シンボルを直列に変換して復調部207に出力する。

【0037】
復調部207は，R B 割当情報シンボルを復調し，復調後のRB割当情報を復号部20 8 に出力する。

【0 0 3 8 1
復号部208は，復調後のRB割当情報を復号し，復号後のRB割当情報を送信制御部 214および配置特定部209に出力する。

【0039】
配置特定部209は，復号部208から入力されるRB割当情報に基づいて，自局から送信した上り回線データに対する応答信号が配置された下り回線制御チャネルを特定する

。例えば，自局に対するRB割当情報が上記図1に示すR B \＃1～R B \＃3 である場合，配置特定部 2 0 9 は，図 3 に示すように，応答信号が配置された自局用の下り回線制御チ ャネルがCH \＃1～CH \＃3 であると特定する。そして，配置特定部209は，特定結果 を分離部205に出力する。配置特定部209における特定処理の詳細については，後述 する。

【O 04 4 0 】
P／S 部210は，分離部205から並列に入力される応答信号を直列に変換して逆拡散部211に出力する。

【O 041 1】
逆拡散部211は，応答信号を逆拡散し，逆拡散後の応答信号を合成部212に出力す る。

【O O 4 2】
合成部212は，逆拡散後の応答信号において，レピティション元の応答信号と，その レピティション元の応答信号からレピティションにより生成された応答信号とを合成し，合成後の応答信号を復調部213に出力する。

【OO43】
復調部 2 1 3 は，合成後の応答信号に対して復調処理を行い，復調後の応答信号を再送制御部216に出力する。

【O O 4 4】
送信制御部214は，復号部208から入力されたR B 割当情報が上り回線 R B を自局 に割り当てることを示す R B 割当情報である場合に，R B 割当情報で示された R B に送信 データを配置して符号化部215に出力する。

【OO45】
符号化部215は，送信データを符号化して再送制御部216に出力する。
【OO46】
再送制御部216は，初回送信時には，符号化後の送信データを保持するとともに変調部217に出力する。再送制御部216は，復調部213からACK信号が入力されるま で送信データを保持する。また，再送制御部216は，復調部213からNACK信号が入力された場合，すなわち，再送時には，保持している送信データを変調部217に出力 する。

【O O 4 7】
変調部 2 1 7 は，再送制御部 2 1 6 から入力される符号化後の送信データを変調して無線送信部218に出力する。

【0 048 】
無線送信部 2 1 8 は，変調後の送信データに対しD／A 変換，増幅およびアップコンバ一ト等の送信処理を行ってアンテナ 2 0 1 から基地局 1 0 0 へ 送信する。このようにして送信されるデータが上り回線データとなる。

【OO49】
次に，基地局 100 の配置部 109 における配置処理，および，移動局 200 の配置特定部209における特定処理の詳細について説明する。

【O 050 〕
本実施の形態では，図1に示すR B \＃1～R B \＃8 のいずれかを用いて移動局 2 O O か ら送信された上り回線データを基地局 100 が受信し，基地局 100 は，図 6 に示すサブ
 ブキャリア f 25 ～f 28 の 4 つの周波数帯に配置されている下り回線制御チャネルCH \＃1～CH \＃8 に上り回線データに対する応答信号（ACK信号またはNACK信号）を配置して移動局 200 へ送信する。また，図 2 と同様，基地局 100 の拡散部 106 が応答信号をS F＝4 の拡散符号で拡散し，さらにレピティション部107が拡散後の応答信号に対してR F＝2 のレピティションを行う。また，図 3 に示すように，図 1 に示す上り回線 R B と図 6 に示す下り回線制御チャネルとは 1 対 1 で対応付けられている。

【0 0051 1
配置部 1 0 9 は，複数のRBにそれぞれ対応付けられて周波数軸上に分散配置（Distri buted配置）された複数の下り回線制御チャネルに移動局200への応答信号を配置する。配置部109は，図3に示す上り回線RBと下り回線制御チャネルとの対応情報，およ び，図 6 に示す下り回線制御チャネル配置の情報を保持し，それらに基づいて下り回線制御チャネルが配置されているサブキャリアに応答信号を配置する。

【0 05 2】
具体的には，配置部 109 は，移動局 200 に対するRB割当情報がRB\＃1～RB \＃ 3 である場合，図 3 においてRB\＃1に対応付けられたCH\＃1，すなわち，図 6 に示す
 にして，配置部 1 0 9 は，R B \＃2 に対応付けられたC H \＃2，すなわち，サブキャリア

 oに応答信号を配置する。

【0 05 3】
ここで，図6に示す下り回線制御チャネルの配置において，図1において連続する2つ の上り回線RB（例えばRB\＃1とRB\＃2）にそれぞれ対応する下り回線制御チャネル
（例えばCH \＃1 とCH \＃2）は，互いに異なる周波数帯にDistributed配置されている。換言すれば，図6において同一周波数帯にLocalized配置されている下り回線制御チャ ネルは，図1において 2 R B毎の不連続な㙏数の上り回線 R B にそれぞれ対応する下り回線制御チャネルである。具体的には，例えば，図6に示すサブキャリアf1～f4にLoca lized配置されている下り回線制御チャネルは，下り回線制御チャネルCH \＃1，CH \＃ 3，CH \＃5 およびC H \＃7 であり，それらの下り回線制御チャネルにそれぞれ対応付け られている上り回線RBは，図3に示すように，R B \＃1，R B \＃3，R B \＃5 およびR B \＃7 の 2 RB毎の不連続な R Bとなる。

【OO54】
よって，連続する复数の上り回線 R B を用いて移動局 2 0 O から送信された上り回線デ ータに対する応答信号を基地局 1 0 0 が送信する場合，応答信号が同一周波数帯に集中し て配置されることを防ぐことができる。つまり，基地局 100 O ，応答信号を複数の周波数帯に分散配置して送信することができる。例えば，上記のように移動局200に対する R B 割当情報がR B \＃1～RB \＃3 である場合，配置部 1 0 9 は，図6に示すサブキャリ

 4 およびサブキャリア f $17 \sim$ f 20 に応答信号を配置するため，下り回線制御チャネル が配置されたすべてのサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ ， $\mathrm{f}_{9} \sim \mathrm{f}_{12}$ ， $\mathrm{f}_{17} \sim \mathrm{f}_{20} \mathrm{O}$ ， f_{25}～ f 28 に応答信号が万遍なく分散されて配置される。

【0 05 5】
このように，配置部 1 0 9 が図3 に示す上り回線 R B と下り回線制御チャネルとの対応付け，および，図 6 に示す下り回線制御チャネルの配置に基づいて，下り回線制御チャネ ルに応答信号を配置することで，基地局 100 の無線送信部 112 は，上り回線 R B にそ れぞれ対応付けられて周波数軸上に分散配置された下り回線制御チャネルを用いて移動局 200へ応答信号を送信することができる。

【0 056 】
同様に，移動局 200 （図5）の配置特定部209は，図3に示す上り回線RBと下り回線制御チャネルとの対応情報，および，図6に示す下り回線制御チャネル配惪の情報を保持し，受信した R B 割当情報より，応答信号が配置された自局用の下り回線制御チャネ ルを特定する。具体的には，図1に示すR B \＃1～RB \＃3 が自局に割り当てられたこと を示すR B 割当情報が復号部208から入力された場合，配置特定部209は，図3に示 す対応付けより，図6に示すように，下り回線制御チャネルCH\＃1およびC H \＃3 が配置されているサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4} \mathrm{f}^{2}$ よびサブキャリア $\mathrm{f}_{17} \sim \mathrm{f}_{20} 0$ と，下り回線制

御チャネルCH\＃2が配置されているサブキャリアf ${ }^{2} \sim \mathrm{f}_{12}$ およびサブキャリア f_{2} $5 \sim$ f 28 とに，自局に対する応答信号が配置されていると特定する。

【O 057 7
このようにして本実施の形態によれば，連続する複数の上り回線R B を用いて送信され た上り回線データに対する応答信号が同一周波数帯に集中して符号多重されることを低減 し，応答信号を周波数軸上に分散して配置することができる。よって，本実施の形態によ れば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ることができる。

【0 05 8】
（実施の形態2）
実施の形態1のように，応答信号を拡散して生成される拡散ブロックを連続するサブキ ャリア（例えば，図6に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ ）に配置することで，隣り合うサブ キャリア間で発生する符号間干渉（I S I ：InterSymbol Interference）を小さくしてI S I を十分無視できるレベルにすることができる。

【0 O 5 9】
しかしながら，基地局 100 が下り回線制御チャネル毎に送信電力制御を行う場合には ，同一周波数帯に配置されている㙏数の下り回線制御チャネルの間で送信電力が互いに異 なり，送信電力が大きい下り回線制御チャネルから送信電力が小さい下り回線制御チャネ ルに対するI S I が増加して I S I を無視することができなくなる。例えば，図 6 に示す下り回線制御チャネルCH \＃1 およびC H \＃3 に着目すると，下り回線制御チャネルCH \＃1 の送信電力が下り回線制御チャネルCH \＃3 の送信電力よりも大きい場合，下り回線制御チャネルCH \＃1 およびCH \＃3 は共にサブキャリアf $1_{1} \sim_{4}{ }_{4}$ およびサブキャリア f_{17}～f20の同一周波数帯に配置されているため，両方の周波数帯において下り回線制御チャネルCH \＃1 から下り回線制御チャネルCH \＃3 に対するI S I が発生してしま う。

【0 066 0】
そこで，本実施の形態に係る配置部109は，互いに異なる配置パターンで周波数軸上 に分散配置された複数の下り回線制御チャネルに応答信号を配置する。

【0061】
すなわち，上記図 6 において，下り回線制御チャネルCH \＃1 およびC H \＃3 は共に同一の配置パターンでサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \mathrm{~N}_{\mathrm{f}} \mathrm{f}_{2} 0$ に配置さ れているのに対し，本実施の形態では，図7に示すように，下り回線制御チャネルCH \＃ 1 の配置パターンと下り回線制御チャネルCH \＃3 の配置パターンとが互いに異なり，下
 oに配置されているとともに，下り回線制御チャネルCH\＃3がサブキャリアf1～f4 およびサブキャリアf ${ }^{2} ~ \mathrm{f}_{12}$ に配置されている。つまり，本実施の形態では，図 7 に示すように，一方では，下り回線制御チャネルCH \＃1 および下り回線制御チャネルCH \＃3 の双方が同一サブキャリアf $1 \sim f_{4}$ に配直されているものの，他方では，下り回線制御チャネルCH \＃1 がサブキャリアf17～f20に配㯰され，下り回線制御チャネル CH \＃3 がサブキャリアf $9 \sim$ f 12 に配置されており，CH\＃1とCH\＃3とが互いに異なる配置パターンで周波数軸上に分散配置されている。

【0062】
これにより，実施の形態1同様にして配置部109がRB\＃1～RB3を用いて送信さ れた上り回線データに対する応答信号を下り回線制御チャネルCH\＃1～CH3に配置す る場合に，送信電力が大きい下り回線制御チャネルCH\＃1と送信電力が小さい下り回線制御チャネルCH \＃3 との問において，サブキャリアf ${ }_{1}$～f 4 ではIS I が発生し得る ものの，サブキャリアf9～f12およびf17～f20の両方の周波数帯ではISIが発生しない。

【0 0 6 3 】
このようにして本実施の形態によれば，実施の形態1と同様の効果を得ることができ， かつ，送信電力制御により発生するI S I をランダム化してIS I を減少させることがで

きる。
【0 0 6 4 】
なお，下り回線制御チャネルCH\＃1～CH\＃8を周波数軸上にランダムに配置するこ とにより，下り回線制御チャネルCH\＃1～CH\＃8を互いに異なる配置パターンで周波数軸上に分散配置することができる。

【 0065 】
（実施の形態3）
本実施の形態では，隣接セル問において互いに異なる配置パターンを採る複数の下り回線制御チャネルに応答信号を配惪する。

【0 066 6】
ここでは，セル 1 に隣接するセルがセル 2 の 1 つである場合について説明する。また， セル 1 とセル 2 とは，互いに同期しているものとする。また，セル 1 における下り回線制御チャネルの配置パターンを図 6 に示したものとする場合に，セル 2 における配置パター ンを図 8 に示すものとする。また，実施の形態 1 と同様，図 8 に示した下り回線制御チャ ネルは，連続する複数の上り回線 R B にそれぞれ対応付けられて周波数軸上に分散配置さ れている。

【O 067 7
セル 1 における配置パターン（図6）とセル 2 における配置パターン（図 8 ）との間で は，同一周波数帯に配置されている下り回線制御チャネルが互いに異なる。つまり，セル 1 とセル 2 との間では，同一の下り回線制御チャネルが互いに異なる周波数帯に分散配置 されている。

【0 06 8】
具体的には，セル1では，図6に示すように，下り回線制御チャネルCH\＃1，C H \＃
 oに配惪され，下り回線制御チャネルCH \＃2，CH \＃4，C H \＃6 およびC H \＃8 がサブ キャリア $\mathrm{f}_{9} \sim \mathrm{f}_{12}$ およびサブキャリア $\mathrm{f}_{2} \mathrm{~F}^{\text {～}} \mathrm{f}_{2} 8$ に配置される。これに対して， セル 2 では，図 8 に示すように，下り回線制御チャネルCH\＃2，CH \＃4，CH \＃6 およ
 り回線制御チャネルCH\＃1，CH\＃3，CH\＃5およびCH\＃7がサブキャリアf $9 \sim f$ 12 およびサブキャリアf25～f28に配置される。

【O O 6 9】
このように，本実施の形態では，下り回線制御チャネルCH\＃1～CH\＃8の周波数軸上における配置パターンを隣接セル間で互いに異ならせる。よって，本実施の形態によれ ば，同一セル内では実施の形態 1 と同様の効果を得ることができ，かつ，隣接セル間にお いて同じタイミングで応答信号が送信される場合に，隣接セル間での下り回線制御チャネ ル同士のセル間干渉をランダム化してセル間干渉を減少させることができる。

【0070】
なお，本実施の形態では，隣接セル間で本発明を実施する場合について説明したが，同一セル内の隣接セクタ間においても上記同様にして本発明を実施することができる。すな わち，上記説明において，セル 1 をセクタ1，セル 2 をセクタ 2 と見なすことで，隣接セ クタ間において上記同様にして本発明を実施することができる。また，隣接セクタ間では同期を考慮する必要がないため，隣接セクタ間では，隣接セル間において本発明を実施す るよりも，容易に本発明を実施することが可能である。

【0 071 1】
また，上記説明ではセルの数が 2 つの場合を一例として説明したが，セルの数が 3 つ以上の場合も上記同様にして本発明を実施することができる。

【OO 0 2】
（実施の形態4）
本実施の形態では，CCE（Control Channel Element）と，下り回線で応答信号を伝送するための下り回線制御チャネルとを対応付ける場合について説明する。

【O 07 3】
上り回線データを移動局から基地局へ送信するために必要な制御情報，例えば上記R B割当情報は，応答信号を伝送するための下り回線制御チャネルとは別の下り回線制御チャ ネル，例えばSCCH（Shared Control Channel）を用いて基地局から移動局へ送信され る。

【o 074 】
また，基地局は各移動局に対し複数のS C C H の中のいずれかのS C C H を割り当て， どのSCCHをどの移動局に割り当てたかを示すSCCH割当情報（すなわち，SCCH割当結果を示す割当情報）を，R B 割当情報の送信前に各移動局へ送信する。

【O 075 5
また，各S CCHは1つまたは複数のCCEから構成される。例えば，SCCH\＃1～ SCCH\＃8はそれぞれ図9に示すような構成を採る。すなわち，SCCH\＃1はCCE \＃1，CCE\＃2，SCCH\＃2はCCE\＃3，CCE\＃4，SCCH\＃3はCCE\＃5， CCE\＃6，SCCH\＃4はCCE\＃7，CCE\＃8，SCCH\＃5はCCE\＃1～CC E\＃4，SCCH\＃6はCCE\＃5～CCE\＃8でそれぞれ構成される。このように， 1 つのSCCHが复数のCCEから構成される場合，1つのSCCHは連続する複数のCC Eから構成される。

【0 076 】
なお，CCE\＃1～CCE\＃8と，周波数軸上（周波数領域）における物理リソースと の対応関係は例えば凹10に示すようになる。つまり，1つのCCEは，周波数軸上に分散配置された複数の物理リソースに対応する。

【O 07 7】
ここで，下り回線の通信リソースを効率よく使用するために，CCEと，下り回線で応答信号を伝送するための下り回線制御チャネルとを対応付けることにより，移動局が基地局から通知されるS C C H 割当情報に従って，自局への心答信号が伝送される制御チャネ ルを判断することが考えられる。例えば，図11に示すように，図9に示すCCEと図2 に示す下り回線制御チャネルとを1対1で対応付ける。よって，図9に示すS C C H \＃1 を割り当てられた移動局からの上り回線データに対する応答信号は，図11に示すように下り回線制御チャネルCH \＃1 およびC H \＃2，つまり，図 2 に示すサブキャリア f_{1}～ f4およびサブキャリアf17～f20に配置される。同様に，図9に示すSCCH\＃ 2
を割り当てられた移動局からの上り回線データに対する応答信号は，図11に示すように下り回線制御チャネルCH \＃3 およびCH \＃4，つまり，図 2 に示すサブキャリアf ${ }_{1}$～ f4およびサブキャリアf17～f20に配置される。SCCH\＃3～SCCH\＃6につ いても同様である。

【O O 7 8】
このように下り回線制御チャネルCH \＃1～CH \＃8 は 16 本のサブキャリア f_{1}～f 4，f9～f12，f17～f20，f $25 \sim \mathrm{f}_{2} 8$ に渡って配置されているが，上記の例 では，応答信号はサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \mathrm{~F}_{\mathrm{f}} \mathrm{f}_{20}$ の 8 本のサ ブキャリアにしか配置されない。つまり，上記の例では，応答信号は，下り回線制御チャ ネルが配置されている全サブキャリアのうち，半数のサブキャリアにしか配置されないこ とになる。

【OO79】
よって，図11に示すように下り回線CCE \＃1～CCE \＃8 と下り回線制御チャネル CH\＃1～CH\＃8とを1対1で対応付ける場合にも，図3に示すように上り回線RB\＃ $1 \sim$ RB \＃8と下り回線制御チャネルCH\＃1～CH\＃8とを 1 対 1 で対応付ける場合と同様に，下り回線制御チャネルの配置位置によっては，わずかな周波数ダイバーシチ効果 しか得られないことがある。

【0 0 80】
そこで，本実施の形態では，下り回線CCE \＃1～CCE \＃8 と下り回線制御チャネル CH\＃1～CH\＃8とを対応付ける場合に，下り回線制御チャネルCH\＃1～CH\＃8の

配置を図6（実施の形態1）に示したものにする。
【0 081 1
本実施の形態に係る基地局 300 の構成を図 12 に示し，本実施の形態に係る移動局 4 OOの構成を図 13 に示す。なお，図12において図4（実施の形態1）と同一の構成部 には同一符号を付し，説明を省略する。また，図 13 において図 5 （実施の形態 1 ）と同一の構成部には同一符号を付し，説明を省略する。

【0 0 8 2】
図12に示す基地局 3 0 0 において，SCCH割当部301は，各移動局に対してSC CH\＃1～SCCH\＃8のいずれかを割り当て，SCCH割当情報を生成して符号化部3 02 および配置部 305 に出力する。

【OO 8 3】
符号化部302は，SCCH割当情報を符号化して変調部303に出力する。【0 0 8 4】
変調部303は，符号化後のSCCH割当情報を変調してSCCH割当情報シンボルを生成し，S／P部304に出力する。

【O 0 8 5 】
S／P 部3 O 4 は，変調部 3 O 3 から直列に入力されるS C C H 割当情報シンボルを並列に変換して配置部305に出力する。

【0 086 6】
配置部305は，SCCH割当情報シンボル，RB割当情報シンボルおよび応答信号を ，OFDMシンボルを構成する複数のサブキャリアのいずれかに配置してIFFT部30 6 に出力する。

【0 08 7】
ここで，配置部305は，SCCH割当部301から入力されるSCCH割当情報に基 づいて，C C E に対応付けられて周波数軸上に配惪された下り回線制御チャネルに応答信号を配置する。例えば，S C C H 割当部 3 O 1 から図 9 に示すS C C H \＃1 が移動局 40 0へのSCCH割当情報として入力された場合，SCCH\＃1は図9に示すようにCCE \＃1 およびCCE \＃2 で構成されるため，配置部 3 0 5 は，図11 に示すように，移動局 400から送信された上り回線データに対する応答信号をCCE\＃1およびCCE \＃2 に それぞれ対応する下り回線制御チャネルCH \＃1 およびC H \＃2 に配置する。この配㯰処理の詳細については後述する。

【0 O 8 8 】
また，配置部305は，SCCH割当部301から入力されるSCCH割当情報に基づ いて，周波数軸上に配置されたSCCH\＃1～SCCH\＃8のいずれかにRB割当情報シ ンボルを配置する。例えば，SCCH割当部301からSCCH\＃1が移動局400への SCCH割当情報として入力された場合，配置部305はSCCH\＃1にRB割当情報シ ンボルを配置する。

【OO89】
I FFT部306は，複数のサブキャリアのいずれかに配置されたSCCH割当情報シ ンボル，R B 割当情報シンボルおよび応答信号に対してIFFTを行ってOFDMシンボ ルを生成し，CP付加部111に出力する。

【OOMO］
一方，図13に示す移動局 400 において，FFT部401は，CP除去後のOFDM シンボルに対してFFTを行ってS C C H 割当情報シンボル，R B 割当情報シンボルおよ び応答信号を得て，それらを分離部 402 に出力する。

【OOM1】
分離部402は，入力される信号をSCCH割当情報シンボルと，RB割当情報シンボ ルと，応答信号とに分離して，SCCH割当情報シンボルをP／S部403に出力し，R B割当情報シンボルをP／S部206に出力し，応答信号をP／S 部2 1 O に出力する。 ここで，分離部 402 は，配置特定部 406 から入力される特定結果に基づいて，入力信

号からRB割当情報シンボルおよび応答信号を分離する。
【0092】
P／S部403は，分離部402から並列に入力されるSCCH割当情報シンボルを直列に変換して復調部 404 に出力する。

【OO 3 3
復調部 4 O 4 は，S C C H 割当情報シンボルを復調し，復調後のS C C H 割当情報を復号部405に出力する。

【OO94】
復号部4 O 5 は，復調後のSCCH割当情報を復号し，復号後のSCCH割当情報を配置特定部406に出力する。

【0 09 5】
配置特定部406は，復号部405から入力されるSCCH割当情報に基づいて，自局 から送信した上り回線データに対する応答信号が配置された下り回線制御チャネルを特定 する。例えば，自局に対するSCCH割当情報が図9に示すSCCH\＃1 である場合，S CCH\＃1は図9に示すようにCCE\＃1およびCCE\＃2で構成されるため，配置特定部406は，図11に示すように，応答信号が配置された自局用の下り回線制御チャネル がC H \＃1 およびC H \＃2 であると特定する。そして，配置特定部 4 0 6 は，特定結果を分離部402に出力する。この特定処理の評細については，後述する。

【o 096 〕
また，配惪特定部 4 0 6 は，復号部 4 O 5 から入力されるSCCH割当情報に基づいて ，自局へのRB割当情報シンボルが配置されたS C C H を特定する。例えば，自局に対す るSCCH割当情報がSCCH\＃1 である場合，配置特定部406は，自局へのRB割当情報シンボルが配置された自局用のS C C H がSCCH\＃1 であると特定する。そして，配直特定部 406 は，特定結果を分離部 402 に出力する。

【0097】
復号部2 08 は，復調後のRB割当情報を復号し，復号後のRB割当情報を送信制御部 214に出力する。

【0 O 9 8 】
次に，基地局 300 の配置部 305 における配置処理，および，移動局 400 の配置特定部406における特定処理の詳細について説明する。

【OO99】
本実施の形態では，図9に示すSCCH\＃1～SCCH\＃8のいずれかを用いて基地局 300から送信されたRB割当情報を移動局 400が受信する。また，基地局300は，
 f 20 およびサブキャリアf25～f28の4つの周波数帯に配置されている下り回線制御チャネルCH\＃1～CH \＃8 に上り回線データに対する応答信号（ACK信号またはN ACK信号）を配置して移動局 400へ送信する。また，図 2 と同様，基地局 300の拡散部106が応答信号をSF＝4の拡散符号で拡散し，さらにレピティション部107が拡散後の応答信号に対してRF＝2のレピティションを行う。また，図11に示すように ，図 9 に示すCCEと図 6 に示す下り回線制御チャネルとは 1 対 1 で対応付けられている。
$\left.\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
配置部305は，複数のCCEにそれぞれ対応付けられて周波数軸上に分散配惪（Dist ributed配置）された複数の下り回線制御チャネルに移動局400への応答信号を配置す る。配置部 3 0 5 は，図 9 に示すSCCHとCCEとの対応情報，図11に示すCCEと下り回線制御チャネルとの対応情報，および，図 6 に示す下り回線制御チャネル配置の情報を保持し，それらに基づいて下り回線制御チャネルが配置されているサブキャリアに応答信号を配置する。

〔0101】
具体的には，移動局 400 に対するSCCH割当情報がSCCH\＃1である場合，SC

CH \＃1 は図9に示すようにCCE\＃1およびCCE\＃2で構成されるため，配置部30 5は，図11においてCCE\＃1に対応付けられたCH\＃1，すなわち，畄6に示すサブ キャリア $\mathrm{f}_{1} \sim_{\mathrm{f}}^{4}$ およよびサブキャリア $\mathrm{f}_{1} 7 \sim_{\text {f }} 20$ に応答信号を配置するとともに， CCE\＃2に対応付けられたCH\＃2，すなわち，サブキャリアf $9 \sim f_{12}$ およびサブ キャリアf25～f28に応答信号を配惪する。

【O 102 2】
ここで，図6に示す下り回線制御チャネルの配置において，図9において連続する 2 つ の下り回線CCE（例えばCCE\＃1とCCE\＃2）にそれぞれ対応する下り回線制御チ ャネル（例えばCH\＃1とCH\＃2）は，互いに異なる周波数帯にDistributed配置され ている。換言すれば，図6において同一周波数帯にLocalized配置されている下り回線制御チャネルは，図9において 2 C C E毎の不連続な複数の下り回線CCEにそれぞれ対応 する下り回線制御チャネルである。具体的には，例えば，図6に示すサブキャリアf ${ }_{1}$～ f_{4} にLocalized配置されている下り回線制御チャネルは，下り回線制御チャネルCH \＃ 1，CH \＃3，CH \＃5およびCH \＃7 であり，それらの下り回線制御チャネルにそれぞ れ対応付けられている下り回線CCEは，図11に示すように，CCE\＃1，CCE\＃3 ，CCE\＃5およびCCE\＃7の2CCE毎の不連続なCCEとなる。

【O 103 〕
よって，連続する複数のCCEから構成されるSCCHを用いてRB割当情報を送信さ れた移動局 400から送信された上り回線データに対する応答信号を基地局300が送信 する場合，応答信号が同一周波数帯に集中して配置されることを防ぐことができる。つま り，基地局 300 は，応答信号を複数の周波数帯に分散配置して送信することができる。例えば，上記のように移動局 4 O O に対するS C C H 割当情報がSCCH\＃1である場合

 ～f 28 に応答信号を配置するため，下り回線制御チャネルが配惪されたすべてのサブキ
分散されて配置される。

【O 104 －
このように，配置部 3 0 5 が，図9に示すSCCHとCCEとの対応付け，図11に示 すCCEと下り回線制御チャネルとの対応付け，および，図6に示す下り回線制御チャネ ル配置に基づいて，下り回線制御チャネルに応答信号を配置することで，基地局 300 の無線送信部 1 1 2 は，下り回線C C E にそれぞれ対応付けられて周波数軸上に分散配置さ れた下り回線制御チャネルを用いて移動局 4 0 0 へ 応答信号を送信することができる。

【0105】
同様に，移動局 400 （図 13 ）の配置特定部 4 0 6 は，図 9 に示す S C C HとCCE との対応情報，図11に示すCCEと下り回線制御チャネルとの対応情報，および，図6 に示す下り回線制御チャネル配置の情報を保持し，受信したS C C H 割当情報より，応答信号が配置された自局用の下り回線制御チャネルを特定する。具体的には，図9に示すS CCH\＃1が自局に割り当てられたことを示すSCCH割当情報が復号部 4 O 5 から入力 された場合，配置特定部 4 0 6 は，図 9 および図 1 1 に示す対応付けより，図 6 に示すよ うに，下り回線制御チャネルCH \＃1 が配置されているサブキャリアf $1_{1} \sim_{f} \mathrm{f}_{4}$ およびサ ブキャリアf17～f20と，下り回線制御チャネルCH \＃2 が配置されているサブキャ リアf9～f12およびサブキャリアf $25 \sim$ f 28 とに，自局に対する応答信号が配惪 されていると特定する。

【0106】
このようにして本実施の形態によれば，1つのS C C H が連続する複数の下り回線C C Eから構成される場合に，応答信号が同一周波数帯に集中して符号多重されることを低減 し，応答信号を周波数軸上に分散して配置することができる。よって，本実施の形態によ れば，実施の形態 1 同様，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得 ることができる。

【0107】
なお，本実施の形態では，複数のCCEから構成される制御チャネルの一例としてS C CHを学げたが，本発明を適用可能な制御チャネルはS C C H に 限らない。連続する複数 のCCEから構成されるすべての制御チャネル対して本発明を適用可能である。

【0 108 8】
また，本実施の形態に係る配置部 3 0 5 は，実施の形態 2 と同様に，互いに異なる配置 パターンで周波数軸上に分散配置された復数の下り回線制御チャネルに応答信号を配置し てもよい。

【0109】
また，本実施の形態に係る配置部 3 0 5 は，実施の形態 3 と同様に，隣接セル間または隣接セクタ間において互いに異なる配置パターンを採る複数の下り回線制御チャネルに応答信号を配㯰してもよい。

【O110】
また，本実施の形態では，S C C H でのR B 割当情報の送信前にS C C H 割当情報を送信する場合について説明したが，必ずしもR B 割当情報送信前にS C C H 割当情報の送信 を行う必要はない。例えば，基地局が，移動局を識別可能な移動局 I D を S C C H に含め て送信し，移動局は受信したすべてのS C C H を復号して自局へのS C C H か否かをブラ インド判定することにより，R B 割当情報送信前のS C C H 割当情報の送信を不要とする ことができる。

【 01111 】
また，新たに割り当てられたS C C H のC C Eと対応する下り回線制御チャネルへ移行 するタイミングについては，固定のタイミングを予め設定しておいてもよく，また，適応的に変化するタイミングを基地局から移動局へ S C C H 等を用いて通知してもよい。

【O 112 】
また，SCCH\＃1～SCCH\＃6がそれぞれ図14に示すような構成を採る場合，す なわち，SCCH\＃1はCCE\＃1，CCE\＃3，SCCH\＃2はCCE\＃5，CCE\＃7 ，SCCH\＃3はCCE\＃2，CCE\＃4，SCCH\＃4はCCE\＃6，CCE\＃8，SC CH\＃5はCCE\＃1，CCE\＃3，CCE\＃5，CCE\＃7，SCCH\＃6はCCE\＃2， CCE\＃4，CCE\＃6，CCE\＃8 でそれぞれ構成される場合には，下り回線制御チャネ ルCH\＃1～CH\＃8の配置を図15に示すものにするとよい。図14において各SCC Hを構成する㙏数の下り回線CCE（例えばSCCH \＃1 を構成するCCE \＃1 とC C E \＃3）にそれぞれ対応する下り回線制御チャネル（例えばCH\＃1とCH\＃3）は，互い に異なる周波数帯にDistributed配置されている。よって，複数のCCEから構成される SCCHを用いてR B 割当情報を送信された移動局 4 0 0 から送信された上り回線データ に対する応答信号を基地局 3 0 O が送信する場合，応答信号が同一周波数帯に集中して配置されることを防ぐことができる。つまり，基地局 3 O O は，上記同様，応答信号を複数 の周波数帯に分散配置して送信することができる。

【0113】

（実施の形態5）
本実施の形態では，サブフレーム毎に使用するCCEの数が異なる場合について説明す る。

【0 1 1 1 4】
上り割当情報または下り割当情報を通知するための下り回線制御チャネル（例えば，S CCH）を構成するCCEが多重されるOFDMシンボル数（以下，多重OFDM数とい う）をサブフレーム毎に可変にすることが検討されている。その際，多重OFDM数は， PCFICH（Physical Control Format Indicator Channel）を用いて基地局から移動局へ通知される。多重OFDM数が大きくなるほど，CCEを多重する物理リソースが增 えるため，使用されるCCEの数がより多くなる。例えば，図16に示すCCE\＃ $1 \sim \mathrm{C}$ CE\＃16において，多重OFDM数が1の場合，CCE\＃1～CCE\＃4が1OFDM シンボルに多重され，多重OFDM数が2の場合，CCE\＃1～CCE\＃16が2OFD

Mシンボルに多重される。つまり，1SCCHが1つまたは複数のCCEで構成される際 ，多重OFDM数が1のときはCCE\＃1～CCE\＃4のうちのいずれかが使用され，多重OFDM数が2のときはCCE\＃1～CCE\＃16のうちのいずれかが使用される。

このとき，図16に示すCCE \＃1～CCE\＃16のうち，CCE\＃1～CCE\＃4は ，互いに異なる复数の多重OFDM数（1または2）のいずれにおいても使用されるのに対し，CCE\＃5～CCE\＃16は，多重OFDM数が2の場合のみでしか使用されない。すなわち，CCE \＃1～CCE \＃1 6 は，互いに異なる複数の多重OFDM数のいずれ においても共通して使用されるCCEと，共通して使用されないCCEとに区別される。 また，C C E と下り回線で心答信号を伝送するための下り回線制御チャネルとが対応付け られるため，多重OFDM数に応じて，使用されるCCE数が増減することで，応答信号 を伝送するために使用される下り回線制御チャネルの数も増減する。すなわち，C C E と同様，互いに異なる複数の多重OFDM数のいずれにおいても共通して使用される下り回線制御チャネルと，共通して使用されない下り回線制御チャネルとに区別される。

【0116】
ここで，例えば，多重OFDM数が1の場合，つまり，図16に示すCCE \＃1～CC E \＃4 のみが使用される場合，例えば図 2 に示す下り回線制御チャネル配置に従うと，下 り回線制御チャネルCH\＃1～CH \＃4 がサブキャリアf 1 ～f 4 およびサブキャリア f $17 \sim \mathrm{f} 20$ の同一周波数帯に集中して配置されてしまう。このため，下り回線制御チャ ネルが配置される周波数帯（図2におけるサブキャリア f_{1}～ f_{4} ，サブキャリア $\mathrm{f} \mathrm{g}_{\mathrm{g}}$～ f12，サブキャリアf17～f20およびサブキャリアf ${ }^{2} 5 \sim$ f 28 の 4 つの周波数帯）では，各周波数帯での送信電力が互いに異なってしまう。特に，下り回線制御チャネ ルCH \＃1～CH \＃4 が配置された周波数帯では，応答信号が集中して符号多重されると他セルに与える干渉電力が增大してしまう。また，応答信号が集中して符号多重された周波数帯では，I S I が増加してしまう。

【0117】
そこで，本実施の形態では，互いに異なる複数の多重OFDM数のいずれにおいても使用されるCCEに対応付けられる応答信号を伝送するための下り回線制御チャネルを周波数軸上に分散配置する。

【lllll $\begin{array}{ll}0 & 1\end{array} 1$ 8】
本実施の形態に係る基地局 500 の構成を図 17 に示し，本実施の形態に係る移動局 6 O O の構成を図19に示す。なお，図17において図12（実施の形態4）と同一の構成部には同一符号を付し，説明を省略する。また，図19において図13（実施の形態4） と同一の構成部には同一符号を付し，説明を省略する。 ［lllll
図17に示す基地局500において，多重OFDM数決定部501は，サブフレーム毎 に，制御情報を通知するために必要なSCCH数に従って，CCEを多重するOFDMシ ンボルの数を決定する。具体的には，多重OFDM数決定部501は，制御情報を通知す るために必要なS C C H 数が多いほど，多重OFDM数がより大きくなるように決定する。そして，多重OFDM数決定部 5 0 1 は，決定した多重OFDM数を示す多重OFDM数決定情報を生成して符号化部502およびSCCH割当部505に出力する。

【o 120 〕
符号化部 5 O 2 は，多重OFDM数決定情報を符号化して変調部503に出力する。
【0121］
変調部503は，符号化後の多重OFDM数決定情報を変調して多重OFDM数決定情報シンボルを生成し，S／P 部504に出力する。

【0122】
S／P部504は，変調部503から直列に入力される多重OFDM数決定情報シンボ ルを並列に変換して配置部506に出力する。

【0123】

SCCH割当部 5 0 5 は，多重OFDM数決定部 5 0 1 から入力される多重OFDM数決定情報に基づいて，各移動局に対してSCCHを割り当てる。例えば，SCCH割当部 505 は，多重OFDM数決定部 5 0 1 から入力される多重OFDM数が 1 の場合，上記図16に示すCCE\＃1～CCE\＃4のうち1つまたは復数のCCEで構成されるSCC Hを各移動局に対して割り当てる。一方，SCCH割当部505は，多重OFDM数決定部501から入力される多重OFDM数が2の場合，上記図16に示すCCE\＃1～CC E \＃1 6 のうち 1 つまたは复数のCCEで構成されるSCCHを各移動局に対して割り当 てる。

【0 124 〕
配置部506は，多重OFDM数決定情報シンボル，RB割当情報シンボルおよび応答信号を，OFDMシンボルを構成する複数のサブキャリアのいずれかに配置してIFFT部507に出力する。ここで，配置部506は，上記畄16に示すCCE \＃1～CCE \＃ 16 のうち，互いに異なる複数の多重OFDM数のいずれにおいても使用されるCCE \＃ $1 ~ C$ CE \＃4 にそれぞれ対応付けられて周波数軸上に分散配置された下り回線制御チャ ネルCH\＃1～CH\＃4を含む下り回線制御チャネルCH\＃1～CH\＃16に応答信号を配置する。この配置処理の詳細については後述する。

【O 12 5】
また，配置部 5 0 6 は，周波数軸上に配置された P C F I C H に多重 O F D M 数決定情報シンボルを配置する。

【0 1 2 6】
I F F T 部 5 0 7 は，複数のサブキャリアのいずれかに配置された多重OFDM数決定情報シンボル，R B 割当情報シンボルおよび応答信号に対してIFFTを行ってOFDM シンボルを生成し，C P 付加部 1 1 1 に出力する。

【O127】
なお，応答信号を伝送するための下り回線制御チャネル（例えば，ACK／N A C K チ ャネル），PCFICHおよびCCEは，例えば凶18に示すように周波数領域および時間領域で定義される物理リソースに多重される。多重OFDM数が 1 の場合，図 18 （a ）に示すように，1 OFDMシンボルにACK／NACKチャネル，PCFICHおよび CCE\＃1～CCE\＃4が多重され，多重OFDM数が2の場合，図18（b）に示すよ うに，2 OFDMシンボルにACK／NACKチャネル，PCFICHおよびCCE\＃1 ～CCE\＃16が多重される。

【O 12 8】
一方，図19に示す移動局 6 O O において，FFT部 6 O 1 は，C P 除去後の O F D M シンボルに対してFFTを行って多重OFDM数決定情報シンボル，R B 割当情報シンボ ルおよび応答信号を得て，それらを分離部 6 0 2 に出力する。

【O 12 9】
分離部 602 は，入力される信号を多重OFDM数決定情報シンボルと，RB割当情報 シンボルと，応答信号とに分離して，多重OFDM数決定情報シンボルをP／S部603 に出力し，R B 割当情報シンボルを P／S 部 2 0 6 に出力し，応答信号を P／S 部 2 1 0 に出力する。

【lllll $\left.\begin{array}{lll}1 & 1 & 0\end{array}\right]$
P／S部603は，分離部602から並列に入力される多重OFDM数決定情報シンボ ルを直列に変換して復調部604に出力する。

【0 $\left.1 \begin{array}{lll}0 & 1\end{array}\right]$
復調部 604 は，多重OFDM数決定情報シンボルを復調し，復調後の多重OFDM数決定情報を復号部 605 に出力する。

【 013 2】
復号部 6 O 5 は，復調後の多重OFDM数決定情報を復号し，復号後の多重OFDM数決定情報を多重OFDM数抽出部606に出力する。

【0133】

多重OFDM数抽出部606は，復号部605から入力される多重OFDM数決定情報 から多重された多重OFDM数を抽出する。

【O 134 〕
配置特定部 607 は，多重OFDM数抽出部 606 から入力される多重OFDM数に基 づいて，応答信号が配置された下り回線制御チャネルおよびS C C H 割当に使用されたC CEを特定する。そして，配置特定部 6 0 7 は，特定結果を分離部 6 0 2 に出力する。こ の特定処理の詳細については，後述する。

【0135】
次に，基地局 500 の配置部 506 における配置処理，および，移動局 600 の配置特定部607における特定処理の詳細について説明する。

【0136】
本実施の形態では，図16に示すように，多重OFDM数は，1または 2 の 2 通りとす る。また，図16に示すCCE \＃1～CCE \＃1 6 のうちの1つまたは復数のCCEで構成されるSCCHを用いて基地局 5 O O から送信されたRB割当情報を移動局 600 が受信する。また，実施の形態 4 と同様にして，基地局 5 0 0 の拡散部 1 0 6 が応答信号を S $\mathrm{F}=4$ の拡散符号で拡散し，さらにレピティション部 107 が拡散後の応答信号に対して R F＝2 のレピティションを行う。ただし，ここでは，説明を簡略にするため，図 20 に示すように，レピティションを考慮せず，応答信号が配置されるサブキャリアf ${ }_{1}$～ f_{4}
 $\mathrm{f}_{2} 8$ の 4 つの周波数帯に配置されている下り回線制御チャネルCH\＃1～CH\＃16に ついてのみ説明する。また，図16に示すCCE \＃1～CCE \＃1 6 と図 2 0 に示す下り回線制御チャネルCH\＃1～CH\＃16とは1対1でそれぞれ対応付けられている。

【0 13 7】
配置部506は，上記図16に示すCCE\＃1～CCE\＃16のうち，互いに異なる复数の多重OFDM数のいずれにおいても使用されるCCE \＃1～CCE \＃4 にそれぞれ対応付けられて周波数軸上に分散配置（Distributed配置）された下り回線制御チャネルC H \＃1～CH \＃4 を含む下り回線制御チャネルCH\＃1～CH\＃16に移動局600への応答信号を配置する。

【O 13 8】

すなわち，図 20 に示すように，下り回線制御チャネルCH\＃1 がサブキャリアf ${ }_{1}$～ f_{4} に配置され，下り回線制御チャネルCH \＃2 がサブキャリアf ${ }^{2}$～ f_{12} に配置され ，下り回線制御チャネルCH\＃3がサブキャリアf17～f20に配置され，下り回線制御チャネルCH\＃4がサブキャリアf 25 ～f 28 に配置される。【O 1 3 9】
また，図2 Oに示すように，下り回線制御チャネルCH \＃1～CH \＃4 以外の残りの下 り回線制御チャネルCH\＃5～CH\＃16がサブキャリアf ${ }_{1}$～ f_{4} ，サブキャリアf 9 ～f12，サブキャリアf17～f20およびサブキャリアf25～f28の4つの周波数帯のいずれかに配置される。

【O 14 O】
ここで，図20に示す下り回線制御チャネルの配置において，図16において互いに異 なる複数の多重OFDM数（1または2）のいずれにおいても共通して使用されるCCE \＃1～CCE \＃4にそれぞれ対応する下り回線制御チャネルCH \＃1～CH \＃4 は，互い に異なる周波数帯にDistributed配置されている。換言すれば，図20において同一周波数帯にLocalized配置されている下り回線制御チャネルは，図16において互いに異なる複数の多重OFDM数のいずれにおいても共通して使用されるCCE\＃1～CCE\＃4に それぞれ対応する下り回線制御チャネルCH\＃1～CH \＃4 のうちのいずれか 1 チャネル と，図16において多重OFDM数が2の場合のみで使用されるCCE\＃5～CCE\＃1 6にそれぞれ対応する下り回線制御チャネルCH\＃5～CH\＃16のうちのいずれか3チ ャネルとなる。具体的には，例えば，図20に示すサブキャリアf1～f4にLocalized配置されている下り回線制御チャネルは，下り回線制御チャネルCH\＃1，CH\＃5，C

H \＃9 およびCH \＃1 3 である。これらの下り回線制御チャネルにそれぞれ対応付けられ ている下り回線CCEは，図16に示すように，互いに異なる複数の多重OFDM数（1 または2）のいずれにおいても共通して使用されるCCE\＃1と，多重OFDM数が2の場合のみで使用されるCCE\＃5，CCE\＃9 およびCCE\＃13となる。

【0 141 1】
よって，互いに異なる複数の多重OFDM数のいずれにおいても共通して使用されるC CEで構成されるSCCHを用いてRB割当情報を送信された移動局 600 から送信され た上り回線データに対する応答信号を基地局 500 が送信する場合，応答信号が同一周波数帯に集中して配置されることを防ぐことができる。つまり，基地局500は，多重OF DM数が 1 である場合でも，応答信号を複数の周波数帯に分散配置して送信することがで きる。すなわち，符号多重される応答信号の数が各周波数帯で同程度となる。

【0142】
これにより，応答信号を伝送するための下り回線制御チャネルが配置される各周波数帯 の送信電力の変動が小さくなり平均化効果が向上する。よって，応答信号を伝送するため の下り回線制御チャネルが配置される周波数帯の一部の送信電力が集中的に増加すること を抑えることができるため，隣接セル間でのセル間干渉を減少させることができる。また ，応答信号が周波数軸上で分散配置されるため，同一周波数帯で応答信号が集中して符号多重されることを防ぐことにより，同一周波数帯に配置される下り回線制御チャネル間に おけるI S I も低減させることができる。

【O143】
このように，配置部 5 0 6 が，図1 6に示す多重OFDM数の情報および図 2 0 に示す下り回線制御チャネル配置に基づいて，下り回線制御チャネルに応答信号を配置すること で，基地局 5 O O の無線送信部 1 1 2 は，互いに異なる複数の多重OFDM数のいずれに おいても共通して使用される下り回線C C E にそれぞれ対応付けられて周波数軸上に分散配㯰された下り回線制御チャネルを用いて移動局 600 －応答信号を送信することができ る。

【O 144 】
同様に，移動局 600 （図 19 ）の配置特定部 607 は，図 16 に示す多重OFDM数 の情報および図20に示す下り回線制御チャネル配置の情報を保持し，受信した多重OF DM数決定情報により，応答信号が配置された自局用の下り回線制御チャネルを特定する。例えば，多重OFDM数抽出部606から入力される多重OFDM数が 1 である場合，配置特定部607は，図16に示すCCE \＃1～CCE \＃4 にそれぞれ対応付けられた図 2 Oに示す下り回線制御チャネルCH \＃1～CH \＃4 のいずれかから自局に対する応答信号が配置されている下り回線制御チャネルを特定する。

【O145】
このようにして本実施の形態によれば，互いに異なる多重OFDM数のいずれにおいて も使用されるCCEに対応付けられた下り回線制御チャネルを周波数軸上で分散配置する。これにより，応答信号が同一周波数帯に集中して符号多重されることを低減することが できる。よって，本実施の形態によれば，実施の形態4と同様の効果を得ることができ， かつ，多重OFDM数がサブフレーム毎に可変である場合でも，各周波数帯における下り回線制御チャネルの送信電力が平均化されるので，隣接セル間での下り回線制御チャネル同士のセル間干渉を減少させることができる。また，本実施の形態によれば，同一周波数帯における下り回線制御チャネル同士のI S I を低減させることができる。

【0 146 】
なお，本実施の形態では，多重OFDM数が 1 または 2 の 2 通りの場合について説明し たが，多重OFDM数が 3 通り以上の場合でも本発明を適用することができる。

【0147】
また，本実施の形態では，複数のCCEを，互いに異なる複数の多重OFDM数のいず れにおいても共通して使用されるCCEと，共通して使用されないCCEとに区別したが ，複数のCCEを使用される頻度に応じて区別してもよい。例えば，多重OFDM数が 1
~ 3 の場合，多重OFDM数が $1 \sim 3$ のいずれの場合にも使用されるCCEの使用頻度を ‘高’とし，多重OFDM数が2または3の場合に使用されるCCEの使用頻度を＇中’ とし，多重OFDM数が 3 の場合のみにしか使用されないCCEの使用頻度を‘低’とす る。そして，基地局は，使用頻度が ‘高’ であるCCEに関連付けられて周波数軸上で分散配置された下り回線制御チャネルに応答信号を配置してもよい。

【o 148 】
また，本実施の形態では，互いに異なる複数の多重OFDM数のいずれにおいても共通 して使用されるCCE（図16に示すCCE \＃1～CCE \＃4）のCCE番号が連続する場合について説明したが，互いに異なる㙏数の多重OFDM数のいずれにおいても共通し て使用されるCCEのCCE番号は連続する場合に限らない。互いに異なる複数の多重O FDM数のいずれにおいても共通して使用されるCCEのCCE番号が不連続である場合 でも本発明を適用することができる。

【0149】
また，本実施の形態では，C C E 番号と応答信号を伝送するための下り回線制御チャネ ルとが対応付けられる場合について説明したが，複数のCCEにより構成される下り回線制御チャネル，例えばS C C H の S C C H 番号と応答信号を伝送するための下り回線制御 チャネルとが対応付けられる場合でも本発明を適用することができる。

【0150】
また，本実施の形態では，互いに異なる㠅数の多重OFDM数のいずれにおいても共通 して使用される複数のCCEにそれぞれ対応付けられて異なる周波数帯に配置された複数 の下り回線制御チャネルに応答信号を多重すると説明したが，異なる周波数帯に配置され た複数の下り回線制御チャネルに応答信号を多重することと，異なる拡散符号化ブロック に応答信号を多重することとは等価である。

【0151】
また，本実施の形態では，制御情報を通知するために必要なSCCH数に従って，多重 OFDM数を決定する場合について説明したが，本発明は，S C C H 数に限らず，他の制御情報に従って，多重OFDM数を決定してもよい。例えば，応答信号を多重するACK ／N A C Kチャネルの多重数に従って，多重OFDM数を決定してもよい。

【O152】
以上，本発明の実施の形態について説明した。
【0153】
なお，本発明をセルエッジ付近の移動局に対して適用してもよい。一般的にセルエッジ付近ではセル中心と比較して回線品質が劣悪であるため，セルエッジ付近の移動局は低い レベルのMCS（Modulation and Coding Scheme）を用いて上り回線データを送信する。 すなわち，セルエッジ付近の移動局は，セル中心の移動局と比較してより低い符号化率， または，より小さい変調多値数の変調方式を用いて上り回線データを送信するため，より長い上り回線データ長，つまり，より多くの連続したRBを必要とする。そこで，本発明 をセルエッジ付近の移動局に対して適用することで，より大きい周波数ダイバーシチ効果 を得ることができる。

【0154】
また，上記実施の形態では，完全に連続するRBを一例に学げて説明したが，一部不連続である箇所を含んでも連続性が高い R B であれば本発明を適用することができる。

【0155】
また，上記実施の形態では，上り回線 R B の数および下り回線CCEの数を8つとした場合について説明したが，上り回線 R B の数および下り回線CCEの数は 8 つに限定され ない。

【0 15 6】
 $\mathrm{f}_{2} \mathrm{O}$ ， $\mathrm{f}_{2} 5 \sim \mathrm{f}_{2} 8$ に 8 つの下り回線制御チャネルCH\＃1～CH\＃8が配置される場合を一例に学げて説明したが，サブキャリア数および下り回線制御チャネル数はこれら

の数に限定されない。例えば，図21に示すように32本のサブキャリアに16個の下り回線制御チャネルCH \＃1～CH \＃1 6 が配置されてもよい。

【0 157 】
また，上記実施の形態では，下り回線制御チャネルが配置されたサブキャリアのみを図示して説明したが，下り回線制御チャネルが配置された周波数以外の周波数に，他の制御 チャネルまたはデータチャネルを配置してもよい。

【0158】
また，上記実施の形態では，応答信号を拡散した場合について説明したが，応答信号を拡散せずに各周波数に配置された 1 つの下り回線制御チャネルに応答信号を配置して送信 してもよい。例えば，図22に示すように，応答信号を拡散せずに，つまり，同一周波数 で符号多重せずに，周波数軸上に分散配置された下り回線制御チャネルCH\＃1～CH \＃ 8に応答信号を配置してもよい。

【0 1 59】
また，上記実施の形態では，拡散部106における拡散率をS F＝4 とし，レピティシ ョン部 1 0 7 におけるレピティションファクタをRF＝2とした場合を一例に学げて説明 したが，S F およびR F はこれらの値に限定されない。

【O 160 〕
また，上記実施の形態では下り回線制御チャネルの配置方法について説明したが，本発明を上り回線制御チャネルに適用することもできる。例えば，移動局が上記基地局 100 または 3 0 0 と同様の処理を行い，基地局が上記移動局 2 0 0 または 400 と同様の処理 を行うことにより，本発明を上り回線に適用することができる。

【 0161 1
また，上記実施の形態では，上り回線のアクセス方式としてD FTs－FDMAを用い た場合について説明したが，本発明はD F T s－F DMAに限らず，連続する複数のRB を1つの移動局に割り当てる伝送方式または連続する复数のCCEから1つの制御チャネ ルが構成される伝送方式において上記同様の効果を得ることができる。

【0162】
また，上記実施の形態では下り回線の伝送方式としてOFDM方式を一例に学げたが，本発明において下り回線の伝送方式は特に限定されず，異なる周波数を用いて送信を行う伝送方式において上記司様の効果を得ることができる。

【O 163 〕
また，上記実施の形態の説明で用いた応答信号を伝送するための下り回線制御チャネル は，各移動局毎の A C K 信号またはN A C K 信号をフィードバックするためのチャネルで あるため，一般的には個別制御チャネル（Dedicated Control Channel；DCCH）であ り，ACK／NACKチャネル，応答チャネル，HICH（Hybrid ARQ Indicator Chann el）と称されることもある。

【O 164 】
また，上記実施の形態では，応答信号を配置する下り回線制御チャネルについて説明し たが，下り回線制御チャネルに配置される信号は応答信号に限らない。例えば，再送時の変調方式または符号化率を通知するための制御信号，再送時の送信電力を通知するための制御信号，再送時の送信タイミングを通知するための制御信号または再送時のRB割当を通知するための制御信号等が下り回線制御チャネルに配置されることもある。

【 016 5】
また，上記実施の形態の説明で用いた R B は，例えばサブキャリアブロック，サブバン ド等，周波数軸上の他の伝送単位であってもよい。

【0166】
また，移動局はUE，基地局装置はNode B，サブキャリアはトーンと称されることもある。また，CPは，ガードインターバル（Guard Interval；GI）と称されることもある。

【0167】
また，誤り検出の方法はCRCに限られない。

【0 1 6 8 】
また，周波数領域と時間領域との間の変換を行う方法は，I F F T，F F T に限られな い。

【O 1 6 9】
また，上記実施の形態では，本発明をハードウェアで構成する場合を例にとって説明し たが，本発明はソフトウェアで実現することも可能である。

【O170】
また，上記実施の形態の説明に用いた各機能ブロックは，典型的には集積回路であるL S I として実現される。これらは個別に 1 チップ化されてもよいし，一部または全てを含 むように 1 チップ化されてもよい。ここでは，LS I としたが，集積度の違いにより，I C，システムLSI，スーパーLSI，ウルトラLSIと呼称されることもある。

【O171】
また，集積回路化の手法はLS I に限るものではなく，専用回路または汎用プロセッサ で実現してもよい。L S I 製造後に，プログラムすることが可能な F PGA（Field Prog rammable Gate Array）や，LS I 内部の回路セルの接続や設定を再構成可能なリコンフ ィギュラブル・プロセッサーを利用してもよい。

【O172】
さらには，半導体技術の進歩または派生する別技術によりL S I に置き換わる集積回路化の技術が登場すれば，当然，その技術を用いて機能ブロックの集積化を行ってもよい。 バイオ技術の適用等が可能性としてありえる。
【産業上の利用可能性】
【0173】
本発明は，移動体通信システム等に適用することができる。【図面の簡単な説明】

【O174】
【図1】上り回線R B 配置例
【図2】下り回線制御チャネル配置例
【図3】上り回線 R B と下り回線制御チャネルとの対応を示す図
【図4】本発明の実施の形態1に係る基地局の構成を示すブロック図
【図5】本発明の実施の形態1に係る移動局の構成を示すブロック図
【図6】本発明の実施の形態1に係る下り回線制御チャネル配置を示す図
【図7】本発明の実施の形態2に係る下り回線制御チャネル配置を示す図
【図 8】本発明の実施の形態3に係るセル 2 における下り回線制御チャネル配置を示
す図
【図9】本発明の実施の形態 4 に係るSCCHと下り回線CCEとの対応を示す図
【図 1 O】本発明の実施の形態 4 に係る下り回線C C E 配置例
【図 11 1】本発明の実施の形態 4 に係る下り回線CCEと下り回線制御チャネルとの対応を示す図
【図 1 2】本発明の実施の形態 4 に係る基地局の構成を示すブロック図
【図1 3】本発明の実施の形態4に係る移動局の構成を示すブロック図
【図1 4 】本発明の実施の形態 4 に係る S C C Hと下り回線 C C E との対応を示す図 （バリエーション）
【図 1 5】本発明の実施の形態 4 に係る下り回線制御チャネル配惪を示す図
【図 16 】本発明の実施の形態 5 に係る各多重OFDM数で使用される下り回線CC Eを示す図
【図17】本発明の実施の形態5に係る基地局の構成を示すブロック図
【図 18 8】本発明の実施の形態 5 に係る物理リソースを示す図
【図19】本発明の実施の形態 5 に係る移動局の構成を示すブロック図
【図 2 0 】本発明の実施の形態 5 に係る下り回線制御チャネル配置を示す図
【図 2 1】その他の下り回線制御チャネル配置を示す図（例1）

```
    【図 2 2】その他の下り回線制御チャネル配置を示す図(例2)
【符号の説明】
    \0175\
    100,300, 500 基地局
    1O1 R B 割当部
    102, 302, 502 符号化部
    103, 105, 303, 503 変調部
    104, 108, 304, 504 S/P部
    106 拡散部
    107 レピティション部
    109, 305, 506 配置部
    1 10, 306, 507 I F F T部
    111 CP付加部
    112 無線送信部
    113 アンテナ
    114 無線受信部
    115 復調部
    116 復号部
    117 CRC部
200,400, 600 移動局
201 アンテナ
202 無線受信部
203 CP除去部
204,401, 601 F F T部
205,402, 602 分離部
206, 2 10, 403, 603 P/ S部
207, 213, 404, 604 復調部
208, 405, 605 復号部
209,406, 607 配置特定部
211 逆拡散部
212 合成部
214 送信制御部
215 符号化部
216 再送制御部
217 変調部
218 無線送信部
301, 505 S CC H割当部
501 多重OF DM数決定部
606 多重OFDM数抽出部
```

【書類名】図面
［专1】

〔図2】

〔図 3】

	茳	等	等	萃	$\begin{aligned} & \text { 等 } \end{aligned}$	眾	苼	윤
	$\begin{aligned} & \text { 華 } \\ & \text { 孚 } \end{aligned}$	$\begin{aligned} & \text { 華 } \\ & \text { (} \end{aligned}$	$\begin{aligned} & \text { ? 華 } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \text { 营 } \\ & \text { (} \end{aligned}$	$\begin{aligned} & \text { 异 } \\ & \text { 㩊 } \end{aligned}$	$\begin{aligned} & \text { 曞 } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \text { 華 } \\ & \text { 畄 } \end{aligned}$	－

〔図4】

BlackBerry Exhibit 1002，pg． 89

〔図5】

〔図6】

〔図7】

〔図8】
唯

〔図9】

SCCH\＃1	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE $\# 4$	CCE $\# 5$	CCE	CCE $\# 7$	CCE $\# 8$
SCCH\＃2	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE	CCE $\# 5$	CCE	CCE $\# 7$	CCE $\# 8$
SCCH\＃3	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE	CCE $\# 5$	CCE	CCE	CCE
SCCH\＃4	CCE							
SCCH\＃5	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE	CCE $\# 5$	CCE	CCE $\# 7$	CCE
SCCH\＃6	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE	CCE $\# 5$	CCE	CCE $\# 7$	CCE

【図10】

〔図11】

下り回線CCE	下り回線制御チャネル
CCE\＃1	CH\＃1
CCE\＃2	CH\＃2
CCE\＃3	CH\＃3
CCE\＃4	CH\＃4
CCE\＃5	CH\＃5
CCE\＃6	CH\＃6
CCE\＃7	CH\＃7
CCE\＃8	CH\＃8

〔図12】

【図13】

〔図14】

SCCH\＃1	CCE $\# 1$	CCE	CCE	CCE $\# 7$	CCE $\# 2$	CCE	CCE	CCE
SCCH\＃2	CCE							
SCCH\＃3	CCE							
SCCH\＃4	CCE							
SCCH\＃5	CCE $\# 1$	CCE	CCE	CCE $\# 7$	CCE	CCE	CCE	CCE
SCCH\＃6	CCE							

【図15】

【図16】

【図17】

【図18】

〔図19】

【図20】

【図21】

【図22】

【書類名】要約書

【要約】
【課題】下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること。
【解決手段】RB割当部101は，周波数スケジューリングにより各無線通信移動局装置 に対して，周波数軸上で連続する上り回線リソースブロックを割り当て，どの上り回線り ソースブロックをどの無線通信移動局装置に割り当てたかを示す割当情報を生成し，配置部109は，その割当情報に基づいて，それら連続する上り回線リソースブロックに対応付けられて周波数軸上に分散配置された下り回線制御チャネルに無線通信移動局装置への応答信号を配置する。
【選択図】図4

000005821
19900828
新規登録
506178449

大阪府門真市大字門真1006番地
松下電器産業株式会社
000005821
20081001
名称変更
506178449

大阪府門真市大字門真 1006 番地
パナソニック株式会社

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of
Inventors: Masaru FUKUOKA, et al.

Appln. No.: $\quad 12 / 983,770$ (Continuation of Application No 12/532,352)
Filed: January 3, 2011
For: \quad RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

INFORMATION DISCLOSURE STATEMENT

Assistant Commissioner of Patents
Washington, DC 20231

Dear Sir:
Pursuant to $37 \mathrm{CFR} \S 1.56$, Applicants hereby call to the attention of the Patent Office the references listed on the attached List of References.

All of these references are of record in the parent application; copies need not be submitted (see 37 CFR $\S 1.98(\mathrm{~d})$).

This list of references is being provided to ensure listing of these references on a patent to issue in this application in accordance with the following paragraph of MPEP 609:
"A citation on form PTO-1449 and considered by the Examiner... will be printed on the patent."

Applicants present these references so that the Patent Office may, in the first instance, determine any relevancy thereof to the presently claimed invention; see Beckman Instruments, Inc. v. Chemtronics, Inc., 439 F. $2 \mathrm{~d} 1369,1380,165$ USPQ 355, 364 (5th Cir. 1970). Also see Patent Office Rules 104 and 106.

Applicants respectfully request that this art be expressly considered during the prosecution of this application and made of record herein and appear among the "References Cited" on any patent to issue herefrom.

If any additional fee is due please charge it to Deposit Account 04-1061.

Respectfully submitted,
/James Edward Ledbetter/

Date: February 8, 2011

JEL/sef
ATTORNEY DOCKET NO. 009289-91681
Dickinson Wright PLLC
1875 Eye Street, N.W., Suite 1200
Washington, D.C. 20006
Telephone: 202.457 .0160
Facsimile: 202.659 .1559

DC $9289-91681169167$

James E. Ledbetter
Registration No. 28,732

EXAMINER: Initial if citation is considered, draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SHEET 2 OF $\underline{2}$

EXAMINER: Initial if citation is considered, draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Electronic Acknowledgement Receipt	
EFS ID:	9398951
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	James Edward Ledbetter
Filer Authorized By:	
Attorney Docket Number:	009289-91681
Receipt Date:	08-FEB-2011
Filing Date:	03-JAN-2011
Time Stamp:	16:35:54
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Information Disclosure Statement (IDS) Filed (SB/08)	IDS.pdf		no	4
Warnings:					
Information:					

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office．

出 願 年 月 日
Date of Application：

出 願 番 号
Application Number：
パリ条約による外国への出願 に用いる優先権の主張の基礎
となる出願の国コードと出願番号
The country code and number of your priority application， to be used for filing abroad under the Paris Convention，is
出 願 人

Applicant（s）：

2007年3月23日

特願2007－077502

JP2007－077502

パナソニック株式会社

特許庁長官
Commissioner， Japan Patent Office

【書類名】	特許願
［整理番号】	2040890047
【提出日】	平成19年3月23日
【あて先】	特許庁長官殿
【国際特許分類】	H04L 12／00
【発明者】	
【住所又は居所】	石川県金沢市西念一丁目1番3号 株式会社パナソニックモバイ ル金沢研究所内
【氏名】	福岡 将
【発明者】	
【住所又は居所】	大阪府門真市大字門真1006番地 松下電器産業株式会社内
【氏名】	西尾 昭彦
【発明者】	
【住所又は居所】	ドイツ国 ラングン 63225 モンツァストラッセ 4 c パナソニックR\＆Dセンタージャーマニー ゲーエムベーハー内
【氏名】	アレクサンダー ゴリチェク
【特許出願人】	
【識別番号】	000005821
【氏名又は名称】	松下電器産業株式会社
【代理人】	
【識別番号】	100105050
【弁理士】	
【氏名又は名称】	鶑田 公一
【手数料の表示】	
【予納台帳番号】	041243
【納付金額】	16，000円
【提出物件の目録】	
【物件名】	特許請求の範囲 1
【物件名】	明細書 1
【物件名】	図面 1
【物件名】	要約書 1
【包括委任状番号】	9700376

【書類名】特許請求の範囲

【請求項1】周波数軸上で連続する複数のリソースブロックを無線通信移動局装置に割り当てる割当手段と，
前記復数のリソースブロックにそれぞれ対応付けられて周波数軸上に分散配置された複数の制御チャネルに前記無線通信移動局装置への制御信号を配置する配置手段と，

を具備する無線通信基地局装置。
【請求項 2】
前記配置手段は，前記無線通信移動局装置から前記複数のリソースブロックを用いて送信されるデータに対するACK信号またはNACK信号を前記複数の制御チャネルに配置 する，

請求項 1 記載の無線通信基地局装置。
【請求項 3】
前記配置手段は，互いに異なる配置パターンで周波数軸上に分散配置された前記複数の制御チャネルに前記制御信号を配置する，
請求項 1 記載の無線通信基地局装置。
【請求項 4】
前記配置手段は，周波数軸上にランダムに配置された前記複数の制御チャネルに前記制御信号を配置する，

請求項 1 記載の無線通信基地局装置。
【請求項 5】
前記配置手段は，隣接セル間または隣接セクタ間において互いに異なる配置パターンを採る前記复数の制御チャネルに前記制御信号を配置する，
請求項 1 記載の無線通信基地局装置。
【請求項6】
自局に割り当てられた周波数軸上で連続する複数のリソースブロックを示す割当情報を受信する受信手段と，

前記割当情報に基づいて，前記復数のリソースブロックにそれぞれ対応付けられて周波数軸上に分散配置された自局用の複数の制御チャネルを特定する特定手段と，

を具備する無線通信移動局装惪。
【請求項 7】
周波数軸上で連続する複数のリソースブロックにそれぞれ対応付けて复数の制御チャネ ルを周波数軸上に分散配置する，制御チャネル配置方法。

【書類名】明細書
【発明の名称】無線通信基地局装置および制御チャネル配置方法
【技術分野】
【O O O 1】
本発明は，無線通信基地局装置および制御チャネル配置方法に関する。
【背景技術】
【O 002 2】
移動体通信では，上り回線で無線通信移動局装置（以下，移動局と省略する）から無線通信基地局装置（以下，基地局という）へ伝送される上り回線データに対してARQ（Au tomatic Repeat Request）が適用され，上り回線データの誤り検出結果を示す心答信号が下り回線で移動局ヘフィードバックされる。基地局は上り回線データに対しCRC（Cycl ic Redundancy Check）を行って，CRC＝OK（誤り無し）であればACK（Acknowled gment）信号を，CRC＝NG（誤り有り）であればNACK（Negative Acknowledgment ）信号を応答信号として移動局ヘフィードバックする。

【OOO3】
下り回線の通信リソースを効率よく使用するために，上り回線データを伝送するための上り回線 R B と，下り回線で応答信号を伝送するための下り回線制御チャネルとを対応付 けることにより，移動局が基地局から通知されるRBの割当情報に従って，制御チャネル の割当情報を別途通知されなくても，自局への応答信号が伝送される制御チャネルを判断 することができるARQについて最近検討されている（例えば，非特許文献1参照）。

【 0004 】
また，応答信号の隣接セル間または隣接セクタ間における干渉を平均化するとともに，応答信号に周波数ダイバーシチゲインを得るために，応答信号を拡散し，その拡散した応答信号をさらにレピティションするARQについても最近検討されている（例えば，非特許文献2参照）。

【非特許文献1】3GPP RAN WG1 Meeting document，R1－070932，＂Assignment of Do wnlink ACK／NACK Channel＂，Panasonic，February 2007
【非特許文献2】3GPP RAN WG1 Meeting document，R1－070734，＂ACK／NACK Channel
Transmission in E－UTRA Downlink＂，TI，February 2007
【発明の開示】
【発明が解決しようとする課題】
【OOO5】
最近検討されている上記 2 つの A R Q を組み合わせて用いることが考えられる。以下，下り回線制御チャネルへの応答信号の具体的な配置例について説明する。以下の説明では ，図 1 に示す上り回線 R B \＃1～RB \＃8 のいずれかを用いて移動局から送信された上り回線データを基地局が受信し，基地局は，図2に示すサブキャリアf ${ }_{1} \sim \mathrm{f}_{4}$ ，サブキャ リアf 9～f12，サブキャリアf17～f20，および，サブキャリアf25～f28 の 4 つの周波数帯に配惪されている下り回線制御チャネルCH\＃1～CH\＃8に上り回線 データに対する応答信号（A C K 信号またはN A C K 信号）を配置して移動局へ送信する ものとする。また，基地局は，応答信号を拡散率（Spreading Factor；SF）S F＝4 の拡散符号で拡散し，さらに拡散後の応答信号に対してレピティションファクタ（Repetiti on Factor；R F）R F＝2 のレピティションを行う。よって，図 2 に示すように，下り
 $7 ~ f 20$ の同一周波数帯にLocalized配置され，下り回線制御チャネルCH\＃5～CH \＃8 がサブキャリアf 9 ～f 12 およびサブキャリア $\mathrm{f}_{2} 5 \sim \mathrm{f}_{2} 8$ の同一周波数帯にLo calized配置される。

【0 006 6】
また，図 3 に示すように，図 1 に示す上り回線 R B と図 2 に示す下り回線制御チャネル とは 1 対 1 で対応付けられている。よって，図 1 に示すR B \＃1 を用いて送信された上り回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH \＃1，つま

り，図 2 に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \sim \mathrm{f}_{20} 0$ に配置される。同様に，図 1 に示す R B \＃2 を用いて送信された上り回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH \＃2，つまり，図 2 に示すサブキャリアf ${ }_{1}$ ～f4 およびサブキャリアf17～f 20 に配置される。RB\＃3～RB\＃8についても同様である。

【O 007 】
また，周波数軸上で連続する複数のRBから符号化ブロックが構成され，1符号化ブロ ック単位に R B 割当が行われる場合には，基地局は，1符号化ブロックに含まれる複数の上り回線 R B にそれぞれ対応付けられた複数の下り回線制御チャネルに応答信号を配置し て移動局に送信する。例えば，図1に示す上り回線RB\＃1～RB\＃8のうち，RB\＃1 ，RB\＃2およびRB\＃3の3つの連続した上り回線RBで1符号化ブロックが構成され る場合には，基地局は，図 2 において，サブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f} \mathrm{f}_{1}$ 7～f20の同一周波数帯にLocalized配置された下り回線制御チャネルCH\＃1，CH \＃2 およびC H \＃3 に拡散後の応答信号を符号多重して配置する。

【0 0 0 8 】
このように，下り回線制御チャネルCH\＃1～CH\＃8は16本のサブキャリアf ${ }_{1}$～
例では，応答信号はサブキャリア f_{1}～ f_{4} およびサブキャリア f_{17}～ f_{2} 0の8本の サブキャリアにしか配置されない。つまり，上記の例では，応答信号は，下り回線制御チ ャネルが配置されている全サブキャリアのうち，半数のサブキャリアにしか配置されない ことになる。

【0 O O 9 9
このように限られた周波数領域に配置された下り回線制御チャネルが用いられる場合，下り回線制御チャネルの配置位置によっては，わずかな周波数ダイバーシチ効果しか得ら れないことがある。

【OO10】
本発明は，かかる点に懢みてなされたものであり，下り回線制御チャネルの周波数ダイ バーシチ効果を最大限に得ることができる基地局および制御チャネル配置方法を提供する ことを目的とする。
【課題を解決するための手段】
【 $\left.\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$
本発明の基地局は，周波数軸上で連続する复数のRBを移動局に割り当てる割当手段と ，前記复数のRBにそれぞれ対応付けられて周波数軸上に分散配置された複数の制御チャ ネルに前記移動局への制御信号を配置する配置手段と，を具備する構成を採る。
【発明の効果】
【OO12】
本発明によれば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること ができる。
【発明を実施するための最良の形態】
［0013］
以下，本発明の実施の形態について，添付図面を参照して詳細に説明する。本発明の実施の形態に係る基地局は，OFDM方式により応答信号を送信する。また，本発明の実施 の形態に係る移動局は，DFTs－FDMA（Discrete Fourier Transform spread Freq uency Division Multiple Access）により上り回線データを送信する。DFTs－FDM Aにより上り回線データが送信される場合，上記のように，周波数軸上（周波数領域）で連続する複数のR B から符号化ブロックが構成され，基地局は1符号化ブロック単位に各移動局に対するRB割当を行う。

【O O 1 4 】
（実施の形態1）
本実施の形態に係る基地局 100 の構成を図 4 に示し，本実施の形態に係る移動局 20

0 の構成を図5に示す。
【0 015 5
なお，説明が煩雑になることを避けるために，図4では，本発明と密接に関連する上り回線データの受信，および，その上り回線データに対する応答信号の下り回線での送信に係わる構成部を示し，下り回線データの送信に係わる構成部の図示および説明を省略する。同様に，図 5 では，本発明と密接に関連する上り回線データの送信，および，その上り回線データに対する応答信号の下り回線での受信に係わる構成部を示し，下り回線データ の受信に係わる構成部の図示および説明を省略する。

【OO16】
図 4 に示す基地局 1 O O において，R B 割当部 1 O 1 は，周波数スケジューリングによ り各移動局に対して上り回線 R B を割り当て，どの上り回線R B をどの移動局に割り当て たかを示す割当情報（すなわち，R B 割当結果を示す割当情報）を生成して符号化部 10 2 および配置部 1 0 9 に出力する。また，R B 割当部 1 0 1 は，1 符号化ブロックに含ま れる連続する複数のRBを一単位としてR B 割当を行う。なお，R B はコヒーレント帯域幅程度に隣接するサブキャリアをいくつかまとめてブロック化したものである。

【O 017 7
符号化部 102 は，割当情報を符号化して変調部 103 に出力する。
【O O 1 8 ］
変調部 1 O 3 は，符号化後の割当情報を変調して割当情報シンボルを生成し，S／P 部 （シリアル／パラレル変換部）1 O 4 に出力する。
【OO19】
S／P部104は，変調部103から直列に入力される割当情報シンボルを並列に変換 して配置部109に出力する。

【O O 2 0 】
変調部105は，CRC部117から入力される応答信号を変調して拡散部106に出力する。

【OO21】
拡散部 1 0 6 は，変調部 1 0 5 から入力される応答信号を拡散して，拡散後の応答信号 をレピティション部107に出力する。

【0022】
レピティション部 1 0 7 は，拡散部1 0 6 から入力される応答信号を复製（レピティシ ョン）して，同一の応答信号を含む複数の応答信号をS／P 部 1 0 8 に出力する。

【OO23］
S／P部108は，レピティション部107から直列に入力される応答信号を並列に変換して配置部109に出力する。

【OO24】
配直部109は，割当情報シンボルおよび応答信号を，OFDMシンボルを構成する复数のサブキャリアのいずれかに配㯰してIFFT（Inverse Fast Fourier Transform）部 110 に出力する。ここで，配置部 1 0 9 は，R B 割当部 1 O 1 から入力される割当情報 に基づいて，上り回線 R B に対応付けられて周波数軸上に配置された下り回線制御チャネ ルに応答信号を配置する。例えば，R B 割当部 101 から上記図 1 に示す R B \＃1～RB \＃3 が移動局 200 への割当情報として入力された場合，配置部 109 は，図3に示すよ うに，R B \＃1～RB \＃3 を用いて移動局 200 から送信された上り回線データに対する応答信号を下り回線制御チャネルCH\＃1～CH\＃3に配置する。配置部109における配置処理の詳細については後述する。

【 002 5】
I F F T 部 110 は，複数のサブキャリアのいずれかに配置された割当情報シンボルお よび応答信号に対してIFFTを行ってOFDMシンボルを生成し，CP（Cyclic Prefi x）付加部 111 に出力する。

【0 026 〕】

CP付加部111は，OFDMシンボルの後尾部分と同じ信号をCPとしてOFDMシ ンボルの先頭に付加する。

【o 027 7】
無線送信部 112 は，C P 付加後のOFDMシンボルに対しD／A変換，増幅およびア ップコンバート等の送信処理を行ってアンテナ 1 1 3 から移動局 2 0 0 へ 送信する。

【0 02 8】
一方，無線受信部 1 1 4 は，移動局 2 O O から送信された上り回線データをアンテナ 1 13 を介して受信し，この上り回線データに対しダウンコンバート，A／D 変換等の受信処理を行う。

【OO29】
復調部115は，上り回線データを復調し，復調後の上り回線データを復号部116に出力する。

【OO30］
復号部116は，復調後の上り回線データを復号し，復号後の上り回線データをCRC部117に出力する。

【O O 3 1】
CRC部117は，復号後の上り回線データに対してCRCを用いた誤り検出を行って ，CRC＝OK（誤り無し）の場合はACK信号を，CRC＝NG（誤り有り）の場合は NACK信号を応答信号として生成し，生成した応答信号を変調部 1 O 5 に出力する。ま た，CRC部117は，CRC＝OK（誤り無し）の場合，復号後の上り回線データを受信データとして出力する。

【0032］
一方，図 5 に示す移動局 200 において，無線受信部 202 は，基地局 100 から送信 された O F DMシンボルをアンテナ 201 を介して受信し，このOFDMシンボルに対し ダウンコンバート，A／D 変換等の受信処理を行う。

【0 O 3 3】
CP除去部203は，受信処理後のOFDMシンボルからCPを除去する。
【OO34】
FFT（Fast Fourier Transform）部2O4は，CP除去後のOFDMシンボルに対し てFFTを行って割当情報シンボルおよび応答信号を得て，それらを分離部205に出力 する。

分離部 205 は，入力される信号を割当情報シンボルと応答信号とに分離して，割当情報シンボルをP／S部206に出力し，応答信号をP／S 部 2 1 0 に出力する。ここで，分離部 205 は，配置特定部 209 から入力される特定結果に基づいて，入力信号から応答信号を分離する。

【0 O 36】
P／S部206は，分離部205から並列に入力される割当情報シンボルを直列に変換 して復調部207に出力する。

【0 0 3 7］
復調部 207 は，割当情報シンボルを復調し，復調後の割当情報を復号部 208 に出力 する。

【0 03 3 1 】
復号部208は，復調後の割当情報を復号し，復号後の割当情報を送信制御部214お よび配置特定部209に出力する。

【0 O 3 9 9
配置特定部209は，復号部208から入力される割当情報に基づいて，自局から送信 した上り回線データに対する応答信号が配置された下り回線制御チャネルを特定する。例 えば，自局に対する割当情報が上記図 1 に示すRB\＃1～RB\＃3である場合，配置特定部209は，図3に示すように，応答信号が配置された自局用の下り回線制御チャネルが

CH\＃1～CH\＃3であると特定する。そして，配置特定部209は，特定結果を分離部 205 に出力する。配置特定部209における特定処理の詳細については，後述する。
［0 040 0
P／S部210は，分離部205から並列に入力される応答信号を直列に変換して逆拡散部211に出力する。
［0 041 1］
逆拡散部211は，応答信号を逆拡散し，逆拡散後の応答信号を合成部212に出力す る。

【O O 4 2】
合成部212は，逆拡散後の応答信号において，レピティション元の応答信号と，その レピティション元の応答信号からレピティションにより生成された応答信号とを合成し，合成後の応答信号を復調部213に出力する。

【O O 4 3 】
復調部213は，合成後の応答信号に対して復調処理を行い，復調後の応答信号を再送制御部216に出力する。

【OO44】
送信制御部214は，復号部208から入力された割当情報が上り回線RBを自局に割 り当てることを示す割当情報である場合に，割当情報で示された R B に送信データを配置 して符号化部215に出力する。

【O 04 5】
符号化部215は，送信データを符号化して再送制御部216に出力する。
【OO46】
再送制御部216は，初回送信時には，符号化後の送信データを保持するとともに変調部217に出力する。再送制御部216は，復調部213からACK信号が入力されるま で送信データを保持する。また，再送制御部 2 1 6 は，復調部 2 1 3 からNACK信号が入力された場合，すなわち，再送時には，保持している送信データを変調部217に出力 する。

【O O 4 7 】
変調部217は，再送制御部216から入力される符号化後の送信データを変調して無線送信部218に出力する。

【O 04 8】
無線送信部 2 1 8 は，変調後の送信データに対しD／A 変換，増幅およびアップコンバ ート等の送信処理を行ってアンテナ 201 から基地局 100 へ送信する。このようにして送信されるデータが上り回線データとなる。

【OO49】
次に，基地局 100 の配置部 109 における配置処理，および，移動局 200 の配置特定部209における特定処理の詳細について説明する。

【0 0 5 0 】
本実施の形態では，図1に示すRB\＃1～RB\＃8のいずれかを用いて移動局200か ら送信された上り回線データを基地局 100 が受信し，基地局 100 は，図 6 に示すサブ キャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ ，サブキャリア $\mathrm{f}_{\mathrm{g}} \sim \mathrm{f}_{12}$ ，サブキャリア $\mathrm{f}_{17} \sim \mathrm{f}_{20}$ およびサ ブキャリアf25～f28の4つの周波数帯に配置されている下り回線制御チャネルCH \＃1～CH \＃8 に上り回線データに対する応答信号（ACK信号またはNACK信号）を配置して移動局 200 へ送信する。また，図2と同様，基地局 100 の拡散部 106 が応答信号をS F＝4 の拡散符号で拡散し，さらにレピティション部107が拡散後の応答信号に対してRF＝2のレピティションを行う。また，図3に示すように，図 1 に示す上り回線RBと図6に示す下り回線制御チャネルとは 1 対 1 で対応付けられている。
［10051］
配置部 1 O 9 は，複数のRBにそれぞれ対応付けられて周波数軸上に分散配置（Distri buted配置）された複数の下り回線制御チャネルに移動局200への応答信号を配置する

。配置部109は，図3に示す上り回線R B と下り回線制御チャネルとの対応情報，およ び，図 6 に示す下り回線制御チャネル配置の情報を保持し，それらに基づいて下り回線制御チャネルが配置されているサブキャリアに応答信号を配置する。

【O 05 2】
具体的には，配置部 1 0 9 は，移動局 200 に対する割当情報がRB\＃1～RB\＃3で ある場合，図3においてRB\＃1に対応付けられたCH\＃1，すなわち，図6に示すサブ キャリア f_{1}～ f_{4} およびサブキャリア $\mathrm{f}_{1} 7$～f $_{2} 0$ に応答信号を配置する。同様にし て，配置部 1 O 9 は，R B \＃2 に対応付けられたCH\＃2，すなわち，サブキャリアf9
 れたCH\＃3，すなわち，サブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア f_{17}～f f_{2} にに応答信号を配置する。

【0 05 3】
ここで，図6に示す下り回線制御チャネルの配置において，図1において連続する 2 つ の上り回線 R B（例えば R B \＃1 と R B \＃2）にそれぞれ対応する下り回線制御チャネル （例えばCH\＃1とCH\＃2）は，互いに異なる周波数帯にDistributed配置されている。換言すれば，図6において同一周波数帯にLocalized配置されている下り回線制御チャ ネルは，図1において 2 R B 毎の不連続な复数の上り回線 R B にそれぞれ対応する下り回線制御チャネルである。具体的には，例えば，図6に示すサブキャリアf ${ }_{1} \sim f_{4}$ にLoca lized配置されている下り回線制御チャネルは，下り回線制御チャネルCH \＃1，CH \＃ 3，CH \＃5 およびCH \＃7 であり，それらの下り回線制御チャネルにそれぞれ対応付け られている上り回線RBは，図3に示すように，R B \＃1，R B \＃3，R B \＃5 およびR B \＃7 の 2 RB毎の不連続な R Bとなる。

【OO54】
よって，連続する复数の上り回線 R B を用いて移動局 2 O O から送信された上り回線デ ータに対する応答信号を基地局 100 が送信する場合，応答信号が同一周波数帯に集中し て配置されることを防ぐことができる。つまり，基地局 100 O，応答信号を複数の周波数帯に分散配置して送信することができる。例えば，上記のように移動局200に対する割当情報がRB\＃1～RB\＃3 である場合，配置部109は，図6に示すサブキャリアf
 12 およびサブキャリアf $25 \sim \mathrm{f}_{2} 8$ に応答信号を配置し，サブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ お よびサブキャリアf17～f20に応答信号を配置するため，下り回線制御チャネルが配
 8 に応答信号が万遍なく分散されて配置される。

【0 05 5】
このように，配置部 1 0 9 が葍3 に示す上り回線 R B と下り回線制御チャネルとの対応付け，および，図 6 に示す下り回線制御チャネルの配置に基づいて，下り回線制御チャネ ルに応答信号を配置することで，基地局 1 O O の無線送信部 1 1 2 は，上り回線 R B にそ れぞれ対応付けられて周波数軸上に分散配惪された下り回線制御チャネルを用いて移動局 200へ応答信号を送信することができる。

【0 056 〕
同様に，移動局 200 （図5）の配置特定部 209 は，図 3 に示す上り回線 R B と下り回線制御チャネルとの対応情報，および，図6に示す下り回線制御チャネル配置の情報を保持し，受信した割当情報より，応答信号が配惪された自局用の下り回線制御チャネルを特定する。具体的には，図 1 に示す R B \＃1～R B \＃3 が自局に割り当てられたことを示 す割当情報が復号部 2 0 8 から入力された場合，配惪特定部 2 0 9 は，図 3 に示す対応付 けより，図 6 に示すように，下り回線制御チャネルCH\＃1およびCH \＃3 が配置されて
 ルCH\＃2が配置されているサブキャリアf $9 \sim$ f 12 およびサブキャリア f $25 \sim f_{2}$ 8 とに，自局に対する応答信号が配置されていると特定する。

【O O 5 7】

このようにして本実施の形態によれば，連続する複数の上り回線R B を用いて送信され た上り回線データに対する応答信号が同一周波数帯に集中して符号多重されることを低減 し，応答信号を周波数軸上に分散して配置することができる。よって，本実施の形態によ れば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ることができる。

【0 05 8】
（実施の形態2）
実施の形態1のように，応答信号を拡散して生成される拡散ブロックを連続するサブキ ャリア（例えば，図 6 に示すサブキャリア $\mathrm{f}_{1} \sim_{\mathrm{f}}^{4}$ ）に配置することで，隣り合うサブ キャリア間で発生する符号間干渉（I S I ：InterSymbol Interference）を小さくしてI S I を十分無視できるレベルにすることができる。

【0 05 9】
しかしながら，基地局 1 0 0 が下り回線制御チャネル毎に送信電力制御を行う場合には ，同一周波数帯に配置されている复数の下り回線制御チャネルの間で送信電力が互いに異 なり，送信電力が大きい下り回線制御チャネルから送信電力が小さい下り回線制御チャネ ルに対するI S I が増加してI S I を無視することができなくなる。例えば，図6に示す下り回線制御チャネルCH \＃1 およびC H \＃3 に着目すると，下り回線制御チャネルCH \＃1 の送信電力が下り回線制御チャネルCH \＃3 の送信電力よりも大きい場合，下り回線制御チャネルCH \＃1 およびCH \＃3 は共にサブキャリア f $1 \sim \mathrm{f}_{4}$ およびサブキャリア f_{17}～f20の同一周波数帯に配置されているため，両方の周波数帯において下り回線制御チャネルCH \＃1 から下り回線制御チャネルCH \＃3 に対するI S I が発生してしま う。

【0 060 0
そこで，本実施の形態に係る配置部109は，互いに異なる配置パターンで周波数軸上 に分散配置された复数の下り回線制御チャネルに応答信号を配置する。

【0 0 6 1】
すなわち，上記図 6 において，下り回線制御チャネルCH\＃1およびCH \＃3 は共に同
 れているのに対し，本実施の形態では，図7に示すように，下り回線制御チャネルCH \＃ 1 の配置パターンと下り回線制御チャネルCH \＃3 の配置パターンとが互いに異なり，下
 oに配置されているとともに，下り回線制御チャネルCH\＃3がサブキャリアf ${ }_{1} \sim \mathrm{f}_{4}$ およびサブキャリアf ${ }^{2} ~ f 12$ に配置されている。つまり，本実施の形態では，図7に示すように，一方では，下り回線制御チャネルCH \＃1 および下り回線制御チャネルCH \＃3 の双方が同一サブキャリアf $1 \sim f_{4}$ に配置されているものの，他方では，下り回線制御チャネルCH \＃1 がサブキャリアf17～f20に配置され，下り回線制御チャネル CH \＃3 がサブキャリアf9～f12に配置されており，CH \＃1 とCH \＃3 とが互いに異なる配置パターンで周波数軸上に分散配置されている。

【0062】
これにより，実施の形態1同様にして配置部109がRB\＃1～RB3を用いて送信さ れた上り回線データに対する応答信号を下り回線制御チャネルCH \＃1～CH3に配置す る場合に，送信電力が大きい下り回線制御チャネルCH \＃1 と送信電力が小さい下り回線制御チャネルCH \＃3 との間において，サブキャリアf ${ }_{1} \sim \mathrm{f}_{4}$ ではIS I が発生し得る
発生しない。

【0063］
このようにして本実施の形態によれば，実施の形態1と同様の効果を得ることができ， かつ，送信電力制御により発生するIS I をランダム化してIS I を減少させることがで きる。

【0 064 4
なお，下り回線制御チャネルCH\＃1～CH\＃8を周波数軸上にランダムに配置するこ

とにより，下り回線制御チャネルCH \＃1～CH\＃8を互いに異なる配置パターンで周波数軸上に分散配置することができる。

【 0 O65 5
（実施の形態3）
本実施の形態では，隣接セル間において互いに異なる配置パターンを採る複数の下り回線制御チャネルに応答信号を配置する。

【0 066 6】
ここでは，セル 1 に隣接するセルがセル 2 の 1 つである場合について説明する。また， セル 1 とセル 2 とは，互いに同期しているものとする。また，セル 1 における下り回線制御チャネルの配置パターンを図6に示したものとする場合に，セル 2 における配置パター ンを図 8 に示すものとする。また，実施の形態 1 と同様，図 8 に示した下り回線制御チャ ネルは，連続する複数の上り回線 R B にそれぞれ対応付けられて周波数軸上に分散配置さ れている。

【OO67】
セル 1 における配置パターン（図6）とセル 2 における配置パターン（図 8 ）との間で は，同一周波数帯に配置されている下り回線制御チャネルが互いに異なる。つまり，セル 1 とセル 2 との間では，同一の下り回線制御チャネルが互いに異なる周波数帯に分散配置 されている。

【0 06 8】
具体的には，セル1では，図6に示すように，下り回線制御チャネルCH\＃1，CH\＃
 oに配置され，下り回線制御チャネルCH\＃2，CH\＃4，CH\＃6およびC H \＃8 がサブ キャリア f ${ }_{9} \sim f_{12}$ およびサブキャリア f_{25}～f 28 に配置される。これに対して， セル 2 では，図8に示すように，下り回線制御チャネルCH \＃2，CH \＃4，CH \＃6 およ
 り回線制御チャネルCH\＃1，CH\＃3，CH\＃5およびCH\＃7がサブキャリアf 9 ～f 12 およびサブキャリアf25～f28に配置される。

【O 06 9】
このように，本実施の形態では，下り回線制御チャネルCH\＃1～CH\＃8の周波数軸上における配置パターンを隣接セル間で互いに異ならせる。よって，本実施の形態によれ ば，同一セル内では実施の形態 1 と同様の効果を得ることができ，かつ，隣接セル間にお いて同じタイミングで応答信号が送信される場合に，隣接セル間での下り回線制御チャネ ル同士のセル間干渉をランダム化してセル間干渉を減少させることができる。

【0070】
なお，本実施の形態では，隣接セル間で本発明を実施する場合について説明したが，同一セル内の隣接セクタ間においても上記同様にして本発明を実施することができる。すな わち，上記説明において，セル 1 をセクタ 1 ，セル 2 をセクタ 2 と見なすことで，隣接セ クタ間において上記司様にして本発明を実施することができる。また，隣接セクタ間では同期を考慮する必要がないため，隣接セクタ間では，隣接セル間において本発明を実施す るよりも，容易に本発明を実施することが可能である。

【OOT1】
また，上記説明ではセルの数が 2 つの場合を一例として説明したが，セルの数が 3 つ以上の場合も上記同様にして本発明を実施することができる。

【OO72】
以上，本発明の各実施の形態について説明した。
【OO73】
なお，本発明をセルエッジ付近の移動局に対して適用してもよい。一般的にセルエッジ付近ではセル中心と比較して回線品質が劣悪であるため，セルエッジ付近の移動局は低い レベルのMCS（Modulation and Coding Scheme）を用いて上り回線データを送信する。 すなわち，セルエッジ付近の移動局は，セル中心の移動局と比較してより低い符号化率，

または，より小さい変調多値数の変調方式を用いて上り回線データを送信するため，より長い上り回線データ長，つまり，より多くの連続したR B を必要とする。そこで，本発明 をセルエッジ付近の移動局に対して適用することで，より大きい周波数ダイバーシチ効果 を得ることができる。

【O O 7 4 】
また，上記各実施の形態では，完全に連続する R B を一例に毟げて説明したが，一部不連続である箇所を含んでも連続性が高い R B であれば本発明を適用することができる。

【OO75】

また，上記各実施の形態では，上り回線R B の数を8つとした場合について説明したが ，上り回線R B の数は 8 つに限定されない。

【OO76】
 ～f20，f25～f28に8つの下り回線制御チャネルCH\＃1～CH\＃8が配置され る場合を一例に学げて説明したが，サブキャリア数および下り回線制御チャネル数はこれ らの数に限定されない。例えば，図9に示すように32本のサブキャリアに16個の下り回線制御チャネルCH \＃1～CH \＃1 6 が配置されてもよい。

【O O 7 7 】
また，上記各実施の形態では，下り回線制御チャネルが配置されたサブキャリアのみを図示して説明したが，下り回線制御チャネルが配置された周波数以外の周波数に，他の制御チャネルまたはデータチャネルを配置してもよい。

【0078】
また，上記各実施の形態では，応答信号を拡散した場合について説明したが，応答信号 を拡散せずに各周波数に配置された 1 つの下り回線制御チャネルに応答信号を配置して送信してもよい。例えば，図1 O に示すように，応答信号を拡散せずに，つまり，同一周波数で符号多重せずに，周波数軸上に分散配置された下り回線制御チャネルCH \＃1～CH \＃8に応答信号を配置してもよい。

【OO79】
また，上記各実施の形態では，拡散部 1 0 6 における拡散率を $\mathrm{SF}=4$ とし，レピティ ション部 1 O 7 におけるレピティションファクタをR F＝2 とした場合を一例に挙げて説明したが，SFおよびRFはこれらの値に限定されない。

【OO80】
また，上記各実施の形態では下り回線制御チャネルの配置方法について説明したが，本発明を上り回線制御チャネルに適用することもできる。例えば，移動局が上記基地局 10 ○と同様の処理を行い，基地局が上記移動局 200 と同様の処理を行うことにより，本発明を上り回線に適用することができる。

【0 0 8 1 】
また，上記各実施の形態では，上り回線のアクセス方式としてDFTs－FDMAを用 いた場合について説明したが，本発明はD F T s－F D M A に限らず，連続する複数のR Bを1つの移動局に割り当てる伝送方式において上記同様の効果を得ることができる。

【0082】
また，上記各実施の形態では下り回線の伝送方式としてOFDM方式を一例に学げたが本発明において下り回線の伝送方式は特に限定されず，異なる周波数を用いて送信を行 う伝送方式において上記同様の効果を得ることができる。

【OO 8 3】
また，上記各実施の形態の説明で用いた下り回線制御チャネルは，各移動局毎のACK信号またはN A C K 信号をフィードバックするためのチャネルであるため，一般的には個別制御チャネル（Dedicated Control Channel；DCCH）であり，ACK／NACKチ ヤネルと称されることもある。

【O O 8 4 】
また，上記各実施の形態では，応答信号を配置する下り回線制御チャネルについて説明

したが，下り回線制御チャネルに配置される信号は応答信号に限らない。例えば，再送時 の変調方式または符号化率を通知するための制御信号，再送時の送信電力を通知するため の制御信号，再送時の送信タイミングを通知するための制御信号または再送時のR B 割当 を通知するための制御信号等が下り回線制御チャネルに配置されることもある。

【0 0 8 5】
また，上記各実施の形態の説明で用いた R B は，例えばサブキャリアブロック，サブバ ンド等，周波数軸上の他の伝送単位であってもよい。

【O 0 86】
また，移動局はUE，基地局装置はNode B，サブキャリアはトーンと称されることもある。また，CPは，ガードインターバル（Guard Interval；G I）と称されることもある。

【OO 8 7】
また，誤り検出の方法はCRCに限られない。
【O O 8 8】
また，周波数領域と時間領域との間の変換を行う方法は，I F F T，F F Tに限られな い。

【O 0 89】
また，上記実施の形態では，本発明をハードウェアで構成する場合を例にとって説明し たが，本発明はソフトウェアで実現することも可能である。

【o 090 〕
また，上記実施の形態の説明に用いた各機能ブロックは，典型的には集積回路であるL S I として実現される。これらは個別に1チップ化されてもよいし，一部または全てを含 むように1チップ化されてもよい。ここでは，L S I としたが，集積度の違いにより，I C，システムLS I，スーパーL S I ，ウルトラ L S I と呼称されることもある。【OO91】
また，集積回路化の手法はL S I に限るものではなく，専用回路または汎用プロセッサ で実現してもよい。LSI製造後に，プログラムすることが可能なFPGA（Field Prog rammable Gate Array）や，LS I 内部の回路セルの接続や設定を再構成可能なリコンフ ィギュラブル・ブロセッサーを利用してもよい。

【OO 2 2】
さらには，半導体技術の進歩または派生する別技術によりLS I に置き換わる集積回路化の技術が登場すれば，当然，その技術を用いて機能ブロックの集皘化を行ってもよい。 バイオ技術の適用等が可能性としてありえる。
【産業上の利用可能性】
【OO93】
本発明は，移動体通信システム等に適用することができる。
【図面の簡単な説明】
【OO94】
【図 1】上り回線R B 配置例
【図2】下り回線制御チャネル配置例
【図3】上り回線 R B と下り回線制御チャネルとの対応を示す図
【図4】本発明の実施の形態1に係る基地局の構成を示すブロック図
【図5】本発明の実施の形態1に係る移動局の構成を示すブロック図
【図6】本発明の実施の形態1に係る下り回線制御チャネル配置を示す図
【図7】本発明の実施の形態 2 に係る下り回線制御チャネル配置を示す図
【図8】本発明の実施の形態3に係るセル 2 における下り回線制御チャネル配置を示 す図
【図9】その他の下り回線制御チャネル配置を示す図（例1）
【図10】その他の下り回線制御チャネル配置を示す図（例2）
【符号の説明】
【OO 5 5】

```
100 基地局
101 R B 割当部
102 符号化部
103, 105 変調部
104, 108 S / P部
106 拡散部
107 レピティション部
109 配置部
11O I F FT部
111 C P付加部
112 無線送信部
113 アンテナ
114 無線受信部
115 復調部
116 復号部
117 CRC部
200 移動局
201 アンテナ
202 無線受信部
203 CP除去部
204 FFT部
205 分離部
206, 210 P/ S部
207, 213 復調部
208 復号部
209 配置特定部
211 逆拡散部
212 合成部
214 送信制御部
215 符号化部
216 再送制御部
217 変調部
218 無線送信部
```


〔図2】

〔図 3】

〔図4】

〔図5】

〔図6】

〔図7】

〔図8】

〔図9】

〔図10】

【書類名】要約書

【要約】
【課題】下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること。
【解決手段】RB割当部101は，周波数スケジューリングにより各無線通信移動局装置 に対して，周波数軸上で連続する上り回線リソースブロックを割り当て，どの上り回線り ソースブロックをどの無線通信移動局装置に割り当てたかを示す割当情報を生成し，配置部109は，その割当情報に基づいて，それら連続する上り回線リソースブロックに対応付けられて周波数軸上に分散配置された下り回線制御チャネルに無線通信移動局装置への応答信号を配置する。
【選択図】図4

000005821
19900828
新規登録
506178449

大阪府門真市大字門真1006番地
松下電器産業株式会社
000005821
20081001
名称変更
506178449

大阪府門真市大字門真 1006 番地
パナソニック株式会社

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office．

出 願 年 月 日
Date of Application：

出 願 番 号
Application Number：
パリ条約による外国への出願 に用いる優先権の主張の基礎
となる出願の国コードと出願番号
The country code and number of your priority application， to be used for filing abroad under the Paris Convention，is
出 願 人

Applicant（s）：

2007年 5月 1日

特願2007－120853

JP2007－120853

パナソニック株式会社

特許庁長官
Commissioner， Japan Patent Office

【書類名】	特許願
【整理番号】	2040890084
【提出日】	平成19年5月1日
【あて先】	特許庁長官殿
【国際特許分類】	H04B 7／00
	H04L 12／00
【発明者】	
【住所又は居所】	石川県金沢市西念一丁目1番3号 株式会社パナソニックモバイ ル金沢研究所内
【氏名】	福岡 将
【発明者】】	
【住所又は居所】	大阪府門真市大字門真1006番地 松下電器産業株式会社内
【氏名】	西尾 昭彦
【発明者】	
【住所又は居所】	$\begin{aligned} & \text { ドイツ国 ランゲン 6 3 2 2 5 モンツァストラッセ 4 c } \\ & \text { パナソニック R \& Dセンター ジャーマニー ゲーエムベーハー } \\ & \text { 内 } \end{aligned}$
【氏名】	アレクサンダー ゴリチェク
［特許出願人】	
【識別番号】	000005821
【氏名又は名称】	松下電器産業株式会社
【代理人】	
【識別番号】	100105050
【弁理士】	
【氏名又は名称】	䉆田 公一
【先の出願に基づく優先権主張】	
【出願番号】	特願2007－77502
【出願日】	平成19年3月23日
【手数料の表示】	
【予納台帳番号】	041243
【納付金額】	16，000円
【提出物件の目録】	
【物件名】	特許請求の範囲 1
【物件名】	明細書 1
【物件名】	図面 1
【物件名】	要約書 1
【包括委任状番号】	9700376

【書類名】特許請求の範囲

［請求項1】
連続する複数のリソースブロック，または，連続する複数のCCEから構成される第 1制御チャネルを無線通信移動局装置に割り当てる割当手段と，

前記復数のリソースブロックまたは前記復数のCCEにそれぞれ対応付けられて周波数軸上に分散配置された複数の第2制御チャネルに前記無線通信移動局装置への制御信号を配置する配置手段と，

を具備する無線通信基地局装置。
【請求項 2】
前記配置手段は，前記無線通信移動局装置から送信されるデータに対するACK信号ま たはN A C K 信号を前記複数の第 2 制御チャネルに配置する，請求項1記載の無線通信基地局装置。
【請求項 3】
前記配置手段は，互いに異なる配置パターンで周波数軸上に分散配置された前記複数の第2制御チャネルに前記制御信号を配置する，
請求項 1 記載の無線通信基地局装置。
【請求項 4】
前記配置手段は，周波数軸上にランダムに配置された前記複数の第 2 制御チャネルに前記制御信号を配置する，
請求項 1 記載の無線通信基地局装置。
【請求項 5】
前記配置手段は，隣接セル間または隣接セクタ間において互いに異なる配置パターンを採る前記复数の第2制御チャネルに前記制御信号を配置する，

請求項1記載の無線通信基地局装置。
【請求項6】
自局に割り当てられた複数のリソースブロックまたは自局に割り当てられた第 1 制御チ ャネルを示す割当情報を受信する受信手段と，
前記割当情報に基づいて，前記複数のリソースブロックまたは前記第 1 制御チャネルを構成する複数のCCEにそれぞれ対応付けられて周波数軸上に分散配置された自局用の複数の第2制御チャネルを特定する特定手段と，

を具備する無線通信移動局装置。
【請求項 7】
連続する複数のリソースブロック，または，連続する複数のCCEにそれぞれ対応付け
て複数の制御チャネルを周波数軸上に分散配置する，
制御チャネル配置方法。

【書類名】明細書
【発明の名称】無線通信基地局装置および制御チャネル配置方法
【技術分野】
【O O O 1】
本発明は，無線通信基地局装置および制御チャネル配置方法に関する。
【背景技術】
【O 002 2】
移動体通信では，上り回線で無線通信移動局装置（以下，移動局と省略する）から無線通信基地局装置（以下，基地局という）へ伝送される上り回線データに対してARQ（Au tomatic Repeat Request）が適用され，上り回線データの誤り検出結果を示す心答信号が下り回線で移動局ヘフィードバックされる。基地局は上り回線データに対しCRC（Cycl ic Redundancy Check）を行って，CRC＝OK（誤り無し）であればACK（Acknowled gment）信号を，CRC＝NG（誤り有り）であればNACK（Negative Acknowledgment ）信号を応答信号として移動局ヘフィードバックする。

【OOO3】
下り回線の通信リソースを効率よく使用するために，上り回線データを伝送するための上り回線リソースブロック（Resource Block；R B）と，下り回線で応答信号を伝送する ための下り回線制御チャネルとを対応付けることにより，移動局が基地局から通知される R B の割当情報に従って，制御チャネルの割当情報を別途通知されなくても，自局への応答信号が伝送される制御チャネルを判断することができるARQについて最近検討されて いる（例えば，非特許文献 1 参照）。

【0 O O 4 】
また，応答信号の隣接セル間または隣接セクタ間における干渉を平均化するとともに，応答信号に周波数ダイバーシチゲインを得るために，応答信号を拡散し，その拡散した応答信号をさらにレピティションするARQについても最近検討されている（例えば，非特許文献 2 参照）。

【非特許文献1】3GPP RAN WG1 Meeting document，R1－070932，＂Assignment of Do wnlink ACK／NACK Channel＂，Panasonic，February 2007
【非特許文献2】3GPP RAN WG1 Meeting document，R1－070734，＂ACK／NACK Channel Transmission in E－UTRA Downlink＂，TI，February 2007
【発明の開示】
【発明が解決しようとする課題】
【OOO5】
最近検討されている上記 2 つの A R Q を組み合わせて用いることが考えられる。以下，下り回線制御チャネルへの応答信号の具体的な配置例について説明する。以下の説明では ，図 1 に示す上り回線 R B \＃1～RB \＃8 のいずれかを用いて移動局から送信された上り回線データを基地局が受信し，基地局は，図2に示すサブキャリアf $1 \sim \mathrm{f}_{4}$ ，サブキャ
 の 4 つの周波数帯に配置されている下り回線制御チャネルCH\＃1～CH\＃8に上り回線 データに対する応答信号（A C K 信号またはN A C K 信号）を配置して移動局へ送信する ものとする。また，基地局は，応答信号を拡散率（Spreading Factor；SF）S F＝4の拡散符号で拡散し，さらに拡散後の応答信号に対してレピティションファクタ（Repetiti on Factor；RF）RF＝2のレピティションを行う。よって，図2に示すように，下り
 7 ～f20の同一周波数帯にLocalized配置され，下り回線制御チャネルCH \＃5～CH
 calized配置される。

【0 006 6】
また，図 3 に示すように，図 1 に示す上り回線 R B と図 2 に示す下り回線制御チャネル とは1対1で対応付けられている。よって，図1に示すR B \＃1 を用いて送信された上り

回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH \＃1，つま り，図 2 に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア f_{17}～f f_{20} に配置される。同様に，図 1 に示すR B \＃2 を用いて送信された上り回線データに対する応答信号は，図3に示すように下り回線制御チャネルCH\＃2，つまり，図2に示すサブキャリアf ${ }_{1}$ ～f4 およびサブキャリアf17～f 20 に配置される。RB\＃3～RB\＃8についても同様である。

【0 007 7
また，周波数軸上で連続する複数のRBから符号化ブロックが構成され，1符号化ブロ ック単位にRB割当が行われる場合には，基地局は，1符号化ブロックに含まれる複数の上り回線 R B にそれぞれ対応付けられた複数の下り回線制御チャネルに応答信号を配置し て移動局に送信する。例えば，図1に示す上り回線RB\＃1～RB\＃8のうち，RB\＃1 ，RB\＃ 2 およびRB\＃3の3つの連続した上り回線RBで1符号化ブロックが構成され る場合には，基地局は，図2において，サブキャリアf ${ }_{1} \sim_{f} \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}{ }_{1}$ 7～f20の同一周波数帯にLocalized配置された下り回線制御チャネルCH\＃1，CH \＃2 およびC H \＃3 に拡散後の応答信号を符号多重して配置する。

【O O O 8】
このように，下り回線制御チャネルCH\＃1～CH\＃8は16本のサブキャリアf ${ }_{1}$～
例では，応答信号はサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \mathrm{~T}_{\mathrm{f}} \mathrm{f} 20$ の 8 本の サブキャリアにしか配㯰されない。つまり，上記の例では，応答信号は，下り回線制御チ ャネルが配置されている全サブキャリアのうち，半数のサブキャリアにしか配置されない ことになる。

【OOO9】

このように限られた周波数領域に配置された下り回線制御チャネルが用いられる場合，下り回線制御チャネルの配置位置によっては，わずかな周波数ダイバーシチ効果しか得ら れないことがある。

【OO10】
本発明は，かかる点に鑑みてなされたものであり，下り回線制御チャネルの周波数ダイ バーシチ効果を最大限に得ることができる基地局および制御チャネル配置方法を提供する ことを目的とする。
【課題を解決するための手段】
【 0 O 111 1】
本発明の基地局は，連続する複数のRB，または，連続する復数のCCEから構成され る第1制御チャネルを移動局に割り当てる割当手段と，前記複数のRBまたは前記複数の CCEにそれぞれ対応付けられて周波数軸上に分散配置された複数の第2制御チャネルに前記移動局への制御信号を配置する配置手段と，を具備する構成を採る。
【発明の効果】
【OO12】
本発明によれば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること ができる。
【発明を実施するための最良の形態】

【OO13】

以下，本発明の実施の形態について，添付畄面を参照して詳細に説明する。本発明の実施の形態に係る基地局は，OFDM方式により応答信号を送信する。また，本発明の実施 の形態に係る移動局は，DFTs－FDMA（Discrete Fourier Transform spread Freq uency Division Multiple Access）により上り回線データを送信する。DFTs－FDM Aにより上り回線データが送信される場合，上記のように，周波数軸上（周波数領域）で連続する複数のRBから符号化ブロックが構成され，基地局は1符号化ブロック単位に各移動局に対するRB割当を行う。

【lllll
（実施の形態1）
本実施の形態に係る基地局 100 の構成を図 4 に示し，本実施の形態に係る移動局 20 0 の構成を図 5 に示す。

【O 015 5】
なお，説明が煩雑になることを避けるために，図 4 では，本発明と密接に関連する上り回線データの受信，および，その上り回線データに対する応答信号の下り回線での送信に係わる構成部を示し，下り回線データの送信に係わる構成部の図示および説明を省略する。同様に，図 5 では，本発明と密接に関連する上り回線データの送信，および，その上り回線データに対する応答信号の下り回線での受信に係わる構成部を示し，下り回線データ の受信に係わる構成部の図示および説明を省略する。

【OO16】
図 4 に示す基地局 1 O O において，R B 割当部 1 O 1 は，周波数スケジューリングによ り各移動局に対して上り回線 R B を割り当て，どの上り回線R B をどの移動局に割り当て たかを示すR B 割当情報（すなわち，R B 割当結果を示す割当情報）を生成して符号化部 102 および配置部 1 0 9 に出力する。また，R B 割当部 1 O 1 は，1 符号化ブロックに含まれる連続する複数のR B を一単位としてR B 割当を行う。なお，R B はコヒーレント帯域幅程度に隣接するサブキャリアをいくつかまとめてブロック化したものである。

【O 017 7
符号化部 102 は，R B 割当情報を符号化して変調部 103 に出力する。
【OO18】
変調部 1 0 3 は，符号化後のRB割当情報を変調してRB割当情報シンボルを生成し， S／P 部（シリアル／パラレル変換部）104に出力する。

【OO19】
S／P部104は，変調部103から直列に入力されるRB割当情報シンボルを並列に変換して配置部 109 に出力する。

【0 020 〕
変調部 1 O 5 は，CRC部 1 1 7 から入力される応答信号を変調して拡散部 1 0 6 に出力する。

【0 021 1】
拡散部 1 0 6 は，変調部 1 0 5 から入力される応答信号を拡散して，拡散後の応答信号 をレピティション部107に出力する。

【0022】
レピティション部 1 0 7 は，拡散部1 0 6 から入力される応答信号を複製（レピティシ ョン）して，同一の応答信号を含む複数の応答信号をS／P部 108 に出力する。

【0 O 2 3 】
S／P部108は，レピティション部107から直列に入力される応答信号を並列に変換して配置部109に出力する。

【0 024 】
配置部 1 0 9 は，R B 割当情報シンボルおよび応答信号を，OFDMシンボルを構成す る複数のサブキャリアのいずれかに配置してIFFT（Inverse Fast Fourier Transform ）部 1 1 0 に出力する。ここで，配置部 1 0 9 は，R B 割当部 1 0 1 から入力されるR B割当情報に基づいて，上り回線 R B に対応付けられて周波数軸上に配置された下り回線制御チャネルに応答信号を配置する。例えば，R B 割当部101から上記区 1 に示すR B \＃ $1 ~ R$ B \＃3 が移動局 200 へのRB割当情報として入力された場合，配置部 109 は，図3に示すように，RB\＃1～RB\＃3を用いて移動局200から送信された上り回線デ ータに対する応答信号を下り回線制御チャネルCH\＃1～CH \＃3 に配置する。配惪部1 09における配置処理の詳細については後述する。

【O O 2 5】
I F F T 部 110 は，複数のサブキャリアのいずれかに配置されたRB割当情報シンボ ルおよび応答信号に対してIFFTを行ってOFDMシンボルを生成し，CP（Cyclic P
refix）付加部111に出力する。
［0 026 6］
CP付加部111は，OFDMシンボルの後尾部分と同じ信号をCPとしてOFDMシ ンボルの先頭に付加する。

【O 027 7】
無線送信部 112 は，C P 付加後のOFDMシンボルに対しD／A変換，増幅およびア ップコンバート等の送信処理を行ってアンテナ 113 から移動局 200 へ送信する。

【O 02 8】
一方，無線受信部 1 1 4 は，移動局 2 O O から送信された上り回線データをアンテナ 1 13 を介して受信し，この上り回線データに対しダウンコンバート，A／D 変換等の受信処理を行う。

【OO29】
復調部115は，上り回線データを復調し，復調後の上り回線データを復号部116に出力する。

【0 030 〕】
復号部 1 1 6 は，復調後の上り回線データを復号し，復号後の上り回線データをCRC部117に出力する。

〔0 0 3 1】

CRC部117は，復号後の上り回線データに対してCRCを用いた誤り検出を行って ，CRC＝OK（誤り無し）の場合はACK信号を，CRC＝NG（誤り有り）の場合は NACK信号を応答信号として生成し，生成した応答信号を変調部 1 0 5 に出力する。ま た，CRC部117は，CRC＝OK（誤り無し）の場合，復号後の上り回線データを受信データとして出力する。

【OO 2 2】

一方，図 5 に示す移動局 2 0 0 において，無線受信部 2 0 2 は，基地局 1 0 0 から送信 されたOFDMシンボルをアンテナ 201 を介して受信し，このOFDMシンボルに対し ダウンコンバート，A／D 変換等の受信処理を行う。

【0 O 3 3】
CP除去部2O3は，受信処理後のOFDMシンボルからCPを除去する。
【OO34】
FFT（Fast Fourier Transform）部2 O 4 は，CP除去後のOFDMシンボルに対し てFFTを行ってRB割当情報シンボルおよび応答信号を得て，それらを分離部205に出力する。

【lllll 003 5
分離部 205 は，入力される信号を R B 割当情報シンボルと応答信号とに分離して，R B割当情報シンボルをP／S部206に出力し，応答信号をP／S部210に出力する。 ここで，分離部 2 0 5 は，配置特定部 2 0 9 から入力される特定結果に基づいて，入力信号から応答信号を分離する。

【0 0 3 6】
P／S部206は，分離部205から並列に入力されるRB割当情報シンボルを直列に変換して復調部207に出力する。

【0037】
復調部207は，R B 割当情報シンボルを復調し，復調後のRB割当情報を復号部20 8 に出力する。

【0 0 3 8 8
復号部208は，復調後のRB割当情報を復号し，復号後のRB割当情報を送信制御部 214および配置特定部209に出力する。

【0 0 3 9 】
配置特定部209は，復号部208から入力されるRB割当情報に基づいて，自局から送信した上り回線データに対する応答信号が配置された下り回線制御チャネルを特定する

。例えば，自局に対するRB割当情報が上記図1に示すR B \＃1～R B \＃3 である場合，配置特定部 2 0 9 は，図 3 に示すように，応答信号が配置された自局用の下り回線制御チ ャネルがCH \＃1～CH \＃3 であると特定する。そして，配置特定部209は，特定結果 を分離部205に出力する。配置特定部209における特定処理の詳細については，後述 する。

【O 04 4 0 】
P／S 部210は，分離部205から並列に入力される応答信号を直列に変換して逆拡散部211に出力する。

【O 041 1】
逆拡散部211は，応答信号を逆拡散し，逆拡散後の応答信号を合成部212に出力す る。

【O O 4 2】
合成部212は，逆拡散後の応答信号において，レピティション元の応答信号と，その レピティション元の応答信号からレピティションにより生成された応答信号とを合成し，合成後の応答信号を復調部213に出力する。

【OO43】
復調部 2 1 3 は，合成後の応答信号に対して復調処理を行い，復調後の応答信号を再送制御部216に出力する。

【O O 4 4】
送信制御部214は，復号部208から入力されたR B 割当情報が上り回線 R B を自局 に割り当てることを示す R B 割当情報である場合に，R B 割当情報で示された R B に送信 データを配置して符号化部215に出力する。

【OO45】
符号化部215は，送信データを符号化して再送制御部216に出力する。
【OO46】
再送制御部216は，初回送信時には，符号化後の送信データを保持するとともに変調部217に出力する。再送制御部216は，復調部213からACK信号が入力されるま で送信データを保持する。また，再送制御部216は，復調部213からNACK信号が入力された場合，すなわち，再送時には，保持している送信データを変調部217に出力 する。

【O O 4 7】
変調部 2 1 7 は，再送制御部 2 1 6 から入力される符号化後の送信データを変調して無線送信部218に出力する。

【0 048 】
無線送信部 2 1 8 は，変調後の送信データに対しD／A 変換，増幅およびアップコンバ ート等の送信処理を行ってアンテナ 2 0 1 から基地局 1 0 0 へ 送信する。このようにして送信されるデータが上り回線データとなる。

【OO49】
次に，基地局 100 の配置部 109 における配置処理，および，移動局 200 の配置特定部209における特定処理の詳細について説明する。

【O 050 〕
本実施の形態では，図1に示すR B \＃1～R B \＃8 のいずれかを用いて移動局 2 O O か ら送信された上り回線データを基地局 100 が受信し，基地局 100 は，図 6 に示すサブ
 ブキャリア f 25 ～f 28 の 4 つの周波数帯に配置されている下り回線制御チャネルCH \＃1～CH \＃8 に上り回線データに対する応答信号（ACK信号またはNACK信号）を配置して移動局 200 へ送信する。また，図 2 と同様，基地局 100 の拡散部 106 が応答信号をS F＝4 の拡散符号で拡散し，さらにレピティション部107が拡散後の応答信号に対してR F＝2 のレピティションを行う。また，図 3 に示すように，図 1 に示す上り回線 R B と図 6 に示す下り回線制御チャネルとは 1 対 1 で対応付けられている。

【0 0051 1
配置部 1 0 9 は，複数のRBにそれぞれ対応付けられて周波数軸上に分散配置（Distri buted配置）された複数の下り回線制御チャネルに移動局200への応答信号を配置する。配置部109は，図3に示す上り回線RBと下り回線制御チャネルとの対応情報，およ び，図 6 に示す下り回線制御チャネル配置の情報を保持し，それらに基づいて下り回線制御チャネルが配置されているサブキャリアに応答信号を配置する。

【0 05 2】
具体的には，配置部 109 は，移動局 200 に対するRB割当情報がRB\＃1～RB \＃ 3 である場合，図 3 においてRB\＃1に対応付けられたCH\＃1，すなわち，図 6 に示す
 にして，配置部 1 0 9 は，R B \＃2 に対応付けられたC H \＃2，すなわち，サブキャリア

 oに応答信号を配置する。

【0 05 3】
ここで，図6に示す下り回線制御チャネルの配置において，図1において連続する2つ の上り回線RB（例えばRB\＃1とRB\＃2）にそれぞれ対応する下り回線制御チャネル
（例えばCH \＃1 とCH \＃2）は，互いに異なる周波数帯にDistributed配置されている。換言すれば，図6において同一周波数帯にLocalized配置されている下り回線制御チャ ネルは，図1において 2 R B毎の不連続な㙏数の上り回線 R B にそれぞれ対応する下り回線制御チャネルである。具体的には，例えば，図6に示すサブキャリアf1～f4にLoca lized配置されている下り回線制御チャネルは，下り回線制御チャネルCH \＃1，CH \＃ 3，CH \＃5 およびC H \＃7 であり，それらの下り回線制御チャネルにそれぞれ対応付け られている上り回線RBは，図3に示すように，R B \＃1，R B \＃3，R B \＃5 およびR B \＃7 の 2 RB毎の不連続な R Bとなる。

【OO54】
よって，連続する复数の上り回線 R B を用いて移動局 2 0 O から送信された上り回線デ ータに対する応答信号を基地局 1 0 0 が送信する場合，応答信号が同一周波数帯に集中し て配置されることを防ぐことができる。つまり，基地局 100 O ，応答信号を複数の周波数帯に分散配置して送信することができる。例えば，上記のように移動局200に対する R B 割当情報がR B \＃1～RB \＃3 である場合，配置部 1 0 9 は，図6に示すサブキャリ

 4 およびサブキャリア f $17 \sim$ f 20 に応答信号を配置するため，下り回線制御チャネル が配置されたすべてのサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ ， $\mathrm{f}_{9} \sim \mathrm{f}_{12}$ ， $\mathrm{f}_{17} \sim \mathrm{f}_{20} \mathrm{O}$ ， f_{25}～ f 28 に応答信号が万遍なく分散されて配置される。

【0 05 5】
このように，配置部 1 0 9 が図3 に示す上り回線 R B と下り回線制御チャネルとの対応付け，および，図 6 に示す下り回線制御チャネルの配置に基づいて，下り回線制御チャネ ルに応答信号を配置することで，基地局 100 の無線送信部 112 は，上り回線 R B にそ れぞれ対応付けられて周波数軸上に分散配置された下り回線制御チャネルを用いて移動局 200へ応答信号を送信することができる。

【0 056 】
同様に，移動局 200 （図5）の配置特定部209は，図3に示す上り回線RBと下り回線制御チャネルとの対応情報，および，図6に示す下り回線制御チャネル配惪の情報を保持し，受信した R B 割当情報より，応答信号が配置された自局用の下り回線制御チャネ ルを特定する。具体的には，図1に示すR B \＃1～RB \＃3 が自局に割り当てられたこと を示すR B 割当情報が復号部208から入力された場合，配惪特定部209は，図3に示 す対応付けより，図6に示すように，下り回線制御チャネルCH\＃1およびC H \＃3 が配置されているサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4} \mathrm{f}^{2}$ よびサブキャリア $\mathrm{f}_{17} \sim \mathrm{f}_{20} 0$ と，下り回線制

御チャネルCH\＃2が配置されているサブキャリアf ${ }^{2} \sim \mathrm{f}_{12}$ およびサブキャリア f_{2} $5 \sim$ f 28 とに，自局に対する応答信号が配置されていると特定する。

【O 057 7
このようにして本実施の形態によれば，連続する複数の上り回線R B を用いて送信され た上り回線データに対する応答信号が同一周波数帯に集中して符号多重されることを低減 し，応答信号を周波数軸上に分散して配置することができる。よって，本実施の形態によ れば，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ることができる。

【0 05 8】
（実施の形態2）
実施の形態1のように，応答信号を拡散して生成される拡散ブロックを連続するサブキ ャリア（例えば，図6に示すサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ ）に配置することで，隣り合うサブ キャリア間で発生する符号間干渉（I S I ：InterSymbol Interference）を小さくしてI S I を十分無視できるレベルにすることができる。

【0 O 5 9】
しかしながら，基地局 100 が下り回線制御チャネル毎に送信電力制御を行う場合には ，同一周波数帯に配置されている㙏数の下り回線制御チャネルの間で送信電力が互いに異 なり，送信電力が大きい下り回線制御チャネルから送信電力が小さい下り回線制御チャネ ルに対するI S I が増加して I S I を無視することができなくなる。例えば，図 6 に示す下り回線制御チャネルCH \＃1 およびC H \＃3 に着目すると，下り回線制御チャネルCH \＃1 の送信電力が下り回線制御チャネルCH \＃3 の送信電力よりも大きい場合，下り回線制御チャネルCH \＃1 およびCH \＃3 は共にサブキャリアf $1_{1} \sim_{4}{ }_{4}$ およびサブキャリア f_{17}～f20の同一周波数帯に配置されているため，両方の周波数帯において下り回線制御チャネルCH \＃1 から下り回線制御チャネルCH \＃3 に対するI S I が発生してしま う。

【0 066 0】
そこで，本実施の形態に係る配置部109は，互いに異なる配置パターンで周波数軸上 に分散配置された複数の下り回線制御チャネルに応答信号を配置する。

【0061】
すなわち，上記図 6 において，下り回線制御チャネルCH \＃1 およびCH \＃3 は共に同一の配置パターンでサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \mathrm{~N}_{\mathrm{f}} \mathrm{f}_{2} 0$ に配置さ れているのに対し，本実施の形態では，図7に示すように，下り回線制御チャネルCH \＃ 1 の配置パターンと下り回線制御チャネルCH \＃3 の配置パターンとが互いに異なり，下
 oに配置されているとともに，下り回線制御チャネルCH\＃3がサブキャリアf1～f4 およびサブキャリアf ${ }^{2} ~ \mathrm{f}_{12}$ に配置されている。つまり，本実施の形態では，図 7 に示すように，一方では，下り回線制御チャネルCH \＃1 および下り回線制御チャネルCH \＃3 の双方が同一サブキャリアf $1 \sim f_{4}$ に配直されているものの，他方では，下り回線制御チャネルCH \＃1 がサブキャリアf17～f20に配㯰され，下り回線制御チャネル CH \＃3 がサブキャリアf $9 \sim$ f 12 に配置されており，CH\＃1とCH\＃3とが互いに異なる配置パターンで周波数軸上に分散配置されている。

【0062】
これにより，実施の形態1同様にして配置部109がRB\＃1～RB3を用いて送信さ れた上り回線データに対する応答信号を下り回線制御チャネルCH\＃1～CH3に配置す る場合に，送信電力が大きい下り回線制御チャネルCH\＃1と送信電力が小さい下り回線制御チャネルCH \＃3 との問において，サブキャリアf ${ }_{1}$～f 4 ではIS I が発生し得る ものの，サブキャリアf9～f12およびf17～f20の両方の周波数帯ではISIが発生しない。

【0 0 6 3 】
このようにして本実施の形態によれば，実施の形態1と同様の効果を得ることができ， かつ，送信電力制御により発生するI S I をランダム化してIS I を減少させることがで

きる。
【O O 6 4 】
なお，下り回線制御チャネルCH\＃1～CH\＃8を周波数軸上にランダムに配置するこ とにより，下り回線制御チャネルCH\＃1～CH\＃8を互いに異なる配置パターンで周波数軸上に分散配置することができる。

【 0065 】
（実施の形態3）
本実施の形態では，隣接セル問において互いに異なる配置パターンを採る複数の下り回線制御チャネルに応答信号を配惪する。

【0 066 6】
ここでは，セル 1 に隣接するセルがセル 2 の 1 つである場合について説明する。また， セル 1 とセル 2 とは，互いに同期しているものとする。また，セル 1 における下り回線制御チャネルの配置パターンを図 6 に示したものとする場合に，セル 2 における配置パター ンを図 8 に示すものとする。また，実施の形態 1 と同様，図 8 に示した下り回線制御チャ ネルは，連続する複数の上り回線 R B にそれぞれ対応付けられて周波数軸上に分散配置さ れている。

【O 067 7
セル 1 における配置パターン（図6）とセル 2 における配置パターン（図 8 ）との間で は，同一周波数帯に配置されている下り回線制御チャネルが互いに異なる。つまり，セル 1 とセル 2 との間では，同一の下り回線制御チャネルが互いに異なる周波数帯に分散配置 されている。

【0 06 8】
具体的には，セル1では，図6に示すように，下り回線制御チャネルCH\＃1，CH \＃
 oに配惪され，下り回線制御チャネルCH \＃2，CH \＃4，C H \＃6 およびC H \＃8 がサブ キャリア $\mathrm{f}_{9} \sim \mathrm{f}_{12}$ およびサブキャリア $\mathrm{f}_{2} \mathrm{~F}^{\text {～}} \mathrm{f}_{2} 8$ に配置される。これに対して， セル 2 では，図 8 に示すように，下り回線制御チャネルCH\＃2，CH \＃4，CH \＃6 およ
 り回線制御チャネルCH\＃1，CH\＃3，CH\＃5およびCH\＃7がサブキャリアf $9 \sim f$ 12 およびサブキャリアf25～f28に配置される。

【O O 6 9】
このように，本実施の形態では，下り回線制御チャネルCH\＃1～CH\＃8の周波数軸上における配置パターンを隣接セル間で互いに異ならせる。よって，本実施の形態によれ ば，同一セル内では実施の形態 1 と同様の効果を得ることができ，かつ，隣接セル間にお いて同じタイミングで応答信号が送信される場合に，隣接セル間での下り回線制御チャネ ル同士のセル間干渉をランダム化してセル間干渉を減少させることができる。

【0070】
なお，本実施の形態では，隣接セル間で本発明を実施する場合について説明したが，同一セル内の隣接セクタ間においても上記同様にして本発明を実施することができる。すな わち，上記説明において，セル 1 をセクタ1，セル 2 をセクタ 2 と見なすことで，隣接セ クタ間において上記同様にして本発明を実施することができる。また，隣接セクタ間では同期を考慮する必要がないため，隣接セクタ間では，隣接セル間において本発明を実施す るよりも，容易に本発明を実施することが可能である。

【0 071 1】
また，上記説明ではセルの数が 2 つの場合を一例として説明したが，セルの数が 3 つ以上の場合も上記同様にして本発明を実施することができる。

【OO 0 2】
（実施の形態4）
本実施の形態では，CCE（Control Channel Element）と，下り回線で応答信号を伝送するための下り回線制御チャネルとを対応付ける場合について説明する。

【O O 7 3 】
上り回線データを移動局から基地局へ送信するために必要な制御情報，例えば上記R B割当情報は，応答信号を伝送するための下り回線制御チャネルとは別の下り回線制御チャ ネル，例えばSCCH（Shared Control Channel）を用いて基地局から移動局へ送信され る。

【o 074 】
また，基地局は各移動局に対し複数のS C C H の中のいずれかのS C C H を割り当て， どのSCCHをどの移動局に割り当てたかを示すSCCH割当情報（すなわち，SCCH割当結果を示す割当情報）を，R B 割当情報の送信前に各移動局へ送信する。

【O 075 5
また，各S CCHは1つまたは複数のCCEから構成される。例えば，SCCH\＃1～ SCCH\＃8はそれぞれ図9に示すような構成を採る。すなわち，SCCH\＃1はCCE \＃1，CCE\＃2，SCCH\＃2はCCE\＃3，CCE\＃4，SCCH\＃3はCCE\＃5， CCE\＃6，SCCH\＃4はCCE\＃7，CCE\＃8，SCCH\＃5はCCE\＃1～CC E\＃4，SCCH\＃6はCCE\＃5～CCE\＃8でそれぞれ構成される。このように， 1 つのSCCHが复数のCCEから構成される場合，1つのSCCHは連続する複数のCC Eから構成される。

【0 076 】
なお，CCE\＃1～CCE\＃8と，周波数軸上（周波数領域）における物理リソースと の対応関係は例えば叉10に示すようになる。つまり，1つのCCEは，周波数軸上に分散配置された複数の物理リソースに対応する。

【O 07 7】
ここで，下り回線の通信リソースを効率よく使用するために，CCEと，下り回線で応答信号を伝送するための下り回線制御チャネルとを対応付けることにより，移動局が基地局から通知されるS C C H 割当情報に従って，自局への心答信号が伝送される制御チャネ ルを判断することが考えられる。例えば，図11に示すように，図9に示すCCEと図2 に示す下り回線制御チャネルとを1対1で対応付ける。よって，図9に示すS C C H \＃1 を割り当てられた移動局からの上り回線データに対する応答信号は，図11に示すように下り回線制御チャネルCH \＃1 およびCH \＃2，つまり，図 2 に示すサブキャリアf ${ }_{1}$～ f4およびサブキャリアf17～f20に配置される。同様に，図9に示すSCCH\＃ 2
を割り当てられた移動局からの上り回線データに対する応答信号は，図11に示すように下り回線制御チャネルCH \＃3 およびCH \＃4，つまり，図 2 に示すサブキャリアf ${ }_{1}$～ f4およびサブキャリアf17～f20に配置される。SCCH\＃3～SCCH\＃6につ いても同様である。

【OO78】
このように下り回線制御チャネルCH \＃1～CH \＃8 は 16 本のサブキャリア f_{1}～f 4，f9～f12，f17～f20，f $25 \sim \mathrm{f}_{2} 8$ に渡って配置されているが，上記の例 では，応答信号はサブキャリア $\mathrm{f}_{1} \sim \mathrm{f}_{4}$ およびサブキャリア $\mathrm{f}_{17} \sim \mathrm{f}_{20}$ の 8 本のサ ブキャリアにしか配置されない。つまり，上記の例では，応答信号は，下り回線制御チャ ネルが配置されている全サブキャリアのうち，半数のサブキャリアにしか配置されないこ とになる。

【OO79】
よって，図11に示すように下り回線CCE \＃1～CCE \＃8 と下り回線制御チャネル CH\＃1～CH\＃8とを1対1で対応付ける場合にも，図3に示すように上り回線RB\＃ $1 \sim$ RB\＃8と下り回線制御チャネルCH\＃1～CH\＃8とを1対1で対応付ける場合と同様に，下り回線制御チャネルの配置位置によっては，わずかな周波数ダイバーシチ効果 しか得られないことがある。

【0 0 80】
そこで，本実施の形態では，下り回線CCE \＃1～CCE \＃8 と下り回線制御チャネル CH\＃1～CH\＃8とを対応付ける場合に，下り回線制御チャネルCH\＃1～CH\＃8の

配置を図6（実施の形態1）に示したものにする。
【0 081 1
本実施の形態に係る基地局 300 の構成を図 12 に示し，本実施の形態に係る移動局 4 OOの構成を図 13 に示す。なお，図 12 において図 4 （実施の形態 1 ）と同一の構成部 には同一符号を付し，説明を省略する。また，図 13 において図 5 （実施の形態 1 ）と同一の構成部には同一符号を付し，説明を省略する。

【0 0 8 2】
図12に示す基地局 3 0 0 において，SCCH割当部301は，各移動局に対してSC CH\＃1～SCCH\＃8のいずれかを割り当て，SCCH割当情報を生成して符号化部3 02 および配置部 305 に出力する。

【O O 8 3】
符号化部302は，SCCH割当情報を符号化して変調部303に出力する。
【0 0 8 4】
変調部303は，符号化後のSCCH割当情報を変調してSCCH割当情報シンボルを生成し，S／P部304に出力する。

【O 0 8 5 】
S／P 部3 O 4 は，変調部 3 O 3 から直列に入力されるS C C H 割当情報シンボルを並列に変換して配置部305に出力する。

【0 086 6】
配㯰部 3 0 5 は，S C C H 割当情報シンボル，R B 割当情報シンボルおよび応答信号を ，OFDMシンボルを構成する複数のサブキャリアのいずれかに配置してIFFT部30 6 に出力する。

【0 08 7】
ここで，配置部305は，SCCH割当部301から入力されるSCCH割当情報に基 づいて，CCEに対応付けられて周波数軸上に配置された下り回線制御チャネルに応答信号を配置する。例えば，S C C H 割当部 3 O 1 から図 9 に示すS C C H \＃1 が移動局 40 0へのSCCH割当情報として入力された場合，SCCH\＃1は図9に示すようにCCE \＃1 およびCCE \＃2 で構成されるため，配置部 3 0 5 は，図11 に示すように，移動局 400から送信された上り回線データに対する応答信号をCCE\＃1およびCCE \＃2 に それぞれ対応する下り回線制御チャネルCH \＃1 およびC H \＃2 に配置する。この配㯰処理の詳細については後述する。

【0 O 8 8】
また，配置部305は，SCCH割当部301から入力されるSCCH割当情報に基づ いて，周波数軸上に配置されたSCCH\＃1～SCCH\＃8のいずれかにRB割当情報シ ンボルを配置する。例えば，SCCH割当部301からSCCH\＃1が移動局400への SCCH割当情報として入力された場合，配置部305はSCCH\＃1にRB割当情報シ ンボルを配置する。

【OO 8 9】
I FFT部306は，複数のサブキャリアのいずれかに配置されたSCCH割当情報シ ンボル，R B 割当情報シンボルおよび応答信号に対してIFFTを行ってOFDMシンボ ルを生成し，C P 付加部111に出力する。

【OOMO］
一方，図13に示す移動局 40 Oにおいて，FFT部 401 は，CP除去後のOFDM シンボルに対してFFTを行ってS C C H 割当情報シンボル，R B 割当情報シンボルおよ び応答信号を得て，それらを分離部 402 に出力する。

【OOM1】
分離部402は，入力される信号をSCCH割当情報シンボルと，RB割当情報シンボ ルと，応答信号とに分離して，SCCH割当情報シンボルをP／S部403に出力し，R B割当情報シンボルをP／S部206に出力し，応答信号をP／S 部2 1 O に出力する。 ここで，分離部 402 は，配置特定部 406 から入力される特定結果に基づいて，入力信

号からRB割当情報シンボルおよび応答信号を分離する。
【0092】
P／S部403は，分離部402から並列に入力されるSCCH割当情報シンボルを直列に変換して復調部 404 に出力する。

【OO 3 3
復調部 4 O 4 は，S C C H 割当情報シンボルを復調し，復調後のS C C H 割当情報を復号部405に出力する。

【OO94】
復号部4 O 5 は，復調後のSCCH割当情報を復号し，復号後のSCCH割当情報を配置特定部406に出力する。

【0 09 5】
配置特定部406は，復号部405から入力されるSCCH割当情報に基づいて，自局 から送信した上り回線データに対する応答信号が配置された下り回線制御チャネルを特定 する。例えば，自局に対するSCCH割当情報が図9に示すSCCH\＃1 である場合，S CCH \＃1 は図9に示すようにCCE \＃1 およびCCE \＃2 で構成されるため，配置特定部406は，図11に示すように，応答信号が配置された自局用の下り回線制御チャネル がC H \＃1 およびC H \＃2 であると特定する。そして，配置特定部 4 0 6 は，特定結果を分離部402に出力する。この特定処理の評細については，後述する。

【o 096 －
また，配㯰特定部 4 0 6 は，復号部4 0 5 から入力されるSCCH割当情報に基づいて ，自局へのRB割当情報シンボルが配置されたS C C H を特定する。例えば，自局に対す るSCCH割当情報がSCCH\＃1 である場合，配置特定部406は，自局へのRB割当情報シンボルが配置された自局用のS C C H がSCCH\＃1 であると特定する。そして，配直特定部 406 は，特定結果を分離部 402 に出力する。

【0097】
復号部2 08 は，復調後のRB割当情報を復号し，復号後のRB割当情報を送信制御部 214に出力する。

【0 O 9 8 】
次に，基地局 300 の配置部 305 における配置処理，および，移動局 400 の配置特定部406における特定処理の詳細について説明する。

【OO99】
本実施の形態では，図9に示すSCCH\＃1～SCCH\＃8のいずれかを用いて基地局 300から送信されたRB割当情報を移動局 400が受信する。また，基地局300は，
 f 20 およびサブキャリア f 25 ～f 28 の 4 つの周波数帯に配置されている下り回線制御チャネルCH\＃1～CH\＃8に上り回線データに対する応答信号（ACK信号またはN ACK信号）を配置して移動局 400へ送信する。また，図 2 と同様，基地局 300の拡散部106が応答信号をSF＝4の拡散符号で拡散し，さらにレピティション部107が拡散後の応答信号に対してRF＝2のレピティションを行う。また，図11に示すように ，図 9 に示すCCEと図 6 に示す下り回線制御チャネルとは 1 対 1 で対応付けられている。
$\left.\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
配置部305は，複数のCCEにそれぞれ対応付けられて周波数軸上に分散配惪（Dist ributed配置）された複数の下り回線制御チャネルに移動局400への応答信号を配置す る。配置部 3 0 5 は，図 9 に示すSCCHとCCEとの対応情報，図11に示すCCEと下り回線制御チャネルとの対応情報，および，図 6 に示す下り回線制御チャネル配置の情報を保持し，それらに基づいて下り回線制御チャネルが配置されているサブキャリアに応答信号を配置する。

〔0101】
具体的には，移動局 400に対するSCCH割当情報がSCCH\＃1 である場合，SC

CH \＃1 は図9に示すようにCCE\＃1およびCCE\＃2で構成されるため，配置部30 5は，図11においてCCE\＃1に対応付けられたCH\＃1，すなわち，畄6に示すサブ キャリア $\mathrm{f}_{1} \sim_{\mathrm{f}}^{4}$ およよびサブキャリア $\mathrm{f}_{1} 7 \sim_{\text {f }} 20$ に応答信号を配置するとともに， CCE\＃2に対応付けられたCH\＃2，すなわち，サブキャリアf9～f12 およびサブ キャリアf25～f28に応答信号を配惪する。

【O 102 2】
ここで，図6に示す下り回線制御チャネルの配置において，図9において連続する 2 つ の下り回線CCE（例えばCCE\＃1とCCE\＃2）にそれぞれ対応する下り回線制御チ ャネル（例えばCH\＃1とCH\＃2）は，互いに異なる周波数帯にDistributed配置され ている。換言すれば，図6において同一周波数帯にLocalized配置されている下り回線制御チャネルは，図9において 2 C C E毎の不連続な複数の下り回線CCEにそれぞれ対応 する下り回線制御チャネルである。具体的には，例えば，図6に示すサブキャリアf ${ }_{1}$～ f_{4} にLocalized配置されている下り回線制御チャネルは，下り回線制御チャネルCH \＃ 1，CH \＃3，CH \＃5およびCH \＃7 であり，それらの下り回線制御チャネルにそれぞ れ対応付けられている下り回線CCEは，図11に示すように，CCE\＃1，CCE\＃3 ，CCE\＃5およびCCE\＃7の2CCE毎の不連続なCCEとなる。

【O 103 〕
よって，連続する複数のCCEから構成されるSCCHを用いてRB割当情報を送信さ れた移動局 400から送信された上り回線データに対する応答信号を基地局300が送信 する場合，応答信号が同一周波数帯に集中して配置されることを防ぐことができる。つま り，基地局 300 は，応答信号を複数の周波数帯に分散配置して送信することができる。例えば，上記のように移動局 4 O O に対するS C C H 割当情報がSCCH\＃1である場合

 ～f28に応答信号を配置するため，下り回線制御チャネルが配惪されたすべてのサブキ
分散されて配置される。

【O 104 －
このように，配置部 3 0 5 が，図9に示すS CCHとCCEとの対応付け，図11に示 すCCEと下り回線制御チャネルとの対応付け，および，図6に示す下り回線制御チャネ ル配置に基づいて，下り回線制御チャネルに応答信号を配置することで，基地局 300 の無線送信部 1 1 2 は，下り回線C C E にそれぞれ対応付けられて周波数軸上に分散配置さ れた下り回線制御チャネルを用いて移動局 4 0 0 へ 応答信号を送信することができる。

【0105】
同様に，移動局 400 （図 13 ）の配置特定部 4 0 6 は，図 9 に示す S C C HとCCE との対応情報，図11に示すCCEと下り回線制御チャネルとの対応情報，および，図6 に示す下り回線制御チャネル配置の情報を保持し，受信したS C C H 割当情報より，応答信号が配置された自局用の下り回線制御チャネルを特定する。具体的には，図9に示すS CCH\＃1が自局に割り当てられたことを示すSCCH割当情報が復号部 4 O 5 から入力 された場合，配置特定部 4 0 6 は，図 9 および図 1 1 に示す対応付けより，図 6 に示すよ うに，下り回線制御チャネルCH \＃1 が配置されているサブキャリアf $1_{1} \sim_{f} \mathrm{f}_{4}$ およびサ ブキャリアf17～f20と，下り回線制御チャネルCH \＃2 が配置されているサブキャ リアf9～f12およびサブキャリアf $25 \sim$ f 28 とに，自局に対する応答信号が配惪 されていると特定する。

【0106】
このようにして本実施の形態によれば，1つのS C C H が連続する複数の下り回線C C Eから構成される場合に，応答信号が同一周波数帯に集中して符号多重されることを低減 し，応答信号を周波数軸上に分散して配置することができる。よって，本実施の形態によ れば，実施の形態 1 同様，下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得 ることができる。

【0 107 7
なお，本実施の形態では，複数のCCEから構成される制御チャネルの一例としてS C CHを学げたが，本発明を適用可能な制御チャネルはS C C H に 限らない。連続する複数 のCCEから構成されるすべての制御チャネル対して本発明を適用可能である。

【0 108 8】
また，本実施の形態に係る配置部 3 0 5 は，実施の形態 2 と同様に，互いに異なる配置 パターンで周波数軸上に分散配置された復数の下り回線制御チャネルに応答信号を配置し てもよい。

【0109】
また，本実施の形態に係る配置部 3 0 5 は，実施の形態3と同様に，隣接セル間または隣接セクタ間において互いに異なる配置パターンを採る複数の下り回線制御チャネルに応答信号を配㯰してもよい。

【O110】
また，本実施の形態では，S C C H でのR B 割当情報の送信前にS C C H 割当情報を送信する場合について説明したが，必ずしもR B 割当情報送信前にS C C H 割当情報の送信 を行う必要はない。例えば，基地局が，移動局を識別可能な移動局 I D を S C C H に含め て送信し，移動局は受信したすべてのS C C Hを復号して自局へのS C C H か否かをブラ インド判定することにより，R B 割当情報送信前のS C C H 割当情報の送信を不要とする ことができる。

【 01111 】
また，新たに割り当てられたS C C H のC C Eと対応する下り回線制御チャネルへ移行 するタイミングについては，固定のタイミングを予め設定しておいてもよく，また，適応的に変化するタイミングを基地局から移動局へ S C C H 等を用いて通知してもよい。

【O 112 】
また，SCCH\＃1～SCCH\＃6がそれぞれ図14に示すような構成を採る場合，す なわち，SCCH\＃1はCCE\＃1，CCE\＃3，SCCH\＃2はCCE\＃5，CCE\＃7 ，SCCH\＃3はCCE\＃2，CCE\＃4，SCCH\＃4はCCE\＃6，CCE\＃8，SC CH\＃5はCCE\＃1，CCE\＃3，CCE\＃5，CCE\＃7，SCCH\＃6はCCE\＃2， CCE\＃4，CCE\＃6，CCE \＃8 でそれぞれ構成される場合には，下り回線制御チャネ ルCH\＃1～CH\＃8の配置を図15に示すものにするとよい。図14において各SCC Hを構成する複数の下り回線CCE（例えばSCCH \＃1 を構成するCCE \＃1 とC C E \＃3）にそれぞれ対応する下り回線制御チャネル（例えばCH\＃1とCH\＃3）は，互い に異なる周波数帯にDistributed配置されている。よって，複数のCCEから構成される SCCHを用いてRB割当情報を送信された移動局 4 0 0 から送信された上り回線データ に対する応答信号を基地局 3 0 O が送信する場合，応答信号が同一周波数帯に集中して配置されることを防ぐことができる。つまり，基地局 3 O O は，上記同様，応答信号を複数 の周波数帯に分散配置して送信することができる。

【01131］
以上，本発明の実施の形態について説明した。

［0114］

なお，本発明をセルエッジ付近の移動局に対して適用してもよい。一般的にセルエッジ付近ではセル中心と比較して回線品質が劣悪であるため，セルエッジ付近の移動局は低い レベルのMCS（Modulation and Coding Scheme）を用いて上り回線データを送信する。 すなわち，セルエッジ付近の移動局は，セル中心の移動局と比較してより低い符号化率， または，より小さい変調多値数の変調方式を用いて上り回線データを送信するため，より長い上り回線データ長，つまり，より多くの連続したRBを必要とする。そこで，本発明 をセルエッジ付近の移動局に対して適用することで，より大きい周波数ダイバーシチ効果 を得ることができる。

【0115】
また，上記実施の形態では，完全に連続するRBを一例に学げて説明したが，一部不連

続である箇所を含んでも連続性が高いR B であれば本発明を適用することができる。
【0116］
また，上記実施の形態では，上り回線R B の数および下り回線CCEの数を8つとした場合について説明したが，上り回線 R B の数および下り回線 C C E の数は 8 つに限定され ない。

【0 1 1 7 $]$

場合を一例に学げて説明したが，サブキャリア数および下り回線制御チャネル数はこれら の数に限定されない。例えば，図16に示すように 32 本のサブキャリアに 16 個の下り回線制御チャネルCH \＃1～CH \＃1 6 が配置されてもよい。

【 $\left.\begin{array}{llll}0 & 1 & 1 & 8\end{array}\right]$
また，上記実施の形態では，下り回線制御チャネルが配置されたサブキャリアのみを図示して説明したが，下り回線制御チャネルが配置された周波数以外の周波数に，他の制御 チャネルまたはデータチャネルを配置してもよい。

【O119】
また，上記実施の形態では，応答信号を拡散した場合について説明したが，応答信号を拡散せずに各周波数に配置された 1 つの下り回線制御チャネルに応答信号を配置して送信 してもよい。例えば，図17に示すように，応答信号を拡散せずに，つまり，同一周波数 で符号多重せずに，周波数軸上に分散配㯰された下り回線制御チャネルCH\＃1～CH \＃ 8 に応答信号を配置してもよい。

【0 1 2 0 】
また，上記実施の形態では，拡散部 106 における拡散率を $\mathrm{SF}=4$ とし，レピティシ ョン部 1 O 7 におけるレピティションファクタをRF＝2とした場合を一例に学げて説明 したが，SFおよびR F はこれらの値に限定されない。

【0121】
また，上記実施の形態では下り回線制御チャネルの配置方法について説明したが，本発明を上り回線制御チャネルに適用することもできる。例えば，移動局が上記基地局 100 または300と同様の処理を行い，基地局が上記移動局200または400と同様の処理 を行うことにより，本発明を上り回線に適用することができる。

【O 1 2 2】
また，上記実施の形態では，上り回線のアクセス方式としてD FTs－FDMAを用い た場合について説明したが，本発明はD FTs－F DMAに限らず，連続する複数のRB を1つの移動局に割り当てる伝送方式または連続する復数のCCEから1つの制御チャネ ルが構成される伝送方式において上記同様の効果を得ることができる。

【0 1 2 3】
また，上記実施の形態では下り回線の伝送方式としてOFDM方式を一例に学げたが，本発明において下り回線の伝送方式は特に限定されず，異なる周波数を用いて送信を行う伝送方式において上記同様の効果を得ることができる。

【0124】
また，上記実施の形態の説明で用いた下り回線制御チャネルは，各移動局毎のACK信号またはNACK信号をフィードバックするためのチャネルであるため，一般的には個別制御チャネル（Dedicated Control Channel；DCCH）であり，ACK／NACKチャ ネルと称されることもある。

【0125】
また，上記実施の形態では，応答信号を配置する下り回線制御チャネルについて説明し たが，下り回線制御チャネルに配置される信号は応答信号に限らない。例えば，再送時の変調方式または符号化率を通知するための制御信号，再送時の送信電力を通知するための制御信号，再送時の送信タイミングを通知するための制御信号または再送時のRB割当を通知するための制御信号等が下り回線制御チャネルに配置されることもある。

【0 126 】
また，上記実施の形態の説明で用いた R B は，例えばサブキャリアブロック，サブバン ド等，周波数軸上の他の伝送単位であってもよい。

【0 127 7
また，移動局はUE，基地局装置はNode B，サブキャリアはトーンと称されることもある。また，CPは，ガードインターバル（Guard Interval；GI）と称されることもある。

【0 12 8】
また，誤り検出の方法はCRCに限られない。
【0129】
また，周波数領域と時間領域との間の変換を行う方法は，I F F T，F F T に限られな い。

【0 13 O 1
また，上記実施の形態では，本発明をハードウェアで構成する場合を例にとって説明し たが，本発明はソフトウェアで実現することも可能である。

【0 13 1】
また，上記実施の形態の説明に用いた各機能ブロックは，典型的には集積回路であるL S I として実現される。これらは個別に1チッブ化されてもよいし，一部または全てを含 むように1チップ化されてもよい。ここでは，L S I としたが，集皘度の違いにより，I C，システムLS I，スーパーL S I ，ウルトラL S I と呼称されることもある。

【0 13 2】
また，集積回路化の手法はL S I に限るものではなく，専用回路または汎用プロセッサ で実現してもよい。L S I 製造後に，プログラムすることが可能なFPGA（Field Prog rammable Gate Array）や，LS I 内部の回路セルの接続や設定を再構成可能なリコンフ ィギュラブル・ブロセッサーを利用してもよい。

【O 13 3】
さらには，半導体技術の進歩または派生する別技術によりL S I に置き換わる集積回路化の技術が登場すれば，当然，その技術を用いて機能ブロックの集積化を行ってもよい。 バイオ技術の適用等が可能性としてありえる。
【産業上の利用可能性】
【O134】
本発明は，移動体通信システム等に適用することができる。
【図面の簡単な説明】

【図 1】上り回線 R B 配置例
【図2】下り回線制御チャネル配置例
【図3】上り回線 R B と下り回線制御チャネルとの対応を示す図
【図4】本発明の実施の形態1に係る基地局の構成を示すブロック図
【図5】本発明の実施の形態1に係る移動局の構成を示すブロック図
【図6】本発明の実施の形態 1 に係る下り回線制御チャネル配置を示す図
【目7】本発明の実施の形態 2 に係る下り回線制御チャネル配置を示す図
【図8】本発明の実施の形態3に係るセル 2 における下り回線制御チャネル配置を示
す図
【図9】本発明の実施の形態4に係るSCCHと下り回線CCEとの対応を示す図
【図10】本発明の実施の形態 4 に係る下り回線CCE配置例
【図11】本発明の実施の形態 4 に係る下り回線CCEと下り回線制御チャネルとの対応を示す図
【図 1 2】本発明の実施の形態4に係る基地局の構成を示すブロック図
【図13】本発明の実施の形態 4 に係る移動局の構成を示すブロック図
【図14】本発明の実施の形態 4 に係るSCCHと下り回線CCEとの対応を示す図 （バリエーション）

```
【図15】本発明の実施の形態 4 に係る下り回線制御チャネル配置を示す図
【図16】その他の下り回線制御チャネル配置を示す図（例1）
【図17】その他の下り回線制御チャネル配置を示す図（例2）【符号の説明】
【0 13 6】
100,300 基地局
101 RB割当部
102 ， 302 符号化部
\(103,105,303\) 変調部
104 ， 108 ， \(304 \mathrm{~S} / \mathrm{P}\) 部
106 拡散部
107 レピティション部
109 ， 305 配置部
110,306 IFFT部
\(111 \quad \mathrm{CP}\) 付加部
112 無線送信部
113 アンテナ
114 無線受信部
115 復調部
116 復号部
117 CRC部
200，400 移動局
201 アンテナ
202 無線受信部
203 CP 除去部
\(204,401 \quad\) FFT部
205,402 分離部
\(206,210,403 \mathrm{P} / \mathrm{S}\) 部
207,213 ， 404 復調部
208 ， 405 復号部
209 ，406 配置特定部
211 逆拡散部
212 合成部
214 送信制御部
215 符号化部
216 再送制御部
217 変調部
218 無線送信部
3015 SCCH 割当部
```

【書類名】図面
［专1】

〔図2】

〔図 3】

〔図4】

〔図5】

BlackBerry Exhibit 1002，pg． 165

〔図6】

〔図7】

〔図 8】

〔図9】

SCCH\＃1	CCE $\# 1$	CCE	CCE $\# 3$	CCE	CCE $\# 5$	CCE $\# 6$	CCE $\# 7$	CCE $\# 8$
SCCH\＃2	CCE $\# 1$	CCE	CCE $\# 3$	CCE	CCE $\# 5$	CCE	CCE	CGE $\# 8$
SCCH\＃3	CCE							
SCCH\＃4	CCE							
SCCH\＃5	CCE $\# 1$	CCE	CCE	CCE	CCE $\# 5$	CCE	CCE	CCE
SCCH\＃6	CCE $\# 1$	CCE	CCE	CCE	CCE $\# 5$	CCE	CCE $\# 7$	CCE

【図10】

〔図11】

〔図12】

【図13】

【図14】

SCCH\＃1	CCE							
SCCH\＃2	CCE $\# 1$	CCE $\# 3$	CCE	CCE	CCE $\# 2$	CCE	CCE $\# 6$	CCE
SCCH\＃3	CCE $\# 1$	CCE $\# 3$	CCE $\# 5$	CCE $\# 7$	CCE $\# 2$	CCE	CCE $\# 6$	CCE $\# 8$
SCCH\＃4	CCE $\# 1$	CCE $\# 3$	CCE $\# 5$	CCE $\# 7$	CCE $\# 2$	CCE $\# 4$	CCE $\# 6$	CCE $\# 8$
SCCH\＃5	CCE $\# 1$	CCE	CCE $\# 5$	CCE $\# 7$	CCE $\# 2$	CCE $\# 4$	CCE $\# 6$	CCE $\# 8$
SCCH\＃6	CCE $\# 1$	CCE $\# 3$	CCE $\# 5$	CCE $\# 7$	CCE	CCE	CCE	CCE

【図15】

〔図16】

【図17】

【書類名】要約書

【要約】
【課題】下り回線制御チャネルの周波数ダイバーシチ効果を最大限に得ること。
【解決手段】RB割当部101は，周波数スケジューリングにより各無線通信移動局装置 に対して，周波数軸上で連続する上り回線リソースブロックを割り当て，どの上り回線り ソースブロックをどの無線通信移動局装置に割り当てたかを示す割当情報を生成し，配置部109は，その割当情報に基づいて，それら連続する上り回線リソースブロックに対応付けられて周波数軸上に分散配置された下り回線制御チャネルに無線通信移動局装置への応答信号を配置する。
【選択図】図4

000005821
19900828
新規登録
506178449

大阪府門真市大字門真1006番地
松下電器産業株式会社
000005821
20081001
名称変更
506178449

大阪府門真市大字門真 1006 番地
パナソニック株式会社

United States Patent and Trademark Office
TTED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PO. Box 1450 Alexandria, Virgnia 22313-1450 wwwusptogov

APPLICATION NUMBER	FILING or 371(c) DATE	GRP ART UNIT	FIL FEE RECD	ATTY.DOCKET.NO	TOT CLAIMS	IND CLAIMS
12/983,770	01/03/2011	2617	1090	009289-91681	18	2

52989
Dickinson Wright PLLC
James E. Ledbetter, Esq.
International Square
1875 Eye Street, N.W., Suite 1200
Washington, DC 20006
Date Mailed: 01/31/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Masaru FUKUOKA, Ishikawa, JAPAN;
Akihiko Nishio, Kanagawa, JAPAN;
Seigo Nakao, Kanagawa, JAPAN;
Alexander Golitschek Edler Von Elbwart, Darmstadt, GERMANY;
Assignment For Published Patent Application
PANASONIC CORPORATION, Osaka, JAPAN
Power of Attorney: The patent practitioners associated with Customer Number 52989
Domestic Priority data as claimed by applicant
This application is a CON of 12/532,352 09/21/2009
which is a 371 of PCT/JP2008/000675 03/21/2008
Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)
JAPAN 2007-077502 03/23/2007
JAPAN 2007-120853 05/01/2007
JAPAN 2007-211104 08/13/2007

Request to Retrieve - This application either claims priority to one or more applications filed in an intellectual property Office that participates in the Priority Document Exchange (PDX) program or contains a proper Request to Retrieve Electronic Priority Application(s) (PTO/SB/38 or its equivalent). Consequently, the USPTO will attempt to electronically retrieve these priority documents.

If Required, Foreign Filing License Granted: 01/18/2011

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US $12 / 983,770$

Projected Publication Date: 05/12/2011
Non-Publication Request: No
Early Publication Request: No Title

RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

Preliminary Class

455

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

In re the Application of

Inventors: Masaru FUKUOKA, et al.
Appln. No.: $12 / 983,770$
Filed: January 3,2011
For: \quad RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

PRELIMINARY AMENDMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
Please amend the above-captioned application as follows:

IN THE CLADMS

Please amend the claims to read as follows:

Listing of Claims

1. (Original) A mobile station apparatus comprising:
a reception unit configured to receive, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and
a determination unit configured to determine a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information,
wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.
2. (Original) The mobile station apparatus according to claim 1 further comprising a transmission unit configured to transmit data using the allocated resource block(s) based on the allocation information,
wherein said determination unit determines the resource, to which the response signal is mapped, from an index of the resource block used for transmitting the data.
3. (Currently Amended) The mobile station apparatus according to claim 1 er z,
wherein the response signal is mapped to a plurality of the resources distributed in the frequency domain.
4. (Currently Amended) The mobile station apparatus according to any of elaims 1-3 claim 1, wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
5. (Currently Amended) The mobile station apparatus according to any of claims 1-4 claim 1, wherein a plurality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
6. (Currently Amended) The mobile station apparatus according to any of clams $1-5$ claim 1, wherein the response signal is carried on a hybrid ARQ indicator channel (HCH) in the base station, and the response signal is mapped to the resource to which the hybrid $A R Q$ indicator channel is mapped.
7. (Currently Amended) The mobile station apparatus according to any of elams 16 claim 1, wherein a plurality of the response signals are mapped to the resource with codemultiplexed.
8. (Currently Amended) The mobile station apparatus according to any of etams 1-7 claim 1, wherein the response signal is carried on a hybrid ARQ indicator channel (HICH) in the base station, and a plurality of the response signals are mapped to the resource, to which a
plurality of the hybrid ARQ indicator channels are mapped, with code-multiplexed.
9. (Currently Amended) The mobile station apparatus according to any-ofetaims 1-8 claim 1, wherein the index of the resource block is associated with the resource depending on a cell.
10. (Original) A method for determining a response signal resource comprising: receiving, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and
determining a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information,
wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.
11. (Original) The method for determining a response signal resource according to claim 10 further comprising transmitting data using the allocated resource block(s) based on the allocation information,
wherein the resource, to which the response signal is mapped, is determined from an index of the resource block used for transmitting the data.
12. (Currently Amended) The method for determining a response signal resource according to claim 10 of 47 , wherein the response signal is mapped to a plurality of the resources distributed in the frequency domain.
13. (Currently Amended) The method for determining a response signal resource according to any of elaims-10-12 claim 10 , wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
14. (Curently Amended) The method for determining a response signal resource according to any ef clams $10-13$ claim 10, wherein a plutality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
15. (Currently Amended) The method for determining a response signal resource according to any of elaims $10-14$ claim 10 , wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and the response signal is mapped to the resource to which the hybrid ARQ indicator channel is mapped.
16. (Currently Amended) The method for determining a response signal resource according to any of elaims $10+5$ claim 10 , wherein a plurality of the response signals are mapped to the resource with code-multiplexed.
17. (Currently Amended) The method for determining a response signal resource according to any elaims-10-16 claim 10, wherein the response signal is carried on a hybrid ARQ indicator channel (HICH) in the base station, and a plurality of the response signals are mapped to the resource, to which a plurality of the hybrid ARQ indicator channels are mapped, with code-maltiplexed.
18. (Currently Amended) The method for determining a response signal resource according to any of elaims $10-17$ claim 10 , wherein the index of the resource block is associated with the resource depending on a cell.

REMARKS

This Preliminary Amendment amends the claims to delete multiple dependencies.
Early and favorable consideration of this application is respectfully requested.

Respectfully submitted,

James Edward Ledbetter/

James E. Ledbetter
Registration No. 28,732
Date: January 5, 2011
JEL/eks
Attomey Docket No. 009289-91681
Dickinson Wright PLLC
1875 Eye Street, NW, Suite 1200
Washington, DC 20006
Telephone: (202) 457-0160
Facsimile: (202) 659-1559

Electronic Acknowledgement Receipt	
EFS ID:	9167797
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	James Edward Ledbetter
Filer Authorized By:	
Attorney Docket Number:	009289-91681
Receipt Date:	05-JAN-2011
Filing Date:	
Time Stamp:	19:09:18
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
			57695		
			$0 \mathrm{ac} 95 \mathrm{a} 89 \mathrm{~d} 1 \mathrm{f0b} 4 \mathrm{~d} 9 \mathrm{bc} 766 \mathrm{c} 97 \mathrm{~d} 07 \mathrm{a} 4 \mathrm{bf029d}$ 16 d 9 d		
Warnings:					
Information:					

2	Petition to make special under Patent Prosecution Hwy	aPPH.pdf	114228	no	2
Warnings:					
Information:					
3	Transmittal Letter	aVTRANS.pdf	44150	no	1
Warnings:					
Information:					
	Rule 130, 131 or 132 Affidavits	aVERCLAIMS.pdf	245200	no	7
Warnings:					
Information:					
5	Preliminary Amendment	aPAMEND.pdf	129405	no	7
			6ac08f3fbf7265 1b4d4de8eb857b992f3a42 9054		
Warnings:					
Information:					
Total Files Size (in bytes): $\quad 5$				590678	
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Request For Participation In The Patent Prosecution Highway (PPH) Program Between The Japan Patent Office (JPO) And The USPTO			
Application No.	12/983,77	Filing Dat	January 3, 2011
	Masaru Fukuok		
Attorney Docket No	009289-9168		
Titie of the Invention: Mobile Station Apparatus and Method for Determining a Response Signal Resource			
This request for Participation in the PPH program along with the required documents must be subnitted via efsWeb. Information regarding EFS-Web is available at http://Www.uspto.gov/ebc/efs help.html.			
APPLICANT HEREBY REQUESTS PARTICIPATION IN THE PATENT PROSECUTION HIGHWAY (PPH) PROGRAM AND PETITIONS TO MAKE THE ABOVEIDENTIFIED APPLICATION SPECIAL UNDER THE PPH PROGRAM.			
The above-identified application (1) validly clams pronty under 35 U.S.C. 119 (a) and 37 CFR 1.55 to one or more corresponding $J P O$ application(s) or to a PCT application that does not contain any priority claim, or (2) is a national stage entry of a PCT application that does not contain any priority claim. The JPOIPCT application JPSN 2007 077502, JPSN 2007-120853 and JPSN 2007-211104 (which were combined number(s) is/are: into PCT/JP2008/000675 filed on March 21, 2008, based on which JPSN 2009-510767 was filed as a JP national phase application thereof, and from which JPSN 2010-241985 was filed as a divisional application and was found allowable). The filing date of the JPOI PCT application(s) is/are: March 23, 2007, May 1, 2007 and August 13, 2007 I. List of Required Documents: a. A copy of the latest JPO office actions (other than "Decision to Grant a Patent"*) in the above-identified JPO application(s) \square Is attached. \square Is not attached because the JPO application was allowed in a first office action. *It is not necessary to submit a copy of the "Decision to Grant a Patent" and an English transiation thereof. b. A copy of afl claims which were determined to be patentable by the JPO in the above-identified JPO application(s) \square Is attached c. English translations of the documents in a. and b. above along with a statement that the English translations are accurate are attached (if the documents are not in the English language). An accuracy statement for the English translation of the documents in a. above is not required if the Englisht translation is a machine translation provided by the JPO. d. (1) An information disclosure statement listing the documents cited in the JPO office actions Is attached. Has already been filed in the above-identified U.S. application on (2) Copies of all documents (except for U.S. patents or U.S. patent application publications) Are attached. Have already been filed in the above-identified U.S. application on			
[Page 1 of 2] This collection of information is required by 35 U.S.C. 119.37 CFR 1.55 , and $37 \mathrm{CFR} 1.102(\mathrm{~d})$. The information is required to obtain or retain a benefit by the public, which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This colection is estmated to take 2 hours to complete, including gathering, preparing, and submiting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden should be sent to the Chief information Officer, L.S. Patent and Trademark Office, U.S. Deparment of Commerce, P.O. Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPEETED FORMS TO THIS ADDRESS.			

Request For Participation In The Patent Prosecution Highway (PPH) Between The Japan Patent Office (JPo) And The USPTO (continued)		
Application No.: $12 / 98$	12/983,770	
First Named fnventor. Masa	Masarı Fukuoka	
II. Claims Correspondence Table:		
Claims in US Application	Patentable Claims in JPO Application	Explanation regarding the correspondence
1	1	the same
2	2	the same
3	3	the same, except multiple dependency in JP claims is removed
4	4	the same, except multiple dependency in JP claims is removed
5	5	the same, except multiple dependency in JP claims is removed
6	6	the same, except multiple cependency in JP claims is removed
7	7	the same, except muitiple dependency in JP claims is removed
8	8	the same, except multiple dependency in JP claims is removed
9	9	the same, except multiple dependency in JP claims is removed
10	10	the same
11	11	the same
12	12	the same, except muitiple dependency in JP claims is removed
13	13	the same, except multiple dependency in JP claims is removed
14	14	the same, except muitiple dependency in JP claims is removed
15	15	the same, except mufiple dependency in JP claims is removed
16	16	the same, except multiple dependency in JP claims is removed
17	17	the same, except multiple dependency in JP claims is removed
18	18	the same, except multiple dependency in JP claims is removed
III. All the claims in the US application sufficiently correspond to the patentable/allowable claims in the JPO application.		

Signature /James Edward Ledbetter/	Date January 5, 2011
Name James E. Ledbetter (PrintTyped)	Registration Number 28,732

[Page 2 of 2]

P16EREVVA

VERIFICATION OF A TRANSLATION

I, Masahiro ISOZAKI, of 5th Floor, Shintoshicenter Bldg., 24-1, Tsurumaki 1-chome, Tama-shi, Tokyo 206-0034 Japan, declare that I am well acquainted with both the Japanese and English languages, and that the attached is an accurate translation, to the best of my knowledge and ability, of the Japanese language claims as granted on December 7, 2010 of Patent Application No. JP2010-241985.
signature Masahivo 10 DuW Date December 17,2010
(English Translation)

Allowed Claims of JP Allowed Application (JP2010-241985)

[Claim 1]
A mobile station apparatus comprising:
a reception unit configured to receive, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and
a determination unit configured to determine a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information,
wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.

[Claim 2]

The mobile station apparatus according to claim 1 further comprising a transmission unit configured to transmit data using the allocated resource block(s) based on the allocation information,
wherein said determination unit determines the resource, to which the response signal is mapped, from an index of the resource block used for transmitting the data.

[Claim 3]

The mobile station apparatus according to claim 1 or 2 , wherein the response signal is mapped to a plurality of the resources distributed in the frequency domain.
[Claim 4]
The mobile station apparatus according to any of claims $1-3$,
wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
[Claim 5]
The mobile station apparatus according to any of claims 1-4, wherein a plurality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
[Claim 6]
The mobile station apparatus according to any of claims 1-5, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and the response signal is mapped to the resource to which the hybrid ARQ indicator channel is mapped.
[Claim 7]
The mobile station apparatus according to any of claims $1-6$, wherein a plurality of the response signals are mapped to the resource with code-multiplexed.
[Claim 8]
The mobile station apparatus according to any of claims 1-7, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and a plurality of the response signals are mapped to the resource, to which a plurality of the hybrid $A R Q$ indicator channels are mapped, with code-multiplexed.
[Claim 9]
The mobile station apparatus according to any of claims $1-8$, wherein the index of the resource block is associated with the resource depending on a cell.
[Claim 10]
A method for determining a response signal resource comprising: receiving, from a base station, allocation information indicating
one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and
determining a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information,
wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the pluratity of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.

[Claim 11]

The method for determining a response signal resource according to claim 10 further comprising transmitting data using the allocated resource block(s) based on the allocation information,
wherein the resource, to which the response signal is mapped, is determined from an index of the resource block used for transmitting the data.
[Claim 12]
The method for determining a response signal resource according to claim 10 or 11 , wherein the response signal is mapped to a plurality of the resources distributed in the frequency domain.

[Claim 13]

The method for determining a response signal resource according to any of clams 10-12, wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
[Claim 14]
The method for determining a response signal resource according to any of claims 10-13, wherein a plurality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
[Claim 15]
The method for determining a response signal resource according to any of claims $10-14$, wherein the response signal is carried on a hybrid ARQ indicator channel (HICH) in the base station, and the response signal is mapped to the resource to which the hybrid ARQ indicator channel is mapped.
[Claim 16]
The method for determining a response signal resource according to any of claims $10-15$, wherein a plurality of the response signals are mapped to the resource with code-multiplexed
[Claim 17]
The method for determining a response signal resource according to any of claims 10-16, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and a plurality of the response signals are mapped to the resource, to which a plurality of the hybrid ARQ indicator channels are mapped, with code-multiplexed.
[Claim 18]
The method for determining a response signal resource according to any of claims 10-17, wherein the index of the resource block is associated with the resource depending on a cell.

【書類名】特許請求の範囲
【請求項1】
周波数領域で連続守る，上り回線にお討る一つ又は複数のリソース・ブロックゼあつで
 と，

前記基地局から送信された応答信号が配置された下り回線におけるリンースを，前記割当情報に基づいて，割り当てらすた前記リソース・ブロックの番号から特定する特定部と

を有し，
連続する複数の前記リソーース・グロックの番号が，周波数領域で買なる複数の前記リソ ースに，それぞれ関連付けられ，前記複数のリソースけ，周波数領域で連続しない複数の サブホャリア群からそれぞれ構成され，前記応答侸号は，前記サブサャリア群に配置され ている，

移動高装置。
【請求項2】
前記割当情報に基ごいて，割り当てられた前記りソース・ブロックを用いて，ジーダタを送信する逆信部を゙さらに有し，
 れた前記リソース・ブロックの番号かっら特定する，

請求項1に記載の移動局装置。
【譴求項3】
前記応答信号は，周波数領域で分散した複数の前記リソースに，ス，配置されでいる，
請求項1 又は2に記載の移動局装置。
【溒求垻4】
前記応答信号は，前記基地局におふて拡散され，桩散された前記応答信号が，前記りソ ースに配置されている，

【袈求項5】
前記基地局におぶて，リビティションにより，複数の同一の前記応答信号が生成され，前記複数の同一ーの応笭信号が，周波数䫀域で分散した複数の前記リソースに，それぞれ配置されている，

【請求㳟6】
前記応答侵㝵奴，前記基地局において，ハイブリッド・ARQ・インディケーター・・チ やネル（ HICH ）を用いて位送され，前記发答信号は，前記ハイブリッド・ARQ・インデ イケーーター・・チャネルが配置された前記リソースに，配置されている，

請求項1から5のいずれかなに記載か移動局装置。
【請求項7】
複数の前記危答信号が，前記りソースに符咢多重して配置されている，
請求項1から6のいずれしかに記載の移動局装置。

【謪求項 8】

前記応答信号は，前記基地局にあわて，ハイブリッド・ARQ・インディケーター・・チ ャネルを用いて庑送され，複数の前記応答信呂が，複数の前記ハイブリッド・ARQ・イ ンディケーター・•・ャネルが配置された前記りソースに，符菛多重して配置されている，
請求項1から， 7 のいずれてかった記载の移動局装置。

【請求項9】

前記リソーース・ブロックの番号は，セルに応じて瑐記リソースに関連付けられている，
請求項1から8のいずれかった記載の移動局装置。
【請求項10】
周波数領域で連続する，上り国線におらるーつ又は複数のリンース・グロックであるで
－踳り当てられた欮記りソース・グロックをバす割当情報を，基地局からら愛信し，
当情報に基づいて，割り当てられた前記りソース・ブロックの番号から特定し，

連続する複数の前記リソース・ブロックの番号が，周波数領域で異なる㙏数の前記リン ースに，それぞれ関連付けられ，前記複数のリソーースは，周波数領域で連続しない複数の サブキヤリア群がらそれそれ儿構成され，前記応答信另は，前記サブキャリケ群に配置され ている，

応答信号リソース特定方法。
【請求項111】
前記割当情報に基ア゙いて，割り当てあれた前記リソース・ブロックを解いて，ジータを送信し，

前記圧答信号が配置された前記リソースを，前記データの送信に用いられた前記リソー・ ス・ブロックの番号から特定する，

請求項10に記載の応答信号りソース特定方法。
【請求項12】
前記応答信号恃，周波数領域で分散した複数の前記リソーースに，配置されでいる，
請求項10又灶11に記載の応答信号りソース特定方法。
【請求項13】
前記応答信号は，前記基地甍にむいて桩散され，拡散された前記心答信号が，解記リソ －スー配置されでいる。

請求項10から12のいずれかった記載の応答信号りソース特定方汒。
【請求項14】前記基地背において，リピディションにより，複数の同一の前記応答信号が生成され，前記複数か同一の応答信号が，周波数頃域で分散した複数の前記リソースに，それぞれ配置されでいる，

請求項10からら130いずれかに記載の応答信号ソソ…ス特定方法。
【請求項15】
前記応答信号は，前記基地局において，ハイブリッド・ARQ・インディターター・・チ ヤネリ（HICH）を用いて位送され，前記応答信号恃，前記ハイブリッド・ARQ・インデ ィケータター・チャネルが配置きれた脜記リソースに，配置されている，

請求項10から14のいずれかった記載の応答信号リソー－特定力法。
【請求項16】
複数の前記応答信号が，前記リソースース符号多重して配置されている，
請求項10カら15のいずれからに記載の応答信号リソース特定力法。
【詿求項17】
前記応答信号は，前記基地局において，ハイブリシド・ARQ・インディケーーター・チ ヤネルを用いて伝送され，複数の湔記応答信号が，椱数の解記ハイブリッド・ARQ・イ ンディケーター・チャネルが配置された前記リンースに，符号多重して配置されている，請求項10からら6ゆいずれかに記載の応答信号リソース特定方法。
【請求項18】
前記リソース・グロックの番号は，セルに応じて前記リソースに関連付けられている，請求項10みら17 ついずれかっに記載の応答信号りソース特定方法。

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
if you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Express Mail Label No．

UTILITY PATENT APPLICATION TRANSMITTAL （Large Entity） （Only for new nonprovisional applications under 37 CFR 1.53 （b））		No. -91681
	Total Pages	is Submis
COMMISSIONER FOR PATENTS		
$\begin{gathered} \text { P.O. Box 1450 } \\ \text { Alexandria, VA 22313-1450 } \end{gathered}$		
Transmitted herewith for filing under 35 U．S．C． 111 （a）and 37 C．F．R． 1.53 （b）is a new utility patent application for an invention entitled：		
RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD		
and invented by：		
FUKUOKA，Masaru；NISHIO，Akihiko；NAKAO，Seigo；GOLITSCHEK EDLER VON ELBWART，Alexander		
If a CONTINUATION APPLICATION，check appropriate box and supply the requisite information：		
\boxtimes Continuation Divisional \square Continuation－in－part（CIP）of prior application No．：		12／532，352
Which is a：		
```Continuation Divisional C Continuation-in-part (CIP) of prior application No.: Which is a:```		
		Which is a：
$\square$ Continuation $\square$ Divisional $\square$ Continuation－in－part（CIP）of prior application No．：		
Enclosed are：		
Application Elements		
1．$凶$ Filing fee as calculated and transmitted as described below		
2．$凶$ Specification having＿＿＿ 59 pages and including the following：		
a．$\boxtimes$ Descriptive Title of the invention		
b．$\boxtimes$ Cross References to Related Applications（if applicable）		
c．Staiement Regarding Federally－sponsored Research／Development（if applicable）		
d．$凶$ Reference to Sequence Listing，a Table，or a Computer Program Listing Appendix		
e． 区 Background of the Invention		
f．$\boxtimes$ Brief Summary of the Invention		
g．$\triangle$ Brief Description of the Drawings（if filed）		
h．$\otimes$ Detailed Description		
i． $\boldsymbol{\otimes}$ Claim（s）as Classified Below		
j．a   Abstract of the Disclosure		


UTILITY PATENT APPLICATION TRANSMITTAL	Docket No
（Large Entity）	$009289-91681$
（Oniy for new nonprovisional applications under 37CFR $1.53(b)$ ）	Total Pages in this Submission

## Application Elements（Continued）

3．$\boxtimes$ Drawing（s）（when necessary as prescribed by 35 USC 113）
a．
区 Formal
Number of Sheets $\qquad$
b． $\square$ Informal
Number of Sheets $\qquad$

4．$\boxtimes$ Oath or Deciaration
a．－Newly executed（original or copy）Unexecuted
b．$凶$ Copy from a prior application（37 CFR $1.63(\mathrm{~d})$ ）（for continuation／divisional application onty）
c．$\boxtimes$ With Power of Altorney $\square$ Without Power of Attorney
d． $\qquad$ Signed statement attached deleting inventor（s）named in the prior application， see 37 C．F．R． $1.63(\mathrm{~d})(2)$ and $1.33(\mathrm{~b})$ ．

5．区 Incorporation By Reference（usable if Box 4 b is checked）
The entire disclosure of the prior application，from which a copy of the oath or declaration is supplied under Box 4 b ，is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein．
6.CD ROM or CD－R in duplicate，large table or Computer Program（Appendix）
7．区 Application Data Sheet（See 37 CFR 1．76）
8．$\square$ Nucleotide and／or Amino Acid Sequence Submission（if appilicable，all must be included）
a．$\square$ Computer Readable Form（CRF）
b． $\square$ Specification Sequence Listing on：
iCD－ROM or CD－R（2 copies）；or $i$. Paper
c．Staiement（s）Verifying Identical Paper and Computer Readable Copy

## Accompanying Application Parts

9．Assignment Papers（cover sheet \＆document（s））
10． $\square$ 37CFR 3．73（B）Statement（when there is an assignee）
11．English Translation Document（if applicable）
12．$\square$ Information Disclosure Statement／PTO－1449
－Copies of IDS Citations
13.Preliminary Amendment
14．$\square$ Return Receipt Postcard（MPEP 503）（Should be specifically itemized）
15.Certified Copy of Priority Document（s）（if foreign priority is claimed）
16. $\square$ Certificate of MailingFirst ClassExpress Mail（Specify Label No．）： $\qquad$

## UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity) <br> (Only for new nonprovisional applications under 37 CFR 1.53 (b))

## Accompanying Application Parts (Continued)

17. ख Additional Enclosures (please identify below):

CONFIRMATION CLAIM FOR PRIORITY

Request That Application Not Be Published Pursuant To 35 U.S.C. 122(b)(2)
48.Pursuant to 35 U.S.C. 122 (b)(2), Applicant hereby requests that this patent application not be published pursuant to 35 U.S.C. 122.(b)(1). Applicant hereby certifies that the invention disclosed in this application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication of applications 18 months after filing of the application.

## Warning

An applicant who makes a request not to publish, but who subsequently files in a foreign country or under a multilateral international agreement specified in 35 U.S.C. 122(b)(2)(B)(i), must notify the Director of such filing not later than 45 days after the date of the filing of such foreign or international application. A failure of the applicant to provide such notice within the prescribed period shall result in the application being regarded as abandoned, unless it is shown to the satisfaction of the Director that the delay in submitting the notice was unintentional.
19.Other:

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)   (Only for new nonprovisional applications under 37 CFR $1.53(\mathrm{~b})$ )						No. 91681
					Total Pages	is Submission
Fee Calculation and Transmittal						
CLAIMS AS FILED						
For	\#Filed	\#Allowed	\#Extra	Rate		Fee
Total Claims	18	$-20=$	0	\$52.00		\$0.00
Indep, Claims	3	- $3=$	0	$x \quad \$ 220.00$		\$0.00
Multiple Dependent Claims (check if applicable) $\square$						\$0.00
Total \# of Pages in Specification		59	Total \# of	ng Sheets	23	
Total \# of Sheets	82			Application Size Fee		\$0.00
Basic Fee						\$330.00
Search Fee						\$540.00
Examination Fee						\$220.00
OTHER FEE (specify purpose)						\$0.00
TOTAL FILING FEE						\$1.090.00
$\square$ A check in the amount of to cover the filing fee is enclosed.   $\boxtimes$ The Director is hereby authorized to charge and credit Deposit Account No.   as described below.   $\square$ Charge the amount of   as filing fee.   $\boxtimes$ Credit any overpayment.   X Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.   $\square$ Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311 (b). Payment by credit card. Form PTO-2038 is attached.   WARNING: Information on this form may become public. Credit card information should not b included on this form. Provide credit card information and authorization on PTO-2038.   Dated: December 30, 2010 $\qquad$ James Edward Ledbetter/ Signature   James E. Ledbetter, Reg. No. 28,732   Dickinson Wright PLLC   1875 Eye Street, N.W., Suite 1200   Customer Number: 52989   Washington, D.C., 20006   Telephone: 202.457.0160   Facsimile: 202.659.1559   cc :						


| Application Data Sheet 37 CFR 1.76 | Attomey Docket Number | $009289-91681$ |
| :--- | :--- | :--- | :--- |
| Title of Invention | RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD |  |

## Secrecy Order 37 CFR 5.2

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

## Applicant Information:



[^0]

## Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below.
For further information see 37 CFR 1.33(a).
An Address is being provided for the correspondence Information of this application.

Customer Number	52989		
Email Address	Aledbetter@dickinsonwright.com	Add Email	Remove Email

## Application Information:

| Title of the Invention | RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNE ARRANGEMENT <br> METHOD |  |
| :--- | :--- | :--- | :--- |
| Attomey Docket Number | OO9289-91681 | Small Entity Status Claimed |
| Application Type | Nonprovisional |  |
| Subject Matter | Utility |  |
| Suggested Class (if any) |  | Sub Class (if any) |
| Suggested Technology Center (if any) |  |  |
| Total Number of Drawing Sheets (if any) |  | Suggested Figure for Pubication (if any) |


Application Data Sheet 37 CFR 1.76		Attorney Docket Number	$009289-91681$
Title of Invention	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD		

## Publication Information:

Request Early Publication (Fee required at time of Request 37 CFR 1.219 )
Request Not to Publish. I hereby request that the attached application not be published under 35 U.S.C. 122 (b) and certfy that the invention disclosed in the attached application has not and will not be the subject of an application filed in another country, or under a multiateral international agreement, that requires publication at eighteen months after filing.

## Representative Information:

Representative information should be provided for all practitionefs having a power of attorney in the application. Providing   this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1,32 ).   Enter either Customer Number or complete the Representative Name section below. If both sections   are completed the Customer Number will be used for the Representative Information during processing.
Please Select One:

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. $119(\mathrm{e}), 120,121$ or $365(\mathrm{c})$ or indicate National Stage entry from a PCT application, Providing this information in the application cata sheet constitutes the specific reference required by 35 U.S.C. $119(e)$ of 120 , and 37 CFR 1.78 (a)(2) or CFR $1.78(a)(4)$, and need not otherwise be made part of the specification.			
Prior Application Status	Pending	Semove	
Application Number	Continuity Type	Prior Application Number	Filing Date (YYYY-MM-DD)
	Continuation of	12532352	2009-09-21
Prior Application Status			Semove
Application Number	Continuity Type	Prior Application Number	Filing Date (YYYY-MM-DD)
12532352	a 371 of intemational	PCT/JP2008/000675	2008-03-21

Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button.

## Foreign Priority Information:

This section allows for the applicant to claim benefit of foreign priority and to dentify any prior foreign application for which priority is not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119 (b) and 37 CFR $1.55(\mathrm{a})$.			
			Remove
Application Number	Country ${ }^{\text {I }}$	Parent Filing Oate ( Y YY -MM-DD)	Priority Claimed
2007-077502	JP	2007-03-23	(*) Yes O No
		Remove	
Application Number	Country	Parent Filing Date (YYYY-MM-DD)	Priority Clamed
2007.120853	JP	2007-05-01	(e) Yes $\bigcirc$ No


| Application Data Sheet 37 CFR 1.76 | Attorney Docket Number | $009289-9 \uparrow 681$ |
| :--- | :--- | :--- | :--- | :--- |
|  | Application Number |  |
| Title of Invention | RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD |  |


			Remove
Application Number	Country	Parent Filing Date ( $\mathrm{Y} Y \mathrm{Y}-\mathrm{MM}-\mathrm{DD}$ )	Priority Claimed
2007 2^1104	JP	2007-08-13	(0) Yes $\bigcirc$ No

Additional Foreign Priority Data may be generated within this form by selecting the Add button.

## Assignee Information:

Providing this information in the application data sheet does not substitute for compliance with any requirement of part 3 of Title 37 of the CFR to have an assignment recorded in the Office.

Assignee 1				
If the Assignee is an Organization check here. $\triangle$				
Organization Name		PANASONIC CORPORATION		
Mailing Address Information:				
Address 1		1006, Oaza Kadoma, Kadoma-shi		
Address 2				
City		Osaka	State/Province	
Country	JP		Postal Code	571-8501
Phone Number			Fax Number	
Email Address				
Additional Assignee Data may be generated within this form by selecting the Add button.				

## Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37   CFR 1.4(d) for the form of the signature.				
Signature	Hames Edward Ledbetter/	Date (YYYY-MM-DD)	$2010-12-30$	
First Name	James	Last Name	Ledbetter	Registration Number

This collection of information is required by 37 CFR 1.76 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, prepaning, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

## Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain infomation in connection with your submission of the attached form refated to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that; (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary: and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process andior examine your submission related to a patent application or patent. If you do not furnish the requested informaion, the U.S. Patent and Trademark Office may not be able to process and/or examine yout submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1.

The information on this form wif be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act ( 5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records.
2.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a couft, magistrate, or administrative tribunal, including discosures to opposing counsel in the course of settement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submiting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in orcer to perform a contract. Recipients of information shafl be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552 a (m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed as a routine use, to the Intemational Bureat of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review ( 35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)),
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e, GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be cisclosed, as a routine use to the public after either publication of the application pursuan to 35 U.S.C. 122 (b) or issuance of a patent purstant to 35 U.S.C. 151. Futher, a record may be disciosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public it the record was filed in an application which became abanconed or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed as a routine use, to a federal, State, or focal law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Parcasenic Ref: flomed be filirat	P0A8Gg401
Jupen Firm Narne:	WASHIDA \& ASSOCIATES

US Firm Narme: $\qquad$ DW $\qquad$

Apmotication Serial Na. $\qquad$
JapanFirm Ret. 2FDBOSZus-P
Us Fimi Ref. $\qquad$

DECLARATION AND POWER OF ATTORNEY FOR U.S. PATENT APPLICATION
(a) Priginal
(b) Supplermentai
(c) ©ubstitute
(d) FGT
(e) ${ }^{m}$ ) Design

As a below named inventor, I hereby dectare that my pationence, post offoe adoress and eitizonship are as pated below ngxt to my name; end believe that! am the oniginal, firstared sole inventor (if onty one name is lisked bolowi or an onginal
 sought on the inverthon entitled:
Tite of Irvention:
RADIO EOMMUNICATION EASE STATION DEVICE AND CONTROL GHANNEL ARFANOEMENT METHDR



I hereby state that I have rewiowed and uncermance the contents of the above-idontithed specification, including the claimss, as amended by dny amendment $(s)$ feferred to above.

I acknowedge my duty to disclose to tha V. 5 . Petent and Tredemark Offoe shlmomation known to me to be materiat


 country other that the wnited States of Arroriga, listed bofow, and hava atso torentiod below any toreign appleation far patent or inventor's certificete, or of any fet international application having a filiog date betore that of the apploation on which patority is
olsimed;

a Adchiond forgign of intarrational application numbers are lisied on a supplemental prionty shect stipohed fiereto.
 listed below

ARMLCATKON NO.
a Adpitiona U.S. provislonal applioation numbers are listed op a supplemental prionty sheet attached hereto.

 each of the saims of this applicetron is not disolosed in the prior United btates pr PCT interribtional application in the menmer

 appileation anc the national or PCT international mang date of this application.
AFFI,ICAFTON NO.

E Additongl L. S. or intemational application numbers are listed on a pupshamentat prtority sine attached hereto.
 Trademark Otrice customer Numbur kentifiad betow to prosecute this appication inciuding divisions, watinumbns ard relspues
 that all comespondence be acoresod to that oustoman number

 theif forejgn patent athomeys or agente, if any; as to ahy acion to be taken in the U. $\boldsymbol{y}$. Fatemt and fradernark ofice regarding


Fower of Atomey given to practioners assodiated with, and direct Corempondenoe to:

## CUSTOMER NUMBEER

52989
I further deblare that all statements mate herein of my own knowhedge are true, and that all statements made on informerion and beliat are betreved to be twe; and furher that these statamemts were macte with the knowedge that wilftil false

 INUEMTOR ( $s$ )

Full Wame of Sole or Firtil Inventor	FIRST NANE Minsaru FIFLUOKA NAT NAME Madehth	sIGMATUFE 9xtach	DATE DF SIGNAIURE Augis. 2y, 20 ?
Sesiderica 8 Citizessatip	CITY, STATE OR COUNTRY I5htiawn, JAPAN		$\begin{aligned} & \text { OTZEASHRP } \\ & \text { JAPAN } \end{aligned}$
Font office adidess	ADDRESS CiTY Efo Panasonic Mobile Commancation 5, Akedonz-chome, bumiku, Sencwi	STAT OR COUNTRY      Miyagi, Japsin 981 3206	2 CFODTE



FVVEMTOR (T)




Full Native of Sitith knwentor	FIESTNAME LAET NABE	SIKNATUFE DTE OF GTONATURE
Resiciensen th titlzemswity	CTT, STATE OH COUNTAYY	citurentidif
Post aftice andiress	Abrifess Cry	STATE OFA COMMTEY ZIP GODE


Full Mame of suverth inventor	FWEST AAME LAST NAME	EtMMATLTE
Fesidervee d citizumship	CITY, STATE OF COLINTRY	antrextrim
Post antica madress	ADDRESS Cify	STATEOREOUNTFY CPCO


Fifl Name of Eighth Inventor	FIRST NAME LAST NAME	GIGNATURE DATEOF SIGNATURE
	CTY , StA	Crizenshlp
Post othre addrest	ADORESS Gity	



$$
\begin{aligned}
& -3 .
\end{aligned}
$$

## DESCRIPTION

## RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

This is a continuation application of application number $12 / 532,352$ filed September 21, 2009, which is a national stage of PCT/JP2008/000675 filed March 21, 2008, which is based on Japanese Application No. 2007-077502 filed March 23, 2007; Japanese Application No. 2007-120853 filed May 1, 2007; and Japanese Application No. 2007-211104 filed August 13, 2007, the entire contents of each which are incorporated by reference herein.

Technical Field
[0001] The present invention relates to a radio communication base station apparatus and control channel mapping method.

Background Art
[0002] In mobile communication, ARQ (Automatic Repeat reQuest) is applied to uplink data transmitted from a radio communication mobile station apparatus (hereinafter simply "mobile station") to a radio communication base station apparatus (hereinafter simply "base station") in uplink, and a response signal showing uplink data error detection result is fed back to the mobile station in downlink. The base station performs a

CRC (Cyclic Redundancy Check) for the uplink data, and, if $\mathrm{CRC}=\mathrm{OK}$ (no error), an ACK (Acknowledgment) signal is fed back, and, if $\mathrm{CRC}=\mathrm{NG}$ (error), a NACK (Negative Acknowledgment) signal is fed back as a response signal to the mobile station.
[0003] To use downlink communication resources efficiently, studies are conducted recently about $A R Q$, which associates uplink resource blocks (RBs) for transmitting uplink data and downlink control channels for transmitting response signals in downlink (e.g. see Non-patent Document 1 ). By this means, a mobile station is able to identify control channels in which a response signal is transmitted to the mobile station according to $R B$ allocation information reported from the base station even when allocation information about the control channel is not reported separately.
[0004] Further, studies are conduct for ARQ recently whereby a response signal is spread and the spread response signal is duplicated in order to average interference of the response signal from neighboring cells or sectors and provide frequency diversity gain for the response signal (e.g. see Non-patent Document 2).

Non-patent Document 1: 3GPP RAN WG1 Meeting document, R1-070932, "Assignment of Downlink ACK/NACK Channel," Panasonic, February 2007 Non-patent Document 2: 3GPP RAN WG1 Meeting document, R1-070734, "ACK/NACK Channel Transmission in E-UTRA Downlink," TI, February 2007

## Disclosure of Invention

Problems to be Solved by the Invention
[0006] It is possible to use the above ARQs studied recently by combining them. Now, a specific example to map response signals to downlink control channels will be explained. With the following explanation, a base station receives uplink data transmitted from mobile stations using uplink $R B \# 1$ to RB \#8 shown in FIG. 1 , and the base station maps response signals to uplink data (ACK signals and NACK signals) to downlink control channels CH \#l to CH \#8, mapped in four frequency bands, subcarriers f 1 to f 4 , f9 to fl 2 , f17 to f20 and f25 to f28shown in FIG.2, and transmits the response signals to the mobile stations. Further, the base station spreads a response signal with spreading code having spreading factor 4 , and repeats the spread response signal with repetition factor 2 . Therefore, as shown in FIG.2, downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$ are mapped to identical bands, subcarriers f1 to f4 and f17 to f 20 in a localized manner, and downlink control channels $C H \# 5$ to $C H \# 8$ are mapped to identical bands, subcariers f9 to f12 and f 25 to f 28 in a localized manner.
[0007] Further, as shown in FIG.3, the uplink RBs shown in FIG. 1 and the downlink control channels shown in FIG. 2 are associated one by one. Therefore, as shown in FIG.3, a response signal to uplink data transmitted using $R B \# 1$ shown in FIG. 1 is mapped to downlink control channel CH \#1, that is, mapped to subcarriers $f 1$ to $f 4$ and $f 17$ to $f 20$ shown in FIG. 2.

Likewise, as shown in FIG.3, a response signal to uplink data transmitted using RB \#2 shown in FIG. 1 is mapped to downlink control channel CH \#2, that is, mapped to subcarriers f1 to f 4 and f 17 to f20 shown in FIG.2. The same applies to RB \#3 to RB \#8.
[0008] Further, when a coding block is formed with a plurality of consecutive RBs on the frequency domain and RBs are allocated in one-block units, the base station transmits response signals to mobile stations by mapping response signals to a plurality of downlink control channels in association with a plurality of uplink RBs included in one coding block. For example, when one coding block is formed with three consecutive uplink RBs, RB \#1 to RB \#3, amongst uplink RB\#1 to RB\#8 shown in FIG. 1 , the base station maps code-multiplexed spread response signals to downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 3$ mapped in a localized manner in identical bands, subcarriers f1 to f 4 and f 17 to f20 shown in FIG.2.
[0009] Although downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 8$ are mapped to sixteen subcarriers, subcarriers f 1 to $\mathrm{f4}$, f9 to f 12 , f17 to f 20 and f 25 to f 28 in this way, with the above example, response signals are mapped only to eight subcarriers, subcarriers fl to f4 and f17 to f20. That is, with the above example, response signals are only mapped to half of all subcarriers to which downlink control channels are mapped.
[0010] In the case where downlink control channels mapped in the limited frequency domain are used in this way, little frequency diversity effect may be obtained depending upon the positions to which downlink control
channels are mapped.
[0011] It is therefore an object of the present invention to provide a base station and control channel mapping method that can maximize the frequency diversity effect on downlink control channels.

Means for Solving the Problems
[0012] The base station of the present invention adopts a configuration including: an allocation section that allocates a first control channel formed with a plurality of consecutive RBs or a plurality of CCEs to a radio communication mobile station apparatus; and a mapping section that maps control signals for the radio communication mobile station apparatus to a plurality of second control channels mapped in a distributed manner on a frequency domain in association with the plurality of RBs or the plurality of CCEs.

Advantageous Effect of the Invention
[0013] According to the present invention, it is possible to maximize the frequency diversity effect on downlink control channels.

Brief Description of Drawings
[0014]
FIG. 1 illustrates an uplink RB mapping example;
FIG. 2 illustrates a mapping example of downlink control channels;

FIG. 3 shows the associations between uplink RBs and downlink control channels;

FIG. 4 is a block diagram showing the configuration of the base station according to Embodiment 1 of the present invention;

FIG. 5 is a block diagram showing the configuration of the mobile station according to Embodiment 1 of the present invention;

FIG. 6 illustrates the downlink control channel mapping according to Embodiment 1 of the present invention;

FIG. 7 illustrates the downlink control channel mapping according to Embodiment 2 of the present invention;

FIG. 8 illustrates the downlink control channel mapping in cell 2 , according to Embodiment 3 of the present invention;

FIG. 9 shows the associations between SCCH s and downlink CCEs according to Embodiment 4 of the present invention;

FIG. 10 illustrates the downlink CCE mapping example according to Embodiment 4 of the present invention;

FIG. 11 shows the associations between downlink CCEs and downlink control channels according to Embodiment 4 of the present invention;

FIG. 12 is a block diagram showing the configuration of the base station according to Embodiment 4 of the present invention;

FIG. 13 is a block diagram showing the configuration of the mobile station according to Embodiment 4 of the present invention;

FIG. 14 shows the associations (variations) between SCCHs and
downlink CCEs, according to Embodiment 4 of the present invention;

FIG. 15 illustrates the downlink control channel mapping according to Embodiment 4 of the present invention;

FIG. 16 illustrates downlink CCEs used in the number of OFDMs for multiplexing according to Embodiment 5 of the present invention;

FIG. 17 is a block diagram showing the configuration of the base station according to Embodiment 5 of the present invention;

FIG. 18A illustrates the physical resources (the number of OFDMs for multiplexing: 1), according to Embodiment 5 of the present invention;

FIG. 18 B illustrates the physical resources (the number of OFDMs for multiplexing: 2), according to Embodiment 5 of the present invention;

FIG. 19 is a block diagram showing the configuration of the mobile station according to Embodiment 5 of the present invention;

FIG. 20 illustrates the downlink control channel mapping according to Embodiment 5 of the present invention;

FIG. 21 illustrates another downlink control channel mapping (example 1); and

FIG. 22 illustrates another downlink control channel mapping (example 2 ).

Best Mode for Carrying Out the Invention
[0015] Now, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The base station
according to the present embodiment of the present invention transmits a response signal using the OFDM scheme. Further, the mobile station according to the present embodiment transmits uplink data by DFTs-FDMA (Discrete Fourier Transform spread Frequency Division Multiple Access). When uplink data is transmitted by DFTs-FDMA, as described above, a coding block is formed with a plurality of consecutive $R B s$ on the frequency axis (in the frequency domain), and the base station allocates RBs to mobile stations in onewblock units.
[0016] (Embodiment 1)
FIG. 4 shows the configuration of base station 100 according to the present embodiment, and FIG. 5 shows the configuration of mobile station 200 according to the present embodiment.
[0017] To avoid complex explanation, FIG. 4 shows components that pertain to uplink data reception and downlink transmission of response signals to uplink data, which the present invention closely relates to, and drawings and explanations of components that pertain to downlink data transmission are omitted. Similarly, FIG. 5 shows components that pertain to uplink data transmission and downlink reception of response signals to uplink data, which the present invention closely relates to, and drawings and explanations of components that pertain to downlink data reception are omitted.
[0018] In base station 100 in FIG.4, RB allocation section 101 allocates uplink $R B$ s to mobile stations by frequency scheduling and generates $R B$ allocation information showing which uplink RBs are allocated to which
mobile stations (i.e. allocation information showing RB allocation results), and outputs the generated RB allocation information to encoding section 102 and mapping section 109 . Further, RB allocation section 101 allocates $R B S$ using a plurality of consecutive RBs included in one coding block, as one unit. An RB is formed by grouping into a block a number of subcarriers neighboring each other at intervals of coherence bandwidth.
[0019] Encoding section 102 encodes the RB allocation information, and outputs the encoded RB allocation information to modulation section 103 . [0020] Modulation section 103 modulates the encoded RB allocation information, to generate RB allocation information symbols, and outputs the RB allocation information symbols to $\mathrm{S} / \mathrm{P}$ section (serial-to-parallel conversion section) 104 .
[0021] S/P section 104 converts the RB allocation information symbols received as input from modulation section 103 in series into parallel $R B$ allocation information symbols, and outputs the parallel RB allocation information symbols to mapping section 109.
[0022] Modulation section 105 modulates a response signal received as input from CRC section 117 and outputs the modulated response signal to spreading section 106 .
[0023] Spreading section 106 spreads the response signal received as input from modulation section 105 and outputs the spread response signal to repetition section 107 .
[0024] Repetition section 107 duplicates (repeats) the response signal
received as input from spreading section 106 and outputs a plurality of response signals including identical response signals, to $\mathrm{S} / \mathrm{P}$ section 108. [0025] S/P section 108 converts the response signals received as input from repetition section 107 in series into parallel response signals, and outputs the parallel response signals to mapping section 109.
[0026] Mapping section 109 maps the RB allocation information symbols and response signals to a plurality of subcarriers forming an OFDM symbol, and outputs the mapped RB allocation information symbols and response signals to IFFT (Inverse Fast Fourier Transform) section 110. Here, based on the RB allocation information received as input from RB allocation section 101, mapping section 109 maps the response signals to downlink control channels mapped on the frequency domain in association with uplink RBs. For example, when mapping section 109 receives $R B \# 1$ to $R B \# 3$ shown in FIG. 1 from RB allocation section 101 as RB allocation information for mobile station 200, as shown in FIG.3, mapping section 109 maps response signals to uplink data transmitted from mobile station 200 using RB \# : to RB \#3, to downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 3$. The mapping processing in mapping section 109 will be described later in detail.
[0027] IFFT section 110 performs an IFFT on the RB allocation information symbols and response signals mapped to a plurality of subcarriers, to generate an OFDM symbol, and outputs the generated OFDM symbol to CP (Cyclic Prefix) addition section 111.
[0028] CP addition section 111 adds the same signal as the tail part of the

OFDM symbol, as a CP, to the head of the OFDM symbol.
[0029] Radio transmitting section 112 performs transmitting processing including $D / A$ conversion, amplification and up-conversion, on the OFDM symbol with a CP, and transmits the OFDM symbol with a CP after transmitting processing, from antenna 113 , to mobile station 200 . [0030] Meanwhile, radio receiving section 114 receives uplink data transmitted from mobile station 200 via antenna 113 , and performs receiving processing including down-conversion and $A / D$ conversion for this uplink data.
[0031] Demodulation section 115 demodulates the uplink data and outputs the demodulated uplink data to decoding section 116 .
[0032] Decoding section 116 decodes the demodulated uplink data, and outputs the decoded uplink data to CRC section 117 .
[0033] CRC section 117 performs error detection for the uplink data after the decoding using $C R C$, to generate, as a response signal, an $A C K$ signal if $C R C=O K$ (no error) or a $N A C K$ signal if $C R C=N G$ (error), and outputs the generated response signal to modulation section 105. Further, if $\mathrm{CRC}=\mathrm{OK}$ (no error), CRC section 117 outputs the uplink data after decoding as received data.
[0034] Meanwhile, in mobile station 200 shown in FIG. 5 , radio receiving section 202 receives an OFDM symbol transmitted from base station 100 via antenna 201, and performs receiving processing including down-conversion and $A / D$ conversion on this OFDM symbol.
[0035] CP removing section 203 removes the CP from the OFDM symbol after receiving processing.
[0036] FFT (Fast Fourier Transform) section 204 performs an FFT on the OFDM symbol after CP removal, to acquire RB allocation information symbols and response signals, and outputs them to demultiplexing section 205.
[0037] Demultiplexing section 205 demultiplexes the input signals in to the RB allocation information symbols and the response signals, and outputs the RB allocation information symbols to $P / S$ section 206 and the response signals to $\mathrm{P} / \mathrm{S}$ section 210 . Here, based on the specified result received as input from mapping specifying section 209, demultiplexing section 205 demultiplexes response signals from the input signal.
[0038] $\mathrm{P} / \mathrm{S}$ section 206 converts a plurality of parallel RB allocation information symbols received as input from demultiplexing section 205 into RB allocation information symbols in series, and outputs the RB allocation information symbols in series to demodulation section 207 .
[0039] Demodulation section 207 demodulates the $R B$ allocation information symbols, and outputs the demodulated RB allocation information to decoding section 208 .
[0040] Decoding section 208 decodes the demodulated RB allocation information, and outputs the decoded $R B$ allocation information to transmission control section 214 and mapping specifying section 209 .
[0041] Based on the RB allocation information received as input from
decoding section 208, mapping specifying section 209 specifies downlink control channels to which response signals to uplink data transmitted from the mobile station are mapped. For example, when the RB allocation information for a mobile station is RB \#1 to RB \#3 shown in FIG.1, as shown in FIG.3, mapping specifying section 209 specifies $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 3$ to be downlink control channels for the mobile station to which the response signals are mapped. Then mapping specifying section 209 outputs the specified result to demultiplexing section 205. The specifying processing in mapping specifying section 209 will be described later in detail.
[0042] P/S section 210 converts the parallel response signals received as input from demultiplexing section 205 into in series, and outputs the response signals in series to despreading section 211.
[0043] Despreading section 211 despreads the responses signals, and outputs the despread response signals to combining section 212 . [0044] In the despread response signals, combining section 212 combines the original response signal and the response signals generated by repeating the original response signal, and outputs the response signal after the combining to demodulation section 213 .
[0045] Demodulation section 213 demodulates the response signal after combining, and outputs the demodulated response signal to retransmission control section 216.
[0046] When RB allocation information received as input from decoding section 208 shows that uplink RBs are allocated to the subject mobile station,
transmission control section 214 maps the transmission data to the $R B$ designated in the RB allocation information, and outputs the mapped transmission data to encoding section 215 .
[0047] Encoding section 215 encodes the transmission data, and outputs the encoded transmission data to retransmission control section 216 .
[0048] Upon initial transmission, retransmission control section 216 holds the encoded transmission data and outputs it to modulation section 217 . Retransmission control section 216 holds the transmission data until retransmission control section 216 receives an ACK signal from demodulation section 213. Further, when a NACK signal is received as input from demodulation section 213 , that is, upon retransmission, retransmission control section 216 outputs the transmission data that is held, to modulation section 217 .
[0049] Modulation section 217 modulates the encoded transmission data, received as input from retransmission control section 216 , and outputs the modulated transmission data to radio transmitting section 218.
[0050] Radio transmitting section 218 performs transmitting processing including D/A conversion, amplification and up-conversion on the modulated transmission data, and transmits the transmission data after transmitting processing from antenna 201 to base station 100 . The data transmitted in this way becomes uplink data.
[0051] Next, the mapping processing in mapping section 109 in base station 100 and the specifying processing in mapping specifying section 209
in mobile station 200 will be explained in detail.
[0052] With the present embodiment, base station 100 receives uplink data transmitted from mobile station 200 using RB \#1 to RB \#8 shown in FIG.1, and base station 100 maps response signals to uplink data (ACK signals and NACK signals) to $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 8$, mapped in four frequency bands, subcarriers f1 to $\mathrm{f} 4, \mathrm{f} 9$ to f 12 , f 17 to f20 and f 25 to f 28 shown in FIG. 6 , and transmits the response signals to mobile station 200. Further, similar to FIG.2, spreading section 106 in base station 100 spreads the response signal with spreading code having spreading factor 4 , and repetition section 107 repeats the spread response signal with repetition factor 2. Further, as shown in FIG.3, the uplink RBs shown in FIG. 1 and the downlink control channels shown in FlG. 6 are associated one by one.
[0053] Mapping section 109 maps response signals for mobile station 200 to a plurality of downlink control channels that are associated with a plurality of RBs and that are subject to distributed mapping on the frequency domain. Mapping section 109 holds association information between uplink RBs and downlink control channels in FIG.3, and the downlink control channel mapping information shown in FIG.6, and, based on these, maps the response signals to subcarriers to which downlink control channels are mapped.
[0054] To be more specific, when the RB allocation information for mobile station 200 designates RB \#1 to RB \#3, mapping section 109 maps the response signals to CH \#1 associated with RB \#1 in FIG.3, that is, maps the
response signals to subcarriers $f 1$ to $f 4$ and $f 17$ to f20 shown in $F 1 G .6$. Likewise, mapping section 109 maps the response signals to $\mathrm{CH} \# 2$ associated with $R B \# 2$, that is, maps the response signals to subcarriers f9 to f12 and subcarriers f 25 to f 28 , and maps the response signals to $\mathrm{CH} \# 3$ associated with RB \#3, that is, maps the response signals to subcarriers f1 to f 4 and subcarriers f17 to f20.
[0055] Here, in the downlink control channel mapping shown in FIG.6, downlink control channels (e.g. CH \#1 and $\mathrm{CH} \# 2$ ) associated with the two consecutive uplink RBs in FIG. 1 (e.g. RB\#1 and RB \#2) are mapped to different frequency bands in a distributed manner. In other words, the downlink control channels mapped in a localized manner in identical bands in FlG. 6 correspond to a plurality of nonconsecutive uplink RBs at two-RB intervals in FlG.1. To be more specific, for example, downlink control channels mapped to subcarriers f1 to 44 shown in FIG. 6 in a localized manner are downlink control channels $\mathrm{CH} \# 1, \mathrm{CH} \# 3, \mathrm{CH} \# 5$ and $\mathrm{CH} \# 7$, and the uplink RBs associated with those downlink control channels are nonconsecutive RBs at two-RB intervals, RB\#1, RB\#3, RB\#5 and RB\#7, as shown in FIG. 3.
[0056] Consequently, when base station 100 transmits response signals to uplink data transmitted from mobile station 200 , using a plurality of consecutive uplink $R B s$, it is possible to prevent response signals from being mapped concentrated in identical bands. That is, base station 100 is able to map response signals over a plurality of frequency bands in a distributed
manner, to transmit the response signals subject to distributed mapping. For example, as described above, when the $R B$ allocation information for mobile station 200 designates RB \#1 to RB \#3, mapping section 109 maps the response signals to subcarriers f1 to f 4 and f 17 to f 20 shown in FIG.6, the response signals to subcarriers 99 to $f 12$ and f 25 to f 28 , and, the response signals to subcarriers f1 to f 4 and f 17 to f 20 . By this means, the response signals are mapped to all subcarriers f1 to $\mathrm{f} 4, \mathrm{f} 9$ to $\mathrm{f} 12, \mathrm{f} 17$ to f20 and f 25 to f28 uniformly in a distributed manner to which downlink control channels are mapped
[0057] In this way, mapping section 109 maps response signals to downlink control channels based on the associations between uplink RBs and downlink control channels shown in FIG. 3 and the downlink control channel mapping shown in FIG.6, so that radio transmitting section 112 in base station 100 is able to transmit response signals to mobile station 200 using downlink control channels that are associated with uplink RBs and that are mapped in a distributed manner on the frequency domain.
[0058] Likewise, mapping specifying section 209 in mobile station 200 (FIG.5) holds the association information between uplink RBs and downlink control channels shown in FIG. 3 and the downlink control channel mapping information shown in FIG. 6 , and specifies the downlink control channels to which response signals for the mobile station are mapped, from the $R B$ allocation information received. To be more specific, when mapping specifying section 209 receives as input $R B$ allocation information showing
that RB\#1 to RB \#3 shown in FIG. 1 are allocated to a mobile station from decoding section 208, based on the associations shown in FIG. 3 , mapping specifying section 209 specifies that the response signals for the mobile station are mapped to subcarriers f1 to f 4 and f 17 to f 20 , to which downlink control channels $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 3$ are mapped, and to subcarriers 9 to $\AA 12$ and $f 25$ to 428 , to which downlink control channel $C H \# 2$ is mapped, as shown in FIG. 6.
[0059] In this way, according to the present embodiment, it is less likely that response signals to uplink data, which are transmitted using a plurality of consecutive uplink RBs, concentrate in identical frequency bands and code-multiplexed, so that it is possible to map response signals in a distributed manner on the frequency domain. Therefore, according to the present embodiment, it is possible to maximize the frequency diversity effect on downlink control channels.
[0060] (Embodiment 2)

By mapping spread blocks generated by spreading response signals to consecutive subcarriers (e.g. subcarriers $f 1$ to f4 shown in FIG.6) as in Embodiment 1 , intersymbol interference (ISI) that is caused between neighboring subcarriers decreases to an extent ISI can be ignored.
[0061] However, if base station 100 controls transmission power on a per downlink control channel basis, it is no longer possible to ignore IS because transmission power varies between a plurality of downlink control channels mapped in identical frequency bands and ISI from a downlink control
channel of greater transmission power to a downlink control channel of smaller transmission power increases. For example, focusing upon downink control channels $C H \# 1$ and $C H \# 3$ shown in FIG. 6 , if the transmission power for downink control channel $C H \# 1$ is greater than transmission power for downlink control channel $\mathrm{CH} \# 3$, downlink control channels $C H \# 1$ and $C H \# 3$ are mapped to identical frequency bands, subcarriers f1 to f4 and f17 to f20, and therefore ISI from downlink control channel CH\# 1 to downlink control channel $\mathrm{CH} \# 3$ is caused in both frequency bands.
[0062] Then, mapping section 109 according to the present embodiment, maps response signals to a plurality of downlink control channels in different mapping patterns in a distributed manner on the frequency domain. [0063] That is, in FIG.6, downlink control channels CH \#1 and CH \#3 are mapped to subcarriers fl to f 4 and f 17 to f 20 in identical mapping patterns. By contrast with this, with the present embodiment, as shown in FIG.7, the mapping pattern of downlink control channel CH \#1 and the mapping pattern in downlink control channel $\mathrm{CH} \# 3$ vary, and, downlink control channel CH \#1 is mapped to subcarriers f1 to f 4 and f 17 to f 20 and downlink control channel CH \# 3 is mapped to subcarriers f 1 to f 4 and f9 to f12. That is, with the present embodiment, as shown in FIG.7, downlink control channels CH $\# 1$ and CH \# 3 are mapped to identical subcatriers f1 to f 4 , and meanwhile, downlink control channel $C H \neq 1$ is mapped to subcarriers $f 17$ to $f 20$ and downlink control channel $\mathrm{CH} \# 3$ is mapped to subcarriers f9 to f 12 . That is,

CH \#1 and CH \#3 are mapped in different mapping patterns in a distributed manner on the frequency domain.
[0064] By this means, similar to Embodiment 1, when mapping section 109 maps response signals to uplink data transmitted using RB \#1 to RB \#3, to downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 3$, ISI is not caused in the both frequency bands, subcarriers f9 to f 12 and subcarriers f17 to f20 though ISI is caused in subcarriers f 1 to f 4 between downlink control channel $\mathrm{CH} \# 1$ of greater transmission power and downlink control channel CH \#3 of smaller transmission power.
[0065] In this way, according to the present embodiment, it is possible to provide the same advantage as in Embodiment 1, and it is possible to reduce ISI by randomizing ISI caused by transmission power control.
[0066] By mapping downlink control channels CH \#1 to $\mathrm{CH} \# 8$ on a random basis on the frequency domain, it is possible to map downlink control channels $C H \# 1$ to $\mathrm{CH} \# 8$ in different mapping patterns in a distributed manner on the frequency domain.
[0067] (Embodiment 3)
With the present embodiment, response signals are mapped to a plurality of downlink control channels adopting different mapping patterns between neighboring cells.
[0068] Here, a case will be explained where a cell neighboring cell 1 is one cell, cell 2. Further, cell 1 and cell 2 are synchronized. Further, when FIG. 6 shows a downlink control channel mapping pattern in cell 1 , FIG. 8
shows a downlink control channel mapping pattern in cell 2. Further, similar to Embodiment 1 , the downlink control channels shown in FIG. 8 are mapped in a distributed manner on the frequency domain in association with a plurality of consecutive uplink RBs.
[0069] The downlink control channels mapped in identical frequency bands vary between the mapping pattern in cell 1 (FIG.6) and the mapping pattern in cell 2 (FIG.8). That is, the identical downlink control channels are mapped to different frequency bands in a distributed manner in cell 1 and cell 2.
[0070] To be more specific, in cell 1, as shown in FIG.6, downlink control channels CH\#1, CH \#3, CH \#5 and CH \#7 are mapped to subcarriers fl to f 4 and f17 to f20, and downlink control channels $\mathrm{CH} \# 2, \mathrm{CH} \# 4, \mathrm{CH} \# 6$ and CH \#8 are mapped to subcarriers f9 to f 12 and f 25 to f 28 . By contrast with this, in cell 2 , as shown in FlG. 8 , downlink control channels $\mathrm{CH} \# 2, \mathrm{CH} \# 4, \mathrm{CH}$ \#6 and CH \#8 are mapped to subcarriers fl to f4 and f17 to f20, and downlink control channels $\mathrm{CH} \# 1, \mathrm{CH} \# 3, \mathrm{CH} \# 5$ and $\mathrm{CH} \# 7$ are mapped to subcarriers f9 to f 12 and $£ 25$ to f 28.
[0071] In this way, according to the present embodiment, mapping patterns of downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 8$ on the frequency domain are made different between neighboring cells. Therefore, according to the present embodiment, it is possible to provide the same advantage as in Embodiment 1 in the same cell, and, when response signals are transmitted at the same time in neighboring cells, it is possible to reduce inter-cell
interference by randomizing inter-cell interference from neighboring cells between downlink control channels.
[0072] Although a case has been explained above with the present embodiment where the present invention is implemented between neighboring cells, the present invention may also be implemented between neighboring sectors in the same cell. That is, in the above explanation, by regarding cell 1 as sector 1 and cell 2 as sector 2 , the present invention may also be implemented between neighboring sectors. Further, it is not necessary to take into consideration of the synchronization between neighboring sectors, so that the present invention may be implemented easier between neighboring sectors than between neighboring cells.
[0073] Further, although a case has been explained above with an example where the number of cells is two, the present invention may also be implemented where the number of cells is three or more.
[0074] (Embodiment 4)
With the present embodiment, a case will be explained where CCEs (Control Channel Elements) and downlink control channels for transmitting response signals in downlink, are associated.
[0075] Control information that is required to transmit uplink data from a mobile station to a base station (e.g. the above-described RB allocation information) is transmitted from the base station to the mobile station using a different downlink control channel from the downlink control channel for transmitting response signals (e.g. an SCCH (Shared Control Channel)).
[0076] Further, the base station allocates a plurality of SCCH to mobile stations and transmits SCCH allocation information showing which SCCHS in a plurality of SCCHs are assigned to which mobile stations (i.e. allocation information showing SCCH allocation results), to the mobile stations before transmitting the RB allocation information.
[0077] Further, each SCCH is formed with one CCE or a plurality of CCEs. For example, $\mathrm{SCCH} \# 1$ to $\mathrm{SCCH} \# 8$ adopt the configurations shown in FIG. 9. That is, SCCH \#1 is formed with CCE \#1 and CCE \#2, SCCH \#2 is formed with CCE \#3 and CCE \#4, SCCH \#3 is formed with CCE $\# 5$ and CCE $\# 6$, SCCH \#4 is formed with CCE \#7 and CCE \#8, SCCH \#5 is formed with CCE \#1 to CCE \#4, and SCCH \#6 is formed with CCE \#5 to CCE \#8. In this way, when one SCCH is formed with a plurality of CCEs, one SCCH is formed with a plurality of consecutive CCEs.
[0078] CCE \#1 to CCE \#8 and physical resources on the frequency axis (in the frequency domain) are associated as shown in FIG. 10, for example. That is, one CCE is associated with a plurality of physical resources mapped on the frequency domain in a distributed manner.
[0079] Here, to use downlink communication resources efficiently, it is one possibility to associate CCEs and downlink control channels for transmitting response signals in downlink, and identify the control channels in which response signals are transmitted to a mobile station based on SCCH allocation information the base station reports to the mobile station. For example, as shown in FIG. 11 , the CCEs shown in FIG. 9 and the downlink
control channels shown in FIG. 2 are associated one by one. Therefore, as shown in FIG.11, response signals to uplink data from the mobile station allocated SCCH \#1 shown in FIG. 9 are mapped to downlink control channels $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 2$, that is, mapped to subcarriers f1 to f4 and f17 to f20 shown in FIG.2. Likewise, as shown in FIG.11, response signals to uplink data from the mobile station allocated $S C C H \# 2$ shown in FIG. 9 are mapped to downlink control channels $\mathrm{CH} \# 3$ and $\mathrm{CH} \# 4$, that is, to subcarriers f1 to f4 and fl7 to f20 shown in FlG.2. The same applies to SCCH \#3 to SCCH $\# 6$.
[0080] Although downlink control channels CH \#1 to CH \#8 are mapped to sixteen subcarriers, subcariers fl to $\mathrm{f} 4, \mathrm{f} 9$ to $\mathrm{f} 12, \mathrm{f} 17$ to f 20 and f 25 to f 28 in this way, with the above example, response signals are mapped only to eight subcarriers, subcarriers f1 to f 4 and f17 to f20. That is, with the above example, response signals are only mapped to half of all subcarriers to which downlink control channels are mapped.
[0081] Therefore, even when CCE \#1 to CCE \#8 in downlink with downlink control channels CH \#1 to CH \#8 are associated one by one as shown in FIG. I1, similar to the case where uplink RB\#1 to RB \#8 and downlink control channels $C H \# 1$ to $\mathrm{CH} \# 8$ are associated one by one as shown in FIG.3, little frequency diversity effect may be obtained depending upon the positions to which downlink control channels are mapped.
[0082] Then, with the present embodiment, when downlink CCE \#1 to CCE \#8 and downlink control channels CH \#1 to CH \#8 are associated, the
mapping of downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 8$ is shown in FIG. 6 (Embodiment 1).
[0083] FIG. 12 shows the configuration of base station 300 according to the present embodiment, and FIG. 13 shows the configuration of mobile station 400 according to the present embodiment. In FIG. 12, the same reference numerals are assigned to the same components in FIG. 4 (Embodiment 1), and description thereof will be omitted. Further, in FIG.13, the same reference numerals are assigned to the same components in FIG. 5 (Embodiment 1), and description thereof will be omitted.
[0084] In base station 300 shown in FIG. 12, SCCH allocation section 301 allocates $\mathrm{SCCH} \# 1$ to $\mathrm{SCCH} \# 8$ to mobile stations, generates SCCH allocation information, and outputs the SCCH allocation information to encoding section 302 and mapping section 305 .
[0085] Encoding section 302 encodes the SCCH allocation information, and outputs the encoded SCCH allocation information to modulation section 303. [0086] Modulation section 303 modulates the encoded SCCH allocation information, to generate SCCH allocation information symbols, and outputs the SCCH allocation information symbols to S/P section 304 .
[0087] S/P section 304 converts the SCCH allocation information symbols received as input from modulation section 303 in series into parallel SCCH allocation information symbols, and outputs the parallel SCCH allocation information symbols to mapping section 305 .
[0088] Mapping section 305 maps the SCCH allocation information
symbols, the RB allocation information symbols and response signals to a plurality of subcarriers forming an OFDM symbol, and outputs the mapped SCCH allocation information symbols, RB allocation information symbols and response signals to IFFT section 306.
[0089] Here, based on the SCCH allocation information received as input from SCCH allocation section 301 , mapping section 305 maps the response signals to downlink control channels mapped on the frequency domain in association with CCEs. For example, when mapping section 305 receives SCCH \#1 shown in FIG. 9 from SCCH allocation section 301 as the SCCH allocation information for mobile station 400 , as shown in FlG.9, SCCH \#1 is formed with CCE \#1 and CCE \#2 as shown in FIG.11. For this reason, mapping section 305 maps the response signals to uplink data transmitted from mobile station 400 to downlink control channels $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 2$ associated with CCE \#1 and CCE \#2. This mapping processing will be described later in detail.
[0090] Further, based on the SCCH allocation information received as input from SCCH allocation section 301 , mapping section 305 maps RB allocation information symbols to $\mathrm{SCCH} \# \mathrm{I}$ to $\mathrm{SCCH} \# 8$ mapped on the frequency domain. For example, when mapping section 305 receives $\mathrm{SCCH} \# 1$ from SCCH allocation section 301 as SCCH allocation information for mobile station 400 , mapping section 305 maps the $R B$ allocation information symbols to $\mathrm{SCCH} \# 1$.
[0091] IFFT section 306 performs an IFFT on the SCCH allocation
information symbols, RB allocation information symbols and response signals mapped to a plurality of subcarriers, to generate an OFDM symbol, and outputs the generated OFDM symbol to CP addition section 111 .
[0092] Meanwhile, in mobile station 400 shown in FIG.13, FFT section 401 performs an FFT on the OFDM symbol after CP removal, to acquire SCCH allocation information symbols, RB allocation information symbols and response signals, and outputs them to demultiplexing section 402 .
[0093] Demultiplexing section 402 demultiplexes the input signals into the SCCH allocation information symbols, the RB allocation information symbols and response signals, and outputs the SCCH allocation information symbols to $\mathrm{P} / \mathrm{S}$ section 403 , the RB allocation information symbols to $\mathrm{P} / \mathrm{S}$ section 206 and the response signals to $\mathrm{P} / \mathrm{S}$ section 210 . Here, based on the specified result received as input from mapping specifying section 406 , demultiplexing section 402 demultiplexes the RB allocation information symbols and the response signals from the input signal.
[0094] P/S section 403 converts a plurality of parallel SCCH allocation information symbols received as input from demultiplexing section 402 into SCCH allocation information symbols in series, and outpats the SCCH allocation information symbols in series to demodulation section 404 , [0095] Demodulation section 404 demodulates the SCCH allocation information symbols, and outputs the demodulated SCCH allocation information to decoding section 405 .
[0096] Decoding section 405 decodes the demodulated SCCH allocation
information, and outputs the decoded SCCH allocation information to mapping specifying section 406 .
[0097] Based on the SCCH allocation information received as input from decoding section 405 , mapping specifying section 406 specifies downlink control channels to which response signals to uplink data transmitted from the mobile station are mapped. For example, when the SCCH allocation information for the mobile station is SCCH \#1 shown in FIG.9, $\mathrm{SCCH} \# 1$ is formed with CCE \#1 and CCE \#2 as shown in FIG.9, and therefore, as shown in FIG.11, mapping specifying section 406 specifies $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 2$ to be downlink control channels for the mobile station to which the response signals are mapped. Then, mapping specifying section 406 outputs the specified result to demultiplexing section 402. The specifying processing will be described later in detail.
[0098] Further, based on the SCCH allocation information received as input from decoding section 405 , mapping specifying section 406 specifies the SCCH to which the RB allocation information symbols are mapped for the mobile station. For example, when the SCCH allocation information for a mobile station is SCCH \#1, mapping specifying section 406 specifies SCCH \#1 to be an SCCH for the mobile station to which the RB allocation information symbols for the mobile station are mapped.

Then, mapping specifying section 406 outputs the specified result to demultiplexing section 402 .
[0099] Demodulation section 208 decodes the demodulated RB allocation
information, and outputs the decoded RB allocation information to transmission control section 214 .
[0100] Next, the mapping processing in mapping section 305 in base station 300 and the specifying processing in mapping specifying section 406 in mobile station 400 will be explained in detail.
[0101] With the present embodiment, mobile station 400 receives the RB allocation information transmitted from base station 300 using SCCH \#1 to SCCH \#8 shown in FIG.9. Further, base station 300 maps response signals to uplink data (ACK signals and NACK signals) to downlink control channels CH \#1 to CH \#8, mapped in four frequency bands, subcarriers fl to f4, f9 to f12, f17 to f 20 and f 25 to f 28 shown in FlG. 6 , and transmits the response signals to mobile station 400 . Further, similar to FIG. 2 , spreading section 106 in base station 300 spreads the response signal with spreading code having spreading factor 4 , and repetition section 107 repeats the spread response signal with repetition factor 2. Further, as shown in FIG.11, the CCEs shown in FIG. 9 and the downlink control channels shown in FIG. 6 are associated one by one.
[0102] Mapping section 305 maps response signals for mobile station 400 to a plurality of downlink control channels that are associated with a plurality of CCEs and that are subject to distributed mapping on the frequency domain. Mapping section 305 holds association information between SCCHs and CCEs shown in FIG.9, association information between CCEs and downlink control channels shown in FIG.11, and the downlink
control channel mapping information shown in FIG.6, and, based on these, maps the response signals to subcarriers to which downlink control chanmels are mapped.
[0103] To be more specific, when the SCCH allocation information for mobile station 400 designates $\mathrm{SCCH} \# 1, \mathrm{SCCH} \# 1$ is formed with CCE \#1 and CCE\# 2 as shown in FlG.9. For this reason, mapping section 305 maps response signals to CH \#1 associated with CCE \#1 in FIG.11, that is, maps response signals to subcarriers fl to f 4 and fl 7 to f20 shown in FIG.6, and maps response signals to CH \#2 associated with CCE \#2, that is, maps response signals to subcarriers f9 to f12 and f25 to f28.
[0104] Here, in the downlink control channel mapping shown in FIG.6, downlink control channels (e.g. $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 2$ ) associated with two consecutive downlink CCEs in FIG.9 (e.g. CCE \#1 and CCE \#2) are mapped to different frequency bands in a distributed manner. In other words, the downlink control channels mapped in a localized manner in identical frequency bands in FIG. 6 correspond to a plurality of nonconsecutive downlink CCEs at two-CCE intervals in FIG.9. To be more specific, for example, downlink control channels mapped to subcarriers f1 to f4 shown in FIG. 6 in a localized manner are downlink control channels $\mathrm{CH} \# 1, \mathrm{CH} \# 3$, CH $\# 5$ and $\mathrm{CH} \# 7$, and the downlink CCEs associated with those downlink control channels are nonconsecutive CCEs at two-CCE intervals, CCE \#1, CCE \#3, CCE \#5 and CCE \#7, as shown in FIG. 11.
[0105] Consequently, when base station 300 transmits response signals to
uplink data transmitted from mobile station 400 to which the RB allocation information is transmitted using an $S C C H$ formed with a plurality of consecutive CCEs, it is possible to prevent response signals from being mapped concentrated in identical frequency bands. That is, base station 300 is able to map response signals over a plurality of frequency bands in a distributed manner, to transmit the response signals subject to distributed mapping. For example, as described above, when the SCCH allocation information for mobile station 400 designates $\mathrm{SCCH} \# 1$, mapping section 305 maps response signals to subcarriers fl to f 4 and fI 7 to f 20 shown in FIG. 6 , and response signals to subcarriers f9 to f 12 and f 25 to f28. By this means, response signals are mapped to all subcarriers fl to $\mathrm{f} 4, \mathrm{f} 9$ to f 12 , fl7 to f20 and f25 to f28, uniformly, to which downlink control channels are mapped, in a distributed manner.
[0106] In this way, mapping section 305 maps response signals to downlink control channels based on the associations between SCCHs and CCEs shown in FIG.9, the associations between CCEs and downlink control channels shown in FIG.11, and the downlink control channel mapping shown in FIG. 6 , so that radio transmitting section 112 in base station 300 is able to transmit response signals to mobile station 400 using downlink control channels that are associated with downlink CCEs and that are mapped in a distributed manner on the frequency domain.
[0107] Likewise, mapping specifying section 406 in mobile station 400
(FIG.13) holds the association information between SCCH and CCEs shown
in FIG.9, the association information between CCEs and downlink control channels shown in FIG. 11 and the downlink control channel mapping information shown in FIG, 6 , and specifies the downlink control channels to which response signals for the mobile station are mapped, from the SCCH allocation information received. To be more specific, when mapping specifying section 406 receives as input SCCH allocation information showing that $\mathrm{SCCH} \# 1$ shown in FIG. 9 is allocated to a mobile station from decoding section 405, based on the associations shown in FIGs.9 and 11, mapping specifying section 406 specifies that the response signals for the mobile station are mapped to subcarriers fl to f 4 and f 17 to f 20 , to which downlink control channel $C H \# 1$ is mapped and are mapped, to subcarriers $f 9$ to f 12 and f 25 to f 28 , to which downlink control channel $\mathrm{CH} \# 2$ is mapped, as shown in FIG. 6.
[0108] In this way, according to the present embodiment, when one SCCH is formed with a plurality of consecutive downlink CCEs, it is less likely that response signals concentrate in identical frequency bands and are code-multiplexed, so that it is possible to map response signals in a distributed manner on the frequency domain. Therefore, according to the present embodiment, similar to Embodiment 1, it is possible to maximize the frequency diversity effect on downink control channels.
[0109] Although a case has been explained with the present embodiment where an SCCH is an example of a control channel formed with a plurality of CCEs, control channels to apply to the present invention is not limited to an

SCCH . All control channels formed with a plurality of consecutive CCEs are applicable to the present invention.
[0110] Further, similar to Embodiment 2, mapping section 305 in the present embodiment may map response signals to a plurality of downlink control channels mapped in distributed manner on the frequency domain in different patterns.
[0111] Further, similar to Embodiment 3, mapping section 305 with the present embodiment may map response signals to a plurality of downlink control channels adopting different mapping patterns between neighboring cells or sectors.
[0112] Further, although a case has been explained with the present embodiment where SCCH allocation information is transmitted before RB allocation information is transmitted in an SCCH, it is not necessary to transmit SCCH allocation information before transmitting RB allocation information. For example, the base station includes mobile station IDs that can identify mobile stations in SCCHs and transmits them, and the mobile station decodes all received SCCH and performs blind detection as to whether or not there is an SCCH for the mobile station, so that it is possible to make it unnecessary to transmit SCCH allocation information before transmitting RB allocation information.
[0113] Further, as for the time to switch downlink control channels associated with CCEs to a newly allocated SCCH, fixed time may be set up in advance, or time that changes adaptively may be informed from the base
station to the mobile station using, for example, an SCCH.
[0114] Further, when SCCH \#1 to SCCH \#6 adopt the configurations shown in FIG.14, that is, when SCCH \#1 is formed with CCE \#1 and CCE \#3, SCCH \#2 is formed with CCE \#5 and CCE \#7, SCCH \#3 is formed with CCE \#2 and $\mathrm{CCE} \# 4, \mathrm{SCCH} \# 4$ is formed with $\mathrm{CCE} \# 6$ and $\mathrm{CCE} \# 8, \mathrm{SCCH} \# 5$ is formed with CCE \#1, CCE \#3, CCE \#5 and CCE \#7, and SCCH \#6 is formed with CCE $\# 2$, CCE \#4, CCE \#6 and CCE \#8, downink control channels $\mathrm{CH} \neq 1$ to CH \#8 may be mapped as shown in FIG. 15. The downlink control channels (e.g. $\mathrm{CH} \# 1$ and $\mathrm{CH} \# 3$ ) associated with a plurality of downlink CCEs forming the SCCHs (e.g. CCE\#1 and CCE \#3 forming SCCH \#1) in FIG.I4 are mapped in different frequency bands in a distributed manner. Consequently, when base station 300 transmits response signals to uplink data transmitted from mobile station 400 , to which $R B$ allocation information is transmitted, using an SCCH formed with a plurality of CCEs, it is possible to prevent response signals from being mapped concentrated in identical frequency bands. That is, as described above, base station 300 is able to transmit response signals by mapping the response signals to a plurality of bands in a distributed manner.
[0115] (Embodiment 5)
A case will be explained with the present embodiment where the number of CCEs to use varies on a per subframe basis.
[0116] Studies are underway to change the number of OFDM symbols upon which CCEs, which forms a downlink control channel (e.g. SCCH) to report
uplink or downlink allocation information, are multiplexed (hereinafter referred to as "the number of OFDMs for multiplexing") on a per subframe basis. At that time, the number of OFDMs for multiplexing is reported from the base station to mobile stations using a PCFICH (Physical Control

Format Indicator Channel). There are more physical resources to maltiplex CCEs upon increasing the number of OFDMs for multiplexing, and therefore, the number of CCEs to use further increases. For example, when the number of OFDMs for multiplexing is one amongst CCE \#1 to CCE \#16 shown in FIG. 16, CCE \# 1 to CCE $\# 4$ are multiplexed on one OFDM symbol, and, when the number of OFDMs for multiplexing is two, CCE \#1 to CCE \#16 are multiplexed on two OFDM symbols. That is, in the case where one SCCH is formed with one CCE or a plurality of CCEs, any of CCE \# 1 to CCE \#4 are used when the number of OFDMs for multiplexing is one and any of CCE \#1 to CCE \#I 6 are used when the number of OFDMs for multiplexing is two.
[0117] At this time, amongst CCE \#1 to CCE \#16 shown in FIG. 16 , while CCE \#1 to CCE \#4 are used when a plurality of numbers of OFDMs for multiplexing (one or two) are different, CCE \#5 to CCE \#16 are only used when the number of OFDMs for multiplexing is two. That is, CCE \#1 to CCE \#16 are sorted into CCEs to use between a plurality of different numbers of OFDMs for multiplexing, and CCEs not to use. Further, CCEs with downlink control channels for transmitting response signals in downlink are associated, and the number of CCEs to use increases or decreases
depending on the number of OFDMs for multiplexing, and accordingly, the number of downlink control channels used to transmit response signals increases or decreases. That is, similar to CCEs, downlink control channels are sorted into downlink control channels to use between a plurality of different numbers of OFDMs for multiplexing, and downlink control channels not to use.
[0118] Here, if the number of OFDMs for multiplexing is one, that is, if CCE \#1 to CCE \#4 shown in FIG. 16 are only used, downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$ are mapped concentrated in identical frequency bands, subcarriers fl to f4 and subcarriers f17 to f20, subject to downlink control channel mapping shown in FIG.2, for example. For this reason, transmission power varies between frequency bands to which downlink control channels are mapped (i.e. between four frequency bands of subcarriers f1 to f4, f9 to f12, f17 to f20 and f25 to f28 in FIG.2). Particularly, if response signals concentrate and are code-multiplexed in frequency bands to which downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$ are mapped, interfering power against other cells increases. Further, ISI increases in frequency bands in which response signal concentrate and are code-multiplexed.
[0119] Then, with the present embodiment, downlink control channels for transmitting response signals in association with CCEs to use between a plurality of different numbers of OFDMs for multiplexing, are mapped in a distributed manner on the frequency domain.
[0120] FIG. 17 shows the configuration of base station 500 according to the present embodiment, and FIG. 19 shows the configuration of mobile station 600 according to the present embodiment. In FIG.17, the same reference numerals are assigned to the same components in FIG. 12 (Embodiment 4), and description thereof will be omitted. Further, in FIG.19, the same reference numerals are assigned to the same components in FIG. 13 (Embodiment 4), and description thereof will be omitted.
[0121] In base station 500 shown in FIG. 17, multiplexed OFDM number determination section 501 determines the number of OFDM symbols upon which CCEs are multiplexed according to the number of SCCH that are required to report control information on a per subframe basis. To be more specific, multiplexed OFDM number determination section 501 determines increasing the number of OFDMs for multiplexing when the number of SCCHs that are required to report control information is greater. Then, multiplexed OFDM number determination section 501 generates multiplexed OFDM number determination information showing the number of OFDMs for multiplexing determined, and outputs the generated multiplexed OFDM number determination information to encoding section 502 and SCCH allocation section 505 .
[0122] Encoding section 502 encodes the multiplexed OFDM number determination information, and outputs the encoded multiplexed OFDM number determination information to modulation section 503.
[0123] Modulation section 503 modulates the encoded multiplexed OFDM
number determination information, to generate multiplexed OFDM number determination information symbols, and outputs the multiplexed OFDM number determination information symbols to $\mathrm{S} / \mathrm{P}$ section 504.
[0124] S/P section 504 converts the multiplexed OFDM number
determination information symbols received as input from modulation section 503 in series into parallel multiplexed OFDM number determination information symbols, and outputs the parallel information symbols to mapping section 506 .
[0125] Based on the multiplexed OFDM number determination information received as input from multiplexed OFDM number determination section 501 , SCCH allocation section 505 allocates SCCH to mobile stations. For example, when the number of OFDMs for multiplexing received as input from multiplexed OFDM number determination section 501 is one, SCCH allocation section 505 allocates SCCHs formed with one CCE or a plurality of CCEs amongst CCE \#1 to CCE \#4 shown in above FIG. 16 , to mobile stations, Meanwhile, when the number of OFDMs for maltiplexing received as input from multiplexed OFDM number determination section 501 is two, SCCH allocation section 505 allocates SCCH formed with one CCE or a plurality of CCEs amongst CCE \#1 to CCE \#16 shown in above FIG. 16 , to mobile stations.
[0126] Mapping section 506 maps the multiplexed OFDM number determination information symbols, the RB allocation information symbols and response signals to a plurality of subcarriers forming an OFDM symbol,
and outputs them to IFFT section 507. Here, mapping section 506 maps response signals to downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 16$ including downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$, which are mapped in a distributed manner on the frequency domain in association with CCE \#1 to CCE \#4 to use between a plurality of different numbers of OFDMs for multiplexing, amongst CCE \#1 to CCE \#16 shown in above FIG.16. This mapping processing will be described later in detail.
[0127] Further, mapping section 506 maps the multiplexed OFDM number determination information symbols to PCFICHs mapped on the frequency domain.
[0128] IFFT section 507 performs an IFFT on the multiplexed OFDM number determination information symbols, the RB allocation information symbols and response signals mapped to a plurality of subcarriers, to generate an OFDM symbol, and outputs the generated OFDM symbol to CP addition section 111 .
[0129] Downlink control channels for transmitting response signals (e.g. ACK/NACK channels), PCFICHs and CCEs are multiplexed on physical resources defined in the frequency domain and time domain as shown in FIGs.18A and 18B, for example. When the number of OFDMs for multiplexing is one, as shown in FIG. 18 A , ACK/NACK channels, PCFICHs and CCE \#1 to CCE \#4 are multiplexed on one OFDM symbol, and when the number of OFDMs for multiplexing is two, as shown in FIG. 18B, ACK/NACK channels, PCFICHs and CCE \#1 to CCE \#16 are multiplexed on
two OFDM symbols.
[0130] Meanwhile, in mobile station 600 shown in FIG. 19, FFT section 601 performs an FFT on the OFDM symbol after CP removal, to acquire the multiplexed OFDM number determination information symbols, RB
allocation information symbols and response signals, and outputs them to demultiplexing section 602 .
[0131] Demultiplexing section 602 demultiplexes the input signals into the multiplexed OFDM number determination information symbols, the RB allocation information symbols and the response signals, and outputs the multiplexed OFDM number determination information symbols to $\mathrm{P} / \mathrm{S}$ section 603, the RB allocation information symbols to $\mathrm{P} / \mathrm{S}$ section 206 and the response signals to $\mathrm{P} / \mathrm{S}$ section 210 .
[0132] $\mathrm{P} / \mathrm{S}$ section 603 converts the parallel multiplexed OFDM number determination information symbols received as input from demultiplexing section 602 into the multiplexed OFDM number determination information symbols in series, and outputs the multiplexed OFDM number determination information symbols in series to demodulation section 604 .
[0133] Demodulation section 604 demodulates the multiplexed OFDM number determination information symbols, and outputs the demodulated multiplexed OFDM number determination information to decoding section 605.
[0134] Decoding section 605 decodes the demodulated multiplexed OFDM number determination information, and outputs the decoded multiplexed

OFDM number determination information to multiplexed OFDM number extraction section 606 .
[0135] Multiplexed OFDM number extraction section 606 extracts the number of OFDMs for multiplexing that is multiplexed from the multiplexed OFDM number determination information received as input from decoding section 605.
[0136] Based on the number of OFDMs for multiplexing received as input from maltiplexed OFDM number extraction section 606, mapping specifying section 607 specifies downlink control channels to which response signals are mapped and CCEs to use for SCCH allocation. Then, mapping specifying section 607 outputs the specified result to demultiplexing section 602. The specifying processing will be described later in detail.
[0137] Next, the mapping processing in mapping section 506 in base station 500 and the specifying processing in mapping specifying section 607 in mobile station 600 will be explained in detail.
[0138] With the present embodiment, as shown in FIG.16, there are two possible values for the number of OFDMs for multiplexing, one or two. Further, mobile station 600 receives the $R B$ allocation information transmitted from base station 500 using SCCH formed with one CCE or a plurality of CCEs, amongst CCE \#1 to CCE \#16 shown in FIG. 16 . Further, similar to Embodiment 4 , spreading section 106 in base station 500 spreads the response signal with spreading code having spreading factor 4 , and repetition section 107 repeats the spread response signal with repetition
factor 2. However, for ease of explanation, an explanation will be given to only downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 16$ mapped to four frequency bands, subcarriers $f 1$ to f 4 , f9 to $\mathrm{f} 12, \mathrm{f} 17$ to f 20 and f 25 to f 28 , to which response signals are mapped, as shown in FIG. 20 , without taking into consideration of repetition. Further, CCE \#1 to CCE \#16 shown in FIG. 16 and downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 16$ shown in FIG. 20 are associated one by one.
[0139] Mapping section 506 maps the response signals for mobile station 600 to downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 16$ including $\mathrm{CH} \# 1$ to CH \#4 that are subject to distributed mapping on the frequency domain and that are associated with CCE $\# 1$ to CCE $\# 4$ to use between a plurality of different numbers of OFDMs for multiplexing amongst CCE \#1 to CCE \#16 shown in above FIG. 16.
[0140] That is, as shown in FIG.20, downlink control channel $\mathrm{CH} \# 1$ is mapped to subcarriers f1 to f 4 , downlink control channel $\mathrm{CH} \# 2$ is mapped to subcarriers f9 to $\mathrm{f12}$, downlink control channel CH \#3 is mapped to subcarriers f17 to f 20 , and downlink control channel $\mathrm{CH} \# 4$ is mapped to subcarriers f25 to f28.
[0141] Further, as shown in FIG.20, downlink control channels CH \#5 to CH \#16 other than downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$ are mapped to four frequency bands, subcarriers f1 to $\mathrm{f} 4, \mathrm{f} 9$ to $\mathrm{f} 12, \mathrm{f} 17$ to f20 and f25 to f28.
[0142] Here, in the downlink control channel mapping shown in FIG. 20 ,
downlink control channels $C H \# 1$ to $C H \# 4$, which are associated with $C C E$ \#1 to CCE \#4 to use between a plurality of different numbers of OFDMs for multiplexing (one or two) in FIG. 16 , are mapped in a distributed manner in different bands. In other words, the downlink control channels mapped in a localized manner in identical frequency bands in FIG. 20 are one channel out of downlink control channels CH \#1 to $\mathrm{CH} \# 4$ associated with CCE \#1 to CCE \#4 to use between a plurality of different numbers of OFDMs for multiplexing in FIG. 16, and three channels out of downlink control channels CH \#5 to CH \#16 associated with CCE \#5 to CCE \#16 used only when the number of OFDMs for multiplexing is two in FIG. 16. To be more specific, for example, downlink control channels mapped to subcarriers f1 to f4 shown in FlG. 20 in a localized manner are downlink control channels $\mathrm{CH} \# 1, \mathrm{CH} \# 5$, $\mathrm{CH} \# 9$ and $\mathrm{CH} \# 13$. As shown in FIG. 16, downlink CCEs in association with these downlink control channels are CCE \#1 to use between a plurality of different numbers of OFDMs for multiplexing (one or two), and CCE \#5, CCE \#9 and CCE \#13, which are used only when the number of OFDMs for multiplexing is two.
[0143] Consequently, when base station 500 transmits response signals to uplink data transmitted from mobile station 600 , transmitted RB allocation information using SCCHs formed with CCEs to use between a plurality of different numbers of OFDMs for multiplexing, it is possible to prevent response signals from being mapped concentrated in identical frequency bands. That is, base station 500 is able to map response signals over a
plurality of frequency bands in a distributed manner, to transmit the response signals subject to distributed mapping even when the number of OFDMs for multiplexing is one. That is, the number of response signals to code multiplex is the same between frequency bands.
[0144] By this means, transmission power in frequency bands to which downlink control channels for transmitting response signals are mapped changes little, and therefore, the effect of averaging transmission power improves. That is, it is possible to suppress an increase in part of transmission power in frequency bands to which downlink control channels are mapped, in a concentrated manner, so that it is possible to reduce inter-cell interference between neighboring cells. Further, it is possible to prevent response signals from being mapped concentrated in identical frequency bands because response signals are mapped in a distributed manner on the frequency domain, so that it is also possible to reduce ISI between downlink control channels mapped in identical frequency bands. [0145] In this way, based on the information about the number of OFDMs for multiplexing shown in FIG. 16 and the downlink control channel mapping shown in FIG.20, mapping section 506 maps response signals to downlink control channels. By this means, radio transmitting section 112 in base station 500 is able to transmit response signals to mobile station 600 using downlink control channels mapped in a distributed manner on the frequency domain in association with downlink CCEs to use between a plurality of different numbers of OFDMs for maltiplexing.
[0146] Likewise, mapping specifying section 607 in mobile station 600 (FIG. 19) holds the information on the number of OFDMs for multiplexing shown in FIG. 16 and the downlink control channel mapping information shown in FIG. 20 , and specifies the downlink control channels to which response signals for the moblle station are mapped, from the multiplexed OFDM number determination information received. For example, when the number of OFDMs for multiplexing received as input from multiplexed OFDM number extraction section 606 is one, mapping specifying section 607 specifies downlink control channels to which response signals for the mobile station are mapped, from downlink control channels $\mathrm{CH} \# 1$ to $\mathrm{CH} \# 4$ shown in FIG. 20 in association with CCE \#1 to CCE \#4 shown in FIG. 16.
[0147] In this way, according to the present embodiment, downlink control channels in association with CCEs to use between different numbers of OFDMs for multiplexing are mapped in a distributed manner on the frequency domain. In this way, it is less likely that response signals concentrate in identical frequency bands and code-multiplexed. Therefore, the present embodiment provides the same advantage as in Embodiment 4. Further, according to the present embodiment, even when the number of OFDMs for multiplexing changes on a per subframe basis, transmission power of downlink control channels are averaged between the frequency bands, so that it is possible to reduce inter-cell interference between neighboring cells. Further, according to the present embodiment, it is possible to reduce $I S I$ between downlink control channels mapped in
identical frequency band.
[0148] Although a case has been explained with the present embodiment where there are two possible values, one or two, for the number of OFDMs for multiplexing, the present invention may also be implemented where there are three or more possible values for the number of OFDMs for multiplexing. [0149] Further, although a case has been explained with the present embodiment where a plurality of CCEs are sorted into the CCEs to use between a plurality of different numbers of OFDMs for multiplexing, and the CCEs not to use, a plurality of CCEs may be sorted based on how often they are used. For example, if the number of OFDMs for multiplexing is between one and three, a CCE to use where the number of OFDMs for multiplexing is between one and three is "high" frequency of use, a CCE to use where the number of OFDMs for multiplexing is two or three is "medium" frequency of use, and a CCE to use where the number of OFDMs for multiplexing is only three is "low" frequency of use. Then, the base station may map response signals to downlink control channels in a distributed manner on the frequency domain in association with a CCE of "high" frequency of use.
[0150] A case has been explained with the present embodiment where the CCE numbers of CCEs (i.e. CCE \#1 to CCE \#4 shown in FIG.16) to use between a plurality of different numbers of OFDMs for multiplexing are consecutive. However, the CCE numbers of CCEs to use between a plurality of different numbers of OFDMs for multiplexing are not limited to
be consecutive. The present invention may also be implemented where the CCE numbers of CCEs to use between a plurality of different numbers of OFDMs for multiplexing are nonconsecutive.
[0151] Further, although a case has been explained with the present embodiment where the CCE numbers and the downlink control channels for transmitting response signals are associated, the presentinvention may also be implemented in a case where downlink control channels formed with a plurality of CCEs, for example, the SCCH numbers of SCCHs, and downlink control channels for transmitting response signals are associated.
[0152] Further, although a case has been explained with the present embodiment where response signals are multiplexed on a plurality of downlink control channels mapped in different frequency bands in association with a plurality of CCEs to use between a plurality of different numbers of OFDMs for multiplexing, multiplexing response signals on a plurality of downlink control channels mapped in different bands and multiplexing response signals on different spreading coding blocks are equivalent.
[0153] Further, although a case has been explained with the present embodiment where the number of OFDMs for multiplexing is determined according to the number of SCCH that are required to report control information, with the present invention, where the number of OFDMs for multiplexing may be determined according to other control information without limiting to the number of SCCHs. For example, the number of

OFDMs for multiplexing may be determined according to the number of multiplexing of $A C K / N A C K$ channels that multiplex response signals.
[0154] Embodiments of the present invention have been explained.
[0155] The present invention may be applicable to mobile stations located near a cell edge. Generally, channel quality is poorer near a cell edge than in the center of a cell, and a mobile station near a cell edge transmits uplink data using a low level MCS (Modulation and Coding Scheme). That is, a mobile station near a cell edge transmits uplink data using a lower coding rate and a modulation scheme of a smaller M-ary modulation number than a mobile station near the center of a cell, and therefore, longer uplink data lengths, that is, more consecutive $R B s$ are required. Then, by applying the present invention to a mobile station near a cell edge, it is possible to obtain greater frequency diversity effect.
[0156] Further, although cases have been explained with the above embodiments as an example of completely consecutive RBs, the present invention may also be implemented by $R B s$ with high consecutiveness even when the RBs have partly nonconsecutive portions.
[0157] Further, although cases have been explained with the above embodiments where the number of uplink $R B s$ and the number of downlink CCEs are eight, the number of uplink $R B s$ and the number of downlink CCEs are not limited to eight.
[0158] Further, although cases have been explained with the above embodiments as an example where eight downlink control channels $\mathrm{CH} \# 1$ to

CH \#8 are mapped to sixteen subcarriers, subcarriers fl to f4, f9 to f12, f17 to f 20 and f 25 to f 28 , the number of subcarriers and the number of downlink control channels are not limited to these numbers. For example, as shown in FIG. 21 , sixteen downlink control channels CH \#1 to CH \#16 are mapped to thirty two subcarriers as shown in FIG. 21.
[0159] Further, although cases have been explained with the above embodiments to show only subcarriers to which downlink control channels are mapped in the figures, other control channels or data channels may be mapped to frequencies besides frequencies to which downlink control channels are mapped.
[0160] Further, although cases have been explained with the above embodiments where a response signal is spread, a response signal may be mapped to a downlink control channel mapped to frequencies without spreading a response signal and transmitted. For example, as shown in FIG.22, a response signal may be mapped to downlink control channels CH \#1 to CH \#8 in a distributed manner on the frequency domain, without spreading a response signal, that is, without code-multiplexing on the same frequencies.
[0161] Further, although cases have been explained with the above embodiments as examples where spreading factor $S F$ is 4 in spreading section 106 and repetition factor $R F$ is 2 in repetition section 107 , SF and RF are not limited to these values.
[0162] Further, although cases have been explained with the above
embodiments about the downlink control channel mapping method, the present invention may be applicable to uplink control channels. For example, the mobile station performs the same processing as above base station 100 or 300 and the base station performs the same processing as the mobile station 200 or 400 , so that the present invention may be applicable to uplink.
[0163] Further, although cases have been explained with the above embodiments where DFTs-FDMA is used as an uplink access scheme, the present invention is not limited to DFTs-FDMA, and, the same advantage as above may be provided in a communication scheme in which a plurality of consecutive RBs are allocated to one mobile station and a communication scheme in which one control channel is formed from a plurality of consecutive CCEs.
[0164] Further, although cases have been explained with the above embodiments as an example where the downlink communication scheme is the OFDM scheme, the downlink communication scheme is not limited in the present invention, and the same advantage as above may be provided in a communication scheme of performing transmission using different frequencies.
[0165] Further, the downlink control channels for transmitting response signals used in the explanation of the above embodiments are channels for feeding back ACK signals or NACK signals for mobile stations. For this reason, the downlink control channels for transmitting response signals may
be referred to as "DCCHs (Dedicated Control Channels)," "ACK/NACK channels," "response channels" and "HICH (Hybrid ARQ Indicator Channel)."
[0166] Further, although cases have been explained with the above embodiments about downlink control channels for mapping response signals, signals mapped to downlink control channels are not limited to response signals. For example, control signals for reporting a modulation scheme or coding rate upon retransmission, control signals for reporting transmission power upon retransmission, control signals for reporting a time transmission is performed upon retransmission, or control signals for reporting $R B$ allocations upon retransmission are mapped to downlink control channels.
[0167] Further, the RB used in the explanation with the above embodiments may be other transmission units on the frequency domain, for example, a subcarrier block and a sub-band.
[0168] A base station, a mobile station and a subcarrier may be referred to as a "Node B," a "UE," and a "tone," respectively. A CP may be referred to as a "guard interval (GI)."
[0169] Further, the errot detection method is not limited to a CRC check. [0170] Further, the transform method between the frequency domain and the time domain is not limited to the IFFT and FFT.
[0171] Moreover, although cases have been described with the embodiments above where the present invention is configured by hardware, the present invention may be implemented by software.
[0172] Each function block employed in the description of the aforementioned embodiment may typically be implemented as an LSI constituted by an integrated circuit. These may be individual chips or partially or totally contained on a single chip. "LSI" is adopted here but this may also be referred to as "IC," "system LSI," "super LSI" or "ultra LSI" depending on differing extents of integration.
[0173] Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. After LSI manufacture, utilization of an FPGA (Field Programmable Gate Array) or a reconfigurable processor where connections and settings of circuit cells within an LSI can be reconfigured is also possible.
[0174] Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Application of biotechnology is also possible.
[0175] The disclosures of Japanese Patent Application No.2007-077502, filed on March 23, 2007, Japanese Patent Application No.2007-120853, filed on May I, 2007, and Japanese Patent Application No.2007-211104, filed on August 13, 2007, including the specifications, drawings and abstracts, are incorporated herein by reference in their entirety.

Industrial Applicability
[0176] The present invention is applicable to, for example, mobile communication systems.

## CLAMMS

1. A mobile station apparatus comprising:
a reception unit configured to receive, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and a determination unit configured to determine a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information, wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.
2. The mobile station apparatus according to claim further comprising a transmission unit configured to transmit data using the allocated resource block(s) based on the allocation information,
wherein said determination unit determines the resource, to which the response signal is mapped, from an index of the resource block used for transmitting the data.
3. The mobile station apparatus according to claim 1 or 2 , wherein the
response signal is mapped to a plurality of the resources distributed in the frequency domain.
4. The mobile station apparatus according to any of claims 1-3, wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
5. The mobile station apparatus according to any of claims $1-4$, wherein a plurality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
6. The mobile station apparatus according to any of claims $1-5$, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and the response signal is mapped to the resource to which the hybrid $A R Q$ indicator channel is mapped.
7. The mobile station apparatus according to any of claims $1-6$, wherein a plurality of the response signals are mapped to the resource with code-multipiexed.
8. The mobile station apparatus according to any of claims 1-7, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in
the base station, and a plurality of the response signals are mapped to the resource, to which a plurality of the hybrid ARQ indicator channels are mapped, with code-multiplexed.
9. The mobile station apparatus according to any of claims 1-8, wherein the index of the resource block is associated with the resource depending on a cell.
10. A method for determining a response signal resource comprising: receiving, from a base station, allocation information indicating one or a plurality of allocated resource block(s) of uplink, the resource blocks being consecutive in a frequency domain; and
determining a resource of downlink, to which a response signal transmitted from the base station is mapped, from an index of the allocated resource block based on the allocation information, wherein: the indices of a plurality of the consecutive resource blocks are respectively associated with a plurality of the resources which are different in a frequency domain; the plurality of the resources are respectively comprised of a plurality of subcarrier groups which are inconsecutive in a frequency domain; and the response signal is mapped to the subcarrier group.
11. The method for determining a response signal resource according to
claim 10 further comprising transmiting data using the allocated resource block(s) based on the allocation information,
wherein the resource, to which the response signal is mapped, is determined from an index of the resource block used for transmitting the data.
12. The method for determining a response signal resource according to claim 10 or 11 , wherein the response signal is mapped to a plurality of the resources distributed in the frequency domain.
13. The method for determining a response signal resource according to any of claims $10-12$, wherein the response signal is spread in the base station, and the spread response signal is mapped to the resource.
14. The method for determining a response signal resource according to any of claims $10-13$, wherein a plurality of the same response signals are generated with a repetition in the base station, and the plurality of the same response signals are mapped to a plurality of the resources distributed in the frequency domain, respectively.
15. The method for determining a response signal resource according to any of claims 10-14, wherein the response signal is carried on a hybrid ARQ indicator channel (HICH) in the base station, and the response signal is
mapped to the resource to which the hybrid $A R Q$ indicator channel is mapped.
16. The method for determining a response signal resource according to any of claims $10-15$, wherein a plurality of the response signals are mapped to the resource with code-multiplexed.
17. The method for determining a response signal resource according to any of claims $10-16$, wherein the response signal is carried on a hybrid $A R Q$ indicator channel (HICH) in the base station, and a plurality of the response signals are mapped to the resource, to which a plurality of the hybrid $A R Q$ indicator channels are mapped, with code-multiplexed.
18. The method for determining a response signal resource according to any of claims 10-17, wherein the index of the resource block is associated with the resource depending on a cell.


#### Abstract

Provided is a radio communication base station device which can obtain a maximum frequency diversity effect of a downstream line control channel. The device includes: an RB allocation unit (101) which allocates upstream line resource blocks continuous on the frequency axis for respective radio communication mobile stations by the frequency scheduling and generates allocation information indicating which upstream line resource block has been allocated to which radio communication mobile station device; and an arrangement unit (109) which arranges a response signal to the radio communication mobile station device in the downstream line control channels distributed/arranged on the frequency axis while being correlated to the continuous upstream line resource blocks according to the allocation information.




FIG. 1


FIG. 2


FIG. 3


FIG. 4


FIG. 6

FIG. 7

FIG. 8

SCOH\#1	CCE	COE \#2	CCE   43	CCE $\# 4$	CCE   +5	CCE   $\#+5$	$\underset{\substack{\text { CCE } \\ \# 7}}{ }$	CCE   88
SCCH\%2	CCE $\# 1$	CCE $\# 2$	CCE $\# 3$	CCE	CCE $\# 5$	COE 46	CCE $\# 7$	CCE   $\# 88$
SCCH\#3	CCE   $\# 1$	CCE   $\# 2$	COE   $\# 3$	CCE   $\# 4$	CCE   $\# 5$	( $\begin{gathered}\text { CCE } \\ \# 4 \\ \# 6\end{gathered}$	CCE $\# 7$	CCE   $\# 8$
SCOH\#4	CCE   $\# 1$	CCE   $\#+2$	CCE   $\# 3$	CCE   $\# 4$	COE   5	CCE   $\# 6$	CCE	CCE
SCCH\%5	$C C E$   $\# 1$	CCE	CCE	$\underset{\substack{\text { CCE } \\ \# 4 \\ \hline \\ \hline}}{ }$	CCE   45	CCE   48	CCE $\# 7$	CCE   48   8
SCCHH6	CCE $\# 1$	CCE		CCE   $\# 4$	CCE	CCE	CCE	$CCE$

FIG. 10

	琴	笭	壁	等			意	需	咢
$\begin{aligned} & \text { U } \\ & 0 \\ & \text { z } \\ & =0 \\ & 0 \end{aligned}$	㶳	$\begin{array}{\|l\|l\|} \hline \text { 笶 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 笶 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 䒼 } \end{array}$			$\begin{aligned} & \text { 总 } \\ & 0 \\ & \hline 8 \end{aligned}$		器

FIG． 11
힐



SCCH\#	CCE	CCE	CCE   $\#+5$	$\underset{\substack{\text { CCE } \\ \$ 7 \\ \hline \\ \hline}}{ }$	CCE $\# 2$	CCE   $\# 4$	CCE	CCE
SCOH\#2	CCE $\# 1$	COE   $\#$   $\#$	CCE   $\# 5$	CCE   $\# 7$	CCE $\# 2$	CCE   $\# 4$	CCE $\# 6$	COE   $\# 8$
SCCH\#3	CCE   \#1	$C C E$   $\# 3$	CCE   \#5	CCE   $\square 7$	CCE	CCE	CCE   $\# 6$	CCE
SCCH:\#4	CCE $\# 1$	CCE $\# 3$	CCE   $\# 5$	CCE   $\# 7$	CCE	CCE   $\# 4$	CCE $\# 6$	CCE   $\# 8$   8
SCOHH5	CCE	CCE   $\# 3$	CCE   $\square$	COE   $\# 7$	CCE   $\# 2$	CCE $\# 4$	COE   $\# 8$	CCE   $\# 8$
SCCH\% 6	COE	COE   $\# 3$	COE   \#5	COE  	CCE   $\# 2$	CCE   $\#$	CCE   46	CCE   $\# \# 8$


FIG. 15


FIG. 16
8

FIG. 17

FIG.18A

FIG.18B



FIG. 20


FIG. 21


FIG. 22

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Inventors: Masaru FUKUOKA, et al.
Appln. No.: Continuation Application of $12 / 532,352$
Filed: December 30, 2010
For: $\quad$ RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD

## CONFIRMATION CLAIM FOR PRIORITY

Assistant Commissioner of Patents
Washington, D.C. 20231

Dear Sir:

The benefit of the filing date of the following prior foreign application(s) filed in the following foreign country and the priority provided in 35 USC $\$ 119$ have been claimed for the above-identified application; this claim for priority is confirmed for the present continuing application:

Japanese Patent Application Number 2007-077502 filed March 23, 2007.
Japanese Patent Application Number 2007.120853 filed May 1, 2007.
Japanese Patent Application Number 2007-211104 filed August 13, 2007.

The International Bureau received the priority document(s) within the time limit, as evidenced by the copy of the $\mathrm{PCT} / \mathrm{MB} / 304$ submitted in parent application no. $12 / 532,352$, filed September 21, 2009.

It is requested that the file of this application be marked to indicate that the requirements of 35 USC $\$ 119$ have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Date: December 30, 2010
JEL/att

ATTORNEY DOCKET NO, 009289-91681
Dickinson Wright PLLC
International Square
1875 Eye Street, N.W., Suite 1200
Washington, D.C., 20006
Telephone: 202.457 .0160
Facsimile: 202.659.1559

Electronic Patent Application Fee Transmittal				
Application Number:				
Filing Date:				
Title of Invention:	RADIO COMMUNIC ARRANGEMENT ME	N BASE STA	DEVICE AND	TROL CHANNEL
First Named Inventor/Applicant Name:	Masaru FUKUOKA			
Filer:	James Edward Ledb	/Jacqueline		
Attorney Docket Number:	009289-91681			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Utility application filing	1011	1	330	330
Utility Search Fee	1111	1	540	540
Utility Examination Fee	1311	1	220	220
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				


Description	Fee Code	Quantity	Amount	Sub-Total in   USD(\$)
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	1090		


Electronic Acknowledgement Receipt	
EFS ID:	9144357
Application Number:	12983770
International Application Number:	
Confirmation Number:	1020
Title of Invention:	RADIO COMMUNICATION BASE STATION DEVICE AND CONTROL CHANNEL ARRANGEMENT METHOD
First Named Inventor/Applicant Name:	Masaru FUKUOKA
Customer Number:	52989
Filer:	James Edward Ledbetter
Filer Authorized By:	
Attorney Docket Number:	009289-91681
Receipt Date:	03-JAN-2011
Filing Date:	
Time Stamp:	18:36:39
Application Type:	Utility under 35 USC 111(a)

## Payment information:

Submitted with Payment	yes				
Payment Type	Credit Card				
Payment was successfully received in RAM	$\$ 1090$				
RAM confirmation Number	6597				
Deposit Account					
Authorized User					
File Listing:					
Document   Number	File Name	File Size(Bytes)/   Message Digest	Multi   Part /.zip		Pages
:---:					
(if appl.)					


1	Transmittal of New Application	aTRN.pdf	159884	no	4
			b6b2a6eb4fcccaa8660bac63e98aaf92120f		
Warnings:					
Information:					
2	Application Data Sheet	aADS.pdf	294808	no	5
			6 a728422322C4bc55dcd2372408d3773818   $552 c 8$		
Warnings:					
Information:					
This is not an USPTO supplied ADS fillable form					
3	Oath or Declaration filed	aDEC.pdf	203936	no	3
Warnings:					
Information:					
4		aSPEC.pdf	2278605	yes	82
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Specification		1	53	
	Claims		54	58	
	Abstract		59	59	
	Drawings-only black and white line drawings		60	82	
Warnings:					
Information:					
5	Miscellaneous Incoming Letter	aCFP.pdf	34835	no	2
Warnings:					
Information:					
6	Fee Worksheet (PTO-875)	fee-info.pdf	33557	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			3005625		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

## New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.


[^0]:    EFS Web 2.2.2

