
GOOGLE EXHIBIT 1019
Google LLC v. BlackBerry Ltd.

IPR2017-00912Page 1 of 240

WO02/21413A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(l9) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

14 March 2002 (14.03.2002) pCT wo 02/21413 A2

(51) International Patent Classification7: G06F17/60 Michael; 973 Oak Lane, Menlo Park, CA 94025 (US).
HOM, Wayne; 1141 Wayne Way, San Mateo, CA 94403

(21) International Application Number: PCT/USOl/4204I (US). HYDE, Timothy; 670 Shotwell Street, San Frame
cisco, CA 94110 (US). KRUMPELSTAEDTER, John;

(22) International Filing Date: 10893 Sweet Oak Slreel, Cupertino, CA 95014 (US).
5 September 2001 (05.09.2001)

(74) Agents: PALERMO, Christopher et al.; Hickman
. . . Palermo Truoug & Becker LLP 1600 Willow Street San2 F l L- - z E l 'h ’ ’ ’

(5) ”"g anguage Hg 15 Jose, CA 95125 (US).

(26) Publication Language‘ EngliSh (81) Designated States (national): AE, AG, AL, AM, AT, AU,
. . AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(30) Priority Data: cz, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
60/230,037 5 September 2000 (05.09.2000) US GM. HR HU ID. IL IN, IS JP KE KG KP KR, KZ LC

LK, LR, LS, LT, LU, LV. MA, MD, MG, MK, MN, MW,
(71) Applicant: ZAPLET, INC. [US/US]; 3000 Bridge Park MX, M2, NO, NZ, PH, FL, [71“, RO, RU, SD, SE, SG, 3L

way, Redwood Shores. CA 94065 (US). SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.

(72) Inventors: AXE, Brian; 342 Liberty Street, San Fran—
cisco, CA 94114 (US). EVANS, Steven: 13300 Lennox (84) Designated States (regional): ARIPO patent (GH, GM,
Way, Los Altos Hills, CA 94022 (US). HANSON,

(54) Title: METHODS AND APPARATUS PROVIDING
AGGREGATED

Store 3! Forward 2"226 [x

.2 A. _

g E . Wire/e55 Gateway
C

5.3 ‘234
SM":

K

§ ——Application ServerQ
'g App/footie" Server EJHS Cache
£3 Application Server I
E

Photo Server

E Photo Server3 Photo Server

E (11,595,) (docs)

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

ELECTRONIC MESSAGES THAT ARE LINKED AND

(57) Abstract: A method for associating
related electronic messages in computer
storage. A first transportable application
is created and stored. User input
requesting creation of a link from
the first transportable application to
another transportable application is
received. User input that selects a
second transportable application from
among a plurality of previously created
transportable applications is received.
A link from the first transportable
application to the second transportable

I application is created and stored. As
a result, transportable application may
be inter—related in complex message
webs. The message webs may also be
inter—related in message web rings.
Links may be generated manually
or automatically, based on context,
workflow processes, or other known
relationships among applications.

Recipient lists and data may propagate among fields of linked transportable applications, directly or according to abstract business
rules. Further, multiple—part electronic messages are disclosed. A graphical user interface of an electronic messaging system
displays a message in the form of one or more header portions and one or more body portions. Each of the body portions has a
selection region. While one body portion is visible at a given time, all the selection regions are continuously visible in the user
interface to facilitate selection of any of the body portions at a particular time. Selecting a selection region of a non—displayed body
portion causes a server to generate a refreshed user interface that includes the entirety of the selected body portion, and that hides
the previously viewed body portion. As a result, a large amount of associated information may be combined in a single message in
a way that is clearly organized and easily accessible.

Page 1 of 240

GOOGLE EXHIBIT 1019

Google LLC v. BlackBerry Ltd.

IPR2017-OO912

Page 2 of 240

WO 02/21413 A2 ||

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European 7 entirely in electronic form (except for this front page) and
patent (AT, BE, CH, CY, DE, DK, ES, FT, FR, GB, GR, IE, available upon requestfrom the International Bureau
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG) For two-letter codes and other abbreviations, refer to the ”Guid-ance Notes on Codes andAbbreviations ” appearing at the begin-

Published' ning ofeach regular issue ofthe PCT Gazette.
7 without international search report and to be republished

upon receipt of that report

Page 2 of 240

Page 3 of 240

WO 02/21413 PCT/US01/42041

METHODS AND APPARATUS PROVIDING ELECTRONIC MESSAGES

THAT ARE LINKED AND AGGREGATED

CROSS-REFERENCE TO RELATED APPLICATIONS

Domestic priority is claimed under 35 U.S.C. 119(e) from prior Provisional

’ application Ser. No. 60/230,037, filed September 05, 2000, the entire contents ofwhich

are hereby incorporated by reference as if fully set forth herein.

FIELD OF INVENTION

The present invention generally relates to data processing in the fields of

electronic messaging and collaborative communications. The invention relates more

specifically to a collaborative communications system providing transportable

applications, multiple-page electronic messages and electronic messages that are linked

and aggregated.

BACKGROUND OF THE INVENTION

Despite more than fifty years of development, computer systems and computer

programs remain difficult to use. In particular, individuals who are not well-versed in

technology or computer programming encounter numerous problems in carrying out

simple data processing tasks, such as collaborating on the form or content of a document,

polling others to arrive at a decision, scheduling a meeting or activity, and other tasks.

Several main approaches have been used in the past to facilitate these activities.

In a first approach, a pre-configured computer program or application is provided

to all individuals who will participate in the data processing tasks. The individuals

interact with the application to carry out the tasks. This approach requires little technical

knowledge, but the approach is often too rigid and limits the individuals to using the

particular forms, features and functions selected by the developers of the application. A

related approach involves use of electronic mail (“e-mail”) for distribution of information

or for collaborative communications. E—mail is inefficient and often requires sending

multiple messages before a task can be completed. Further, since the content of the

messages is static, the content tends to become old and stale. The number and content of

the messages are not easily organized.

In another prior approach, users construct their own custom computer program to

perform exactly the desired task. This approach requires extensive technical knowledge

that is beyond the capability of a typical user.

Page 3 of 240

Page 4 of 240

WO 02/21413 PCT/US01/42041

In a third approach, certain collaborative computing applications and

environments have been provided. Applications such as Microsoft NetMeeting enable

users to participate in online meetings, but have a significant limitation in that they are

synchronous; a meeting participant must be online and present to participate. Applications

such as Lotus Notes have enabled users to share documents, but creation and deployment

of applications to carry out more sophisticated business tasks, such as automating

personnel recruiting processes, is complicated and requires programming knowledge.

Further, the collaborative processes that are supported by these applications “off the

shelf’ are limited and do not encompass many multi-step business processes.

A common disadvantage of all these approaches is that it is very hard for

individual, non—technical users to create computer-based applications or systems that

automate specific desired tasks and provide the applications or systems to others. Further,

the approaches generally enable users to see only a static View of content that is under

discussion or modification. Another disadvantage is that the approaches are typically

synchronous; a user must be present during the collaboration and has no way to view

actions or communications that have occurred before the user arrived or after the user

leaves.

Another common disadvantage is that integrating the past approaches with

existing or “legacy” databases and applications is extremely complicated, and requires

programming knowledge. There is no easy way to enable such legacy systems to

automatically interact with collaborative applications, without human intervention, to

exchange data and carry out business processes. There is no simple means to enable the

collaborative applications to receive signals from the external applications, take action

based on the signals, or initiate new processes based on the signals.

Based on the foregoing, there is a clear need for an improved way to facilitate

collaborative communication among individuals. In particular, there is a need for an

approach that can enable new kinds of collaborative productivity applications, created by

anyone and delivered using familiar communication mechanisms.

There is a related need for‘an approach that can facilitate distribution of secure,

collaborative applications among separate but networked enterprises, so that users or

applications of different enterprises can collaborate.

Computers have been used in messaging services since the 1960s, when suppliers

of telex and telegraph services began deploying automated switching functions and

providing complete computer-based messaging systems. An example of such a system is

a teletypewriter system. Many of these systems used computers as data switches that

-2-

Page 4 of 240

Page 5 of 240

WO 02/21413 PCT/US01/42041

relayed messages without providing message composition capabilities or the ability to

search through previously sent messages.

Development of interactive time—sharing computer systems resulted in creation of

linking tools that enabled two users to interlock their terminals in order to see what the

other was typing. Mailbox tools were developed to allow users to send short messages to

other users on—line on the same system. For example, the interactive time-sharing system

at MIT’s Project MAC had both linking and mailbox facilities that supported text

messages.

Construction of thquvanced Research Projects Agency Network (ARPANET) in

1969—1975 initiated extensive research in store—and—forward communication techniques.

An outgrth of this research was the development of electronic messaging facilities,

including electronic mail. Such facilities supported transport of simple text messages.

In the early 1980s, international standards bodies began work on electronic

messaging with the goal of ensuring interoperability among different systems. In 1984,

CCITT adopted a standard for store-and-forward messaging services called X.4OO

Message Handling Services (MHS). The International Standards Organization (ISO)

created a competing standard called Message Oriented Text Interchange Standard

(MOTIS). Differences among the versions were largely overcome by 1988.

The period 1973 to 1989 saw development of several computer systems that

featured graphical user interfaces rather than character displays, such as the Xerox Alto,

the Apple Lisa and Macintosh, and personal computers using Microsoft Windows. During

this period, users developed interest in the ability to send messages having elements other

than text. Examples of such multimedia e-mail systems include Slate, from BBN

Software Products, and the first release of Lotus Notes, fiom Lotus Development

Corporation.

To support transmission of formatted images, sound, files, folders, and video

attachments, in 1992 the Intemet Engineering Task Force (IETF) created a multi-media

messaging standard known as Multipurpose Intemet Mail Extensions (MIME). Using

MlME, users of different kinds of computers can exchange e-mail messages that include

formatted images, sound, files, folders, and video attachments. Further, a single MJME e-

mail can contain alternative representations of the same data. For example, there can be

an attachment in text form followed by one containing bitmap page images of the same

information.

Implementations ofMIME generally displayed messages in a graphical user

interface window that presented different attachments as icons embedded within a text

-3-

Page 5 of 240

Page 6 of 240

WO 02/21413 PCT/US01/42041

message. Other implementations, such as NeXTMail, from NeXT Computer, Inc, could

display text, graphical elements, and attachment icons within the same message. A

drawback of this implementation, however, was that to view different parts of a long

message, a user was required to scroll down through a single contiguous message display

in order to reach the desired part of the message.

Further, such systems provide no way to organize related elements of a message,

other than manual cutting of one part of the message and pasting it into another upper or

lower part of the same contiguous message. This procedure could quickly become

unwieldy when such messages were exchanged among members of a group. As each

member of the group added comments, graphics, or other attachments to the message, the

message would become longer and longer, requiring extensive scrolling and searching to

locate a desired part, or to correlate one comment of one user with a related comment of

another user.

Other systems display multimedia attachments in a separate pane of a graphical

user interface window that is displaying the message. For example, in Microsoft Outlook,

when multimedia attachments are present, they are displayed at the bottom of the message

window, divided from the message body by a separator bar. A disadvantage of this

approach is that it is hard to correlate the attachment with a particular part of the message

body.

In a more recent development, e—mail programs such as Microsoft Outlook have

been linked to browser programs such as Microsoft Internet Explorer. Through such

linkage, the e-mail program can receive an e-mail message formatted in Hypertext

Markup Language (HTML) and display a rendered version of the HTML within an e-mail

message display window. Using this approach, e-mail messages may contain text,

graphics, and embedded hyperlinks to other content, multimedia resources, or

applications. However, this approach has not cured the deficiency ofprior approaches

with respect to content organization and scrolling. It is still necessary to scroll through a

long HTML e—mail to find desired content, and there is no simple way to correlate related

content. Further, authoring HTML e—mail requires familiarity with complex HTML

authoring software such as Microsoft FrontPage.

Based on the foregoing, there is a clear need in this field for a way to improve

organization of content of e-mail messages.

There is a specific need for a way to organize related content portions of e—mail

messages within the messages in a way that makes related content easy to find and

display.

Page 6 of 240

Page 7 of 240

WO 02/21413 PCT/US01/42041

There is also a need for a way to create, deliver, receive, and display e-mail

messages in which related content is correlated and accessed without scrolling or similar

cumbersome operations.

E-mail, the World Wide Web, and instant messaging each have contributed to a

revolution in the way people communicate. Each of these platforms offers a variety of

benefits. For example, e-mail is available at the user’s convenience; messages remain in

an inbox until the user deletes them. Because e-mail arrives in the inbox, the user does not

have to “go” anywhere to retrieve it. E-mail is useful for sending a note to a friend or

addressing a large group. Because e-mail is individually addressable, a user can adapt the

recipient list to the subject. Experts have estimated that users spend more time in e—mail

than any other Internet application.

The World Wide Web (“Web”) contains an abundance of information that is

dynamically changing and ever growing. It is graphical and interactive, and offers the

ability to conduct transactions. With relatively simple user interface operations, such as

button clicks, the user can receive valuable information, purchase an item, or review work

materials that have been placed on an internal website. Instant messaging offers the

advantage of timeliness; the recipient knows that a newly received message is current,

because the recipient is in a one-on—one communication session with the sender. This .

form ofmessaging has grown rapidly because people want information that is current.

However, e—mail, the web, and instant messaging have inherent limitations that

restrict what users can do with them and how they communicate information to users. For

example, e-mail today consists of static text that is neither dynamic nor interactive. E—

mail messages are considered to be “dead on arrival” because they are current when sent,

{ but are not current when read. For example, a user may not read an e-mail until hours

after it was originally sent and there can be subsequent e-mails that supersede the original

message, but the original outdated message remains in the inbox. There is no logical order

to messages that are received in the inbox other than the time of arrival. Occasionally, the

user can even receive an answer to a question before the question arrives, because of

delays in server responses. The user is required to either scan all messages or sort them

into some order to verify that the user has all needed information before taking action.

Unthreaded responses are another problem with e—mail. If a user sends a message

to six people, and they all respond, the user receives six new messages in the inbox

referring to one subject. The user is left to organize it all. Perhaps the most significant

limitation of e-mail is the volume ofmessages that can flood a mailbox. When a user

receives hundreds of e-mail messages a day, the sheer volume of e—mail is daunting.

-5-

Page 7 of 240

Page 8 of 240

WO 02/21413 PCT/US01/42041

Using the Web requires the user to proactively visit a location for information

updates, and the user may need to visit multiple locations and pages before the user finds

desired information. The Web is not personal or targeted, so it is not as effective as e-mail

for communications. There are meeting sites on the Web, but users must seek out the

destination, which requires them to remember URLs and passwords. There are also sites

that offer group discussion and collaboration, but their groups are generally rigid and are

based around a common interest.

Instant messaging allows for dynamic communication, but only ifboth

participants are actively signed on and are available to receive messages. If one user is

not able to respond, the link is dead and the user has lost the ability to instantly

communicate. In addition, it’s difficult to document “conversations” that occur through

instant messaging; users lose the ability to have an audit trail or history.

Based on the foregoing, there is a need for a communication system that provides

ways to share messages and information, ideally by providing the best features of e—mail,

the Web, and instant messaging, while overcoming the limitations that each of these
carries.

There is a particular need for methods and mechanisms for linking multiple

messages together so that multiple message threads and sub-topics may be related and

associated with a particular topic.

Users and applications may desire to link one message to another related message.

However, past approaches to communication systems do not allow information, such as

applications and electronic messages, to be related, threaded, managed and stored in an

efficient, flexible, and simple way. Such approaches also do not provide a way to obtain a

View of complex webs of messages.

There is also a need for methods and mechanisms that can aggregate related

topical information within the context of a single message or web ofmessages.

SUMMARY OF THE INVENTION

The foregoing needs, and other needs that will become apparent from the

‘ following description, are achieved in the present invention, which comprises, in one

aspect, a method and system for communicating and collaborating using transportable

applications. Embodiments provide a breakthrough communication approach that

improves collaboration among groups of individuals, within corporations, among

customers, partners, and suppliers, and among distributed computer systems. In one

approach, computer processes enable such users to create or host a new kind of

-5-

Page 8 of 240

Page 9 of 240

WO 02/21413 PCT/US01/42041

collaborative productivity application called a transportable application. Transportable

applications as disclosed herein may be used, for example, to bring together people,

systems and information needed to contribute, make decisions, and take action on

collaborative business processes or projects. In one embodiment, when a transportable

application is opened, it reveals a live, shared, structured workspace that is specific to a

project or process. Unlike past approaches, the workspace is continually updated to reflect

the latest input of any recipient or user.

The transportable applications can be created by anyone, including individuals,

non-technical users within an enterprise, or automatically by other computer programs, .

applications, or programmatic mechanisms. Each transportable application may comprise

one or more pages each having one or more building blocks that encapsulate processing

functions and data. Each building block may comprise one or more static content regions,

one or more dynamic content regions, and other information. Content for the dynamic

content regions may be stored in a database of a server.

The transportable applications can be distributed to others using existing transport

mechanisms. For example, in one specific approach, transportable applications can be

deployed in a manner analogous to sending an electronic mail message. Recipients may

be individual users, groups, or other programs or applications.

The transportable applications can be accessed programmatically, or by an e—mail

in—box, or using a web browser. When a transportable application is accessed by a

recipient, data for its dynamic content regions is automatically retrieved. Input created by

a recipient is accepted by the server and updates the dynamic content region of the

transportable application. If a recipient modifies data in the transportable application, the

modifications or updates are stored asynchronously and dynamically with respect to the

sending and receiving of the modifications or updates by the recipients. Thus, the

dynamic content is always current, and whenever any recipient opens and views the

transportable application, the content of the transportable application is retrieved and

displayed in then-current form.

Unlike past approaches, which rely on distribution of static information,

transportable applications as defined herein enable full interaction and navigation of

dynamic content without the user leaving the transportable application. A shared

workspace is created in which multiple persons or systems can interact within the same

transportable application, and all responses are aggregated in one place. The content of

the transportable application is current when read; the transportable application is

constantly updated so users can always see the most current information and responses of

-7-

Page 9 of 240

Page 10 of 240

WO 02/21413 PCT/US01/42041

other group members. Transportable applications may be supported by related services,

such as a secure mode that enables only authorized members to View and interact with the

content, notifications that inform a user when an update to a transportable application has

occurred, etc. Transportable applications may generate events that are acted upon by other

transportable applications, and may act upon events that are received from external

systems.

In a business enterprise environment, transportable applications and the systems

and methods disclosed herein enable the enterprise to save time, reduce costs, and

accomplish more. Companies can use transportable applications for simple shared

projects to the complex and collaborative business processes required for global, multi-

company projects, depending upon the need. Collaborative business processes may be

rapidly automated and streamlined. Collaboration may be extended outside the corporate

firewall by sending the transportable applications to others. The relevance and speed of

collaborative application development may be improved. Costs ofdistributed team

interaction may be reduced.

In one approach, the system features an integration framework comprising

connectors that provide connectivity to and integrating with existing or “legacy”

databases and applications. An author can create transportable applications that can

retrieve data values fiom and set data values in such external applications and systems

without programming knowledge, or even automatically from another program. As a

result, legacy systems can automatically interact with collaborative applications, without

human intervention, to exchange data and carry out business processes. A simple and

efficient means is provided to enable the collaborative applications to receive signals

from the external applications, take action based on the signals, or initiate new processes

based on the signals.

According to another aspect, a method for associating related electronic messages

in computer storage is disclosed. A first transportable application is created and stored.

User input requesting creation of a link from the first transportable application to another

transportable application is received. User input that selects a second transportable

application from among a plurality ofpreviously created transportable applications is

received. A link from the first transportable application to the second transportable

application is created and stored.

As a result, transportable application may be inter-related in complex message

webs. The message webs may also be inter—related in message web rings. Links may be

generated manually or automatically, based on context, workflow processes, or other

3

Page 10 of 240

Page 11 of 240

WO 02/21413 PCT/US01/42041

known relationships among applications. Recipient lists and data may propagate among

fields of linked transportable applications, directly or according to abstract business rules.

According to another aspect, a method for processing a request to display an

electronic message is disclosed. First message data is generated. The first message data

defines at least a first message portion and one or more navigation regions for one or

more other message portions of a multiple—part electronic message having a plurality of

message portions. The first message data is provided to a client. A request is received

from the client for a second portion of the electronic message selected from among the

other message portions. Second message data is generated which, when processed at a

user interface of the client, causes the client to display the second portion of the electronic

message. The second message data is provided to the client.

Multiple-part electronic messages are disclosed. A graphical user interface of an

electronic messaging system displays a message in the form of one or more header

portions and one or more body portions. Each of the body portions has a selection region.

While one body portion is Visible at a given time, all the selection regions are

continuously visible in the user interface to facilitate selection of any of the body portions

at a particular time. Selecting a selection region of a non-displayed body portion causes a

server to generate a refreshed user interface that includes the entirety of the selected body

portion, and that hides the previously viewed body portion. As a result, a large amount of

associated information may be combined in a single message in a way that is clearly

organized and easily accessible.

Transportable applications are disclosed. The transportable applications may be

linked into webs of associated messages. For example, multiple related discussions or

applications may be associated and organized. The webs ofmessages may be linked into

rings ofrelated message webs. As a result, workflow processes and complex associated

information may be accessed and analyzed in an ordered way.

In other aspects, the invention encompasses computer readable media, and

systems configured to carry out the foregoing steps. Other features and advantages of the

invention will be apparent from the following detailed description, the drawings, and

from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of

limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements and in which:

-9-

Page 11 of 240

Page 12 of 240

WO 02/21413 PCT/US01/42041

FIG. 1A is a block diagram providing a structural overview of a system context in

which an embodiment may be used.

FIG. 1B is a block diagram that illustrates software elements of one embodiment

of a service unit.

FIG. 1C is a block diagram of the system ofFIG. 1A illustrating additional

elements.

FIG. 1D is a block diagram illustrating an example of interaction of a container

and its building blocks with system services.

FIG. 1E is a block diagram illustrating a high—level View of a process of creating

and interacting with a transportable application.

FIG. 2A is a block diagram of system architecture that may be used to host the

foregoing services and provide such services to clients.

FIG. 2B is a block diagram of an example software architecture ofelements ofthe

system of FIG. 2A.

FIG. 2C is a diagram of an example graphical appearance of a transportable

application, according to one embodiment.

FIG. 2D is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems.

FIG. 2B is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems.

FIG. 2F is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems.

FIG. 3 is a diagram of dependency relationships among interfaces that may be

used, in one embodiment.

FIG. 4 is a block diagram of an example of a membership hierarchy.

FIG. 5 is a block diagram ofobjects and data communications paths involved in

presentation of content associated with a building block.

FIG. 6 is a block diagram illustrating interaction ofprogrammatic objects in one

embodiment of a presentation model. I

FIG. 7 is a flow diagram of one embodiment of a process of carrying out

response-based notifications.

FIG. 8A is a diagram of an example graphical user interface screen display of the

Escalation Exception Manager template.

FIG. 8B is a diagram of a screen display of an Addressing page that may be

displayed, in one example embodiment.

-10-

Page 12 of 240

Page 13 of 240

WO 02/21413 PCT/US01/42041

FIG. 8C is a diagram of an example of the Message Security Options Window that

may be displayed, in one example embodiment.

FIG. 8D is a diagram of an example of the Page Security Options window that

may be displayed, in one example embodiment.

FIG. 9A is a diagram of the Join Group screen that is displayed when the selected

group is private.

FIG. 9B is a diagram of a My Groups screen that is generated and displayed when

a user selects the My Groups link of the portal home page.

FIG. 9C is a diagram of a portion of the screen display of FIG. 9B.

FIG. 9D is a diagram of an Application Builder screen display that is displayed in

response to selecting the Application Builder.

FIG. 9B is a diagram of a page navigation dialog that may be displayed, in one

example embodiment.

FIG. 10A is a diagram of a Default Page Settings screen that may be used to

change properties of a selected default page of a template.

FIG. 10B is a diagram of a Page Builder screen that may be displayed in response

to selecting the Page Builder, in one example embodiment.

FIG. 10C is a diagram of a Survey Page Builder window that may be displayed, in

one example embodiment.

FIG. 11A is a diagram of the graphical appearance of an Approval List building

block as it appears in a transportable application page under development using the Page

Builder.

FIG. 11B is a diagram of an example embodiment of a Discussion building block

that may be used to captures a discussion between message participants. ‘

FIG. 11C is a diagram of an example embodiment of a File Sharing building

. block, according to an example embodiment, which may be used to share an electronic

file among a group of recipients for collaborative review or updating. ’

FIG. 11D is a diagram of an Image building block that may be provided, in one

example embodiment.

FIG. 11B is a diagram of an Image Gallery building block that may be provided,

in one example embodiment.

FIG. 11F is a diagram of an Information Fields building block that may be

provided, in one example embodiment.

FIG. 11G is a diagram of an Inline Document building block that may be

provided, in one example embodiment.

-11-

Page 13 of 240

Page 14 of 240

WO 02/21413 PCT/US01/42041

FIG. 11H is a diagram of an Inline Web Page building block that may be provided,

in one example embodiment.

FIG. 12 is a diagram of an example transportable application that contains an

inline Web page.

FIG. 13A is a diagram of an Invitation building block that may be provided, in

one example embodiment.

FIG. 13B is a diagram of a Pollbuilding block that may be provided, in one

example embodiment.

FIG. 13C is a diagram of an Advanced Options Window that may be displayed, in

one example embodiment. I

FIG. 13D is a diagram of a Schedule building block that may be provided, in one

example embodiment.

FIG. 13E is a diagram of a Table building block that may be provided, in one

example embodiment.

FIG. 14A is a diagram of a Choice building block that may be provided, in one

example embodiment.

FIG. 14B is a diagram of a Free Text Response building block that may be

provided, in one example embodiment.

FIG. 14C is a diagram of a Ratings building block that may be provided, in one

example embodiment.

FIG. 15 is a block diagram that illustrates data and control flow among building

blocks, data access objects, interface methods and the database.

FIG. 16 is a flow diagram illustrating a process ofpresenting building block

information using the foregoing mechanisms.

FIG. 17 is a block diagram illustrating elements of an event handling system, in

one example embodiment.

FIG. 18A is a block diagram of a first enterprise application integration approach

that uses an asynchronous approach. A

FIG. 18B is a block diagram of the system ofFIG. 18A wherein a custom

connector is used.

FIG. 180 is a block diagram of an application-server centric integration approach

for providing a synchronous integration solution.

FIG. 18D is a block diagram of an enterprise application integration approach that

provides synchronous integration through one or more synchronous protocols.

-12-

Page 14 of 240

Page 15 of 240

WO 02/21413 PCT/US01/42041

FIG. 18E is a block diagram of an enterprise application integration approach that

uses event-based communication.

FIG. 19 is a block diagram that illustrates a computer system with which an

embodiment may be implemented.

FIG. 20 is a block diagram illustrating a plurality of messages that are linked

across different folders.

FIG. 21A is a diagram of a first embodiment of a graphical user interface display

of a multiple—page electronic message.

FIG. 21B is a diagram of a second embodiment of a graphical user interface

display of a multiple—page electronic message.

FIG. 22A is a diagram of a third embodiment of a graphical user interface display

of a multiple-page electronic message.

FIG. 22B is a diagram of‘a fourth embodiment of a graphical user interface

display of a multiple—page electronic message.

FIG. 22C is a diagram of a further embodiment of a graphical user interface

display of a multiple-page electronic message that includes an indicator of additional

pages.

FIG. 22D is a diagram of a further embodiment of a graphical user interface

display of a multiple-page electronic message.

FIG. 23A is a flowchart of a process for linking messages, according to one

embodiment. ’

FIG. 23B is a flowchart of a process of automatically linking messages in another

embodiment.

FIG. 23C is a flow diagram of a process of automatically creating message links

in response to a change in an object. ‘

FIG. 23D is a flow diagram of a process ofupdating message links in response to

changes in message content.

FIG. 23B is a flow diagram of a process of suggested message linking.

FIG. 24 is a flow diagram of a process of displaying HTML content in an e-mail

client with browser navigation features.

FIG. 25A is a block diagram of a linked collection of related message webs,

referred to herein as a message web ring.

FIG. 25B is a flow diagram of a process of creating a message web ring.

FIG. 26A is a block diagram illustrating messages in a message web having

shared address lists.

-13-

Page 15 of 240

Page 16 of 240

WO 02/21413 PCT/US01/42041

FIG. 26B is a flow diagram of a process of generating a list of recipients of a

transportable application. '\

FIG. 27A is a block diagram illustrating that the content of messages that are

linked can be changed, with automatic propagation of changed content to linked

messages.

FIG. 27B is a flow diagram of a process of updating data among linked messages

in a message web.

FIG. 27C illustrates one application of the processes of FIG. 27A, FIG. 27B in

which a linked collection ofrelated messages are used to aggregate data from a child

message up to a parent message.

FIG. 28A is a diagram of a graphical user interface display in which a

transportable application includes a plurality of tabs that switch between the content of

message web members.

FIG. 28B is a flow diagram of a process of adding tabs to a transportable

application of the type shown in FIG. 28A.

FIG. 28C illustrates a notification message of a message web.

FIG. 29 illustrates a method for tracing deleted messages using links.

FIG. 30 illustrates a message web map that may be used in a graphical user

interface of a messaging system that supports linked messages, in one example

embodiment.

FIG. 31A, FIG. 31B, and FIG. 3 10 are diagrams of graphical user interface

displays that illustrate an example of a recruiting process using a message web.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description, for the purposes of explanation, numerous specific

details are set forth in order to provide a thorough understanding of the presentiinvention.

It will be apparent, however, to one skilled in the art that the present invention may be

practiced without these specific details. In other instances, well—known structures and

devices are shown in block diagram form in order to avoid unnecessarily obscuring the

present invention.

Unless otherwise defined, all technical and scientific terms used herein have

substantially the same meaning as commonly understood by one of ordinary skill in the

art to which the invention pertains. ZAPLET is a trademark ofZaplet, Inc, Redwood

Shores, California. Microsoft, Microsoft Outlook, Microsoft Active Directory, Microsoft

Exchange Server, Microsoft SQL Server, Microsoft Intemet Explorer, and Microsoft

-14-

Page 16 of 240

Page 17 of 240

WO 02/21413 PCT/US01/42041

Internet Information Server are trademarks ofMicrosoft Corporation, Redmond,

Washington. All other trademarks mentioned are the property of their respective owners.

Embodiments are described herein in sections according to the following outline:

TRANSPORTABLE APPLICATION COIVIMUNICATIONS SYSTEM

System Structural Overview

Clients

Networks

Serversh—Application Server, Proxy Server, Mail Server, Wireless Gateway,

Directory Server, Middleware, File Server, Photo Server, Database Server, etc.

Page 17 of 240

Support Applications—Java, Database, etc.

Transportable Applications—Structural and Functional Overview

Graphical Appearance of a Transportable Application—Generally

Receiving and Sending Transportable Applications

Containers

Root Container

Contained Containers

Implementation with Enterprise Java Beans

Templates

Pages and Building Blocks

Object Model

Membership

Building Blocks—~Programmatic Aspects

Directory Integration—Global Object Identifiers

Presentation of Transportable Applications

Email Client Presentation

Personal Portal Presentation

Multiple-Page Transportable Applications

Programmatic Processes for Presentation

Authoring Transportable Applications

Application Editor

Page Editor

Building Blocks--Examples

Site Style Editor

Communications From Transportable Applications to Users (“Notifications”)

Notifications Based on User Responses or Timed Events

-15-

Page 18 of 240

WO 02/21413 PCT/US01/42041

Notifications Based on Rules and Attributes

Object Communications—Programmatic Methods

Object Communications—Event—Driven Methods (Event Handling System)

Database Schema

Application Programming Interface & Object Methods

Object Communications—External Systems

Enterprise Application Integration Using Connectors

Security Processes

Cluster-Specific Encryption and Request Routing

Sharing Transportable Application Data Among Multiple Sites

System Administration Processes

Using Transportable Applications in Business Processes and Workflow

MULTIPLE—PART ELECTRONIC MESSAGES

LINKING AND AGGREGATING MESSAGES

HARDWARE OVERVIEW

EXTENSIONS AND ALTERNATIVES

1.0 TMNSPORTABLE APPLICATION COMMUNICATIONS SYSTEM

According to an embodiment, a communications system, and data processing

methods that it carries out, facilitate collaborative communication and work among a

group of individuals. Embodiments feature structures and processes for creating,

authoring, transporting, updating, and viewing certain transportable applications. In

general, a transportable application is an‘interactive, dynamic, addressable computer

software application that can be transported among systems. A transportable application

comprises one or more pages. Each page comprises one or more building blocks, and can

be designed for either specific or general uses. Each building block contains the user

interface, data elements, and processing capability that enable specific functions within a

page. I

A transportable application can be transported among different computer systems,

clients and servers using transport mechanisms such as e-mail and other data transport

protocols. When a transportable application arrives at a destination computer system, a

user of that system can open the transportable application, View content that is

dynamically asynchronously updated from a server source, and interact with functional

elements of the transportable application in order to carry out work or other useful tasks.

-16-

Page 18 of 240

Page 19 of 240

WO 02/21413 PCT/US01/42041

Transportable applications are a new way to communicate by turning an existing

transport mechanism, such as e-mail, into a live, shared place. Transportable applications

enable users to share documents, data, business applications, schedules and other

information with a group ofpeople or with other systems. They can be used to make

decisions with friends, family, or co-workers, schedule meetings and events, gather group

data such as contact information, collect opinions, send invitations and RSVPS, and other

tasks. In one embodiment, transportable applications enable all recipients in a group to

communicate using just one e—mail message. Because a single transportable application

takes the place of a thread of emails, transportable applications reduce inbox clutter and

eliminate confusing strings ofmessages.

Transportable applications as described herein are better than e—mail because they

provide information that is fresh and up-to-date. In one embodiment, transportable

applications arrive in the user’s inbox like normal e-mail, but they are current when the

user opens them; new information can be included between the time the original author

sent the transportable application and the time you open it. The transportable applications

are current when read, not current when sent, eliminating the problem ofreceiving

messages that are obsolete upon arrival.

The transportable applications add organization to the normally undifferentiated

pile of individual e-mail messages. For example, transportable applications provide a

structured container in which related data is collected, thus freeing users of organizing

multiple pieces of e-mail. Additionally, transportable applications show aggregate Views

ofmultiple pieces of e-mail, thus summarizing information for better decision making.

Also, transportable applications save time by reducing the volume of e-mail. By

consolidating many responses into a transportable application, there are fewer pieces of e-

mail to read.

Transportable applications are better than using the Web as a communications

medium, for numerous reasons. For example, transportable applications push

individualized messages into a user's Inbox. Transportable applications do not require a

user to remember to visit a web site to see if they have a message.

Moreover, transportable applications are better than instant messaging as a day-to—

day communications platform because transportable applications overcome the difficulty

in getting multiple people to collaborate in real time. Transportable applications are

targeted for group communication and persistent knowledge acquisition. In contrast,

instant messaging is not designed for group communications and persistent knowledge

acquisition.

-17-

Page 19 of 240

Page 20 of 240

WO 02/21413 PCT/US01/42041

1.1 System Structural Overview

FIG. 1A is a block diagram providing a structural overview of a system context in

which an embodiment may be used. In general, a client 102 is communicatively coupled

through a network 108 to a service unit 105. The client 102 creates requests for

transportable applications and dispatches the requests into network 108. The requests are

received by service unit 105 and processed, resulting in creation of a response, which is

sent back over network 108 to client 102.

Client 102 may be, for example, a workstation, personal computer, personal

digital assistant, cellular telephone or other wireless processing device, or any other end

station data processor. Client 102 also may be a programmatic process that forms a part of

a larger computer system or application program. Network 108 is any data

communication network that can carry data communications between client 102 and

service unit 105. Network 108 may be a direct electronic connection of client 102 of

service unit 105; a local area network; a wide area network; one or more internetworks; a

combination of a an access network, a service provider network, and one or more

internetworks; or any combination of the foregoing. Client 102 also may comprise the

combination of any of the foregoing with a client software application that enables a user

to View, create, edit, and manage transportable applications.

Service unit 105 is a facility that hosts hardware and software elements that

provide the functions described herein, and may be a private business enterprise, a service

provider that provides the functions described herein to others, e.g., on a licensed basis,‘

subscription basis, etc., or any other entity that hosts appropriate service equipment and

facilities.

Client 102 executes a browser 104 and a personal information manager 106.

Browser 104 is a conventional Internet or World Wide Web browser, such as Microsoft

Internet Explorer. Personal information manager 106 is one or more software elements

that provide e-mail processing, among other functions. Optionally, personal information

manager 106 also may provide other personal information management functions such as

address book management, calendar management, notepads, task lists, etc. An example of

a commercial product suitable for use as personal information manager 106 is Microsoft

Outlook. In an alternative approach, client 102 may be an external computer system that

receives transportable application programrnatically, Without using browser 104 or ‘

personal information manager 106.

FIG. 1B is a block diagram that illustrates software elements of one embodiment

of service unit 105. In general, in one embodiment, service unit 105 hosts a multi-page

—18—

Page 20 of 240

Page 21 of 240

WO 02/21413 PCT/US01/42041

messaging service 110 that is communicatively coupled to an event processor 112, HTTP

service 114, message service 116, database service 118, security service 120, device

gateways 122, and applications 124. Such elements inter-operate to provide multiple-page

messages and carry out the processes that are described further herein.

FIG. 1C is a block diagram of the system of FIG. 1A illustrating additional

elements.

In the example embodiment ofFIG. 1B, multi-page messaging service 110

comprises component/container processing logic 130, administrative services 132, policy

management & reporting services 134, access control service 136, mail services 138,

device services 140, offline message processing services 144, and event and notificatiOn

services 146.

The component/container processing logic 130 creates and manages aplurality of

message components and message containers using processes that are described herein.

The administrative services 132 provide administrative functions, such as adding or

deleting users, importing files of users, identifying an external directory server and

associating it with the system, etc. The policy management & reporting services 134

facilitate creating and managing policies for acting on transportable applications, access

controls, etc.

Access control service 136 is communicatively coupled to security service 120,

which may include an authentication, authorization and access (AAA) server, such as a

RADIUS server. Access control service 136 communicates with other elements of multi—

page messaging service 110 to receive requests to determine whether a particular user is

authenticated in the system. The access control service also can receive and process

requests to determine whether an authenticated user is authorized to access a particular

message or a particular page of a particular message.

Security service 120 provides authentication and protection of user names and

passwords. In one embodiment, security service 120 also provides Secure Sockets Layer

(SSL) communication facilities so that communications fiom clients 102 to service unit

105, and from service unit 105 to an external directory server or other secure element, can

be encrypted and carried out in a secure manner. Security service 120 also may provide

means for integration with third-party security systems. Using such integration, security

service 120 may be extended to provide authentication, access control, privacy, non-

repudiation, and data integrity services. Such third-party systems may be the Sun Java

Cryptography Engine, systems from Entrust, Cylink, Cybersafe, Verisign, etc. Security

service 120 may support encrypted communications using asymmetric encryption

-19-

Page 21 of 240

Page 22 of 240

WO 02/21413 PCT/US01/42041

algorithms such as RSA, DSS, D-H, etc.; symmetric encryption algorithms such as DES,

triple-DES, DESX, IDEA, E82, ES4, Blowfish, etc., message digest or hash algorithms

such as SHA-l, SHA, MDS, MD2, RIPEMD, etc. Such encryption algorithms can be

called programmatically from containers, building blocks, or system services that need to

encrypt or decrypt data for communication, storage, or retrieval.

Mail services 138 is responsible for receiving data from other elements of the

multi-page messaging service 110 and creating e-mail messages based on the received

data. Mail services 138 also interfaces with message service 116 to dispatch and forward

messages to users and clients. An example of a commercial product that may be used for

message service 116 is Microsoft Exchange Server 2000.

In one specific embodiment, each ofthe foregoing services is implemented in the

form of one or more Java class libraries. Thus, the services are provided by generic

software modules that can be called by other software components of the system. The

modules can incorporate third-party components, such as calculation engines, a workflow

engine, etc.

FIG. 2A is a block diagram of system architecture that may be used to host the

foregoing services and provide such services to clients.

One or more application servers 202 host containers in the form ofEnterpriseJava

Beans 204 and store programmatic objects representing containers, building blocks,

pages, and transportable applications in a cache 206. Application servers 202 execute

code of the containers and building blocks and call servers and services in a services

domain 201 to result in servicing client requests. In one embodiment, application servers

202 are implemented as a plurality of clusters of application servers, to provide load

balancing and increased throughput. Inbound client requests are routed to a particular

cluster using a routing mechanism that is described further herein.

Application servers 202 are cormnunicatively coupled by link 210 to database

server 208, which comprises one or more databases. The databases in database server 208

provide persistent storage of stored procedures, a repository of data and logic for

containers, building blocks, and other system objects, and an event database that supports

event-based messaging. Database 208 may be, for example, an Oracle database server,

Microsoft SQL Server, etc. Link 210 may be implemented, in one specific embodiment,

as JDBC calls from applications server 202 that traverse an SQL network using the

SQLNet protocol and arrive at database server 208 in Oracle Command Interface (OCI)

format. Alternatively, ODBC may be used, as in the case of SQL Server.

-20-

Page 22 of 240

Page 23 of 240

WO 02/21413 PCT/US01/42041

The database server 208 provides one source for content for building blocks and

containers that application servers 202 may dynamically retrieve and present to clients

102 as part ofprocessing transportable application and executing their building blocks.

Other data sources may be used. In one embodiment, application servers 202 are

communicatively coupled by an NFS link 246 to one or more file servers 244. This

arrangement enables application servers 202 to obtain text files, word processing

documents and other contents of a file system to include in the dynamic content of a

building block or for other purposes.

One or more adapters 209 cooperate with a connection framework in application

server 202 to communicate with one or more external systems or applications 205. Such

external systems or applications include legacy applications, enterprise systems, etc., as

described further herein.

In another embodiment, application servers 202 are communicatively coupled to

one or more image servers 240 by an HTTP link 242. This arrangement enables

application servers 202 to rapidly retrieve one or more graphical images, digital photos,

and other image information to include in transportable applications when they are

presented to clients.

Application servers 202 may obtain dynamic content from one or more external

sources and may communicate with clients using connections to public networks. In one

embodiment, application servers 202 are communicatively coupled by a first HTTP link

236 to an HTTP server 232 (Web server 232), proxy server 234, and second HTTP link

238. This arrangement enables application servers 202 to receive a large number of

separate HTTP connections and requests from clients 102 over second HTTP link 238,

which are received at proxy server 234 and passed to the application servers over the first

HTTP link 236. When the application servers have prepared content for presentation to

clients in response to client requests, Java Server Pages elements of the application

servers send the content to HTTP server 232 over the first HTTP link 23 6. The HTTP

server 232 then issues an appropriately encapsulated HTTP response to the clients over

HTTP link 238, through proxy server 234.

Application servers 202 are also communicatively coupled by link 214 to

middleware 212, which provides basic messaging infrastructure filnctions. In one specific

embodiment, link 214 uses the Java Messaging System (IMS) protocol, which may also

be used to transport data on link 215 from middleware 212 to one or more event daemons

216 of event service 146. The event service 146 is communicatively coupled by link 218

to database server 208. In one specific embodiment, link 218 is implemented by JDBC

-21-

Page 23 of 240

Page 24 of 240

WO 02/21413 PCT/US01/42041

calls from event service 146 that traverse the SQLNet and arrive at database server 208 in

OCI format.

Directory information such as user names and group membership may be obtained

from one or more directory servers 220 that are communicatively coupled to application

servers 202 by link 224 and to event service 146 by link 222. In one embodiment,

directory servers 220 conform to Lightweight Directory Access Protocol (LDAP) and

communications on links 222, 224 are carried out using LDAP. Directory servers 220

need not be co-located with application server 202, and may be located in any location

that is accessible using LDAP communications over a network or similar facility.

Application servers 202 communicate with e-mail clients using mail servers 228,

and with wireless devices, such as wireless personal digital assistants and cellular phones,

using a wireless gateway 226. In one embodiment, one or more mail servers 228 are

communicatively coupled by an SMTP link 225 to event services 146, which is

responsible to generate events that request mail transport. Event services 146 also are

coupled by SMTP link 225 to wireless gateway 226, and the wireless gateway may be

communicatively coupled to the mail servers by link 227. Mail servers 228 and Wireless

gateway 226 communicate with e-mail clients, other client devices using external

networks that are reached using SMTP link 230.

FIG. 2B is a block diagram of an example software architecture of elements of the

system of FIG. 2A.

The software elements of the system may be viewed as logically organized in a

client tier 248, middle tier 252, and data tier 275. Client tier 248 comprises an e-mail

client 249 that executes on a client computer, e.g., client 102, and a browser 250 that

executes at the same client. The e-mail client 249 and browser 250 may interoperate with

a shared DLL that provides HTML parsing functions, so that the e-mail client can display

HTML e-mail messages.

In one embodiment, system services generally are provided by a plurality of

servlet constructs that implement the services. For example, middle tier 252 comprises a

mail server 254 that communicates with e—mail client 249 over a network link. The mail

server is communicatively coupled to one or more mail queuing servlets 262 that are

organized in a Web container 258 ofprogram elements. The Web container 258 further

comprises a mail formatter 260, which may be implemented in the form of one or more

Java Server Pages. Creation and modification of dynamic content of a transportable

application is generally performed by dynamic content creation servlets 264. A Web page

-22-

Page 24 of 240

Page 25 of 240

WO 02/21413 PCT/US01/42041

forrnatter 266, implemented in the form of one or more JSP3, is responsible for formatting

Web pages or other HTML content that may form a part of a transportable application.

In one specific embodiment, middle tier 252 further comprises an EJB container

268 that comprises a plurality ofprogram elements in the form of Enterprise Java Beans

(EJBs). EJBs are Java® language classes that can interoperate with a plurality of servers

within an enterprise network. Data access EJBs 270 are responsible for interfacing

higher-layer elements with database 208 and one or more stored procedures 276 in the

database. Core EJBs 272 are responsible for carrying out access control processes,

managing event services, etc. Data and event integration EJBs 274 provide an interface to

external systems such as a legacy database 278, an enterprise application integration

program or bus 279, etc.

In an embodiment, these elements are implemented using Java-based technologies

in conformance with the Java 2 Enterprise Edition (J2EE) specification for server-based

applications. However, embodiments are not limited to this context.

FIG. 2D is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems. In general, FIG. 2D depicts a

client layer 2000 that communicate with servers 2002. Client layer 2000 comprises, in

this example, a Microsoft Outlook client 2004. Servers 2002 comprise a Microsoft

Exchange server 2008, an Active Directory server 2026, Web storage system 2020,

application server 202, database server 208, and host integration server 2034.

In this configuration, Outlook client 2004 communicates over a mail application

programming interface (MAPI) or remote procedure call (RPC) link 2006 with a MAPI

processor 2012 of the Microsoft Exchange server 2008. The Microsoft Exchange server

2008 further comprises an SMTP agent 2010, OWA agent 2014, event handling system

2016, and Exchange OLE Database agent 2018. The SMTP agent 2010 can communicate

with SMTP-compatible mail servers to enable the system to transport e-mail messages

across a network. Event handling system 2016 receives events generated by application

server 202 or its applications and processes them by, for example, storing information in

mailbox store 2022 and public stores 2024 of Web storage system 2020. Database

operations by or on behalf of application server 202 are facilitated by Exchange OLE

Database agent 2018, which is cornrnunicatively coupled to Web storage system 2020.

Web storage system 2020 provides Exchange server 2008 with a unified storage

name space for all messages, calendar information, documents, discussions, or other data.

Its objects are accessible using HTTP, XML, COM, WebDAV, and file system calls. In

one embodiment, transportable applications are stored in Web storage system 2020. Such

-23-

Page 25 of 240

Page 26 of 240

WO 02/21413 PCT/US01/42041

transportable applications, their document attachments, and their building blocks are

addressable in Web storage system 2020 using URLs. Web storage system 2020 may also

store information about a plurality ofExchange offline folders, facilitating

synchronization of offline updates to transportable applications.

Active Directory server 2026 is communicatively coupled to Exchange server

2008 and stores directory information, such as definitions ofusers and groups, locations

ofnetwork elements such as servers, hosts, workstations, and printers, etc. The Active

Directory server 2026 is also accessible by application code 202A, which is hosted by

application server 202, through a common data object (CDO) agent 2028 that is hosted by

the application server. Active Directory is an example of an LDAP directory as described

herein.

Application server 202 further comprises an Active Data Objects (ADO) process

2030 that is communicatively coupled to Exchange OLE Database agent 2018 and to

database 208 and host integration server 2034. These communication paths enable

functions of application code 202 to set and retrieve values of data objects that are stored

in database 208, in external legacy systems that are accessed using host integration server

2034. Further, the application code 202 can set and retrieve values of data objects that are

stored in Web storage system 2020 by appropriate messages to Exchange OLE Database

agent 2018.

Application code 202A of application server 202 comprises sequences of

computer program instructions that are configured to carry out the functions that are

described herein.

In the configuration ofFIG. 2D, transportable applications that are hosted by

application server 202 may be created, viewed, and managed using Outlook client 2004.

The Outlook client 2004 is an example of an HTML e-mail client that can display

transportable application content in rich HTML form within an e-mail message window.

The transportable applications may be transported over a network using Exchange server

2008. Active Directory server 2026 may serve as a source for user and group information.

Building blocks may be implemented in the form of Web forms, which provide user

interface front-ends to data and logic in the Web storage system 2020.

Exchange server 2008 includes instant messaging support with presence detection

API’s. Thus, application server 202 may determine, by an appropriate API call, if

participants in transportable applications are actually online, and utilize instant messaging

for communications, and record such sessions at user request. Transportable applications

can include NetMeeting features for initiating and storing data conferences, such as

-24-

Page 26 of 240

Page 27 of 240

WO 02/21413 PCT/US01/42041

Virtual White board, application sharing, video conferences, audio conferences, etc.,

through Exchange server 2008.

Exchange has threaded discussion capabilities that are programmatically

available. In one embodiment, application server 202 uses the threaded discussion APIs to

provide a threaded discussion capability, with presence detection, as a core building

block.

Calendaring and contact information access through Exchange server 2008 allows

for scheduling features, such as automatic meeting creation, available time lookup and

resolution, meeting cancellations, etc., and more integrated addressing and address

validation on the server side. Use of Exchange server 2008 also enables application server

202 to communicate transportable applications to PDA, mobile phone, and other non-PC

devices, over wired and wireless.

A workflow engine of Exchange server 2008 has an accompanying graphical

workflow designer that allows execution of logic and invocation of components in and

outside of Exchange, via COM, that provide message routing, approval, and state

transitions. Thus, transportable applications of application server 202 may participate and

drive these workflows.

FIG. 2E is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems. As in FIG. 2D, the

architecture of FIG. 2B features an Outlook client 2004, Exchange server 2008, Active

Directory server 2026, Web storage system 2020, application server 202, and host

integration server 2034. The architecture ofFIG. 2B further features an Internet

Information Server (HS) 2036 that is communicatively coupled to Exchange server 2008

via OWA agent 2014. In client layer 2000, an Internet Explorer browser 2005 is

communicatively coupled, for example, over a network, to HS 2036.

Browser 2005 and Outlook client 2004 may carry out HTML display functions

using a shared DLL.

In this configuration, application server 202 may serve transportable applications

to a user through browser 2005, Outlook client 2004, or both. For example, a user may

use browser 2005 to open an HTTP connection to 118 2036, which communicates HTTP

requests and posts among application server 202 and the browser. Using this mechanism,

a user may obtain the portal presentation described herein and may View, create, and

manage transportable applications. Alternatively, as in FIG. 2D, the user may obtain a

portal View, or View an individual transportable application, in an e-mail Window that is

generated by Outlook client 2004.

-25-

Page 27 of 240

Page 28 of 240

WO 02/21413 PCT/US01/42041

FIG. 2F is a block diagram of an alternate embodiment of a system architecture

that features use of certain Microsoft® servers and systems. As in FIG. 2E, the

architecture of FIG. 2F features an Outlook client 2004, Exchange server 2008, Active

Directory server 2026, Web storage system 2020, application server 202, host integration

server 2034, and an Internet Information Server (HS) 2036 that is communicatively

coupled to Exchange server 2008 Via OWA agent 2014. In client layer 2000, an Internet

Explorer browser 2005 is communicatively coupled, for example, over a network, to ES

203 6. Any other browser 2005A, such as Netscape Navigator, may participate in client

layer 2000. Browser 2005 and Outlook client 2004 may carry out HTML display

functions using a shared DLL.

The architecture of FIG. 2F further features a plurality of Active Server Page

(ASP) constructs that are hosted by ES 2036. The ASPs are callable from application

code 202A, as indicated by link 2038, by passing URLs over a network to US 236. The

URLs identify a particular ASP and provide one or more function parameters or data

values.

In this configuration, certain transportable application functions that are defined

herein are carried out by appropriately configured ASPs 2040 rather than by application

code 202A. For example, any of the functions that are described herein as implemented

using ISP constructs may be implemented, alternatively, using ASPs 2040 in a system

configured as in FIG. 2F.

In still another alternative configuration, elements of the Microsoft “.NET”

infrastructure are used. In this embodiment, the database server 208 is Microsoft SQL

Server, but all other components are found Within Windows 2000, Windows XP, and

related server products of Microsoft. For example, ISAPI filters are used as a substitute

for J2EE servlets as disclosed herein; Active Server Pages substitute for JSP’s; Microsoft

Message Queues (MSMQ) substitute for MS; COM+ components substitute for EJB’s;

and ODBC is the database communication protocol rather than JDBC. Data access

objects (DAOs) as disclosed herein may be implemented using a custom OLE database

provider that is compatible with the Microsoft Active Data Object (ADO+) framework.

COM+ access to external legacy applications may be provided as an alternative to JCA or

connectors as disclosed herein.

As set forth in the foregoing, embodiments of transportable applications, an

application server, and associated functions described herein are applicable equally to

contexts that use Microsoft servers, products, and related elements, as well as Java

-26-

Page 28 of 240

Page 29 of 240

WO 02/21413 PCT/US01/42041

servers, open—source elements, servers or products of Sun Microsystems and its partners,

etc.

1.2 Transportable Applications—Structural Overview

A system having the foregoing configuration may be used to create, send, respond

to, interact with, and manage a plurality of transportable applications.

FIG. IE is a block diagram illustrating a high—level View of a process of creating

and interacting with a transportable application. In block 190, an author of a transportable

application accesses an application authoring system. The application authoring system

may comprise a transportable application editor that is provided by application server 200

and accessed through an enterprise network or over a public internetwork.

In block 191, the author creates, authors and edits a new transportable application

using the editor, resulting in creating and storing the transportable application, as shown

in block 192. Such authoring also includes identifying one or more recipients of the

transportable application. In block 193, the transportable application is transported to all

the recipients using a suitable transport mechanism. Transport mechanisms may include

e-mail, wireless gateways, or other means.

When the transport mechanism is e-mail, in block 194, each recipient receives an

e-mail message identifying the transportable application and appearing to contain the

transportable application. Assume that a particular recipient opens the e-mail message

that identifies the transportable application. In response, in block 195, the system

dynamically determines what client e-mail program is in use, and determines what

display capabilities it has with respect to fonts, colors, graphics, other types of

information, etc. In block 196, the transportable application is displayed to the user using

its e-mail client, based on the available display capabilities of the client. Further, any

dynamic content associated with the transportable application is automatically retrieved,

in its then—current form, fiom a database and displayed as part of the transportable

application.

In block 197, the recipient responds to the transportable application in a manner

analogous to replying to an e—mail message. Text comments or other changes to dynamic

content of the transportable application may be entered in the application as it is displayed

within a Window of the e—mail program. Any such changes are updated at the database in

dynamic content associated with the transportable application, as shown by block 198. As

a result, any other recipient who subsequently views the same transportable application

will receive a current View of the dynamic content. In this sense, the dynamic content and

the transportable application is always current when read.

-27-

Page 29 of 240

Page 30 of 240

WO 02/21413 PCT/US01/42041

FIG. 1F is a block diagram illustrating details of a process of authoring a

transportable application as in block 191 ofFIG. 1B.

In block 191A, one or more pages for the transportable application are created or

retrieved from storage. In block 191B, a template for the transportable application is

created. In block 191C, a transportable application is created based on the template and/or

the pages.

Each ofblocks 191A, 191B, 191C may be carried out by a different individual.

For example, one person can create a template and another person can created a

transportable application based on the template. Recipients of the transportable

application may, depending on the settings of the transportable application, change the

structure of the transportable application. Alternatively, the same person can be

responsible for all stages of the authoring process by creating templates, authoring new

transportable applications, and participating in collaboration with others within the

framework of a transportable application. Individual pages and templates may be shared

with others.

1.2.1 Graphical Appearance of a Transportable Application—Generally

FIG. 2C is a diagram of an example graphical appearance of a transportable

application, according to one embodiment. In this embodiment, a transportable

application is displayed in a transportable application window 280 that comprises, in

general, a command options bar 282, an action request or note 284, a header bar 286, and

one or more pages 287A, 287B. Each of the pages 287A, 287B may comprise one or

more building blocks 292, 294. Each building block contains the user interface, data

elements, and processing capability that enable specific functions within a page.

Navigation among pages is accomplished by selecting a navigation area 288 associated

with a particular page, or by selecting a navigation direction icon 296.

In one specific embodiment, command options bar 282 includes a New Message

button, Reply to Author button, Forward button, and Print View button. The New

Message button is used to author a new transportable application message. A Reply to

Author button is used to send a message directly to the author of the transportable

application displayed in window 280. The Forward button is used to forward the

transportable application to additional recipients. The Print View button is used to obtain

a properly formatted printed version of the transportable application.

Header bar 286 provides addressing information identifying the author of the

transportable application, its recipients, and its subject or title. In one embodiment, the

specific names of recipients are hidden, and header bar 286 includes a View All

-28-

Page 30 of 240

Page 31 of 240

WO 02/21413 PCT/US01/42041

Recipients link 286a. Selecting the View All Recipients link 286a causes the system to

display a list of all recipients.

One or more notifications may be associated with a transportable application. If a

notification is present for a transportable application, a notification link 290 is displayed,

and provides a hyperlink with which the user may obtain a View of the notifications.

When a user receives a transportable application, a notification system enables the user to

“opt-in” to individual transportable applications in which the user has an interest. In one

approach, if dynamic content associated with the transportable application changes, a new

copy of the transportable application is sent to the user. Alternatively, notifications may

comprise re-bolding an identifier of the transportable application in the user’s e-mail

client. In this manner, the user can track changes Without having to remember to

continually go back and check on the state of the transportable application. For example,

a user may read a transportable application, opt-in to the notification system for that

transportable application, delete the transportable application from the user’s e-mail I .

Inbox, and wait for a notification when anything changes in the transportable application.

Each user is sent only a single copy of the transportable application, even if there

are multiple responses to it. The system knows when the transportable application has

been read by the user and can minimize the number ofnotifications sent. If the user has

not opted—in to the notification system, the user can always open the transportable

application or refresh the display of client 102, e.g., by selecting a Refresh button of the

.. browser, to see the latest information.

A transportable application also can change state during its lifetime. For example,

an author can close a transportable application; this notifies the recipients that comments

or replies are no longer being accepted on the subject of the transportable application. The

author of the transportable application can then communicate a decision or the results of

the transportable application to all the recipients. Thus, the user no longer needs to spend

time writing a response to an e-mail when its subject matter is essentially closed.

An Options link 291 provides a mechanism to display a list of actions that the user

can take with the transportable application.

The action request or note 284 displays a briefurgent note or request from the

author of the transportable application. Such notes provide a way to carry out a side

conversation among recipients of the transportable application and the author or other

recipients. Such notes may be stored persistently and generally are directed to one

recipient. In one embodiment, a transportable application that is sent in the form of an

HTML e—mail to a recipient may comprise a script, which is executed when the message

-29-

Page 31 of 240

Page 32 of 240

WO 02/21413 PCT/US01/42041

is opened by the recipient, that establishes an HTTP connection to application server 202,

requests any changes to dynamic content of the transportable application, determines

whether the recipient has received any notes, and displays the notes if any have been

received. The notes may be displayed within the transportable application, as in FIG. 2C,

or in a pop—up window that is displayed separately.

1.2.2 Receiving and Sending Transportable Applications

In general, interacting with a transportable application involves receiving a

message that references or contains a transportable application, entering a response, and

using one or more transportable application commands. A user may receive a

transportable application as a message carried using any suitable transport mechanism. In

this description, for purposes of illustrating a simple example, the transport mechanism is

assumed to be e-mail. However,” any other suitable transport mechanism may be used,

such as wireless gateways, voice and other multimedia protocols, etc. Further, various e-

mail protocols may be used, such as SMTP, MAPI, etc.

When a user receives a transportable application, the user receives a specially

designated e—mail message in the in—box of the e-mail client of the user. To begin

interacting with the transportable application, the user opens the message. In response, the

contents of the transportable application are automatically dynamically updated from a

server, such as application server 202 of FIG. 2A. The transportable application is also

updated when a user submits a response.

Specific processes for interaction with a transportable application depend on what

pages and building blocks are contained in the transportable application. Specific building

blocks are described further herein. In general, interaction involves selecting a desired

page using a navigation area 287B and locating a response button. Each building block

has a response button such as “Enter Response,” “Add Image,” “Add Table Row,” etc.

The response button is selected. In response, the system generates and sends an Enter

Response window to the client 102, which displays it as a new graphical user interface

Window. An appropriate response is entered.

When the response is complete, the user selects a Submit button to send the

response information to the server. Alternatively, the user may select Cancel to exit

Without entering a response. In response to a Submit selection, information for the

transportable application in a database associated with the server is updated to show the

response. The foregoing steps may be repeated any number of times for any number of

pages in the transportable application. When the user is finished entering responses, the

user closes the message.

-3 0-

Page 32 of 240

Page 33 of 240

WO 02/21413 PCT/US01/42041

As noted above, notifications may be turned on and offby selecting notifications

link 290. FIG. 7A is a diagram of a Set Notifications user interface window that is

displayed when notifications link 290 is selected. Window 700 comprises an On radio

button 702, Off radio button 704, and Customize radio button 706.

If the Customize radio button 706 is selected, in response, the server generates and

sends to the client a Customize Notifications window. FIG. 7B is a diagram of a .

Customize Notifications window that may be displayed. The Customize Notifications

window 708 displays one or more page check boxes 710 corresponding to pages of the

transportable application. Selecting one of the check boxes 710 causes the system to

generate a notification message only when a change occurs in the associated page.

Window 708 also comprises an Overall Application check box 712 that triggers a

notification when any change occurs in any part of the transportable application. Window

708 further comprises a Page Change checkbox 714 that triggers a notification when one

or more pages are added to the transportable application or when its status changes.

Window 708 also comprises a Set Frequency pull-down menu 716 that enables change

notification messages to be sent at particular time intervals.

1.2.3 Containers

Each transportable application comprises one or more containers. Each container

is implemented in the form of a programmatic object in an obj ect-oriented programming

environment. Each container may be a root container or an embedded container. Each

transportable application has one root container, and one or more embedded containers.

The root container is responsible for interacting with transport services such as

mail services 338, access and addressing services, and sending only new or changed

information to and from its contained building blocks. Each root container stores a list of

pointers or other references to contained child objects or building blocks. Thus, a tree

walk of the pointers may be carried out to identify all building blocks or other child nodes

of a particular container. A child, such as a building block or contained container, may

have multiple parent containers; this mechanism enables, for example, a particular page to

appear in more than one transportable application or in more than one template.

Each embedded container references and logically contains one or more other

embedded containers or building blocks. Containers can call fimctions of the system

services shown in FIG. 1A, FIG. 1B, and FIG. 1C, and thereby provide access to such

services to the containers or building blocks that they contain. Further, containers

coordinate presentation of content of contained building blocks. Containers can subscribe

-31-

Page 33 of 240

Page 34 of 240

WO 02/21413 PCT/US01/42041

to events relating to variable values that are published by contained building blocks and

embedded containers. Containers also may publish self-defined events for the purpose of

providing data or other information to other containers or building blocks, and containers

may define global variable values that can be retrieved and modified by contained

building blocks and embedded containers.

In one specific embodiment, each container is implemented in the form of an

Enterprise Java Bean.

1.2.4 Templates

Transportable applications are created based on transportable application

templates. To create a new transportable application, a user must first access a

transportable application template. Templates may provide corporate processes, general—

purpose applications, or other functions.

In one specific embodiment, corporate process templates include templates for

recruiting management, collections, financial reporting, and similar corporate-level tasks.

Examples of corporate process templates include:

Collections. Facilitates the collection of past due customer accounts. Multiple

departments can participate in the process and upload relevant documents, read and add

comments to a threaded discussion, and track the overall process using a shared timeline

or task list.

Escalation Exception Manager. Helps resolve a customer problem by displaying a

current View of the case, managing interactions, and facilitating decision-making.

Supplements call center applications by extending collaboration to other departments.

Financial Reporting. Collections the quarter’s performance highlights and

manages the development of the earnings release and earnings call script.

Forecasting. Compiles forecast input from multiple sources. Participants can

modify a document and then provide their approval or disapproval.

Lead Management. Distributes, compiles, and tracks lead data. Participants can

enter data in the shared table, assess the opportunity, and close the lead.

Order Exception Management. Tracks and manages the resolution of a problem

that occurs in fulfilling the order. Enables collaboration across the enterprise, partners and

suppliers to define the exception and decide on a solution.

Product Configuration. Manages the product configuration process from initial

product requirements to configuration and approval. Participants can modify documents

and approve or disapprove the final versions.

-32-

Page 34 of 240

Page 35 of 240

WO 02/21413 PCT/US01/42041

Proposal Management. Displays a proposal for review and feedback and compiles

sign-offby reviewers or stakeholders.

Recruiting Management. Organizes and streamlines the process of interviewing a

candidate, from receiving the resume to making an offer.

In another specific embodiment, general purpose templates include:

Discussion. Initiate a group discussion. Try brainstorming ideas or resolving

issues among a select group of recipients.

File approval. Request approval on files that require consensus. Participants either

disapprove or approve and share comments.

File sharing. Distribute files for participants to review, discuss and collaborate on.

A version control option allows participants to check files in and out.

Image. Display and discuss a single image from a computer or the World Wide

Web.

Image Gallery. Display and discuss a plurality of images that participants or the

user contribute to a shared stored area.

Image Poll. Gather feedback and reach consensus about images.

Inline document. Review and discuss an HTML document; the contents may be

displayed within the transportable application page, so that participants do not have to

open another window.

Interactive Web Page. Interact with and discuss a Web page. Participants can

interact with the page’s hyperlinks and fields and can navigate as they would on a Web

browser.

Invitation. Invite colleagues to meetings and other events; display event details

and collect RSVPs and comments from invitees.

Poll. Gather opinions and feedback; see voters’ comments and a chart of the

results.

Ratings. Gather feedback on up to 100 questions or statements. Participants can

rate each on a scale and provide comments.

Schedule. Schedule a meeting or event by specifying dates and times and

availability.

Table. Create a table to capture input from a team. Import a file to start the table,

or create a table from scratch. Tables can be exported to a file for reuse.

The foregoing are merely examples, and templates providing other functions may

be created or provided. Each template is created using an application editor or

Application Builder, as further described herein. Updating a template using such an editor

-33_

Page 35 of 240

Page 36 of 240

WO 02/21413 PCT/US01/42041

or builder does not causes changes to transportable applications that have been

instantiated from the template, however.

1.2.5 Pages and Building Blocks

Generally, building blocks of a transportable application define the specific

appearance, content, and functions of the transportable application. Each building block

comprises data elements, logical elements, and presentation elements, each ofwhich may

be implemented in the form of one or more classes, methods and interfaces in an obj ect—

oriented programming enviromnent. Each building block is contained Within a container,

and communicates with other building blocks through the container. The data associated

with data elements of the building blocks is stored in a persistent data store, e.g., a

database server. Building blocks are implemented, in one embodiment, as one or more

Java Server Pages.

FIG. 1D is a block diagram illustrating an example of interaction of a container

and its building blocks with system services. For purposes of illustrating a simple

example, FIG. lD illustrates one instance of a container 180 having three instances of

building blocks 182A, 182B, 182N. However, embodiments are not limited to this

example context, and a practical system may have many thousands or millions of

instances ofbuilding blocks and containers.

Client requests 163 arrive at a request dispatcher 165, which de-encapsulates each

client requests and routes it to a particular service selected from among client services

174. Client services 174 may comprise a presentation manager 164, store/create manager

166, submit manager 168, and authentication manager 170. Client services 174 may call

one or more system services 161 as needed to carry out specific functions. In the example

ofFIG. 1D, system services 161 comprise security manager 120, notification manager

148, mail services 138, directory manager 160, and system manager 162. In other

examples and embodiments, system services 161 may comprise any of the services shown

in FIG. 1B and FIG. 1C.

Programmatic components and interfaces 176 interact with the client services 174.

Each container 180 and building block 182A, 182B, 182N implements such components

and interfaces. For example, container 180 and building block 182A, 182B, 182N each

implement a Presentable interface that comprises programmatic methods that determine

how the container and building blocks are presented in a user interface. Container 180

implements a NodeObj ect interface that comprises methods that determine the object

hierarchy of the container, i.e., which specific building blocks it contains. A further

-34-

Page 36 of 240

Page 37 of 240

WO 02/21413 PCT/US01/42041

description of such object interactions is provided herein in the section entitled Object

Model.

In one specific embodiment, the data associated with data elements of the building

blocks is stored in a persistent data store, e.g., a database server, that is dedicated to

storage of system data and not generally exposed to external clients. The building blocks

access services of the system programmatically through an associated container. In

contrast, data for a Dynamic Web Page building block is stored in an external database,

and accesses services of the system through a connector, using processes described herein

in the section entitled “Enterprise Application Integration Using Connectors.”

In this configuration, containers may be used to programmatically create

transportable applications as described herein without use of an editor, builder, or other

graphical user interface or user intervention. A program component may create or

instantiate a container, add building blocks to it, and register the building blocks in the

system. For example, in response to an event, an action can create a new transportable

application and send it.

A description of examples ofbuilding blocks that may be provided in an

embodiment is provided herein in the sections entitled “Application Editor,” “Page

Editor,” and “Building Blocks—Examples.”

1.2.6 Object Model

According to one embodiment, transportable applications and system services are

implemented using programmatic objects that are created using an objcot-oriented

development environment and executed in an objcot—oriented runtime environment. The

programmatic objects are organized according to an abstract object model that comprises

base interfaces, support classes, and component objects. A preferred embodiment is

implemented using the Java environment, but this environment is not required, and

program implementations in other obj cot-oriented environments, or in procedural

programming languages, threaded interpreted languages, etc., are possible.

In general, the base interfaces serve as APIs that can be called by other objects

and services in the system. The intermediate support classes are classes with partial or full

implementation of specific functionality, providing typical combinations ofbasic

interfaces. The component objects are fully implemented classes for carrying out specific

tasks.

-35-

Page 37 of 240

Page 38 of 240

WO 02/21413 PCT/US01/42041

Base interfaces, in one embodiment, relate to rendering and presentation of

objects, data persistence, containment, event handling, service callbacks, core service

management, and client service management. 3

FIG. 3A is a diagram of dependency relationships among interfaces that may be

used, in one embodiment.

A Rendering/Presentation package provides interfaces for rendering objects. A

Presentable interface 332 is used to render an object to a particular target client or device.

A service or object that wishes to present the contents of an object creates and populates

attribute values for information about a client request in a ClientContext data structure.

This information may comprise a device identifier, rendering format, etc. An

implementation of the Presentable interface uses the ClientContext data to create

appropriate data for rendering.

A Data package deals with data persistence from different data sources. In one

embodiment, a “DAO” interface 334 contains methods that allow creation of a data

access object (DAO) from a data source, its maintenance and data storage.

A Hierarchy/Containment/Collection package deals with object hierarchy and

containment processes, e.g., collecting child building blocks and containers, etc. In one

specific embodiment, a CollectionNodeObject interface 336 provides hierarchy

functionality for a derived object. This interface supports navigation across object trees

and DAGs. The interface can be used to provide functionality that includes both object

trees and object collections. An InheritanceCriteria interface 338 defines how default

inheritance policies (e.g., security, notification) apply to a specific object hierarchy.

Examples of these are access control inheritance for objects in a given hierarchy. The

interface also covers whether the child object inherit state information from parent objects

or not. For example, if a child container or building block object inherits state from a

parent container object, and the parent container is closed, then all child containers will

close. In contrast, state would not be inherited if deleting a group does not necessarily

mean removing all members of the group, though it might be an option.

An event handling package deals with handling of events generated from different

components in the system. In one specific embodiment, an EventHandler interface 340

provides a base event handler interface. Further description of event handling processes,

in an example embodiment, is provided herein in the section entitled “Object

Commmicationstvent-Driven Methods (Event Handling System).”

A service callback interface package contains definitions for callback interfaces

that are used by service managers. The callback interfaces provide APIs that application

-36-

Page 38 of 240

Page 39 of 240

WO 02/21413 PCT/US01/42041

objects provide to services. Control managers, services and other components can use

such interfaces to communicate withapplication components.

In one specific embodiment, an interface “ServiceInterface” 302 provides a base

interface for all service interfaces. An interface “Securitylnterface” 304 provides a

security service interface that can be used to query an object for access control

permissions and other security related functionality. An interface “Notificationlnterface”

306 provides interfaces that can be used to generate necessary notifications for a derived

object. An interface “Comrnlnterface” 308 is used for communication with users and

other systems. An interface “Mailablelnterface” 310 is used to define how to make an

object transportable using e-mail, and an object can query such interface to receive

contentand target mail addresses. An interface “Lifecyclelnterface” 312 covers the

lifecycle management of a component, in the form of operations such as close a

component, create a component, respond to a component, and add or delete members of

groups and folders.

A package of core service managers contains a set of core service engines. In one

embodiment, certain critical core service engines, e.g., a security service engine, are not

extendable. They provide basic services that other components can use. Each of the

service managers is implemented in standalone fashion and is not dependent on any

functionality from other system components.

In one specific embodiment, a ServiceManager interface 314 provides a base

interface for all other service managers. A SecurityManager interface 316 is a security

provider for services such as authentication, access control and SSL, etc. A

NotificationManager interface 318 is a notification provider. A CommunicationManager

interface handles SNMP communications among system entities. A DirectoryManager

interface provides LDAP directory functionality.

A package of client service managers provides interfaces that are related to

platform services, and which rely on the components to provide certain functionality. The

client service managers are analogous to brokers that act as liaisons between objects and

services to achieve a particular end result, such as rendering an object in a user interface.

In one specific embodiment, a PresentationManager provides a broker that deals

with object presentation in the system. Such objects may comprise: building blocks;

container types such as container objects, folders, or groups; or meta objects such as

authoring objects. A StoreCreateManager provides an interface for creating and storing

objects. A SubmitManager provides an interface for submitting changes. An

-37-

Page 39 of 240

Page 40 of 240

WO 02/21413 PCT/US01/42041

AuthenticationManager provides functionality to authenticate users and applications that

wants to Zaplet platform services, in communication with the SecurityManager.

A plurality of support classes are provided for the foregoing interfaces; the

support classes generally comprise abstract classes with partial interface implementations.

The support classes encapsulate a list of common interfaces across different platform

components. Thus, the support classes enable objects to reuse common functionally

across multiple components. In one specific embodiment, support classes comprise a

Mailablelnterface, SystemService, Container, and BuildingBlock.

Component objects of the system are fully implemented objects. Components are

composed from a single support class and one or more base interfaces classes. In some

cases, a component needs functionality from multiple support classes. In this case, needed

interfaces are implemented at the component level by delegating functionality to

embedded support objects.

In one embodiment, a BuildingBlock component object represents an atomic

displayable component that can be extended. Examples ofbuilding blocks include a poll

building block, schedule building block, dynamic Web page building block, document

upload building block, etc. FIG. 3 illustrates a schedule building block interface 320 and a

poll building block interface 322, as examples. Each is constructed based on a building »

block interface 324.

An ApplicationContainer component object 326 represents a transportable

application in the system, and may reference and logically include one or more building

block objects. A FolderObj ect component object 328 represents a document folder in a

manner analogous to file system folders in an operating system. The FolderObject

component object provides a mechanism to organize different resources, such as folders,

files, task templates, etc. A GroupObj ect component object 330 provides a mechanism to

organize a set of resources and users as a group. A MetaObject component object 332

represents meta information for objects that can be authored in the system, and comprises

a container that includes a representation for authoring control flow.

FIG. 3B is a diagram of a containment hierarchy for objects that define a

transportable application. In general, an Application Container object 326 (FIG. 3A)

represents a transportable application and contains one or more building blocks and

optionally other containers. For example, a containment hierarchy 350 (FIG. 3B) may

comprise a first ApplicationContainer 326A that comprises first and second building

blocks 320A, 320B and a second ApplicationContainer 326B. The second

ApplicationContainer 326B further contains additional building blocks 320C, 320D.

—38—

Page 40 of 240

Page 41 of 240

WO 02/21413 PCT/US01/42041

Each ApplicationContainer provides services to its contained Building Blocks.

When a Container contains other Containers, the hierarchy is represented as a tree

structure, as in FIG. 3B. A Container acts as a coordinator for its contained building

blocks and interacts with them in order to store user inputs and responses and also for

getting the presentation data of the building blocks. Similarly, a Container interacts with

its contained Containers in order to propagate certain actions such as closing a

transportable application. When a transportable application is closed, all its contained

transportable applications are also closed.

Once a Container has been created, new building blocks and containers can be

added to it. A Container provides necessary APIs for adding the building blocks and

containers and also for interacting with them. Table 1 presents an example class definition

of a container.

TABLE 1—CONTA1NER CLASS

public class ZapletContainer{

void ZapletContainer(ZapletRequest request);

void

request);

void

request);

Vector

ZapletData

Zaplet

Zaplet

Zaplet

void

request,

addBuildingBlock(ZapletRequest

addChileaplet(ZapletRequest

getChildren();

getZapletbata();

getParent();

getChild(ObjectId zapletId);

getRoot();

handleResponse(ZapletRequest

ObjectId userId);

void

request,

Page 41 of 240

handleEditResponse(ZapletRequest

-39-

Page 42 of 240

WO 02/21413 PCT/US01/42041

ObjectId userId);

void ' handleEditCreate(ZapletRequest request,

ObjectId userId);

PresenterData getDisplayData(ZapletRequest

request);

PresenterData getSubmitData(ZapletRequest request);

void sendReminder(String reminderMessage);

void forward(String forwardMessage, String

tOLiSt);

void close(String closeMessage);

}

Using the API defined by Table 1, an addBuildingBlock method is invoked to add

a building block to a transportable application. An addChileaplet method is invoked to

create a child transportable application. A getChildren method returns the child

transportable applications for a given transportable application. This method returns the

transportable applications that are immediate children of a given transportable

application. A getZapletDaz‘a method is invoked to retrieve data relating to a transportable

apphcafion.

A getParent method returns the parent transportable application of a given

transportable application. A getCIzz'ld method returns the specified child transportable

application. A getRoot method returns the root transportable application in the hierarchy.

A handleReSponse method is invoked to handle a user response to a transportable

application. An editResponse method is invoked to edit an already submitted response,

provided the response can be edited. An editDefinition method is invoked to edit the

definition of a transportable application. A getDz'splayDaz‘a is invoked to get the

presentation data for the transportable application. A getSubmz'z‘Data is invoked to get

necessary data to prompt the user to submit a response to a transportable application.

A sendReminder method is invoked to send a reminder message to the participants

of the transportable application. Aforward method is used to forward a Zaplet to a set of

recipients specified by the ‘toList’ parameter. A close method is used to close the Zaplet

for any further interactions.

1.2.7 Membership

-40-

Page 42 of 240

Page 43 of 240

WO 02/21413 PCT/US01/42041

Users of service unit 305 are organized in one or more groups. Each group is

represented by a programmatic object in a membership hierarchy. Each group may have

one or more child groups or users. Group and user information may be imported from an

external directory service, such as an LDAP directory, or may be defined in the system

database. Groups may be collections of individuals in a department, project team, or other

group with a common goal. Groups provide an archive for the shared knowledge of

people who work together. Groups also provide convenient distribution lists for

addressing transportable applications.

Membership concepts are programmatically represented by folder objects and

group objects. A membership group is a collection of other membership subgroups and

users. A folder is a collection of other subfolders and meta-obj ects. By definition, a

group is also a user, and a folder is also a meta-obj ect. Each object in a membership

hierarchy comprises a reference to an underlying object or user. For example, when a

particular task is saved in two different folders, two references to the same task (one for

each folder) are stored in the hierarchy.

FIG. 4 is a block diagram of an example of a membership hierarchy. An

“Everyone” group 402, represented by a group object, contains an Engineering group

404, users 406A, 406B, a transportable application folder 410, and a meta—obj ect folder

412. The transportable application folder 410 contains transportable applications 410A,

410B. The meta—object folder 412 contains tasks 412A, 412B. Engineering group 404

contains users 406C, 406C. The example illustrated in FIG. 4 may be modeled using the

NodeObject interface, CollectionNodeObj ect interface, UserObj ect interface,

FolderObject interface, MetaObject interface to represent one or more authoring tasks or

templates, and GroupObj ect interface.

1.2.8 Building Blocks—Programmatic Aspects

Building blocks are functional units of a transportable application. Each building

block encapsulates business logic, data and presentation. A BuildingBlock object is

always be contained in an ApplicationContainer object. Server processes provide services

to building blocks. An ApplicationContainer invokes various methods on a

BuildingBlock object to process various user actions such as creating a transportable

application, responding to a transportable application or editing a transportable

application and so on. A BuildingBlock can also handle asynchronous events.

Each building block implements the BuildingBlock interface ofFIG. 3, which

defines methods for storing data for building blocks, storing responses for the building

blocks and also for providing the necessary data for presentation. The presenter data that

-41-

Page 43 of 240

Page 44 of 240

WO 02/21413 PCT/US01/42041

is returned from a building block can be presented in different formats, as described

below. In one specific embodiment, the BuildingBlock interface is defined as set forth in

Tabk32.

-42-

Page 44 of 240

Page 45 of 240

WO 02/21413 PCT/US01/42041

TABLE 2——BUILD]NG BLOCK INTERFACE EXAMPLE

public interface BuildingBlock{

void handleCreate(ZapletRequest request,

BuildingBlockDAO bbDAO);

void editCreate(ZapletRequest request,

ObjectId userId);

void handleReSponse(ZapletRequest

request,

Objectld userId);

void , editResponse(ZapletRequest request,

ObjectId userId);

void handleEvent(EventData eventData);

PresenterData getDisplayData(ZapletRequest

request);

PresenterData getEditResponseData(ZapletRequest

request);

}

In this embodiment, a handZeCreate method is invoked to handle creation of the

building block data in the database 208. An editCreate method is invoked to edit building

block data in the database 208. A handleResponse method is invoked to create a user

response in the database 208. An editResponse method is invoked to handle editing of an

already created user response. A handleEvent method is invoked to handle an event by

the building block.

A getDz'splayData method is invoked when the building block data needs to be

displayed in a transportable application. A getEditResponseData method is invoked when

. the response data needs to be displayed in a submit dialog box for editing.

In one embodiment, a BuildingBlockMetaData interface specifies methods on a

building block meta—data object. Such methods are responsible for providing the

necessary information in order to construct an authoring snippet or a response dialog

snippet, related to the building block. In one specific embodiment, the

BuildingBlockMetaData interface is defined as set forth in Table 3.

-43-

Page 45 of 240

Page 46 of 240

WO 02/21413 PCT/US01/42041

TABLE 3—~BU1LD]NG BLOCK METADATA INTERFACE EXAMPLE

public interface BuildingBlockMetaData{

Vector getAuthoringParams () ;

Vector getResponseParams () ;

Vector ‘ getConditions () ;

Vector getActions () ;

}

In this embodiment, a getAuz‘horingParams method returns a vector of authoring

parameters, which can be used by a tool to construct an authoring snippet for the building

block. Each element of the vector is of BuildingBlockParam type. A getResponseParams

method returns a vector ofuser response parameters, which can be used by a tool to

construct a user response dialog box for the building block. Each element of the vector is

ofBuildingBlockParam type. A getConditz'ons method returns a vector of conditions that

a building block can evaluate, which can be used by a tool to define a set of conditions for

the building block. Each element ofthe vector is of ZapletCondition type. A getActz'ons

method returns a vector of actions that a building block can perform, which can be used

by a tool to specify a set of actions for the building block. Each element of the vector is of

ZapletAction type.

When a Building Block is invoked to either to create its data in the database or

store user responses or retrieve its data from the database, it uses a Data Access

Component (DAC) to access the database. The DAC comprises programmatic objects that

enable building blocks to access data in database 208 such that developers of the building

blocks do not need to know the specific schema of the database, and such that the

building blocks are not affected by any future changes in the schema. Further, the DAC

provides, in effect, an API that enables a developer to store building block data in

database 208 without knowing the schema.

In one specific embodiment, the DAC comprises data access objects and data

objects. Data access objects serve as a channel to write and read data from the database

208. Data access objects encapsulate knowledge about objects and tables in the database

208 that are acted upon. Data access objects provide methods to accomplish data

persistence and data retrieval queries. Data access objects can carry out access control

checks on the data that is being accessed, in cooperation with the security services

described herein, to ensure that a particular user or building block is authorized to retrieve

selected data.

-44-

Page 46 of 240

Page 47 of 240

WO 02/21413 PCT/US01/42041

FIG. 15 is a block diagram that illustrates data and control flow among building

blocks, data access objects, interface methods and the database. One or more building

blocks 292, 294 communicate with data access objects 1500. Each building block 292,

294 is associated with a corresponding building block data access object 1502 that stores

metadata and data used in program logic relating to the building block. Such metadata

may include a database identifier, building block identifier, transportable application

identifier, etc. The data used in program logic may include scalar values that determine

behavior of specific building blocks. For example, for a Poll building block, the data used

in program logic may indicate a chart type value that specifies what kind of chart is used

for displaying poll results.

Data other than building block data may be stored in database 208. Accordingly,

other types of data access objects are provided based on the kind of data that is stored. In

one embodiment, data access objects comprise choice data access objects 1506, response

data access objects 1508, etc. Each data access object encapsulates information about the

underlying database tables by working with interface objects. For example, response data

access objects provide a generic public interface that allows building blocks to store any

responses from the recipients of a transportable application in the database. An example

of such a response is a recipient’s response to a poll question.

Each building block data access object provides access to tables of database 208

through interface objects. In one embodiment, the interface objects include a

QuestionInsert object 1504, QuestionXMLInsert object 1510, QuestionResult or

ResponseInsert object 1514, and QuestionXMLResult or ResponseXMLInsert object

1516. The interface objects communicate with database 208 through one or more stored

procedures 1512. In one embodiment, the stored procedures act, in part, to convert user

data received fiom the interface objects to XML format for storage in database 208;

metadata that is not received from a user-created building block, or otherwise internally

generated, is stored in conventional database columns. A pre-defined method may be used

to store any building block—specific programmatic object as a string value in the database.

For example, in one embodiment, the method setFieldValue(fieldName, value) is used to

store a Java object as an XML string in the database.

A retrieval method is provided to facilitate retrieval of a data object that

corresponds to a building block data access object. Data objects are created when data is

retrieved from the database 208. Thus, data objects facilitate the flow of results from the

database resulting from any query that is executed by a building block or any other

component such as a presenter. Each data object is a wrapper around result objects such

-45-

Page 47 of 240

Page 48 of 240

WO 02/21413 PCT/US01/42041

as the QuestionResult object, and QuestionXML result object. Each type of data access

object has a corresponding data object to capture results from the database tables. A pre—

defined method may be used to retrieve an object that was stored in the database using the

corresponding data access object. For example, in one embodiment, the method

getFieldValue(fieldName, value) is used to retrieve an object that was stored in the

database using the corresponding data access object. Any information that was stored in

XML form by a data access object can be retrieved fiom the database, parsed by an XML

parser, and then the query results can be returned on demand. Thus, a data object is a

result object that any component in the system can retrieve by providing appropriate input

parameters.

Each building block data access object has a corresponding building block data

object that maps to the result object QuestionXMLResult. Each data access object

provides a reference to a corresponding result object in the database or a cache thereof.

Using this mechanism, building block authors and developers can focus on

business logic and program logic that is implemented in a building block rather than on

the database schema, because the DAC separates such logic from the database schema by

interposing an abstract layer. Accordingly, the system becomes more extensible because

creating new building blocks is simplified. Further, dependencies between building blocks

and the database are removed. The building blocks are insulated from any major changes

that may occur in the database schema.

Graphical user interface elements associated with groups, and processes for

joining and using groups from the user perspective, are described herein in the section

entitled Personal Portal Presentation.

1.2.9 Directory Integration—Global Object Identifiers

In one embodiment, each transportable application is identified by a global

identifier. A transportable application is indirectly transported to each named recipient by

sending a message, such as an electronic mail message, to each recipient that contains a

reference to the transportable application in the form of a URL that includes the global

identifier. When the user opens the message, the URL is invoked, causing the user’s

browser to retrieve the dynamic content and other elements of the transportable

application.

In one approach for implementing the foregoing, the global identifier has the

following format: <AppserverURL>/Z?m=<globa11d>

where “<AppserverURL>” is the URL of an application server, such as

“http://www.zaplet.com,” and “<globallD>” is the global identifier. In one specific

-46—

Page 48 of 240

Page 49 of 240

WO 02/21413 PCT/US01/42041

embodiment, the global identifier value has the format DbId_ObjTypfiObde, where

“DbId” is a value that uniquely identifies a cluster. The DbId value may numeric or may

be a string, such as a URL of an application server. When a numeric value is used, then a

mapping ofnumeric values to URLs is stored in a directory. Using a URL requires no

such mapping, but increases the length of the global identifier value. Length may be a

limiting factor in certain encryption schemes, such as TwoFish. The ObjTyp and Obde

values refer to the type and the local identifier of the object in the cluster. The entire

global identifier value is encrypted using a site—specific seed, as described further herein.

In an alternative implementation approach, directory-based access to processing

clusters and other objects is used rather than direct reference to clusters as provided in the

above approach. In a directory-based approach, objects are referenced using distinguished

names that are registered in a directory. The directory may be an X500 directory, LDAP

directory, or similar repository that is associated with database 208. For example,

Microsoft Active Directory may be used.

In this approach, each processing cluster is uniquely identified using a

distinguished name (“DN”). The DN maps, in a directory, to a URL or other specific

identifier of the cluster. There could be additional information in the directory that could

be referenced. As defined in the X500 standard, DNs are elements of a hierarchical

naming system in which each DN has <name,value> attributes that are used to traverse a

directory hierarchy or tree. For example, the DN “C=US, O=FireDrop, OU=Engineering,

HN=a1pha” identifies a path in a directory hierarchy to the entry for machine alpha in the

Engineering dept at FireDrop which is in the US. That directory entry may contain the

URL of an application server that is on this machine. A DN can be transformed into a

numeric value using ASN.1 encoding.

Each cluster may be associated with a different enterprise, institution, or other

organization. For example, clusters may be located at different competitive parties.

Clusters that cooperate with each other need to have a trust relationship, which may be

established through a third party security organization. Based on the trust relationship,

each party that owns or operates a cluster can set up information for its peers in its own

directory that is then used to construct a global identifier value. Since each directory

structure is arbitrary and may be determined by the organization, the global identifier for

an object also is site dependent. Thus, there may be many valid global identifiers for a

single object. However, a benefit of the DN approach is that the DN is an indirect

reference to the site information. One site’ s DN cannot be meaningfully applied to

another site, thereby preventing improper access to a cluster from a user associated with a

-47-

Page 49 of 240

Page 50 of 240

WO 02/21413 PCT/US01/42041

different site. Furthermore, directory level authentication must be successful in order to

retrieve site information; V

1.3 Presentation of Transportable Applications

1.3.1 E-mail Client Presentation

In one embodiment, client 102 executes a client application program that

facilitates authoring, Viewing, interacting with, and managing one or more transportable

applications. In this description, such a program is termed a “transportable application

client” or, where it is clear from the context, “client.” Authoring refers, for example, to

creating a transportable application; creating a transportable application based on a

template; integrating address information from an address book with a transportable

application; converting an existing transportable application to a discussion-type

transportable application; creating one or more transportable applications that implement

a business process; and similar tasks. Viewing refers, for example, to viewing a

transportable application; viewing one or more transportable applications that implement

a business process; and viewing transportable applications when the client 102 is

disconnected from a network (“off—line viewing”); and similar tasks. Interacting refers,

for example, to interacting with a transportable application; interacting with one or more

transportable applications that implement a business process; interacting with

transportable applications when the client 102 is disconnected from a network; viewing

one or more notifications; and similar tasks. Management refers, for example, to moving

transportable applications into and out of folders and groups, and similar tasks. .

In one approach, the transportable application client interacts with one or more

electronic mail client programs (“e—mail clients”). The e-mail clients may comprise

Microsoft Outlook 98, Outlook 2000, Outlook Express, Lotus Notes, Eudora, Netscape

Messenger, etc. Typically one of the foregoing is installed in client 102 and the

transportable application client interacts with it using shared dynamic linked libraries

(DLLs), public APIs, or other programmatic communications mechanisms. The

transportable application client also interacts with a network browser such as Microsoft

Internet Explorer, Netscape Navigator, etc., as well as with the operating system of client

102, which may be Microsoft Windows 95, Windows 98, Windows NT, Windows 2000,

etc.

Specific functions of an embodiment of a transportable application client are now

described.

In one specific embodiment, a client is provided with an automatic installer that

can copy components of the client from an installation media to a client computer system

-48-

Page 50 of 240

Page 51 of 240

WO 02/21413 PCT/US01/42041

(e.g., client 102), and integrate such components with the operating system, browser and

e-mail application. The installation media may be a CD-ROM, file server, Internet

download, etc. Alternatively, users may receive an HTML email containing a signed

ActiveX control, or equivalent program element, that initiates installation of the client.

Installation may involve storing configuration data in a registry of the operating system of

client 102.

The client is provided with an automatic start configuration so that the client

initiates execution when a client computer, e.g., client 102, starts operation. Thereafter,

the client may be stopped and restarted repeatedly by the user. After startup, the client

generates an indicator icon that is displayed in an operating system “tray” location. When

started, the client initially enters an inactive state. The client activates in response to a

log-on process carried out by the user. When the client is activated, the indicator icon

changes appearance to indicate that the client is in the active state. To deactivate the

client, the user may either log off or stop the client, at which time the indicator icon

reverts back to its Started state.

In the log-on process, the client prompts the user for a user identifier and

password and then authenticates the identifier and password against the authentication

database. The client provides an option to save the password for the user in an encrypted

format; userids and passwords are saved as a value pair. Further, the client provides an

option to log on automatically when the client is started based on a saved password.

Using this option, the last user who logged off is logged on at startup, provided a saved

password is available. ‘ ‘

When a user receives a notification in responses to receiving a new transportable

application, an updated transportable application or changes to the status of a

transportable application, the indicator icon changes appearance to indicate that a pending

notification exists. Optionally, under control of the client, client 102 may generate a

sound or play an audio file to announce the receipt of a notification.

When a user hovers a mouse or similar pointing device over the transportable

application indicator icon, the client displays the number of new and updated

transportable applications. Selecting the indicator icon causes the client to display the title

of each new or updated transportable application and enables the user to select a

transportable application for viewing.

Also in one embodiment, the client notifies the user when new or updated

software components become available. For example, the client indicates the availability

of software updates with a flashing indicator icon. When requested by the user, the

_49-

Page 51 of 240

Page 52 of 240

WO 02/21413 PCT/US01/42041

installer function of the client downloads and installs the applicable new or updated

components.

In another feature, the client enables the Viewing of transportable applications off—

line by creating a snapshot of transportable application dynamic data in a local cache.

When the transportable application is viewed off-line, the client redirects and resolves

data references using the local cache. In one configuration, the client maintains a

persistent connection to the application server 202 and uses unused bandwidth to

download data for the transportable application to the local cache. Only incremental data

is downloaded. The download interval, download data size and cache size are

configurable.

A user may use the e-mail client executed by client 102 to respond to

transportable applications. In this configuration, the client overrides the Reply, Reply to

All, and Forward buttons or functions of the e-mail client. In addition, each transportable

application may be addressed using the e-mail client. For example, recipients may be

selected using a pre-configured search order ofvarious information sources, such as a

corporate directory, personal contacts, aliases, and groups. When a transportable

application is sent, recipient names are resolved to an address that can be processed by an

e—mail server or a similar transport mechanism. The client may provide its own address

book and the user may add recipient names to it.

The client can indicate changes in status of a transportable application and updates

in the e-mail client. A previously read transportable application maybe marked as unread

if new responses have been posted. Such notifications should only affect email found in

the user’s Inbox. If the email has been moved to another folder, these notifications do not

occur.

The client communicates with application server 202 to determine if a notification

should be sent to the user. The client notifies the user when new or updated templates for

transportable applications become available. When requested by the user, the installer

downloads installs only the applicable templates.

1.3.2 Personal Portal Presentation

According to one embodiment, transportable applications are accessible through a

personal portal. Generally, a personal portal is represented by a graphical user interface

window that contains one or more hyperlinks for accessing system functions. The ‘

personal portal provides membership services, including defining groups and managing

group membership. The personal portal displays organized lists of transportable

applications that the user of the portal has received, organized according to group and

-50-

Page 52 of 240

Page 53 of 240

WO 02/21413 PCT/US01/42041

individual user. Thus, the portal provides an organized entry point through which a user

may create, organize and send transportable applications and access tools and services for

doing so. The portal provides secure access to transportable applications through user

authentication processes.

In one embodiment, the personal portal is defined as and implemented using a

container and a set ofbuilding blocks. Thus, each personal portal is itself a transportable

application like others in the system. In this embodiment a user receives the personal

portal through a transport mechanism, such as HTML-enabled e-mail, for example. The

user opens the message and receives a view of an initial page (“home page”) of the portal

by reading the transportable application. In this alternative, selecting links in the home

page of the portal causes the system to generate new screen displays and carry out other

functions Within the e—mail window. Thus, the user may connect to the system and

interact with all its functions without launching a browser or other separate application.

In this embodiment, the portal comprises a transportable application having two or

more Listing building blocks, by default. The first listing building block is an In—Box that

lists all transportable applications that have been received by the user who is viewing the

portal. The second listing building block comprises a list of links to authoring functions,

to assist users in rapidly accessing functions of the application editor and page editor

disclosed herein. In an enterprise having a plurality of departments, there is a portal

transportable application for each department; each such application comprises a page for

each user group in the department. A page for all users is provided. Group moderators

may add building blocks to the group pages. Groups may be nested within other groups.

Alternatively, the portal is one or more software applications, represented by a

plurality of graphical user interface windows, which are served or operated by a service

unit, such as service unit 105. In general, a portal is associated with a business enterprise

that owns, operates or hosts system 200. The portal is accessed using a browser executed

at a client computer.

In each embodiment, the portal provides access to an Application Builder

application and a plurality of templates for creating transportable applications. The portal

provides each user with a personal archive of transportable applications that they have

sent and received, and provides users with access to groups that provide 'a repository of

shared knowledge regarding transportable applications. In one specific embodiment, the

portal home page comprises the following links: Group Directory; My Groups; Personal

Messages; Search; Builder; Preferences.

51

f 240

Page 54 of 240

WO 02/21413 PCT/US01/42041

To join a group, a user selects the Group Directory link. A group directory screen

appears that lists groups alphabetically by name, shows a description of each group,

shows how many messages regarding transportable applications were sent to a group in

the past seven days, and shows the group membership status value. If the group is open to

everyone, the status value is Join Group. If the group is open by invitation only, the status

value is Private. If the current user is a member of a group in the list, the status value is

Member. The user then selects either the Name value or the Status value, both ofwhich

are hyperlinks, of the group that the user Wishes to join.

In response, a Join Group screen is displayed. The form of the Join Group screen

varies depending on whether the selected group is open to everyone or private. If the

group is open to everyone, then the Join Group screen comprises a Join button and a

Cancel button; a user may join the group by selecting the Join button. FIG. 9A is a

diagram of the Join Group screen that is displayed when the selected group is private. In

this configuration, Join Group screen 900 includes a group name 902, group description

904, a private group label 906, an email link 908, and a Close button 909. To attempt to

join a private group, the user may select email link 908. In response, an email message is

automatically sent to the moderator or “owner” of the group to request access for the user.

Alternatively, the user may select the Close button 909 to close screen 900.

FIG. 9B is a diagram of a My Groups screen that is generated and displayed when

a user selects the My Groups link of the portal home page. My Groups screen 910

comprises function links 912, an Application Shortcuts area 914, an Updated Messages

area 916, a My Group Activity area 918, and a New Groups area 920. In the function

links 912, a Group Directory link 922 displays a list and description of all groups. A

Personal Messages link 924 accesses all transportable applications sent to of from the

user, including group transportable applications and transportable applications that the

user has created for personal use.

The Application Shortcuts area 914 provides rapid access to certain applications.

The Updated Messages area 916 provides a list ofupdated transportable applications for

which the user has turned notifications on. The My Group Activity area 918 provides a

list of group transportable applications that have been received in the last seven days. The

New Groups area 920 provides a list ofrecently added groups.

The fimction links 912 further comprise a My Groups link 934 that provides

access to detailed functions pertaining to groups ofwhich the user is a member. One or

more group links 934A are displayed in a hierarchical tree in association with the My

Groups link 934. A user may select one of the group links 934A to carry out specific

-52-

Page 54 of 240

Page 55 of 240

WO 02/21413 PCT/US01/42041

operations relating to a group. In one specific embodiment, the group operations include:

invite a member; membership list; unsubscribe; contract moderator; group description;

and View recent group activity.

In the invite member operation, a user can invite another user to join the selected

group. An Invite Member screen is displayed. The user enters one or more addresses of

users or groups to invite to join the selected group. The user also enters a short

introductory message. In response, the system generates and sends a message to each of

the named users inviting them to join the selected group, and including the introductory

message. If the currently selected group is a private group, the user must send an e-rnail to »

the group moderator to request additional members.

In the membership list operation, a user can View the group membership list. A

membership list screen appears, listing members by email address, name and the date on

which they joined the group. In the unsubscribe operation, the user can leave or

“unsubscribe” from the group. In the contract moderator operation, the user can sendvan

e-mail to the group moderator. In the group description operation, the user can View the

description of the group. In the view recent group activity operation, the user can View the

ten most recently updated transportable applications for the group.

FIG. 9C is a diagram of a portion of the screen display ofFIG. 9B. FIG. 9C

illustrates function links 912 when a user has selected one group name link 934A. In

response, an Applications link 936 and an Archive link 938 are displayed in a position

hierarchically subordinate to the group name link 934A. A member of a group can use

any transportable applications created for that group, or create new transportable

applications for it. To access the applications, the user selects the Applications link 936.

In response, a list of links to applications is displayed in the My Groups screen 910. The

user may launch an application by selecting the associated link. To create new

transportable applications for the group, the user uses the Application Builder, as

described further herein.

The user may also display all transportable applications sent to the group in the

group archive by selecting the Archive link 938. In one specific embodiment, the group

archive lists all transportable applications sent for the group. The user may filter the list of

transportable applications by application type using a drop-down menu. The user may

sort the archive list by Author, Subject, application type, date created, or date last

modified.

The Personal Messages link 924 provides access to transportable applications that

have been sent to the user, and to transportable applications that the user has created for

-53-

Page 55 of 240

Page 56 of 240

WO 02/21413 PCT/US01/42041

personal use. To access such applications, the user selects the Personal Messages link

924, and then selects an Applications link that is displayed. The Search link 926 provides

access to a search engine that can search the full text of all transportable applications by

keywords.

The Preferences link 930 is used to change a user’s profile ofpreferences, to

thereby tailor the way that the user interacts with groups and transportable applications.

Changes to preferencesmay be made by the user at any time. Through a Preferences

dialog, the user may make changes to a user Profile, Address Book, Group Preferences,

and a client or Plug-in. To facilitate such changes, the Preferences dialog includes a

Profile link, Address Book link, Group Preferences link, and a Plug-in link.

Using the Profile link, the user can change information in the user profile, such as

name, password, postal code, time zone, message format, and Whether message recipients

are automatically added to the Address Book. The message format profile value enables

the user to obtain a preferred user experience using the e-mail client. For example, if the

user’s e-mail client does not accept HTML, the transportable applications received by the

user may appear to be “broken.” The user can change the format in which transportable

applications are delivered to the user. In one specific embodiment, available formats

include Plain Text and HTML.

The Address Book is a personalized database of contact persons for sending

transportable applications. In one embodiment, selecting the Address Book causes the

system to display a list of available address books (Personal, Company, etc.). The user

can select one of the available address books and search for contact data within it. The

user may add or modify entries or important entries from other programs.

The Group Preferences link may be used to control how incoming transportable

applications from groups are delivered. In one embodiment, the user may select a Web

Only option, with which transportable applications are delivered to the portal only, or an

Email & Web option, which provides delivery of transportable applications both to the

portal and the e—mail in—box of the user.

The Plug-in link provides access to a client software element that can execute on a

user client, e.g., client 102. By selecting the Plug-in link, the user can install, uninstall,

and View the status of the Plug—in. In operation, the Plug-in automatically informs the user

when updated transportable applications have been sent, using a distinctive icon that is

shown in a designated portion of the graphical user interface. For example, in a Windows

system, the distinctive icon is shown in the system tray. Also, in another embodiment, if

the client computer is configured to access messages when disconnected from the

-54-

Page 56 of 240

Page 57 of 240

WO 02/21413 PCT/US01/42041

network, the user can use the client to synchronize transportable applications for offline

viewing and replying. Thus Plug-in may be implemented in the form of C++ code that is

optimized to the Windows environment. Additionally, in an embodiment, the Plug-in adds

new buttons to the toolbar of the user’s messaging client. For example, a New Appmail

button is provided in an e-mail client so that the user may initiate a process of creating a

transportable application from within the e-mail client. The user may also create a new e-

mail message and send it in the form of a transportable application by selecting a Send As

Appmail button.

In certain embodiments, the Group Directory, My Groups, and Group Archive

functions each are implemented as separate transportable applications having containers

and listing building blocks.

To facilitate the foregoing operations, portal user roles and group user roles are

. defined in the security framework that is described herein. In one specific embodiment, a

portal Administrator acts as portal editor, has all Coordinator permissions, has Owner

control for all groups in the portal, can assign individuals to roles, and can create new

roles. A Coordinator can create a group, delete a group, and exercise all User permissions.

A User can View the group directory, join a group if it is public, and use the Application

Builder and Page Builder that are linked to the portal.

1.3.4 Programmatic Processes for Presentation

FIG. 5 is a block diagram of objects and data communications paths involved in

presentation of content associated with a building block. In general, a transportable

application container object 502 references and contains a building block 504.

When the building block 504 is invoked by the container object 502 to either to

create data in the database 208 or store user responses or retrieve its data from the

database, the building block uses Data Access Components (DAC) to access the database.

In order to enable presentation of its information, the building block returns a Presenter

Data Object (PDO). Each PDO contains all data of a building block that can possibly be

displayed on any device in any form, and all associated interaction pathways. A building

block presenter object (termed a “presenter” herein) uses the PDQ in order to do the

actual presentation. For example, HTML presenter 506 can present the data in the PDQ in

HTML format. Alternatively, a WML presenter 508 can present the data from the PDQ in

WML format to a wireless device gateway. This mechanism allows presentation of the

same PDQ in different formats such as HTML, WML, XML, etc.

Presenter data objects as disclosed herein enable reuse ofpresenters, separate

responsibilities of functional elements of the system, enable independent development of

-55-

Page 57 of 240

Page 58 of 240

WO 02/21413 PCT/US01/42041

building blocks and presenters thereby enhancing modularity and simplifying

development, and provide flexibility to handle custom as well as generic presenters. The

presenter data objects provide an abstract interface that mediates communications of

building blocks and presenters.

FIG. 6 is a block diagram illustrating interaction ofprogrammatic objects in one

embodiment of a presentation model. In this embodiment, each Building Block 182C,

182D produces a specific PDO 602A, 602B that contains all the possible data of that

Building Block.

Two types ofpresenters can be used by a Building Block for presentation: Generic

Presenters, and Custom Presenters. Generic Presenters work with any PDOs that

implement a certain interface that they require. A Custom Presenter has detailed

knowledge about the PDO, and can work with only that specific PDO. A PDO that does

not implement a certain interface known by a Generic Presenter can still use that

presenter by means of a Converter that maps the specific PDO into an interface that is

understood by the Generic Presenter. In the embodiment ofFIG. 6, generic presenters

include a table presenter 606B that can present a table of data, and line presenter 606D

that can present a line graph, etc. Custom presenters include a poll presenter 606A that

can present data for a user poll, and a schedule presenter 606C that can present a calendar

or schedule.

Each PDO encapsulates data objects that represent the building block data,

provides methods to access all the possible building block data, and may implement

formatting interfaces like table interface, chart interface etc.

Presenters are responsible for rendering the data, and may use generic rendering

utilities. Generic presenters work with a basic PDO that implements a certain interface. A

custom presenter may directly work with a specific PDO. Each presenter implements a

BuildingBlockPresenter interface.

In one alternative, a building block may pass a PDO to a converter 604A, 604B

that converts data of the PDO to a different format that is understood by an interface of

the custom presenter. For example, in situations where a specific PDO needs to work with

a generic presenter, an object that implements an interface known to the generic presenter

is constructed. Such converter objects map a specific PDO to this known interface. Each

converter works with a PDO and a corresponding presenter. In one embodiment, a

converter implements a ConvertInterface that produces an object that implements the

interface known to the generic presenter.

'Table 4 provides an example of a code implementation of the objects ofFIG. 6.
I

-56—

Page 58 of 240

Page 59 of 240

WO 02/21413 PCT/US01/42041

TABLE4—CODEFORPRESEWNHKABSTRACTLAYERELEMENTS

public class PollPDO {

//data

public int getTotalVotes()

{

}

//get details about each voter.

public String getVoterEmail(int i)

{

}

public String getVoterName(int i)

{

}

public String getLastChoice(String email)

{

}

// details about the choices.

public Vector getChoiceLabels()

{

}

// return a vector of Integers that represent choice\

totals.

public Vector getChoiceTotals()

{

}

-57-

Page 59 of 240

Page 60 of 240

WO 02/21413 PCT/US01/42041

public class PollPresenter implements

BuildingBlockPresenter

{

PollPDO pdo null;

public PollPresenter(Object pdo)

{

this.pdo = (PollPDO)pdo;

public void PresentLive(Writer out,

HttpServletRequest req)

{

// give it to some utility or draw it inline.

chartUtils.drawPie(out, getChoiceLabels(),

getChoiceTotalS());

}

// other methods in BuildingBlockPresenter.

interface TableInterface

{

int getNumRows();

int getNumColumns();

String getColumnName(int);

Class getColumnClass(int);

Object getValueAt(int, int);

// possibly more methods

public interface Convertlnterface

{

public Object convert(Object sourcepdo);

-58-

Page 60 of 240

Page 61 of 240

WO 02/21413 PCT/US01/42041

// presents a table representation of the poll.

public class PollTableConverter implements

Tablelnterface, ConvertInterface

{

PollPDO pdo = null;

String columnNames

"Choice" };

Page 61 of 240

= {"Voter Name", "Voter Email",

public Object convert(Object pdo)

{

Object getValueAt(int i,

{

int

this.pdo = pdo;

// do some other housekeeping.

return this;

if<j==0)

{

return pdo

}

else if (j

{

return pdo

}

else if (j

{

II II

return pdo

}

else

int j)

.getVoterName(i);

.getVoterEmail(i);

.getVoterChoice(i);

return null;

getNumRows()

.return pdo.getTotalVotes();

59

Page 62 of 240

WO 02/21413 PCT/US01/42041

int getNumColumns()

{

return 3; // oh no, hard coding

int getColumnName(int i)

{

return columnNames[i];

Class getColumnClass(int i)

{

// everything is a string. Also need to catch

exceptions. “

return Class.forName("java.lang.String");

}

Using these structures, when a building block needs to be presented, control logic

of application server 202 requests the building block to construct the building block

specific PDO. The control logic also contains knowledge about the specific presenter to

be used to display the building block e.g. whether to use a custom presenter or a generic

presenter. Such information is obtained at the time that a building block is authored.

In case of a custom presenter, control logic of application server 202 instantiates

the presenter with the specific PDO obtained from the building block. In the case of a

generic presenter, the control logic uses a converter, ifnecessary, to convert the PDO into

a format known to the generic presenter, before constructing the generic presenter. It then

passes the presenter to a Java Server Page (JSP) that controls overall presentation of the

Zaplet. The JSP uses BuildingBlockPresenter interface of the presenter to render the data.

Table 5 presents a pseudocode implementation of the foregoing process.

TABLE 5~—PSEUDOCODE FOR PRESENTATION PROCESS

//iterate through different bldg blocks

-60-

Page 62 of 240

Page 63 of 240

WO 02/21413 PCT/US01/42041

for (int i=0; i < numBB; i++)

{

Object pollpdo = bb.getPresenterData(request);

BuildingBlockPresenter pr = null;

String presenterName = getPresenterName(bb);

String converterName = getConverterName<bb,

presenterName);

if (converterName != null)

{

ConvertInterface i =

ConverterFactory.createConverter(converterName);

Object tablepdo = i.convert(pollpdo);

Pr=

PresenterFactory.createPresenter(presenterName, tablepdo);

}

else

pr=

PresenterFactory.createPresenter(presenterName, pollpdo);

presenterVector.add(pr);

forwardRequestToSomeJSP(presenterVector);

A building block may use more than one presenter. For example, displaying

results from a poll building block may use a pie chart presenter or a table presenter. To

facilitate this possibility, an independently authorable component is provided, comprising

a combination of a building block and the set ofpresenters corresponding to the actions

supported by the building block. Thus, a poll building block with a pie chart presenter for

display comprises a first independently authorable component, and a poll building block

with a bar graph presenter for display comprises a first independently authorable

coniponent

When development of a new building block is complete, it is registered in the

system. Each independently authorable component is registered in the system separately.

Registration involves providing the system with metadata about the new building block,

-61_

Page 63 of 240

Page 64 of 240

WO 02/21413 PCT/US01/42041

such as its name, actions it carries out, events that it generates, and types of devices to

which it can present data. When a building block is registered, it is displayed to and can

be selected by authors ofpages and transportable applications when they use the

application editor and page editor as described herein.

FIG. 16 is a flow diagram illustrating a process ofpresenting building block

information using the foregoing mechanisms. In block 1602, a request to present a View is

received at the application server. The request may comprise an HTTL request or an

internal programmatic function call. In block 1604, the request is forwarded to a container

that contains the building block associated with the view. In block 1606, the container

forwards the request to either an individual building block, or to all the building blocks

contained in the container, based on the type of container.

In block 1608, the container invokes an appropriate building block method for the

action. In block 1610, a presentation data object is received from the building block

method. In block 1610, based on information collected at registration time, the

application server forwards the presentation data object to the presenter that was

registered for the current action. The system then invokes a presentation method on the

presenter

Actions, in this context, may comprise standard user actions or building block

specific actions. Standard user actions are internally known actions that trigger a

container to call on all its contained building blocks with a request to participate in such

actions. For example, when a transportable application is to be displayed in a browser of

client 102, the container requests each of its building blocks for a presentation data object

for a “get display data” action. All building blocks that wish to participate in such action

return a non—null presentation data object, which are given to the corresponding

presendersfbrrenderhng.

Building block specific actions, such as a sort action relating to table data in a

table building block, originate form the presentation of standard user actions. For

example, a sort action originates when a user selects a link in a table building block data

that has been presented. The target URL for the action contains enough information for

the system to route the request to a specific building block. The building block then

responds with a presentation data object that is given to the appropriate presenter.

1.4 Authoring Transportablc Applications

FIG. 7C is a flow diagram illustrating a high-level View of a process of authoring

a transportable application.

-62-

Page 64 of 240

Page 65 of 240

WO 02/21413 PCT/US01/42041

Optionally, in block 720, a user logs on to a portal, such as a portal of the type

described herein in the section entitled “Personal Portal Presentation.” The portal home

page provides a plurality ofmenu options in a navigation bar. In block 722, a New

Message option is selected from the navigation bar. Alternatively, rather than carrying out

the steps ofblock 720, block 722, a user can select a New Message option fiom Within

any existing transportable application. In response, the system displays a list oftemplate

folders. In block 724, the user navigates to a template folder or subfolder that contains a

desired template. The user then selects a desired template, as in block 726. In one

embodiment, an Application Shortcuts list displays fi'equently—used templates, and a user

may select a template directly from the Application Shortcuts list rather than navigating

to a folder.

For purposes of illustrating an eXample, assume that a user selects a Starter Set

folder of templates, a Corporate Process sub-folder of templates, and an Escalation

Exception Manager template. In response, the template is. displayed, as shown by block

728.

FIG. 8A is a diagram of an example graphical user interface screen display of the

Escalation Exception Manager template. In general, screen display 800 comprises a

Customer Case Summary page 802A, Manage Case page 802B, and Addressing page

802C. Customer Case Summary page 802A comprises a message header 804, page header

806, attachments area 808, and discussion area 801.

The user enters information in the message header 804. In this example,

information is required in none of the fields of the message header, but such information

may be required in other templates. The user also enters information in the page header

806, including Page Title and Introduction. The user then enters values for the rest of the

fields that are required, attaching files and adding descriptions as needed. Depending on

the building blocks in each page, the user may have to upload files of the appropriate

type, upload pictures, specify URLs for Web pages, and other tasks.

When all such information is entered, the user selects the Next button 808 to

advance in the authoring process. The system displays the next page 802B, 802C and

receives further input until the template is completed. The user may select a Preview Page

button 810 to receive a View ofWhat the transportable application will look like to

recipients. ,

When the last page of a template is reached, the page displays an Add a New Page

button and an Address and Send button. The user may add optional pages to the

-63-

Page 65 of 240

Page 66 of 240

WO 02/21413 PCT/US01/42041

transportable application by selecting the Add New Page button. The optional steps of

removing and adding pages are represented by block 732 of FIG. 7C.

Referring now to FIG. '7D, in block 734, the transportable application is

addressed. The addressing operation may be initiated by selecting the Address and Send

button. In response, the system displays Addressing page 802C. FIG. 8B is a diagram of a

screen display of an Addressing page that may be displayed, in one example embodiment.

In this example, Addressing page 802C comprises an address field 822 that can receive

one or more individual e-mail addresses in a comma-separated list. Alternatively, the user

may select an address book link 824 and select the recipient e-mail addresses from a

stored list of addresses. Additionally or alternatively, the user may select one or more

groups of recipients from a list 826 of groups. Selecting a named group in list 826,

followed by selecting an Add button 830, causes the system to copy the group name to a

Send To list 828 that is used when the transportable application is sent.

Also as part of addressing, the user enters subject text in a Subject field 832.

Optionally, the user may apply access controls or other security controls to the

message or its pages by selecting a Message Security Options link 834 and Page Security

Options link 836. If the Message Security Options link 834 is selected, then in response,

the system displays a Message Security Options window. FIG. 8C is a diagram of an

example of the Message Security Options window that may be displayed, in one example

embodiment. Message Security Options window 840 comprises a Share Author Rights

pull—down 842; by selecting a group from the pull-down menu, the author of the

transportable application can share author access rights with a named groups.

In this context, “author rights” refers to a set ofprivileges for working with

transportable application that are reserved to the author of the transportable application.

Such author rights may include the ability to send a reminder message, close the

transportable application, hide or show pages of the transportable application, or add a

page to the transportable application.

To send a reminder message, the author selects a Send A Reminder option from

among the message options. The author indicates the recipient choice for the reminder,

and enters reminder text. In response, the system will re-send the transportable

application to the recipients with new comments at the top.

Closing a transportable application disallows any further additions to the ;

transportable application or to its dynamic content. To close a transportable application,

the author selects a Close This Message option from among the message options. The

author enters any desired closing message text, such as an explanation ofwhy the

-64—

Page 66 of 240

Page 67 of 240

WO 02/21413 PCT/US01/42041

transportable application is closed. The transportable application may be re~sent to all

recipients with the closing message text at the top, or the closing text may be displayed in

the body of the transportable application when existing recipients re-open it.

To hide or show a page, the author selects a Hide/Show Pages option from among

the message options. The Hide/Show Pages option enables the author to hide a page that

is old or no longer relevant without having to permanently delete it.

The user also may select a sending mode from Within a Sending Mode area 844 by

selecting one of a plurality of radio buttons 846, 848, 849 that are respectively associated

with a Send Unsecured mode, Send Secured mode, and Send Secured with Restricted

Forwarding mode. In Send Unsecured mode, no special access controls are applied to the

message. Recipients can read and forward the message without first logging into the

portal. In Send Secured mode, recipients must log in to the portal before they can View

the message. Recipients can forward the message to others. All recipients must be

registered in the portal and logged in before they can read the message. In effect, Send

Secured requires a recipient to overcome the barrier of user authentication before the user

can read the message. In Send Secured with Restricted Forwarding mode, recipients must

log-in to the portal to View a message, and only the author can forward the transportable

application.

Referring again to FIG. 8B, if the Page Security Options link 836 is selected, then

in response, the system displays a Page Security Options window. FIG. 8D is a diagram

of an example of the Page Security Options window that may be displayed, in one

example embodiment. Page Security Options window 850 comprises one or more access

lists 852 that are displayed in association with radio buttons 856, 858. Each radio button

is associated with a particular page of the transportable application, as indicated by a page

title header 854. In this case, the page title is Discussion, as indicated by page title 854A. _

Thus, each named page may have different security options. The access lists 852 may be

broad or specific. For example, an Everyone access list 856 provides all current and

forwarded recipients with access to the Discussion page. A Specific Recipients list 857

enables only selected users and groups to access the page, if such users or groups are

named as part of list 857 and radio button 858 is selected.

Selecting a Submit button 859 sends the selected security options to the server.

Referring again to FIG. 7D, In block 736, the user sends the transportable

application by selecting the Send Now button 838.

-65—

Page 67 of 240

Page 68 of 240

WO 02/21413 PCT/US01/42041

1.4.1 Application Editor

According to one embodiment, an application editor or application builder is

provided for assembling pages into a template for authoring and sending transportable

applications. Using the application builder, a user may build as many transportable

applications as the user needs, for many different purposes.

Referring again to FIG. 9B, to launch the application builder, a user logs into a

portal and receives screen display 910. The user selects the Builder link 928 from among

function links 912. In response, the system displays a screen with a link to the

Application Builder and the Page Builder (page editor), which is described in the next

section. The user selects the Application Builder.

FIG. 9D is a diagram of an Application Builder screen display that is displayed in

response to selecting the Application Builder. Screen display 950 comprises a Name field

954 and a Description field 956 in a header area 952. The user enters a description for a

new transportable application template. The name appears in the application selection

dialog box and helps users select the appropriate application.

The user also enters data in an Introduction Settings area 958, which comprises a

plurality of custom field label fields 960 and corresponding Required check boxes 962.

The user enters names for any custom fields that authors can fill out when creating a new

transportable application based on the template. The corresponding check box 962 is

selected if the user wishes to require authors to fill out the field before they can send a

new transportable application based on the template.

The Application Builder screen can also receive data specifying the name of a

status field in a Name of Status Field 964, and a list of corresponding settings in a

Possible Settings field 966. The list comprises one or more possible settings that the

status field can assume for specific transportable applications that are constructed based

on the template. Example status settings include ‘New,” “Open,” “Closed,” etc., and may

be customized by the author of the template as appropriate for the template.

The user may also add one or more default pages to the template by selecting an

Add Page link 968A in Default Pages area 968. Default pages form part of any

transportable application that is build and sent based on the application template.

Similarly, the user may add one or more optional pages to the template by selecting an

Add Page link 969A from an Optional Pages area 969. The optional pages are pages that

the author and recipients can choose from when adding a page to the transportable

application. In response to selecting one of the Add Page links 968A, 969A, the system

-66-

Page 68 of 240

Page 69 of 240

WO 02/21413 PCT/US01/42041

displays a page navigation dialog in which the user may navigate to a page folder and

select a page to add.

FIG. 9B is a diagram of a page navigation dialog that may be displayed, in one

example embodiment. Dialog 970 comprises a Page Folder pull—down list 972 that may

be used to select a folder ofpages. In the example of FIG. 9E, the Personal folder is

selected. Selecting a navigation button 974 causes the system to display the parent folder

of the current folder. When a folder is selected using pull-down list 972, the system

displays a list 973 ofpages that are in the selected folder. A user may create a new page

by selecting a Create New Page link 978. In the example shown, a page named NEW

PAGE is selected, and metadata describing the selected page is displayed in a description

area 979. Upon navigation to the desired page, the user may add it to the current

application template by selecting an Apply link 977 .

Selecting a new folder button 975 enables creation of a new folder. In response,

the system displays a dialog that prompts the user to enter a name and description for the

new folder. The user can create any number of sub—level folders. For example, the user

can create a folder named New Pages Folder, open it, and create more folders named

Home and Work. The user may move within the folder tree by selecting a folder name to

view its contents, then selecting the navigation button 974.

FIG. 10A is a diagram of a Default Page Settings screen that may be used to

change properties of a selected default page of a template. In one specific embodiment, a

user may use Default Page Settings screen 1000 to change a page name, specify whether

an included page is required, and enable updates to a page. Default Page Settings screen

1000 comprises a Page Title field 1004 that can receive a new name for the page. Default

Page Settings screen 1000 also comprises an Enable Updates checkbox. When the Enable

Updates checkbox is checked, then changes that are made to the page by a page author

are made to the template as well, so that any transportable application that is created

thereafter also will reflect such changes.

Default Page Settings screen 1000 also comprises a Require This Page checkbox

1008. If it is checked, then the associated page is required in any transportable application

that is built based on the associated template, and cannot be deleted.

Pages added to the Optional Pages list are available to authors of transportable

applications if such authors wish to add a page. Optional pages appear in the Add Page

screen and are not included automatically, but can be added as needed. The user may

specify whether authors of transportable applications may add pages to a transportable

application that is based on the template from outside the Optional Pages list. In one

-67-

Page 69 of 240

Page 70 of 240

WO 02/21413 PCT/US01/42041

embodiment, such specification is provided by checking an “Allow authors to add Page

from outside this list” checkbox in an Optional Pages screen.

After one or more pages are added, the user may save the application template,

and optionally change its name. The user may modify the application template at any time

by retrieving it and modifying any of the foregoing properties in the manner described

above.

1.4.2 Page Editor (Page Builder)

A page editor may be provided for assembling building blocks into pages that can

be added to transportable application templates, and then to transportable applications. In

one specific embodiment, a Page Builder allows the user to assemble different building

blocks into a page. Which building blocks are added depends on the function that the

page author wants the page to serve.

Referring again to FIG. 9B, to launch the application builder, a user logs into a

portal and receives screen display 910. The user selects the Builder link 928 from among

function links 912. In response, the system displays a screen with a link to the

Application Builder and the Page Builder (page editor). The user selects the Page Builder.

FIG. 10B is a diagram of a Page Builder screen that may be displayed in response

to selecting the Page Builder, in one example embodiment. Page Builder screen 1010

comprises a Name field 1012 that displays a temporary name of the page under

development, such as “New Page.” To create a new page, the user enters a description of

the new page in a Description field 1014 and introduction text in Introduction field 1016.

The description value appears in the Page Selection dialog box and helps users select the

appropriate page, and the introduction text appears at the top of the page to introduce

users to the page. Alternatively, to create a new page, the user may select the Open button

from among function buttons 1019, view a page browser showing available pages and

folders ofpages, select Create A New Page from the page browser, and then enter the

description and introduction value.

The user may then add one or more building blocks to the page, or simply save the

page in its current form. To save the page, the user selects the Save As button from among

function buttons 1019, navigates to a folder in which the user wishes to save the page,

enters a name for the page, and selects a Save button. The user may save the page in this

manner at any time, and can discard the changes made to the page at any time by

selecting the New button from among function buttons 1019.

In one embodiment, launching the Page Builder causes the system to retrieve and

display a default page template that comprises two default building blocks. In one specific

-68-

Page 70 of 240

Page 71 of 240

WO 02/21413 PCT/US01/42041

embodiment, the default building blocks are a discussion building blocks and information

fields building block. From the default page, new building blocks may be added, and

existing building blocks may moved or deleted.

To add building blocks, the Insert Building Block link 1018 is selected. In

response, the system displays a list ofbuilding blocks. The list comprises, for each

building block, a name value, description value, and graphical representation of the

building block. In one specific example embodiment, the list identifies the following

available building blocks:

Approval list. Allows a list ofparticipants to respond with approvals for

documents, shared files or the content of a message. May be combined with an Inline

Document or Image Gallery building block to gather sign-offs on final drafts.

Discussion. Captures the discussion between message participants, eliminating

back—and—forth e-mails. May be added to a page with a File Sharing or Interactive Web

Page building block to discuss a document’s content or Web site.

File Sharing. In addition to distributing files for review, the File Sharing building

block enables versioning, to allow participants to automatically share changes with each

other. The File Sharing building block may be added to any transportable application page

to allow participants to add relevant files at any time.

Information Fields. Enables creating named fields to build forms to display

names, dates, locations, etc. May be combined with other building blocks to capture

information about the state of a project, names ofparticipants, address information, or

outstanding issues.

Inline Document. Participants can review the full content of an HTML document

Without opening a second application. May be combined with, for example, a Poll,

Approval List, or Discussion building block to allow participants to share opinions of the

document.

Inline Web Page. Displays a fully interactive Web page within a page of a

transportable application, including browser-like navigation controls. May be combined

with, for example, a P011 or Ratings building block to capture and share responses among

participants Without launching a separate browser.

Invitation. Displays the details of an event, including title, description, time, and

location. May be combined with a Poll building block to allow participants to respond

and add comments.

-69-

Page 71 of 240

Page 72 of 240

WO 02/21413 PCT/US01/42041

Image. Displays a graphical image on the page. May be combined with, for

example, a Poll, Approval List, Ratings, or Discussion building block, in the same page,

to allow participants to submit their opinions of the image.

Image Gallery. Displays a plurality of graphical images, e.g., in “thumbnail”

format, Within a page. All images may be sent in a transportable application at the same

time, or participants may add their own images at any time. May be combined with, for

example, an Approval List or Ratings building block to collect opinions on photos or

artwork.

Poll. Participants vote for one or more of a plurality of listed options, and the

results are displayed in a pie chart, bar chart, etc. May be combined with, for example, an

Image Gallery, File Sharing, or Schedule building block to help make business decisions.

Ratings. Respondents share their ratings with each other on one or more questions

on a discrete scale, e.g., ratings from 1 to 10. May be used to collect feedback or gauge

group members’ opinions.

Schedule. Participants specify their availability for one or more proposed dates or

times. The Schedule building block can export data to programs that support a calendar

data interchange format. May be used, for example, to determine the best time for a

meeting or event.

Table. Compile data from multiple individuals into a tabular format; participants

can add to or edit the information. The table building block can import or export data, for

example, data files in delimited file formats. May be combined with other building blocks

to launch a project, prioritize items, or share contact information.

Listing. Retrieve various types of data from the database and display it in a list

format, using HTML or any other desired presentation format.

Further description about building blocks is provided elsewhere herein. To add a

building block to a page, the user selects the desired building block by selecting its name

fi'om the list or selecting the corresponding graphic image. The list closes, and the

selected building block is added to the page, which expands to accommodate the building

block. The Insert Building Block link 1018 is re—displayed, and the user may add one or

more additional building blocks by selecting the link 1018 again. In one embodiment, the

Insert Building Block link 1018 is re-displayed both above and below each added

building block, so that the relative order ofbuilding blocks in a page may be specified by

selecting the link 1018 in the correct ordinal position. Thus, the user may place building

blocks above, below, or between other building blocks that have been previously added

by selecting the link 1018 at the appropriate position.

-70-

Page 72 of 240

Page 73 of 240

WO 02/21413 PCT/US01/42041

The user may also control the Visibility ofbuilding blocks to users who receive a

transportable application that contains them by choosing to hide or show particular

building blocks. When a building block is marked as hidden, recipients of a transportable

application that contains a page with that building block do not see the building block.

Users may similarly add new pages, move, delete, show or hide existing pages. Applying

the hide option enables an author to create a complex template that can be used in many

different situations, and selectively reveal desired building blocks as appropriate for the

particular situation.

FIG. 11A is a diagram of the graphical appearance of an Approval List building

block as it appears in a transportable application page under development using the Page

Builder. Approval List building block 1100, and all other building blocks, comprises a

Move Up link 1102, Move Down link 1104, and Delete link 1106. A user may delete the

building block from the page under development by selecting the Delete link 1106. In

response, the building block is logically removed from the page, and the page is re—

displayed without the building block.

The order in which building blocks appear in the Page Builder is the order in

which authors and recipients of transportable applications based on that page will see the

building blocks. The user may select links 1102, 1104 to change the relative order of the

building block by moving it before or after another building block. In either case, the

page is re-displayed with the building block in its new position.

In one embodiment, a Survey Page Builder is provided to enable users to assemble

specific building blocks into pages that carry out surveys of recipients. Each survey page

comprises one or more building blocks selected from a Choice building block, Free Text

Response building block, and Ratings building block. A survey page may be added to any

transportable application or template.

To create a survey page, a user obtains a portal View (FIG. 9B) and selects Builder

link 928. The Builder window appears, and the user selects a Survey Page Builder link

within it. In response, a Survey Page Builder Window opens. FIG. 10C is a diagram of a

Survey Page Builder window that may be displayed, in one example embodiment. In this

embodiment, the Survey Page Builder Window 1020 comprises a Name field 1022 that

displays a default value of “New Page,” a Description field 1024 that may receive a text

description of the page, and an Introduction field 1026 that may receive a text

introduction for the page that is displayed to recipients at the top of the page.

Survey Page Builder window 1020 further comprises one or more survey options.

In one embodiment, a “Make recipient responses anonymous” link 1028 is provided.

-71-

Page 73 of 240

Page 74 of 240

WO 02/21413 PCT/US01/42041

When it is selected, responses to the survey are stored in anonymous form. An “Allow

recipients to change responses until the survey is closed” link 1030 may be provided.

When selected, the system allows recipients of the page to change their responses at any

time. When it is not selected, a response of a recipient may not be changed after it is

submitted.

The user may add one or more survey building blocks by selecting the Insert

Building Block link 1018 at a point in the page where the user wishes to have a building

block appear. In response, a list of available building blocks is displayed. In one

embodiment, the list comprises:

Choice. Respondents vote for one or more of the listed options; results are

displayed, e.g., in a pie chart, bar chart, etc., and are Visible only to the author of the

transportable application.

Free Text Response. Respondents enter text responses to a question into a single

line text box, or a larger comment box. Responses are gathered in a table and are Visible

only to the author of the transportable application.

Ratings. Respondents provide their ratings on a list of questions or items

according to a discrete scale, e.g., 1 to 10. The results are summarized in a graphical

format that is visible only to the author of the transportable application.

The user may select one of the building blocks by selecting its name or icon. The

user completes the building block with any required information; fields for completion by

recipients are left blank. The user may re—order the building blocks or delete one or more

building blocks; the page is then saved. The page is added to a template for a

transportable application as described herein.

1.4.3 Building Blocks—Examples

A description of specific building blocks is now provided. The building blocks

described herein are merely examples, and other building blocks, fewer or more building

blocks may be provided to carry out different functions or to configure different

transportable applications. For convenience and in order to illustrate clear examples, the

building blocks are described in part in terms of graphical appearance, functions and

features; however, in an implementation, each building block comprises a plurality of

executable computer program modules that are defined by class files and other computer

program source statements. Thus, the functions and appearance of each building block

herein are determined by and implemented in the form of computer code appropriate to

carry out the filnctions and provide the appearance that are described herein.

-72-

Page 74 of 240

Page 75 of 240

WO 02/21413 PCT/US01/42041

Referring again to FIG. 11A, the graphical appearance of an Approval List

building block 1100 is shown. The Approval list building block 1100 allows a list of

participants to respond with approvals for documents, shared files or the content of a

message, and may be combined with an Inline Document or Image Gallery building block

to gather sign—offs on final drafts. Approval list building block 1100 comprises an

Instructions field 1108 that may receive text instructions that are displayed to recipients of

a page that contains the building block 1100. Approval list building block 1100 further

comprises a list 1110 of one or more user names 1112 corresponding to recipients of the

building block and corresponding response indications 1114. The user names 1112 are

dynamically updated according to the recipients of the building block 1100. Approval list

building block 1100 further comprises an Include linked comment check box 1116. If

checked, the system will display comments from participants in the transportable

application. The comments are dynamically updated as they are added.

FIG. 11B is a diagram of an example embodiment of a Discussion building block

that may be used to captures a discussion between message participants. Discussion

building block 1120 comprises a dynamically updated list 1122 of one or more user

names 1124, associated comment text 1126, and a time stamp value 1128 indicating the

time when the associated comment was added. When recipients receive a transportable

application that contains a Discussion building block 1120, one or more of the recipients

may select the building block and add a comment to the topic under discussion. The list

1122 is dynamically updated with the newly added comment so that the next recipient

who opens the transportable application will see all previously added comments.

FIG. 11C is a diagram of an example embodiment of a File Sharing building

block, according to an example embodiment, which may be used to share an electronic

file among a group of recipients for collaborative review or updating. In this embodiment,

File Sharing building block 1130 comprises a Description field 1132 in which the author

of a template that contains the building block may enter description text. An Enable File

Versioning check box 1134 is provided. When it is checked, the system requires each user

to check out the associated file before it can be Viewed or modified. The file is checked in

after modification.

File Sharing building block 1130 also comprises an Attach Files link 1136. The

author of the application or template that includes building block 1130 may select link

1136 to specify a file that is shared among recipients of an application that contains the

page. In addition, the Attach Files link 1136 may be used by recipients of the

transportable application to add files for sharing, discussion or collaboration. Thus, the

-73-

Page 75 of 240

Page 76 of 240

WO 02/21413 PCT/US01/42041

one or more files that are shared using building block 1130 may be specified by recipients

of a transportable application that contains a page that contains the building block 1130,

rather than specified by an author of a transportable application that contains the page or a

template that contains such a page.

In one embodiment, when a user is interacting with a transportable application

having a page that contains File sharing building block 1130, and the user elects to upload

a new file for sharing or discussion, the system prompts the user to decide whether

versioning should be enabled for the document. A versioning value is stored as a file

attribute data value in the database in association with the file. In another embodiment,

the Enable File Versioning check box 1134 is displayed in association with every file link

for each file that has been uploaded. Thus, a user who is the author of the transportable

application or otherwise acting in an owner role may elect to apply versioning at any

time.

FIG. 11D is a diagram of an Image building block that may be provided, in one

example embodiment. An Image building block 1140 may be used to display a graphical

image on a page of a transportable application. In one embodiment, Image building block

1140 comprises an image 1142, Attach Image button 1144, Image Name field 1146, and

Image Description field 1148. After adding the building block 1140 to the page, the

author selects the Attach Image button 114 to attach an image to the building block. In

response, the system displays a file browse dialog that enables the author to navigate to a

desired image, e.g., in a filesystem or folder of the author’s computer, server or network,

and select the image. The system uploads the selected image to application server 202 and

stores it in database 208 in association with the page under construction. The user may

also add a name value in Image Name field 1146, and a description value in Image .

Description field 1148.

FIG. 11B is a diagram of an Image Gallery building block that may be provided,

in one example embodiment. An Image Gallery building block 1150 may be used to

display a plurality of graphical images within a page. In this embodiment, Image Gallery

building block 1150 comprises an image worksheet 1152, Name field 1154, Add Image

function button 1156, Add Multiple Images button 1158, and checkbox 1159. To add one

or more images to the image gallery, the author selects either the Add Image function

button 1156 or the Add Multiple Images button 1158. In response, the system displays a

file browse dialog that enables the author to navigate to a desired image, e.g., in a

filesystem or folder of the author’s computer, server or network, and select the image.

The system uploads the selected image to application server 202 and stores it in database

-74-

Page 76 of 240

Page 77 of 240

WO 02/21413 PCT/US01/42041

208 in association with the page under construction. The user may also add a name value

in Name field 1154.

All images may be sent in a transportable application at the same time.

Alternatively, if the checkbox 1159 is selected by the author, then participants who

receive a transportable application that contains building block 1150 may add their own

images at any time. Conversely, if checkbox 1159 is not checked, then participants may

not add additional images to the gallery.

The Image building block and Image Gallery building block are supported by

appropriate error logic that generates one or more errors if exceptional conditions occur

when images are uploaded by the author. Examples of exceptional conditions include: a

file is too large; network connection failure; incorrect image format; incorrect image

width; etc. .

FIG. 11F is a diagram of an Information Fields building block that may be

provided, in one example embodiment. In this embodiment, Information Fields building

block 1160 comprises a list 1161 of one or more field names 1162 each having an

associated field value 1164. The author of a page that contains the building block 1160

provides values for field names 1162; the associated field values are left blank and are

added by participants who receive the page. Additional pairs of field names and values

may be added to the building block by the author by selecting an Add Row button 1166.

Accordingly, an author may create named fields to build forms to display names, dates,

locations, etc., and a transportable application can capture information about the state of a

project, names of participants, address information, or outstanding issues.

In one embodiment, each field of the Information Fields building block may have

an abstract data type associated with it using the data typing mechanisms described herein

x with respect to the Table building block.

FIG. 11G is a diagram of an Inline Document building block that may be

provided, in one example embodiment. In this embodiment, Inline Document building

block 1170 comprises an Upload File link 1172. To place a document within a page of a

transportable application, to enable participants to review the content of the document

without opening a second application, an author of a page that contains building block

1170 selects link 1172. In response, the system displays a file browse dialog that enables

the author to navigate to a desired file, e.g., in a filesystem or folder of the author’s

computer, server or network, and select the file. The system uploads the selected file to

application server 202 and stores it in database 208 in association with the page under

-75-

Page 77 of 240

Page 78 of 240

WO 02/21413 PCT/US01/42041

construction. The name of each file that has been uploaded is displayed in the building

block, e.g., in an area above the link 1172.

In one embodiment, building block 1170 accepts one file for upload. In this

embodiment, multiple documents may be displayed in a transportable application by

adding another page to the application, or by including multiple building blocks 1170

within the same page. Alternatively, multiple files may be included.

FIG. 11H is a diagram of an Inline Web Page building block that may be provided,

in one example embodiment. In this embodiment, building block 1180 displays a fully

interactive Web page within a page of a transportable application, including browser—like

navigation controls. The author selects a location field 1182 and provides a URL or other

location identifier of the Web page for display.

In one embodiment, the URL may be changed at any time by recipients ofpages

that contain the building block. An administrative console function may be provided to

enable establishing filters for building blocks.

FIG. 12 is a diagram of an example transportable application that contains an

inline Web page. Inthis example embodiment, a transportable application 1200 is shown

in a View from a' graphical user interface of an e-mail client program 1210. Transportable

application 1200 comprises a header 1208 and an inline Web page building block 1212.

The building block 1212 includes a navigation header 1201 and a Web page image area

1202 that displays the inline Web page. Navigation header 1201 comprises a Back button

1204, Forward button 1205, and Home button 1206. Navigation header 1201 is displayed

automatically by the system when the transportable application 1200 is presented. Thus,

the navigation header 1201 is system-generated and does not form part of the Web page in

image area 1202. The Web page in image area 1202 is displayed in the same form that it

would have if viewed using a browser in conventional manner. Back button 1204,

Forward button 1205, and Home button 1206 each comprise links to IavaScript code that

carries out the functions of the button. A specific embodiment of such code is described

filrther herein with reference to FIG. 24.

FIG. 13A is a diagram of an Invitation building block that may be provided, in

one example embodiment. In this embodiment, Invitation building block 1300 comprises

the following data entry fields, which receive text information provided by the author of a

page that includes the building block: Event Title field 1304, which receives a title of the

event for which the invitation is issued; Description field 1306, which receives a brief

description of the event; Details field 1308, which receives text providing detailed

information about the event; Date field 1310, which receives a value identifying the date

—76—

Page 78 of 240

Page 79 of 240

WO 02/21413 PCT/US01/42041

of the event; Duration field 1312, which receives a value identifying the time period of

the event; Location field 1314, which receives a value specifying where the event will

occur; Address field 1316, which receives a value providing an address for the event; and

a deadline field 1318, which provides a deadline date for responding to the invitation.

The value in the deadline field 1318 may be used, programmatically, to

automatically trigger closing a transportable application or page that includes the

Invitation building block 1300.

An author of a page that contains building block 1300 may select a style for the

graphical appearance of the building block using a Select Invitation Style link 1302. In

response, the system displays a list of one or more pre—defined styles for invitations. The

author selects one of the styles, fills in the foregoing event data, and saves the building

block.

FIG. 13B is a diagram of a Poll building block that may be provided, in one

example embodiment. In this embodiment Poll building block 1320 comprises a Question

field 1322 in which the user enters the specific question that recipients are requested to

answer when the building block is in use. The author also enters one or more answer

choices in answer fields 1324; in responding to the poll question, recipients are required

to select one of the answer choices.

As recipients interact with the building block, the author may view a graphic

image of the results in graph or chart form. The author may select the specific form of the

results by selecting one of a plurality of radio buttons 1326, each ofwhich is associated

with a different presentation format such as pie chart, bar chart, etc. The author may

enable recipients to attach comments to their responses by selecting Comment check box

1328.

Poll building block 1320 further comprises an Advanced Options link 1329 that

enables the author to set other functional behavior of the building block. In response to

selecting link 1329, the system displays an Advanced Options window. FIG. 13C is a

diagram of an Advanced Options window that may be displayed, in one example

embodiment. In this embodiment, the author may use Advanced Options window 1330 to

select whether recipients of a poll may vote for one or more of the answer choices 1324

ofFIG. 13B, by selecting a value fiom a pull-down menu 1332. The author may instruct

the system to include an additional answer choice of “Other” in the list, and allow

recipients to write in an answer, by selecting check box 1334.

In one embodiment, if an “Other” choice is allowed, and recipients write in

answers, the written-in answers are automatically added to the choice list. The written-in

-77-

Page 79 of 240

Page 80 of 240

WO 02/21413 PCT/US01/42041

answers are dynamically updated to the database. Thus, any later recipients who open the

same transportable application see the written—in answers as additional poll choices.

One or more Vote Options check boxes 1336 may be provided. In one

embodiment, the author may instruct the system to allow recipients and participants in the

poll to change a vote by selecting a first check box. The author may instruct the system to

allow participants to vote anonymously by selecting a second check box. The author may

specify when the poll results are available for viewing by the participants by selecting one

of a plurality of radio buttons 1338. In one embodiment, the author may specify that the

poll results are available to participants always, after a participant has voted, after the poll

closes, or never. In one embodiment, the author may require all ratings to be submitted on

an anonymous basis (“forced anonymity”), by selecting an option or check box when the

P011 building block is added to an application.

FIG. 13D is a diagram of a Schedule building block that may be provided, in one

example embodiment. Participants specify their availability for one or more proposed

dates or times in a schedule table. Using Schedule Type radio buttons 1342, the author

may specify whether the schedule is structured or free form. In a structured schedule, for

each time alternative, the author of a transportable application that includes the Schedule

building block 1340 specifies the exact date, time and duration of each time alternative. In

a free-form schedule, the author can enter any desired information to describe each

alternative.

A Location field 1344 receives a value identifying a proposed location for the

scheduled event. A list 1346 of a plurality of time alternatives or choices 1348 is

provided. Each choice 1348 has an associated date field 1350, time field 1352, and

duration field 1354. Each choice represents a possible best time for a meeting or event,

for example. In one embodiment, a maximum of five choices are provided in the building

block, as in FIG. 13D, and an option check box 1356 enables the author to specify

whether recipients can propose additional choices. If option check box 1356 is not

checked, then a recipient ofbuilding block 1340 in a transportable application is required

to select one of the five choices as best for that individual’s schedule.

In one embodiment, the Schedule building block lists at least one schedule

response for all recipients of a transportable application that contains the building block.

Further, a blank row is displayed in the schedule table for all recipients who have not

responded. Thus, even if a recipient has not responded to the transportable application,

that recipient is listed in the schedule. This enables all recipients to see who has provided

an availability response and who is yet to respond. Programmatically, the Schedule

-78-

Page 80 of 240

Page 81 of 240

WO 02/21413 PCT/US01/42041

building block may use a getRecipientResultO method to retrieve a list of recipients of the

transportable application. The list of recipients is compared to a second list of all

recipients who are known to have responded to the transportable application. The

difference in the lists provides those recipients who should be listed in the schedule table

with blank entries.

FIG. 13E is a diagram of a Table building block that may be provided, in one

example embodiment. A table building block 1360 may be used to compile data fiom

multiple individuals into a tabular format; participants can add to or edit the information.

The Table building block can import or export data, for example, data files in delimited

file formats. In the embodiment ofFIG. 13E, a data table 1364 is defined by a name field

1362, one or more rows 1374 and a plurality of columns 1370. Each column 1370 has an

associated column name 1372. Each row and column has an associated radio button

which, if selected by the author of the page that contains the building block, makes that

row or column appear in the table when the page is displayed in a transportable

application.

The author may modify the size and appearance of the table using buttons 1368.

In one specific embodiment, buttons 1368 comprise an insert button, delete button, and

properties button. A user selects a particular row or column by selecting its associated

radio button, and then selects one of the buttons 1368. ’In response, if the insert button is

selected, the system will insert a row or column adjacent to the selected row or column;

delete the selected row or column; or enable the user to modify properties ofthe selected

row or column. In one embodiment, such properties include column width, text alignment

(left, right, center), cell format, etc. In still another embodiment, the requested changes

may be applied to all rows and columns in the table by selecting a separate check box.

In an alternative embodiment, selecting the insert button causes the system to

prompt the user to enter a numeric value representing a number of rows or column to

insert, thereby enabling inserting multiple rows or columns in a single operation.

In another embodiment, table columns may be formatted according to one of a

plurality of abstract data types, e.g., date, numbers, currency, time, etc. The data types

may also be enumerated data types, such as a priority type (high, medium, low); an

answer type (yes or no), a status type (open, closed, pending, resolved); an approval type

(approved, do not approve, undecided); or a custom enumerated type that is user-defined.

To apply a data type, the author selects the Properties button from among buttons 1368

and then seleCts a data type from among a list of available data types. The selected data

type is stored in the database as an attribute value for the associated column of the table.

-79-

Page 81 of 240

Page 82 of 240

WO 02/21413 PCT/US01/42041

If the author adds rows to the table, then columns in the row inherit the data type attribute

values. When a recipient adds data to a cell, type checking is carried out to ensure that the

value that was entered matches the type of the cell; if a type match occurs, an error is

reported.

In addition, data values for table cells may be imported from a data file by

selecting an Import link 1366. For example, data values may be imported from a

spreadsheet file, delimited file, comma-separated file, tab-separated file, or the

equivalent.

Use of enumerated data types enables users to construct Table building blocks that

effectively track progress on action items relating to a project. For example, a group of

users who are collaborating on a particular project can create a transportable application

with a Table building block that identifies tasks, a party responsible for each task, and a

status value taken from an enumerated data type. As users complete assigned tasks, they

update the Table building block status value as appropriate. Any user who views the

transportable application sees the then—current status values for all tasks.

FIG. 14A is a diagram of a Choice building block that may be provided, in one

example embodiment. Using a Choice building block, respondents vote for one or more

of the listed options; results are displayed, e.g., in a pie chart, bar chart, etc., and are

visible only to the author ofthe transportable application. In this embodiment Choice

building block 1420 comprises a Question field 1422 in which the user enters the specific

question that recipients are requested to answer when the building block is in use. The

author also enters one or more answer choices in answer fields 1424; in responding to the

question, recipients are required to select one of the answer choices provided in the fields.

As recipients interact with the building block, the author may view a graphic

image of the choice responses in graph or chart form. The author may select the specific

form of the results by selecting one of a plurality of radio buttons 1426, each ofwhich is

associated with a different presentation format such as pie chart, bar chart, etc. In one

embodiment, the author also may use a pull-down menu 1432 to select whether recipients

of a poll may vote for one or more of the answer choices 1424 by selecting a value from a

pull-down menu 1432. The author may instruct the system to include an additional

answer choice of “Other” in the list, and allow recipients to write in an answer, by

selecting check box 1434.

FIG. 14B is a diagram of a Free Text Response building block that may be

provided, in one example embodiment. In this embodiment, respondents enter text

responses to a question into a text box or comment field. The author specifies a question

-80-

Page 82 of 240

Page 83 of 240

WO 02/21413 PCT/US01/42041

for recipients to answer by entering it in question field 1432. Responses are gathered

either in a single-line text box or multi-line comment area according to a selection by the

author of a corresponding radio button 1434. In an embodiment, a text editor is integrated

into question field 1432 so that respondents may use standard text editing keyboard

commands and cursor operations as they enter and revise text. In another embodiment,

question field 1432 is integrated with a browser DLL, or similar rendering library. In this

configuration, respondents may enter HTML tags in the question field, which are stored

in association with the building block, and rendered and displayed in HTML format when

a response in the question field is displayed to other recipients.

FIG. 14C is a diagram of a Ratings building block that may be provided, in one

example embodiment. In this embodiment, Ratings building block 1440 comprises an

Instructions field 1442 in which the author enters text instructions to recipients about how

to complete ratings of criteria. The author may define a rating scale by selecting a .

maximum value 1444. For example, if the author wants criteria rated by participants on a

scale from “1” to “5,” then the author selects “5” as maximum value 1444. In addition to

the numeric rating values, the author may permit a rating of “not applicable” or “N/A” by

selecting check box 1446. One or more corresponding rating labels may be provided in

rating fields 1448. One or more criteria to receive ratings are provided in item fields

1450. Additional item fields may be added, or item fields may be removed, from among

item fields 1450 by selecting an Add Entries link or Remove Entries link 1452.

In one embodiment, the author may require all ratings to be submitted on an

anonymous basis (“forced anonymity”), by selecting an option or check box when the

Ratings building block is added to an application.

A Listing building block is provided to enable a transportable application to

retrieve various types of data from the database and display it in a list format, using

HTML or any other desired presentation format.

In one specific embodiment, the Listing building block is implemented as an

abstract class that can be subclassed to present any result set of database data that can be

described by a programmer or developer. For example, the Listing building block may be

used to generate lists of groups, folders, messages, and transportable applications for use

in the Group Directory, Group Messages Inbox, Group Application Templates, and

Personal Messages Inbox that are displayed through the portal and other mechanisms as

described herein.

In this embodiment, the Listing building block implements a Question interface to

issue database queries, and a Presenter interface to carry out data presentation. The

-81-

Page 83 of 240

Page 84 of 240

WO 02/21413 PCT/US01/42041

Listing building block also generates a Create. event, Read event, and Close event to the

event handling system when it is created, read, or closed, respectively. The Listing

building block’contains no actual data of its own; rather, all data it displays is metadata

about other objects, such as transportable applications, users, groups, or templates. Thus,

it need not generate a Response event.

A Group Directory building block may be implemented as a subclass of the

Listing building block. The Group Directory building block displays a list of all the

Groups available, including group name, description, and status. The Group Directory

building block may receive a selection of a group from user input. In response, the Group

Directory building block determines whether the user is authorized to access the selected

group, and then generates a Status value as output. The Status value may be Join Group,

Member, or Private. Join Group means that the user is not a member of the group and the

group is not private, i.e., the user may join the group. Member means that the user is

already a member of the group. Private means that the user is not a member and group

joining is restricted.

A Group Messages Inbox building block also may be implemented as a subclass

of the Listing building block. The Group Messages Inbox building block displays a list of

all transportable applications sent to a group including author, subject, type, date created,

and date last modified. The Group Messages Inbox building block may be used in two

different instances to provide a list of current group messages as part of a group home

page, and to provide a group archive list.

A Group Applications Templates building block also may be implemented as a

subclass of the Listing building block. The Group Applications Templates building block

displays a list of selected application templates for a particular group, organized by

template name and date created. The selected application templates may all those that are

in that group’s application directory, for example. There may be an instance of the Group

Applications Templates building block for each group.

A User Messages Inbox building block may be may be implemented as a subclass

ofthe Listing building block and generates a list of all transportable applications sent by

and received by a user, except that received group messages are not displayed. The list

comprises, for each transportable application in the list, a status value, attachment status

value, author name, subject, and date last modified. The status value indicates Whether the

associated transportable application is new or unread, updated or changed, or read. The

attachment status value indicates whether the associated transportable application has one

or more files attached, or no attachments. The User Messages Inbox building block

-82-

Page 84 of 240

Page 85 of 240

WO 02/21413 PCT/US01/42041

provides graphical controls to create folders, move transportable applications into folders,

or to delete them.

1.4.4 Site Style Editor

According to one embodiment, the Style Editor is configured to enable a portal

administrator to create one or more Site-specific Styles. In this context, a “site” is an

installation of system 200 at a particular enterprise or organization, such as a corporation.

The Site Style Editor displays only those properties of transportable applications and

templates that are relevant to creating styles for a particular site. Such properties may

include site snippets (including the header and navigation), color scheme, branding and

corporate~color images, and fonts to be used throughout the site.

In one approach to implementing the foregoing, a Style Properties table of

database 208 includes a column that identifies whether a style property is a general

property or a site-specific property. The Style Editor is configured to allow setting a

mode, e.g., generic or site-specific, when a user invokes or enters the Editor. When the

Style Editor is in a site-specific mode, it shows only properties relevant to that mode.

A Site Style Preview T001 is provided to enable a user, who is creating a Site

Style, to preview the appearance of the site so that other users of the system will not be

disrupted during development time. Only the Site Style creator can see the site using the

Site Style being created. In one embodiment, Site Style development and previewing is

carried out on a separate application server to minimize performance issues. Further, in

one approach, the preview of the site is displayed in a frameset of a browser, enabling a

user to freely browse the site.

When one or more styles have been created, users can select a style at the time

that a transportable application is authored. For example, at authoring time, when a

transportable application is created or a task is added, a user can either select an existing

Style through the Style Picker or create a new Style during authoring and automatically

apply that Style to the transportable application that is being authored.

In one approach, a Style Editor is provided having an action bar with a plurality of

graphical user interface buttons that trigger different actions and behavior. In one specific

embodiment, a Clear button resets Style properties. A Save button saves the Style. If it

already exists in the database, it is overwritten without asking the user for a new name. If

it does not exist, then the user is prompted to provide a name and description. A Save As

button saves the Style after first prompting the user for a name and description. An Open

button loads a Style into the Editor from the user’s personal collection, or from a Group

or Global folder.

-33-

Page 85 of 240

Page 86 of 240

WO 02/21413 PCT/US01/42041

A Preview button displays a preview of the current Style. The style is previewed

in association with the type of transportable application that the user is in the process of

authoring. An Apply and Exit button is also provided. When selected, if the Style has not ,

been saved, then the user is prompted to provide a name and description of the Style, and

it is saved. The Style is automatically applied to the then-current transportable application

under development, and the Editor is closed. Cancel and Exit buttons may also be

provided to enable termination of style editing and exiting the application.

The Style Editor also may be configured to save and load styles to and from

groups, global areas, or folders of groups or global areas. This enables groups of users to

export styles to such areas for the purpose of sharing them. Use of folders enables users to

organize styles. Folders and style references may be created as node objects.

1.5 Communications From Transportable Applications to Users

(“Notifications”)

1.5.1 Notifications Based on User Responses or Timed Events

In an embodiment, application server 200 includes processes that can selectively

deliver notification messages to users based on actions carried out by transportable

applications. In general, a notification is a message, sent by electronic mail or any other

transport mechanism, to a recipient of a transportable application separate from the

application as a result of an action taken by that recipient or by another recipient of the

application. For example, assume that a transportable application includes a discussion

building block in which a group ofparticipants are discussing a particular topic. If a

participant enables notifications for that application, the system sends that participant a

notification message each time that another participant updates the application with a new

comment.

In one embodiment, each participant or user affirmatively requests notifications in

an “opt—in” process. Alternatively, however, notifications may be used to accomplish

more complicated business processes or workflows. Further, in one embodiment,

notifications are associated with transportable applications as a whole; alternatively, each

building block may independently generate a notification based on an action of a

participant using that particular building block. In still another alternative, notifications

are issued based on rules when conditions specified in the rules are satisfied by user

actions.

In this description, participants or users may assume one or more roles. An

individual acting in an Owner /Moderator role is a person who initiates or starts a process.

The Owner owns the process and is accountable for all its functions. In the corporate

—84-

Page 86 of 240

Page 87 of 240

WO 02/21413 PCT/US01/42041

context, owners of a process can be product managers, purchase agents, account

managers, customer service representatives, etc. An individual also may act as a

Participant (also termed a Member or Recipient). Members interact with one or more

specific tasks in a process, such as interviewing candidates, bidding on proposals,

participating in meetings, etc. The owner of a process can assign specific roles to the

participants. Owners may be participants also.

In one embodiment, with respect to groups, an Owner can add or remove

members from the group; carry out moderator options; exercise author rights over all

group messages; delete group messages; and exercise all Member privileges. A group

Member, in contrast, can send or receive group messages; invite others to join public

groups; unsubscribe fiom the group; and create a sub-group.

Notifications, in one approach, are alert messages that are sent to users when a

predefined activity has occurred in a process. For example, notifications may be issued as

a result of the following activities: Response to a building block by a user; change in

process or task status; change in process or task due dates; more than 50% ofpeople have

polled; more than 60% of users have confirmed for the meeting; and others. Reminders

are prompts sent to users. Examples of reminders include: Inform a user that a due date is

fast approaching; inform all users about an important process development; etc. Both

notifications and reminders generally are sent outside the context of a transportable

application, for example, by a separate e-mail message directed to the recipient. In

contrast, notes, as described herein, are text messages that are selectively embedded

within a transportable application to draw something to the attention of the recipient when

the recipient opens the transportable application.

Notifications may be pull or opt-in notifications, or push notifications. With pull

notifications, a user defines (or sets rules) when to receive notifications and reminders.

The system automatically sends a notification if the specified definition is satisfied. With

push notifications, an owner sends notifications and reminders to users regardless of

whether the user has requested for the same. Here the owner overrides the notification

preference of the recipient.

In one embodiment, notification processes are configured so that a participant

receives notifications on any updates immediately. In this approach, users have the option

to opt—in to receive any updates. The user receives a single notification on any updates

since the last read. In one specific approach, taking any of the following actions on a

process or task triggers delivery of a notification: Adding new tasks; response to building

-85-

Page 87 of 240

Page 88 of 240

WO 02/21413 PCT/US01/42041

block; closing of tasks; closing ofprocesses; change in process status or due date; change

in task status or due date.

In one sub-approach, only the tasks for which a user is in the recipient list trigger

notification updates. If a different task changes, for which a user is not in the recipient

list, the user is not notified.

In another embodiment, notification processes are configured so that a participant

receives notifications on any updates to specific tasks immediately. Users can receive

notifications on any updates to a single task or group of tasks. A list of active tasks is

provided to the user from which the user can select tasks on which to be notified.

The notification processes also may be configured to send a process-level

reminder to all recipients. Specifically, the owner of the process can configure a

transportable application to send ad-hoc reminders everyone in a recipient list whenever

an important process event occurs. For example, assume that Michael is interviewing at

Alpha Company and an interview process transportable application is currently used for

scheduling interviews. A manager at Alpha receives information during the interview

process that Michael has a competing offer and needs to decide Whether to accept it

within the next week. The manager, who is an owner of the transportable application, can

immediately notify all the participants that they should schedule interviews for Michael

and decide on the candidate. In a related approach, the notification processes are

configured to send process—level reminders to selected recipients in the recipient list.

In another embodiment, the system is configured to send a task level reminder to

all recipients in a recipient list. The owner of the task can send ad-hoc reminders to

everyone in a recipient list whenever an important task event occurs. For example,

assume that an offer letter to candidate John Q. Public is under discussion in the “Offer

task” of a transportable application. The salary to be offered to the candidate is still under

discussion among the managers. However, the Director of Sales needs to provide the

sales headcount to the VP of Marketing & Sales next week and as such needs to finalize

the offers quickly. She sends a notification to the participants in the “offer task” to come

to a consensus quickly on the offer and go further with the hiring. In a related feature, a

participant can send a task level reminder to select recipients among the recipients of the

transportable application.

Another feature provides scheduled process update notification. A user can

schedule to receive process update notifications periodically or on a specified date and

time. Periodic update options for the user to select are daily (options Within a day), and

weekly (options within a week). For example, assume that Bob is the Director ofBusiness

-86-

Page 88 of 240

Page 89 of 240

WO 02/21413 PCT/US01/42041

Development at Alpha Company and his team is working on new business deals with a

lot of startups. Bob would prioritize on his updates based on the importance of the deal.

So he schedules some deals for weekly updates while others for daily updates.

In another embodiment, the system is configured to send scheduled process “due

date” reminders to all users in a recipient list of a transportable application. In this

feature, the owner of a process can schedule specific "due-date” reminders to be sent to

everyone either at the process or at the task level. The owner can send the reminder either

on a particular date or a specified period before the due date (e.g., two days before, two

weeks before, etc). For example, assume that a product management team has defined

new features for a particular product release and requires approval from other functional

areas (such as Engineering, Sales, Business Development etc.). The features need to be

frozen by a certain date so that development on the product can commence. The project

lead schedules a "due—date" reminder to be sent to everyone a week before the deadline to

ensure that the activities are completed by the due date.

In other features and embodiments, a participant or user can "opt—in" to receive

summary of notification changes; "opt-in" to receive selected notifications immediately;

send a scheduled task “due date” reminder to everyone in a recipient list; send a

scheduled task “due date” reminder to select recipients in a recipient list; and "opt-in" for

a scheduled process due date reminder.

In one implementation approach for the foregoing features, the event-based

messaging system described herein is configured to enable building blocks and associated

notification event handlers to communicate. One or more events may issue as a result of

another event. Responses to events are carried out by a notification event handler that is

associated with each kind of response event. Response-based notifications are generated

by each such handler. Each notification is an event, and the each notification event

handler comprises logic that determines which users need to receive notifications and

when. In an embodiment, each event handler uses a notification API to generate a list of

users to notify, and the event handler then sends the list to an event daemon that

dispatches the notifications. As a result, an event-based messaging system facilitates

generating rule-based notifications in response to any change in any attribute of a

transportable application.

In one implementation ofresponse-based notifications, as outlined above, each

user may “opt in” to receive notifications at a task level and at a process level. Hence,

each user can subscribe to changes in particular tasks or to any change in the process.

Further, each user can associate a notification frequency value with each subscription.

-87—

Page 89 of 240

Page 90 of 240

WO 02/21413 PCT/US01/42041

FIG. 7 is a flow diagram of one embodiment of a process of carrying out

response-based notifications. In block 702, a response is issued to a building block of a

transportable application. For example, a first participant in a group collaboration or other

activity enters text, graphics, a button selection or some other value in response to a query

provided in a building block.

In block 704, in response, a database query is issued to obtain a list of users who

have requested notifications for the current building block. A notification time value is

obtained for each user in the list; the notification time value indicates when to notify each

individual on the list. In block 706, the list is passed to the parent object of the current

building block, which may be another building block or a container object, with a request

to carry out notifications.

In block 708, a list of recipients associated with the parent building block or

container object is retrieved and compared to the list ofusers who qualified for

notifications at the child building block level. Only those users who qualified for

notifications at the child building block level are then considered. For each user who

qualified, if that user has a notification time value that indicates a delayed notification is

necessary, then no action is taken since the child’s notification time overrides any

notification time that may be associated with the parent.

In block 710, for each user in the child notification list that qualifies for an

immediate notification, then a database query is carried out to determine that the user is

active in the system and does not have a notification already pending. This is done to

avoid duplicate notifications. If these tests result in a determination that the user is

entitled to a notification, then control is passed to block 712.

In block 712, a status value for the user associated with the parent building block

or container is changed to Updated, and a current time value is stored in a notification

time value in the database.

In block 714, users in the recipient list of the parent block or container who did

not qualify for child level notifications are considered. The status value for each such user

is changed to Updated, and a current time value is stored in a notification time value in

the database. In block 716, the notification message is dispatched to all qualifying users in

the parent and child notification lists.

1.5.2 Notifications Based on Rules and Attributes

In a related approach that is integrated with an event management system, each

building block can publish attributes about itself to the rest of the system, and publishes

event that alert the system when such attributes change. Further, users may create and

-88-

Page 90 of 240

Page 91 of 240

WO 02/21413 PCT/US01/42041

store rules based on these attributes that cause such users to receive a notification when

the rules are satisfied. In addition, users may be notified at a particular time if a rule is

satisfied. For example, a user can be notified if a project status reaches “complete”, and

the user can also be notified if the project status is not “complete” one month after the

project began.

In one implementation approach, database 208 comprises a rules table having the

following columns: Rule ID; Block 1]); User ID; Attribute; Threshold value; Comparator;

Time flag indicating whether the rule is time—based; Event ID if the rule is time-based;

Action type. In one embodiment, the Rule ID field does not store a unique key value,

because the same Rule ID can encompass several rules that are evaluated simultaneously.

Database 208 further comprises an alert log table having the following columns:

Block ID; User ID; Note; Read bit. An Alert Waiting bit is provided in a user status table.

Each block is associated with a presentAttributes method that returns one or more

attributes, types, comparators (if applicable), and description values for each attribute. An

interface is accessible from each transportable application with which a user can build the

rules and set threshold values and comparators. Each rule may be characterized in terms

of Boolean values, number comparisons (equals, less than, greater than), string equals

comparisons, etc. Using the interface, a user may edit the rules that have been created,

and attach a time value and recurrence period to a rule.

In response to a user creating a rule using the interface, a servlet of application

server 202 enters the rule into the database 208, and attaches a rules event to the building

block in which the rule was created. The rules event subscribes to attribute changes in the

building block. The seeret also deletes any old rules in the database for the same building

block.

Thereafter, when an attribute changes in the block, the rules event is invoked.

Processing the rules'event involves first retrieving all rules for that block from the

database 208, evaluating the rules as designed to result in creating and storing a list of

rule identifiers that evaluated to TRUE, and generating a rules-passed event that includes

the list. 1

Actions can subscribe to the rules-passed event. Each such action has an

associated rule 1]) value. If a rule matching the associated rule 1]) value is fulfilled, then

the action is executed.

An Alert Notification event object is provided and has a handler process that

determines if its rule has passed. If so, the handler sends a notification to the user if

needed, and records the notification in a notification log.

-89—

Page 91 of 240

Page 92 of 240

WO 02/21413 PCT/US01/42041

In one approach for displaying notifications, when a user opens and reads a

transportable application, a flag message is displayed that informs the user that a new

notification exists. The flag message may be a hyperlink. The user selects the flag

message. In response, the system displays the notification in a pop-up dialog with which

the user may scroll through one or more notifications. Each alert then is marked as read.

1.6 Object Communications—Programmatic Methods

In one embodiment, system 200 uses two distinct types of internal communication

mechanisms. Non-event driven sharing of data is carried about in Building Block and

Container interactions and Container—to-Container communications. Event—driven

publish-subscribe exchanges are carried out between disparate objects within the system.

Non-event—driven data sharing is used in cases in which communications require

detailed knowledge of the hierarchy of objects or the need to transfer essentially the entire

data of such objects. In order to ensure the successful delivery of these communications,

a unique identification system is provided for all objects that will communicate Within the

system. In one embodiment, each object in the system has a unique global identifier, as

described further in this document in the section entitled “Directory Integration—Global ‘

Object Identifiers.” Using global identifiers and associated mapping tables, container

objects for contained objects can be determined.

In an alternative embodiment, a global object identifier is associated only with

container objects. The relative position of a contained object within the container object

is used as a unique identifier of the contained object. As a result, each contained object is

accessed only through its immediate Container. For example, a poll Building Block

within a task in a Process Container would have the id: <Process Container ID>_<task

index>_<poll BB index>, or alternatively, <Task Container ID>__<poll BB index>, if the

Process Container was not needed in order to deliver the message. A benefit of this

mechanism is that there could be ACLs applied on a particular Container that may affect

access to a contained object.

In one embodiment, a data—sharing communication mechanism is used in order to

aggregate data fiom multiple Building Blocks in order to form a composite View. For

example, in the case of a Poll Discussion, the Data Access Component for the poll

building block and the discussion building block are joined by a composite Building

Block in a‘particular way in order to show both the poll and discussion data together. In

order to join such a composite View, the Container collects multiple Data Access

Components from the blocks and delivers them to the Composite Building Blocks.

9()

Page 92 of 240

Page 93 of 240

WO 02/21413 PCT/US01/42041

In one specific embodiment, containers or other objects in the platform implement

a DataSharingInterface in order to achieve communication. The interface is defined as:

public interface DataSharingInterface {

public DAC getDataAccessComponent(RelativeID

target, UniqueID requester, UserID user);

}

The Data Gathering Service Manager implements a DataGatheringInterface in

order to extract the DACs of the objects that a component may want to access. This

interface is defined as:

private interface DataGatheringInterface {

public Vector gatherDataAccessComponents(UniqueID

requester, UserID user, UniqueID[] fromList);

}

In one example embodiment, the Data Gathering Service Manager loops through

each element in the fromList, determines the Container, sends the container to a

DataSharingInterface and calls the getDataAccessComponent method with the RelativelD

of the specified Blocks. The Container implementing the DataSharingInterface gathers

the appropriate DAC from the specified Block. This process allows Building Blocks

across Containers to share data, and also allows the sharing object to limit the amount of

data that should be sent out to the requester.

1.7 Object Communications—Event—Driven Methods '(Event Handling

System)

In one embodiment, the system described herein provides an event handling

service as represented by event processor 112 ofFIG. 1B, and event daemons 216 of

event service 146 ofFIG. 2B. In this embodiment, one or more event daemons 216 are

communicatively coupled to event service 146. The event service 146 is communicatively

coupled by link 218 to database server 208. The event daemons serve to offload certain

separable fimctions from the application server 202. For example, in an embodiment,

event daemons are responsible for mail event queuing and handling, bounced—mail

handling, and generating personalized transportable application content, based on a user’s

e—mail client profile.

-91-

Page 93 of 240

Page 94 of 240

WO 02/21413 PCT/US01/42041

Alternatively, a generic event handling system is provided to enable different

components of the system to communicate. In one embodiment, an event handling system

enables the system to act when a specific event occurs within a transportable application,

~ act when a specific event does not happen, and facilitates authoring rules to carry out the

foregoing. Actions may include generating notifications, generating reminders,

forwarding a transportable application, other automated actions, delivering a message to

subscribers, etc. In one embodiment, actions may comprise anything that can be carried

out programmatically. The event handling system may comprise an object framework,

message format and implementation classes.

FIG. 17 is a block diagram illustrating elements of an event handling system, in

one example embodiment. Event handling system 1700 is hosted in application server

202 and comprises an event router framework 1702, event broker framework 1704, and

event timer framework 1706. Event router framework 1702 performs message routing,

selects a transport mechanisms for messages that are sent, and serves as an entry point for

other components of the system that need to use events. Examples of transport

mechanisms include IMS, HTTP posts, etc. Event broker framework 1704 performs rule

evaluation that involves the filtering of event messages and invoking action classes, and

can store event messages in a table of database 208. Event timer framework 1706 enables

creating event messages at a specified time, for processing time~based rules.

Events are programmatically represented by event messages. In general, event

messages contain information about what occurred and the state of objects that relate to

the event. Standard events include creating, updating, deleting, and changing the state or

status value of a transportable application. For example, an update event for the poll

building block may contain the building block identifier, the user name of the person who

added a response, the response value, the time and date of the response, the total number

of responses, and the total number ofrecipients. However, each building block may

generate any desired events having any desired data or content. Events maybe time-

based. For example, events are generated or created by invoking particular methods when

the prescribed time for an event arrives.

Each building block has a method which, when called by another program

element, returns a list of events that it can generate. This enables other program elements

to identify and subscribe to events.

In one specific embodiment, each event message comprises a header and a body.

The header comprises metadata, and the body comprises information that identifies the

container and building block that generated the event, the name of the event, etc. In one

-92_

Page 94 of 240

Page 95 of 240

WO 02/21413 PCT/US01/42041

specific embodiment, the header comprises a fromDestination value that identifies the

originating system; a toDestination value that identifies a destination system for the

message; a message type value; a timestamp value that identifies a date and time at which

the event occurred; a message action value; and a tracking identifier value. The body

encapsulates another header (“inner header”) and inner body or payload that contains

event-specific data. Events and their data may be defined by an XML schema.

The message type value enables an event message to specify whether it is a

system event, application event, etc. Examples of system events including replication

events, system administration events, initialization events, etc. Application events may be

events generated by transportable applications, connectors, groups, etc. Each event type

has a corresponding schema that defines the elements of the inner header and payload for

that event type.

Event messages may be persistent. Persistent event messages are stored in an

event table in the database 208. Events can be made persistent by programmatically

setting a “Persist” flag in the event message header. Alternatively, the event type

definition may specify that all event messages of that type are persistent.

In one embodiment, containers generate events that are published to the event

handling system. The event handling system applies rules to determine whether received

events should result in an action. If the rules are satisfied by the events or other data, then

actions result.

Rules may be associated with building blocks or containers. Rules may be saved

in association with a template of a transportable application.

Rules may be subject to author control or participant control. In rules with author

control, only users who are authors of a transportable application template can modify or

deactivate the rules. In rules with participant control, any participant who receives a

transportable application that is instantiated from a template having the rule can modify

the rule.

Rules may be designated as active or inactive. Active rules are visible within a

template of a transportable application and Within an active transportable application.

Each rule comprises an association with one event through a coarse-grain filter, a

fine-grain filter that has one or more conditions, zero or more constants, one or more

actions or handler. Rule constants can comprise a static string or may be defined as

reusable expressions.

Rule conditions may be created as coarse—grain filters or fine-grain filters. Coarse-

grain filters determine whether a particular event message maps to or is associated with a

-93-

Page 95 of 240

Page 96 of 240

WO 02/21413 PCT/US01/42041

pertinent set of rules for the event. Thus, coarse—grain filters carry out filtering only on a

header portion of an event message. Coarse-grain filters support, for example, static

strings or wildcards for filtering events based on header elements. An example of a

coarse—grain filter is, "EventType=createResponseVoteRequest". This filter would pass

only event messages that result from an end user issuing a vote in a poll building block.

The coarse-grain filter “SenderlD=1222” would pass only event messages created as a

result of actions by a specific user (user “1222”).

A fine-grain filter is a filter that contains conditions used to decide whether an

associated action should be fired or not for a particular rule; the action is invoked only if

all conditions in the filter are satisfied. Conditions in a fine-grain filter may be applied

against any data in a message or against dynamically retrieved data. Fine-grain filters

generally are defined by a custom class that implements an interface, or specific

programmatic expressions that invoke methods. In one embodiment, fine-grained filters

are defined as Xpath statements according to the format specified in the document

“xpathhtml” that is available at this writing in the “TR” folder of the “www.w3.org”

directory and domain on the Internet. An example of an Xpath statement is

"/message/body/poll/currentCount/textO > 5,” which states that the value of the variable

“currentCount” of the text() method of the poll building block shall be greater than “5”.

Actions are implemented as handler classes that can invoke any programmatic

method or routine. In general, the handler classes are implemented within a building

block that generates the events that include the actions associated with the handler

classes. In one embodiment, during rule editing, a rule author may select one of a

plurality of standard actions that are provided by a graphical rule editor. Alternatively,

custom actions can be created by preparing appropriate program code that is uploaded to

application server 202 and registered with the event handling system. Examples of

standard actions include: system action for notification; system action for closing a

transportable application; system action for unclosing a transportable application; system

action for updating a status field of a transportable application; system action for creating

a new page or transportable application based on a saved template; system action to

change a role for a particular user for a particular page; system action to rename a page;

system action to show a page; system action to hide a page; system action to open a page;

system action to close a page.

Rules may be defined in XML format and attached to a building block, a page; or

to a template for a transportable application. In one embodiment, rules may be created

using a graphical Rules Editor, which is accessible from the transportable application

-94-

Page 96 of 240

Page 97 of 240

WO 02/21413 PCT/US01/42041

editor described herein, when building blocks, pages, or templates for transportable

applications are authored. The Rules Editor is also accessible from within a transportable

application that has been opened. Rule editing involves selecting a condition template

from a scope of available condition templates, providing values for variables in the

condition template, and selecting result actions. Rule editing may be carried out at any

time during the lifecycle of a transportable application template or instance.

Rules may be evaluated or “fire” one or more times.

In one specific embodiment, to carry out event-driven messaging, containers for

transportable applications or groups implement an EventHandler interface 340 ofFIG. 3.

In one embodiment, the EventHandler interface is defined as:

public interface EventListener {

public void handleEvent(Message msg);

For containers of transportable applications in order to react to create, respond,

and edit events, and for GroupContainers to add, modify and delete members, and for

FolderContainers to add, modify or delete files, the following event handling process is

carried out. First, the appropriate event is passed to an EventManager that forwards the

event to a particular ActionManager for the specific type of event, for example, a

ResponseActionManager. The ActionManager then calls a handleEvent method on the

appropriate EventListener. In these cases it is clear which object is intended to act on this

event. Accordingly, to require each container to subscribe to its create, respond, and edit

events is superfluous and therefore point-to-point messaging may be used as an

alternative. In point-to-point messaging, the ResponseActionManager calls the

handleResponseEvent, making the Container design easier.

For general event handling when Building Blocks are generating information

useful for other Building Blocks, a publish-subscribe model is used, in which objects

subscribe to certain events from the EventManager. Subscribers implement the

EventListener interface and handle the appropriate event.

Details of an embodiment of an event processing system are now provided. In one

embodiment, an event processing system comprises tables in a database that are

configured according to the database design and schema described herein, and

programmatic objects that implement functions of the API described herein.

Page 97 of 240

Page 98 of 240

WO 02/21413 PCT/US01/42041

In general, in one approach, an Event Message may be published on many

occasions, which identify the type of the message. Every Message object has a specific

message type value (“Mngype”) associated with it. The specific message type will

trigger the proper action, associated with the message type. In one specific approach,

message type values are omitted, and each message provides attributes as name/value

pairs that are accessible in a global memory space.

In one embodiment, a database schema that supports message processing

comprises an attribute table and message table. The attribute table may have the following

structure:

Field Field

Name Descri . tion

 NUMBE

MSG”

Message R(l9
ATTRNA Name of Yes Yes ~ VARCH

__—__
ATTRVA Value of VARCH

mm __—
ATTRTY Type of Yes VARCH

MW

The MSGID and ATTRNAME fields are included in the primary key. The

ATTRTYPE field is used to store information about internal type of the attribute on the

app server side. This information is used to transfer the value ofthe attribute to the

required type.

The message table may have the following structure:

Field Field Required
Name Descri n tion

MSGID Id of the Yes NUMBE

MSGTYP Type of Yes VARCH

OBJID Id of the Yes NUMBE
om _

Yes NUMBEOBJTYP Type of
the Ob'ect R 3

SBNDER Id of the NUMBE

I sender, who posted R(19)
the messae

E

D

SBNDER Type of NUMBE

TYPE the Sender, which R(3)
posted the message

' Yes

B When message was
created

STATUS

-96-

Page 98 of 240

Page 99 of 240

WO 02/21413 PCT/US01/42041

DATE
—-——

EXPTlM Expiratio Yes
E n time of this

messae

The MSGlD field is the primary key. An index is created on the combined OBJID

and CB]TYPE fields. The STATUS field represents an internal parameter and is hidden

from the API. The STATUS field stores the result of database transaction and processing

of the event.

An example class structure that implements an appropriate API is set forth in

APPENDIX 1.

FIG. 17C is a flow diagram of a process of evaluating and acting on an event

message. In block 1720, a transportable application type message is created. In general,

block 1720 is carried out by a container object.

In block 1722, the event handling system determines how to route the event

message. For example, in block 1724, the event handling system determines whether the

event is synchronous or asynchronous. If the event is synchronous, then it is sent to a

message broker 1734 that is defined by the event broker framework 1704.

Message broker 1734 determines Whether the event is persistent, as shown by

block 1736. If so, then control passes to block 1738 in which the event is stored in the

database or otherwise made persistent. Thereafter, and if the event is determined as not

persistent at block 1736, control is passed to block 1740, in which one or more coarse-

grain filters are located. The filters are selected based on the message type, and applied to

the event message.

If the event message matches one of the coarse-grain filters, then in block 1742,

one or more rules with fine-grain filters are retrieved. Rule constants are extracted from

the rules in block 1746. In block 1748, the fine-grain filters are applied to the event

message. If a match occurs, then in block 1744, the associated action is performed.

Referring again to block 1724, if the event message is asynchronous, then control

passes to block 1726 in which the event message is dispatched using a transport

mechanism. The event message is sent over a durable or non-durable topic, as

appropriate, as shown by block 1728, 1730, 1732. Thereafter, the event message is

processed at the message broker, as shown by block 1734, in the manner described above.

Concurrently, a notification message is received at block 1750, and in response a

notification is sent to the end user, at block 1752.

1.8 Object Communications—External Systems

97

Page 99 of 240

Page 100 of 240

WO 02/21413 PCT/US01/42041

1.8.1 Enterprise Application Integration Using Connectors

According to one embodiment, mechanisms for enterprise application integration,

using connectors, are provided to enable the system to connect to existing (“legacy”)

applications of an enterprise that uses the system. The mechanism for connectivity may

use a synchronous or an asynchronous approach. In a synchronous approach the client

makes a request and waits for a response before it proceeds. Synchronous approaches can

use HTTP, HTTPS, RMI, CORBA. Asynchronous approaches do not have this limitation

and typically use asynchronous messaging implementations.

FIG. 18A is a block diagram of a first enterprise application integration approach

that uses an asynchronous approach.

Application [server 202 and other servers 1802 that comprise the transportable

application system as described herein are communicatively coupled using IMS 214 to an

adapter 1804. The adapter 1804 is communicatively coupled to an existing asynchronous

Enterprise Application Integration (EAI) bus 1806. Commercially available examples of

EAI bus 1806 are produced by Vitria, TIBCO, IBM, WebMethods/Active, etc. The bus

1806 is communicatively coupled through one or more connectors 1808A, 1808B, 1808C

to corresponding legacy applications in the form of an enterprise application 1810, Web

server 1812, mainframe 1814, etc. In this example, adapter 1804, EAI bus 1806, and

connectors 1808A, 1808B, 1808C are compatible and generally are provided by one of

the foregoing vendors.

FIG. 18B is a block diagram of the system of FIG. 18A wherein a custom

connector is used. The custom connector 1818 is substituted for JMS 214 and adapter

1804. In this configuration, an asynchronous solution is provided and use of JMS is not

required. As a result, a particular IMS implementation is not required. The custom

connector 1818 may be created and implemented, for example, using a software

development kit (SDK) from the party that supplies the EAI bus 1806.

FIG. ISO is a block diagram of an application-server centric integration approach

for providing a synchronous integration solution. In this approach, servers 202, 1802 are

communicatively coupled through one or more Java 2 Enterprise Edition (J2EE)

connectors 1820A, 1820B, 1820C to corresponding applications 1810, 1812, 1814. J2EE

connectors, as defined by Sun Microsystems, provide a standard architecture for

connecting Java 2 systems and applications to legacy information systems. Application

1810 may be Siebel, SAP, PeopleSoft, etc., or any other external application.

—98-

Page 100 of 240

Page 101 of 240

WO 02/21413 PCT/US01/42041

Alternatively, in FIG. 18C a Java Connector Architecture (JCA) construct may be

used as connectors 1820A, 1820B, 1820C. There may be multiple instances of a

connector for each external application. .

' FIG. 18D is a block diagram of an enterprise application integration approach that

provides synchronous integration through one or more synchronous protocols. The

servers 202, 1802 are communicatively coupled to the legacy systems through the

synchronous protocols. Examples of such synchronous protocols include HTTP, RMI,

CORBA, SOAP, etc. In the case of CORBA, a bridge 1822 may be used to convert

CORBA messages and objects to Common Object Model (COM) format.

FIG. 18E is a block diagram of an enterprise application integration approach that

uses event-based communication. Application server communicates through event

daemon 216 to event service 146. Within or in association with event service 146,

incoming event messages are passed to a Java object to XML converter 1832, yielding an

XML representation of the information in the daemons. The SML information is

transformed using engine 1836, with input from an XSL stylesheet 1838, to yield

transportable XML information. The transportable XML information is passed to

transport adapter 1840, which outputs the XML information using one or more

synchronous protocols 1842. The synchronous protocols communicate with the legacy

systems as in FIG. 18D.

In operation, in one specific embodiment, as illustrated in the top halfofFIG.

18E, the application server 202 uses JMS point-to-point mode to generate events and

communicate them to event daemon 216. When the event daemon 216 processes an

event, event service 146 instantiates a Java object and uses converter 1832 to transform

the Java object into an XML string. It then uses this XML, transformation engine 183 6,

and an XSL stylesheet 1838 associated with the Java object to output the expected XML

schema for a receiving partner system. The method oftransport for the XML can be

HTTP, IIOP, or SMTP.

Referring now to the bottom half of FIG. 18E, the reverse occurs when an XML

message arrives from a partner system. For example assume that the transport mechanism

is HTTP. A servlet is invoked and uses transformation engine 1836 and the corresponding

XSL 1838 for that XML message to convert it to an XML representation that is expected

by application server 202. An XML to Java object converter 1842 is then used to J

instantiate a corresponding Java object for the event daemon 216. The object is

encapsulated as an event message. An event handler for that object is then invoked from

-99_

Page 101 of 240

Page 102 of 240

WO 02/21413 PCT/US01/42041

event handling system 1830 when the event daemon processes the event. Each XML

message must have its own object representation, XSL, and event handler.

This arrangement has the advantage that XML messaging is becoming the method

of choice for inter-operability between business—to-business systems that exchange data.

Application—server vendors are coming out with their own XML-based messaging

systems for such exchanges, e.g., WebLogic’s Collaborate.

In the approaches ofFIG. 18B, FIG. 18C, the disclosed connectors generally act

as gateways for external applications to create, retrieve, update and delete application

business objects of the system through an object interface mechanism. The connectors

also receive notifications for changes to such objects through the event management

system and notification system, or by polling. The connectors also enable application

server 202 and other components of the system to retrieve and update data firom external

applications. In one specific embodiment, the connectors enable objects associated with

building blocks to retrieve and update objects that are hosted in external applications or

systems.

FIG. 18F is a block diagram ofproviding another embodiment of an enterprise

application integration approach. One or more enterprise applications 1810A, 1810B,

1810C are communicatively coupled to JMS queues 214 either directly, as in the case of

application 1810A, or indirectly through an EAT bus 1806, as in the case of applications

1810B, 1810C. The direct connected application 1810A has an adaptor 1840B that can

queue objects to the JMS queues 214, for receipt by a corresponding proxy adaptor

1840A of a connector framework 1854. EA1 bus 1806 has a similar corresponding adapter

1841B and proxy adaptor 1841A.

Adaptor 1841B and proxy adaptor 1841A may be configured to operate with any

desired EAI bus 1806 or similar product, e.g., webMethods, Vitria, SeeBeyond, etc.

Connector framework 1854 communicates through an API 1852 to connector

building blocks 1850, which may be included in a transportable application to give that

application the ability to communicate with enterprise applications. The API 1852 may

provide create, read, update and delete functions for business objects and transportable

application objects. Such operations are subjected to access controls as described herein.

In one embodiment, notifications and event rules can be set on connector building blocks

1850 to enable taking actions or creating other transportable applications when the

connector building blocks change or generate events. A generic connector building block

provides an XSL translation function equivalent to XSL transformation engine 1836 of

FIG. 18B, and can display connector data. One or more Extensible Style Documents

-100—

Page 102 of 240

Page 103 of 240

WO 02/21413 PCT/US01/42041

(XSDs) describe the business objects of the enterprise applications in a manner equivalent

to XSL 1838.

Thus, the integration framework as described herein provides both direct

integration and integration through an existing EAI bus. As a result, adapters can be

constructed Without platform changes. Both outbound and inbound operations are

supported. The framework provides the ability to programmatically create transportable

applications and add pages from enterprise systems. Business objects are described in

XSD’s rather than in source code. Adapter configuration information is described in

XML. Asynchronous messages, through the JMS queues, are used for communication

with enterprise applications or an EAI bus.

A building block can synchronously query an enterprise application adapter for all

business objects matching given criteria. The building block can synchronously request

data for a business object from the external system if the data is not found in the cache.

Further, an enterprise application can request the system to create a transportable

application using external data. The enterprise application can send a notification that a

business object has changed, causing the system to update the cache.

An advantage ofusing this approach is that the building blocks in general Will not

need to store such objects persistently since the building blocks may retrieve a copy of the

external data, at any time, through the connectors, with less impact on performance than

ifpersistent storage is used.

Connectors as disclosed herein may conform to any appropriate communication

mechanism for external business objects. For example, the protocols proposed by

BizTalk.org, RosettaNet, EBXML, etc., may be used.

In one specific implementation, connectors are implemented in one or more

programmatic classes that conform to the following API description:

Connector class. Building blocks can retrieve any external business object as an

instance of a connector business object class. The connector business object class

provides methods to produce an XML representation of the object, modify the object, etc.

Building blocks can use XSL stylesheets to present the business objects through generic

HTML presenters or use custom presenters. The business objects may be implemented as

cached data access objects.

Subscribe method. Registers a subscription for a business object for later use.

Receives, as parameters, a name of a business object, and one or more name/value pairs

that identify an instance of the business object. Returns a key to identify the subscribed

-101-

Page 103 of 240

Page 104 of 240

WO 02/21413 PCT/US01/42041

object; the key, which may be persistently stored, is passed to all other methods of the

connector class.

GetBizObject method. Retrieves abusiness object. Receives, as parameters, a

name of a business object and a key value. Returns the requested instance of the object.

unSubscribe method. Drops a subscription to a business object. Receives a name

of the business object and the key value.

A Connector Business Object ‘class provides a base class for all business objects,

and defines a getXMLString method, setXMLField method, update method, and

registerNotification method. The getXMLString method returns an XML string method of

a named business object. The setXMLField method sets the XML field in a business

object based on a field name and a value for the field. The update method stores all

changes made to the business object through the setXMLField method.

The registerNotification method registers a rule with the event handling system. It

receives, as parameters, an array of fine—grain filters that comprise Xpath expressions, and

an action to invoke when the filters are satisfied. The rule registered with the event

handling system is created using the specified list of fine-grain filters and the type of

event message that is generated by the connector system when the business object

changes.

1.9 Security Processes; Access Control

In one embodiment, a security framework is provided having a plurality of

security services and interface definitions. The security framework enables an end user to

configure and define security features to use when authenticating users and authorizing

them to access data. Thus, in this context, security and access control refer both to

authenticating users for access to the system as a whole, as well as verifying that a

particular authenticated user is authorized to retrieve or modify specific data in the

database.

The security framework also enables one user to develop transportable

applications with another party and have some of the data to be shared amongst the users

associated with that party. The security framework comprises a plurality of interfaces,

each ofwhich providing a contractual set of features and responsibilities to the consumers

of the interface.

In one embodiment, the security framework is implemented using access control

service 136 and security service 120. Access control processes applicable to the

embodiments described herein are described in co-pending application Ser. No.

-102—

Page 104 of 240

Page 105 of 240

WO 02/21413 PCT/US01/42041

09/861,008, filed May 17, 2001, the entire contents ofwhich are hereby incorporated by

reference as if fully disclosed herein.

A GateKeeper interface provides a data consumer with the ability to retrieve and

configure information that defines relationships among security domains. This interface

provides information about the hosting domain and other domains that have a trusted

relationship with this domain. Also, specific users can be managed through this interface

so that only specific individuals Within an organization have access to data within a

hosting organization.

A PortalGate interface provides a consumer with the ability to authenticate a user

using a username and password, SSL, PKI, etc. Further, the interface provides the

consumer with the ability to query whether a user is still valid, for example, by checking

to see if a user is still valid and has not been revoked. The interface also enables another

program element to query whether a user has access to a specific data object or object

instance.

An Access Control (AssetGuardian) management interface defines one or more

contracts between a consumer and an entitlements database. An entitlements database

stores information about users and what they have access to. In one embodiment, the

entitlements database is maintained separate from database 208 of FIG. 2A, to improve

security of the entitlements database.

A Security Provider interface provides components to control end-to-end security.

In one embodiment, a PKI enabler interface and an authorization interface each has an

implementation that can be defined by configuration where each implementation

represents a way to access a PKI or an authorization scheme. Each of these

implementations can be loaded simultaneously so that one or more schemes can be used

at the same time.

Programmatic classes within the security framework are configured to provide

security against intrusion. For example, the classes are typed as final to prevent a hacker

from providing implementations to an abstract class or extend and override a non—final

class with dangerous or risky code. Therefore, the security framework has its own

interfaces and extends other trusted interfaces in packages that are trusted, e.g., the

java.security package available from Sun Microsystems.

The data that the framework manages is composed ofhierarchies of assets. Assets

are defined as objects that exist in a department or an enterprise that need to be protected.

For example, assets include transportable applications, pages, building blocks, and objects

that encapsulate field data values for any of the foregoing. Each asset in a hierarchy can

-103-

Page 105 of 240

Page 106 of 240

WO 02/21413 PCT/US01/42041

have permission assigned to it on behalf of a user. The mechanism by which an asset has

a user and permission composed for it is termed a security label. Since each asset in a

hierarchy can have its own label and levels of access can be applied across a hierarchy,

the labels are termed multi-level. Therefore, the security framework is a multi-level

security label system.

Contracts within the Security Framework may be defined using the Interface

Definition Language (IDL). IDL enables a framework to expose its interfaces and

contract data as well as error handling capabilities. In one embodiment, types of IDL

syntax that are used in the framework include IDL Exceptions, Structs, and Interfaces.

IDL Exceptions are defined so that generated Java source, or any other language that has

an IDL binding, will have error handling capabilities defined at the package level. IDL

structures are compiled into Java objects, which are typed as final. The security

fiamework composes the contract objects in its model package. The framework model

package defines the objects that are used in communications or invocation of interfaces’

methods. lDL Interfaces contain the methods that can be invoked as well as the error-

handling signature, which completely defines the contract of the interface.

One important benefit to using IDL is that most application and transaction

servers use IDL as a way to initially introduce interfaces and implementations into the

container. Another benefit is that the]DL to Java conversion process produces client and

server side stubs and skeletons so that an end to end implementation is more easily

created.

The Gatekeeper Interface contract states that of the security configuration for a

given security domain, which is determined at the organizational level, all parameters that

allow security integration across multiple domains can be retrieved. The interface, for

example, supports the retrieval of the CrossDomainList, which is a list of X500

distinguished names (“DNs”) representing external organizations that have a trusted

relationship with this domain. Additionally, CrossDomainDN is a list interface list of all

the users (by the DN) who have trusted access to this domain. If this list is null then

normal authentication mechanisms are used to determine if a user has access to this

domain. If it is not then the intention of this managed list is to provide the users Who can

access this domain. When the user DN is determined then it can be cross—referenced to the

list. If the user DN is not present then the user’s authentication must fail whether they can

authenticate properly or not. A commercial example of an authentication system that may

be used is WebLogic.

-104-

Page 106 of 240

Page 107 of 240

WO 02/21413 PCT/US01/42041

An important contract of this interface is the management of the domain and

whether it is a secure domain or not. The getModeO method informs the consumer of the

method if the domain represented by the interface is secure or not. In fact the value

returned is not a Boolean but a string, which contains definite values of “Secure”, “Not

Secure”, and options text for any granularity in between. In this way a security

administrator can define as many security levels as they require.

The PortalGate Interface provides the system with a trusted path. When a user

authenticates to the security framework, by one of a variety ofmechanisms, a session is

established specifically for that user. Because IDL has been used to define the contract of

the interface the session trusted path can be managed in an ORB, Application server, or

transaction server container. Invoking a method in this interface checks operation that are

attempted after the user authenticates.

In one embodiment, four types of authentication mechanisms are provided. PKI

verification provides the framework with the ability to participate in a single sign on

arrangement with a PKI environment. To invoke such verification, an object or method

passes the name of the user, a digitally signed version of their name, and the symbol

PKI_VERIFICATION as parameter values. SSL—only verification is like weak

verification, discussed below, in that the user name and password are passed as

parameters. It simply informs the framework that an SSL connection is being used to send

information to and from the interface. Certificate—based SSL verification is like PKI

verification in that the name of the user is passed in one parameter and their SSL

certificate is passed in another parameter. The certificate is then validated with the CA of

the SSL certificate (either Verisign, Cylink, or Entrust). Weak verification passes a name

and password as parameters and provides relatively low security.

Each data parameter is provided as a mutable type, e.g., a byte array, so that the

data within it can be deleted once it is used. A checkVen'ficationO method returns true if

the user is still authenticated and has not been revoked fiom the environment. A first

checkGuardO method checks to see if the user has access to a specific asset (either at the

type level or the instance level) given a specific permission. A second checkGuard() is

the same as the first except that the variable parameter allows the framework to accept

extra data to fulther scrutinize the access check. For example, an application component

may want to verify that a user not only has read permission to sales data but that they only

have access to the Northeast sales region and not any other. In this case the application

component can pass a value that is effectively a SQL where clause or an XML document

—105—

Page 107 of 240

Page 108 of 240

WO 02/21413 PCT/US01/42041

which describes the SQL where clause. A getNameO method returns the authenticated

users DN. This can be used for further checking or for personalization purposes.

For purposes of facilitating use of the AssetGuardian interface, all assets Within

the framework are contained within an organizational hierarchy. The framework

composes and manages organization objects as X500 organization objects. Within the

organizational definitions there are users, roles, permissions, security labels, and security

preferences. The entire framework also has an audit trail, which is not bound, at an

organizational level.

Based upon organizational hierarchy roles, permissions, resultant security labels,

preferences, and assets exist at nodes within the tree. Assets themselves are hierarchical

4 structures in that they can represent complex types (such as containers, databases,

database tables, etc.). Each asset can have its own security label and each label can be

assigned a level. The security framework provides a LabelComparator interface and

implementation that provides for the interpretation of the level of a security label as it is a

applied to one or more assets.

The security provider interface allows the framework to dynamically load an

implementation that supports a Public Key Infrastructure vendor. PKI vendors support

encryption, decryption, digital signature, and signature verification. They also provide

key management, certificate issuance and management, as well as user authentication for

single sign on.

The interface supports S/MIME and non-S/MIME security operations as well as

the management of security recipients. Recipients in a security context are those persons

who have a public X509 encryption certificate and can have data of any sort encrypted

specifically for them. Operational the interface and its implementation manage a stack of

recipients, which is pushed before an operation occurs. When recipients are defined they

can have data encrypted for them. In the case of a signing operation the user who has a

connection to the PKI and managed through the connect method in this interface has their

private signing certificate used.

To apply access controls to transportable applications, in one specific

embodiment, the following processes are used. A transportable application is created as

otherwise described in this document. The transportable application is defined as an asset

having an asset identifier that is obtained by calling a method of the javasecurity

package. One or more access control definitions (or “labels”) are created by the author

using the "makeAccessControlLabelModelO" method of the javasecurity package. Each

access control definition identifies read, write, and update permissions. Each recipient has

~106-

Page 108 of 240

Page 109 of 240

WO 02/21413 PCT/US01/42041

his or her own access control definition that defines one or more limited permissions.

Thus, the intersection of the transportable application access control definition and the

recipient access control definition indicates whether a particular recipient can access an

application.

At the time a recipient attempts to open or read a transportable application that is

secured, the recipient is first prompted to log in to the system. The access control labels

are checked to identify the recipient’s individualized permissions. In one embodiment, a

checkAsset method of the Asset Guardian interface is used. Access is denied when

permission is not allowed.

Access controls specifically applicable to database access are now described. In

general, in one embodiment, access to database 208 is restricted and is based on the role-

based permissions provided by the security framework for different object types. A Java

class encapsulates information needed to carry out an access control request or

verification, including session identifier, user name, action type, and object type. This

information is used when calling an authentication API of the security framework.

Further, classes and methods responsible for access to containers and folders,

database queries or row selections, inserts, updates, and deletions are configured to carry

out access control verification on the objects that are the subject of such operations,

before carrying out such operations. Carrying out access control verification refers to

calling a method of the security framework that can determine whether a particular user is

authorized to access a particular named object or asset. Each such class and method is

previded with methods that can check for access authorization and generate exceptions if

access is denied.

In conjunction with access control each asset can have encryption and digital

signature attributes applied so that transactions based against the asset can be encrypted

and or digitally signed. For example, when a user is interacting with a transportable

application, each time that a client 120 generates a network request that includes data for

a field of a building block, the client can digitally sign the request. Upon receiving the

request, application server 202 can verify the signature before the request is processed. In

one embodiment, each HTTP request that is generated by a client and that includes field

data relating to a transportable application, page or building block is digitally signed.

Each HTTP request that is received at an application server 202 is checked to determine if

the request contains a digital signature. If so, the digital signature is extracted from the

request and verified. If verification is successful, the request is redirected to a service

-107-

Page 109 of 240

Page 110 of 240

WO 02/21413 PCT/US01/42041

routine, i.e., processed normally by the application server. In one alternative, information

collected in the extraction process may be logged or stored in an audit trail.

Extracting digital signatures from an HTTP request stream may be implemented

using software systems that are commercially available fiom PrivateWire. Verifying

digital signatures that have been extracted may be implemented using software systems

that are commercially available from Entrust, Inc.

Access controls may be modified as a result of events that are processed using the

event handling system described herein. For example, an action associated with an event

may be to modify an access control of a transportable application to become either

broader or stricter in some way, or to enable a new recipient to have access to the

transportable application.

In one embodiment, instance-scoped role-based access control is provided for

transportable application. Such control is “instance-scoped” because access controls are

determined and can be defined uniquely for each user for each instance of a transportable

application. Such a mechanism provides much more detailed access control, as compared

to class-scoped access control using JZEE mechanisms, which provides only method-

level checking per user per transportable application class. In one embodiment, when a

transportable application is authored, or after the transportable application becomes

active, an author can add, modify or delete users from access controls specified for the

transportable application and pages within the transportable application.

Access to JSPs and servlets in the system is controlled through membership of

users in roles. Roles may be “page-scoped,” that is, defined at the page level within

transportable application. Thus, access to instances of assets such as building blocks and

associated rule descriptors are determined based on the role that a user is assigned to for

the page instance on which the building block and rule descriptor instances are created.

In another embodiment, directory auto-registration is provided. When the system

has been configured with knowledge of the existence and location of a directory server, a

user may log in to the system using a user name, password or other credentials that are

stored in the directory server. After locating such credentials in the directory server at the

time of the user’s first login, the system automatically registers those credentials in

database 208. Thereafter, the user can log in to the system without reference to the

directory server. In another feature, bulk user registration may be carried out by an

administrator, by loading a formatted file that contains the user information. Self-

registration is also facilitated.

1.9.1 Cluster-Specific Encryption and Request Routing

—108—

Page 110 of 240

Page 111 of 240

WO 02/21413 PCT/US01/42041

In one embodiment, all message identifiers that are sent fiom the system to a

client are encrypted. In another embodiment, the encryption process associates each

message identifier with a processor cluster or database cluster that is responsible for

processing the message. Using such a process, a message identifier in a URL that is

meant for one cluster cannot be processed by another cluster. This is beneficial in the

event that a malicious user redirects the URL toward another cluster, e.g., by changing the

URL to point to the new cluster and keeping the same arguments, and the URL and the

message it carries are decrypted at the destination. In one encryption approach, a database

identifier or cluster identifier is embedded in the message in order to provide more

security. ,

In one past approach, the format for a message ID is <prefix>_<encrypted

message id>, Where “prefix” is a number that determines the seed for the TwoFish

encryption algorithm. In one sub-approach, the seed value may be hard-coded in program

source code for the functions that carry out the encryption process. A disadvantage of this

approach is that such code is installed on all client installations, so that all clients use the

same seed, or each new client installation will need a new software release. Moreover, a

message destined for one client could be redirected to another client’s cluster, and

because the system decrypts all messages that are received by the cluster a security

vulnerability exists. In this context, a “client installation” refers to a particular instance of

system 200 that is licensed to or used by an enterprise, organization or similar entity.

Therefore, in another approach, different seeds are used for encryption for

different client installations, and each incoming message is checked to see if it is meant

for the cluster. Ifnot, it is discarded. Each client is assigned a database ID, which is

unique. A global identifier replaces the message ID.

Further, in an improved approach, each client uses a different seed that is

determined by the database ID of the cluster and is derived from a base seed by addition

of the database ID to the base seed. Since the seed consists of 16 bytes, a long time

interval must elapse before any two clients can get the same seed.

The prefix in the message contains the database ID. The database ID is also

present in the encrypted message ID in encrypted form. Thus, if a malicious user attempts

to change the database ID to another cluster in the hope that it would be a valid URL, it is

. most unlikely that the decrypted message will resolve to a valid global identifier. Even if

it does, the database ID component is highly unlikely to match the prefix, and therefore

the system would discard the message if the two do not match.

-lO9-

Page 111 of 240

Page 112 of 240

WO 02/21413 PCT/US01/42041

In this approach, all incoming messages pass through a sanity check mechanism

wherein the system initially compares the prefix of the message with the database ID of

the originating client installation. If they do not match the message is discarded. If they

match, the message identifier is decrypted. The message identifier is a global identifier,

and since the global identifier contains the database identifier, the database identifier is

compared to the prefix and if they do not match, the message is discarded.

In another feature of this approach, to accommodate changes in the encryption

algorithm or methodology itself, a version value is associated with each specific

encryption methodology. Each client may use its own encryption algorithm, and the

encryption version value is part of the prefix. In one embodiment, the format for the new

prefix is EVzDBId, Where “EV” designates the encryption version and “DBID” is the

database identifier value. The prefix may be transformed, e.g., by bit shifting, so that the

component values EV and DBH) are not easily visible.

1.9.2 Sharing Transportable Application Data Among Multiple Sites

In one embodiment, the system described herein is a distributed system in which

multiple particular installations of the system can share transportable applications and

associated data. For example, different companies could each set up the system and

collaborate by sharing transportable applications and associated data.

In general, transportable application data is replicated at each of the participating

sites or installations, enabling the user to receive a consolidated View of interaction with

all sites. A user logs in to a portal home page and receives a View of all transportable

applications directed to that user, from any originating system. Each transportable

application is authored and updated only at one site. All portal operations are performed

on the home site of the user. Portal operations include Viewing group lists, group archives,

and folder; and performing administrative functions such as assigning transportable

applications to folders. Operations other than portal operations are performed on the

home site of the respective object. Users can author transportable applications at any site.

Trust relationships are established among sites that participate in replication, using

elements of the security framework described herein. Each user is designated to have a

home site and all users are denoted as local or remote for a particular site. Data for a

particular user is always replicated at the home site, enabling the user to obtain a

consolidated, global view of all activity at the home site at all times. Accordingly, a user

may log in once to a home site and need not log in multiple times to different sites or

clusters.

-110-

Page 112 of 240

Page 113 of 240

WO 02/21413 PCT/US01/42041

In operation, a user logs in to the system. The user is transparently redirected to an

application server 202 at a site that has home information about the user. At the home site,

the user is presented with a personalized portal View appropriate for the user. The

Personal Messages page and Group Archive pages present a list of all transportable

applications involving the user, including those that are remotely located.

When a link of a particular transportable application is selected, the user is re-

directed to the appropriate site, and information from that site is displayed in a new

window. Authentication to the new site is carried out by passing a digital certificate with

the user’s security credentials to the new site, using the security framework, so that

multiple logins are not required. If the selected transportable application is remotely

located, the user can View and respond to it. The remote site recognizes that the user is a

remote user and configures links for buttons in the user interface to reference the user

home site. For example, the New Message link identifies a URL in the home site rather

than the remote site.

A user may also author a new transportable application based on a template that is

owned by a remotely located group. When such a template is selected, a new window is

opened from the remote site and the user is re-directed to the remote home location of the

group that owns the template. The new transportable application is authored at the remote

site, i.e., its data is stored at a database of the remote site.

All folders of the user and all administrative tasks relating to the folders are

carried out at the user’s home site server.

Redirection, for the foregoing processes, is achieved by determining a URL of the

remote site to which redirection is occurring. Accordingly, all sites that are cooperating as

described above provide access to one another through a private TCP port in their

firewalls, or through a security mechanism of the security framework.

The replicated data includes certain metadata about all transportable applications

and groups that relate to the user. For example, for transportable applications that involve

a user and are remotely stored, a local or home site receives metadata including subject,

status, author name, updated timestamps, timestamp for the last time the user read the

transportable application, message attributes, etc., Such information is retrieved from

rows in a transportable application table of a database of the remote site. Metadata about

groups is also replicated, including group hierarchy and membership data, group folders

and content data, etc.

In one embodiment, objects that are replicated across sites, or across clusters of

servers at a co—located location that implement different sites, implement a Replicatable

-111-

Page 113 of 240

Page 114 of 240

WO 02/21413 PCT/US01/42041

interface. A replication manager receives a Replicatable interface as an argument and

transports it to one or more sites that need the object. The Replicatable interface includes

an export data method, apply data method, and methods to retrieve header information for

messages to be sent. The export data method outputs an array of replication data objects,

each corresponding to a single destination site. Each replication data object serves as a

container for the transport of objects across sites and encapsulates state and type

information.

The export data method is used at the home or master site of a replication event to

export a version of the state of an object for reconstruction on a remote site. The apply

data method is used by an empty Replicatable object to import a state from the input

object. This allows a Replicatable object to be reconstructed on a remote site of a

replication transaction with the state tailored to that remote site. A replication status

object may be used to provide acknowledgment of replication messages. Replication is

carried out as data is updated. Sites communicate using XML messages that are sent over

HTTPS.

1.10 System Administration Processes

System administration processes may include a reporting function that presents

information that analyzes interaction of recipients with transportable applications. Such

statistical data may be retrieved by or available to a server administrator, authors of

transportable applications, etc.

1.11 Using Transportable Applications in Business Processes and Workflow

In an embodiment, one or more transportable applications may be used to carry

out complex business processes and workflows. In one specific embodiment, a process

template designer mechanism enables a business process expert to create and publish

templates of a process framework. A template for a process framework can include a

general process description, process-specific fields (e.g., process status), templates of

component tasks for transportable applications, a Process Style comprising an association

of fonts, colors, images, layout, text that are applied to all building blocks and tasks of

transportable applications that make up the process; required, preordered starter-tasks,

and process-specific properties (e.g., notifications, access controls). The process template

serves as a guide for an author’s later design of a specific instance of a process. On—the—

fly editing of templates and authoring of a process transportable application can also be

initiated from within the template designer mechanism.

—112-

Page 114 of 240

Page 115 of 240

WO 02/21413 PCT/US01/42041

In one approach for implementation of the foregoing, a process designer uses a

Process Composer software tool to create a process template. Thereafter, the process

template may be retrieved and used during the authoring process to construct a process

transportable application and send it out to a list of recipients.

The process composer enables a user to identify, select, and include tasks in a

template for a process that has one or more transportable applications. Some such tasks

may be designated as starter tasks. A starter task is included when an author begins to

compose a process transportable application. A starter task may or may not be deemed

required by the process template creator. A template also may include one or more

“addable” tasks. An addable task is one that can be added to the process transportable

application after it has been sent to recipients.

In one embodiment, a process template comprises a Java class that stores

information about a process. The process template class determines the types of tasks that

can be entered after a transportable application is sent, and also provides appropriate

process creation information at the time that an author creates a transportable application

based on the template.

The template class stores information identifying the types of tasks that are

allowed and which tasks are starter tasks. For starter tasks, the template class stores

whether or not each task is a required task. Additionally, some meta information about the

overall process is stored, e.g., a process name, process description, and process style. In

one specific embodiment, a process template class has the following member variables

and corresponding accessor methods:

private String name;

private ObjectID authorID;

private String description;

private Vector styleIDs;

private boolean updateStyle;

private ObjectID templateID;

private ‘Vector introFields; // vector‘ of IntroField

objects

private Vector requiredTasks; // vector of ProcessTask

objects

private Vector allowedTasks; // vector of ProcessTask

objects

—113-

Page 115 of 240

Page 116 of 240

WO 02/21413 PCT/US01/42041

The process template class may also have the following methods:

public void ProcessTemplate()

public void store (DBTrans transaction)

public void remove (DBTrans transaction)

public static void remove (DBTrans transaction, ObjectID

templateID)

public static ProcessTemplate getTemplate(ObjectID

templateID)

The ProcessTemplate class may have an empty constructor such that a Process

Servlet that creates the ProcessTemplate class is responsible to set the fields

appropriately. For example, the servlet parses the HTTP Request and sets the values on

the ProcessTemplate object.

The store() method takes in a transaction value, which can be null, and writes the

object to the database. The method calls another method in a helper class to transform the

member variables into XML format. The remove() method deletes the ProcessTemplate

frOm the database. The transaction value can be null, in which case it constructs its own

transaction and executes it. The static method removes the given template from the

database. The getTemplate() method retrieves the ProcessTemplate with the given

template identifier and passes it back to the calling method. It uses a helper class to

construct the ProcessTemplate object from the XML information in the database.

An IntroField class represents, at an abstract level, any additional introduction

field information the author wishes to provide, and the default value for this field and

what kind of graphical user interface widget is used to display the field, e.g., drop—down,

radio button, text area. It has the following member variables:

private String name;

private String defaultValue;

private String inputType; //html type of input e.g.

text, textarea, etc.; use constants

private Vector sizeInfo; // vector of sizes we want for

the html components like width

private String options = “”; //additional options

-114-

Page 116 of 240

Page 117 of 240

WO 02/21413 PCT/US01/42041

private Vector choices; // String Vector of choices for

drop down

private int position; //position on authoring page

A ProcessTask class represents a task from the process point of View and includes

a task ID value and information about the task, e.g., whether it is a starter task or an

allowed task. The ProcessTask object contains the following member variables and

appropriate accessor methods:

private ObjectID taskID;

private int position;

private String name; //

private boolean isStarter = false;

private boolean isRequired = false;

A ProcessXMLUtils helper class aids in the writing and retrieval of the process

XML to and from the database. It will implement an interface so that it can be passed

into the XML parser to provide the appropriate call back routines. Further, the helper

class includes the methods getXmlString and ProcessTemplate:

public static String getXmlString (ProcessTemplate)

public static ProcessTemplate getProcessTemplate(String

xmlString)

The getXmlString method receives a ProcessTemplate object and returns an XML

representation of it, including all its member variables. The ProcessTemplate method

receives a string of XML text and returns a ProcessTemplate object.

In one specific embodiment, each process template is stored in database 208 in a

Process Template table that contains the following columns:

Number (1 9)

Number(19)

Number (3)

VARCHAR2(1024)

-115-

Page 117 of 240

Page 118 of 240

WO 02/21413 PCT/US01/42041

Database 208 also comprises a table that associates styles and tasks with the

template so that the system can update them if any changes occur in the task template or

the style. This table can be used by any object that requires a parent to child relationship,

and needs to update an object that is using it. In one specific embodiment, the style

association table comprises the following columns:

ChildType Not Null

Creating a Process Template involves selecting one or more tasks that can be

Number (19)

 Number (19)

used, certain attribute values for the tasks, and related process information that applies to

all processes, such as the name and description of the process. In one specific

embodiment, a servlet (“ProcessTemplateServlet”) is used to save a process template to

database 208. The Process Template Servlet has action parameters such as save, open,

add, etc. Each action type will have a corresponding method to perform the appropriate

action. A form submitted to the servlet includes parameter values that can be used to

construct a process template object. In general, the servlet extracts parameters from the

HTTP request that submits the form to the servlet, and constructs a process template

object from them that can be written to the database 208.

The servlet then forwards a template creation request to a process template

designer server page. In an embodiment, a Java Server Page (JSP) is used. The process

template designer ISP iterates over the parameters from the form and displays them

correctly on the page. The JSP also implements the submissions to the

ProcessTemplateServlet to move up, move down, delete, insert tasks, and carry out any

other defined operations.

The introductory fields may include various types of inputs and ordering. The

XML syntax can be extended to incorporate other information, e.g. specifying a

maximum number of choices for checkboxes.

Process templates may include rules that control, for example, issuance of

notifications in responses to changes to tasks in the process. In one approach, the rules are

represented as a vector of objects that are stored in association with the ProcessTemplate

object. Additionally, task level rules can be added to a task using the process composer,

-ll6-

Page 118 of 240

Page 119 of 240

WO 02/21413 PCT/US01/42041

which stores the task-level rules as a vector of objects stored in association with a

ProcessTask object.

2.0 MULTIPLE—PART ELECTRONIC MESSAGES

In general, in one aspect, the present invention is directed to multiple-part

electronic messages. Each multiple-part electronic message comprises a plurality ofparts

that are associated as part of a single message. In one embodiment, a multiple-part

electronic message is distributed, viewed and updated as part of a group collaboration

application system. In this embodiment, one or more multiple-part electronic messages

may be configured to implement business processes such as information review,

planning, forecasting, etc. In another embodiment, multiple-part electronic messages are

transported as part of a client-server electronic communication system. For example, the

multiple—part messages may be created using an e-mail client and communicated using an

e-mail transport server or related infrastructure. Thus, embodiments do not require

proprietary equipment or special modifications for transport within an existing or

“legacy” communication system.

Embodiments are not limited to e-mail as a communication media. The multiple-

part messages may be communicated using other data communication mechanisms such

as HTTP. Embodiments also are not limited to display at conventional e-mail clients.

Multiple-part messages may be displayed using a personal digital assistant, Wireless

communication device, Internet appliance, etc.

FIG. 21A is a diagram of a first embodiment of a graphical user interface display

of a multiple—page electronic message.

According to this embodiment, a user interface display window 2100 is generated

by an e-mail processing application. The user interface display window 2100 includes a

toolbar 2101, a message header display pane 2102, and a message body display pane

2104. Toolbar 2101 displays one or more buttons, links or other user interface widgets for

selecting commands, options or tools of the e-mail processing application. Conventional

commands such as File, Edit, View, Insert, Format, Tools, Actions, and Help may be

provided for carrying out operations with respect to a message that is displayed in

window 2 l 00.

Toolbar 2101 also may include one or more buttons, links, or other user interface

widgets for taking messaging actions with respect to the displayed message. For example,

Toolbar 2101 may provide Reply, Reply To All, and Forward options. Selecting the

Reply option instructs the e-mail processing application to generate a new message in

-ll7—

Page 119 of 240

Page 120 of 240

WO 02/21413 PCT/US01/42041

reply to the currently displayed message, directed only to the sender of the message.

Selecting the Reply To All option instructs the e-mail processing application to generate a

new message in reply to the currently displayed message, directed to the sender of the

message and all recipients of the message. Selecting the Forward option instructs the e-

mail processing application to generate a new message that is directed to a new recipient

and that includes a copy of the currently displayed message. In other embodiments

described herein, new messages are not generated, and reply content or forwarded content

is consolidated in the original message.

The message header display pane 2102 displays message header information. For

example, the message header display pane 2102 may display the name of the sender of

the message, the names of recipients, the subject of the message, the date that the message

was sent, etc.

Message body display pane 2104 comprises one or more message pages 2106,

21 12, 2114, 21 16, etc. In FIG. 21A, for purposes of illustrating a simple example, four

message pages 2106, 2112, 2114, 2116 are shown. However, in other embodiments, a

message may comprise any number ofmessage pages and message body display pane

2104 may include any number of message pages.

Each message page comprises a page navigation region and a page body. For

example, a first message page 2106 comprises a page navigation region 2108 and a page

body 21 10.

In one embodiment, each page navigation region is graphically displayed such that

the page navigation region is a contiguous part and integral with its associated page body.

Further, each page navigation region is graphically displayed such that every page ‘

navigation region is selectable, using a graphical cursor that is movable using pointing

device such as a mouse, whenever any particular page body is displayed.

For example, in the embodiment ofFIG. 21A, message pages 2106, 2112, 21 14,

2116 are displayed as simulated overlays wherein the first message page 2106 appears to

be on top of a stack ofmessage pages. Although message page 2106 is the top message

page, the page navigation regions of all other message pages 2106, 2112, 2114, 2116 are

visible adjacent to message page 2106 and are selectable at any time during which

message page 2106 is displayed.

When a particular page navigation region is selected, the message page associated

with the selected page navigation region becomes fillly Visible. For example, if the

Bookings Pie Chart message page 2114 is selected, it becomes fully visible and appears

to be the top page in a stack ofpages. The message body 2110 of message page 2106

—118—

Page 120 of 240

Page 121 of 240

WO 02/21413 PCT/US01/42041

becomes hidden, although its page navigation region 2108 remains Visible. Processing

operations to carry out such functions may be executed by a server that is

communicatively coupled with a client that is displaying the message window 2100,

according to processes that are described further herein.

Each page navigation region may carry a label that identifies the contents of the

message page that is associated with the page navigation region. For example, in FIG.

21A, the message displayed in window 2100 generally relates to a First Quarter Financial

Summary. A first message page 2106 presents Profit & Loss information, as indicated by

a “Profit & Loss” label in the page navigation region 2108 of the first message page. A

second message page is labeled “Balance Sheet,” and other message pages may have any

other desired labels. Such labels may comprise text, numeric values, graphic images,

icons, hyperlinks, or any other indicator element or other information.

The page navigation regions may be color-coded, for example, according to a

topical key, an order ofpriority, and industry-standard color arrangement, etc.

For purposes of illustrating an example, in FIG. 21A, the page navigation regions

are shown as arranged along a top edge of a message page. However, the page navigation

regions may be arranged along a bottom edge, left edge, right edge, or other side edge.

If a message has a plurality ofmessage pages, and message display window 2100

has insufficient space to display all the message navigation regions associated with the

message pages in a row, then the message body pane 2104 may comprise an indicator that

additional message pages and navigation regions are available for display and selection.

For example, message body pane 2104 can display an arrow, dot, or other icon adjacent to

the right-most message navigation region. Selection of the arrow, dot, or other icon

causes a server or other element to generate message body pane 2104 such that one or

more of the other message navigation regions are displayed, and such that previously

visible message navigation regions scroll or slide to the side, up or down to make room

for the newly displayed message navigation regions.

Using this configuration, an e-mail message is displayed in a structured fashion.

Its content may be organized so that one set ofrelated information is collected in a

particular page, and another set of related information is collected in another page.

Specific information is accessible simply by selecting a navigation region that

corresponds to the specific information. Extensive scrolling or searching for such specific

information becomes unnecessary.

FIG. 21B is a diagram of a second embodiment of a graphical user interface

display of a multiple—page electronic message.

~119-

Page 121 of 240

Page 122 of 240

WO 02/21413 PCT/US01/42041

In the embodiment ofFIG. 21B, message Window 2100 further includes a static

content pane 2105 that may display text notes, graphic images, banner advertisements, or

any other desired static content. In one embodiment, data for static content pane 2105 is

obtained from the static content region of electronic media that associated with a group

collaboration application.

FIG. 22A is a diagram of a third embodiment of a graphical user interface display

of a multiple-page electronic message.

A message display window 2200 is provided in the embodiment of FIG. 22A. As

in FIG. 21A and FIG. 21B, message display window 2200 may include a toolbar 2201, a

message header pane 2202, and a message body display pane 2204.

Optionally, in certain embodiments the message display window 2200 also

comprises a message toolbar 2207 that provides command options for generating and

working With messages that are displayed in the message body display pane 2204. For

example, in one specific embodiment, message toolbar 2207 provides New, Forward,

Note to Author, Note to All, View Recipients, Edit, and Notifications command options.

Message toolbar 2207 may be implemented separate from toolbar 2201 in

embodiments that interoperate with unmodified e—mail processing applications. For

example, in an embodiment that interoperates with Microsoft Outlook as an e-mail

processing application, the toolbar 2201 is generated by Microsoft Outlook and controls

its functions, Whereas message toolbar 2207 is generated as part of a displayed message

by a separate server. This arrangement enables use of the electronic media, group

collaboration applications, and multi-page electronic messages disclosed herein without

modification of the e-mail processing application. Alternatively, the electronic media,

group collaboration applications, and multi-page electronic messages may be integral to

the e—mail processing application, and the functions of toolbars 2201, 2207 may be

combined in a single toolbar.

Operation of functions of toolbar 2207 are described further herein in connection

with a description of a server structure that may be used to implement the processes

described herein.

Selecting the New function from message toolbar 2207 is a request to generate a

new message that may contain one or more message pages. Selecting the Forward

function is a request to forward the currently displayed message, including all message

pages, to a new recipient. Selecting the Note to Author function is a request to create a

static note that is visible only to the author of the currently displayed message when that

~120-

Page 122 of 240

Page 123 of 240

WO 02/21413 PCT/US01/42041

author displays or re—displays the message. An example of such a note is action request

2284 ofFIG. 22C.

Message Window 2200 ofFIG. 22A further includes one or more message pages

2206, 2214, 2216. Each message page has an associated message navigation region and a

message page body. For example, message page 2206 includes a navigation region 2208

and a page body 2210. In the embodiment ofFIG. 22A, each navigation region extends

laterally from its associated page body, such as to the left of the page body. Alternatively,

the navigation regions may extend to the right of the message body. Each navigation

region is arranged so that it is continuously visible Whenever a particular page body is

displayed.

The page body may contain any desired text or graphics, or a combination thereof.

In the example ofFIG. 22A, page body 2210 includes a page title 2220 and a text block

2222. Additionally or alternatively, there may be other text, graphics, icons, images,

hyperlinks to other resources, etc.

Page body 2210 may also comprise one or more dynamic content regions that

display dynamic content and are supported by one or more active application elements

that are executed by a supporting server. In one specific embodiment, page body 2210

comprises one or more application building blocks that have been selected from an

application starter set or library. Each building block comprises a pre—defined, self-

contained module of executable program instructions that can be linked together with

other building blocks to form a complete executable application.

Typically, each building block performs a discrete function, such as group

discussion; polling; interactive Web pages; file sharing; inline document viewing; table

generation; rating generation; surveys; approval lists; schedules; images; image galleries;

invitations; information fields; connections to external systems and applications; and

others. When a page containing a building block is selected using its navigation region, a

supporting server re-displays an image corresponding to the application with graphical

elements relating to the selected building block. Such graphical elements may include

headers, text, graphic images, radio buttons or other user input Widgets, as appropriate for

the function to which the building block relates.

FIG. 22B is a diagram of a fourth embodiment of a graphical user interface

display of a multiple-page electronic message that includes a dynamic content region.

As in FIG. 22A, the embodiment of FIG. 22B includes a message display Window

2200, toolbar 2201, a message header pane 2202, a message body display pane 2204, a _

message toolbar 2207 that provides command options, and one or more message pages

—121-

Page 123 of 240

Page 124 of 240

WO 02/21413 PCT/US01/42041

2206, 2214, 2216 each having an associated message navigation region and a message

page body. Message display Window 2200 also comprises a dynamic content region 221 O

that contains dynamic information.

In the example of FIG. 22B, the dynamic content region 2210 is based on a

comment building block that facilitates gathering comments firom a plurality ofmembers

of the group. As members of the group receive the message shown in message display

window 2200, each member may select dynamic content region 2210 and enter one or

more comments. The entered comments are stored in a database of a supporting server.

Whenever any other group member or other recipient receives the message, opens it, and

views message page 2206, the server obtains a then—current copy of the dynamic content,

such as all comments entered to date, and displays it as part of dynamic content region

2210.

Dynamic content region 2210 operates as a discrete window within message page

2210. If the content associated with the dynamic content region 2210 overflows the

dynamic content region 2210 when it is displayed, a user may select a navigation tool

2212 to View additional content.

Likewise, ifnot all the content associated with a particular message page will fit

in the message page when it is displayed, the message page may include an indication that

other content can be obtained. For example, in FIG. 22B, message page 2206 has a

downwardly extending navigation region 2214 that displays a navigation tool 2216. By

selecting appropriate icons within the navigation tool 2216, a user can instruct a

supporting server to retrieve and display different parts or additional parts of a message

page.

In one embodiment, if a message has a plurality ofmessage pages, additional page

navigation regions are displayed generally in a column arranged on the left edge or right

edge of the message display pane. In embodiments in which the elements in the message

display window are rendered based on source code in HTML, the message display

window has potentially infinite length. In these embodiments, the message display

window may include any number ofpage navigation regions. Ifnot all the message

navigation regions are viewable in on a screen display, the user can scroll the screen

display to View further page navigation regions.

Alternatively, to remove the need for scrolling, there may be a predefined

maximum number ofpages that appear in a message display window at any one time.

‘3

-122-

Page 124 of 240

Page 125 of 240

WO 02/21413 PCT/US01/42041

FIG. 22C is a diagram of a further embodiment of a graphical user interface

display of a multiple-page electronic message that includes an indicator of additional

pages.

As in FIG. 22A, the embodiment of FIG. 22B includes a message display window
2200, toolbar 2201, a message header pane 2202, a message body display pane 2204, a

message toolbar 2207 that provides command options, and one or more message pages

2206, 2214, 2216 each having an associated message navigation region and a message

page body. Message display window 2200 also comprises a “more pages” navigation

region 2250, which is present when a message has a plurality of message pages, and

message display window 2100 has insufficient space to display all the message navigation

regions associated with the message pages in a row.

Selection of the “more pages” navigation region 2250 causes the server or other

element to re-generate message body pane 2104 such that one or more of the other

message navigation regions are displayed, and such that previously visible message

navigation regions scroll or slide to the side, up or down to make room for the newly

displayed message navigation regions. Such re-generation may result in removing the

“more pages” navigation region 2250 from the display.

The “more pages” navigation region 2250 may comprise an indicator that

additional message pages and navigation regions are available for display and selection.

For example, the region can display an arrow, dot, or other icon adjacent to the right-most

message navigation region.

FIG. 22D is a diagram of a further embodiment of a graphical user interface

display of a multiple—page electronic message.

The embodiment ofFIG. 22D includes a message display window 2200, toolbar

2201 , a message header pane 2202, a message body display pane 2204, and message

toolbar 2207 that provides command options. One or more message pages 2252, 2254,

2256 are provided, each having an associated message navigation region 2252A, 2254A,

2256A, and a message page body 2252B, 2254B, 2256B. Each of the message pages

2252, 2254, 2256 is displayed in an overlay manner such that one of the message pages,

e.g., message page 2252, appears to be the topmost message page, and such that other

message pages 2254, 2256, etc., appear to be stacked beneath the topmost message page.

In this arrangement, each message navigation region 2252A, 2254A, 2256A is

continuously visible and may be selected at any time. When a message navigation region

is selected, the corresponding message page is internally designated as the topmost

-123—

Page 125 of 240

Page 126 of 240

WO 02/21413 PCT/US01/42041

message page, and the message body display pane 2204 is re-generated such that the new

topmost message page appears on top and its contents are visible.

In FIG. 22D, for purposes of illustrating a simple example, three (3) message

pages are shown. However, embodiments may comprise any number ofmessage pages.

3.0 LINKING AND AGGREGATING MESSAGES

According to one embodiment, the system and processes described herein

facilitate linking and aggregating messages, such as transportable applications.

FIG. 20 is a block diagram illustrating a plurality ofmessages that are linked

across different folders. In one embodiment, a persistent URL may be used to identify the

messages. In FIG. 20, non—underlined message labels identify messages (e.g. “Message

1”), and underlined message labels identify hyperlinks to other messages. Such links may

be used to hyperlink messages in the same folder. For example, message 1 of Inbox 1 is

linked to message 3 of Folder 1. Links may also associate messages in different folders,

such as message 10 ofFolder 4 that is linked to message 12 of Folder 5. Links may

associate messages in an “in-box” to messages in a folder, as in the case ofmessage 1 and

message 3. Links may associate messages in a folder and messages in an application, as

in the case of message 7 of Folder 3, which is referenced in Web Page 2050. One

message may contain links to multiple messages. For example, message 10 of Folder 4

has links to message 11 and message 12. I

The interconnection between messages enables serialized and parallel decision

making within a messaging system. Further, since the URL is not dependent upon the

position within the messaging system, such as within a folder or on a web page, the

position of the message may be changed without destroying the link between messages.

For example, message 9 may be moved from Folder 4 to Folder 5 and still maintain a link

from Web page 2050.

When two or more messages are linked in the foregoing manner, they form a

message web. In one embodiment, message webs are networks ofmessages that are

related by a topic or activity. Such networks aggregate knowledge that is generated within

a context of the activity. For example, message webs linked over a network can provide

information that does not require significant webmaster interaction or detailed internal

system knowledge. Moreover, a current status of content or other attributes may be

captured within the message web. This allows the health or age of the content to be

communicated to a system administrator or other interested individual. Accordingly, the

most current or active information can be highlighted. The content ofmessages within a

—124-

Page 126 of 240

Page 127 of 240

WO 02/21413 PCT/US01/42041

message web may be involved in the same context and may include content modification,

process interaction, choice making, and activity launching among a group or participants.

The links may be configured to be unidirectional or bi-directional. For a

unidirectional link up, there is not a corresponding link at the destination back to the

source location of the unidirectional link. In a bi-directional link up, there may be a

corresponding link at the destination back to the source location of link creation.

FIG. 23A is a flowchart of a process for linking messages, according to one

embodiment. In general, message links may be constructed manually by using user

actions to link to a message. Further, a URL of a message or message web can be

presented to an end user, suitable for copying and linking. Message authors or recipients

can link messages. Ad hoc tasks may be served by letting a user connect steps within the

task. Ad hoc knowledge organization may be served by letting a user connect related

messages to each other. Message linking provides a streamlined mechanism for copying a

message’s URL to the clipboard and avoids obscure multiple step processes to locate a

message’s URL.

In block 2302, the process of FIG. 23A begins when a recipient, author or other

user of a transportable application wishes to link one transportable application to another.

In block 2304 the user selects a Link function button within the message. The Link button

may be displayed, for example, as part of command buttons 282 of FIG. 2C. In response,

in block 2306 the user is prompted to select a linking method. The prompt ofblock 2306

may be a dialog box or wizard. Block 2306 also may involve adding a List building block

to the transportable application, wherein items in the list of the building block comprise

references to linked messages. Thus, the List building block serves as a mechanism for

maintaining links to other messages.

In one method, the user may copy the URL of another message to the clipboard

provided by the operating system, in block 2308. Control returns to block 2304, and the

user then pastes the copied URL to a link field that is provided in the prompt ofblock

2306, as shown by block 2310. Alternatively, the user may select one or more messages

from a personal folder or list, or from a group folder or list, as shown by block 2312. In

another alternative, the user may search for messages and select the right ones, as

indicated by block 2314; this may involve opening another window that has a personal

folder or list of messages. In another alternative, the user may drag a message fiom

another context into the current message or into the dialog box or Wizard, as in block

23 l 6.

-125—

Page 127 of 240

Page 128 of 240

WO 02/21413 PCT/US01/42041

After selecting a linking method and a linked method, in block 2318, the user is

prompted to change one or more link attributes, as appropriate. Such attributes may

include cross-linking, link labels, link description, access control, etc.

In block 2320, definitions ofmessages are modified to add links. In one

embodiment, block 2320 involves updating the List building block of the transportable

application to add a reference to the linked message. As a result, the selected messages

become linked, at block 2322. A user who opens the transportable application can View

the List building block and link to another message by selecting a message that is in the

list.

FIG. 23B is a flowchart of a process of automatically linking messages in another

embodiment. Linking ofmessages may occur automatically or indirectly as a result of

actions by a user within a task or as a result of workflow execution, e.g., as a part of

creating or performing a next step of the task. Such links way be constructed

automatically or indirectly by the application server 202. Thus, error rate can be reduced

by automatically linking messages together, where steps or messages are related.

In block 2324, a workflow process generates a new message that is related to the

current message. For example, block 2324 may comprise a first transportable application

generating another transportable application in response to an event that is generated by

user interaction with a page or building block. Alternatively, in block 2326, a workflow

or user event determines that a link is needed among two or more messages.

In block 2328, optionally, the user may be prompted to indicate whether the

messages should be linked. The prompt may take the form ofrequesting confirmation of a

proposed link of messages. If the user indicates that the messages should not be linked,

then in block 2330, no link is created. Alternatively, if the link is confirmed, then in block

2332 and block 2334 the user is optionally prompted to modify one or more link

attributes, as in block 2318 ofFIG. 23A. Control then passes to block 2320 and block

2322, as in FIG. 23A.

Messages may be linked based on the message’s content or context. For example,

a name, electronic mail address, a group, or company name, may be used to recognize

and match a message with another message on an associated page or in an associated

folder, In another example, a message that is named similarly to another message with the

same or similar recipient list may be tied together to form a Message Web.

FIG. 23C is a flow diagram of a process of automatically creating message links

in response to a change in an object. Such automatic linking may relieve an author of

adding common links by hand.

—l26-

Page 128 of 240

Page 129 of 240

WO 02/21413 PCT/US01/42041

In block 2336, a change occurs to one or more objects to which automatic links

can be made. For example, a building block or page of a transportable application is

deleted, modified, renamed, or created. In block 2338, block 2342, and block 2346,

branch points are carried out in accordance with the kind of change that occurred. In

block 2338, if the object is deleted, then in block 2340, links are removed from messages

and from the list of links in the message. For example, the list building block of the

message is updated to delete links. In block 2342, if the object is edited or renamed, then

the list of automatically generated links is reviewed. For each link that is identified in the

list, the link is followed to the linked message. Any link in the list of linked messages that

contains the old name is updated with the new name, as shown by block 2344. If a new

object is created, as in block 2346, then in block 2348, its content is marked as changed.

A background task or process is scheduled and dispatched to look for references to the

new object.

As a result, affected links are changed, as shown by block 2352. If all the tests of

block 2338, block 2342, and block 2346 are negative, then any change that has occurred

is not relevant to linking, so no action is taken, as shown in block 2350.

FIG. 23D is a flow diagram of a process of updating message links in response to

changes in message content. In block 2354, a change to one or more items ofmessage

content is detected. For example, a recipient of a transportable application updates the

application with new dynamic content, and in response, a building block of the

application generates an update event. In block 2356, the changed content is search to

identify one or more recognizable object references that could be the subject of a link to

another message. For example, the changed content is searched to identify an e—mail

address or user name, organization name, message title, etc.

In block 2358, if an e—mail address or user name is identified, a link is created to

instantiate an e—mail to the user. For example, an HTML “mailtoz” link may be created in

the List building block that references the user. In block 2360, if an organization name is

identified, a link to a Web page for that organization is created, e.g., in the List building

block. In block 2362, if a message title of another message or transportable application

that is known in the system is identified, then a link to that message is created, e.g., in the

List building block. In block 23 64, if other linkable content is identified, then an

appropriate link to that content is created in the list. An example of other linkable content

may be a digital song, an image, etc. In block 2366, the list of links is updated with any

link that has been created in the preceding steps.

—127-

Page 129 of 240

Page 130 of 240

WO 02/21413 PCT/US01/42041

FIG. 23B is a flow diagram of a process of suggested message linking. In one

embodiment, message links may be suggested, and either accepted or denied by a user,

especially when adding a step to an ad hoc task. This combines the advantages of manual

and automatic message linking in order to enhance ad hoc task/data linking. Lists of

suggested links may be built into the logic built into a message web, or are provided in a

message tab (as in the aggregated content under a tabbed presentation), or are provided in

a message template, or are provided in a message web template. Templates can be used to

allow new instances of message tabs, messages, or message webs to be selected by a end

user. End users may create templates by using running instances ofmessage tabs,

messages, or message webs and saving their structure and optionally their content.

Templates may be categorized and shared with others. In one embodiment, the process of

FIG. 23B is useful to allow a user to optionally add a link to complete, enhance, continue,

or add to a current task. For example, a user may schedule an event in one task and once a

time is agreed upon for the event, may continue the task by enabling users in a group to

purchase tickets to the event.

In block 2370, a user finishes a step in a task that is defined as a message. For

example, a user completes providing input to a building block of a transportable

application. In response, in block 23 72, the input is analyzed and the user is presented

with a list of other messages that are likely to following the completed step; ordered by

context-determined relevance. For example, if the user has completed rating a job

applicant in a poll building block of a human resources transportable application, the

system determines that a salary offer application is likely to follow next. Therefore, the

user is presented with the salary offer application in the list. Alternatively, a new message

is created by the user, or automatically, while the user is in the context of another

message.

In either case, in block 2376, the user indicates whether to link the new message

with the original message, as by selecting a user interface button. If the user requests

linking, as tested in block 2378, then automatic message linking is carried out, as

described herein in connection with FIG. 23B. Ifno linking is requested, then none is

carried out, as shown by block 2379.

When a user traverses a hyperlink fiom within e—mail messages to a URL or Web

document, according to one embodiment, the Web page or other HTML content is

displayed within the e-mail client window, as in FIG. 12. The content may comprise on-

page navigations controls (Home, Back, Forward), since browser controls are not

provided in conventional e—mail clients.

—128-

Page 130 of 240

Page 131 of 240

WO 02/21413 PCT/US01/42041

FIG. 24 is a flow diagram of a process of displaying HTML content in an e-mail

client with browser navigation features. In block 2402, the system is requested to display

a transportable application that contains a link to HTML content. In block 2404, the

system determines whether, in displaying the HTML content, it should spawn a browser

window and display the content therein, or display the content within the e-mail client

window. If the test ofblock 2404 is true, then in block 2406, the HTML message display

is supplemented with navigation fimctions that are normally available in a browser.

In one implementation, block 2406 involves displaying a Home button, which

causes the original page of the dynamic portion of the message to be shown, a Back

button, and a Forward button. FIG. 12 illustrates examples of such buttons. The Home

button is implemented as a self-referencing URL to the dynamic content portion of the

transportable application. The Back and Forward buttons are implemented as JavaScript

elements such that when each button is selected, JavaScript is invoked to carry out the

functions. The JavaScript elements link back to application server 202 to determine what

URL to load, based on a link traversal history that is maintained by that server. As shown

in block 2408, when a link is traversed, application server 202 is updated with the current

and next links in a link history that is associated with the current transportable

application. In block 2409, a next page of the transportable application is displayed.

Control flows back to block 2404 to render that page in the same manner.

In this configuration, browser controls may be used to navigate links within the

messaging system. Thus, a user can easily navigate between a current message and

another message, and then return to the current message. This navigation may occur

within the same window.

FIG. 25A is a block diagram of a linked collection of related message webs,

referred to herein as a message web ring. Such rings may provide a complete list of

related message webs. A user may navigate through the ring searching for desired

information. Message web rings may also provide a higher level of aggregation to

organize a project’s tasks. In the example ofFIG. 25A, a first message web 2501

comprises messages 2510, 2512, 2514. Message 2510 is the home message ofmessage

web 2501, which acts as the head of a message web ring that includes a second message

web 2502 and a third message web 2503. The second and third message webs 2502, 2503

each include respective message web home messages 2504, 2506. . Each message web

home message 2510, 2504, 2506 has at Next link that identifies the next message web in

the ring, and a Previous link that identifies the previous message web in the ring. The

—129-

Page 131 of 240

Page 132 of 240

WO 02/21413 PCT/US01/42041

links among home messages 2510, 2504, 2506 form a ring in which message web 2501 is

the head and message web 2503 is the tail.

In this configuration, linked messages may be navigated between multiple

applications. For example, a user may navigate within an application between messages

or navigate between applications and then access multiple messages within another

application. This allows aggregation of messages to be performed within a single

application or folder and also amongst other folders.

FIG. 25B is a flow diagram of a process of creating a message web ring. In block

2520, a message web is created that resides within an area, group, or project context that

may have other message webs. In block 2522, a test is carried out to determine whether

the current message web is the first message web within the current context. If so, then in

block 2524, the Next and Previous links of the current message web are set to be equal

and to refer to the current message web.

If not, then the current message web is threaded integrated into a ring structure

with other message webs, in a position between the head and tail of the ring, in block

2526. In particular, in one embodiment, the Previous link of the current message web is

set to the value of the Previous link of the home message of the tail message of the ring.

The Next link of the home message of the tail message web of the ring is set to point to

the home message of the current message web. The Next link of the home message of the

current message web is set to the home message of the head message of the ring. The

Previous link of that message is set to point to the new message web. As a result, as

shown by block 2528, the message web ring’s head and tail are updated to include the

new message web, and the ring is therefore updated, as indicated by block 2530.

FIG. 26A is a block diagram illustrating messages in a message web having

shared address lists. In one embodiment, a message web may share a list of addresses

among its member messages. Individual messages may have their unique addressees

extended or restricted in comparison to a shared list of addresses. Shared lists may be

reused, which can avoid initially generating an address list for each step in a task. Further,

a user can be easily added to an existing task by adding the user to a shared address list

and forwarding a message to the user within the message web. Access to the remainder of

the message web is then achieved by way of links and navigation tools as described

herein. Subsequent steps that are added will then include the added user.

In particular, a list of recipients of the message may be changed between linked

messages, such that a first set of recipients can be defined in one message and another set

of recipients can be defined in another message. For example, in FIG. 26A, in a first

-l30-

Page 132 of 240

Page 133 of 240

WO 02/21413 PCT/US01/42041

message 2601 the recipients are Bob, Carol, and Dave. However, in message 2603, which

is linked to message 2601, the recipients are defined as everyone in message 2601 plus

Harry. Thus, a recipient list may be shared between messages. Additionally, messages

may be configured to define business logic, other roles having the same sharing

relationship between messages. The link between message 2604 and message 2603

demonstrates one form of “side-bar” or private conversation that could occur within a

message web in which the link between messages is unidirectional.

FIG. 26B is a flow diagram of a process of generating a list of recipients of a

transportable application. In block 2605, a list of users is generated from a role

description. For example, an initial set of recipients of a transportable message, such as

message 2601, may be generated based on a role that comprises a set of user names.

Assume that the author of the message 2601 addresses the message to “Project X Group”

and that group name is associated With a set of users {Bob, Carol, Dave}. As a result, the

recipient list ofmessage 2601 is Bob, Carol Dave.

In block 2606, the system determines if the list generated in block 2605 contains a

reference to another list. If so, in block 2608 the current recipient list is expanded to

include all recipients who are named in the referenced list, and duplicates are removed. In

block 2610, the system determines if the recipient list generated in block 2605 contains a

reference to an individual. If so, then the individual is added to the current recipient list,

and duplicates are removed. In block 2614, the system determines if the recipient list

generated in block 2605 includes instructions to exclude a user or list. If so, then in block

2616, the referenced list is expanded, and its members are removed from the list

generated in block 2605. If the list generated in block 2605 has more instructions, then

they are processed in similar manner. As a result, a new recipient list is generated, as

indicated in block 2620.

FIG. 27A is a block diagram illustrating that the content ofmessages that are

linked can be changed, with automatic propagation of changed content to linked

messages. This allows content to be targeted to certain groups and separated from other

groups. Changes to content may flow back, forth, and among linked message members.

The linking provides connections that workflow processes can use to identify targets and

sources of data that are needed within independent messages. Links used for sharing data

and role information may be made unavailable to the end user.

In the example ofFIG. 27A, a first message 2701 is linked by link 2702 to

message 2703. The Meeting Date value ofmessage 2701 is linked to a field

“Schedule.Choice.Best” of message 2703, so that changes to that field are propagated to

—l31-

Page 133 of 240

Page 134 of 240

WO 02/21413 PCT/US01/42041

first message 2701. Message 2703 is also linked to message 2704 and sends the same

field value to it. Thus, changes in message 2703 flow along links 2702, 2708 to other

messages in a message web.

FIG. 27B is a flow diagram of a process of updating data among linked messages

in a message web.

In block 2726, the system determines that a field of a transportable application has

been updated. For example, user input results in a change to a data entry field of a

building block. In block 2728, the system determines whether any other system objects,

such as data objects, fields, or building blocks have subscribed to the field that has

changed. If so, then the subscribers are marked as needing to be refreshed, in block 2730.

For every subscriber needing to be refreshed, block 2732, control is passed to block 2724

to mark the subscriber field as no longer needing to be refreshed. The field is then

interpreted starting at block 2710. When all subscriber fields have been refreshed, control

passes to block 2734 in which the process ofFIG. 27B is complete.

In block 2710, a field definition and value within a message are interpreted to

identify a link or other reference to other messages. In block 2712, the system determines

Whether the field definition comprises a link to data in another field. If so, then in block

2714, the system verifies that the linked field is updated, and fetches data from the linked

field. Block 2714 may involve dynamically retrieving field data from database 208. In

block 2716, the system tests whether the field definition contains an instruction to embed

data from another field. If so, then the embedded field is identified and tested to

determine if it. is updated, as in block 2718. Data from the embedded field is fetched, and

the field definition property is cleared since the data is then embedded.

In block 2720, the system tests whether all data in the field definition has been

resolved to static form. Ifnot, then control is transferred to block 2712 to resolve any

remaining references. If so, then in block 2722, any business rules in the field definition

are applied to compute the final field value.

Accordingly, data from one field of a message that is linked in a message web

may propagate to fields of other linked messages, automatically and in response to user

input or other actions that cause changes to data objects.

FIG. 27C illustrates one application of the processes ofFIG. 27A, FIG. 27B in

which a linked collection of related messages are used to aggregate data from a child

message up to a parent message. The result may be displayed in any message of the tree

to show activity in the lineage of a tree. Messages 2742, 2744, 2746, 2748 participate in a

tree rooted at message 2740, which receives data values from all child messages and

—l32-

Page 134 of 240

Page 135 of 240

WO 02/21413 PCT/US01/42041

aggregates them. Message 2740 is used to collect donations from a group of recipients.

Similar donation collection messages may be created from any donation collection

message and sent to a different set of recipients. Each message shows the donations

committed to by its recipients, as well as the donations committed to by all its

descendants. Arrows show the flow of data up through the message hierarchy. Message

2740 is linked to and subscribes to donation fields of child messages 2742, 2744, 2746,

2748. Each such message may also be a message web.

FIG. 28A is a diagram of a graphical user interface display in which a

transportable application includes a plurality of tabs that switch between the content of

message web members. Transportable application 2800 comprises a header area 2802 and

a message web header 2804 having a plurality of tabs 2806. In the example ofFIG. 18A,

the tabs 2806 include an agenda tab link 2808, action items link, invitation link, poll link,

etc. Agenda link 2808 accesses an agenda that is presented within the context of

transportable application 2800, e.g., in a display pane 2810. By clicking on one of the

tabs, the action items for that message content may be viewed or changed without leaving

the context of the enclosing message. There may be different access control capabilities

for the content under each tab. Participants may link other message webs to header 2804

by selecting an Add New Tab link 2812. In response, the system prompts the user to

identify a message web to link,4as in FIG. 23A.

Thus, message web members that share a common address list may be aggregated

into a single message for purposes ofpresentation. Messages that are added, modified,

and deleted as parts of the message web are reflected in the aggregated presentation.

Some tasks are better navigated by direct access to steps instead of linear progression

from one step to the next. By aggregating message web members within a single

presentation, available members can be easily seen and accessed directly. Aggregated

message web presentations may also provide a per role control panel for a task such that

messages with diverse recipient or access control lists can be presented in an aggregated

manner.

FIG. 28B is a flow diagram of a process of adding tabs to a transportable

application of the type shown in FIG. 28A. In block 2812, a user action adds to a

collaboration activity Within a message. For example, assume that a recipient selects Add

New Tab link 2812 of FIG. 28A. In response, members are assigned to the new

collaboration, in block 2814. For example, the recipient list of the current transportable

application may be added to a message recipient list for the new collaboration. In block

2816, content for the new collaboration is created. In one embodiment, the content is

—133—

Page 135 of 240

Page 136 of 240

WO 02/21413 PCT/US01/42041

created by prompting the user to select whether to extend the collaboration as a new part

of an existing message, or as a new message web member, as indicated by block 2818.

If a new message web member is requested, then in block 2822, a new message is

sent to the recipient list, and appropriate links are created to insert the new message into

the message web. If a new part of the same message is selected, then in block 2820, the

new content is added to the current message. Recipients of the current message notified

appropriately, and the new content is highlighted when such recipients read the message.

In either alternative, as shown by block 2824, the new message may be associated with a

new tab in the current message.

FIG. 28C illustrates a notification message of a message web. Message 2800 of

FIG. 28A is shown with New icons 2830, 2832 indicating areas that are new since the

time the user last looked at this message. The user may set conditions for such

notifications by selecting a Notifications link 2841. In response, the system displays a

dialog box 2840 having notification activation links 2842, 2844. The user may turn on

notifications relating to a particular message tab With notification activation link 2844 and

may turn on notifications about an entire message web with link 2842. When such

notifications are set, the icons 283 0, 2832 are displayed when content of the page or

message web changes.

Thus, a single notification message serves to alert a user about changes or

additions spanning multiple messages within a message web. Individual changes or

additions across messages are highlighted within the notification message. The

notification message can be the message web home, any message web member, a digest

of changes within a message web, or a list ofmessage webs.

For example, assume a user working on a multiple step task wants to be kept

informed about changes within that task. By signing up for message web notifications, a

user cuts down on the number ofnotifications he receives by aggregating indications of

what has changed into a single notification message. The user does not get multiple

notifications corresponding to every change within the message web. No further

notification is sent until a user has looked at the changes indicated by a previous

notification.

Message webs that are delivered to recipients may be received in an e-mail client

and identified by a special subject designation. For example, a special message that ‘

represents a message web may be displayed within the same containers, lists, or folder as

a regular email message. An icon representing the message could be different, and menu

functions available for the special message might be different from those available for a

~134—

Page 136 of 240

Page 137 of 240

WO 02/21413 PCT/US01/42041

regular message. The message subject line may include a topical subject, appended with,

“- Message Web,” or a similar designation. Message Webs may take the place of

individual messages within message folders. These may be individual messages, but a

special message may be referred to as the “Message Web Home”. Message Webs may

exist within the same folders as messages.

FIG. 29 illustrates a method for tracing deleted messages using links. In one

embodiment, a message deleted fiom within a message web does not destroy the integrity

of the message web; instead, message links are automatically repaired. Automatically

generated message placeholders may also be used in the place of deleted messages in

order to maintain the integrity of a message web. These placeholders can act as patch

panels, giving user options of where to link to, especially when the self-repair process

cannot definitively decide what the correct links are out of a broader set. Additionally,

links to a deleted message may be removed or disabled from their source.

Within the Internet, broken links are an extremely common problem. By knowing

that message webs form a unit, a manager can either rethread the ends of links pointing to

deleted messages or utilize a placeholder message shell through which existing links can

traverse. The shell has little or no content other than the links from it that the previous

message contained. The shell can also offer suggestions, when the shell manager is not

sure of what links are important. Links that are automatically deleted when a message is

deleted result in fewer broken links.

In block 2902, a message in a message web is marked for deletion. In block 2904,

the system determines what kind of deletion to carry out. In an embodiment, deletion may

involve complete elimination of the deleted message, or retaining a message shell as a

placeholder. If a placeholder is retained, then in block 2908, the content of the message is

deleted, and the existing message web links are retained. Optionally, a summary or

decision portion of the message may be retained.

If the message is completely eliminated, then in block 2906, all links from the

deleted message to other members within the same message web are identified. Each

message web member is visited and all links to the deleted message are identified. The

links are replaced with links to the next message in the message web, subject to access

control privileges and elimination of self—referencing links. The updated links are entered

in an automatically maintained link list. In block 2910, links to other message webs are

similarly updated. In block 2912, the deleted message is added to a list of deleted

messages or “dead URLs.” Optionally, a crawl of the Internet may be scheduled to search

-l35-

Page 137 of 240

Page 138 of 240

WO 02/21413 PCT/US01/42041

for external links to the deleted message, since such links become “broken” upon deletion

of the message. As a result, the message is deleted.

FIG. 30 illustrates a message web map that may be used in a graphical user

interface of a messaging system that supports linked messages, in one example

embodiment. The user interface graphically depicts messages as connected to each other.

Applications containing multiple messages may also be linked together. In the example of

FIG. 30, a visualization of an entire message web available to a user is provided. With

such a message web map, a user can locate a message, jump directly to another message

(even if not directly linked), see What messages have new content (relative to the user),

and note the status of each message/step in a task or sub—task. Similarly, a map of other

applications and folders may be represented.

For example, FIG. 30 depicts a folder 3002 for a particular project that contains a

first message web 3006 dealing with an upcoming status meeting. The message web 3006

comprises a home message 3010 and child messages 3012, 3014, 3016, 3018. Each such

message may be a transportable application as described herein. FIG. 30 also depicts a

previous message web 3004 and next message web 3008 in a web ring. Thus, a user may

receive a graphical View of complex message relationships and related message webs.

FIG. 31A, FIG. 31B, and FIG. 31C are diagrams of graphical user interface

displays that illustrate an example of a recruiting process using a message web.

Assume that a user logs into the system and enters a name and password via, for

example, a Web page. Once the password and user name are verified by application

server 220, an electronic form or application editor is provided to the user. The user may

author a transportable application providing recruiting functions based on a template. The

user may specify one or more addresses, such as electronic mail addresses, for the

participants of the message web in a field of the form. The user may also specify the

subject of the Message Web in a field. The form may also include a link that allows a user

to upload content into a static content region. Static content, for example, a candidate’s

resume may be uploaded from a file residing on the user’s computer. The form may also

include buttons that allow the user to send the contents of the form to application server

220 and to first preview the content before it is sent to the server.

Once the user submits the form to the server, in response, the server sends a

transportable application 3100 (FIG. 23D) with the content specified in the form. In one

embodiment, transportable application 3100 may include one or more static content

regions and dynamic content regions 3101, 3103, 3120, 3110, 3125, which include and

—136-

Page 138 of 240

Page 139 of 240

WO 02/21413 PCT/US01/42041

capture content from regions of the electronic form. The regions may display headers,

introductory text, substantive content, graphics, etc.

The transportable application 3100 also includes tabs 3105, 3106 that are

associated with separate pages of the application. Tab 3105 specifies that transportable

application 3100 includes a “Discussion’. In this example, participants in the discussion

can add comments into an interface region 3125. The tab 3106 allows one or more of the

participants to link the current “Discussion” to, for example, a “Schedule” which can be

used to set-up times to interview the candidate. A window 3160 may pop—up that allows a

participant to choose “Schedule.” Once the participant clicks on Schedule, the request is

sent to the server.

In response, the server generates a new electronic form for providing a schedule.

FIG. 31B illustrates an example electronic form 3900 that includes a region 3930 with

fields 3905, 3906, and 3907 for specifying the Time, Date, and Name of the participants.

The form 3900 may also include fields 3901 and 3902 and a dynamic content region

3903. The form 3900 may also include Send and Preview buttons 3941, 3942 that

fiinction in a manner similar to the buttons described above. Further, the form 3900 may

include a link 3940 that enables a user to submit the content of the form to the server.

When a participant presses the button 3940, the content of the form 3900 is sent to the

server.

The transportable application 3100 is then be updated to reflect the content of the

form 3900. FIG. 31C is a diagram of a screen display in which the transportable

application reflects such updates. A tab 3107 is added to the transportable application

3100 to indicate that a “Schedule” has been initiated to interview the candidate. A

participant may reply to the Schedule using the interface region and may also View the

most current content in the dynamic region. The participants may use the tabs to navigate

between the Discussion and Schedule. Each time a participant navigates between the tabs,

the participant dynamically receives the most current content from the server.

A participant may add other transportable applications, pages or building blocks to

the transportable application. In this way, multiple types of applications can be combined

using the same message Without the need for multiple instances ofmessages or tedious

navigation through multiple message folders. Additionally, tabs similar may be added to

the transportable application that allow multiple transportable applications, pages, or

building blocks to be available, but marked as no longer active or useful to one or more of

the participants (“grayed out”).

-l37-

Page 139 of 240

Page 140 of 240

WO 02/21413 PCT/US01/42041

4.0 HARDWARE OVERVIEW

‘ The approaches described herein may be implemented in hardware or software, or

a combination thereof. In one embodiment, the approaches are implemented in computer

programs executing one or more programmable computers. The programmable

computers may be either general-purpose computers or special-purpose, embedded

systems. In either case, program code is applied to data entered with or received from an

input device to perform the functions described and to generate output information. The

output information is applied to one or more output devices.

Each program is preferably implemented in a high level procedural or obj ect—

oriented programming language to communicate with a computer system. However, the

programs can be implemented in assembly or machine language, if desired. In any case,

the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device

(e.g., CD—ROM, hard disk, magnetic diskette, or memory chip) that is readable by a

general or special purpose programmable computer for configuring and operating the

computer when the storage medium or device is read by the computer to perform the

procedures described. The system also may be implemented as a computer-readable

storage medium, configured with a computer program, where the storage medium so

configured causes a computer to operate in a specific and predefined manner.

FIG. 19 is a block diagram that illustrates a computer system 1900 upon which an

embodiment of the invention may be implemented. Computer system 1900 includes a

bus 1902 or other communication mechanism for communicating information, and a

processor 1904 coupled with bus 1902 for processing information. Computer system

1900 also includes a main memory 1906, such as a random access memory (“RAM”) or

other dynamic storage device, coupled to bus 1902 for storing information and

instructions to be executed by processor 1904. Main memory 1906 also may be used for

storing temporary variables or other intermediate information during execution of

‘ instructions to be executed by processor 1904. Computer system 1900 further includes a

read only memory (“ROM”) 1908 or other static storage device coupled to bus 1902 for

storing static information and instructions for processor 1904. A storage device 1910,

such as a magnetic disk or optical disk, is provided and coupled to bus 1902 for storing

information and instructions.

Computer system 1900 may be coupled via bus 1902 to a display 1912, such as a

cathode ray tube (“CRT”), for displaying information to a computer user. An input

device 1914, including alphanumeric and other keys, is coupled to bus 1902 for

-138-

Page 140 of 240

Page 141 of 240

WO 02/21413 PCT/US01/42041

communicating information and command selections to processor 1904. Another type of

user input device is cursor control 1916, such as a mouse, a trackball, touch screen,

keypad of a cellular telephone or PDA, or cursor direction keys for communicating

direction information and command selections to processor 1904 and for controlling

cursor movement on display 1912. This input device typically has two degrees of

freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device

to specify positions in a plane.

The invention is related to the use of computer system 1900 for collaborative

communications, multiple-part messages, and linking and aggregating messages.

According to one embodiment of the invention, collaborative communications, multiple—

part messages, and linking and aggregating messages is provided by computer system

1900 in response to processor 1904 executing one or more sequences of one or more

instructions contained in main memory 1906. Such instructions may be read into main

memory 1906 from another computer-readable medium, such as storage device 1910.

Execution of the sequences of instructions contained in main memory 1906 causes

processor 1904 to perform the process steps described herein. In alternative

embodiments, hard-wired circuitry may be used in place of or in combination with

software instructions to implement the invention. Thus, embodiments of the invention are

not limited to any specific combination ofhardware circuitry and software.

The term “computer—readable medium” as used herein refers to any medium that

participates in providing instructions to processor 1904 for execution. Such a medium

may take many forms, including‘but not limited to, non-volatile media, volatile media,

and transmission media. Non-volatile media includes, for example, optical or magnetic

disks, such as storage device 1910. Volatile media includes dynamic memory, such as

main memory 1906. Transmission media includes coaxial cables, copper wire and fiber

optics, including the wires that comprise bus 1902. Transmission media can also take the

form of acoustic or light waves, such as those generated during radio wave and infrared

data communications.

Common forms of computer—readable media include, for example, a floppy disk, a

flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD—ROM, any -

other optical medium, punch cards, paper tape, any other physical medium with patterns

ofholes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or

cartridge, a carrier wave as described hereinafter, or any other medium from which a

computer can read.

—139-

Page 141 of 240

Page 142 of 240

WO 02/21413 PCT/US01/42041

Various forms of computer readable media may be involved in carrying one or

more sequences of one or more instructions to processor 1904 for execution. For

example, the instructions may initially be carried on a magnetic disk of a remote

computer. The remote computer can load the instructions into its dynamic memory and

send the instructions over a telephone line using a modem. A modern local to computer

system 1900 can receive the data on the telephone line and use an infrared transmitter to

convert the data to an infrared signal. An infrared detector can receive the data carried in

the infrared signal and appropriate circuitry can place the data on bus 1902. Bus 1902

carries the data to main memory 1906, from which processor 1904 retrieves and executes

the instructions. The instructions received by main memory 1906 may optionally be

stored on storage device 1910 either before or after execution by processor 1904.

Computer system 1900 also includes a communication interface 1918 coupled to

bus 1902. Communication interface 1918 provides a two-way data communication

coupling to a network link 1920 that is connected to a local network 1922. For example,

communication interface 1918 may be an integrated services digital network (“ISDN”)

card or a modem to provide a data communication connection to a corresponding type of

telephone line. As another example, communication interface 1918 may be a local area

network (“LAN”) card to provide a data communication connection to a compatible

. LAN. Wireless links may also be implemented. In any such implementation,

communication interface 1918 sends and receives electrical, electromagnetic or optical

signals that carry digital data streams representing various types of information.

Network link 1920 typically provides data communication through one or more

networks to other data devices. For example, network link 1920 may provide a

connection through local network 1922 to a host computer 1924 or to data equipment

operated by an Internet Service Provider (“ISP”) 1926. ISP 1926 in turn provides data

communication services through the worldwide packet data communication network now

commonly referred to as the “Internet” 1928. Local network 1922 and Internet 1928 both

use electrical, electromagnetic or optical signals that carry digital data streams. The

signals through the various networks and the signals on network link 1920 and through

communication interface 1918, which carry the digital data to and from computer system

1900, are exemplary forms of carrier waves transporting the information.

Computer system 1900 can send messages and receive data, including program

code, through the network(s), network link 1920 and communication interface 1918. In

the Internet example, a server 1930 might transmit a requested code for an application

program through Internet 1928, ISP 1926, local network 1922 and communication

—140—

Page 142 of 240

Page 143 of 240

WO 02/21413 PCT/US01/42041

interface 1918. In accordance with the invention, one such downloaded application

provides for collaborative communications, multiple-part messages, and linking and

aggregating messages as described herein.

The received code may be executed by processor 1904 as it is received, and/or

stored in storage device 1910, or other non-volatile storage for later execution. In this

manner, computer system 1900 may obtain application code in the form of a carrier wave.

4.0 EXTENSIONS AND ALTERNATIVES

In the foregoing specification, the invention has been described with reference to

specific embodiments thereof. It will, however, be evident that various modifications and

changes may be made thereto without departing from the broader spirit and scope of the

invention. The specification and drawings are, accordingly, to be regarded in an

illustrative rather than a restrictive sense.

-141—

Page 143 of 240

Page 144 of 240

WO 02/21413 PCT/US01/42041

APPENDIX l—CLASS STRUCTURE AND API FOR EVENT HANDLING

Class Message

java. lang. Object

+— ~com. zaplet .message .Message

public class Message

extends java.lang.0bject

Class for implementing Messaging API — responsible for message content

Contains all data, related to the event message along with get/set methods,

providing access to this data The most proper way of using the Message class

functionality would be to instantiate the class and then add proper attributes, i.e name /

value pairs for this class:

Message msg = new Message (msg'I'ype, obj ID, objType,

senderID, senderType, expTime) ;

// adding name/value pairs here

msg . addAttr (AttrName , Object) ;

Since:

Java V1.1.8

Version:

1 .0

Author:

Vlad Silverrnan

See Also:

com. zaplet . db . SelectAttributesByMsgId

Message (java.lang.string mngype, com. zaplet.data.0bj ectI obj ID,
java . lang . String obj Type, com. zaplet . data . Obj ectID senderID,

java. lang. String senderType , java . util .Date expTime)

Constructor Used to initialize a Message

—142—

Page 144 of 240

Page 145 of 240

WO 02/21413 PCT/US01/42041

java . util . Hashtabl

java . lang . Obj ect value)

 addAttr (j ava . lang . String name ,

addAttrO — adds atributes for the current message

ge tAttr ()

getAttrO - gets the m attr class variable “J

java.util.Date

 com.zaplet.data.0b

jectID

java . lang . String

com. zaplet . data.Ob

j ectID!

ll)
getExETime()

getExpTimeO - gets the m expTime class variable

getMsgID ()

getMsgIDO - gets the m_rnsgID class variable

getMngXBe()

etMs T e()_;gets the m mngype class variable

getObjID()

getObjIDO — gets the ranle class variable

java . lang . String

getObjTXEe()

getObjIyEeg) — gets the m objType class variable

com. zaplet . data . Ob

jectID

java. lang. String

getSenderID ()

getSenderID() — gets the m senderID class variable

getSender‘I'xQe ()

getSenderTypeQ - gets the mmsenderTXpe class variable“

ll

 int getstatus ()
getStatusO - gets the m status class variable

I boolean
static void

I voidi
v01d

l void
l void

Message class

setAttr (java .util . Hashtable attr)

setAttrO - sets the mwattr class variable J

isPersistent ()

isPersistent(- ets the m ersistent class variable

main (java. lang. String [] args)

mainO - main method provides functionality for unit testing of

setExETime (java . util . Date expTime)

setEx Time() — sets the m ex Time class variable

setMsgID (com. zaplet . data . Obj ectID msgID)
setMs ID — sets the m ms ID class variable __i

setMngxee (java . lang . String mngype)
setMngypeO - sets the m_rnngype class variable

void setObj ID (com. zaplet . data . Obj ectID obj ID)i l setObjIDO — sets the m objID class variable
void setObjTZEe (java.lang.String objType)

setObjIyReO - sets the mwgbjllype class variable

void setPersistent (boolean persistent)l setPersistentO ~ sets the m” nersistent class variable
void
void setSenderTz-Ee (java . lang . String senderType)

setSenderTypeO - sets the msenderType class variable

void setStatus (int status)
setStatusO - sets the m status class variable

ID)

 setSenderID (com. zaplet . data. ObjectID sender

setSenderIDO - sets the m senderID class variable

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Page 145 of 240

-143—

Page 146 of 240

WO 02/21413 PCT/US01/42041

Message

public Message (java. lang. String mngype ,

com. zaplet . data . Obj ectID obj ID,

java . lang . String obj Type ,

com. zaplet . data . Obj ectID senderID ,

java. lang . String senderType ,

java .util .Date exp'I‘ime)

Constructor Used to initialize a Message

Parameters:

ms g'I'ype - — String value of the Message type

obj ID — - int value of the object Id

obj Type — - String value of the object type

This value should be part ofnames, defined in ObjectType class

senderID - — value of the sender Id

senderType - - String value of the sender type

This value should be part ofnames, defined in Obj ectType class

expTime — - expiration time for the current message

public void setMsgID (com. zaplet . data . Obj ectID msgID)

setMsgIDO — sets the m_msgID class variable

Parameters:

msgID - — the value to be set

gethdsgII)

public com. zaplet . data . Obj ectID getMsgID ()

getMsgIDO - gets the m_rnsgID class variable

Returns:

msgID - the value of the class variable

setMngype

public void setMngy-pe (java. lang . String mngype)

setMngypeO — sets the m_mngype class variable

Parameters:

mngype — - the value to be set

—144—

Page 146 of 240

Page 147 of 240

WO 02/21413 PCT/US01/42041

getMngype

public java. lang. String getMsg'I‘ype ()

getMngypeO - gets the m_mngype class variable

Returns:

mngype ~ the value of the class variable

setObjID

public void setObjID (com. zaplet.data.0bj ectID obj ID)

setObjIDO - sets the In_objID class variable

Parameters:

obj ID - ~ the value to be set

getObjID

public com. zaplet . data . Obj ectID getObj ID ()

getObjIDO - gets the m_objID class variable

Returns:

objID - the value of the class variable

setObjType

public void setobj Type (j ava. lang . String obj Type)

setObjTypeO - sets the m_objType class variable

Parameters:

obj Type - - the value to be set

getObjType

public java . lang . String getObj Type ()

getObjTypeO - gets the m_objType class variable
Returns:

objType - the value of the class variable

setSenderID

public void setSenderID(com.zaplet.data.0bjectID senderID)

setSenderIDO - sets the m_senderID class variable

Parameters:

obj ID - - the value to be set

getSenderID

public com.zaplet.data.0bjectID getSenderID()

—145—

Page 147 of 240

Page 148 of 240

WO 02/21413 PCT/US01/42041

getSenderIDO - gets the m_sender]D class variable

Returns:

senderID — the value of the class variable

setSenderType

public void setSender‘I‘y-pe(java.lang.string senderType)

setSenderTypeO - sets the mhsenderType class variable

Parameters:

senderType — — the value to be set

getSenderType

public java . lang . String getSenderType ()

getSenderTypeO - gets the m_senderType class variable

Returns:

senderType — the value of the class variable

setStatus

public void setStatus(int status)

setStatusO - sets the m_status class variable

Parameters:

status — - the value to be set

getStatus

public int getstatus ()

getStatus() - gets the m_status class variable

Returns:

status - the value of the class variable

setExpTime

public void setExpTime (java .util .Date expTime)

setExpTimeO - sets the m_expTime class variable

Parameters:

exp'I‘ime - — the value to be set

getExpTime ,

public java.util.Date getExpTime()

getExpTimeO — gets the m__expTime class variable

Returns:

expTime - the value of the class variable

—146-

Page 148 of 240

Page 149 of 240

WO 02/21413 PCT/US01/42041

isPersistent

public boolean isPersistent ()

isPersistentQ - gets the m_persistent class variable

Returns:

m_persistent - the value of the class variable

setPersistent

public void setPersistent(boolean persistent)

setPersistent() ~ sets the m_persistent class variable

Parameters:

m_persistent - - the value to be set

setAttr

public void setAttr (java .util . Hashtable attr)

setAttr() - sets the m_attr class variable

Parameters:

attr — ~ the value to be set

getAttr

public java . util . Hashtable getAttr ()

getAttrO — gets the m_attr class variable

Returns:

attr — the value of the class variable

addAttr

public void addAttr(java.lang.String name,

java . lang. Object value)

throws MessageException

addAttrO - adds atributes for the current message

Parameters:

name - the name of the attribute to be added to the name/value list

value - the value ofthe attribute to be added to the name/value list

Throws:

MessageException — - in case of null parameters

main

public static void main(java.lang.string[] args)

main() - main method provides functionality for unit testing of Message class

-147—

Page 149 of 240

Page 150 of 240

WO 02/21413 PCT/US01/42041

Class MessageService

java . lang . Object

l

+— ecom. zaplet .message .MessageService

public class MessageService

extends Object

Class for implementing Messaging API — responsible for services on Message data

Publishes/stores info about any object in the db

This class provides also transformation between internal objects used by the Zaplet

platform and standard data types, used by JDBC layer

Possible ways ofusing the MessageService are outlined below:

Message msg = new Message(mngype, objID, objType,

senderID, senderType, expTime);

try {

// adding name/value pairs here

msg.addAttribute (AttrNamel, Obj ectl) ;

msg . addAttribute (AttrName2 , Obj ect2) ;

// Now there are several choices:

//

// 1. we can just store the message and

// all its attributes in the database

MessageService .publish (msg) ,-

OR

// 2. we can publish the message in the Db and

// fire the action, associated with the message

// The action should be implemented in the handle()

// method of the class, specified by 'mngype'

MessageService .publishAndFire (msg) ;

OR

-l48—

Page 150 of 240

Page 151 of 240

WO 02/21413 PCT/US01/42041

// 3. we can just fire the action, specified by mngype

// without storing the message in the database

msg. setPersistent (false) ;

MessageService .publishAndFire (msg) ;

}

catch (MessageException me) {

// process MessageException here

Since:

Java v1.1.8

Version:

1.0

Author:

Vlad Silverman

See Also:

com. zaplet . db . SelectAttributesByMsgId

 getHandlerString mng)ype
getHandlerO — get the name of the class, which should handle the current

message
The name of the class is related to the

getUniEeIdString query)
Get unique primary key id for an object, specified in the query

arameter.

insertAttributes (DbTrans trans , Message msg)

insertAttn'bute(msg) - inserts all attributes (name/value pairs) of a
message in the database

private insertMessage (DbTrans trans , Message msg)
static int insertMessage(msg) - inserts a message in the database

—149-

 static Mes sageHandler

J-e ofthe mess

protected
static int

private

static int

Page 151 of 240

Page 152 of 240

WO 02/21413 PCT/US01/42041

 static void main (String [] args)

mainO - main method provides functionality for unit testing of

MessageService class

Eublish (Message msg)
publishO- stores a new Message

this method will verify first m_Persistent flag of the Message object and store
the Messa e in the Db only if this flagls true

EublishAndFire (Message msg)

publishAndFireO - activates the handle() method of the specific handler.

Handler is associated with the type of the current message.

static void

static void

, clone, eguals, finalize, getClass, hashCode, notify, noti fyAll,
ngseivsr tostr'n9: wa waQIt wai

lSEQNUEEéEliY

public static final String SEQUENCEQUERY

MessageService

public MessageService ()

public static void publish(Message msg)

throws MessageExcthion

publish() — stores a new Message

this method will verify first mgPersistent flag of the Message object and store the Message in the Db only if

this flag is true

Parameters:

msg - - a Message object

Throws:

MessageException - - in case of one of db transactions failed

insertMessage

private static int insertMessage(DbTrans trans,

Message msg)

insertMessage(msg) — inserts a message in the database

Parameters:

trans - - database transaction

—150-

Page 152 of 240

Page 153 of 240

WO 02/21413 PCT/US01/42041

msg - - a Message object

Returns:

inserted number of rows

insertAttributes

private static int insertAttributes(DbTrans trans,

Message msg)

insertAttribute(msg) — inserts all attributes (name/value pairs) of a message in the database

Parameters:

trans — — database transaction

msg — - a Message object

Returns:

inserted number of rows

publishAndFire

public static void publishAndFire(Message msg)

throws Mes sageException

publishAndFireO — activates the handle() method of the specific handler.

Handler is associated with the type of the current message. Before calling the handler this method will store

the Message object in the database

Parameters:

msg - — the Message object

Throws:

MessageException — — in case the event message can't be fired. Possible reason for this - the handle

can’t be found

getHandler

protected static MessageHandler getHandler(String mngype)

throws MessageException

getHandlerO — get the name of the class, which should handle the current message

The name of the class is related to the type of the message

Parameters:

mngype - - the type of the message

Returns:

MessageHandler - returns an object which implements MessageHandler interface

Throws:

MessageException — — in case the handler can't be found

—151-

Page 153 of 240

Page 154 of 240

WO 02/21413 PCT/US01/42041

getUniqueId ”

protected static int getUniqueId(String query)

throws Mes sageException

Get unique primary key id for an object, specified in the query parameter. Use the database

sequencer

Parameters:

query — - a SQL query string ot get next id

Returns:

int - the next id number

Throws:

MessageException - - in case of DB communication failure

main

public static void main(String[] args)

throws Exception

main() - main method provides functionality for unit testing of MessageService class

This procedure instantiates a new message and sets message type of the current

message to the HandlerTest class located in com.zap1et.message package Three attributes

of different types are added to the current message After fire() method will be called on

the current message the handle() method of the HandlerTest class will be executed This

method is implemented just for testing purposes It will print out the names, values and

types of all attributes, associated With the current message

Class SystemHandler

java . lang . Object

+— —com. zaplet .message . Systenfl-Iandler

public class SystemI-Iandler

extends java.1ang.0bject

implements MessageI-Iandler

Class for implementing Messaging API Contains handle method

Since:

Java v1.1.8

Version:

1 .0

See Also:

Message

—152-

Page 154 of 240

Page 155 of 240

WO 02/21413 PCT/US01/42041

handle (Message msg)

handle() gets the list of all observers of the current message, i.e gets the list of all messages,
associated in the current message for every associated message acivates the fire method, which in turn:

stores associated message if it is persistent activates the handle of the associated message

SystemHandler

public Systemflandler ()

Constructor Used to initialize a SystemHandler , ,

public void handle (Message msg)

handle() gets the list of all observers of the current message, i.e gets the list of all messages,

associated in the current message for every associated message acivates the fire method, which in turn:

stores associated message if it is persistent activates the handle of the associated message

Specified by:

min interface MessageHandler

Parameters:

msg - Message object

Interface MessageHandler

All Known Implementing Classes:

SystemHandler

public interface MessageHandler

Iterface for Messaging API Contains methods to be implemented by every

specific Handler class

Since:

-153-

Page 155 of 240

Page 156 of 240

WO 02/21413 PCT/US01/42041

Java v1.1.8

Version:

1.0

See Also:

com. zaplet . db . SelectAttributesByMsgId

public void hand1e(Message msg)

handle method

Parameters:

msg — - a Message object

—154-

Page 156 of 240

Page 157 of 240

WO 02/21413 PCT/US01/42041

CLAIMS

What is claimed is:

1. A method for processing a request to display an electronic message, the

method comprising the computer—implemented steps of:

generating first message data, wherein the first message data defines at least a first

message portion and one or more selection regions for one or more other message

portions of a multiple-part electronic message having a plurality ofmessage portions;

providing the first message data to a client;

receiving from the client a request for a second portion of the electronic message

selected from among the other message portions;

generating second message data which, when processed at a user interface of the

client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

2. A method as recited in Claim 1, wherein generating first message data

further comprises the steps of generating first message data that defines a plurality of .

message portions each having a corresponding selection region and that defines a message

user interface region that comprises all corresponding selection regions and the first

message portion.

3. A method as recited in Claim 1, wherein the first message data includes

user interface definition data which, when processed at the user interface, causes the user

interface to display the first portion of the electronic message in a first panel. ‘

4. A method as recited in Claim 3, wherein the user interface definition data

includes data which, when processed at the user interface, causes the user interface to

display a first identifier of the first portion of the electronic message in the first panel.

5. A method as recited in Claim 4, wherein the first identifier indicates

content of the first portion ofthe electronic message.

-155—

Page 157 of 240

Page 158 of 240

WO 02/21413 PCT/US01/42041

6. A method as recited in Claim 3, wherein generating the first message data

and generating the second message data further comprises the steps of generating second

user interface definition data which, when processed at the user interface, causes the user

interface to display a plurality of continuously Visible selection regions, each associated

With a different portion of the multiple-part message and the first portion of the electronic

message.

7. A method as recited in Claim 6, wherein the second user interface

definition data comprises data which, when processed at the user interface, causes one or

more other identifiers to be displayed in association with the continuously visible

selection regions to identify corresponding portions of the electronic message.

8. A method as recited in Claim 1, wherein the first message data comprises

selection region definition data which, when processed at the user interface of the client,

causes the client to display a plurality of selection regions that extend outwardly laterally

from the first portion of the electronic message.

9. A method as recited in Claim 1, wherein the first message data comprises

selection region definition data which, when processed at the user interface of the client,

causes the client to display a plurality of selection regions that extend outwardly upwardly

fiom the first portion of the electronic message.

10. A method as recited in Claim 1, wherein the second message data

comprises selection region definition data which, when processed at the user interface of

the client, causes the client to display a plurality of selection regions that extend

outwardly downwardly from the first portion of the electronic message.

11. A method as recited in Claim 1, wherein the first message data and the

second message data comprise one or more hypertext markup language (HTML)

instructions.

-156-

Page 158 of 240

Page 159 of 240

WO 02/21413 PCT/US01/42041

12. A method as recited in Claim 1, wherein the first message data comprises

selection region definition data which, when processed at the user interface of the client,

causes the client to display a toolbar of functions for manipulating the multiple-part

electronic message within a user interface panel that contains the first message portion.

13. A method as recited in Claim 1, wherein the first message data firrther

comprises one or more executable application building blocks, and further comprising the

steps of: i

executing the one or more application building blocks to result in creating and

storing one or more then-current dynamic data values as part ofthe first message portion;

providing the one or more dynamic data values to the client as part of the first

message portion.

14. A method as recited in Claim 1, further comprising the steps of:

retrieving one or more then—current dynamic data values from a database;

rendering the dynamic data values as part of the first message portion;

providing the one or more dynamic data values to the client as part of the first

message portion.

15. A method as recited in Claim 1, wherein the step of generating first

message data comprises the steps of generating first message data that defines at least a

first message page, one or more selection regions for one or more other message pages of

a multiple—page electronic message having a plurality ofmessage pages, and a plurality of

sub-pages of the first message page.

16. A method as recited in Claim 15, further comprising the steps of:

receiving a selection of a sub-page of the first message page; \

generating third message data that defines the selected sub-page of the first

message page and which, when processed at the user interface, causes the user interface

to display the selected sub—page of the electronic message;

providing the third message data to the client.

-157-

Page 159 of 240

Page 160 of 240

WO 02/21413 PCT/US01/42041

17. A method providing a multiple-part electronic message, the method

comprising the computer-implemented steps of:

generating first message data that defines a multiple-part electronic message and

includes at least a first message portion and one or more selection regions for one or more

other associated message portions;

providing the first message data to a first client;

receiving a request to forward the multiple-part electronic message to a recipient;

in response to receiving the request, generating second message data to the

recipient that defines the multiple-part electronic message; and

providing the second message data to the second client.

18. A method of asynchronously dynamically updating information of a

multiple-part electronic message, the method comprising the computer—implemented steps

of:

generating first message data, wherein the first message data defines at least a first

message portion having a dynamic content region and one or more selection regions for

one or more other message portions of a multiple-part electronic message having a

plurality of message portions;

providing the first message data to a first client;

receiving one or more asynchronous updates to the dynamic content region;

generating second message data that defines the first message portion, the

dynamic content region including the one or more updates, and the one or more selection

‘ regions; and ‘

providing the second message data to a second client.

19. A method as recited in Claim 18, further comprising the steps of:

receiving a selection of a second portion of the electronic message selected from

among the other message portions;

retrieving then-current dynamic content for a second dynamic content region of

the second portion of the electronic message;

generating third message data that defines the second portion of the electronic

message and that includes the then-current dynamic content for the second dynamic

content region;

—158-

Page 160 of 240

Page 161 of 240

WO 02/21413 PCT/US01/42041

- providing the third message data to the client.

20. A method for processing data at a-user interface comprising the computer-

implemented steps of:

receiving a request to display an electronic message;

in response to receiving the request to display an electronic message, requesting a

first portion of an electronic message;

receiving first message data; and

processing the first message data to cause the first portion of the electronic

message to be displayed on the user interface.

21. A method as recited in Claim 20, further comprising the computer—

implemented steps of:

receiving a request to display a second portion of the electronic message;

in response to the request to display a second portion of the electronic message,

requesting the second portion of the electronic message;

receiving second message data; and

processing the second message data to cause the second portion of the electronic

message to be displayed on the user interface.

22. A method as recited in Claim 20, further comprising the computer-

implemented steps of: ‘

receiving user interface object data; and

processing the user interface object data to cause a user interface object to be

displayed on the user interface;

and wherein the step of receiving a request to display a second portion of the

electronic mail message receiving second message data includes detecting user

manipulation of the user interface object.

23. A method as recited in Claim 20, wherein the method further comprises the

computer-implemented steps of:

receiving user interface object data; and

~159—

Page 161 of 240

Page 162 of 240

WO 02/21413 PCT/US01/42041

processing the user interface object data to cause a user interface object to be

displayed in association with a second portion of the electronic mail message that is not

displayed concurrently with the first portion of the electronic mail message.

24. A method as recited in Claim 20, wherein the first portion of the electronic

mail message is displayed on a panel.

25. A data processing apparatus comprising:

a memory device configured to store ielectronic message data;

a processor communicatively coupled to the memory device; and

one or more sequences of instructions in the memory device which, when

‘ executed by the processor, cause the processor to carry out the steps of:

generating first message data, wherein the first message data defines at least a first

message portion and one or more selection regions for one or more other message

portions of a multiple-part electronic message having a plurality ofmessage portions;

providing the first message data to a client;

receiving from the client a request for a second portion of the electronic message

, selected from among the other message portions;

generating second message data which, when processed at a user interface of the

client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

26. An apparatus for processing a request to display an electronic message,

comprising:

means for generating first message data, wherein the first message data defines at

least a first message portion and one or more selection regions for one or more other

message portions of a multiple-part electronic message having a plurality ofmessage

portions;

means for providing the first message data to a client;

means for receiving from the client a request for a second portion of the electronic

message selected from among the other message portions; ‘

means for generating second message data which, when processed at a user

interface ofthe client, causes the client to display the second portion of the electronic

message; and

—160—

Page 162 of 240

Page 163 of 240

WO 02/21413 PCT/US01/42041

means for providing the second message data to the client.

27. A computer-readable medium comprising one or more sequences of

instructions for processing a request to display an electronic message, which instructions,

when executed by one or more processors, cause the one or more processors to carry out

the steps of:

generating first message data, wherein the first message data defines at least a first

message portion and one or more selection regions for one or more other message

portions of a multiple-part electronic message having a plurality ofmessage portions;

providing the first message data to a client;

receiving from the client a request for a second portion of the electronic message

selected from among the other message portions;

generating second message data which, when processed at a user interface of the

client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

28. A method for associating related electronic messages in computer storage,

the method comprising the computer-implemented steps of:

creating and storing a first transportable application;

receiving user input requesting creation of a link from the first transportable

application to another transportable application;

receiving user input that selects a second transportable application from among a

plurality ofpreviously created transportable applications; and

creating and storing a link from the first transportable application to the second

transportable application.

29. A method as recited in claim 28, wherein the step of creating and storing a

link comprises the steps of:

creating and storing an asynchronously dynamically updated list of references to

other transportable applications in association with the first transportable application;

creating and storing a reference to the second transportable application in the list

of references.

—l61—

Page 163 of 240

Page 164 of 240

WO 02/21413 PCT/US01/42041

30. A method as recited in claim 28, wherein the step of creating and storing a

link comprises the steps of:

creating and storing an asynchronously dynamically updated List building block

in association with the first transportable application;

creating and storing a reference to the second transportable application in the list

building block.

31. A method as recited in Claim 28, wherein the step ofreceiving user input

that selects a second transportable application comprises the steps of receiving user input

that copies a URL of the second transportable application and receiving user input that

pastes the URL into the first transportable application in a region associated with the list.

32. A method as recited in Claim 28, wherein the step ofreceiving user input

that selects a second transportable application comprises the steps of receiving user input

that drags a representation of the second transportable application into the first

transportable application in a region associated with the list.

33. A method as recited in Claim 28, flirther comprising the steps of applying

one or more access controls to the link, wherein the access controls specify that one or

more users or groups may not access the second transportable application using the link.

34. A method of associating related electronic messages in computer storage,

the method comprising the computer-implemented steps of:

creating and storing a first transportable application;

automatically creating and storing a second transportable application as a‘ result of

a workflow process or event associated with the first transportable application; and

creating and storing a link from the first transportable application to the second

transportable application.

35. A method as recited in claim 34, wherein the step of creating and storing a

link comprises the steps of:

creating and storing an asynchronously dynamically updated list of references to

other transportable applications in association with the first transportable application;

~162-

Page 164 of 240

Page 165 of 240

WO 02/21413 PCT/US01/42041

creating and storing a reference to the second transportable application in the list

of references.

36. A method as recited in claim 34, wherein the step of creating and storing a

link comprises the steps of:

creating and storing an asynchronously dynamically updated List building block

in association with the first transportable application;

creating and storing a reference to the second transportable application in the list

building block.

37. A method as recited in Claim 34, further comprising the steps of

prompting a user associated with the first transportable application to confirm

whether to link the first transportable application to the second transportable application;

and

carrying out the step of creating and storing a link only in response to receiving

user input that confirms that the first transportable application should link to the second

transportable application.

38. A method as recited in Claim 34, further comprising the steps of applying

one or more access controls to the link, wherein the access controls specify that one or

more users or groups may not access the second transportable application using the link.

39. A method for associating related electronic messages in computer storage,

the method comprising the computer—implemented steps of:

creating and storing a first transportable application;

creating and storing a link from the first transportable application to a second

transportable application;

‘ determining that a programmatic object associated with the first transportable

application is new, updated or deleted;

in response thereto, modifying the link in accordance with the new, updated or

deleted object.

~163—

Page 165 of 240

Page 166 of 240

WO 02/21413 PCT/US01/42041

40. A method as recited in Claim 39, wherein the step of modifying the link in

response to an updated object comprises the steps of identifying all other transportable

applications that are linked to the first transportable application and that reference the

updated object, and modifying all references to the updated object.

41. A method as recited in Claim 39, wherein the object comprises a content

element of the transportable application, and further comprising the steps of searching the

content element for one or more recognizable object references, and creating one or more

links relating to the recognizable object references in a list of automatically generated

links.

42. A method as recited in Claim 41, wherein the object reference comprises

an e—mail address or user name, and wherein the step of creating links relating to the

object references comprises creating a mail link in the list which, when selected by a user,

generates an e-mail message to the address or user name.

43. A method as recited in Claim 41, wherein the object reference comprises a

Uniform Resource Locator, and wherein the step of creating links relating to the object

references comprises creating a URL link in the list which, when selected by a user,

generates a display of a hypertext document identified by the URL.

44. A method as recited in Claim 41, wherein the object reference comprises a

title of a third transportable application, and wherein the step of creating links relating to

the object references comprises creating a link in the list to the third transportable

application.

45. A method of associating related electronic messages in computer storage,

the method comprising the computer-implemented steps of:

receiving user input associated with completing a task in a first transportable

application;

-164—

Page 166 of 240

Page 167 of 240

WO 02/21413 PCT/US01/42041

generating a list of one or more other transportable applications that are likely to

follow the first transportable application in a workflow or business process associated

with the first transportable application, based on relevance of the other transportable

applications to a context of the first transportable application;

requesting user input that specifies whether to link one or more of the other

transportable applications to the first transportable application; and

creating and storing one or more links fiom the first transportable application to

one or more of the other transportable applications.

46. A method of displaying a message that contains an embedded HTML

document, comprising the computer—implemented steps of: ‘

receiving a transportable application, which comprises an embedded HTML

document, in an e-mail client application;

displaying the embedded HTML document in a graphical window of the e—mail

client application;

displaying one or more graphical navigation buttons in association with the

graphical Window;

receiving user input that selects one or more of the graphical navigation buttons;

and

displaying one or more other HTML documents in the graphical Window in

response to the user input.

-l65-

Page 167 of 240

Page 168 of 240

WO 02/21413 PCT/US01/42041

47. A method as recited in Claim 46, wherein each of the graphical navigation

buttons is associated with client-executable computer program code, and wherein the step

of displaying one or more other HTML documents comprises the step of executing one or

more instructions of the computer program code that are associated with one of the

selected graphical navigation buttons that is selected by the user input.

48. A method as recited in Claim 46, wherein each of the graphical navigation

buttons is associated with client-executable JavaScript code, and wherein the step of

displaying one or more other HTML documents comprises the step of executing a portion

of the JavaScript that is associated with one of the selected graphical navigation buttons

that is selected by the user input.

49. A method of associating a plurality of sets of related electronic messages in

computer storage, the method comprising the computer-implemented steps of:

creating and storing a first set of a plurality of linked transportable applications;

creating and storing a second set of a plurality of linked transportable applications;

designating a first transportable application among the first set as a home

transportable application for the first set;

designating a second transportable application among the second set as a home

transportable application for the second set;

creating and storing, in association with the home transportable application of the

first set, a next link that identifies the home transportable application of the second set;

creating and storing, in association with the home transportable application of the

second set, a previous link that identifies the home transportable application of the first

set.

-l66—

Page 168 of 240

Page 169 of 240

WO 02/21413 PCT/US01/42041

50. A method as recited in Claim 49, wherein the first set comprises a first

message web, the second set comprises a second message web, and the links among the

first message web and the second message web associate the first message web with the

second message web in a message web ring.

51. A method as recited in Claim 49, further comprising the steps of:

creating and storing a third set of a plurality of linked transportable applications

having a third home transportable application;

modifying the next link and the previous link of the first set and second set such

that the third set of transportable application is logically inserted between the first set and

the second set.

52. A method of generating a list of recipients for a first message that is linked

to a second message, comprising the computer-implemented steps of:

creating and storing a first transportable application that is linked to a second

transportable application;

creating a first recipient list in association with the first transportable application,

wherein the first recipient list identifies one or more users or groups to whom the first

transportable application is directed;

creating a second recipient list in association with the second transportable

application, wherein the second recipient list comprises at least one reference to the first

recipient list;

automatically resolving the at least one reference into a second list of one or more

users or groups to whom the second transportable application is directed.

~167—

Page 169 of 240

Page 170 of 240

WO 02/21413 PCT/US01/42041

53. A method as recited in Claim 52, wherein the second recipient list further

comprises at least one expression that identifies one or more users or groups to add or

delete from the referenced first recipient list, and further comprising the steps of

automatically determining a second list of one or more users or groups to whom the

second transportable application is directed by resolving the at least one reference and

applying the at least one expression.

54. A method ofpropagating data fiom a first message to a second message

that is linked to the first message, comprising the computer~implemented steps of:

creating and storing a first transportable application that is linked to a second

transportable application;

creating and storing a reference, in a first data field of the first transportable

application, to a second data field of the second transportable application;

determining that the first data field of the second transportable application is

changed; ‘

automatically creating and storing the second data field of the second

transportable application in the first data field of the first transportable application.

55. A method as recited in Claim 54, wherein the steps of determining and

automatically creating comprise the steps of:

determining whether the first data field of the first transportable application

comprises a link to a second data field;

verifying that the second data field comprises up-to-date data;

retrieving data from the second data field;

storing the retrieved data in the first data field.

56. A method as recited in Claim 55, further comprising the steps of:

determining whether any other transportable applications are subscribed to the

first data field;

carrying out the step of automatically creating and storing the second data field

only for each transportable application that is subscribed to the first data field.

-l68—

Page 170 of 240

Page 171 of 240

WO 02/21413 PCT/US01/42041

7/70

.722

CLIEN 7'

1.0.11

BROWSER

706

PEESENAL \
INFORMA 770M MANAGER

ADAPTER

 205

EXTERNAL
APPLICA TION

FIG. 13

1Q?" SERVICE ENTERPRISE

J_7_2

EVENT PROCESSOR

M

HTTP SERVICE

122 116
05535555 MESSAGE—3H? VICE

778
‘ 724

—-— 7 BA E SE VICv APPLICA TI0N8 DA A S R E
720

SECURITY —SER VICE

_7_7_0

MUL TI—PAGE MESSAGING SERVICE

SUBSTITUTE SHEET (RULE 26)

Page 171 of 240

Page 172 of 240

PCT/US01/42041WO 02/21413

2/70

R236Q23«\mmm:Kzfimfi.«DEE55.502my:.9§E“61%ngNSMESmmmmu<mmm¥mNmg:mmm\C530mmON

MGR;Em,29E«65.502S<<kzmxfiIII!.0189.:EmazammoommmuEBEEEQ3‘NMMESmmmMUEMQQ:MMDS«Wm.».SV‘Em2SE200mmmuov‘m2

BPSEm95Eng9%Emfio3%:Emmav.2MESStmmNFC5tMNZNEQv‘N4933uzmmmoomqE2328\E52828ad.mu:“Em..028v6.3:muSm1.:.33.
a

 0“6E

SUBSTITUTE SHEET (RULE 26)

Page 172 of 240

Page 173 of 240

PCT/US01/42041WO 02/21413

3/70
K

‘0N

599M198 (ms/f3 '

\

9.GE

ck“/33239a.Eggnog$6»
mmootfls.a.35:03:9980.36%Em.§.\.v§\IIILIIIIJIl/

gmuocuéShunt5$3‘
Q:

63%:

:3mgwmm:3%
mBEcommit

m3

tang:2350\896

Jaqagodsgg Jsanbae/

.330Emacs:

333:8£338.81"tote.“:mmmco.
3&8m<82_QmNNRN_v.3«xmm6«3mWm»ngmmotmpxWEEkmuumsfiEmmoco:EmuocoEEm“,wboEmSQ:ohuu.EaEE8:fiookcozgmuucuébinomm

Emmaomm~55
SUBSTITUTE SHEET (RULE 26)

Page 173 of 240

Page 174 of 240

WO 02/21413 PCT/US01/42041

4/70

FIG. 7E

19!)

AUTHOR ENTERS PORTAL

1.9.2

AU THOR AU THORS/EDITS NEW TRANSPOR TABLE
APPLICA TION

792

NEw TRANSPOR TAEZE APPLICA TION IS
CREA TED

 793

TRANSPORTABTE APRLICA TION
IS MAILED T0 ALL RECIPIENTS

 1.9:!

RECIPIENT RECEIVES TRANSPOR TABLE

APPLICA TION IN IN—BOX
L9L5

SYSTEM DWAMICALL Y DETERMINES CLIENT
CAPABILITIES

796

TRANSPORTABLE ARPDEA TION I5 DISPLA YED
FOR CLIENT

 797

RECIPIENT RESPOND—S—TO TRANSPORTABLE
APPLICA TI0N FROM WITHIN THE E—MAIL MESSAGE

 798

TRANSPOR TABLE A—RRLICA TION .DA TA IS
UPDA TED FOR ALL RECIPIEN 7'5

SUBSTITUTE SHEET (RULE 26)

Page 174 of 240

Page 175 of 240

WO 02/21413 PCT/US01/42041

5/70

FIG. 1F

1.921

AUTHOR AU WORKS/EDITS NEW TRANSPORTABLE APPLICATION

797A

CREATE OR RETRIEVE PAGE(S) FOR THE
TRANSPOR TABLE APPLICATION

7975

GREA TE TEMPLA TE FOR

TRANSPOR TABLE APPLICA HONS

191C

CREATE TRANSPORTABLE APPLICATION BASED '

0N TEMPLATE AND/OR PAGES

FIG. 38

326A

CON TAINER

320A

BUILDING

BL OGK

f350

QZQB

CONTAINER

3200

BUILDING

BLOCK

3208

BUILDING

BLOCK

.3200

BUILDING

BLOCK

SUBSTITUTE SHEET (RULE 26)

Page 175 of 240

Page 176 of 240

PCT/US01/42041WO 02/21413

<NGE

m6E9.“«\Um\\&moi.096qu3323NOW

\3.53%\35%a
96%\EN59:

ommx.«SUN»:oEmoQEmsmEEDN«3N»:oEmuQ.596BBUN«8N»5&ch.mem”3qu

 @quN.3quEl1w5lEmvwSmE$24'UQQEQQN“VONNVNa”:I
 \QNN

amx/v/

,

gmimm.58:“gmimmEu:._33mm,58:__
_.‘

JaA’o'] 0:0019/027 uqqooyddv

SUBSTITUTE SHEET (RULE 26)

Page 176 of 240

Page 177 of 240

PCT/US01/42041WO 02/21413

mKN

Qb28x3

mamtommfioml
BBQSR3

___fl

_:3

ma'1
_

wtmxam.%DNDQWQBM$.60
632:8ma

3”€ngmssgq36$

«3%,ng:88me.53cob9‘5quWWW

ESEtooQm§NQN

«low.a:3%:lllllllalllllllllllIlllllllllllllllllllclllll"l|lll
80.5%323%

llllplllllllllllllll‘llllllllllllllrll-Illlllilll 5:35»chmmpEmmESQSEES$839ImmmouwESQ
56:qu

©megmtoztok>6: 53mm.55:

wmlw.

lllll'lll'llll'lllllnlllwwlw3&5mcEm.

lllllnlrllllllllnl'u’llllll

SUBSTITUTE SHEET (RULE 26)

Page 177 of 240

Page 178 of 240

PCT/US01/42041WO 02/21413

2023.352

ON.Qk

mmoll6:5ch@NBKw:38.83323%:.2as.33388-8829:25amEn.2n.9:“5:30:525$58:E82E35III.35.8%_E_.5086E3usemp23%m3.nooo9—02mBBm9:.:aE20.SUN5:35E5N32IoE:5305.538:38$82I

«8%33.38.6335

”omenEmaEcoEEoo

00

AN98NtentmycmEEoo@mmcoawmmL3:.$.8szmlmw.82%.,:22En.2n.aim5:3.v:3.3%.F%3qu3t
Q

 3835358:?anmm25:2:wmamItom3mmgvcm;c52862mm?2050932mquiANSo_tun:chEcoBE©mmcoammmBENI@ maulmuch0PB.=on_cozoohhozI. mctocm2Em.AI'Lmri.42028::onEm2n.3&0szx.‘.9828:33£2252:Av

00832$33I”583$we38%Amycogozgom_o:m_>v

bzoEEou

SUBSTITUTE SHEET (RULE 26)

Page 178 of 240

Page 179 of 240

PCT/US01/42041WO 02/21413

9/70

gmimmtotEmma5.Hot

WNQNwhen

 «63mm.SQ@932th

EQN

~40.leEmfimmIlilIlllllIlllllrlllllllllll'lllllllllllll’l'llllllllll'llll
32m.xoSBé

Pang:w:msm

Etna.89w032%sawIII'IIIIII'IIIIII‘I
I'llIll]Il‘llrlllulllllllltllllllll‘llllllllillIIIIIIIIIIllllllll-IIIIIIIIIIIIIIII

SUBSTITUTE SHEET (RULE 26)

Page 179 of 240

Page 180 of 240

PCT/US01/42041WO 02/21413

10/70

...fl
_.

33mm988mE3gm32m."nomEmmEpint«Stem.figx33:_“no:“AT"
__

1I"E8,$08.nto:3.:qu3%cut_
Ema."

New._m
.Bium.“Sow@3806"

mam"
__

Eméa.E_:8uIIIIIIIIIIIIIIIIIIIIIII muwmmlmlllnlnuxxnllIIIIIIIIIVIIITIIIIIIL.........éfimfifiw--3-i5:-------------.gm\m.§::j
_

13%EggEI33.«8:8“ll. _8w_ T«3%L.Illllllllullllllllll'l'llllll'l'lllllll||’l|lll|lIllll-II'nlIIl'llllllllllllllllll
SUBSTITUTE SHEET (RULE 26)

Page 180 of 240

Page 181 of 240

PCT/US01/42041WO 02/21413

17/70

EN.GE

Tmimm.40m»333:5

gmimmto:SufiE.

“Swot

wmomwho.»:o.cou.\\qq<

uéhcutE:96

33%538.3%

kmimm

whom

83.acofixm

_.___._—____..____

..................N.@W-mw\mwmi--l5-1--DE:EN§§\&$ A

WENoutleé
_

«mum.«3.30n-_
_

m.Efi‘nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn NItwunluIn:It’llnuuzulnununnlnulnL
mamGEN

SUBSTITUTE SHEET (RULE 26)

Page 181 of 240

Page 182 of 240

WO 02/21413 PCT/US01/42041

12/70

FI6' 3A -1 Interface
.302 ServiceInterface
_

306

{ Interface Interface Interface
NotificationInterface Lifecyc/efnterface Securitylnterface
———

(N.3

CollectionNodeObject Interface

Interface SystemService
UserObject _

""""'""'— —
*getNameO: String
*getEmail(): String
*getScreenNam:30: String

CollectionNodeObject Interface Interface

Interface MetaObject FolderObject
GroupObject _

' - I'm- *hasMoreFo/derO:boo/eon
*hasMoreMemberSO: b0? mextFo/derO: FolderObject
*NextMemberO: Collection *0wnerO: UserOject
*getModerators(): Enumer

328*getMemberGroups(mem
*getNonMemberGroups(

.330

SUBSTITUTE SHEET (RULE 26)

3.32

Page 182 of 240

Page 183 of 240

WO 02/21413 PCT/US01/42041

13/70
FIG. 3A -2

 334 340

Interface Interface Interface

0A0 Presen tab/e even tHand/er
—__

*de/eteO: boo/eon
*update(): boo/eon
*insertO: boo/eon

*render(clien tRequest: C/i *hand/eEven t(ev: Even0. v

324

Interface

Mai/able

Interface

InheritanceCriteria

\

§‘975'$3m-I35"3'0~ ‘%09?7P

LuN0

 —

320 322 326

I

I

I

I

' Interface Interface Interface !
ScheduleBui/dingB/ock PollBui/dingB/ock Zap/etContainer I

I

I

SUBSTITUTE SHEET (RULE 26)

Page 183 of 240

Page 184 of 240

PCT/US01/42041WO 02/21413

74/70

mrSm..03

Sou30.33%5go5?.at8&8...Sm.3£o§9%$sumQSQSEEU:32»m9Gattmfitzmfisem?E.6.»$83.52$9QC6gram..6EDSEEQEPE?.63m3?SEEM.625B?SE03..§cm3*02:0:9330”QM”Egon:m9.3&8é§39§
III€53“saga?gmubcufitgaommgmmucuztotuum:ozBag“SEESSumxoombozghufifio89:3588:35moothHmootmEH Sm..GE

mom.

KmmuauémuximmSE35

SUBSTITUTE SHEET (RULE 26)

Page 184 of 240

Page 185 of 240

PCT/US01/42041WO 02/21413

75/70

nSQwEQZEEMZBZNva

Rum:m6:mm?nSQmwmzexkmSmNofi

.N2stSzmq.‘Mimi«SEENm6;

s29:§3m%Ems«0&2,mev62»

ESEESEE88029:$qu<15m:39¢$1ng3‘ -E».V.mut

SUBSTITUTE SHEET (RULE 26)

Page 185 of 240

Page 186 of 240

WO 02/21413 PCT/US01/42041

75/70

FIG. 5

H WL

PRESEN TEI?

592

WML TRANSPOR TABLE

‘— AggIIIIIIIN

REQUEST

504

BUTLENG
BLOCK

,82 FIG. 6

BUILDING

BLOCKS

CONVERTER PRESENTER

604A

POLL TABLE

CON VER TH?

1820

SCHEDULE

BB

I
I
l

UILDING BLOCK PRESENTER
DEVELOPER I DEVELOPER

4%

SUBSTITUTE SHEET (RULE 26)

Page 186 of 240

Page 187 of 240

WO 02/21413 PCT/US01/42041

17/70 700

SET NOTIFICATIONS

ON — NOTIFY ME OF CHANGES

TO THIS MESSAGE

0 OFF -‘ DO NOT SEND ME
NOTIFICATIONS

. CUSTOMIZE l—l

Set Notifications 702 7—05
(5 0n: Notify me of changes to this message:

[3 Page 1: File Sharing} 710D Page 2: Poll

Cl Overall Application\/‘772 774
C] When new pages are added or the status changes-f

Send me notifications:

i—LEIT 7’6

0 Off: Do not send me notifications/704

l-i

FIG. 7B

900

I:@ Groups tGroup Description
906

QA Testing - (Private Group —— Restricted Access)/
For QA t sting

Emaiilmoderator to request membership/”903”
902 904 __

_i 909
IE]~

Ell—i
FIG. 9A

SUBSTITUTE SHEET (RULE 26)

Page 187 of 240

Page 188 of 240

WO 02/21413 PCT/US01/42041

1.3/70

FIG. 7C

_7_2_Q

LOG ON TO PORTAL ‘

.722 .

SELECT NEW MESSAGE OPTION

724

NA VIGA TE 70 TET/TPZA TE FOLDER AND

SUB—FOLDER

_72_5

SELECT TEMPLA 7E

12.5

DISPLA Y TEMPLA TE

ZJQ

FILL IN TEMPLATE ‘

_Z3_2

(OPTIONAL) ADD OR REMOVE PAGES6I

FIG. 70

L14

ADDRESS THE TRANSPORTABLE APPLICATION

7~_3_6

SEND TRANSPORTABLE APPLICATION

SUBSTITUTE SHEET (RULE 26)

Page 188 of 240

Page 189 of 240

PCT/US01/42041WO 02/21413

19/70

cfi.GP.‘

6whoNI?

MQQWNWOhmIHHIL_§__§_.ycmEES2Sum.6505m_£5. E91288.m:2am:2ES5522.EwEEoo29:3oEflfi5Rs88.R3253295m0:5380502ANweN”TEE:co_mm30m_om7.me500555:22;of0325I _.22cozoEoEboEEzm38$8326Boa:—20538.62c36;.»L8:ozntomooAN3FtoncmwcoEcoBE6233.:”03:.omen.Leno»:omen.a$5.8$8330_.35258330woman=090%magma3.3:cmommoam$00.oEoymzo9
SUBSTITUTE SHEET (RULE 26)

Page 189 of 240

Page 190 of 240

PCT/US01/42041WO 02/21413

20/70

NWSE
mhm..323ESE.83323%:__<.2:.33588:88£958afl%_.lg.3»;anmmm..\.m:ozao£58mwmom_mcozaobtzowm38%:3:33€23me_boEEzm$8$839883333.8.35Eooamao~©§EmEI£_Em“SEES...Willa1.1.-E§”9.ucmm.HEEL330588:0mNm.3%3:80.6_uc<.EooxcoquoEfiNme:.EooxcanoozEgmw:6.3'26an385m.I5352cozaooxm..co:o_8mm

3Km.

QNQm

SUBSTITUTE SHEET (RULE 26)

Page 190 of 240

Page 191 of 240

PCT/US01/42041WO 02/21413

21/70

0%.GE_%._%,.moammue0532>:8$5282s8822.6853523“was35362__<.20503a22:8:8$38.:2:he52%6593m5:8“35362E822:89:3Ea:mmmommm:050mm33295£88£5.65235“.Eofimmm£3350%25m0.omommoE2:32>
:8$5283E.8322585358on“was35362.2.3233$332:9:22:2:8Ecméomm533052:32>:8$58835mo.33:238:«833m

"858m28DEm:cozsnEmE=2:.3Emmon:833mm»:333.8.88::35.5332ram32:;$885of22:828no»::835333.
68:82:25w0..0830:$35288acone32%3yo::3383685.05ncu35:38.3Ho:5;3m:cosanEmfi=9:”mmmmeuuo=95633653Eu»on:8=8mmmommmz$33238%.302

«no:£20m
_m_tflom_mm966oz—Eomon:3mmommue2:we383azem£33%:85:083m

@80231:209:3is......m:o:aobtaommmoo}.05am:.393028%.83:83058%Em2..mmommms2:Song25%.653ES55.9638553%.83:830585:8mmcfimmwmmfi28:8Btaowmmmommoz

mwm.

mwm

3m.

wvm

Nwm

SUBSTITUTE SHEET (RULE 26)

Page 191 of 240

Page 192 of 240

PCT/US01/42041WO 02/21413

22/70

on2:32>32%ma:33:338;862mm3:06.:Abtzomm3896ch8322EcmfifimmBrown—ma_>oomEm5362233ncoEmtzo=<6.5Amman9:so.33n__a3:38smomvmcobm>m
23:8525moon.

.223$3839:mahomzo3$02.32>3micon=3)$5368:02;Beam
mcozaobtzommmoan

SUBSTITUTE SHEET (RULE 26)

Page 192 of 240

Page 193 of 240

PCT/US01/42041WO 02/21413

23/70

Mm..GE Tomloloi.msucmaE38.8238$59..=<

“no.0;
015:35581Po

9%L895:809305383:3239m59333502335u393B53528a$955=<32352..5030>3:0532

mm.

633%:8396;co96203830::03;EmmaommoEoz
mmmommoz.33

¢mm

 033E.963?2:Egrew2:E.....I23058EEE56385E
Esotocm530232

x3525msohw
omommo}”.me

NNm

So.

.05.63388:8829:80mfl.
th

afi-Na

SUBSTITUTE SHEET (RULE 26)

Page 193 of 240

Page 194 of 240

WO 02/21413 PCT/US01/42041

24/70

FIG. 90 922 910

912

.934

Group Directory

_

Applications

_vs_r_y_e"
Release 1 0 Beta—2

Personal Messages

934A

924

FIG. 95
972 974 975 970

973 Page Folder: |_|—|| _- -' '

I.

976

978

NAME CREATED BY LAST MODIFIED

3"; NEW PAGE MATT SMITH 6/15/01 02:25 PM PST

I (Create new Page)

Name: NEW PAGE

Description: NEW PAGE 979
Version: 1 ”T—

Author: Matt Smith

Created: 3/16/01 02:56 pm pst
Modified: 3/16/01 02:56 pm pst
Location: 977

—_o__ :5:

SUBSTITUTE SHEET (RULE 26)

Page 194 of 240

Page 195 of 240

WO 02/21413 PCT/US01/42041

25/70
950

@Zaplot Application Builder - Microsoft Internet Explorer MEI

Zaplet Application Builder - E
This tool allows you to create a Zaplet Application by combining W.
Zaplet Pages. Fill in the information below and pick Add Page to
add pages to the application. To modify an existing Zaplet
Application, click Open at the bottom of the window. Click a page’s
name to view or modify its settings, or click Edit to modify the
page itself.

Name:

New Application N954
(Name can be changed when using ”Save As")

9.56 _9_5_2

Description:

(This appears in the Applicatio Selection dialog box and
helps users select the appropriate Application)

Introduction Settings
These settings determine what information will appear in the
introduction area at the top of the message. More Info...

960 964
Custom fields:(0ptionall Name of status field:(0ptionali

new lobek Requireg 2 Iml6 .._.__._____.__.—___.__

V Possible settings for status field:
@ 0

(Optional) (Type one setting per line)

ins__________._.__._IEI

Default Pages 968
These Pages will be—tfirt of any Zaplet Message sent using this
Application Template. Pages marked as required cannot be deleted
from a Message. More Info...

[Add Page}/968A

Optional Pages 26_9
These are Pages that the author (and possibly recipients) can
choose from when adding a Page to the Zaplet Message. These will
be listed on the Add Page screen. More Info...

[Add Page]/969A
Allow authors to add Pages from outside this list

FIG. 90

SUBSTITUTE SHEET (RULE 26)

2.55.9

Page 195 of 240

Page 196 of 240

WO 02/21413 PCT/US01/42041

FIG. 10/) 26/70 1000
@Microsoft Internet Explore.

1004

Default Page Settings

7005 Page We“ l-l

I Enable updates (Update in this Application when the Page is modified.) 1002 I
I Require this Page (Author and recipients cannot remove it from the

Application.)

7008 Page Template Properties
Name: Dashboard

Version: 2 .

Author: Matt Smith

Created: 1/09/01 07:43 PM PST

Modified: 1/09/01 08:10 PM PST

Location: Starter Set

::

FIG. 108 ° W

Zaplet Page Builder

This tool allows you to create or edit a Zaplet Page. Pages
cannot be sent alone but can be added to Zaplet Applications.
To view or edit an existing page template, Click Open. When you

haze finished creating or editing a page, click Save As to namean save it.

Name: New Page #1012
(Name can be changed when using "Save As”)

El

(This appears in the Page Selection dialog box and
helps users select the appropriate Page)

(This text appears at the top of the Page. The author
will be able to change this text.)

SUBSTITUTE SHEET (RULE 26)

Page 196 of 240

Page 197 of 240

WO 02/21413 PCT/US01/42041

27/70

1020

mm Page sum - awn Mamet were

_—

Zaplet Survey Page Builder .' IEI
This tool allows you to create or edit a Zaplet Survey Page.
Pages cannot be sent alone but can be added to Zaplet
Applications. To view or edit an existing page template, Click Open.
When you have finished creating or editing a page, click Save As
to name and save it.

 Name: New Page (—7.922
Name can be changed when using ”Save As”)(

”es°""“°”‘ ‘—--—-—_—-———-————-@WEI

(This appears in the Page Selection dialog box and 1026
helps users select the appropriate Page)

I""°d”°“°":l—E'WEI

(This text appears at the top of the Page and guides

10'24

recipients on how to use it.) 7023

. . . 7030

Survey Optionsztl Make realplent responses anonymous (—4Cl Allow recipients to change responses until the s rvey is closed

FIG. 100

SUBSTITUTE SHEET (RULE 26)

Page 197 of 240

Page 198 of 240

WO 02/21413 PCT/US01/42041

28/70
1102 7104 1106

Instructions for recipients:

—/"08

Yet Another User

D Include linked comment section\
(Shows Harticiant comments) "16

FIG. 11A

1120

@ Move Up 4} Move Down x Delete

Name Date/Time . 1-2 of 2

Sample User Mar 27, 2000 4:25 PM
This 'is a sample comment.

Another User Mar 28.‘ 2000 10:48 PM

This is another sample comment.

1126 1128

FIG. 11B

1130

 ‘i-i‘llove Up g Move Down x Delete @l—'sTdTI

Description of shared files: (optional)
——————————————————- 1132
IE.

L‘J Enable File Versioning\7734

[M-Knss

FIG. 11C

SUBSTITUTE SHEET (RULE 26)

Page 198 of 240

Page 199 of 240

WO 02/21413 PCT/US01/42041

29/70

1140,

€03i_l fiMove Up 4} Move Down X Delete~—____————————-

No 1142
Image

Attached

|Attach Image... |

Image Name: (required)

i—i

Ima . e Description: (required)

1144
FIG. 110

1150

Image Worksheet

|Add Image| |Add Multiple Imagesl

Image Gallery Namel_i

No Images have been uploaded. Click on the

Add Image button to begin uploading.

Space available: 30 Imaes Pace:1 of 1

Allow participant contributions

FIG. 115

1161 1160

31ml {Move Up 4}; Move Down x Delete

Field Names Field Values

i_____
FIG. . 11F

SUBSTITUTE SHEET (RULE 26)

Page 199 of 240

Page 200 of 240

WO 02/21413 PCT/US01/42041

Page 200 of 240

NOTE: Accepts only HTML (.htm and .html) files

[Upload file...] (required)

30/70

7772 7770

Imml

I ‘Ti‘Move Up 4} Move Down X Delete

FIG. 116

7170

91ml {Move Up 4.} Move Down. x Delete
Instructions

Please enter the address of the Web page you would like to display and interact with
in your Zaplet message: (required)

(92.9., http:/l m.zaplet.com/)

1182 1130

FIG. 11H

SUBSTITUTE SHEET (RULE 26)

Page 201 of 240

PCT/US01/42041WO 02/21413

37/70

En.2<I'llwe5SENSmtonom32.5:3538%2:t55£58can:8asonB5u:8332:5053%35v.8.33

oIIIIIII94—39QOmtmnomESQ¢Va.74

 mucmEEoo52952“88:80auc<

a.GE52E.23

‘535%;Bago?who....228:2
22asE33322SN“%zmsmuw

u.c.g83

anus32>So»9335

 8:533%ES_m_,.._m35%mm:._<zmm=z_mo".“Emmwa323m33°2»:a:3m8335352:0Edda3*2$5an«8m..2o8E2%30533mm:$9:heis:u33%:3Sweat£5.mcozzflflfiimage2%“VON“E8:08so»moxosmeo;25V83.222858m2m8m5.owmc83%25%$33$28&anH33033325;0535513358;€25.62£32352_oc_u:8®

:ozuohofinun
. is88

~2quE2335-332%5352-25445"E5333
383

E38h}E,23

23m92m”222m23m“$3

SUBSTITUTE SHEET (RULE 26)

Page 201 of 240

Page 202 of 240

WO 02/21413 PCT/US01/42041

32/70

@- ' {ruove Up 4} Move Down x 033
7302 Select Invitation Style...] (required)

7304 Event Title: (required)
i:_.__________"._'_m"—l1_3@

7306 Brief Description: (required) Il—

Event Details: (required)

l—@
1 El

7310 Date: (required) 1 'l—

(e.g., Monday, 10/12/99) ’

7312 Duation: (required) I)—

(e.g., 7am—5pm)

7374 Location: (required)
l_l

Address: (required) V

lgl

.7378 RSVP By: (required) I:—

(e.g., Monday, 10/12/99)

FIG. 13A

7316

@Mvmced Options
7.3.30 '

Recipients can vote for: ‘?

7332 |0nly1 choicel—l
I Include ”Other' answer choice and let participants write~in.

7.3.34 ‘7’

1336'
ote optionsz?

D Allow participants to change their vote
7338 El Allow participants to vote anonymously

0" results available to participants:‘?
.Always OAfter voting OAfter poll closes ONever
Note: Author can always see results

1—175m:

FIG.- 13C

SUBSTITUTE SHEET (RULE 26)

Page 202 of 240

Page 203 of 240

PCT/US01/42041WO 02/21413

33/70

25:630:22328x:38252.ma:262.?
mm“.GE

.A5532EEEES25m2?286:8;mzocmvcosoom“SEES3%:$2050:25am.:25£0

SUBSTITUTE SHEET (RULE 26)

Page 203 of 240

Page 204 of 240

PCT/US01/42041WO 02/21413

34/70

0&2

9:38:5:2_M_E__IEI_E_328x5.826:mm.5262m
9mg6E€02.623353385556$9:;be.525:=532:."3oz$5:a$52.a»:“$333353.6226.2n

"20:8

ED.DD\U\U_U3053?£¢EU.EIU39:32EnPUB

088;2.6$33ummoaoi60:8383qu
A532;SEE25:8as.33as:58:5

5.21030

€235“.23”E:.33“use2:$8.?:3do.»as:58a“:
.9230ng“8.33.733msnmcom~é_®

90.2m}?9.923%...“N32

SUBSTITUTE SHEET (RULE 26)

Page 204 of 240

Page 205 of 240

PCT/US01/42041WO 02/21413

35/70

NR30km.“90.2.092Q92

SonBo$2tuning:8Bamaaom.328was2.:3c.338638EB3E25:38 mums.GE55.o2:a£2,«.33or:2:32383tons:x28.056:2:6335%oEoz
228x.58252mma:255.5.

.3050:wa

V52$2No.2

SUBSTITUTE SHEET (RULE 26)

Page 205 of 240

Page 206 of 240

PCT/US01/42041WO 02/21413

36/70

VN:ON:

 <3GE

x85523E2?

3:59.5%23333tacoBa2:mm38%no»ammomamo;.885EH9HQ25.2223.2izuLHowflag:5so.3a.uflawflaga:mH9flawa_I|.I.III|_®He«mHawH@s€9.38.5“829.0.320“5.6%S29...35._.._|._:368.588353.5mmU.5132;35%anEBa83%$320W50.25.2;I_.HEggsP_5_E):TIi‘S6805:8ficmfioomNM:B
w

93323332033:298;L8cozmozoNW3223x:322..w.a:25;_é_®
Page 206 of 240

Page 207 of 240

PCT/US01/42041WO 02/21413

37/70

an:

m:GE

228x.5825:m.a:262$

x005£23m#69:+on...“SEESosTazz0x8#2”5.122%06mm:32533mmfizasono5an.50»m_“as;:982026533:39.02.5”,5:85_mmcoammm9.memmfi_® v_oo_m_£23mtomcH+
R1:NM:

SUBSTITUTE SHEET (RULE 26)

Page 207 of 240

Page 208 of 240

WO 02/21413 PCT/US01/42041

38/70

Slim Up § Move Down X Delete

 Instructions for recipients:

@7442
(e.g.. Please rate the candidate in the following areas...)

Rating Scale:
Minimum: 1

. —— 7444

Maxnmum |_|E| /1446
U Show N/A option

Enter rating labels: (optional)

221%
s.E 7448

:3 @@
(e.g., Poor, Average, Excellent)

Questions or items to rate: (1 requirecD/— 1452
[Add 5 Entries Remove 5 Entries]

Ill
1450

i
ll

_.L O.

(e.g., 1.Communications Skills 2.Technical Skills 3.0verall)

FIG. 14C

SUBSTITUTE SHEET (RULE 26)

Page 208 of 240

Page 209 of 240

PCT/US01/42041WO 02/21413

59/70

mmmemGQkQQmmgm9mg.NR:

MNumfimommmouv‘E«6QIDIWN..

RUDE03.3meWWWkogmQEQNSmNimw.kmgmczadbmNIWNIms.GE

SUBSTITUTE SHEET (RULE 26)

Page 209 of 240

Page 210 of 240

WO 02/21413 PCT/US01/42041

40/70

FIG. 16

1602

RECEIVE REQUEST TO PRESENT A VIEW

7604

FORWARD REQUEST TO CONTAINER THAT CONTAINS

THE BUILDING BLOCK ASSOCIA TED WITH THE VIEW

110.5

FORWARD REQUEST TO BUILDING BLOCK(S)lI
M

INVOKE BUILDING BLOCK ACTION METHOD

7670

RECEIVE PRESENTA TION DA TA OBJECT FROM

BUILDING BLOCK METHOD

 7672

FORWARD PRESENTATION DA TA OBJECT TO PRESENTER

THAT IS REGISTERED FOR THE CURRENT ACTION

SUBSTITUTE SHEET (RULE 26)

Page 210 of 240

Page 211 of 240

WO 02/21413 PCT/US01/42041

47/70

FIG. 77A

APPLICA HON SERVER _2__02

EVENT ROU7ER FRAMEWORK 7 702

EVENT BROKER FRAMEWORK 7704

EVENT TIMER FRAMEWORK 7706

FIG. 77B

EVENT MESSAGE J_77_Q

HEADER 7772

BODY _7___774

INNER HEADER 77

PA YLOAD 7778

SUBSTITUTE SHEET (RULE 26)

Page 211 of 240

Page 212 of 240

PCT/US01/42041WO 02/21413

42/70

$2($235220b<031l<MWNQQQE2m.Em;m3«Gk?»$220C«639*«2mmenkmN2mEm;

QB82on

ESEm29:E222NON

enema

m0.““$220mum20h«Q032.»twwsobkmmfi‘oou _._______

,_mem:2%_Em;M252mum8M2":memQMEQ"WOW“

m0.“QMZZQO«$63

THEEQDEWVQKZNkmmbQZEMNXM

Mm:GE

«E.8228

uwdumqmm:tmm
20b".63anY

298228mam2922.282222.2$222mwom:Him

medlMEN;Rum.
EH96.KNEQ

to.“omzzobNUS.
«86%N

mg:SEEM5&5kmmsQZEMUQA'll. <9.Ql

SUBSTITUTE SHEET (RULE 26)

Page 212 of 240

Page 213 of 240

PCT/US01/42041WO 02/21413

43/20

,m:Eta<2

20h«33%.?MMMMQRE2m93

mmE“swamSwissQMEQKMDQQZEmNXmAll

_.

m9“US$50Newsgamma

9%.kmm20hSufiniv‘NdINu

meDMZ/SQmmwu

QNmmm>kmm
:mem«MEG

REQMZEOQmmmnNam:
«SN

0m:6E

SUBSTITUTE SHEET (RULE 26)

Page 213 of 240

Page 214 of 240

PCT/US01/42041WO 02/21413

44/70

20E«6.»qu<MWMQQQE2mSm“

szIkbv8:60mvwmkQZMIXQvfi360ENE

kmSkmmMb:N>3Mk9mekmSEENmmmnUZEMHXMAIIII
+369

5.35EE\§Qatom
moamm<38§8NW3

ARIQ3.GE

lob.

ExEm2%@m%NONmmm>mmm:memkmEQWe?

SUBSTITUTE SHEET (RULE 26)

Page 214 of 240

Page 215 of 240

PCT/US01/42041WO 02/21413

45/70

 M285EweEsm29m«59.62%fix
WW3.lllll

mm:%%
new.58sz

Sum;

NEEm

E:E$328SwagEma.“29cEdmw§w»a3xSmNew
35

zoémvd

mzazmQ5Q29:<38ngaxmm"?
33%

canEomMRESEEEEmE:u9.3WEE28ExSEE29:EE%ll_EBmBo§3.2wNewN33“Ill.
NmmkNBSkwm,KEMP“mm.

 Wm“.GE

SUBSTITUTE SHEET (RULE 26)

Page 215 of 240

Page 216 of 240

PCT/US01/42041WO 02/21413

45/70

QMXkBSQQNam

AH“Q2303:0

8.36wago~qob§xoi

m.mmmgUS$50EHwig9mm“

 XQQEMESEQRUS$69“~an

808 1V3 9091

SECmm

ddb’ HSIAIdALZlNE ddV JSIHcIAEZlNE

IdV HOJOJNNOD Z981

mhmk

k8nub«81va

gBQuExmowfl

 3xEqéw

ddV

JSIHdA/JINJ

V0181

QZDQmZN

km..GE

ma;
 «EQMZZQQOakmzmo

SUBSTITUTE SHEET(RULE 26)

Page 216 of 240

Page 217 of 240

PCT/US01/42041WO 02/21413

mwmk

 QNQN

mfigxMQmuqmfimm

mbm.

vomk

mommmgomlmom“
xmdsm:>¢<§

9.GE

QRN

uQmRZUUmsmtbu
wkmk

magsmqKbQEH

NNmN

\»<qgm§u

SUBSTITUTE SHEET (RULE 26)

Page 217 of 240

Page 218 of 240

PCT/US01/42041WO 02/21413

43/70

.m.mgv‘mmm:Nwe«Gum:me«imm:
Qmfim

TGEEm:8u$8:

888$:8$8:

-ill?8$8:Illull:8$8:28$8:

Ills:8$8:0.8$8:_w838

-VIII:8$8:m8$8:.-llllm8$8:k8$8:mmmeok«NEEN0536Qmmvim

 .mwevfimm:mmuv‘mmm:

‘llllxw8$8:»8$8:VIII:8$8:m8$8:\lllll:8e$8:w8$8:VIII...»8$8::89$8:mmmsgkE.13mNtmmzON.GWN
SUBSTITUTE SHEET (RULE 26)

Page 218 of 240

Page 219 of 240

WO 02/21413 PCT/US01/42041

49/70

2700 2707

File Edit \fiew Insert Format Tools Actions. Help
Reply Reply To All Forward

To: John Doe Sent: Mon Nov 1 2000 6:42PM

From: Richard Roe ~

cc:

Subj: First Quarter Financial Summary

2708 2172 2114

Balance Bookings Amy’s 2775
Sheet Pie Chart Comments

2706

FIG. 21A“

SUBSTITUTE SHEET (RULE 26)

Page 219 of 240

Page 220 of 240

WO 02/21413 PCT/US01/42041

50/70

2.700 2707

 File Edit View Insert Format Tools 'Actions Help

Reply Reply To All Forward 2702

 To: Finance Team Sent: Mon Novl 2000 6:42PM
From: Richard Roe

cc:

Subj: First Quarter Financial Summary

John and Team,

Here is a pro forma summary of our financial results for
the first fiscal quarter. Please add your comments and
I will finalize this.

Thanks.

Richard

2708 2772

Balance Bookings
Sheet Pie Chart

Amy’s
Comments

2705 » FIG. 213

SUBSTITUTE SHEET (RULE 26)

Page 220 of 240

Page 221 of 240

WO 02/21413 PCT/US01/42041

57/70

2200 2201

File Edit View Insert Format Tools Actions Help

Reply Reply To All Forward 2202

To: Finance Team Sent: Mon Nov 1 2000 6: 42PM
From: Richard Roe

cc:

Subj: First Quarter Financial Summary

m Forward Note to Author Note to All View Recippients _E_di_t Notification (0n)

Profit & Loss For First Quarter 2000

Bookings 2214 ,
Pie Chart

This is a text area that can contain any

Amy’s combination of text, with rich text editing and
Comments formatting, graphics, images, and other

multimedia items, that the user wants.

H
FIG. 22A

SUBSTITUTE SHEET (RULE 26)

Page 221 of 240

Page 222 of 240

WO 02/21413 PCT/US01/42041

52/70

2200 2201

File Edit View Insert Format Tools Actions Help
Reply Reply To All Forward 2202

 To: Finance Team

From: Richard Roe
cc:

Subj: First Quarter Financial Summary

fig! Forward Note to Author Note to All Wew Recipgients gall: Notification (On!

2206

Sent: Mon Nov 1 2000 6:42PM

 Profit 8c Loss For First 'Quarter 2000
2274Bookings

Pie Chart

Amy's
Comments

This is a text area that can contain any
combination of text, with rich text editing and
formatting, graphics, images, and other
multimedia items, that the user wants.

 Comments To Date On Financials

Enter Response

Richard Roe 11/01/00 1:07PM
I think this shows what we can do if we want.
Carol Smith 11/01/00 12:52PM

The Number for Asia—Pacific looks wrong to me.
Paul Peterson 10/30/00 03: 25PM

Europe's revenue is understated by 10%.
1—3 0F 12 Next>>

(<) 1 of 5 (>)

FIG. 22B

SUBSTITUTE SHEET (RULE 26)

Page 222 of 240

Page 223 of 240

WO 02/21413 PCT/US01/42041

53/70

2200 2201

File Edit View Insert Format Tools Actions Help

RepIy Reply To All Forward 2202

To: Finance Team Sent: Mon Nov 1 2000 6:42PM
From: Richard Roe

cc:

Subj: First Quarter Financial Summary

New Forward Note to Author Note to All View Recippients Edit Notification (01)
/J

2220

 Profit 8c Loss For First Quarter 2000

2214 .

This is a text area that can contain any
combination of text, with rich text editing and

formatting, graphics, images, and other
multimedia items, that the user wants.

Comments

 Carol’s

Comments

 Dave’s

Comments

(<) i of 5 (>)

FIG. 220

SUBSTITUTE SHEET (RULE 26)

Page 223 of 240

Page 224 of 240

WO 02/21413 PCT/US01/42041

54/70

2200 2201

File Edit \fiew Insert Format Tools Actions Help

Reply Reply To All Forward ‘ 2202

To: Finance Team Sentz, Mon Nov 1 2000 6:42PM

From: Richard Roe

cc:

. Subj: First Quarter Financial Summary

Mflward Note to Author Note to All Wew Recipgients Edit Notification (0n!
‘ 2207

2252 2252A 2254 2254A

Profit 8: Loss

Bookings Pie Chart

Amy’s Comments

Brian's Comments

I wonder if we need to restate the Alpha
account revenue in view of the

cancellation of the‘last contract?

——Brian
0

22 4 . FIG. 220
SUBSTITUTE SHEET (RULE 26)

Page 224 of 240

Page 225 of 240

PCT/US01/42041WO 02/21413

.SmwGE
é!Mk2:QSx

. NNRsémuam::9ES.$5sz23.8SR

SE28mmugwUs:.I!Enigmak2:.Sam2%:k2:.:2:E9.:m6m3.mm:EQEmw,2@EEwE:SEE

0

flIIII:IIIII}5SRER8mm23.835mug:mi320ESEMEQUEENS«8%msEs:58SESEExmug:$58ch“EBEQ3%k2:SEESSESam:2%«E3&meSEmafia:SEaEHERgi8
n33Ea

QQEm:25$:.21

m6v63:w2.‘293%$5Maui

ER
33

BeSam:QtSE:SEs:

SUBSTITUTE SHEET (RULE 26)

Page 225 of 240

Page 226 of 240

PCT/US01/42041WO 02/21413

56/70

mmw.GE

2

thN223.S292Q2
mNMN

mmu2mmm22922mmSE29.«£223v.«ESEEQ22mg.“Ems292922202

@22323‘222me«$32205.29m2oh~2tmqE228m.$250622W22:5232E.6222.»MEGx2.222022%2.2%:E.9.2%mm2.302%NEE.2thfitxdw2$gqq2mm:, SE28mmmuow22:.2obm~2ummm223.Emmi222.223xx:9E20N20.m2$223212mw.332ka222.2@2229
NNMNQNMN

$.th

Nhhm

 QNMNwNMNmuwmmmx‘22.2228MEE2.23.22mg..2$2 mm2mmm223229222.2%23.229:

SUBSTITUTE SHEET (RULE 26)

Page 226 of 240

Page 227 of 240

PCT/US01/42041WO 02/21413

57/70

OWN.GE

 ©2~k22QEQNEVMuzvfiuQS¥<2EK2§w§x.82muzttu
FAWN

SwagEMSEmmuzmfimmmmen.‘53EkwvmQzamukbwmqumtgmszSwazi»miEzflzeudwEv:

mvhw

Nwhw

km:MENEVE:”0‘23n3ktm=§30ESmkzdMEGS5‘2:9%wmmzmwx35m$6wa.6.5:@253
g.$meREESE

mMMN

Km:RESsx«wewmmm::95$33§§Qk533ENwmmzmux35hESQ?.3km:ufig

aSwagQEMEQ
 ©th

QVMN

MESmm23.93:um553$SE:S£8stE$sz“Sam.
SUBSTITUTE SHEET (RULE 26)

Page 227 of 240

Page 228 of 240

PCT/US01/42041WO 02/21413

53/70

QmN.GE

8&3QBwkmzmuxStubSSS—x.5.35EYE:

99am

NWWN.

QEEMEMQxzv‘mzou

a

 Mai29:ESE

:58EEExam:EEEE«EmuEEEE:<HES2k2:ww3%<2«23wHESSE28332:EEG$22%EEE$3Em:%
 mmuzwmmkmk53stvafizueummMEREESamuzviuIckfimSE28muwmmm:Emagma~33

mmmmqud§m mmhmvmfiw

mnnw20hwNEvaQ«aRugNESSS.Ek2:E5%

SUBSTITUTE SHEET (RULE 26)

Page 228 of 240

Page 229 of 240

PCT/US01/42041WO 02/21413

VNNOEQQvNMuvi562EOE.

.va‘mmM:ME“6.Muzfims:HEEekxkEmEE235.32:.962as.EEMQESQmEbz«$.kaMuwmmM:.MVMEMEMEEk>5>6

2;EmmaMw<mMM§ME9EwkMzMuMEIE.MkaackmSEEMmedvxwxSwab.325thSEv9:v2EEMEMMESM.

59/70

EQQE:EM?Evin.8?.MbEM93kaE«E.32:MEE28EvEMuVGMMSMEI$.ch

NQVN.SE:EEMQVMMMEEOE.

MawGEER«E3.22:Sam:E$.22E8mmx

mllkmm

Muv‘mmM:MEGEQMEESMwwmmM:3M2ME«2:EEMEMEWE$35M9528$3w Muxme:tMEazv..6EEE.»MEE.MEME9EEtc.2vafimM:§M2_\ M92§MMMfi<QMEEEMQ5658\SQMEMQEQ.nEmQMIWEEMEE033E:Mk:me:xEMMuxme:kMz.3km:<ESQEzMMMEMN«MW:MEMexth:<.3@3kamm5.3:kmEw3REMwMMImEEEm:ME
QKMNvthwamQRMN

SUBSTITUTE SHEET (RULE 26)

Page 229 of 240

Page 230 of 240

WO 02/21413 PCT/US01/42041

FIG. 25A ' 60/70
2502

MESSAGE WEB 2

2503

MESSAGE RED 3

(MESSAGE WEB RING IAIL)

I PREVIOUS
NEXT 2506

' -
. I

#2504 NEXT

PREVIOUS , I

NEXT -
2570 PREVIOUS _

,—

~..

\ \
/

/

p

2512 2574

2501
_———

MESSAGE WEB 1

(MESSAGE WEB RING HEAD)

FIG. 27C

2740

DONA IIDNS (IHIS GROUP): :5
DONATIONS (ALL CHILDREN): $12,345

2744

DGNA IIDNS (IHIS GROUP): $300
DDNA IIDNS (ALL CHILDREN): #2300

2742

DDNA IIDNS (IHIS GROUP): :40
DONA IIDNS (ALL CHILDREN): :40

2746

DONA [IONS (IF/IS GROUP): $2,000
DONA HONS (ALI. CHILDREN): $72,000

2748

DDNA IIDNS (IHIS GROUP): $10,000
DDNA HGNS (ALL CHILDREN): 370,000 '

SUBSTITUTE SHEET (RULE 26)

Page 230 of 240

Page 231 of 240

PCT/US01/42041WO 02/21413

gum.w33822.32maSE“$3282Hmuommm235362Rt29232".302

Maw
m.mmbmwo22562$32$582.23832a$582P82

cofizwgmmbmmm222232”.302

N93.
N$382asEquifimommmfikm;82222522282.2mmommmia$582but

2022333332to£32.502

Bmw

2.3332288
6.2bet?8quSEQ.2960$62a$5822E222232".302«SN.GE

2.22222922.2222$532

.52Q222222.202382.8222222mu<mm22.22203

.35mm:25%:358as.2@252ES;2222.32.62E2.2.28.522222222ME22.222222mm:mu<mm22222ME.2522.
mmmw

m.

2.22%E238.22.22QQ
M22:m3§m22

222222222222.2222220222:mu<mmm2522.2222,322222NNmN
2‘wa

 22.2282922622202322.2222222.222$36.22.2$222:mu<mm222.22229QMN.GE
SUBSTITUTE SHEET (RULE 25) '

Page 231 of 240

Page 232 of 240

PCT/US01/42041WO 02/21413

maxN
62/70

3mm
vmacaw:w.3&3onM638EMHmmummm:

.33
m3Macaw:ESmagnum:£58.:5

8mm

N388:

MonN
m,muommm:

33$88%33°mfimm:”£5N\ubmmcbmi638m»398‘:.m«:330%:.v.

I...

“$9835«38SM6338:.EDQuse8:

$8.65«Seneca.

macaw:33.03%338$323$
«RNGE

NM:3.236E§Q>Qka)?.5:EEEGME53meM2:93%MEXufinSQm>§o§m$.RMBkmzE3.KM:szmxmMQMN

uKM:§m2E3%

QBEMENMKM:kw?

QNMN

m.MzcbubEMEMk0:

MENEMN

#39333Emuskwtk
SMW

u.RM:wEMEMMEQEE
MQMN

 EQEQEUMMQ32‘v.36%MkwaLGKMNNwEENEMMmMN6E

SUBSTITUTE SHEET (RULE 26)

Page 232 of 240

Page 233 of 240

PCT/US01/42041WO 02/21413

63/70

02

mzom

RNNmzoz
mtmmkmklwkfiwfi3mmEfikummaxgm

NMNN

mNNN36$EEhuhwk.E$191%MN3mmQB<933mmElakzhMtasm.
QNNN

QEQmmzmv.mkmmxfiummhm.SEE:

QE

QMImwmtmmmmEaqmméw.kg,».

:PEEvstubk.

«ENE. E1&223$33M.
MENEmkmmatummbm

x2w3mmEIEVEZ

QMIMMEMKmmBazammz«mug:92Mt3mmkmmEummbmExt:KR

WNW.QE

SHEEMQSEShkmmckm3m?Sfigmm‘fiERTE[asE.3mm

m3§Sub.~§EE5369Ezbhgtwq3mm3.flunkmmmzabminn?mum:

NNKN

 «GEEME$9.onEmE9%.5mmE«SSt

EEC.EE95x:QEE«6933m

3quES92$35v6Ek2:

 Exam:tSESMaw:35‘EQEMEQMQ3WD.Kmmmkfis3mm.

SUBSTITUTE SHEET (RULE 26)

Page 233 of 240

Page 234 of 240

PCT/US01/42041WO 02/21413

64/70

1mm.GE a:n83mgom.20:280.mctmmsmcm.€33.62.

:325L8285°:5:68£33m328%280No6336595ch280No=Em>o:8$5226;:3Sop.8».ezyomeEg.cozozuobsSIWNImfloz53:88:53E:5:>52€<

\ll\

 to30:00:5onvomwmomw

$3552.u332l‘3Essen.

.53.253£335-a}3.3:552:3.5. Smw\§3222+:9.5:335we»:8:22.628E“3:280sauce:3:82®Ewafi5%us:aEm25502__UESIDE3EN8583832>Eta.3:mem7:233.32235595MES26nomSo:mcobgm..80:H.9328...EmmaSmotmmoB32:58,05p.mg$032as3:3:3%5:8,:5%:5::Mumw.Egon—28536.22,“$5590
$352mczmmz@.23gas:332%

52mvflwu

52onnHm£2omNEWE:mP=58:83*

2:8;2:69?mbmw

SUBSTITUTE SHEET (RULE 26)

Page 234 of 240

Page 235 of 240

PCT/US01/42041WO 02/21413

65/70

\mmw6EMQEEENdedE<$93mm—xtkmmMmwmmm:.EMESQk055$.mimu<mmm¥EM?kalmxdvéchnfi
VNQN

93Eas:EngmgasmsBEE9%28$23qu$2$§§$..REE:9255Emu$8:EmmaSEQE235920hEcmwdouamzk0mmmeME3mm\Cb02*“55%“szsz§m§5%:Emma.8sz8mmmguwME“893%EmmSm.uzmmMQTMMQ,‘.tfikkbuEKEEEQQkw?QQV..

3mm

me$83skatebosz‘lug—am:SEE30$95“EQEDEStickmmwESmmwmmw:3%95m.

NNmN

“.onEomfiucuMEGREGEflax:Em:.NYE3.ka

Emémxe9%weimmmxekm?
5mm

mm«mm:kc55¢kmz

9mm

 20hEbmwdg.35,320092EEmu

km:kzmfifiaxuflmfiéomVxm*be:Mme—«mm:szmkSuEQEQEE..km:mmuwmmm:szmkbu02.2Q8*toxS:xm20b36%:ngEu?“‘086%Emmmmém:EQNMMV‘
3mm

WEN

metam:VSE5:29DwkcmvflguNEEman:29??SR:
SUBSTITUTE SHEET (RULE 26)

Page 235 of 240

Page 236 of 240

PCT/US01/42041WO 02/21413

0mm.QE

.._E_SE

5:853:aas28a:8.50so;$38.$5333233058:2:23:80NEWan;:33“533%:2.“.5300vvmw39.evenwasZoo9.65952.:Etc3538559.60208..a:a2;5:m:_a
 :05:5.30>658mm:22:0con;:9550>EanNmgom.£5v.oZoo00288:3so»:030:00:50:$5.533mmhwwwflwmo.EooaoLqu©mco>mm..=oEm50>3:93va

com:3:26“.2520:826mco>m93925250>.38m~mcozoozzoz@
25on28mNo6.635552onn2.3%226No.655:3om:3.on.0525???50:835.:52mI:5.35me52.8:25”a“38—9“$53583985I«3:85.onElEon—H302!u<9:9:bucmo<a:302nu<+_.|_On_823.2:25:852

mflllznmcom\.252Nnmwd362SEN”3:380.63529582©

vaw

to8058:3024

.3033Sosa205o:3m35362E.gamma_2<.‘namoxgoafimv
.Nvmw

55EE.9588m_£23332983590MEScan8m89c0:93582.H.moczmme>33;So8:30BmcEEmmnm599.:M325mm}9:8228%589E9.85an:E.III..BumoymEaEmEx.52.$335#2qu262NQmN.5926:9582©.

l833__n_D.38338

gay.253:33:-8}E8:€23is;33gas:33%
SUBSTITUTE SHEET (RULE 26)

Page 236 of 240

Page 237 of 240

PCT/US01/42041WO 02/21413

67/70

MN62...:
NEWMEN

meam:E:522m§q\$§§m2.25SEES..mu:5:ME.3:58ESBEES32ads£2:E€23:MMMEMMEM2~EMM...MMv6.32MME2MN28EMMMMM.

MQMN

dMIm.MMYMMM2ZMEMMNMMN

.MMVMMMVM.MM2MEMMMMEMMQMMM*2M2MMMmi2ME2%:
3M:62232M2MMMME95203EM2wE2M.Mc$35M2MMMM2M<MMSMMMMM*.MMMMMMMMMM.5:EMMMMMMM:MEMMMMMMM*

Fwd223MEMMM2MMxdvfimM2931MEE3@223ME«MExM:M2ME2M..@223MM§2MMMMMM.MMMMMMMMME.M92WMMMMMQMME2MMMMMMMM2MEME22.M22:.E$312ME2MM@223:M2ME20MMMMMEMQMQE28MMMMMY.MM2MEMMMME2MEMMMEMMM.532MEMEEMMnMMm.@22326$EM:M223.E.3:MMEQMMM..MMMMMMM:MEMMMMMEMEM225920.3:MM:E«EMMME:LE2MS.M2"~~MMMMMMM222.326E.3:2E:... WMM<MMM2MM:MMMMMM2MMEMEMMMMMMMMME29EM223.2:ED2MMMM2:MM<mmM2MEMMMMSM:..
 MM:22:ME<MM2MMxSwotM292“:MESE.@223MEYMMMxM:M2ME2M1622.3MME2MMMMMMMMMMMMMMM2MMM2.WMMMMMQMME2MMMMMMMMM.MEME2.2.9.223EMMZMMM82MM«.22::M2ME2MMMMMMMEMQSE28MMMMMMMM2M§MMMMMN2MEEMMEMMM362MEME.EMEMMMW22326*:EM:.0223MEd:MMEMMMa.MMMMMMMMMEMMMMMEMEM22:.3::uE2MMMM2<MMMMMMMMM:MM§MM2d:2.2::.2.MM:MMMMMM2M226MESEN:MMMM2M2MMEMEMM§MM2SE295M22:3:ENEMMMM2:MMMMMMM.‘MEMMMM53:M.

MQMN

SEEa2mm:EEEwfimmwfiwwfiézfi2BESEEgon
2‘me

 2MMMMMMMEMMMMVMMMMM:MM§MM2M2.:M0532v.
SUBSTITUTE SHEET (RULE 26)

Page 237 of 240

Page 238 of 240

PCT/US01/42041WO 02/21413

68/70

|‘

30995»\BQa325.;nocsgAam;mmowmo}”.me
moan.

9m.6E

@
«Snot238,3.\,

9:0:83$8memm}33$:33mpm;388228505:85.aofiohmg.620;mggficoo
.89...

vaosmmE3830

no;mmommm:mag/En.
$66M.

N85

SUBSTITUTE SHEET (RULE 26)

Page 238 of 240

Page 239 of 240

WO 02/21413 PCT/US01/42041

69/70

FIG. 31A

.3160

M

Email/g
Reservation

ILbLe
- Action Items

370.3

.3720

DWAMIC CONE—NT 37 70

3125

SUBSTITUTE SHEET (RULE 26)

Page 239 of 240

Page 240 of 240

WO 02/21413 PCT/US01/42041

Introduction

3903

Upload File 3920

.3942

3705

SUBSTITUTE SHEET (RULE 26)

Page 240 of 240

