(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 02/21413 A2

(43) International Publication Date
14 March 2002 (14.03.2002)

(51) International Patent Classification”: GOG6F 17/60 Michael; 973 Oak Lane, Menlo Park, CA 94025 (US).
HOM, Wayne; 1141 Wayne Way, San Mateo, CA 94403
(21) International Application Number: PCT/US01/42041 (US). HYDE, Timothy; 670 Shotwell Street, San Fran-
cisco, CA 94110 (US). KRUMPELSTAEDTER, John;
(22) International Filing Date: 10893 Sweet Oak Street, Cupertino, CA 95014 (US).

5 September 2001 (05.09.2001)
(74) Agents: PALERMO, Christopher et al; Hickman

Palermo Truong & Becker, LLP, 1600 Willow Street, San

25) Filing L : English
(25) Filing Language ngus Jose, CA 95125 (US).
(26) Publication Language: English g1y Designated States (national): AE, AG, AL, AM, AT, AU,
o AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(30) Priority Data: CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
60/230,037 5 September 2000 (05.09.2000) US GM. HR. HU. ID. IL. IN. IS. JP. KE. KG. KP KR. KZ. LC
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(71) Applicant: ZAPLET, INC. [US/US]; 3000 Bridge Park- MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
way, Redwood Shores, CA 94065 (US). SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.

(72) Inventors: AXE, Brian; 342 Liberty Street, San Fran-
cisco, CA 94114 (US). EVANS, Steven; 13300 Lennox (84) Designated States (regional): ARIPO patent (GH, GM,

E Way, Los Altos Hills, CA 94022 (US). HANSON, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
— [Continued on next page]
E (54) Title: METHODS AND APPARATUS PROVIDING ELECTRONIC MESSAGES THAT ARE LINKED AND
== AGGREGATED
—
= (57) Abstract: A method for associating
E 230 related electronic messages in computer
= mmmmmm E R T, < 200 storage. A first transportable application
= -y L2 Store & Forward) is created and stored. User input
= 258 I — 27 38 %5 I/I 220 requesting creation of a link from
E .é E ; ‘ Zg:; gz:::’r- Wireless Gateway i Dlcctoy Sener) the first transportable appl'icat.ion t.O
— &8 ;\ Mail Server e N 0w Ko another transporte'lble application is
— P \ ML received. User input th'at 'selects a
= 232 ~ N SMTP guple! EV(E;EFD) \ second transportable application from
= B L < o4 z::Zf"Ew — J"’G among a plurality of previously created
= i & 202 toAR ™ |Dgemon (2€D) I transportable applications is received.
= JsP y] NDL \ A e) ': A link from the first transportable
= Application Server | 214 'n‘ 22 ™ 215 |JDBC ! application to the second transportable
= MM] MS ! - z2g | application is created and stored. As
% - AZZ' feation SB'VZ;(4 o T0BC i '(’n}‘é‘ﬁize"éj) _saet/ a re§ult, tmnspon'able application may
NFS D ocr be inter-related in complex message
Photo Server 1. p4p 2467 webs. The message webs may also be

Photo Server

Photo Server 244 208

(pegs..) (docs)

Database Stored Proc (pl/sql) inter-related in message web rings.
Erent b2 Links

may be generated manually
or automatically, based on context,
workflow processes, or other known
relationships ~ among applications.
Recipient lists and data may propagate among fields of linked transportable applications, directly or according to abstract business
rules. Further, multiple-part electronic messages are disclosed. A graphical user interface of an electronic messaging system
displays a message in the form of one or more header portions and one or more body portions. Each of the body portions has a
selection region. While one body portion is visible at a given time, all the selection regions are continuously visible in the user
interface to facilitate selection of any of the body portions at a particular time. Selecting a selection region of a non-displayed body
portion causes a server to generate a refreshed user interface that includes the entirety of the selected body portion, and that hides
the previously viewed body portion. As a result, a large amount of associated information may be combined in a single message in
a way that is clearly organized and easily accessible.

Data Layer

02/21413 A2

WO

GOOGLE EXHIBIT 1019
Google LLC v. BlackBerry Ltd.
Page 1 of 240 IPR2017-00912

WO 02/21413

A2 L0 O

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
— without international search report and to be republished
upon receipt of that report

Page 2 of 240

— entirely in electronic form (except for this front page) and
available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/21413 PCT/US01/42041

METHODS AND APPARATUS PROVIDING ELECTRbNIC MESSAGES
THAT ARE LINKED AND AGGREGATED

CROSS-REFERENCE TO RELATED APPLICATIONS
Domestic priority is claimed under 35 U.S.C. 119(e) from prior Provisional
~ application Ser. No. 60/230,037, filed September 05, 2000, the entire contents of which
are hereby incorporated by reference as if fully set forth herein.

FIELD OF INVENTION

The present invention generally relates to data processing in the fields of
electronic messaging and collaborative communications. The invention relates more
specifically to a collaborative communications system providing transportable
applications, multiple-page electronic messages and electronic messages that are linked

and aggregated.

BACKGROUND OF THE INVENTION

Despite more than fifty years of development, computer systems and computer
programs remain difficult to use. In particular, individuals who are not well-versed in
technology or computer programming encounter numerous problems in carrying out
simple data processing tasks, such as collaborating on the form or content of a document,
polling others to arrive at a decision, scheduling a meeting or activity, and other tasks.
Several main approaches have been used in the past to facilitate these activities.

In a first approach, a pre-configured computer program or application is provided
to all individuals who will participate in the data processing tasks. The individuals
interact with the application to carry out the tasks. This approach requires little technical
knowledge, but the approach is often too rigid and limits the individuals to using the
particular forms, featu;es and functions selected by the developers of the application. A
related approach involves use of electronic mail (“e-mail”) for distribution of information
or for collaborative communications. E-mail is inefficient and often requires sending
multiple messages before a task can be completed. Further, since the content of the
messages is static, the content tends to become old and stale. The number and content of
the messages are not easily organized.

In another prior approach, users construct their own custom computer program to
perform exactly the desired task. This approach requires extensive technical knowledge

that is beyond the capability of a typical user.

Page 3 of 240

WO 02/21413 PCT/US01/42041

In a third approach, certain collaborative computing applications and
environments have been provided. Applications such as Microsoft NetMeeting enable
users to participate in online meetings, but have a significant limitation in that they are
synchronous; a meeting participant must be online and present to participate. Applications
such as Lotus Notes have enabled users to share documents, but creation and deployment
of applications to carry out more sophisticated business tasks, such as automating
personnel recruiting processes, is complicated and requires programming knowledge.
Further, the collaborative processes that are supported by these applications “off the
shelf” are limited and do not encompass many multi-step business processes.

A common disadvantage of all these approaches is that it is very hard for
individual, non-technical users to create computer-based applications or systems that
automate specific desired tasks and provide the applications or systems to others. Further,
the approaches generally enable users to see only a static view of content that is under
discussion or modification. Another disadvantage is that the approaches are typically
synchronous; a user must be present during the collaboration and has no way to view
actions or communications that have occurred before the user arrived or after the user
leaves.

Another common disadvantage is that integrating the past approaches with
existing or “legacy” databases and applications is extremely complicated, and requires
programming knowledge. There is no easy way to enable such legacy systems to
automatically interact with collaborative applications, without human intervention, to
exchange data and carry out business processes. There is no simple means to enable the
collaborative applications to receive signals from the external applications, take action
based on the signals, or initiate new processes based on the signals.

Based on the foregoing, there is a clear need for an improved way to facilitate
collaborative communication among individuals. In particular, there is a need for an
approach that can enable new kinds of collaborative productivity applications, created by
anyone and delivered using familiar communication mechanisms.

There is a related need for-an approach that can facilitate distribution of secure,
collaborative applications among separate but networked enterprises, so that users or
applications of different enterprises can collaborate.

Computers have been used in messaging services since the 1960s, when suppliers
of telex and telegraph services began deploying automated switching functions and
providing complete computer-based messaging systems. An example of such a system is

a teletypewriter system. Many of these systems used computers as data switches that

2-

Page 4 of 240

WO 02/21413 PCT/US01/42041

relayed messages without providing message composition capabilities or the ability to
search through previously sent messages.

Development of interactive time-sharing computer systems resulted in creation of
linking tools that enabled two users to interlock their terminals in order to see what the
other was typing. Mailbox tools were developed to allow users to send short messages to
other users on-line on the same system. For example, the interactive time-sharing system
at MIT’s Project MAC had both linking and mailbox facilities that supported text
messages.

Construction of the Advanced Research Projects Agency Network (ARPANET) in
1969-1975 initiated extensive research in store-and-forward communication techniques.
An outgrowth of this research was the development of electronic messaging facilities,
including electronic mail. Such facilities supported transport of simple text messages.

In the early 1980s, international standards bodies began work on electronic
messaging with the goal of ensuring interoperability among different systems. In 1984,
CCITT adopted a standard for store-and-forward messaging services called X.400
Message Handling Services (MHS). The International Standards Organization (ISO)
created a competing standard called Message Oriented Text Interchange Standard
(MOTIS). Differences among the versions were largely overcome by 1988.

The period 1973 to 1989 saw development of several computer systems that
featured graphical user interfaces rather than character displays, such as the Xerox Alto,
the Apple Lisa and Macintosh, and personal computers using Microsoft Windows. During
this period, users developed interest in the ability to send messages having elements other
than text. Examples of such multimedia e-mail systems include Slate, from BBN
Software Products, and the first release of Lotus Notes, from Lotus Development
Corporation.

To support transmission of formatted images, sound, files, folders, and video
attachments, in 1992 the Internet Engineering Task Force (IETF) created a multi-media
messaging standard known as Multipurpose Internet Mail Extensions (MIME). Using
MIME, users of different kinds of computers can exchange e-mail messages that include
formatted images, sound, files, folders, and video attachments. Further, a single MIME e-
mail can contain alternative representations of the same data. For example, there can be
an attachment in text form followed by one containing bitmap page images of the same
information.

Implementations of MIME generally displayed messages in a graphical user

interface window that presented different attachments as icons embedded within a text

3

Page 5 of 240

WO 02/21413 PCT/US01/42041

message. Other implementations, such as NeXTMail, from NeXT Computer, Inc., could
display text, graphical elements, and attachment icons within the same message. A
drawback of this implementation, however, was that to view different parts of a long
message, a user was required to scroll down through a single contiguous message display
in order to reach the desired part of the message.

Further, such systems provide no way to organize related elements of a message,
other than manual cutting of one part of the message and pasting it into another upper or
lower part of the same contiguous message. This procedure could quickly become
unwieldy when such messages were exchanged among members of a group. As each
member of the group added comments, graphics, or other attachments to the message, the
message would become longer and longer, requiring extensive scrolling and searching to
locate a desired part, or to correlate one comment of one user with a related comment of
another user.

Other systems display multimedia attachments in a separate pane of a graphical
user interface window that is displaying the message. For example, in Microsoft Outlook,
when multimedia attachments are present, they are displayed at the bottom of the message
window, divided from the message body by a separator bar. A disadvantage of this
approach is that it is hard to correlate the attachment with a particular part of the message
body.

In a more recent development, e-mail programs such as Microsoft Outlook have
been linked to browser programs such as Microsoft Internet Explorer. Through such
linkage, the e-mail program can receive an e-mail message formatted in Hypertext
Markup Language (HTML) and display a rendered version of the HTML within an e-mail
message display window. Using this approach, e-mail messages may contain text,
graphics, and embedded hyperlinks to other content, multimedia resources, or
applications. However, this approach has not cured the deficiency of prior approaches
with respect to content organization and scrolling. It is still necessary to scroll through a
long HTML e-mail to find desired content, and there is no simple way to correlate related
content. Further, authoring HTML e-mail requires familiarity with complex HTML
authoring software such as Microsoft FrontPage.

Based on the foregoing, there is a clear need in this field for a way to improve
organization of content of e-mail messages.

There is a specific need for a way to organize related content portions of e-mail
messages within the messages in a way that makes related content easy to find and

display.

Page 6 of 240

WO 02/21413 PCT/US01/42041

There is also a need for a way to create, deliver, receive, and display e-mail
messages in which related content is correlated and accessed without scrolling or similar
cumbersome operations.

E-mail, the World Wide Web, and instant messaging each have contributed to a
revolution in the way people communicate. Each of these platforms offers a variety of
benefits. For example, e-mail is available at the user’s convenience; messages remain in
an inbox until the user deletes them. Because e-mail arrives in the inbox, the user does not
have to “go” anywhere to retrieve it. E-mail is useful for sending a note to a friend or
addressing a large group. Because e-mail is individually addressable, a user can adapt the
recipient list to the subject. Experts have estimated that users spend more time in e-mail
than any other Internet application.

The World Wide Web (“Web”) contains an abundance of information that is
dynamically changing and ever growing. It is graphical and interactive, and offers the
ability to conduct transactions. With relatively simple user interface operations, such as
button clicks, the user can receive valuable information, purchase an item, or review work
materials that have been placed on an internal website. Instant messaging offers the
advantage of timeliness; the recipient knows that a newly received message is current,
because the recipient is in a one-on-one communication session with the sender. This .
form of messaging has grown rapidly because people want information that is current.

However, e-mail, the web, and instant messaging have inherent limitations that
restrict what users can do with them and how they communicate information to users. For
example, e-mail today consists of static text that is neither dynamic nor interactive. E-
mail messages are considered to be “dead on arrival” because they are current when sent,

‘ but are not current when read. For example, a user may not read an e-mail until hours
after it was originally sent and there can be subsequent e-mails that supersede the original
message, but the original outdated message remains in the inbox. There is no logical order
to messages that are received in the inbox other than the time of arrival. Occasionally, the
user can even receive an answer to a question before the question arrives, because of
delays in server responses. The user is required to either scan all messages or sort them
into some order to verify that the user has all needed information before taking action.

Unthreaded responses are another problem with e-mail. If a user sends‘ a message
to six people, and they all respond, the user receives six new messages in the inbox
referring to one subject. The user is left to organize it all. Perhaps the most significant
limitation of e-mail is the volume of messages that can flood a mailbox. When a user

receives hundreds of e-mail messages a day, the sheer volume of e-mail is daunting.

-5-

Page 7 of 240

WO 02/21413 PCT/US01/42041

Using the Web requires the user to proactively visit a location for information.
updates, and the user may need to visit multiple locations and pages before the user finds
desired information. The Web is not personal or targeted, so it is not as effective as e-mail
for communications. There are meeting sites on the Web, but users must seek out the
destination, which requires them to remember URLs and passwords. There are also sites
that offer group discussion and collaboration, but their groups are generally rigid and are
based around a common interest.

Instant messaging allows for dynamic communication, but only if both
participants are actively signed on and are available to receive messages. If one user is
not able to respond, the link is dead and the user has lost the ability to instantly
communicate. In addition, it’s difficult to document “conversations” that occur through
instant messaging; users lose the ability to have an audit trail or history.

Based on the foregoing, there is a need for a communication system that provides
ways to share messages and information, ideally by providing the best features of e-mail,
the Web, ."md instant messaging, while overcoming the limitations that each of these
carries.

There is a particular need for methods and mechanisms for linking multiple
messages together so that multiple message threads and sub-topics may be related and
associated with a particular topic.

Users and applications may desire to link one message to another related message.
However, past approaches to communication systems do not allow information, such as
applications and electronic messages, to be related, threaded, managed and stored in an
efficient, flexible, and simple way. Such approaches also do not provide a way to obtain a
view of complex webs of messages.

There is also a need for methods and mechanisms that can aggregate related

topical information within the context of a single message or web of messages.

SUMMARY OF THE INVENTION
The foregoing needs, and other needs that will become apparent from the
‘ following description, are achieved in the present invention, which comprises, in one
aspect, a method and system for communicating and collaborating using transportable
applications. Embodiments provide a breakthrough communication approach that
improves collaboration among groups of individuals, within corporations, among
custémers, partners, and suppliers, and among distributed computer systems. In one

approach, computer processes enable such users to create or host a new kind of

-6-

Page 8 of 240

WO 02/21413 PCT/US01/42041

collaborative productivity application called a transportable application. Transportable
applications as disclosed herein may be used, for example, to bring together people,
systems and information needed to contribute, make decisions, and take action on
collaborative business processes or projects. In one embodiment, when a transportable
application is opened, it reveals a live, shared, structured workspace that is specific to a
project or process. Unlike past approaches, the workspace is continually updated to reflect
the latest input of any recipient or user.

The transportable applications can be created by anyone, including individuals,
non-technical users within an enterprise, or automatically by other computer programs, .
applications, or programmatic mechanisms. Each transportable application may comprise
one or more pages each having one or more building blocks that encapsulate processing
functions and data. Each building block may comprise one or more static content regions,
one or more dynamic content regions, and other information. Content for the dynamic
content regions may be stored in a database of a server.

The transportable applications can be distributed to others using existing transport
mechanisms. For example, in one specific approach, transportable applications can be
deployed in a manner analogous to sending an electronic mail message. Recipients may
be individual users, groups, or other programs or applications.

The transportable applications can be accessed programmatically, or by an e-mail
in-box, or using a web browser. When a transportable application is accessed by a
recipient, data for its dynamic content regions is automatically retrieved. Input created by
arecipient is accepted by the server and updates the dynamic content region of the
transportable application. If a recipient modifies data in the transportable application, the
modifications or updates are stored asynchronously and dynamically with respect to the
sending and receiving of the modifications or updates by the recipients. Thus, the
dynamic content is always current, and whenever any recipient opens and views the
transportable application, the content of the transportable application is retrieved and
displayed in then-current form.

Unlike past approaches, which rely on distribution of static information,
transportable applications as defined herein enable full interaction and navigation of
dynamic content without the user leaving the transportable application. A shared
workspace is created in which multiple persons or systems can interact within the same
transportable application, and all responses are aggregated in one place. The content of
the transportable application is current when read; the transportable application is

constantly updated so users can always see the most current information and responses of

-7-

Page 9 of 240

WO 02/21413 PCT/US01/42041

other group members. Transportable applidations may be supported by related services,
such as a secure mode that enables only authorized members to view and interact with the
content, notifications that inform a user when an update to a transportable application has
occurred, etc. Transportable applications may generate events that are acted upon by other
transportable applications, and may act upon events that are received from external
systems.

In a business enterprise environment, transportable applications and the systems
and methods disclosed herein enable the enterprise to save time, reduce costs, and
accomplish more. Companies can use transportable applications for simple shared
projects to the complex and collaborative business processes required for global, multi-
company projects, depending upon the need. Collaborative business processes may be
rapidly automated and streamlined. Collaboration may be extended outside the corporate
firewall by sending the transportable applications to others. The relevance and speed of
collaborative application development may be improved. Costs of distributed team
interaction may be reduced.

In one approach, the system features an integration framework comprising
connectors that provide connectivity to and integrating with existing or “legacy”
databases and applications. An author can create transportable applications that can
retrieve data values from and set data values in such external applications and systems
without programming knowledge, or even autorﬁatically from another program. As a
result, legacy systems can automatically interact with collaborative applications, without
human intervention, to exchange data and carry out business processes. A simple and
efficient means is provided to enable the collaborative applications to receive signals
from the external applications, take action based on the signals, or initiate new processes
based on the signals.

According to another aspect, a method for associating related electronic messages
in computer storage is disclosed. A first transportable application is created and stored.
User input requesting creation of a link from the first transportable application to another
transportable application is received. User input that selects a second transportable
application from among a plurality of previously created transportable applications is
received. A link from the first transportable application to the second transportable
application is created and stored.

As a result, transportable application may be inter-related in complex message
webs. The message webs may also be inter-related in message web rings. Links may be

generated manually or automatically, based on context, workflow processes, or other

-8-

Page 10 of 240

WO 02/21413 PCT/US01/42041

known relationships among applications. Recipient lists and data may propagate among
fields of linked transportable applications, directly or according to abstract business rules.

According to another aspect, a method for processing a request to display an
electronic message is disclosed. First message data is generated. The first message data
defines at least a first message portion and one or more navigation regions for one or
more other message portions of a multiple-part electronic message having a plurality of
message portions. The first message data is provided to a client. A request is received
from the client for a second portion of the electronic message selected from among the
other message portions. Second message data is generated which, when processed at a
user interface of the client, causes the client to display the second portion of the electronic
message. The second message data is provided to the client.

Multiple-part electronic messages are disclosed. A graphical user interface of an
electronic messaging system displays a message in the form of one or more header
portions and one or more body portions. Each of the body portions has a selection region.
While one body portion is visible at a given time, all the selection regions are
continuously visible in the user interface to facilitate selection of any of the body portions
at a particular time. Selecting a selection region of a non-displayed body portion causes a
server to generate a refreshed user interface that includes the entirety of the selected body
portion, and that hides the previously viewed body portion. As a result, a large amount of
associated information may be combined in a single message in a way that is clearly
organized and easily accessible.

Transportable applications are disclosed. The transportable applications may be
linked into webs of associated messages. For example, multiple related discussions or
applications may be associated and organized. The webs of messages may be linked into
rings of related message webs. As a result, workflow processes and complex associated
information may be accessed and analyzed in an ordered way.

In other aépects, the invention encompasses computer readable media, and
systems configured to carry out the foregoing steps. Other features and advantages of the
invention will be apparent from the following detailed description, the drawings, and

from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements and in which:

9.

Page 11 of 240

WO 02/21413 PCT/US01/42041

FIG. 1A is a block diagram providing a structural overview of a system context in
which an embodiment may be used.

FIG. 1B is a block diagram that illustrates sofiware elements of one embodiment
ofa service unit.

FIG. 1C is a block diagram of the system of FIG. 1A illustrating additional
elements.

FIG. 1D is a block diagram illustrating an example of interaction of a container
and its building blocks with system services.

FIG. 1E is a block diagram illustrating a high-level view of a process of creating
and interacting with a transportable application.

FIG. 2A is a block diagram of system architecture that may be used to host the
foregoing services and provide such services to clients.

FIG. 2B is a block diagram of an example software architecture of elements of the
system of FIG. 2A.

FIG. 2C is a diagram of an example graphical appearance of a transportable
application, according to one embodiment.

FIG. 2D is a block diagram of an alternate embodiment of a system architecture
that features use of certain Microsofi® servers and systems.

FIG. 2E is a block diagram of an aliernate embodiment of a system architecture
that features use of certain Microsoft® servers and systems.

FIG. 2F is a block diagram of an alternate embodiment of a system architecture
that features use of certain Microsoft® servers and systems.

FIG. 3 is a diagram of dependency relationships among interfaces that may be
used, in one embodiment.

FIG. 4 is a block diagram of an example of a membership hierarchy.

FIG. 5 is a block diagram of objects and data communications paths involved in
presentation of content associated with a building block.

FIG. 6 is a block diagram illustrating interaction of programmatic objects in one
embodiment of a presentation model. '

FIG. 7 is a flow diagram of one embodiment of a process of carrying out
response-based notifications.

FIG. 8A is a diagram of an example graphical user interface screen display of the
Escalation Exception Manager template.

FIG. 8B is a diagram of a screen display of an Addressing page that may be

displayed, in one example embodiment.

-10-

Page 12 of 240

WO 02/21413 PCT/US01/42041

FIG. 8C is a diagram of an example of the Message Security Options window that
may be displayed, in one example embodiment.

FIG. 8D is a diagram of an example of the Page Security Options window that
may be displayed, in one example embodiment.

FIG. 9A is a diagram of the Join Group screen that is displayed when the selected
group is private.

FIG. 9B is a diagram of a My Groups screen that is generated and displayed when
a user selects the My Groups link of the portal home page.

FIG. 9C is a diagram of a portion of the screen display of FIG. 9B.

FIG. 9D is a diagram of an Application Builder screen display that is displayed in
response to selecting the Application Builder.

FIG. 9E is a diagram of a page navigation dialog that may be displayed, in one
example embodiment.

FIG. 10A 1is a diagram of a Default Page Settings screen that may be used to
change properties of a selected default page of a template.

FIG. 10B is a diagram of a Page Builder screen that may be displayed in response
to selecting the Page Builder, in one example embodiment.

FIG. 10C is a diagram of a Survey Page Builder window that may be displayed, in
one example embodiment.

FIG. 11A is a diagram of the graphical appearance of an Approval List building
block as it appears in a transportable application page under development using the Page
Builder.

FIG. 11B is a diagram of an example embodiment of a Discussion building block
that may be used to captures a discussion between message participants. |

FIG. 11C is a diagram of an example embodiment of a File Sharing building

. block, according to an example embodiment, which may be used to share an electronic
file among a group of recipients for collaborative review or updating. '

FIG. 11D is a diagram of an Image building block that may be provided, in one
example embodiment.

FIG. 11E is a diagram of an Image Gallery building block that may be provided,
in one example embodiment.

FIG. 11F is a diagram of an Information Fields building block that may be
provided, in one example embodiment.

FIG. 11G is a diagram of an Inline Document building block that may be

provided, in one example embodiment.

-11-

Page 13 of 240

WO 02/21413 PCT/US01/42041

FIG. 11H is a diagram of an Inline Web Page building block that may be provided,
in one example embodiment.

FIG. 12 is a diagram of an example transportable application that contains an
inline Web page.

FIG. 13A is a diagram of an Invitation building block that may be provided, in
one example embodiment.

FIG. 13B is a diagram of a Poll Abuilding block that may be provided, in one
example embodiment.

FIG. 13C is a diagram of an Advanced Options window that may be displayed, in
one example embodiment. |

FIG. 13D is a diagram of a Schedule building block that may be provided, in one
example embodiment.

FIG. 13E is a diagram of a Table building block that may be provided, in one
example embodiment.

FIG. 14A is a diagram of a Choice building block that may be provided, in one
example embodiment.

FIG. 14B is a diagram of a Free Text Response building block that may be
provided, in one example embodiment.

FIG. 14C is a diagram of a Ratings building block that may be provided, in one
example embodiment.

FIG. 15 is a block diagram that illustrates data and control flow among building
blocks, data access objects, interface methods and the database.

FIG. 16 is a flow diagram illustrating a process of presenting building block
information using the foregoing mechanisms.

FIG. 17 is a block diagram illustrating elements of an event handling system, in
one eiample embodiment.

FIG. 18A is a block diagram of a first enterprise application integration approach
that uses an asynchronous approach. \

FIG. 18B is a block diagram of the system of FIG. 18 A wherein a custom
connector is used.

FIG. 18C is a block diagram of an application-server centric integration approach
for providing a synchronous integration solution.

FIG. 18D is a block diagram of an enterprise application integration approach that

provides synchronous integration through one or more synchronous protocols.

-12-

Page 14 of 240

WO 02/21413 PCT/US01/42041

FIG. 18E is a block diagram of an enterprise application integration approach that
uses event-based communication.

FIG. 19 is a block diagram that illustrates a computer system with which an
embodiment may be implemented.

FIG. 20 is a block diagram illustrating a plurality of messages that are linked
across different folders.

FIG. 21A is a diagram of a first embodiment of a graphical user interface display
of a multiple-page electronic message.

FIG. 21B is a diagram of a second embodiment of a graphical user interface
display of a multiple-page electronic message.

FIG. 22A is a diagram of a third embodiment of a graphical user interface display
of a multiple-page electronic message.

FIG. 22B is a diagram of‘a fourth embodiment of a graphical user interface
display of a multiple-page electronic message.

FIG. 22C is a diagram of a further embodiment of a graphical user interface
display of a multiple-page electronic message that includes an indicator of additional
pages.

FIG. 22D is a diagram of a further embodiment of a graphical user interface
display of a multiple-page electronic message.

FIG. 23A is a flowchart of a process for linking messages, according to one
embodiment. '

FIG. 23B is a flowchart of a process of automatically linking messages in another
embodiment.

FIG. 23C is a flow diagram of a process of automatically creating message links
in response to a change in an object. -

FIG. 23D is a flow diagram of a process of updating message links in response to
changes in message content.

FIG. 23E is a flow diagram of a process of suggested message linking.

FIG. 24 is a flow diagram of a process of displaying HTML content in an e-mail
client with browser navigation features.

FIG. 25A is a block diagram of a linked collection of related message webs,
referred to herein as a message web ring.

FIG. 25B is a flow diagram of a process of creating a message web ring.

FIG. 26A 1is a block diagram illustrating messages in a message web having
shared address lists.

-13-

Page 15 of 240

WO 02/21413 PCT/US01/42041

FIG. 26B is a flow diagram of a process of generating a list of recipieﬁts of a
transportable application. |

FIG. 27A is a block diagram illustrating that the content of messages that are
linked can be changed, with automatic propagation of changed content to linked
messages.

FIG. 27B is a flow diagram of a process of updating data among linked messages
in a message web.

FIG. 27C illustrates one application of the processes of FIG. 27A, FIG. 27B in
which a linked collection of related messages are used to aggregate data from a child
message up to a parent message.

FIG. 28A is a diagram of a graphical user interface display in which a
transportable application includes a plurality of tabs that switch between the content of
message web members.

FIG. 28B is a flow diagram of a process of adding tabs to a transportable
application of the type shown in FIG. 28A.

FIG. 28C illustrates a notification message of a message web.

FIG. 29 illustrates a method for tracing deleted messages using links.

FIG. 30 illustrates a message web ﬁiap that may be used in a graphical user
interface of a messaging system that supports linked messages, in one example
embodiment.

FIG. 31A, FIG. 31B, and FIG. 31C are diagrams of graphical user interface

displays that illustrate an example of a recruiting process using a message web.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present(invention.
It will be apparent, however, to one skilled in the art that the present invention may be
practiced without these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid unnecessarily obscuring the
present invention.

Unless otherwise defined, all technical and scientific terms used herein have
substantially the same meaning as commonly understood by one of oirdinary skill in the
art to which the invention pertains. ZAPLET is a trademark of Zaplet, Inc., Redwood
Shores, California. Microsoft, Microsoft Outlook, Microsoft Active Directory, Microsoft

Exchange Server, Microsoft SQL Server, Microsoft Internet Explorer, and Microsoft

-14-

Page 16 of 240

WO 02/21413 PCT/US01/42041

Internet Information Server are trademarks of Microsoft Corporation, Redmond,

Washington. All other trademarks mentioned are the property of their respective owners.

Embodiments are described herein in sections according to the following outline:
TRANSPORTABLE APPLICATION COMMUNICATIONS SYSTEM

System Structural Overview

Clients

Networks

Servers—Application Server, Proxy Server, Mail Server, Wireless Gateway,

Directory Server, Middleware, File Server, Photo Server, Database Server, etc.

Page 17 of 240

Support Applications—Java, Database, etc.

Transportable Applications—Structural and Functional Overview
Graphical Appearance of a Transportable Application—Generally
Receiving and Sending Transportable Applications

Containers

Root Container

Contained Containers

Implementation with Enterprise Java Beans

Templates

Pages and Building Blocks

Object Model

Membership

Building Blocks—Programmatic Aspects

Directory Integration—Global Object Identifiers

Presentation of Transportable Applications

E-mail Client Presentation

Personal Portal Presentation

Mutltiple-Page Transportable Applications

Programmatic Processes for Presentation

Authoring Transportable Applications

Application Editor

Page Editor

Building Blocks--Examples

Site Style Editor

Communications From Transportable Applications to Users (“Notifications™)

Notifications Based on User Responses or Timed Events

-15-

WO 02/21413 PCT/US01/42041

Notifications Based on Rules and Attributes

Object Communications—Programmatic Methods

Object Communications—Event-Driven Methods (Event Handling System)

Database Schema

Application Programming Interface & Object Methods

Object Communications—External Systems

Enterprise Application Integration Using Connectors

Security Processes

Cluster-Specific Encryption and Request Roﬁting

Sharing Transportable Application Data Among Multiple Sites

System Administration Processes

Using Transportable Applications in Business Processes and Workflow

MULTIPLE-PART ELECTRONIC MESSAGES

LINKING AND AGGREGATING MESSAGES

HARDWARE OVERVIEW

EXTENSIONS AND ALTERNATIVES

1.0 TRANSPORTABLE APPLICATION COMMUNICATIONS SYSTEM

According to an embodiment, a communications system, and data processing
methods that it carries out, facilitate collaborative communication and work among a
group of individuals. Embodiments feature structures and processes for creating,
authoring, transporting, updating, and viewing certain transportable applications. In
general, a transportable application is an'interactive, dynamic, addressable computer
software application that can be transported among systems. A transportable application
comprises one or more pages. Each page comprises one or more building blocks, and can
be designed for either specific or general uses. Each building block contains the user
interface, data elements, and processing capability that enable specific functions within a
page. |

A transportable application can be transported among different computer systems,
clients and servers using transport mechanisms such as e-mail and other data transport
protocols. When a transportable application arrives at a destination computer system, a
user of that system can open the transportable application, view content that is
dynamically asynchronously updated from a server source, and interact with functional

elements of the transportable application in order to carry out work or other useful tasks.

-16-

Page 18 of 240

WO 02/21413 PCT/US01/42041

Transportable applications are a new way to communicate by turning an existing
transport mechanism, such as e-mail, into a live, shared place. Transportable applications
enable users to share documents, data, business applications, schedules and other
information with a group of people or with other systems. They can be used to make
decisions with friends, family, or co-workers, schedule meetings and events, gather group
data such as contact information, collect opinions, send invitations and RSVPs, and other
tasks. In one embodiment, transportable applications enable all recipients in a group to
communicate using just one e-mail message. Because a single transportable application
takes the place of a thread of emails, transportable applications reduce inbox clutter and
eliminate confusing strings of messages.

Transportable applications as described herein are better than e-mail because they
provide information that is fresh and up-to-date. In one embodiment, transportable
applications arrive in the user’s inbox like normal e-mail, but they are current when the
user opens them; new information can be included between the time the original author
sent the transportable application and the time you open it. The transportable applications
are current when read, not current when sent, eliminating the problem of receiving
messages that are obsolete upon arrival.

The transportable applications add organization to the normally undifferentiated
pile of individual e-mail messages. For example, transportable applications provide a
structured container in which related data is collected, thus freeing users of organizing
multiple pieces of e-mail. Additionally, transportable applications show aggregate views
of multiple pieces of e-mail, thus summarizing information for better decision making.
Also, transportable applications save time by reducing the volume of e-mail. By
consolidating many responses into a transportable application, there are fewer pieces of e-
mail to read.

Transportable applications are better than using the Web as a communications
medium, for numerous reasons. For example, transportable applications push
individualized messages into a user's Inbox. Transportable applications do not require a
user to remember to visit a web site to see if they have a message.

Moreover, transportable applications are better than instant messaging as a day-to-
day communications platform because transportable applications overcome the difficulty
in getting multiple people to collaborate in real time. Transportable applications are
targeted for group communication and persistent knowledge acquisition. In contrast,
instant messaging is not designed for group communications and persistent knowledge

acquisition.

-17-

Page 19 of 240

WO 02/21413 PCT/US01/42041

1.1 System Structural Overview

FIG. 1A is a block diagram providing a structural overview of a system context in
which an embodiment may be used. In general, a client 102 is communicatively coupled
through a network 108 to a service unit 105. The client 102 creates requests for
transportable applications and dispatches the requests into network 108. The requests are
received by service unit 105 and processed, resulting in creation of a response, which is
sent back over netv?ork 108 to client 102.

Client 102 may be, for example, a workstation, personal computer, personal
digital assistant, cellular telephone or other wireless processing device, or any other end
station data processor. Client 102 also may be a programmatic process that forms a part of
a larger computer system or application program. Network 108 is any data
communication network that can carry data communications between client 102 and
service unit 105. Network 108 may be a direct electronic connection of client 102 of
service unit 105; a local area network; a wide area network; one or more internetworks; a
combination of a an access network, a service provider network, and one or more
internetworks; or any combination of the foregoing. Client 102 also may comprise the
combination of any of the foregoing with a client software application that enables a user
to view, create, edit, and manage transportable applications.

Service unit 105 is a facility that hosts hardware and software elements that
provide the functions described herein, and may be a private business enterprise, a service
provider that provides the functions described herein to others, e.g., on a licensed basis,
subscription basis, etc., or any other entity that hosts appropriate service equipment and
facilities.

Client 102 executes a browser 104 and a personal information manager 106.
Browser 104 is a conventional Internet or World Wide Web browser, such as Microsoft
Internet Explorer. Personal information manager 106 is one or more software elements
that provide e-mail processing, among other functions. Optionally, personal information
manager 106 also may provide other personal information management functions such as
address book management, calendar management, notepads, task lists, etc. An example of
a commercial product suitable for use as personal information manager 106 is Microsoft
Outlook. In an alternative approach, client 102 may be an external computer system that
receives transportable application programmatically, without using browser 104 or -
personal information manager 106.

FIG. 1B is a block diagram that illustrates software elements of one embodiment

of service unit 105. In general, in one embodiment, service unit 105 hosts a multi-page

18-

Page 20 of 240

WO 02/21413 PCT/US01/42041

messaging service 110 that is communicatively coupled to an event processor 112, HTTP
service 114, message service 116, database service 118, security service 120, device
gateways 122, and applications 124. Such elements inter-operate to provide multiple-page
messages and carry out the processes that are described further herein.

FIG. 1C is a block diagram of the system of FIG. 1A illustrating additional
elements.

In the example embodiment of FIG. 1B, multi-page messaging service 110
comprises component/container processing logic 130, administrative services 132, policy
management & reporting services 134, access control service 136, mail services 138,
device services 140, offline message processing services 144, and event and notification
services 146.

The component/container processing logic 130 creates and manages a plurality of
message components and message containers using processes that are described herein.
The administrative services 132 provide administrative functions, such as adding or
deleting users, importing files of users, identifying an external directory server and
associating it with the system, etc. The policy management & reporting services 134
facilitate creating and managing policies for acting on transportable applications, access
controls, etc.

Access control service 136 is communicatively coupled to security service 120,
which may include an authentication, authorization and access (AAA) server, such as a
RADIUS server. Access control service 136 communicates with other elements of multi-
page messaging service 110 to receive requests to determine whether a particular user is
authenticated in the system. The access control service also can receive and process
requests to determine whether an authenticated user is authorized to access a particular
message or a particular page of a particular message.

Security service 120 provides authentication anci protection of user names and
passwords. In one embodiment, security service 120 also provides Secure Sockets Layer
(SSL) communication facilities so that communications from clients 102 to service unit
105, and from service unit 105 to an external directory server or other secure element, caﬁ
be encrypied and carried out in a secure manner. Security service 120 also may provide
means for integration with third-party security systems. Using such integration, security
service 120 may be extended to provide authentication, accéss control, privacy, non-
repudiation, and data integrity services. Such third-party systems may be the Sun Java
Cryptography Engine, systems from Entrust, Cylink, Cybersafe, Verisign, etc. Security

service 120 may support encrypted communications using asymmetric encryption

-19-

Page 21 of 240

WO 02/21413 PCT/US01/42041

algorithms such as RSA, DSS, D-H, etc.; symmetric encryption algorithms such as DES,
triple-DES, DESX, IDEA, ES2, ES4, Blowfish, etc., message digest or hash algorithms
such as SHA-1, SHA, MDS5, MD2, RIPEMD, etc. Such encryption algorithms can be
called programmatically from containers, building blocks, or system services that need to
encrypt or decrypt data for communication, storage, or retrieval.

Mail services 138 is responsible for receiving data from other elements of the
multi-page messaging service 110 and creating e-mail messages based on the received
data. Mail services 138 also interfaces with message service 116 to dispatch and forward
messages to users and clients. An example of a commercial product that may be used for
message service 116 is Microsoft Exchange Server 2000.

In one specific embodiment, each of the foregoing services is implemented in the
form of one or more Java class libraries. Thus, the services are provided by generic
software modules that can be called by other software components of the system. The
modules can incorporate third-party components, such as calculation engines, a workflow
engine, etc.

FIG. 2A is a block diagram of system architecture that may be used to host the
foregoing services and provide such services to clients.

One or more application servers 202 host containers in the form of Enterprise Java
Beans 204 and store programmatic objects representing containers, building blocks,
pages, and transportable applications in a cache 206. Application servers 202 execute
code of the containers and building blocks and call servers and services in a services
domain 201 to result in servicing client requests. In one embodiment, application servers
202 are implemented as a plurality of clusters of application servers, to provide load
balancing and increased throughput. Inbound client requests are routed to a particular
cluster using a routing mechanism that is described further herein.

Application servers 202 are communicatively coupled by link 210 to database
server 208, which comprises one or more databases. The databases in database server 208
provide persistent storage of stored procedures, a repository of data and logic for
containers, building blocks, and other system objects, and an event database that supports
event-based messaging. Database 208 may be, for example, an Oracle database server,
Microsoft SQL Server, etc. Link 210 may be implemented, in one specific embodiment,
as JDBC calls from applications server 202 that traverse an SQL network using the
SQLNet protocol and arrive at database server 208 in Oracle Command Interface (OCI)
format. Alternatively, ODBC may be used, as in the case of SQL Server.

-20-

Page 22 of 240

WO 02/21413 PCT/US01/42041

The database server 208 provides one source for content for building blocks and
containers that application servers 202 may dynamically retrieve and present to clients
102 as part of processing transportable application and executing their building blocks.
Other data sources may be used. In one embodiment, application servers 202 are
communicatively coupled by an NFS link 246 to one or more file servers 244. This
arrangement enables application servers 202 to obtain text files, word processing
documents and other contents of a file system to include in the dynamic content of a
building block or for other purposes.

One or more adapters 209 cooperate with a connection framework in application
server 202 to communicate with one or more external systems or applications 205. Such
external systems or applications include legacy applications, enterprise systems, etc., as
described further herein.

In another embodiment, application servers 202 are communicatively coupled to
one or more image servers 240 by an HTTP link 242. This arrangement enables
application servers 202 to rapidly retrieve one or more graphical images, digital photos,
and other image information to include in transportable applications when they are
presented to clients.

Application servers 202 may obtain dynamic content from one or more external
sources and may communicate with clients using connections to public networks. In one
embodiment, application servers 202 are communicatively coupled by a first HTTP link
236 to an HTTP server 232 (Web server 232), proxy server 234, and second HTTP link
238. This arrangement enables application servers 202 to receive a large number of
separate HTTP connections and requests from clients 102 over second HTTP link 238,
which are received at proxy server 234 and passed to the application servers over the first
HTTP link 236. When the application servers have prepared content for presentation to
clients in response to client requests, Java Server Pages elements of the application
servers send the content to HTTP server 232 over the first HTTP link 236. The HTTP
server 232 then issues an appropriately encapsulated HTTP response to the clients over
HTTP link 238, through proxy server 234.

Application servers 202 are also communicatively coupled by link 214 to
middleware 212, which provides basic messaging infrastructure functions. In one specific
embodiment, link 214 uses the Java Messaging System (JMS) protocol, which may also
be used to transport data on link 215 from middleware 212 to one or more event daemons
216 of event service 146. The event service 146 is communicatively coupled by link 218

to database server 208. In one specific embodiment, link 218 is implemented by JDBC

21-

Page 23 of 240

WO 02/21413 PCT/US01/42041

calls from event service 146 that traverse the SQLNet and arrive at database server 208 in
OCT format.

Directory information such as user names and group membership may be obtained
from one or more directory servers 220 that are communicatively coupled to application
servers 202 by link 224 and to event service 146 by link 222. In one embodiment,
directory servers 220 conform to Lightweight Directory Access Protocol (LDAP) and
communications on links 222, 224 are carried out using LDAP. Directory servers 220
need not be co-located with application server 202, and may be located in any location
that is accessible using LDAP communications over a network or similar facility.

Application servers 202 communicate with e-mail clients using mail servers 228,
and with wireless devices, such as wireless personal digital assistants and cellular phones,
using a wireless gateway 226. In one embodiment, one or more mail servers 228 are
communicatively coupled by an SMTP link 225 to event services 146, which is
responsible to generate events that request mail transport. Event services 146 also are
coupled by SMTP link 225 to wireless gateway 226, and the wireless gateway may be
communicatively coupled to the mail servers by link 227. Mail servers 228 and wireless
gateway 226 communicate with e-mail clients, other client devices using external
networks that are reached using SMTP link 230.

FIG. 2B 1s a block diagram of an example software architecture of elements of the
system of FIG. 2A.

The software elements of the system may be viewed as logically organized in a
client tier 248, middle tier 252, and data tier 275. Client tier 248 comprises an e-mail
client 249 that executes on a client computer, e.g., client 102, and a browser 250 that
executes at the same client. The e-mail client 249 and browser 250 may interoperate with
a shared DLL that provides HTML parsing functions, so that the e-mail client can display
HTML e-mail messages.

In one embodiment, system services generally are provided by a plurality of
servlet constructs that implement the services. For example, middle tier 252 comprises a
mail server 254 that communicates with e-mail client 249 over a network link. The mail
server is communicatively coupled to one or more mail queuing servlets 262 that are
organized in a Web container 258 of program elements. The Web container 258 further
comprises a mail formatter 260, which may be implemented in the form of one or more
Java Server Pages. Creation and modification of dynamic content of a transportable

application is generally performed by dynamic content creation servlets 264. A Web page

22

Page 24 of 240

WO 02/21413 PCT/US01/42041

formatter 266, implemented in the form of one or more JSPs, is responsible for formatting
Web pages or other HTML content that may form a part of a transportable application.

In one specific embodiment, middle tier 252 further comprises an EJB container
268 that comprises a plurality of program elements in the form of Enterprise Java Beans
(EIBs). EJBs are Java® language classes that can interoperate with a plurality of servers
within an enterprise network. Data access EJBs 270 are responsible for interfacing
higher-layer elements with database 208 and one or more stored procedures 276 in the
database. Core EJBs 272 are responsible for carrying out access control processes,
managing event services, etc. Data and event integration EJBs 274 provide an interface to
external systems such as a legacy database 278, an enterprise application integration
program or bus 279, etc.

In an embodiment, these elements are implemented using Java-based technologies
in conformance with the Java 2 Enterprise Edition (J2EE) specification for server-based
applications. However, embodiments are not limited to this context.

FIG. 2D is a block diagram of an alternate embodiment of a system architecture
that features use of certain Microsoft® servers and systems. In general, FIG. 2D depicts a
client layer 2000 that communicate with servers 2002. Client layer 2000 comprises, in
this example, a Microsoft Outlook client 2004. Servers 2002 comprise a Microsoft
Exchange server 2008, an Active Directory server 2026, Web storage system 2020,
apﬁlication server 202, database server 208, and host integration server 2034,

In this configuration, Outlook client 2004 communicates over a mail application
programming interface (MAPI) or remote procedure call (RPC) link 2006 with a MAPI
processor 2012 of the Microsoft Exchange server 2008. The Microsoft Exchange server
2008 further comprises an SMTP agent 2010, OWA agent 2014, event handling system
2016, and Exchange OLE Database agent 2018. The SMTP agent 2010 can communicate
with SMTP-compatible mail servers to enable the system to transport e-mail messages
across a network. Event handling system 2016 receives events generated by application
server 202 or its applications and processes them by, for example, storing information in
mailbox store 2022 and public stores 2024 of Web storage system 2020. Database
operations by or on behalf of application server 202 are facilitated by Exchange OLE
Database agent 2018, which is communicatively coupled to Web storage system 2020.

Web storage system 2020 provides Exchange server 2008 with a unified storage
name space for all messages, calendar information, documents, discussions, or other data.
Its objects are accessible using HTTP, XML, COM, WebDAYV, and file system calls. In

one embodiment, transportable applications are stored in Web storage system 2020. Such

23-

Page 25 of 240

WO 02/21413 PCT/US01/42041

transportable applications, their document attachments, and their building blocks are
addressable in Web storage system 2020 using URLs. Web storage system 2020 may also
store information about a plurality of Exchange offline folders, facilitating
synchronization of offline updates to transportable applications.

Active Directory server 2026 is communicatively coupled to Exchange server
2008 and stores directory information, such as definitions of users and groups, locations
of network elements such as servers, hosts, workstations, and printers, etc. The Active
Directory server 2026 is also accessible by application code 202A, which is hosted by
application server 202, through a common data object (CDO) agent 2028 that is hosted by
the application server. Active Directory is an example of an LDAP directory as described
herein.

Application server 202 further comprises an Active Data Objects (ADO) process
2030 that is communicatively coupled to Exchange OLE Database agent 2018 and to
database 208 and host integration server 2034. These communication paths enable
functions of application code 202 to set and retrieve values of data objects that are stored
in database 208, in external legacy systems that are accessed using host integration server
2034, Further, the application code 202 can set and retrieve values of data objects that are
stored in Web storage system 2020 by appropriate messages to Exchange OLE Database
agent 2018.

Application code 202A of application server 202 comprises sequences of
computer program instructions that are configured to carry out the functions that are
described herein. ‘

In the configuration of FIG. 2D, transportabie applications that are hosted by
applicaf:ion server 202 may be created, viewed, and managed using Outlook client 2004.
The Outlook client 2004 is an example of an HTML e-mail client that can display
transportable application content in rich HTML form within an e-mail message window.
The transportable applications may be transported over a network using Exchange server
2008. Active Directory server 2026 may serve as a source for user and group information.
Building blocks may be implemented in the form of Web forms, which provide user
interface front-ends to data and logic in the Web storage system 2020.

Exchange server 2008 includes instant messaging support with presence detection
APY’s. Thus, application server 202 may determine, by an appropriate API call, if
participants in transportable applications are actually online, and utilize instant messaging
for communications, and record such sessions at user request. Transportable applications

can include NetMeeting features for initiating and storing data conferences, such as

24-

Page 26 of 240

WO 02/21413 PCT/US01/42041

virtual white board, application sharing, video conferences, audio conferences, etc.,
through Exchange server 2008.

Exchange has threaded discussion capabilities that are programmatically
available. In one embodiment, application server 202 uses the threaded discussion APIs to
provide a threaded discussion capability, with presence detection, as a core building
block.

Calendaring and contact information access through Exchange server 2008 allows
for scheduling features, such as automatic meeting creation, available time lookup and
resolution, meeting cancellations, etc., and more integrated addressing and address
validation on the server side. Use of Exchange server 2008 also enables application server
202 to communicate transportable applications to PDA, mobile phone, and other non-PC
devices, over wired and wireless.

A workflow engine of Exchange server 2008 has an accompanying graphical
workflow designer that allows execution of logic and invocation of components in and
outside of Exchange, via COM, that provide message routing, approval, and state
transitions. Thus, transportable applications of application server 202 may participate and
drive these workflows.

FIG. 2E is a block diagram of an alternate embodiment of a system architecture
that features use of certain Microsofti® servers and systems. As in FIG. 2D, the
architecture of FIG. 2E features an Outlook client 2004, Exchange server 2008, Active
Directory server 2026, Web storage system 2020, application server 202, and host
integration server 2034. The architecture of FIG. 2E further features an Internet
Information Server (IIS) 2036 that is communicatively coupled to Exchange server 2008
via OWA agent 2014. In client layer 2000, an Internet Explorer browser 2005 is
communicatively coupled, for example, over a network, to IIS 2036.

Browser 2005 and Outlook client 2004 may carry out HTML display functions
using a shared DLL.

In this configuration, application server 202 may serve transportable applications
to a user through browser 2005, Outlook client 2004, or both. For example, a user may
use browser 2005 to open an HTTP connection to IIS 2036, which communicates HTTP
requests and posts among application server 202 and the browser. Using this mechanism,
a user may obtain the portal presentation described herein and may view, create, and
manage transportable applications. Alternatively, as in FIG. 2D, the user may obtain a
pdrtal view, or view an individual transportable application, in an e-mail window that is
generated by Outlook client 2004,

25-

Page 27 of 240

WO 02/21413 PCT/US01/42041

FIG. 2F is a block diagram of an alternate embodiment of a system architecture
that features use of certain Microsofi® servers and systems. As in FIG. 2E, the
architecture of FIG. 2F features an Outlook client 2004, Exchange server 2008, Active
Directory server 2026, Web storage system 2020, application server 202, host integration
server 2034, and an Internet Information Server (IIS) 2036 that is communicatively
coupled to Exchange server 2008 via OWA agent 2014. In client layer 2000, an Internet
Explorer browser 2005 is communicatively coupled, for example, over a network, to IIS
2036. Any other browser 2005A, such as Netscape Navigator, may participate in client
layer 2000. Browser 2005 and Outlook client 2004 may carry out HTML display
functions using 4 shared DLL.

The architecture of FIG. 2F further features a plurality of Active Server Page
(ASP) constructs that are hosted by IIS 2036. The ASPs are callable from application
code 202A, as indicated by link 2038, by passing URLs over a network to IIS 236. The
URLs identify a particular ASP and provide one or more function parameters or data
values.

In this configuration, certain transportable application functions that are defined
herein are carried out by appropriately configured ASPs 2040 rather than by application
code 202A. For example, any of the functions that are described herein as implemented
using JSP constructs may be implemented, alternatively, using ASPs 2040 in a system
configured as in FIG. 2F.

In still another alternative configuration, elements of the Microsoft “.NET”
infrastructure are used. In this embodiment, the database server 208 is Microsoft SQL
Server, but all other components are found within Windows 2000, Windows XP, and
related server products of Microsoft. For example, ISAPI filters are used as a substitute
for J2EE servlets as disclosed herein; Active Server Pages substitute for JSP’s; Microsoft
Message Queues (MSMQ) substitute for IMS; COM+ components substitute for EJB’s;
and ODBC is the database communication protocol rather than JDBC. Data access
objects (DAOs) as disclosed herein may be implemented using a custom OLE database
provider that is compatible with the Microsoft Active Data Object (ADO+) framework.
COM+ access to external legacy applications may be provided as an alternative to JCA or
connectors as disclosed herein.

As set forth in the foregoing, embodiments of transportable applications, an
application server, and associated functions described herein are applicable equally to

contexts that use Microsoft servers, products, and related elements, as well as Java

-26-

Page 28 of 240

WO 02/21413 PCT/US01/42041

servers, open-source elements, servers or products of Sun Microsystems and its partners,
etc.

1.2 Transportable Applications—Structural Overview

A system having the foregoing configuration may be used to create, send, respond
to, interact with, and manage a plurality of transportable applications.

FIG. 1E is a block diagram illustrating a high-level view of a process of creating
and interacting with a transportable application. In block 190, an author of a transportable
application accesses an application authoring system. The application authoring system
may comprise a transportable application editor that is provided by application server 200
and accessed through an enterprise network or over a public internetwork.

In block 191, the author creates, authors and edits a new transportable application
using the editor, resulting in creating and storing the transportable application, as shown
in block 192. Such authoring also includes identifying one or more recipients of the
transportable application. In block 193, the transportable application is transported to all
the recipients using a suitable transport mechanism. Transport mechanisms may include
e-mail, wireless gateways, or other means.

When the transport mechanism is e-mail, in block 194, each recipient receives an
e-mail message identifying the transportable application and appearing to contain the
transportable application. Assume that a particular recipient opens the e-mail message
that identifies the transportable application. In response, in block 195, the system
dynamically determines what client e-mail program is in use, and determines what
display capabilities it has with respect to fonts, colors, graphics, other types of
information, etc. In block 196, the transportable application is displayed to the user using
its e-mail client, based on the available display capabilities of the client. Further, any
dynamic content associated with the transportable application is automatically retrieved,
in its then-current form, from a database and displayed as part of the transportable
application.

In block 197, the recipient responds to the transportable application in a manner
analogous to replying to an e-mail message. Text comments or other changes to dynamic
content of the transportable application may be entered in the application as it is displayed
within a window of the e-mail program. Any such changes are updated at the database in
dynamic content associated with the transportable application, as shown by block 198. As
aresult, any other recipient who subsequently views the same transportable application
will receive a current view of the dynamic content. In this sense, the dynamic content and

the transportable application is always current when read.

-27-

Page 29 of 240

WO 02/21413 PCT/US01/42041

FIG. 1F is a block diagram illustrating details of a process of authoring a
transportable application as in block 191 of FIG. 1E.

In block 191A, one or more pages for the transportable application are created or
retrieved from storage. In block 191B, a template for the transportable application is
created. In block 191C, a transportable application is created based on the template and/or
the pages.

Each of blocks 191A, 191B, 191C may be carried out by a different individual.
For example, one person can create a template and another person can created a
transportable application based on the template. Recipients of the transportable
application may, depending on the settings of the transportable application, change the
structure of the transportable application. Alternatively, the same person can be
responsible for all stages of the authoring process by creating templates, authoring new
transportable applications, and participating in collaboration with others within the
framework of a transportable application. Individual pages and templates may be shared
with others.

1.2.1 Graphical Appearance of a Transportable Application—Generally

FIG. 2C is a diagram of an example graphical appearance of a transportable
application, according to one embodiment. In this embodiment, a transportable
application is displayed in a transportable application window 280 that comprises, in
general, a command options bar 282, an action request or note 284, a header bar 286, and
one or more pages 287A, 287B. Each of the pages 287A, 287B may comprise one or
more building blocks 292, 294. Each building block contains the user interface, data
elements, and processing capability that enable specific functions within a page.
Navigation among pages is accomplished by selecting a navigation area 288 associated
with a particular page, or by selecting a navigation direction icon 296.

In one specific embodiment, command options bar 282 includes a New Message
button, Reply to Author button, Forward button, and Print View button. The New
Message button is used to author a new transportable application message. A Reply to
Author button is used to send a message directly to the author of the transportable
application displayed in window 280. The Forward button is used to forward the
transportable application to additional recipients. The Print View button is used to obtain
a properly formatted printed version of the transportable application.

Header bar 286 provides addressing information identifying the author of the
transportable application, its recipients, and its subject or title. In one embodiment, the

specific names of recipients are hidden, and header bar 286 includes a View All

-08-

Page 30 of 240

WO 02/21413 PCT/US01/42041

Recipients link 286a. Selecting the View All Recipients link 286a causes the system to
display a list of all recipients.

One or more notifications may be associated with a transportable application. If a
notification is present for a transportable application, a notification link 290 is displayed,
and provides a hyperlink with which the user may obtain a view of the notifications.
When a user receives a transportable application, a notification system enables the user to
“opt-in” to individual transportable applications in which the user has an interest. In one
approach, if dynamic content associated with the transportable application changes, a new
copy of the transportable application is sent to the user. Alternatively, notifications may
comprise re-bolding an identifier of the transportable application in the user’s e-mail
client. In this manner, the user can track changes without having to remember to
continually go back and check on the state of the transportable application. For example,
a user may read a transportable application, opt-in to the notification system for that

transportable application, delete the transportable application from the user’s e-mail

7.

Inbox, and wait for a notification when anything changes in the transportable application.

Each user is sent only a single copy of the transportable application, even if there
are multiple responses to it. The system knows when the transportable application has
been read by the user and can minimize the number of notifications sent. If the user has
not opted-in to the notification system, the user can always open the transportable
application or refresh the display of client 102, e.g., by selecting a Refresh button of the

“ browser, to see the latest information.

A transportable application also can change state during its lifetime. For example,
an author can close a transportable application; this notifies the recipients that comments
or replies are no longer being accepted on the subject of the transportable application. The
author of the transportable application can then communicate a decision or the resulis of
the transportable application to all the recipients. Thus, the user no longer needs to spend
time writing a response to an e-mail when its subject matter is essentially closed.

An Options link 291 provides a mechanism to display a list of actions that the user
can take with the transportable application.

The action request or note 284 displays a brief urgent note or request from the
author of the transportable application. Such notes provide a way to carry out a side
conversation among recipients of the transportable application and the author or other
recipients. Such notes may be stored persistently and generally are directed to one
recipient. In one embodiment, a transportable application that is sent in the form of an

HTML e-mail to a recipient may comprise a script, which is executed when the message

29

Page 31 of 240

WO 02/21413 PCT/US01/42041

1s opened by the recipient, that establishes an HTTP connection to application server 202,
requests any changes to dynamic content of the transportable application, determines
whether the recipient has received any notes, and displays the notes if any have been
received. The notes may be displayed within the transportable application, as in FIG. 2C,
or in a pop-up window that is displayed separately.

1.2.2 Receiving and Sending Transportable Applications

In general, interacting with a transportable application involves receiving a
message that references or contains a transportable application, entering a response, and
using one or more transportable application commands. A user may receive a
transportable application as a message carried using any suitable transport mechanism. In
this description, for purposes of illustrating a simple example, the transport mechanism is
assumed to be e-mail. Howevéf;' any other suitable transport mechanism may be used,
such as wireless gateways, voice and other multimedia protocols, etc. Further, various e-
mail protocols may be used, such as SMTP, MAPI, etc.

When a user receives a transportable application, the user receives a specially
designated e-mail message in the in-box of the e-mail client of the user. To begin
interacting with the transportable application, the user opens the message. In response, the
contents of the transportable application are automatically dynamically updated from a
server, such as application server 202 of FIG. 2A. The transportable application is also
updated when a user submits a response.

Specific processes for interaction with a transportable application depend on what
pages and building blocks are contained in the transportable application. Specific building
blocks are described further herein. In general, interaction involves selecting a desired
page using a navigation area 287B and locating a response button. Each building block
has a response button such as “Enter Response,” “Add Image,” “Add Table Row,” etc.
The response button is selected. In response, the system generates and sends an Enter
Response window to the client 102, which displays it as a new graphical user interface
window. An appropriate response is entered.

When the response is complete, the user selects a Submit button to send the
response information to the server. Alternatively, the user may select Cancel to exit
without entering a response. In response to a Submit selection, information for the
transportable application in a database associated with the server is updated to show the
response. The foregoing steps may be repeated any number of times for any number of
pages in the transportable application. When the user is finished entering responses, the

user closes the message.

-30-

Page 32 of 240

WO 02/21413 PCT/US01/42041

As noted above, notifications may be turned on and off by selecting notifications
link 290. FIG. 7A is a diagram of a Set Notifications user interface window that is
displayed when notifications link 290 is selected. Window 700 comprises an On radio
button 702, Off radio button 704, and Customize radio button 706.

If the Customize radio button 706 1s selected, in response, the server generates and
sends to the client a Customize Notifications window. FIG. 7B is a diagram of a
Customize Notifications window that may be displayed. The Customize Notifications
window 708 displays one or more page check boxes 710 corresponding to pages of the
transportable application. Selecting one of the check boxes 710 causes the system to
generate a notification message only when a change occurs in the associated page.
Window 708 also comprises an Overall Application check box 712 that triggers a
notification when any change occurs in any part of the transportable application. Window
708 further comprises a Page Change checkbox 714 that triggers a notification when one
or more pages are added to the transportable application or when its status changes.
Window 708 also comprises a Set Frequency pull-down menu 716 that enables change

notification messages to be sent at particular time intervals.

1.2.3 Containers

Each transportable application comprises one or more containers. Each container
is implemented in the form of a programmatic object in an object-oriented programming
environment. Each container may be a root container or an embedded container. Each
transportable application has one root container, and one or more embedded containers.

The root container is responsible for interacting with transport services such as
mail services 338, access and addressing services, and sending only new or changed
information to and from its contained building blocks. Each root container stores a list of
pointers or other references to contained child objects or building blocks. Thus, a tree
walk of the pointers may be carried out to identify all building blocks or other child nodes
of a particular container. A child, such as a building block or contained container, may
have multiple parent containers; this mechanism enables, for example, a particular page to
appear in more than one transportable application or in more than one template.

Each embedded container references and logically contains one or more other
embedded containers or building blocks. Containers can call functions of the system
services shown in FIG. 1A, FIG. 1B, and FIG. 1C, and thereby provide access to such
services to the containers or building blocks that they contain. Further, containers

coordinate presentation of content of contained building blocks. Containers can subscribe

-31-

Page 33 of 240

WO 02/21413 PCT/US01/42041

to events relating to variable values that are published by contained building blocks and
embedded containers. Containers also may publish self-defined events for the purpose of
providing data or otﬂer information to other containers or building blocks, and containers
may define global variable values that can be retrieved and modified by contained
building blocks and embedded containers.

In one specific embodiment, each container is implemented in the form of an
Enterprise Java Bean.

1.2.4 Templates

Transportable applications are created based on transportable application
templates. To create a new transportable application, a user must first access a
transportable application template. Templates may provide corporate processes, general-
purpose applications, or other functions.

In one specific embodiment, corporate process templates include templates for
recruiting management, collections, financial reporting, and similar corporate-level tasks.
Examples of corporate process templates include:

Collections. Facilitates the collection of past due customer accounts. Multiple
departments can participate in the process and upload relevant documents, read and add
comments to a threaded discussion, and track the overall process using a shared timeline
or task list.

Escalation Exception Manager. Helps resolve a customer problem by displaying a
current view of the case, managing interactions, and facilitating decision-making.
Supplements call center applications by extending collaboration to other departments.

Financial Reporting. Collections the quarter’s performance highlights and
manages the development of the earnings release and earnings call script.

Forecasting. Compiles forecast input from multiple sources. Participants can
modify a document and then provide their approval or disapproval.

Lead Management. Distri'butes, compiles, and tracks lead data. Participants can
enter data in the shared table, assess the opportunity, and close the lead.

Order Exception Management. Tracks and manages the resolution of a problem
that occurs in fulfilling the order. Enables collaboration across the enterprise, partners and
suppliers to define the exception and decide on a solution.

Product Configuration. Manages the product configuration process from initial
product requirements to configuration and approval. Participants can modify documents

and approve or disapprove the final versions.

-32-

Page 34 of 240

WO 02/21413 PCT/US01/42041

Proposal Management. Displays a proposal for review and feedback and compiles
sign-off by reviewers or stakeholders.

Recruiting Management. Organizes and streamlines the process of interviewing a
candidate, from receiving the resume to making an offer.

In another specific embodiment, general purpose templates include:

Discussion. Initiate a group discussion. Try brainstorming ideas or resolving
issues among a select group of recipients.

File approval. Request approval on files that require consensus. Participants either
disapprove or approve and share comments.

File sharing. Distribute files for participants to review, discuss and collaborate on.
A version control option allows participants to check files in and out.

Image. Display and discuss a single image from a computer or the World Wide
Web.

Image Gallery. Display and discuss a plurality of images that participants or the
user contribute to a shared stored area.

Image Poll. Gather feedback and reach consensus about images.

Inline document. Review and discuss an HTML document; the contents may be
displayed within the transportable application page, so that participants do not have to
open another window.

Interactive Web Page. Interact with and discuss a Web page. Participants can
interact with the page’s hyperlinks and fields and can navigate as they would on a Web
browser.

Invitation. Invite colleagues to meetings and other events; display event details
and collect RSVPs and comments from invitees.

Poll. Gather opinions and feedback; see voters’ comments and a chart of the
results.

Ratings. Gather feedback on up to 100 questions or statements. Participants can
rate each on a scale and provide comments.

Schedule. Schedule a meeting or event by specifying dates and times and
availability.

Table. Create a table to capture input from a team. Import a file to start the table,
or create a table from scratch. Tables can be exported to a file for reuse.

The foregoing are merely examples, and templates providing other functions may
be created or provided. Each template is created using an application editor or

Application Builder, as further described herein. Updating a template using such an editor

-33-

Page 35 of 240

WO 02/21413 PCT/US01/42041

or builder does not causes changes to transportable applications that have been
instantiated from the template, however.

1.2.5 Pages and Building Blocks

Generally, building blocks of a transportable application define the specific
appearance, content, and functions of the transportable application. Each building block
comprises data elements, logical elements, and presentation elements, each of which may
be implemented in the form of one or more classes, methods and interfaces in an object-
oriented programming environment. Each building block is contained within a container,
and communicates with other building blocks through the container. The data associated
with data elements of the building blocks is stored in a persistent data store, €.g., a
database server. Building blocks are implemented, in one embodiment, as one or more
Java Server Pages.

FIG. 1D is a block diagram illustrating an example of interaction of a container
and its building blocks with system services. For purposes of illustrating a simple
example, FIG. 1D illustrates one instance of a container 180 having three instances of
building blocks 182A, 182B, 182N. However, embodiments are not limited to this
example context, and a practical system may have many thousands or millions of
instances of building blocks and containers.

Client requests 163 arrive at a request dispatcher 165, which de-encapsulates each
client requests and routes it to a particular service selected from among client services
174. Client services 174 may comprise a presentation manager 164, store/create manager
166, submit manager 168, and authentication manager 170. Client services 174 may call
one or more system services 161 as needed to carry out specific functions. In the example
of FIG. 1D, system services 161 comprise security manager 120, notification manager
148, mail services 138, directory manager 160, and system manager 162. In other
examples and embodiments, system services 161 may comprise any of the services shown
in FIG. 1B and FIG. 1C.

Programmatic components and interfaces 176 interact with the client services 174.
Each container 180 and building block 182A, 182B, 182N implements such components
and interfaces. For example, container 180 and building block 182A, 182B, 182N each
implement a Presentable interface that comprises programmatic methods that determine
how the container and building blocks are presented in a user interface. Container 180
implements a NodeObject interface that comprises methods that determine the object

hierarchy of the container, i.e., which specific building blocks it contains. A further

-34-

Page 36 of 240

WO 02/21413 PCT/US01/42041

description of such object interactions is provided herein in the section entitled Object
Model.

In one specific embodiment, the data associated with data elements of the building
blocks is stored in a persistent data store, e.g., a database server, that is dedicated to
storage of system data and not generally exposed to external clients. The building blocks
access services of the system programmatically through an associated container. In
contrast, data for a Dynamic Web Page building block is stored in an external database,
and accesses services of the system through a connector, using processes described herein
in the section entitled “Enterprise Application Integration Using Connectors.”

In this configuration, containers may be used to programmatically create
transportable applications as described herein without use of an editor, builder, or other
graphical user interface or user intervention. A program component may create or
instantiate a container, add building blocks to it, and register the building blocks in the
system. For example, in response to an event, an action can create a new transportable
application and send it.

A description of examples of building blocks that may be provided in an
embodiment is provided herein in the sections entitled “Application Editor,” “Page

Editor,” and “Building Blocks—Examples.”

1.2.6 Object Model

According to one embodiment, transportable applications and system services are
implemented using programmatic objects that are created using an object-oriented
development environment and executed in an object-oriented runtime environment. The
programmatic objects are organized according to an abstract object model that comprises
base interfaces, support classes, and component objects. A preferred embodiment is
implemented using the Java environment, but this environment is not required, and
program implementations in other object-oriented environments, or in procedural
programming languages, threaded interpreted languages, etc., are possible.

In general, the base interfaces serve as APIs that can be called by other objects
and services in the system. The intermediate support classes are classes with partial or full
implementation of specific functionality, providing typical combinations of basic
interfaces. The component objects are fully implemented classes for carrying out specific
tasks.

-35.

Page 37 of 240

WO 02/21413 PCT/US01/42041

Base interfaces, in one embodiment, relate to rendering and presentation of
objects, data persistence, containment, event handling, service callbacks, core service
management, and client service management. ‘

FIG. 3A is a diagram of dependency relationships among interfaces that may be
used, in one embodiment. '

A Rendering/Presentation package provides interfaces for rendering objects. A
Presentable interface 332 is used to render an object to a particular target client or device.
A service or object that wishes to present the contents of an object creates and populates
attribute values for information about a client request in a ClientContext data structure.
This information may comprise a device identifier, rendering format, etc. An
implementation of the Presentable interface uses the ClientContext data to create
appropriate data for rendering.

A Data package deals with data persistence from different data sources. In one
embodiment, a “DAQO” interface 334 contains methods that allow creation of a data
access object (DAO) from a data source, its maintenance and data storage.

A Hierarchy/Containment/Collection package deals with object hierarchy and
containment processes, €.g., collecting child building blocks and containers, etc. In one
specific embodiment, a CollectionNodeObject interface 336 provides hierarchy
functionality for a derived object. This interface supports navigation across object trees
and DAGs. The interface can be used to provide functionality that includes both object
trees and object collections. An InheritanceCriteria interface 338 defines how default
inheritance policies (e.g., security, notification) apply to a specific object hierarchy.
Examples of these are access control inheritance for objects in a given hierarchy. The
interface also covers whether the child object inherit state information from parent objects
or not. For example, if a child container or building block object inherits state from a
parent container object, and the parent container is closed, then all child containers will
close. In contrast, state would not be inherited if deleting a group does not necessarily
mean removing all members of the group, though it might be an option.

An event handling package deals with handling of events generated from different
components in the system. In one speciﬁc embodiment, an EventHandler interface 340
provides a base event handler interface. Further description of event handling processes,
in an example embodiment, is provided herein in the section entitled “Object
Communications—Event-Driven Methods (Event Handling System).”

A service callback interface package contains definitions for callback interfaces

that are used by service managers. The callback interfaces provide APIs that application

-36-

Page 38 of 240

WO 02/21413 PCT/US01/42041

objects provide to services. Control managers, services and other components can use
such interfaces to communicate with,application components.

| In one specific embodiment, an interface “ServiceInterface” 302 provides a base
interface for all service interfaces. An interface “Securitylnterface” 304 provides a
security service interface that can be used to query an object for access control
permissions and other security related functionality. An interface ‘“NotificationInterface”
306 provides interfaces that can be used to generate necessary notifications for a derived
object. An interface “CommInterface” 308 is used for communication with users and
other systems. An interface “Mailablelnterface” 310 is used to define how to make an
object transportable using e-mail, and an object can query such interface to receive
content-and target mail addresses. An interface “LifecycleInterface™ 312 covers the
lifecycle management of a component, in the form of operations such as close a
component, create a component, respond to a component, and add or delete members of
groups and folders.

A package of core service managers contains a set of core service engines. In one
embodiment, certain critical core service engines, e.g., a security service engine, are not
extendable. They provide basic services that other components can use. Each of the
service managers is implemented in standalone fashion and is not dependent on any
functionality from other system components.

In one specific embodiment, a ServiceManager interface 314 provides a base
interface for all other service managers. A SecurityManager interface 316 is a security
provider for services such as authentication, access control and SSL, etc. A
NotificationManager interface 318 is a notification provider. A CommunicationManager
interface handles SNMP communications among system entities. A DirectoryManager
interface provides LDAP directory functionality.

A package of client service managers provides interfaces that are related to
platform services, and which rely on the components to provide certain functionality. The
client service managers are analogous to brokers that act as liaisons between objects and
services to achieve a particular end result, such as rendering an object in a user interface.

In one specific embodiment, a PresentationManager provides a broker that deals
with object presentation in the system. Such objects may comprise: building blocks;
container types such as container objects, folders, or groups; or meta objects such as
authoring objects. A StoreCreateManager provides an interface for creating and storing

objects. A SubmitManager provides an interface for submitting changes. An

-37-

Page 39 of 240

WO 02/21413 PCT/US01/42041

AuthenticationManager provides functionality to authenticate users and applications that
wants to Zaplet platform services, in communication with the SecurityManager.

A plurality of support classes are provided for the foregoing interfaces; the
support classes generally comprise abstract classes with partial interface implementations.
The support classes encapsulate a list of common interfaces across different platform
components. Thus, the support classes enable objects to reuse common functionally
across multiple components. In one specific embodiment, support classes comprise a
Mailablelnterface, SystemService, Container, and BuildingBlock.

Component objects of the system are fully implemented objects. Components are
composed from a single support class and one or more base interfaces classes. In some
cases, a component needs functionality from multiple support classes. In this case, needed
interfaces are implemented at the component level by delegating functionality to
embedded support objects.

In one embodiment, a BuildingBlock component object represents an atomic
displayable component that can be extended. Examples of building blocks include a poli
building block, schedule building block, dynamic Web page building block, document
upload building block, etc. FIG. 3 illustrates a schedule building block interface 320 and a
poll building block interface 322, as examples. Each is constructed based on a building -
block interface 324.

An ApplicationContainer component object 326 represents a transportable
application in the system, and may reference and logically include one or more building
block objects. A FolderObject component object 328 represents a document folder in a
manner analogous to file system folders in an operating system. The FolderObject
component object provides a mechanism to organize different resources, such as folders,
files, task templates, etc. A GroupObject component object 330 provides a mechanism to
organize a set of resources and users as a group. A MetaObject component object 332
represents meta information for objects that can be authored in the system, and comprises
a container that includes a representation for authoring control flow.

FIG. 3B is a diagram of a containment hierarchy for objects that define a
transportable application. In general, an Applicatibn Container object 326 (FIG. 3A)
represents a transportable application and contains one or more building blocks and
optionally other containers. For example, a containment hierarchy 350 (FIG. 3B) may
comprise a first ApplicationContainer 326 A that comprises first and second building
blocks 320A, 320B and a second ApplicationContainer 326B. The second
ApplicationContainer 326B further contains additional building blocks 320C, 320D.

-38-

Page 40 of 240

WO 02/21413 PCT/US01/42041

Each ApplicationContainer provides services to its contained Building Blocks.
When a Container contains other Containers, the hierarchy is represented as a tree
structure, as in FIG. 3B. A Container acts as a coordinator for its contained building
blocks and interacts with them in order to store user inputs and responses and also for
getting the presentation data of the building blocks. Similarly, a Container interacts with
its contained Containers in order to propagate certain actions such as closing a
transportable application. When a transportable application is closed, all its contained
transportable applications are also closed.

Once a Container has been created, new building blocks and containers can be
added to it. A Container provides necessary APIs for adding the building blocks and
containers and also for interacting with them. Table 1 presents an example class definition

of a container.

TABLE 1—CONTAINER CLASS

public class ZapletContainer({

void ZapletContainer (ZapletRequest request);

void addBuildingBlock (ZapletRequest
request) ;
void addChildZaplet (ZapletRequest
request) ;
Vector getChildren() ;
ZapletData getzapletData () ;
Zaplet getParent () ;
Zaplet getChild (ObjectId zapletId);
Zaplet getRoot () ;
void handleResponse (ZapletRequest
request,

ObjectId userId);

void handleEditResponse (ZapletRequest

request,
-39-

Page 41 of 240

WO 02/21413 PCT/US01/42041

ObjectId userId);
void "~ handleEditCreate (ZapletRequest request,
ObjectId userId);
PresenterData getDisplayData (ZapletRequest
request) ;

PresenterData getSubmitData (ZapletRequest request);

void sendReminder (String reminderMessage) ;

void forward (String forwardMessage, String
toList) ;

void close (String closeMessage) ;

}

Using the API defined by Table 1, an addBuildingBlock method is invoked to add
a building block to a transportable application. An addChildZaplet method is invoked to
create a child transportable application. A getChildren method returns the child
transportable applications for a given transportable application. This method returns the
transportable applications that are immediate children of a given transportable
application. A getZapletData method is invoked to retrieve data relating to a transportable
application.

A getParent method returns the parent transportable application of a given
transportable application. A getChild method returns the specified child transportable
application. A getRoot method returns the root transportable application in the hierarchy.

A handleResponse method is invoked to handle a user response to a transportable
application. An editResponse method is invoked to edit an already submitted response,
provided the response can be edited. An editDefinition method is invoked to edit the
definition of a transportable application. A getDisplayData is invoked to get the
presentation data for the transportable application. A gesSubmitData is invoked to get
necessary data to prompt the user to submit a response to a transportable application.

A sendReminder method is invoked to send a reminder message to the participants
of the transportable application. A forward method is used to forward a Zaplet to a set of
recipients specified by the ‘toList’ parameter. A close method is used to close the Zaplet
for any further interactions.

1.2.7 Membership

-40-

Page 42 of 240

WO 02/21413 PCT/US01/42041

Users of service unit 305 are organized in one or more groups. Each group is
represented by a programmatic object in a membership hierarchy. Each group may have
one or more child groups or users. Group and user information may be imported from an

 external directory service, such as an LDAP directory, or may be defined in the system
database. Groups may be collections of individuals in a department, project team, or other
group with a common goal. Groups provide an archive for the shared knowledge of
people who work together. Groups also provide convenient distribution lists for
addressing transportable applications.

Membership concepts are programmatically represented by folder objects and
group objects. A membership group is a collection of other membership subgroups and
users. A folder is a collection of other subfolders and meta-objects. By definition, a
group is also a user, and a folder is also a meta-object. Each object in a membership
hierarchy comprises a reference to an underlying object or user. For example, when a
particular task 1s saved in two different folders, two references to the same task (one for
each folder) are stored in the hierarchy.

FIG. 4 1s a block diagram of an example of a membership hierarchy. An
“Bveryone” group 402, represented by a group object, contains an Engineering group
404, users 406A, 406B, a transportable application folder 410, and a meta-object folder
412. The transportable application folder 410 contains transportable applications 410A,
410B. The meta-object folder 412 contains tasks 412A, 412B. Engineering group 404
contains users 406C, 406C. The example illustrated in FIG. 4 may be modeled using the
NodeObject interface, CollectionNodeObject interface, UserObject interface,
FolderObject interface, MetaObject interface to represent one or more authoring tasks or
templates, and GroupObject interface.

1.2.8 Building Blocks—Programmatic Aspects

Building blocks are functional units of a transportable application. Each building
block encapsulates business logic, data and presentation. A BuildingBlock object is
always be contained in an ApplicationContainer object. Server processes provide services
to building blocks. An ApplicationContainer invokes various methods on a
BuildingBlock object to process various user actions such as creating a transportable
application, responding to a transportable application or editing a transportable
application and so on. A BuildingBlock can also handle asynchronous events.

Each building block implements the BuildingBlock interface of FIG. 3, which
defines methods for storing data for building blocks, storing responses for the building

blocks and also for providing the necessary data for presentation. The presenter data that

41-

Page 43 of 240

WO 02/21413 PCT/US01/42041

is returned from a building block can be presented in different formats, as described

below. In one specific embodiment, the BuildingBlock interface is defined as set forth in
Table 2.

42-

Page 44 of 240

WO 02/21413 PCT/US01/42041

TABLE 2—BUILDING BLOCK INTERFACE EXAMPLE

public interface BuildingBlock{
void handleCreate (ZapletRequest request,
BuildingBlockDAO bbDAO) ;
void editCreate (ZapletRequest request,
ObjectId userId);
void handleResponse (ZapletRequest
request,
ObjectId userId);
void editResponse (ZapletRequest request,
ObjectId userId);
void handleEvent (EventData eventData);
PresenterData getDisplayData (ZapletRequest
request) ;
PresenterData getEditResponseData (ZapletRequest

request) ;

}

In this embodiment, a handleCreate method is invoked to handle creation of the
building block data in the database 208. An editCreate method is invoked to edit building
block data in the database 208. A handleResponse method is invoked to create a user
response in the database 208. An editResponse method is invoked to handle editing of an
already created user response. A handleEvent method is invoked to handle an event by
the building block.

A getDisplayData method is invoked when the building block data needs to be
displayed in a transportable application. A getEditResponseData method is invoked when

'ﬂwmwm&dwmmﬁmbmmmwwmawmm&wgmmmmﬁmg

In one embodiment, a BuildingBlockMetaData interface specifies methods on a
building block meta-data object. Such methods are responsible for providing the
necessary information in order to construct an authoring snippet or a response dialog
snippet, related to the building block. In one specific embodiment, the
BuildingBlockMetaData interface is defined as set forth in Table 3.

-43-

Page 45 of 240

WO 02/21413 PCT/US01/42041

TABLE 3—BUILDING BLOCK METADATA INTERFACE EXAMPLE

public interface BuildingBlockMetaData ({

Vector getAuthoringParams () ;
Vector getResponseParams () ;
Vector) getConditions () ;
Vector getActions () ;

}

In this embodiment, a getduthoringParams method returns a vector of authoring
parameters, which can be used by a tool to construct an authoring snippet for the building
block. Each element of the vector is of BuildingBlockParam type. A getResponseParams
method returns a vector of user response parameters, which can be used by a tool to
construct a user response dialog box for the building block. Each element of the vector is
of BuildingBlockParam type. A getConditions method returns a vector of conditions that
a building block can evaluate, which can be used by a tool to define a set of conditions for
the building block. Each element of the vector is of Z'flpletCondition type. A getActions
method returns a vector of actions that a building block can perform, which can be used
by a tool to specify a set of actions for the building block. Each element of the vector is of
ZapletAction type.

When a Building Block is invoked to either to create its data in the database or
store user responses or retrieve its data from the database, it uses a Data Access
Component (DAC) to access the database. The DAC comprises programmatic objects that
enable building blocks to access data in database 208 such that developers of the building
blocks do not need to know the specific schema of the database, and such that the
building blocks are not affected by any future changes in the schema. Further, the DAC
provides, in effect, an API that enables a developer to store building block data in
database 208 without knowing the schema.

In one specific embodiment, the DAC comprises data access objects and data
objects. Data access objects serve as a channel to write and read data from the database
208. Data access objects encapsulate knowledge about objects and tables in the database
208 that are acted upon. Data access objects provide methods to accomplish data
persistence and data retrieval queries. Data access objects can carry out access control
checks on the data that is being accessed, in cooperation with the security services
described herein, to ensure that a particular user or building block is authorized to retrieve

selected data.
-44-

Page 46 of 240

WO 02/21413 PCT/US01/42041

FIG. 15 is a block diagram that illustrates data and control flow among building
blocks, data access objects, interface methods and the database. One or more building
blocks 292, 294 communicate with data access objects 1500. Each building block 292,
294 is associated with a corresponding building block data access object 1502 that stores
metadata and data used in program logic relating to the building block. Such metadata
may include a database identifier, building block identifier, transportable application
1dentifier, etc. The data used in program logic may include scalar values that determine
behavior of specific building blocks. For example, for a Poll building block, the data used
in program logic may indicate a chart type value that specifies what kind of chart is used
for displaying poll results.

Data other than building block data may be stored in database 208. Accordingly,
other types of data access objects are provided based on the kind of data that is stored. In
one embodiment, data access objects comprise choice data access objects 1506, response
data access objects 1508, etc. Each data access object encapsulates information about the
underlying database tables by working with interface objects. For example, response data
access objects provide a generic public interface that allows building blocks to store any
responses from the recipients of a transportable application in the database. An example
of such a response is a recipient’s response to a poll question.

Each building block data access object provides access to tables of database 208
through interface objects. In one embodiment, the interface objects include a
QuestionlInsert object 1504, QuestionXMLInsert object 1510, QuestionResult or
Responselnsert object 1514, and QuestionXMIResult or ResponseXMLInsert object
1516. The interface objects communicate with database 208 through one or more stored
procedures 1512. In one embodiment, the stored procedures act, in part, to convert user
data received from the interface objects to XML format for storage in database 208;
metadata that is not received from a user-created building block, or otherwise internally
generated, is stored in conventional database columns. A pre-defined method may be used
to store any building block-specific programmatic object as a string value in the database.
For example, in one embodiment, the method setFieldValue(fieldName, value) is used to
store a Java object as an XML string in the database.

A retrieval method is provided to facilitate retrieval of a data object that
corresponds to a building block data access object. Data objects are created when data is
retrieved from the database 208. Thus, data objects facilitate the flow of results from the
database resulting from any query that is executed by a building block or any other

component such as a presenter. Each data object isa wrapper around result objects such
-45-

Page 47 of 240

WO 02/21413 PCT/US01/42041

as the QuestionResult object, and QuestionXML result object. Each type of data access
object has a corresponding data object to capture results from the database tables. A pre-
defined method may be used to retrieve an object that was stored in the database ﬁsing the
corresponding data access object. For example, in one embodiment, the method
getFieldValue(fieldName, value) is used to retrieve an object that was stored in the
database using the corresponding data access object. Any information that was stored in
XML form by a data access object can be retrieved from the database, parsed by an XML
parser, and then the query results can be returned on demand. Thus, a data object is a
result object that any component in the system can retrieve by providing appropriate input
parameters.

Each building block data access object has a corresponding building block data
object that maps to the result object QuestionXMLResult. Each data access object
provides a reference to a corresponding result object in the database or a cache thereof.

Using this mechanism, building block authors and developers can focus on
business logic and program logic that is implemented in a building block rather than on
the database schema, because the DAC separates such logic from the database schema by
interposing an abstract layer. Accordingly, the system becomes more extensible because
creating new building blocks is simplified. Further, dependencies between building blocks
and the database are removed. The building blocks are insulated from any major changes
that may occur in the database schema.

Graphical user interface elements associated with groups, and processes for
joining and using groups from the user perspective, are described herein in the section
entitled Personal Portal Presentation.

1.2.9 Directory Integration—Global Object Identifiers

In one embodiment, each transportable application is identified by a global
identifier. A transportable application is indirectly transported to each named recipient by
sending a message, such as an electronic mail message, to each recipient that contains a
reference to the transportable application in the form of a URL that includes the global
identifier. When the user opens the message, the URL is invoked, causing the user’s
browser to retrieve the dynamic content and othér elements of the transportable
application.

In one approach for implementing the foregoing, the global identifier has the
following format: <AppserverURL>/Z?m=<globalld>

where “<AppserverURL>" is the URL of an application server, such as

“http://www.zaplet.com,” and “<globallD>" is the global identifier. In one specific

-46-

Page 48 of 240

WO 02/21413 PCT/US01/42041

embodiment, the global identifier value has the format Dbld_ObjTyp_Objld, where
“Dbld” is a value that uniquely identifies a cluster. The Dbld value may numeric or may
be a string, such as a URL of an application server. When a numeric value is used, then a
mapping of numeric values to URLSs is stored in a directory. Using a URL requires no
such mapping, but increases the length of the global identifier value. Length may be a
limiting factor in certain encryption schemes, such as TWbFish. The ObjTyp and ObjId
values refer to the type and the local identifier of the object in the cluster. The entire
global identifier value is encrypted using a site-specific seed, as described further herein.

In an alternative implementation approach, directory-based access to processing
clusters and other objects is used rather than direct reference to clusters as provided in the
above approach. In a directory-based approach, objects are referenced using distinguished
names that are registered in a directory. The directory may be an X.500 directory, LDAP
directory, or similar repository that is associated with database 208. For example,
Microsoft Active Directory may be used.

In this approach, each processing cluster is uniquely identified using a
distinguished name (“DN’). The DN maps, in a directory, to a URL or other specific
identifier of the cluster. There could be additional information in the directory that could
be referenced. As defined in the X.500 standard, DNs are elements of a hierarchical
naming system in which each DN has <name,value> attributes that are used to traverse a
directory hierarchy or tree. For example, the DN “C=US, O=FireDrop, OU=Engineering,
HN=a1phd” identifies a path in a directory hierarchy to the entry for machine alpha in the
Engineering dept at FireDrop which is in the US. That directory entry may contain the
URL of an application server that is on this machine. A DN can be transformed into a
numeric value using ASN.1 encoding.

Each cluster may be associated with a different enterprise, institution, or other
organization. For example, clusters may be located at different competitive parties.
Clusters that cooperate with each other need to have a trust relationship, which may be
established through a third party security organization. Based on the trust relationship,
each party that owns or operates a cluster can set up information for its peers in its own
directory that is then used to construct a global identifier value. Since each directory
structure is arbitrary and may be determined by the organization, the global identifier for
an object also is site dependent. Thus, there may be many valid global identifiers for a
single object. However, a benefit of the DN approach is that the DN is an indirect
reference to the site information. One site’s DN cannot be meaningfully applied to

another site, thereby preventing improper access to a cluster from a user associated with a

47-

Page 49 of 240

WO 02/21413 PCT/US01/42041

different site. Furthermore, directory level authentication must be successful in order to
retrieve site information. '

1.3 Presentation of Transportable Applications

1.3.1 E-mail Client Presentation

In one embodiment, client 102 executes a client application program that
facilitates authoring, viewing, interacting with, and managing one or more transportable
applications. In this description, such a program is termed a “transportable application
client” or, where it is clear from the context, “client.” Authoring refers, for example, to
creating a transportable application; creating a transportable application based on a
template; integrating address information from an address book with a transportable
application; converting an existing transportable application to a discussion-type
transportable application; creating one or more transportable applications that implement
a business process; and similar tasks. Viewing refers, for example, to viewing a
transportable application; viewing one or more transportable applications that implement
a business process; and viewing transportable applications when the client 102 is
disconnected from a network (“off-line viewing™); and similar tasks. Interacting refers,
for example, to interacting with a transportable application; interacting with one or more
transportable applications that implement a business process; interacting with
transportable applications when the client 102 is disconnected from a network; viewing
one or more notifications; and similar tasks. Management refers, for example, to moving
transportable applications into and out of folders and groups, and similar tasks. .

In one approach, the transportable application client interacts with one or more
electronic mail client programs (“‘e-mail clients”). The e-mail clients may comprise
Microsoft Outlook 98, Outlook 2000, Outlook Express, Lotus Notes, Eudora, Netscape
Messenger, etc. Typically one of the foregoing is installed in client 102 and the
transportable application client interacts with it using shared dynamic linked libraries
(DLLs), public APIs, or other programmatic communications mechanisms. The
transportable application client also interacts with a network browser such as Microsoft
Internet Explorer, Netscape Navigator, etc., as well as with the operating system of client
102, which may be Microsoft Windows 95, Windows 98, Windows NT, Windows 2000,
etc.

Specific functions of an embodiment of a transportable application client are now
described.

In one specific embodiment, a client is provided with an automatic installer that

can copy components of the client from an installation media to a client computer system

-48-

Page 50 of 240

WO 02/21413 PCT/US01/42041

(e.g., client 102), and integrate such components with the operating system, browser and
e-mail application. The installation media may be a CD-ROM, file server, Internet
download, etc. Alternatively, users may receive an HTML email containing a signed
ActiveX control, or equivalent program element, that initiates installation of the client.
Installation may involve storing configuration data in a registry of the operating system of
client 102.

The client is provided with an automatic start configuration so that the client
initiates execution when a client computer, e. g., client 102, starts operation. Thereafter,
the client may be stopped and restarted repeatedly by the user. After startup, the client
generates an indicator icon that is displayed in an operating system “tray” location. When
started, the client initially enters an inactive state. The client activates in response to a
log-on process carried out by the user. When the client is activated, the indicator icon
changes appearance to indicate that the client is in the active state. To deactivate the
client, the user may either log off or stop the client, at which time the indicator icon
reverts back to its Started state.

In the log-on process, the client prompts the user for a user identifier and
password and then authenticates the identifier and password against the authentication
database. The client provides an option to save the password for the user in an encrypted
format; userids and passwords are saved as a value pair. Further, the client provides an
option to log on automatically when the client is started based on a saved password.
Using this option, the last user who logged off is logged on at startup, provided a saved
password is available. ‘ ‘ |

When a user receives a notification in responses to receiving a new transportable
application, an updated transportable application or changes to the status of a
transportable application, the indicator icon changes appearance to indicate that a pending
notification exists. Optionally, under control of the client, client 102 may generate a
sound or play an audio file to announce the receipt of a notification.

When a user hovers a mouse or similar pointing device over the transportable
application indicator icon, the client displays the number of new and updated
transportable applications. Selecting the indicator icon causes the client to display the title
of each new or updated transportable application and enables the user to select a
transportable application for viewing.

Also in one embodiment, the client notifies the user when new or updated
software components become available. For example, the client indicates the availability

of software updates with a flashing indicator icon. When requested by the user, the

-49-

Page 51 of 240

WO 02/21413 PCT/US01/42041

installer function of the client downloads and installs the applicable new or updated
components.

In another feature, the client enables the viewing of transportable applications off-
line by creating a snapshot of transportable application dynamic data in a local cache.
When the transportable application is viewed off-line, the client redirects and resolves
data references using the local cache. In one configuration, the client maintains a
persistent connection to the application server 202 and uses unused bandwidth to
download data for the transportable application to the local cache. Only incremental data
is downloaded. The download interval, download data size and cache size are
configurable.

A user may use the e-mail client executed by client 102 to respond to
transportable applications. In this configuration, the client overrides the Reply, Reply to
All, and Forward buttons or functions of the e-mail client. In addition, each transportable
application may be addressed using the e-mail client. For example, recipients may be
selected using a pre-configured search order of various information sources, such as a
corporate directory, personal contacts, aliases, and groups. When a transportable
application is sent, recipient names are resolved to an address that can be processed by an
e-mail server or a similar transport mechanism. The client may provide its own address
book and the user may add recipient names to it.

The client can indicate changes in status of a transportable application and updates
in the e-mail client. A previously read transportable application may be marked as unread
if new responses have been posted. Such notifications should only affect email found in
the user’s Inbox. If the email has been moved to another folder, these notifications do not
occur. |

The client communicates with application server 202 to determine if a notification
should be sent to the user. The client notifies the user when new or updated templates for
transportable applications become available. When requested by the user, the installer
downloads installs only the applicable templates.

1.3.2 Personal Portal Presentation

According to one embodiment, transportable applications are accessible through a
personal portal. Generally, a personal portal is représented by a graphical user interface
window that contains one or more hyperlinks for accessing system functions. The
personal portal provides membership services, including defining groups and managing
group membership. The personal portal displays organized lists of transportable

applications that the user of the portal has received, organized according to group and

-50-

Page 52 of 240

WO 02/21413 PCT/US01/42041

individual user. Thus, the portal provides an organized entry point through which a user
may create, organize and send transportable applications and access tools and services for
doing so. The portal provides secure access to transportable applications through user
authentication processes.

In one embodiment, the personal portal is defined as and implemented using a
container and a set of building blocks. Thus, each personal portal is itself a transportable
application like others in the system. In this embodiment a user receives the personal
portal through a transport mechanism, such as HTML-enabled e-mail, for example. The
user opens the message and receives a view of an initial page (“home page”) of the portal
by reading the transportable application. In this alternative, selecting links in the home
page of the portal causes the system to generate new screen displays and carry out other
functions within the e-mail window. Thus, the user may connect to the system and
interact with all its functions without launching a browser or other separate application.

In this embodiment, the portal comprises a transportable application having two or
more Listing building blocks, by default. The first listing building block is an In-Box that
lists all transportable applications that have been received by the user who is viewing the
portal. The second listing building block comprises a list of links to authoring functions,
to assist users in rapidly accessing functions of the application editor and page editor
disclosed herein. In an enterprise having a plurality of departments, there is a portal
transportable application for each department; each such application comprises a page for
each user group in the department. A page for all users is provided. Group moderators
may add building blocks to the group pages. Groups may be nested within other groups.

Alternatively, the portal is one or more software applications, represented by a
plurality of graphical user interface windows, which are served or operated by a service
unit, such as service unit 105. In general, a portal is associated with a business enterprise
that owns, operates or hosts system 200. The portal is accessed using a browser executed
at a client computer.

In each embodiment, the portal provides access to an Application Builder
application and a plurality of templates for creating transportable applications. The portal
provides each user with a personal archive of transportable applications that they have
sent and received, and provides users with access to groups that provide a repository of
shared knowledge regarding transportable applications. In one specific embodiment, the

portal home page comprises the following links: Group Directory; My Groups; Personal

Messages; Search; Builder; Preferences.

-51-

£240

WO 02/21413 PCT/US01/42041

To join a group, a user selects the Group Directory link. A group directory screen
appears that lists groups alphabetically by name, shows a description of each group,
shows how many messages regarding transportable applications were sent to a group in
the past seven days, and shows the group membership status value. If the group is open to
everyone, the status value is Join Group. If the group is open by invitation only, the status
value is Private. If the current user is a member of a group in the list, the status value is
Member. The user then selects either the Name value or the Status value, both of which
are hyperlinks, of the group that the user wishes to join.

In response, a Join Group screen is displayed. The form of the Join Group screen
varies depending on whether the selected group is open to everyone or private. If the
group is open to everyone, then the Join Group screen comprises a Join button and a
Cancel button; a user may join the group by selecting the Join button. FIG. 9A is a
diagram of the Join Group screen that is displayed when the selected group is private. In
this configuration, Join Group screen 900 includes a group name 902, group description
904, a private group label 906, an email link 908, and a Close button 909. To attempt to
join a private group, the user may select email link 908. In response, an email message is
automatically sent to the moderator or “owner” of the group to request access for the user.
Alternatively, the user may select the Close button 909 to close screen 900.

FIG. 9B is a diagram of a My Groups screen that is generated and displayed when
a user selects the My Groups link of the portal home page. My Groups screen 910
comprises function links 912, an Application Shortcuts area 914, an Updated Messages
area 916, a My Group Activity area 918, and a New Groups area 920. In the function
links 912, a Group Directory link 922 displays a list and description of all groups. A
Personal Messages link 924 accesses all transportable applications sent to of from the
user, including group transportable applications and transportable applications that the
user has created for personal use.

The Application Shortcuts area 914 provides rapid access to certain applications.
The Updated Messages area 916 provides a list of updated transportable applications for
which the user has turned notifications on. The My Group Activity area 918 provides a
list of group transportable applications that have been received in the last seven days. The
New Groups area 920 provides a list of recently added groups.

The function links 912 further comprise a My Groups link 934 that provides
access to detailed functions pertaining to groups of which the user is a member. One or
more group links 934A are displayed in a hierarchical tree in association with the My
Groups link 934. A user may select one of the group links 934A to carry out specific

-52-

Page 54 of 240

WO 02/21413 PCT/US01/42041

operations relating to a group. In one specific embodiment, the group operations include:
invite a member; membership list; unsubscribe; contract moderator; group description;
and view recent group activity.

In the invite member operation, a user can invite another user to join the selected
group. An Invite Member screen is displayed. The user enters one or more addresses of
users or groups to invite to join the selected group. The user also enters a short
introductory message. In resisonse, the system generates and sends a message to each of
the named users inviting them to join the selected group, and including the introductory
message. If the currently selected group is a private group, the user must send an e-mail to -
the group moderator to request additional members.

In the membership list operation, a user can view the group membership list. A
membership list screen appears, listing members by email address, name and the date on
which they joined the group. In the unsubscribe operation, the user can leave or
“unsubscribe” from the group. In the contract moderator operation, the user can send an
e-mail to the group moderator. In the group description operation, the user can view the
description of the group. In the view recent group activity operation, the user can view the
ten most recently updated transportable applications for the group.

FIG. 9C is a diagram of a portion of the screen display of FIG. 9B. FIG. 9C
illustrates function links 912 when a user has selected one group name link 934A. In
response, an Applications link 936 and an Archive link 938 are displayed in a position
hierarchically subordinate to the group name link 934A. A member of a group can use
any transportable applications created for that group, or create new transportable
applications for it. To access the applications, the user selects the Applications link 936.
In response, a list of links to applications is displayed in the My Groups screen 910. The
user may launch an application by selecting the associated link. To create new
transportable applications for the group, the user uses the Application Builder, as
described further herein.

The user may also display all transportable applicationé sent to the group in the
group archive by selecting the Archive link 938. In one specific embodiment, the group
archive lists all transportable applications sent for the group. The user may filter the list of
transportable applications by application type using a drop-down menu. The user may
sort the archive list by Author, Subject, application type, date created, or date last
modified.

The Personal Messages link 924 provides access to transportable applications that

have been sent to the user, and to transportable applications that the user has created for

-53-

Page 55 of 240

WO 02/21413 PCT/US01/42041

personal use. To access such applications, the user selects the Personal Messages link
924, and then selects an Applications link that is displayed. The Search link 926 provides
access to a search engine that can search the full text of all transportable applications by
keywords. ,

The Preferences link 930 is used to change a user’s profile of preferences, to
thereby tailor the way that the user interacts with groups and transportable applications.
Changes to preferences may be made by the user at any time. Through a Preferences
dialog, the user may make changes to a user Profile, Address Book, Group Preferences,
and a client or Plug-in. To facilitate such changes, the Preferences dialog includes a
Profile link, Address Book link, Group Preferences link, and a Plug-in link.

Using the Profile link, the user can change information in the user profile, such as
name, password, postal code, time zone, message format, and whether message recipients
are automatically added to the Address Book. The message format profile value enables
the user to obtain a preferred user experience using the e-mail client. For example, if the
user’s e-mail client does not accept HTML, the transportable applications received by the
user may appear to be “broken.” The user can change the format in which transportable
applications are delivered to the user. In one specific embodiment, available formats
include Plain Text and HTML.

The Address Book is a personalized database of contact persons for sending
transportable applications. In one embodiment, selecting the Address Book causes the
system to display a list of available address books (Personal, Company, etc.). The user
can select one of the available address books and search for contact data within it. The
user may add or modify entries or important entries from other programs.

The Group Preferences link may be used to control how incoming transportable
applications from groups are delivered. In one embodiment, the user may select a Web
Only option, with which transportable applications are delivered to the portal only, or an
Email & Web option, which provides delivery of transportable applications both to the
portal and the e-mail in-box of the user.

The Plug-in link provides access to a client software element that can execute on a
user client, e.g., client 102. By selecting the Plug-in link, the user can install, uninstall,
and view the status of the Plug-in. In operation, the Plug-in automatically informs the user
when updated transportable applications have been sent, using a distinctive icon that is
shown in a designated portion of the graphical user interface. For example, in a Windows
system, the distinctive icon is shown in the system tray. Also, in another embodiment, if

the client computer is configured to access messages when disconnected from the
-54-

Page 56 of 240

WO 02/21413 PCT/US01/42041

network, the user can use the client to synchronize transportable applications for offline
viewing and replying. Thus Plug-in may be implemented in the form of C++ code that is
optimized to the Windows environment. Additionally, in an embodiment, the Plug-in adds
new buttons to the toolbar of the user’s messaging client. For example, a New Appmail
button is provided in an e-mail client so that the user may initiate a process of creating a
transportable application from within the e-mail client. The user may also create a new e-
mail message and send it in the form of a transportable application by selecting a Send As
Appmail button.

In certain embodiments, the Group Directory, My Groups, and Group Archive
functions each are implemented as separate transportable applications having containers
and listing building blocks.

To facilitate the foregoing operations, portal user roles and group user roles are

- defined in the security framework that is described herein. In one specific embodiment, a
portal Administrator acts as portal editor, has all Coordinator permissions, has Owner
control for all groups in the portal, can assign individuals to roles, and can create new
roles. A Coordinator can create a group, delete a group, and exercise all User permissions.
A User can view the group directory, join a group if it is public, and use the Application
Builder and Page Builder that are linked to the portal.

1.3.4 Programmatic Processes for Presentation

FIG. 5 is a block diagram of objects and data communications paths involved in
presentation of content associated with a building block. In general, a transportable
application container object 502 references and contains a building block 504.

When the building block 504 is invoked by the container object 502 to either to
create data in the database 208 or store user responses or retrieve its data from the
database, the building block uses Data Access Components (DAC) to access the database.
In order to enable presentation of its information, the building block returns a Presenter
Data Object (PDO). Each PDO contains all data of a building block that can possibly be
displayed on any device in any form, and all associated interaction pathways. A building
block presenter object (termed a “presenter” herein) uses the PDO in order to do the
actual presentation. For example, HTML presenter 506 can present the data in the PDO in
HTML format. Alternatively, a WML presenter 508 can present the data from the PDO in
WML format to a wireless device gateway. This mechanism allows presentation of the
same PDO in different formats such as HTML, WML, XML, etc.

Presenter data objects as disclosed herein enable reuse of presenters, separate

responsibilities of functional elements of the system, enable independent development of
-55-

Page 57 of 240

WO 02/21413 PCT/US01/42041

building blocks and presenters thereby enhancing modularity and simplifying
development, and provide flexibility to handle custom as well as generic presenters. The
presenter data objects provide an abstract interface that mediates communications of
building blocks and presenters.

FIG. 6 is a block diagram illustrating interaction of programmatic objects in one
embodiment of a presentation model. In this embodiment, each Building Block 182C,
182D produces a specific PDO 602A, 602B that contains all the possible data of that
Building Block.

Two types of presenters can be used by a Building Block for presentation: Generic
Presenters, and Custom Presenters. Generic Presenters work with any PDOs that
implement a certain interface that they require. A Custom Presenter has detailed
knowledge about the PDO, and can work with only that specific PDO. A PDO that does
not implement a certain interface known by a Generic Presenter can still use that
presenter by means of a Converter that maps the specific PDO into an interface that is
understood by the Generic Presenter. In the embodiment of FIG. 6, generic presenters
include a table presenter 606B that can present a table of data, and line presenter 606D
that can present a line graph, etc. Custom presenters include a poll presenter 606A that
can present data for a user poll, and a schedule presenter 606C that can present a calendar
or schedule.

Each PDO encapsulates data objects that represent the building block data,
provides methods to access all the possible building block data, and may implement
formatting interfaces like table interface, chart interface etc.

Presenters are responsible for rendering the data, and may use generic rendering
utilities. Generic presenters work with a basic PDO that implements a certain interface. A
custom presenter may directly work with a specific PDO. Each presenter implements a
BuildingBlockPresenter interface.

In one alternative, a building block may pass a PDO to a converter 604A, 604B
that converts data of the PDO to a different format that is understood by an interface of
the custom presenter. For example, in situations where a specific PDO needs to work with
a generic presenter, an object that implements an interface known to the generic presenter
is constructed. Such converter objects map a specific PDO to this known interface. Each
converter works with a PDO and a corresponding presenter. In one embodiment, a
converter implements a ConvertInterface that produces an object that implements the
interface known to the generic presenter.

Table 4 provides an example of a code implementation of the objects of FIG. 6.

-56-

Page 58 of 240

WO 02/21413 PCT/US01/42041

TABLE 4—CODE FOR PRESENTER ABSTRACT LAYER ELEMENTS

public class PollPDO {
//data
public int getTotalVotes()
{
}

//get details about each voter.
public String getVoterEmail(int 1)

{
}

public String getVoterName(int i)

{
}

public String getLastChoice(String email)

{
}

// details about the choices.
public Vector getChoiceLabels ()

{
}

// return a vector of Integers that represent choice

totals.

public Vector getChoiceTotals()
{
}

-57-

Page 59 of 240

WO 02/21413 PCT/US01/42041

public class PollPresenter implements

BuildingBlockPresenter

{

PollPDO pdo = null;
public PollPresenter(Object pdo)

{

this.pdo = (PollPDO)pdo;

public void PresentLive(Writer out,

HttpServletRequest req)

{

// give it to some utility or draw it inline.
chartUtils.drawPie (out, getChoicelLabels(),
getChoiceTotals());

}

// other methods in BuildingBlockPresenter.

interface TablelInterface

{

int getNumRows () ;

int getNumColumns () ;

String getColumnName (int) ;
Class getColumnClass (int) ;
Object getValueAt (int, int);
// possibly more methods

public interface ConvertInterface

{

public Object convert (Object sourcepdo) ;

-58-

Page 60 of 240

WO 02/21413 PCT/US01/42041

// presents a table representation of the poll.
public class PollTableConverter implements

TableInterface, ConvertInterface

{

PollPDO pdo = null;
String columnNames = {"Voter Name", "Voter Email",
"Choice" };

public Object convert(Object pdo)

{
this.pdo = pdo;

// do some other housekeeping.

return this;

Object getValueAt(int i, int j)

return pdo.getVoterName (1) ;

}

else 1f (J == 1)

{

return pdo.getVoterEmail (i) ;

}

else if (j == 2)

{

return pdo.getVoterChoice(i) ;

}
else
return null;
}
int getNumRows ()
{

return pdo.getTotalVotes() ;

-59..

Page 61 of 240

WO 02/21413 PCT/US01/42041

}
int getNumColumns ()
{
return 3; // oh no, hard coding
}
int getColumnName(int 1)
{
return columnNames [i] ;
}
Class getColumnClass(int 1)
{
// everything is a string. Also need to catch
exceptions. “
return Class.forName("java.lang.String");
} .

Using these structures, when a building block needs to be presented, control logic
of application server 202 requests the building block to construct the building block
specific PDO. The control logic also contains knowledge about the specific presenter to
be used to display the building block e.g. whether to use a custom presenter or a generic
presenter. Such information is obtained at the time that a building block is authored.

In case of a custom presenter, control logic of application server 202 instantiates
the presenter with the specific PDO obtained from the building block. In the case of a
generic presenter, the control logic uses a converter, if necessary, to convert the PDO into
a format known to the generic presenter, before constructing the generic presenter. It then
passes the presenter to a Java Server Page (JSP) that controls overall presentation of the
Zaplet. The JSP uses BuildingBlockPresenter interface of the presenter to render the data.

Table 5 presents a pseudocode implementation of the foregoing process.

TABLE 5—PSEUDOCODE FOR PRESENTATION PROCESS

//iterate through different bldg blocks
-60-

Page 62 of 240

WO 02/21413 PCT/US01/42041

for (int i=0; i1 < numBB; i++)

{
Object pollpdo = bb.getPresenterData (request);
BuildingBlockPresenter pr = null;

String presenterName getPresenterName (bb) ;

1]

String converterName

getConverterName (bb,
presenterName) ;
if (converterName != null)
{
ConvertInterface 1 =
ConverterFactory.createConverter (converterName) ;
Object tablepdo = i.convert (pollpdo);
pr =
PresenterFactory.createPresenter(presenterName, tablepdo) ;
}
else
pr =

PresenterFactory.createPresenter (presenterName, pollpdo);

presenterVector.add (pr) ;

forwardRequestToSomeJSP (presenterVector) ;

A building block may use more than one presenter. For example, displaying
results from a poll building block may use a pie chart presenter or a table presenter. To
facilitate this possibility, an independently authorable component is provided, comprising
a combination of a building block and the set of presenters corresponding to the actions
supported by the building block. Thus, a poll building block with a pie chart presenter for
display comprises a first independently authorable component, and a poll building block
with a bar graph presenter for display comprises a first independently authorable
component.

When development of a new building block is complete, it is registered in the
system. Each independently authorable component is registered in the system separately.

Registration involves providing the system with metadata about the new building block,

-61-

Page 63 of 240

WO 02/21413 PCT/US01/42041

such as its name, actions it carries out, events that it generates, and types of devices to
which it can present data. When a building block is registered, it is displayed to and can
be selected by authors of pages and transportable applications when they use the
application editor and page editor as described herein.

FIG. 16 is a flow diagram illustrating a process of presenting building block
information using the foregoing mechanisms. In block 1602, a request to present a view is
received at the application server. The request may comprise an HTTL request or an
internal programmatic function call. In block 1604, the request is forwarded to a container
that contains the building block associated with the view. In block 1606, the container
forwards the request to either an individual building block, or to all the building blocks
contained in the container, based on the type of container.

In block 1608, the container invokes an appropriate building block method for the
action. In block 1610, a presentation data object is received from the building block
method. In block 1610, based on information collected at registration time, the
application server forwards the presentation data object to the presenter that was
registered for the current action. The system then invokes a presentation method on the
presenter.

Actions, in this context, may comprise standard user actions or building block
specific actions. Standard user actions are internally known actions that trigger a
container to call on all its contained building blocks with a request to participate in such
actions. For example, when a transportable application is to be displayed in a browser of
client 102, the container requests each of its building blocks for a presentation data object
for a “get display data” action. All building blocks that wish to participate in such action
return a non-null presentation data object, which are given to the corresponding
presenters for rendering,.

Building block specific actions, such as a sort action relating to table data in a
table building block, originate form the presentation of standard user actions. For
example, a sort action originates when a user selects a link in a table building block data
that has been presented. The target URL for the action contains enough information for
the system to route the request to a specific building block. The building block then
responds with a presentation data object that is given to the appropriate presenter.

1.4 Authoring Transportable Applications

FIG. 7C is a flow diagram illustrating a high-level view of a process of authoring

a transportable application.

-62-

Page 64 of 240

WO 02/21413 PCT/US01/42041

Optionally, in block 720, a user logs on to a portal, such as a portal of the type
described herein in the section entitled “Personal Portal Presentation.” The portal home
page provides a plurality of menu options in a navigation bar. In block 722, a New
Message option is selected from the navigation bar. Alternatively, rather than carrying out
the steps of block 720, block 722, a user can select a New Message option from within
any existing transportable application. In response, the system displays a list of template
folders. In block 724, the user navigates to a template folder or subfolder that contains a
desired template. The user then selects a desired template, as in block 726. In one
embodiment, an Application Shortcuts list displays frequently-used templates, and a user
may select a template directly from the Application Shortcuts list rather than navigating
to a folder.

For purposes of illustrating an example, assume that a user selects a Starter Set
folder of templates, a Corporate Process sub-folder of templates, and an Escalation
Exception Manager template. In response, the template is displayed, as shown by block
728.

FIG. 8A is a diagram of an example graphical user interface screen display of the
Escalation Exception Manager template. In general, screen display 800 comprises a
Customer Case Summary page 802A, Manage Case page 802B, and Addressing page
802C. Customer Case Summary page 802A comprises a message header 804, page header
806, attachmeﬁts area 808, and discussion area 801.

The user enters information in the message header 804. In this example,
information is required in none of the fields of the message header, but such information
may be required in other templates. The user also enters information in the page header
806, including Page Title and Introduction. The user then enters values for the rest of the
fields that are required, attaching files and adding descriptions as needed. Depending on
the building blocks in each page, the user may have to upload files of the appropriate
type, upload pictures, specify URLs for Web pages, and other tasks.

When all such information is entered, the user selects the Next button 808 to
advance in the authoring process. The system displays the next page 802B, 802C and
receives further input until the template is completed. The user may select a Preview Page
button 810 to receive a view of what the transportable application will look like to
recipients. ,

When the last page of a template is reached, the page displays an Add a New Page
button and an Address and Send button. The user may add optional pages to the

-63-

Page 65 of 240

WO 02/21413 PCT/US01/42041

transportable application by selecting the Add New Page button. The optional steps of
removing and adding pages are represented by block 732 of FIG. 7C.

Referring now to FIG. 7D, in block 734, the transportable application is
addressed. The addressing operation may be initiated by selecting the Address and Send
button. In response, the system displays Addressing page 802C. FIG. 8B is a diagram of a
screen display of an Addressing page that may be displayed, in one example embodiment.
In this example, Addressing page 802C comprises an address field 822 that can receive
one or more individual e-mail addresses in a comma-separated list. Alternatively, the user
may select an address book link 824 and select the recipient e-mail addresses from a
stored list of addresses. Additionally or alternatively, the user may select one or more
groups of recipients from a list 826 of groups. Selecting a named group in list 826,
followed by selecting an Add button 830, causes the system to copy the group name to a
Send To list 828 that is used when the transportable application is sent.

Also as part of addressing, the user enters subject text in a Subject field 832.

Optionally, the user may apply access controls or other security controls to the
message or its pages by selecting a Message Security Options link 834 and Page Security
Options link 836. If the Message Security Options link 834 is selected, then in response,
the system displays a Message Security Options window. FIG. 8C is a diagram of an
example of the Message Security Options window that may be displayed, in one example
embodiment. Message Security Options window 840 comprises a Share Author Rights
pull-down 842; by selecting a group from the pull-down menu, the author of the
transportable application can share author access rights with a named groups.

In this context, “author rights” refers to a set of privileges for working with
transportable application that are reserved to the author of the transportable application.
Such author rights may include the ability to send a reminder message, close the
transportable application, hide or show pages of the transportable application, or add a
page to the transportable application.

To send a reminder message, the author selects a Send A Reminder option from
among the message options. The author indicates the recipient choice for the reminder,
and enters reminder text. In response, the system will re-send the transportable
application to the recipients with new comments at the top.

Closing a transportable application disallows any further additions to the ;
transportable application or to its dynamic content. To close a transportable application,
the author selects a Close This Message option from among the message options. The

author enters any desired closing message text, such as an explanation of why the

-64-

Page 66 of 240

WO 02/21413 PCT/US01/42041

transportable application is closed. The transportable application may be re-sent to all
recipients with the closing message text at the top, or the closing text may be displayed in
the body of the transportable application when existing recipients re-open it.

To hide or show a page, the author selects a Hide/Show Pages option from among
the message options. The Hide/Show Pages option enables the author to hide a page that
is old or no longer relevant without having to permanently delete it.

The user also may select a sending mode from within a Sending Mode area 844 by
selecting one of a plurality of radio buttons 846, 848, 849 that are respectively associated
with a Send Unsecured mode, Send Secured mode, and Send Secured with Restricted
Forwarding mode. In Send Unsecured mode, no special access controls are applied to the
message. Recipients can read and forward the message without first logging into the
portal. In Send Secured mode, recipients must log in to the portal before they can view
the message. Recipients can forward the message to others. All recipients must be
registered in the portal and logged in before they can read the message. In effect, Send
Secured requires a recipient to overcome the barrier of user authentication before the user
can read the message. In Send Secured with Restricted Forwarding mode, recipients must
log-in to the portal to view a message, and only the author can forward the transportable
application.

Referring again to FIG. 8B, if the Page Security Options link 836 is selected, then
in response, the system displays a Page Security Options window. FIG. 8D is a diagram
of an example of the Page Security Options window that may be displayed, in one
example embodiment. Page Security Options window 850 comprises one or more access
lists 852 that are displayed in association with radio buttons 856, 858. Each radio button
is associated with a particular page of the transportable application, as indicated by a page
title header 854. In this case, the page title is Discussion, as indicated by page title 854A. ‘
Thus, each named page may have different security options. The access lists 852 may be
broad or specific. For example, an Everyone access list 856 provides all current and
forwarded recipienté with access to the Discussion page. A Specific Recipients list 857
enables only selected users and groups to access the page, if such users or groups are
named as part of list 857 and radio button 858 is selected.

Selecting a Submit button 859 sends the selected security options to the server.

Referring again to FIG. 7D, In block 736, the user sends the transportable
application by selecting the Send Now button 838.

-65-

Page 67 of 240

WO 02/21413 PCT/US01/42041

1.4.1 Application Editor

According to one embodiment, an application editor or application builder is
provided for assembling pages into a template for authoring and sending transportable
applications. Using the application builder, a user may build as many transportable
applications as the user needs, for many different purposes.

Referring again to FIG. 9B, to launch the application builder, a user logs into a
portal and receives screen display 910. The user selects the Builder link 928 from among
function links 912. In response, the system displays a screen with a link to the
Application Builder and the Page Builder (page editor), which is described in the next
section. The user selects the Application Builder.

FIG. 9D is a diagram of an Application Builder screen display that is displayed in
response to selecting the Application Builder. Screen display 950 comprises a Name field
954 and a Description field 956 in a header area 952. The user enters a description for a
new transportable application template. The name appears in the application selection
dialog box and helps users select the appropriate application.

The user also enters data in an Introduction Settings area 958, which comprises a
plurality of custom field label fields 960 and corresponding Required check boxes 962.
The user enters names for any custom fields that authors can fill out when creating a new
transportable application based on the template. The corresponding check box 962 is
selected if the user wishes to require authors to fill out the field before they can send a
new transportable application based on the template.

The Application Builder screen can also receive data specifying the name of a
status field in a Name of Status Field 964, and a list of corresponding settings in a
Possible Settings field 966. The list comprises one or more possible settings that the
status field can assume for specific transportable applications that are constructed based
on the template. Example status settings include “New,” “Open,” “Closed,” etc., and may
be customized by the author of the template as appropriate for the template.

The user may also add one or more default pages to the template by selecting an
Add Page link 968A in Default Pages area 968. Default pages form part of any
transportable application that is build and sent based on the application template.
Similarly, the user may add one or more optional pages to the template by selecting an
Add Page link 969A from an Optional Pages area 969. The optional pages are pages that
the author and recipients can choose from when adding a page to the transportable

application. In response to selecting one of the Add Page links 968A, 969A, the systelh

-66-

Page 68 of 240

WO 02/21413 PCT/US01/42041

displays a page navigation dialog in which the user may navigate to a page folder and
select a page to add.

FIG. 9E is a diagram of a page navigation dialog that may be displayed, in one
example embodiment. Dialog 970 comprises a Page Folder pull-down list 972 that may
be used to select a folder of pages. In the example of FIG. 9E, the Personal folder is
selected. Selecting a navigation button 974 causes the system to display the parent folder
of the current folder. When a folder is selected using pull-down list 972, the system
displays a list 973 of pages that are in the selected folder. A user may create a new page
by selecting a Créate New Page link 978. In the example shown, a page named NEW
PAGE is selected, and metadata describing the selected page is displayed in a description
area 979. Upon navigation to the desired page, the user may add it to the current
application template by selecting an Apply link 977.

Selecting a new folder button 975 enables creation of a new folder. In response,
the system displays a dialog that prompts the user to enter a name and description for the
new folder. The user can create any number of sub-level folders. For example, the user
can create a folder named New Pages Folder, open it, and create more folders named
Home and Work. The user may move within the folder tree by selecting a folder name to
view its contents, then selecting the navigation button 974.

FIG. 10A 1s a diagram of a Default Page Settings screen that may be used to
change properties of a selected default page of a template. In one specific embodiment, a
user may use Default Page Settings screen 1000 to change a page name, specify whether
an included page is required, and enable updates to a page. Default Page Settings screen
1000 comprises a Page Title field 1004 that can receive a new name for the page. Default
Page Settings screen 1000 also comprises an Enable Updates checkbox. When the Enable
Updates checkbox is checked, then changes that are made to the page by a page author
are made to the template as well, so that any transportable application that is created
thereafter also will reflect such changes.

Default Page Settings screen 1000 also comprises a Require This Page checkbox
1008. If it is checked, then the associated page is required in any transportable application
that is built based on the associated template, and cannot be deleted.

Pages added to the Optional Pages list are available to authors of transportable
applications if such authors wish to add a page. Optional pages appear in the Add Page
screen and are not included automatically, but can be added as needed. The user may
specify whether authors of transportable applications may add pages to a transportable

application that is based on the template from outside the Optional Pages list. In one

-67-

Page 69 of 240

WO 02/21413 PCT/US01/42041

embodiment, such specification is provided by checking an “Allow authors to add Page
from outside this list” checkbox in an Optional Pages screen.

After one or more pages are added, the user may save the application template,
and optionally change its name. The user may modify the application template at any time
by retrieving it and modifying any of the foregoing properties in the manner described
above.

1.4.2 Page Editor (Page Builder)

A page editor may be provided for assembling building blocks into pages that can
be added to transportable application templates, and then to transportable applications. In
one specific embodiment, a Page Builder allows the user to assemble different building
blocks into a page. Which building blocks are added depends on the function that the
page author wants the page to serve.

Referring again to FIG. 9B, to launch the application builder, a user logs into a
portal and receives screen display 910. The user selects the Builder link 928 from among
function links 912. In response, the system displays a screen with a link to the
Application Builder and the Page Builder (page editor). The user selects the Page Builder.

FIG. 10B is a diagram of a Page Builder screen that may be displayed in response
to selecting the Page Builder, in one example embodiment. Page Builder screen 1010
comprises a Name field 1012 that displays a temporary name of the page under
development, such as “New Page.” To create a new page, the user enters a description of
the new page in a Description field 1014 and introduction text in Introduction field 1016.
The description value appears in the Page Selection dialog box and helps users select the
appropriate page, and the introduction text appears at the top of the page to introduce
users to the page. Alternatively, to create a new page, the user may select the Open button
from among function buttons 1019, view a page browser showing available pages and
folders of pages, select Create A New Page from the page browser, and then enter the
description and introduction value.

The user may then add one or more building blocks to the page, or simply save the
page in its current form. To save the page, the user selects the Save As button from among
function buttons 1019, navigates to a folder in which the user wishes to save the page,
enters a name for the page, and selects a Save button. The user may save the page in this
manner at any time, and can discard the changes made to the page at any time by
selecting the New button from among function buttons 1019.

In one embodiment, launching the Page Builder causes the system to retrieve and

display a default page template that comprises two default building blocks. In one specific
-68-

Page 70 of 240

WO 02/21413 PCT/US01/42041

embodiment, the default building blocks are a discussion building blocks and information
fields building block. From the default page, new building blocks may be added, and
existing building blocks may moved or deleted.

To add building blocks, the Insert Building Block link 1018 is selected. In
response, the system displays a list of building blocks. The list comprises, for each
building block, a name value, description value, and graphical representation of the
building block. In one specific example embodiment, the list identifies the following
available building blocks:

Approval list. Allows a list of participants to respond with approvals for
documents, shared files or the content of a message. May be combined with an Inline
Document or Image Gallery building block to gather sign-offs on final drafts.

Discussion. Captures the discussion between message participants, eliminating
back-and-forth e-mails. May be added to a page with a File Sharing or Interactive Web
Page building block to discuss a document’s content or Web site.

File Sharing. In addition to distributing files for review, the File Sharing building
block enables versioning, to allow participants to automatically share changes with each
other. The File Sharing building block may be added to any transportable application page
to allow participants to add relevant files at any time.

Information Fields. Enables creating named fields to build forms to display
names, dates, locations, etc. May be combined with other building blocks to capture
information about the state of a project, names of participants, address information, or
outstanding issues.

Inline Document. Participants can review the full content of an HTML document
without opening a second application. May be combined with, for example, a Poll,
Approval List, or Discussion building block to allow participants to share opinions of the
document.

Inline Web Page. Displays a fully interactive Web page within a page of a
transportable application, including browser-like navigation controls. May be combined
with, for example, a Poll or Ratings building block to capture and share responses among
participants without launching a separate browser.

Invitation. Displays the details of an event, including title, description, time, and
location. May be combined with a Poll building block to allow participants to respond

and add comments.

-69-

Page 71 of 240

WO 02/21413 PCT/US01/42041

Image. Displays a graphical image on the page. May be combined with, for
example, a Poll, Approval List, Ratings, or Discussion building block, in the same page,
to allow participants to submit their opinions of the image.

Image Gallery. Displays a plurality of graphical images, e.g., in “thumbnail”
format, within a page. All images may be sent in a transportable application at the same
time, or participants may add their own images at any time. May be combined with, for
example, an Approval List or Ratings Building block to collect opinions on photos or
artwork.

Poll. Participants vote for one or more of a plurality of listed options, and the
results are displayed in a pie chart, bar chart, etc. May be combined with, for example, an
Image Gallery, File Sharing, or Schedule building block to help make business decisions.

Ratings. Respondents share their ratings with each other on one or more questions
on a discrete scale, e.g., ratings from 1 to 10. May be used to collect feedback or gauge
group members’ opinions.

Schedule. Participants specify their availability for one or more proposed dates or
times. The Schedule building block can export data to programs that support a calendar
data interchange format. May be used, for example, to determine the best time for a
meeting or event.

Table. Compile data from multiple individuals into a tabular format; participants
can add to or edit the information. The table building block can import or export data, for
example, data files in delimited file formats. May be combined with other building blocks
to launch a project, prioritize items, or share contact information.

Listing. Retrieve various types of data from the database and display it in a list
format, using HTML or any other desired presentation format.

Further description about building blocks is provided elsewhere herein. To add a
building block to a page, the user selects the desired building block by selecting its name
from the list or selecting the corresponding graphic image. The list closes, and the
selected building block is added to the page, which expands to accommodate the building
block. The Insert Building Block link 1018 is re-displayed, and the user may add one or
more additional building blocks by selecting the link 1018 again. In one embodiment, the
Insert Building Block link 1018 is re-displayed both above and below each added
building block, so that the relative order of building blocks in a page may be specified by
selecting the link 1018 in the correct ordinal position. Thus, the user may place building
blocks above, below, or between other building blocks that have been previously added
by selecting the link 1018 at the appropriate position.

-70-

Page 72 of 240

WO 02/21413 PCT/US01/42041

The user may also control the visibility of building blocks to users who receive a
transportable application that contains them by choosing to hide or show particular
building blocks. When a building block is marked as hidden, recipients of a transportable
application that contains a page with that building block do not see the building block.
Users may similarly add new pages, move, delete, show or hide existing pages. Applying
the hide option enables an author to create a complex template that can be used in many
different situations, and selectively reveal desired building blocks as appropriate for the
particular situation.

FIG. 11A is a diagram of the graphical appearance of an Approval List building
block as it appears in a transportable application page under development using the Page
Builder. Approval List building block 1100, and all other building blocks, comprises a
Move Up link 1102, Move Down link 1104, and Delete link 1106. A user may delete the
building block from the page under development by selecting the Delete link 1106. In
response, the building block is logically removed from the page, and the page is re-
displayed without the building block.

The order in which building blocks appear in the Page Builder is the order in
which authors and recipients of transportable applications based on that page will see the
building blocks. The user may select links 1102, 1104 to change the relative order of the
building block by moving it before or after another building block. In either case, the
page is re-displayed with the building block in its new position.

In one embodiment, a Survey Page Builder is provided to enable users to assemble
specific building blocks into pages that carry out surveys of recipients. Each survey page
comprises one or more building blocks selected from a Choice building block, Free Text
Response building block, and Ratings building block. A survey page may be added to any
transportable application or template.

To create a survey page, a user obtains a portal view (FIG. 9B) and selects Builder
link 928. The Builder window appears, and the user selects a Survey Page Builder link
within it. In response, a Survey Page Builder window opens. FIG. 10C is a diagram of a
Survey Page Builder window that may be displayed, in one example embodiment. In this
embodiment, the Survey Page Builder window 1020 comprises a Name field 1022 that
displays a default value of “New Page,” a Description field 1024 that may receive a text
description of the page, and an Introduction field 1026 that may receive a text
introduction for the page that is displayed to recipients at the top of the page.

Survey Page Builder window 1020 further comprises one or more survey options.

In one embodiment, a “Make recipient responses anonymous” link 1028 is provided.

71-

Page 73 of 240

WO 02/21413 PCT/US01/42041

When it is selected, responses to the survey are stored in anonymous form. An “Allow
recipients to change responses until the survey is closed” link 1030 may be provided.
When selected, the system allows recipients of the page to change their responses at any
time. When it is not selected, a response of a recipient may not be changed after it is
submitted.

The user may add one or more survey building blocks by selecting the Insert
Building Block link 1018 at a point in the page where the user wishes to have a building
block appear. In response, a list of available building blocks is displayed. In one
embodiment, the list comprises:

Choice. Respondents vote for one or more of the listed options; results are
displayed, e.g., in a pie chart, bar chart, etc., and are visible only to the author of the
transportable application.

Free Text Response. Respondents enter text responses to a question into a single
line text box, or a larger comment box. Responses are gathered in a table and are visible
only to the author of the transportable application.

Ratings. Respondents provide their ratings on a list of questions or items
according to a discrete scale, e.g., 1 to 10. The results are summarized in a graphical
format that is visible only to the author of the transportable application.

The user may select one of the building blocks by selecting its name or icon. The
user completes the building block with any required information; fields for completion by
recipients are left blank. The user may re-order the building blocks or delete one or more
building blocks; the page is then saved. The page is added to a template for a
transportable application as described herein.

1.4.3 Building Blocks—Examples

A description of specific building blocks is now provided. The building blocks
described herein are merely examples, and other building blocks, fewer or more building
blocks may be provided to carry out different functions or to configure different
transportable applications. For convenience and in order to illustrate clear examples, the
building blocks are described in part in terms of graphical appearance, functions and
features; however, in an implementation, each building block comprises a plurality of
executable computer program modules that are defined by class files and other computer
program source statements. Thus, the functions and appearance of each building block
herein are determined by and implemented in the form of computer code appropriate to

carry out the functions and provide the appearance that are described herein.

-72-

Page 74 of 240

WO 02/21413 PCT/US01/42041

Referring again to FIG. 11A, the graphical appearance of an Approval List
building block 1100 is shown. The Approval list building block 1100 allows a list of
participants to respond with approvals for documents, shared files or the content of a
message, and may be combined with an Inline Document or Image Gallery building block
to gather sign-offs on final drafts. Approval list building block 1100 comprises an
Instructions field 1108 that may receive text instructions that are displayed to recipients of
a page that contains the building block 1100. Approval list building block 1100 further
comprises a list 1110 of one or more user names 1112 corresponding to recipients of the
building block and corresponding response indications 1114, The user names 1112 are
dynamically updated according to the recipients of the building block 1100. Approval list
building block 1100 further comprises an Include linked comment check box 1116. If
checked, the system will display comments from participants in the transportable
application. The comments are dynamically updated as they are added.

FIG. 11B is a diagram of an example embodiment of a Discussion building block
that may be used to captures a diséussion between message participants. Discussion
building block 1120 comprises a dynamically updated list 1122 of one or more user
names 1124, associated comment text 1126, and a time stamp value 1128 indicating the
time when the associated comment was added. When recipients receive a transportable
application that contains a Discussion building block 1120, one or more of the recipients
may select the building block and add a comment to the topic under discussion. The list
1122 is dynamically updated with the newly added comment so that the next recipient
who opens the transportable application will see all previously added comments.

FIG. 11C is a diagram of an example embodiment of a File Sharing building
block, according to an example embodiment, which may be used to share an electronic
file among a group of recipients for collaborative review or updating. In this embodiment,
File Sharing building block 1130 comprises a Description field 1132 in which the author
of a template that contains the building block may enter description text. An Enable File
Versioning check box 1134 is provided. When it is checked, the system requires each user
to check out the associated file before it can be viewed or modified. The file is checked in
after modification.

File Sharing building block 1130 also comprises an Attach Files link 1136. The
author of the application or template that includes building block 1130 may select link
1136 to specify a file that is shared among recipients of an application that contains the
page. In addition, the Attach Files link 1136 may be used by recipients of the

transportable application to add files for sharing, discussion or collaboration. Thus, the
-73-

Page 75 of 240

WO 02/21413 PCT/US01/42041

one or more files that are shared using building block 1130 may be specified by recipients
of a transportable application that contains a page that contains the building block 1130,
rather than specified by an author of a transportable application that contains the page or a
template that contains such a page.

In one embodiment, when a user is interacting with a transportable application
having a page that contains File sharing building block 1130, and the user elects to upload
anew file for sharing or discussion, the system prompts the user to decide whether
versioning should be enabled for the document. A versioning value is stored as a file
attribute data value in the database in association with the file. In another embodiment,
the Enable File Versioning check box 1134 is displayed in association with every file link
for each file that has been uploaded. Thus, a user who is the author of the transportable
application or otherwise acting in an owner role may elect to apply versioning at any
time.

FIG. 11D is a diagram of an Image building block that may be provided, in one
example embodiment. An Image building block 1140 may be used to display a graphical
image on a page of a transportable application. In one embodiment, Image building block
1140 comprises an image 1142, Attach Image button 1144, Image Name field 1146, and
Image Description field 1148. After adding the building block 1140 to the page, the
author selects the Attach Image button 114 to attach an image to the building block. In
response, the system displays a file browse dialog that enables the author to navigate to a
desired image, e.g., in a filesystem or folder of the author’s computer, server or network,
and select the image. The system uploads the selected image to application server 202 and
stores it in database 208 in association with the page under construction. The user may
also add a name value in Image Name field 1146, and a description value in Image .
Description field 1148.

FIG. 11E is a diagram of an Image Gallery building block that may be provided,
in one example embodiment. An Image Gallery building block 1150 may be used to
display a plurality of graphical images within a page. In this embodiment, Image Gallery
building block 1150 comprises an image worksheet 1152, Name field 1154, Add Image
function button 1156, Add Multiple Images button 1158, and checkbox 1159. To add one
or more images to the image gallery, the author selects either the Add Image function
button 1156 or the Add Multiple Images button 1158. In response, the system displays a
file browse dialog that enables the author to navigate to a desired image, e.g.,in a
filesystem or folder of the author’s computer, server or network, and select the image.

The system uploads the selected image to application server 202 and stores it in database
74~

Page 76 of 240

WO 02/21413 PCT/US01/42041

208 in association with the page under construction. The user may also add a name value
in Name field 1154.

All images may be sent in a transportable application at the same time.
Alternatively, if the checkbox 1159 is selected by the author, then participants who
receive a transportable application that contains building block 1150 may add their own
images at any time. Conversely, if checkbox 1159 is not checked, then participants may
not add additional images to the gallery.

The Image building block and Image Gallery building block are supported by
appropriate error logic that generates one or more errors if exceptional conditions occur
when images are uploaded by the author. Examples of exceptional conditions include: a
file is too large; network connection failure; incorrect image format; incorrect image
width; etc. ,

FIG. 11F is a diagram of an Information Fields building block that may be
provided, in one example embodiment. In this embodiment, Information Fields building
block 1160 comprises a list 1161 of one or more field names 1162 each having an
associated field value 1164. The author of a page that contains the building block 1160
provides values for field names 1162; the associated field values are left blank and are
added by participants who receive the page. Additional pairs of field names and values
may be added to the building block by the author by selecting an Add Row button 1166.
Accordingly, an author may create named fields to build forms to display names, dates,
locations, etc., and a transportable application can capture information about the state of a
project, names of participants, address information, or outstanding issues.

In one embodiment, each field of the Information Fields building block may have
an abstract data type associated with it using the data typing mechanisms described herein

\ with respect to the Table building block.

FIG. 11G is a diagram of an Inline Document building block that may be
provided, in one example embodiment. In this embodiment, Inline Document building
block 1170 comprises an Upload File link 1172. To place a document within a page of a
transportable application, to enable participants to review the content of the document
without opening a second application, an author of a page that contains building block
1170 selects link 1172. In response, the system displays a file browse dialog that enables
the author to navigate to a desired file, e.g., in a filesystem or folder of the author’s
computer, server or network, and select the file. The system uploads the selected file to

application server 202 and stores it in database 208 in association with the page under

-75-

Page 77 of 240

WO 02/21413 PCT/US01/42041

construction. The name of each file that has been uploaded is displayed in the building
block, e.g., in an area above the link 1172.

In one embodiment, building block 1170 accepts one file for upload. In this
embodiment, multiple documents may be displayed in a transportable application by
adding another page to the application, or by including multiple building blocks 1170
within the same page. Alternatively, multiple files may be included.

FIG. 11H is a diagram of an Inline Web Page building block that may be provided,
in one example embodiment. In this embodiment, building block 1180 displays a fully
interactive Web page within a page of a transportable application, including browser-like
navigation controls. The author selects a location field 1182 and provides a URL or other
location identifier of the Web page for display.

In one embodiment, the URL may be changed at any time by recipients of pages
that contain the building block. An administrative console function may be provided to
enable establishing filters for building blocks.

FIG. 12 is a diagram of an example transportable application that contains an
inline Web page. In this example embodiment, a transportable application 1200 is shown
in a view from a graphical user interface of an e-mail client program 1210. Transportable
application 1200 comprises a header 1208 and an inline Web page building block 1212.
The building block 1212 includes a navigation header 1201 and a Web page image area
1202 that displays the inline Web page. Navigation header 1201 comprises a Back button
1204, Forward button 1205, and Home button 1206. Navigation header 1201 is displayed
automatically by the system when the transportable application 1200 is presented. Thus,
the navigation header 1201 is system-generated and does not form part of the Web page in
image area 1202. The Web page in image area 1202 is displayed in the same form that it
would have if viewed using a browser in conventional manner. Back button 1204,
Forward button 1205, and Home button 1206 each comprise links to JavaScript code that
carries out the functions of the button. A specific embodiment of such code is described
further herein with reference to FIG. 24.

FIG. 13A is a diagram of an Invitation building block that may be provided, in
one example embodiment. In this embodiment, Invitation building block 1300 comprises
the following data entry fields, which receive text information provided by the author of a
page that includes the building block: Event Title field 1304, which receives a title of the
event for which the invitation is issued; Description field 1306, which receives a brief
description of the event; Details field 1308, which receives text providing detailed

information about the event; Date field 1310, which receives a value identifying the date
-76-

Page 78 of 240

WO 02/21413 PCT/US01/42041

of the event; Duration field 1312, which receives a value identifying the time period of
the event; Location field 1314, which receives a value specifying where the event will
occur; Address field 1316, which receives a value providing an address for the event; and
a deadline field 1318, which provides a deadline date for responding to the invitation.

The value in the deadline field 1318 may be used, programmatically, to
automatically trigger closing a transportable application or page that includes the
Invitation building block 1300.

An author c;f a page that contains building block 1300 may select a style for the
graphical appearance of the building block using a Select Invitation Style link 1302. In
response, the system displays a list of one or more pre-defined styles for invitations. The
author selects one of the styles, fills in the foregoing event data, and saves the building
block.

FIG. 13B is a diagram of a Poll building block that may be provided, in one
example embodiment. In this embodiment Poll building block 1320 comprises a Question
field 1322 in which the user enters the specific question that recipients are requested to
answer when the building block is in use. The author also enters one or more answer
choices in answer fields 1324; in responding to the poll question, recipients are required
to select one of the answer choices.

As recipients interact with the building block, the author may view a graphic
image of the results in graph or chart form. The author may select the specific form of the
results by selecting one of a plurality of radio buttons 1326, each of which is associated
with a different presentation format such as pie chart, bar chart, etc. The author may
enable recipients to attach comments to their responses by selecting Comment check box
1328.

Poll building block 1320 further comprises an Advanced Options link 1329 that
enables the author to set other functional behavior of the building block. In response to
selecting link 1329, the system displays an Advanced Options window. FIG. 13Cis a
diagram of an Advanced Options window that may be displayed, in one example
embodiment. In this embodiment, the author may use Advanced Options window 1330 to
select whether recipients of a poll may vote for one or more of the answer choices 1324
of FIG. 13B, by selecting a value from a pull-down menu 1332. The author may instruct
the system to include an additional answer choice of “Other” in the list, and allow
recipiénts to write in an answer, by selecting check box 1334.

In one embodiment, if an “Other” choice is allowed, and recipients write in

answers, the written-in answers are automatically added to the choice list. The written-in

-77-

Page 79 of 240

WO 02/21413 PCT/US01/42041

answers are dynamically updated to the database. Thus, any later recipients who open the
same transportable application see the written-in answers as additional poll choices.

One or more Vote Options check boxes 1336 may be provided. In one
embodiment, the author may instruct the system to allow recipients and participants in the
poll to change a vote by selecting a first check box. The author may instruct the system to
allow participants to vote anonymously by selecting a second check box. The author may
specify when the poll results are available for viewing by the participants by selecting one
of a plurality of radio buttons 1338. In one embodiment, the author may specify that the
poll results are available to participants always, after a participant has voted, after the poll
closes, or never. In one embodiment, the author may require all ratings to be submitted on
an anonymous basis (“forced anonymity”), by selecting an option or check box when the
Poll building block is added to an application.

FIG. 13D is a diagram of a Schedule building block that may be provided, in one
example embodiment. Participants specify their availability for one or more proposed
dates or times in a schedule table. Using Schedule Type radio buttons 1342, tﬁe author
may specify whether the schedule is structured or free form. In a structured schedule, for
each time alternative, the author of a transportable application that includes the Schedule
building block 1340 specifies the exact date, time and duration of each time alternative. In
a free-form schedule, the author can enter any desired information to describe each
alternative.

A Location field 1344 receives a value identifying a proposed location for the
scheduled event. A list 1346 of a plurality of time alternatives or choices 1348 is
provided. Each choice 1348 has an associated date field 1350, time field 1352, and
duration field 1354. Each choice represents a possible best time for a meeting or event,
for example. In one embodiment, a maximum of five choices are provided in the building
block, as in FIG. 13D, and an option check box 1356 enables the author to specify
whether recipients can propose additional choices. If option check box 1356 is not
checked, then a recipient of building block 1340 in a transportable application is required
to select one of the five choices as best for that individual’s schedule.

In one embodiment, the Schedule building block lists at least one schedule
response for all recipients of a transportable application that contains the building block.
Further, a blank row is displayed in the schedule table for all recipients who have not
responded. Thus, even if a recipient has not responded to the transportable application,
that recipient is listed in the schedule. This enables all recipients to see who has provided

an availability response and who is yet to respond. Programmatically, the Schedule
-78-

Page 80 of 240

WO 02/21413 PCT/US01/42041

building block may use a getRecipientResult() method to retrieve a list of recipients of the
transportable application. The list of recipients is compared to a second list of all
recipients who are known to have responded to the transportable application. The
difference in the lists provides those recipients who should be listed in the schedule table
with blank entries.

FIG. 13E is a diagram of a Table building block that may be provided, in one
example embodiment. A table building block 1360 may be used to compile data from
multiple individuals into a tabular format; participants can add to or edit the information.
The Table building block can import or export data, for example, data files in delimited
file formats. In the embodiment of FIG. 13E, a data table 1364 is defined by a name field
1362, one or more rows 1374 and a plurality of columns 1370. Each colummn 1370 has an
associated column name 1372. Each row and column has an associated radio button
which, if selected by the author of the page that contains the building block, makes that
row or column appear in the table when the page is displayed in a transportable
application.

The author may modify the size and appearance of the table using buttons 1368.
In one specific embodiment, buttons 1368 comprise an insert button, delete button, and
properties button. A user selects a particular row or column by selecting its associated
radio buiton, and then selects one of the buttons 1368. In response, if the insert button is
selected, the system will insert a row or column adjacent to the selected row or column;
delete the selected row or column; or enable the user to modify properties of the selected
row or column. In one embodiment, such properties include column width, text alignment
(left, right, center), cell format, etc. In still another embodiment, the requested changes
may be applied to all rows and columns in the table by selecting a separate check box.

In an alternative embodiment, selecting the insert button causes the system to
prompt the user to enter a numeric value representing a number of rows or column to
insert, thereby enabling inserting multiple rows or columns in a single operation.

In another embodiment, table columns may be formatted according to one of a
plurality of abstract data types, e.g., date, numbers, currency, time, etc. The data types
may also be enumerated data types, such as a priority type (high, medium, low); an
answer type (yes or no), a status type (open, closed, pending, resolved); an approval type
(approved, do not approve, undecided); or a custom enumerated type that is user-defined.
To apply a data type, the author selects the Properties button from among buttons 1368
and then selects a data type from among a list of available data types. The selected data

type is stored in the database as an attribute value for the associated column of the table.
-79-

Page 81 of 240

WO 02/21413 PCT/US01/42041

If the author adds rows to the table, then columns in the row inherit the data type attribute
values. When a recipient adds data to a cell, type checking is carried out to ensure that the
value that was entered matches the type of the cell; if a type match occurs, an error is
reported.

In addition, data values for table cells may be imported from a data file by
selecting an Import link 1366. For example, data values may be imported from a
spreadsheet file, delimited file, comma-separated file, tab-separated file, or the
equivalent.

Use of enumerated data types enables users to construct Table building blocks that
effectively track progress on action items relating to a project. For example, a group of
users who are collaborating on a particular project can create a transportable application
with a Table building block that identifies tasks, a party responsible for each task, and a
status value taken from an enumerated data type. As users complete assigned tasks, they
update the Table building block status value as appropriate. Any user who views the
transportable application sees the then-current status values for all tasks.

FIG. 14A is a diagram of a Choice building block that may be provided, in one
example embodiment. Using a Choice building block, respondents vote for one or more
of the listed options; results are displayed, e.g., in a pie chart, bar chart, etc., and are
visible only to the author of the transportable application. In this embodiment Choice
building block 1420 comprises a Question field 1422 in which the user enters the specific
question that recipients are requested to answer when the building block is in use. The
author also enters one or more answer choices in answer fields 1424; in responding to the
question, recipients are required to select one of the answer choices provided in the fields.

As recipients interact with the building block, the author may view a graphic
image of the choice responses in graph or chart form. The author may select the specific
form of the results by selecting one of a plurality of radio buttons 1426, each of which is
associated with a different presentation format such as pie chart, bar chart, etc. In one
embodiment, the author also may use a pull-down menu 1432 to select whether recipients
of a poll may vote for one or more of the answer choices 1424 by selecting a value from a
pull-down menu 1432. The author may instruct the system to include an additional
answer choice of “Other” in the list, and allow recipients to write in an answer, by
selecting check box 1434.

FIG. 14B is a diagram of a Free Text Response building block that may be
provided, in one example embodiment. In this embodiment, respondents enter text

responses to a question into a text box or comment field. The author specifies a question

-80-

Page 82 of 240

WO 02/21413 PCT/US01/42041

for recipients to answer by entering it in question field 1432. Responses are gathered
either in a single-line text box or multi-line comment area according to a selection by the
author of a corresponding radio button 1434. In an embodiment, a text editor is integrated
into question field 1432 so that respondents may use standard text editing keyboard
commands and cursor operations as they enter and revise text. In another embodiment,
question field 1432 is integrated with a browser DLL, or similar rendering library. In this
configuration, respondents may enter HTML tags in the question field, which are stored
in association with the building block, and rendered and displayed in HTML format when
a response in the question field is displayed to other recipients.

FIG. 14C is a diagram of a Ratings building block that may be provided, in one
example embodiment. In this embodiment, Ratings building block 1440 comprises an
Instructions field 1442 in which the author enters text instructions to recipients about how
to complete ratings of criteria. The author may define a rating scale by selecting a
maximum value 1444. For example, if the author wants criteria rated by participants on a
scale from “1”’ to “5,” then the author selects “5” as maximum value 1444. In addition to
the numeric rating values, the author may permit a rating of “not applicable” or “N/A” by
selecting check box 1446. One or more corresponding rating labels may be provided in
rating fields 1448. One or more criteria to receive ratings are provided in item fields
1450. Additional item fields may be added, or item fields may be removed, from among
item fields 1450 by selecting an Add Entries link or Remove Entries link 1452.

In one embodiment, the author may require all ratings to be submitted on an
anonymous basis (“forced anonymity”), by selecting an option or check box when the
Ratings building block is added to an application.

A Listing building block is provided to enable a transportable application to
retrieve various types of data from the database and display it in a list format, using
HTML or any other desired presentation format.

In one specific embodiment, the Listing building block is implemented as an
abstract class that can be subclassed to present any result set of database data that can be
described by a programmer or developer. For example, the Listing building block may be
used to generate lists of groups, folders, messages, and transportable applications for use
in the Group Directory, Group Messages Inbox, Group Application Templates, and
Personal Messages Inbox that are displayed through the portal and other mechanisms as
described herein.

In this embodiment, the Listing building block implements a Question interface to

issue database queries, and a Presenter interface to carry out data presentation. The

-81-

Page 83 of 240

WO 02/21413 PCT/US01/42041

Listing building block also generates a Create event, Read event, and Close event to the
event handling system when it is created, read, or closed, respectively. The Listing
building block contains no actual data of its own; rather, all data it displays is metadata
_about other objects, such as transportable applications, users, groups, or templates. Thus,
it need not generate a Response event.

A Group Directory building block may be implemented as a subclass of the
Listing building block. The Group Directory building block displays a list of all the
Groups available, including group name, description, and status. The Group Directory
building block may receive a selection of a group from user input. In response, the Group
Directory building block determines whether the user is authorized to access the selected
group, and then generates a Status value as output. The Status value may be Join Group,
Member, or Private. Join Group means that the user is not a member of the group and the
group is not private, i.e., the user may join the group. Member means that the user is
already a member of the group. Private means that the user is not a member and group
joining is restricted.

A Group Messages Inbox building block also may be implemented as a subclass
of the Listing building block. The Group Messages Inbox building block displays a list of
all transportable applications sent to a group including author, subject, type, date created,
and date last modified. The Group Messages Inbox building block may be used in two
different instances to provide a list of current group messages as part of a group home
page, and to provide a group archive list.

A Group Applications Templates building block also may be implemented as a
subclass of the Listing building block. The Group Applications Templates building block
displays a list of selected application templates for a particular group, organized by
template name and date created. The selected application templates may all those that are
in that group’s application directory, for example. There may be an instance of the Group
Applications Templates building block for each group.

A User Messages Inbox building block may be may be implemented as a subclass
of the Listing building block and generates a list of all transportable applications sent by
and received by a user, except that received group messages are not displayed. The list
comprises, for each transportable application in the list, a status value, attachment status
value, author name, subject, and date last modified. The status value indicates whether the
associated transportable application is new or unread, updated or changed, or read. The
attachment status value indicates whether the associated transportable application has one

or more files attached, or no attachments. The User Messages Inbox building block

-82-

Page 84 of 240

WO 02/21413 PCT/US01/42041

provides graphical controls to create folders, move transportable applications into folders,
or to delete them.

1.4.4 Site Style Editor

According to one embodiment, the Style Editor is configured to enable a portal
administrator to create one or more Site-specific Styles. In this context, a “site” is an
installation of system 200 at a particular enterprise or organization, such as a corporation.
The Site Style Editor displays only those properties of transportable applications and
templates that are relevant to creating styles for a particular site. Such properties may
include site snippets (including the header and navigation), color scheme, branding and
corporate-color images, and fonts to be used throughout the site.

In one approach to implementing the foregoing, a Style Properties table of
database 208 includes a column that identifies whether a style property is a general
property or a site-specific property. The Style Editor is configured to allow setting a
mode, e.g., generic or site-specific, when a user invokes or enters the Editor. When the
Style Editor is in a site-specific mode, it shows only properties relevant to that mode.

A Site Style Preview Tool is provided to enable a user, who is creating a Site
Style, to preview the appearance of the site so that other users of the system will not be
disrupted during development time. Only the Site Style creator can see the site using the
Site Style being created. In one embodiment, Site Style development and previewing is
carried out on a separate application server to minimize performance issues. Further, in
one approach, the preview of the site is displayed in a frameset of a browser, enabling a
user to freely browse the site.

When one or more styles have been created, users can select a style at the time
that a transportable application is authored. For example, at authoring time, when a
transportable application is created or a task is added, a user can either select an existing
Style through the Style Picker or create a new Style during authoring and automatically
apply that Style to the transportable application that is being authored.

In one approach, a Style Editor is provided having an action bar with a plurality of
graphical user interface buttons that trigger different actions and behavior. In one specific
embodiment, a Clear button resets Style properties. A Save button saves the Style. If it
already exists in the database, it is overwritten without asking the user for a new name. If
it does not exist, then the user is prompted to provide a name and description. A Save As
button saves the Style after first prompting the user for a name and description. An Open
button loads a Style into the Editor from the user’s personal collection, or from a Group
or Global folder.

-83-

Page 85 of 240

WO 02/21413 PCT/US01/42041

A Preview button displays a preview of the current Style. The style is previewed
in association with the type of transportable application that the user is in the process of
authoring. An Apply and Exit button is also provided. When selected, if the Style has not .
been saved, then the user is prompted to provide a name and description of the Style, and
it is saved. The Style is automatically applied to the then-current transportable application
under development, and the Editor is closed. Cancel and Exit buttons may also be
provided to enable termination of style editing and exiting the application.

The Style Editor also may be configured to save and load styles to and from
groups, global areas, or folders of groups or global areas. This enables groups of users to
export styles to such areas for the purpose of sharing them. Use of folders enables users to
organize styles. Folders and style references may be created as node objects.

1.5 Communications From Transportable Applications to Users
(“Notifications)

1.5.1 Notifications Based on User Responses or Timed Events

In an embodiment, application server 200 includes processes that can selectively
deliver notification messages to users based on actions carried out by transportable
appiications. In general, a notification is a message, sent by electronic mail or any other
transport mechanism, to a recipient of a transportable application separate from the
application as a result of an action taken by that recipient or by another recipient of the
application. For example, assume that a transportable application includes a discussion
building block in which a group of participants are discussing a particular topic. If a
participant enables notifications for that application, the system sends that participant a
notification message each time that another participant updates the application with a new
comment.

In one embodiment, each participant or user affirmatively requests notifications in
an “opt-in” process. Alternatively, however, notifications may be used to accomplish
more complicated business processes or workflows. Further, in one embodiment,
notifications are associated with transportable applications as a whole; alternatively, each
building block may independently generate a notification based on an action of a
participant using that particular building block. In still another alternative, notifications
are issued based on rules when conditions specified in the rules are satisfied by user
actions.

In this description, participants or users may assume one or more roles. An
individual acting in an Owner /Moderator role is a person who initiates or starts a process.

The Owner owns the process and is accountable for all its functions. In the corporate
-84-

Page 86 of 240

WO 02/21413 PCT/US01/42041

context, owners of a process can be product managers, purchase agents, account
managers, customer service representatives, etc. An individual also may act as a
Participant (also termed a Member or Recipient). Members interact with one or more
specific tasks in a process, such as interviewing candidates, bidding on proposals,
participating in meetings, etc. The owner of a process can assign specific roles to the
participants. Owners may be participants also.

In one embodiment, with respect to groups, an Owner can add or remove
members from the group; carry out moderator options; exercise author rights over all
group messages; delete group messages; and exercise all Meml?er privileges. A group
Member, in contrast, can send or receive group messages; invite others to join public
groups; unsubscribe from the grdup; and create a sub-group.

Notifications, in one approach, are alert messages that are sent to users when a
predefined activity has occurred in a process. For example, notifications may be issued as
a result of the following activities: Response to a building block by a user; change in
process or task status; change in process or task due dates; more than 50% of people have
polled; more than 60% of users have confirmed for the meeting; and others. Reminders
are prompts sent to users. Examples of reminders include: Inform a user that a due date is
fast approaching; inform all users about an important process development; etc. Both
notifications and reminders generally are sent outside the context of a transportable
application, for example, by a separate e-mail message directed to the recipient. In
contrast, notes, as described herein, are text messages that are selectively embedded
within a transportable application to draw something to the attention of the recipient when
the recipient opens the transportable application.

Notifications may be pull or opt-in notifications, or push notifications. With pull
notifications, a user defines (or sets rules) when to receive notifications and reminders.
The system automatically sends a notification if the specified definition is satisfied. With
push notifications, an owner sends notifications and reminders to users regardless of
whether the user has reqliested for the same. Here the owner overrides the notification
preference of the recipient.

In one embodiment, notification processes are configured so that a participant
receives notifications on any updates immediately. In this approach, users have the option
to opt-in to receive any updates. The user receives a single notification on any updates
since the last read. In one specific approach, taking any of the following actions on a

process or task triggers delivery of a notification: Adding new tasks; response to building

-85~

Page 87 of 240

WO 02/21413 PCT/US01/42041

block; closing of tasks; closing of processes; change in process status or due date; change
in task status or due date.

In one sub-approach, only the tasks for which a user is in the recipient list trigger
notification updates. If a different task changes, for which a user is not in the recipient
list, the user is not notified.

In another embodiment, notification processes are configured so that a participant
receives notifications on any updates to specific tasks immediately. Users can receive
notifications on any updates to a single task or group of tasks. A list of active tasks is
provided to the user from which the user can select tasks on which to be notified.

The notification processes also may be configured to send a process-level
reminder to all recipients. Specifically, the owner of the process can configure a
transpértable application to send ad-hoc reminders everyone in a recipient list whenever
an important process event occurs. For example, assume that Michael is interviewing at
Alpha Company and an interview process transportable application is currently used for
scheduling interviews. A manager at Alpha receives information during the interview
process that Michael has a competing offer and needs to decide whether to accept it
within the next week. The manager, who is an owner of the transportable application, can
immediafely notify all the participants that they should schedule interviews for Michael
and decide on the candidate. In a related approach, the notification processes are
configured to send process-level reminders to selected recipients in the recipient list.

In another embodiment, the system is configured to send a task level reminder to
all recipients in a recipient list. The owner of the task can send ad-hoc reminders to
everyone in a recipient list whenever an important task event occurs. For example,
assume that an offer letter to candidate John Q. Public is under discussion in the “Offer
task” of a transportable application. The salary to be offered to the candidate is still under
discussion among the managers. However, the Director of Sales needs to provide the
sales headcount to the VP of Marketing & Sales next week and as such needs to finalize
the offers quickly. She sends a notification to the participants in the “offer task™ to come
to a consensus quickly on the offer and go further with the hiring. In a related feature, a
participant can send a task level reminder to select recipients among the recipients of the
transportable application.

Another feature provides scheduled process update notification. A user can
schedule to receive process update notifications periodically or on a specified date and
time. Periodic update options for the user to select are daily (options within a day), and

weekly (options within a week). For example, assume that Bob is the Director of Business

-86-

Page 88 of 240

WO 02/21413 PCT/US01/42041

Development at Alpha Company and his team is working on new business deals with a
lot of startups. Bob would prioritize on his updates based on the importance of the deal.
So he schedules some deals for weekly updates while others for daily updates.

In another embodiment, the system is configured to send scheduled process “due
date” reminders to all users in a recipient list of a transportable application. In this
feature, the owner of a process can schedule specific "due-date” reminders to be sent to
everyone either at the process or at the task level. The owner can send the reminder either
on a particular date or a specified period before the due date (e.g., two days before, two
weeks before, etc). For example, assume that a product management team has defined
new features for a particular product release and requires approval from other functional
areas (such as Engineering, Sales, Business Development etc.). The features need to be
frozen by a certain date so that development on the product can commence. The project
lead schedules a "due-date" reminder to be sent to everyone a week before the deadline to
ensure that the activities are completed by the due date.

In other features and embodiments, a participant or user can "opt-in" to receive
summary of notification changes; "opt-in" to receive selected notifications immediately;
send a scheduled task “due date” reminder to everyone in a recipient list; send a
scheduled task “due date” reminder to select recipients in a recipient list; and "opt-in" for
a scheduled process due date reminder.

In one implementation approach for the foregoing features, the event-based
messaging system described herein is configured to enable building blocks and associated
notification event handlers to communicate. One or more events may issue as a result of
another event. Responses to events are carried out by a notification event handler that is
associated with each kind of response event. Response-based notifications are generated
by each such handler. Each notification is an event, and the each notification event
handler comprises logic that determines which users need to receive notifications and
when. In an embodiment, each event handler uses a notification API to generate a list of
users to notify, and the event handler then sends the list to an event daemon that
dispatches the notifications. As a result, an event-based messaging system facilitates
generating rule-based notifications in response to any change in any attribute of a
transportable application.

In one implementation of response-based notifications, as outlined above, each
user may “opt in” to receive notifications at a task level and at a process level. Hence,
each user can subscribe to changes in particular tasks or to any change in the process.

Further, each user can associate a notification frequency value with each subscription,
-87-

Page 89 of 240

WO 02/21413 PCT/US01/42041

FIG. 7 is a flow diagram of one embodiment of a process of carrying out
response-based notifications. In block 702, a response is issued to a building block of a
transportable application. For example, a first participant in a group collaboration or other
activity enters text, graphics, a button selection or some other value in response to a query
provided in a building block.

In block 704, in response, a database query is issued to obtain a list of users who
have requested notifications for the current building block. A notification time value is
obtained for each user in the list; the notification time value indicates when to notify each
individual on the list. In block 706, the list is passed to the parent object of the current
building block, which may be another building block or a container obj ect, with a request
to carry out notifications.

In block 708, a list of recipients associated with the parent building block or
container object is retrieved and compared to the list of users who qualified for
notifications at the child building block level. Only those users who qualified for
notifications at the child building block level are then considered. For each user who
qualified, if that user has a notification time value that indicates a delayed notification is
necessary, then no action is taken since the child’s notification time overrides any
notification time that may be associated with the parent.

In block 710, for each user in the child notification list that qualifies for an
immediate notification, then a database query is carried out to determine that the user is
active in the system and does not have a notification already pending. This is done to
avoid duplicate notifications. If these tests result in a determination that the user is
entitled to a notification, then control is passed to block 712.

In block 712, a status value for the user associated with the parent building block
or container is changed to Updated, and a current time value is stored in a notification
time value in the database.

In block 714, users in the recipient list of the parent block or container who did
not qualify for child level notifications are considered. The status value for each such user
is changed to Updated, and a current time value is stored in a notification time value in
the database. In block 716, the notification message is dispatched to all qualifying users in
the parent and child notification lists.

1.5.2 Notifications Based on Rules and Attributes

In a related approach that is integrated with an event management system, each
building block can publish attributes about itself to the rest of the system, and publishes

event that alert the system when such attributes change. Further, users may create and

-88-

Page 90 of 240

WO 02/21413 PCT/US01/42041

store rules based on these attributes that cause such users to receive a notification when
the rules are satisfied. In addition, users may be notified at a particular time if a rule is
satisfied. For example, a user can be notified if a project status reaches “complete”, and
the user can also be notified if the project status is not “complete” one month after the
project began.

In one implementation approach, database 208 comprises a rules table having the
following columns: Rule ID; Block ID; User ID; Attribute; Threshold value; Comparator;
Time flag indicating whether the rule is time-based; Event ID if the rule is time-based;
Action type. In one embodiment, the Rule ID field does not store a unique key value,
because the same Rule ID can encompass several rules that are evaluated simultaneously.

Database 208 further comprises an alert log table having the following columns:
Block ID; User ID; Note; Read bit. An Alert Waiting bit is provided in a user status table.
Each block is associated with a presentAttributes method that returns one or more
attributes, types, comparators (if applicable), and description values for each attribute. An
interface is accessible from each transportable application with which a user can build the
rules and set threshold values and comparators. Each rule may be characterized in terms
of Boolean values, number comparisons (equals, less than, greater than), string equals
comparisons, etc. Using the interface, a user may edit the rules that have been created,
and attach a time value and recurrence period to a rule.

In response to a user creating a rule using the interface, a servlet of application
server 202 enters the rule into the database 208, and attaches a rules event to the building
block in which the rule was created. The rules event subscribes to attribute changes in the
building block. The servlet also deletes any old rules in the database for the same building
block.

Thereafter, when an attribute changes in the block, the rules event is invoked.
Processing the rules event involves first retrieving all rules for that block from the
database 208, evaluating the rules as designed to result in creating and storing a list of
rule identifiers that evaluated to TRUE, and generating a rules-passed event that includes
the list. ‘

Actions can subscribe to the rules-passed event. Each such action has an
associated rule ID value. If a rule matching the associated rule ID value is fulfilled, then
the action is executed.

An Alert Notification event object is provided and has a handler process that
determines if its rule has passed. If so, the handler sends a notification to the user if

needed, and records the notification in a notification log.

-89

Page 91 of 240

WO 02/21413 PCT/US01/42041

In one approach for displaying notifications, when a user opens and reads a
transportable application, a flag message is displayed that informs the user that a new
notification exists. The flag message may be a hyperlink. The user selects the flag
message. In response, the system displays the notification in a pop-up dialog with which
the user may scroll through one or more notifications. Each alert then is marked as read.

1.6 Object Communications—Programmatic Methods

In one embodiment, system 200 uses two distinct types of internal communication
mechanisms. Non-event driven sharing of data is carried about in Building Block and
Container interactions and Container-to-Container communications. Event-driven
publish-subscribe exchanges are carried out between disparate objects within the systen.

Non-event-driven data sharing is used in cases in which communications require
detailed knowledge of the hierarchy of objects or the need to transfer essentially the entire
data of such objects. In order to ensure the successful delivery of these communications,
a unique identification system is provided for all objects that will communicate within the
system. In one embodiment, each object in the system has a unique global identifier, as
described further in this document in the section entitled “Directory Integration—Global
Object Identifiers.” Using global identifiers and associated mapping tables, container
objects for contained objects can be determined.

In an alternative embodiment, a global object identifier is associated only with
container objects. The relative position of a contained object within the container object
is used as a unique identifier of the contained object. As a result, each contained object is
accessed only through its immediate Container. For example, a poll Building Block
within a task in a Process Container would have the id: <Process Container ID>_<task
index> <poll BB index>, or alternatively, <Task Container ID>_<poll BB index>, if the
Process Container was not needed in order to deliver the message. A benefit of this
mechanism is that there could be ACLs applied on a particular Container that may affect
access to a contained object.

In one embodiment, a data-sharing communication mechanism is used in order to
aggregate data from multiple Building Blocks in order to form a composite view. For
example, in the case of a Poll Discussion, the Data Access Component for the poll
building block and the discussion building block are joined by a composite Building
Block in a particular way in order to show both the poll and discussion data together. In
order to join such a composite view, the Container collects multiple Data Access

Components from the blocks and delivers them to the Composite Building Blocks.

-90-

Page 92 of 240

WO 02/21413 PCT/US01/42041

In one specific embodiment, containers or other objects in the platform irhplement

a DataSharingInterface in order to achieve communication. The interface is defined as:

public interface DataSharingInterface {
public DAC getDataAccessComponent (RelativelID

target, UniquelID requester, UserID user) ;

}

The Data Gathering Service Manager implements a DataGatheringInterface in
order to extract the DACs of the objects that a component may want to access. This

interface is defined as:

private interface DataGatheringInterface {
public Vector gatherDataAccessComponents (UniquelID

requester, UserID user, UniqueID[] fromList);

}

In one example embodiment, the Data Gathering Service Manager loops through
each element in the fromList, determines the Container, sends the container to a
DataSharingInterface and calls the getDataAccessComponent method with the RelativeID
of the specified Blocks. The Container implementing the DataSharingInterface gathers
the appropriate DAC from the specified Block. This process allows Building Blocks
across Containers to share data, and also allows the sharing object to limit the amount of
data that should be sent out to the requester.

1.7 Object Communications—Event-Driven Methods (Event Handling
System)

In one embodiment, the system described herein provides an event handling
service as represented by event processor 112 of FIG. 1B, and event daemons 216 of
event service 146 of FIG. 2B. In this embodiment, one or more event daemons 216 are
communicatively coupled to event service 146. The event service 146 is communicatively
coupled by link 218 to database server 208. The event daemons serve to offload certain
separable functions from the application server 202. For example, in an embodiment,
event daemons are responsible for mail event queuing and handling, bounced-mail
handling, and generating personalized transportable application content, based on a user’s

e-mail client profile.

-91-

Page 93 of 240

WO 02/21413 PCT/US01/42041

Alternatively, a generic event handling system is provided to enable different
components of the system to communicate. In one embodiment, an event handling system
enables the system to act when a specific event occurs within a transportable application,

- act when a specific event does not happen, and facilitates authoring rules to carry out the
foregoing. Actions may include generating notifications, generating reminders,
forwarding a transportable application, other automated actions, delivering a message to
subscribers, etc. In one embodiment, actions may comprise anything that can be carried
out programmatically. The event handling system may comprise an object framework,
message format and implementation classes.

FIG. 17 is a block diagram illustrating elements of an event handling system, in
one example embodiment. Event handling system 1700 is hosted in application server
202 and comprises an event router framework 1702, event broker framework 1704, and
event timer framework 1706. Event router framework 1702 performs message routing,
selects a transport mechanisms for messages that are sent, and serves as an entry point for
other components of the system that need to use events. Examples of transport
mechanisms include JMS, HTTP posts, etc. Event broker framework 1704 performs rule
evaluation that involves the filtering of event messages and invoking action classes, and
can store event messages in a table of database 208. Event timer framework 1706 enables
creating event messages at a specified time, for processing time-based rules.

Events are programmatically represented by event messages. In general, event
messages contain information about what occurred and the state of objects that relate to
the event. Standard events include creating, updating, deleting, and changing the state or
status value of a transportable application. For example, an update event for the poll
building block may contain the building block identifier, the user name of the person who
added a response, the response value, the time and date of the response, the total number
of responses, and the total number of recipients. However, each building block may
generate any desired events having any desired data or content. Events may be time-
based. For example, events are generated or created by invoking particular methods when
the prescribed time for an event arrives.

Each building block has a method which, when called by another program
element, returns a list of events that it can generate. This enables other program elements
to identify and subscribe to events.

In one specific embodiment, each event message comprises a header and a body.
The header comprises metadata, and the body comprises information that identifies the

container and building block that generated the event, the name of the event, etc. In one
-92-

Page 94 of 240

WO 02/21413 PCT/US01/42041

specific embodiment, the header comprises a fromDestination value that identifies the
originating system; a toDestination value that identifies a destination system for the
message; a message type value; a timestamp value that identifies a date and time at which
the event occurred; a message action value; and a tracking identifier value. The body
encapsulates another header (“inner header”) and inner body or payload that contains
event-specific data. Events and their data fnay be defined by an XML schema.

The message type value enables an event message to specify whether it is a
system event, application event, etc. Examples of system events including replication
events, system administration events, initialization events, etc. Application events may be
events generated by transportable applications, connectors, groups, etc. Each event type
has a corresponding schema that defines the elements of the inner header and payload for
that event type.

Event messages may be persistent. Persistent event messages are stored in an
event table in the database 208. Events can be made persistent by programmatically
setting a “Persist” flag in the event message header. Alternatively, the event type
definition may specify that all event messages of that type are persistent.

In one embodiment, containers generate events that are published to the event
handling system. The event handling system applies rules to determine whether received
events should result in an action. If the rules are satisfied by the events or other data, then
actions result.

Rules may be associated with building blocks or containers. Rules may be saved
in association with a template of a transportable application.

Rules may be subject to author control or participant control. In rules with author
control, only users who are authors of a transportable application template can modify or
deactivate the rules. In rules with participant control, any participant who receives a
transportable application that is instantiated from a template having the rule can modify
the rule.

Rules may be designated as active or inactive. Active rules are visible within a
template of a transportable application and within an active transportable application.

Each rule comprises an association with one event through a coarse-grain filter, a
fine-grain filter that has one or more conditions, zero or more constants, one or more
actions or handler. Rule constants can comprise a static string or may be defined as
reusable expressions.

Rule conditions may be created as coarse-grain filters or fine-grain filters. Coarse-

grain filters determine whether a particular event message maps to or is associated with a
-93-

Page 95 of 240

WO 02/21413 PCT/US01/42041

pertinent set of rules for the event. Thus, coarse-grain filters carry out filtering only on a
header portion of an event message. Coarse-grain filters support, for example, static
strings or wildcards for filtering events based on header elements. An example of a
coarse-grain filter is, “EventType=createResponseVoteRequest”. This filter would pass
only event messages that result from an end user issuing a vote in a poll building block.
The coarse-grain filter “SenderID=1222" would pass only event messages created as a
result of actions by a specific user (user “1222”).

A fine-grain filter is a filter that contains conditions used to decide whether an
associated action should be fired or not for a particular rule; the action is invoked oniy if
all conditions in the filter are satisfied. Conditions in a fine-grain filter may be applied
against any data in a message or against dynamically retrieved data. Fine-grain filters
generally are defined by a custom class that implements an interface, or specific
programmatic expressions that invoke methods. In one embodiment, fine-grained filters
are defined as Xpath statements according to the format specified in the document
“xpath.html” that is available at this writing in the “TR” folder of the “www.w3.0rg”
directory and domain on the Internet. An example of an Xpath statement is
“/message/body/poll/currentCount/text() > 5,” which states that the value of the variable
“currentCount” of the text() method of the poll building block shall be greater than “5”.

Actions are implemented as handler classes that can invoke any programmatic
method or routine. In general, the handler classes are implemented within a building
block that generates the events that include thé actions associated with the handler
classes. In one embodiment, during rule editing, a rule author may select one of a
plurality of standard actions that are provided by a graphical rule editor. Alternatively,
custom actions can be created by preparing appropriate program code that is uploaded to
application server 202 and registered with the event handling system. Examples of
standard actions include: system action for notification; system action for closing a
transportable application; system action for unclosing a transportable application; system
action for updating a status field of a transportable application; system action for creating
anew page or transportable application based on a saved template; system action to
change a role for a particular user for a particular page; system action to rename a page;
system action to show a page; system action to hide a page; system action to open a page;
system action to close a page.

Rules may be defined in XML format and attached to a building block, a page; or
to a template for a transportable applicafion. In one embodiment, rules may be created

using a graphical Rules Editor, which is accessible from the transportable application

-94-

Page 96 of 240

WO 02/21413 PCT/US01/42041

editor described herein, when building blocks, pages, or templates for transportable
applications are authored. The Rules Editor is also accessible from within a transportable
application that has been opened. Rule editing involves selecting a condition template
from a scope of available condition templates, providing values for variables in the
condition template, and selecting result actions. Rule editing may be carried out at any
time during the lifecycle of a transportable application template or instance.

Rules may be evaluated or “fire” one or more times.

In one specific embodiment, to carry out event-driven messaging, containers for
transportable applications or groups implement an EventHandler interface 340 of FIG. 3.

In one embodiment, the EventHandler interface is defined as:

public interface EventListener {

public void handleEvent (Message msg) ;

For containers of transportable applications in order to react to create, respond,
and edit events, and for GroupContainers to add, modify and delete members, and for
FolderContainers to add, modify or delete files, the following event handling process is
carried out. First, the appropriate event is passed to an EventManager that forwards the
event to a particular ActionManager for the specific type of event, for example, a
ResponseActionManager. The ActionManager then calls a handleEvent method on the
appropriate EventListener. In these cases it is clear which object is intended to act on this
event. Accordingly, to require each container to subscribe to its create, respond, and edit
events is superfluous and therefore point-to-point messaging may be used as an
alternative. In point-to-point messaging, the ResponseActionManager calls the
handleResponseEvent, making the Container design easier.

For general event handling when Building Blocks are generating information
useful for other Building Blocks, a publish-subscribe model is used, in which objects
subscribe to certain events from the EventManager. Subscribers implement the
EventListener interface and handle the appropriate event.

Details of an embodiment of an event processing system are now provided. In one
embodiment, an event processing system comprises tables in a database that are
configured according to the database design and schema described herein, and

programmatic objects that implement functions of the API described herein.

-95.

Page 97 of 240

WO 02/21413 PCT/US01/42041

In general, in one approach, an Event Message may be published on many
occasions, which identify the type of the message. Every Message object has a specific
message type value (“MsgType”) associated with it. The specific message type will
trigger the proper action, associated with the message type. In one specific approach,
message type values are omitted, and each message provides attributes as name/value
pairs that are accessible in a global memory space.

In one embodiment, a database schema that supports message processing

comprises an attribute table and message table. The attribute table may have the following

structure:

Field Field Required Key Type
Name Description

MSGID Id of the Yes Yes NUMBE

Message R(19)

ATTRNA Name of Yes Yes - VARCH
ME the Attribute AR(64)

ATTRVA Value of VARCH
LUE the Attribute ’ AR(1024)

ATTRTY Type of Yes VARCH
PE the Attribute AR(16)

The MSGID and ATTRNAME fields are included in the primary key. The
ATTRTYPE field is used to store information about internal type of the attribute on the
app server side. This information is used to transfer the value of the attribute to the
required type.

The message table may have the following structure:

Field Field Required Key Type
Name Description
MSGID 1d of the Yes Yes NUMBE
Message R(19)
MSGTYP Type of Yes VARCH
E the Message AR(64)
OBJID Id of the Yes NUMBE
Object R(19)
OBJTYP Type of Yes NUMBE
E the Object R(3)
SENDER Id of the NUMBE
D sender, who posted R(19)
the message
SENDER Type of NUMBE
TYPE the Sender, which R(3)
posted the message
(user,
group, etc.)
MSGTIM Time Yes DATE
E when message was
created
STATUS Status of Yes NUMBE
-96-

Page 98 of 240

WO 02/21413 PCT/US01/42041

the Message R(3)

EXPTIM Expiratio Yes DATE
E n time of this
message

The MSGID field is the primary key. An index is created on the combined OBJID
and OBJTYPE fields. The STATUS field represents an internal parameter and is hidden
from the API. The STATUS field stores the result of database transaction and processing
of the event.

An example class structure that implements an appropriate API is set forth in
APPENDIX 1.

FIG. 17C is a flow diagram of a process of evaluating and acting on an event
message. In block 1720, a transportable application type message is created. In general,
block 1720 is carried out by a container object.

In block 1722, the event handling system determines how to route the event
message. For example, in block 1724, the event handling system determines whether the
event is synchronous or asynchrono_us. If the event is synchronous, then it is sent to a
message broker 1734 that is defined by the event broker framework 1704.

Message broker 1734 determines whether the event is persistent, as shown by
block 1736. If so, then control passes to block 1738 in which the event is stored in the
database or otherwise made persistent. Thereafter, and if the event is determined as not
persistent at block 1736, control is passed to block 1740, in which one or more coarse-
grain filters are located. The filters are selected based on the message type, and applied to
the event message.

If the event message matches one of the coarse-grain filters, then in block 1742,
one or more rules with fine-grain filters are retrieved. Rule constants are extracted from
the rules in block 1746. In block 1748, the fine-grain filters are applied to the event
message. If a match occurs, then in block 1744, the associated action is performed.

Referring again to block 1724, if the event message is asynchronous, then control
passes to block 1726 in which the event message is dispatched using a transport
mechanism. The event message is sent over a durable or non-durable topic, as
appropriate, as shown by block 1728, 1730, 1732. Thereafter, the event message is
processed at the message broker, as shown by block 1734, in the manner described above.
Qonourrently, a notification message is received at block 1750, and in response a

notification is sent to the end user, at block 1752.

1.8 Object Communications—External Systems

-97-

Page 99 of 240

WO 02/21413 PCT/US01/42041

1.8.1 Enterprise Application Integration Using Connectors

According to one embodiment, mechanisms for enterprise application integration,
using connectors, are provided to enable the system to connect to existing (“legacy”)
applications of an enterprise that uses the system. The mechanism for connectivity may
use a synchronous or an asynchronous approach. In a synchronous approach the client
makes a request and waits for a response before it proceeds. Synchronous approaches can
use HTTP, HTTPS, RMI, CORBA. Asynchronous approaches do not have this limitation
and typically use asynchronous messaging implementations.

FIG. 18A is a block diagram of a first enterprise application integration approach
that uses an asynchronous approach.

Application server 202 and other servers 1802 that comprise the transportable
application system as described herein are communicatively coupled using JMS 214 to an
adapter 1804. The adapter 1804 is communicatively coupled to an existing asynchronous
Enterprise Application Integration (EAI) bus 1806. Commercially available examples of
EAI bus 1806 are produced by Vitria, TIBCO, IBM, WebMethods/Active, etc. The bus
1806 is communicatively coupled through one or more connectors 1808A, 1808B, 1808C
to corresponding legacy applications in the form of an enterprise application 1810, Web
server 1812, mainframe 1814, etc. In this example, adapter 1804, EAI bus 1806, and
connectors 1808A, 1808B, 1808C are compatible and generally are provided by one of
the foregoing vendors.

FIG. 18B is a block diagram of the system of FIG. 18 A wherein a custom
connector is used. The custom connector 1818 is substituted for JMS 214 and adapter
1804. In this configuration, an asynchronous solution is provided and use of JMS is not
required. As a result, a particular JMS implementation is not required. The custom
connector 1818 may be created and implemented, for example, using a software
development kit (SDK) from the party that supplies the EAI bus 1806.

FIG. 18C is a block diagram of an application-server centric integration approach
for providing a synchronous integration solution. In this approach, servers 202, 1802 are
communicatively coupled through one or more Java 2 Enterprise Edition (J2EE)
connectors 1820A, 1820B, 1820C to corresponding applications 1810, 1812, 1814. J2EE
connectors, as defined by Sun Microsystems, provide a standard architecture for
connecting Java 2 systems and applications to legacy information systems. Application

1810 may be Siebel, SAP, PeopleSoft, etc., or any other external application.

-98-

Page 100 of 240

WO 02/21413 PCT/US01/42041

Alternatively, in FIG. 18C a Java Connector Architecture (JCA) construct may be
used as connectors 1820A, 1820B, 1820C. There may be multipie instances of a
connector for each external application. v

- FIG. 18D is a block diagram of an enterprise application integration approach that
provides synchronous integration through one or more synchronous protocols. The
servers 202, 1802 are communicatively coupled to the legacy systems through the
synchronous protocols. Examples of such synchronous protocols include HTTP, RMI,
CORBA, SOAP, etc. In the case of CORBA, a bridge 1822 may be used to convert
CORBA messages and objects to Common Object Model (COM) format. |

FIG. 18E is a block diagram of an enterprise application integration approach that
uses event-based communication. Application server communicates through event
daemon 216 to event service 146. Within or in association with event service 146,
incoming event messages are passed to a Java object to XML converter 1832, yielding an
XML representation of the information in the daemons. The SML information is
transformed using engine 1836, with input from an XSL stylesheet 1838, to yield
transportable XML information. The transportable XML information is passed to
transport adapter 1840, which outputs the XML information using one or more
synchronous protocols 1842. The synchronous protocols communicate with the legacy
systems as in FIG. 18D.

In operation, in one specific embodiment, as illustrated in the top half of FIG.
18E, the application server 202 uses JMS point-to-point mode to generate events and
communicate them to event daemon 216. When the event daemon 216 processes an
event, event service 146 instantiates a Java object and uses converter 1832 to transform
the Java object into an XML string. It then uses this XML, transformation engine 1836,
and an XSL stylesheet 1838 associated with the Java object to output the expected XML
schema for a receiving partner system. The method of transport for the XML can be
HTTP, IOP, or SMTP.

Referring now to the bottom half of FIG. 18E, the reverse occurs when an XML
message arrives from a partner system. For example assume that the transport mechanism
is HTTP. A servlet is invoked and uses transformation engine 1836 and the corresponding
XSL 1838 for that XML message to convert it to an XML representation that is expected
by application server 202. An XML to Java object converter 1842 is then used to |
instantiate a corresponding Java object for the event daemon 216. The object is

encapsulated as an event message. An event handler for that object is then invoked from

-99.

Page 101 of 240

WO 02/21413 PCT/US01/42041

event handling system 1830 when the event daemon processes the event. Each XML
message must have its own object representation, XSL, and event handler.

This arrangement has the advantage that XML messaging is becoming the method
of choice for inter-operability between business-to-business systems that exchange data.
Application-server vendors are coming out with their own XML-based messaging
systems for such exchanges, e.g., WebLogic’s Collaborate.

In the approaches of FIG. 18B, FIG. 18C, the disclosed connectors generally act
as gateways for external applications to create, retrieve, update and delete application
business objects of the system through an object interface mechanism. The connectors
also receive notifications for changes to such objects through the event management
system and notification system, or by polling. The connectors also enable application
server 202 and other components of the system to retrieve and update data from external
applications. In one specific embodiment, the connectors enable objects associated with
building blocks to retrieve and update objects that are hosted in external applications or
systems.

FIG. 18F is a block diagram of providing another embodiment of an enterprise
application integration approach. One or more enterprise applications 1810A, 1810B,
1810C are communicatively coupled to JIMS queues 214 either directly, as in the case of
application 1810A, or indirectly through an EAI bus 1806, as in the case of applications
1810B, 1810C. The direct connected application 1810A has an adaptor 1840B that can
queue objects to the JMS queues 214, for receipt by a corresponding proxy adaptor
1840A of a connector framework 1854. EAI bus 1806 has a similar corresponding adapter
1841B and proxy adaptor 1841A.

Adaptor 1841B and pfoxy adaptor 1841 A may be configured to operate with any
desired EAI bus 1806 or similar product, e.g., webMethods, Vitria, SeeBeyond, etc.

Connector framework 1854 communicates through an API 1852 to connector
building blocks 1850, which may be included in a tfansportable application to give that
application the ability to communicate with enterprise applications. The API 1852 may
provide create, read, update and delete functions for business objects and transportable
application objects. Such operations are subjected to access controls as described herein.
In one embodiment, notifications and event rules can be set on connector building blocks
1850 to enable taking actions or creating other transportable applications when the
connector building blocks change or generate events. A generic connector building block
provides an XSL translation function equivalent to XSL transformation engine 1836 of

FIG. 18E, and can display connector data. One or more Extensible Style Documents

-100-

Page 102 of 240

WO 02/21413 PCT/US01/42041

(XSDs) describe the business objects of the enterprise applications in a manner equivalent
to XSL 1838.

Thus, the integration framework as described herein provides both direct
integration and integration through an existing EAI bus. As a result, adapters can be
constructed without platform changes. Both outbound and inbound operations are
supported. The framework provides the ability to programmatically create transportable
applications and add pages from enterprise systems. Business objects are described in
XSD’s rather than in source code. Adapter configuration information is described in
XML. Asynchronous messages, through the IMS queues, are used for communication
with enterprise applications or an EAI bus.

A building block can synchronously query an enterprise application adapter for all
business objects matching given criteria. The building block can synchronously request
data for a business object from the external system if the data is not found in the cache.
Further, an enterprise application can request the system to create a transportable
application using external data. The enterprise application can send a notification that a
business object has changed, causing the system to update the cache.

An advantage of using this approach is that the building blocks in general will not
need to store such objects persistently since the building blocks may retrieve a copy of the
external data, at any time, through the connectors, with less impact on performance than
if persistent storage is used.

Connectors as disclosed herein may conform to any appropriate communication
mechanism for external business objects. For example, the protocols proposed by
BizTalk.org, RosettaNet, EBXML, etc., may be used.

In one specific implementation, connectors are implemented in one or more
programmatic classes that conform to the following API description:

Connector class. Building blocks can retrieve any external business object as an
instance of a connector business object class. The connector business object class
provides methods to produce an XML representation of the object, modify the object, etc.
Building blocks can use XSL stylesheets to present the business objects through generic
HTML presenters or use custom presenters. The business objects may be implemented as
cached data access objects.

Subscribe method. Registers a subscription for a business object for later use.
Receives, as parameters, a name of a business object, and one or more name/value pairs

that identify an instance of the business object. Returns a key to identify the subscribed

-101-

Page 103 of 240

WO 02/21413 PCT/US01/42041

object; the key, which may be persistently stored, is passed to all other methods of the
connector class.

GetBizObject method. Retrieves a.business object. Receives, as parameters, a
name of a business object and a key value. Returns the requested instance of the object.

unSubscribe method. Drops a subscription to a business object. Receives a name
of the business object and the key value.

A Connector Business Object class provides a base class for all business objects,
and defines a getXMLString method, setXMLField method, update method, and
registerNotification method. The getXMLString method returns an XML string method of
a named business object. The setXMLField method sets the XML field in a business
object based on a field name and a value for the field. The update method stores all
changes made to the business object through the setXMLField method.

The registerNotification method registers a rule with the event handling system. It
receives, as parameters, an array of fine-grain filters that comprise Xpath expressions, and
an action to invoke when the filters are satisfied. The rule registered with the event
handling system is created using the specified list of fine-grain filters and the type of
event message that is generated by the connector system when the business object
changes.

1.9 Security Processes; Access Control

In one embodiment, a security framework is provided having a plurality of
security services and interface definitions. The security framework enables an end user to
configure and define security features to use when authenticating usérs and authorizing
them to access data. Thus, in this context, security and access control refer both to
authenticating users for access to the system as a whole, as well as verifying that a
particular authenticated user is authorized to retrieve or modify specific data in the
database.

The security framework also enables one user to develop transportable
applications with another party and have some of the data to be shared amongst the users
associated with that party. The security framework comprises a plurality of interfaces,
each of which providing a contractual set of features and responsibilities to the consumers
of the interface.

In one embodiment, the security framework is implemented using access control
service 136 and security service 120. Access control processes applicable to the

embodiments described herein are described in co-pending application Ser. No.

-102-

Page 104 of 240

WO 02/21413 PCT/US01/42041

09/861,008, filed May 17, 2001, the entire contents of which are hereby incorporated by
reference as if fully disclosed herein.

A GateKeeper interface provides a data consumer with the ability to retrieve and
configure information that defines relationships among security domains. This interface
provides information about the hosting domain and other domains that have a trusted
relationship with this domain. Also, specific users can be managed through this interface
so that only specific individuals within an organization have access to data within a
hosting organization.

A PortalGate interface provides a consumer with the ability to authenticate a user
using a username and password, SSL, PKT, etc. Further, the interface provides the
consumer with the ability to query whether a user is still valid, for example, by checking
to see if a user is still valid and has not been revoked. The interface also enables another
program element to query whether a user has access to a specific data object or object
Instance.

An Access Control (AssetGuardian) management interface defines one or more
contracts between a consumer and an entitlements database. An entitlements database
stores information about users and what théy have access to. In one embodiment, the
entitlements database is maintained separate from database 208 of FIG. 2A, to improve
security of the entitlements database.

A Security Provider interface provides components to conirol end-to-end security.
In one embodiment, a PKT enabler interface and an authorization interface each has an
implementation that can be defined by configuration where each implementation
represents a way to access a PKI or an authorization scheme. Each of these
implementations can be loaded simultaneously so that one or more schemes can be used
at the same time.

Programmatic classes within the security framework are configured to provide
security against intrusion. For example, the classes are typed as final to prevent a hacker
from providing implementations to an abstract class or extend and override a non-final
class with dangerous or risky cc;de. Therefore, the security framework has its own
interfaces and extends other trusted interfaces in packages that are trusted, e.g., the
java.security package available from Sun Microsystems.

The data that the framework manages is composed of hierarchies of assets. Assets
are defined as objects that exist in a department or an enterprise that need to be protected.
For example, assets include transportable applications, pages, building blocks, and objects

that encapsulate field data values for any of the foregoing. Each asset in a hierarchy can

~103-

Page 105 of 240

WO 02/21413 PCT/US01/42041

have permission assigned to it on behalf of a user. The mechanism by which an asset has
a user and permission composed for it is termed a security label. Since each asset in a
hierarchy can have its own label and levels of access can be applied across a hierarchy,
the labels are termed multi-level. Therefore, the security framework is a multi-level
security label system.

Contracts within the Security Framework may be defined using the Interface
Definition Language (IDL). IDL enables a framework to expose its interfaces and
confract data as well as error handling capabilities. In one embodiment, types of IDL
syntax that are used in the framework include IDL Exceptions, Structs, and Interfaces.
IDL Exceptions are defined so that generated Java source, or any other language that has
an IDL binding, will have error handling capabilities defined at the package level. IDL
structures are compiled into Java objects, which are typed as final. The security
framework composes the contract objects in its model package. The framework model
package defines the objects that are used in communications or invocation of interfaces’
methods. IDL Interfaces contain the methods that can be invoked as well as the error-
handling signature, which completely defines the contract of the interface.

One important benefit to using IDL is that most application and transaction
servers use IDL as a way to initially introduce interfaces and implementations into the
container. Another benefit is that the IDL to Java conversion process produces client and
server side stubs and skeletons so that an end to end implementation is more easily
created.

The Gatekeeper Interface contract states that of the security configuration for a
given security domain, which is determined at the organizational level, all parameters that
allow security integration across multiple domains can be retrieved. The interface, for
example, supports the retrieval of the CrossDomainList, which is a list of X.500
distinguished names (“DNs”) representing external organizations that have a trusted
relationship with this domain, Additionally, CrossDomainDN is a list interface list of all
the users (by the DN) who have trusted access to this domain. If this list is null then
normal authentication mechanisms are used to determine if a user has access to this
domain. If it is not then the intention of this managed list is to provide the users who can
access this domain. When the user DN is determined then it can be cross-referenced to the
list. If the user DN is not present then the user’s authentication must fail \whether they can
authenticate properly or not. A commercial example of an authentication system that may

be used is WebLogic.

-104-

Page 106 of 240

WO 02/21413 PCT/US01/42041

An important contract of this interface is the management of the domain and
whether it is a secure domain or not. The getMode() method informs the consumer of the
method if the domain represented by the interface is secure or not. In fact the value
returned is not a Boolean but a string, which contains definite values of “Secure”, “Not
Secure”, and options text for any granularity in between. In this way a security
administrator can define as many security levels as they require.

The PortalGate Interface provides the system with a trusted path. When a user
authenticates to the security framework, by one of a variety of mechanisms, a session is
established specifically for that user. Because IDL has been used to define the contract of
the interface the session trusted path can be managed in an ORB, Application server, or
transaction server container. Invoking a method in this interface checks operation that are
attempted after the user authenticates.

In one embodiment, four types of authentication mechanisms are provided. PXI
verification provides the framework with the ability to participate in a single sign on
arrangement with a PKI environment. To invoke such verification, an object or method
passes the name of the user, a digitally signed version of their name, and the symbol
PKI_VERIFICATION as parameter values. SSL-only verification is like weak
verification, discussed below, in that the user name and password are passed as
parameters. It simply informs the framework that an SSL connection is being used to send
information to and from the interface. Certificate-based SSL verification is like PKI
verification in that the name of the user is passed in one parameter and their SSL
certificate is passed in another parameter. The certificate is then validated with the CA of
the SSL certificate (either Verisign, Cylink, or Entrust). Weak verification passes a name
and password as parameters and provides relatively low security.

Each data parameter is provided as a mutable type, e.g., a byte array, so that the
data within it can be deleted once it is used. A checkVerification() method returns true if
the user is still authenticated and has not been revoked from the environment. A first
checkGuard() method checks to see if the user has access to a specific asset (either at the
type level or the instance level) given a specific permission. A second checkGuard() is
the same as the first except that the variable parameter allows the framework to accept
extra data to further scrutinize the access check. For example, an application component
may want to verify that a user not only has read permission to sales data but that they only
have access to the Northeast sales region and not any other. In this case the application

component can pass a value that is effectively a SQL where clause or an XML document

-105-

Page 107 of 240

WO 02/21413 PCT/US01/42041

which describes the SQL where clause. A getName() method returns the authenticated
users DN. This can be used for further checking or for personalization purposes.

For purposes of facilitating use of the AssetGuardian interface, all assets within
the framework are contained within an organizational hierarchy. The framework
composes and manages organization objects as X.500 organization objects. Within the
organizational definitions there are users, roles, permissions, security labels, and security
preferences. The entire framework also has an audit trail, which is not bound, at an
organizational level.

Based upon organizational hierarchy roles, permissions, resultant security labels,
preferences, and assets exist at nodes within the tree. Assets themselves are hierarchical

? structures in that they can represent complex types (such as containers, databases,
database tables, etc.). Each asset can have its own security label and each label can be
assigned a level. The security framework provides a LabelComparator interface and
implementation that provides for the interpretation of the level of a security label as it is a
applied tb one or more assets.

The security provider interface allows the framework to dynamically load an
implementation that supports a Public Key Infrastructure vendor. PKI vendors support
encryption, decryption, digital signature, and signature verification. They also provide
key management, certificate issuance and management, as well as user authentication for
single sign on.

The interface supports S/MIME and non-S/MIME security operations as well as
the management of security recipients. Recipients in a security context are those persons
who have a public X.509 encryption certificate and can have data of any sort encrypted
specifically for them. Operational the interface and its implementation manage a stack of
recipients, which is pushed before an operation occurs. When recipients are defined they
can have data encrypted for them. In the case of a signing operatiori the user who has a
connection to the PKI and managed through the connect method in this interface has their
private signing certificate used.

To apply access controls to transportable applications, in one specific
embodiment, the following processes are used. A transportable application is created as
otherwise described in this document. The transportable application is defined as an asset
having an asset identifier that is obtained by calling a method of the java.security
package. One or more access control definitions (or “labels”) are created by the author
using the “makeAccessControlLabelModel()” method of the java.security package. Each

access control definition identifies read, write, and update permissions. Each recipient has

~106-

Page 108 of 240

WO 02/21413 PCT/US01/42041

his or her own access control definition that defines one or more limited permissions.
Thus, the intersection of the transportable application access control definition and the
recipient access control definition indicates whether a particular recipient can access an
application.

At the time a recipient attempts to open or read a transportable application that is
secured, the recipient is first prompted to log in to the system. The access control labels
are checked to identify the recipient’s individualized permissions. In one embodiment, a
checkAsset method of the Asset Guardian interface is used. Access is denied when
permission is not allowed.

Access controls specifically applicable to database access are now described. In
general, in one embodiment, access to database 208 is restricted and is based on the role-
based permissions provided by the security framework for different object types. A Java
class encapsulates information needed to carry out an access control request or
verification, including session identifier, user name, action type, and object type. This
information is used when calling an authentication API of the security framework.

Further, classes and methods responsible for access to containers and folders,
database queries or row selections, inserts, updates, and deletions are configured to carry
out access control verification on the objects that are the subject of such operations,
before carrying out such operations. Carrying out access control verification refers to
calling a method of the security framework that can determine whether a particular user is
authorized to access a particular named object or asset. Each such class and method is
provided with methods that can check for access authorization and generate exceptions if
access is denied.

In conjunction with access control each asset can have encryption and digital
signature attributes applied so that transactions based against the asset can be encrypted
and or digitally signed. For example, when a user is interacting with a transportable
application, each time that a client 120 generates a network request that includes data for
a field of a building block, the client can digitally sign the request. Upon receiving the
request, application server 202 can verify the signature before the request is processed. In
one embodiment, each HTTP request that is generated by a client and that includes field
data relating to a transportable application, page or building block is digitally signed.
Each HTTP request that is received at an application server 202 is checked to determine if
the request contains a digital signature. If so, the digital signature is extracted from the

request and verified. If verification is successful, the request is redirected to a service

-107-

Page 109 of 240

WO 02/21413 PCT/US01/42041

routine, i.e., processed normally by the application server. In one alternative, information
collected in the extraction process may be logged or stored in an audit trail.

Extracting digital signatures from an HTTP request stream may be implemented
using software systems that are commercially available from PrivateWire. Verifying
digital signatures that have been extracted may be implemented using software systems
that are commercially available from Entrust, Inc.

Access controls may be modified as a result of events that are processed using the
event handling system described herein. For example, an action associated with an event
may be to modify an access control of a transportable application to become either
broader or stricter in some way, or to enable a new recipient to have access to the
transportable application.

In one embodiment, instance-scoped role-based access control is provided for
transportable application. Such control is “instance-scoped” because access controls are
determined and can be defined uniquely for each user for each instance of a transportable
application. Such a mechanism provides much more detailed access control, as compared
to class-scoped access control using J2EE mechanisms, which provides only method-
level checking per user per transportable application class. In one embodiment, when a
transportable application is authored, or after the transportable application becomes
active, an author can add, modify or delete users from access controls specified for the
transportable application and pages within the transportable application.

Access to JSPs and servlets in the system is controlled through membership of
users in roles. Roles may be “page-scoped,” that is, defined at the page level within
transportable application. Thus, access to instances of assets such as building blocks and
associated rule descriptors are determined based on the role that a user is assigned to for
the page instance on which the building block and rule descriptor instances are created.

In another embodiment, directory auto-registration is provided. When the system
has been configured with knowledge of the existence and location of a directory server, a
user may log in to the system using a user name, password or other credentials that are
stored in the directory server. After locating such credentials in the directory server at the
time of the user’s first login, the system automatically registers those credentials in
database 208. Thereafter, the user can log in to the system without reference to the
directory server. In another feature, bulk user registration may be carried out by an
administrator, by loading a formatted file that contains the user information. Self-
registration is also facilitated.

1.9.1 Cluster-Specific Encryption and Request Routing

-108-

Page 110 of 240

WO 02/21413 PCT/US01/42041

In one embodiment, all message identifiers that are sent from the system to a
client are encrypted. In another embodiment, the encryption process associates each
message identifier with a processor cluster or database cluster that is responsible for
processing the message. Using such a process, a message identifier in a URL that is
meant for one cluster cannot be processed by another cluster. This is beneficial in the
event that a malicious user redirects the URL toward another cluster, e.g., by changing the
URL to point to the new cluster and keeping the same arguments, and the URL and the
message it carries are decrypted at the destination. In one encryption approach, a database
identifier or cluster identifier is embedded in the message in order to provide more
security. i h

In one past approach, the format for a message ID is <prefix>_<encrypted
message id>, where “prefix” is a number that determines the seed for the TwoFish
encryption algorithm. In one sub-approach, the seed value may be hard-coded in program
source code for the functions that carry out the encryption process. A disadvantage of this
approach is that such code is installed on all client installations, so that all clients use the
same seed, or each new client installation will need a new software release. Moreover, a
message destined for one client could be redirected to another client’s cluster, and
because the system decrypts all messages that are received by the cluster a security
vulnerability exists. In this context, a “client installation” refers to a particular instance of
system 200 that is licensed to or used by an enterprise, organization or similar entity.

Therefore, in another approach, different seeds are used for encryption for
different client installations, and each incoming message is checked to see if it is meant
for the cluster. If not, it is discarded. Each client is assigned a database ID, which is
unique. A global identifier replaces the message ID.

Further, in an improved approach, each client uses a different seed that is
determined by the database ID of the cluster and is derived from a base seed by addition
of the database ID to the base seed. Since the seed consists of 16 bytes, a long time
interval must elapse before any two clients can get the same seed.

The prefix in the message contains the database ID. The database ID is also
present in the encrypted message ID in encrypted form. Thus, if a malicious user attempts
to change the database ID to another cluster in the hope that it would be a valid URL, it is

_ most unlikely that the decrypted message will resolve to a valid global identifier. Even if
it does, the database ID component is highly unlikely to match the prefix, and therefore

the system would discard the message if the two do not match.

-109-

Page 111 of 240

WO 02/21413 PCT/US01/42041

In this approach, all incoming messages pass through a sanity check mechanism
wherein the system initially compares the prefix of the message with the database ID of
the originating client installation. If they do not match the message is discarded. If they
match, the message identifier is decrypted. The message identifier is a global identifier,
and since the global identifier contains the database identifier, the database identifier is
compared to the prefix and if they do not match, the message is discarded.

In another feature of this approach, to accommodate changes in the encryption
algorithm or methodology itself, a version value is associated with each specific
encryption methodology. Each client may use its own encryption algorithm, and the
encryption version value is part of the prefix. In one embodiment, the format for the new
prefix is EV:DBId, where “EV” designates the encryption version and “DBID” is the
database identifier value. The prefix may be transformed, e.g., by bit shifting, so that the
component values EV and DBID are not easily visible.

1.9.2 Sharing Transportable Application Data Among Multiple Sites

In one embodiment, the system described herein is a distributed system in which
multiple particular installations of the system can share transportable applications and
associated data. For example, different companies could each set up the system and
collaborate by sharing transportable applications and associated data.

In general, transportable application data is replicated at each of the participating
sites or installations, enabling the user to receive a consolidated view of interaction with
all sites. A user logs in to a portal home page and receives a view of all transportable
applications directed to that user, from any originating system. Each transportable
application is authored and updated only at one site. All portal operations are performed
on the home site of the user. Portal operations include viewing group lists, group archives,
and folder; and performing administrative functions such as assigning transportable
applications to folders. Operations other than portal operations are performed on the
home site of the respective object. Users can author transportable applications at any site.

Trust relationships are established among sites that participate in replication, using
elements of the security framework described herein. Each user is designated to have a
home site and all users are denoted as local or remote for a particular site. Data for a
particular user is always replicated at the home site, enabling the user to obtain a
consolidated, global view of all activity at the home site at all times. Accordingly, a user
may log in once to a home site and need not log in multiple times to different sites or

clusters.

-110-

Page 112 of 240

WO 02/21413 PCT/US01/42041

In operation, a user logs in to the system. The user is transparently redirected to an
application server 202 at a site that has home information about the user. At the home site,
the user is presented with a personalized portal view appropriate for the user. The
Personal Messages page and Group Archive pages present a list of all transportable
applications involving the user, including those that are remotely located.

When a link of a particular transportable application is selected, the user is re-
directed to the appropriate site, and information from that site is displayed in a new
window. Authentication to the new site is carried out by passing a digital certificate with
the user’s security credentials to the new site, using the security framework, so that
multiple logins are not required. If the selected transportable application is remotely
located, the user can view and respond to it. The remote site recognizes that the user is a
remote user and configures links for buttons in the user interface to reference the user
home site. For example, the New Message link identifies a URL in the home site rather
than the remote site.

A user may also author a new transportable application based on a template that is
owned by a remotely located group. When such a template is selected, a new window is
opened from the remote site and the user is re-directed to the remote home location of the
group that owns the template. The new transportable application is authored at the remote
site, i.e., its data is stored at a database of the remote site.

All folders of the user and all administrative tasks relating to the folders are
carried out at the user’s home site server.

Redirection, for the foregoing processes, is achieved by determining a URL of the
remote site to which redirection is occurring. Accordingly, all sites that are cooperating as
described above provide access to one another through a private TCP port in their
ﬁrewalis, or through a security mechanism of the security framework.

The replicated data includes certain metadata about all transportable applications
and groups that relate to the user. For example, for transportable applications that involve
a user and are remotely stored, a local or home site receives metadata including subject,
status, author name, updated timestamps, timestamp for the last time the user read the
transportable application, message attributes, etc., Such information is retrieved from
rows in a transportable application table of a database of the remote site. Metadata about
groups is also replicated, including group hierarchy and membership data, group folders
and content data, etc.

In one embodiment, objects that are replicated across sites, or across clusters of

servers at a co-located location that implement different sites, implement a Replicatable

-111-

Page 113 of 240

WO 02/21413 PCT/US01/42041

interface. A replication manager receives a Replicatable interface as an argument and
transports it to one or more sites that need the object. The Replicatable interface includes
an export data method, apply data method, and methods to retrieve header information for
messages to be sent. The export data method outputs an array of replication data objects,
each corresponding to a single destination site. Each replication data object serves as a
container for the transport of objects across sites and encapsulates state and type
information.

The export data method is used at the home or master site of a replication event to
export a version of the state of an object for reconstruction on a remote site. The apply
data method is used by an empty Replicatable object to import a state from the input
object. This allows a Replicatable object to be reconstructed on a remote site of a
replication transaction with the state tailored to that remote site. A replication status
object may be used to provide acknowledgment of replication messages. Replication is
carried out as data is updated. Sites communicate using XML messages that are sent over
HTTPS.

1.10 System Administration Processes

System administration processes may include a reporting function that presents
information that analyzes interaction of recipients with transportable applications. Such
statistical data may be retrieved by or available to a server administrator, authors of
transportable applications, etc.

1.11 Using Transportable Applications in Business Processes and Workﬂow

In an embodiment, one or more transportable applications may be used to carry
out complex business processes and workflows. In one specific embodiment, a process
template designer mechanism enables a business process expert to create and publish
templates of a process framework. A template for a process framework can include a
general process description, process-specific fields (e.g., process status), templates of
component tasks for transportable applications, a Process Style comprising an association
of fonts, colors, images, layout, text that are applied to all building blocks and tasks of
transportable applications that make up the process; required, preordered starter-tasks,
and process-specific properties (e.g., notifications, access controls). The process template
serves as a guide for an author’s later design of a specific instance of a process. On-the-
fly editing of templates and authoring of a process transportable application can also be

initiated from within the template designer mechanism.

-112-

Page 114 of 240

WO 02/21413 PCT/US01/42041

In one approach for implementation of the foregoing, a process designer uses a
Process Composer software tool to create a process template. Thereafter, the process
template may be retrieved and used during the authoring process to construct a process
transportable application and send it out to a list of recipients.

The process composer enables a user to identify, select, and include tasks in a
template for a process that has one or more transportable applications. Some such tasks
may be designated as starter tasks. A starter task is included when an author begins to
compose a process transportable application. A starter task may or may not be deemed
required by the process template creator. A template also may include one or more
“addable” tasks. An addable task is one that can be added to the process transportable
application after it has been sent to recipients.

In one embodiment, a process template comprises a Java class that stores
information about a process. The process template class determines the types of tasks that
can be entered after a transportable application is sent, and also provides appropriate
process creation information at the time that an author creates a transportable application
based on the template.

The template class stores information identifying the types of tasks that are
allowed and which tasks are starter tasks. For starter tasks, the template class stores
whether or not each task is a required task. Additionally, some meta information about the
overall process is stored, €.g., a process name, process description, and process style. In
one specific embodiment, a process template class has the following member variables

and corresponding accessor methods:

private String name;

private ObjectID authorlID;

private String description;

private Vector stylelDs;

private boolean updateStyle;

private ObjectID templatelD;

private Vector introFields; // vector of IntroField
objects '

private Vector requiredTasks; // vector of ProcessTask
objects

private Vector allowedTasks; // vector of ProcessTask

objects

-113-

Page 115 of 240

WO 02/21413 PCT/US01/42041

The process template class may also have the following methods:

public void ProcesgsTemplate ()

public void store (DBTrans transaction)

public void remove (DBTrans transaction)

public static void remove (DBTrans transaction, ObjectID
templatelID)

public static ProcessTemplate getTemplate (ObjectID
templatelD)

The ProcessTemplate class may have an empty constructor such that a Process
Servlet that creates the ProcessTemplate class is responsible to set the fields
appropriately. For example, the servlet parses the HTTP Request and sets the values on
the ProcessTemplate object.

The store() method takes in a transaction value, which can be null, and writes the
object to the database. The method calls another method in a helper class to transform the
member variables into XML format. The remove() method deletes the ProcessTemplate
from the database. The transaction value can be null, in which case it constructs its own
transaction and executes it. The static method removes the given template from the
database. The getTemplate() method retrieves the ProcessTemplate with the given
template identifier and passes it back to the calling method. It uses a helper class to
construct the ProcessTemplate object from the XML information in the database.

An IntroField class represents, at an abstract level, any additional introduction
field information the author wishes to provide, and the default value for this field and
what kind of graphical user interface widget is used to display the field, e.g., drop-down,

radio button, text area. It has the following member variables:

private String name;

private String defaultvalue;

private String inputType; //html type of input e.g.
text, textarea, etc.; use constants h

private Vector sizelInfo; // vector of sizes we want for
the html components like width

private String options = “”; //additional options
-114-

Page 116 of 240

WO 02/21413 PCT/US01/42041

private Vector choices; // String Vector of choices for
drop down

private int position; //position on authoring page

A ProcessTask class represents a task from the process point of view and includes
a task ID value and information about the task, e.g., whether it is a starter task or an
allowed task. The ProcessTask object contains the following member variables and

appropriate accessor methods:

private ObjectID taskID;

private int position;

private String name; //

private boolean isStarter = false;

private boolean isRequired = false;

A ProcessXMLUtils helper class aids in the writing and retrieval of the process
XML to and from the database. It will implement an interface so that it can be passed
into the XML parser to provide the appropriate call back routines. Further, the helper
class includes the methods getXmlString and ProcessTemplate:

public static String getXmlString (ProcessTemplate)

public static ProcessTemplate getProcessTemplate (String

xmlString)

The getXmlString method receives a ProcessTemplate object and returns an XML
representation of it, including all its member variables. The ProcessTemplate method
receives a string of XML text and returns a ProcessTemplate object.

In one specific embodiment, each process template is stored in database 208 in a

Process Template table that contains the following columns:

Name Null? Type
TemplateID Not Nuli Number (19)
AuthorID Not Null Number(19)
Position Not Null Number (3)
XML Not Null VARCHAR2(1024)
DateCreated Not Nuli Date
DateModified " NotNull Date

-115-

Page 117 of 240

WO 02/21413 PCT/US01/42041

Database 208 also comprises a table that associates styles and tasks with the
template so that the system can update them if any changes occur in the task template or
the style. This table can be used by any object that requires a parent to child relationship,
and needs to update an object that is using it. In one specific embodiment, the style

association table comprises the following columns:

Name Null? Type
ParentID Not Null Number (19)
ParentType Not Null Number(4)
ChildID Not Null Number (19)
ChildType Not Null Number(4)
Update Not Null Char(1)

Creating a Process Template involves selecting one or more tasks that can be
used, certain attribute values for the tasks, and related process information that applies to
all processes, such as the name and description of the process. In one specific
embodiment, a servlet (“ProcessTemplateServlet”) is used to save a process template to
database 208. The Process Template Servlet has action parameters such as save, open,
add, etc. Each action type will have a corresponding method to perform the appropriate
action. A form submitted to the servlet includes parameter values that can be used to
construct a process template object. In general, the servlet extracts parameters from the
HTTP request that submits the form to the servlet, and constructs a process template
object from them that can be written to the database 208.

The servlet then forwards a template creation request to a process template
designer server page. In an embodiment, a Java Server Page (JSP) is used. The process
template designer JSP iterates over the parameters from the form and displays them
correctly on the page. The JSP also implements the submissions to the
ProcessTemplateServlet to move up, move down, delete, insert tasks, and carry out any
other defined operations.

The introductory fields may include various types of inputs and ordering. The
XML syntax can be extended to incorporate other information, e.g. specifying a
maximum number of choices for checkboxes.

Process templates may include rules that control, for example, issuance of
notifications in responses to changes to tasks in the process. In one approach, the rules are
represented as a vector of objects that are stored in association with the ProcessTemplate

object. Additionally, task level rules can be added to a task using the process composer,

-116-

Page 118 of 240

WO 02/21413 PCT/US01/42041

which stores the task-level rules as a vector of objects stored in association with a

ProcessTask object.

2.0 MULTIPLE-PART ELECTRONIC MESSAGES

In general, in one aspect, the present invention is directed to multiple-part
electronic messages. Each multiple-part electronic message comprises a plurality of parts
that are associated as part of a single message. In one embodiment, a multiple-part
electronic message is distributed, viewed and updated as part of a group collaboration
application system. In this embodiment, one or more multiple-part electronic messages
may be configured to implement business processes such as information review,
planning, forecasting, etc. In another embodiment, multiple-part electronic messages are
transported as part of a client-server electronic communication system. For example, the
multiple-part messages may be created using an e-mail client and communicated using an
e-mail transport server or related infrastructure. Thus, embodiments do not require
proprietary equipment or special modifications for transport within an existing or
“legacy” communication system.

Embodiments are not limited to e-mail as a communication media. The multiple-
part messages may be communicated using other data communication mechanisms such
as HTTP. Embodiments also are not limited to display at conventional e-mail clients.
Multiple-part messages may be displayed using a personal digital assistant, wireless
communication device, Internet appliance, etc.

FIG. 21A is a diagram of a first embodiment of a graphical user interface display
of a multiple-page electronic message.

According to this embodiment, a user interface display window 2100 is generated
by an e-mail processing application. The user interface display window 2100 includes a
toolbar 2101, a message header display pane 2102, and a message body display pane
2104. Toolbar 2101 displays one or more buttons, links or other user interface widgets for
selecting commands, options or tools of the e-mail processing application. Conventional
commands such as File, Edit, View, Insert, Format, Tools, Actions, and Help may be
provided for carrying out operations with respect to a message that is displayed in
window 2100.

Toolbar 2101 also may include one or more buttons, links, or other user interface
widgets for taking messaging actions with respect to the displayed message. For example,
Toolbar 2101 may provide Reply, Reply To All, and Forward options. Selecting the

Reply option instructs the e-mail processing application to generate a new message in

-117-

Page 119 of 240

WO 02/21413 PCT/US01/42041

reply to the currently displayed message, directed only to the sender of the message.
Selecting the Reply To All option instructs the e-mail processing application to generate a
new message in reply to the currently displayed message, directed to the sender of the
message and all recipients of the message. Selecting the Forward option instructs the e-
mail processing application to generate a new message that is directed to a new recipient
and that includes a copy of the currently displayed message. In other embodiments
described herein, new messages are not generated, and reply content or forwarded content
is consolidated in the original message.

The message header display pane 2102 displays message header information. For
example, the message header display pane 2102 may display the name of the sender of
the message, the names of recipients, the subject of the message, the date that the message
was sent, etc.

Message body display pane 2104 comprises one or more message pages 2106,
2112,2114, 2116, etc. In FIG. 21A, for purposes of illustrating a simple example, four
message pages 2106, 2112, 2114, 2116 are shown. However, in other embodiments, a
message may comprise any number of message pages and message body display pane
2104 may include any number of message pages.

Each message page comprises a page navigation region and a page body. For
example, a first message page 2106 comprises a page navigation region 2108 and a page
body 2110.

In one embodiment, each page navigation region is graphically displayed such that
the page navigation region is a contiguous part and integral with its associated page body.
Further, each page navigation region is graphically displayed such that every page |
navigation region is selectable, using a graphical cursor that is movable using pointing
device such as a mouse, whenever any particular page body is displayed.

For example, in the embodiment of FIG. 21 A, message pages 2106, 2112, 2114,
2116 are displayed as simulated overlays wherein the first message page 2106 appears to
be on top of a stack of message pages. Although message page 2106 is the top message
page, the page navigation regions of all other message pages 2106, 2112, 2114, 2116 are
visible adjacent to message page 2106 and are selectable at any time during which
message page 2106 is displayed.

When a particular page navigation region is selected, the message page associated
with the selected page navigation region becomes fully visible. For example, if the
Bookings Pie Chart message page 2114 is selected, it becomes fully visible and appears
to be the top page in a stack of pages. The message body 2110 of message page 2106

-118-

Page 120 of 240

WO 02/21413 PCT/US01/42041

becomes hidden, although its page navigation region 2108 remains visible. Processing
operations to carry out such functions may be executed by a server that is
communicatively coupled with a client that is displaying the message window 2100,
according to processes that are described further herein.

Each page navigation region may carry a label that identifies the contents of the
message page that is associated with the page navigation region. For example, in FIG.
21A, the message displayed in window 2100 generally relates to a First Quarter Financial
Summary. A first message page 2106 presents Profit & Loss information, as indicated by
a “Profit & Loss” label in the page navigation region 2108 of the first message page. A
second message page is labeled “Balance Sheet,” and other message pages may have any
other desired labels. Such labels may comprise text, numeric values, graphic images,
icons, hyperlinks, or any other indicator element or other information.

The page navigation regions may be color-coded, for example, according to a
topical key, an order of priority, and industry-standard color arrangement, etc.

For purposes of illustrating an example, in FIG. 21 A, the page navigation regions
are shown as arranged along a top edge of a message page. However, the page navigation
regions may be arranged along a bottom edge, left edge, right edge, or other side edge.

If a message has a plurality of message pages, and message display window 2100
has insufficient space to display all the message navigation regions associated with the
message pages in a row, then the message body pane 2104 may comprise an indicator that
additional message pages and navigation regions are available for display and selection.
For example, message body pane 2104 can display an arrow, dot, or other icon adjacent to
the right-most message navigation region. Selection of the arrow, dot, or other icon
causes a server or other element to generate message body pane 2104 such that one or
more of the other message navigation regions are displayed, and such that previously
visible message navigation regions scroll or slide to the side, up or down to make room
for the newly displayed message navigation regions.

Using this configuration, an e-mail message is displayed in a structured fashion.
Its content may be organized so that one set of related information is collected in a
particular page, and another set of related information is collected in another page.
Specific information is accessible simply by selecting a navigation region that
corresponds to the specific information. Extensive scrolling or searching for such specific
information becomes unnecessary.

FIG. 21B is a diagram of a second embodiment of a graphical user interface

display of a multiple-page electronic message.

-119-

Page 121 of 240

WO 02/21413 PCT/US01/42041

In the embodiment of FIG. 21B, message window 2100 further includes a static
content pane 2105 that may display text notes, graphic images, banner advertisements, or
any other desired static content. In one embodiment, data for static content pane 2105 is
obtained from the static content region of electronic media that associated with a group
collaboration application.

FIG. 22A is a diagram of a third embodiment of a graphical user interface display
of a multiple-page electronic message.

A message display window 2200 is provided in the embodiment of FIG. 22A. As
in FIG. 21 A and FIG. 21B, message display window 2200 may include a toolbar 2201, a
message header pane 2202, and a message body display pane 2204.

Optionally, in certain embodiments the message display window 2200 also
comprises a message toolbar 2207 that provides command options for generating and
working with messages that are displayed in the message body display pane 2204. For
example, in one specific embodiment, message toolbar 2207 provides New, Forward,
Note to Author, Note to All, View Recipients, Edit, and Notifications command options.

Message toolbar 2207 may be implemented separate from toolbar 2201 in
embodiments that interoperate with unmodified e-mail processing applications. For
example, in an embodiment that interoperates with Microsoft Outlook as an e-mail
processing application, the toolbar 2201 is generated by Microsoft Outlook and controls
its functions, whereas message toolbar 2207 is generated és part of a displayed message
by a separate server. This arrangement enables use of the electronic media, group
collaboration applications, and multi-page electronic messages disclosed herein without
modification of the e-mail processing application. Alternatively, the electronic media,
group collaboration applications, and multi-page electronic messages may be integral to
the e-mail processing application, and the functions of toolbars 2201, 2207 may be
combined in a single toolbar.

Operation of functions of toolbar 2207 are described further herein in connection
with a description of a server structure that may be used to implement the processes
described herein.

Selecting the New function from message toolbar 2207 is a request to generate a
new message that may contain one or more message pages. Selecting the Forward
function is a request to forward the currently displayed message, including all message
pages, to a new recipient. Selecting the Note to Author function is a request to create a

static note that is visible only to the author of the currently displayed message when that

-120-

Page 122 of 240

WO 02/21413 PCT/US01/42041

author displays or re-displays the message. An example of such a note is action request
2284 of FIG. 22C.

Message window 2200 of FIG. 22A further includes one or more message pages
2206, 2214, 2216. Each message page has an associated message navigation region and a
message page body. For example, message page 2206 includes a navigation region 2208
and a page body 2210. In the embodiment of FIG. 22A, each navigation region extends
laterally from its associated page body, such as tb the left of the page body. Alternatively,
the navigation regions may extend to the right of the message body. Each navigation
region is arranged so that it is continuously visible whenever a particular page body is
displayed.

The page body may contain any desired text or graphics, or a combination thereof.
In the example of FIG. 22A, page body 2210 includes a page title 2220 and a text block
2222. Additionally or alternatively, there may be other text, graphics, icons, images,
hyperlinks to other resources, etc.

Page body 2210 may also comprise one or more dynamic content regions that
display dynamic content and are supported by one or more activé application elements
that are executed by a supporting server. In one specific embodiment, page body 2210
comprises one or more application building blocks that have been selected from an
application starter set or library. Each building block comprises a pre-defined, self-
contained module of executable program instructions that can be linked together with
other building blocks to form a complete executable application.

Typically, each building block performs a discrete function, such as group
discussion; polling; interactive Web pages; file sharing; inline document viewing; table
generation; rating generation; surveys; approval lists; schedules; images; image galleries;
invitations; information fields; connections to external systems and applications; and
others. When a page containing a building block is selected using its navigation region, a
supporting server re-displays an image corresponding to the application with graphical
elements relating to the selected building block. Such graphical elements may include
headers, text, graphic images, radio buttons or other user input widgets, as appropriate for
the function to which the building block relates.

FIG. 22B is a diagram of a fourth embodiment of a graphical user interface
display of a multiple-page electronic message that includes a dynamic content region.

As in FIG. 22A, the embodiment of FIG. 22B includes a message display window
2200, toolbar 2201, a message header pane 2202, a message body display pane 2204, a

message toolbar 2207 that provides command options, and one or more message pages

-121-

Page 123 of 240

WO 02/21413 PCT/US01/42041

2206, 2214, 2216 each having an associated message navigation region and a message
page body. Message display window 2200 also comprises a dynamic content region 2210
that contains dynamic information.

In the example of FIG. 22B, the dynamic content region 2210 is based on a
comment building block that facilitates gathering comments from a plurality of members
of the group. As members of the group receive the message shown in message display
window 2200, each member may select dynamic content region 2210 and enter one or
more comments. The entered comments are stored in a database of a supporting server.
Whenever any other group member or other recipient receives the message, opens it, and
views message page 2206, the server obtains a then-current copy of the dynamic content,
such as all comments entered to date, and displays it as part of dynamic content region
2210.

Dynamic content region 2210 operates as a discrete window within message page
2210. If the content associated with the dynamic content region 2210 overflows the
dynamic content region 2210 when it is displayed, a user may select a navigation tool
2212 to view additional content.

Likewise, if not all the content associated with a particular message page will fit
in the message page when it is displayed, the message page may include an indication that
other content can be obtained. For example, in FIG. 22B, message page 2206 has a
downwardly extending navigation region 2214 that displays a navigation tool 2216. By
selecting appropriate icons within the navigation tool 2216, a user can instruct a
supporting server to retrieve and display different parts or additional parts of a message
page.

In one embodiment, if a message has a plurality of message pages, additional page
navigation regions are displayed generally in a column arranged on the left edge or right
edge of the message display pane. In embodiments in which the elements in the message
display window are rendered based on source code in HTML, the message display
window has potentially infinite length. In these embodiments, the message display
window may include any number of page navigation regions. If not all the message
navigation regions are viewable in on a screen display, the user can scroll the screen
display to view further page navigation regions.

Alternatively, to remove the need for scrolling, there may be a pre-defined

maximum number of pages that appear in a message display window at any one time,

[

-122-

Page 124 of 240

WO 02/21413 PCT/US01/42041

FIG. 22C is a diagram of a further embodiment of a graphical user interface
display of a multiple-page electronic message that includes an indicator of additional
pages.

As in FIG. 22A, the emi)odiment of FIG. 22B includes a message display window
2200, toolbar 2201, a message header pane 2202, a message body display pane 2204, a
message toolbar 2207 that provides command options, and one or more message pages
2206, 2214, 2216 each having an associated message navigation region and a message
page body. Message display window 2200 also comprises a “more pages” navigation
region 2250, which is present when a message has a plurality of message pages, and
message display window 2100 has insufficient space to display all the message navigation
regions associated with the message pages in a row.

Selection of the “more pages” navigation region 2250 causes the server or other
element to re-generate message body pane 2104 such that one or more of the other
message navigation regions are displayed, and such that previously visible message
navigation regions scroll or slide to the side, up or down to make room for the newly
displayed message navigation regions. Such re-generation may result in removing the
“more pages” navigation region 2250 from the display.

The “more pages” navigation region 2250 may comprise an indicator that
additional message pages and navigation regions are available for display and selection.
For example, the region can display an arrow, dot, or other icon adjacent to the right-most
message navigation region.

FIG. 22D is a diagram of a further embodiment of a graphical user interface
display of a multiple-page electronic message.

The embodiment of FIG. 22D includes a message display window 2200, toolbar
2201, a message header pane 2202, a message body display pane 2204, and message
toolbar 2207 that provides command options. One or more message pages 2252, 2254,
2256 are provided, each having an associated message navigation region 2252A, 2254A,
2256A, and a message page body 2252B, 2254B, 2256B. Each of the message pages
2252,2254, 2256 is displayed in an overlay manner such that one of the message pages,
€.g., message page 2252, appears to be the topmost message page, and such that other
message pages 2254, 2256, etc., appear to be stacked beneath the topmost message page.

In this arrangement, each message navigation region 2252A, 2254A, 2256A is
continuously visible and may be selected at any time. When a message navigation region

is selected, the corresponding message page is internally designated as the topmost

-123-

Page 125 of 240

WO 02/21413 PCT/US01/42041

message page, and the message body display pane 2204 is re-generated such that the new
topmost message page appears on top and its contents are visible.
In FIG. 22D, for purposes of illustrating a simple example, three (3) message

pages are shown. However, embodiments may comprise any number of message pages.

3.0 LINKING AND AGGREGATING MESSAGES

According to one embodiment, the system and processes described herein
facilitate linking and aggregating messages, such as transportable applications.

FIG. 20 is a block diagram illustrating a plurality of messages that are linked
across different folders. In one embodiment, a persistent URL may be used to identify the
messages. In FIG. 20, non-underlined message labels identify messages (e.g. “Message
17), and underlined message labels identify hyperlinks to other messages. Such links may
be used to hyperlink messages in the same folder. For example, message 1 of Inbox 1 is
linked to message 3 of Folder 1. Links may also associate messages in different folders,
such as message 10 of Folder 4 that is linked to message 12 of Folder 5. Links may
associate messages in an “in-box” to messages in a folder, as in the case of message 1 and
message 3. Links may associate messages in a folder and messages in an application, as
in the case of message 7 of Folder 3, which is referenced in Web Page 2050. One
message may contain links to multiple messages. For example, message 10 of Folder 4
has links to message 11 and message 12. |

The interconnection between messages enables serialized and parallel decision
making within a messaging system. Further, since the URL is not dependent upon the
position within the messaging system, such as within a folder or on a web page, the
position of the message may be changed without destroying the link between messages.
For example, message 9 may be moved from Folder 4 to Folder 5 and still maintain a link
from Web page 2050.

When two or more messages are linked in the foregoing manner, they form a
message web. In one embodiment, message webs are networks of messages that are
related by a topic or activity. Such networks aggregate knowledge that is generated within
a context of the activity. For example, message webs linked over a network can provide
information that does not require significant webmaster interaction or detailed internal
system knowledge. Moreover, a current status of content or other attributes may be
captured within the message web. This allows the health or age of the content to be
communicated to a system administrator or other interested individual. Accordingly, the

most cutrent or active information can be highlighted. The content of messages within a

-124-

Page 126 of 240

WO 02/21413 PCT/US01/42041

message web may be involved in the same context and may include content modification,
process interaction, choice making, and activity launching among a group or participants.

The links may be configured to be unidirectional or bi-directional. For a
unidirectional link up, there is not a corresponding link at the destination back to the
source location of the unidirectional link. In a bi-directional link up, there may be a
corresponding link at the destination back to the source location of link creation.

FIG. 23A is a flowchart of a process for linking messages, according to one
embodiment. In general, message links may be constructed manually by using user
actions to link to a message. Further, a URL of a message or message web can be
presented to an end user, suitable for copying and linking. Message authors or recipients
can link messages. Ad hoc tasks may be served by letting a user connect steps within the
task. Ad hoc knowledge organization may be served by letting a user connect related
messages to each other. Message linking provides a streamlined mechanism for copying a
message’s URL to the clipboard and avoids obscure multiple step processes to locate a
message’s URL.

In block 2302, the process of FIG. 23 A begins when a recipient, author or other
user of a transportable application wishes to link one transportable application to another.
In block 2304 the user selects a Link function button within the message. The Link button
may be displayed, for example, as part of command buttons 282 of FIG. 2C. In response,
in block 2306 the user is prompted to select a linking method. The prompt of block 2306
may be a dialog box or wizard. Block 2306 also may involve adding a List building block
to the transportable application, wherein items in the list of the building block comprise
references to linked messages. Thus, the List building block serves as a mechanism for
maintaining links to other messages.

In one method, the user may copy the URL of another message to the clipboard
provided by the operating system, in block 2308. Control returns to block 2304, and the
user then pastes the copied URL to a link field that is provided in the prompt of block
2306, as shown by block 2310. Alternatively, the user may select one or more messages
from a personal folder or list, or from a group folder or list, as shown by block 2312. In
another alternative, the user may search for messages and select the right ones, as
indicated by block 2314; this may involve opening another window that has a personal
folder or list of messages. In another alternative, the user may drag a message from
another context into the current message or into the dialog box or wizard, as in block’
2316.

-125-

Page 127 of 240

WO 02/21413 PCT/US01/42041

After selecting a linking method ‘and a linked method, in block 2318, the user is
prompted to change one or more link attributes, as appropriate. Such attributes may
include cross-linking, link labels, link description, access control, etc.

In block 2320, definitions of messages are modified to add links. In one
embodiment, block 2320 involves updating the List building block of the transportable
application to add a reference to the linked message. As a result, the selected messages
become linked, at block 2322. A user who opens the transportable application can view
the List building block and link to another message by selecting a message that is in the
list.

FIG. 23B is a flowchart of a process of automatically linking messages in another
embodiment. Linking of messages may occur automatically or indirectly as a result of
actions by a user within a task or as a result of workflow execution, e.g., as a part of
creating or performing a next step of the task. Such links way be constructed
automatically or indirectly by the application server 202. Thus, error rate can be reduced
by automatically linking meséages together, where steps or messages are related.

In block 2324, a workflow process generates a new message that is related to the
current message. For example, block 2324 may comprise a first transportable application
generating another transportable application in response to an event that is generated by
user interaction with a page or building block. Alternatively, in block 2326, a workflow
br user event determines that a link is needed among two or more messages.

In block 2328, optionally, the user may be prompted to indicate whether the
messages should be linked. The prompt may take the form of requesting confirmation of a
proposed link of messages. If the user indicates that the messages should not be linked,
then in block 2330, no link is created. Alternatively, if the link is confirmed, then in block
2332 and block 2334 the user is optionally prompted to modify one or more link
attributes, as in block 2318 of FIG. 23A. Control then passes to block 2320 and block
2322, as in FIG. 23A.

Messages may be linked based on the message’s content or context. For example,
a name, electronic mail address, a group, or company name, may be used to recognize
and match a message with another message on an associated page or in an associated
folder, In another example, a message that is named similarly to another message with the
same or similar recipieht list may be tied together to form a Message Web.

FIG. 23C is a flow diagram of a process of automatically creating message links
in response to a change in an object. Such automatic linking may relieve an author of

adding common links by hand.

-126-

Page 128 of 240

WO 02/21413 PCT/US01/42041

In block 2336, a change occurs to one or more objects to which automatic links
can be made. For example, a building block or page of a transportable application is
deleted, modified, renamed, or created. In block 2338, block 2342, and block 2346,
branch points are carried out in accordance with the kind of change that occurred. In
block 2338, if the object is deleted, then in block 2340, links are removed from messages
and from the list of links in the message. For example, the list building block of the
message is updated to delete links. In block 2342, if the object is edited or renamed, then
the list of automatically generated links is reviewed. For each link that is identified in the
list, the link is followed to the linked message. Any link in the list of linked messages that
contains the old name is updated with the new name, as shown by block 2344. If a new
object is created, as in block 2346, then in block 2348, its content is marked as changed.
A background task or process is scheduled and dispatched to look for references to the
new object.

As a result, affected links are changed, as shown by block 2352. If all the tests of
block 2338, block 2342, and block 2346 are negative, then any change that has occurred
is not relevant to linking, so no action is taken, as shown in block 2350.

FIG. 23D is a flow diagram of a process of updating message links in response to
changes in message content. In block 2354, a change to one or more items of message
content is detected. For example, a recipient of a transportable application updates the
application with new dynamic content, and in response, a building block of the
application generates an update event. In block 2356, the changed content is search to
identify one or more recognizable object references that could be the subject of a link to
another message. For example, the changed content is searched to identify an e-mail
address or user name, organization name, message title, etc.

In block 2358, if an e-mail address or user name is identified, a link is created to
instantiate an e-mail to the user. For example, an HTML “mailto:” link may be created in
the List building block that references the user. In block 2360, if an organization name is
identified, a link to a Web page for that organization is created, e.g., in the List building
block. In block 2362, if a message title of another message or transportable application
that is known in the system is identified, then a link to that message is created, e.g., in the
List building block. In block 2364, if other linkable content is identified, then an
appropriate link to that content is created in the list. An example of other linkable content
may be a digital song, an image, etc. In block 2366, the list of links is updated with any
link that has been created in the preceding steps.

-127-

Page 129 of 240

WO 02/21413 PCT/US01/42041

FIG. 23E is a flow diagram of a process of suggested message linking. In one
embodiment, message links may be suggested, and either accepted or denied by a user,
especially when adding a step to an ad hoc task. This combines the advantages of manual
and automatic message linking in order to enhance ad hoc task/data linking. Lists of
suggested links may be built into the logic built into a message web, or are provided in a
message tab (as in the aggregated content under a tabbed presentation), or are provided in
a message template, or are provided in a message web template. Templates can be used to
allow new instances of message tabs, messages, or message webs to be selected by a end
user. End users may create templates by using running instances of message tabs,
messages, or message webs and saving their structure and optionally their content.
Templates may be categorized and shared with others. In one embodiment, the process of
FIG. 23E is useful to allow a user to optionally add a link to complete, enhance, continue,
or add to a current task. For example, a user may schedule an event in one task and once a
time is agreed upon for the event, may continue the task by enabling users in a group to
purchase tickets to the event.

In block 2370, a user finishes a step in a task that is defined as a message. For
example, a user completes providing input to a building block of a transportable
application. In response, in block 2372, the input is analyzed and the user is presented
with a list of other messages that are likely to following the completed step; ordered by
context-determined relevance. For example, if the user has completed rating a job
applicant in a poll building block of a human resources transportable application, the
system determines that a salary offer application is likely to follow next. Therefore, the
user is presented with the salary offer application in the list. Alternatively, a new message
1s created by the user, or automatically, while the user is in the context of another
message.

In either case, in block 2376, the user indicates whether to link the new message
with the original message, as by selecting a user interface button. If the user requests
linking, as tested in block 2378, then automatic message linking is carriéd out, as
described herein in connection with FIG. 23B. If no linking is requested, then none is
carried out, as shown by block 2379.

When a user traverses a hyperlink from within e-mail messages to a URL or Web
document, according to one embodiment, the Web page or other HTML content is
displayed within the e-mail client window, as in FIG. 12. The content may comprise on-
page navigations controls (Home, Back, Forward), since browser controls are not

provided in conventional e-mail clients.

-128-

Page 130 of 240

WO 02/21413 PCT/US01/42041

FIG. 24 is a flow diagram of a process of displaying HTML content in an e-mail
client with browser navigation features. In block 2402, the system is requested to display
a transportable application that contains a link to HTML content. In block 2404, the
system determines whether, in displaying the HTML content, it should spawn a browser
window and display the content therein, or display the content within the e-mail client
window. If the test of block 2404 is true, then in block 2406, the HTML message display
is supplemented with navigation functions that are normally available in a browser.

In one implementation, block 2406 involves displaying a Home button, which
causes the original page of the dynamic portion of the message to be shown, a Back
button, and a Forward button. FIG. 12 illustrates examples of such buttons. The Home
button is implemented as a self-referencing URL to the dynamic content portion of the
transportable application. The Back and Forward buttons are implemented as JavaScript
elements such that when each button is selected, JavaScript is invoked to carry out the
functions. The JavaScript elements link back to application server 202 to determine what
URL to load, based on a link traversal history that is maintained by that server. As shown
in block 2408, when a link is traversed, application server 202 is updated with the current
and next links in a link history that is associated with the current transportable
application. In block 2409, a next page of the transportable application is displayed.
Control flows back to block 2404 to render that page in the same manner.

In this configuration, browser controls may be used to navigate links within the
messaging system. Thus, a user can easily navigate between a current message and
another message, and then return to the current message. This navigation may occur
within the same window.

FIG. 25A is a block diagram of a linked collection of related message webs,
referred to herein as a message web ring. Such rings may provide a complete list of
related message webs. A user may navigate through the ring searching for desired
information. Message web rings may also provide a higher level of aggregation to
organize a project’s tasks. In the example of FIG. 25A, a first message web 2501
comprises messages 2510, 2512, 2514. Message 2510 is the home message of message
web 2501, which acts as the head of a message web ring that includes a second message
web 2502 and a third message web 2503. The second and third message webs 2502, 2503
each include respective message web home messages 2504, 2506. . Each message web
home message 2510, 2504, 2506 has a Next link that identifies the next message web in

the ring, and a Previous link that identifies the previous message web in the ring. The

-129-

Page 131 of 240

WO 02/21413 PCT/US01/42041

links among home messages 2510, 2504, 2506 form a ring in which message web 2501 is
the head and message web 2503 is the tail.

In this configuration, linked messages may be navigated between multiple
applications. For example, a user may navigate within an application between messages
or navigate between applications and then access multiple messages within another
application. This allows aggregation of messages to be performed within a single
application or folder and also amongst other folders.

FIG. 25B is a flow diagram of a process of creating a message web ring. In block
2520, a message web is created that resides within an area, group, or project context that
may have other message webs. In block 2522, a test is carried out to determine whether
the current message web is the first message web within the current context. If so, then in
block 2524, the Next and Previous links of the current message web are set to be equal
and to refer to the current message web.

If not, then the current message web is threaded integrated into a ring structure
with other message webs, in a position between the head and tail of the ring, in block
2526. In particular, in one embodiment, the Previous link of the current message web is
set to the value of the Previous link of the home message of the tail message of the ring.
The Next link of the home message of the tail message web of the ring is set to point to
the home message of the current message web. The Next link of the home message of the
current message web is set to the home message of the head message of the ring. The
Previous link of that message is set to point to the new message web. As a result, as
shown by block 2528, the message web ring’s head and tail are updated to include the
new message web, and the ring is therefore updated, as indicated by block 2530.

FIG. 26A is a block diagram illustrating messages in a message web having
shared address lists. In one embodiment, a message web may share a list of addresses
among its member messages. Individual messages may have their unique addressees
extended or restricted in comparison to a shared list of addresses. Shared lists may be
reused, which can avoid initially generating an address list for each step in a task. Further,
a user can be easily added to an existing task by adding the user to a shared address list
and forwarding a message to the user within the message web. Access to the remainder of
the message web is then achieved by way of links and navigation tools as described
herein. Subsequent steps that are added will then include the added user.

In particular, a list of recipients of the message may be changed between linked
messages, such that a first set of recipients can be defined in one message and another set

of recipients can be defined in another message. For example, in FIG. 26A, in a first

-130-

Page 132 of 240

WO 02/21413 PCT/US01/42041

message 2601 the recipients are Bob, Carol, and Dave. However, in message 2603, which
is linked to message 2601, the recipients are defined as everyone in message 2601 plus
Harry. Thus, a recipient list may be shared between messages. Additionally, messages
may be configured to define business logic, other roles having the same sharing
relationship between messages. The link between message 2604 and message 2603
demonstrates one form of “side-bar” or private conversation that could occur within a
message web in which the link between messages is unidirectional.

FIG. 26B is a flow diagram of a process of generating a list of recipients of a
transportable application. In block 2605, a list of users is generated from a role
description. For example, an initial set of recipients of a transportable message, such as
message 2601, may be generated based on a role that comprises a set of user names.
Assume that the author of the message 2601 addresses the message to “Project X Group”
and that group name is associated with a set of users {Bob, Carol, Dave}. As a result, the
recipient list of message 2601 is Bob, Carol Dave.

In block 2606, the system determines if the list generated in block 2605 contains a
reference to another list. If so, in block 2608 the current recipient list is expanded to
include all recipients who are named in the referenced list, and duplicates are removed. In
block 2610, the system determines if the recipient list generated in block 2605 contains a
reference to an individual. If so, then the individual is added to the current recipient list,
and duplicates are removed. In block 2614, the system determines if the recipient list
generated in block 2605 includes instructions to exclude a user or list. If so, then in block
2616, the referenced list is expanded, and its members are removed from the list
generated in block 2605. If the list generated in block 2605 has more instructions, then
they are processed in similar manner. As a result, a new recipient list is generated, as
indicated in block 2620.

FIG. 27A is a block diagram illustrating that the content of messages that are
linked can be changed, with automatic propagation of changed content to linked
messages. This allows content to be targeted to certain groups and separated from other
groups. Changes to content may flow back, forth, and among linked message members.
The linking provides connections that workflow processes can use to identify targets and
sources of data that are needed within independent messages. Links used for sharing data
and role information may be made unavailable to the end user.

In the example of FIG. 27A, a first message 2701 is linked by link 2702 to
message 2703. The Meeting Date value of message 2701 is linked to a field
“Schedule.Choice.Best” of message 2703, so that changes to that field are propagated to

-131-

Page 133 of 240

WO 02/21413 PCT/US01/42041

first message 2701. Message 2703 is also linked to message 2704 and sends the same
field value to it, Thus, changes in message 2703 flow along links 2702, 2708 to other
messages in a message web.

FIG. 27B is a flow diagram of a process of updating data among linked messages
in a message web.

In block 2726, the system determines that a field of a transportable application has
been updated. For example, user input results in a change to a data entry field of a
building block. In block 2728, the system determines whether any other system objects,
such as data objects, fields, or building blocks have subscribed to the field that has
changed. If so, then the subscribers are marked as needing to be refreshed, in block 2730.
For every subscriber needing to be refreshed, block 2732, control is passed to block 2724
to mark the subscriber field as no longer needing to be refreshed. The field is then
interpreted starting at block 2710. When all subscriber fields have been refreshed, control
passes to block 2734 in which the process of FIG. 27B is complete.

In block 2710, a field definition and value within a message are interpreted to
identify a link or other reference to other messages. In block 2712, the system determines
whether the field definition comprises a link to data in another field. If so, then in block
2714, the system verifies that the linked field is updated, and fetches data from the linked
field. Block 2714 may involve dynamically retrieving field data from database 208. In
block 2716, the system tests whether the field definition contains an instruction to embed
data from another field. If so, then the embedded field is identified and tested to
determine if it is updated, as in block 2718. Data from the embedded field is fetched, and
the field definition property is cleared since the data is then embedded.

In block 2720, the system tests whether all data in the field definition has been
resolved to static form. If not, then control is transferred to block 2712 to resolve any
remaining references. If so, then in block 2722, any business rules in the field definition
are applied to compute the final field value.

Accordingly, data from one field of a message that is linked in a message web
may propagate to fields of other linked messages, automatically and in response to user
input or other actions that cause changes to data objects.

FIG. 27C illustrates one application of the processes of FIG. 27A, FIG. 27B in
which a linked collection of related messages are used to aggregate data from a child
message up to a parent message. The result may be displayed in any message of the tree
to show activity in the lineage of a tree. Messages 2742, 2744, 2746, 2748 participate in a

tree rooted at message 2740, which receives data values from all child messages and

-132-

Page 134 of 240

WO 02/21413 PCT/US01/42041

aggregates them. Message 2740 is used to collect donations from a group of recipients.
Similar donation collection messages may be created from any donation collection
message and sent to a different set of recipients. Each message shows the donations
committed to by its recipients, as well as the donations committed to by all its
descendants. Arrows show the flow of data up through the message hierarchy. Message
2740 is linked to and subscribes to donation fields of child messages 2742, 2744, 2746,
2748. Each such message may also be a message web.

FIG. 28A is a diagram of a graphical user interface display in which a
transportable application includes a plurality of tabs that switch between the content of
message web members. Transportable application 2800 comprises a header area 2802 and
a message web header 2804 having a plurality of tabs 2806. In the example of FIG. 18A,
the tabs 2806 include an agenda tab link 2808, action items link, invitation link, poll link,
etc. Agenda link 2808 accesses an agenda that is presented within the context of
transportable application 2800, e.g., in a display pane 2810. By clicking on one of the
tabs, the action items for that message content may be viewed or changed without leaving
the context of the enclosing message. There may be .different access control capabilities
for the content under each tab. Participants may link other message webs to header 2804
by selecting an Add New Tab link 2812. In response, the system prompts the user to
identify a message web to link, as in FIG. 23A.

Thus, message web members that share a common address list may be aggregated
into a single message for purposes of presentation. Messages that are added, modified,
and deleted as parts of the message web are reflected in the aggregated presentation.
Some tasks are better navigated by direct access to steps instead of linear progression
from one step to the next. By aggregating message web members within a single
presentation, available members can be easily seen and accessed directly. Aggregated
message web presentations may also provide a per role control panel for a task such that
messages with diverse recipient or access control lists can be presented in an aggregated
manner.

FIG. 28B is a flow diagram of a process of adding tabs to a transportable
application of the type shown in FIG. 28A. In block 2812, a user action adds to a
collaboration activity within a message. For example, assume that a recipient selects Add
New Tab link 2812 of FIG. 28A. In response, members are assigned to the new
collaboration, in block 2814. For example, the recipient list of the current transportable
application may be added to a message recipient list for the new collaboration. In block

2816, content for the new collaboration is created. In one embodiment, the content is

-133-

Page 135 of 240

WO 02/21413 PCT/US01/42041

created by prompting the user to select whether to extend the collaboration as a new part
of an existing message, or as a new message web member, as indicated by block 2818.

If a new message web member is requested, then in block 2822, a new message is
sent to the recipient list, and appropriate links are created to insert the new message into
the message web. If a new part of the same message is selected, then in block 2820, the
new content is added to the current message. Recipients of the current message notified
appropriately, and the new content is highlighted when such recipients read the message.
In either alternative, as shown by block 2824, the new message may be associated with a
new tab in the current message.

FIG. 28C illustrates a notification message of a message web. Message 2800 of
FIG. 28A is shown with New icons 2830, 2832 indicating areas that are new since the
time the user last looked at this message. The user may set conditions for such
notifications by selecting a Notifications link 2841. In response, the system displays a
dialog box 2840 having notification activation links 2842, 2844. The user may turn on
notifications relating to a particular message tab with notification activation link 2844 and
may turn on notifications about an entire message web with link 2842. When such
notifications are set, the icons 2830, 2832 are displayed when content of the page or
message web changes.

Thus, a single notification message serves to alert a user about changes or
additions spanning multiple messages within a message web. Individual changes or
additions across messages are highlighted within the notification message. The
notification message can be the message web home, any message web member, a digest
of changes within a message web, or a list of message webs.

For example, assume a user working on a multiple step task wants to be kept
informed about changes within that task. By signing up for message web notifications, a
user cuts down on the number of notifications he receives by aggregating indications of
what has changed into a single notification message. The user does not get multiple
notifications corresponding to every change within the message web. No further
notification is sent until a user has looked at the changes indicated by a previous
notification.

Message webs that are delivered to recipients may be received in an e-mail client
and identified by a special subject designation. For example, a special message that -
represents a message web may be displayed within the same containers, lists, or folder as
a regular email message. An icon representing the message could be different, and menu

functions available for the special message might be different from those available for a

-134-

Page 136 of 240

WO 02/21413 PCT/US01/42041

regular message. The message subject line may include a topical subject, appended with,
“- Message Web,” or a similar designation. Message Webs may take the place of
indiyidual messages within message folders. These may be individual messages, but a
special message may be referred to as the “Message Web Home”. Message Webs may
exist within the same folders as messages.

FIG. 29 illustrates a method for tracing deleted messages using links. In one
embodiment, a message deleted from within a message web does not destroy the integrity
of the message web; instead, message links are automatically repaired. Automatically
generated message placeholders may also be used in the place of deleted messages in
order to maintain the integrity of a message web. These placeholders can act as patch
panels, giving user options of where to link to, especially when the self-repair process
cannot definitively decide what the correct links are out of a broader set. Additionally,
links to a deleted message may be removed or disabled from their source.

Within the Internet, broken links are an extremely common problem. By knowing
that message webs form a unit, a manager can either rethread the ends of links pointing to
deleted messages or utilize a placeholder message shell through which existing links can
traverse. The shell has little or no content other than the links from it that the previous
message contained. The shell can also offer suggestions, when the shell manager is not
sure of what links are important. Links that are automatically deleted when a message is
deleted result in fewer broken links.

In block 2902, a message in a message web is marked for deletion. In block 2904,
the system determines what kind of deletion to carry out. In an embodiment, deletion may
involve complete elimination of the deleted message, or retaining a message shell as a
placeholder. If a placeholder is retained, then in block 2908, the content of the message is
deleted, and the existing message web links are retained. Optionally, a summary or
decision portion of the message may be retained.

If the message is completely eliminated, then in block 2906, all links from the
deleted message to other members within the same message web are identified. Each
message web member is visited and all links to the deleted message are identified. The
links are replaced with links to the next message in the message web, subject to access
control privileges and elimination of self-referencing links. The updated links are entered
in an automatically maintained link list. In block 2910, links to other message webs are
similarly updated. In block 2912, the deleted message is added to a list of deleted

messages or “dead URLs.” Optionally, a crawl of the Internet may be scheduled to search

-135-

Page 137 of 240

WO 02/21413 PCT/US01/42041

for external links to the deleted message, since such links become “broken” upon deletion
of the message. As a result, the message is deleted.

FIG. 30 illustrates a message web map that may be used in a graphical user
interface of a messaging system that supports linked messages, in one example
embodiment. The user interface graphically depicts messages as connected to each other.
Applications containing multiple messages may also be linked together. In the example of
FIG. 30, a visualization of an entire message web available to a user is provided. With
such a message web map, a user can locate a message, jump directly to another message
(even if not directly linked), see what messages have new content (relative to the user),
and note the status of each message/step in a task or sub-task. Similarly, a map of other
applications and folders may be represented.

For example, FIG. 30 depicts a folder 3002 for a particular project that contains a
first message web 3006 dealing with an upcoming status meeting. The message web 3006
comprises a home message 3010 and child messages 3012, 3014, 3016, 3018. Each such
message may be a transportable application as described herein. FIG. 30 also depicts a
previous message web 3004 and next message web 3008 in a web ring. Thus, a user may
receive a graphical view of complex message relationships and related message webs.

FIG. 31A, FIG. 31B, and FIG. 31C are diagrams of graphical user interface
displays that illustrate an example of a recruiting process using a message web.

Assume that a user logs into the system and enters a name and password via, for
example, a Web page. Once the password and user name are verified by application
server 220, an electronic form or application editor is provided to the user. The user may
author a transportable application providing recruiting functions based on a template. The
user may specify one or more addresses, such as electronic mail addresses, for the
participants of the message web in a field of the form. The user may also specify the
subject of the Message Web in a field. The form may also include a link that allows a user
to upload content into a static content region. Static content, for example, a candidate’s
resume may be uploaded from a file residing on the user’s computer. The form may also
include buttons that allow the user to send the contents of the form to application server
220 and to first preview the content before it is sent to the server.

Once the user submits the form to the server, in response, the server sends a
transportable application 3100 (FIG. 23D) with the content specified in the form. In one
embodiment, transportable application 3100 may include one or more static content

regions and dynamic content regions 3101, 3103, 3120, 3110, 3125, which include and

-136-

Page 138 of 240

WO 02/21413 PCT/US01/42041

capture content from regions of the electronic form. The regions may display headers,
introductory text, substantive content, graphics, etc.

The transportable application 3100 also includes tabs 3105, 3106 that are
associated with separate pages of the application. Tab 3105 specifies that transportéble
application 3100 includes a “Discussion’. In this example, participants in the discussion
can add comments into an interface region 3125. The tab 3106 allows one or more of the
participants to link the current “Discussion” to, for example, a “Schedule” which can be
used to set-up times to interview the candidate. A window 3160 may pop-up that allows a
participant to choose “Schedule.” Once the participant clicks on Schedule, the request is
sent to the server.

In response, the server generates a new electronic form for providing a schedule.
FIG. 31B illustrates an example electronic form 3900 that includes a region 3930 with
fields 3905, 3906, and 3907 for specifying the Time, Date, and Name of the participants.
The form 3900 may also include fields 3901 and 3902 and a dynamic content region
3903. The form 3900 may also include Send and Preview buttons 3941, 3942 that
function in a manner similar to the buttons described above. Further, the form 3900 may
include a link 3940 that enables a user to submit the content of the form to the server.
When a participant presses the button 3940, the content of the form 3900 is sent to the
Server.

The transportable application 3100 is then be updated to reflect the content of the
form 3900. FIG. 31C is a diagram of a screen display in which the transportable
application reflects such updates. A tab 3107 is added to the transportable application
3100 to indicate that a “Schedule” has been initiated to interview the candidate. A
participant may reply to the Schedule using the interface region and may also view the
most current content in the dynamic region. The participants may use the tabs to navigate
between the Discussion and Schedule. Each time a participant navigates between the tabs,
the participant dynamically receives the most current content from the server.

A participant may add other transportable applications, pages or building blocks to
the transportable application. In this way, multiple types of applications can be combined
using the same message without the need for multiple instances of messages or tedious
navigation through multiple message folders. Additionally, tabs similar may be added to
the transportable application that allow multiple transportable applications, pages, or
building blocks to be available, but marked as no longer active or useful to one or more of

the participants (“grayed out”).

-137-

Page 139 of 240

WO 02/21413 PCT/US01/42041

4.0 HARDWARE OVERVIEW

" The approaches described herein may be implemented in hardware or software, or
a combination thereof. In one embodiment, the approaches are implemented in computer
programs executing one or more programmable computers. The programmable
computers may be either general-purpose computers or special-purpose, embedded
systems. In either case, program code is applied to data entered with or received from an
input device to perform the functions described and to generate output information. The
output information is applied to one or more output devices.

Each program is preferably implemented in a high level procedural or object-
oriented programming langnage to communicate with a computer system. However, the
programs can be implemented in assembly or machine ‘language, if desired. In any case,
the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device
(e.g., CD-ROM, hard disk, magnetic diskette, or memory chip) that is readable by a
general or special purpose programmable computer for configuring and operating the
computer when the storage medium or device is read by the computer to perform the
procedures described. The system also may be ilﬁplemented as a computer-readable
storage medium, configured with a computer program, where the storage medium so
configured causes a computer to operate in a specific and predefined manner.

FIG. 19 is a block diagram that illustrates a computer system 1900 upon which an
embodiment of the invention may be implemented. Computer system 1900 includes a
bus 1902 or other communication mechanism for communicating information, and a
processor 1904 coupled with bus 1902 for processing information. Computer system
1900 also includes a main memory 1906, such as a random access memory (“RAM”) or
other dynamic storage device, coupled to bus 1902 for stbring information and
instructions to be executed by processor 1904. Main memory 1906 also may be used for
storing temporary variables or other intermediate information during execution of

~ instructions to be executed by processor 1904. Computer system 1900 further includes a
read only memory (“ROM”) 1908 or other static storage device coupled to bus 1902 for
storing static information and instructions for processor 1904. A storage device 1910,
such as a magnetic disk or optical disk, is provided and coupled to bus 1902 for storing
information and instructions.

Computer system 1900 may be coupled via bus 1902 to a display 1912, such as a
cathode ray tube (“CRT”), for displaying information to a computer user. An input

device 1914, including alphanumeric and other keys, is coupled to bus 1902 for

-138-

Page 140 of 240

WO 02/21413 PCT/US01/42041

communicating information and command selections to processor 1904. Another type of
user input device is cursor control 1916, such as a mouse, a trackball, touch screen,
keypad of a cellular telephone or PDA, or cursor direction keys for communicating
direction information and command selections to processor 1904 and for controlling
cursor movement on display 1912. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the device
to specify positions in a plane.

The invention is related to the use of computer system 1900 for collaborative
communications, multiple-part messages, and linking and aggregating messages.
According to one embodiment of the invention, collaborative communications, multiple-
part messages, and linking and aggregating messages is provided by computer system
1900 in response to processor 1904 executing one or more sequences of one or mote
instructions contained in main memory 1906. Such instructions may be read into main
memory 1906 from another computer-readable medium, such as storage device 1910.
Execution of the sequences of instructions contained in main rflemory 1906 causes
processor 1904 to perform the process steps described herein. In alternative
embodiments, hard-wired circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus, embodiments of the invention are
not limited to any specific combination of hardware circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 1904 for execution. Such a medium
may take many forms, including‘but not limited to, non-volatile media, volatile media,
and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 1910. Volatile media includes dynamic memory, such as
main memory 1906. Transmission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 1902. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio wave and infrared
data communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any -
other optical medium, punch cards, paper tape, any other physical medium with patterns
of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a

computer can read.

-139-

Page 141 of 240

WO 02/21413 PCT/US01/42041

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 1904 for execution. For
example, the instructions may initially be carried on a magnetic disk of a remote
computer. The remote computer can load the instructions into its dynamic memory and
send the instructions over a telephone line using a modem. A modem local to computer
system 1900 can receive the data on the telephone line and use an infrared transmitter to
convert the data to an infrared signal. An infrared detector can receive the data carried in
the infrared signal and appropriate circuitry can place the data on bus 1902. Bus 1902
carries the data to main memory 1906, from which processor 1904 retrieves and executes
the instructions. The instructions received by main memory 1906 may optionally be
stored on storage device 1910 either before or after execution by processor 1904.

Computer system 1900 also includes a communication interface 1918 coupled to
bus 1902. Communication interface 1918 provides a two-way data communication
coupling to a network link 1920 that is connected to a local network 1922. For example,
communication interface 1918 may be an integrated services digital network (“ISDN")
card or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 1918 may be a local area
network (“LAN”) card to provide a data communication connection to a compatible

. LAN. Wireless links may also be implemented. In any such implementation,
communication interface 1918 sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various types of information.

Network link 1920 typically provides data communication through one or more
networks to other data devices. For example, network link 1920 may provide a
connection through local network 1922 to a host computer 1924 or to data equipment
operated by an Internet Service Provider (“ISP”) 1926. ISP 1926 in turn provides data
communication services through the worldwide packet data communication network now
commonly referred to as the “Internet” 1928. Local network 1922 and Internet 1928 both
use electrical, electromagnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on network link 1920 and through
communication interface 1918, which carry the digital data to and from computer system
1900, are exemplary forms of carrier waves transporting the information.

Computer system 1900 can send messages and receive data, including program
code, through the network(s), network link 1920 and communication interface 1918. In
the Internet example, a server 1930 might transmit a requested code for an application

program through Internet 1928, ISP 1926, local network 1922 and communication

~140-

Page 142 of 240

WO 02/21413 PCT/US01/42041

interface 1918. In accordance with the invention, one such downloaded application
provides for collaborative communications, multiple-part messages, and linking and
aggregating messages as described herein.

The received code may be executed by processor 1904 as it is received, and/or
stored in storage device 1910, or other non-volatile storage for later execution. In this

manner, computer system 1900 may obtain application code in the form of a carrier wave.

4,0 EXTENSIONS AND ALTERNATIVES
In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an

1llustrative rather than a restrictive sense.

-141-

Page 143 of 240

WO 02/21413 PCT/US01/42041

APPENDIX 1-—CLASS STRUCTURE AND API FOR EVENT HANDLING
Class Message

java.lang.Object

+--com.zaplet.message.Message

public class Message

extends java.lang.Object

Class for implementing Messaging API - responsible for message content

Contains all data, related to the event message along with get/set methods,
providing access to this data The most proper way of using the Message class
functionality would be to instantiate the class and then add proper attributes, i.e name /

value pairs for this class:

Message msg = new Message (msgType, obj ID, objType,

senderID, senderType, expTime) ;

// adding name/value pairs here

msg.addAttr (AttrName, Object);

Since:

Java v1.1.8

Version:

1.0

Author:

Vlad Silverman

See Also:
com.zaplet.db.SelectAttributesByMsgId

Message (java.lang.String msgType, com.zaplet.data.ObjectID objID,
java.lang.String objType, com.zaplet.data.ObjectID senderID,
java.lang.String senderType, java.util.Date expTime)

Constructor Used to initialize a Message

-142-

Page 144 of 240

WO 02/21413

java.lang.Object value)

PCT/US01/42041

addAttr (java.lang.String name,

addAtir() - adds atributes for the current message

java.util.Hashtabl

e

getAttr ()
getAttr() gets the m_: attr class variable

java.util.Date

getExETlme()
getExpTlme() gets the m expTlme class variable

com.zaplet.data.Ob getMsgID O
jectID getMsgID() gets the m rnsgID class variable
java.lang.String getMngXp_ e()

getMsgType() - gets the m_msgType class variable

com.zaplet.data.Ob

JjectID

getObjID ()
getObJID() gets the m obJID class variable

jectID

java.lang.String getObjType ()
getObjType() - gets the m objType class variable
com.zaplet.data.Ob getSenderID()

getSenderID() gets the m sender]D class variable

java.lang.String

ggtSenderType ()
getSenderType() - gets the m_senderType class variable

int getstatus ()
getStatus() gets the m_status class variable
boolean isPersistent ()

isPersistent() - gets the m_persistent class variable

gtatic void

main(java.lang.String[] args)
main() - main method provides functionality for unit testing of

Message class

void

T setAttr (java.util.Hashtable attr)
setAttr() - sets the m atir class variable

void

set'}'i'.xETime (jgva util.Date expTime)
setExpT]me() sets the m expTlme class variable

void

setMsgID(com zaplet data.ObjectID msgiD)
setMsgID() - sets the m_msgID class variable

void

setMsgType (java.lang.String msgType)
setMsgType() - sets the m msgType class variable

void

setObjID (com.zaplet.data.ObjectID objID)
setObjID() - sets the m_objID class variable

void,

setObjType (java.lang.String objType)
setObjType() - sets the m objType class variable

void

setPersistent (boolean persistent)
setPersistent() - sets the m_persistent class variable

void

ID)

setSenderID (com .-;aplet .data.ObjectID gender

setSenderID() - sets the m_senderID class variable

void

se tSencferTyp_ {(java.lang.String senderType)
setSenderType() sets the m senderType class variable

void

setStatus (int status)
setStatus() - sets the m_status class variable

toString,

wait, wait, wait

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

Page 145 of 240

-143-

WO 02/21413 PCT/US01/42041

Message
public Message(java.lang.String msgType,
com.zaplet.data.0ObjectID objID,
java.lang.String objType,
com.zaplet.data.ObjectID senderID,
java.lang.String senderType,
java.util.Date expTime)
Constructor Used to initialize a Message
Parameters:
msgType - - String value of the Message type
obj ID - - int value of the object Id
objType - - String value of the object type
This value should be part of names, defined in ObjectType class
senderID - - value of the sender Id
sendenype - - String value of the sender type

This value should be part of names, defined in ObjectType class

expTime - - expiration time for the current message

setMsgID
public void setMsgID(com.zaplet.data.ObjectID msgID)
setMsgID() - sets the m_msgID class variable
Parameters:

msgID - - the value to be set

getMsgID

public com.zaplet.data.ObjectID getMsgID()
getMsgID() - gets the m_msgID class variable

Returns:

msgID - the value of the class variable

setMsgType

public void setMsgType (java.lang.String msgType)
setMsgType() - sets the m_msgType class variable

Parameters:

msgType - - the value to be set

-144-

Page 146 of 240

WO 02/21413 PCT/US01/42041

getMsgType

public java.lang.String getMsgType ()
getMsgType() - gets the m msgType class variable
Returns:

msgType - the value of the class variable

setObjID

public vold setObjID(com.zaplet.data.ObjectID objID)
setObjID() - sets the m_objID class variable

Parameters:

ob]j ID - - the value to be set

getObjID

public com.zaplet.data.ObjectID getObjID ()
getObjID() - gets the m_objID class variable

Returns:

objID - the value of the class variable

setObjType

public void setObjType(java.lang.String objType)
setObjType() - sets the m_objType class variable

Parameters:

obj Type - - the value to be set

getObjType

public java.lang.String getObjType ()
getObj Type() - gets the m_objType class variable
Returns:

objType - the value of the class variable

setSenderID

public void setSenderID (com.zaplet.data.ObjectID senderID)
setSenderID() - sets the m_sender]ID class variable

Parameters:

obj ID - - the value to be set

getSenderID
public com.zaplet.data.ObjectID getSenderID ()

-145-

Page 147 of 240

WO 02/21413 PCT/US01/42041

getSenderID() - gets the m_senderID class variable
Returns:

senderID - the value of the class variable

setSenderType

public void setSenderType (java.lang.String senderType)
setSenderType() - sets the m_senderType class variable

Parameters:

senderType - - the value to be set

getSenderType

pubiic java.lang.String getSenderType ()
getSenderType() - gets the m_senderType class variable
Returns:

senderType - the value of the class variable

setStatus

public void setStatus (int status)
setStatus() - sets the m_status class variable
Parameters:

status - - the value to be set

getStatus

public int getStatus ()

getStatus() - gets the m_status class variable
Returns:

status - the value of the class variable

setExpTime

public void setExpTime (java.util.Date expTime)
setExpTime() - sets the m_expTime class variable

Parameters:

expTime - - the value to be set

getExpTime ;

public java.util.Date getExpTime ()
getExpTime() - gets the m_expTime class variable
Returns:

expTime - the value of the class variable

-146-

Page 148 of 240

WO 02/21413 PCT/US01/42041

isPersistent

public boolean isPersistent ()
isPersistent() - gets the m_persistent class variable
Returns:

m_persistent - the value of the class variable

setPersistent

public void setPersistent (boolean persistent)
setPersistent() - sets the m_persistent class variable

Parameters:

m_persistent - - the value to be set

setAttr

public void setAttr (java.util.Hashtable attr)
setAttr() - sets the m_attr class variable

Parameters:

attr - - the value to be set

getAttr

public java.util.Hashtable getAttr ()
getAttr() - gets the m_atir class variable

Returns:

attr - the value of the class variable

addAttr
public void addAttr (java.lang.String name,
java.lang.Object value)

throws MessageException

addAttr() - adds atributes for the current message

Parameters:

name - the name of the attribute to be added to the name/value list
value - the value of the attribute to be added to the name/value list
Throws:

MessageException - - in case of null parameters

main
public static void main(java.lang.Stringl] args)

main() - main method provides functionality for unit testing of Message class

-147-

Page 149 of 240

WO 02/21413 PCT/US01/42041

Class MessageService

java.lang.Object

I

+--com.zaplet.message.MessageService

public class MessageService

extends Object
Class for implementing Messaging API - responsible for services on Message data
Publishes/stores info about any object in the db
This class provides also transformation between internal objects used by the Zaplet
platform and standard data types, used by JDBC layer

Possible ways of using the MessageService are outlined below:

Message msg = new Message (msgType, objID, objType,

senderID, senderType, expTime);

try {

// adding name/value pairs here
msg.addattribute (AttrNamel, Objectl);
msg.addAttribute (AttrName2, Object2);

// Now there are several choices:

/7

// 1. we can just store the message and
// all its attributes in the database

MessageService.publish (msg) ;
OR

// 2. we can publish the message in the Db and

// fire the action, associated with the message

// The action should be implemented in the handle()
// method of the class, specified by 'msgType'

MessageService.publishAndFire (msg) ;

OR

-148-

Page 150 of 240

WO 02/21413

/3.
//

PCT/US01/42041

we can just fire the action, specified by msgType

without storing the message in the database

msg.setPersistent (false) ;

}

catch

MessageService.publishAndFire (msg) ;

(MessageException me) {

// process MessageException here

Since:
Javav1.1.8
Version:

1.0

Author:

Vlad Silverman
See Also:

com.zaplet.db.SelectAttributesByMsgId

protected
static MessageHandler

getHandlerStrng msype
getHandler() - get the name of the class, which should handle the current

message
The name of the class is related to the type of the message

protected
static int

getUniqueld (String gquery)
Get unique primary key id for an object, specified in the query
|parameter.

private
static int

insertAttributes (DbTrans trans, Message msg)
insertAttribute(msg) - inserts all attributes (name/value pairs) of a
message in the database

private
static int

insertMessage (DbTrans trans, Message msg)

insertMessage(msg) - inserts a message in the database

Page 151 of 240

-149-

WO 02/21413 PCT/US01/42041

static void main(String([]l args)
main() - main method provides functionality for unit testing of
MessageService class

static void publish (Message msg)

publish() - stores a new Message
this method will verify first m Persistent flag of the Message object and store
the Message in the Db only if “this ﬂag is true

static void publishAndFire (Message msg)
publishAndFire() - activates the handle() method of the specific handler.
Handler is associated with the type of the current message.

, clone, equals, flnallze, getClass, hashCode, notlfy, notlfyAll
registerNatives, toString, wait, wailt, wait

SEQUENCEQUERY
public static final Strlng SEQUENCEQUERY

MessageService

public MessageService ()

public static void publish(Message msg)

throws MessageException

publish() - stores a new Message
this method will verify first m_Persistent flag of the Message object and store the Message in the Db only if
this flag is true

Parameters:

msg - - a Message object

Throws:

MessageException - - in case of one of db transactions failed

insertMessage

private static int insertMessage (DbTrans trans,

Message msg)
insertMessage(msg) - inserts a message in the database

Parameters:

trans - - database fransaction

-150-

Page 152 of 240

WO 02/21413 PCT/US01/42041

msg - - a Message object
Returns:

inserted number of rows

insertAttributes
private static int insertAttributes (DbTrans trans,
Message msg)

insertAttribute(msg) - inserts all attributes (name/value pairs) of a message in the database

Parameters:

trans - - database transaction
msg - - a Message object
Returns:

inserted number of rows

publishAndFire

public static void publishAndFire (Message msg)
throws MessageException

publishAndFire() - activates the handle() method of the specific handler.

Handler is associated with the type of the current message. Before calling the handler this method will store

the Message object in the database
Parameters:
msg - - the Message object
Throws:

MessageException - - in case the event message can't be fired. Possible reason for this - the handle

can't be found

getHandler
protected static MessageHandler getHandler (String msgType)

throws MegssageException

getHandler() - get the name of the class, which should handle the current message
The name of the class is related to the type of the message

Parameters:

msgType - - the type of the message

Returns:

MessageHandler - returns an object which implements MessageHandler interface

Throws:

MessageException - - in case the handler can't be found

-151-

Page 153 of 240

WO 02/21413 PCT/US01/42041

getUniqueld ”
protected static int getUniqueId(String query)

throws MessageException

Get unique primary key id for an object, specified in the query parameter. Use the database
sequencer

Parameters:

query - - a SQL query string ot get next id

Returns:

int - the next id number

Throws:

MessageFException - - in case of DB communication failure

main
public static void main(String[] args)

throws Exception
main() - main method provides functionality for unit testing of MessageService class

This procedure instantiates a new message and sets message type of the current
message to the HandlerTest class located in com.zaplet.message package Three attributes
of different types are added to the current message After fire() method will be called on
the current message the handle() method of the HandlerTest class will be executed This
method is implemented just for testing purposes It will print out the names, values and

types of all attributes, associated with the current message

Class SystemHandler
java.lang.Object

+--com.zaplet.message.SystemHandler

public class SystemHandler

extends java.lang.Object

implements MessageHandler

Class for implementing Messaging API Contains handle method
Since:

Javavl.1.8

Version:

1.0

See Also:

Message

-152-

Page 154 of 240

WO 02/21413 PCT/US01/42041

handle (Message msg)

void handle() gets the list of all observers of the current message, i.e gets the list of all messages,
associated in the current message for every associated message acivates the fire method, which in turn:
stores associated message if it is persistent activates the handle of the associated message

clone, equals, finalize,
toString, wait, wait, wait

SystemHandler
public SystemHandler ()
Constructor Used to initialize a SystemHandler

R LA R L LT TR S R TR o

public void handle (Message msg)

handle() gets the list of all observers of the current message, i.e gets the list of all messages,
associated in the current message for every associated message acivates the fire method, which in turn:
stores associated message if it is persistent activates the handle of the associated message

Specified by:

handle in interface MessageHandler

Parameters:

msg - Message object

Interface MessageHandler
All Known Implementing Classes:
SystemHandler

public interface MessageHandler

Iterface for Messaging API Contains methods to be implemented by every
specific Handler class

Since:

-153-

Page 155 of 240

WO 02/21413 PCT/US01/42041

Java vi.1.8

Version:

1.0

See Also:
com.zaplet.db.SelectAttributesByMsgId

public void handle (Message msg)
handle method

Parameters:

msg - - a Message object

-154-

Page 156 of 240

WO 02/21413 PCT/US01/42041

CLAIMS
What is claimed is:

1. A method for processing a request to display an electronic message, the
method comprising the computer-implemented steps of:

generating first message data, wherein the first message data defines at least a first
message portion and one or more selection regions for one or more other message
portions of a multiple-part electronic message having a plurality of message portions;

providing the first message data to a client;

receiving from the client a request for a second portion of the electronic message
selected from among the other message portions;

generating second message data which, when processed at a user interface of the
client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

2. A method as recited in Claim 1, wherein generating first message data
further comprises the steps of generating first message data that defines a plurality of .
message portions each having a corresponding selection region and that defines a message
user interface region that comprises all corresponding selection regions and the first

message portion.

3. A method as recited in Claim 1, wherein the first message data includes
user interface definition data which, when processed at the user interface, causes the user

interface to display the first portion of the electronic message in a first panel.

4, A method as recited in Claim 3, wherein the user interface definition data
includes data which, when processed at the user interface, causes the user interface to

display a first identifier of the first portion of the electronic message in the first panel.

5. A method as recited in Claim 4, wherein the first identifier indicates

content of the first portion of the electronic message.

-155-

Page 157 of 240

WO 02/21413 PCT/US01/42041

6. A method as recited in Claim 3, wherein generating the first message data
and generating the second message data further comprises the steps of generating second
user interface definition data which, when processed at the user interface, causes the user
interface to display a plurality of continuously visible selection regions, each associated
with a different portion of the multiple-part message and the first portion of the electronic

message.

7. A method as recited in Claim 6, wherein the second user interface
definition data comprises data which, when processed at the user interface, causes one or
more other identifiers to be displayed in association with the continuously visible

selection regions to identify corresponding portions of the electronic message.

8. A method as recited in Claim 1, wherein the first message data comprises
selection region definition data which, when processed at the user interface of the client,
causes the client to display a plurality of selection regions that extend outwardly laterally

from the first portion of the electronic message.

9. A method as recited in Claim 1, wherein the first message data comprises
selection region definition data which, when processed at the user interface of the client,
causes the client to display a plurality of selection regions that extend outwardly upwardly

from the first portion of the electronic message.

10. A method as recited in Claim 1, wherein the second message data
comprises selection region definition data which, when processed at the user interface of
the client, causes the client to display a plurality of selection regions that extend

outwardly downwardly from the first portion of the electronic message.

11. A method as recited in Claim 1, wherein the first message data and the
second message data comprise one or more hypertext markup language (HTML)

instructions.

-156-

Page 158 of 240

WO 02/21413 PCT/US01/42041

12. A method as recited in Claim 1, wherein the first message data comprises
selection region definition data which, when processed at the user interface of the client,
causes the client to display a toolbar of functions for manipulating the multiple-part

electronic message within a user interface panel that contains the first message portion.

13. A method as recited in Claim 1, wherein the first message data further
comprises one or more executable application building blocks, and further comprising the
steps of: |

executing the one or more application building blocks to result in creating and
storing one or more then-current dynamic data values as part of the first message portion;

providing the one or more dynamic data values to the client as part of the first

message portion.

14. A method as recited in Claim 1, further comprising the steps of:
retrieving one or more then-current dynamic data values from a database;
rendering the dynamic data values as part of the first message portion;
providing the one or more dynamic data values to the client as part of the first

message portion.

15. A method as recited in Claim 1, wherein the step of generating first
message data comprises the steps of generating first message data that defines at least a
first message page, one or more selection regions for one or more other message pages of
a multiple-page electronic message having a plurality of message pages, and a plurality of

sub-pages of the first message page.

16. A method as recited in Claim 15, further comprising the steps of:

receiving a selection of a sub-page of the first message page; |

generating third message data that defines the selected sub-page of the first
message page and which, when processed at the user interface, causes the user interface
to display the selected sub-page of the electronic message;

providing the third message data to the client.

-157-

Page 159 of 240

WO 02/21413 PCT/US01/42041

17. A method providing a multiple-part electronic message, the method
comprising the computer-implemented steps of:

generating first message data that defines a multiple-part electronic message and
includes at least a first message portion and one or more selection regions for one or more
other associated message portions;

providing the first message data to a first client;

receiving a request to forward the multiple-part electronic message to a recipient;

in response to receiving the request, generating second message data to the
recipient that defines the multiple-part electronic message; and

providing the second message data to the second client.

18. A method of asynchronously dynamically updating information of a
multiple-part electronic message, the method comprising the computer-implemented steps
of:

generating first message data, wherein the first message data defines at least a first
message portion having a dynamic content region and one or more selection regions for
one or more other message portions of a multiple-part electronic message having a
plurality of message portions;

providing the first message data to a first client;

receiving one or more asynchronous updates to the dynamic content region;

generating second message data that defines the first message portion, the
dynamic content region including the one or more updates, and the one or more selection

* regions; and |

providing the second message data to a second client.

19. A method as recited in Claim 18, further comprising the steps of:

receiving a selection of a second portion of the electronic message selected from
among the other message portions;

retrieving then-current dynamic content for a second dynamic content region of
the second portion of the electronic message;

generating third message data that defines the second portion of the electronic
message and that includes the then-current dynamic content for the second dynamic

content region;

-158-

Page 160 of 240

WO 02/21413 PCT/US01/42041

- providing the third message data to the client.

20. A method for processing data at a-user interface comprising the computer-
implemented steps of:

receiving a request to display an electronic message;

in response to receiving the request to display an electronic message, requesting a
first portion of an electronic message;

receiving first message data; and

processing the first message data to cause the first portion of the electronic

message to be displayed on the user interface.

21. A method as recited in Claim 20, further comprising the computer-
implemented steps of:

receiving a request to display a second portion of the electronic message;

in response to the request to display a second portion of the electronic message,
requesting the second portion of the electronic message;

receiving second message data; and

processing the second message data to cause the second portion of the electronic

message to be displayed on the user interface.

22. A method as recited in Claim 20, further comprising the computer-
implemented steps of: ‘

receiving user interface object data; and

processing the user interface object data to cause a user interface object to be
displayed on the user interface;

and wheréin the step of receiving a request to display a second portion of the
electronic mail message receiving second message data includes detecting user

manipulation of the user interface object.

23. A method as recited in Claim 20, wherein the method further comprises the
computer-implemented steps of:

receiving user interface object data; and

-159-

Page 161 of 240

WO 02/21413 PCT/US01/42041

processing the user interface object data to cause a user interface object to be
displayed in association with a second portion of the electronic mail message that is not

displayed concurrently with the first portion of the electronic mail message.

24, A method as recited in Claim 20, wherein the first portion of the electronic

mail message is displayed on a panel.

25. A data processing apparatus comprising:
a memory device configured to store electronic message data;
a processor communicatively coupled to the memory device; and
one or more sequences of instructions in the memory device which, when
“executed by the processor, cause the processor to carry out the steps of:
generating first message data, wherein the first message data defines at least a first
message portion and one or more selection regions for one or more other message
portions of a multiple-part electronic message having a plurality of message portions;
providing the first message data to a client;
receiving from the client a request for a second portion of the electronic message
“selected from among the other message portions;
generating second message data which, when processed at a user interface of the
client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

26. An apparatus for processing a request to display an electronic message,
éomprising:

means for generating first message data, wherein the first message data defines at
least a first message portion and one or more selection regions for one or more other
message portions of a multiple-part electronic message having a plurality of message
portions;

means for providing the first message data to a client;

means for receiving from the client a request for a second portion of the electronic

| message selected from among the other message portions;

means for generating second message data which, when processed at a user

interface of the client, causes the client to display the second portion of the electronic

message; and

-160-

Page 162 of 240

WO 02/21413 PCT/US01/42041

means for providing the second message data to the client.

27. A computer-readable medium comprising one or more sequences of
instructions for processing a request to display an electronic message, which instructions,
when executed by one or more processors, cause the one or more processors to carry out
the steps of:

generating first message data, wherein the first message data defines at least a first
message portion and one or more selection regions for one or more other message
portions of a multiple-part electronic message having a plurality of message portions;

providing the first message data to a client;

receiving from the client a request for a second portion of the electronic message
selected from among the other message portions;

generating second message data which, when processed at a user interface of the
client, causes the client to display the second portion of the electronic message; and

providing the second message data to the client.

28. A method for associating related electronic messages in computer storage,
the method comprising the computer-implemented steps of:

creating and storing a first transportable application;

receiving user input requesting creation of a link from the first transportable
application to another transportable application;

receiving user input that selects a second transportable application from among a
plurality of previously created transportable applications; and

creating and storing a link from the first transportable application to the second

transportable application.

29. A method as recited in claim 28, wherein the step of creating and storing a
link comprises the steps of:

creating and storing an asynchronously dynamically updated list of references to
other transportable applications in association with the first transportable application;

creating and storing a reference to the second transportable application in the list

of references.

-161-

Page 163 of 240

WO 02/21413 PCT/US01/42041

30. A method as recited in claim 28, wherein the step of creating and storing a
link comprises the steps of:

creating and storing an asynchronously dynamically updated List building block
in association with the first transportable application;

creating and storing a reference to the second transportable application in the list
building block.

31. A method as recited in Claim 28, wherein the step of receiving user input
that selects a second transportable application comprises the steps of receiving user input
that copies a URL of the second transportable application and receiving user input that

pastes the URL into the first transportable application in a region associated with the list.

32. A method as recited in Claim 28, wherein the step of receiving user input
that selects a second transportable application comprises the steps of receiving user input
that drags a representation of the second transportable application into the first

transportable application in a region associated with the list.

33. A method as recited in Claim 28, further comprising the steps of applying
one or more access controls to the link, wherein the access controls specify that one or
more users or groups may not access the second transportable application using the link.

34. A method of associating related electronic messages in computer storage,
the method comprising the computer-implemented steps of:

creating and storing a first transportable application;

automatically creating and storing a second transportable application as a result of
a workflow process or event associated with the first transportable application; and

creating and storing a link from the first transportable application to the second

transportable application.

35. A method as recited in claim 34, wherein the step of creating and storing a
link comprises the steps of:
creating and storing an asynchronously dynamically updated list of references to

other transportable applications in association with the first transportable application;

-162-

Page 164 of 240

WO 02/21413 PCT/US01/42041

creating and storing a reference to the second transportable application in the list

of references.

36. A method as recited in claim 34, wherein the step of creating and storing a
link comprises the steps of:

creating and storing an asynchronously dynamically updated List building block
in association with the first transportable application;

creating and storing a reference to the second transportable application in the list
building block.

37. A method as recited in Claim 34, further comprising the steps of

prompting a user associated with the first transportable application to confirm
whether to link the first transportable application to the second transportable application;
and

carrying out the step of creating and storing a link only in response to receiving
user input that confirms that the first transportable application should link to the second

transportable application.

38. A method as recited in Claim 34, further comprising the steps of applying
one or more access controls to the link, wherein the access controls specify that one or

more users or groups may not access the second transportable application using the link.

39. A method for associating related electronic messages in computer storage,
the method comprising the computer-implemented steps of:

creating and storing a first transportable application;

creating and storing a link from the first transportable application to a second
transportable application;

‘ determining that a programmatic object associated with the first transportable

application is new, updated or deleted;

in response thereto, modifying the link in accordance with the new, updated or
deleted object.

-163-

Page 165 of 240

WO 02/21413 PCT/US01/42041

40. A method as recited in Claim 39, wherein the step of modifying the link in
response to an updated object comprises the steps of identifying all other transportable
applications that are linked to the first transportable application and that reference the
updated object, and modifying all references to the updated object.

41. A method as recited in Claim 39, wherein the object comprises a content
element of the transportable application, and further comprising the steps of searching the
content element for one or more recognizable object references, and creating one or more

links relating to the recognizable object references in a list of automatically generated
links.

42. A method as recited in Claim 41, wherein the object reference comprises
an e-mail address or user name, and wherein the step of creating links relating to the
object references comprises creating a mail link in the list which, when selected by a user,

generates an e-mail message to the address or user name.

43. A method as recited in Claim 41, wherein the object reference comprises a
Uniform Resource Locator, and wherein the step of creating links relating to the object
references comprises creating a URL link in the list which, when selected by a user,

generates a display of a hypertext document identified by the URL.

44. A method as recited in Claim 41, wherein the object reference comprises a
title of a third transportable application, and wherein the step of creating links relating to
the object references comprises creating a link in the list to the third transportable

application.

45. A method of associating related electronic messages in computer storage,
the method comprising the computer-implemented steps of:
receiving user input associated with completing a task in a first transportable

application;

-164-

Page 166 of 240

WO 02/21413 PCT/US01/42041

generating a list of one or more other transportable applications that are likely to
follow the first transportable application in a workflow or business process associated
with the first transportable application, based on relevance of the other transportable
applications to a context of the first transportable application;

requesting user input that specifies whether to link one or more of the other
transportable applications to the first transportable application; and

creating and storing one or more links from the first transportable appﬁcation to

one or more of the other transportable applications.

46. A method of displaying a message that contains an embedded HTML
document, comprising the computer-implemented steps of: |

receiving a transportable application, which comprises an embedded HTML
document, in an e-mail client application;

displaying the embedded HTML document in a graphical window of the e-mail
client application;

displaying one or more graphical navigation buttons in association with the
graphical window;

receiving user input that selects one or more of the graphical navigation buttons;
and

displaying one or more other HTML documents in the graphical window in

response to the user input.

-165-

Page 167 of 240

WO 02/21413 PCT/US01/42041

47. A method as recited in Claim 46, wherein each of the graphical navigation
buttons is associated with client-executable computer program code, and wherein the step
of displaying one or more other HTML documents comprises the step of executing one or
more instructions of the computer program code that are associated with one of the

selected graphical navigation buttons that is selected by the user input.

48. A method as recited in Claim 46, wherein each of the graphical navigation
buttons is associated with client-executable JavaScript code, and wherein the step of
displaying one or more other HTML documents comprises the step of executing a portion
of the JavaScript that is associated with one of the selected graphical navigation buttons

that is selected by the user input.

49. A method of associating a plurality of sets of related electronic messages in
computer storage, the method comprising the computer-implemented steps of:

creating and storing a first set of a plurality of linked transportable applications;

creating and storing a second set of a plurality of linked transportable applications;

designating a first transportable application among the first set as a home
transportable application for the first set;

designating a second transportable application among the second set as a home
transportable application for the second set;

creating and storing, in association with the home transportable application of the
first set, a next link that identifies the home transportable application of the second set;

creating and storing, in association with the home transportable application of the
second set, a previous link that identifies the home transportable application of the first

set.

-166-

Page 168 of 240

WO 02/21413 PCT/US01/42041

50. A method as recited in Claim 49, wherein the first set comprises a first
message web, the second set comprises a second message web, and the links among the
first message web and the second message web associate the first message web with the

second message web in a message web ring.

51. A method as recited in Claim 49, further comprising the steps of:

creating and storing a third set of a plurality of linked transportable applications
having a third home transportable application;

modifying the next link and the previous link of the first set and second set such
that the third set of transportable application is logically inserted between the first set and

the second set.

52. A method of generating a list of recipients for a first message that is linked
to a second message, comprising the computer-implemented steps of:

creating and storing a first transportable application that is linked to a second
transportable application;

creating a first recipient list in association with the first transportable application,
wherein the first recipient list identifies one or more users or groups to whom the first
transportable application is directed;

creating a second recipient list in association with the second transportable
application, wherein the second recipient list comprises at least one reference to the first
recipient list;

automatically resolving the at least one reference into a second list of one or more

users or groups to whom the second transportable application is directed.

-167-

Page 169 of 240

WO 02/21413 PCT/US01/42041

53. A method as recited in Claim 52, wherein the second recipient list further
comprises at least one expression that identifies one or more users or groups to add or
delete from the referenced first recipient list, and further comprising the steps of
automatically determining a second list of one or more users or groups to whom the
second transportable application is directed by resolving the at least one reference and

applying the at least one expression.

54. A method of propagating data from a first message to a second message
that is linked to the first message, comprising the computer-implemented steps of:

creating and storing a first transportable application that is linked to a second
transportable application;

creating and storing a reference, in a first data field of the first transportable
application, to a second data field of the second transportable application;

determining that the first data field of the second transportable application is
changed; ‘

automatically creating and storing the second data field of the second

transportable application in the first data field of the first transportable application.

55. A method as recited in Claim 54, wherein the steps of determining and
automatically creating comprise the steps of:

determining whether the first data field of the first trénsportable application
comprises a link to a second data field;

verifying that the second data field comprises up-to-date data;

retrieving data from the second data field;

storing the retrieved data in the first data field.

56. A method as recited in Claim 535, further comprising the steps of:
determirﬁng whether any other transportable applications are subscribed to the
first data field;

carrying out the step of automatically creating and storing the second data field

only for each transportable application that is subscribed to the first data field.

-168-

Page 170 of 240

WO 02/21413 PCT/US01/42041

1/70

FiG. 1A
102
CLIENT
104 106 | 105
BROWSER NETWORK)| SERVICE UNIT
205
106 I__ 200
PERSONAL ADAPTER
INFORMATION MANAGER
205
EXTERNAL
APPLICATION
FiG. 1B
105 SERVICE ENTERPRISE
[
EVENT PROCESSOR
114
| HTTP SERVICE
1a2 116
i lCE o MESSAGE SERVICE
124 o
124 TABASE SERVIC
. APPLICATIONS DATARAS STRVCE

120
SECURITY -SERVICE

110
MULTI-PAGE MESSAGING SERVICE

SUBSTITUTE SHEET (RULE 26)

Page 171 of 240

PCT/US01/42041

WO 02/21413

2/70

S32IA43S NOILVYIILILON
any INA3

9r1

SFIINYIS ONILHOdIH
® LNINFOVYNYI

9cl

IN3IT0 ONIOVSSIA AJI70d
INVISNI ¥0 NOILVILIILON SFOINYTS ONISSIO0N LT
g7l FOVSSIN INITHH0
iz SIOINNIS
SAVM3LY9 30IN3d ILLVHLSININGY
ZZ1 SIOINYIS F0INI0 | »=T
F0INY3S JOVSSIN o'
a1 s3o;mg3s yw || | 91907 INISSII04d
_ e YINIV.LNOD
FOINYFS ALTMNIIS . /" ININOdWOO
0z T04INOD SSF0V g}

FOINYTS INIOVSSIN FoVd—ILINW

oIl

ol ‘Old

SUBSTITUTE SHEET (RULE 26)

Page 172 of 240

PCT/US01/42041

WO 02/21413

3/70

191

LI~ (3jgpyusssid » ioupjuoy ‘b's)

SOINIBS 49;5/(S

-

$80DJi8)U] % Sjusuodwio)

al ‘old

saoinisg jusyo—"" L

A A

4D N/)
m
Jeboupyy _
uonpaRUBLYINY “
1

04! o

(o)}

kmm%:os g
uzgl g28L vzsl s £91

ﬂ

3

8/qD)UsS9.

g/
L/

“

J8boubpy
8)08.7/210}S

J2yo)pdsiq 1senbay

sysanbay Ul

99!

_

199(q0 | . 156DUDY |

JUIDILOY _ﬁﬁsou ussel]| uoJ)DIUBSEI |

128/q0 8poN P _ _

0% L | $91 |

291 091 79} 871 ozl ,
(dv (1on
(232 mm\ q7)4860UDW| ‘SH) 48BDUDY 48bDUDY

SJobDuDl wWe)sAS| Au0)o8uqluonDajunwiio)| uoljpayijoN|sebouyy A)inoes

’

SUBSTITUTE SHEET (RULE 26)

Page 173 of 240

WO 02/21413 PCT/US01/42041

4/70

FiG. 1E

190
AUTHOR ENTERS PORTAL
Y
191
AUTHOR AUTHORS/EDITS NEW TRANSPORTABLE
APPLICATION

Y
192
NEW TRANSPORTABLE APPLICATION IS
CREATED
Y
193
TRANSPORTABLE APPLICATION
IS MAILED TO ALL RECIPIENTS
+ .
194
RECIPIENT RECEIVES TRANSPORTABLE
APPLICATION IN IN-BOX

!
195
SYSTEM DYNAMICALLY DETERMINES CLIENT
CAPABILITIES
!
196 .
TRANSPORTABLE APPLICATION IS DISPLAYED
FOR CLIENT
!
197
RECIPIENT RESPONDS TO TRANSPORTABLE
APPLICATION FROM WITHIN THE E-MAIL MESSAGE
; _
198
TRANSPORTABLE APPLICATION DATA Is
UPDATED FOR ALL RECIPIENTS

SUBSTITUTE SHEET (RULE 26)

Page 174 of 240

WO 02/21413 PCT/US01/42041

5/70
FIG. TF

191
AUTHOR AUTHORS/EDITS NEW TRANSPORTABLE APPLICATION

191A
CREATE OR RETRIEVE PAGE(S) FOR THE
TRANSPORTABLE APPLICATION
1
1918
CREATE TEMPLATE FOR
TRANSPORTABLE APPLICATIONS
'
191C

CREATE TRANSPORTABLE APPLICATION BASED
ON TEMPLATE AND/OR PAGES

FIG. 3B

3264 [>0
CONTAINER

3268
CONTAINER

320A
BUILDING
BLOCK

J208B

BUILDING
BLOCK

320D

BUILDING
BLOCK

320C
BUILDING
BLOCK

SUBSTITUTE SHEET (RULE 26)

Page 175 of 240

PCT/US01/42041

WO 02/21413

6/70

84 1usr3

(1bs/d) 2044 psio)s espqpioq | 800

Ve Oid

(soop)

(~sbad)

18A18S 8ji{

1444

194195 0)0Ud

184485 030U

J8AD7 DIDQ

A
0v&~J Jaazas ojo
_~9¥C S _019Y4d
ooy . _ 120 01z SN
\\\\\\\ \
NS (sauespm)| Y, 1ONTOS ogar | 90¢ 0C Cre~JdLIH
/ 212~ SIOMOIPPIN| |\ <L JoAlaS uolpajddy
! < ! ;S ﬁ_ 84209 _mm_m 19A49S U0IDIYddy
| ogar| Sic - giz | e —"Janiag uoppoyddy
_ (a7z) uowsog I 7 ,
~_ jusA3 js/doz \ oL dsr
.. | (G3z) uoweng \ dvai - diLH
.u\nv JWeA7 18/dD7 czz O~ / 00z AM/IQM.N
9%} \ (q3z) uowsnq T ~ gam
ua, 8/dl N
/ jusAg 3}8/abz dINS // \Xo.gn\ AYA
\ »ez
vee \
\ 197185 [IDY ,_ T WJ,M
y ! |Aomajog ssejpupy | | Janiag Jop | S| &5
Dz~ \JNeS Ai0p334g _ = Jon13S IO ___ a5
/ 9cc R "l g¢c
/ g /22 ~
[pioMiod @ 840)S Wm, 237 \\
NQN &/I llllllll \l”- llllllll — \\ ’

1487 uonpalddy

SUBSTITUTE SHEET (RULE 26)

Page 176 of 240

PCT/US01/42041

WO 02/21413

7/70

T T T T T T S e e e 7
| |
_
! sng <> 1J058)doa mmo.\\cmmu%b.t:omm |sa.npaso.paio)s | m
!
| Iv3 . asoqpjoq [iowddy | |
“ — VS A10308.410 “
I lv T /'y |
16£¢ 18] DIDQ I
b e e] A
[aanteabanih s e et St e
[|
“ uonpibayur N (*** S8aMIes JuUeA7 ‘jol3uo) SS8o9Y) . §s820y DID{ “
! jusAz bppg [T sgri 8409 j1opyddy |
“ ¥.Z- g9z 1 Joumjuon gry 2.2 0Lz m
[
[[
! (sdsr) | (s33ppa88) uonpesn (s19/7485) (sdsr) !
| 19))owioy 8604 Gyl | jusjuoy onupuAg buineny oy 48)10Ull04 NOW |
1| 992 - v9z- | G52 seumjuon qay Z9Z2- ‘ 092 - !
| y y |
! _
! 9GZ Jend8S Qep . PG 489AIBS |IDW “
|] cse 811 eIpPIf — |
2 i
b JCc Josmolg - B2 jusly pow3 “
_ [
25 . _
BP0 e J

SUBSTITUTE SHEET (RULE 26)

Page 177 of 240

PCT/US01/42041

WO 02/21413

8/70

96z S.am@\sz Oc Oid
4] 920d . ‘Bujpuad
@?7T 4o LEB)|juaing "pansesal syybu Jly 'ou] “je|doz z00Z-0007 1ublAdo) V3
1ad Wd 6¥:2 10/LL/¥ 9”yoye] JeyipeH Aq peppy 8bod
Moounc | ‘dujjpoap
[oPUN] ino expw 0} 80 g pjnoys ey ‘poob S%00| snID}S 8L / mw\.\wno\“.mm
762 1ad Wd /67 10/Li/b Uyws KIop r/:o.a.mmoms
L 40 |~| [}10S] swij /8100 [110S] swoN /a7
=E_._ :9bpd Jad sjuswIWOy / 5o
(Z JO 7 }dbd) sjuswiwo) @ asuodsay Jaju mt.\b\.“zm

=53 uosuyor KON

1dd Nd 6v:¢ L0/LI/Y

buupys sjl4

=]

o6z | |8
/ Ag papiwiqng UQ PeIWQNS 8ZIS BWDUB # — 8.8
~ 1i0s 0} sBuippey uwnjos 308jeS. - :o.cmg_oz
SYUIT 7 JO | JDJ) SIUSLLYDD asuodsay Jeju 80D
suontp oup (2 40 | Hod) syuswyopny O N ﬁlv < —
worpooN e burioyg o) 4 “Trd
67 o= 09) SUONDUNONSZ) 10d Wd G20 10/1L/% Peiopdn 3s01 Buubys 8l -
obosssy jojdoz — 108[0ud Jo snipig :108(qng 8¢
1s8nbay Y
ooy (sjuodioljing [pnsip) ol —98z
i N\ 9TYoye] ByIoeH ~—WoU4
oz T X syupyj Komp Jubll sy} 0} 396 aspalg ‘uosuyop \Coﬁ fuoyy ysenbay co;o<l@/J Dq
=1 (dipH) (malp_yuud) ((psomio4) (Joyiny o3 >_%m_u\q bossey meN) 19|doz 49PDsH
EIE N E?.__ yoson — abosson yordoz (B |

suojing
pubwILIOY ommw /

c8c 08¢

SUBSTITUTE SHEET (RULE 26)

Page 178 of 240

PCT/US01/42041

WO 02/21413

9/70

ac oid

_}i!..-}i--!!!..:i}!!--}-u-|l-il}lll-ul{l-
|
[senes | ¥£02 ((4erdes T0S) S80S wayshs. | eu0js
| | vonoberur - 8sPanieg 202 [oygng |eboiois qam| xoquop
_ }sopH \
|
|
m I 0202 1 | 2202
|
_ ¥202 0£0Z oav «
uonpayddy | abubysxy Jo uipubH
m P49X3 40} 00O, §0710%3 Jusn
m 202 vopooyddy | T K}
| ,
_ _ ” e Ta JoAIBS
! ' g00¢ 000z 8bupyox3
| 9202 4030940 oMY cloc— | 0l0C
|
| P VMO IdvYW dINS
“ 200¢ Sders9S rioe
L o e e e e e T e e
900z~ |ogy 1dvh
_ﬂ ||| T T
_ F00C Yoopno
— ———
. 000¢ _ _sielo .

SUBSTITUTE SHEET (RULE 26)

Page 179 of 240

PCT/US01/42041

WO 02/21413

10/70

Jc Old

sensss | ¥E0Z [(494428 T0S) $8.40)S waysAs 8.10]S
uojyosbeyuy | 85090100 oyqng |eboisois qam| xoquow
JSOH N WQ'N U
- ozoz— 1
vcoc 080 oav
9p0oy \lmwow i = Y
o1dd| > ulpup
uonpallaady | sbupyox3 404 0GI[. 403703 mb: m_w
Z0c uopooyddy 3 ¥)
> — JoAIES
’ ‘ §00¢ 000z 9bupyoX3
9007 920z A40108410 MOy
f ¥ y
- ~1 VMO IdVW diS
Jonias qa >
S n, M SIT s102-"] :
uuuuuuuuu L SPMES -
e ltvaem/dud |94 1YW
k A4
G00¢ J8smo.g 31 ¥00C ’00jiN0
000c spusllo

e dm G At . M e e WWS S fm M e M R D M e R S . S S) . S S — o — - T M GRS Vel S S G M e S e el e e e

SUBSTITUTE SHEET (RULE 26)

Page 180 of 240

PCT/US01/42041

WO 02/21413

11/70

¢ Old

||| 1
soniss | #£0C [(48485 T0S) 81035 waysAs 81035
uopjoibayul |« ~| 850g0i0Q 5207 onqng |ebosoys qay| xoquow
0coc :
‘ - 0c0z | ¢eoe
 SANA 0£0c oav <
apoY r\l%NQN Y Y
uopoalddy | sbunyoxz 405 0g9 810z buipuoH
4 JOAIBS i) 807 10%3 juend |
coc uonpayddy - 1 1
850" | I === J0A18S
—— Ao §00¢ 000z 8bupbyox3
— 010841 oAl
0502 oSV 9¢0¢ 1984/F anijoy | ‘
s gy i —{ Mo IdYW dins H |
v y 002" 14104 /. |
.......... N L TR senes T
| dLIH 9502 AVa99M,/dLLH | zioz |ody Idvw
SN 2 e J B
_
YG00Z 49smolg Auy G00c J8smoig 31 v00c ooRng “
. !
0002 spualj) E

TS N M S A e e GhR S G A M G e e cwn S e G G e Ses G s L e — — A — . S T— T — - MM Ghe w— - S — L D W S et S e G e . e S S W8S Mt -

SUBSTITUTE SHEET (RULE 26)

Page 181 of 240

WO 02/21413 PCT/US01/42041

12/70
FIG. 3A-1

. Interface
302 Servicelnterface

——

306 312 304,
| (\ (
" Interface 7 Interface Interface ’

NotificationiInterface||Lifecyclelnterface || Securitylnterface

CollectionNodeOb ject Interface
Interface SystemService
UserOb ject

»getName(): String
*getEmail(): String
rgetScreenName(): String

\ ~ !

CollectionNodeOb ject Interface Interface
Interface MetaOb ject FolderOb ject
GroupOb ject
- y *hasMoreFolder(): boolean | 1
+hasMoreMembers(): boo C snextFolder(): FolderObject|
*NextMember(): Collection 332 |+owner(): UserOject
*getModerators(): Enumer)‘ |
*getMemberGroups(mem 328
*getNonMemberGroups(:
L 330 |

SUBSTITUTE SHEET (RULE 26)

Page 182 of 240

WO 02/21413 PCT/US01/42041
13/70
| FlG. 3A-2
1
i
: 334 332 340
\ ({
Interface Interface ' Interface
DAO Presentable eventHandler

*delete(): boolean

srender(clientRequest: Cli

*handleEvent(ev:Even().v

*update(): boolean
*insert(): boolean
1
!
I .
(
[
H\ 324 /

"]

: Interface Interface Interface Interface

ZapletBuildingBlock|| Container InheritanceCriteria| | Mailable
|] |
" [(

338 310

|
! Interface Interface Interface

ScheduleBuildingBlock | | PollBuildingBlock | | ZapletContainer
|
= S c S

320 322 326

SUBSTITUTE SHEET (RULE 26)

Page 183 of 240

PCT/US01/42041

WO 02/21413

14/70

c-ve
e-ve oid ‘O

i-ve

Old

ve Old

1100398/ qo)pjrynenowa .1«
01198jj09 :328/q0)pIyoppo+
4880} Jus.ipjyouunpabx
1S 48}/1480) Jua.pjiyD}abx
quri(runogpliyo)ebx

A} ‘buLyS awbU)pliyn38bx
pio :()818/8px
bung :()odf| yobx
ubsjooq :()108st¥

"]

9If gif ONU028]j0Y ()3 uBiD) 8bx
)) 108/qQ :()108/q0310b+
! _ v onewinu3 :()sburiqisiebx
J1ebouppyyrunoag | | seboubpuonpayijoN 89D/18) UILLILLIO?Y 198/ qoepopNu0I 28109
99D4J9)U] 90D}J2)u] 90D448}U] 90048
/ [\
805 |
‘ , 9e¢
1eboupyeINIag \\
, 99ppIsjur o0&
b1~

€-ve Oid

SUBSTITUTE SHEET (RULE 26)

Page 184 of 240

PCT/US01/42041

WO 02/21413

15/70

dnoy9
ONIYFINIONT
1772

¢ NOILYOI'lddV
F18YL1H0ISNV YL
q01v

¢ MSV.
dciy

L MSV.
vely

! NOILYOI'lddY
F18VLIHOdSNY L
voly

-EN|
Jor

§3d70-4
193r80
—VIIN

-1

dfod9
INOAYINT
co¥

H3a704
NOLLYOI'lddV
F19V140dSNVHL

ga07 = ‘ :
\ N o1

SUBSTITUTE SHEET (RULE 26)

Page 185 of 240

WO 02/21413

206

PCT/US01/42041

16/70

PRESENTER
508 202
bty
PRESENTER) ™ bno \ “CONTAINER
A
REQUEST PDO
o FIG. 6
BUILDING PDO CONVERTER PRESENTER
BLOCKS

..._m.—-—_...__ ——— - e - v ——— — - ———]

)

!

|
UILDING BLOCK

|

]

l

606A

)

604A

POLL TABLE
CONVERITER

606C
SCHEDULE

606D

LINE)
PRESENTER
DEVELOPER

DEVELOPER

H

e

SUBSTITUTE SHEET (RULE 26)

Page 186 of 240

WO 02/21413 PCT/US01/42041

17/70 200

SET NOTIFICATIONS

702~—@ ON — NOTIFY ME OF CHANGES
T0 THIS MESSAGE

704~—0o OFF - DO NOT SEND ME
NOTIFICATIONS

70640 CUSTOMIZE [suBMmIT |

FIG. 7A

zaplet

Set Notifications 702
/ 708 @
G On: Notify me of changes to this message:

DO Page 1: File Sharing 7

O Page 2: Poll 10

O Overall Applicationn_——" 712 714
O When new pages are added or the status changes—"

Send me notifications:
Immediately [¥]|—776

@ Off: Do not send me notiﬁcotions:f 704

| suBMIT|
FIG. 7B

900
™~

zaplet

© Groups | Group Description .
906
QA Testing — (Private Group — Restricted Access)/

For QA testing
Email ﬂ;erator to request membership——"906

902 904 I——
[Close f~—g0s

FIG. 9A

SUBSTITUTE SHEET (RULE 26)

Page 187 of 240

WO 02/21413 PCT/US01/42041

18/70
FlG. 7C

220
LOG ON TO PORTAL
Y
122 :
SELECT NEW MESSAGE OPTION
Y
724
NAVIGATE TO TEMPLATE FOLDER AND
SUB—FOLDER
Y
726
SELECT TEMPLATE
Y
728
DISPLAY TEMPLATE
K
730
FILL IN TEMPLATE
Y
732
(OPTIONAL) ADD OR REMOVE PAGES

FiG. 7D

134
ADDRESS THE TRANSPORTABLE APPLICATION
1
/36
SEND TRANSPORTABLE APPLICATION

SUBSTITUTE SHEET (RULE 26)

Page 188 of 240

PCT/US01/42041

WO 02/21413

19/70

Ve Oid 808 2l 018

[[3< o] [obog snowey] T __E_)

Juawiwod a|dwpos Jayjouo S| Sy
Wd G¥:0L 000Z ‘g Ao Jesn 8|dwipg Jsyjouy

‘Juswwiod sjdwos b S| SIyl

WNd €2 000Z ‘LT AOW Jas) ajdwps
@ Z Jo 2—1 swl} /910Q SWDN
(¢ Jo 7 Wbd) uojssnasig

sl ;ocﬁﬁ

Bujuoisiap 9l 8jqoul B

"9J9\ UOJ1DWIOU) AJDWWINS 9SDO Jawo3lsnd poojdn
(jouoiydo) :sajy paJoys 4o uojduose(

(C jo | Hod)sjuswiyonlyy

:UOI}oNPOUT
Aipwwing 8sp) Jawoysng]

(paJinbai) :8py1 abod
Jappay sbog

[E[-Do105F5 10N=] :SmiD}s Ss800id |

2¢08

/

I —— # o0

I Buissaippy @

———— T

[____]j ‘@wbN Jswojsn)

asp) abo
i

coz@

sobod o aA0gD sipaddp) Jsppal obpsss

B /mmoo Jawojsn) @

Aipwwng asp) Jewioisny Jebouby uojjdeox3) uojipipos3

N\

121doz)

v08

8208

Y208

SUBSTITUTE SHEET (RULE 26)

Page 189 of 240

PCT/US01/42041

WO 02/21413

20/70

g8 ©ld

858

Buipusd jusiog -pansssas syybuflly ou1 “eidoz Z00Z-0002 IuBLKd

~
_ﬂ [ooun?) ____ MON vwom == %a0g >> __whm

__~—suondQ A}nosg abog _ suondp Ajdnosg ‘ebossapy K3unosg

13e8[qng
wod*isjdozgyjwisw — Yyws 330N :wod4

[rowey > |
[<oov] pSopsd |\ 928

. 0} puas :wou4 sdnoib ssooyn
8c8 0£e sdno. 40/puy

958
(pouinbay)

cLs

Alowwns aspd Jawojsnd pajopdn

0) bvd

(wooAupdwoofwgzesn ‘wodAupdwosfwglssn ‘Ha)

Buisseppy @

asp) aBouD @

@ cc8 %008 SsaJppy 12jdp7 WoJ) 8SO0Y) :S[PNPIAIPUT 0N

g 98D JOWO}SNY) @

[~_suojdp buipueS ~ JobDuppy u0|3dedx3 Uo|}P|DIS3

(dipn) $Z8

19jdoz

ac08

SUBSTITUTE SHEET (RULE 26)

Page 190 of 240

PCT/US01/42041

WO 02/21413

21/70

6v8

8r8

9v8

144°4

cve

08 Oid

[wouoy [=S |
-abDSSaW 2y} MalA DD Aayy alojeq uj pabboj
pun pasejsibas aq jsnw sjusldioal Iy 'sieYI0 03)i poMIO)
upo obbssaly 8y} Jo Jepuss [pulbo sy} Ajuo 'sjualdioas 4Aq
popiomioj Buieq woJj sabossepy a.ndsg sjquyosd apow siy)
ol ‘HuIpJDMIO] PaIOLISSY Ylim painddS puss Q

-abpssaus a9y} MaA
upd Aayy a.0j8q uj -pabboj pup passysibas aq jsnul sjuaidioss
Iy "S1oyjo 0} sabpssaw oy} PIDMIO} UDD sjusidioay -obossawi

ay) Mo ubd Aayy auojeq ul boj 0) sjuaidiosy sedinbay
S ad :painoag puss O

‘ "sisi| uoinquisip [iow
3EomBcoowomommmzyo%w.um::oom:: zco.c_mc_omo_

184i jnoyyim abpssaus ay} pJomioj pup ppad uUDd sjuaidioay
ad :paJndssuf) puss @

- +gbpssayy Jo|doz @.noes D uado 0} 9|qo 8q Jou [IM
sjua|dioss Jieyy pup peziubodal 8q jou [SISl UOHNGLASIP [ioU 'S9553.ppD
IDWS [DRPIAPU] 0} Jues 8q Ajuo upd sabpssapy }9|doZ anow 90N

u

o 9pojy bupusg

[a] payoajes dnosb oN|
juss aq [ebosssw oy} jo Adod D) :dnosb ypim sjybu Joyyno auoys

(peyos(es dnoib auy 03
i, -suolydg Ayunoes obog, oy asn ‘sabod o)10ads
10} fjundas oyoeds jes o] ‘ebpssaw oy} Jnoqo SD}P JAY0
pup ‘Buipiomioy ‘Bumels Joj £)1undss dyy |043u0d sbupjyes asayy
suoiydg Ajunosg abossep

SUBSTITUTE SHEET (RULE 26)

Page 191 of 240

PCT/US01/42041

WO 02/21413

22/70

as 'old

SUBSTITUTE SHEET (RULE 26)

B 658
£L58
l
(10970140290~ Yoe
(sebod ay} mala 0} 8(qp 8q (iIM B_cm_a_o& pejosjes Ajup 'e1)
mm,m\\.\o (Aj1ndeg paspaloul) pamojly sjusididay ay10adg
- d a|qD aq |um Sjusidioss auninj pup juaLINd Iy ‘91)
958 .\\0|/ (sabod auy mopn 3 2190 29 % = (f&3undss 2|spg) 9UOKJaA]
V758 ~Juoissnosi 1S $S890Y
#69~"|niL 960d | Y
‘Mojeq S9X0q 8y} Buposyd Aq \mmmoa MSIA 0} 8|qD aq M sjusidioas yolym 198[8S
68 | suoijdp A3unosg sbod
[v] \ um_aﬁ@
EEER /_ ‘
058

Page 192 of 240

PCT/US01/42041

WO 02/21413

g6 Old

23/70

|~0G-0—0—A “Buipued jusjog “pansesal syybl iy "oul 4eidoz Z00Z—0002 ubLKdo) DV
675 | 20
Jaquisiy asodund bujyss] (ongnd) dis i .u||m|\:o 07
diysiaquiajy 3sanbay p (spand) 313130 LON OQ | o—yoyeq JeyjpeH =o
(sdnoug |jy MSIA) ulop UDQ NOA sdnoly MmN
— —_— S90U8J9}81d \{——
g8l6 + sobpssapy |pIOL 916 dusRield 0C6
|| 'pajppdn uaeq 8ADY UO Jepiing\—<
| ¥ dig | eup suoppoyliou yolym up sabossaw ON TN 926
_ S39VSSIN Sdno¥d|| | Q3I4IQOW 1SV 103rans| 926
(sAog ueaeg 3sp7) ApAOY dnoug AW (uQ SUCIIPOBIION YIM) sabpssapy psiopdn
3oL @ proaddy oyd Uoug opg 2] | SSBPSSOW 10U0SdN —
- dig\ \Nwm
%16 ainpayos [ZI llod (2] uojssnosiq [Z] VHC6
s)noyIoys uojjpoyiddy . sdnoJg bzm..
1002 ‘L) Iudy Appsaupop sdnosg AN X10398.1Q, dnou /x,m.
Cdpen) 4 abpsse|y 1XaN muo_acN clé
ﬂ 1
016 ccé

SUBSTITUTE SHEET (RULE 26)

Page 193 of 240

WO 02/21413 PCT/US01/42041

24/70

Z
912~_.I Group/ Directory

My Groups
> End

< |~ Applicati 936
9344 pplications —__}-

Archive—_
/ Everyone 1938

Release 1.0 Beta—2
924~ Personal Messages

FiG. 9E
9(2 974 975 970~
@ Microsoft Intemet Explorer ™\ N4 ~ HEEH
973 | Page Folder: [Parsonal [5]] ‘T Cf | |
L NAME | CREATED BY {LAST MODIFIED
975_Jﬂ NEW PAGE MATT SMITH 6715701 02:25 PM PST
(Create new Page)
9781’D .
Name: NEW PAGE
Description: NEW PAGE 979
Version: 1 T
Author: Matt Smith
Created: 3/16/01 02:56 pm pst
Modified: 3/16/01 02:56 pm pst
Location: 977
K\ o

SUBSTITUTE SHEET (RULE 26)

Page 194 of 240

WO 02/21413 PCT/US01/42041

25/70
950

&) Zoplet Application Builder ~ Microsoft Intemet Explorer DE&E

zaplet

Zaplet Application Builder : a

This tool allows you to create a Zaplet Application by combining
Zaplet Pages. Fill in the information below and pick Add Page to
add pages to the application. To modify an existing Zaplet
Application, click Open at the bottom of the window. Click a page's
name to view or modify its settings, or click Edit to modify the
page itself.

Name: New Application ——~——954
(Name can be changed when using "Save As”)

_ 956 952
Description: ll

(This appears in the Applicutioh Selection dialog box and
helps users select the appropriate Application)

Introduction Settings 958
These settings determine what information will appear in the
introduction orea at the top of the message. More Info...

960 964
Custom ﬁelds:(OptionoI')/ Name of status ﬁeld:(Optionol)(
Field label: Required i T
— R -

¥~ Possible settings for status field:
— -
(Optional) (Type one setting per line)
L] o ~]
[| o | 266 S

Default Pages 968

These Pages will be part of any Zaplet Message sent using this
Application Template. Pages marked as required cannot be deleted
from a Message. More Info...

[Add Page}——9684

Optional Pages 969

These are Pages that the author (and possibly recipients) can
choose from when adding a Page to the Zaplet Message. These will
be listed on the Add Page screen. More Info...

[Add Page]—9694

Allow authors to add Pages from outside this list

|! New ‘“ rl Open " H Save As “ Exit =

FiG. 8D
SUBSTITUTE SHEET (RULE 26)

Page 195 of 240

WO 02/21413 PCT/US01/42041

| 26/70
FIG. 10A D 1000
@)Microsoft Intemet Explorer, =& 0] S
1004 zoplet
\.|Default Page Settings

1006 | Page Title{New Page | q

B Enable updates (Update in this Application when the Page is modified) | ‘7002 .
5.) Require this Page (Author and recipients cannot remove it from the

~— 1 Application.))
1008 Page Template Properties

Name: Dashboard

Version: 2 . 1009

Author: Matt Smith

Created: 1/09/01 07:43 PM PST

Modified: 1/09/01 08:10 PM PST

Location: Starter Set

Save Il Cancel ﬂ
FIG. 10B ° 1010

&) Zoplet Page Bullder - Microsoft Intemet Explorer ~ / EE&
[zaplet (|
Zaplet Page Builder ' |l

This tool allows you to create or edit a Zaplet Page. Pages
cannot be sent alone but con be added to Zaplet Applications.
To view or edit an existing page template, Click Open. When you
ho;e finished creating or editing a page, click Save As to name
and save it.

. 1012
Name: New Page 1014

(Name can be changed when using "Save As”)

Description: [
S |

(This appears in the Page Selection dialog box and 1016
helps users select the appropriate Page)
Introduction: Ir : T

[afl{[e]

(This text appears at the top of the Page. The author
will be able to change this text.)

<+ Insert Building Block
~——1018

1019 ~— E NewJ LOPen [| ﬂ Save As i] _@
SUBSTITUTE SHEET (RULE 26)

Page 196 of 240

WO 02/21413 PCT/US01/42041

27/70
1020
&) Zoplet Poge Builder - Microsoft Intemet Explorer / =R
zaplet [
Zaplet Survey Page Builder ‘ ' 8]

This tool allows you to create or edit a Zaplet Survey Page.

Pages cannot be sent alone but can be added to Zaplet
Applications. To view or edit an existing page template, Click Open.
When you have finished creating or editing a page, click Save As
to name and save it.

1022
Nome: New Page —
(Name can be changed when using "Save As”)

Description: “ o o y]%AH
A4

(This oppears in the Page Selection dialog box and 1026
helps users select the appropriate Page)

Introduction: || ‘]%

(This text appears at the top of the Page and guides

1024

recipients on how to use it.) 1028
. . 1030
Survey Options: O Make recipient responses anonymous r—_/
O Aliow recipients to change responses until the survey is closed

=+ Insert Building Block

N
1018

o
FiG. 10C

SUBSTITUTE SHEET (RULE 26)

Page 197 of 240

WO 02/21413

PCT/US01/42041
28/70 ‘
1100 : 202 1104 1106
@" Approval List || TMove'Up & Move'Down 3¢ Dilete
Instructions for recipients: 1108
7"0_\1 Approval
Somple User Yes
11124~ Another User No \-1114
Yet Another User Yes
O Include linked comment sectio 1116
(Shows participant comments)
FIG. 11A
1120
9 “ Discussion “ \ T Move Up & Move Down 3¢ Delete
1125 = Name Date/Time = 1-2 of 2
|~ Sample User Mar 27, 2000 4:25 PM
/] This is a sample comment.
1124 | —Rnother User Mar 28, 2000 10:48 PW
F This is another sample comment.
I A
1126

FIG. 1B '™

1130
o [Fle Sharing || O ZFMove Up & Move Down X Delete

Description of shared files: (optional)

L—] —1132

e ———
——

0 Enable File Versioning™_ 7734
[Attach files...T™_7735

FlG. 11C

SUBSTITUTE SHEET (RULE 26)

Page 198 of 240

WO 02/21413 PCT/US01/42041

29/70
1140
2 [Image N T Move Up & Mowe Down X Delete
No 1142
Image
Attached
|Attach Image... 1144
Image Name: (required) 1146
| — Ed
Image Description:(required) 1148
J
| |
FIG. 11D
1150
@I] Image Gallery “ N $Move Up & Move Down X Delete
Image Worksheet
1156 Y1152
1~{[Add Tmage] [Add Multiple Tmages]
1158 Image Gallery Name || M_”‘M
No Images have been uploaded. Click on the
Add Image button to begin uploading.
Space available: 30 Images Page:1 of 1 |
11591 NEI Allow participant contributions
FIG. TIE
1161 1160
\‘ @ﬂ Information Fields]I N T Move Up & Move Down X Delete
1162. Field Names _ Field Values 1164
1166 L B
{Add Row|
FIG. 11F

Page 199 of 240

SUBSTITUTE SHEET (RULE 26)

WO 02/21413 PCT/US01/42041

30/70

1172 717\'0

@‘ Inline\Document " hl T Move Up & Move Down X Delete

NOTE: Accepts) only HTML (.htm and .html) files.
[Upload file...] (required)

FlG. 11G

7170\
@[I Interactive Web Page ﬂ Y FMove Up $ Move Down 3¢ Delete

Instructions
Please enter the address of the Web page you would like to display and interact with
in your Zaplet message: (required)

[t
(e.g., http:// www.zaplet.com/) ,

182 1180

FIG. 11H

SUBSTITUTE SHEET (RULE 26)

Page 200 of 240

PCT/US01/42041

WO 02/21413

31/70

ct Old

.Wmm—“‘uo\mN\w S19qQoy PIAD(J hﬁw v—_E hmﬁhw C :WW@I:E
m Bulop, piog auljuOlION
“IDq UOISSNISIp . W
Y} JNOYYM Sy} Op om_o ubd 9Joy Aol
8 0S5 pabupyd : n.
o nmc_zw_w h_w_m_m_oo_“_ﬂum__ .ho“ww_mg 13Nd LY .o_. p2)ppdN-0007/20/80 sz_wo_wnllewm |z1z1
10d Wy e : opISL
90°1100/67/9 SH3G0Y PIADQ Aouop O o%ws .
0 - AYaolivsno /4
¥ 40 ¥-| s}lods < w @ {Dpo} SMaA T
SJUsWoy) ysaiey N AN =5 .m.ﬂ.llll:_g 3Sn3siq _‘ auIo
(w05 7o) GoM 8Y) O S BY) @ UYIDAS UJODF3P AVQOL VSN | || ooz
ooy womsrosg ooz | [iBuffid ATNO,3SN TVNHILNI HO L peonod
(oA YUd) (iserdoz noqp pusly 0 [BL 7 4z~ (SHUeIdRel o MITAZLAd WV 4ET 90:1100/67/9)) [\ 3008
: ‘s.1akp|] /sawiD.
(_suondg Jnoyym sJasn asoyy Joj yulj b Apjdsip |im uoijpIe} SIY| ‘sucling(syis __U_Kmto mm_w v0ci
(Cpiomiog ") 0} %00q NoA S9Y0})SWOY PuD %0Dq ‘PIDMIO) Y)Og SDY 9UO S|y} '89S upd nok sy ‘nok
jo_%N #oN pasiwoud] adfjoj0.d Dupyiom sy} S94Y~pADQiSaYLIM PUDUD IO YsOp (Joyiny [puibl0)@
o dez
101dez uopees
= 16l I il)
1o|doz uoissnasig— adfyojoud o —o}Ig~Y - M4 0elqng| |
101010 ooy YSN-aYIS-Y~Puss M4 3} ﬂw /8&
, SUDAJ 8A9)S 0]
Wd Ly*L 00/Z/8 Pop :juss _ SUDA] BAJ]G W04
[*0[sV o ~o[DRI [A [Q & [pomeiBS[v 01 hdoudB] Aidoao®
dey suojoy sjoo] jouuio yesu] meA 3T e ||
HEE NIH 1007 UOISSIOSK] - 9M1010M §

SUBSTITUTE SHEET (RULE 26)

Page 201 of 240

WO 02/21413 PCT/US01/42041

32/70

9 || Invitation ' {Move Up & Move Down 3¢ Delete

1302~"FSelect Invitation Style...] (required)

1304 Event Title: (required) s _

1300

1306~ Brief Description: (required)

Event Details: (required)

7308~\u

1310 | Date: (requ&ed) .
(e.g., Monday, 10/12/99)

Duration: (required)

o]

a|

-

1312

—

(e.g., 7am—5pm)
1314 Location: (required)

g T 1
Address: (requlred)

) gy S——
S ——

%
(e.g.. Monday, 10/12/99)

1316 —

FIG. 13A

| @) Advanced Options EEE)
73.303\ zaplet ‘
~ Recipients can vote for: ?

—
y 33/2— IIOnly 1 choice“vﬂ

Include "Other” answer choice and let participants write~in.
13544—"" 7
13364 ote options:?
O Allow participants to change their vote
O Allow participants to vote anonymously

1338 -
| Poll results available to participants:?

@ Always O After voting O After poll closes O Never
Note: Author can always see results

|[_sove] [Cancel]

FIG. 13C
SUBSTITUTE SHEET (RULE 26)

Page 202 of 240

PCT/US01/42041

WO 02/21413

gel Old

—) S—) RISty S

Hoy) og@ 104D AdQ

%§

\

7
\
-

7
(suopuido unok s} jouy “6-a)

| N

Suoijd(PadUDAPY (paunba) :uomsup 0} sjusidioad Joj uoj}send

. (4eu3eboy sjuswILIOd gz¢!
pup $9)0A jupdioijiod smoyg) ﬁ

92|

9000 X umoq sAopy £¢ dn BAON L

SUBSTITUTE SHEET (RULE 26)

Page 203 of 240

PCT/US01/42041

WO 02/21413

ael oid

34/70

‘Al 0} payumj St ‘Jusidivas Jo Joyinp AqQ passjus ‘Sjojs auwil} JO Joquinu D)0} 8Yj :BjON
sowy} %@ s9)pp mau jsabbns 0y syusidioas mojly B
:suondp

Ao EEEC I IC1/C /LS sjoueny we
EDD D\ D / D O3 syouseyy pig
EDD E\ D / D O3 sypuseyy puz
EDD D\D /= 210U}y 1S|

(peuinbas) :adf} 8jnpayos

— 8951
——— - a.inbas
1 = O - P
uoI}DJN aw|] 3o 2}b J
\ WramS " P00 S fesuil puo sejoq pesodoid
493%}
:uo3p207 paesodoid ey
(ysim nok BuipAuo adky upd nak ‘jois swp Yona JoJ)
uLoj~8814 Q
- (‘uoyounp pup swyy ‘ayop ooxa oy} Ajoads nok ‘Jojs awiy Yooa Joj) 2yl

painonils @ S

olopQ X uMoq asop & dn ARG

[—___empswos] @

SUBSTITUTE SHEET (RULE 26)

Page 204 of 240

PCT/US01/42041

WO 02/21413

35/70

998 —1

0951~

g€l Old

N— 451

U
st
99¢ | — ll|.|||||||||lll|«|l|= = _

\ o)

-_— e ——

'D}DP puUD SMOJ }Ips/ppD UDD SjusIdioey 'MOJOq 8jqD} By} Oju} Aj}08.4p DIDP PUD SSWIDU UWNJOD
1ajus 1o 3)y D yym 9|qp} ay) ayy sjpjndod o) juodw] oI Jaype uayl ‘sjqp} Jnok SWDN
— SUOJ3ONJISUT

(poainbaJ) | | 1PLNor;

_Em_wc X usog sop £ dn eAon

= gy | &S

SUBSTITUTE SHEET (RULE 26)

Page 205 of 240

PCT/US01/42041

WO 02/21413

Vil "OId
[e

¥o01@ Bulping 1Josu] +

s))nsaJ anok juesasd 0} JJoyd Jpq By}
ssooyo nof 3sebbns am ‘adjoyo

—] n—) R S P
| — ()} E—) Mo D3 @ 10U 340~

[b]

V4

——0——0 Nelin
o | —) I—) \ /
N N By Sm— @% \ N\
T |E——0L—J
8 © o
(paanbay |) :sadjoyo Jemsup juaseyip Z| 0} dn Jsju3 ydose col;&gmmm
"ul-ajm sjupdiofund 39| pub 82)04d JaMSUD ..._m£o... apnjou] _U/
| T o |
- 1250040 UDD syueldiosy || GEY!

~ccvl

(paanbau) m.m.mlwco 03} sjusidioas 10j uoysenp
= [s0pn|&
_

EEE yoroz (&

o108 X umoQ sroj 4+ dn oW Y

SUBSTITUTE SHEET (RULE 26)

Page 206 of 240

PCT/US01/42041

WO 02/21413

37/70

ari

Old

#o0ig buipjing 4esul+

0st1-

DAID JUSWIWOY BUlI-RINK O
x0q Jx8} aujl-s(bus @~
'89S [im Sjusdioay

&' ynoqo uotuido Jnok sj pup "H'9)

JJomsup 0} sjusidioal oy uopsany

forera X umog arofy § dn aroR

(asuodsay 1xe) sa.4 (| @

~vEv

~csvi

¥o0|g bulping }Jesu] +

SUBSTITUTE SHEET (RULE 26)

Page 207 of 240

WO 02/21413 PCT/US01/42041

38/70

@" Ratings TMove Up & Move Down X Delete

Instructions for recipients:

———— = —1442
I

(e.g., Please rate the candidate in the following areas...)
Rating Scale:
Minimum: 1 1444
Maximum 15 || 1446
O Show N/A option-/
Enter rating labels: (optional)

1448

il

(e.g., Poor, Averogé, Excellent)

Questions or items to rate: (1 require_;d)/— 1452
[Add S Entries Remove 5 Entries]

l

|

> 1450

|

|

-
o

Il_—f_——_—_‘—_:_——j

(e.g., 1.Communications Skills 2.Technical Skills 3.0verall)

FIG. 14C

SUBSTITUTE SHEET (RULE 26)

Page 208 of 240

PCT/US01/42041

WO 02/21413

39/70

S34N03004d
d340LS
o8ar
ALY

)

S193rdo

$S300Y V.iYa 00ST

ovao 90sT

ovay vosi

"~ ovagq Zosi

X074 9NIGTING 62

X078 ONIAIING c6c

X074 INIGTING 26

Sl Old

SUBSTITUTE SHEET (RULE 26)

Page 209 of 240

WO 02/21413 PCT/US01/42041

40/70

FIG. 16

1602 '
RECEIVE REQUEST TO PRESENT A VIEW
'
1604
FORWARD REQUEST TO CONTAINER THAT CONTAINS
THE BUILDING BLOCK ASSOCIATED WITH THE VIEW
~ v
1606
FORWARD REQUEST TO BUILDING BLOCK(S)
' y
1608
INVOKE BUILDING BLOCK ACTION METHOD
Y
1610
RECEIVE PRESENTATION DATA OBJECT FROM
BUILDING BLOCK METHOD
Y
1612

FORWARD PRESENTATION DATA OBJECT TO PRESENTER
THAT IS REGISTERED FOR THE CURRENT ACTION

SUBSTITUTE SHEET (RULE 26)

Page 210 of 240

WO 02/21413 PCT/US01/42041

41/70

FIG. 17A

APPLICATION SERVER 202
EVENT ROUTER FRAMEWORK 1702

EVENT BROKER FRAMEWORK 1704

EVENT TIMER FRAMEWORK 1706

FIG. 17B

EVENT MESSAGE 1710
HEADER 1712

BODY 1714
INNER HEADER 1716

PAYLOAD 1718

SUBSTITUTE SHEET (RULE 26)

Page 211 of 240

PCT/US01/42041

WO 02/21413

42/70

&3SN INILSIXI =

——— — —————— — — oo [.t o S~ — — — oy

HOLIINNOD
WO.LSNI

818l

qINHIS J
NOILVII'lddY

coc

e

\
>

SYINYIS
NILSAS ¥FHLO
co8!I

g8l Old

o D
FNYHINIVI 4019INNOI
7 55087
— \
HINYIS EIM 0L IINNO SnNg NOILLYYITLNI
L g5087 Iv3
— 08T
" J "
NOLLYITddY
FSTHAHTLNT %@n&«%
ol vl |
FHNLINALSYHANT
¥3SN ONLLSIXI
{ 3\ .
TNVHINIVA ¥0.12INNOD
7187 79087
\ _J
r \
YINYIS HIM 01 I3INNOI SNg NOLLVYY9ILNI
Z18T geo5T Iv3
- / 08T
poeid 1 Vuoroammo
FHNLINMLSVHANT

S dvav

v081

YINYIS
NOLLYII'lddV
c0c

Y
I\

SYINYES
WILSAS H3FHLO
c081

Vel ©Oid

SUBSTITUTE SHEET (RULE 26)

Page 212 of 240

PCT/US01/42041

WO 02/21413

43/70

- INVYINIVA 4

e
J

&0193NNOQO 33cr
A

([NOILVOITddY |

&0L23INNOQ 33l
80281

qINYIS

NOLLYII'lddY

coz

Z

Y

JSIYdYIINT

oigl

>

FYNLINYLSYYINT
YINOLSND INLLSIXT =~

&0LI3INNOO 33cr
Yoce!

I
I
1
1
!
|
|
!
|
—
L
]
|
]
!
|
L]
I
{
{
]
|
l

SHINYIS

WILSAS Y3HLO

c08i

~

/

08l Old

SUBSTITUTE SHEET (RULE 26)

Page 213 of 240

PCT/US01/42041

WO 02/21413

44/70

(NOLLVOITddY |
FSTAAHAINT _
" o m %ﬁ\S«
28 |
M58 J i YINYIS
|
iz | (dLLh/) YOS NOILYOITddY
— . | 202
ON7, AOVE | 390148 Y8409/ W09
i I 00 2Zo1 dOIT
>]
YNNI GIM |
= | A (" sz
\, -’ | m\
FHINLONYLS VNI | WILSAS ¥IHLO
43SN ONLLSIXI “ z087T
ast id

SUBSTITUTE SHEET (RULE 26)

Page 214 of 240

PCT/US01/42041

WO 02/21413

45/70

ct8l

WILSAS |
. INIONT (17SX) | |
e s NOLLYWy0AsNvall 1sx | 1INTTONYH INIAF
- Yl I X TS
| I | gaidvay ¥ — 1 ‘
don 1HOdSNVL -
o JIIH 0P8Il y \ NOW3vY(Qd
dLIH oy | |42e3N00 107080 || LNAT NOLLYOITddY
T VAP OL X ; 91z 202
781
[~ T T T T s I
! _
—H qins INIONT (17SX) |
dIAS | | NoILLVWHOISNYAL 15X !
L WX 9581 “
o LA | eaavay] — |
“ 1H0dSNVeL |
—L i IH oF8T — | NOW3vYa YINY3S
dLIH | oy | [23dmN00 X [+ LNT e _rzom VoI TddY
>30T m o7 | | 0L 203780 vA i m 91z 202
L

FOINYFS ININT T

g8l OId

SUBSTITUTE SHEET (RULE 26)

Page 215 of 240

PCT/US01/42041

WO 02/21413

46/70

8581
Dlﬁj

<t _
aNnNoAaLNo
=
M _w 410)dopy 10} dDpYAX0i
ST g Vir8l
S 1761 . _
2 B \
= N C
m M y 4
L] & S3N3N0 S NHOMINY
gkl 1 714 HOLOINNOD
o iz
b »
A
3 Y
/
/
™~ _ £ 1
M - J0)dopy 10} dopyyAx0id
> Ji%
umw—m go78] V%8
3=
e

! >

aNNoanNI -

IdY YOLIINNOD ¢G81

asx
193rdo

Z18

S E—

s.84
YOLI3INNOI
WOLSND

0681

A

481 .@E/vnﬂw

(L/7sx) g9
Y0L2INNOD JI¥INI

9£81
—
-
WX
LEIN-1404

SUBSTITUTE SHEET (RULE 26)

Page 216 of 240

PCT/US01/42041

WO 02/21413

)

LINYFLINI

0561

YINYIS

6L ©ld

SUBSTITUTE SHEET (RULE 26)

0061 “
|
gI67 7061 ! 9167
FOVASILNI | [TouN09
| NOIL Y2INOWWOO ¥0SS3004d | | HOSHNI
@ MH “
|
|
|
| —
08T BN
snd T iy 2IIN30
i 1NdNI
@ ﬁ “
|
|
|
—— “
0161 061 9061 ! 2161
. PN
30IA30 AHONIN i R—
FVHOLS oy NIVA m AYidSIa

Page 217 of 240

PCT/US01/42041

WO 02/21413

. (G307SYINS)

"~ (F110V) 21 F9VSSIN

) 4

- (435079) 11 F9VSSIN
4

/ § 430704 |

A

¢l J9VSSIN 9 JIVSSIN

1

G J9VSSIW G FIVSSIN

\ Z 30704 g

VARG]

A

I 39VS53W 0L F9VSSIN

1

01 J9VSSIW 6 JOVSSIN

\ 14 QMQ.\Q“\L

T 39VSSI ¥ FOVSSIN IS

A

A

% 9VSSI £ FOVSSIN

\ ¢ ¥30704 L

7 J9VSSIW 9 FOVSSIN

G JOVSSIN £ JOVSSIN
y

\ £ 430704 &

<
N -
N
4
(5T)
TRV | |
F9%d GM
050z

SH3A704 TIYAI | dNoY9 GIHVHS

% FOVSSIAN Z FOVSSIN

T J9VSSIA | FOVSSIN

\ 4 X08aNI L

SY3a704 IIYN3 | H3SN 0oc ‘Bl4

SUBSTITUTE SHEET (RULE 26)

Page 218 of 240

WO 02/21413 PCT/US01/42041

49/70
2100 2101

ya
File Edit View Insert Format Tools Actions. Help

Reply Reply To Al Forward 2102
rJ

“To: John Doe Sent: Mon Nov 1 2000 6:42PM
From: Richard Roe :
cc:
Subj: First Quarter Financial Summary
2104

\\(

2108 2112 2114
C { (~

Profit Balance |[Bookings ||Amy's —~— 2116
& Loss Sheet Pie Chart | {Comments

2106

FlG. 21A

SUBSTITUTE SHEET (RULE 26)

Page 219 of 240

WO 02/21413 PCT/US01/42041

50/70
2100 2101

4
File Edit View Insert Format Tools ‘Actions Help 2102

Reply Reply To All Forward)

To: Finance Team Sent: Mon Nov 1 2000 6:42PM
HFrom: Richard Roe

ce:

Subj: First Quarter Financial Summary

John and Team, :

Here is a pro forma summary of our financial results for
the first fiscal quarter. Please add your comments and

I will finalize this.

Thanks,

Richard

2104 L_. 2105
2108 2112 2114
2108 (

Profit Balance {[Bookings [[Amy's |~ _ 2715
& Loss Sheet Pie Chart | |[Comments :

2106 ' FlG. 21B

SUBSTITUTE SHEET (RULE 26)

Page 220 of 240

WO 02/21413

PCT/US01/42041
51/70
220\0 2201
[4
File Edit View Insert Format Tools Actions Help
Reply Reply To All Forward 2202
~
To: Finance Team Sent: Mon Nov 1 2000 6:42PM
HFrom: Richard Roe

cc:
Subj First Quarter Financial Summary

New LForward Note to Author Note to All View Recippients Edit Notification (On)

2204
2207 2206 e

KJ 22’20
Profit 2208
‘&: Loss —

(Profit & Loss For First Quarter 2000
Bookings 2214 .
‘Pie chart
This is a text area that can contain any
Amy's combination of text, with rich text editing and
Comments formatting, graphics, images, and other
\ multimedia items, that the user wants.
2216 /
2222
2210
FIG. 22A

SUBSTITUTE SHEET (RULE 26)

Page 221 of 240

WO 02/21413 PCT/US01/42041

52/70

22@\ 2201

. I 4
File Edit View Insert Format Tools Actions Help
Reply Reply To All Forward 2202

H

To: Finance Team Sent: Mon Nov 1 2000 6:42PM
IFrom: Richard Roe

cc:
Subj: First Quarter Financial Summary

New Forward Note to Author Note to All View Recippients Edit Notification (On)

2206 \
S 2204 . 2220
Profit 2208 /J
& Loss

Profit & Loss For First Quarter 2000
qBookings 2214
Pie Chart

This is a text area that can contain any
Amy's combination of text, with rich text editing and
Comments formatting, graphics, images, and other
multimedia items, that the user wants.

__/

(Comments To Date On Financials
Enter Response
Richard Roe 11/01/00 1:07PM

I think this shows what we can do if we want.
Carol Smith 11/01/00 12:52PM

The Number for Asia—Pacific looks wrong to me.
Paul Peterson 10/30/00 03:25PM

Europe’s revenue is understated by 10%.

2216

e
2222

1-3 OF 12 Next>>
N / il
/I — (<) 1 of 5 (5)
: o
oot0 2212 2214 _t
2216
FIG. 22B

SUBSTITUTE SHEET (RULE 26)

Page 222 of 240

WO 02/21413 PCT/US01/42041

53/70
ZZQ /_2501
I4
File Edit View Insert Format Tools Actions Help
Reply Reply To All Forward 2202
rJ
To: Finance Team Sent: Mon Nov 1 2000 6:42PM
From: Richard Roe
cc:

Subj First Quarter Financial Summary
New Forward Note to Author Note to All View Recippients Edit Notification (On)

2206 /J

_J 2207 . 2220

Profit ~__—2208 /J

Profit & Loss For First Quarter 2000

Bookings 2214
Pie Chart "

This is a text area that can contain on‘y
combination of text, with rich text editing and

> Re
3‘ =
(4] wn

wn

Comments formatting, graphics, images, and other
multimedia items, that the user wants.
Brian’s 2216
Comments
- 2222
Carol's
Comments
Dave's |
Comments
MORE PAGES | 2250
VVvy
. <) 1 of >
2214 (Q 1 of 5 (>)
r/
2216
FIG. 22C

SUBSTITUTE SHEET (RULE 26)

Page 223 of 240

WO 02/21413 PCT/US01/42041

54/70
2200 2201

\\

/
File Edit View Insert Format Tools Actions Help

Reply Reply To All Forward - 2202
To: Finance Team Sent: Mon Nov 1 2000 6:42PM
HFrom: Richard Roe

cc:
{|Subj: First Quarter Financial Summary

New Forward Note to Author Note to All View Recippients Edit Notification (On)
~2207

22527 2(252,4 21254 2254A
)

Profit & Loss ﬂ f/

Bookings Pie Chart

Amy's Comments

Brian’'s Comments
L/

I wonder if we need to restate the Alpha
account revenue in view of the

2256A cancellation of the'last contract?
——Brian

2256 —|

04 -~
2 FIG. 22D
SUBSTITUTE SHEET (RULE 26)

Page 224 of 240

PCT/US01/42041

WO 02/21413

55/70

(a2 S39vSSH
3

J
<,

SANIT aav
aNY F9VSSIN HIOVI 40
SNOILINIZ3G OLNI 09

AAXA

-

~-02¢C

)

T04INOD SSFIIY MNIT +
- NOLL dI¥9S30 MNIT +
giee $738v1 MNIT -

INIT AVM OML 4O 3NO -
AU VINAONdSY SV SAUNQIHLLY MNIT FINVYHO

veec Ol

| | |]
9Icz PIcC ZIfe 0IcZ 9052
FOVSSIN SIHI SN0 HoTd 3L | LiSTV/¥3a104 dnodd Ho
0INO 1x3IN09 d3Hio | | word awv s7ovssam | |LSIy/43ato4 TYNOSY3d Q7314 INIT OY08dIT0
WoY4 F9VSSIH 9vya 404 HOMYS oM SFOVSSa yoid | | ot 1 3usvd | | oL %N Adoo
d04a/9vya | oI | FSOHI 3svd | Ad09 |
QOHLIN
ONDYNIT
91d (210, %4
9VSSIN ¥ NI NOLLNG INIT SST¥d [
~-t052

[)
(S39vSSIN OML INIT OL INVM T_z0¢Z

SUBSTITUTE SHEET (RULE 26)

Page 225 of 240

PCT/US01/42041

WO 02/21413

S SYU_1

N é

© SILLYHId0Yd SHNIT

0 1SAray 0L JINVH) 319

ﬁ@zzm%mm;,u
2 J

SANIT aav cese

~| ONV F9VSSIN HOY3I 40 |
SNOILINIA3a QINI 09 |™-025C
[}
T04NOI SSFI0Y XNIT
NOLLJI¥9530 MNIT
S738Y7 ¥NIT +
INIT AVM OML O 3NO -

UVIHOYddY SV SAUNEQIYLLY HNIT FINVHI

ATIWNOILdD 435N
SHU

ON

0£ec
JANIT LON 00

AL
TIN0HS S3HL 4T GINSY
A TINOLLGG 4380

9csc

gec Old

IAYA

\ [

vese

\

STOYSSIN NIMLIE GICTIN ST (SPINIT
V SININYLIA ININT 43SN 4O MOTIXNIOM

JIVSSIN INFH¥ND 3HI 0L QIUVTIY ST LVHL
FIYSSIN MIN ¥ SAULYYINTD MOTINIOM

SUBSTITUTE SHEET (RULE 26)

Page 226 of 240

PCT/US01/42041

WO 02/21413

57/70

ogc Old

INIINIT G3LI344V FINVHI p mgsgs. 7 0L INVAF13Y LON JONVHD

f 2662 ON N
103760 MIN 01 STONTZLH osee
404 Y007 0L XSV GNNOX9XIYE F1N03HIS
ONV GIONVHD S INIINOD TIY v | 5B 9557
) j f
’ gvee VA 4N
1ST7 SIHI 3L¥adN ‘SANIT é
d XI3 “INYN 070 HLIM SXNIT 2207 ‘SHNIT | 10780 1103/ INNTY
Q3L YHINF9 ATIVOLLYNOLAY 40 ISTT ONIsn | S
R
vpeZ 8cez
1517 STHI é
NV STIVSSIH HOMH SYNIT AON3Y SHNIT 19780 qF130
CALVHINTO ATIVOLLYAOLAY 40 1SIT INISH
\ 95¢c
0b£Z a

JavA 38 NVO SXNIT JLLYHoLNY
HOIHM 0L SL93r60 0L JINVHI FNOS

SUBSTITUTE SHEET (RULE 26)

Page 227 of 240

PCT/US01/42041

WO 02/21413

58/70

aec 9ld

SYNIT G3LVHINT9 J
ATIVOLLYNOLNY 40 1SIT 3YadN 9952
[Ll]
7otz 795 095 gore
ININLYVSIA ANYIHOI
“1N089) NOILYZINY9HO NOLLYZINVISO
INIINOD 1VHL JOVSSIN 1VHI 1VHI 804 39vd SM 40 4350 FHI
01 XNIT V V0 01 YNIT ¥ V30 VoL NI v 2vaso Lol avw oL N 3Ly
JUL 9SS INYN NOLLYZINVIHO YN 4350 40

INIINOD FI8VINIT H3HIO |

STINFYIHFY 1231E0

(FINVHI HIYY3S

F18VZIN90IFY ¥04 INIINOD

§s34aav Mvn7

9%¢¢c vo07

(" IN2INOD F9VSSIN 0L 3NVHD 3H0S)

~

SUBSTITUTE SHEET (RULE 26)

Page 228 of 240

PCT/US01/42041

WO 02/21413

v¥c Old

607C 39vd LXIN MOHS
I

F9VSSIN FHL 40 JONVISNI SIHL
o 404 AYOLSIH XNIT NI SANIT LX3IN

59/70

ONY IN3YHNI SILON YNYIS
FIVSSIN TYSYINSNYYL INIT NO

A Se——
80vS
“AYIdSIA
JOVSSIN 404 GALYYINID
THLH NI SYISMOYE NIHLIM
J1avIrvAy ATIvNsn SNOILINNS
NOLIVIIAYN INFWTTddNS |
~—
A

MOGNIM MIN

NHVdS LON F9vd

JOVId3Y 1VHI SHNIT
SNIVINOO 1VHI
FIVSSIN NLH

vove

core
SYNIT HLIM 3IVSSIH MOHS

gec Oid
(gcz 9Id)
ONIMNIT FOVSSIN JLLYHOLAY OL 09
SIA
6Z5¢
FIVSSIN

TYNIOIHO 3HL HLIM FOVSSIN MIN FHL
JNIT 01 YFHLIHM SALVOIGNT T04INOD &3S V

~~9/£2

*

FOYSSIN HFHIONY 40 LXILNOI
3HL NI FTIHM QLYY ST F9YSSIN MIN ¥

¢

17434

JONVAT13Y GININZLF0
1XAUNOD A8 (343040 diLS GIHSINIA
FHL MOTIOS OL ATINIT 34V LVHL SFIVSSIN
M3IN 40 1SIT V HIIM O0IUNISTdd ST 435N FHL

744

*

3J9YSSIN ¥ SY GINII30 SI HOIAM
NSVL V NI dLS ¥ SIHSINIS &3Sn 3HL

1/4%4

SUBSTITUTE SHEET (RULE 26)

Page 229 of 240

WO 02/21413 PCT/US01/42041

FIG. 2564 %V

(2502) o ~
- 2503
S, B 2 o
MESSAGE WEI ?4555 \CE ””fg 31)
MESSAGE WEB RING TAIL
2204 NEXT |«
PREVIOUS ‘
.) PREVIOUS
" NEXT 5505
~ ‘ —T =
NEXT W)
PREVIOUS |+
2210 . 2508
y T~ Loned
// \\\ » k J
2512 l 2514 J
2501 ’ '
MESSAGE WEB 1
\(MESSAGE WEB RING HEAD) y
FlG. 27C
2740
—{ DONATIONS (THIS GROUP): $5
| DONATIONS (ALL CHILDREN): $12,345
2742 ([2744)
DONATIONS (THIS GROUP): $40 DONATIONS (THIS GROUP): $300
DONATIONS (ALL CHILDREN): $40 | DONATIONS (ALL CHILDREN): $12,300

—

2746)

DONATIONS (THIS GROUP): $2,000
| DONATIONS (ALL CHILDREN): $12,000

[§

2748

DONATIONS (THIS GROUP): $10,000
| DONATIONS (ALL CHILDREN): $10,000§

SUBSTITUTE SHEET (RULE 26)

Page 230 of 240

PCT/US01/42041

WO 02/21413

61/70

(aatvadn oy 83 39VSSI)
}

N
0£sc

VL GNY GV3H 40 NOLLON

SINIY &M FIVSSIN IUVTdN |
A

%
8252

“ONIY G FIVSSIN SLXAUNOD
SIHI 40 SHIENIN (ISIHIN

GNY 153070 3HL N3LH0) TIVL

aNy QY3IH 3HL NIMLIE NI M
JOVSSIN MIN IHI QVIYHL *

N
n 9csc

4735 0L Wno3

é
LXIAUNOD

A o9z 4 zooz
" ¢ obpssay Z obosssp
Janouddy1ebossapy
Jenosddy
juaidioay|ebpssap
ALpy snujw jquaidiosy
1uaId108 Y ‘Cabpssap
qusIdIo8y . paLs
uoyiny - jebossapy
pal4 oyiny oyyny
704 104
| A
_ [
_ |
Y Y
4 ooz 4 o9
£ abossapyy | abossep
AroH snid
: [04D)
Jualdiosy|obDssap ‘ .
Sueidioay ["] aipp37 -denosddy
aADg 'jo4D2)
pa.4 . .
“Joyjny*|ebDSSEN qog 3uei1o%y
-oyyny Awy aoyiny
704 70
Y9c Old

SANIT SNOINFYd
Ny LN NIHLIH G3H
INOH M FIVSSIN 1SHI4
FVSSIH MIN 2252
) 0252
$262 i

1XUINOD 193104d 0
dnoy9 VIdy ¥ NIHLIM S30ISFY
JVH! 834 FIVSSIN ¥ ILVIHI

g9c Old

SUBSTITUTE SHEET (RULE 26)

Page 231 of 240

PCT/US01/42041

WO 02/21413

80L¢

62/70

4 yozz
¥ obossay

J58g°90i0Y
J8inpayas cabossapy
'210q

Rl
abpssapy uonpyAUT

81| ‘cobpssapy

[

=
]

qun

|
]
|
A 4

4 rozz
¢ abossapy

sjinsey £0
Jnogo bunssw a1

Aopsaupay 9
(1sag) Aopsen; g
ADpuopw vy

S89/0Y7) 8NPEYIS
obpsssyy 8/npayos

bt e e e e e e e e

41)44

L.

yury

L~ 90L¢
[

| A do)

(ouvuwao SMN)

4 Tz
| 8bossapy

1s8g°89/047
8/npayas cabossapy
8)pq bunsapy

abossepy pbpusby

J
oN 0292
i
SNOLLONYLSNT
FHOW

9192
©
N
1SI7 MIN L
1 nodd MNonTY any =
(USIT 4) GNYdX3 | SU x
N : vi9c ”
9192 m
SUVIITdNa T
| sy WNGINTONT &
ASI MIN 0L aay | SH lu
C 0192 5
2192 =
SUVIITANG T mw ol 0
| ONIONZY LSTT MIN NG 2
0L NI ISTT Va3 | ST D

Lapoz ‘ 909¢

Vic 9OId

NOLLJIYIS30 104 ¥
WO SHISN 40 LSIT ¥ AU VHINTD

g9¢ Old

5097

Page 232 of 240

PCT/US01/42041

WO 02/21413

63/70

INOaG

14Y44

pesz” 3INON

3N @134 TYNI4 3LNaW09 01

NOILINIZ3G G134 NI S31NY SSINISNE AlddY

cele \\

GHSFHHTY .
INIQIIN G131 YIEIYISANS A4 ¢aiald
404 , d04 W04 VLS OL QINT0S3Y

NOILINIA3
G314 NI A 43d04d

(J3IHSIYF3Y 38 0L
INIGTIN SV SHFEIHISANS XYW .

78N, YYD
a4 INIGaIen

ocsz -

¢d13ld

SIHI 0l SY3gI¥9SEns

NOYH VIVA HOLF »
AVa-0i-dn SI a13l4
OL—-GIHNIT FHNSNT

B 9iLe

Q1314 01-0FINIT
WOYH VIYQ HOLIS = |
AYa-0l-dn ST ai3ld

OL-AIXNIT J8NSNT » R_

ON viva T

oclLe

¢013l .
IHIONY WOHd VIVa
a3and

8iLe

¢q13d
YIHIONY NI ViV Ol
JANTT

4744 I

S3A
vi/e

4

J3HSIYAFY 39 0L INIGIIN

FIVSSIN ¥ NIHLIM INTVA v
NI

YIINOT ON SV (7314 4FG149S8NS NYVYA A ONY NOILINIF3G Q1314 134d¥3l

pzLz —

8¢ "Old

01z~

SUBSTITUTE SHEET (RULE 26)

Page 233 of 240

PCT/US01/42041

WO 02/21413

64/70

vVeéc Old
dn dop UW S ¢ TIPS
59j0S -
suoljoJadp -
bujsesuibuz -
buizaxop -
10d sly} Joj pusyp [im wod} sAeg SNIDIS Sj00Y ZO oNPIAIPUT UN 0¢ ¢ ups
SnBiS sipog g (ip4eAQ UK 0C ¢ ip3
uod siy) sjpudy |4 WOl "038 ‘SAjDISIUWPY ‘UoONpoNuU] - UIN G | 1IPB
—— S9)0N uoj3disasaq pjol uoijonq #
0182 (yssyay) (weyl maN ppy) SWa}] %com_q\ mwbmw
Z192—4d0L MaN ppy+ od UO[DYAUT SWa}] UORdY 3MpaydsS |ppuaby]
| $#0 SUONDIYNONS? %082 .@Q%N\l:\ 'sjuajuoy sebouop buiespy @)

——

\Em_%N noqo pusyy D flay =7 (Syueidioal fIp MIIA/LQd WY #€:Z 90:1100/62/9))

MO\ Julld) |'Bunesw sy} pua}ip. 0} suooziubio s W0l pup qog WOl SuOKJBAS
paau 1 'sbuijsaw Apjeom Jo saues o jo Buuuibaq ayy s) siy; isejoN
_suopdo) 8Z/9 bunsspy smpjs xjusoyq 3os{oug DL
E 3057 Jaypap)sjedwenty uyop :szjunblp
Tc_aoN.. aozq L :1abouppy buijssp @)
o|dez]
} _3 paJamod V

Sweyshs 0%y |0087

EEE

»xidx3 Jousiu] YososiN - g7/9 Bujsan xweoyq odlos :jopdoz Jebouoyy buesn(D

SUBSTITUTE SHEET (RULE 26)

Page 234 of 240

PCT/US01/42041

WO 02/21413

65/70

g8z ‘i

JOVAYAUNI GITITIVL ¥ YIANN SdYHYId FIVSSIN INFHEND 40 L4Vd SY FIVSSIN MIN MOHS ATIVNOILHO

\l\ F y
14414 _]
351 01 MOH NO SNOLLONMISNI
JAIN0Hd ONY NOLLVHOGYTIOO MIN LHOTTHAIH +
(S43GHTN ONLLSIXT 0L
99YSSTH ONISTY YIHLIT) ININOHOI
NOILYH0GY 100 M3N 40 SYIGWIN T108 ALION *
JOVHINT ONY M3
JOVSSIN INIHHND GNY FOVSSTH MIN HOHS ONY NIHM SIHOTY TOMINOD SST00V FHI 1034534 01 NS
01 SHNIT 3L VINAOSAdY HLIW ‘FOVSSIH MIN ONIS INIFE FOVSSTH INTHIND 01 INIINOD MIN GV +
[i G
~ 0292
¢ege MIGNIN G aNoLL Y08y TI00 J9VSSIN
FOVSSIN MIN L ONILXS 01 SINVH &350 — 5™ w1 v

LVHL W04
gi8c

Smm.f NOILVHOBYTI0D 40 INIINOD ONLIYIHD

r

ASIT INFYILIIA AT TTdN00 V A8 *
14! mN.H LSTT S, 3IVSSIN LNIFHHNI OL INDINIT +
ASI7 §,39VSSIN INFHHNO INIAJOD *
J0 AVM A8 NOLIYYOBYTIOO MIN 40 SF104 01 SHIGNIN NIISSY

A4 : L
6@%.&: vV NIHLIM NOLLYHO8YTIOO 3HL 0L Saav NOLLJY 43sn U

SUBSTITUTE SHEET (RULE 26)

Page 235 of 240

PCT/US01/42041

WO 02/21413

UOJDOLIJOU D BW PUSS JoU 00-10 O

o8¢ Old

(qom abossajy swyy jnoqp) suoipIYOU AW PUAS-UQ O
CY8C~ _ (qo1 _mw: 1n0go) SUODIYIIOU AUl PUIS-U) @

»$82- ‘poaJ
usaq soy Adod snomeud sy) Jayp Ajuo Adod Joyjoup oA[9934

usyj (M noA ‘puodsas Sisyjo usym [ipws Jnok ui }9|dpz
siy} o Adoo D sAj@oas | nok ‘uo suopypoyijou buiuiny Ag

W09 doipaiij@SUDASS :[IDWT JINOA
(4esn obubyy sswDN BUOJM) SUDAT 8A8)}SIBWIDN JNOA

. dlsbg | SUOIIDONON @)

e ——

doupaui

50pd3 Joumiu] Yosoin ~ suonoynoN()

dn dosm

s$3jDg

suojjpJadg -

buriesuibu3 -

burjesJop -

SnI0}S S|pog ZD |NpIAjpU]
SNb}S sipoY gD |IPIeAQ

*2}8 ‘SAI}DJ)S|UILIPY ‘UOIJONPOLUT
uojdiosaq pjo] uolpINn
swa)] ppusby

(useJyay) (weyl MeN PPY)

ovm\w Q0L MON PPV+ [I0d UORDYAUT SWSYT UOROY BJnpayds

\m;mz CE8C —~—~ iMoN
1992 110 SUCIIDONONSY 058C :sjusjuo) Jabouoy bunssy @

N84 =
is10/doz Jnogp pusly o o) A7 (sjuadpes o MITA/LAd WY ¥€ 2 90111 00/62/9)

MaIA JUlld) ['Bujesw siyy pusjip o} suojpzjupbio s woj pup qog wioly auokios

paau 1 ‘sbujjesw Apeam jo saes b jo buuubeq ayy si siyp 'S9)0N
|{_suoido] g8z/9 buneay smpig xiusoyd 98fold Bl

Jaypanysjpdwanay uyop :uazjuobiQ

U ¢ v Bipe
UW 0f ¢ TIPe
U 0Z Z 1Ip®
UN G | 3Ipe
a#

18idoz maN) {_ cose :iebouoyy buiieepy @)|
ojdez o [
} _3 paJomod 008 Su)siS as.r.ﬁ
HEE - g7/ bunson xwaoyg yoolosy saxdoz wbowory bugeen(D

R0 PURIU] Yosonmy

SUBSTITUTE SHEET (RULE 26)

Page 236 of 240

PCT/US01/42041

WO 02/21413

67/70

éc Ol
N&.NJ!

J9VYSSIN 40 NOILFT0 3L TdN0D *

NINOHE SV WIHL NV

TIM SHNIT NIXOYE 04 INDIOOT LINVYINI 40 VYYD GNNOYINIVE FTNAIHIS +
SN av3a 40 LSIT 0L 39VSSIN a413130 aay +

1

0162

JOVSSIH 40 L&Vd
NOISIOIQ/ AYYWHNS

1SIT MNIT QILVYINTD ATIVILLYAOLNY FHL OINT SHNIT QILVIHI AMIN dIUNT +

SYNIT TWLINFYTAFY 4135 FONTONI YON 'SSFI0Yd SIHL NI SIIVSSIN OL JHL NI SHNIT
3LYIITdNA 10N 00 ‘SHNIT MIN FHL NO S3IFNNIYd T04INOI SS90V 40 NOLLOFSHILNI
INLITHISTY 1SON FHL OL 193F8NS SHNIT WOYA HLIM SXNIT O1 TIV 30VTd3Y +

. FIYSSIN (313730 3HL 01
INIINIOd OSTV 3¥Y LVHL FSOHL AJLINIQI GNY S3OYSSIN XNIT WO T1Y NT/M *

_ S39¥SSIN M 39VSSIN 43HLO

0L 39VSSIN SIHL WO¥4 SNIT TIY AJLINIQI ONY 39VSSIW 0ALITI0 X1vM *

NIV13Y ATIVNOILO +*
JOVSSIN

1

JHL 40 INIINOD
3JHL NI (3007813

ASIT MNIT QAULVYINTD ATIVOLLYAOLNY FHL OLNI SHNIT QILYIHD A MIN YIUNT *
CSANIT WILNFYIAFY 4735 FONTONT HON- SS300¥d SIHL NI SIIVSSIN 01 FHL NI SHNIT

. 10N JS0H! AVIITANG JON 00 SHNIT MIN FHI NO STOTTALY TOMINOT SST0Y 0 NOLLIISHILNI
SYNIT G F9VSSIH NLIOIHISTY 1SON THL OL L9FENS SHNTT NO¥ HLIH SNIT GI TIY 30713 +
QINIINYLS NIVLIY * 0VSST (LTI HL 0L SYNIT TIV AJLINIAT ONY SHISHIH G F9YSSIN TIV N1VM +
JOVSSTH 40 G F9VSSIN IS IHL NIHLIN SYIGNIN YIHLO
INIINDD 3137130 + 01 F9YSSTH SIHL HOMd SHNIT TI AJLINTGT ONV JOVSSIN GLTTI0 NTM *

A ’ A f

NOLLTTI
70 INIIXT SINIHYILIA ATT0d BVSSIN 4

TIFHS JOVSSIN NIVLIIY

HO/ONY 435N NOLLYNINIIF 3L 3TdN00

v06¢

c06¢
¢

NOLLIT30 404 GIXYVN SI 83M JIYSSIN V NI JIVSSIH V u

SUBSTITUTE SHEET (RULE 26)

Page 237 of 240

PCT/US01/42041

WO 02/21413

68/70

og Old 8105
f = - J
imoN WoHRDIAUT @
910¢ #108 T
) :) !
4 -7 { -7
_ﬂ%@ od DX fe—= swair vonoy DX | | (z1-01) 8mpeyds A
A . J) \r A
s ! z10¢
4 [mey opusby O —(ior y

ﬁmc_cco_n_ youno- @
qop obpsssiy 3xaN)

8005

awoH qapm sbossap

82/9 bunsspy smoys
gop obossap jusing

xiuaoyd 3o9f0ad
Jepjo4 bujuipjuo) 2008

@z_a_%m %otoz&

900¢ $00¢

n.&s/mmommm_z SNolAaId

SUBSTITUTE SHEET (RULE 26)

Page 238 of 240

WO 02/21413 PCT/US01/42041

69/ 70
FilG. 31A
3101
315& / ADD 3106 DISCUSSION 3105
103
Poll
Schedule
Reservation
Table
-1 Action Items 3120
DYNAMIC CONTENT 3110
J125

SUBSTITUTE SHEET (RULE 26)

Page 239 of 240

WO 02/21413

70/70

PCT/US01/42041

FIG. 31B 3900 3901 3902
1 y]
/d ~
TO: L ’I 1
SuBJ: [|
Introduction
3903
3940 ‘k
Upload File 3920
3930 \\
3905 T Time Date Name
Ti »
3906 —] ime Date Name
Time Date Name IS
N 3907
3941 —
N\ Send | Preview (1 — 3942

3’007 FIG. 31C

3107

3106 —

DYNAMIC CONTENT 3110

3125

3101
/‘\
T~
ADD SCHEDULE DISCUSSION |~_|
3103
3120

L 3105

Page 240 of 240

SUBSTITUTE SHEET (RULE 26)

