In the Matter Of:
REGENTS OF THE UNIVERSITY OF MINNESOTA
$-V S-$
LSI CORPORATION, ET AL.

EMINA SOLJANIN
 May 09, 2018

Exhibit \#

1	UNITED STATES DISTRICT COURT
2	NORTHERN DISTRICT OF CALIFORNIA
3	SAN JOSE DIVISION
4	Civil Action No. Civ. 5:18-cv-00821-EJD-NMC
5	----------------x
6	REGENTS OF THE UNIVERSITY OF MINNESOTA,
7	
8	Plaintiff,
9	-against-
10	LSI CORPORATION and AVAGO
11	TECHNOLOGIES U.S. INC.,
12	
13	Defendants.
14	-------------------------------------x
15	
16	May 9, 2018
17	8:58 a.m.
18	
19	Deposition of EMINA SOLJANIN
20	taken by Plaintiff pursuant to Notice, held at
21	the offices of K\&L Gates LLP, 599 Lexington
22	Avenue, New York, New York, before Frank J.
23	Bas, a Registered Professional Reporter,
24	Certified Realtime Reporter and Notary Public
	of the State of New York. Job WDC-170935

Epiq Court Reporting Solutions - Washington, DC

Page	Pa
1 over me, that makes it very difficult for the	1 case to provide expert testimony on behalf of
2 court reporter. So if you could let me finish	2 the defendants LSI and Avago, is that your
3 my question first before you answer, and I'll	3 understanding?
4 let you answer before I ask my next question	4 A. Correct.
5 so that the transcript is clear. Okay?	5 Q. Do you know when you were
6 A. Yes.	6 retained?
$7 \quad$ Q. And lastly, if you need a break	7 A. I believe it was the fall of
8 at any time just let me know. If there's a	8 2016. I don't remember exact day.
9 question pending I may ask you to answer that	$9 \quad$ Q. And in connection with your
10 question before we take the break, but we'll	10 work for LSI and Avago in this case have you
11 accommodate your break request as soon as we	11 worked with anybody else?
12 can. All right?	12 A. No.
13 A. Yes.	13 Q. Have you ever been retained by
14 Q. What did you do to prepare for	14 LSI or Avago to provide expert testimony in
15 today's deposition?	15 any other case?
16 A. I reviewed the documents and I	16 A. No.
17 met with Mr. Mayle and Mr. Sipiora.	17 Q. What about a company called
$18 \quad$ Q. What documents did you review?	18 Broadcom Limited?
19 A. I reviewed original patent,	19 A. No.
20 '601. I reviewed my declaration. I looked	$20 \quad$ Q. And have you provided expert
21 into court cases.	21 testimony in any other patent case prior to
22 Q. When you say you looked --	22 this one?
23 A. Case histories. Sorry.	23 A. No.
24 Q. Sorry. Go ahead?	24 Q. All right.
25 A. Case histories, I think they're	25 MR. VERDINI: I am going to
Page 7	Page
2 Q. Case histories.	2 you'll have them in front of you, the
3 A. Right.	3 ones that we'll be referring to.
$4 \quad$ Q. When you say you looked at case	4
5 histories, what are you referring to	5 (Deposition Exhibit 1,
6 specifically?	6 U.S. patent number 5,859,601 was
$7 \quad$ A. This was a file that included	7 marked for identification)
8 my previous declaration and description of --	8
9 of the background material for the patent, and	9 BY MR. VERDINI:
10 also the provisional application, and the	10 Q. I am going to hand you what has
11 declaration of Professor McLaughlin.	11 been marked as exhibit 1.
$12 \quad$ Q. Who prepared the case history?	12 Professor, do you recognize
13 A. Mr. Sipiora and Mr. Mayle.	13 exhibit 1 as U.S. patent number 5,859,601?
14 Q. Did you have any input into	14 A. I do.
15 what was put into the case history that you	15 Q. And you understand that this is
16 reviewed in preparation for today?	16 the patent that's being asserted by the
17 A. No.	17 university against LSI and Avago in this case?
18 Q. You also said you met with	18 A. I do.
19 Mr. Mayle and Mr. Sipiora, is that correct?	19
20 A. Yes.	20 (Deposition Exhibit 2, joint
21 Q. When was that?	21 claim construction and prehearing
22 A. Yesterday.	22 statement was marked for
23 Q. And for how long?	23 identification)
24 A. From 10 a.m. until 3 p.m.	24
25 Q. You've been retained in this	25 BY MR. VERDINI:

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

enhancing code in paragraph 12. What is it?
Does it have a name?
A. It did have a name. I don't remember the name that we used.
Q. And you wrote that that distance enhancing code was implemented in commercial magnetic storage devices, correct?
A. Yes.
Q. What commercial magnetic
storage devices was it implemented in?
A. That was the late '90s. There were channel chips that we produced. But that's about all I remember.
Q. And you said that "we produced."

When you say we, who are you referring to?
A. Lucent Technologies.
Q. Can you describe -- you said you couldn't name it. Can you describe what the first distance enhancing code was that you are referring to there?
A. It was a code that removed certain strings from all possible sequences.
Q. What strings did it remove?
A. I don't remember which strings were in the first code removed.
Q. The distance enhancing codes that you were working on, were they relevant to peak detectors?
A. No.
Q. Why not?
A. Because at that time peak detectors were not in use anymore.
Q. And so what were the systems that were in use at the time of the distance enhancing codes that you were designing?
A. These were sequence detectors.
Q. And again what was the time frame?
A. The late '90s.
Q. And when you say late ' 90 s, is it '97, '98?
A. So I started working on these codes since I came in '94, and I believe that the first chips were made in about ' 98. That's to the best of my recollection. I don't claim that to be exact dates.
Q. Moving to paragraph 13 you write (as read):

```
Epiq Court Reporting Solutions - Washington, DC 1-800-292-4789
\begin{tabular}{|c|c|c|}
\hline & EMINA SOLJANIN & - 05/09/2018 Pages 26..29 \\
\hline & Page 26 & Page 28 \\
\hline 1 & According to the University's & 1 claim construction declaration, you changed \\
\hline 2 & allegations in the first amended & 2 the word "hard disk drive" to binary system, \\
\hline 3 & complaint in this case, the alleged & 3 correct? \\
\hline 4 & invention of the ' 601 patent is, & 4 A. Changed? I did not have this \\
\hline 5 & quote, maximum transition run, end & 5 in mind when I was writing the -- this \\
\hline 6 & quote, MTR, code featuring a, quote, \(\mathbf{j}\) & 6 opinion. \\
\hline 7 & constraint, which, quote, imposes a & \(7 \quad\) Q. So why did you describe it as \\
\hline 8 & limit on the maximum number of & 8 being an invention of a hard disk drive in the \\
\hline 9 & consecutive transitions, end quote, in & 9 IPR declaration and change it to -- and \\
\hline 10 & a binary system. & 10 describe it as a binary system in paragraph 13 \\
\hline 11 & Is that correct? & 11 of your claim construction declaration? \\
\hline 12 & A. Yes. & 12 MR. SIPIORA: Objection as to \\
\hline 13 & Q. When you say in a binary system & 13 form. But you can go ahead and \\
\hline & what are you referring to? & 14 answer. This is a legal thing. \\
\hline 15 & A. That means that the symbols & 15 A. I believe here I was looking at \\
\hline & that are used in sequences are 0's and 1's. & 16 the system, at storage, and here I was \\
\hline 17 & Q. In your opinion what sorts of & 17 thinking about mathematics, probably. \\
\hline 18 & systems are binary systems? & 18 Q. You were thinking about? \\
\hline 19 & A. All systems that can either & 19 A. Mathematics, about 0's and 1's. \\
\hline & transmit and receive or record, what & \(20 \quad\) Q. You used "this" so let's try to \\
\hline & corresponds to 0's and 1's. & 21 be -- and I know you're looking at two \\
\hline 22 & Q. Magnetic storage is a binary & 22 different things. When you said you were \\
\hline 23 & system? & 23 referring to the system, you were saying in \\
\hline 24 & A. Yes. & 24 paragraph 13 of your IPR declaration, correct? \\
\hline 25 & Q. If you turn to exhibit 4, which & 25 A. IPR declaration is this one \\
\hline & is your IPR declaration. At page -- I am \({ }^{\text {Page } 27}\) & 1 (indicating). Page 29 \\
\hline & going to use the numbers of the actual & 2 Q. The one that says hard disk \\
\hline & declaration as opposed to the numbers that are & 3 drive? \\
\hline & in the bottom right. So page 4 of your & 4 A. Yes. \\
\hline 5 & declaration paragraph 13. Do you see that? & 5 Q. Okay. And so why did you use \\
\hline 6 & A. Yes. & 6 hard disk drive in paragraph 13 of the IPR \\
\hline 7 & Q. In paragraph 13 you write (as & 7 declaration? \\
\hline & ad): & 8 A. Because it was about to \\
\hline 9 & According to the patent owner, & 9 describe. The invention is about to describe. \\
\hline & the alleged invention of the '601 & \(10 \quad\) Q. And in your mind is hard disk \\
\hline 11 & patent is, quote, maximum transition & 11 drive the same thing as binary system? \\
\hline 12 & run, end quote, MTR code, featuring a & 12 A. Binary systems are a more \\
\hline 13 & quote, j constraint, end quote, which, & 13 general form. \\
\hline 14 & quote, imposes a limit on the maximum & 14 Q. So why did you use the more \\
\hline 15 & number of consecutive transitions that & 15 general form in your declaration in connection \\
\hline 16 & are written to the disk, end quote, of & 16 with claim construction in the district court \\
\hline 17 & a hard disk drive. & 17 litigation? \\
\hline & Did I read that correctly? & 18 A. That I don't know. \\
\hline 19 & A. You read correctly. & 19 Q. Did you change that language? \\
\hline 20 & Q. Yes? You said? I'm sorry. I & 20 A. No. I did not have this in \\
\hline & didn't hear you. & 21 front of me (indicating) when this was done \\
\hline 22 & A. I have the same text. & 22 (indicating). \\
\hline 23 & Q. Okay. You would agree & 23 Q. So in connection with drafting \\
\hline & comparing what you wrote in paragraph 13 in & 24 your declaration in the claim construction -- \\
\hline & the IPR declaration to paragraph 13 in your & 25 MR. VERDINI: Strike that. \\
\hline \multicolumn{3}{|r|}{```
Epiq Court Reporting Solutions - Washington, DC
89 www.deposition.com/washington-dc.htm
```} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline EMINA SOL & - 05/09/2018 Pages 46..49 \\
\hline Page 46 & Page 48 \\
\hline 1 read): & 1 constraint would simplify a Viterbi detector \\
\hline 2 Broadly speaking, two classes & 2 and help improve noise immunity if the \\
\hline 3 of constraints are of interest in & 3 detector is implemented to take into account \\
\hline 4 today's high density recording & 4 the constraint; it would not -- MTR by itself \\
\hline 5 channels: (1) constraints for & 5 would not do anything about timing and gain. \\
\hline 6 improving timing and gain control and & 6 Q. That's the k-constraint, \\
\hline 7 simplifying the design of the Viterbi & 7 correct? \\
\hline 8 detector for the channel, and (2) & 8 A. Right. \\
\hline 9 constraints for improving noise & \(9 \quad\) Q. And when you say MTR constraint \\
\hline 10 immunity. Some constraints serve both & 10 are you referring to the j constraint? \\
\hline 11 purposes. & 11 A. The constraint that limits the \\
\hline 12 How would you classify the MTR & 12 transitions between 0's and 1's, and 1's and \\
\hline 13 constraint that you described on page 2 of & 13 0's. \\
\hline 14 this chapter with respect to the classes that & 14 Q. If you would turn to page 3 \\
\hline 15 you identified on page 1? & 15 of -- well, 11-3 of exhibit 5. The last full \\
\hline 16 A. Depending on the channel, it & 16 paragraph that starts "translation of \\
\hline 17 can serve both purposes. & 17 constrained sequences." \\
\hline 18 Q. And when you say it depends & 18 Do you see that? \\
\hline 19 upon the channel, what about the channel & 19 A. The last paragraph, right. \\
\hline 20 determines whether it's one class or both? & \(20 \quad\) Q. Yes. In the second sentence \\
\hline 21 A. Could you rephrase that? & 21 you wrote (as read): \\
\hline 22 Q. You said depending on the & 22 Saturation recording of binary \\
\hline 23 channel -- & 23 information on magnetic medium is \\
\hline 24 A. Right. & 24 accomplished by converting an input \\
\hline 25 Q. -- an MTR constraint would be & 25 stream of data into a spatial stream \\
\hline 1 casified Page 47 & Page 49 \\
\hline 1 classified under both of the classes that & 1 of bit cells along a track where each \\
\hline 2 you've identified. What is it about the & 2 cell is fully magnetized in one of two \\
\hline 3 channel that makes a difference? & 3 possible directions, denoted by 0 and \\
\hline 4 A. The channel transfer function. & 41. \\
\hline 5 Q. And what do you mean by that? & 5 Was that accurate -- is that an \\
\hline 6 A. That is at the end of the & 6 accurate statement as of the time of this \\
\hline 7 second paragraph. \(\mathrm{h}(\mathrm{D})\). & 7 chapter? \\
\hline 8 Q. So what is the transfer & 8 A. Yes. \\
\hline 9 function that would, in your mind, make the & \(9 \quad\) Q. And would that have been \\
\hline 10 MTR constraint that you described in this & 10 accurate as of in or around 1996? \\
\hline 11 chapter -- that would make it serve both & 11 A. Yes. \\
\hline 12 purposes, as you had identified in paragraph & 12 Q. And when you wrote input stream \\
\hline 13 3? & 13 of data, what were you referring to? \\
\hline 14 A. I didn't get it. & 14 A. Sequences of 0's and 1's. \\
\hline 15 Q. Sorry. That was a long & 15 Q. And then what is a spatial \\
\hline 16 question. & 16 stream of bit cells? \\
\hline 17 A. Yes. & 17 A. This is in the magnetic medium. \\
\hline 18 Q. What about the transfer & 18 Q. When you say this is in the \\
\hline 19 function in your mind would make the MTR & 19 magnetic medium, what do you mean by "this"? \\
\hline 20 constraint serve both purposes that you & 20 A. A bit cell in the magnetic \\
\hline 21 identified in paragraph 3? I hope that's a & 21 medium. \\
\hline 22 little better question. & 22 Q. And what is the spatial stream \\
\hline 23 A. If \(\mathrm{h}(\mathrm{D})\) here, if N is 2, maybe & 23 of bit cells that you are referring to in the \\
\hline 24 there are some other N's that I don't know, & 24 magnetic medium? \\
\hline 25 but this would be one example, an MTR & 25 A. It's a sequence of bit cells. \\
\hline
\end{tabular}

\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}

\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{52}{*}{\(\begin{array}{ll}\mathbf{1} & \text { construed claim language to the prior art on } \\ \mathbf{2} & \text { an element-by-element basis. } \\ \mathbf{3} & \text { And that's what you did in the } \\ \mathbf{4} & \text { IPR declaration, correct? } \\ 5 & \text { A. Yes. } \\ \mathbf{6} & \text { Q. And so you needed properly } \\ \mathbf{7} & \text { construed claim language to perform your } \\ \mathbf{8} & \text { opinion in the IPR declaration, correct? } \\ 9 & \text { A. I understand that determining } \\ 10 & \text { the anticipation of a patent claim requires a } \\ 11 & \text { comparison of properly construed claim } \\ 12 & \text { language of the prior art. I have more } \\ 13 & \text { knowledge than -- more prior knowledge about } \\ 14 & \text { the area here than a person of ordinary skill } \\ 15 & \text { would look at this. } \\ \mathbf{1 6} & \text { Q. But fundamentally you had to } \\ \mathbf{1 7} & \text { have the properly construed claim language in } \\ \mathbf{1 8} & \text { your mind to compare whether the prior art } \\ \mathbf{1 9} & \text { anticipated the claims of the '601 patent in } \\ \mathbf{2 0} & \text { the IPR declaration, correct? } \\ 21 & \text { A. That was a year ago. } \\ \mathbf{2 2} & \text { Q. Doesn't this first sentence -- } \\ 23 & \text { A. That is what it says, yes. } \\ \mathbf{2 4} & \text { Q. And that's what you did in the } \\ \mathbf{2 5} & \text { IPR, correct? }\end{array}\)}} \\
\hline & \\
\hline
\end{tabular}
Q. And again, that's what you did in the IPR declaration, right?
A. Yes.
Q. So let's go back to exhibit 3, which is your claim construction declaration, and paragraph 27. In the first sentence you reference highly technical patents. Do you see that?
A. Yes.
Q. What do you mean by a highly technical patent?
A. Highly technical patents, if more than -- if very technical skills are required for understanding.
Q. When you say technical skills, what are you referring to?
A. In the research -- in the technical area. Technical expertise.
Q. And what do you mean when you say technical? What constitutes technical expertise in your opinion?
A. Familiarity with the area of research. I mean to a high degree. To an expert level degree.
Q. What distinguishes, in your
mind, a highly technical patent from one that's not highly technical?
A. The highly technical would have more -- would be -- not many experts would be familiar with it, and then the level of mathematics, if it's a mathematical patent, would be higher.
Q. Do you consider the ' 601 patent to be highly technical?
A. I consider it to be very specific. Not many -- not a widely understood area.
Q. So would that be a highly technical patent as you have written --
A. Yes.
Q. -- in paragraph 27?
A. (Nodding head affirmatively.)
Q. All right. If you would look at paragraph 28. You write that regarding the intrinsic evidence -- what do you mean when you say intrinsic evidence?
A. Something that is connected with the patent itself, as opposed to provided by an outside expert.
Q. So regarding the intrinsic
```

            Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
www.deposition.com/washington-dc.htm

```

\begin{tabular}{|c|c|}
\hline EMINA SOLJANIN & 05/09/2018 Pages 86..89 \\
\hline Page 86 & 88 \\
\hline (Instruction not to answer.) & 1 your mind between the test before the 2014 \\
\hline 2 BY MR. VERDINI: & 2 United States Supreme Court decision and \\
\hline \(3 \quad\) Q. Did you rely upon counsel in & 3 after? \\
\hline 4 connection with how claims should be construed & 4 A. I cannot be precise about that. \\
\hline 5 in connection with your IPR declaration? & 5 Q. Can you be general about it? \\
\hline 6 A. No. & 6 A. In general, yes. That what is \\
\hline \(7 \quad\) Q. But you did rely on counsel in & 7 considered, let's say some less precision is \\
\hline 8 connection with how claims should be construed & 8 allowed after 2014. \\
\hline 9 in your claim construction declaration? & \(9 \quad\) Q. And 2014 is before the date you \\
\hline 10 A. Yes. & 10 signed your IPR declaration, correct? \\
\hline 11 Q. Why the difference? & 11 A. Yes, correct. \\
\hline 12 A. Because these were two expert & 12 Q. Okay. Let's move to page 9 of \\
\hline 13 opinions that I was asked to provide. That & 13 exhibit 3. Section VII is titled The Asserted \\
\hline 14 was my understanding. & 14 Claims Are Indefinite. Correct? \\
\hline 15 Q. But you were interpreting the & 15 A. Yes. \\
\hline 16 same claims of the '601 patent, correct? & 16 Q. And in paragraph 37 you \\
\hline 17 A. Yes. & 17 identify five claim terms or claim phrases \\
\hline 18 Q. And you had to know what those & 18 that you opine in this declaration are \\
\hline 19 claim terms meant, correct? & 19 indefinite, correct? \\
\hline 20 A. Yes. & 20 A. Yes. \\
\hline 21 Q. In both the IPR declaration and & 21 Q. All right. We're going to walk \\
\hline 22 in your claim construction declaration? & 22 through each one of them. Paragraph 39. So \\
\hline 23 A. Yes. & 23 let's go to the encoded waveform, which is one \\
\hline 24 Q. If you would turn to page 8 of & 24 of the claim terms that you opine is \\
\hline 25 your declaration -- your claim construction & 25 indefinite, correct? \\
\hline 1 declaration. Do you see section \(V\) is called & A. Yes. Page 89 \\
\hline 2 the Indefiniteness Standard. Do you see that? & 2 Q. So paragraph 39 you write (as \\
\hline 3 A. Yes. & 3 read): \\
\hline 4 Q. In paragraph 35 you write (as & 4 The phrase encoded waveform \\
\hline 5 read): & 5 renders claim 13 indefinite (as well \\
\hline 6 I understand that the United & 6 as all claims depending from it) \\
\hline 7 States Supreme Court relaxed this & 7 because the claim, read in light of \\
\hline 8 test... And you're referring to the & 8 the specification of the '601 patent \\
\hline 9 indefinite test, in 2014. & 9 and the prosecution history, fails to \\
\hline 10 What do you mean by "relaxed"? & 10 inform, with reasonable certainty, \\
\hline 11 A. The -- the paragraph before & 11 those skilled in the art about the \\
\hline 12 says that until recently, the legal standard & 12 scope of the purported invention. \\
\hline 13 for indefiniteness was determining whether a & 13 Correct? \\
\hline 14 claim is amenable to construction, and the & 14 A. Yes. \\
\hline 15 claim, as construed, is not insolubly & 15 Q. You were reasonably certain at \\
\hline 16 ambiguous, and that was to certain extent & 16 the time that you submitted your IPR \\
\hline 17 relaxed. & 17 declaration under oath the meaning of encoded \\
\hline 18 Q. And how was it relaxed, in your & 18 waveform, weren't you? \\
\hline 19 view? & 19 A. Yes. \\
\hline 20 A. As the paragraph says, that the & 20 Q. And in fact you identified an \\
\hline 21 Federal Circuit formulation tolerates some & 21 encoded waveform in both Okada and Tsang, in \\
\hline 22 ambiguous claims but not others. It does not & 22 the Okada patent and the Tsang patent that are \\
\hline 23 satisfy the statute's definiteness & 23 the subjects -- part of the subject of your \\
\hline 24 requirement. & 24 IPR declaration, right? \\
\hline 25 Q. So what was the difference in & 25 A. Yes. \\
\hline
\end{tabular}

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{EMINA SOLJANIN} \\
\hline & Page 102 \\
\hline 1 & A. That's what it says, yes. \\
\hline 2 & Q. So let's move to paragraph 87. \\
\hline 3 & Are you there? \\
\hline 4 & A. Yes. \\
\hline 5 & Q. In paragraph 87 you write in \\
\hline 6 & the first sentence (as read): \\
\hline 7 & Rule (1) and Rule (2) of Okada \\
\hline 8 & each imposes a, quote, maximum number \\
\hline 9 & of consecutive transitions allowed on \\
\hline 10 & consecutive clock periods in the \\
\hline 11 & encoded waveform, end quote, as \\
\hline 12 & recited in claim limitation 1 [D]. \\
\hline 13 & Correct? \\
\hline 14 & A. Yes. \\
\hline 15 & Q. So you were reasonably certain \\
\hline 16 & at that time that you knew what the encoded \\
\hline 17 & waveform was in the ' 601 patent claim 1[D] as \\
\hline 18 & you've broken it up, right? \\
\hline 19 & A. Yes, I adopted a certain \\
\hline 20 & interpretation I felt comfortable with. \\
\hline 21 & Q. In fact in the middle of \\
\hline 22 & paragraph 87 you identified -- \\
\hline 23 & MR. VERDINI: Well, strike \\
\hline 24 & that. \\
\hline 25 & Q. You write in the middle of \\
\hline & Page 103 \\
\hline & paragraph 87 (as read): \\
\hline 2 & More specifically, none of the \\
\hline 3 & encoded datawords from tables 1 \\
\hline 4 & through 7 -- and that's referring to \\
\hline 5 & Okada, correct? \\
\hline 6 & A. Mm-hmm. \\
\hline 7 & Q. -- that form the claimed \\
\hline 8 & encoded waveform have more than two - a finite \\
\hline 9 & number - such consecutive transitions, \\
\hline 10 & correct? \\
\hline 11 & A. Yes. \\
\hline 12 & Q. So for you the encoded \\
\hline 13 & datawords from tables 1 through 7 formed the \\
\hline 14 & claimed "encoded waveform," right? \\
\hline 15 & A. That's what it says. \\
\hline 16 & Q. And that's what you meant when \\
\hline 17 & you wrote it, right? \\
\hline 18 & A. The claimed, quotation marks, \\
\hline 19 & "encoded waveform" under my interpretation, \\
\hline 20 & \\
\hline 21 & Q. And then at the end of \\
\hline 22 & paragraph 87 you're referring to tables 8 and \\
\hline 23 & 9 in Okada, correct? \\
\hline 24 & A. Yes. \\
\hline 25 & Q. And you write (as read): \\
\hline
\end{tabular}

In particular, these sequences each include a section consisting of, quote, " 01010 " - encoded waveforms in tables 8 and 9 and thus have exactly two consecutive transitions from 0 to 1 or from 1 to 0 , correct?
A. Yes.
Q. And so again you're identifying what you believe you're reasonably certain to be the encoded waveforms in claim 1[D] as you've defined it of the ' 601 patent?

MR. SIPIORA: Objection as to form.
BY MR. VERDINI:
Q. Correct?
A. Yes.
Q. If you turn to page 40 of your

IPR declaration. Your paragraph 92 reads (as read):

Okada thus discloses the imposition of a constraint on the encoded waveform data - through either Rule (1) or Rule (2) - to facilitate the reduction of a probability of a detection error in said receiver
means, which limitation is recited in claim limitation 1[D], correct?
A. Yes.
Q. And that was your opinion as to what Okada disclosed, correct?
A. Yes.
Q. And if you turn to page 46 of your IPR declaration, paragraph 109 relates to what you've identified as claim 13 , bracket
[D], end bracket, correct?
A. Yes.
Q. And that's the claim term
imposing, or the claim phrase imposing a pair of constraints \(j\) and \(k\) on the encoded waveform that appears in claim 13, correct?
A. Yes.
Q. And in your mind --

MR. VERDINI: Strike that.
BY MR. VERDINI:
Q. In your opinion, as per
paragraph 109 of your IPR declaration, you
explained why Okada disclosed imposing a pair of constraints on the encoded waveform
incorporating your analysis from claim element 1[D], correct?

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

and in particular that I'm not certain what \(\quad \mathbf{1}\)
recorded waveform is, but there is a way to understand possibly encoded waveform as encoded symbols in connection with IPR.
Q. That wasn't my question. So my question is: did counsel inform you of the antecedent basis principle that's in paragraph 40 before you drafted and opined in the IPR?
A. I don't remember one way or the
Q. You didn't apply any antecedent basis principle in connection with your IPR declaration, correct?
A. Not that I remember.
(Reporter clarification.)
Q. I think you were referring to
recorded. I should have asked.
A. Yes.
Q. I wanted to make sure that you weren't actually saying recoded. I think you were saying recorded?
A. Recording, yes.
recording systems are designed, correct, based on your work and experience?
A. The magnetic recording system of the time, yes, I'm familiar with that.
Q. Do you have an understanding of what LSI has proposed for the construction of
A. No.
Q. Their construction, and I can show it to you if you need to see it, is the sequences of \(n\)-bit codewords that are recorded
A. \(\mathrm{Mm}-\mathrm{hmm}\).
Q. Do you follow that?
. (Nodding head affirmatively.)
Q. My question for you is in a
magnetic recording system n-bit codewords have encoded data in them, correct?
A. Codewords consist of encoded symbols.
Q. What is the difference, in your mind, between encoded symbols and encoded data? Because \(I\) use the phrase "data" is why
A. Encoded data is fine.
Q. Okay. In paragraph 41 you wrote in the first sentence (as read):

I am informed that the
University's expert, Professor
McLaughlin, agrees that the, quote -MR. VERDINI: Strike that, let me start over.
BY MR. VERDINI:
Q. In paragraph 41 of your claim construction declaration you write (as read): I am informed that the
University's expert, Professor
McLaughlin, agrees that the word, quote, "the" signals that the following phrase, quote, "encoded waveform," must have an antecedent basis in the claim. Do you see that?
A. Yes.
Q. Who were you informed by?
A. Mr. Mayle.
Q. Why didn't you just read

Professor McLaughlin's declaration?
A. At that time I had that page.
Q. So did you read Professor

McLaughlin's declaration?
A. Yes.
Q. So why was paragraph 41 started with "I am informed that the university's expert"? Why didn't you just say I've read Professor McLaughlin's declaration and see \(\mathbf{X}\) ?
A. Because this is a more precise description of -- I have read it, but it was -- the declaration was accessed through Mr. Mayle.
Q. So I think you have mentioned something about it being more precise. What did you mean when you said that?
A. I mean the declaration was being accessed through Mr. Mayle.
Q. What do you mean when you say the declaration -- what declaration are you referring to?
A. Of professor McLaughlin, page 46.
Q. Oh, you received that from

Mr. Mayle, is that what you're saying?
A. Yes.
Q. Did you receive the whole declaration from Mr. Mayle?
A. I don't remember whether I received the whole declaration at this point

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{26}{*}{\(\begin{array}{ll}1 & \text { MR. SIPIORA: I just objected } \\ 2 & \text { as to form. You can still answer the } \\ 3 & \text { question. } \\ 4 & \text { THE WITNESS: All right. } \\ 5 & \text { A. So there are terms that I had } \\ 6 & \text { to interpret in order to write the last } \\ 7 & \text { declaration, and I made some what seemed to me } \\ 8 & \text { reasonable assumptions. I was asked to } \\ 9 & \text { provide opinion about similarity with the } \\ 10 & \text { prior art. In the more recent declaration I } \\ 11 & \text { only looked in the, whether terms themselves } \\ 12 & \text { are definite or not, regardless of how they } \\ 13 & \text { appear in claims. } \\ \mathbf{1 4} & \text { Q. When you say -- what do you } \\ \mathbf{1 5} & \text { mean regardless of how they appear in the } \\ \mathbf{1 6} & \text { claims? } \\ 17 & \text { A. So if the claim may be } \\ 18 & \text { indefinite if the -- if it's not clear what } \\ 19 & \text { the term is, but if someone asked me encoded } \\ 20 & \text { and recorded waveform, even if I wasn't aware } \\ 21 & \text { of this entire case, I would have the same } \\ 22 & \text { doubts. } \\ \mathbf{2 3} & \text { Q. You would have the same? } \\ \text { 24 } & \text { A. Doubts. } \\ \mathbf{2 5} & \text { Q. But you didn't have those }\end{array}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{26}{*}{}} \\
\hline & \\
\hline
\end{tabular}
Q. What would you identify as --
there are components of the encoder?
A. In some realizations there can be components of the encoders.
Q. In those instances can you identify for me what the components of the encoder would be?
A. A component would be component which maps M into N , so that's sort of a minimum component. And then there can be another component which would then worry how to string these n-bit sequences, so that the constraint is also satisfied in the sequence of n-bit strings.
Q. The sequence that is encoded is the same that is recorded, is that correct?
A. So when you say the sequence that is encoded, we take M, as in Mary, bits, and we encode them into N, Nancy, and something corresponding to this N will be eventually recorded.

So M are encoded -- M, as in
Mary, are encoded, and N are -- eventually
Page 137
something corresponding to the N will be encoded.
Q. What is the "something" that is recorded?
A. If it's magnetic recording it would be the strings of little magnets and how that corresponds to the sequence depends on whether NRZ or NRZI is used.
Q. If the constraint is imposed on the encoded sequence -- that's what you said, correct? That the imposition of the constraint is on the encoded data?
A. Yes.
Q. Is it fair to say then that the constraint is also imposed when that data is recorded?
A. Yes.
Q. Because if it wasn't, it would
defeat the purpose of having the constraint, right?
A. Yes. Some counterpart to that constraint. It depends on the modulation that is imposed, yes. Exactly.
Q. Let's go to paragraph 43.
A. That's before --
```

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EMINA SOLJANIN - 05/09/2018} \\
\hline & Page 138 & & Page 140 \\
\hline 1 & Q. Page 11. & 1 & When you say "this" what is it \\
\hline 2 & A. That's just next page. & 2 & that you are referring to? \\
\hline 3 & Q. Yes. In paragraph 43 you say & 3 & A. Because, now to the best of my \\
\hline 4 & consideration of claims other than claim 13 & 4 & recollection, is that in 13 you're mapping M \\
\hline 5 & bolster your opinion that the encoded waveform & & into N, and calling this N encoded. And in 18 \\
\hline 6 & is indefinite. Correct? & & you are doing some additional things before \\
\hline 7 & A. Which line are you reading? & & recording. So is now encoded where claim 13 \\
\hline 8 & Q. The first sentence of paragraph & & stops, or would you call encoded where claim \\
\hline 9 & & 9 & 18 stops after which recording happens. \\
\hline 10 & (The witness reviews document.) & 10 & Q. So you have claim 18 in front \\
\hline 11 & BY MR. VERDINI: & 11 & of you. \\
\hline 12 & Q. Have you read the paragraph? & 12 & A. Yes, I can get it. \\
\hline 13 & A. Yes, I have. & 13 & Q. What are the additional things \\
\hline 14 & Q. All right. So in paragraph 43 & 14 & that you have just testified about in claim \\
\hline 15 & you say that consideration of claims other & 15 & 18? \\
\hline 16 & than claim 13 bolster your opinion that & 16 & A. These are these paragraphs in \\
\hline 17 & encoded waveform is indefinite, correct? & & indentation. Removing binary words, removing, \\
\hline 18 & A. Yes. & 18 & removing -- yeah. \\
\hline 19 & Q. Is that fair? & 19 & Q. Did why did you describe those \\
\hline 20 & A. Mm-hmm. & 20 & as additional things? \\
\hline 21 & Q. And one of the claims that you & 21 & A. Because that's what it does. \\
\hline 22 & identify is claim 18, correct? & 22 & It removes binary words that contain more than \\
\hline 23 & A. Yes. & 23 & j consecutive 1's. \\
\hline 24 & Q. Exhibit 1 is the patent. If & 24 & Q. In addition to what are you \\
\hline 25 & you would look at claim 18. It's on the very & 25 & referring to? \\
\hline & Page 139 & & Page 141 \\
\hline & last page, claim 18 is. & & A. The previous claims. \\
\hline 2 & A. Yes. & 2 & Q. 14 and 13? \\
\hline 3 & Q. While you're reading claim 18, & 3 & A. Yeah. \\
\hline & the question is: does claim 18 say in express & 4 & Q. And so how does that support \\
\hline & terms that it's imposing any constraints? & 5 & that there's some difference between the \\
\hline 6 & (The witness reviews document.) & & recorded waveform and the encoded waveform? \\
\hline 7 & A. Claim 18 relies on claim 14 and & 7 & A. So in the claim 13 the encoded \\
\hline & then also removes binary words that contain & & waveform refers to a certain step, and then \\
\hline & more than j consecutive 1's. & & some other encoding like operations happen, \\
\hline 10 & Q. So in your opinion that is the & & and then the recording happens. So is the \\
\hline & imposition of the \(j\) and k-constraint as you & 11 & encoded waveform before 18 or -- before these \\
\hline & understand it as claimed in the '601 patent? & 12 & removing, or after. \\
\hline 13 & A. The -- yes. Or at least part & 13 & Q. So can you answer your own \\
\hline 14 & of it. & 14 & question? So is it before or after -- \\
\hline 15 & Q. Why do you say part of it? & 15 & MR. VERDINI: Strike that. \\
\hline 16 & A. Because it relies on claim 14. & 16 & BY MR. VERDINI: \\
\hline 17 & Q. Okay. So then going back to & 17 & Q. In paragraph 44 of your \\
\hline & paragraph 43 of your exhibit. You say that & & declaration, your claim construction \\
\hline 19 & claim 18 -- let me do it this way. & & declaration, that is, page 11, in the third \\
\hline 20 & In paragraph 43, in the last & 20 & sentence of paragraph 44 you say (as read): \\
\hline & sentence you say (as read): & 21 & In addition, the phrase encoded \\
\hline 22 & This is consistent with my & 22 & waveform has no standard or \\
\hline 23 & conclusion about the distinction & 23 & industry-specific definition. \\
\hline 24 & between the recorded waveform and the & 24 & Correct? \\
\hline 25 & encoded waveform in claim 13. & 25 & A. Yes. \\
\hline
\end{tabular}

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
\begin{tabular}{|c|c|c|}
\hline Page 142 & & 4 \\
\hline Q. What investigation, if any, did & 1 & Q. Do you know what a Manchester \\
\hline 2 you do in forming your opinion that encoded & 2 & receiver is? \\
\hline 3 waveform has no standard or industry-specific & 3 & A. No. \\
\hline 4 definition? & 4 & Q. You've never heard that before? \\
\hline 5 A. I don't remember ever using & 5 & A. No. \\
\hline 6 before these patents encoded and recorded & 6 & Q. Under the encoding section, \\
\hline 7 waveform. & 7 & before the table -- \\
\hline \(8 \quad\) Q. You are referring to your use? & 8 & A. Uh-huh. \\
\hline 9 A. Using or seeing before -- & 9 & Q. -- you would agree that the \\
\hline 10 Q. Okay. & 10 & author of this uses the phrase in the table \\
\hline 11 A. -- this case. & 11 & encoded waveform, correct? \\
\hline 12 Q. Are you familiar with MATLAB? & 12 & A. Yes, I can see that. \\
\hline 13 A. Yes. & 13 & Q. And would you agree that the \\
\hline 14 Q. Is it something that you use? & 14 & encoded waveform is a continuous signal? \\
\hline 15 A. No, but I'm familiar with it. & 15 & A. It's a signal in time. This \\
\hline 16 Q. And what is it? & 16 & may be -- this continues points, these \\
\hline 17 A. It's a program for computation. & 17 & squares. That's mathematical precision. \\
\hline 18 Q. And is it used in data coding & 18 & MR. SIPIORA: I'm just going to \\
\hline 19 field? & 19 & note for the record this document \\
\hline 20 A. No, that's a computer & 20 & doesn't appear to be in any of the \\
\hline 21 programming, which people refer as coding, but & 21 & intrinsic record that we've been \\
\hline 22 it's not error correction coding. It's & 22 & provided previous to this, so to the \\
\hline 23 programming, MATLAB. & 23 & extent you try to bring this in \\
\hline 24 Q. Is it -- & 24 & through this testimony we're going to \\
\hline 25 A. Sometimes I have people in my & 25 & move to strike. We're just objecting \\
\hline Page 143 & & Page 145 \\
\hline 1 class thinking they're programming, but it's & 1 & to the use of this exhibit and any \\
\hline 2 coding. & 2 & questioning around it. Just so you \\
\hline \(3 \quad\) Q. Say that again? & 3 & know that. If you try to reuse it \\
\hline 4 A. Sometimes people register for & 4 & we'll move to strike. \\
\hline 5 my coding class thinking they would use MATLAB & 5 & MR. VERDINI: Objection noted, \\
\hline 6 or programming, which is not coding. So they & 6 & and we will respond if you do. \\
\hline 7 call coding programming, which is not this & 7 & BY MR. VERDINI: \\
\hline 8 coding. & 8 & Q. Let me show you what's been -- \\
\hline \(9 \quad\) Q. Got it. Can you use MATLAB to & 9 & hat we will mark as exhibit 8. \\
\hline 10 simulate what's done in data coding? & 10 & --- \\
\hline 11 A. Yes I believe so. I haven't, & 11 & (Deposition Exhibit 8, \\
\hline 12 but I believe you can. & 12 & U.S. patent number 5,608,397 was \\
\hline 13 Q. I am going to show you what has & 13 & marked for identification) \\
\hline 14 been marked as exhibit 7. & 14 & --- \\
\hline 15 & 15 & BY MR. VERDINI: \\
\hline 16 (Deposition Exhibit 7, printout & 16 & Q. Do you recognize exhibit 8? \\
\hline 17 from www.mathworks.com referring to a & 17 & A. Yes. \\
\hline 18 Manchester receiver was marked for & 18 & Q. Exhibit 8 is U.S. patent number \\
\hline 19 identification) & 19 & 5,608,397, correct? \\
\hline 20 --- & 20 & A. Yes. \\
\hline 21 BY MR. VERDINI: & 21 & Q. And you are the sole named \\
\hline 22 Q. Exhibit 7 is a printout from & 22 & inventor, right? \\
\hline 23 www.mathworks.com referring to a Manchester & 23 & A. Yes. \\
\hline 24 receiver. Do you see that? & 24 & Q. If you turn to column 1 of the \\
\hline 25 A. Yes. & 25 & patent? \\
\hline
\end{tabular}

\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789 www.deposition.com/washington-dc.htm
\begin{tabular}{|c|c|c|}
\hline & EMINA SOLJAN & 05/09/2018 Pages 150..153 \\
\hline & Page 150 & Page 152 \\
\hline 1 & Q. What is the output of the & 1 that binary codewords mathematically are not a \\
\hline & converter? & 2 waveform and that's the interpretation that \\
\hline 3 & A. It's output strings of bits. & 3 you adopted for the IPR, is that an accurate \\
\hline 4 & Q. Isn't that inconsistent with & 4 statement of your testimony? \\
\hline 5 & saying in your claim construction declaration & 5 A. That is not the \\
\hline & that binary codewords are not a waveform? & 6 interpretation -- that is why it's confusing, \\
\hline 7 & A. Binary codewords mathematically & 7 in the later -- in the this year declaration. \\
\hline & are not a waveform. This is the & 8 For IPR I considered them the encoded \\
\hline 9 & interpretation I adopted for the IPR. & 9 waveform. \\
\hline 10 & Q. And again in the IPR you were & 10 Q. And that's different than what \\
\hline & intending to be truthful and accurate in your & 11 you stated in the claim construction \\
\hline & interpretation of the claims of the '601 & 12 declaration where you say binary codewords are \\
\hline 13 & patent, right? & 13 not a waveform, right? \\
\hline 14 & A. That's correct. & 14 A. Yes. \\
\hline 15 & Q. Okay. & 15 Q. All right. Let's move to \\
\hline 16 & MR. VERDINI: Let's go off the & 16 exhibit 3, which is your claim construction \\
\hline 17 & record. & 17 declaration. Before we move there. You \\
\hline 18 & (Lunch recess taken at 12:25 p.m.) & 18 haven't submitted any supplemental \\
\hline 19 & & 19 declarations in the IPR, have you? \\
\hline 20 & & 20 A. Not that I remember. \\
\hline 21 & & 21 Q. And you haven't amended your \\
\hline 22 & & 22 opinions in any way in the IPR, is that \\
\hline 23 & & 23 correct? \\
\hline 24 & & 24 A. Not that I remember, no. \\
\hline 25 & & 25 Q. And sitting here today you \\
\hline & AFTERNOON SESSION \({ }^{\text {Page } 151}\) & 1 still believe your opinions in the IPR Page 153 \\
\hline 2 & (1:32 p.m.) & 2 declaration are accurate, correct? \\
\hline 3 & & 3 A. About the existence of prior \\
\hline 4 & & 4 art, yes. \\
\hline 5 & EMINA S OLJANIN, & \(5 \quad\) Q. And the way in which you \\
\hline 6 & resumed as a witness, having been & 6 interpreted the '601 patent, correct? \\
\hline 7 & previously sworn by the Notary Public, & 7 A. That was an interpretation \\
\hline 8 & was examined and testified further as & 8 there. \\
\hline 9 & follows: & 9 Q. Okay. All right. Let's move \\
\hline 10 & EXAMINATION BY & 10 to exhibit 3, page 12. We're moving now on to \\
\hline 11 & MR. VERDINI: & 11 the claim phrase "generating no more than \(j\) \\
\hline 12 & Q. Welcome back from the lunch & 12 consecutive transitions of said sequence in \\
\hline & break. Did you talk to counsel during the & 13 the recorded waveform such that \(\mathbf{j}\) is greater \\
\hline 14 & break about your testimony? & 14 than or equal to 2." \\
\hline 15 & MR. SIPIORA: Objection and & 15 Okay? \\
\hline 16 & instruct not to answer based on work & 16 A. Yes. \\
\hline 17 & product. & 17 Q. And it's your opinion that that \\
\hline 18 & (Instruction not to answer.) & 18 phrase is indefinite, is that correct? \\
\hline 19 & BY MR. VERDINI: & 19 A. Yes. \\
\hline 20 & Q. And you're going to obey your & 20 Q. In the IPR declaration were you \\
\hline 21 & counsel's instruction on work product basis, & 21 reasonably certain what that phrase meant? \\
\hline 22 & correct? & 22 A. I had an interpretation -- a \\
\hline 23 & A. Yes. & 23 possible interpretation there that I followed. \\
\hline 24 & Q. Before we broke, I had one last & 24 Q. Was that a reasonably certain \\
\hline 25 & question I wanted to ask you. You testified & 25 interpretation? \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & EMINA S & Pages \\
\hline & Page 154 & Page 156 \\
\hline & A. It was a reasonable & 1 just the existence of multiple interpretations \\
\hline & erpretation. I had doubts. & 2 makes it not reasonably certain. \\
\hline 3 & Q. Was it reasonably certain? & 3 Q. Is that the standard that you \\
\hline 4 & A. Does that have some other & 4 applied in your claim construction \\
\hline & aning? & 5 declaration? \\
\hline & Q. I'm just using the term & 6 A. For which \\
\hline & asonably -- do you have an interpretation of & 7 Q. Your claim construction \\
\hline & hat reasonably certain means? & 8 declaration. \\
\hline 9 & A. Because I hear there's & A. In \\
\hline & sonable doubts & 10 Q. Is that the definition of \\
\hline 11 & Q. That's criminal trial. We're & 11 reasonably certain that you applied in your \\
\hline & \(t\) there. What does the term reasonably & 12 claim construction declaration when you \\
\hline & rtain mean to you? & 13 opined -- \\
\hline 14 & A. So I had an interpreta & 14 A. That is the most recent \\
\hline & ch I thought was reasonable, and I thought & 15 declaration? \\
\hline & ere were other interpretations. & 16 Q. Correct. \\
\hline & Q. Okay. Does that make your & 17 A. Yes. \\
\hline & erpretation for you reasonably certain in & 18 Q. That's the definition? You had \\
\hline & IPR declaration? & 19 multiple interpretations, it wasn't reasonably \\
\hline & A. Well, if -- (Pause.) & 20 certain, is that your testimony? \\
\hline & erpretation I thought was reasonable. The & 21 A. Yes. \\
\hline & possibility of other interpretations were & 22 Q. All right. So now let's move \\
\hline & there. Then no, because the probability -- & 23 to generating no more than \(j\) consecutive \\
\hline & & 24 transitions of said sequence in the recorded \\
\hline & Q. You were not reasonably & 25 waveform such that \(\mathbf{j}\) is greater than or equal \\
\hline & Page 155 & Page 1 \\
\hline & in? & 1 to 0. \\
\hline & A. (Nodding head affirmatively.) & 2 Your opinion in the claim \\
\hline & Q. So then why did you give your & 3 construction declaration is that that phrase \\
\hline & opinions in the IPR declaration if you weren't & 4 is indefinite, correct? \\
\hline & reasonably certain what the ' 601 patent meant? & 5 A. Yes. \\
\hline & A. I had an interpretation which I & 6 Q. And in the IPR declaration you \\
\hline & ght was reasonable. & 7 identified in Okada where that reference \\
\hline & Q. I didn't ask -- that's not the & 8 discloses a generating no more than \(j\) \\
\hline & stion I asked. I said why did you provide & 9 consecutive transitions of said sequence in \\
\hline & pinions under oath in the IPR declaration if & 10 the recorded waveform such that \(\mathbf{j}\) is greater \\
\hline & you were uncertain as to what the '601 patent & 11 than or equal to 2, correct? \\
\hline & meant? & 12 A. Yes. \\
\hline 13 & MR. SIPIORA: & 13 Q. And you did that without \\
\hline & form. & 14 opining that there was any construction that \\
\hline 15 & A. Because I -- & 15 was necessary for this claim phrase, correct? \\
\hline 16 & MR. SIPIORA: Objection as to & 16 A. Yes. \\
\hline & form. Misstates testimony. Go ahead. & 17 Q. And you didn't anywhere in your \\
\hline 18 & A. Yeah, because I thought that my & 18 IPR declaration mention that you weren't \\
\hline & erpretation was reasonable, and assuming my & 19 reasonably certain as to what generating no \\
\hline & erpretation I thought I could proceed. & 20 more than j consecutive transitions of said \\
\hline & Q. In your mind, does the fact & 21 sequence in the recorded waveform such that \(j\) \\
\hline & hat a claim term could have multiple & 22 is greater than 2 meant, right? \\
\hline & interpretation make it not reasonably certain? & 23 A. I did not consider reasonable \\
\hline 24 & A. If I associate some kind of & 24 certainty. Only reasonable interpretation of \\
\hline & percentage to reasonably certain, then the -- & 25 text. \\
\hline \multicolumn{3}{|r|}{```
Epiq Court Reporting Solutions - Washington, DC
79 www.deposition.com/washington-dc.htm
```} \\
\hline
\end{tabular}


Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm





\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}
\begin{tabular}{|c|c|}
\hline EMINA SOI & 05/09/2018 Pages 17 \\
\hline Page 178 & Page 180 \\
\hline 1 to do claim construction on indefiniteness you & 1 consecutive transitions within the sequence, \\
\hline 2 don't just read the claim by itself, right? & 2 which consists of strings of codewords. \\
\hline 3 A. What else would I read? & 3 Q. So you interpreted said \\
\hline 4 Q. You didn't read anything else & 4 sequence to be strings of codewords, correct? \\
\hline 5 in making your opinion? & 5 A. Yes. \\
\hline 6 A. For the claims? & 6 Q. And you did the same thing with \\
\hline \(7 \quad\) Q. Mm-hmm. & 7 Tsang, right? \\
\hline 8 A. Only how I -- I concentrated to & 8 A. Yes. \\
\hline 9 understand what the claims as they are written & \(9 \quad\) Q. And again in interpreting Okada \\
\hline 10 say. But given all of my expertise and the & 10 and Tsang as it applies to the '601 patent you \\
\hline 11 outside literature, it's different issue. & 11 didn't identify anywhere in your IPR \\
\hline \(12 \quad\) Q. What is a different issue? & 12 declaration that you were uncertain about what \\
\hline 13 A. Whether one can come with a & 13 the phrase "transitions of said sequence" \\
\hline 14 number of possible interpretations. & 14 meant, correct? \\
\hline 15 Q. You're saying as you did in the & 15 A. The interpretation I adopted \\
\hline 16 IPR declaration, correct? & 16 was the one which exactly says these \\
\hline 17 A. I adopted one interpretation & 17 consecutive transitions, in the string of \\
\hline 18 there, yes. & 18 sequences. \\
\hline 19 Q. Now in the claim construction & 19 Q. Okay. Thanks, but that -- let \\
\hline 20 declaration in paragraphs 49 and 50 you also & 20 me ask my question again and I'll ask you to \\
\hline 21 identify that you have some -- & 21 answer \\
\hline 22 MR. VERDINI: Strike that. & 22 In interpreting Okada and Tsang \\
\hline 23 BY MR. VERDINI: & 23 as it applies to the '601 patent you didn't \\
\hline 24 Q. In your claim const & 24 identify anywhere in your IPR declaration that \\
\hline 25 declaration, in paragraph 49 you recite the & 25 you were uncertain about the phrase \\
\hline 1 phrase "transitions of said sequence" and & 1 "transitions of said sequence" as it is Page 181 \\
\hline 2 opine that this makes the claim ambiguous, is & 2 written in the '601 patent, correct? \\
\hline 3 that correct? & 3 A. I didn't discuss uncertainty \\
\hline 4 A. Well, transitions are, as you & 4 and certainty in that IPR at all. \\
\hline 5 pointed out between 0's and 1's, and 1's and & 5 Q. Let's move to, back to your \\
\hline 6 0's, so I did not understand "transitions of & 6 claim construction declaration, page 13. And \\
\hline 7 said sequence." Is that between sequences, & 7 we'll move on to section 3, which is the \\
\hline 8 & 8 generating no more than \(k\) consecutive sample \\
\hline 9 Q. In your IPR declaration, page & 9 periods of said sequences without a transition \\
\hline 10 46, in paragraph 110 am I correct that you & 10 in the recorded waveform element of claim 13. \\
\hline 11 didn't identify any ambiguity in determining & 11 Okay? Are you there? \\
\hline 12 that Okada has transitions of said sequence, & 12 A. Generating no more than k \\
\hline 13 is that right? & 13 consecutive sample periods of said \\
\hline 14 A. This 110? & 14 sequences ... yeah, now I am even more \\
\hline 15 Q. Correct. & 15 confused. Yeah. \\
\hline 16 A. He said "consecutive & 16 Q. And your opinion is, in the \\
\hline 17 transitions within the recorded waveform." I & 17 claim construction definition, is that that \\
\hline 18 don't see transitions between sequences here. & 18 phrase is indefinite, correct? \\
\hline 19 Q. But didn't you determine that & 19 A. Yes. \\
\hline 20 Okada practiced the claim element 13[E]? & \(20 \quad\) Q. And again in your IPR \\
\hline 21 A. Yes. & 21 declaration you didn't identify any \\
\hline 22 Q. And that includes transitions & 22 uncertainty as to what that phrase meant when \\
\hline 23 of said sequence, correct? & 23 opining that Okada and Tsang disclosed that \\
\hline 24 A. I adopted the interpretation, & 24 element, correct? \\
\hline 25 which is here, that there are no more than two & 25 A. Yes. \\
\hline
\end{tabular}

\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}
\begin{tabular}{|c|c|c|}
\hline & EMINA SOLJANI & - 05/09/2018 Pages 182..185 \\
\hline & Page 182 & Page 184 \\
\hline 1 & Q. And if we turn to your IPR & 1 that a sample is done once per symbol for \\
\hline 2 & declaration, page 41 -- are you there? & 2 these. That was my interpretation for \\
\hline 3 & A. Yes, I am. & 3 sampling. For IPR. So that was one \\
\hline 4 & Q. -- you describe the sequences & 4 possibility to the sampling, yes. \\
\hline 5 & that you believe were disclosed by Okada, & 5 Q. And why isn't that your \\
\hline 6 & correct? & 6 interpretation of the ' 601 patent in \\
\hline 7 & A. Yes. & 7 connection with your claim construction? \\
\hline 8 & Q. In fact, on page 42 you & 8 A. It is one possible \\
\hline 9 & pressly opine that the sequences generated & 9 interpretation. There can be more than one \\
\hline & by Okada have no more than \(k\) consecutive & 10 sample per symbol in general. \\
\hline & sample periods without a transition in the & 11 Q. And again, as with the other \\
\hline 12 & recorded waveform as recited in claim \(1[F]\), & 12 claim 13 terms in Okada, if you turn to page \\
\hline 13 & correct? & 1346 at paragraph 111 there was nothing in your \\
\hline 14 & A. Yes. & 14 opinion that distinguished claim 13 from claim \\
\hline 15 & Q. And you opine that to a person & 151 in terms of your opinion that Okada \\
\hline 16 & -- of someone skilled in the art \(k\) has to & 16 disclosed what you've identified as claim \\
\hline & be a finite number, right? & 17 13[F] and which you now say is indefinite, \\
\hline 18 & A. K has to be a finite number. & 18 right? \\
\hline 9 & Q. That's what you opined, & 19 A. Yes. \\
\hline & rrect? & \(20 \quad\) Q. And if you turn to page 1 -- or \\
\hline 21 & A. Yes. & 21 paragraph 144 of your IPR declaration. \\
\hline 22 & Q. And you base that on your & 22 A. I'm there. \\
\hline & opinion that as someone skilled in the art you & 23 Q. In paragraph 144 you opine that \\
\hline 24 & know that there can never be a codeword & 24 Tsang discloses apparatuses having a \\
\hline 25 & consisting of all 0 's or all 1 's, right? & 25 constraint \(k\) of 9 , which ensures generation of \\
\hline & A. Oh, \(\begin{aligned} & \text { Page } 183\end{aligned}\) & 1 no more than 9 consecutive sample periods 185 \\
\hline & A. Oh, there are always codewords & 1 no more than 9 consecutive sample periods \\
\hline 2 & consisting of all 0's and all 1's. & 2 without a transition in the recorded waveform. \\
\hline 3 & Q. You opine at the end of & 3 Correct? \\
\hline 4 & aragraph 97, (as read): & 4 A. Yes. \\
\hline 5 & In any case -- this is a quote & \(5 \quad\) Q. So you were able to understand \\
\hline 6 & from yours -- in any case, there can & 6 what sample periods were identified in claim \\
\hline 7 & never be a codeword consisting of all & 7 1[F] of the ' 601 patent, correct? \\
\hline 8 & 0 's or all 1's. & 8 A. I adopted the most common \\
\hline 9 & A. Oh, there can never be a & 9 sampling strategy, as an interpretation. \\
\hline & codeword within, if these rules are imposed. & 10 Q. That was your opinion as to how \\
\hline 11 & Q. Correct. & 11 to construe the term "sample periods" as it \\
\hline 12 & A. That's correct. & 12 appears in claim 1 and claim 13, correct? \\
\hline 13 & Q. All right. So k -- and based & 13 A. Yes. \\
\hline & on that you opine that \(k\) is a finite number, & 14 Q. And again you're not changing \\
\hline & correct? & 15 that opinion here today, right? \\
\hline 6 & A. Yes. & 16 A. That is a possible \\
\hline 17 & Q. And again you didn't identify & 17 interpretation. There are others. I am not \\
\hline & any claim construction -- & 18 changing this as a possibility. \\
\hline 9 & MR. VERDINI: Strike that. & 19 Q. And if someone of skill in the \\
\hline & BY MR. VERDINI: & 20 art adopted that as a construction, would you \\
\hline 21 & Q. In opining as to what Okada & 21 say that they were wrong? \\
\hline & disclosed you didn't identify any need to & 22 A. To adopt this interpretation? \\
\hline & construe any of the claim terms in the '601 & 23 Q. Yes. \\
\hline & patent, correct? & 24 A. No, it's a valid \\
\hline 25 & A. I adopted the interpretation & 25 interpretation. It's just one of several. \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{r}
\text { Epiq Court Reporting Solutions - Washington, DC } \\
\text { www.deposition.com/washington-dc.htm }
\end{array}
\]} \\
\hline
\end{tabular}

```

declaration do you say you were uncertain
about what any of the claim terms meant in the
'601 patent, right?
A. I didn't say anything like that
in the IPR.
Q. And you didn't say that you
were providing interpretations, one of many
possibilities, right?
A. I did not say that.
Q. You just construed the claim as
you thought you should do it and applied it to
Okada and Tsang and the other prior art
references, right?
A. Actually, I expressed my doubts
about how this was written, from the very
beginning.

```
    Q. Not in your IPR declaration,
    did you?
    A. Not in the IPR declaration, no.
    Q. Who did you express those
doubts to?
    A. To Mr. Mayle.
    Q. When?
    A. When we first discussed this patent.
Q. Why didn't that doubt appear in your IPR declaration?
A. Because I adopted something that at the moment was one of reasonable interpretation.
Q. So why did you do that?
A. To be able to have something which is not indefinite in order to compare it with the prior art.
Q. And that's what you did; you took a not indefinite construction of the '601 patent and applied it to the prior art, right?
A. I took one possible interpretation and compared it with the prior art, yes.
Q. You just said you had to do something to be able -- you wanted to have something which was not indefinite in order to compare it to the prior art, right?
A. I cannot compare something indefinite to prior art.
Q. Right. And in fact you did then compare the '601 -- claim terms of the '601 patent to not only Tsang and Okada, but other prior art, right?
```

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

```


\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EMINA SOLJANIN - 05/09/2018} \\
\hline & Page 202 & & Page 204 \\
\hline & the file history. & 1 & Q. Is that consistent with your \\
\hline 2 & A. Yes. & 2 & understanding of the \(j\) constraint as disclosed \\
\hline 3 & Q. And turn to page 750. & 3 & in the '601 patent? \\
\hline 4 & Professor, if you would read to yourself the & 4 & A. Yes. \\
\hline 5 & bottom -- the very last paragraph that bleeds & 5 & Q. And then it reads (as read): \\
\hline & on to page 751 for me. And let me know when & 6 & For example, if j equals 3 the \\
\hline 7 & you're done. & 7 & encoder can to -- which I think is a \\
\hline 8 & A. The paragraph that starts "one & 8 & typo -- produce sequences with \\
\hline & , ..." & 9 & isolated transitions, two consecutive \\
\hline 10 & Q. Yes. & 10 & transitions on two consecutive clock \\
\hline 11 & (The witness reviews document.) & 11 & periods, and three consecutive clock \\
\hline 12 & A. Just the one paragraph? & 12 & periods. \\
\hline 13 & Q. Yes. Would you agree with me & 13 & Correct? \\
\hline 14 & that that paragraph describes the \(j\) constraint & 14 & A. Yes. \\
\hline 15 & that's disclosed in the ' 601 patent? & 15 & Q. And again is that your \\
\hline 16 & A. It talks about how restrictive & 16 & understanding of how the constraint -- the j \\
\hline 17 & j is. It says that -- it describes what it & 17 & constraint disclosed in the '601 patent would \\
\hline & means, that j is greater or equal than 2 , or & 18 & operate when j equals 3? \\
\hline & what it means that j is 3 . So it gives a few & 19 & A. In the '601 patent the j \\
\hline 20 & examples. & & onstraint has a little bit different \\
\hline 21 & Q. And did you consider that & 21 & definitions in claim 1 and claim 13. \\
\hline 22 & description of the constraint in connection & 22 & Q. Okay. My question was is \(\mathbf{j}\) \\
\hline 23 & with forming any of your opinions in the claim & 23 & equals 3 under the claimed method of 13, is it \\
\hline 24 & construction declaration? & 24 & your understanding that the encoder could \\
\hline 25 & A. Did I consider this particular & 25 & produce sequences with isolated transitions, \\
\hline & Page 203 & & Page 205 \\
\hline & paragraph? & & two consecutive transitions on two consecutive \\
\hline 2 & Q. Yes. & 2 & clock periods, and three consecutive clock \\
\hline 3 & A. I considered the -- sorry. In & 3 & periods, as described in the file history? \\
\hline & claim interpretation? & 4 & (The witness reviews document.) \\
\hline 5 & Q. Correct? & 5 & A. It says generating no more than \\
\hline 6 & A. The most recent one? & & j consecutive transitions of said sequences in \\
\hline 7 & Q. Yes. & & the recorded waveform such that j is greater \\
\hline 8 & A. I considered it on claims & & or equal to 2 . And that means that if \(j\) is \\
\hline & language, but I considered all the material & & equal to 2 then you cannot have -- oh, sorry. \\
\hline 10 & around. & & If j is equal to 3 then you cannot have -- \\
\hline 11 & Q. Do you recall specifically & 11 & then having j equals -- number of transition \\
\hline 12 & reading the description of the constraint on & 12 & two is allowed. \\
\hline 13 & page 750 and 751 of the file history? & 13 & (Reporter clarification.) \\
\hline 14 & A. I don't remember any specific, & 14 & A. If j is 3 then having a \\
\hline 15 & but I remember going through the entire file. & & sequence with two transitions would be \\
\hline 16 & Q. And on the bottom of page 750 & 16 & alright. \\
\hline 17 & referring to the j constraint, it says (as & 17 & (Reporter clarification.) \\
\hline 18 & read): & 18 & A. if j is 3 then having a \\
\hline 19 & Because the constraint prevents & & sequence with two transitions is possible. \\
\hline 20 & only transition runs with more than j & 20 & Q. And that's what's described in \\
\hline 21 & consecutive transitions in consecutive & & he file history paragraph we just looked at, \\
\hline 22 & clock periods, patterns with j or & & right? \\
\hline 23 & fewer consecutive transitions can be & 23 & A. Yes. \\
\hline 24 & permitted. & 24 & MR. VERDINI: Subject to \\
\hline 25 & A. Yes. & 25 & reservation on any of the instructions \\
\hline
\end{tabular}

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

\begin{tabular}{|c|c|}
\hline EMINA SOL & 05/09/2018 Pages 210..21 \\
\hline Page 210 & Page 212 \\
\hline 1 claim terms could be construed by one of & 1 Do you recall you answered \\
\hline 2 ordinary skill in the art with reasonable & 2 certain questions earlier about constraints \\
\hline 3 certainty? & 3 being imposed with respect to the \(j\) and \(k\) \\
\hline 4 MR. VERDINI: Object to the & 4 elements of the ' 601 patent? Do you recall \\
\hline 5 form. & 5 that? \\
\hline 6 A. I am not sure I understand. I & 6 A. Yes. \\
\hline 7 can try to answer. I believe that there are & 7 Q. All right. The constraints, \\
\hline 8 more than one reasonable interpretation, as & 8 the \(j\) and \(k\) constraints, where are they \\
\hline 9 actually we discussed, of the terms that we & 9 imposed in the ' 601 patent? \\
\hline 10 discussed by a person skilled in art. & 10 A. In the. \\
\hline 11 Q. Earlier you were specifically & 11 Q. Are they imposed in more than \\
\hline 12 asked how you interpreted that phrase, & 12 one place? \\
\hline 13 "reasonable certainty," and you said something & 13 MR. VERDINI: Object to the \\
\hline 14 to the effect that if it had multiple & 14 form. \\
\hline 15 interpretations, that therefore there was, by & 15 A. If encoder consists of multiple \\
\hline 16 one of ordinary skill in the art, that there & 16 parts. \\
\hline 17 would be -- there would not be reasonable & 17 Q. That which is the encoder would \\
\hline 18 certainty surrounding the term. Do you recall & 18 be the place, whether it be multiple parts or \\
\hline 19 that testimony? & 19 one part, is that where the \(j\) and \(k\) \\
\hline 20 MR. VERDINI: Object to & 20 constraints are imposed? \\
\hline 21 form and mischaracterizes the & 21 MR. VERDINI: Object to the \\
\hline 22 testimony. & 22 form. \\
\hline 23 A. I remember discussing this, a & 23 A. J and k constraints are \\
\hline 24 saying something to the effect that if person & 24 imposed, so you would have incoming sequence \\
\hline 25 skilled in art would find a reasonable & 25 then you would have an encoder which may be \\
\hline 1 interpretation that is different than me that 211 & Page 213 \\
\hline 1 interpretation that is different than me, that & 1 one or multiple parts, and after that you \\
\hline 2 one I adopted or there are in that sense & 2 would have encoded symbols. \\
\hline 3 multiple interpretations which are all & \(3 \quad Q\). Once the \(j\) and \(k\) constraints \\
\hline 4 reasonable to a person skilled in art, then & 4 are imposed can they be imposed again? \\
\hline 5 there is no reasonable certainty. & 5 MR. VERDINI: Object to the \\
\hline 6 Q. With respect to the five claim & 6 form. \\
\hline 7 terms at issue, did you come to the conclusion & 7 MR. SIPIORA: Let me rephrase \\
\hline 8 that there were multiple reasonable & 8 the question. \\
\hline 9 interpretations with respect to each of them? & 9 BY MR. SIPIORA: \\
\hline 10 MR. VERDINI: Object to the & \(10 \quad\) Q. Once the \(j\) and \(k\) constraints \\
\hline 11 form. & 11 are imposed by the encoder in the ' 601 patent \\
\hline 12 A. I believe I stated examples of & 12 are they imposed again? \\
\hline 13 multiple reasonable interpretation in a number & 13 MR. VERDINI: Object to the \\
\hline 14 of places that we discussed. & 14 form. \\
\hline 15 Q. And with respect to the & 15 A. Again? I mean once when \\
\hline 16 interpretations that you consider reasonable, & 16 they're imposed and encoded symbols are \\
\hline 17 in the IPR did you select in each instance at & 17 formed, then they are there. There is no -- \\
\hline 18 least one of those interpretations and rely & 18 no, they're not imposed again. \\
\hline 19 upon that consistently in the inter partes & 19 Q. According to your understanding \\
\hline 20 review as you did your work there? & 20 of the '601 patent are the \(j\) and \(k\) constraints \\
\hline 21 MR. VERDINI: Object to the & 21 imposed again at the level, at the platter or \\
\hline 22 form. & 22 on the optical surface in connection with what \\
\hline 23 A. Yes. & 23 you consider the recorded waveform? \\
\hline 24 Q. I am going to switch gears now & 24 MR. VERDINI: Object to the \\
\hline 25 to the last topic. & 25 form. \\
\hline
\end{tabular}

\footnotetext{
Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm
}

the pattern in the disks there is NRZ and NRZI, which are maps. They don't impose anything.
Q. So is it the case that once the \(j\) and \(k\) constraints are imposed on the encoder there is no further imposition of those constraints on the quote-unquote "recorded waveform"?

MR. VERDINI: Object to the
form and asked and answered.
A. Sorry, ask --

MR. SIPIORA: He's just making noise. You can answer the question.
A. Could you repeat the question?
Q. Yes, sure. Is it the case, in
the ' 601 patent, that once the \(j\) and \(k\)
constraints are imposed by the encoder, that
mey are not imposed again at the place that's
MR. VERDINI: The same
objections.
A. They're not imposed again.
Q. In connection with the
testimony you gave earlier you talked about a
counterpart, there's some counterpart with respect to the imposition of the \(j\) and \(k\) constraints, do you recall that?
A. So for each encoded sequence of symbols, there is a counterpart of the disk of patterns of bit magnetizations --
(Reporter clarification.)
A. I mean cell magnetizations.
Q. What does that mean when you say there's a counterpart?
A. That means that between --
there is a correspondence which is \(1-\) to- 1 ,
which depends how -- the nature of the
correspondence is determined whether we have correspondence and that's why I called it a counterpart.
Q. And the counterpart is in the recorded waveform, or in the magnetization, optical disk, whatever was imposed previously with respect to \(j\) and \(k\) constraints, it's reflected in whatever that recording is?
form.
A. Maybe I used the term upheld or something. That whatever it's imposed should not be ruined, otherwise you should not be imposing it to begin with. But it's not imposed again.

MR. SIPIORA: Thank you. No further questions.

MR. VERDINI: I think probably
two follow-up questions.
EXAMINATION (Cont'd)
BY MR. VERDINI:
Q. You were directed to paragraphs 26 through 32 in exhibit 3 regarding claim construction standard.
A. Paragraphs ...
Q. 26 through 32 of your claim construction declaration.
A. Yes.
Q. And then you were also directed to exhibit 4, paragraphs 63 and 64 . So if you can have them both out. Right?
A. Yes.
Q. You would agree with me that the claim construction standard in exhibit 3 , which runs from 26 through 32 has more words

Page 217
than the claim construction standard that you applied in the IPR declaration, right?
A. It has more words. It looks it has more words.
Q. In your view, though, was there a difference in the standards of claim construction that you used in the indefinite claim construction declaration and that which you used in the IPR declaration?
A. I think you asked me about principles. I believe I was just asked about principles --
Q. Yes.
A. -- which is --
Q. So let's use the word
principles, then, instead of standards.
A. Okay.
Q. Even though there are more
words --
A. It's a similar approach.
Q. -- you used the same approach
in both, isn't that right?
A. Approach, yes.
Q. Okay. And you applied the same -- there wasn't a different claim
```

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

```

```

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

Epiq | Court Reporting 1875 Eye St NW, Suite 802, Washington, DC 20006
 (800) 735-6005 FAX (866) 225-4066
 E-MAIL: ClientServices.DC@epiqglobal.com Trial Date: unknown ERRATA SHEET
 May 21, 2018

IN RE: Regents of the University of Minnesota v. LSI Corporation, et al.
DEPOSITION DATE: May 9, 2018
DEPONENT/AFFIANT: Emina Soljanin
REPORTER: Frank Bas
RETURN BY: June 23, 2018
JOB NO.: WDC-170935

PAGE	LINE	CORRECTION AND REASON
NUMBER		
29	8,9	"to describe" should be "a disk drive"
34	17	"single" should be "signal"
136	14	"n-bit" should be "N-bit" for consistancy

ACKNOWLEDGMENT OF DEPONENT

I, Emina Soljanin \quad dohereby
acknowledge that I have read and examined the foregoing
testimony, and the same is a true, correct, and complete
transcription of the testimony given by me, and any
corrections appear on the attached errata sheet signed
bye.
(Date)
(Signature)

Job No.: WDC-170935

Epiq | Court Reporting
1875 Eye St NW, Suite 802, Washington, DC 20006
(800) 735-6005

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm

	EMINA SOLJAN	- 05/09/2018	i2
18	2002	47:13,21 48:14 58:3,10	149:19 158:15 171:11
118:21 123:13 138:22,	37:2,13 40:4,8,11,14	66:16 67:2,7,17 68:12	172:22 175:13,22
25 139:1,3,4,7,19	54:1,22	69:17 70:7,10,14,19	177:17 190:13 193:3
140:5,9,10,15 141:11	2005	75:25 80:4 88:13	207:8,23 208:6 216:20
19	2005 $34: 7$ 36:8 37:13 40:7,11	111:16 123:11 124:5	40
66:15,17,20 69:19	53:23 54:24	$131: 3132: 7,25149: 6$ $152 \cdot 16153: 10 ~ 170: 16$	104:17 111:23 112:6,14
1995	2014	152:16 153:10 170:16	113:16 114:8 119:14
19:1 42:17 58:14 59:22	87:9 88:1,8,9	202:19 204:6,18,23	149:19 158:17 159:12
$\begin{aligned} & 1996 \\ & 42: 1 \text { 49:10 50:23 51:9, } \\ & 22 \end{aligned}$	2015	205:10,14,18 206:22	41
	19:1,4	208:20 216:13,24	115:24 116:7 117:1
		30	118:20 123:10 182:2
$\begin{aligned} & 1997 \\ & \text { 124:25 125:6 126:1 } \end{aligned}$	2016 $8: 8$	42:8,22 43:9 56:3	42
	8.8	176:17 177:18	131:6,16 132:6 135:10
	2017	31	182:8
1999	13:18	60:13	43
56:21	2018	32	137:24 138:3,9,14
1:32	219:18	$74 \cdot 715$ 147•17 207	139:18,20 149:9 192:18
151:2	21	$216: 13,16,25$	44
1[D	20:11		141:17,20
101:8,11,15 102:12,17	23	34 100:22	45
$\begin{aligned} & 104: 10 \text { 105:2,25 } \\ & \text { 108:12,15,21 111:6 } \end{aligned}$	73:15,16 146:3,10	35	36:17 112:6 149:4,9,10,
	25	14:18 77:23 87:4	11,13
158:18,20 166.3 168.	75:5,7 77:10 90:2	208:21 218:4	46
158	147:15	36	105:7 117:18 161:6,19
1[F	26	36 79:6	179:10 184:13
182:12 185:7	3:24 74:7,15 75:22,23		48
$\begin{aligned} & \text { 1s } \\ & 41: 1144: 1 \end{aligned}$	77:10 206:23 207:2	37	107:24 161:23 162:2
	216:13,16,25	88:16	164:17 170:19 176:14
	27	39	190:25 207:17
2	80:6 81:16 207:17,20,	88:22 89:2	49
	$23,25$	3:00	36:17 178:20,25
2	28	201:19	4:00
9:20 10:2,3,8 11:513:13 14:1,22 16:16	41:9,20,22 55:24 81:19	3:09	219:11
	29	206:8	
46:13 47:23 100:5	100:3	3:44	5
153:14 157:11,22	2:41	206:8	
158:25 168:11,12,25	201:19		5
$\begin{aligned} & \text { 169:7,13,19 175:13 } \\ & \text { 177:11 202:18 205:8,9 } \end{aligned}$		4	16:16,17 33:11,13,20
	3		34:5 36:24 37:6,25
20	3	4	38:17 39:12 40:6 43:12,
19:25 56:12,14,17 173:18	3	12:24 13:7, 14:8 17:15	$14 \text { 45:25 48:15 58:2,6 }$ 132:7,9 158:17
173:18	$7: 24 \text { 10:18 11:1,2,13,24 }$	18:10 26:25 27:4 33:2	132:7,9 158:17
2000	14:10,11,22 16:10,13	42:14 56:12 58:13 64:6	5,392,270
55:2	17:7 18:15 23:5 30:13	75:4 76:3 77:23 100:3,	100:10
	31:14 32:9 36:14 45:24	23,24 119:12 132:7,25	

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

5,608,397	65		accordance
145:12,19	91:17	9	171:3 176:5
$\begin{gathered} 5,731,768 \\ 108: 6 \end{gathered}$	7	9	$\begin{gathered} \text { account } \\ 48: 3 \end{gathered}$
$\begin{array}{r} 5,859,601 \\ 9: 6,1313: 2 \end{array}$	7	$\begin{aligned} & \text { 13:18 88:12 103:23 184:25 } \\ & \text { 104:4 160:15 } \end{aligned}$	accurate 4:14 12:9 16:11,20 36:4
50 178:20	$\begin{aligned} & \text { 103:4,13 143:14,16,22 } \\ & 74 \end{aligned}$	$\begin{aligned} & \text { 185:1 } \\ & \text { 90s } \\ & \text { 24:11 25:16,17 194:14 } \end{aligned}$	39:25 41:1,14 44:4,14, 25 49:5,6,10 50:19,22 51:6,9,19,22 53:20
$\begin{aligned} & 55 \\ & 108: 11 \end{aligned}$	90:25 91:18 745	$\begin{aligned} & 92 \\ & \text { 104:18 } \end{aligned}$	$\begin{aligned} & 54: 21,2455: 2 \text { 150:11 } \\ & 152: 3153: 2 \end{aligned}$
58	125:24 126:4	94	acknowledge
$\begin{aligned} & \text { 121:2,7,11,12,14 } 168: 6 \\ & 192: 24 \text { 196:4,7 } \end{aligned}$	$\begin{aligned} & 75 \\ & 90: 11,2391: 6,17 \end{aligned}$	$\begin{aligned} & \text { 19:3 } 25: 20119: 14 \\ & \text { 120:18 149:20 159:7 } \end{aligned}$	220:4 ACKNOWLEDGME
59 192:24 197:4,14	$\begin{aligned} & 750 \\ & \text { 126:11 127:2 130:23 } \\ & \text { 202:3 203:13,16 } \end{aligned}$	95 56:5,15 59:18 61:25 160:7 165:24 166:6,21	NT $220: 2$ Action
6	751 202:6 203:13	$\begin{aligned} & \text { 167:10 } \\ & 97 \end{aligned}$	$\begin{aligned} & 124: 25 \text { 125:6,8,12,18 } \\ & 126: 2 \end{aligned}$
6	757	25:18 183:4	actual
$\begin{aligned} & 38: 18,21 \text { 73:16 124:21, } \\ & 23 \text { 125:4 130:23 201:25 } \end{aligned}$	76	98 $25: 18,21$	$27: 2$
60 11:19	100:4		add 52:8,10 177:6,19
601	8	A	$\begin{array}{r} \text { added } \\ 146: 25 \end{array}$
$\begin{aligned} & 12: 20 \text { 26:4 27:10 33:9 } \\ & \text { 42:5 58:18 59:4 73:10 } \end{aligned}$	8	$\underset{7: 24}{\text { a.m. }}$	addition 71:20,24 72:18 140:24
89:8 90:19 100:6 102:17 104:11 107:20	$\begin{aligned} & \text { 77:6,7 86:24 100:5 } \\ & \text { 103:22 104:4 107:25 } \end{aligned}$	ability $4: 1874: 17$	141:21
$\begin{aligned} & \text { 108:1 109:16 122:8, } \\ & \text { 125:19 126:16 127:10 } \\ & \text { 150:12 153:6 155:5,11 } \\ & \text { 165:13 180:10,23 181:2 } \end{aligned}$	$\begin{aligned} & \text { 145:9,11,16,18 148:21 } \\ & \text { 160:14 171:12 172:23 } \\ & \text { 175:24 176:20 177:6, } \\ & \text { 18,19 207:25 208:2,21 } \end{aligned}$	absolutely 61:14 93:4 186:20 academia	$\begin{aligned} & \text { additional } \\ & \text { 45:7 69:23 91:1,10 } \\ & \text { 140:6,13,20 146:12,21, } \\ & 24200: 20 \end{aligned}$
$\begin{aligned} & \text { 183:23 184:6 185:7 } \\ & \text { 187:19 188:3 189:11, } \end{aligned}$	$\begin{aligned} & \text { 8-to-13 } \\ & \text { 106:3,19 } \end{aligned}$	$34: 15$	Additionally 79:8
$\begin{aligned} & 23,24202: 15 \text { 204:3,17, } \\ & \text { 19 209:13 212:4,9 } \\ & \text { 213:11,20 214:17 219:4 } \end{aligned}$	$\begin{aligned} & 85 \\ & 101: 14,24 \end{aligned}$	accept 31:9 99:13 accepted	address 3:23,24 4:2 165:19
63 $\begin{aligned} & \text { 75:11 76:3 90:11,25 } \\ & \text { 111:2 207:8,12 216:20 } \end{aligned}$	$\begin{aligned} & 87 \\ & 102: 2,5,22 \text { 103:1,22 } \\ & 89 \end{aligned}$	$\begin{gathered} 91: 25 \\ \text { accessed } \\ 117: 7,13 \end{gathered}$	```addressed 90:24 91:8,16 adds```
$\begin{aligned} & 64 \\ & 76: 7,9 \text { 91:22 207:8,12 } \\ & \text { 216:20 } \end{aligned}$	106:2,7,9,11	accommodate 6:11 accomplished 48:24 171:4 176:6	```171:17,22 adopt 110:13,21 185:22 193:19,20 195:18 201:8```

[^0]| adopted | alright | appendix | 185:20 187:1 188:12 |
| :---: | :---: | :---: | :---: |
| 92:6 102:19 107:4,10 | 205:16 | 11:10 | 189:9,12,15,19,21,25 |
| 110:17 122:22,25 | alternate | applicable | 198:14 200:19,21 209:9 |
| 133:16 135:4,5,7 150:9 | $15: 12$ | 148:25 | 210:2,10,16,25 211:4 |
| 152:3 165:17 169:23 | | | 218:20 |
| 170:2,9 178:17 179:24 | ambiguity | application | article |
| 180:15 183:25 185:8,20 | 179:11 193:6 | 7:10 63:18,20 91:24 | 42:1 |
| 189:3 191:9 211:2 | ambiguous | applied | asks |
| advantages | 87:16,22 179:2 | $\begin{aligned} & \text { 110:12 123:3 156:4, } \\ & \text { 188:11 189:12 206:17 } \end{aligned}$ | 206:4 |
| | amenable | 209:12 217:2,24 | asserted |
| affect | 87:14 | applies | 9:16 14:17 88:13 |
| affirmatively | 72:10 | 180:10,23 | assisted |
| 5:4 37:8 81:17 100:1 | amended | apply | |
| $\begin{aligned} & \text { 115:13 124:19 155:2 } \\ & \text { 218:8,15 } \end{aligned}$ | 26:2 152:21 | $\begin{aligned} & 74: 13,18,2483: 16,20 \\ & 114: 11206: 14,25 \end{aligned}$ | $\begin{gathered} \text { associate } \\ 155: 24 \end{gathered}$ |
| aforesaid | amendment | 207:11 208:5 | assume |
| 219:19 | 72:14 | applying | 5:20 166:19 |
| afternoon | analysis | 218:1 | assumed |
| 206:12 | $\begin{aligned} & \text { 159:24 161:12 166:22 } \\ & \text { 168:20 } \end{aligned}$ | approach | 120:19,21 |
| agree | answers | 217:20,21,23 | assuming |
| $\begin{aligned} & \text { 27:23 101:10 131:8 } \\ & \text { 144:9,13 166:9 176:10, } \end{aligned}$ | $5: 7$ | approximate
 17:10 18:8 | 135:5,7 155:19 |
| $\begin{aligned} & 17 \text { 198:16 202:13 } \\ & 216: 23 \end{aligned}$ | antecedent
 111:25 112:16 113:14 | approximately
 17:12 19:1 146:3,10 | $\begin{aligned} & \text { assumption } \\ & 167: 1,9 \end{aligned}$ |
| $\begin{gathered} \text { agrees } \\ 116.311 \end{gathered}$ | 114:7,11 116:14
 anticipated | April 71:10,12 | 120:24,25 134:8
 AT\&T |
| ahead | $\begin{aligned} & \text { 78:19 100:6 108:1 } \\ & \text { 133:20 } \end{aligned}$ | area | $\begin{array}{r} \text { AT\&T } \\ 19: 13 \end{array}$ |
| $\begin{aligned} & 6: 24 \text { 28:13 } 60: 968: 5 \\ & 90: 11 \text { 127:12 155:17 } \end{aligned}$ | anticipation | 78:14 80:18,22 81:12
 186.7 | attached |
| Alcatel 19:16 | $\begin{aligned} & \text { 77:16,24 78:10 208:4 } \\ & \text { anymore } \\ & \text { 21:8 } 25: 9 \end{aligned}$ | areas
 37:24 | ```11:12 17:14 220:8 attempt 126:16``` |
| alike 198:4 | $\begin{gathered} \text { apologize } \\ \text { 106:11 } \end{gathered}$ | arguments 69:24 127:9 | attended 58:19 |
| allegations 26:2 | apparatuses 168:10 184:24 | $\operatorname{arm}_{19: 7,9}$ | attendees 59:18 |
| alleged 26:3 27:10 | appeared 63:25 | arrangement 96:23 | attention 127:23 |
| allowable 172:18 | appears 105:15 185:12 190:17, | art 12:19 21:21 34:20 | attorney 30:21 33:5 |
| allowed 88:8 102:9 119:23 | 18 | $\begin{aligned} & 73: 18,2575: 1477: 3 \\ & 78: 1,12,1879: 9,22,23 \end{aligned}$ | attorney-client |
| 159:16 160:11 163:7 | appendices | 84:4,9 89:11 92:20,25 | 97:15 |
| 205:12 | 11:7,12 | $\begin{aligned} & \text { 110:16,18 133:20 } \\ & \text { 134:10 153:4 182:16,23 } \end{aligned}$ | |

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www.deposition.com/washington-dc.htm

audience	beginning	book	brought
34:14, 37:20	34:22 43:17 107:5	33:13,22 34:6,10,14,23	194:19
author	188:16 208:2	35:20 36:18 38:17 39:3	business
144:10	begins	books	3:23 4:2
authors	112:19	36:18 38:17,22,23 39:3	
35:7	behalf	bottom	C
Avago	3:2 8:1 12:3 97:4	11:17 13:14,15 27:4	
3:8 8:2,10,14 9:17 12:4	belief	$\begin{aligned} & 34: 8,25 \text { 43:16 77:7 } \\ & \text { 125:23 159:12 175:1 } \end{aligned}$	calendar
18:13 72:21 73:2	14:4 40:7	$\begin{aligned} & 125: 23159: 12175: 1 \\ & 190: 12 \text { 202:5 203:16 } \end{aligned}$	164:2
avoid	believed	bounds	call
52:20,23,24 53:2	36:3 90:14 91:1,10	85:14 95:11	70:17 113:14 129:9
avoids	107:18 191:20	bracket	$\begin{aligned} & 140: 8 \text { 143:7 147:3 } \\ & 159: 8 \end{aligned}$
121:24 168:13	Bell 19:1,6,7,9,12,17,21	41:9,10 101:2 105:9,10	called
aware65:15 134:20 162:13,15	$20: 1,6,10,1121: 123: 6$	break	3:12 7:1 8:17 52:1 55:8
	beneficial	6:7,10,11 56:24 57:10	87:1 109:15,18 147:6
B	45:7,12	$\begin{aligned} & 93: 6,12,24 \text { 95:8,16,25 } \\ & 99: 8,22,24151: 13,14 \end{aligned}$	$\begin{aligned} & \text { 165:7 194:16 208:2 } \\ & 215: 16 \end{aligned}$
	benefits	201:17 206:6	calling
back	45:8	Brett	140:5
14:7,10 16:13 32:2,4	binary	4:3	calls
34:24 39:11 42:7,20	26:10,13,18,22 28:2,10	Brian	$97: 11$
$43: 12,17 \text { 57:7 63:13 }$ 65:3 83:4 93:11 111:15	29:11,12 30:17 31:13	35:6,9	capac
112:24 123:9 131:3	17 132:1,4 139:8	Brickner	39:21 40:24
139:17 149:5 151:12	140:17,22 149:14,16	41:23 42:3 55:25 66:13	career
161:21 165:23 170:16,	150:6,7 152:1,12		38:25
20 175:22 181:5 201:21 206:6 208:20	166:10,20 190:5	16:4	case
206:6 208:20	Biosig 208:23	bring	6:23,25 7:2,4,12,15 8:1,
7:9 148:24		144	9:17 12:6
base	bit 4:25 49:1,16,20,23,25	British	36:14 39:2 57:18 73:13
182:22	51:16 106:3,19 158:13	35:11	74:16 83:18 99:1
based	186:4,7,16,23 187:11,	Britten	132:23 134:21 142:11
33:5 63:18 79:11 85:18	14,15 196:8,12 204:20	3:25	162:2 183:5,6 208:23
99:19 114:24 118:16	215:6	Broadcom	214:5,16
124:14 130:1 151:16	bits	8:18 97:17	cases
159:24 173:9 177:17	136:20 150:3	Broa	6:21
183:13	bleeds	$46: 2$	cell
basis	202:5		49:2,20 51:4 215:8
$\begin{aligned} & \text { 78:2 85:11 } 97: 21 \text { 112:1, } \\ & \text { 11,17 113:14 114:7,12 } \end{aligned}$	block	101:2 151:24	cells
$11,17113: 14114: 7,12$ $116: 15123: 19,151: 21$	120:1 149:23 159:19	broken	49:1,16,23,25 51:16
begin	bolster	102:18	central
216:4	138:5,16	Brooklyn 20:12	174:16

[^1]| certainty | choices | 169:7,14 171:19 177:7, | assify |
| :---: | :---: | :---: | :---: |
| 89:10 157:24 171:18,23 | 187:22 | 21,22,25 178:1,2,19,24 | 46:12 |
| 177:7,20 181:4 209:8, | Chris | 179:2,20 181:6,10,17 | clear |
| 19 210:3,13,18 211:5 | 3:1 | 182:12 183:18,23 | $5: 136: 564: 170: 19$ |
| cetera | circle | $\begin{aligned} & \text { 184:7,12,14,16 185:6, } \\ & 12 \text { 188:2,10 189:23 } \end{aligned}$ | 130:22 134:18 218:10 |
| 167:7 186:14 | $50: 9$ | $190: 3,13,17,18,23$ | client |
| challenge | Circ | 191:4,6,19,25 192:6,9, | 97:4,16 |
| 97:11 | 87:21 | 10,13,16,25 193:2 | clock |
| challenges | cite | 196:1,3,22,24 197:4 198:6,9,15,21 199:22 | 102:10 119:24 159:17 |
| | 172:22 | 200:14,21 201:15 | 160:12 203:22 204:10 |
| chance | city | $\begin{aligned} & \text { 202:23 } 203: 4 \text { 204:21 } \\ & \text { 206:15,23 207:1,9 } \end{aligned}$ | code |
| change | | 208:15 209:24 210:1 | 23:21 24:1,6,21,23 25:2 |
| 28:9 29:19 73 | cla | 211:6 216:13,16,24 | 26:6 27:12 53:1,4 56:7 |
| $148: 13$ | 9:21 10:9,14 11:3 13:23 | 217:1,6,8,25 218:5 | 68:21,24,25 171:6 |
| | 14:13 15:4,14,25 16:3, | 219:3 | 172:1,5 176:7,23,24 |
| changed$28: 1,4 \text { 162:23,24 }$ | 15 25:23 28:1,11 29:16, | claimed | 177:2 193:24 |
| | $24 \text { 30:4,12 58:4,11 }$ | claimed 79:16 103:7,14,18 | codes |
| changing | $70: 14,17,21,23 \text { 72:5,22 }$ | 122:7 139:12 169:7,14 | 23:13,16,17 25:3,12,20 |
| | 74:3,12,16,24 75:8,13, | 187:18 197:7,16,20 | 35:4,16 36:25 41:24 |
| channel | $1976: 1,16,17,18,19$ | 204:23 | 52:19,20,22,24 53:2,3, |
| 23:20 24:12 46:8,16,19, | 77:25 78:1,7,10,11,17 | claiming | 18,24 54:2,15, 55:18 56:10 69:2 77:1 146:11 |
| 23 47:3,4 52:9,11 $54: 16,17$ 55:7 147:22 | 80:5 82:3,16,19,23 | 126:23 | 176:19 |
| channels | 84:14,20 85:1 86:9,19, | claims | codeword |
| 39:23 40:25 42:15 44:9 | 22,25 87:14,15 88:17,
 24 89:5,7 90:4,10 91.23 | $76: 2278: 19 \text { 82:2,14 }$ | 132:5 182:24 183:7,10 |
| 46:5 50:15 52:2 55:19 | $\begin{aligned} & 24 \text { 89:5,7 90:4,10 91:23 } \\ & 92: 10 \text { 97:21 101:1,3,6, } \end{aligned}$ | 83:6 86:4,8,16 87:22 | codewords |
| chapter | $8,11,15 \text { 102:12,17 }$ | 88:14 89:6 90:19 92:7, | 115:9,15,17 147:20 |
| 34:1,24 35:3,17,23 36:7 | 104:10 105:2,9,12,13, | 21 100:5 107:25 111:1 | 149:14,16 150:6,7 |
| 37:6,11 38:7 39:12,14 | 15,24 108:11,15,20 | 112:22 113:9,11,19 | 52:1,12 180:2,4 183:1 |
| 40:6,15,17 43:13,17 | 111:5,7,9,12,16 112:18, | 126:16 133:15,18 | 190:6 |
| 45:19 46:14 47:11 49:7 | 25 113:1,2 116:7,15 | 134:13,16 138:4,15,21 | coding |
| 50:20 51:7,20 54:8 | 118:4,11,15,24 123:5, | 141:1 150:12 165:8,16 178:6,9 200:11,12 | 20:3 21:21 22:4,7 |
| chapters | 10,14,20 124:4,9,18 | 203:8 209:5 218:23 | 33:14,23 34:16 109:19 |
| $35: 15 \text { 36:18 38:17,22, }$ | 131:4,9,17,20,23 | 203.8 | 42:18,21,22 143:2,5,6, |
| 23 39:4 | 132:14,17 133:7,12 | clarification | ,8,10 172:25 173:2 |
| | 134:17 138:4,16,22,25 | 114:15 132:3 175:10 | 176:1,3 |
| characterize 31:24 | $\begin{aligned} & 139: 1,3,4,7,16,19,25 \\ & 140: 7,8,10,14141: 7,18 \end{aligned}$ | 195:20 205:13,17 215:7 | collected |
| | 149:4 150:5 152:11,16 | class | 37:17 |
| | 153:11 155:22 156:4,7, | 22:8,9 42:14 46:20 | collectively |
| 56:11 158 | $12 \text { 157:2,15 158:4,18, }$ | 52:19 53:17 54:2,18 | 12:5 |
| chicken/egg | 20,21 159:3 160:5 | 143:1,5 | |
| 71:1 | 161:4,11,12,13,18,21 | classes | $44: 1154: 15$ |
| chips | 162:4,10,11,21 163:6, | 46:2,14 47:1 | |
| 24:12 25:21 55:4,5,7 | $\begin{aligned} & \text { 12,20 164:8,20 165:12 } \\ & \text { 166:3 167:23 168:21 } \end{aligned}$ | classified 47:1 | $20: 13 \text { 35:11 }$ |

[^2]| column | complete | conference | 190:7 193:4,11,18 |
| :---: | :---: | :---: | :---: |
| 145:24 146:2,6 148:20 | 220:6 | 20:15 58:21 59:9,11,13, | 195:8 196:11,16,20,23, |
| 171:11 172:21,22 | | 14,15,18,22 61:1,4,18, | 5 197:2,12,13 198:4 |
| 173:15 175:22 177:17 | | 21,25 62:5,16,19 | 203:21,23 204:9,10,11 |
| combining 190:6
 comfortable 102:20 | | confir | 205:1,2,6 |
| | CO | 15:7,9 | consideration |
| | | | 138:4,15 171:25 |
| | complexity | $45: 16$ | considered |
| $\begin{aligned} & \text { comma } \\ & \text { 147:19,20 } \end{aligned}$ | | confused | 88:7 152:8 203:3,8,9 |
| | 135:18,20,24 136:10, | 181:15 | consist |
| $\begin{aligned} & \text { commercial } \\ & \text { 23:14 24:7,9 53:19 54:3 } \end{aligned}$ | $12,13$ | confusing | 15:17 |
| | C | 152:6 | consistent |
| common | 135:16,21 136:4,6,8 | confusion | 139:22 162:8 204:1 |
| | | 192:23 193:13 | consistently |
| commonly$50: 14 \text { 91:25 }$ | $146: 14$ | connected | 211:19 |
| | comprising | 81:22 | consisting 104:2 182:25 183:2,7 |
| $\begin{aligned} & \text { communicated } \\ & 165: 3 \end{aligned}$ | 147:20 | connection $8: 9 \text { 11:3 13:23 14:13 }$ | consists |
| communication$31: 17$ | | 15:25 29:15,23 30:2,24 | 129:16 180:2 212:15 |
| | computer | 31:14,18 32:8,25 61:4 67:1 68:11 70:23 72:21 | Constitutes $80: 20$ |
| communications31:24 147:22 | 37:1,14,20,22 38:2,8 | 74:15,19,25 75:18 | 80:20 |
| | 142:20 | 76:16 77:19 83:17,21 | constrained |
| $\begin{aligned} & \text { community } \\ & 65: 23 \end{aligned}$ | computi | 86:4,5,8 92:6,14 101:3 | 48:17 55:18 56:10 |
| | 22:25 | $\begin{aligned} & \text { 106:24 107:19 108:11 } \\ & \text { 114:4,12 124:17 133:4, } \end{aligned}$ | constrains |
| companies$19: 8,12$ | concentrated | 7 135:10 148:7 164:12 | |
| | 178:8 | 176:13 184:7 187:16 | constraint |
| $\begin{aligned} & \text { company } \\ & \text { 8:17 19:13,14,15,21 } \\ & 63: 24 \end{aligned}$ | concentric | 197:20 202:22 207:3,4 | 26:7 27:13 41:7,9 42:22 |
| | 50:9 | 208:6, 209:12 213:22 | 43:2,9 44:15 45:7,22 |
| | concerned | 214:24 218:11 | $\begin{aligned} & 46: 13,2547: 10,2048: 1 \\ & 4,9,10,1156: 7104: 21 \end{aligned}$ |
| $\begin{aligned} & \text { compare } \\ & \text { 16:25 78:18 189:8,19, } \\ & 20,23 \end{aligned}$ | 130:10 | $\begin{aligned} & \text { connect } \\ & 18: 5 \end{aligned}$ | $\begin{aligned} & 136: 15 \text { 137:9,12,15,19 } \\ & 22 \text { 184:25 202:14,22 } \end{aligned}$ |
| | Conclude 90:24 160:20 167:15 | consecutive | 203:12,17,19 204:2,16, |
| compared109:25 189:14 | 198:19 | $\begin{aligned} & \text { 26:9 27:15 102:9,10 } \\ & \text { 103:9 104:5 119:23,24 } \end{aligned}$ | 17,20 |
| | concluded | 103:9 104:5 119:23,24 121:25 139:9 140:23 | constraints |
| comparing27:24 75:21 | 159:25 169:3 | 153:12 156:23 157:9,20 | 39:22 43:24 44:1,8 |
| | conclusi | 158:23 159:16,17 | 12 46:3,5,9,10 |
| comparison | 139:23 211:7 | 160:1,11,12,22 161: | 1-14,23 106:4,20 |
| | | 10,17 162:5 166:2,11, | 130:14,24 136:2 139:5 |
| | CO | 24 167:11,12,16,23 | 199:16,18 212:2,7,8,20, |
| compensated16:17 | 0 58:22 60:12 63: | 168:14,23 169:5,11 | $23 \text { 213:3,10,20 214:6,8, }$ |
| | conducting | 171:6 172:1,5,9,12 | 18 215:3,22 |
| complaint$26: 3$ | 20:2 | 174:2,4,6 175:17,18
 177:8 179:16 180:1,17 | constructing |
| | | 181:8,13 182:10 185:1 | 69:2 |

[^3]| construction | contacted | correct | 203:5 204:13 208:17 |
| :---: | :---: | :---: | :---: |
| 9:21 10:9,14 11:4 13:23 | 59:7,17 | 4:6 7:19 8:4 11:13,22 | 218:11,14,17,20 219:5 |
| 14:14 15:4,25 16:4,15 | contacts | 12:14,21 13:16,19,24, | 220:6 |
| 28:1,11 29:16,24 30:4, | 164:16 | 25 14:5,6,19 15:16,24 | correcting |
| 12 58:5,11 67:17 68:13, | | 16:6 17:3,4 20:6 24:7 | 146:11 |
| 22,24,25 69:12 70:15, | content | 26:11 28:3,24 30:6 | |
| 18,21,23 72:5,22 74:3, | 84:1 | 32:13 35:4,7,18,22 36:4 | correction |
| 12,16,25 75:8,19 76:1, | context | 37:7 38:18 40:1 41:2, | 142:22 |
| 16,17,18,20 80:5 83:18 | 62:14 84:12 215:20 | 12,15 42:1,5,6,11,15,23 | corrections |
| 86:9,22,25 87:14 90:4, | continues | 43:10 48:7 50:23 51:10, | 220:7 |
| 10 91:9,21 101:17,22 | continues | 23 54:4,7 55:21,25 | |
| 110:14,17 111:16 | 144:16 | 56:5,9,19 58:15,23 | correctly |
| 115:4,7 116:8 118:5,12, | continuing | 61:19 67:3 71:7,14,17, | 27:18,19 100:14 158:9 |
| 15 123:10 124:18 131:4 | 208:3 | 21 72:6,8 73:17 74:7 | correspondence |
| 133:13 141:18 150:5 | | 75:9,15,19 76:12 77:16 | 148:17,19 215:12,14,16 |
| 152:11,16 156:4,7,12 | continuous | 78:4,8,20,25 79:17,24 | 148.17,10 215.12,14,16 |
| 157:3,14 162:22 163:6, | 144:14 | 84:4 85:19 86:16,19 | corresponds |
| 13, 164:20 178:1,19,24 | contrast | 88:10,11,14,19,25 | 26:21 51:3,15,17 |
| 181:6,17 183:18 184:7 | 127:24 128:4 | 89:13 90:6,12 91:2,13, | 109:22 137:7 |
| 185:20 189:11 190:3,14 | | 18 92:1,11,16 94:19 | counsel |
| 191:8,20 192:25 195:24 | control | 96:10,12,13 99:14,25 | 4:9 15:6 31:12,17,25 |
| 196:4 197:5 199:22 | 44:24 46:6 | 100:7,12 101:4,8,12,18, | 32:7,12,17,24 57:9 |
| 200:2,4,7,9 202:24 | conversation | 22 102:13 103:5,10,23 | 73:4,9,13 85:7,13,19,22 |
| 206:15,23 207:1,9 | 5:24 59:25 60:4,5,18,25 | 104:6,15 105:2,5,10,15, | 86:3,7 93:13,25 94:23 |
| $\begin{aligned} & \text { 216:14,17,24 217:1,7,8 } \\ & 218: 1,5 \end{aligned}$ | 61:2,7 62:4,7,22 63:7,9, | $\begin{aligned} & 25 \text { 106:6,22 107:3 } \\ & \text { 108:2,8,17,21 111:9 } \end{aligned}$ | 95:15,25 96:11,17, |
| 218:1,5 | 16 64:19 65:7,10,16 | 108:2,8,17,21 111:9 | 112:20 113:6,22 114:6 |
| constructions | 66:1,2, 94:7,21 98:5 | $113: 3114: 13,24115: 16$ $119 \cdot 9,18121: 6,10,19$ | 124:8 151:13 163:19 |
| 15:13 90:25 | 113:21 | $\begin{aligned} & \text { 119:9,18 121:6,10,19, } \\ & 25 \text { 124:18 125:20 126:5 } \end{aligned}$ | 164:7,11 165:1 218:6 |
| construe | conversations | 127:25 128:8 131:17,22 | counsel's |
| 92:3 183:23 185:11 | 57:8,13 66:5,8,11 | 132:8,19 133:3 135:6,8 | 31:10 151:21 |
| construed | 72:20,24 85:13,18 | 136:18 137:11 138:6, | count |
| $75: 1378: 1,7,11,17$ | 94:23 | 17,22 141:24 144:11 | 193:20 |
| 86:4,8 90:15,20 133:18 | conversed | 145:19 147:23 148:1,9 | counterclaim |
| 188:10 210:1 | 94:8 | $150: 14 \text { 151:22 } 152: 23$ | 58:21 60:1,12,14,19,21, |
| construing | converter | 153:2,6,18 156:16 | 22 63:6 |
| 200:10,11 | 106:3,5,19,21 107:16 | 157:4,11,15 158:4,18, | counterpart |
| consult | 109:11,21 120:1 149:23 | 25 159:9,22 160:18,24 | 137:21 215:1,5,10,17, |
| 98:25 | | 161:4,8,19 166:3 | 18 |
| | converting | 167:11,18 168:14,25 | counting |
| 17:2 | 48:24 | $\begin{aligned} & \text { 169:7,23 171:8,12 } \\ & 173: 4,10 \text { 175:5,13 } \end{aligned}$ | 167:11 |
| consulting 16:18,23 | $\begin{gathered} \text { copied } \\ 34: 22 \end{gathered}$ | 176:20 177:3 178:16
 179:3,10,15,23 180:4, | $\begin{aligned} & \text { court } \\ & 5: 16: 2,21 \text { 13:11,24 } \end{aligned}$ |
| | copyright | 14 181:2,18,24 182:6, | 14:13 16:14 18:15 |
| Cont ${ }^{\text {d }}$ | 34:7 | 13,20 183:11,12,15,24 | 29:16 30:3 31:21 87:7 |
| 216:10 | | 185:3,7,12 187:2,19,20 | 88:2 208:22 209:1 |
| $\begin{array}{r} \text { contact } \\ \text { 164:7,11 } \end{array}$ | corporation | 190:8,19,23 191:4,8,21 | 218:7 |
| | | 192:6 196:1,9,20,23 | |
| | | 197:1,3,8,16 198:21 | 37:23 |

[^4]| $\begin{aligned} & \text { covered } \\ & 31: 20 \end{aligned}$ | $\begin{array}{r} 3: 5 \\ \text { day } \end{array}$ | 195:17,25 196:4 197:5, $21 \text { 198:19 199:13 201:4 }$ | degree $80: 23,24$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { covering } \\ & 37: 23 \end{aligned}$ | 8:8 61:9 219:17 decide | 207:3,13,14,22 208:7
 216:17 217:2,8,9 218:5, | $\begin{gathered} \text { delimiter } \\ \text { 174:9 } \end{gathered}$ |
| CRC $37: 16$ | 98:24 199:3 | 11219:2 | delimiters 173:22 174:25 175:20 |
| criminal | $\begin{gathered} \text { decided } \\ \text { 199:17 } \end{gathered}$ | declarations $152: 19$ | delineating |
| 154:11 | decision | declare | 209:6 |
| curious | 88:2 | 14:2 | delve |
| 39:6 56:12 | declaration | declared | 31:23 |
| current | 6:20 7:8,11 10:7,13,19 | 11:20 | denoted |
| 36:8 173:12 | 11:2,9,11,16,22 12:15, | decoders | 49:3 |
| cut | $\begin{aligned} & \text { 18,25 13:9,11,14,22 } \\ & \text { 14:3 16:9,14,19 17:6, } \end{aligned}$ | 54:19 | density |
| 199:8 | $13,16 \text { 18:5,9,14,19 23:4 }$ | dedicated | 39:22 40:25 44:21 46:4 |
| CV | 27:1,3,5,25 28:1,9,11, | 22:13 | depending |
| 36:15,21 38:9,11,13 | 24,25 29:7,15,24 30:3, | defeat | 46:16,22 89:6 |
| 39:1 | 5,12 33:1 36:14 58:4,11 67:2,5,7,15,18 68:11,13 | 137:19 | depends |
| D | 69:8,11,12,15,16 70:7, | defendant | 46:18 113:2 135:17 |
| D | 15,18,22 73:6 74:20 | 3:7 | 137:7,22 215:13 |
| d,k | 76:1,8,24 77:5,14,20 | defendants | $\begin{aligned} & \text { DEPONENT } \\ & 220: 2 \end{aligned}$ |
| 43:25 44:15 | 85:23 86:5,9,21,22,25 | 8:2 73:5 85:7,19,22 95:25 | deposed |
| d-constraint | 87:1 88:10,18 89:17,24 | | 4:21 |
| 44:20 45:1 125:14 | $\begin{aligned} & \text { 90:2,21 92:14,22 100:3, } \\ & 22 \text { 101:4 104:18 105:8, } \end{aligned}$ | define 135:17,19 | deposition |
| data | 21 106:18 107:1,8,23 | defined | 6:15 9:5,20 10:18 12:24 |
| 41:24 44:9,12 48:25 | 108:20 111:3,17 113:23 | 104:11 166:9,19 | 16:2 17:21 33:13 |
| 49:13 51:2 52:6,13,15, | 114:13 116:8,21,24 | | 124:23 143:16 145:11 |
| 16 104:22 115:16,21,23 | 117:4,7,12,15,23,25 | defining | 170:13 |
| 119:4 137:12,15 142:18 | 118:4,5,11,12,15,16,17 | 39:21 40:23 | describe |
| 143:10 | 119:13 120:23 121:2 | definite | describe $19: 23$ 24:19,20 28:7,10 |
| dataword | 123:11 131:4 133:5,8 | 68:20 113:18 133:22 | 29:9 31:13,23 32:7 |
| 132:2,5 | 134:7,10 135:1 141:18, | 134:12 | 45:15 52:4 140:19 |
| datawords | $\begin{aligned} & 19 \text { 149:5,19 150:5 } \\ & \text { 152:7,12,17 153:2,20 } \end{aligned}$ | definiteness | 159:8 182:4 |
| 103:3,13 | 154:19 155:4,10 156:5, | 87:23 112:8 133:15 | describes |
| date | 8,12,15 157:3,6,18 | 165:8 | 173:17 202:14,17 |
| 20:24 34:7 37:2 40:16 | 158:2,6,16 161:7,22 | definition | describing |
| 88:9 220:15 | 162:9,17,21,22 163:6,7, | 73:25 107:11,14,15 | 32:24 33:9 42:21 121:9 |
| dated | 12,13,19, 164:20,21 | 110:25 141:23 142:4 | 148:23,25 |
| 13:18 40:6 42:1 56:21 | 165:24 166:22 167:21 | 156:10,18 166:23 | descr |
| 124:25 125:6 | $\begin{aligned} & \text { 168:3,4 169:2 178:16, } \\ & 2025179 \cdot 9180 \cdot 12 ว 4 \end{aligned}$ | 181:17 186:6 187:5 | 7:8 19:6 30:11 44:25 |
| dates | 181:6,21 182:2 184:21 | 200:1 | 73:17 79:8 117:6 128:7 |
| 25:23 | 188:1,17,19 189:2 | definitions | 202:22 203:12 |
| David | 190:4,21 191:1 192:5, 14,25 193:10 194:21 | 187:1,8 204:21 | design |

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm

Epiq Court Reporting Solutions - Washington, DC 1-800-292-4789

[^5]EMINA SOLJANIN - 05/09/2018

existence	182:8 189:22	finish	foundational
110:16 153:3 156:1	fail	6:2 122:8 162:22	112:3
existing	209:7	finished	fourth
171:5 176:7	fa	127:20	34:4
experience66:23 114:25 173:10	89:9	finite	frame
	fair	103:8 182:17,18 183:14	25:15
experimentation	137:14 138:19	firm	frequent
79:13,24	fall	97:2,5	186:15
expert	8:7	first-named	front
8:1,14,20 12:3 81:24	familiar	59:3	9:2 29:21 140:10
86:12 94:24 97:6 98:25	21:6 33:22,25 81:5	focus	158:11
116:2,10 117:3	115:2 120:13 142:12,15	127:1	full
expertise 80:18,21 178:10	Familiarity 80:22	follow 99:18 115:12	$\begin{aligned} & 3: 19 \text { 39:17 48:15 } \\ & \text { 118:10,17 126:14 127:4 } \\ & \text { 170:22 } \end{aligned}$
experts 57:20,24 69:25 72:20 81:4	featuring 26:6 27:12	$\begin{aligned} & \text { follow-up } \\ & 216: 9 \end{aligned}$	fully 49:2
$\begin{gathered} \text { explain } \\ 112: 11 \end{gathered}$	Federal 87:21	footnote 69:20 72:9	function $47: 4,9,19$
$\begin{aligned} & \text { explained } \\ & 105: 22 \end{aligned}$	feedback 44:24	$\begin{aligned} & \text { foregoing } \\ & 220 \cdot 5 \end{aligned}$	fundamentally 78:16
$\begin{aligned} & \text { Explicit } \\ & \text { 109:5 } \end{aligned}$	$\begin{aligned} & \text { felt } \\ & \text { 102:20 } \end{aligned}$	forget 194:2,4	funny 193:22,25
express	fewer 203:23	form 29:13,15 42:25 67:20	
90:25 91:9, 131:20	203:23	$23 \text { 79:21 98:23 103:7 }$	G
$\begin{aligned} & \text { 132:14 139:4 188:20 } \\ & \text { 191:7,20 } \end{aligned}$	field 142:19 173:10	$\begin{aligned} & \text { 104:13 133:24 134:2 } \\ & \text { 146:15 147:1 155:14,17 } \end{aligned}$	gain
expressed	figure	169:16,21 170:7 177:13	44:24 46:6 48:5 55:19
113:24 188:14	43:16 171:1 173:3,6,7,	187:5 206:20 208:10	162:20 172:25 176:1
expressly	$\begin{aligned} & 8,17 \text { 174:10,22 175:4,6, } \\ & 12176 \cdot 4 \end{aligned}$	$\begin{aligned} & 210: 5,21211: 11,22 \\ & 210 \cdot 14 \geqslant 2713 \cdot 61495 \end{aligned}$	Gates
107:12 182:9 193:10	12 176:4	$\begin{aligned} & 212: 14,22 \text { 213:6,14,25 } \\ & \text { 214:11 215:25 } \end{aligned}$	3:2
extent	file 7.771 .22124 .17 .24		gave
15:14 87:16 144:23	$\begin{aligned} & 7: 771: 22 \text { 124:17,24 } \\ & \text { 125:5 202:1 203:13,15 } \end{aligned}$	$\begin{array}{r} \text { format } \\ \text { 193:13 } \end{array}$	163:7 187:9 214:25
extraordinary	$205: 3,21$	formed	gears
84:8 92:20	filed 10:10	$\begin{aligned} & \text { 103:13 165:11 201:12 } \\ & 213: 17 \end{aligned}$	211:24 general
F	final	forming	$\begin{aligned} & \text { 15:4 20:2 29:13,15 32:1 } \\ & 88: 5,6 \text { 165:9 184:10 } \end{aligned}$
facilitate 104:23	118:6,7	70:2 72:21 142:2	187:24
	find 133:19 210:25	202:23 formulation	generally
fact	fine	87:21	
$\begin{aligned} & \text { 57:21 79:2 89:20 } \\ & \text { 102:21 129:2 155:21 } \end{aligned}$		$\begin{gathered} \text { forum } \\ \text { 17:2 } \end{gathered}$	generate $169: 11$

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

	EMINA	- 05/09/2018	i13
```generated 182:9 generating 132:12 153:11 156:23 157:8,19 158:22 161:3, 9 162:5 166:1 168:22 169:4 181:8,12 205:5 generation 161:16 184:25 give 4:19 19:5 20:8 21:11 31:22,25 60:22 155:3 166:7 giving 14:12 good 3:17,18 45:14 206:12 graduate 22:7 granted 125:19 greater 153:13 156:25 157:10, 22 158:25 168:24 169:6,13,18 177:10 202:18 205:7 Green 3:25 ground 4:25 group 38:4 guess 100:18 guidance 82:2,6,18 83:6,10 guide 83:15 guided 82:9,11,12 guys 65:10```	H   h(d)   47:7,23   half 170:18   hand 9:10 10:1 13:6 68:19 124:20   handbook 37:2,15,21 38:3,8   handbooks 37:22   hands 174:19   happen 61:20 132:21 141:9   happened 61:22 94:5   hard   27:17 28:2,8 29:2,6,10   55:1 198:25   head   5:4,6 37:8 81:17 100:1   115:13 124:19 129:11,   12 155:2 186:9 218:8, 15   headed 5:25   hear   27:21 154:9   heard   21:10 144:4   helps 44:20,23   high   19:23 39:21,22 40:24,   25 46:4 54:17 55:20   80:23   higher   81:7 84:5 187:11   highest	```186:11 highly 80:7,10,12 81:1,2,3,9, 13 84:14,16 histories 6:23,25 7:2,5 history 7:12,15 89:9 124:17,24 125:5 130:3 202:1 203:13 205:3,21 209:7 218:17 hold 209:3 hope 47:21 hoping 39:1 hour 16:18,22 57:1 hours 17:5,9,13 18:9 22:15 hundred 71:25 husband 63:10,12,16 hypothesis 167:8 hypothetical 166:18 167:2 identical 199:17 identification 9:7,23 10:21 13:3 33:16 125:1 143:19 145:13 identified 11:21 15:14 35:7 36:24 38:22 46:15 47:2,12,21 60:1,19 89:20 101:16 102:22 105:9 107:7,9, 13 108:6,15 122:3 126:11 157:7 158:18```	```161:19 166:3 175:13 184:16 185:6 192:24 209:25 identifies 90:18 101:1 identify 23:25 34:13 38:12,16, 18 42:22 43:8 45:19 54:6 55:23 56:2,8 72:4 77:15 88:17 90:13 101:7 131:16 136:3,8 138:22 162:10 178:21 180:11,24 181:21 183:17,22 187:17 191:6,18,22,25 192:2 196:7 identifying 104:8 IEEE 41:25 42:1 Iketani 125:16 126:17,22 127:9,25 128:5 illustrates 160:21 imagination 82:9 immediately 67:8 immunity 46:10 48:2 implemented 23:13 24:6,10 48:3 important 45:23 50:13 impose 130:18 214:3 imposed 130:13 135:15,18 136:2 137:9,15,23 183:10 212:3,9,11,20,24 213:4, 11,12,16,18,21 214:6, 18,19,23 215:21 216:2, 5```

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

imposes	157:4 162:6 181:18	insolubly	interfere
26:7 27:14 102:8 106:4,	184:17 189:8,11,18,21	87:15	52:16
20	209:25 217:7	instance	interference
imposing	indefiniteness	148:3 211:17	44:22 52:3,5
105:13,22 111:7 128:12	15:3 16:8 87:2,13	instances	interpret
129:21 130:24 132:10	113:18 165:21 178:1	136:7	83:15 119:3 134:6
135:11 139:5 216:4	206:16 207:5,13 208:14		173:24 201:14
```imposition 104:21 119:17,21 139:11 159:14 160:9 214:7 215:2```	209:4,13	instruct 17:24 30:19 31:16	interpretatio
	indentation	$\begin{aligned} & \text { 17:24 30:19 31:16 } \\ & 32: 15 \text { 33:4 85:25 93:15 } \end{aligned}$	$82: 15,20,22 \text { 83:2,13 }$
		94:9 96:5 99:10 151:16	84:19,21 92:6,8,9,16
impressions98:17,20,23	independent $113: 1$	instructed	$\begin{aligned} & \text { 102:20 103:19 107:5,22 } \\ & \text { 109:12 110:3,5,22 } \end{aligned}$
	in		120:25 122:23,24
improve	$44: 12$	instructing 31:6 32:20	$\begin{aligned} & \text { 123:5,8 133:12,17 } \\ & \text { 135:4 150:9,12 152:2,6 } \end{aligned}$
48:2	indicating		153:7,22,23,25 154:2,7,
improvement 173:1 176:2 177:3	29:1,21,22 30:9 76:23	instruction 30:20 32:1,21 33:4,6 $68: 4$ 86:1 93:15:96:6	$\begin{aligned} & \text { 14,18,21 155:6,19,20, } \\ & 23 \text { 157:24 164:13,15, } \end{aligned}$
improving$46: 6,9$	indication 218:23	68:4 86:1 93:15 96:6 99:11,14 151:18,21	21,25 165:4,17 169:22,
	ind	instructions	$\begin{aligned} & 25 \text { 170:1,4,15 178:17 } \\ & \text { 179:24 180:15 183:25 } \end{aligned}$
include	108:7	31:10 82:13 99:18	184:2,6, 185:9,17,22,25
23:11 38:7,13 104:2		205:25	186:18,20 189:5,14
included	$34: 16 \text { 38:2,6 }$	instructive	191:9,14 193:20 195:3,
	industry-specific	84:14,16	7,16 197:22 198:1,17, 18 199:12,15 200:8,18,
includes	141:23 142:3	Instrument	$20,25201: 3,7,10,11$
108:16 179:22	in	208:24	203:4 210:8 211:1,13
including	58:22 60:12 63:6	integer	interpretations
16:19 70:3 98:13	influence	158:24	110:7 154:16,22 156:1,
incoming	71:13	intended	19 165:18 178:14 188:7 $192 \cdot 3194.23195 \cdot 115$
		34:14, 37:20 38:1,3	192:3 194:23 195:1,15
inconsistent150:4 192:23	Inform 67:11,15 89:10 113:8,	66:20	$\begin{aligned} & \text { 198:24 210:15 211:3,9, } \\ & 16,18 \end{aligned}$
	13 114:6 209:8	intendin	
incorporate 161:11 168:20	information	150:11	interpreted 92:24 109:10,24 135:2
	14:4 20:3 21:16 48:23	intend	153:6 172:14 180:3
incorporates	70:2 72:3 83:14 109:19	14:23	198:5,9,14 199:21
	146:1	inte	200:14 209:18 210:12
incorporating 105:24	informed	12:7 206:18 207:4	interpreting
	$\begin{aligned} & \text { 113:21 116:1,9,18 } \\ & 117: 2 \end{aligned}$	208:7,13 211:19	$\begin{aligned} & 86: 15 \text { 133:2 180:9,22 } \\ & 200: 11 \end{aligned}$
increase	input	interchangeably $147: 13,16$	intersymbol
	7:14 48:24 49:12 51:2	interest	44:22 52:3,5
indefinite	inquiry	$46: 3$	intrinsic
88:14,19,25 89:5	17:25	interested	81:20,21,25 144:21
134:18 138:6,17 153:18		34:16 64:24	

[^6]| introduce | 111:3 113:22 114:4,8, | jointly | 23:20 |
| :---: | :---: | :---: | :---: |
| 9:1 146:12 | 12 119:13 120:22 121:2 | 64:24 | lastly |
| introducing 55:4 | 132:23 135:1 149:18 | jurisdiction | 6:7 |
| | $\begin{aligned} & \text { 150:9,10 152:3,8,19,22 } \\ & \text { 153:1,20 154:19 155:4, } \end{aligned}$ | 219:19 | late |
| introduction
 11:25 53:24 | 10 157:6,18 158:2,16 | | 24:11 25:16,17 194:14 |
| | 161:6 162:9,12,16,21 | K | latest |
| introductory52:17 | 163:6,12, 164:19 | | latest $70: 12$ |
| | $\begin{aligned} & \text { 165:23 166:22 167:20 } \\ & \text { 168:3 177:2 178:16 } \end{aligned}$ | K \& 1 | law |
| invalid | 179:9 180:11,24 181:4, | | 97:2 |
| | 20 182:1 184:3, 187:21, | k-constraint | lawyer |
| invalidated12:20 | 25 188:5,17,19 189:2 | 44:23 45:2,19 48:6 | 18:13 |
| | 190:21 191:1 192:3,5, | 139:11 | |
| invention | $\begin{aligned} & 14 \text { 193:10 194:21 } \\ & \text { 195:17,24 197:21 } \end{aligned}$ | K-constraints $45 \cdot 22$ | $\begin{aligned} & \text { leaving } \\ & 18: 12 \end{aligned}$ |
| 26:4 27:10 28:8 29:9 | 198:19 199:13,23 | | left |
| 30:11 31:13 32:7,24 | 200:19 201:4 207:14 | Karabed | $5: 282: 8$ |
| 33:9 79:12,16,21,23 | 208:16 211:17 217:2,9 | 56:18 | |
| 89:12 126:23 127:10 | 218:11 219:2 | Kilpatrick | legal |
| $\begin{aligned} & 128: 5,7 \text { 129:3 148:24 } \\ & 171: 3 \text { 176:6,19 209:10 } \end{aligned}$ | irrelevant | 3:6 | $\begin{aligned} & \text { 28:14 } 31: 19 \text { 74:11 85:6, } \\ & 8 \text { 87:12 124:7 } \end{aligned}$ |
| inventor | 74:17 175:2 | kind
 56:16 155:24 | level |
| $\begin{aligned} & 58: 18 \text { 59:3 64:12,14 } \\ & 66: 3,12145: 22 \end{aligned}$ | $52: 1,2 \text { 55:20 }$ | Knedeisen | $\begin{aligned} & \text { 80:24 81:5 162:13 } \\ & \text { 213:21 } \end{aligned}$ |
| inventors | isolated | 3:2 | levels |
| 42:4 100:11 108:7 | 204:9,25 | knew | 174:23 |
| 176:18,22 | issue | 20:25 92:21 102:16 | light |
| investigation | 15:3 113:2 178:11,12 | 120:5 122:6 | 77:5 89:7 209:5 |
| 142:1 | 211:7 | knowledge | |
| involve | italicized 52:22 | $\begin{aligned} & \text { 19:18 78:13 85:11 } \\ & 162: 19,20 \end{aligned}$ | 26:8 27:14 |
| 199:16 | | | limitation |
| involved 91:23 | 74:2,10 77:14 | L | $\begin{aligned} & \text { 102:12 105:1,2 160:5 } \\ & \text { 171:19 177:21 } \end{aligned}$ |
| involving 12:8 | J | Labs 19:1,6,7,9,12,17,21 | limited 8:18 16:5 43:24 |
| IPR | | $20: 1,6,10,1121: 223: 7$ | Limiting |
| 12:7,11,15 13:9 17:14, | 128:13 | lack | 64:5 |
| 22 18:1,10,20 27:1,25 | | 171:17,23 177:19 | limits |
| 28:9,24,25 29:6 30:5 | Japanese | | 48:11 94:25 98:6,13 |
| 33:1 67:6,15 68:11 69:8 | 100:18 | 74:14 | 99:2 125:15 |
| 77:4,14,20 78:4,8,20,25 | Jersey | | linea |
| 80:2 83:22 85:23 86:5, | | 29:19 78:1,7,12,17 | 44:21 |
| 21 88:10 89:16,24 90:1, | joint | 123:6 171:15 191:4 | lines |
| 21 92:14,22 100:2,22 | 9:20 10:8,14 11:3 13:21 | 193:16 203:9 | 130:12 171:11 175:1 |
| $\begin{aligned} & \text { 101:3 104:18 105:8,21 } \\ & \text { 106:18 107:1,23 108:19 } \end{aligned}$ | 63:17,20 64:11,13 66:3 | larger | 176:17,20 177:6,17,19 |

[^7]| list | 33:15,24 34:17 39:23 | 67:7 124:21 125:1 | means |
| :---: | :---: | :---: | :---: |
| 59:18 | 40:25 48:23 49:17,19, | 143:14,18 145:13 | 26:15 52:5,6 83:1 91:22 |
| literature | 20,24 51:15 53:19 54:3 | 201:25 | 105:1 107:16 128:12,23 |
| 178:11 | 114:23 115:1,15 129:7 | marks | 129:20 130:24 154:8 |
| | 137:5 148:7 149:1 | 103:18 | 202:18,19 205:8 215:11 |
| $\begin{aligned} & \text { litigation } \\ & \text { 13:11,24 14:13 16:15 } \\ & \text { 18:16 29:17 30:4 } \end{aligned}$ | magnetization 186:8 215:19 | Mary $136: 20,25$ | $\begin{aligned} & \text { meant } \\ & \text { 69:7 86:19 92:21 } \end{aligned}$ |
| long | magnetizations 51:4 215:6,8 | material | $\begin{array}{ll} \text { 03:16 107:2,19 120:6 } \\ 53: 21 ~ 155: 5,12 ~ 157: 22 ~ \end{array}$ |
| 20:23 40:17 47:15 | | 7:9 66:23 203:9 | 158:4 165:12 169:10 |
| 158:14 195:5 | magnetized | materia | 180:14 181:22 188:2 |
| looked | 49:2 | 69:23 | medications |
| 6:20,22 7:4 109:3 134:11 165:15 205:21 | $\begin{aligned} & \text { magnets } \\ & 137: 6 \end{aligned}$ | mathematical | $4: 17$ |
| lots 166:14 | $\begin{aligned} & \text { main } \\ & \text { 10:13 54:14 } \end{aligned}$ | 81:6 144:17
 mathematically
 150:7 152:1 | $\begin{aligned} & \text { medium } \\ & \text { 48:23 49:17,19,21,24 } \\ & \text { 115:10 147:23 148:8, } \end{aligned}$ |
| Iow | make | mathe | 14,15 |
| 54:19 | 47:9,11,19 69:8 92:24 | 28:17,19 64:7 81:6 | meet |
| lower | 110:25 114:19 118:14 | | 160:5 |
| 173:24 | $130: 22 ~ 135: 21 ~ 154: 17$ $155: 23$ 167:8 197:25 | MATLAB 142:12,2 | meeting |
| LSI | 200:21 218:9,23 219:3 | | 62:17,19 |
| $\begin{aligned} & 3: 78: 2,10,149: 17 \text { 12:3, } \\ & 5 \text { 14:23 18:13 72:21,25 } \\ & 115: 4 \end{aligned}$ | makes 6:1 47:3 179:2 | 94:7 95:11
 matters | meetings 65:22 |
| LSI'S $58: 21 \text { 60:1,11,19 63:5 }$ | making 69:16 178:5 214:13 | 21:14 131:24
 maximum | memory 4:18 85:11 |
| $\begin{aligned} & \text { Lucent } \\ & \text { 19:14,16 24:18 55:2 } \\ & \text { 194:8,24 195:11,14 } \end{aligned}$ | Manchester 143:18,23 144:1
 map
 147:1 | $\begin{aligned} & \text { 26:5,8 27:11,14 41:7, } \\ & \text { 10,24 102:8 119:22 } \\ & \text { 159:15 160:10 172:15, } \\ & 17 \text { 199:2 } \end{aligned}$ | ```mental 98:17 mention 129:4 157:18 219:3,6``` |
| $\begin{aligned} & \text { lunch } \\ & \text { 150:18 151:12 } \end{aligned}$ | mappin 140:4 | $\begin{aligned} & \text { Mayle } \\ & 3: 6 \text { 6:17 7:13,19 30:15 } \\ & \text { 113:7,8,13 116:19 } \end{aligned}$ | mentioned 117:9 |
| M | maps 136:11 214:3 | 117:8,13,20,23 188:22 | met 6:17 7:18 20:25 65:24 |
| machine $23: 1$ | March
 13:18 | ```Mclaughlin 7:11 20:21 116:3,11 117:17``` | $\begin{gathered} \text { method } \\ 204: 23 \end{gathered}$ |
| machines 23:2 | Marcus 35:6,9,23 36:25 40:15 | Mclaughlin's 21:18 69:10 116:21,24 | methods $50: 14$ |
| made | mark | $117: 4 \text { 118:3,10,17 }$ | middle |
| $\begin{aligned} & 14: 4 \text { 25:21 30:15 39:20 } \\ & 40: 23 \text { 118:6 133:12 } \end{aligned}$ | 3:2 145:9 | meaning
 82.319,23 $83 \cdot 711$ | $\begin{aligned} & 77: 8,9 \text { 102:21,25 } \\ & \text { 127:23 174:10,22 } \end{aligned}$ |
| $\begin{aligned} & \text { 40:23 118:6 133:12 } \\ & \text { 134:7 135:3 187:21 } \end{aligned}$ | marked 9:7,11,22 10:1,20,25 | $\begin{aligned} & 82: 3,19,2383: 7,11 \\ & 89: 1791: 23,25147: 8 \end{aligned}$ | mind |
| 194:25 195:23 197:22 | 11:5 13:2,7,8 16:9 17:6, | $\begin{aligned} & \text { 154:5 171:18 172:2 } \\ & \text { 177:20 } \end{aligned}$ | $\begin{aligned} & 28: 5 \text { 29:10 47:9,19 54:7 } \\ & 76: 14 \text { 78:18 88:1 91:22 } \end{aligned}$ |
| magnetic 23:14 24:7,9 26:22 | $\begin{aligned} & 15 \text { 18:10,15 } 23: 4 \text { 30:13 } \\ & 33: 2,10,16,2038: 16 \end{aligned}$ | | $\begin{aligned} & 76: 14 \text { 78:18 88:1 91:22 } \\ & 105: 17 \text { 115:20 155:21 } \end{aligned}$ |

[^8]| 194:19 | move
 73:15 88:12 99:22 | Nokia 19:16,20 | 0 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { minimum } \\ & \text { 136:12 170:25 173:1,2, } \\ & \text { 25 174:1,15 176:2,3 } \\ & \text { 195:11 199:2 } \end{aligned}$ | $\begin{aligned} & \text { 102:2 131:6 144:25 } \\ & \text { 145:4 152:15,17 153:9 } \\ & \text { 156:22 181:5,7 } \end{aligned}$ | non-return-to-zero 50:16,18 | oath 4:6 79:3 89:17 155:10 |
| Minnesota
 3:4 | moving 25:24 153:10 190:4 | $172: 3$ | obey 151:20 |
| $\underset{119: 5}{\text { minus }}$ | MTR 26:6 27:12 41:8 42:21 | 197:23 199:20 | object 17:20,23,25 18:3 60:8 |
| mischaracterizes | 46:12,25 47:10,19,25
 48:4,9 | $\begin{gathered} \text { normal } \\ \text { 112:23 } \end{gathered}$ | 67:23 96:4 99:5,9
 206:19 208:9 210:4,20 |
| $\underset{98: 3}{\text { missing }}$ | $\begin{gathered} \text { MTR("J") } \\ \text { 168:11 } \end{gathered}$ | Notary 151:7 219:22 | $\begin{aligned} & \text { 211:10,21 212:13,21 } \\ & 213: 5,13,24214: 10 \\ & 215: 24 \end{aligned}$ |
| Misstates
 42:25 155:17 177:13 | $\begin{aligned} & 23: 2 \text { 135:15 155:22 } \\ & 156: 1,19 \text { 186:3 210:14 } \end{aligned}$ | 144:19 | objected 67:22 134:1 |
| Misunderstanding 97:1 | $\begin{aligned} & \text { 211:3,8,13 212:15,18 } \\ & 213: 1 \end{aligned}$ | 145:5 219:11 NRZ | objecting 144:25 |
| $\underset{44: 22}{\text { mitigating }}$ | N | $\begin{aligned} & 50: 1651: 1119: 5123: 2 \\ & 137: 8 \text { 148:17 193:13 } \end{aligned}$ | objection
 18:23 28:12 30:18 |
| Mm-hmm 36:20 38:12 69:21 | N's | 214:2 215:15 NRZI | 32:14 42:24 67:19
 85:24 97:20 104:12 |
| 77:17 83:8 100:25 | 47:24 | 50:18 51:14 110:11,17 | 33:23 145:5 151:15 |
| 103:6 110:9 115:11 | n-bit | 119:5 120:4,9 123:2 | 170:6 177:12 187:4 |
| 118:22 119:19 125:9 | 115:9,15 136:14,16 | 137:8 148:6,10,12,17 | objections |
| $\begin{aligned} & 127: 5131: 7138: 20 \\ & \text { 149:7 168:5,8 172:16 } \end{aligned}$ | named 42:4 58:18 66:12 | $\begin{aligned} & 159: 22160: 13,16,23 \\ & 167: 13214: 3215: 15 \end{aligned}$ | objections 214:22 |
| 178:7 | 100:11 108:7 145:21 | number | obtain |
| $\underset{50: 17}{\text { modified }}$ | Nancy 136:21 | 9:6,13 26:8 27:15 36:24
 42:8 43:9 56:17 58:9 | 172:25 176:1
 obtaining |
| modulation
 35:4,16 36:25 50:14
 51:1,14 120:4,9 159:22 | $\begin{aligned} & \text { nature } \\ & 74: 22 \text { 215:13 } \end{aligned}$ | 100:10 102:8 103:9
 108:5 125:15 145:12,18
 172:15,18 178:14 | 98:20
 obvious |
| 160:14,16,24 | Nautilus 208:23 | $\begin{aligned} & \text { 182:17,18 183:14 } \\ & \text { 187:21 205:11 208:3 } \end{aligned}$ | 133:21
 obviousness |
| ```moment 21:12 72:17 127:12 162:19 175:15 186:22 189:4``` | $\begin{aligned} & \text { needed } \\ & \text { 78:6 90:14,19 91:1,11 } \\ & \text { 101:17 193:23 } \end{aligned}$ | $\begin{aligned} & \text { 211:13 } \\ & \text { numbered } \\ & 91: 17 \end{aligned}$ | 77:16 208:4
 October
 42:17 61:25 62:5 |
| $\begin{aligned} & \text { Moon } \\ & \text { 41:23 42:3 55:25 58:19 } \\ & \text { 59:8,21,25 60:18 61:1, } \\ & 3,1362: 4,15,2364: 9,19 \\ & 65: 466: 6,9 \end{aligned}$ | $\begin{aligned} & \text { nodding } \\ & 5: 4 \text { 37:8 81:17 100:1 } \\ & \text { 115:13 124:19 155:2 } \\ & \text { 218:8,15 } \end{aligned}$ | ```numbers 13:14 27:2,3 36:16 118:20 125:23 207:19 NZI 109:23``` | off-track 42:13 offer 45:7,12 |
| morning 3:17,18 | 46:9 48:2 214:14 | | offered 15:2,13 63:17,20 66:2 |

[^9]

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm

EMINA SOLJANIN - 05/09/2018

[^10]EMINA SOLJANIN - 05/09/2018

precision	189:9,12,14,19,21,25	programming	pull
88:7 144:17	200:19,21	142:21,23 143:1,6,7	36:13 201:24
prehearing	privilege	progress	pulses
9:21 10:9,15 11:4	97:11,15	39:20 40:23	129:17
preparation	privileged	prohibit	purported
7:16 16:19	31:2	69:3	89:12
prepare	probability	projects	purpose
6:14	22:5,8 104:24 154:23	23:10	39:9 90:13 137:19
prepared	problem	properly	purposes
7:12	21:5 67:25	77:25 78:6,11,17	15:3 45:1 46:11,17
preparing	procedurally	properties	47:12,20 175:10
17:6 31:18	67:23	42:14	put
$\begin{aligned} & \text { present } \\ & \text { 128:5 171:3 176:5 } \\ & \text { 200:18 } \end{aligned}$	proceed	proposals	$\begin{aligned} & 7: 15 \text { 14:9 36:21 38:10, } \\ & 20 \text { 58:2,6 132:25 } \end{aligned}$
	$155: 20$	186:12	20 58:2,6 132:25
	proceeded	proposed	
presentation	107:6	55:18 56:6 115:4	Q
56:4 58:14,20	proceeding	prosecution	question
presentations 59:21	12:7,12,16 13:10 75:12	$\begin{aligned} & 89: 9 \text { 130:2 209:7 } \\ & 218: 16 \end{aligned}$	$5: 17,21,256: 3,4,9,10$
presented	processing $33: 14,2334: 17$	provide	$\begin{aligned} & 15: 618: 18 \text { 32:2,6,18 } \\ & 39: 643: 5,747: 16,22 \end{aligned}$
59:21 61:24	produce	8:1,14 44:23 45:20	67:24 68:7 74:23,24
Press	$132: 2,5 \text { 204:8,25 }$	55:19 72:16 76:11 82:2	91:3,5 93:3,18 94:4
	produced	83:6,10,25 86:13 90:20	95:13,20 96:9 99:4
	produced	128:6 129:1 155:9	106:15 110:20 112:4
prevents	24:12,15 190:5	165:6 197:5,14	114:5,6 115:14 123:13
203:19	produces	provided	$\begin{aligned} & 127: 6 \text { 131:19 132:13 } \\ & \text { 134:3 139:4 141:14 } \end{aligned}$
previous	$129: 11,12$	8:20 70:4,6,20 71:6,12,	151:25 155:9 158:1
7:8 68:21,23 93:15	product	$18 \text { 79:9 81:23 124:8 }$	164:18 165:9,11,14
133:16 141:1 144:22	30:22 31:20 33:5 97:6,	144:22	166:8 170:3,11 177:15
previously	14,19 98:11,17 99:19	providing	180:20 187:25 191:17
151:7 192:9 215:21	151:17,21	15:11 67:1 77:19 83:17,	197:6 201:2 204:22
principle	profess	21 188:7	208:14 213:8 214:14,15
113:15 114:7,12 124:7	3:17 4:5 7:11 9:12 10:2,	provisional	questioning
principles	19 11:1 12:25 13:7 15.17 18.25 20.20	7:10	145:2
206:15 207:1, 217:11,	$\begin{aligned} & \text { 15:17 18:25 20:20 } \\ & \text { 21:17,25 31:15 33:19 } \end{aligned}$	Public	questions
$12,16$	35:10 42:3 55:25 57:7	151:7 219:22	73:8 206:2,3,4,13
printout	58:19 59:8,20,25 60:18	publication	209:17 212:2 216:7,9 $219: 8$
143:16,22	$61: 1,3,1262: 15,22$	38:11	219:8
prior	64:8,18 65:4 66:6,9	publications	quotation
8:21 12:19 66:1 69:11,	$\begin{aligned} & 93: 11116: 2,10,21,23 \\ & 117: 4,17118: 3,10,17 \end{aligned}$	56:16	103:18 208:22
13 77:3 78:1,12,13,18	201:22 202:4 219:8	published	quote
79:9,21 92:25 110:16,	201:22 202:4 219:8	$34: 11 \text { 36:1,8 40:14 }$	26:5,6,7,9 27:11,12,13,
18 125:19 133:20	program	34.11 36.1,8 40.14	14,16 69:23 102:8,11
134:10 153:3 188:12	142:17		104:3 112:19 116:3,12,

[^11]

[^12]EMINA SOLJANIN - 05/09/2018

reflects	remainder	represented	response
52:14 124:24 125:5	176:16	4:8,10 96:17	42:15 65:1 125:7 126:1,
regard	remember	representing	,22,25
167:24	17:8 21:11,19 24:4,13	146:14	responsibilities
Regents3:3	25:1 35:18,21 36:9	request	19:24
	37:12 55:11 60:4 61:3	6:11	responsible
register	$21,22,2565: 11,23$	require	59:15
143:4	66:14 71:24 75:2 76:25	131:9 191:7	responsive
regular 16:22	77:1 114:9,14 117:24		206:3
	119:10 142:5 147:14	44:1 80:14 161:18	rest
	152:20,24 158:5,7,9	191:20	93:2 174:17 175:21
$125: 11$	163:22 194:13,15 197:9 203:14,15 209:21	requirement	restrictive
rejections 125:13	210:23	87:24	202:16
	reminded	Requirements	results
related$58: 14$	173:13	55:13	119:22 159:15 160:10
	remove	requires	resumed
relates105:8	24:25	77:25 78:10 131:21	151:6
	removed	132:15,18 196:22	retained
$\begin{aligned} & \text { relating } \\ & 30: 473: 6,10 \quad 206: 16,17 \end{aligned}$	24:23 25:2	research	7:25 8:6,13 72:20 97:2
	removes	19:7,9 20:3 21:4,5,7,18	reuse
relation	139:8 140:22	64:9 66:22 80:17,23	145:3
	removing	researcher	review
relationship 97:5	140:17,18 141:12	63:22	6:18 12:7 67:5,8,9
	rendered		118:10 206:18 208:8,13 $211 \cdot 20$
relative	133:20	$205: 25$	
	renderin	reserve	$6: 16,19,207: 16 \text { 35:25 }$
relaxed87:7,10,17,18	124:17	72:9 97:10 99:17	67:1 72:19 118:3,
	renders	residential	124:16
```relevant 17:21 25:4 73:25 162:11```	89:5	$3: 22,24$	reviewing
	repeat	resolve	76:4
	214:15	91:2,11	reviews
relied$30 \cdot 24$	rephrase	respect	54:9 56:13 59:5 76:21
	5:18 46:21 68:1 91:6	18:19 21:23 46:14	82:7 123:25 127:18
relies139:7,	177:15 213:7	186:13,14 192:9,15	131:25 138:10 139:6
	report	208:14 209:13 211:6,9,	159:5 168:17 176:21
rely	15:19,22	15 212:3 215:2,22	$\begin{aligned} & \text { 190:16 192:19 197:10 } \\ & \text { 202:11 205:4 } \end{aligned}$
14:23 31:12 32:6 68:10	reporter	respects	
69:15,22 71:19 72:4	5:1 6:2 32:4 114:15	192:6	72:10
86:3,7 211:18	132:3 195:20 205:13,17	respond	
relying	215:7	69:24 145:6	revision $72: 14$
$\begin{aligned} & 70: 7,22 \text { 97:14 124:7 } \\ & 162: 3 \end{aligned}$	represent		
	3:7 96:11,14 173:13	125:18	rights   63:23

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

RLL	87:23	separated	show
43:25 171:5,25 172:4	Saturation	44:2	10:25 33:10 43:11
176:7,19,24	48:22	separately	110:16 115:8 143:13
Road		193:7	145:8
3:25 4:3	17:20,23 18:3,23 23:22	September	shown
room	60:8,15 79:20 89:12	19:3 42:1 56:21 124:25	160:16 171:1 173:3
93:2	209:10	125:6 126:1	176:4
round	screwed	sequence	side
50:8	128:1	25:13 45:11,20 49:25	14:9 58:7 118:21
ruined	section	132:16 136:15,17,19 137.710146 .21 153.12	$\begin{aligned} & 129: 13,14,15 \text { 130:4,5,8, } \\ & 9,11,15,17131: 1,2 \end{aligned}$
216:3	36:18 45:25 52:1,18	137:7,10 146:21 153:12	Siegel
rule	55:13 74:2,10 75:8	169:5,12 176:25 177:9	$56: 19$
5:6 102:7 104:23	77:14 87:1 88:13 90:3,	179:1,7,12,23 180:1,4,	
119:21,22 159:8,14,15	6	13 181:1 190:5 205:15,	signal
160:5,9 165:25 166:24		19 212:24 215:4	
Rule(2)	207:9	sequences	20,22 147:3,6,11,19,25
160:21	$\begin{gathered} \text { sections } \\ 101: 7 \end{gathered}$	23:19 24:24 26:16	148:9
rules		45:15 48:17 49:14 53:2,	signals
5:1 31:21 183:10	select	$\begin{aligned} & \text { 4,11,12 64:5 69:4 77:2 } \\ & \text { 104:1 115:9 136:14 } \end{aligned}$	116:12
run	211:17	158:22 161:2 166:1	signature
26:5 27:12 41:8,11,24		167:6,22 179:7, 180:18	11:17 13:15 14:2
runlength	selected   39.710	181:9,14 182:4,9 204:8,	220:15
43:24	39:7,10	25 205:6	signed
runs	$\begin{aligned} & \text { semester } \\ & 20: 13 \end{aligned}$	sequentially	10:7 70:6,9,11,21 71:9 $88.10118: 11$ 220:8
90:10 126:4 203:20		131:10	88:10 118:11 220:8
216:25	semest	series	significant
Rutgers		129:17	39:20 40:23
4:4 22:1	sense20:8 92:25 97:16 211:2	serve	similar
		46:10,17 47:11,20	38:20 64:22 72:1 77:3
S	senses	services	111:4 217:20
		16:18,23 97:3	similarity
sake	sentence		$134: 9$
186:2	$\begin{aligned} & \text { 23:10 30:8 41:4 43:22 } \\ & 44: 18 \text { 48:20 50:2,11 } \end{aligned}$	$59: 12$	similarly
sample	$53: 1554: 858: 1759: 1$	set	38:3 160:9
181:8,13 182:11 184:1,	78:22 79:7 80:6 83:5	53:2 69:17 147:1	simple
10 185:1,6,11 186:6,11,	84:10 102:6 115:25	shakes	196:8,12
12 187:8,18	119:16 121:21,22 138:8		
sampling	139:21 141:20 147:16		$48: 154: 15$
184:3,4 185:9 186:3,15,	170:23 171:14 172:24 175:23	sharp	simplifying
18,22 187:10	175:23	127:24 128:4	simplifying
satisfied	sentences   175:24	she'll 16:4	simulate
136:15	175:24	16:4	$143: 10$
satisfy	separate 199:16	$\begin{array}{r} \text { sheet } \\ 220: 8 \end{array}$	

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

EMINA SOLJANIN - 05/09/2018

single 23:1 34:17	sorts 26:17	218:1   standards	Steven 20:20
Sipiora	space	74:14,19,25 75:3 77:15	stop
3:5 6:17 7:13,19 15:5,	52:8	208:4,5 217:6,16	176:13
17,22 16:1,6,11 17:19	spatial	standing	stops
31:3,7,15 32:14,19 33:3	48:25 49:15,22 50:7	96:15	140:8,9
42:24 57:2,12,19,24	speaking	stands	storage
60:7,20 67:19,22 85:9,	22:16 46:2	127:14	22:24 23:14 24:7,10
24 93:14,19 94:6,16,20	special	start	26:22 28:16 35:4,16
95:3,6,17,21 96:4,14,19	55:9	65:17 111:22 112:13	37:1 41:24
97:1,9,13 98:1,12,22		116:5 128:3 159:12	story
99:9 104:12 106:7,9 127:11 133:23 134:1	specific	172:23	57:22
144:18 151:15 155:13,	108:24 194:11 203:14	started	strategy
16 169:15,20 170:6	specifically	21:1 22:4 25:19 40:14	185:9
177:12 187:4 199:5	$7: 6 \text { 64:20,21 72:4 103:2 }$	117:1	stream
206:3,5,11 213:7,9	$210: 11$	starting	48:25 49:12,16,22 51:3
214:13 216:6 219:9 sitting	specification	132:9 175:24	strike
$\begin{aligned} & \text { sitting } \\ & \text { 5:1 39:5 72:2,13 73:21 } \\ & \text { 152:25 200:23 } \end{aligned}$	$\begin{aligned} & \text { 89:8 170:24 171:11,16 } \\ & \text { 209:6 218:13 } \end{aligned}$	starts 34:25 48:16 127:24   128:4 170:23 174:9,25	$\begin{aligned} & \text { 23:23 29:25 36:11 53:9 } \\ & \text { 67:13 90:7,16 102:23 } \end{aligned}$ 105:18 106:14 108:13
skill	spend 17:5,13	202:8	112:2 116:4 122:14
34:19 73:18,24 78:14		state	131:13 141:15 144:25
79:10,22 84:4,9 92:20	spent	3:19 158:2	145:4 178:22 183:19
185:19 186:25 198:14	18:9		198:11 218:25
$\begin{aligned} & \text { 210:2,16 218:20 } \\ & \text { skilled } \end{aligned}$	SPIE 59:16,17	11:21 111:9 152:11	string 136:14 180:17 196:8,13
Skilled 21:21 89:11 182:16,23	59.1	211:12	136:14 180:17 196:8,13
209:9 210:10,25 211:4	22:14	statement	$24: 24,25 \text { 25:1 136:16 }$
skills   80:13,15 84:6	spoke 65:10 95:7	$\begin{aligned} & \text { 16:20 40:22 44:4,14 } \\ & 49: 650: 2051: 7123: 14 \end{aligned}$	$137: 6 \quad 150: 3 \quad 180: 2,4$   students
slightly 159:2	$\begin{gathered} \text { spun } \\ 55: 3 \end{gathered}$	152:4 176:11   statements	$\begin{aligned} & \text { 22:6 } \\ & \text { subheading } \end{aligned}$
small	square	14:3	100:23
20:17,19 65:22	109:23 174:24	states	subject
sole 145:21	squares 144:17	14:23 87:7 88:2 statute's	$\begin{aligned} & \text { 83:13 84:18,20 89:23 } \\ & 94: 7 \text { 95:11 } 205: 24 \end{aligned}$
Soljanin   3:21 10:20 13:1 15:18   36:25 206:12 219:14	$\begin{aligned} & \text { stand } \\ & \text { 99:1 169:24 170:3,8 } \\ & 177: 23 \end{aligned}$	$\begin{aligned} & 87: 23 \\ & \text { stay } \\ & 77: 4 \text { 192:14 } \end{aligned}$	```subjects 15:20 89:23 submitted```
Sophomore 22:9	standard 74:3, 76:11,15 83:16,21	step 124:5 135:11 141:8	$\begin{aligned} & 11: 312: 1513: 9,22 \\ & 17: 17 \text { 18:9,19 62:1 67:6 } \end{aligned}$
sort	$84: 25 \text { 85:6,8 87:2,12 }$	steps	152:18 162:16
55:9 136:11 194:19	$\begin{aligned} & \text { 141:22 156:3 206:24 } \\ & \text { 209:11,17 216:14,24 } \end{aligned}$	$\begin{aligned} & 131: 10,11,12,17,21 \\ & 132: 7,15 \end{aligned}$	

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789

EMINA SOLJANIN - 05/09/2018
i25

submitting $69: 11,13$	symbol   184:1,10	taught 20:12 22:4	$\begin{aligned} & 1257: 9 \text { 77:5 93:13,20 } \\ & 94: 1,15,1896: 3,25 \end{aligned}$
			97:23 98:4,11,19 99:8,
subscribed	symbols	teach	$\text { 147:24 147:12 } 21$
219:16	52:15,16 64:6 109:15,	22:3 79:22	151:14 152:4 155:17
substance	20,25 114:4 115:10,18,	teaches	156:20 177:13 210:19,
57:9 93:12,20 94:1,3,	20 119:4 129:10 $146: 12,22,23,24,25$	170:25	22 214:25 220:5,7
14,17 95:1,5,10 96:3	147:2,4,10 198:4 213:2,	teaching	text
97:22 98:2,4	16 214:1 215:5	20:5,9 22:13	27:22 157:25
$\begin{aligned} & \text { substantial } \\ & 82: 2,6,1883: 6,10 \end{aligned}$	symposium 42:18	technical 80:7,11,12,13,15,18,20	theory 20:3 22:5,7,8 109:19
sufficient	system	81:1,2,3,9,14 84:1	thing
110:16,25 111:12	26:10,13,23 28:2,10,16,	Technologies	$5: 23 \text { 28:14 29:11 65:9 }$
sum	23 29:11 30:17 31:14	12:4 19:15 24:18 55:3	120:15 167:24 180:6
52:14	32:8,25 115:1,15 129:7	194:8	things
superior	135:12,16,24	Ted	28:22 98:9 118:25
176:23	systems	3:6	123:16,21 124:10
supersedes	22:19,22,23 25:10	ten	128:24 140:6,13,20
56:16	26:18,19 29:12 33:15,	18:11 164:3	thinking
supplement 72:10,14	53:19 54:3 114:24	$\begin{aligned} & \text { term } \\ & 83: 12,1584: 13,2091: 1, \end{aligned}$	$\begin{aligned} & \text { 28:17,18 143:1,5 194:3, } \\ & 12 \text { 195:2 } \end{aligned}$
supplemental	T	10 101:11,16 105:12   107:19 108:16 110:3	thought $63: 21 \text { 110:2,4,10,22 }$
152:18		134:19 154:6,12 155:22	120:24 123:4 154:15,21
support	table	185:11 190:17 210:18	155:7,18,20 188:11
71:19,20 129:2 162:4	144:7,10	216:1	191:13 192:1 199:8
Supreme	tables	terms	201:13
87:7 88:2 208:22 218:7	103:3,13,22 104:4	75:13 82:3,16,19,24	three-quarters
surface	160:14 167:6	83:1,7,11 85:1,10 86:19	34:23
$213: 22$	taking	88:17,24 91:23 92:4,10	time
surrounding	17:22 57:17 96:24	$101: 3112: 8131: 9$ $134 \cdot 5,11139 \cdot 5147 \cdot 13$	4:25 6:8 17:1 20:9 21:3,
$210: 18$	talk	$\begin{aligned} & \text { 134:5,11 139:5 147:13 } \\ & \text { 164:8 165:12 183:23 } \end{aligned}$	9,10 22:12 25:8,11,14
	5:25 95:15,24 96:2 99:7	184:12,15 188:2 189:23	36:5,7 40:1,4 41:1 44:5
survey 35:21	151:13 163:18,23	191:7,19,25 208:15	$\begin{aligned} & 49: 650: 2051: 7,2052: 8 \\ & 53: 21,22,2361: 963: 22 \end{aligned}$
	talked	209:24 210:1,9 211:7	64:16 66:9 102:16
176:25	32:17 93:21,25 94:10,	219:4	113:17 115:2 116:22
	13,14 97:22,23,24 98:6,	test	144:15 163:11 195:5
switch	8,9,10,13,14,19 214:25	87:8,9 88:1	219:11
166:10,20 211:24	talking	testified	times
switched	33:8 99:25 121:6	3:13 32:17 85:12	130:21 163:10,15,18,
130:20	123:12	140:14 151:8,25 164:18	24,25
swore	talks	testify	timing
79:3	21:11,14 60:10 196:24	32:11	44:24 45:23 46:6 48:5
sworn	202:16	testimony	186:3,14
3:13 151:7 219:16		4:15,19 8:1,14,21 15:2,	

[^13]|  | EM | - 05/09/2018 | i26 |
| :---: | :---: | :---: | :---: |
| ```title 37:5, 39:10 titled 88:13 today 4:6,15,19 7:16 10:15 14:8 19:18 39:5 72:2,13 73:21 97:12 152:25 185:15 200:24 209:16 today's 6:15 16:1 46:4 170:13 told 62:23 64:19 tolerates 87:21 top 36:16 127:25 128:3 170:19 topic 37:18 94:17,21 98:4 211:25 topics 37:23 98:14 Townsend 3:6 track 50:1,3,5,6,7,10 trade 55:9 train 174:24 transcribed 174:19 transcript 6:5 transcription 220:6 transfer 47:4,8,18 transition 26:5 27:11 41:8,24 51:16,18 119:23 159:16 172:2,11 181:9 182:11``` | ```185:2 196:14,18 203:20 205:11 transitions 26:9 27:15 48:12 103:9 104:5 121:25 125:15 129:17 153:12 156:24 157:9,20 158:23 160:1, 11,22 161:4,10,17 162:6 166:9,12,19,23, 24 167:2,12,17,23 168:14,23 169:5,12 171:7 172:2,6,10,13,15, 18 174:3,5,7,11 175:17, 18 177:9 179:1,4,6,12, 17,18,22 180:1,13,17 181:1 186:10 190:7 191:10,12 193:1,4,6,7, 12,18 195:8,21 196:12, 17,20,23,25 197:2 200:15 203:21,23 204:9,10,25 205:1,6,15, 19 translation 48:16 transmit 26:20 transmitted 52:7 53:14 147:21 148:5 treated 193:7 trial 99:2 154:11 trick 39:5 tricky 71:2 trip 63:14 true 11:22 14:3 190:22 220:5 truthful 4:14 150:11 Tsang 89:21,22 108:1,4,7,20``` | ```109:8 110:1 121:6,9,11, 18 122:3,10,20 167:24 168:10,25 169:3 180:7, 10,22 181:23 184:24 187:17 188:12 189:24 190:22 195:25 198:20 turn 11:15,24 14:10,21 16:15 26:25 34:4,23 39:16 48:14 51:25 58:12 75:4 77:6,22 86:24 90:2 100:21 104:17 105:7 107:24 111:2,17 119:13 125:22,24 126:10 145:24 149:18 158:16 159:11 161:6 168:2 173:6 182:1 184:12,20 202:3 206:22 207:7 208:21 tutorial 20:15 TV 154:10 two-and-a-half 20:13 types 22:6 85:21 typo 204:8 U U.S. 9:6,13 12:4 13:1 100:10 108:5 145:12,18 uh-huh 5:12 144:8 173:16 uh-uh 5:12 ultimately 53:13 unaware 96:24``` | ```uncertain 155:11 180:12,25 192:1 uncertainty 181:3,22 unclear 187:17 uncoded 54:17 undergraduate 22:8 underlying 31:1 underneath 174:24 understand 4:5 5:15,16,21 9:15 10:5 38:14 75:12 77:23 78:9 82:1 85:5 87:6 112:22 114:3 125:10,17 126:15,20,24 132:22 139:12 163:2 173:8 178:9 179:6 185:5 187:1 210:6 understanding 8:3 15:1 71:5 74:10 75:18 80:14 83:3 85:17, 18 86:14 115:3 127:7 130:2 164:8 200:22 204:2,16,24 213:19 understood 68:21 75:13 81:11 84:2 91:25 112:21 113:10,12 132:23 162:25 163:1 undue 79:12,24 United 87:6 88:2 university 4:4 9:17 35:11 69:25 125:18 university's 26:1 116:2,10 117:2 125:7,25 126:15,21 127:8 128:6``` |

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm

EMINA SOLJANIN - 05/09/2018

upheld 187:22 216:1	$\begin{aligned} & 213: 5,13,24214: 10,21 \\ & 215: 24216: 8,11218: 25 \end{aligned}$	$\begin{aligned} & \text { 12,15 121:24 122:3,7, } \\ & \text { 18,21 123:12 124:3,4,5 } \end{aligned}$	166:14 211:20   work-product
upper	219:1,7	$\begin{aligned} & 128: 13,16,18,21129: 3 \\ & 5,6,9,10,11,16,18,22,25 \end{aligned}$	97:21
173:23	versa	$130: 3,11,14,23,25$	worked
USA		132:20,21 134:20	20:11 21:4 23:10 35:12
4:1	version	138:5,17 139:24,25	working
usage	34:6 146:23	141:6,8,11,22 142:3,7	20:10 21:1 25:4,19
112:23	versus	144:11,14 149:15,17,24	110:24
USC	20:10 22:13 133:21	$\begin{aligned} & \text { 150:6,8 152:2,9, 153:13 } \\ & 156: 25 \text { 157:10,21 } \end{aligned}$	worry
14:18	195:9 208:23 218:2	158:24 159:18,20	136:13
usefulness	vertical	160:2,13,15,23 161:18	write
44:15	175:1	168:13,24 169:6,13	16:17 23:5 25:25 27:7
	VI	177:10 179:17 181:10	35:20 40:17 41:5 45:25
V	75:8 90:9,13	$\begin{aligned} & \text { 182:12 185:2 } 205: 7 \\ & 213: 23 \text { 214:9,20 215:19 } \end{aligned}$	51:12 66:23 81:19
	vic		84:10 87:4 89:2 91:6
	166:10,20	waveforms	101:21 102:5, 103:25
$\begin{aligned} & \text { valid } \\ & 185: 24 \end{aligned}$	view	104:3,10	$\begin{aligned} & \text { 112:14 116:8 129:12 } \\ & \text { 130:5,17 131:1,2 134:6 } \end{aligned}$
verbal	87:19 217:5	waves	147:18 166:15,16
5:7 37:9	VII	109:23	170:23 173:19 174:3
Verdini	88:13 100:4	wearing	writing
3:1,16 8:25 9:9,25	Vi	1:1	5:2,10 28:5 30:10 40:15
10:23 13:5 15:8,10,21,	3:25	week	129:14 167:6
24 16:3,7,12 18:4,7,24	Viter	20:15	written
23:23,24 29:25 30:1,23		weighted	5:13 27:16 30:8 35:15
31:5,8 32:16,22 33:7,18		52:14	40:7 53:13,14 76:23
36:11,12 43:4,6 53:9,10			81:14 85:2 177:23
56:23 57:6,16,23 58:1	W	widely	178:9 181:2 188:15
60:10,16,24 67:13,14		3:23 81:11 91:24	
68:6 85:15 86:2 90:7,8,	W-r-i-t-e	word	wrong
16,17 93:5,10,17,23	130:7	28:2 112:19 116:11	
94:12,19 95:1,4,12,14		217:15	wrote
96:7,16,22 97:8,10,18	walk		11:25 24:5 27:24 34:1
98:7,16 99:3,6,12,17,	88:21	wording	35:23 39:1,17 40:1
102:23 104:14 105:18,	wanted	110:17 159:3	41:2,15 42:10 43:22
19 106:8,10,12,14,16	114:19 151:25 189:17	words	44:5,7,19 48:21 50:12,
108:13 112:2,5 116:4,6		91:25 118:24 123:15,20	25 52:18 53:16,21,22
121:7 122:14,16 125:3	waveform	124:9 128:23 133:2	55:16 56:18 66:20,24
127:19 130:6 131:13,15	44:10,11 88:23 89:4,18,	139:8 140:17,22	71:15 75:11 77:23
138:11 141:15,16	21 99:25 101:12,16	162:23,24 216:25	103:17 112:11 115:25
143:21 145:5,7,15	102:11,17 103:8,14,19	217:3,4,19	123:14 146:19 148:1
150:16 151:11,19	104:22 105:14,23		167:7
169:17 177:14,16	106:5,21 107:2,6,11,18		
178:22,23 183:19,20	108:17,25 109:4,9,13,	22:18 30:21 31:20 33:5	www.mathworks.
187:7 198:11,12 199:7	22 110:8,23 111:8		com
201:16,21,23 205:24	112:9,18 113:25 114:2,	63:18 64:8,22 65:15 97:6.14.18 98:11.16	143:17,23
206:19 208:9 210:4,20	3 115:5 116:14 119:3,6,	97:6,14,18 98:11,16 99:19 114:25 151:16,21	
211:10,21 212:13,21	9,11,25 120:2,6,7,11,	99:19 114:25 151:16,21	

Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789
www. deposition.com/washington-dc.htm


Epiq Court Reporting Solutions - Washington, DC
1-800-292-4789 www.deposition.com/washington-dc.htm

## Epiq | Court Reporting 1875 Eye St NW, Suite 802, Washington, DC 20006 <br> (800) 735-6005 FAX (866) 225-4066 <br> E-MAIL: ClientServices.DC@epiqglobal.com Trial Date: unknown ERRATA SHEET <br> May 21, 2018

IN RE: Regents of the University of Minnesota v. LSI Corporation, et al.
DEPOSITION DATE: May 9, 2018
DEPONENT/AFFIANT: Emina Soljanin
REPORTER: Frank Bas
RETURN BY: June 23, 2018
JOB NO.: WDC-170935

PAGE	LINE	CORRECTION AND REASON
NUMBER		
29	8,9	"to describe" should be "a disk drive"
34	17	"single" should be "signal"
136	14	"n-bit" should be "N-bit" for consistancy

## ACKNOWLEDGMENT OF DEPONENT

I, Emina Soljanin $\quad$ dohereby
acknowledge that $I$ have read and examined the foregoing
testimony, and the same is a true, correct, and complete
transcription of the testimony given by me, and any
corrections appear on the attached errata sheet signed
bye.
(Date)
(Signature)

Job No.: WDC-170935

Epiq | Court Reporting
1875 Eye St NW, Suite 802, Washington, DC 20006
(800) 735-6005

## United States Patent

Moon et al.
[54] METHOD AND APPARATUS FOR IMPLEMENTING MAXIMUM TRANSITION RUN CODES
[75] Inventors: Jaekyun Moon, Plymouth; Barrett J. Brickner, Minneapolis, both of Minn.
[73]
Assignee: Regents of the University of Minnesota, Minncapolis, Minn.
[21] Appl. No.: 730,716
[22] Filed: Oct. 15, 1996
Related U.S. Application Data
[60] Provisional application No. 60/014,954 Apr. 5, 1996.
[51] Int. CI. ${ }^{6}$ $\qquad$ H03M 7/00
[52] U.S. Cl. 341/59; 341/94
[58] Field of Search $\qquad$ 341/58, 59, 61, 341/94
$\qquad$ $340 / 347$ DD

4,775,985	10/1988	Busby ................................ 375/25
4,779,072	10/1988	Van Gestel ........................... 341/59
5,341,134	8/1994	Benjauhrit ........ ................... 341/58
5,450,443	9/1995	Siegel et al. ........................ 375/286
5,608,397	3/1997	

Primary Examiner-Jeffrey A. Gaffin
Assistant Examtner-Jason L. W. Kost Attorney, Agent, or Fïrm-Patterson \& Keough

## [57]

## ABSTRACT

Apparatus and method for coding to improve the minimum distance properties of sequence detectors operating at high densitics in storage systems is presented. The coding scheme of the present invention is referred to as maximum transition run (MTR) code and eliminates data patterns producing long runs of consecutive transitions while imposing the usual k constraint necessary for timing recovery. The code has a distance gaining property similar to an existing ( $1, \mathrm{k}$ ) runlength-limited (RLL) code, but can be implemented with considerably higher code rates. When the MTR code is used with fixed delay (ree search (FD7S) or high order partial response maximum likelihood (PRML) detectors, the bit error rate performance improves significantly over existing combinations of codes and detcctors.

21 Claims, 14 Drawing Sheets


Fig. $I$


Fig. 2


Fig. 3


Fig. 4

RLL $k$ Constraint	Capacity with MTR $j=2$
10	0.8791
9	0.8782
8	0.8774
7	0.8760
6	0.8732
5	0.8680
4	0.8579
3	0.8376

Fig. 5
Fig. 5A

Fig. 6

DATAWORD • CODEWORD
0001 • 00001
0010 • 00010
0011 • 10001
$0100 \cdot 00100$
$0101 \cdot 00101$
$0110 \cdot 00110$
0111 • 10110
$1000 \cdot 01000$
$1001 \cdot 01001$
$1010 \cdot 01010$
1011•10010
$1100 \cdot 01100$
1101•01101
$1110 \cdot 10100$
1111•10101
U.S. Patent Jan. 12, $1999 \quad$ Sheet 4 of $14 \quad 5,859,601$

Fig. 5A

n	k	m	rate	efficiency	---- codev available	rds ---required
4	4	2	0.5000	0.5969	6	4
4	5	2	0.5000	0.5828	7	4
4	6	3	0.7500	0.8640	8	8
5	4	3	0.6000	0.7163	12	8
5	5	3	0.6000	0.6994	13	8
5	6	3	0.6000	0.6912	14	8
5	7	3	0.6000	0.6871	15	8
5	8	4	0.8000	0.9133	16	16
6	4	4	0.6667	0.7959	20	16
6	5	4	0.6667	0.7771	23	16
6	6	4	0.6667	0.7680	26	16
6	7	4	0.6667	0.7634	27	16
6	8	4	0.6667	0.7611	28	16
6	9	4	0.6667	0.7598	29	16
6	10	4	0.6667	0.7591	30	16
7	4	5	0.7143	0.8527	36	32
7	5	5	0.7143	0.8326	41	32
7	6	5	0.7143	0.8229	46	32
7	7	5	0.7143	0.8180	49	32
7	8	5	0.7143	0.8154	52	32
7	9	5	0.7143	0.8141	53	32
7	10	5	0.7143	0.8133	54	32
8	4	6	0.7500	0.8954	66	64
8	5	6	0.7500	0.8742	75	64
8	6	6	0.7500	0.8640	84	64
8	7	6	0.7500	0.8589	89	64
8	8	6	0.7500	0.8562	94	64
8	9	6	0.7500	0.8548	97	64
8	10	6	0.7500	0.8540	100	64
9	4	6	0.6667	0.7959	116	64
9	5	7	0.7778	0.9066	137	128
9	6	7	0.7778	0.8960	154	128
9	7	7	0.7778	0.8907	163	128
9	8	7	0.7778	0.8879	172	128
9	9	7	0.7778	0.8864	177	128
9	10	7	0.7778	0.8856	182	128
10	4	7	0.7000	0.8357	208	128
10	5	7	0.7000	0.81 .59	247	128
10	6	8	0.8000	0.9216	282	256
10	7	8	0.8000	0.9161	299	256
10	8	8	0.8000	0.9133	316	256
10	9	8	0.8000	0.9117	325	256
10	10	8	0.8000	0.9109	334	256

U.S. Patent

Sheet 5 of 14
Fig. 5B

11	4	8	0.7273	0.8682	372	256
11	5	8	0.7273	0.8477	448	256
11	6	9	0.8182	0.9426	514	512
11	7	9	0.8182	0.9370	549	512
11	8	9	0.8182	0.9340	580	512
11	9	9	0.8182	0.9325	597	512
11	10	9	0.8182	0.9316	614	512
12	4	9	0.7500	0.8954	664	512
12	5	9	0.7500	0.8742	812	512
12	6	9	0.7500	0.8640	938	512
12	7	9	0.7500	0.8589	1005	512
12	8	10	0.8333	0.9513	1066	1024
12	9	10	0.8333	0.9497	1097	1024
12	10	10	0.8333	0.9489	1128	1024
13	4	10	0.7692	0.9183	1188	1024
13	5	10	0.7692	0.8966	1471	1024
13	6	10	0.7692	0.8862	1712	1024
13	7	10	0.7692	0.8809	1841	1024
13	8	10	0.7692	0.8781	1956	1024
13	9	10	0.7692	0.8767	2017	1024
13	10	11	0.8462	0.9635	2074	2048
14	4	11	0.7857	0.9380	2122	2048
14	5	11	0.7857	0.9159	2667	2048
14	6	11	0.7857	0.9052	3124	2048
14	7	11	0.7857	0.8998	3372	2048
14	8	11	0.7857	0.8970	3590	2048
14	9	11	0.7857	0.8955	3705	2048
14	10	11	0.7857	0.8947	3814	2048
15	4	11	0.7333	0.8755	3792	2048
15	5	12	0.8000	0.9325	4834	4096
15	6	12	0.8000	0.9216	5702	4096
15	7	12	0.8000	0.9161	6176	4096
15	8	12	0.8000	0.9133	6588	4096
15	9	12	0.8000	0.9117	6807	4096
15	10	12	0.8000	0.9109	7010	4096
16	4	12	0.7500	0.8954	6778	4096
16	5	13	0.8125	0.9471	8760	8192
16	6	13	0.8125	0.9360	10408	8192
16	7	13	0.8125	0.9305	11313	8192
16	8	13	0.8125	0.9275	12090	8192
16	9	13	0.8125	0.9260	12505	8192
16	10	13	0.8125	0.9252	12886	8192
17	4	13	0.7647	0.9129	12112	8192
17	5	13	0.7647	0.8914	15877	8192
17	6	14	0.8235	0.9487	18996	16384

UMN_0002901

## U.S. Patent Jan. 12, $1999 \quad$ Sheet 6 of $14 \quad 5,859,601$

Fig. 5C

17	7	14	0.8235	0.9431	20723	16384
17	8	14	0.8235	0.9401	22188	16384
17	9	14	0.8235	0.9386	22972	16384
17	10	14	0.8235	0.9377	23686	16384
18	4	14	0.7778	0.9285	21646	16384
18	5	14	0.7778	0.9066	28776	16384
18	6	15	0.8333	0.9600	34670	32768
18	7	15	0.8333	0.9543	37960	32768
18	8	15	0.8333	0.9513	40720	32768
18	9	15	0.8333	0.9497	42202	32768
18	10	15	0.8333	0.9489	43536	32768
19	4	15	0.7895	0.9425	38684	32768
19	5	15	0.7895	0.9202	52153	32768
19	6	15	0.7895	0.9095	63278	32768
19	7	16	0.8421	0.9644	69534	65536
19	8	16	0.8421	0.9613	74732	55536
19	9	16	0.8421	0.9597	77529	65536
19	10	16	0.8421	0.9589	80024	65536
20	1	16	0.8000	0.9551	69132	655366
20	5	16	0.8000	0.9325	94523	65536
20	6	16	0.8000	0.9216	115492	65536
20	7	16	0.8000	0.9161	127369	65536
20	8	17	0.8500	0.9703	137152	131072
20	9	17	0.8500	0.9687	142429	131072
20	10	17	0.8500	0.9679	147092	131072
21	1	16	0.7619	0.9096	123548	655366
21	5	17	0.8095	0.9436	171314	131072
21	6	17	0.8095	0.9326	210790	131072
21	7	17	0.8095	0.9270	233309	131072
21	8	17	0.8095	0.9241	251708	131072
21	9	17	0.8095	0.9226	261658	131072
21	10	18	0.8571	0.9760	270370	262144
22	4	17	0.7727	0.9225	220794	131072
22	5	18	0.8182	0.9537	310489	262144
22	6	18	0.8182	0.9426	384724	262144
22	7	18	0.8182	0.9370	427366	262144
22	8	18	0.8182	0.9340	461946	262144
22	9	18	0.8182	0.9325	480694	262144
22	10	18	0.8182	0.9316	496970	262144
23		4	18	0.7826	0.9343	394584
23	5	19	0.8261	0.9629	562732	262144
23	6	19	0.8261	0.9517	702180	5242888
23	7	19	0.8261	0.9460	782831	524288
23	8	19	0.8261	0.9431	847784	524288
23	9	19	0.8261	0.9415	883087	524288
23	10	19	0.8261	0.9406	913484	524288

UMN EXHIBIT 2008

Fig. 5D

24	4	19	0.7917	0.9451	705168	524288
24	5	19	0.7917	0.9228	1019898	524288
24	6	20	0.8333	0.9600	1281584	1048576
24	7	20	0.8333	0.9543	1433958	1048576
24	8	20	0.8333	0.9513	1555892	1048576
24	9	20	0.8333	0.9497	1622325	1048576
24	10	20	0.8333	0.9489	1679082	1048576
25	4	20	0.8000	0.9551	1260216	1048576
25	5	20	0.8000	0.9325	1848466	1048576
25	6	21	0.8400	0.9677	2339084	2097152
25	7	21	0.8400	0.9619	2626666	2097152
25	8	21	0.8400	0.9589	2855444	2097152
25	9	21	0.8400	0.9573	2980384	2097152
25	10	21	0.8400	0.9565	3086334	2097152
26	4	21	0.8077	0.9643	2252152	2097152
26	5	21	0.8077	0.9415	3350167	2097152
26	6	22	0.8462	0.9748	4269182	4194304
26	7	22	0.8462	0.9690	4811419	4194304
26	8	22	0.8462	0.9660	5240442	4194304
26	9	22	0.8462	0.9643	5475284	4194304
26	10	22	0.8462	0.9635	5673012	4194304
27	4	21	0.7778	0.9285	4024856	2097152
27	5	22	0.8148	0.9498	6071855	4194304
27	6	22	0.8148	0.9387	7791902	4194304
27	7	23	0.8519	0.9755	8813350	8388608
27	8	23	0.8519	0.9725	9617500	8388608
27	9	23	0.8519	0.9708	10058681	8388608
27	10	23	0.8519	0.9700	10427604	8388608
28	4	22	0.7857	0.9380	7192882	4194304
28	5	23	0.8214	0.9575	11004651	8388608
28	6	23	0.8214	0.9463	14221398	8388608
28	7	23	0.8214	0.9407	16143951	8388608
28	8	24	0.8571	0.9785	17650478	16777216
28	9	24	0.8571	0.9769	18478872	16777216
28	10	24	0.8571	0.9760	19167054	16777216

UMN_0002903

Fig. 7


Fig. 8


Fig. 9

# U.S. Patent 

Jan. 12, 1999
Sheet 10 of 14
5,859,601

## Fig. 10

$\mathrm{C}=0$				$C=2$			$C=4$		$\mathrm{C}=6$
219	795	3171	3651	247	998	3553	503	3555	1015
222	798	3174	3654	251	1004	3556	507	3558	3319
231	807	3180	3657	439	1009	3611	887	3564	3323
238	819	3185	3660	443	3127	3614	891	3569	3511
243	822	3192	3681	446	3131	3623	894	3576	3515
246	825	3207	3684	475	3134	3635	951	3639	3518
249	828	3214	3777	478	3175	3638	955	3643	3547
252	867	3219	3780	487	3182	3641	958	3646	3550
311	870	3225	3784	494	3187	3644	987	3687	3559
315	876	3228	3843	499	3190	3655	990	3694	3566
318	881	3267	3846	502	3193	3662	999	3699	3571
411	888	3270	3849	505	3196	3683	1006	3702	3574
414	903	3273	3852	631	3227	3686	1011	3705	3577
435	910	3276	3857	635	3230	3692	1014	3708	3703
438	915	3288	3864	638	3271	3697	3191	3783	3707
441	921	3297	3873	823	3278	3704	3195	3790	3710
444	924	3300	3876	827	3289	3779	3198	3801	3803
455	945	3459		830	3292	3782	3291	3804	3806
462	952	3462		871	3299	3785	3294	3811	3815
473	963	3465		878	3302	3788	3303	3814	3822
476	966	3468		883	3308	3800	3310	3820	3827
483	969	3473		886	3313	3809	3315	3825	3830
486	972	3480		889	3320	3812	3318	3832	3833
492	984	3521		892	3463	3847	3321	3867	3836
497	993	3524		923	3470	3854	3324	3870	3895
504	996	3528		926	3475	3859	3483	3879	3899
567	3099	3591		947	3481	3865	3486	3891	3902
571	3102	3598		950	3484	3868	3507	3894	3943
574	3111	3603		953	3505	3875	3510	3897	3950
615	3123	3609		956	3512	3878	3513	3900	3955
622	3126	3612		967	3523	3889	3516	3939	3958
627	3129	3619		974	3526	3896	3527	3942	3961
630	3132	3622		985	3529	3937	3534	3948	3964
633	3143	3633		988	3532	3940	3545	3953	
636	3150	3640		995	3544		3548	3960	

# U.S. Patent 

Jan. 12, 1999
Sheet 11 of 14
$\mathbf{5 , 8 5 9 , 6 0 1}$
Fig. 11A


Fig. 11B

14	9	10	0.7143	4	1163	1024
14	10	10	0.7143	4	1195	1024
15	4	9	0.6000	3	578	512
15	5	10	0.6667	5	1119	1024
15	6	10	0.6667	3	1130	1024
15	7	10	0.6667	3	1274	1024
15	8	11	0.7333	9	2108	2048
15	9	11	0.7333	7	2136	2048
15	10	11	0.7333	7	2221	2048
16	4	10	0.6250	2	1086	1024
16	5	11	0.6875	4	2258	2048
16	6	11.	0.6875	2	2153	2048
16	7	12	0.7500	10	4113	4096
16	8	12	0.7500	6	4164	4096
16	9	12	0.7500	6	4378	4096
16	10	12	0.7500	6	4531	4096
17	4	11	0.6471	5	2060	2048
17	5	11	0.6471	3	2737	2048
17	6	12	0.7059	5	4607	4096
17	7	12	0.7059	5	5312	4096
17	8	12	0.7059	3	4372	4096
17	9	12	0.7059	3	4575	4096
17	10	12	0.7059	3	4712	4096
18	4	12	0.6667	6	4545	4096
18	5	13	0.7222	8	8255	8192
1.8	6	13	0.7222	4	9135	8192
18	7	13	0.7222	4	10489	8192
18	8	13	0.7222	2	8272	8192
18	9	13	0.7222	2	8644	8192
18	10	14	0.7778	10	16747	16384
19	4	12	0.6316	3	4836	4096
19	5	13	0.6842	3	8379	8192
19	6	14	0.7368	7	16626	16384
19	7	14	0.7368	5	17111	16384
19	8	14	0.7368	5	18821	16384
19	9	14	0.7368	5	19849	16384
19	10	14	0.7368	5	20579	16384
20	4	13	0.6500	2	8985	8192
20	5	14	0.7000		21308	16384
20	6	15	0.7500	6	33829	32768
20	7	15	0.7500	4	33557	32768
20	8	15	0.7500	4	36775	32768
20	9	15	0.7500	4	38703	32768
20	10	15	0.7500	4	40032	32768
21	4	14	0.6667	5	17857	16384

Fig. 11C

21	5	15	0.7143	5	33597	32768
21	6	15	0.7143	3	35236	32768
21	7	16	0.7619	9	68427	65536
21	8	16	0.7619	7	71495	65536
21	9	16	0.7619	7	76019	65536
21	10	16	0.7619	5	67153	65536
22	4	15	0.6818			
22	5	16	0.7273	4	65733	32768
22	6	16	0.7273	2	66307	65536
22	7	17	0.7727	8	140771	131036
22	8	17	0.7727	6	143015	131072
22	9	17	0.7727	6	151640	131072
22	10	17	0.7727	6	157756	131072
23	4	15	0.6522	3	40949	32768
23	5	16	0.6957	3	79430	65536
23	6	17	0.7391	5	149570	131072
23	7	17	0.7391	3	131932	131072
23	8	18	0.7826	11	264682	262144
23	9	18	0.7826	9	273403	262144
23	10	18	0.7826	9	286841	262144
24	4	16	0.6667	2	75344	65536
24	5	18	0.7500	10	263893	262144
24	6	18	0.7500	4	290571	262144
24	7	18	0.7500	4	346562	262144
24	8	19	0.7917	10	546628	524288
24	9	19	0.7917	8	553812	524288
24	10	19	0.7917	8	579307	524288
25	4	17	0.6800	5	154995	131072
25	5	18	0.7200	5	326028	262144
25	6	19	0.7600	7	558253	524288
25	7	19	0.7600	5	578589	524288
25	8	19	0.7600	5	648508	524288
25	9	19	0.7600	5	690244	524288
25	10	19	0.7600	5	719462	524288
26	4	18	0.6923	4	296598	262144
26	5	19	0.7308	4	629996	524288
26	6	20	0.7692	6	11101466	1048576
26	7	20	0.7692	4	1117761	1048576
26	8	20	0.7692	4	1250283	1048576
26	9	20	0.7692	4	1328833	1048576
26	10	21	0.8077	12	2110651	2097152
27	4	19	0.7037	9	540881	524288
27	5	20	0.7407	7	1175593	1048576
27	6	20	0.7407	3	1127331	1048576
27	7	21	0.7778	7	22292377	2097152
27	8	21	0.7778	5	2117392	2097152
2						

UMN_0002909

Fig. 11D

27	9	21	0.7778	5	2260957	2097152
27	10	21	0.7778	5	2361027	2097152
28	4	20	0.7143	8	1085033	1048576
28	5	21	0.7500	6	2327099	2097152
28	6	22	0.7857	12	4234345	4194304
28	7	22	0.7857	6	4398507	4194304
28	8	22	0.7857	6	4985834	4194304
28	9	22	0.7857	4	4339268	4194304
28	10	22	0.7857	4	4525346	4194304

METHOD AND APPARATUS FOR

## IMPLEMENTING MAXIMUM TRANSITION RUN CODES

This application claims the benefit of U.S. provisional application No. 60/014,954, filed Apr. 5, 1996.

## FIELD OF THE INVENTION

The present invention relates in general to digital storage systems. More specifically, the invention pertains to an improved coding technique involving data recovery channels utilizing sequence detection methods.

## BACKGROUND OF THE INVENTION

Channel codes, sometimes called modulation codes, are mappings of data bits into the symbols that are either transmitted in a communication system or recorded onto a medium in a storage device. The purpose of these codes is to prevent certain characteristics in the stream of symbols that make their recovery difficult. Runlength limited (RLL) codes are commonly used in magnetic recording. These codes impose a (d,k) constraint on the recorded data sequence. With the Non-Return-to-Zero (NRZ) recording format, where the binary "1" represents a positive level in the magnetization waveform and the binary " 0 " negative level in the same waveform, $\mathrm{d}+1$ is the minimum number of consecutive like symbols and $\mathrm{k}+1$ is the maximum number of consecutive like symbols in the binary sequence With the Non-Return-to-Zero-Inversion (NRZI) recording format, where a magnetic transition is represented by 1 and no transition by $0, \mathrm{~d}$ and k are the minimum and maximum number of consecutive 0 's between any two 1 's, respectuvely as described in P. H. Siegel, "Recording codes for digital magnetic storage," IEEE Transactions on Magnetics, vol. MAG-21, no. 5, pp. 1344-1349, September 1985. The d constraint is used to increase the minimum physical spacing between Iransitions. The k constraint guarantees that a change in the readback waveform will occur at regular intervals for the purpose of synchronizing a phase locked loop to the data. A $(1,7)$ code is a common example of an RLL code; sec U.S Pat. No. 4,337,458. Also popular is the $(0,4 / 4)$ code, where $\mathrm{d}=0$ and $\mathrm{k}=4$ both for the data sequence and for the sequence that results if every other symbol is considered; see U.S. Yat. No. 4,707,681. Additional constraints, such as a limitation on the total number of NRZI 1 's in a codeword for the purpose of improving timing and gain control can be applied to these codes; see U.S. Pat. No. $5,196,849$. A DC-free constraint as described in U.S. Pat. No. $4,499,454$ can be used to reduce the low frequency spectral content of the readback signal. Codes for data storage lypically assume a binary symbol set such as the polarity of the write signal or the presence and absence of a transition, but it is possible to conceive systems that use more than two distinet symbols. For example, the teroary 3PM code uses three distinct symbols and places a lower bound on the distance hetween symbols in the same way that the RLL d constraint is applied to the binary case. See G. V. Jacoby, "Ternary 3PM magnetic recording code and system," IEEE Transactions on Magnetics, vol. MAG-17, 60 no. 6, pp. 3326-3328, November 1981. In optical data storage, a special type of RLL constraint is applicd to guarantce the minimum size of the written mark on the medium as described in R. Karabed and P. H. Siegel, "Even mark modulation for optical recording," International Conference on Communications, June 1989. While RLL (1,k) coding has many useful properties, the required code rate,
docs not provide any coding gain. Also, $(0, G /)$ codes are designed specifically for interleaved systems such as class designed specifically for interleaved systems such as class
IV partial response (PR4) systems, and are not optimal for other detectors such as fixed-delay tree scarch (FDTS) systems.
Sequence detectors are data recovery devices that examine multiple received samples to recover the input data ine mulliple received samples to recover the input data
sequence. Methods such as Viterbi detection, FDTS/DF, and PRML are all sequence detectors. In magnetic data storage devices, the response of the channel to an input symbol
15 typically extends over several sample periods. Sequence detectors can outperform sample-by-sample decision rules such as peak detection by using information about the data such as peak detection by using information about the data
to be detected contained in adjacent samples. Errors in sequence detectors arise mostly from difficulty in distinsequence detectors arise mostly from dificulty in distin-
guishing minimum distance patterns. For a sequence detcetor that uses M samples to make a decision, all possible noiseless sample sequences can be plotted as points in an
M -dimensional space, where each sample corresponds to a M -dimensional space, where each sample corresponds to a coordinate in this space. The minimum distance patterns are those patlems corresponding to different decisions that have the minimum Euclidean distance from one another. The Euclidean distance is the geometric distance between two points and refers to the square root of the sum of the squares of the differences between the coordinates of two points. The performance of sequence detectors such as E PRML can be improved by coding to remove the patterns that causc minimum distance error events, thereby increasiag the minimum distance. This increasc in the minimum distance as a result of coding is termed coding gain. Sce R. Karabed and P. H. Siegel, "Coding for higher order partial response channels," Proceedings of the International Society for Optical Engineering, vol. 2605, pp. 115-126, 1995.

## SUMMARY OF THE INVENTION

The present invention relates to a channel coding technique to improve data storage devices such as magnetic computer disk drives and professional and consumer tape recorders. The coding scheme, which is referred to herein as the maximum transition-run (MTR) coding, climinates cerlain error-prone binary data patterns from the allowable set of input data patterns that are to be recorded in the storage medium. As a consequence, the final bit crror rate is improved significantly when the original data bits are reproduced. This improvement in the bit error rate can be traded for an increase in storage density if the error rate performance is already satisfactory. See B. Brickner and J. Moon, "Coding for increased distance with a $\mathrm{d}=0$ FDTS/DF detector," Scagate Internal Report, May 1995; also presented at the Annual Meeting of the National Storage Industry Consortium, Montercy, Calif., Junc 1995, and J. Moon and B. Brickner, "Maximum transition run codes for data storage systems," presented at Intermag '96, Seatile, Washington, April 1996.

More specifically, the MTR code imposes a limit on the maximum number of consecutive transitions that can occur in the written magnetization pattern in magnetic recording. Analysis indicates that the performance improvement is most significant for the bit densitics anticipated for products in the near future when the maximum number of consecutive transitions is limited to two. The MTR code with a consiraint
given by the number of data bits per channel bit, is typically low, forcing the channel to operate al a considerably higher low, forcing the channel to operate at a considerably speed than the actual data rate. On the other hand, $(0,4,4)$ or length of $\mathrm{j}=2$ will allow "dibit" trausitions in the magnetization pattern, but will not permit "tribit" or longer runs of:
consecutive transitions. Unless indicated otherwise, our discussion of the MTR code relating to the present invention will be focused on the constraint of $\mathrm{j}=2$ hereafter. When the MTR coding scheme is combined with a certain class of scquence detectors to recover written data in high density recording, the bit-error-rate (BER) performance is improved significantly over existing code/detector combinations such as ( $0, \mathrm{G} / \mathrm{I}$ ) code/partial response maximum likelihood (PRML) and ( 1,7 ) RLL code/peak detector combinations. Computer implemented simulations show a large performance advantage with the MTR code combined with bigh order PRML systems and fixed delay tree search with decision feedback (FDTS/DF) systems over the existing code/detector combinations. With the NRZI format, the MTR code constraint is cquivalent to limiting the maximum runlength of 1 's. To facilitate timing recovery, the usual maximum runlength constraint is also imposed on 0 's.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows pairs of write patterns causing most errors in sequence detection at high user densities.

FIG. 2 is the state diagram for the MTR code with $\mathrm{j}=2$.
FIG. 3 is the state diagram for an MTR $(2 ; 6)$ code.
FIG. 4 gives the capacitics for the MTR j $=2$ codes with 2 different RLL $k$ constraints.

FIG. 5 is a table showing the code parameters for MTR $j=2$ block codes with different RLL $k$ constraints and different block sizes.

FIG. 6 shows a mapping of datawords to codewords for the rate $4 / 5$ MTR $(2 ; 8)$ code.

FIG. 7 is the E ${ }^{2}$ PR4-VA trellis modified for use with an MTR J 2 code.

FIG. 8 illustrates a FDTS $\tau=3$ detector modified for use with an MTR $\mathrm{j}=2$ code.

FIG. 9 illustrates a FDTS $\tau=2$ detector modified for use with an MTR $\mathrm{j}=2$ code.

FIG. 10 lists a decinal representation of the valid codewords corresponding to different values of C for the $8 / 12$ DC-frce MTR $\mathrm{j}=2$ code.

FIG. 11 lists code parameters for DC-free MTR $\mathrm{J}=2$ block codes with dillerent RLL $k$ constraints and dillerent block sizes

## DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention pertains to an improved codiag technique to enhance the minimum distance properties of sequence detectors. The invention is advantagenusly used in storage and similar systems operating at high data densities.
Prior art experience indicates that the primary source of errors in optimal and near-optimal sequence detectors operating at high data densities is the detector's inability in the presence of noise to distinguish the minimum distance patterns. FIG. 1 is an exemplary depiction of pairs of write patterns which cause most errors in sequence detection. These four pairs correspond to an NRZ input error (or diffcrencc) pattern of $\mathrm{c}_{k}= \pm\{2-22\}$, assuming input data take on +1 's and -1 's.
The present state of the art approach to attenuate thesc crrors is to remove data patterns allowing this type of crror pattern through coding. The potential improvement in the FDTS detection performance using this approach can be estimated by computing the inercase in the minimum distance between two diverging look ahead tree paths after
removing the paths that allow the $\pm\{2-22\}$ error events. A simple minimum distance analysis for PRML systems reveals that this is also a critical error pattern in high order PRML systems such as E ${ }^{2}$ PR4ML. Low order PRML systems are not dominated by these errors because they force the channel to respond like a low density system where the minimum distance error event is different
To obtain a coding gain (improvement in minimum distance due to coding), the minimum distance pairs shown in FIG. 1 must be eliminated. In accordance with the presen invention, this can be accomplished using the existing RLL $(1, \mathrm{k})$ code, which does not allow consecutive transitions. The minimum requirement for producing a coding gain in this situation is to remove one pattern from each pair of minimum distance scquences. RLL ( $1, \mathrm{k}$ ) codes climinate both patterns associated with all the minimum distance pairs and thereby result in fewer patterns dyailable to the encoder. Consequently this imposes the need to map input data to a small set of patterns resulting in a lower code rate (the ratio of the number of inpul bits to output bits). Further, this increases the speed and bandwidth at which the detector must operate to produce data bits at a particular speed. An increase in noise bandwidth translates to increased noise in the system, which works against the coding gain. The idea of MTR coding is to elmmate all sequences with three or more consecutive transitions, but allow the dibit pattern to survive in the recorded sequence. Thus, with MTR coding, the dominant error events will be prevented as with $(1, k)$ coding, but the required code rate is much better than that of the typical ( $1, \mathrm{k}$ ) RLL code.

Referring now to FIG. 2, the MTR $\mathrm{j}=2$ code based on the NRZI recording convention, where 1 and 0 represent the presence and absence, respectively, of a magnetic transition is shown Specifically, FIG. 2 depicts a state dragram defin-
ing all possible channcl input sequences. For example, a sequence can be found by starting at any state and moving along the arrows. In the alternate, a sequence can also be found by taking cach arrow label as the channel input. The capacity of the code can be obtained by finding the largest eigenvalue of the adjacency matrix $A$, which describes the Iransitions between states for the given state diagram and computing:

To more compactly describe the code constraints, the MTR parameters are written as ( $\mathrm{j} ; \mathrm{k}$ ) where j is the MTR constraint and k is the usual RLL constraint. For practical codes, the RLLk-constraint must be included for timing recovery. This constraint can be incorporated into the state diagram as in the case of the M'TR(j;k) $=(2 ; 6)$ code shown in FIG. 3. The capacities for MTR $(2 ; \mathrm{k})$ codes for different k constraints are given in FIG. 4. The capacity is the upper bound on the code rate for the given set of parameters. Most codes will have a rate less than capacity because typically the code complexity will become very large as the code rate approaches capacity. For example, a code with a rate of $7 / 8$ is possible for $\mathrm{k} \geqq 8$; however, it is likely to be extremely complex. Lower rates such as $4 / 5,5 / 6$ and $6 / 7$ will require less complexity, while 60 still improving on the $2 / 3$ ratc of RLL $(1,7)$ codes.

While state-dependent encoders and sliding block decoders can be designed for the MTR constraint, simple fixedlength block codes can be realized with good rates and reasonable $k$ values. A computer search is utilized to find the $52^{\text {mi }} \mathrm{n}$-bit codewords required to implement a rate $\mathrm{m} / \mathrm{n}$ block code. First, all binary words that contain the NRZI string of "111" or more than k consecutive NRZI 0's are removed
from the list of $2^{n}$ n-bit binary words. Then, in order to meet the MTR constraint at the codeword boundaries, words that start or end with a " 11 " string are removed. Also, the k constraint is satisfled at the boundary by removing the words with $k_{1}+1$ lcading 0 's or $k_{2}+1$ trailing 0 's where $k_{1}+k_{2}=k$. FIG. 5 shows code parameters for representative block codes oblained through computer search for various combinations of n and k . The efficiency is defined as the ratio of the code rate, $m / n$, to the capacity computed for the given value of $k$ and the MTR constraint. Thus, the efficiency is a measure of how close the rate is to the upper bound

As an example of a MTR block code, the rate $4 / 5$, MTR $(2 ; 8)$ block code is given in FIG. 6. The pairing of user data blocks and codewords were chosen so that the second bit in the codeword corresponds to the second bit in the user data. Many other pairings are possible; the one chosen is reasonable, but not necessarily optimal in terms of minimizing the logic implementation. Note that the $\mathrm{k}=8$ constraint comes into effect when the codewords 1000000001 occur in sequence. If the user data and codeword pairs are 20 represented by

$$
\begin{equation*}
X=\left[X_{0} X_{1} X_{2} X_{3}\right] \longrightarrow Y-\left[Y_{0} Y_{1} Y_{2} Y_{3} Y_{1}\right] . \tag{2}
\end{equation*}
$$

then the equations for the encoder arc:

$$
\begin{aligned}
& M_{a} \bar{X}_{0}+\bar{X}_{1} \\
& Y_{0}-\bar{X}_{1} \bar{Y}_{1} \bar{Y}_{3} \bar{Y}_{4}+X_{7} \bar{Y}_{3} X_{7} X_{3} \\
& Y_{1} X_{0} \bar{X}_{1} \bar{X}_{3}+X_{0} \bar{X}_{2} \\
& X_{2}-X_{1} \\
& Y_{3} X_{2} \bar{Y}_{4} M \\
& X_{4}-\bar{X}_{0} \bar{X}_{3} X_{3}+X_{3} \bar{M}_{1}+\bar{X}_{2} X_{3} .
\end{aligned}
$$

The corresponding decoder is

$$
\begin{align*}
& X_{0}-\bar{Y}_{2} \bar{Y}_{4} X_{3}+Y_{0} Y_{2} \bar{Y}_{3}+Y_{1} \\
& X_{1}-Y_{2} \\
& X_{2}=Y_{0} X_{3}+Y_{0} X_{0}+Y_{3}  \tag{4}\\
& X_{3}-Y_{0} Y_{3}+Y_{4}
\end{align*}
$$

These logic rules are representative of those that could be 45 developed for any of the MTR codes using industry standard design packages.

Block codes with short block lengihs tend to have low efficiencics because many potential codewords are climinated by the boundary conditions. State-dependent encoders $s 0$ can use more codewords and achicve higher efficiencies because the state carries information about the previously used codeword(s). A shortcoming of codes that use a statedependent encoder is that, in general, they require a slidingblock decoder that examines the codeword and other code- 55 words adjacent to it. This mechanism can cause detection errors in adjacent codewords to affect the decoding of other codewords, an effect known as error propagation. It is possible to conceive state-depended encoders that use block dccoders, thercby climinating crror propagation in the decoder. To this end, a two-state encoder can be formed in which the two states correspond to the last bit of the previous codeword. Knowledge of the most recent bit allows codewords to be added for both cases. In this manner, the mapping from dataword to codeword is dependent on the previously used codeword, but if the mapping from codeword to dataword is unique, a block decoder can be used.

An application of this tecbnique is the reduction of the k constraint for a particular block code. The block code boundary condition eliminates all codewords that begin with " 11 ", but if the last bit is known to be a 0 , these codewords 5 are valid. For small block sizes, the k constraint usually comes into effect when codewords beginning and ending with 0 are joined. By replacing the codewords with a long run of NRZI 0 's with a codeword beginning with " 11 " when the previous bit is a 0 , the $k$ constraint can be reduced. To illustrate this, consider the rate $1 / 5 \mathrm{MTR}(2,8)$ code. The RLL $=8$ condition exists only when the codewords 10000 and 00001 are put together. Similarly, $k=7$ occurs when 10000 and 00010 or 01000 and 00001 are combined. All three cases can be eliminated if, following a codeword with $\mathrm{Y}_{4}=0$, the codewords 00001 and 00010 are replaced by codewords where $Y_{0}=1$. This is not possible for a block code because all the available codewords are used; however, codewords beginning with 110 are valid if the preceding bit is a 0 . In the case of codewords with length $n=5$, three such words exist, they are 11000, 11001, and 11010. To reduce he required k constraint to 6 , the following conditional mappings arc used:

$$
\begin{align*}
& Y(X=0001)=\left\{\frac{11001, Z-0}{00001, Z=1}\right\}  \tag{5}\\
& \text { and } \\
& Y \left\lvert\,(X=0010)=\left\{\begin{array}{l}
11000 Z=0 \\
00010, Z=1
\end{array}\right.\right. \tag{6}
\end{align*}
$$

where $Z$ is the value of $Y_{4}$ in the previous codeword. All other pairings are unchanged from Table I. In effect, the conditional mappings creates a state dependent encoder with two states. Unlike most state dependent encoders, there is only one possible data word for cach codeword; therefore, a block decoder can be used. Boolcan equations for the resulting encoder is given by

$$
\begin{aligned}
& Y_{0}-\bar{X}_{1} \bar{Y}_{1} \bar{Y}_{3} \bar{Y}_{4}+X_{2} \bar{Y}_{3}+\bar{X}_{0} Y_{1}+X_{2} X_{3} \\
& Y_{1}=\bar{X}_{1} X_{2} \bar{X}_{3} \bar{Z}_{+} \bar{X}_{2} \bar{X}_{2} X_{3} \bar{Z}-X_{0} \bar{X}_{1} \bar{X}_{3}+X_{0} \bar{X}_{2} \\
& Y_{2}=X_{1} \\
& Y_{3} \pm X_{1} X_{2} \bar{X}_{3} Z+X_{0} \bar{X}_{1} X_{2}+X_{0} X_{1} X_{2} \\
& Y_{4}=X_{3} \bar{Y}_{3}
\end{aligned}
$$

The corresponding block decoder is

$$
\begin{aligned}
& X_{0}=Y_{2} Y_{4} X_{3}+Y_{2} \breve{Y}_{3} Y_{2}+Y_{0} Y_{1} \\
& X_{1}=Y_{2} \\
& X_{2}=Y_{0} Y_{1} \bar{Y}_{4}+Y_{0} \bar{Y} 1 Y_{4}+Y_{0} Y_{2}+Y_{3} \\
& X_{2}=Y_{0} Y_{3}+Y_{4} .
\end{aligned}
$$

MODIFIED DETECTION AND DISTANCE GAIN
To realize the coding gain at the detcctor output, the detector has to be modified. In the case of PRML systems, this amounts to removing those states that correspond to the illegal data patterns from a trellis. A Viterbi trellis corresponding to an $E^{2}$ PR4 system modified for use with MTR $(2 ; k)$ coding is shown in FIG. 7. For uncoded or RLL $(0, k)$ systems, all 16 states would be present along with two state transitions corresponding to the two binary inputs. The slate 5 labels are $\Psi_{k}=\left(a_{k}, a_{k-1}, a_{k-2}, a_{k-3}\right)$ where $a_{k}$ are the NRZ write current symbols laking on values from $\{-1,+1\}$. The states labeled 5 and 10 , corresponding to $(-1,+1,-1,+1)$ and
$(+1,-1,+1,-1)$, respectively, bave been removed because they represent three consecutive transitions in the NRZ data. Similar modifications can be performed on higher order PRML detectors. For the FDTS/DF detector, the codeviolating look ahead paths must be prevented from being chosen as the most-likely path, a technique similar to the one used in the RLI (1,7) coded FDTS/DF channel. To illustrate the idea, consider FIG. 8 that shows a $\tau=3$ look ahead tree utilized in FDTS/DF detection. The shaded paths in the tree correspond to the input data patterns with three consecutive transitions, and are considered illegal. For the $\tau=2$ tree shown in FIG. 9, the past decision must be used to determine an illegal path, which is either the third path or the sixth path, as indicated by the marked paths. The complexity in the signal space formulation of the FDTS/DF detcctor is also reduced greatly with the MTR code. See, for example, B. Brickner and J. Moon, " A high dimensional signal space implementation of FDTS/DF," presented at Intermag '96, Scattle, Wash., April 1996. For a more detailed description of FDTS/DF detection, see U.S. Pat No. 5,136,593.
With this modification in FDTS/DF detection, the squared minimum Euclidean distance between any two diverging paths, denoted by $\beta, m$, , is typically given by $4\left(1+f_{1}{ }^{2}+\right.$ $\left.f_{2}{ }^{2}+\ldots+f_{\tau}^{2}\right)$ for $\tau$ greater than or equal to 2 , where $f-(1$, $f_{1}, f_{2}, \ldots, f_{1-1}$ ) represents the 1 sample equalized dibit response (at the output of the forward equalizer) normalized so the first sample is 1 . The effective SNR gain of the $\tau=2$ FDTS/DF over the DFE, assuming the MTR $\mathrm{j}=2$ code, is given by $101 \operatorname{og}_{10}\left(1 / 1+\int_{1}^{2}+f_{2}^{2}\right) \mathrm{dB}$.

The distance gain with MTR coding is also significant for high order PRML systems such as $E^{2}$ PR4. When the critical NRZ crror pattern is $\pm\{2-22\}$, the minimum distance for the $E^{2} P R 4$ response $\{120-2-1\}$ is $\kappa \sqrt{2}$. With MTR coding, the worst case error pattern becomes a single bit error pattern of $\pm\{2\}$, and the corresponding channel output distance is simply the square root of the energy in the equalized dibit response, or $10 \sqrt{2}$. This increase in the minmum distance is cquivalent to an SNR gain of 2.218 dB . If the code rate penalty is small, the overall coding gain is significant.

## DC-FREE MTR CODES

Other useful constraints can be imposed on the MTR code at the expense of lowering the code rate. There exist storage systems where the recorded square waveform cannot have a DC component. In such applications, a DC-free constraint is necessary on the written data. The MTR code can be designed to have a DC-frec property. A DC-frec constraint is satisfied by bounding the running digital sum (RDS) of the binary sequence. The RDS at a given time is defined to be 50 the excess number of 1 's over 0 's in the binary scquence up to that time, assuming the NRZ recording format is used (a negative RDS means there has been more O's than 1 's).

The following method can be used to design DC-free MTR codes. Assume an NRZ recording formal. Starting from a list of $2^{n}$ n-bil binary words, first remove all binary words that contain either " 0101 " or " 1010 " as well as any words that contain more than $k+1$ consecutive like symbols. Then, to satisfy the MTR $\mathrm{j}=2$ constraint at the codeword boundarics, remove all words that start with " 01 " or " 10 " and remove all words that end with " 101 " or " 010 ". The same effect can be achieved by removing all words that end with 01 or 10 as wcll as the words that start with " 101 " or " 010 ". The k constraint can be satisfied at boundaries by eliminating all words that either start with $\mathrm{k}_{3}$ consecutive 6 like symbols or end with $k_{2}$ consccutive like symbols, where $k_{1}$ and $k_{2}$ are preselected numbers such that $k_{1}+k_{2}=k+1$. The
remaining codewords in the list now satisfy the MTR constraint as well as the k constraint. Investigation of the remaining codewords reveals that for every codeword, there exists another codeword which is a bit-by-bit complement of the first codeword. Now define charge C to be the number of 1 's in the codeword minus the number of 0 's in the same codeword. If a codeword has a charge C, its bit-wise complement will have a charge-C. This property is used to design a DC-free code. The final list of the valid DC-frec MTR codewords is obtained by further removing either all the words with negative charges or all the words with positive charges. The final list now contains codewords with either zero-charge or charges with the same polarity. When a dataword is mapped to a zero-charge codeword, the mapping is one-to-one as usual But when a dataword is mapped to non-zero-charge codeword, cither the codeword itself or its bit-wise complement is released by the encoder output, depending of the RDS value at the end of the last codeword. By choosing the codeword with a polarity which is opposite to the polarity of the present RDS value, the RDS is always kept bounded. FIG. 10 shows a decimal representation of codewords corresponding to different values of C for the 8/12 DC-free MTR code. The $k$-constraint in this case is equal to 8. FIG. 11 lists the code parameters for various DC-free MTR block codes obtained using the method described above.

While the preferred embodiments of the invention have been shown and descrabed, it will be obvious to those skilled in the art that changes, variations and modifications may be made therein without departing from the invention in its broader aspects and, therefore, the aim in the appended claims is to cover such changes and modifications as fall withon the scope and spirit of the invention.

What is claimed is:

1. Apparatus for encoding m-bit binary datawords into n-bit binary codewords, in a recorded waveform, where m and n are preselected positive integers such that n is greater than $m$, comprising:
recciver means for receiving the dataword;
encoder means coupled to the receiver means, for producing sequences of fixed length codewords;
means for imposing a pair of constraints ( $;$;k) on the encoded waveform wherein the j constraint is defined as the maximum number of consecutive transitions allowed on conseculive clock periods in the encoded waveform to facilitate the reduction of a probability of a detection error in said receiver means;
said sequences generating no more than $j$ consecutive transitions in the recorded waveform such that j is an integer equal to or greater than 2 ; and
said sequences generating no more than $k$ consecutive sample periods without a transition in the recorded waveform.
2. Apparatus as in claim 1 wherein the j consecutive tramsition limit is defined by the relationship $2 \leq j<10$.
3. Apparatus as an claim 2 wheren the encoder means produces a codeword, in response to each dataword scquentially, based on a predetermined word-by-word mapping of $2^{m} \mathrm{~m}$-bit datawords to one of N n -bit codeword sets, whercin N may be written as $\mathrm{N}=2^{t}$ and i is a positive integer and further that a selection of onc of said N n-bit codeword sets is determined by a state of the encoder whercin said state is a predetermincd function of a previous state and the encoder input and each set contans $2^{m}$ codewords wherein, a particular codeword may appear more than once in a given set and further a particular codeword may also appear in more than one set.
4. Apparalus as in claim 3 wherein the encoder means produces a codeword in response to each dataword sequentially, based on a predetermined word-by-word mapping of $2^{m} \mathrm{~m}$-bit datawords to one of two n -bit codeword scts, where cach particular codeword sct contains $2^{n t}$ different codewords, some of which may also be used in the other set and the set mapped to the encoder is chosen based on the last binary symbol of the previous codeword.
5. Apparatus as in claim 4 wherein, a first set (A) is chosen when a last binary symbol of a previous codeword ( $Z$ ) is a 0 and a second set (B) is chosen when Z is a 1 and valid codewords for sets A and B are by the steps of:
removing binary words that contain more than one of $j$ consecutive 1 's and more than k consecutive 0 's from cach of two lists of $2^{n}$ possible codewords for scts $A$ is and B , respectively;
removing words that end with two consecutive l's from both lists;
removing words from the list for set B that begin with two consecutive 1's;
selecting $\mathrm{k}_{1}+\mathrm{k}_{2}-\mathrm{k}$;
removing words from the list for set A that begin with one of $k_{1}+10$ 's and end with $k_{2}+10$ 's;
removing words from the list for sct B that end with 25 consecutive 0 's and $k_{2}+1$; and
solccting the $2^{m}$ codewords used in cach of sct $A$ and sct $B$ from the respective lists, each of which contains at least $2^{m}$ codcwords.
6. Apparatus as in claim 2 wherein the sequences of ${ }^{30}$ codewords also satisfy a DC-free constraint.
7. Apparatus as in claim 6 whercin the encoder means produces a codeword in response to each dataword sequentially, based on a predetermined word-by-word mapping of $2^{m} \mathrm{~m}$-bit datawords to $2^{m} \mathrm{n}$-bit codewords, where the codewords are preselected using a selection method comprising the sleps of:
removing binary words that contain cither " 0101 " or
" 1010 " from a list of $2^{n}$ possible n-bit binary words;
removing words that contain more than $k+1$ consecutive like symbols;
removing all words that begin with " 01 " or " 10 " and those
that tnd with " 101 " or " 010 " having aft equivalent effect of removing all words that begin with "101" or 4
" 010 " and all words that end with " 01 " or " 10 ";
removing one and combinations thereof of words that begin with $k_{1}+1$ consecutive like symbols and words that end with $\mathrm{k}_{2}+1$ consecutive like symbols where $k_{1}+k_{2}=k$;
forming a set (A) of codewords with the number of 1 's not less than the than number of 0 's;
forming a set ( $B$ ) of codewords with the number of 0 's not less than the than number of 1 's;
selecting codewords from set A if the uumber of 0 's in all the previous encoder outpuls exceeds the number ot 1's; and
selecting codewords from set $B$ if the number of 0 's in all the previous encoder outputs docs not exceed the 60 number of 1 's.
8. Apparatus as in claim 2 whercin the consecutive Iransition limit is defined by the relationship $j=2$.
9. Apparatus as in claim 2 wherein the binary sequences produced by combining codewords bave no more than j 6 consecutive 1 's and no more than $k$ consecutive 0 's when used with a NRZI recording format.
10. Apparatus as in claim 2 wheren binary sequenecs produced by combining codewords bave no more than one of $j$ consecutive transitions from 0 to 1 and from 1 to 0 and no more than one of $k+1$ consecutive 0 's and $k+1$ consecutive 1's when used in conjunction with a NRZ recording format.
11. Apparatus as in clamm 2 wherein the encoder means produces a codeword in response to each dataword sequentially, based on a predetermined word-by-word mapping of $2^{n t} \mathrm{~m}$-bit datawords to $2^{m} \mathrm{n}$-bit codewords, wherein the codewords are preselected using a selection method comprising the steps of:
removing binary words that contain more than one of $j$ consecutive 1 's and more than k consecutive 0 's from a list of $2^{n}$ possible $n$-bit binary words;
removing one of binary words that begin and end with two conseculive 1's;
removing one of binary words that begin with $\mathrm{k}_{\mathrm{r}}+1$ conseculive 0 's and end with $\mathrm{k}_{2}+1$ eonsecutive 0 's where $\mathrm{k}_{1}+\mathrm{k}_{2}=\mathrm{k}$; and
choosing $2^{m}$ codewords remaining in the list, which contains at least $2^{m}$ valid codewords.
12. Apparatus as in claim 2 wherein the receiver means incorporates means for removing certain code-violating pattems from the detection process wherein the detection process comprises at least one of the steps of:
removing statcs and state transitions corresponding to more than $\mathbf{j}$ consecutive transitions from a Viterbi trellis;
removing branches from a fixed delay tree search corresponding to more than $j$ consecutive trabsitions;
removing branches from a fixed delay tree search corresponding to more than j consecutive transitions when the previous decision is considered part of the sequence;
forming boundaries for a signal space formulation such that points in the signal space constellation corresponding to sequences containing more than j consecutive transitions are not considered; and
selecting boundaries in a signal space formulation based on a constellation that does not include points corresponding to sequences containing more than j consecutive transitions when the previous decision is considered part of the sequence.
13. A melhod for encoding m-bit binary datawords into n-bit binary codewords in a recorded waveform, where m and $n$ are preselected posilive integers such that $n$ is greater than m, comprising the steps of.
recelving binary datawords; and
producing sequences of $n$-bit codewords;
imposing a pair of constraints ( $j ; \mathrm{k}$ ) on the encoded waveform;
gencrating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geqq 2$; and
generating no more than $k$ consecutive sample periods of said sequences without a transition in the recorded waveform.
14. The method as in claim 13 wherein the consecutive transition limit is defined by the equation $2 \leqq j<10$.
15. The method as in claim 14 wherein the consecutive Iransition limit is $\mathrm{j}=2$.
16. The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than $j$ consecutive 1's and no more than $k$ consecutive 0 's when used with the NRZI recording format.
17. The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 and no more than one of $k+1$ consecutive 0 's and $k+1$ consccutive 1's when used in conjunction with the NRZ recording format.
18. The method as in claim 14 wherein the encoder means produces a codeword in response to each dataword sequentially, based on a predetermined word-by-word mapping of $2^{m} \mathrm{~m}$-bit datawords to $2^{m} \mathrm{n}$-bit codewords, where the codewords are preselecled using a selection method comprising the steps of:
removing binary words that contain more than j consecutive 1 's and words that contain more than $k$ consecutive 0 's from a list of $2^{n}$ possible $n$-bit binary words;
removing onc of binary words that begin and cad with two consecutive 1's;
removing one of words that begin with $\mathrm{k}_{1}+1$ consecutive
0 's and end with $k_{2}+1$ consecutive 0 's where $k_{1}+k_{2}=k$;
choosing $2^{\prime \prime}$ codewords from the remaining list, which contains at least $2^{m}$ valid codewords.
19. The method as in claim 14 wherein the encoder means produces a codeword in response to each dataword sequentially, based on a predetermined word-by-word mapping of $2^{m} \mathrm{~m}$-bit datawords to one of N n -bit codeword sets, wherein N may be written as $\mathrm{N}=2^{i}$ where i is a positive integer and the selection of one of N codeword sets is determined by the state of the encoder and said state is a predetermined function of the previous statc and encoder
input and that each set contains $2^{\text {mi }}$ codewords and further that a particular codeword may appear more than once in a given sets and may also appear in more than one set.
20. The method as in claim 14 wherein the sequences of codewords also satisfy a DC-frec constraint.
21. The method as in claim 13 wherein the method of receiving data incorporates the removal of certain codeviolating patterns from the detection process wherein the detection process comprises at least one of the steps of:
removing states and state transitions corresponding to more than j consecutive transitions from a Viterbi trellis;
removing branches from a fixed delay tree search corresponding to more than $i$ consecutive transitions;
removing branches from a fixed delay tree search corresponding to more than $\mathbf{j}$ consecutive transitions when the previous decision is considered part of the sequence;
forming boundaries for a signal space formulation such that points in the signal space constellation corresponding to sequences containing more tban $\mathbf{j}$ consecutive transitions are not considered; and
selecting boundaries in a signal space formulation based on a constellation that does not include points corresponding to sequences containing more than j consecutive transitions when the previous decision is considered part of the sequence.

Ranjini Acharya (SBN 290877)
ranjini.acharya@klgates.com
K\&L GATES LLP
620 Hansen Way
Palo Alto, California 94304
Tel: (650) 798-6700
Fax: (650) 798-6701
Counsel for Plaintiff
Regents of the University of Minnesota
Additional counsel listed on signature pages
David E. Sipiora (State Bar No. 124951)
dsipiora@kilpatricktownsend.com
Edward J. Mayle (admitted pro hac vice)
tmayle@kilpatricktownsend.com
KILPATRICK TOWNSEND \& STOCKTON LLP
1400 Wewatta Street, Ste. 600
Denver, CO 80202
Telephone: 3035714000
Facsimile: 3035714321
Scott Kolassa (State Bar No. 294732)
skolassa@kilpatricktownsend.com
KILPATRICK TOWNSEND \& STOCKTON LLP
1080 Marsh Road
Menlo Park, CA 94025
Telephone: 6503246349
Facsimile: 6506181544
Attorneys for Defendants LSI Corporation
and Avago Technologies U.S. Inc.


## UNITED STATES DISTRICT COURT

## NORTHERN DISTRICT OF CALIFORNIA

## SAN JOSE DIVISION

REGENTS OF THE UNIVERSITY OF MINNESOTA,

Plaintiff,
vs.
LSI CORPORATION and AVAGO TECHNOLOGIES U.S. INC.,

Defendants.

JOINT CLAIM CONSTRUCTION AND PREHEARING
CASE NO. 3:18-CV-00821-EJD-NMC STATEMENT UNDER PATENT L.R. 4-3

Case No.: 5:18-cv-00821-EJD-NMC

## JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT UNDER PATENT L.R. 4-3

Markman Hearing: July 12, 2018
Time: 1:30 p.m.
Location: San Jose, Courtroom 4, 5th Floor

Plaintiff Regents of the University of Minnesota ("University") and Defendants LSI Corporation and Avago Technologies U.S. Inc. (jointly, "LSI" or "Defendants") jointly submit this Joint Claim Construction and Prehearing Statement in accordance with Patent L.R. 4-3 and this Court's Standing Order for Patent Cases. The sole asserted patent in this case is U.S. Patent 5,859,601 ("" 601 Patent"), a copy of which is provided as Exhibit A hereto. The Asserted Claims are claims 13,14 , and 17. A copy of the complete prosecution history for the ' 601 Patent is available to the Court upon request, and was previously filed on March 15, 2018 as Document 190-
3.

## I. CONSTRUCTION OF THOSE TERMS ON WHICH THE PARTIES AGREE

The parties agree to the constructions set forth below for certain claim terms in the Asserted
Claims of the ' 601 Patent.

Claim Language	Agreed-Upon Construction
m-bit binary datawords   '601 Patent, claim 13	bit sequences of length m
binary datawords   '601 Patent, claim 13	bit sequences of length m
n-bit binary codewords '60I Patent, claim 13	bit sequences of length n
n-bit codewords '601 Patent, claim 13	bit sequences of length $n$

## II. DISPUTE TERMS AND IDENTIFICATION OF MOST SIGNIFICANT TERMS

The parties dispute the construction of ten (10) terms in the Asserted Claims. Each party's proposed constructions and identified support therefor are presented in Exhibit B hereto.

JOINT CLAIM CONSTRUCTION AND PREHEARING
CASE NO. 3:18-CV-00821-EJD-NMC STATEMENT UNDER PATENT L.R. 4-3

The most significant terms are the terms appearing below in claims 13 and 17. The parties propose that the disputed terms be argued in the following order at the hearing:
(1) "transitions" in claim 13;
(2) "producing sequences of $n$-bit codewords" in claim 13;
(3) "recorded waveform" in claim 13;
(4) "imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ )" in claim 13;
(5) "encoded waveform" in claim 13;
(6) "generating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$ " in claim 13;
(7) "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform" in claim 13;
(8) "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to $0 "$ in claim 17; and
(9) "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 " and "no more than one of $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive I's" in claim 17.
(10) NRZ/NRZI recording format in claim 17 and claim 16.

## III. ANTICIPATED LENGTH AND TIME NECESSARY FOR THE CLAIM

 CONSTRUCTION HEARINGThe Claim Construction Hearing is currently scheduled for July 12, 2018, with the Case Tutorial starting at $1: 30$ p.m. Dkt. 197. The parties anticipate needing no more than three (3) hours ( 1.5 hours per side) for the hearing, including the tutorial.

## IV. IDENTIFICATION OF WITNESSES FOR CLAIM CONSTRUCTION HEARING

Neither party intends to present any witnesses live at the Claim Construction Hearing.

The University expects to rely on testimony (in the form of a declaration and/or deposition) from Prof. Steven W. McLaughlin, Dean of the College of Engineering at the Georgia Institute of Technology in support of its claim construction arguments. A copy of Prof. McLaughlin's declaration that the University served Defendants with on March 14, 2018 as part of the University's Patent L.R. 4-2 disclosures is attached hereto as Exhibit C. The University also currently intends to have Prof. McLaughlin available for the Case Tutorial.

LSI intends to rely on testimony (in the form of a declaration and/or deposition testimony) from Professor Emina Soljanin, Professor of Electrical \& Computer Engineering at Rutgers University, on the issue of indefiniteness under 35 U.S.C. § 112 for five disputed claim terms. See Declaration of Professor Emina Soljanin, Ph.D., attached as Exhibit D. Professor Soljanin's testimony will be offered only on the issue of indefiniteness and not for purposes of general claim construction. If the Court determines that the five disputed-as-indefinite claim terms are not indefinite, then for three of the terms, LSI has offered alternative constructions that are based on intrinsic evidence and do not rely on Professor Soljanin's testimony. See Exhibit B. LSI contends that two of the disputed claim terms, both in dependent claim 17, cannot be construed, and will not offer proposed constructions for those two terms. Other than with respect to the issue of indefiniteness as to the five challenged terms, LSI will not rely on expert testimony. LSI believes that expert testimony is unnecessary for the Case Tutorial, but may have Prof. Soljanin in attendance if the Plaintiff brings its expert.

## V. IDENTIFICATION OF FACTUAL FINDINGS REQUESTED FROM THE COURT RELATED TO CLAIM CONSTRUCTION

The parties have a dispute as to whether the Court should make factual findings with respect to claim construction. The parties' positions are set forth below:

## The University's Identification

Pursuant to Patent Local Rule 4-3(f) which requires the parties to identify "any factual findings requested from the Court related to claim construction," the University requests that the Court make factual findings with respect to Defendants' indefiniteness arguments for claims 13 and 17 of the ' 601 Patent. See, e.g., Berkheimer v. HP Inc., 881 F.3d 1360, 1363 (Fed. Cir. 2018) (district court's indefinite determination included "subsidiary factual findings" based on expert declaration); Teva Pharm. USA v. Sandoz, Inc., 135 S. Ct. 831, 841 (2015) (recognizing "factual finding" by court with regard to dispute between experts as to whether "a certain term of art had a particular meaning to a person of ordinary skill in the art at the time of the invention"); Eli Lilly and Co. v. Teva Parenteral Medicines, Inc., 848 F.3d 1357, 1371 (Fed. Cir. 2017) ("[T] he district court's underlying determination, based on extrinsic evidence, of what a person of ordinary skill would understand 'vitamin B12' to mean in different contexts is a question of fact."). The University's requested factual findings will relate to the knowledge and understanding that a person of ordinary skill in the art would have concerning the scope and meaning of the following phrases when read in the context of the intrinsic record:

- "the encoded waveform" in claim 13;
- "generating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$ " in claim 13;
- "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform" in claim 13;
- "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to $0 "$ in claim 17; and
- "no more than one of $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1 's" in claim 17 .

In particular, the University requests that the Court find that each of identified claim terms has an objective meaning to those skilled in the art, which objective meaning informs, with reasonable certainty, those skilled in the art about the scope of the claimed invention.

The University further requests that the Court find that the evidence cited by the University and Defendants, including the testimony of Prof. McLaughlin, supports the University's claim construction proposals and do not support Defendants' proposals. See Teva Pharm., $135 \mathrm{~S} . \mathrm{Ct}$. at 837-38("Claim construction is a question of law with underlying questions of fact."). For example, the University requests that the Court find that:

- A person skill in the art would understand that a "transition" referred to in the ' 601 Patent, including the claims, is a magnetic transition, i.e., a reversal in the magnetic orientation of adjacent bit regions;
- Imposing a constraint in a magnetic recording system that limits the number of consecutive "transitions" in the record waveform to j , where $\mathrm{j} \geq 2$, reduces the probability of bit errors of the magnetic recording system by removing error-prone write patterns; and
- A person skill in the art would understand that the j and k constraints are separate constraints, where the j constraint reduces the bit error probability of the magnetic recording system by removing error-prone write patterns and the k constraint ensures timing recovery.


## LSI's Position: Factual Findings Are Not Required

The Court need not make any factual findings. Instead, the Court should construe all of the disputed claim terms as a matter of law, in light of the intrinsic evidence (i.e., the patent's claims, specification, and its prosecution history). See Markman v. Westview Instr., Inc., 517 U.S. 370,372 (1996) ("We hold that the construction of a patent, including terms of art within its claim, is exclusively within the province of the court"); see also Phillips v. AWH Corp., 415 F.3d 1305, 131424 (Fed. Cir. 2005) (en banc); id. at 1320 (overruling Circuit precedent that had "placed too much

CASE NO. 3:18-CV-00821-EJD-NMC STATEMENT UNDER PATENT L.R. 4-3
reliance on extrinsic sources such as dictionaries, treatises, and encyclopedias and too little on intrinsic sources, in particular the specification and the prosecution history"). The Supreme Court has made clear that indefiniteness may be resolved as a matter of law. See Nautilus v. Biosig Instr., 134 S. Ct. 2120, 2124 (2014) ("[W]e hold that a patent is invalid for indefiniteness if its claims, read in light of the specification delineating the patent, and the prosecution history, fail to inform, with reasonable certainty, those skilled in the art about the scope of the invention."). ${ }^{1}$ In this case, with respect to five disputed claim terms, intrinsic evidence alone is sufficient to conclude that the terms are indefinite.

Regardless of whether the proper analysis is characterized as purely legal (LSI's position) or requires the Court to make "factual findings" (Plaintiff's position), LSI requests that the Court find that claims 13 and 17 are indefinite under 35 U.S.C. § $112(\mathrm{~b})$. See Nautilus, 134 S. Ct. at 2124. Specifically, LSI contends that the following phrases (each of which is case and/or claim dispositive), when read in the context of the intrinsic record, are indefinite because they cannot be construed with reasonable certainty:

- (1) "the encoded waveform" in claim 13;
- (2) "generating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$ " in claim 13;
- (3) "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform" in claim 13;
- (4) "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 " in claim 17 ; and
- (5) "no more than one of $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1 ' s " in claim 17 .

[^14]If, however, the Court finds that the first three terms can be construed with reasonable certainty, then LSI requests that the Court adopt LSI's proposed alternative constructions. See Exh. B. Regarding the fourth and fifth challenged terms, LSI offers no alternative constructions.

As to all other disputed claim terms, LSI requests that the Court adopt LSI's proposed constructions as set forth in Exhibit B, and reject the Plaintiff's proposed constructions and the opinions offered by Plaintiff's expert, Prof. McLaughlin, as to all nine disputed terms.

Dated: April 13, 2018

By: /s/ Ranjini Acharya
Ranjini Acharya (SBN 290877)
ranjini.acharya@klgates.com
K\&L GATES LLP
620 Hansen Way
Palo Alto, California 94304
Tel: (650) 798-6700
Fax: (650) 798-6701
Patrick J. McElhinny, pro hac vice patrick.mcelhinny@klgates.com Mark G. Knedeisen, pro hac vice mark.knedeisen@klgates.com Christopher M. Verdini, pro hac vice
christopher.verdini@klgates.com
Anna Shabalov, pro hac vice
anna.shabalov@klgates.com
K\&L Gates LLP
K\&L Gates Center
210 Sixth Avenue
Pittsburgh, Pennsylvania 15222
(412) 355-6500

Theodore J. Angelis, pro hac vice
theo.angelis@klgates.com
K\&L Gates LLP
925 Fourth Avenue, Suite 2900
Seattle, WA 98104
(206) 623-7580

Counsel for Plaintiff
Regents of the University of Minnesota

## CERTIFICATE OF SERVICE

I hereby certify that a true and correct copy of the above and foregoing document has been served on all counsel of record via the Court's ECF system on April 13, 2018.
/s/ Ranjini Acharya
Ranjini Acharya

## CERTIFICATION PURSUANT TO CIV. L. R. 5-1(i)(3)

Pursuant to Civil Local Rule 5-1(i)(3), I hereby certify that concurrence in the filing of this document has been obtained from the signatories for whom a signature is indicated by a conformed signature $(/ \mathrm{s} /)$. I have on file records to support this concurrence for production for the Court if so ordered.

Dated: April 13, 2018
/s/ Ranjini Acharva
Ranjini Acharya

Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 1 of 49

David E. Sipiora (State Bar No. 124951)
dsipiora@kilpatricktownsend.com
Edward J. Mayle (admitted pro hac vice)
tmayle@kilpatricktownsend.com
KILPATRICK TOWNSEND \& STOCKTON LLP
1400 Wewatta Street, Ste. 600
Denver, CO 80202
Telephone: 3035714000
Facsimile: 3035714321
Scott Kolassa (State Bar No. 294732)
skolassa@kilpatricktownsend.com
KILPATRICK TOWNSEND \& STOCKTON LLP
1080 Marsh Road
Menlo Park, CA 94025
Telephone: 6503246349
Facsimile: 6506181544
Attorneys for Defendants LSI Corporation and Avago Technologies U.S. Inc.

## UNITED STATES DISTRICT COURT

 FOR THE NORTHERN DISTRICT OF CALIFORNIA
## SAN JOSE DIVISION

REGENTS OF THE UNIVERSITY OF MINNESOTA,

Plaintiff,
v.

LSI CORPORATION AND
AVAGO TECHNOLOGIES U.S. INC.,
Defendants.

## I. INTRODUCTION AND QUALIFICATIONS

## A. Introduction.

1. I have been engaged as an expert on behalf of LSI Corporation and Avago

Technologies U.S. Inc. (collectively, Defendants or "LSI") in the above-referenced case and in the Inter Partes Review ("IPR") proceeding involving the patent-in-suit (U.S. Patent and

DECLARATION OF PROF. EMINA SOLJANIN
CASE NO. 18-CV-00821-EJD-NMC

Civil Action No. 18-cv-00821-EJD-NMC

DECLARATION OF PROFESSOR EMINA SOLJANIN

## I, Professor Emina Soljanin, declare as follows:



Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 2 of 49

Trademark Office Trial and Appeal Board, IPR2017-01068). The patent at issue in both proceedings is U.S. Patent No. 5,859,601 ("the '601 Patent").
2. I understand that ownership of the ' 601 Patent is claimed by the Regents of the University of Minnesota ("the University"). I understand that the University sued LSI in the U.S. District Court for the District of Minnesota on August 25, 2016, and that the '601 Patent expired on October 15, 2016. I understand that the District of Minnesota subsequently transferred this case to the U.S. District Court for the Northern District of California, San Jose Division.
3. In this Declaration, I offer my opinions regarding, among other things, certain terms in claims 13,14 , and 17 ("the Asserted Claims") of the '601 Patent. It is my opinion that the Asserted Claims are indefinite under 35 U.S.C. § 112(b) because the claims, read in light of the patent's specification and its prosecution history, fail to inform, with reasonable certainty, a person having ordinary skill in the art at the time of the invention the scope of the alleged inventions. The reasons for this opinion are set forth more fully below.
4. I also disclose below my understanding of certain legal principles regarding claim construction and 35 U.S.C. § 112(b) provided to me by counsel, as well as my view of the level of ordinary skill in the art at the time of the alleged inventions of the Asserted Claims.
5. I am being compensated at a rate of $\$ 420$ per hour for my consulting services, including the preparation of this Declaration. I have no stake in the outcome of this civil action or the related IPR proceedings concerning the '601 Patent.

## B. Expert Qualifications.

6. I am currently a professor of electrical and computer engineering at Rutgers University. My research interests are broad, but mainly concern theoretical understanding and practical solutions that enable efficient, reliable, and secure operation of communications networks. I also have expertise and interest in power systems and quantum computation.
7. My research has been funded by the National Science Foundation, the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), DARPA, and other DECLARATION OF PROF. EMINA SOLJANIN -2 CASE NO. 18-CV-00821-EJD-NMC

## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 3 of 49

funding agencies
8. All of my degrees are in electrical engineering. I earned a European Diploma degree from the University of Sarajevo, Bosnia, in 1986, and M.S. and Ph.D. degrees from Texas A \& M University in 1989 and 1994, respectively.
9. Between my studies at the University of Sarajevo and my graduate studies, from 1986 to 1989, I worked in industry developing optimization algorithms and software for power system control.
10. Upon earning my Ph.D., I joined Bell Laboratories in Murray Hill, NJ, where I was a Member of the Technical Staff in the Mathematics of Networks and Communications research department. Over a dozen alumni of Bell Labs have won the Nobel prize in physics, with several more having been awarded the Turing Award, the highest distinction in computer science. In 2004 I was elevated to Distinguished Member of the Technical Staff.
11. During my time at Bell Labs, I was also an adjunct professor, guest lecturer, or visiting professor at various academic institutions around the world including, Columbia University, ENSE in Cergy-Pontoise, France, the University College Dublin, and others. I also mentored many students, interns, and postdoctoral researchers during that time.
12. In the course of my twenty year employment with Bell Labs, I participated in a wide range of research and business projects. These projects include designing the first distance enhancing codes to be implemented in commercial magnetic storage devices. Other projects that I worked on at Bell Labs included the first forward error correction for Lucent's optical transmission devices, color space quantization and color image processing, quantum computation, link error prediction methods for the third generation wireless network standards, and anomaly and intrusion detection. Some of my most recent activities are in the area of network and application layer coding.
13. According to the University's allegations in the First Amended Complaint in this case, the alleged invention of the ' 601 Patent is a "maximum transition run" ("MTR") code featuring a " j constraint" which "imposes a limit on the maximum number of consecutive transitions" in a binary system. I was conducting research in this area before the

```
DECLARATION OF PROF. EMINA SOLJANIN
-3-
CASE NO. 18-CV-00821-EJD-NMC
```


## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 4 of 49

application that matured into the ' 601 Patent was filed.
14. The named inventors of the ' 601 Patent, Professor Jaekyun Moon and his thengraduate student Dr. Barrett Brickner, published a paper in 1996 entitled "Maximum Transition Run Codes for Data Storage Systems," which paper is attached to the First Amended Complaint as Exhibit 3, and referred to therein by the University as "the Moon 1996 IEEE Paper." (See First Amended Complaint, Dkt. No. 40, at |q 49-52; attached hereto as Appendix A.)
15. The University alleges that this Moon 1996 IEEE Paper is "substantially similar to the '601 Patent." (See id.) This is noteworthy because Dr. Moon and Dr. Brickner confirmed in their 1996 IEEE Paper that I, in my "independent study," had disclosed that "removing long runs of consecutive transitions" can improve the performance of data storage systems. (See Moon 1996 IEEE Paper, Appendix A, right column of first page, citing reference [6].) Reference [6], cited by Dr. Moon and Dr. Brickner in their 1996 IEEE paper, relates to my conference presentation in October 1995. (See Appendix A, Reference [6] listed as "E. Soljanin, 'On-track and off-track distance properties of class 4 partial response channels,' SPIE Conference, Philadelphia, PA, Oct. 1995.").
16. Additionally, my work was published in a 1995 paper entitled "On-track and off-track distance properties of class 4 partial response channels," which paper is attached as Appendix B. This paper discloses that digital storage systems can be improved "by limiting the length of subsequences of alternating symbols to four," and that in the NRZI recording format, "this can be achieved by a code that limits the runs of consecutive ones to three" and discloses a "simple and inexpensive implementation" for such a code. (See Appendix A, at Section 4.2.) The first-named inventor on the ' 601 Patent, Prof. Moon, attended my presentation given at the above-referenced conference, as described in LSI's counterclaim for inequitable conduct. (Dkt. No. 62 at p. 23 et seq., $9 \mathbb{1}$ 18-49.)
17. Further, one of my own patents, U.S. Patent No. $5,608,397$, is cited on the face of the ' 601 Patent. During prosecution, the examiner found that my U.S. Patent No. $5,608,397$ (among others) "is considered pertinent to applicant's disclosure." (See File

Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 5 of 49

History, Office Action dated Sept. 16, 1997.)
18. In addition to U.S. Patent No. $5,608,397$, cited by the patent examiner and listed on the face of the ' 601 Patent, I am the inventor of additional patents and pending patent applications. I have authored numerous peer-reviewed journal and conference publications, as well as books and book chapters. Among other professional recognitions, I was elected an IEEE Fellow for my "contributions to coding theory and coding schemes for transmission and storage systems." My curriculum vitae includes additional details about my experience and professional background. It is attached as Appendix C.

## II. MATERIALS REVIEWED

19. My opinions are based on years of education, research and experience, as well as investigation and study of relevant materials. In forming my opinions, $I$ have considered the materials identified in this declaration, including the '601 Patent's claims (both the Asserted Claims and the non-asserted claims), its specification (including the figures and all of the written disclosure), and the prosecution history of the application that matured into the '601 Patent. I have also reviewed the documents discussed in Section I.B above. ${ }^{1}$

## III. THE HYPOTHETICAL PERSON OF ORDINARY SKILL IN THE ART

20. I have been informed that patent claims are to be interpreted the way a hypothetical person having ordinary skill in the art would have interpreted the claims at the time of the invention. For shorthand, I may refer to such a person herein as a "POSITA."
21. The application resulting in the ' 601 Patent was filed on October 15, 1996. The face of the patent claims priority to "Provisional application No. 60/014,954" filed April 5, 1996. Merely for argument's sake, therefore, I will assume that the Asserted Claims are entitled to a priority date of April 5, 1996. As mentioned above, I was conducting research
[^15]
## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 6 of 49

and publishing my work in the relevant technological field prior to April 5, 1996.
22. In determining the characteristics of a person of ordinary skill in the art at the time of the claimed invention, I considered several things, including the factors discussed below, as well as (1) the levels of education and experience of the inventor and other persons actively working in the relevant field; (2) the types of problems encountered in the field; (3) prior art solutions to these problems; (4) the rapidity in which innovations are made; and (5) the sophistication of the relevant technology. I also placed myself back in the relevant time period and considered the individuals that I had worked with in the field.
23. It is my opinion that a person having ordinary skill in the relevant art at the time of the invention would have been someone with at least an undergraduate degree in electrical engineering or similar field, and three years of industry experience in the field of read channel technology.
24. I am prepared to testify as an expert in this field and also as someone who had at least the knowledge of a POSITA, and someone who worked with other POSITAs at the time of the alleged invention.
25. Unless otherwise stated, my statements below refer to the knowledge, beliefs, and abilities of a POSITA at the time of the claimed invention of the ' 601 patent.

## IV. CLAIM CONSTRUCTION STANDARD

26. I understand that the Asserted Claims are construed as understood by a POSITA. Counsel informs me that sometimes the meaning of claim terms are readily apparent even to lay judges, and that, in such scenarios, claim construction involves little more than the application of widely accepted meaning of commonly understood words.
27. Otherwise, especially in highly-technical patents, courts look to the "intrinsic evidence" (i.e., the words of the claims themselves, the specification and figures, and the prosecution history), and in some circumstances resort to consideration of extrinsic evidence concerming relevant scientific principles, the meaning of technical terms, and the state of the art to interpret a patent.
28. Regarding the intrinsic evidence, I understand that the claims themselves

## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 7 of 49

provide substantial guidance as to the meaning of particular claim terms. For example, the context in which a term is used in the asserted claim can be highly instructive. Other claims of the patent in question, both asserted and un-asserted, can also be valuable sources of enlightenment as to the meaning of a claim term.
29. The claims do not stand alone, as they must be read in view of the specification, of which they are a part. I understand that the specification is always highly relevant to the claim construction analysis and is usually the single best guide to the meaning of a disputed term. I understand that the importance of the specification in claim construction derives from its statutory role, as the close kinship between the written description and the claims is enforced by the statutory requirement that the specification describe the claimed invention in "full, clear, concise, and exact terms." 35 U.S.C. § 112(a).
30. I understand further that the specification may reveal a "special definition" given to a claim term by the patentee that differs from the meaning it would otherwise possess. In such cases, the inventor's "lexicography" governs. In other cases, the specification may reveal an "intentional disclaimer, or disavowal, of claim scope by the inventor." In that instance as well, the inventor's intention governs.
31. In addition to consulting the claims and the specification, I understand that a court should also consider the patent's prosecution history. The prosecution history is a part of the intrinsic evidence and consists of the complete record of the proceedings before the Patent Office and includes the prior art cited during the examination of the patent. Like the specification, the prosecution provides evidence of how the Patent Office and the inventor understood the patent. Furthermore, like the specification, the prosecution history was created by the patentee in attempting to explain and obtain the patent. Yet because the prosecution history represents an ongoing negotiation between the Patent Office and the applicant, rather than the final product of that negotiation, it often lacks the clarity of the specification and thus is less useful for claim construction purposes.
32. I further understand that while extrinsic evidence (e.g., expert testimony, dictionaries, learned treatises) can shed useful light on the relevant art, it is less significant

Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 8 of 49
than the intrinsic record in determining the legally operative meaning of claim language. I understand further that the United States Court of Appeals for the Federal Circuit has viewed extrinsic evidence in general as less reliable than the patent and its prosecution history in determining how to read claims.

## V. INDEFINITENESS STANDARD

33. A provision in the Patent Act states that " $[t]$ ]he specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the inventor or joint inventor regards as the invention." 35 U.S.C. $\mathbb{1} 112$ (b). I understand that a claim that does not comply with this provision is said to be "indefinite," and is invalid for that reason.
34. I understand that until recently, the legal standard for definiteness was determining whether a claim is "amenable to construction," and the claim, as construed, is not "insolubly ambiguous." If a claim could be construed and was not "insolubly ambiguous," then it was definite under 35 U.S.C. T112(b).
35. I understand that the United States Supreme Court relaxed this test in 2014. Counsel informs me that the Court, in a case called Nautilus, Inc. v. Biosig Instruments, Inc., ("Nautilus") stated as follows:
"We conclude that the Federal Circuit's formulation, which tolerates some ambiguous claims but not others, does not satisfy the statute's definiteness requirement. In place of the 'insolubly ambiguous' standard, we hold that a patent is invalid for indefiniteness if its claims, read in light of the specification delineating the patent, and the prosecution history, fail to inform, with reasonable certainty, those skilled in the art about the scope of the invention."

## VI. THE ASSERTED CLAIMS

36. The text of the Asserted Claims is listed below:

## Claim 13

## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 9 of 49

[Preamble:] A method for encoding m-bit binary datawords into n-bit binary codewords in a recorded waveform, where $m$ and $n$ are preselected positive integers such that n is greater than m , comprising the steps of:
[Step 1:] receiving binary datawords; and
[Step 2:] producing sequences of $n$-bit codewords;
[Step 3:] imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform;
[Step 4:] generating no more than $j$ consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$; and
[Step 5:] generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform.

## Claim 14

The method as in claim 13 wherein the consecutive transition limited is defined by the equation $2 \leq \mathrm{j}<10$.

## Claim 17

The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than one of $j$ consecutive transitions from 0 to 1 and from 1 to 0 and no more than $k+1$ consecutive 0 's and $k+1$ consecutive 1 's when used in conjunction with the NRZ recording format.

## VII. THE ASSERTED CLAIMS ARE INDEFINITE

37. It is my opinion that the claim terms below are indefinite: (1) "the encoded waveform" (claim 13); (2) "generating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$ " (claim 13); (3) "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform" (claim 13); (4) "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 " (claim 17); and (5) "wherein the binary sequences produced by combining codewords have ... no more than one of $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1's' (claim 17).
38. My opinions are explained further below.

## 1. "The Encoded Waveform" (Claim 13)

39. Step 3 of claim 13 recites "imposing a pair of constraints ( $j ; k$ ) on the encoded waveform." The phrase "encoded waveform" renders claim 13 indefinite (as well as all
claims depending from it) because the claim, read in light of the specification of the ' 601 Patent and the prosecution history, fails to inform, with reasonable certainty, those skilled in the art about the scope of the purported invention.
40. First, there is no antecedent basis for the phrase "the encoded waveform" in the claim. The phrase begins with the word "the," which, according to counsel, is understood to be used in patent claims (and as I understand in normal English usage) to refer back to an element that was recited earlier in the same claim or in an independent claim from which the claim at issue depends. However, there is no earlier reference to "encoded waveform" in claim 13. The term is indefinite for at least this reason.
41. I am informed that the University's expert, Prof. McLaughlin, agrees that the word "the" signals that the following phrase "encoded waveform" must have an antecedent basis in the claim. (See McLaughlin Declaration at $\mathbb{\|} 46$.) Professor McLaughlin confirms that no such antecedent basis exists in the claim, stating that " $[t]$ he only waveform previously referred to in the claim is the 'recorded waveform' referred to in the claim preamble, which recorded waveform has encoded data as described above." (Id. at $\ddagger 46$ ) (emphasis added). Unable to find antecedent basis for "the encoded waveform," Professor McLaughlin simply concludes that "the encoded waveform" is exactly the same as the "recorded" waveform. I do not agree; the claim uses different words to mean different things. If "the encoded waveform" was the same as the "recorded waveform," then the claim would use the phrase "the recorded waveform" in step 3. Instead, it uses a different phrase-"the encoded waveform."
42. Second, the structure of claim 13 supports the conclusion that "the encoded waveform" (recited in step 3) is not the same thing as the "recorded waveform" (recited in the preamble and in "generating" steps 4 and 5.) In particular, each of the five method steps recited in claim 13 begin with a verb ending in "ing": receiving, producing, imposing, generating, and generating, and logically they proceed in sequential order. A "recorded waveform" does not exist until steps 4 and 5 are completed. In a digital storage device, the "generating" steps would happen on the recording medium, not in the "encoder." In contrast,

## Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 11 of 49

the "imposing" step, i.e., step 3 of claim 13, would happen in an encoder, which is typically a discrete electrical component separate from the recording medium, such as a system on a chip. The j and k constraints are "imposed" by the encoder on the sequence of n -bit codewords, which are not "the recorded waveform."
43. Third, consideration of claims other than claim 13 bolster my opinion. For example, see claim 18, which depends from claim 14, which in turn depends from claim 13. Claim 18 states that "the encoder" (as opposed to a recording medium or a component that can record on a medium) is the thing that "produces a codeword in response to each dataword sequentially," and the encoder imposes the j and k constraints by selecting the n -bit codewords according to certain specified steps. This is consistent with my conclusion about the distinction between the "recorded waveform" and "the encoded waveform" in claim 13.
44. Fourth, because the term "encoded waveform" does not appear earlier in claim 1 , or in any other claim of the ' 601 Patent, one naturally would look to the specification for guidance. But the phrase does not appear in the specification. In addition, the phrase "encoded waveform" has no standard or industry-specific definition. In fact, the phrase "encoded waveform" was inserted during prosecution via a claim amendment and was introduced into amended claim 1 (which is not asserted here) and amended claim 13. However, neither the inventors nor the patent examiner provided a definition of this new phrase, even though the inventors stated that Claims 1 and 13 had been amended "to better define the invention." (See Response to Office Action at 3.) The patent examiner did not explain the meaning of "the encoded waveform" in the Notice of Allowability or elsewhere. (See File History (Dkt. No. 165-2).) This prosecution history underscores the fact that this term - "the encoded waveform" -- not only lacks an antecedent basis in claim 13, but lacks a foundation in the patent itself.
45. Fifth, it is not clear what is meant by a "waveform" in Step 3 of claim 13. In particular, Step 3 is listed prior to Steps 4 and 5. A waveform (in particular, a "recorded waveform") is said to be "generated" in Steps 4 and 5. The phrase "the encoded waveform" is used in Step 3, which is where the pair of constraints are "impos[ed]." According to the
specification, the step of "imposing" occurs in the production of binary codewords. See, e.g., '601 Patent at Fig. 6 and 5:12-47 (providing "equations for the encoder"). Binary codewords are not a "waveform." (See, e.g., Response to Office Action, Appendix A ("[C]ode bits are indicated above the appropriate waveform")); see also Claims $16,17,18$ (showing that the j and k constraints are "imposed" at the binary level, i.e., on sequences of 1 's and 0 's, and not on the recorded waveform). This lack of clarity further would leave a POSITA uncertain as to the meaning of the phrase "encoded waveform" in claim 13 of the ' 601 Patent.
46. For each of these reasons, taken alone or viewed together, claim 13 is indefinite under Section 112.

## 2. "Generating No More Than j Consecutive Transitions of Said Sequence in the Recorded Waveform Such That $\mathbf{j} \geq 2$." (Claim 13)

47. Step 4 of claim 13 recites "generating no more than $j$ consecutive transitions of said sequence in the recorded waveform such that $j \geq 2$." This phrase renders claim 13 indefinite (as well as all claims depending from it) because the claim, read in light of the specification of the '601 Patent and the prosecution history, fails to inform, with reasonable certainty, those skilled in the art about the scope of the purported invention.
48. First, take the case of $\mathrm{j}=2$. If only 1 (one) consecutive transition is generated, does this satisfy the limitation of Step 4? The claim disallows "more than" 2 consecutive transitions. Because 1 is less than 2,1 consecutive transition meets the claim language "no more than j consecutive transitions." Yet the claim states that $\mathrm{j} \geq 2$, which suggests that 1 consecutive transition would not satisfy the claim. In prosecution, its response to the patent examiner's rejection of the claims in view of prior art, the applicant attempted to explain what was being claimed and how it was different than the prior art (see File History), but note that claim 13 is written in terms of what is disallowed (i.e., "no more than") instead of what is allowed. Compare independent method claim 13 ("generating no more than j consecutive transitions") with independent apparatus claim 1 ("wherein the j constraint is defined as the maximum number of consecutive transitions allowed on consecutive clock periods") (emphasis added). The "definition" in claim 1 is not recited in claim 13, even though claims 1
and 13 were amended at the same time, in response to the same Office Action. Moreover, the specification teaches that "the minimum distance pairs shown in FIG. 1 must be eliminated" and that "[i]n accordance with the present invention, this can be accomplished using the existing RLL $(1, k)$ code, which does not allow consecutive transitions." ' 601 Patent at 4:8-12 (emphasis added). This adds up to lack of reasonable certainty as to the meaning of this claim limitation.
49. Second, Step 4 recites the phrase "transitions of said sequence." The "said sequence" appears to refer to n-bit codewords, but it does not make sense to speak of a transitions "of codewords." It does however make sense to think of transitions in terms of transitions between binary bits -1 to 0 or 0 to 1 . (See e.g., claims 16 and 17.) This language is unclear. Moreover, a waveform does not have binary bits, making the claim ambiguous on multiple levels.
50. Third, Step 2 recites "sequences" (plural) while Step 4 recites "said sequence" (singular) and Step 5 recites "said sequences" (plural). There is no antecedent basis for the phrase "said sequence."
51. For each of these additional reasons, taken alone or viewed together, claim 13 is indefinite under Section 112.
52. "Generating No More Than $k$ Consecutive Sample Periods of Said Sequences Without a Transition in the Recorded Waveform." (Claim 13)
53. Step 5 of claim 13 recites "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform." This phrase renders claim 13 indefinite (as well as all claims depending from it) because the claim, read in light of the specification of the ' 601 Patent and the prosecution history, fail to inform, with reasonable certainty, those skilled in the art about the scope of the purported invention.
54. What is meant by the phrase "k consecutive sample periods" of "said sequences"? The phrase "said sequences" may refer to n-bit codewords because it does not make sense to speak of a transitions of sequences. Transitions refers to transitions between

Case 5:18-cv-00821-EJD Document 204-4 Filed 04/13/18 Page 14 of 49
binary bits -1 to 0 or 0 to 1 . Moreover, a waveform does not have binary bits, making the claim ambiguous on multiple levels.
54. Also, what "sample periods" are being referred to? Sampling is done, for example, when recorded data is read, not when data is being written. The " 601 patent at 2:10-37 discloses sampling the context of "sequence detectors" for "data recovery devices," i.e., reading previously-recorded data from a storage medium. But claim 13 addresses only a "writing" function, and is not directing to "reading" or recovery of stored data.
55. Further, as noted above, Step 2 recites "sequences" (plural) while Step 4 recites "said sequence" (singular) and Step 5 recites "said sequences" (plural). This adds to the ambiguity of the claim.
56. For each of these additional reasons, taken alone or viewed together, claim 13 is indefinite under Section 112.

## 4. "Wherein the Binary Sequences Produced by Combining

 Codewords Have No More Than One of $\mathbf{j}$ Consecutive Transitions from 0 to 1 and from 1 to 0." (Claim 17)57. Claim 17 depends from claim 14, which depends from claim 13. Claim 17 recites "wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to $0 . "$ This phrase renders claim 17 indefinite because the claim read in light of the specification of the ' 601 Patent and the prosecution history, fails to inform, with reasonable certainty, those skilled in the art about the scope of the purported invention.
58. The meaning of " j consecutive transitions" in this claim is unclear. Consider the simple bit string 01. There is one (1) transition "from 0 to 1 " but zero (0) transitions "from 1 to $0 . "$ So what is the value of $j$ in this simple example? The claim does not specify that one would take the maximum of the two choices, or the sum of both choices, but it instead says that j is evaluated as "no more than one of" two options that are not necessarily the same.

Which one? Claim 17 is indefinite under Section 112 for at least these additional reasons.
5. "Wherein the Binary Sequences Produced by Combining Codewords Have ... No More Than One of $\mathbf{k}+1$ Consecutive 0 's and $k+1$ Consecutive 1's." (Claim 17)
59. Claim 17 is indefinite because the phrase "no more than one of $k+1$ consecutive 0 ' s and $\mathrm{k}+1$ consecutive 1 ' s ' is indefinite. Consider the simple bit string 00111. There are two (2) consecutive 0 's and three (3) consecutive 1 's. How does one evaluate the claimed " $k+1$ " parameter? The claim does not specify that one would take the maximum of the two choices, but it instead says that $k+1$ is evaluated as "no more than one of" two options. Claim 17 is indefinite under Section 112 for at least these additional reasons.
VIII. CONCLUSION
60. I declare under 28 U.S.C. $\S 1746$ and under penalty of perjury that the foregoing is true and correct.

Dated: April / 3, 2018
By timbre
Emina Soljanin, Ph.D.

## ApPENDIX A

# Maximum Transition Run Codes for Data Storage Systems 

Jaekyun Moon and Barrett Brickner<br>Center for Micromagnetics and Information Technologies<br>Department of Electrical Engineering, University of Minnesota<br>Minneapolis, Minnesota 55455


#### Abstract

A new code is presented which improves the minimum distance properties of sequence detectors operating at high linear densities. This code, which is called the maximum transition run code, eliminates data patterns producing three or more consecutive transitions while imposing the usual $k$-constraint necessary for timing recovery. The code possesses the similar distance-gaining property of the ( $1, k$ ) code, but can be implemented with considerably higher rates. Bit error rate simulations on fixed delay tree search with decision feedback and high order partial response maximum likelihood detectors confirm large coding gains over the conventional ( $0, k$ ) code.


## I. INTRODUCTION

IN this paper, we present a new code designed to improve the distance properties of sequence detectors operating at relatively high linear densities. The basic idea is to eliminate certan input bit patterns that would cause most errors in sequence detectors. More specifically, the code eliminates input patterns that contain three or more consecutive transitions in the corresponding current waveform, and, as a result, the performance of any nearoptimal sequence detector improves substantially at high linear densities [1][2]. This code constraint, designated the maximum transition-run (MTR) constraint, can be realized with simple fixed-length block codes with rates only slightly lower than the conventional ( $0, k$ ) code. Bit error rate ( BER ) simulation results with fixed delay tree search with decision feedback (FDTS/DF) detection and high order partial response maximum likelihood (PRML) detection confirm a large coding gain of the MTR codes over the conventional $(0, k)$ code.

## II. CODING METHODS

Investigation of high density error patterns in FDTS/DF detection reveals that errors anse mostly due to the detector's inability to distinguish the minimum distance transition patterns, four pairs of which are shown in Fig. 1. These pairs of magnetization waveforms give rise to an NRZ input error pattern of $e_{k}= \pm\{2-22\}$, assuming input data take on +1 's and -1 's. The proposed approach is to remove data patterns allowing this type of crror pattern through coding. The potential improvement in the FDTS detection performance using this approach can be estimated by computing the increase in the minimum distance between two diverging lookahead tree paths after removing the paths that allow the $\pm\left\{\begin{array}{lll}2 & -2 & 2\end{array}\right\}$ error events [3]. A simple minimum distance analysis for PRML systems reveals that this is also a critical error pattern in high order PRML systems such as

Manuscript received March 4, 1996. This work was supported in part by Seagate Technology and the National Storage Industry Consortium (NSIC).
$E^{2}$ PR4ML. Note that a traditional ( $1, k$ ) runlength limited (RLL) code eliminates all eight transition patterns shown in Fig. 1 [4][5], but the rate penalty is typically too large to see any coding gain unless the linear density is very high. The idea of MTR coding is to eliminate three or more consecutive transitions, but allow the dibit pattern in the written magnetization waveform. Thus, with MTR coding, the error events of the form $\pm\left\{\begin{array}{ll}2 & -2\end{array} 2\right\}$ will still be prevented as with ( $1, k$ ) coding, but the rate penalty is significantly smaller than that of the typical $(1, k)$ RLL code. Notice that witb the MTR constraint, the write precompensation efforts can be directed mannly on dibit transitions, unlike in conventional ( $0, k$ ) coded systems. An independent study also suggests that removing long runs of consecutive transitions improves the offtrack performance in some PRML systems [6]. There exist other types of code constraints that can offer similar distance-enhancing properties for high order PRML systems [7].


F1g. 1: Pairs of write patterns causing most errors in sequence detection at high linear densities.

Fig. 2 shows the state diagram of the MTR code based on the NRZI convention, where 1 and 0 represent the presence and absence, respectively, of a magnetic transition. Also included is the usual $k$-constraint for timing recovery. The capacity of the code can be obtained by finding the largest eigenvalue of the adjacency matrix for the given state diagram [8]. The capacities for different $k$ values are given in Table 1 .


Fig. 2: State transition diagram for the MTR code with $k=6$.

k	capacity	k	capacity
4	.8376	8	.8760
5	.8579	9	.8774
6	.8680	10	.8782
7	.8732	$\infty$	.8791

Table 1: Capacities for MTR codes.
While state-dependent encoders and sliding-block decoders can be designed for the MTR constraint (which can be easily generalized to limit any runs of consecutive transitions), we observe that simpie fixed-length block codes can be realized with
good rates and reasonable $k$ values. A computer search is utilized to first find all $n$-bit codewords that are free of an NRZI 111 string or $k+1$ consecutive NRZI 0 's. Then, in order to meet the MTR constraint at the codeword boundaries, words that start or end with an NRZI 11 string are removed. Also, the $k$ constraint is satisfied at the boundary by removing the words with $k_{1}+1$ leading 0 's or $k_{2}+1$ trailing 0 's, where $k_{1}+k_{2}=k$. Finally, if the number of the remaining codewords is greater than or equal to $2^{m}$, then those codewords can be used to implement a rate $m / n$ block code. Table 2 shows important code parameters for representative block codes obtained through computer search. The efficiency was found by dividing the code rate $\mathrm{m} / \mathrm{n}$ by the capacity computed for the given value of $k$ and the MTR constraint. As an example of an MTR block code, 16 codewords required to implement the rate $4 / 5$ code with $k=8$ are given in Table 3.

$m$	$n$	$k$	eff.	No. avail.   codewords	No. needed   codewords
4	5	8	.91	16	16
8	10	6	.92	282	256
9	11	6	.94	514	512
10	12	8	.95	1,066	1,024
14	17	6	.95	18,996	16,384
16	19	7	.96	69,534	65,536
24	28	8	.98	$17,650,478$	$16,777,216$

Table 2: Parameters for MTR block codes.

00001	00110	01100	10010
00010	01000	01101	10100
00100	01001	10000	10101
00101	01010	10001	10110

Table 3: A rate 4/5 MTR block code with $k=8$.

## III. MODIFIED DETECTION AND DISTANCE INCREASE

To realize the coding gain at the detector output, the detector has to be modified. In the case of PRML systems, this amounts to removing those states and state transitions that correspond to the illegal data patterns from the trellis diagram. For the FDTS/DF detector, the code-violating lookahead paths must be prevented from being chosen as the most-likely path, a technique similar to the one used in the $(1,7)$ coded FDTS/DF channel [9]. To illustrate the idea, consider Fig. 3 that shows a $\tau=2$ lookahead tree utilized in FDTS/DF detection. By utilizing the past decision, an illegal path, which contains three consecutive transitions, can be identified as indicated by either the solid (when the past decision is -1 ) path or the shaded (when the past decision is 1) path. The complexity of the FDTS/DF detector can also be reduced considerably with the MTR code, as claborated in a companion paper [10].


Fig. 3: Modificd FDTS detection with MTR coding

With this modification in FDTS/DF detection, the squared minimum Euclidean distance between any two diverging paths, denoted by $\beta_{\operatorname{man}}^{2}$, is given by $4 \cdot\left(1+f_{1}{ }^{2}+f_{2}{ }^{2}+\cdots+f_{t}{ }^{2}\right)$ for $\tau$ greater than or equal to 2 , where $f_{k}$ represents the equalized dibit response (at the output of the forward equalizer). For example, the effective SNR gain of the $\tau=2$ FDTS/DF over the decision feedback equalization (DFE) channel, assuming the same MTR code, is given by $10 \cdot \log _{10}\left(1+f_{1}{ }^{2}+f_{2}{ }^{2}\right) \mathrm{dB}$.
The distance gam with MTR coding is also significant for high order PRML systems such as $\mathrm{E}^{2}$ PR4. When the critical NRZ error pattern is $\pm\{2-22\}$, the minimum distance for the $E^{2}$ PR4 response $\{120-2-1\}$ is $6 \sqrt{2}$. With MTR coding, the worst case error pattern becomes a single bit crror pattern of $\pm\{2\}$, and the corresponding channel output distance is simply the square root of the energy in the equalized dibit response, or $10 \sqrt{2}$. This increase in the minimum distance is equivalent to an SNR gain of 2.218 dB . When the code rate penalty is small, the overall coding gain is significant.

## IV. BER SIMULATION RESULTS

To verify the coding gain, FDTS/DF detection was simulated with the rate $4 / 5$ and rate $16 / 19$ MTR codes as well as with a rate $8 / 9(0, k)$ code. The BERs were first obtained as a function of readback SNR for different tree depths. The BER of the PR4ML detector was also simulated for comparison. The Lorentzian transition response was assumed, and the user density, defined as PW50 over the user bit interval, is fixed at 2.5 for all codes. The SNR value required to achieve an error rate of $10^{-5}$ was then recorded for each depth/code combination.

The results are summarized in Fig. 4, where the effective SNR improvement of each system over PR4ML is shown, Thc performance advantage of MTR codes is clear. With the rate 16/19 MTR code, for example, the depth 1 FDTS/DF performs as well as the depth 5 FDTS/DF used with the conventional ( $0, k$ ) code, yielding a 2.5 dB gain over the PR4ML. When the $4 / 5 \mathrm{MTR}$ code is used, FDTS/DF with a tree depth of 2 outperforms the depth 5 FDTS/DF with the $8 / 9(0, k)$ code. For a given tree depth, the ratc $16 / 19 \mathrm{MTR}$ code yields a $1.5-2 \mathrm{~dB}$ coding gain over the conventional $8 / 9$ ( $0, k$ ) code.

Also shown are the SNR performances of PRML systems with and without MTR coding. The coding gain is obvious with $E^{2}$ PRML and $E^{3}$ PRML, in which the minimum distance is improved with the MTR code. However, with EPR4ML the performance advantage of the MTR code is small since the MTR code does not improve the minimum distance in the EPR4 system. This is because the minimum distance error pattern in an EPR4 system is of the form $\pm\{2\}$, which is not affected by the MTR constraint. The MTR code does, however, eliminate nonminimum distance error pattems of the form $\pm\{\ldots 2-22 \ldots\}$, resulting in a small performance improvement over the ( $0, k$ ) coded EPR4 system when the code rate is sufficiently high as with the $16 / 19$ code.
Comparisons also can be made between the PRML systems and FDTS/DF systems. For example, the depth 2 FDTS/DF with the rate $4 / 5$ MTR code improves more than 1 dB over EPR 4 ML with the rate $8 / 9(0, k)$ code. At this density and with a Lorentzian transition response, EPR 4 ML has a 1.5 dB advantage over PR4ML. Of the PR targets, the EPR4 appears to provide a best fit

## 

3994
to the natural channel as indicated by the superior performance of EPR4ML over cven higher order PRML systems. Large enough FIR filters are used for equalization for both PRML and FDTS/DF systems so that the performances are not degraded by imperfect equalization.
In Fig. 5, similar plots are presented for a modeled MR head response. The trends are simular to the Lorentzian case, except that within the PRML family the performance improves as the order of the PR polynomial increases. Also, the MTR coding gain is larger than in the case of the Lorcntzian response for all detectors. The depth 2 FDTS/DF channel with the rate $4 / 5 \mathrm{MTR}$ code provides a 2.5 dB SNR gain over the EPR4ML channel with the rate $8 / 9(0, k)$ code. With the particular MR head response used here, EPR4ML already has a 4 dB advantage over PR4ML at this inear density.

Since the MTR code eliminates data patterns with crowded transitions, the overall transtion noise, as measured per unit length of track, is expected to be reduced. Fig. 6 shows the simulation results similar to those presented in Fig. 5, except random transition position jitter and transition width variations are included in the read waveform construction process [11]. The rms values of both transition noise parameters are set at $4.4 \%$ of the user bit interval. The SNR reflects only the additive noise component. As is evident from the figure, the coding gain of the MTR code over the ( $0, k$ ) code is much larger in the presence of transition noise. For example, with $\tau=2$ FDTS/DF detection, the SNR difference is $6 d B$ between the rate $4 / 5 \mathrm{MTR}$ code and the rate $8 / 9(0, k)$ code which allows long runs of consecutive transitions.
Although the results are not shown here, we have also observed that the MTR code tends to reduce the relative frequencies of long error events in DFE and FDTS/DF systems.


Fig. 4: Summary of PRML and FDTS/DF performances with and without MTR codes (Lorentzian response and additive noise).


Fig. 5: Summary of PRML and FDTS/DF performances with and without MTR codes (MR head response and additive noise).


Fig. 6: Summary of FDTS/DF performances wsth and without MTR codes (MR head response and mixed noise).

## V. CONCLUSION

A simple coding scheme is presented which mproves the performance of FDTS/DF and high order PRML systems operating at relatively high linear densities. The code eliminates three or more consecutive transitions while allowing the $k$-constraint for timing purposes. The code can be implemented as simple block codes with reasonable rates such as $4 / 5,8 / 10$ and $16 / 19$. BER simulations on FDTS/DF and PRML systems confirm large coding gains over the conventional ( $0, k$ ) code.

## REFERENCES

[1] B. Brickner and J. Moon, "Coding for increased distance with a d $=0$ FDTS/DF detector," Seagate Internal Report, May 1995; Also see, J. Moon and B. Brickner, "Coded FDTS/DF," presented at the Annual Mecting of the National Storage Industry Consortium, Montercy, CA, June 1995.
[2] J. Moon and B. Brickner, "MTR codes for Data Storage Systems," Invention Disclosure No. 96025, University of Minnesota, September 1995.
[3] B. Brickner and J. Moon, "A signal space representation of FDTS for use with a $\mathrm{d}=0$ codc," Globecom'95, Singapore, November 1995.
[4] K. A. S. Immink, "Coding techniques for the noisy magnetic recording channel," IEEE Trans. Commun., vol. 37, no. 6, May 1989.
[5] J. Moon and J.-G. Zhu, "Nonlinearities in thin-film media and their impact on data recovery," IEEE Transactions on Magnetics, vol. 29, No. 1, Jan 1993.
[6] E. Soljanin, "On-track and off-track distance propertics of class4 partial response channels," SPIE Conference, Philadelphia, PA, Oct. 1995.
[7] R. Karabed and P. H. Siegel, "Coding for high order partial response channels," SPIE Conference, Philadelphia, PA, Oct. 1995.
[8] P. H. Siegel, "Recording codes for digital magnetic storage," IEEE Transacrions on Magnetics, vol. MAG-21, no. 5, pp. 1344-1349. Sept. 1985.
[9] J. Moon and L. R. Carley, "Performance Comparison of Detcction Methodis in Magnctic Recording," IEEE Transactions on Magnetics, vol. 26, no. 6, Nov. 1990.
[10] B. Bnckner and J. Moon, "A high dimensional signal space implementation of FDTS/DF," presented at Intermag "96, Seattle, Washington, April 1996.
[11] J. Moon, "Discrete-time modeling of transition-nossedominant channels and study of detection performance," IEEE Transactions on Magnetics, vol. 27, no. 6, Nov. 1991.

## Appendix B

# On-track and off-track distance properties of Class 4 partial response channels 

Emina Soljanin<br>AT\&T Bell Laboratories, Room 2C-169<br>600 Mountain Avenue, Murray Hill, NJ 07974


#### Abstract

We consider Class 4 partial response (PR) channels, and examine off-track performance of maximum likelihood sequence estimators for these channels that ignore inter-track interference (ITI). We assume that the pulse response to the head from an adjacent track is the same Class 4 channel, and only its amplitude varies with the track-to-head distance, in a way not known to the receiver. For each of these channels, we find analytical expressions for off-track performance, as well as sets of sequences most susceptible to errors in the ITI environment. We also discuss how the problem of off-track error rate can be alleviated through coding.


Keywords: magnetic recording, class 4, partial response, off-track performance, coding.

## 1 INTRODUCTION

The transfer function of a digital magnetic recording channel for a given linear density can be closely approximated by a partial response (PR) polynomial of the form $(1-D)(1+D)^{N}$, for some integer $N \geq 1$. In general, higher linear densities require higher order polynomials. Equalization of a recording channel to the PR channel with the transfer function that best approximates the channel transfer function at a given density will incur the least equalization loss.

A significant noise source in magnetic recording channels is inter-track interference (ITI). When the read head is not centered over the data track, it is partially positioned over an adjacent track and picks up the magnetization from it. When tracks become narrow, the side fringing causes the head to pick up signals from an adjacent track, even if it is not physically over that track. An important issue that should affect the choice of $N$ is, therefore, the performance of the corresponding channel in the presence of ITI, often referred to as off-track performance.

Magnetic recording channels at current linear densities resemble channels with transfer functions of the above form for $N=1,2,3$, referred to as Class \& partial response. These channels are also known as $1-D^{2}$ or PR4, $(1-D)(1+D)^{2}$ or EPR4, and $(1-D)(1+D)^{3}$ or EEPR4. Most of the commercially available detectors employ PR equalization to the PR4 channel. Using the same detection system at higher linear densities would result in a performance loss. Thus the system should be either augmented by a coding scheme, which would recover the loss through the coding gain, or replaced by a detection system employing PR equalization to the EPR4 or EEPR4 channel. In any case the new system should have good off-track properties.

Several studies analyzed off-track performance of Class 4 channels by simulation (see for example Sayiner ${ }^{9}$ and references therein). We find analytical expressions for off-track performance of these channels, as well as sets of sequences most susceptible to errors in the ITI environment. We discuss how the problem of off-track error rate can be alleviated through coding.

In Section II we derive a bound on the error-probability performance for a general discrete-time recording channel with additive white Gaussian noise and a general model of ITI. In Section III we consider Class 4 channels under the assumption that the pulse response to the head from an adjacent track is the same Class 4 channel and only its amplitude varies with the track to head distance. In Section IV we discuss possibilities of coding for these systems. In Section $V$ we provide an extensive summary of the obtained results, for the benefit of a reader not very interested in mathematical details.

## 2 DISCRETE TIME MAGNETIC RECORDING CHANNEL

### 2.1 Channel model

We consider a discrete-time model for the magnetic recording channel with input $a=\left\{a_{n}\right\} \in \mathcal{C} \subseteq\{-1,1\}^{\infty}$, impulse response $\left\{h_{n}\right\}$, and output $\boldsymbol{y}=\left\{y_{n}\right\}$ given by

$$
\begin{equation*}
y_{n}=\sqrt{E} \sum_{m} a_{m} h_{n-m}+\eta_{n}, \tag{1}
\end{equation*}
$$

where $h_{n}$ are integer, $\eta_{n}$ are independent Gaussian random variables with zero mean and variance $\sigma^{2}$, and $E$ is a constant related to the output voltage amplitude. We refer to $E / \sigma^{2}$ as the signal-to-noise ratio (SNR) per track. In the case of ITI, when the read head picks up magnetization from an adjacent track, the channel model becomes

$$
\begin{equation*}
y_{n}=\sqrt{E} \sum_{m} a_{m} h_{n-m}+\sqrt{E} \sum_{m} x_{m} g_{n-m}+\eta_{n}, \tag{2}
\end{equation*}
$$

where $\left\{g_{n}\right\}$ is the discrete-time impulse response of the head to the adjacent track and $x=\left\{x_{n}\right\} \in \mathcal{C}$ is the sequence recorded on that track.

We analyze the performance of the receiver that ignores the ITI assuming the received signal to be as given by (1). It performs maximum likelihood sequence estimation (MLSE) for that model, i.e., it determines an $\hat{\boldsymbol{a}}$ satisfying

$$
\min _{\boldsymbol{a} \in \mathcal{C}} \Omega(\boldsymbol{a})=\Omega(\hat{\boldsymbol{a}})
$$

where $\Omega(a)$ is the well known log-likelihood function for channels with inter-symbol interference, ${ }^{4}$

$$
\begin{equation*}
\Omega(a)=\sum_{n}\left(y_{n}-\sqrt{E} \sum_{m} a_{m} h_{n-m}\right)^{2} \tag{3}
\end{equation*}
$$

### 2.2 Error-probability performance

Let $a=\left\{a_{n}\right\}$ and $b=\left\{b_{n}\right\}$ be two allowable recorded sequences which differ in a finite number of places, and $\epsilon=\left\{\epsilon_{n}=\left(a_{n}-b_{n}\right) / 2\right\}$ be the normalized error sequence corresponding to $a$ and $b$. In the case of no ITI, probability of detecting $b$ given that $a$ was recorded equals to $Q(d(\epsilon) \sqrt{\text { SNR }})$, where $d(\epsilon)$ is the distance between $a$ and $b$ given by

$$
\begin{equation*}
d^{2}(\epsilon)=\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2} \tag{4}
\end{equation*}
$$

Thus a lower bound to the minimum probability of an error event in the system is proportional to $Q$ ( $\left.d_{\min } \sqrt{\text { SNR }}\right)$, where $d_{\text {min }}=\min _{\boldsymbol{\epsilon} \neq 0} d(\boldsymbol{\epsilon})$.

In the case of ITI we examine the probability of detecting sequence $b$ given that sequence $a$ was recorded on the track being read and sequence $\boldsymbol{x}$ was recorded on an adjacent track. This probability is given by

$$
P[\Omega(\boldsymbol{b})<\Omega(\boldsymbol{a}) \mid \boldsymbol{a}, \boldsymbol{x}]=P[\Omega(\boldsymbol{b})-\Omega(\boldsymbol{a})<0 \mid \boldsymbol{a}, \boldsymbol{x}] .
$$

Expressing $\Omega(\boldsymbol{a})$ and $\Omega(\boldsymbol{b})$ as in (3), we obtain

$$
\begin{aligned}
& P[\Omega(b)-\Omega(\boldsymbol{a})<0 \mid \boldsymbol{a}, \boldsymbol{x}]= \\
& \quad P\left[\sum_{n}\left(y_{n}-\sqrt{E} \sum_{m} a_{m} h_{n-m}\right)^{2}-\sum_{n}\left(y_{n}-\sqrt{E} \sum_{m} b_{m} h_{n-m}\right)^{2}<0 \mid \boldsymbol{a}, \boldsymbol{x}\right]
\end{aligned}
$$

Substituting (2) for $y_{n}$ in the above equation gives

$$
\begin{array}{r}
P[\Omega(\boldsymbol{b})-\Omega(\boldsymbol{a})<0 \mid \boldsymbol{a}, \boldsymbol{x}]=P\left[\sum_{n} \eta_{n} \sum_{m} \epsilon_{m} h_{n-m}+\sqrt{E} \sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}+\right. \\
\left.\sqrt{E} \sum_{n}\left(\sum_{m} x_{m} g_{n-m}\right)\left(\sum_{m} \epsilon_{m} h_{n-m}\right)<0\right]
\end{array}
$$

where and $\epsilon_{n}=\left(a_{n}-b_{n}\right) / 2$. Since

$$
\frac{1}{\sigma\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}} \sum_{n} \eta_{n} \sum_{m} \epsilon_{m} h_{n-m}
$$

is a zero-mean, unit-variance Gaussian random variable, we have

$$
P[\Omega(b)-\Omega(a)<0 \mid a, x]=Q(\delta(\epsilon, x) \sqrt{\operatorname{SNR}}),
$$

where $\delta(\epsilon, x)$ is the distance between $a$ and $b$ in the presence of $\boldsymbol{x}$ given by

$$
\delta(\epsilon, x)=\frac{\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}+\sum_{n}\left(\sum_{m} x_{m} g_{n-m}\right)\left(\sum_{m} \epsilon_{m} h_{n-m}\right)}{\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}}
$$

Thus a lower bound to the minimum probability of an error event in the system is proportional to $Q\left(\delta_{\min } \sqrt{\mathrm{SNR}}\right)$, where $\delta_{\text {min }}=\min _{\boldsymbol{\epsilon} \neq 0, \boldsymbol{x} \in \mathcal{C}} \delta(\boldsymbol{\epsilon}, \boldsymbol{x})$.

We derive a simple lower bound on $\delta(\boldsymbol{\epsilon}, \boldsymbol{x})$ as follows:

$$
\begin{aligned}
\delta(\epsilon, x) & \geq \frac{\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}-\left|\sum_{n}\left(\sum_{m} x_{m} g_{n-m}\right)\left(\sum_{m} \epsilon_{m} h_{n-m}\right)\right|}{\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}} \\
& \geq \frac{\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}-\sum_{n} M\left|\sum_{m} \epsilon_{m} h_{n-m}\right|}{\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}}
\end{aligned}
$$

where $M=\max _{n, x \in c} \sum_{m} x_{m} g_{n-m}$, i.e., $M$ is the maximum absolute value of the interference. Note that $M=\sum_{n}\left|g_{n}\right|$. We'll assume that $M<1$. Since the $h_{n}$ are integers and $\epsilon_{n} \in\{-1,0,1\}$, we can further bound $\delta(\epsilon, \boldsymbol{x})$ as follows:

$$
\begin{aligned}
\delta(\epsilon, x) & \geq \frac{\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}-M \sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}}{\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}} \\
& =(1-M)\left[\sum_{n}\left(\sum_{m} \epsilon_{m} h_{n-m}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

and thus

$$
\delta_{\min }=\min _{\varepsilon, x} \delta(\epsilon, x) \geq(1-M) d_{\min }
$$

The bound is achieved if and only if there exists an $\epsilon \in \arg \min _{\epsilon \neq 0} d(\epsilon)$ for which $\sum_{m} \epsilon_{m} h_{n-m} \in\{-1,0,1\}$ for all $n$, and there exists an $x \in \mathcal{C}$ such that $\sum_{m} x_{m} g_{n-m}=\mp M$ whenever $\sum_{m} \epsilon_{m} h_{n-m}= \pm 1$. We show below that this bound can be achieved for the PR4 and the EPR4 channels but not for the EEPR4 channel.

## 3 DISTANCE PROPERTIES OF BINARY CLASS 4 CHANNELS

We now consider Class 4 channels, i.e., channels with transfer functions given by $H(D)=\sum_{n} h_{n} D^{n}=$ $(1-D)(1+D)^{N}$ for $N=1,2,3$. We assume that the pulse response to the head from an adjacent track is the same Class 4 channel, and only its amplitude varies with the track to head distance with a parameter $\alpha$, i.e. $g_{n}=\alpha h_{n}$. This assumption is only approximate since the transition response from a track to a head gets wider as the distance between them increases, as discussed by Vea and Moura ${ }^{2}$ and Lindholm. ${ }^{3}$ With $g_{n}=\alpha h_{n}$, the above lower bound becomes

$$
\begin{equation*}
\delta_{\min }=\min _{\epsilon, x} \delta(\epsilon, x) \geq(1-\alpha A) d_{\min } \tag{5}
\end{equation*}
$$

where $A$ is the maximum value of the noiseless Class 4 channel output; $A=2,4,6$ and $d_{\min }^{2}=2,4,6$ for $N=1,2,3$, respectively.

For the three Class 4 channels, we examine if the bound can be achieved by working in the transform domain where each sequence $\left\{s_{n}\right\}$ has a corresponding function $S(D)=\sum_{n} s_{n} D^{n}$. For that purpose, we note that the minimum distance of the uncoded channel with transfer function $H(D)$ with no ITI, defined by (4), can be expressed as

$$
d_{\min }^{2}=\min _{\epsilon(D) \neq 0}\|H(D) \epsilon(D)\|^{2},
$$

where $\epsilon(D)=\sum_{i=0}^{i-1} \epsilon_{i} D^{i}, \epsilon_{i} \in\{-1,0,1\}, \epsilon_{0} \neq 0, \epsilon_{l-1} \neq 0$, is the polynomial corresponding to a normalized error sequence $\epsilon=\left\{\epsilon_{i}\right\}_{i=1}^{l-1}$ of length $l$, and the squared norm of a polynomial refers to the sum of its squared coefficients. The bound (5) is achieved if and only if there exists an $e(D)$ for which $\|H(D) \epsilon(D)\|^{2}=d_{\min }^{2}$ and all coefficients $y_{n}$ of $y(D)=H(D) \epsilon(D)$ are in the set $\{-1,0,1\}$, and there exists an $x \in \mathcal{C}$ such that in $H(D) \cdot \sum_{n} x_{n} D^{n}=\sum_{n} z_{n} D^{n}$, $z_{n}=\mp A$ whenever $y_{n}= \pm 1$.

### 3.1 The PR4 channel

For $N=1$ the channel transfer function is equal to $1-D^{2}$. This channel is usually treated as two interleaved $1-D$ channels. For the $1-D$ channel $d_{\min }^{2}=2$ is attained for $\epsilon(D)=\sum_{k=0}^{l-1} D^{k}$. In this case $\delta(\epsilon, x)$ achieves lower bound (5) for $x=\left\{\cdots, x_{-2}, 1,-1, x_{1}, \cdots, x_{1-2},-1,1, x_{i+1}, \cdots\right\}$, since the only non-zero coefficients of $y(D)=1-D^{l}$ are $y_{0}=1, y_{l}=-1$, and in $(1-D) \cdot \sum_{n} x_{n} D^{n}=\sum_{k} z_{k} D^{k}$, we have $z_{0}=-2$ and $z_{l}=2$. Therefore, for the PR4 channel, $\delta_{\min }=\sqrt{2}(1-2 \alpha)$.

Example 1. Consider a noiseless $1-D$ channel. Let sequences $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\epsilon}=(\boldsymbol{a}-\boldsymbol{b}) / 2$, and $\boldsymbol{x}$ be as follows:

$$
\begin{aligned}
\boldsymbol{a} & =\cdots, a_{-1},-1,+1,+1,+1, a_{4}, \cdots \\
\boldsymbol{b} & =\cdots, a_{-1},-1,-1,-1,+1, a_{4}, \cdots \\
\boldsymbol{\epsilon} & =\cdots, 0,0,+1,+1,0,0, \cdots \\
\boldsymbol{x} & =\cdots, x_{-1},+1,-1,-1,+1, x_{4}, \cdots
\end{aligned}
$$

Let $a$ be recorded on the track being read and $x$ recorded on an adjacent track. Then $\delta(\epsilon, x)=\sqrt{2}$ for $\alpha=0$, $\delta(\epsilon, x)=1 / \sqrt{2}$ for $\alpha=0.25$, and $\delta(\epsilon, x)=0$ for $\alpha=0.5$.

### 3.2 The EPR4 channel

For $N=2$ the channel transfer function is equal to $(1-D)(1+D)^{2}$. It is well known that $d_{\min }^{2}=4$ is attained for $\epsilon(D)=1$, which gives $y(D)=1+D-D^{2}-D^{3}$. However, for the corresponding error sequence, $\delta(\epsilon, \boldsymbol{x})$ cannot achieve lower bound (5) because that would require a sequence $\boldsymbol{x}$ for which two successive outputs of the EPR4 channel equal to 4. In order to see if the lower bound can be achieved, we find all error polynomials $\epsilon(D)$ for which $\left\|(1-D)(1+D)^{2} \epsilon(D)\right\|^{2}=4$.

Polynomial $y(D)=(1-D)(1+D)^{2} \epsilon(D)$ with $\|y(D)\|^{2}=4$ is of the form $1+c_{1} D^{p_{1}}+c_{2} D^{p_{2}}+c_{3} D^{p_{3}}$ where, for $i \in\{1,2,3\}, c_{i} \in\{-1,1\}$ and $p_{i}$ are three different positive integers. From the definition of $y(D)$, we know
that $y(1)=0, y(-1)=0, y^{\prime} \epsilon(1)=0$ must be satisfied. It can be shown that these conditions require that $y(D)$ be either of the form $\left(1-D^{2 k}+D^{2 n+1}-D^{2(k+n)+1}\right), k \geq 1, n \geq 0$, or of the form ( $1-D^{2 k}-D^{2 n}+D^{2(k+n)}$ ), $k, n \geq 1, k \neq n$. To further specify $y(D)$ and find the corresponding $\epsilon(D)$, we consider these two cases separately.

1. Polynomial $(1-D)(1+D)^{2} \epsilon(D)=1-D^{2 k}+D^{2 n+1}-D^{2(k+n)+1}$ factors as

$$
(1-D)(1+D)^{2} \cdot\left(\sum_{j=0}^{k-1} D^{2 j}\right)\left(\sum_{i=0}^{2 n}(-1)^{i} D^{i}\right)
$$

Therefore $\epsilon(D)=\left(\sum_{i=0}^{2 n}(-1)^{i} D^{i}\right)\left(\sum_{j=0}^{k-1} D^{2 j}\right)$. Since the coefficient of $\epsilon(D)$ are in $\{-1,0,1\}$, we conclude that an arbitrary $k>1$ requires $n=0$ and an arbitrary $n>0$ requires $k=1$. In the first case $\epsilon(D)=$ $\sum_{j=0}^{k-1} D^{2 j}$ and $y(D)=1+D-D^{2 k}-D^{2 k+1}$. In the second case $\epsilon(D)=\sum_{i=0}^{2 n}(-1)^{i} D^{i}$ and $y(D)=$ $\left(1-D^{2}+D^{2 n+1}-D^{2 n+3}\right)$.
2. Polynomial $(1-D)(1+D)^{2} \epsilon(D)=1-D^{2 n}-D^{2 k}-D^{2(k+n)}$ factors as

$$
(1-D)(1+D)^{2} \cdot\left(\sum_{j=0}^{k-1} D^{2 j}\right)\left(\sum_{i=0}^{2 n-1}(-1)^{i} D^{i}\right)
$$

Therefore $\epsilon(D)=\left(\sum_{i=0}^{2 n-1}(-1)^{i} D^{i}\right)\left(\sum_{j=0}^{k-1} D^{2 j}\right)$. Since the coefficient of $\epsilon(D)$ are in $\{-1,0,1\}$, we conclude that an arbitrary $k>1$ requires $n=1$ and an arbitrary $n>1$ requires $k=1$. In the first case $\epsilon(D)=$ $\sum_{j=0}^{2 k-2}(-1)^{j} D^{j}$ and $y(D)=1-D^{2}-D^{2 k}+D^{2 k+2}$. In the second case $\epsilon(D)=\sum_{i=0}^{2 n-1}(-1)^{\prime} D^{i}$ and $y(D)=1-D^{2}-D^{2 n}+D^{2 n+2}$. These two cases are equivalent as was expected from the symmetry of the original $y(D)$ with respect to $n$ and $k$.

From 1. and 2. we conclude that the error polynomials $\epsilon(D)$ for which $\left\|(1-D)(1+D)^{2} \epsilon(D)\right\|^{2}=4$ are either of the form $\epsilon(D)=\sum_{j=0}^{k-1} D^{2 j}, k \geq 1$, in which case $y(D)=\left(1+D-D^{2 k}-D^{2 k+1}\right)$, or of the form $\epsilon(D)=\sum_{i=0}^{l-1}(-1)^{i} D^{i}, l \geq 3$, in which case $y(D)=\left(1-D^{2}-(-1)^{l} D^{l}+(-1)^{l} D^{l+2}\right)$. In the former case $\delta(\epsilon, x)$ cannot achieve lower bound (5) because, as above, it would require a sequence $\boldsymbol{x}$ for which two successive outputs of the EPR4 channel equal to 4 . It can be shown that in this case $\min _{x \in \mathcal{C}} \delta(\epsilon, x)=\sqrt{4}(1-3 \alpha)$. In the latter case $\delta(\boldsymbol{\epsilon}, \boldsymbol{x})$ achieves the lower bound for

$$
x=\left\{\cdots, x_{-4},-1,-1,1,1,-1,-1, x_{3}, \cdots, x_{l-4}-1,-1,1,1,-1,-1, x_{l+3}, \cdots\right\}
$$

for odd $l \geq 5$, or

$$
x=\left\{\cdots, x_{4},-1,-1,1,1,-1,-1, x_{3}, \cdots, x_{1-4}, 1,1,-1,-1,1,1, x_{1+3}, \cdots\right\}
$$

for even $l \geq 6$. It can be shown that $\min _{x \in \mathcal{C}} \delta(\epsilon, x)=\sqrt{4}(1-3 \alpha)$ for $l=3,4$. Therefore, for the EPR4 channel, $\delta_{\text {min }}=\sqrt{4}(1-4 \alpha)$.

Example 2. Consider a noiseless EPR4 channel. Let sequences $a, b, \epsilon=(\boldsymbol{a}-\boldsymbol{b}) / 2$, and $\boldsymbol{x}$ be as follows:

$$
\begin{aligned}
\boldsymbol{a} & =\cdots, a_{-3}, a_{-2}, a_{-1},-1,+1,-1,+1,-1,+1, a_{6}, a_{7}, a_{8}, \cdots \\
b & =\cdots, a_{-3}, a_{-2}, a_{-1},+1,-1,+1,-1,+1,-1, a_{6}, a_{7}, a_{8}, \cdots \\
\epsilon & =\cdots, 0,0,0,-1,+1,-1,+1,-1,+1,0,0,0, \cdots \\
x & =\cdots,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1, \cdots
\end{aligned}
$$

Let $a$ be recorded on the track being read and $x$ recorded on an adjacent track. Then $\delta(\epsilon, x)=\sqrt{4}$ for $\alpha=0$, and $\delta(\epsilon, x)=0$ for $\alpha=0.25$.

### 3.3 The EEPR4 channel

For $N=3$ the channel transfer function is equal to $(1-D)(1+D)^{3}$. Again, it is well known that $d_{\min }^{2}=6$ is attained for $\epsilon(D)=1-D+D^{2}$, which gives $y(D)=1+D-D^{2}+D^{4}-D^{5}-D^{6}$. However, similarly as above, for the corresponding error sequence, $\delta(\epsilon, \boldsymbol{x})$ cannot achieve lower bound (5) because that would require a sequence $x$ for which a string of three successive outputs of the EEPR4 channel equals to $6,6,-6$. In order to see if the bound can be achieved, we find all error polynomials $\epsilon(D)$ for which $\left\|(1-D)(1+D)^{3} \epsilon(D)\right\|^{2}=6$. We consider polynomial $y(D)=(1-D)(1+D)^{3} \epsilon(D)=\left(1+2 D-2 D^{3}-D^{4}\right) \cdot\left(1+e_{1} D+e_{2} D^{2}+\cdots+e_{i-3} D^{l-3}+e_{l-2} D^{l-2}+e_{l-1} D^{l-1}\right)$. It is easy to check that for all error sequences of length $l \leq 2,\|y(D)\|^{2} \geq 10$. For error sequences of length $l \geq 3$, polynomial $y(D)$ is of the form $1+\left(\epsilon_{1}+2\right) D+\left(\epsilon_{2}+2 \epsilon_{1}\right) D^{2}+D^{3} z(D)+\left(-2 \epsilon_{l-2}-\epsilon_{l-3}\right) D^{l+1}+\left(-2 \epsilon_{l-1}-\epsilon_{l-2}\right) D^{i+2}+\left(-\epsilon_{l-1}\right) D^{l+3}$, where $z(D)$ is a polynomial with degree of at most $l-3$. Since $\epsilon_{l-1} \neq 0$, we have $\|y(D)\|^{2} \geq 3+\|z(D)\|^{2}+3$, and therefore $\|y(D)\|^{2}=6$ only if $z(D)=0$. Therefore $y(D)=1+D-D^{2}+\left(-2 \epsilon_{l-2}-\varepsilon_{l-3}\right) D^{1+1}+\left(-2 \epsilon_{l-1}-\right.$ $\left.\epsilon_{l-2}\right) D^{l+2}+\left(-\epsilon_{l-1}\right) D^{l+3}$ ). For $y(1)=0$, we need $y(D)=1+D-D^{2}+D^{l+1}-D^{l+2}-D^{l+3}$. For $y(-1)=0$, we need $y(D)=1+D-D^{2}+D^{2 k}-D^{2 k+1}-D^{2 k+2}$. For $y^{\prime}(-1)=0$, we need $y(D)=1+D-D^{2}+D^{4}-D^{5}-D^{6}$. Note that $y(D)=1+D-D^{2}+D^{4}-D^{5}-D^{6}=(1-D)(1+D)^{3} \cdot\left(1-D+D^{2}\right)$, and therefore $\epsilon(D)=1-D+D^{2}$ is the only error polynomial for which $\left\|(1-D)(1+D)^{3} \epsilon(D)\right\|^{2}=6$. It can be shown that for the corresponding error sequence $\epsilon, \min _{\boldsymbol{x} \in \mathcal{C}} \delta(\epsilon, \boldsymbol{x})=\sqrt{6}(1-4 \alpha)$. Note that this does not determine $\delta_{\min }$ for the EEPR4 channel.

## 4 CODING FOR IMPROVING OFF-TRACK PERFORMANCE

It was shown above that a lower bound to the minimum probability of an error-event in the system with ITI is proportional to $Q\left(\delta_{\min } \sqrt{S N R}\right)$, where

$$
\delta_{\min }=\min _{\epsilon, x} \delta(\epsilon, x) \geq(1-M) d_{\min }
$$

This bound was derived for an arbitrary set of recorded sequences, $\mathcal{C} \subseteq\{-1,1\}^{\infty}$, and therefore holds in coded as well as uncoded systems. Whether it can be achieved depends on the code. The value of $d_{\min }^{2}$ is also determined by the code. To improve the error-probability performance of the system, we need codes that increase $d_{\text {min }}^{2}$ or ensure that the above bound is never achieved or, preferably, perform both tasks.

Codes that increase $d_{\min }^{2}$ are existing codes designed to improve the on-track performance, i.e., performance of channels with no ITI, as for example matched spectral null codes. ${ }^{7}$ In general, these codes may improve the off-track performance as well, since they are likely to reduce the fraction of sequences $\boldsymbol{x}$ for which the bound on $\delta(\epsilon, x)$ can be achieved for a given $\epsilon$. To argue that, we recall that the bound is achieved if and only if there exists an $\epsilon \in \arg \min _{\epsilon \neq 0} d(\epsilon)$ for which $\sum_{m} \epsilon_{m} h_{n-m} \in\{-1,0,1\}$ for all $n$ and there exists an $\boldsymbol{x} \in \mathcal{C}$ such that $\sum_{m} x_{m} g_{n-m}=\mp M$ whenever $\sum_{m} \epsilon_{m} h_{n-m}= \pm 1$. Codes for improving noise immunity reduce the set of sequences $\epsilon \in \arg \min _{\epsilon \neq 0} d(\epsilon)$ for which $\sum_{m} \epsilon_{m} h_{n-m} \in\{-1,0,1\}$ for all $n$. For the sequences that remain, the
number of $n$ such that $\sum_{m} \epsilon_{m} h_{n-m}= \pm 1$ is higher, and therefore sequence $x$ has to satisfy more conditions. A good example of this case is a dc-free coded PR4 channel.

Design of high rate codes which improve both on- and off-track error probability performance of Class 4 channels may be a complex problem, and we do not attempt to solve it at this point. Instead, we discuss off-track performance of a dc-free coded PR4 channel and present some coding ideas for the EPR4 and EEPR4 channels which transpired from the above distance properties analysis.

### 4.1 The PR4 channel

It has been observed in laboratory experiments that a dc-free coded PR4 channel has better off-track performance than its uncoded counterpart. ${ }^{5}$ For a dc-free coded $1-D$ channel $d_{\min }^{2}=4$ is obtained for $e(D)=1-D^{1-1}$, and the corresponding $y(D)$ is equal to $1-D-D^{\prime-1}+D^{\prime}$. It is easy to see that in this case $\delta(\epsilon, x)$ achieves lower bound (5) for $x=\left\{\cdots, x_{2}, 1,-1,1, x_{2}, \cdots, x_{i-3},-1,1,-1, x_{\left.l_{1+1}, \cdots\right\}}\right.$ where $l \geq 4$. Therefore, for the dc-free coded PR4 channel, $\delta_{\min }=\sqrt{4}(1-2 \alpha)$ degrades with $\alpha$ at the same rate as it does for the uncoded system. However, the sequence $x$ for which the bound is achieved has 6 symbols specified as opposed to at most 4 in the uncoded case. In addition, the bound cannot be achieved for all error sequences for which $\|e(D) H(D)\|^{2}=d_{\min }^{2}$, as in uncoded case, but only for those of length $l \geq 4$.

### 4.2 The EPR4 channel

Based on the distance properties described above, we know that $\min _{x \in \mathcal{C}} \delta(\epsilon, x)=\sqrt{4}(1-4 \alpha)$ if and only if $\epsilon(D)=\sum_{i=0}^{l-1}(-1)^{i} D^{i}, l \geq 5$. It can be shown that for all other error sequences for which $\|H(D) e(D)\|^{2}=4$, we have $\min _{x \in C} \delta(\epsilon, x)=\sqrt{4}(1-3 \alpha)$. Therefore, an improvement in the off-track performance of this channel can be accomplished by limiting the length of subsequences of alternating symbols to four. For the NRZI type of recording, this can be achieved by a code that limits the runs of successive ones to three, as the binary complement of the industry standard $8 / 9(0,3)$ block code, introduced for IBM 3480 tape drive. This code has a simple and inexpensive implementation proposed by A. M. Patel. ${ }^{6}$ In general, using a code that removes long sequences of alternating symbols at the input of the EPR4 channel is advantageous since these sequences result in long sequences of zeros at the channel output, which is undesirable for timing and gain control.

### 4.3 The EEPR4 channel

It was shown above that the only error polynomial for which $\left\|(1-D)(1+D)^{3} \epsilon(D)\right\|^{2}=6$ is $\epsilon(D)=1-D+D^{2}$. This error event can be removed by a code that does not allow successive transitions. For the NRZI type of recording, this can be achieved by a code that does not allow successive ones, as $2 / 3(1,7)$ code. Using this code for high linear density recording systems has already been proposed as a means of reducing the problems associated with closely recorded neighboring transitions. It can be shown that the code also removes all error sequences for
which this polynomial has all its coefficients in the set $\{-1,0,1\}$. Therefore $2 / 3(1,7)$ code gives a performance improvement of for EEPR4 channel with no ITI, and ensures that the lower bound on the performance of the channel with ITI is never achieved. An additional benefit of the code is that it reduces the number of states in the EEPR4 Viterbi detector from 16 to 10 since successive transitions are illegal. The main drawback of the code is its low rate.

## 5 SUMMARY AND CONCLUSIONS

Magnetic storage detectors employing PR4 equalization exhibit loss in performance at high recording densities and need to be replaced. Two systems are being considered for next generation products: the dc-free coded PR4 channel and the EPR4 channel. Various error probability performance and implementation issues of these two systems should be examined in order to decide which one is a better choice. The analytical results of this paper together with the simulation results obtained by Sayiner ${ }^{8,9}$ allow as to compare the systems on the basis of their off-track performance. In addition, the analytical results give an understanding of the systems necessary if coding is to be used for performance improvement.

We analyzed on- and off-track distance properties of PR4, EPR4, and EEPR4 channels, known as Class 4. We also looked at off-track performance of the dc-free coded PR4 channel, and showed some possibilities of improving performance of the EPR4 and EEPR4 channels through coding. Design of high rate codes which improve both on- and off-track error probability performance of Class 4 channels is, however, an interesting open problem. Most of the obtained results are summarized below.

Magnetic recording channels operate at high SNR where the probability of an error event in the system with no ITI is well approximated by $Q\left(d_{\min } \sqrt{S N R}\right)$. We found that under the same conditions probability of an error event in the system with ITI is well approximated by $Q\left(\delta_{\min } \sqrt{\mathrm{SN} \bar{R}}\right)$, where $\delta_{\min } \geq d_{\min }(1-M)$ and $M$ is the maximum value that the output of the noiseless channel between the reading head and an adjacent track can take. With the assumption that the pulse response to the reading head from an adjacent track is the same Class 4 channel, and only its amplitude varies with the track to head distance with a parameter $\alpha$, we have $\delta_{\min } \geq d_{\min }(1-\alpha A)$ where $A$ is the maximum value the noiseless Class 4 channel output can take ( $A=2,4$, and 6 for PR4, EPR4, and EPR4 respectively).

We found that the uncoded as well as coded PR4 channel have much better off-track performance than the EPR4 channel, i.e., $\delta_{\min } / d_{\min }=1-2 \alpha$ for the PR4 channel and $\delta_{\min } / d_{\min }=1-4 \alpha$ for the EPR4 channel, as shown in Fig. 1. The results are in agreement with the ones reported earlier by Sayiner. ${ }^{8,9}$ It was found ${ }^{8}$ that at a given user density of 2.2 , the EPR4 is about 1.2 dB better than the PR4 at $0 \%$ off-track, but only about 0.2 dB at $5 \%$ off-track. In Fig. 1 we see that at $5 \%$ off-track the loss in performance of the PR4 is about 1 dB smaller than the loss of the EPR4.


Figure 1: Off-track performance of PR4 and EPR4 channels.

From the EPR4 channel distance properties analysis, we concluded that the channel off-track performance can be improved by a code that limits the runs of successive ones to three. For this purpose we can use the binary complement of the industry standard $8 / 9(0,3)$ block code.

As mentioned above, we also analyzed the distance properties of the EEPR4 channel and showed that its off-track performance for small $\alpha$ is the same as the off-track performance of the EPR4 channel. We also found that the $2 / 3(1,7)$ code gives a performance improvement for the EEPR4 channel with no $1 T 1$, and ensures that the lower bound on the performance of the channel with ITI is not achieved.

## Acknowledgment

The author is grateful to N, Sayiner and P. H. Siegel for pointing out some published results on related topics that inspired this work.

## 6 REFERENCES

[1] W. L. Abbot, J. M. Cioff, and H. K. Thapar, "Performance of digital magnetic recording with equalization and off-track interference, ${ }^{n}$ IEEE Trans. Magn., vol, 27, no. 1, pp. 705-716, Jan. 1991.
[2] M. P. Vea and J. M. F. Moura, "Magnetic recording channel model with inter-track interference," IEEE Trans. Magn., vol. 27, no. 6, pp. 4834-4836, Noy. 1991.
[3] D. A. Lindholm, "Spacing losses in finite track width reproducing systems," IEEE Trans. Magn., vol. 14, no. 2, pp. 55-59, Mar. 1978.
[4] J. G. Proakis, Digital Communications, New York, NY: McGraw-Hill, 1983.
[5] P. H. Siegel, Personal communications.
[6] C. D. Mee and E. D. Daniel, Magnetic Recording, Volume II: Computer Data Storage, New York, NY: McGraw-Hill, 1987.
[7] R. Karabed and P. H. Siegel, "Matched spectral-null codes for partial response channels," IEEE Trans. Inform. Theory, vol. 37, no. 3, pt. II, pp. 818-855, May 1991.
[8] N. Sayiner, "Use of extended partial response for magnetic recording - pt. 1: Performance simulation with SHIVA architecture," 538510000-950116-01 TM
[9] N. Sayiner, "The impact of the track density vs. linear density trade-off on the read channel: TCPR4 vs. EPR4," this conference.

## ApPENDIX C

## EMINA SOLJANIN

26 Britten Rd.
Green Village, NJ 07935

2012136905 or emina.soljanin@gmail.com http://ect.bell-labs.com/who/emina

## RESEARCH EXPERTISE AND INTERESTS

Theoretical understanding and practical solutions that enable efficient, reliable, and secure operation of communications networks. Power systems. Quantum computation.

## EDUCATION

Ph.D. Electrical Engineering, Texas A\&M University, 1994.
Dissertation: Coding for Improving Noise Immunity in Multi-Track, Multi-Head Recording Systems
Research areas: constrained coding, symbolic dynamics, multi-input, multi-output communications, and data storage.
M.S. Electrical Engineering, Texas A\&M University, 1989.

Thesis: New Approach to the Design of Digital Algorithms for Electric Power Measurements

Research areas: power systems and digital signal processing.
B.S. European Diploma Degree (M.S. equivalent), Electrical Engineering, University of Sarajevo, Bosnia and Herzegovina (former Yugoslavia), 1986.
Thesis: Long-Term Hydro-Plants Scheduling for Electric Power Networks
Research areas: power systems, stochastic and combinatorial optimization, and graph theory.

## EMPLOYMENT HISTORY

Professor, Rutgers University, Jan. 2016 -
Member of Technical Staff, Mathematics of Networks and Systems Research Department, Bell Labs, Postdoctoral Sept. 1994 - Dec. 2015 Jan. 1996, Regular Feb. 1996 - Mar. 2004, Distinguished Apr. 2004 -.
Working on a wide range of mathematical problems arising in communications and storage networks; in partucular coding, information theoretic, and (more recently) queueing problems concerning effcient, reliable, and secure networking for big data.

Research Engineer, Energoinvest, IRIS Institute, Department for Mathematical Modelling, Sarajevo, Bosnia, June 1986 - May 1988.
Developing optimization algorithms and software for power system planning and operation.

## TEACHING, MENTORING, AND UNIVERSITY RESEARCH VISITS

Visiting Scientist The Simons Institute for the Theory of Computing, UC Berkeley, Spring 2015.
Lecturer for the 2011 Information Theory Summer School.
Guest Professor at ENSEA/Univ. Cergy-Pontoise/CNRS, ETIS group, France, Sept. 2010.
Guest Lecturer at the University College Dublin, Claude Shannon Institute, Jan. 2009, teaching an intensive course on Network Coding.

Visiting Professor at Ecole Polytechnique Fédérale de Lausanne (EPFL), Jan.-Dec. 2008
Adjunct Professor at Columbia University, Spring 2004-Fall 2005, teaching Communication Theory I $8 I I$.

Adjunct Professor at Brooklyn Polytechnic University, Fall 2004, teaching Inform. Theory
Lecturer at Texas A\&M University, academic year 1993/1994, teaching Elec. Circuit Theory.
Lecturer at University of Sarajevo, Bosnia, academic years 1986/1987 and 1987/1988, teaching Signal Processing I $\mathcal{E} I$.

Mentor for an NSF postdoctoral researcher at Bell Labs, July 2010 - July 2012
Mentor for two Bell Labs postdoctoral researchers, May 1998 - May 2000 and Jan. 2000 - Jan. 2001, organizing and supervising their research projects.

Mentor for summer interns at Bell Labs and DIMACS, organizing and supervising research projects for up to three interns almost every summer since 1997.
Ph.D Thesis Committee Member, students at Rutgers (4), Columbia (1), EPFL (3), Aalborg (1), MIT (2), Toronto (1). - various degrees of supervision/involvement

Host Scientist for Bell Labs Global Science Scholars program for final-year high-school (2003-2005). Project design, lecturing, and a week-long supervision for visiting students.

## PROFESSIONAL ACTIVITIES AND SERVICE

IEEE Information Theory Society Fellows Committee Member, 2016 - .
IEEE Koji Kobayashi Award Committee Member, 2014 -
IEEE Richard W. Hamming Medal Committee Member, 2013-2016.
External Advisory Committee and Industrial Board Member for the NSF Science \& Technology Center for Science of Information (NSF-STC-CSoI), 2013-.

Best Paper Award Committee Member (3 times) for IEEE Inform. Theory Society
Board of Governors Member for the IEEE Inform. Theory Soc., 2009-2011 and 2013 -.
DIMACS Council Member, 2003 -.
DIMACS Postdoctoral Committee Member, 2001-2011.
Co-Chair for DIMACS Special Focus on Cybersecurity, 2011-2015
Co-Chair for DIMACS Special Focus on Comput. Inform. Th. and Coding, 2000-2005.

Guest Editor for the Elsevier-PhyCom, Special Issue on Network Coding and its Applications to Wireless Communicatzons, March 2013.
Editorial Board Member Springer Journal on Applicable Algebra in Engineering, Communication and Computing, 2008 -.

Associate Editor for Coding Techniques, IEEE Trans. on Inform. Theory, 1997-2000.
Technical Program Co-Chair for the 2008 IEEE Inform. Theory Workshop and 2012 International Symposium on Network Coding

Workshop Co-Organizer
(upcoming, organization and funding granted based on a proposal):
Codes for Data Storage with Queues for Data Access, July, 2017 within the ICERM Women in Data Science and Mathematics Research Collaboration Workshop.
(past selected, organization and funding granted based on a proposal):
Dagstuhl Seminar on Coding Theory in the Time of Big Data, Schloss Dagstuhl, Aug. 2016, DIMACS Workshop on Network Coding: the Next 15 Years, Dec. 2015, BIRS Workshop on Mathematical Coding Theory in Multimedıa Streaming, Banff, Oct. 2015. DIMACS Workshop on Coding Theoretic Methods for Network Security, April 2015, INFOCOM Workshop on Communications and Networking Techniques for Contemporary Video, April 2014, DIMACS Workshop and Working Group on Algorithms for Green Data Strage, Dec. 2013, Dagstuhl Seminar on Coding Theory, Schloss Dagstuhl, Aug. 2013, BIRS Workshop on Applications of Matroid Theory and Combrnatorial Optimization to Information and Coding Theory, Banff, Aug. 2009, DIMACS Working Group and Workshop on Coding, Streaming and Compressive Sensing (March 2009), DIMACS Working Group on Network Coding Jan. 2005 and DIMACS Working Group and Workshop on Theoretical Advances In Information Recording (March 2004).

Special-Session Organizer (selected, invited to organize): Tutorials at 2015 IEEE Internat. Symp. on Inform. Theory (ISIT"15), "Information Theory \& Coding for Contemporary Video," 2013 IEEE Inform. Theory Workshop (ITW'13) in Seville, "Network Coding" at 2006 IEEE Comm. Theory Workshop (CTW'06) in Puerto Rico, "Network Coding" at 2006 IEEE Inform. Theory Workshop (ITW'06) in Chengdu, "Emerging Applications of Information Theory" at 2004 IEEE Inform. Theоту Workshop (ITW'04) in San Antonio.
Technical Program Committee Member for (selected) IEEE Internat. Symp. on Inform. Theory (ISIT), 2000-2002, 2004, and 2008-, IEEE Inform. Theory Workshop (ITW), 2004-2009, IEEE 2005 Int. Conf. Wireless Networks, Commun., and Mobile Comput., Int. Workshop on Wireless Networks: Communication, Cooperation and Competition, 2007, Commun. Theory Symp. at IEEE Global Telecommun. Conf. (GLOBECOM) 2007-2008, Internat. Conf. on Comm. (ICC) 2009.
Technical proof-reader for the IEEE Transac. Inform. Theory, 1990-1992.
Research Proposal Reviewer for NSF, BSF (United States-Israel Binational Science Foundation), Danish Research Council for Technology and Production Sciences, Research Grants Council of Hong Kong, SFI (Science Foundation of Ireland), UC MICRO Program (University of California Microelectronics Innovation and Computer Research Opportunities).

Affliations with IEEE Inform. Theory Society, American Mathematical Society (AMS), NSF Center for Discrete Mathematics and Computer Science (DIMACS).

## SELECTED BELL LABS SERVICE

Graduate Research Program for Women (GRPW) and Cooperative Research Fellowship Program (CRFP) for Minorities and Women committee member, 2002-2009.

Global Science Scholars committee member and host to student visitors, 2003-2005.
Afirmative Action Committee Member, 1996-1999.
Library Liaison, provided periodic recommendations for book ordering, collected and provided feedback on journal usage, 1996 -.
Seminars Sponsor, recruited and hosted speakers for several internal seminars and reading groups, 1996-.

Committee Service, served on numerous hiring and various ad-hoc committees, 1995 - .

## RECOGNITIONS

- Distinguished Lecturer for IEEE Information Theory Society, 2015-2016.
- IEEE Fellow, for contributions to coding theory and coding schemes for transmission and storage systems, class of 2014.
- IEEE IT Society 2013 Padovani Lecturer, a person whose research is considered to be of particular interest to students and postdocs is selected to give a special lecture at the yearly North American School of Information Theory. Lecture Ttile: "Secret Lives of Codes: From Theory to Practice and Back"
- Best Paper Award for the paper "Trade-off between cost and goodput in wireless: replacing transmitters with coding," (with M. Kim, M. Medard, MIT, J. Barros, Univ. of Porto, and T. Klien, Bell Labs) at MONAMI'13.
- Honorable mention of the paper "Asymptotic spectra of trapping sets in irregular LDPC code ensembles," (with O. Milenkovic, and P. Whiting, Bell Labs) at the ICC 2006; citation: "It provided an important contribution towards the statistical characterization and understanding of trapping sets, which are crucial to the assessment of error-floor effects in LDPC codes."
- Distinguished Member of Technical Staff, Bell Labs, March 2004.
- IEEE Senior Member, July 2003.
- Recognized as an exceptional Bell Labs intern mentor for the Summer 2003.
- IEEE Referee Recognition Award, 1998.
- Recognized in the 25th anniversary issue of EE Times as one of the 20 young engineers who are likely to make "significant contributions in the new millennium", Oct. 1997.
- Recognized for teamwork at Bell Labs, Dec. 1994.
- Fouraker Fellowship by EE Department, Texas A\&M University, Sep. 1992 - Aug. 1993.
- Electrical Powe Institute Fellowship for the masters at EE Department, Texas A\&M University, Jun. 1988 - Dec. 1989.


## FUNDING

DIMACS Funds - awarded by the NSF and other funding agencies for DIMACS Special Focus on Cybersecurity, for workshops, seminar series, visitors, and postdocs from 2011 through 2015. (Focus Co-Chair)
NSF NeTS Medium Grant for Collaborative Research: Secure Networking Using Network Coding at the level of $\$ 882,357$ (with Caltech, Purdue, and UT Austin), Sept. 2009 - Aug. 2013. (Co-PI)

DARPA IAMANET Contract for PIANO: Princzples for Intrinsically Assurable Network Operation, with a multidisciplinary team from several universities (Caltech, MIT, Stanford, UMass, UT Austin), led by BAE, 2008. (personal share $\$ 241,000$ over 18 months)

NSF NeTS-NBD Small Grant for Coding and Transmission Schemes for Content Download at the level of $\$ 569,000$ (with UIUC and Rutgers), Sept. 2007 - Aug. 2010. (Co-PI)

NSF ITR Medium Grant for Network Coding From Theory to Practice at the level of $\$ 1.85$ million (with Caltech, MIT, and UIUC), Sept. 2003 - Aug. 2008. (Co-PI)
DIMACS Funds - $\$ 205,000$ budget awarded by the NSF and other funding agencies for DIMACS Special Focus on Computational Information Theory and Coding for workshops, seminar series, visitors, and postdocs from 2001 through 2004. (Focus Co-Chair)

NAE Research Grant - American recipient of the 1999 \$10,000 Research Grant by the GermanAmerican Networking Program of the National Academy of Engineering and its German counterpart. (Elke Offer, TU Munich, was the German recipient.)

## JOURNAL PUBLICATIONS

1. L. Tan, Y. Li, A. Khisti, E. Soljanin, "Successive segmentation-based coding for broadcasting over erasure channels," IEEE Trans. Inform. Theory, pp. 3026-3038, Jun. 2016.
2. C. Fragouli and E. Soljanin, "(Secure) Linear network coding multicast - A theoretical minimum and some open problems," Journal on Des. Codes and Cryptography, The 25th Anniversary Issue, pp. 269-310, Jan. 2016.
3. G. Joshi, E. Soljanin, and G. Wornell, "On the delay-storage trade-off in content download from coded distributed storage systems," ACM Transactions on Modeling and Performance Evaluation of Computing Systems, submitted Oct. 2015, revised Nov. 2016.
4. K. Guan, A. Tulino, P. Winzer, and E. Soljanin, "Secrecy capacities in space-division multiplexed fiber-optic communication systems," IEEE Trans. Inform. Forensics $\mathcal{8}$ Security, pp. 1325-1335, July 2015.
5. M. Kim, T. Klein, E. Soljanin, J. Barros, M. Médard, "Modeling network coded TCP: analysis of throughput and energy cost," ACM Springer Mobile Networks and Applications (MONET) Journal, pp. 790-803, Dec. 2014.
6. G. Joshi, Y. Liu, and E. Soljanin, "On the delay-storage trade-off in content download from coded distributed storage systems," IEEE J-SAC Special Issue on Communication Methodologzes for the Next-Generation Storage Systems, pp. 989-997, May 2014.
7. E. Song, E. Soljanin, P. Cuff, and V. H. Poor, "Rate-distortion-based physical layer secrecy with applications to multimode fiber," IEEE Trans. Commun., pp. 1080-1090, March 2014.
8. S. Kokalj, E. Soljanin, and P. Spasojevic, "Low complexity differentiating adaptive erasure codes in multimedia wireless broadcast," IEEE Trans. Commun., pp. 3462-3471, Aug. 2013.
9. Y. Li, E. Soljanin, and P. Spasojević, "Three schemes for wireless coded broadcast to heterogeneous users," Elsevier-PhyCom, Special Issue on Network Coding and its Applications to Wireless Communicatrons, pp. 114-123, March 2013.
10. Z. Kong, E. Yeh, and E. Soljanin, "Coding improves the throughput-delay trade-off in mobile wireless networks," IEEE Trans. Inform. Theory, pp. 6894-6906, Nov. 2012.
11. I. Andriyanova and E. Soljanin, "Optimized IR-HARQ schemes based on punctured LDPC codes over the BEC," IEEE Trans. Inform. Theory, pp. 6433-6445, Oct. 2012.
12. S. Kokalj and E. Soljanin, "Suppressing the cliff effect in video reproduction quality," Bell Labs Technical Journal, Video Issue, March 2012.
13. S. El Rouayheb, E. Soljanin, and A. Sprintson, "Secure network coding for wiretap networks of type II," IEEE Trans. Inform. Theory, pp. 1361-1371, March 2012.
14. Y. Li, E. Soljanin, and P. Spasojević, "Effects of generation size and overlap on throughput and complexity in randomized linear network coding," IEEE Trans. Inform. Theory, pp. 1111-1123, Feb. 2011.
15. Z. Kong, S. Aly, and E. Soljanin, "Decentralized coding algorithms for distributed storage in wireless sensor networks," invited for IEEE J-SAC Special Issue on Data Communication Techniques for Storage Channels and Networks, pp. 261-267, Feb. 2010.
16. S. Kokalj, P. Spasojevic, and E. Soljanin, "Doped Fountain coding for minimum delay data collection in circular networks," lEEE J-SAC Special Issue on Network Coding for Wireless Communication Networks, pp. 673-684, June 2009.
17. E. Soljanin, P. Gupta, G. Kramer, "Network coding for efficient network multicast," Bell Labs Technical Journal, Enabling Science and Technology Issue, pp. 157-166, March 2009.
18. Z. Kong, S. Aly, E. Soljanin, E. Yeh, and A. Klappenecker, "Network coding capacity of random wireless networks under a signal-to-noise-and-interference ratio model," IEEE Trans. Inform. Theory, submitted 2008.
19. E. Soljanin, "Network Multicast with Network Coding," IEEE Signal Processing Magazine, pp. 109112, Sept. 2008.
20. R. Liu, P. Spasojevic, and E. Soljanin, "Incremental redundancy cooperative coding for wireless networks: cooperative diversity, coding, and transmission energy gain," IEEE Trans. Inform. Theory, pp. 1207-1224, March 2008.
21. O. Milenkovic, E. Soljanin, and P. Whiting, "Asymptotic spectra of trapping sets in regular and irregular LDPC code ensembles," IEEE Trans. Inform. Theory, pp. 39-55, Jan. 2007.
22. C. Chekuri, C. Fragouli, and E. Soljanin, "On average throughput benefits and alphabet size in network coding," IEEE Trans. Inform. Theory, pp. 2410-2424, June 2006.
23. R. Liu, P. Spasojevic, and E. Soljanin, "Reliable channel regions for good binary codes transmitted over parallel channels," IEEE Trans. Inform. Theory, pp. 1405-1424, April 2006.
24. C. Fragouli and E. Soljanin, "Information flow decomposition for network coding," IEEE Trans. Inform. Theory, pp. 829-848, March 2006.
25. R. Liu, P. Spasojevic, and E. Soljanin, "On the weight spectrum of good linear binary codes," IEEE Trans. Inform. Theory, pp. 4369-4373, Dec. 2005.
26. E. Soljanin, N. Varnica, and P. Whiting, "Incremental redundancy hybrid ARQ with LDPC and Raptor codes," submitted to IEEE Trans. Inform. Theory, Sept. 2005.
27. E. Soljanin and E. Offer, "Bit-optimal decoding of codes whose Tanner graphs are trees," J. Discrete Applied Mathematics, Elsevier Science, vol. 128/1, pp. 293-303, 2003.
28. E. Soljanin, "Compressing quantum mixed-state sources by sending classical information," IEEE Trans. Inform. Theory, pp. 2263-2275, Aug. 2002.
29. E. Soljanin, "Writing sequences on the plane," IEEE Trans. Inform. Theory, pp. 2263-2275, June 2002.
30. A. Mojsilović, J. Hu, and E. Soljanin, "Extraction of perceptually important colors and similarity measurement for image matching, Retrieval, and Analysis," IEEE Trans. Image. Proc., pp. 12381248, Nov. 2002.
31. A. Mojsilovic and E. Soljanin, "Color quantization and processing by Fibonacci lattices," IEEE Trans. Image Proc., pp. 1712-1725, Nov. 2001.
32. E. Soljanin and A. J. Van Wijngaarden, "Application of distance enhancing codes," IEEE Trans. Magn., pp. 762-767, Mar. 2001.
33. R. Karabed, P. H. Siegel and E. Soljanin, "Constrained coding for binary channels with high intersymbol interference," IEEE Trans. Inform. Theory, pp. 1777-1797, Sept. 1999.
34. B. E. Moision, P. H. Siegel, and E. Soljanin, "Distance-enhancing codes for digital recording," IEEE Trans. Magn., pp. 69-74, Jan. 1998.
35. E. Soljanin and C. N. Georghiades, "Multihead detection for multitrack recording channels," IEEE Trans. Inform. Theory, pp. 2988-2997, Nov 1998.
36. E. Soljanin "A coding scheme for generating bipolar dc-free sequences," IEEE Trans. Magn., pp. 27552757, Sept. 1997.
37. E. Soljanin and C. N. Georghiades, "Coding for two-head recording systems," IEEE Trans. Inform. Theory, pp. 747-755, May 1995.
38. M. Kezunovic, E. Soljanin, B. Perunicic, and S. Levi, "New approach to the design of digital algorithms for electric power measurements," IEEE Trans. Power Delivery, Vol. 6, pp. 516-523, Apr. 1991.
39. B. Perunicic, M. Kezunovic, and E. Soljanin, and S. Levi, "Digital signal processing algorithms for power and line parameter measurements with low sensitivity to frequency change," IEEE Trans. Power Delivery, Vol. 5, pp. 1209-1215, Apr. 1990.

## REFEREED CONFERENCE PUBLICATIONS

1. M. Noori, E. Soljanin, M. Ardakani, "On storage allocation for maximum service rate in distributed storage systems," 2016 IEEE Int. Symp. Inform. Theory (ISIT'16), Barcelona, July 2016.
2. K. Guan, P. Winzer, A. Tulino, and E. Soljanin, "Physical layer security of space-division multiplexed fiber-optic communication system in the presence of multiple eavesdroppers," 2015 IEEE Global Telecommunications Conf. (GLOBECOM'15), San Diego, Dec. 2015.
3. G. Joshi, E. Soljanin, and G. Wornell, "Using efficient redundancy to reduce latency in cloud systems," 52 nd Annual Allerton Conference, Monticello, IL, Oct. 2015.
4. S. Kadhe, E. Soljanin, and A. Sprintson, "When do the availability codes make the stored data more available?" invited for 53nd Annual Allerton Conference, Monticello, IL, Oct. 2015.
5. Y. Li, K. Guo, X. Wang, E. Soljanin, and T. Woo, "SEARS: Space efficient and reliable storage system in the cloud," 40th IEEE Conference on Local Computer Networks (LCN), Clearwater Beach, FL, USA, Oct. 2015.
6. U. J. Ferner, M. Médard, E. Soljanin, "Why reading patterns matter in storage coding and scheduling design," $8^{\prime}$ th IEEE International Conference on Cloud Computing (IEEE CLOUD 2015), New York, July, 2015.
7. G. Joshi, E. Soljanin, and G. Wornell, "Queues with Redundancy: Latency-Cost Analysis," Mathematical Performance Modeling and Analysis (MAMA) Workshop in conjunction with ACM SIGMETRICS, Prtland, OR, June 2015.
8. S. Kadhe, E. Soljanin, and A. Sprintson, "Analyzing the download time of availability codes," 2015 IEEE Int. Symp. Inform. Theory (ISIT'15), Hong Kong, June 2015.
9. L. Tan, M. Kaveh, A. Khisti, and E. Soljanin, "Coding for source-broadcasting over erasure channels with feedback," 2015 IEEE Int. Symp. Inform. Theory (ISIT'15), Hong Kong, June 2015.
10. M. Heindelmaier and E. Soljanin, "Isn't hybrid ARQ enough?" invited for $52 n d$ Annual Allerton Conference, Monticello, IL, Oct. 2014.
11. A. Singh Rawat and E. Soljanin, "Dynamic control of video quality for AVS," 2014 IEEE Int. Symp. Inform. Theory (ISIT'14), Honolulu, July 2014.
12. Y. Li, L. Tan, A. Khisti, and E. Soljanin, "Successive segmentation-based coding for broadcasting over erasure channels," 2014 IEEE Int. Symp. Inform. Theory (ISIT'14), Honolulu, July 2014.
13. I. Andriyanova, A. Julé, and E. Soljanin, "The code rebalancing problem for a storage-flexible data center network," 2013 IEEE International Conference on Big Data (IEEE BigData 2013), Santa Clara, CA, Oct. 2013.
14. K. Guan, P. Winzer, E. Soljanin, and A. Tulino, "On the secrecy capacity of the space-division multiplexed fiber optical communication systems," 2013 First IEEE Conference on Communications and Network Security (CNS'13), Washington, DC, Oct. 2013.
15. M. Kim, T. Klien, E. Soljann, M. Médard, and J. Barros,"Trade-off between cost and goodput in wireless: replacing transmitters with coding," 5th Int. Conf. on Mobile Networks and Management (MONAMI'13), Cork, Ireland, Sept. 2013. (best paper award)
16. E. Soljanin, "Some coding and information theoretic problems in contemporary (video) content delivery," 2013 IEEE Inform. Theory Workshop (ITW'13), Seville, Spain, Sept. 2013. (invited)
17. L. Tan, Y. Li, A. Khisti, and E. Soljanin, "Source broadcasting over erasure channels: distortion bounds and code design," 2013 IEEE Inform. Theory Workshop (ITW'13), Seville, Spain, Sept. 2013.
18. G. Joshi and E. Soljanin, "Round-robin overlapping generations coding for fast content download," 2013 IEEE Int. Symp. Inform. Theory (ISIT'13), Istanbul, Turkey, July 2013.
19. L. Tan, A. Khisti, E. Soljanin, "Distortion bounds for broadcasting a binary source over binary erasure channels," $13^{\prime}$ th Canadıan Workshop on Information Theory (CWIT'13), Toronto, Canada, June 2013.
20. K. Guan, E. Song, E. Soljanin, and P. Winzer, "Physical layer security in space-division multiplexed fiber optic communications," 46th Asilomar Conference on Signals, Systems, and Computers, Monterey, California, Amsterdam, The Netherlands Nov. 2012.
21. K. Guan, P. Winzer, and E. Soljanin, "Information-Theoretic Security in Space-Division Multiplexed Fiber Optic Networks," 2012 European Conference and Exhibition on Optical Communication (ECEOC'2012), Amsterdam, The Netherlands, June 2012.
22. G. Joshi, Y. Liu, and E. Soljanin, "Coding for fast content download," invited for 50 th Annual Allerton Conference, Monticello, IL, Oct. 2012.
23. U. J. Ferner, M. Médard, E. Soljanin. "Toward sustainable networking: storage area networks with network coding," 50th Annual Allerton Conference, Monticello, IL, Oct. 2012.
24. L. Tan, A. Khisti, E. Soljanin, "Quadratic gaussian source broadcast with individual bandwidth mismatches," 2012 IEEE Int. Symp. Inform. Theory (ISIT'12), Cambridge, MA, June 2012.
25. Y. Li, P. Vingelmann, M. V. Pedersen, and Emina Soljanin, "Round robin streaming with generations," 2012 Int. Symp. on Network Coding, (NetCod'12), Cambridge, MA, June 2012.
26. S. Kokalj, E. Soljanin, and P. Spasojevic,"Is rateless paradigm fitted for lossless compression of erasure-impaired sources?" invited for 49th Annual Allerton Conference, Monticello, IL, Sept. 2011.
27. A. Bhowmick, A. Rawat, E. Soljanin, and S. Vishwanath, "Update efficient codes for distributed storage," 2011 IEEE Int. Symp. Inform. Theory (ISIT'11), St. Petersburg, July 2011.
28. S. Kokalj-Filipovic, E. Soljanin, and Y. Gao, "Cliff effect suppression through multiple-descriptions with split personality," 2011 IEEE Int. Symp. Inform. Theory (ISIT'11), St. Petersburg, July 2011.
29. N. P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, "Update-Efficient Codes for Erasure Correction," invited for 48 th Annual Allerton Conference, Monticello, IL, Sept. 2010.
30. E. Soljanin, "Reducing Delay in Mobile Muti-Agent Information Relaying," invited for 48 th Annual Allerton Conference, Monticello, IL, Sept. 2010.
31. Y. Li, E. Soljanin, and P. Spasojević, "Collecting coded coupons over generations," 2010 IEEE Int. Symp. Inform. Theory (ISIT'10), Austin, USA, June 2010.
32. M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, "Memory allocation in distributed storage networks," 2010 IEEE Int. Symp. Inform. Theory(ISIT'10), Austin, USA, June 2010.
33. Y. Li, E. Soljanin, and P. Spasojević, "Collecting coded coupons over overlapping generations," 2010 Int. Symp. on Network Coding, (NetCod'10), Toronto, Canada, June 2010.
34. I. Andriyanova and E. Soljanin, "IR-HARQ schemes with finite-length punctured LDPC codes over the BEC," Proc. 2009 IEEE Int. Inform. Theory Workshop (ITW'09), Taormina, Italy, Oct. 2009.
35. Y. Li and E. Soljanin, "Rateless codes for single-server streaming to diverse users," in Proc. 48th Annual Allerton Conference, Monticello, IL, Sept. 2009.
36. Z. Kong, E. Yeh, and E. Soljanin, "Coding improves the throughput-delay trade-off in mobile wireless networks," 2009 IEEE Int. Symp. Inform. Theory (ISIT'09), Seul, Korea, July 2009.
37. S. Kokalj, P. Spasojevic, E. Soljanin, and R. Yates, "ARQ with doped Fountain decoding," Proc. 2008 IEEE Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA'08), Bologna, Italy, Aug. 2008.
38. S. Aly, Z. Kong, and E. Soljanin, "Raptor codes based distributed storage algorithms for large-scale wireless sensor networks," 2008 IEEE Int. Symp. Inform. Theory (ISIT'08), Toronto, Canada, July 2008.
39. A. Mills, B. Smith, T. C. Clancy, E. Soljanin, and S. Vishwanath "On secure communications over wireless erasure networks," 2008 IEEE Int. Symp. Inform. Theory (ISIT'08), Toronto, Canada, July 2008.
40. S. Aly, Z. Kong, and E. Soljanin, "Fountain codes based distributed storage algorithms for large-scale wireless sensor networks," in Proc. Int. Conf. Inform. Processing in Sensor Networks (IPSN'08), St. Louis, MO, USA, April 2008.
41. S. Kokalj, P. Spasojevic, R. Yates, and E. Soljanin, "Decentralized Fountain codes for minimumdelay data collection," Proc. 42 nd Annual Conference on Information Sciences and Systems (CISS'08), Princeton, NJ, March 2008.
42. Z. Kong, S. Aly, E. Soljanin, A. Klappenecker, and E. Yeh, "Network coding capacity of random wireless networks under a signal-to-interference-and-noise model," in Proc. 45th Annual Allerton Conference, Monticello, IL, Sept. 2007.
43. C Lott, O Milenkovic, and E. Soljanin, "Hybrid ARQ: theory, state of the art and future directions," in Proc. 2007 IEEE Int. Workshop Inform. Theory (ITW'07), Bergen, Norway, July 2007 (Invited)
44. S. El Rouayheb and E. Soljanin, "On wiretap networks II," 2007 IEEE Int. Symp. Inform. Theory (ISIT'07), Nice, France, June 2007.
45. S. El Rouayheb, C. N. Georghiades, E. Soljanin, A. Sprintson, "Bounds on codes based on graph theory," 2007 IEEE Int. Symp. Inform. Theory (ISIT'07), Nice, France, June 2007.
46. E. Soljanin, N. Varnica, and P. Whiting, "Raptor codes for hybrid ARQ," in Proc. 44 th Annual Allerton Conference, Monticello, IL, Oct. 2006.
47. O. Milenkovic and E. Soljanin, "Enumeration of RNA secondary structures: a constrained coding approach," 40th Asilomar Conference on Signals, Systems, and Computers, Monterey, California, Oct. 2006.
48. C. Chekuri, C. Fragouli, and E. Soljanin, "Achievable information rates in single-source non-uniform demand networks," in Proc. 2006 IEEE Int. Symp. Inform. Theory (ISIT'06), Seattle, WA, USA., July 2006.
49. O. Milenkovic, E. Soljanin, and P. Whiting, "Asymptotic spectra of trapping sets in irregular LDPC code ensembles," 2006 IEEE Int. Conf. Commun. (ICC '06), Istanbul, Turkey, June 2006.
50. E. Soljanin, N. Varnica, and P. Whiting, "Punctured vs rateless codes for hybrid ARQ," in Proc. 2006 IEEE Int. Inform. Theory Workshop (ITW'06), Punta del Este, Uruguay, March 2006. (invited)
51. Y. Shi and E. Soljanin, "On multicast in quantum networks," in Proc. 40 th Annual Conference on Inform. Sciences and Systems (CISS'06), Princeton, NJ, March 2006. (invited)
52. O. Milenkovic, E. Soljanin, and P. Whiting, "Stopping and trapping sets in generalized covering arrays," in Proc. 40 th Annual Conference on Information Sciences and Systems (CISS'06), Princeton, NJ, March 2006.
53. O. Milenkovic, E. Soljanin, and P. Whiting, "Asymptotic spectra of trapping sets in regular LDPC code ensembles," in Proc. 43 st Annual Allerton Conference, Monticello, IL, Oct. 2005.
54. C. Chekuri, C. Fragouli, and E. Soljanin, "On throughput benefits and alphabet size in network coding," 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), Adelaide, Australia, Sept.,2005.
55. E. Soljanin, N. Varnica, and P. Whiting, "LDPC codes for hybrid ARQ," 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), Adelaide, Australia, Sept. 2005.
56. R. Liu, P. Spasojevic, and E. Soljanin, "Cooperative diversity with incremental redundancy turbo coding for quasi-static wireless networks," in Proc. the 6th IEEE Internat. Workshop on Signal Processing Advances for Wireless Commun. (SPAWC'05), New York City, June 2005.
57. C. Fragouli and E. Soljanin, "Decentralized network coding," Proc. 2005 IEEE Int. Inform. Theory Workshop (ITW'04), San Antonio, TX, Oct. 2004.
58. C. Fragouli and E. Soljanin, "On average throughput benefits for network coding," Proc. 42 st Annual Allerton Conference, Monticello, IL, Oct. 2004.
59. R. Liu, P. Spasojevic, and E. Soljanin, "Performance analysis of multilevel punctured turbo codes," Proc. 42 sst Annual Allerton Conference, Monticello, IL, Oct. 2004.
60. A. Ashikhmin, N. Gopalakrishnan, J. Kim, E. Soljanin, and A. Wijngaarden, "On efficient link error prediction based on convex metrics," in Proc. IEEE Vehicular Technology Conference (VTC2004Fall), Los Angeles, CA, Sept. 2004.
61. C. Fragouli and E. Soljanin, "Subtree decomposition for network coding," Proc. 2004 IEEE Int. Symp. Inform. Theory (ISIT 2004), Chicago, USA, June 27-July 2, 2004.
62. R. Liu, P. Spasojevic, and E. Soljanin, "Reliable channel regions for good codes transmitted over parallel channels," Proc. 2004 IEEE Int. Symp. Inform. Theory (ISIT 2004), Chicago, USA, June 27July 2, 2004.
63. C. Fragouli and E. Soljanin, "A connection between network coding and convolutional codes," Proc. 2004 IEEE Int. Conf. Commun. (ICC'04), Paris, France, June 2004.
64. R. Liu, P. Spasojevic, and E. Soljanin, "Incremental multi-hop based on good punctured codes and its reliable hop rate," in Proc. IEEE Wireless Communications and Networking Conference 2004 (WCNC 2004), Atlanta, Georgia, Mar. 21-25, 2004.
65. C. Fragouli and E. Soljanin, and A. Shokrollahi, "Network coding as a coloring problem," in Proc. 38 Annual Conference on Information Sciences and Systems (CISS'04,) Princeton, NJ, March 2004. (invited)
66. R. Liu, P. Spasojevic, and E. Soljanin, "A throughput analysis of incremental redundancy hybrid ARQ schemes with turbo codes," in Proc. 38 Annual Conference on Information Sciences and Systems (CISS'04,) Princeton, NJ, March 2004.
67. R. Liu, P. Spasojevic, and E. Soljanin, "User cooperation with punctured turbo codes," Proc. 41st Annual Allerton Conference, Monticello, IL, Oct. 1-3, 2003.
68. R. Liu, P. Spasojevic, and E. Soljanin, "On the role of puncturing in hybrid ARQ schemes," 2003 Int. Symp. Inform. Theory (ISIT'03), Yokohama, Japan, June, 2003.
69. R. Liu, P. Spasojevic, and E. Soljanin, "Punctured turbo code ensembles," 2003 Inform. Theory Workshop (ITW'03), Paris, France, Mar. 31-Apr. 4, 2003.
70. E. Soljanin, R. Liu, and P. Spasojevic, "Hybrid ARQ with random transmission assignments," DIMACS Workshop on Network Information Theory, March 2003.
71. E. Soljanin and E. Offer, "LDPC codes: a group algebra formulation," 2001 Workshop on Coding and Cryptography (WCC'01), Paris, France, Jan. 2001.
72. A. Mojsilovic and E. Soljanin, "Quantization of color spaces by fibonacci lattices," 2001 IEEE Int. Symp. Inform. Theory (ISIT'01), Washington, DC, June 2001.
73. E. Soljanin, "Simple soft-output detection for magnetic recording channels," 2000 IEEE Int. Symp. Inform. Theory (ISIT'00), Sorrento, Italy, June 2000.
74. E. Offer and E. Soljanin, "On the efficiency of some suboptimal algorithms for bit decoding of binary codes," 2000 IEEE Int. Symp. Inform. Theory (ISIT'00), Sorrento, Italy, June 2000.
75. A. Mojsilovic and E. Soljanin, "Quantization of color spaces and processing of color images by Fibonacci lattices," 2000 SPIE Int. Symp. San Jose, CA, Jan. 2000.
76. E. Soljanin and A. van Wijngaarden, "On the capacity of distance enhancing constraints for high density magnetic recording channels," Proc. 1999 Workshop on Coding and Cryptography (WCC'99), Paris, France, Jan. 1999.
77. E. Soljanin, "Coding for Magnetic Recording Channels with Colored Noise and Intertrack Interference," Proc. 1998 Inform. Theory Workshop (ITW'98) San Diego, CA, Feb. 9-13, 1998., pp. 24.
78. B. Moision, P. H. Siegel, and E. Soljanin, "Error event characterization and coding for the equalized Lorentzian channel," 1998 IEEE Int. Symp. Inform. Theory (ISIT'98), Cambridge, MA, Aug. 1998.
79. E. Soljanin, "A Shannon Theoretic Study of Penrose Tilings," 1998 IEEE Int. Symp. Inform. Theory (ISIT'98), Cambridge, MA, Aug. 1998.
80. E. Soljanin, "Extended role of constrained coding in high density magnetic recording channels," Proc. 1997 IEEE Int. Workshop Inform. Theory (ITW'97), Longyearbyen, Norway, July 1997, (Invited)
81. B. Moision, P. H. Siegel, and E. Soljain, "Distance-enhancing codes for digital recording," Proc. 1997 IEEE Magnetic Rec. Conf. (TMRC'97) Minneapolis, MN, Sept. 1997.
82. E. Soljainin, "A coding scheme for generating dc-free sequences," International Magnetics Conference (INTERMAG'97), New Orleans, Louisiana, Apr. 1-4, 1997.
83. E. Soljanin, "Decoding techniques for some specially constructed dc-free codes," 1997 IEEE Int. Conf. Commun. (ICC 'g7), Montreal, Canada, June 1997.
84. E. Soljain and R. Urbanke, "On the performance of recursive decoding schemes," 1997 IEEE Int. Symp. Inform. Theory (ISIT'97), Ulm, Germany, July 1997.
85. E. Soljanin, "On coding for binary partial-response channels that don't achieve the matched-filterbound," Proc. 1996 Inform. Theory Workshop (ITW'96), Haifa, Israel, June 9-13, 1996, pp. 24. (Invited)
86. E. Soljanin and O. Agazzi, "An interleaved coding scheme for $(1-D)(1+D)^{2}$ partial response with concatenated Decoding," Proc. 1996 IEEE Global Telecommunications Conf. (GLOBECOM'96), London, UK, Nov. 1996.
87. E. Soljanin, "On-track and off-track distance properties of class 4 partial response channels," Proc. 1995 SPIE Int. Symp. on Vorce, Video, and Data Communications, Philadelphia, PA, Oct. 1995, vol. 2605, pp. 92-102.
88. E. Soljanin, C. N. Georghiades, "A five-head, three-track, magnetic recording channel," Proc. 1995 IEEE Int. Symp. Inform. Theory (ISIT'95), Whistler, Canada, Sept. 1995, pp. 244.
89. E. Soljanin, C. N. Georghiades, "Coding for two-head recording systems," IEEE Trans. Inform. Theory, pp. 747-755, May 1995.
90. E. Soljanin, C. N. Georghiades, "Two-track codes for magnetic recording channels," Proc. 1994 IEEE Int. Symp. Inform. Theory (ISIT'94), Trondheim, Norway, June 1994, pp. 150.
91. E. Soljanin, C. N. Georghiades, "Sliding-block codes for two-track magnetic recording channels," 28th Annual Conference on Inform. Sciences and Systems (CISS'94), Princeton, NJ, March 1994.
92. E. Soljanin, C. N. Georghiades, "On coding in multi-track, multi-head, digital recording systems," Proc. 1993 IEEE Global Telecommunications Conf. (GLOBECOM'93), Houston, TX, Dec. 1993, pp. 18-22.
93. B. Perunicic, S. Levi, M. Kezunovic, E. Soljanin, "Digital metering of active and reactive power in non-sinusoidal conditions using bilinear forms of voltage and current samples," Proc. IEEE Int. Symp. on Networks, Systems, and Signal Processing, Zagreb, Yugoslavia, June 1989.
94. D. Dervisevic and E. Soljanin, "Automatic generation control in hydro-thermal electric power systems," Lecture Notes in Control and Inform. Sciences Series vol. 113, Springer-Verlag, System Modeling and Optrmization, IFIP'87, pp. 549-557.
95. N. Bajraktarevic, N. Cerimovic, D. Pikula, E. Soljanin, "Software package for real-time modeling of electric power system operation," YU CIGRE, Cavtat, Yugoslavia, 1988. (in Serbo-Croatian)
96. E. Soljanin, D. Pikula, "Long-term hydro scheduling," 1987 Yug. Symp. on Operations Research (SIMOPIS '87), Brioni, Yugoslavia, 1987. (in Serbo-Croatian)
97. Z. Tica, N. Cerimovic, D. Hadziosmanovic, D. Pikula, E. Soljanin, "Software package for long-term planning of electric power systems," YU CIGRE, Cavtat, Yugoslavia, 1986. (in Serbo-Croatian)

## BOOKS, BOOK CHAPTERS, EDITING

1. C. Fragouli and E. Soljanin, invited monograph, Network Coding Fundamentals, Foundations and Trends in Networking. Hanover, MA: now Publishers Inc., June 2007.
2. C. Fragouli and E. Soljanin, invited monograph, Network Coding Applications, Foundations and Trends in Networking. Hanover, MA: now Publishers Inc., Jan. 2008.
3. Advances in Information Recording, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, v. 73, American Mathematical Society, 2008, Paul H. Siegel, Emina Soijanin, B. Vasic̀, and A. J. van Wijngaarden, eds.
4. E. Soljanin, R. Liu, P. Spasojević, "Hybrid ARQ with random transmission assignments," in Advances in Network Information Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, v. 66, American Mathematical Society, 2004. P. Gupta, G. Kramer, and A. Wijngarden, eds.
5. B. Marcus and E. Soljanin, "Modulation codes for storage systems," in The Computer Engineering Handbook, Boca Raton: CRC Press, 2002, V. G. Oklobdzija, ed.
6. E. Offer and E. Soljanin, "An algebraic description of iterative decoding schemes," IMA Volumes in Mathematics and its Applications v. 123, Springer-Verlag, 2001, B. Marcus and J. Rosenthal, eds.

## SELECTED INVITED TUTORIAL/EXPOSITORY TALKS

1. "Network coding: a combinatorial framework and an open problem," BIRS Workshop on Mathematics of Communications: Sequences, Codes and Designs, Banff, January 2015.
2. "Basics of Network Coding," BIRS Workshop on Applications of Matroid Theory and Combinatorial Optimization to Information and Coding Theory, Banff, August 2009.
3. "Network Coding: Theory and Practice," 2007 IEEE Int. Symp. Inform. Theory (ISIT'07), Nice, France, June 2007.
4. "Hybrid ARQ: State of the Art," 2007 IEEE Int. Inform. Theory Workshop (ITW'07), Bergen, Norway, July 2007.

## SELECTED PLENARY AND INVITED RESEARCH TALKS

1. Queues for Data Access from Coded Distributed Storage, 18th INFORMS Applied Probability Society Conference, Istanbul, July. 2015.
2. Cloud Storage Space vs. Download Time for Latge Files, NYIT REU Program, New York, June 2015.
3. Storage Codes and Data Retrieval, Workshop on Coding: From Practice to Theory, The Simons Institute for the Theory of Computing, UC Berkeley, Feb. 2015.
4. Codes for Storage unth Queues for Access, Workshop on Inform. Theory and Applic. (ITA), UCSD, Feb. 2015.
5. Codes For All Seasons, plenary talk at 2014 IEEE Workshop on Inform. Theory, Nov. 2014.
6. Urns $\mathcal{E}$ Balls and Communications, Dept. of Statistics, Univ, of Auckland, Nov. 2014.
7. How Does Applied Math Become Applicable? MIT Graduate Women (GW6) student group coffee hour seminar, May 2014.
8. A coding Tale of a Tail at Scale, Stanford, Apr. 2014.
9. How Should We Code in Multicast to Diverse Users and What For? Stanford, Apr. 2014, and University of Hawaii, Nov. 2014.
10. Secret Lives of Codes: From Theory to Practice and Back 2013 Padovani Lecture at the 2013 North American School of Information Theory, Purdue University, June 2013.
11. Is Coding Beyond the Physical Layer Helpful in Content Centric Networking?, Workshop on Inform. Theory and Applic. (ITA), UCSD Feb. 2013.
12. Rateless Codes for Efficient Content Download in Highly Heterogeneous Scenarios, Aalborg University, Sept. 2012.
13. Pushing Codes into Clouds, NSF Workshop on Communication Theory and Signal Processing in the Cloud Era, Berkeley, June 2012.
14. Urns 8 Balls and Communications, MIT Math Seminar, Apr. 2012.
15. What are Good Coding Schemes for Multicast in Heterogeneous Wireless Networks? International Zurich Seminar on Communications, March 2012.
16. How Does Applied Math Become Applicable? plenary talk at Workshop on Inform. Theory and Applic. (ITA), UCSD Jan. 2012.
17. Three Types of Redundancy Against Three Sources of Delay, UIUC CSL Seminar, Apr. 2011.
18. Double Dixie Cup Unicast, UIUC CS Theory Seminar, Apr. 2011, Dagstuhl Seminar on Coding Theory, Nov. 2011.
19. Content Preparation, Delivery, and Storage for Highly Heterogenous Networks, EPFL, Oct. 2011, MIT EECS, Sept. 2011.
20. Urns $\mathcal{E}$ Balls and Communications, 2013 North American School of Information Theory, UT Austin, May 2011.
21. On Storing and Retrieving (Coded) Data in Mobile P2P Networks, Isaac Newton Institute for Mathematical Sciences, special programme on Stochastic Processes in Communication Sciences, Cambridge, UK, April 2010.
22. Coded Streaming in Heterogenous Networks, BL/HHI Joint Workshop, June 2011, ENST Sept. 2011.
23. Coding for Delay in Networks, Texas A\&M, Mar. 2011, ETIS/CNRS, Sept. 2011.
24. Quantum Network Multicast and Coding, International Seminar on Quantum Networking (Towards Quantum Internet, Madrid, June 2009.
25. Two (Non)standardized Applications of Fountain Codes, ETH Zürich, December 2008.
26. Coding Technologies: Trends, Challenges, Opportunitees and Applications, Alcatel-Lucent Technical Academy, Antwerp, Belgium, July 2008.
27. On Wiretap Networks Implementing Network Coding, EPFL, Feb. 2008, Universität Zürich, October 2008, Univ. Collage Cork Coding and Cryptography, May 2008.
28. Coding Based P2P Storage and Distribution, EPFL, Apr. 2008, Univ. Coliage Cork Workshop Coding and Cryptography, May 2008, Supélec June 2008.
29. Von Neumann Entropy in Quantum Data Compression, EPFL \& UMLV Workshop on Entropy, Sept. 2008.
30. On the Throughput/Delay Tradeoff in Mobile Ad-Hoc Networks Implementing Network Coding, Workshop on Inform. Theory and Applic. (ITA), UCSD Jan. 2008. Princeton, Supélec and Bell Labs Workshop on Wireless Networks, Princeton, Feb. 2008.
31. Hybrid ARQ: Theory, State of the Art, and Future Directions, EPFL, April 2008, ENST June 2008, and University of Arizona, EE, Nov. 2007.
32. On Benefits of Network Coding in Content Distrubution, University of California Los Angeles (UCLA) and University of Arizona, Math, Nov. 2007.
33. Punctured vs Rateless Codes For Hybrid ARQ, Tsinghua University, Bejing, Oct. 2006, IEEE Int. Inform. Theory Workshop (ITW'06), Punta del Este, Uruguay, March 2006.
34. On Throughput Benefits of Network Coding, University of Southern California, Los Angeles, Aug. 2006, International Workshop on Wireless Ad Hoc \& Sensor Networks (IWWAN 2006), New York, June 2006, CUBIN/ACoRN Inform. Theory Workshop, Melbourne, Australia, Sept. 2005.
35. Some Computer Science Problems in Network Coding, 2004 IEEE Inform. Theory Workshop, San Antonio, Texas, Oct. 2004.
36. Network Coding: from Graph Theory to Algebraic Geometry, EECS Distinguished Lecture Series, Univesrity of Michigan at Ann Arbor, Jan. 2003, and Columbia University, Feb. 2003.
37. Frames in Quantum and Classical Information Theory, EPFL, Lausanne, Switzerland, June 2004, Institute for Quantum Information Seminar, Caltech, Sept. 2003, Quantum Computing Seminar, Texas A\&M University, April 2003, and DIMACS Workshop on Source Coding and Harmonic Analysis, May 2002
38. Network Coding Based on Subtree Decomposition, EE Seminar, Brooklyn Polytechnic University, Oct. 2003, and Information Science \& Technology Seminar, Caltech, Sept. 2003.
39. Hybrid ARQ in Wireless Networks, Wireless Communications Lab Seminar, Texas A\&M University, April 2003.
40. Algebra of LDPC Codes, AMS 2002 National Meeting, San Diego, CA, Jan. 2002, and Technical University, Ulm, Germany, Oct. 2000.
41. Quantum Data Compression, MSRI Information Theory Workshop, Berkeley, CA, Feb. 2002.
42. LDPC Codes: A Group Algebra Formulation," DIMACS Workshop on Codes and Complexity, Dec. 2001.
43. Writing sequences on the plane, DIMACS Mixer Seminar Series, Florham Park, NJ, Sept. 2001.
44. On Quantum Source Coding Problems Beyond the Schumacher Compression, AMS 2001 Spring Eastern Section Meeting, Hoboken, NJ, April 2001.
45. Applicatzon of Distance Enhancing Modulation Codes to High Denstty Magnetic Recording Systems, TMRC 2000, Santa Clara, CA, Aug. 2000.
46. A Shannon Theoretic Study of Penrose Tilings, Ecole Nationale Supérieure des Télécommunications (ENST), Paris, France, Jan. 1999.
47. Writing Sequences on the Plane, Lehrstuhl für Nachrichtentechnik, TU München, Munich, Germany, Oct. 1999.
48. On the Role of Channel Distance Properties in Partial Response Signalng, Lehrstuhl für Nachrichtentechnik, TU München, Munich, Germany, July 1999, and UC Berkeley, Berkeley, CA, Nov. 1997.
49. Coding for Magnetic Recording Channels with Colored Noise and Intertrack Interference, 1998 Na tional Storage Industry Consortium (NSIC'98), Berkeley, CA, Jan. 1998.
50. The Multi-User Problem in Magnetic Recording, AT\&T Labs - Research, Florham Park, NJ, March 1998.
51. Coding in Recording and Transmıssion Systems, Brown University, Department of Applied Mathematics, Providence, RI, April 1996.
52. On Coding for Binary Partial-Response Channels that don't Achieve the Matched-Filter-Bound, University of California at San Diego, Center for Magnetic Recording Research, San Diego, CA, May 1996.

## SELECTED RESEARCH REPORTS

1. E. Soljanin, "Raptor codes: from a math idea to LTE eMBMS," Bell Labs Internal Report, 2013.
2. R. Alface, S. Kokalj, J-F. Macq, C. Nuzman, and E. Soljanin, "Video Coding for Customized Direct Access," Bell Labs Internal Report, Dec. 2011.
3. U. Niesen, E. Soljanin, and G. Tucci, "Structured matrices for compressed sensing applications," Bell Labs Internal Report, June 2011.
4. A. Ashikhmin, E. Soljanin, R. Liu, and P. Spasojevic, "Hybrid ARQ for wireless networks: analysis of the standard scheme and directions for improvements," Bell Labs Internal Report, Oct. 2002.
5. E. Soljanin, "Spectrum shaping codes for 10Gb/s ethernet," Bell Labs Internal Report, Sept. 1999.
6. E. Soljanin, "Penrose tiling and recording data on the plane," Bell Labs Internal Report, Oct. 1998.
7. A. Barg, E. Soljanin, and R. Urbanke, "Efficient forward error correction for Lucent Technologies SONET Terminals," Bell Labs Internal Report, Sept. 1998.
8. E. Soljanin and R. Urbanke, "An efficient architecture for implementation of a multiplier and inverter in GF $\left(2^{8}\right)$, Bell Labs Internal Report, Mar. 1996.
9. C. N. Georghiades, E. Soljanin, K. Chang, R. Velidi, L. Cavalheiro, "Communications in intelligent vehicle highway systems,"Research Report 1245-3, Texas Transportation Institute, September 1990 - August 1991.
10. C. N. Georghiades, S. Patarasen, E. Soljanin, H. Jardak, W. Wills, "Communications in intelligent vehicle highway systems,"Research Report 1245-2, Texas Transportation Institute, Jan.- Aug. 1990.

LSI Corp. Exhibit 1010
Page 116

## PATENTS

1. A. Emad, C. Nuzman, and E. Soljanin, "Methods and systems for determining crosstalk for a line in a vectored system," Patent Application, filed June 2015.
2. C. Nuzman, E. Soljanin, and A. Tulino, "Methods and systems for determining crosstalk for a joining line in a vectored system," Patent Application, filed May 2014.
3. K. Guo, E. Soljanin, and T. Wu, "Secure file transfers within network-based storage," Patent Application, filed Aug. 2013.
4. K. Guan, E. Soljanin, and P. Winzer, "Secure Data Transmission via Spatially Multiplexed Optical Signals," Patent Application, filed Dec. 2012.
5. K. Guan, E. Soljanin, and P. Winzer, "Optical fibers with varied mode-dependent loss," Patent Application, filed Dec. 2012.
6. S. Kokalj-Filipovic, and E. Soljanin, "System and method for mitigating the cliff effect for content delivery over a heterogeneous network," Patent Application, filed Feb. 2011.
7. T. Marzetta and E. Soljanin, "Secure compressive sampling using codebook of sampling matrices," Patent Application, filed December 2009.
8. S. Aly, Z. Kong, and E. Soljanin, "Distributed storage in wireless sensor networks," Patent Applhcation, filed June 2008.
9. E. Soljanin, N. Varnica, and P. Whiting, "Encoded Transmission," U.S. Patent 7,669, 103, Feb. 2010.
10. A. Ashikhmin, N. Gopalakrishnan, J. Kim, E. Soljanin, and A. Wijngaarden "Method and apparatus for link error prediction in a communication system," U.S. Patent 7331009, Feb. 2008.
11. A. Mojsilovic and E. Soljanin, "Method of color quantization in color images," U.S. Patent 6,898,308, May 2005.
12. A. Mojsilovic and E. Soljanin, "Method of color quantization in color images," U.S. Patent 6,678,406, Jan. 2004.
13. E. Soljanin and A. van Wijngaarden, "Method and apparatus for implementing run-length limited and maximum-transition-run codes," U.S. Patent 6,2417,78, June 2001.
14. E. Soljanin, "A low disparity coding method for digital data," U.S. Patent 6188337, Feb. 2001; Europ. Patent 00304355.1-2216, July 2000.
15. A. Mojsilovic and E. Soljanin, "Method of color quantization in color images," Europ. Patent 00306489.6-2202, Oct. 2000.
16. N. Sayiner and E. Soljanin, "Method of detecting dc-free sequences," U.S. Patent 5,910,969, June 1999.
17. E. Soljanin, "Method and apparatus for generating dc-free sequences," U.S. Patent 5,608,997, Mar. 1997.
18. E. Soljanin, "Method and apparatus for generating dc-free sequences," U.S. Patent 5,608,997, Mar. 1997.

UNITED STATES PATENT AND TRADEMARK OFFICE
$\qquad$

BEFORE THE PATENT TRIAL AND APPEAL BOARD

LSI CORPORATION and AVAGO TECHNOLOGIES U.S., INC. Petitioner,
v.

REGENTS OF THE UNIVERSITY OF MINNESOTA Patent Owner.
$\qquad$

Case No. IPR2017-01068
Patent No. 5,859,601

DECLARATION OF PROFESSOR EMINA SOLJANIN, PH.D.
REGARDING U.S. PATENT NO. 5,859,601

LSI Corp. Exhibit 1010 Page 1

> I, Emina Soljanin, Ph.D., do hereby declare and state, that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true. I am over the age of 21 and am competent to make this declaration. These statements were made with the knowledge that willful false statements are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code.

Dated: $3 / 9 \quad, 2017$
$\qquad$

Emina Soljanin, Ph.D.

2

## TABLE OF CONTENTS

I. INTRODUCTION AND QUALIFICATIONS ..... 1
A. Introduction ..... 1
B. Qualifications ..... 2
II. MATERIALS REVIEWED ..... 6
III. PERSON OF ORDINARY SKILL IN THE ART OF THE '601 PATENT . 6
IV. STANDARDS OF ANTICIPATION AND OBVIOUSNESS ..... 8
V. THE ' 601 PATENT ..... 18
VI. CLAIM CONSTRUCTION ..... 25
VII. CLAIMS 1, 2, 8-10, AND 13-17 ARE ANTICIPATED BY OKADA ..... 29
A. Claim 1 is anticipated by Okada ..... 30
B. Claim 2 is anticipated by Okada ..... 42
C. Claim 8 is anticipated by Okada ..... 43
D. Claim 9 is anticipated by Okada ..... 43
E. Claim 10 is anticipated by Okada ..... 43
F. Claim 13 is anticipated by Okada ..... 45
G. Claim 14 is anticipated by Okada ..... 47
H. Claim 15 is anticipated by Okada ..... 47
I. Claim 16 is anticipated by Okada ..... 47
J. Claim 17 is anticipated by Okada ..... 48
VIII. CLAIMS $1,2,8-10$, AND 13-17 ARE ANTICIPATED BY TSANG ..... 48
A. Claim 1 is anticipated by Tsang ..... 49
B. Claim 2 is anticipated by Tsang ..... 59
C. Claim 8 is anticipated by Tsang ..... 59
D. Claim 9 is anticipated by Tsang ..... 59
E. Claim 10 is anticipated by Tsang ..... 60
F. Claim 13 is anticipated by Tsang ..... 61
G. Claim 14 is anticipated by Tsang ..... 63
H. Claim 15 is anticipated by Tsang ..... 64
I. Claim 16 is anticipated by Tsang ..... 64
J. Claim 17 is anticipated by Tsang ..... 65
IX. CLAIMS 12 AND 21 ARE OBVIOUS OVER OKADA IN VIEW OF SHIMODA ..... 65
A. Claim 12 is obvious over Okada in view of Shimoda ..... 65
B. Claim 21 is obvious over Okada in view of Shimoda. ..... 73
X. CLAIMS 12 AND 21 ARE OBVIOUS OVER TSANG IN VIEW OF SHIMODA ..... 74
A. Claim 12 is obvious over Tsang in view of Shimoda ..... 74
B. Claim 21 is obvious over Tsang in view of Shimoda. ..... 77
XI. SECONDARY CONSIDERATIONS OF NON-OBVIOUSNESS ..... 78
XII. CONCLUSION. ..... 79

## I. INTRODUCTION AND QUALIFICATIONS

## A. Introduction

1. I, Dr. Emina Soljanin, submit this declaration in support of LSI

Corporation and Avago Technologies U.S. Inc.'s ("Petitioners"), Petition for Inter Partes Review ("IPR") of claims 1, 2, 8-10, 12-17, and 21 ("the Challenged Claims") of U.S. Patent 5,859,601 ("the ' 601 patent"). I understand that the ' 601 patent is currently owned by the Regents of the University of Minnesota ("Patent Owner").
2. I have been asked to provide my opinion about the state of the art of the technology described in the ' 601 patent and on the patentability of certain claims of this patent.
3. The statements herein include my opinions and the bases for those opinions, which relate to the following documents:

1001	U.S. Patent No. 5,859,601 ("the '601 patent")
1002	Patent Owner's Complaint (without exhibits)
1003	First Amended Complaint (without exhibits)
1004	Affidavit of Service on LSI Corporation
1005	Affidavit of Service on Avago Tech. U.S.


1006	File History of U.S. Patent No. 5,859,601
1007	U.S. Patent No. 5,392,270 ("Okada")
1008	U.S. Patent No. 5,341,386 ("Shimoda")
1009	U.S. Patent No. 5,731,768 ("Tsang")
1011	Okada Tables showing data in NRZI format
1012	Maximum Transition Run Codes for Data Storage   Systems, Moon and Brickner, Sept. 5, 1996

4. Although I am being compensated for my time at a rate of $\$ 420$ per hour in preparing this declaration, the opinions herein are my own. I have no stake in the outcome of this IPR proceeding. My compensation does not depend in any way on the outcome of the Petitioner's petition or this IPR proceeding.

## B. Qualifications

5. I am currently a professor of electrical and computer engineering at Rutgers University. My research interests are broad, but mainly concern theoretical understanding and practical solutions that enable efficient, reliable, and secure operation of communications networks. I also have expertise and interest in power systems and quantum computation.
6. My research has been funded by the National Science Foundation, the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), DARPA, and other funding agencies.
7. All of my degrees are in electrical engineering. I earned a European Diploma degree from the University of Sarajevo, Bosnia, in 1986, and PhD and MS degrees from Texas A \& M University in 1989 and 1994, respectively.
8. Between my studies at the University of Sarajevo and my graduate studies, from 1986 to 1989, I worked in industry developing optimization algorithms and software for power system control.
9. Upon earning my PhD, I joined Bell Laboratories in Murray Hill, NJ, where I was a Member of the Technical Staff in the Mathematics of Networks and Communications research department. Over a dozen alumni of Bell Labs have won the Nobel prize in physics, with several more having been awarded the Turing Award, the highest distinction in computer science. In 2004 I was elevated to Distinguished Member of the Technical Staff.
10. During my time at Bell Labs I was also an adjunct professor, guest lecturer, or visiting professor at various academic institutions around the world including, Columbia University, ENSE in Cergy-Pontoise, France, the University College Dublin, and others. I also mentored many students, interns, and postdoctoral researchers during that time.
11. In the course of my twenty year employment with Bell Labs, I participated in a very wide range of research and business projects. These projects include designing the first distance enhancing codes to be implemented in commercial magnetic storage devices.
12. Other projects that I worked on at Bell Labs included the first forward error correction for Lucent's optical transmission devices, color space quantization and color image processing, quantum computation, link error prediction methods for the third generation wireless network standards, and anomaly and intrusion detection. Some of my most recent activities are in the area of network and application layer coding.
13. According to the Patent Owner, the alleged invention of ' 601 patent is a "maximum transition run" ("MTR") code featuring a "j constraint" which "imposes a limit on the maximum number of consecutive transitions that are written to the disk" of a hard drive disk. (Ex. 1003, at $4 \pi 65-72$.) I was conducting research in this area before the ' 601 patent was filed.
14. The inventors of the ' 601 patent authored a paper published in 1996 entitled "Maximum Transition Run Codes for Data Storage Systems," which is attached as Appendix A (and is also Exhibit 1012). The Patent Owner asserts that this so-called "Moon 1996 IEEE Paper" is "substantially similar to the '601 Patent." (Ex. 1003, at ब $91-52$.) This is noteworthy because the inventors
confirmed in their paper that I, in my "independent study," had found that "removing long runs of consecutive transitions" can improve the performance of data storage systems. (Appendix A, first page, right column (citing reference [6].) My work was presented at a public conference in October 1995. (Appendix A, Reference [6].) It also resulted in a paper published in 1995 entitled "On-track and off-track distance properties of class 4 partial response channels," which is attached as Appendix B.
15. I also note that the face of the ' 601 patent cites as prior art one of my own patents, U.S. Patent No. 5,608,397, which is entitled "Method and apparatus for generating DC-free sequences." Besides that patent, I am the inventor of ten other issued U.S. patents. I am also the named inventor on a variety of additional patent applications that are pending at this time.
16. I have authored numerous peer-reviewed journal and conference publications, as well as books and book chapters. Among other professional recognitions, I was elected an IEEE Fellow for my "contributions to coding theory and coding schemes for transmission and storage systems."
17. My curriculum vitae includes additional details about my experience and professional background. It is attached as Appendix C.

## II. MATERIALS REVIEWED

18. My opinions are based on years of education, research and experience, as well as investigation and study of relevant materials. In forming my opinions, I have considered the materials identified in this report, including the Exhibits mentioned above.
19. I may rely upon these materials and/or additional materials to respond to arguments raised by the Patent Owner. I may also consider additional documents and information in forming any necessary opinions-including documents that may not yet have been provided to me.
20. My analysis of the materials produced in this investigation is ongoing and I will continue to review any new material as it is provided. This report represents only those opinions I have formed to date. I reserve the right to revise, supplement, and/or amend my opinions stated herein based on new information and on my continuing analysis of the materials already provided.

## III. PERSON OF ORDINARY SKILL IN THE ART OF THE ‘601 PATENT

21. I have been informed that the ' 601 patent and its claims, as well as the prior art, are interpreted the way a hypothetical person having ordinary skill in the relevant art would have interpreted these materials at the time of the invention. I understand that the "time of the invention" in this IPR proceeding is the earliest "priority date" that the applicant for the " 601 patent claimed in the United States

Patent \& Trademark Office ("USPTO"). Here, the face of the patent indicates that the application claims priority to a provisional patent application filed April 5, 1996. As mentioned above, I was conducting research in the relevant technological field at that time.
22. In determining the characteristics of a person of ordinary skill in the art at the time of the claimed invention, I considered several things, including the factors discussed below, as well as (1) the levels of education and experience of the inventor and other persons actively working in the relevant field; (2) the types of problems encountered in the field; (3) prior art solutions to these problems; (4) the rapidity in which innovations are made; and (5) the sophistication of the relevant technology. I also placed myself back in the relevant time period and considered the individuals that I had worked with in the field.
23. It is my opinion that a person having ordinary skill in the relevant art at the time of the invention would have been someone with at least an undergraduate degree in electrical engineering or similar field, and three years of industry experience in the field of read channel technology.
24. I understand that a person of ordinary skill in the relevant art is a hypothetical person who is assumed to be aware of all the pertinent information that qualifies as prior art. He or she is a person of ordinary creativity, not an automaton. He or she makes inferences and takes creative steps. In addition, a
person of ordinary skill recognizes that prior art items may have obvious uses beyond their primary purposes, and in many cases he or she will be able to fit the teachings of multiple pieces of prior art together like pieces of a puzzle.
25. I am prepared to testify as an expert in this field and also as someone who had at least the knowledge of a person having ordinary skill in the art at the time of the claimed invention, and someone who worked with others that had at least the knowledge of a person having ordinary skill in the art at the time of the alleged invention.
26. Unless otherwise stated, my statements below refer to the knowledge, beliefs and abilities of a person having ordinary skill with respect to the arts relevant to the ' 601 patent at the time of the claimed invention.

## IV. STANDARDS OF ANTICIPATION AND OBVIOUSNESS

27. I offer no opinions on the law. However, I have developed an understanding of several legal principles regarding invalidity of patent claims, and other relevant legal issues. I have applied this understanding in arriving at my stated opinions and conclusions in this declaration.
28. I understand that the ' 601 patent contains independent and dependent claims. An independent claim is one that does not refer to other claims in the patent, and it must be read separately from the other claims to determine the scope of such a claim. On the other hand, a dependent claim refers to at least one other
claim in the patent. Such a claim incorporates all of the elements of any claim to which the dependent claim refers, as well as the additional elements recited in the dependent claim itself.
29. I understand that, for example in federal district court infringement actions, a claim in an issued patent is presumed to be valid. In such federal court actions, a patent claim can be "invalidated" upon a showing of clear and convincing evidence. This is not such an action.
30. I understand that in an IPR proceeding, the Petitioner has the burden of proving a proposition of "unpatentability" by a "preponderance of the evidence." I understand that preponderance of the evidence means the greater weight of evidence. In an IPR proceeding, the USPTO may cancel "as unpatentable" one or more claims of a patent on a ground that could be raised under section 102 or 103 of the Patent Act, and only on the basis of prior art consisting of patents or printed publications.
31. I understand that section 102 deals with the "novelty" of patent claims. I understand that under section 102(a), a person is not entitled to a patent if, among other things, the invention was patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for patent. Under section 102(b), a person is not entitled to a patent if, among other things, the invention was patented or described in a printed
publication in this or a foreign country, more than one year prior to the date of the application for patent in the United States. Under section 102(e), a person is not entitled to a patent if the invention was described in a published or issued patent application that was filed by another in the United States before the invention by the applicant for patent. Under section $102(\mathrm{~g})$, a person is not entitled to a patent if, before the applicant's invention, the invention was made in the United States by another inventor who had not abandoned, suppressed, or concealed it.
32. I understand that prior art under one or more of these provisions can include, for example but not limited to, one or more of printed publications, patent applications, published patent applications, and domestic, foreign patents, or international patents. These are sometimes referred to as prior art "references."
33. I understand that in order for a claim to be unpatentable for lack of novelty, i.e., anticipated, a single prior art reference must disclose each and every claim limitation of that patent claim. It is not considered in a void, rather, one must take into account what a person having ordinary skill in the art would have understood from the reference. I also understand that one should consider not only what is expressly disclosed in the prior art reference, but also what would naturally, inherently have been understood from what is disclosed in the prior art reference. I understand that to prove inherency, the matter that is not expressly
described must be necessarily present in the reference, and it would be so recognized by an ordinarily skilled artisan.
34. I understand that in order to cancel as unpatentable a dependent claim, all elements of that dependent claim and the claim (or claims) from which it depends must be disclosed or suggested in the prior art.
35. I understand that determining anticipation of a patent claim requires a comparison of the properly construed claim language to the prior art on an element-by-element basis. As it pertains to an IPR proceeding, a claim is "anticipated" if each and every element of the claim, as properly construed, has been disclosed in a single prior art reference, either expressly or inherently, and the claimed arrangement or combination of those elements must also be disclosed, either expressly or inherently, in that same prior art reference.
36. I also understand that while anticipation cannot be established by combining references, additional references may be used to interpret the anticipating reference by, for example, indicating what the anticipating reference would have meant to one having ordinary skill in the art. Additionally, the description provided in the prior art must be such that a person of ordinary skill could, based on the reference, practice the invention without undue experimentation.
37. I understand that section 103 of the Patent Act deals with "obviousness" of patent claims. In particular I understand that a patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains.
38. My understanding is that a patent claim is obvious-and therefore can be cancelled as unpatentable in an IPR-if the claimed subject matter as a whole would have been obvious to a person of ordinary skill as of the date of the invention. I understand that this determination is made after weighing the following factors: (1) the level of ordinary skill in the relevant art; (2) the scope and content of the prior art; (3) the differences between the prior art as a whole and the claim at issue; and (4) when such evidence is made of record, secondary considerations of non-obviousness.
39. I understand that the knowledge and understanding of a person having ordinary skill in the art provides a reference point from which the prior art and claimed invention should be viewed. This reference point prevents one from using his or her own hindsight in deciding whether a claim is obvious, but I understand that if a person of ordinary skill can implement the claimed invention as a
predictable variation of a prior art device or method, then the claim may be rendered obvious.
40. As stated earlier, a person having ordinary skill in the art is presumed to have knowledge of the relevant prior art at the time of the claimed invention. I understand that in order for references to be used in an obviousness analysis, the prior art references should be "analogous" to the claimed invention. I understand that a reference is analogous art to the claimed invention if: (1) the reference is from the same field of endeavor as the claimed invention (even if it addresses a different problem); or (2) the reference is reasonably pertinent to the problem faced by the inventor (even if it is not in the same field of endeavor as the claimed invention). A reference is "reasonably pertinent" to the problem if it would have logically commended itself to an inventor's attention in considering his or her problem.
41. I understand that an obviousness evaluation can be made using a single prior art reference or a combination of multiple references. I understand that a proper analysis as to the combination of two or more references generally requires a reason that would have motivated a skilled artisan to combine the elements of multiple references in the way the claimed invention does. I understand that the prior art references themselves may provide a suggestion, motivation, or reason to combine. This suggestion may be found in the art
explicitly or implicitly. I further understand that market demand, rather than scientific literature, often drives innovation, and that a motivation to combine references may be supplied by the direction of the marketplace or other external factors. I understand that advances that would occur in the ordinary course without real innovation are unpatentable.
42. I understand further that "common sense" may, in some circumstances properly be used in an obviousness analysis. First, common sense can be invoked to provide a known motivation to combine references. Second, common sense can be invoked to supply a limitation that is missing from the prior art if the limitation in question is unusually simple and the technology particularly straightforward. In either case, a reference to common sense cannot be used as a wholesale substitute for reasoned analysis and evidentiary support, especially when dealing with a limitation missing from the prior art references specified.
43. I understand that a particular combination may be proven obvious merely by showing that it was "obvious to try" that combination. For example, when there is a design need or market pressure to solve a problem and there are a finite number of identified, predictable solutions, a person of ordinary skill has good reason to pursue the known options within his or her technical grasp because the result is likely the product not of innovation but of ordinary skill and common sense.
44. I further understand that a proper obviousness analysis focuses on what was known or obvious to a person having ordinary skill, not just the patentee. Accordingly, I understand that any need or problem known in the field of endeavor at the time of the alleged invention and addressed by the patent can provide a reason for combining the elements in the manner claimed.
45. In summary, my understanding is that prior art references or teachings are properly combined where a person having ordinary skill, having the understanding and knowledge reflected in the prior art and motivated by the general problem facing the inventor, would have been led to make the combination of elements recited in the claim. Under this analysis, the prior art references themselves, or any need or problem known in the field of endeavor at the time of the claimed invention, can provide a reason for combining the elements of multiple prior art references in the claimed manner.
46. Further, I understand that at least the following rationales may support a finding of obviousness:
a. Combining prior art elements according to known methods to yield predictable results;
b. Simple substitution of one known element for another to obtain predictable results;
c. Use of a known technique to improve similar devices (methods, products) in the same way;
d. Applying a known technique to a known device (method or product) ready for improvement to yield predictable results;
e. "Obvious to try"-choosing from a finite number of identified, predictable solutions, with a reasonable expectation of success;
f. A predictable variation of work in the same or different field of endeavor if a person having ordinary skill would be able to implement the variation;
g. If, at the time of the alleged invention, there existed a known problem for which there was an obvious solution encompassed by the patent's claims;
h. Known work in one field of endeavor may prompt variations of it for use in either the same or a different field based on design incentives or other market forces if the variations would have been predictable to a person having ordinary skill; and
i. Some teaching, suggestion, or motivation in the prior art that would have led a person having ordinary skill in the art to modify the prior art reference or to combine prior art reference teachings to arrive at the claimed invention.
47. I earlier referred to secondary considerations of non-obviousness. I understand that these may include: (1) whether the invention proceeded in a direction contrary to accepted wisdom in the field; (2) whether there was a long felt but unresolved need in the art that was satisfied by the invention; (3) whether others had tried but failed to make the invention; (4) whether others copied the invention; (5) whether the invention achieved unexpected results; (6) whether the invention was praised by others; (7) whether others have taken licenses to the invention; (8) whether experts or those skilled in the art expressed surprise or disbelief regarding the invention; (9) whether products incorporating the invention have achieved commercial success that is attributable to the invention; and (10) whether or not others having ordinary skill in the field independently made the claimed invention at about the same time the inventor made the invention.
48. I understand that alleged secondary considerations evidence is not relevant unless the patentee can establish a connection or nexus between the secondary consideration and the claimed invention. For example, evidence that allegedly shows commercial success is not relevant unless there is a showing that the success of the product is related to a feature recited in the patent claims. If, however, the commercial success is due to things like advertising, promotion, or salesmanship, or if it is due to features of the product other than the claimed
invention, then any commercial success should not be considered an indication of non-obviousness.
49. Okada is a U.S. patent that issued on February 21, 1995, and thus, as informed by counsel, is prior art under 35 U.S.C. §102(b). (Ex. 1007.) Okada was not cited by the applicant or the USPTO during the prosecution of the application leading to the '601 patent.
50. Shimoda is a U.S. patent that issued on August 23, 1994. It is thus, as informed by counsel, prior art under 35 U.S.C. §102(b). (Ex. 1008.) Shimoda was not cited during the prosecution of the application leading to the ' 601 patent.
51. Tsang is a U.S. patent that was filed on January 31, 1996, and thus, as informed by counsel, is prior art under 35 U.S.C. $\S \S 102(\mathrm{e})$ and/or 102(g). (Ex. 1009.) Tsang was not cited during the prosecution of the application leading to the '601 patent.

## V. THE ' 601 PATENT

52. I have reviewed the ' 601 patent and its prosecution file history. (Ex.

1001, 1006.) The Challenged Claims of the ' 601 patent are reproduced below:

## Claim 1

[A] Apparatus for encoding m-bit binary datawords into $n$-bit binary codewords, in a recorded waveform, where m and n are preselected positive integers such that n is greater than m , comprising:
[B] receiver means for receiving the dataword;
[C] encoder means coupled to the receiver means, for producing sequences of fixed length codewords;
[D] means for imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform wherein the j constraint is defined as the maximum number of consecutive transitions allowed on consecutive clock periods in the encoded waveform to facilitate the reduction of a probability of a detection error in said receiver means;
[E] said sequences generating no more than j consecutive transitions in the recorded waveform such that j is an integer equal to or greater than 2 ; and
[F] said sequences generating no more than $k$ consecutive sample periods without a transition in the recorded waveform.

## Claim 2

Apparatus as in claim 1 wherein the j consecutive transition limit is defined by the relationship $2 \leq \mathrm{j}<10$.

## Claim 8

Apparatus as in claim 2 wherein the consecutive transition limit is defined by the relationship $\mathrm{j}=2$.

## Claim 9

Apparatus as in claim 2 wherein the binary sequences produced by combining codewords have no more than j consecutive 1 's and no more than k consecutive 0 's when used with a NRZI recording format.

## Claim 10

Apparatus as in claim 2 wherein binary sequences produced by combining codewords have no more than one of $j$ consecutive transitions from 0 to 1 and from 1 to 0 and no more than $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1 's when used in conjunction with a NRZ recording format.

## Claim 12

Apparatus as in claim 2 wherein the receiver means incorporates means for removing certain code-violating patterns from the detection process wherein the
\(\left.$$
\begin{array}{|l|}\hline \begin{array}{l}\text { detection process comprises at least one of the steps of: } \\
\text { removing states and state transitions corresponding to more than } \mathrm{j} \text { consecutive } \\
\text { transitions from a Viterbi trellis } \ldots \text { [Emphasis added.] }\end{array}
$$ <br>
\hline Claim 13 <br>
\hline <br>
[A] A method for encoding m-bit binary datawords into \mathrm{n} -bit binary codewords <br>
in a recorded waveform, where \mathrm{m} and \mathrm{n} are preselected positive integers such <br>

that \mathrm{n} is greater than \mathrm{m} , comprising the steps of:\end{array}\right]\)| [B] receiving binary datawords; and |
| :--- |
| [C] producing sequences of n -bit codewords; |
| [D] imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform; |
| [E] generating no more than j consecutive transitions of said sequence in the |
| recorded waveform such that $\mathrm{j} \geq 2$; and |
| [F] generating no more than $k$ consecutive sample periods of said sequences |
| without a transition in the recorded waveform. |

## Claim 14

The method as in claim 13 wherein the consecutive transition limit is defined by the relationship $2 \leq \mathrm{j}<10$.

## Claim 15

The method as in claim 14 wherein the consecutive transition limit is $\mathrm{j}=2$.

## Claim 16

The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than j consecutive 1's and no more than k consecutive 0 's when used with the NRZI recording format.

## Claim 17

The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 and no more than one of $k+1$ consecutive 0 's and $k+1$
consecutive 1's when used in conjunction with the NRZ recording format.

## Claim 21

The method as in claim 13 wherein the method of receiving data incorporates the removal of certain code-violating patterns from the detection process wherein the detection process comprises at least one of the steps of:
removing states and state transitions corresponding to more than j consecutive transitions from a Viterbi trellis ... [Emphasis added.]
53. The references $[A],[B]$, etc., in the chart above with respect to claims 1 and 13 do not appear in the ' 601 patent, but have been added for reference.
54. The ' 601 patent generally relates to digital storage systems. More specifically, the patent pertains "to an improved coding technique involving data recovery channels utilizing sequence detection methods." (Ex. 1001, at 1:9-12.)
55. According to the "Background of the Invention" section of the ' 601 patent, certain "channel codes," also known as "modulation codes," were known in the prior art. These codes "are mappings of data bits into the symbols that are either transmitted in a communication system or recorded onto a medium in a storage device." (Ex. 1001, at, 1:15-21.) "The purpose of these codes is to prevent certain characteristics in the stream of symbols that make their recovery difficult." (Id.)
56. The ' 601 patent confirms that before the time of the purported invention, "[r]unlength limited (RLL) codes" were "commonly used in magnetic
recording." (Ex. 1001, at 1:21-41.) It was known that RLL codes "impose a (d,k) constraint on the recorded data sequence." (Id.) In the NRZ recording format, where " 1 " represents a positive level in the magnetization waveform and " 0 " represents a negative level, " $\mathrm{d}+1$ is the minimum number of consecutive like signals and $\mathrm{k}+1$ is the maximum number of consecutive like symbols in the binary sequence." (Id.) In the NRZI recording format, where a " 1 " represents a magnetic transition and a " 0 " represents no transition, " d and k are the minimum and maximum number of consecutive 0 's between any two 1 's, respectively ...." (Id. (citing prior art)) "The k constraint guarantees that a change in readback waveform will occur at regular intervals for the purpose of synchronizing a phase locked loop to the data." (Id.)
57. The alleged invention of the ' 601 patent is a "coding scheme" referred to as "the maximum transition-run (MTR) coding ..." (Ex. 1001, at 2:40-3:17). More specifically, the "MTR code imposes a limit on the maximum number of consecutive transitions that can occur in the written magnetization pattern in magnetic recording." (Id.) The benefit of the alleged invention "is most significant $\ldots$ when the maximum number of consecutive transitions is limited to two." (Id.) The '601 patent refers to this as an "MTR code with a constraint length of $\mathrm{j}=2 \ldots$ "(Id) "With the NRZI format, the MTR code constraint is equivalent to limiting the maximum number of 1 's." (Id.)
58. Independent claims 1 and 13 of the ' 601 patent respectively claim a generic "apparatus" and a generic "method" for converting "m-bit binary datawords" of unspecified length into " n -bit binary codewords" of unspecified length. These claims require that a pair of constraints " $\mathrm{j} ; \mathrm{k}$ " are imposed. But the " k " constraint is entirely unspecified while " j " can be any integer "greater than 2. ." (Ex. 1001, claims 1 and 13.) As such, these claims effectively attempt to cover the concept of MTR coding, per se. I understand that the Patent Owner alleged in the corresponding litigation that "[a]ny commercially-viable implementation of MTR coding requires performance of the methods of claim 13 of the '601 Patent." (Ex. 1003, at © 131.)
59. MTR coding, however, was already known before the ' 601 patent. For example, Okada (assigned to Pioneer) discloses apparatuses for converting 8bit data to 13-bit data such that, after NRZI modulation, "1" does not appear "three or more times in a row" in the recorded waveform. (Ex. 1007 at 3:34-60; id. at 10:8-22). Thus, Okada disclosed MTR coding-including an MTR code with a constraint length of $\mathrm{j}=2$-more than one year before the filing date of the ' 601 patent.
60. The named inventors of the '601 patent, Drs. Moon and Brickner, were, respectively, a professor and a graduate student at the University of Minnesota. (Ex. 1003, at $\mathbb{1}$ 2.) Their MTR-related work was admittedly
"supported" by Seagate Technology ("Seagate"). (Ex. 1012, bottom left corner of first page.) On January 31, 1996, a Seagate scientist from Minnesota, Dr. Kinhing P. Tsang, (see face of Tsang patent, Ex. 1009), filed a patent application entitled "Method and Apparatus for Implementing Codes with Maximum Transition Run Length." Dr. Tsang's application disclosed and claimed "MTR" codes with a constraint length of $\mathrm{j}=2$. (Ex. 1009 at e.g., 2:25-44; 19:33-64.) In particular, Dr. Tsang set forth a key finding from Seagate's research-a finding previously presented in the Seagate Annual Report:

```
symbel lengtt is smowz as the code rate, "s". The upper
bound of the MTR=2 code rate in which k=\infty has been found
to be 0.8791 as indicated in the Seagate Annual Report. This
```

(Ex. 1009 at 2:36-38)
61. Months later, the named inventors of the ' 601 patent filed their application, bearing the strikingly similar title "Method and Apparatus for Implementing Maximum Transition Run Codes." The inventors also set forth as part of the "description of the preferred embodiment" of their supposed invention certain disclosures for the scenario where MTR $=2$ and $k=\infty$ :

Fig. 4	
RLL $k$ Constraint Capacity with MTR $j=2$   $\infty$ 0.8791	

(Ex. 1001 at Fig. 4:51-53.)
62. I understand that none of these prior art references were considered by the patent examiner during the prosecution of the ' 601 patent. In my opinion, the alleged inventions claimed in the ' 601 patent are not patentable.

## VI. CLAIM CONSTRUCTION

63. I understand that in this IPR proceeding, the claim terms are construed as understood by persons of skill in the art.
64. Counsel informs me that sometimes such a meaning is readily apparent even to lay judges and claim construction involves little more than the application of widely accepted meaning of commonly understood words. Otherwise, courts look to the words of the claims themselves, the remainder of the specification, the prosecution history, and extrinsic evidence concerning relevant scientific principles, the meaning of technical terms, and the state of the art. I have considered the claim terms at issue here, the specification, and the prosecution history of the '601 patent. I am familiar with the relevant scientific principles and
the state of the art at the time the patent was filed. As mentioned above, I was conducting research in the relevant art at the time of the purported invention.

CLAIM 1: "encoder means ... for producing sequences of fixed length codewords":
65. I am informed by counsel that there is rebuttable presumption that a limitation containing the word "means" and reciting a function was drafted in the so-called means-plus-function format. When that presumption is not rebutted, the limitation "shall be construed to cover the corresponding structure, material, or acts described in the specification and equivalents thereof," under 35 U.S.C. § 112(f).
66. I understand that this presumption is rebutted when the claim conveys sufficient structure to perform the recited function.
67. Here, the structure of "encoder means ... for producing sequences of fixed length codewords" is an "encoder," which is recited in the claim. Encoders for read channels were known at the time of the invention, and represent sufficient structure to perform the claimed "producing sequences of fixed length codewords" function. Indeed, during prosecution, the examiner treated this limitation as not invoking § 112(f) in rejecting claims over Iketani (U.S. Patent No. 4,760,378), stating "refer to either Figure 19 or 23 of Iketani, which shows encoders including receiver means for receiving datawords, and encoder means for producing ... sequences of fixed length codewords for generating no more than 1 consecutive
transition in the recorded waveform ..." (Ex. 1006 at 54.) Thus, this limitation does not invoke § 112(f), and no construction is necessary.
68. Alternatively, given that the recited function is "producing sequences of fixed length codewords," the specification discloses corresponding structures, namely, "[while] state-dependent encoders and sliding block decoders can be designed for the MTR constraint, simple fixed length block codes can be realized with good rates and reasonable k values." (Ex. 1001 at 4:61-64.) Thus, if § 112(f) applies, the corresponding structures are state-dependent encoders or block encoders, or their equivalents.

## CLAIM 1: "receiver means for receiving the dataword":

69. The structure that performs the function of "receiving the dataword" is a "receiver," which is expressly recited in claim 1. Receivers were known in the art at the time of the invention. As discussed above, the examiner also treated "receiver" as having sufficient structure not to invoke § 112(f), stating "Figure 19 or 23 of Iketani, which shows encoders including receiver means for receiving datawords, and encoder means for producing ... sequences of fixed length codewords." (Ex. 1006 at 54.) Thus, this term does not invoke § $112(\mathrm{f})$ and needs no construction.
70. Alternatively, in light of the recited function "receiving the dataword," the specification discloses the corresponding structure in that it teaches
types of read channel encoders, as discussed previously. A person of ordinary skill in the art would understand that read channel encoders are necessarily coupled to an input receiver, otherwise there would be no datawords for the encoder to encode.
71. Further, the ' 601 patent teaches that "good rates" can be realized by state-dependent and block encoders, (Ex. 1001 at 4:61-64), where "rate" is "the ratio of the number of input bits to output bits" (id. at 4:19-20). See also id. at 2:43-47, 4:18-21, 4:34-35 ("input"). Thus, if § 112(f) applies, the structure corresponding to the function "receiving the dataword" is an input receiver associated with a read channel encoder.

## CLAIM 1: "means for imposing a pair of constraints (j;k) ..."

72. The recited function is "imposing a pair of constraints ( $\mathrm{i} ; \mathrm{k}$ )." This limitation was added during prosecution after the examiner rejected the claims over the Iketani patent "to better define the invention." (Ex. 1006 at at 61 ; see id. at 6271.) As the prosecution shows, the "means for imposing a pair of constraints" does not recite a structure that is different than the "encoder means"-the limitation was added merely to make clear that the recited encoder "imposes" MTR constraints (i.e., j greater than or equal to $2 ; \mathrm{k}$ ), in order to distinguish the claimed encoder from the RLL $(\mathrm{d}>0 ; \mathrm{k})$ encoder in the prior art Iketani patent. (Id.) Thus, this
limitation needs no construction because the "encoder" represents sufficient structure and is recited in the claim.
73. Alternatively, as discussed above, the corresponding structures described in the specification are state-dependent encoders or block encoders, or their equivalents.

CLAIM 12: "means for removing certain code-violating patterns from the detection process"
74. The claimed function is "removing certain code-violating patterns from the detection process," and the specification discloses a corresponding structure: a "Viterbi trellis" corresponding to a detection system, or its equivalents. (Ex. 1006 at 6:56-7:3, 2:10-37, 3:1-14, Fig. 7.)
75. Unless otherwise addressed herein, no express construction of any additional term is believed to be needed to resolve the challenges herein.
VII. CLAIMS 1, 2, 8-10, AND 13-17 ARE ANTICIPATED BY OKADA
76. As mentioned above, Okada was not cited by the applicant or the patent examiner during prosecution of the application that led to the ' 601 patent. As discussed in detail below, it is my opinion that claims 1,2,8-10, and 13-17 of the ' 601 patent are anticipated by Okada.

## A. Claim 1 is anticipated by Okada

## 1. Claim $1[\mathrm{~A}]$ : "Apparatus for encoding m-bit binary

 datawords into n-bit binary codewords, in a recorded waveform, where $m$ and $n$ are preselected positive integers such that n is greater than m , comprising:"77. I am informed that the preamble of independent claim 1 may not be limiting because, for instance, it merely provides a description for the limitations recited in the body of the claim. In any event, Okada discloses claim 1 [A].
78. In particular, Okada discloses methods and apparatuses for reproducing "information from a recording medium designed to have a high linear recording density ..." (Ex. 1007, at 2:48-56). Okada discloses "a data converting means for performing data conversion on record information consisting of a digital signal in accordance with a predetermined data conversion table ..." (Id., at 2:573:3). In a preferred embodiment, Okada discloses apparatuses and methods where 8 -bit binary datawords are encoded into 13-bit binary codewords (i.e., $m=8$ and $n$ $=13)$ :

FIG. 6

(Id. at Fig. 6). Okada discloses that "in recording information data on an optical disk 5, the information recording apparatus in FIG. 6 embodying the present invention causes an 8-to-13 converter 10 to perform data conversion before NRZi modulation in such a way that ' 1 ' will not appear three or more times in a row in a train of information data after the NRZi modulation." (Ex. 1007 at 3:54-60; see also id. at Fig. 7; 3:35-4:16; Tables 1-9 at 4:17-8:64 (8-to-13 bit data conversion tables); 9:24-10:22.). The "NRZi data is ... supplied to an optical head $\mathbf{3}$ to be recorded on an optical disk 5." (Id. at 4:13-16.)
79. Okada discloses "data conversion" Tables 1-9, which contain rows corresponding to all 8-bit binary datawords, each of which is converted to a corresponding 13-bit binary codeword, and a sequence of which form a waveform
of 13-bit codewords "recorded on an optical disk 5" following NRZI modulation. (Ex. 1007 at 4:13-16; 9:33-38.)
80. Thus, to the extent it is a limitation, Okada discloses claim limitation 1 [A].

## 2. Claim $1[\mathrm{~B}]$ : "receiver means for receiving the dataword;"

81. As discussed in the "Claim Construction" section above, this limitation does not invoke $\S 112(\mathrm{f})$ and thus needs no construction. Alternatively, the limitation reads on an input receiver associated with a read channel encoder, or its equivalent.
82. Okada discloses receiver means for receiving the dataword in that "record information" is received and inputted into a " $8-13$ converter":

FIG. 6

(Ex. 1007, Fig. 6 (annotated)). In particular, Figures 6 and 7 depict an "information recording/reproducing apparatus" that receives record information associated with a read channel encoder. Okada discloses that the received "record information" consists of "a digital signal." (Id. at 2:57:61). In the exemplary recording embodiment shown in Figure 6, the record information consists of "8-bit input record information," which is an example of a "dataword." (Id. at 3:61-63). Okada therefore discloses claim limitation $1[B]$.
3. Claim $1[C]$ : "encoder means coupled to the receiver means, for producing sequences of fixed length codewords;"
83. As discussed in the "Claim Construction" section above, this
limitation does not invoke $\S 112(\mathrm{f})$ and thus needs no construction. Alternatively, the limitation reads on state-dependent encoders or block encoders, or their equivalents.
84. Okada discloses an 8-to-13 bit converter (10) coupled to the receiver means, for producing sequences of 13-bit codewords:

## FIG. 6


(Ex. 1007, Fig. 6 (annotated)). As discussed above with respect to claim 1 [A], the 8-to-13 converter (10) is a block encoder that converts 8-bit datawords into corresponding fixed-length, 13-bit codewords, as shown in "data conversion"

Tables 1-9. Okada therefore discloses claim limitation 1 [C].
4. Claim 1[D]: "means for imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform wherein the $j$ constraint is defined as the maximum number of consecutive transitions allowed on consecutive clock periods in the encoded waveform to facilitate the reduction of a probability of a detection error in said receiver means;"
85. As discussed in the "Claim Construction" section above, this
limitation does not invoke § 112(f) and thus needs no construction. Alternatively, the limitation reads on state-dependent or block encoders, or their equivalents.
86. As discussed above with respect to claims $1[\mathrm{~A}], 1[\mathrm{~B}]$, and $1[\mathrm{C}]$, Okada discloses an 8 -to-13 bit converter (10) coupled to the receiver means, for producing sequences of 13 -bit codewords:

(Ex. 1007, Fig. 6 (annotated)). The 8 -to-13 bit converter (10) "expands" 8 -bit input record information to 13-bit data according to either one of two "rules." (Id., a 3:61-68). In particular, "Rule (1)" is that each 13-bit dataword "consists of at least one ' 0 ' and an even number of consecutive ' 1 '.' (Id.). The entries in Tables 1-7 were constructed with Rule (1). (Id. at 4:1-12.) "Rule (2)" includes a pattern "consisting of ' 01010 '" and a section consisting of 0 's or an even number of
consecutive 1's. (Id. at 3:61-68). Tables 8 and 9 were constructed using Rule (2). (Id. at 4:1-12.)
87. "Rule (1)" and "Rule (2)" of Okada each imposes a "maximum number of consecutive transitions allowed on consecutive clock periods in the encoded waveform," as recited in claim limitation 1 [D]. As can be seen by inspection, each of the 13-bit data sequences shown in Tables 1-7 (corresponding to Rule (1)) has a finite number of consecutive transitions (e.g., sequences where the data switches consecutively between " 1 " and "0"). (See Ex. 1007 at Tables 1-
7.) More specifically, none of the encoded datawords from Tables 1-7 that form the claimed "encoded waveform" have more than two (2)-a "finite number"such consecutive transitions. Further, any concatenation of such 13-bit codewords likewise would result in no more than two consecutive transitions. (See id.) Similarly, as can be seen by inspection, each of the 13-bit data sequences shown in Tables 8-9 (corresponding to Rule (2)) has a finite number of consecutive transitions. In particular, these sequences each include a section consisting of "01010"- encoded waveforms in Tables 8 and 9 thus each have exactly two consecutive transitions from 0 to 1 or from 1 to 0 . Thus, after NRZI modulation, these waveforms contain exactly two consecutive 1's.
88. The consecutive transition restraint imposed by Rule (1) and Rule (2) of Okada facilitates the reduction of the probability of a detection error in said
receiver means. For example, such constraint causes the " 8 -to- 13 converter 10 to perform data conversion before NRZI modulation in such a way that ' $I$ ' will not appear three or more times in a row in a train of information data after the NRZi modulation" when the data is recorded to the optical disk. (Ex. 1007 at 3:54-60 (emphasis added); see also Ex. 1011). When the process is then reversed in the "reproducing apparatus" of Figure 7 of Okada, an "optical pickup" (7) which picks up information from the optical disk (5) and supplies the acquired reproduced signal to an "equalizer amplifier" (8):

FIG. 7

(Ex. 1007, Fig. 7; see also id. at 8:65-9:24.) The reproduced signal amplified by the equalizer amplifier (8) is sent to a "level detector" (11). (Ex. 1007 at 8:659:24.) The level detector (11) "compares the level of the signal" from the equalizer amplifier (8) "with a threshold level as a reference for level discrimination to
acquire digital data from the reproduced signal." (Id.) The level detector (11) sends digital data of " 0 " to an "error correcting circuit" (12) "when the level of the signal form the equalizer amplifier" (8) is "lower than the threshold level," otherwise, it sends digital data of " 1 " to the error correcting circuit (12) (i.e., it sends a " 1 " when the signal level is equal to or higher than the threshold level). (Id.).
89. Okada discloses that " $[w]$ hen a sequence of ' 01110 ' [three consecutive " 1 's"] is present in the received 13-bit data, the error correcting circuit (12) corrects it to ' 01010 ' and sends the corrected data to a 13 -to- 8 converter (13)." (Ex. 1007 at 9:10-15). Again, the embodiment depicted in Figure 6 causes the 8-to-13 converter to perform data conversion before NRZI modulation "in such a way that ' 1 ' will not appear three or more times in a row" after NRZI modulation. (Ex. 1007 at 3:54-60) (emphasis added). This feature thus allows the error correcting circuit (12) to detect and correct errors, as discussed above. Similarly, "when the received 13 -bit data does not contain a sequence of ' 01110 ,' the error correcting circuit" (12) "performs no error correction and sends the received data directly to the 13 -to- 8 converter" (13). (Ex. 1007 at 9:15-24.) By doing so, the transition restraints imposed by Rule (1) and Rule (2) facilitate the reduction of a probability of a detection error in the receiver means of the "information recording/reproducing apparatus" of Figures 6 and 7. Finally, the 13-to-8
converter (13) "refers to the data conversion table in the reverse manner to the one done by the 8 -to-13 converter" (10 in Figure 6) to "convert 13-bit data to 8 -bit data" and "the resultant data" is outputted "as reproduced information." (Id.)
90. Okada discloses an example wherein 8-bit data record information is recorded and reproduced according to the preferred embodiment disclosed in Figures 6 and 7 and Tables 1-9. (Ex. 1007 at 9:25-68.) This example involves the 8-bit dataword "01111010," ("7A" in hexadecimal notation) which converts to a 13-bit encoded codeword given in Table 4 (i.e., "0011011000000" after encoding but before NRZI modulation). In the example, the correct record information was recovered in the presence of "code interference." (Ex. 1007 at 9:25-68.) Earlier in the specification, Okada explains that if "information is recorded with a high linear recording density increased to near the upper limit of the frequency response of the recording and reproducing systems, a read error occurs due to a so-called code interference by which reproduced waveforms are likely to interfere with each other at the time adjacent marks are read." (Ex. 1007 at 1:21-27; see also id. at 1:28-43 and Fig. 1).
91. A second example involving Rule 2 shows that the 8 -bit dataword " 11101000 " ("E8" in hexadecimal notation) is converted to the 13-bit codeword "0010100110000," as shown in Table 8. After NRZI modulation, this becomes "0011000100000." (Ex. 1007 at 9:50-68; see also Ex. 1011 at Table 4.) In this
second example, the correct record information was again recovered despite the presence of "code interference." (Ex. 1007 at 9:50-68.)
92. Okada thus discloses the imposition of a constraint on the encoded waveform data - through either Rule (1) or Rule (2) - "to facilitate the reduction of a probability of a detection error in said receiver means," which limitation is recited in claim limitation 1 [D].
93. Thus, Okada discloses claim limitation 1 [D].
5. Claim $1[\mathrm{E}]$ : "said sequences generating no more than j consecutive transitions in the recorded waveform such that $j$ is an integer equal to or greater than 2 ; and"
94. As discussed above, Okada teaches that the 8-to-13 bit converter (10) "expands" 8-bit input record information to 13-bit data according to either one of two "Rules." Imposition of the first rule, Rule (1), results in a maximum of one consecutive transition allowed on consecutive clock periods, not just in the encoded waveform output from the block converter, but also later in the recorded waveform that is "recorded to an optical disk" following NRZI modulation. This is seen in Exhibit 1011, which shows each of the values from Tables 1-7 following NRZI modulation (i.e., as they would exist in the recorded waveform recorded to the optical disk). An example from the specification - showing how the value 7a becomes 0011011000000 in Table 4 following 8-13 encoding and 001001000000 after NRZI modulation-corroborates the post-NRZI codewords in Exhibit 1011,
and illustrates that there are no more than two (2) consecutive transitions in the recorded waveform following NRZI modulation.
95. Similarly, imposition of Rule (2) results in a maximum of two consecutive transitions allowed on consecutive clock periods, both in the encoded waveform before NRZI modulation (as seen in Tables 8 and 9), and in the recorded waveform after NRZI modulation (as shown in Exhibit 1011). As discussed above, a second example in the specification - showing how the hexidecimal value "e8" becomes 0010100110000 in Table 8 following 8-13 encoding and 0011000100000 after NRZI modulation-corroborates the post-NRZI codewords in Exhibit 1011, and illustrates that there are no more than exactly two (2) consecutive transitions in the recorded waveform following NRZI modulation
96. Therefore, Okada discloses claim limitation 1 [E].

## 6. Claim $1[\mathrm{~F}]$ : "said sequences generating no more than k consecutive sample periods without a transition in the recorded waveform."

97. The 8-to-13 data conversion tables, Tables 1-7, were constructed using the first of two "Rules." (See the discussion of claim 1 [D], supra.) Rule (1) also ensures that a 13-bit codeword cannot be comprised of all 1 s or all 0 s following NRZI modulation. (Ex. 1011.) Indeed, even in the scenario where any two 13-bit codewords are evaluated in succession, there would be no more than 22 consecutive samples periods without a transition with respect to the 13-bit
codewords disclosed in Okada, since Rule (1) requires there to be "at least one ' 0 ' and an even number of consecutive ' 1 ['s]'," (Ex. 1007 at 3:64-68), which hypothetically allows for a run of 22 consecutive 1 's when two codewords having eleven (11) consecutive 1's are concatenated. There can be even fewer consecutive sample periods without a transition when Okada's Rule (2) is used, because a string of " 01010 " must be included in each of the 13 -bit codewords. (See Tables 8 and 9 (codewords before NRZI modulation); Ex. 1011 at Tables 8 and 9 (after NRZI modulation).) The sequences generated thus have "no more than $k$ consecutive sample periods without a transition in the recorded waveform," as recited in claim $1[F]$. In any case, there can never be a codeword consisting of all 0's or all 1's-thus, k is a finite number.
98. Thus, Okada discloses claim limitation 1 [F], and claim 1 in its entirety is anticipated by Okada.

## B. Claim 2 is anticipated by Okada

99. Claim 2 recites "Apparatus as in claim 1 wherein the j consecutive transition limit is defined by the relationship $2 \leq \mathrm{j}<10$." As shown above, Okada anticipates claim 1 from which claim 2 depends. As to the additional limitation of claim 2, Okada discloses apparatuses and methods wherein the consecutive transition limit is defined as $\mathrm{j}=2$. (See the discussion of claims 1 [D] and 1 [E], supra.) Okada thus anticipates claim 2.

## C. Claim 8 is anticipated by Okada

100. Claim 8 recites "Apparatus as in claim 2 wherein the consecutive transition limit is defined by the relationship $\mathrm{j}=2$." As shown above, Okada discloses all the elements of claims 1 and 2 from which claim 8 depends. As to the additional limitation of claim 8, Okada discloses apparatuses and methods wherein $\mathrm{j}=2$. (See the discussion of claims $1[\mathrm{D}]$ and 1 [E], supra.) Okada thus anticipates claim 8.

## D. Claim 9 is anticipated by Okada

101. Claim 9 recites "Apparatus as in claim 2 wherein the binary sequences produced by combining codewords have no more than j consecutive 1's and no more than k consecutive 0 's when used with a NRZI recording format." As to the additional limitation of claim 9, Okada discloses that the binary sequences produced by combining the disclosed 13-bit codewords, after NRZI modulation, have no more than 2 consecutive 1 's and no more than k consecutive 0 's. (See the discussion of claims 1 [D], 1 [E], and 1 [F], supra.; Ex. 1011) Okada thus anticipates claim 9.

## E. Claim 10 is anticipated by Okada

102. Claim 10 recites "Apparatus as in claim 2 wherein binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 and no more than $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1 's when used in conjunction with a NRZ recording format." As
shown above, Okada anticipates claims 1 and 2 from which claim 10 depends. Okada discloses an MTR constraint of $\mathrm{j}=2$ (i.e. at most two consecutive " 1 s " following NRZI modulation) and $\mathrm{k}=22$ (i.e., at most k consecutive "0's" in NRZI format). (See the discussion of claims 1 [D], 1 [E], and 1 [F], supra.; Ex. 1011.) 103. As to the additional limitations of claim 10, Okada discloses no more than one of 2 consecutive transitions from 0 to 1 and from 1 to 0 in NRZ format. In particular, Tables 1-7 show at most 1 such consecutive transition, because each codeword consists of an even number of 1's surrounded by strings of 0's. (Ex. 1007.) Tables 8 and 9 show at most 2 such consecutive transitions (i.e., $j=2$ ), as the interior of each codeword includes the string "0010100." (See Ex. 1007 at Tables 8 and 9.) Sequences such as " 010 " and " 101 " do not occur at the beginning or end of codewords, thus ensuring that the $\mathrm{j}=2$ constraint is met when codewords are combined. (Id.) Further, as confirmed in the ' 601 Patent, k consecutive 0 's in NRZI format is equivalent to no more than $\mathrm{k}+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1's, in NRZ format. (Ex. 1001 at 1:15-36;; see Ex. 1007, Tables 1-9 (NRZ format); Ex. 1011 (NRZI format)).
103. Okada thus anticipates claim 10.

## F. Claim 13 is anticipated by Okada

1. Claim 13[A]: "A method for encoding m-bit binary datawords into n-bit binary codewords in a recorded waveform, where $m$ and $n$ are preselected positive integers such that n is greater than m , comprising the steps of:"
2. Claim 13 is highly similar to claim 1 , but claim 13 recites a "method" while claim 1 recites an "apparatus."
3. As informed by counsel, the preamble of the claim may not be limiting. Alternatively, if the preamble is found to be limiting, as shown above with respect to claim 1 [A], Okada discloses apparatuses and methods for encoding 8 -bit binary datawords into 13 -bit binary codewords, in a recorded waveform.

Okada thus discloses claim 13 [A].

## 2. Claim $13[\mathrm{~B}]$ : "receiving binary datawords; and"

107. As shown above with respect to claim element 1 [B], Okada discloses "receiving binary datawords" in that "record information" consisting of 8-bit binary datawords is received and inputted into a "8-13 converter." (See Ex. 1007, Fig. 6). The "record information" consists of "a digital signal," i.e., a binary signal. (Id. at 2:57:61). In the embodiment of Figure 6, the binary signal information consists of "8-bit input record information." (Id. at 3:61-63). Okada therefore discloses claim element $13[\mathrm{~B}]$.
108. Claim $13[C]$ : "producing sequences of $n$-bit codewords;"
109. As shown above with respect to claim 1 [C], Okada discloses producing sequences of 13 -bit codewords from 8 -bit input datawords. Okada therefore discloses claim element 13 [C].
110. Claim $13[\mathrm{D}]$ : "imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform;"
111. As explained above with respect to claim element 1 [D], Okada discloses an 8-to-13 bit converter (10) that imposes a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform output from the converter. Thus, Okada discloses claim element 13 [D].
112. Claim $13[\mathrm{E}]$ : "generating no more than j consecutive transitions of said sequence in the recorded waveform such that $\mathrm{j} \geq 2$; and"
113. As explained above with respect to claim element 1 [E], Okada discloses the generation of no more than two (2) consecutive transitions in the recorded waveform. Therefore, Okada discloses $\mathrm{j}=2$, and thus discloses claim 13 [E].
114. Claim $13[\mathrm{~F}]$ : "generating no more than k consecutive sample periods of said sequences without a transition in the recorded waveform."
115. For the reasons discussed above with respect to claim element $1[F]$, Okada discloses generation of no more than k consecutive sample periods of said
sequences without a transition in the recorded waveform. Okada thus discloses claim element 13 [F].

## G. Claim 14 is anticipated by Okada

112. Claim 14 recites "The method as in claim 13 wherein the consecutive transition limit is defined by the relationship $2 \leq \mathrm{j}<10$." As discussed previously, Okada anticipates claim 13 from which claim 14 depends. As to the additional limitation of claim 14 , as shown above with respect to apparatus claims 2 and 8 , Okada discloses $\mathrm{j}=2$, and thus anticipates claim 14 .

## H. Claim 15 is anticipated by Okada

113. Claim 15 recites "The method as in claim 14 wherein the consecutive transition limit is $\mathrm{j}=2$. ." As discussed previously, Okada anticipates claims 13 and 14 from which claim 15 depends. As to the additional limitation of claim 15, as shown above with respect to apparatus claims 2,8 , and 14 , Okada discloses $\mathrm{j}=2$, and thus anticipates claim 15 .

## I. Claim 16 is anticipated by Okada

114. Claim 16 recites "The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than j consecutive 1's and no more than k consecutive 0 's when used with the NRZI recording format."
115. As discussed previously, Okada anticipates claim 14 from which claim 16 depends. As to the additional limitation of claim 16, Okada discloses that
the binary sequences produced by combining the disclosed 13-bit codewords, after NRZI modulation, have no more than 2 consecutive 1's (i.e., $\mathrm{j}=2$ ) and no more than a finite number of k consecutive 0 's, as explained previously with respect to claim 9. Okada thus anticipates claim 16.

## J. Claim 17 is anticipated by Okada

116. Claim 17 recites "The method as in claim 14 wherein the binary sequences produced by combining codewords have no more than one of $j$ consecutive transitions from 0 to 1 and from 1 to 0 and no more than one of $k+1$ consecutive 0 's and $\mathrm{k}+1$ consecutive 1 's when used in conjunction with the NRZ recording format."
117. As discussed previously, Okada anticipates claim 14 from which claim 17 depends. In addition, for the reasons discussed previously with respect to claim 10 , Okada discloses that the binary sequences produced by combining codewords have no more than one of j consecutive transitions from 0 to 1 and from 1 to 0 and no more than one of $k+1$ consecutive 0 's and $k+1$ consecutive 1 's when used in conjunction with the NRZ recording format.
118. Okada thus anticipates claim 17.

## VIII. CLAIMS 1, 2, 8-10, AND 13-17 ARE ANTICIPATED BY TSANG

119. As mentioned above, Tsang was not cited by the applicant or the patent examiner during prosecution of the application that led to the ' 601 patent.

As discussed in detail below, it is my opinion that claims 1,2,8-10, and 13-17 of the '601 patent are anticipated by Tsang.

## A. Claim 1 is anticipated by Tsang

1. Claim $1[\mathrm{~A}]$ : "Apparatus for encoding m-bit binary datawords into n-bit binary codewords, in a recorded waveform, where $m$ and $n$ are preselected positive integers such that n is greater than m , comprising:"
2. I am informed that the preamble of independent claim 1 may not be limiting because, for instance, it merely provides a description for the limitations recited in the body of the claim. In any event, Tsang discloses and claims the limitation recited in claim 1 [A].
3. Tsang discloses apparatuses and methods for encoding "data words ... having ' $m$ ' successive bits" into "code words $\ldots$ having ' $n$ ' bits where ' $n$ ' is greater than 'm.'" (Ex. 1009 at 2:28-44.) In a first embodiment, Tsang discloses $\mathrm{m}=5$ and $\mathrm{n}=6$. (Ex. 1009 at 4:1-6 ("To achieve a $\mathrm{m} / \mathrm{n}$ rate equal to $5 / 6$ in an MTR code with MTR=2 using code words of 6 bits in length ( $n=6$ )...").) In a second embodiment, Tsang discloses $\mathrm{m}=6$ and $\mathrm{n}=7$. (Id. at 10:17-19 ("A further maximum transition run code example is provided by such a code having a 6/7 rate.").)
4. Indeed, Tsang itself claims "[a]n apparatus for encoding selected data blocks having a selected data number [m] of ordered symbols therein into corresponding code blocks having a selected code number [ n ] of ordered symbols
therein, with said code number [ n ] being greater than said data number [m]." (Ex. 1009 at 19:34-38) (claim 1). Claim 5 recites the apparatus of claim 1 wherein "said selected data number [m] equals five, and wherein said selected code number [n] equals six." (Id. at 19:65-68.) Claim 6 recites the apparatus of claim 1 wherein "said selected data number $[\mathrm{m}]$ equals six, and wherein said selected code number [n] equals seven." (Id. at 20:1-3.)
5. Thus, Tsang discloses claim element 1 [A].

## 2. Claim $1[B]$ : "receiver means for receiving the dataword;"

124. As discussed in the "Claim Construction" Section above, this
limitation does not invoke § 112(f) and thus needs no construction. Alternatively, if § 112 (f) applies, then the limitation reads on input receivers associated with read channel encoders, or their equivalents.
125. In a first embodiment, depicted in Figure 4A, Tsang discloses datawords (11) being supplied to a receiver means, i.e., a "five bit input register, 10 " that serves "as the data word receiver at a system input":

(Ex. 1009 at Fig. 4A; see id. at 6:5-10.) The receiver means (10) is coupled to a read channel encoder (15).
126. In a second embodiment, depicted in Figure 9A, Tsang discloses datawords (61) being supplied to a receiver means, i.e., a "six bit input register, 60":

(Ex. 1009 at Fig. 9A; see id. at 11:43-49.) The receiver means is coupled to a read channel encoder (65).
127. Tsang further claims an "encoding receiver for receiving said data blocks." (Ex. 1009 at 19:39-40) (claim 1).
128. Thus, Tsang discloses claim element $1[B]$
129. Claim $1[C]$ : "encoder means coupled to the receiver means, for producing sequences of fixed length codewords;"
130. As discussed in the "Claim Construction" Section above, this
limitation does not invoke § 112(f) and thus needs no construction. Alternatively, then the limitation reads on state-dependent encoders or block encoders, or their equivalents.
131. In a first embodiment, Tsang discloses an encoder (15) coupled to a receiver means (10, a 5-bit register) for producing sequences of 6-bit codewords:


## Fig. 4 d

(Ex. 1009 at Fig. 4A; 6:5-28.) Thus Tsang discloses "encoder means coupled to the receiver means, for producing sequences of fixed length codewords " from claim element 1 [C].
131. To the extent § 112(f) applies, with regards to encoder (15) in Figure 4 A , in order to limit the resulting code to having at most two (2) consecutive transitions, i.e., $\mathrm{j}=2$, after concatenation of codewords, "constraints are imposed on the transition branches in the trellis diagram so that the branches may only be associated with certain code words having suitable bit patterns to avoid the
occurrence of three or more successive ' 1 's'." (Id. at 4:33-39.) Thus Tsang discloses a state-dependent encoder.
132. In a second embodiment, Tsang discloses an encoder (65) coupled to a receiver means ( 60 , a 6 -bit register) for producing sequences of 7 -bit codewords:

(Ex. 1009 at Fig. 9A; see id. at 11:43-56.) Thus the second embodiment of Tsang also discloses "encoder means coupled to the receiver means, for producing sequences of fixed length codewords " from claim element 1 [C].
133. Encoder (65) converts 6-bit input data to 7-bit codewords, and is a state-dependent encoder. (Ex. 1009 at 10:17-11:57.)
134. Further, Tsang claims "an encoder coupled to said encoding receiver for providing a corresponding said code block for each said data block." (Ex. 1009 at 19:41-43) (claim 1).
135. Thus, Tsang discloses claim element 1 [C]
4. Claim 1[D]: "means for imposing a pair of constraints ( $\mathrm{j} ; \mathrm{k}$ ) on the encoded waveform wherein the $j$ constraint is defined as the maximum number of consecutive transitions allowed on consecutive clock periods in the encoded waveform to facilitate the reduction of a probability of a detection error in said receiver means;"
136. As discussed in the "Claim Construction" section above, this
limitation does not invoke $\S 112(\mathrm{f})$ and thus needs no construction.
137. Alternatively, the limitation reads on state-dependent or block encoders, or their equivalents. As discussed above with respect to claim 1 [C], Tsang discloses state-dependent encoders (15 in Figure 4A; 65 in Figure 4B).
138. The "MTR value" disclosed in Tsang is the same as the constraint " j " in claim element 1 [D]. "A class of block codes that limits the number of consecutive symbol transitions . . . are known as maximum transition run (MTR) codes." (Ex. 1009 at 2:22-28 (emphasis added).) For example, Tsang describes " $[\mathrm{t}]$ he upper bound of the MTR=2 code rate in which $\mathrm{k}=\infty$ has been found to be 0.8791 as indicated in the Seagate Annual Report." (Ex. 1009 at $2: 36-38$.) This precisely matches the scenario described in the later-filed '601 patent:

Fig. 4	
RLL $k$ Constraint Capacity with MTR $j=2$   $\infty$ 0.8791	

(Ex. 1001 at Fig. 4.)
139. In a first embodiment, depicted in Figure 4A, Tsang discloses an encoder (15) "comprising a finite state machine based on the table in FIG. 3" (Ex. 1009 at 6:5-28.) A finite state machine based on the table in Figure 3 provides a "maximum transition run code having a $5 / 6$ rate" (i.e., $m=5, n=6$ ), "with MTR=2 [i.e., $\mathrm{j}=2$ ] and $\mathrm{k}=9$." (Id. at 5:25-6:4; Fig. 3.) In a second embodiment, depicted in Figure 9A, Tsang discloses an encoder (65) "comprising a finite state machine based on the table in FIG. 8." (Ex. 1009 at 11:43-56.) A finite state machine based on the table in Figure 8 provides a "maximum transition run code having a 6/7 rate" (i.e., $\mathrm{m}=6, \mathrm{n}=7$ ), " with MTR $=2$ [i.e., $\mathrm{j}=2]$ and $\mathrm{k}=9 . "$ (Id. at 11:27-42; Fig. 8.)
140. Further, Tsang discloses:

As the recording densities become greater, the result is that transitions representing binary " 1 's" become recorded very close to each other in the magnetic media such that severe intersymbol-interference results. At densities considerably greater than those in currently commercially available products, the most likely error sequence has been


[^0]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^1]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^2]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www. deposition.com/washington-dc.htm

[^3]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www.deposition.com/washington-dc.htm

[^4]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www.deposition.com/washington-dc.htm

[^5]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www. deposition.com/washington-dc.htm

[^6]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www. deposition.com/washington-dc.htm

[^7]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^8]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^9]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www.deposition.com/washington-dc.htm

[^10]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^11]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www. deposition.com/washington-dc.htm

[^12]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789
    www. deposition.com/washington-dc.htm

[^13]:    Epiq Court Reporting Solutions - Washington, DC
    1-800-292-4789

[^14]:    ${ }^{1}$ See also Teva Pharm. USA v. Sandoz, Inc., 135 S. Ct. 831, 841 (2015) ("As all parties agree, when the district court reviews only evidence intrinsic to the patent (the patent claims and specifications, along with the patent's prosecution history), the judge's determination will amount solely to a determination of law[.]").

    CASE NO. 3:18-CV-00821-EJD-NMC

[^15]:    ${ }^{1}$ I may rely upon these materials and/or additional materials to respond to arguments raised by the University or its expert(s). I may also consider additional documents and information in forming any necessary opinions-including documents that may not yet have been provided to me. My analysis of the materials produced in this investigation is ongoing and I will continue to review any new material as it is provided. This report represents only those opinions I have formed to date. I reserve the right to revise, supplement, and/or amend my opinions stated herein based on new information and on my continuing analysis of the materials already provided.

