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Abstract -In this palper, we present signal space detectors for 
use with maximum transition run (MTR) codes. A three- 
dimensional signal space detector is first derived for an MTR=2 
coded channel. The bit errar rate performance of this detector 
is close to MTR-coded FDTmF(2) throughout the user density 
range of interest. The detector is then modified to be used with 
a time-variant MTR code. Simulation as well as experimental 
results are presented. 

I. INTRODUCTION 

To improve bit error rate performance, or to increase linear 
recording density, the application of maximum likelihood 
sequence detection (MLSD) to digital magnetic recording 
has been investigated in recent years. It is observed that with 
binary input bits, for MLSD at high recording densities and 
for certain high-ordter partial response channels such as 
E2PRML, the dominant error events are of the form f{+2, -2, 
+2}. A new class of codes called maximum transition run 
(MTR) codes have recently been proposed as a way of 
removing such dominant error events and, hence, increasing 
the minimum Euclidean distance [l]. An MTR-2 code limits 
the maximum number of consecutive transitions to two, and 
consequently, removes all pattems which cause the dominant 
error events (Fig. 1). MTR codes of rate 6/7 have been 
developed in [2] and [3]. 

Utilizing the MTR constraint, Brickner and Moon have 
developed an efficient detector called 3D-110 whose 
performance is comparable to fixed delay tree search with 
decision feedback of depth 2 (FDTSIDF(2)) at high symbol 
densities [4]. The detector is constructed by considering 
vectors of received samples in a 3-dimensional space. Using 
three planer boundaries, the signal space is divided into two 
regions each of which correspond to a decision of +1 or -1. 
The 3D-110 forward filter removes the precursor 
intersymbol interference (ISI) terms and forces the two post- 
cursor IS1 terms to be 1 and 0, respectively, where the cursor 
is also normalized to 1. The feedback filter removes all but 
two post-cursor IS1 terms. With no error propagation, the 
equivalent discrete-time channel pulse response can be 
denoted as "1 10". Such a constraint on the channel response 
is used to further simplify the detector structure. 

While the magnetic channel "natural" response is close to 
the "1 10" target at high recording densities, it deviates from 
the desired target at lower densities. Constraining the pulse 
response to this particular target will then result in 
performance degradation compared to FDTS/DF (2). Even at 
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Fig. 1: Error events of the form f(2, -2, 2) are caused when (a) a tribit is 
shifted or (b) when a quadbit is mistaken as a dibit or vice versa. MTR-2 
codes remove all pattems containing 2 or more transitions. Timevariant 
MTR codes allow tribits to start at alternate t h e  intervals. 

high densities, other factors such as the use of constrained- 
length finite impulse response (FIR) filters may cause 
deviation of the channel response from the "110" target. In 
the next section, we extend the geometrical detection 
approach in [4] and develop a sub-optimal three-dimensional 
signal space detector referred to as 3D-SSD, which does not 
constrain the channel response to any specific target. 
However, it uses the MTR constraint as well as modified 
signal space decision boundaries to simplify the detector 
structure. The new detector provides marginal improvements 
over 3D-110 at higher densities, but provides considerable 
gains at lower densities. 

The dominant error events mentioned above can also be 
removed using a time-variant transition run constraint that 
allows tribits to only star t  at even- (or odd-) numbered time 
intervals (Fig. 1) [5][6].  Such a relaxed constraint would 
then allow the development of codes with higher rates. Both 
3D-110 and 3D-SSD channels are derived based on the 
assumption that no tribits are allowed in the input sequence. 
In Section 111, we develop modified 3D detectors for use 
with a time-variant MTR code. Bit error rate (BER) results 
from an experimental set-up are included in Section IV. 

II. DERIVATION OF THE 3D-SSD CHANNEL 

We first consider an MTR-2 coded channel. In Fig. 2, a 
generic block diagram of a digital recording channel which 
uses decision feedback is depicted. Like other decision 
feedback techniques, 3D-SSD uses a whitened matched filter 
to remove all the IS1 terms and to whiten the noise at the 
detector input. Unlike 3D-110, no constraints are enforced 
on the channel coefficients and, hence, the post-cursor IS1 
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Fig. 2: Schematic dk%" of a decision feedback read channel 
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terms are allowed to take on the "natural" values. The 
feedback filter removes all but two, post-cursor IS1 terms. 
Assuming all the previous decisions are correct, the 
equivalent discrete-time channel response includes three 
terms and is denoted as (l,fi,f2) where, without any loss of 
generality, the main tap is normalized to one. At time k, the 
noiseless input to the decision device, y k  , could be written 
as: 

where ak is the input data bit at time k. 
Y k  = ' A  + A u k - 1  + f l a k - ' 2  (1) 

( U k - 2 ,  U k - ,  2 ak 1 
(+l, +1, +1) 
(+l, +1, -1) 
(+l, - 1 ,  +1) 
(+l, -1, -1) 
(-1, +1, +1) 
(-1, +1, -1) 
(-1, -1, +1) 
(-1. -1. -1) 

The 3D-SSD detector is designed by first considering the 

detector decision depends on the symbol which is closest to 
the vector of observation samples at each time interval. This 

I I 

Table 1: Input dab Pattems and the CofiesPnhg Symbols in the symbol constellation in a three-dimensional space. The signal space. *Cases 2 and 5 violate the h4TR constraint with 
A 

u ~ - ~  = -1 and +1, respectively. 

is analogous to finding the path With the minimum Euckkan and k-2 with the IS1 due to the available decisions (i.e., 6k-3 
distance between the observed and desired samples values and Gk-,, at time k )  canceled. Notice that at each time k in the for fixed-delay detectors such as FDTS/DF or look-ahead 
partial response channels [7,81. principle, each pair of detection process, the detector needs to make a decision on 
symbols which point to different detector decisions need to the input bit, ak-2 

be separated by a boundary plane. The planar boundaries are Table 1 lists input write currents and the corresponding 
combined by a logic rule so that the signal space is noiseless points in the (yk ,Y;-~ ,~f -~)s igna l  space. Notice 
partitioned into two regions, one corresponding to a decision that, depending on the value of ikm3, either symbol 2 or 5 is 
of + 1 and the other - 1. Depending on where the vector of the disallowed since it represents the present of a tribit, which is received symbols falls in the vector space, a binary decision disallowed by the MTR=2 code. For example, with is released as the detector output. The detector structure is A 

ak-3 = +1, symbol 5 corresponds to a sequence of the form simplified by eliminating planes which are redundant or 
separate symbols which are much farther apart than the (+I, -1, +1, -1) which contains three consecutive transitions. 
minimum Euclidean distance. Fig. 3(a) and (b) show the symbol constellation for a 

The 3-dimensional observation vector falls in the Lorentzian channel at a symbol density of 2.25 with 
(yk ,yk-l ,yk-2) signal space. The derivation of the planer &-3 = +1 and &-3 = -1, respectively. The 
boundaries is simplified with a linear vector space extends out of the surface of the paper. Symbols which 
transformation [4]. Lei us define the following parameters corresponds to y:-l = +1 and -1 are denoted by x's and o's, 
which comprise the axes of the new vector space: respectively. The index below the symbol marker points to 

(2)  the corresponding input data patterns listed in Table 1. Y k  =' ak ' f l a k - 1  ' f Z a k - 2  

To keep the detector structure simple, we limit the number 
of slicer planes in 3D-SSD to three. The directions of these 
planes are also constrained to further simplify the detector 

Yi-1 = ak-l + ha,-, (3)  
(4) 

Here, YL-1 and Yf-2 denote the detector inputs at times k-l 
Yf-'2 = ak-2 

-2 -1 0 1 2 -2 -1 0 1 2 
yk yk 

Fig. 3: (a) Symbol constellation with 6k-3 = -1 , (b) symbol constellation with 6k-3 = +1 . The dark lines show the intersection of the 

boundary planes with the yky;-I surface. 
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structure. Initially, four decision planes denoted as A, B, C 
and D, are considered. (Later on, C and D are combined to 
form E.) Let us first consider plane A which separates 
symbols 0 and 4 (as well as 1 and 5 in Fig. 3(a)). Optimal 
decision boundaries are planes bisecting the line which 
connects pairs of symbols of interest. However, the 
constrained optimization here, locates a plane which 
separates, not the two symbols, but their projections on the 
Y;...~ surface. ThLe intent is to pick the two coordinates 
which contribute the most to the distance between the two 
symbols. Clearly, the y[-2 coordinate needs to be retained, 
since the two symbols which correspond to different 
decisions on ak-2 , are well separated on this axis. Of the 
two remaining, except for very low symbol densities 
(Ds<1.6), y;-l contributes more significantly to the distance 

The slicer plane A, therefore, is constrained to only rotate 
perpendicular to the y;-l y[-2 surface. The projection of this 
plane onto the yL-lyt-2 surface will be a line whose 
direction changes as the slicer plane is allowed to rotate. All 
points on the desired line have the same distance from the 
projection of the pair of symbols. Since the coordinates of 
the projections of symbols 0 and 4 on the y;-l yga2 surface 
are given by (1 + f, ,+ 1) and (1 - f, ,- 1) , respectively, the 
equation of the plane A can be obtained by writing: 

This expression could be simplified to yield 

Using a similar procedure, the equation for slicer B which 
separates symbols 3 and 7 (as well as 2 and 6 in Fig. 3(b)), 
can be found to be: 

than Y k ‘  

cy;-, - (1 + f, N2 + ( Y [ - 2  - = (Yl-1 - (1 - f, HZ + (ye2 + 

Y i - 2  + A Y k - 1  - f, = 

Y l - 2  +AY;-, + A  = o  
Plane C separates symbols 3 and 5 when $k-3 = -1. Here, 

this plane is constrained to only rotate perpendicular to the 
yk Y[-~ surface since the two coordinates which contribute 
more significantly to the distance in this case are yk and 
yZ2 . The plane equation can be derived by finding the line 
that bisects the projections of the two symbols on the 
yk Y[-~ surface. The operation is repeated for plane D which 
separates symbols 2 and 4 with ikd3 = +l.  Applying the 
procedure outlined above results in the following four 
boundary equations: 

A Sgn(Yr-2 + fi.v;-1 - fi 1 
sgn(Yr-2 + f,.v;-, + A )  

c: sgn(y[-2 - (J, - $2 )Yk - (fi - f 2  Gk-3 -1 

D: sgn(yr-2 - (1; - f2 )Yt + (fi - fi ))* ‘k-3 = +’ 
Boundaries C and D could be combined to give: 

The above equation can be further simplified by setting 
(fi - f2)equal to 1, This simplification has a negligible 

E: sgn(y[-’_; - ( A  - fi )Yk + (fi - f2 )‘k-3) 

effect on the detector performance since at lower channel 
densities of interest, the two symbols to be separated by this 
plane are farther apart than those separated by planes A and 
B. Therefore, a slight change in the plane orientation and 
position would not impact the relative location of the 
received samples with respect to this plane. The new slicer 
plane becomes: 

Substituting for y;-l and yr-2 using Equations (3) and (4), 
the following relations are obtained for the three decision 
planes: 

E: sgn(yf-2 - yk + ‘k-3 

A sgn(yk-2 + f,Yk-1 + 
B sgn(yk-2 + AYk-1 + 
E: s d Y k - 2  - Yk + 

(5 )  
(6) 
(7) 

(8)  
(9) . 

(10) 
The offset levels can, in general, be implemented as short 
FIR filters with binary inputs, 2-input multiplexers or look- 
up tables. 

To arrive at the decision logic, one can move a test point 
through the signal space and record the relative position of 
the point with respect to the planes. The corresponding 
detector output is also noted by finding the closest symbol in 
the constellation to the test point. A logic rule is found by 
combining the cases which result in the same output 
decision. For the three-dimensional case considered here, 
however, the logic rule can be written by inspection (Fig. 3). 
Mapping boundary decisions -1 to 0, the logic rule can be 
written as: 

(1 1) 
The 3D-SSD architecture is shown in Fig. 4. With offsets 
implemented using multiplxers, the detector shown in Fig. 4 
uses one multiplier, three slicers, three adders and three two- 
input multiplexers. The 3D-110 detector, on the other hand, 
can be implemented using three slicers, three adders and two 

where offset values AA,  AB and AE are given by 
= (-f, - fifi I‘k-3 - f 2  ‘k-4 - fi 

AB = (-fi - fif2>‘k-3 - f 2  ‘k-4 + fi 
AI!? = (-fi + 1)&3 - f2 ‘k-4 

‘k-2 = B.E+ A 

AE 
I 

Fig. 4 3D-SSD detector 
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two-input multiplexers [3]. 
In Fig. 5, the simulation results which compare the 

required SNR for a BER of le-4 for a Lorentzian channel 
with additive white Gaussian noise (AWGN) are depicted for 
several detectors. The noisy readback waveform is run 
through a 4th-order Butterworth low-pass front filter. The 
low-pass filter cut-off frequency is set at the Nyquist 
frequency. To remove the influence of filters lengths, both 
forward and feedback filters have a sufficient number of 
taps. The feedback detectors use an MTR=2 code of rate 6/7. 
Results for a (0, 4/4) EL-coded PRML channel are also 
plotted for comparison. The plot shows that the performance 
of 3D-110 approaches that of FDTS/DF(2) as linear density 
increases. At low densities, however, constraining the 
channel response to the "110" target results in performance 
degradation compared to FDTS/DF due to noise 
enhancement and coloration. The 3D-SSD detector performs 
close to FDTS/DF throughout the user density range. At a 
user density of 2,3D-SSD comes within 0.3 dB of FDTS/DF 
while 3D-110 has about 1.5 dB degradation. As the user 
density is lowered, the dominant error events for MLSD 
starts to change from tribit patterns to single bit events. 
Therefore, the coding gain of the MTR code is reduced. 

Required SNR for a BER of l e 4  

24 .. . . . . . . . . . .' . . . . . ' 

2 2 25 2 b  2 75 3 

User Density 

Fig. 5: Required SNR for a BER of le-4 vs. user density 

III. 3D DETECTOR WITH TIME-VARIANT MTR CODE 

3D-110 and 3D-SSD detectors are both constructed by 
talung advantage of the fact that at each time mterval, only 
one of the two symbols 2 or 5 in Table 1 is present in the 
signal space. This is because MTR-2 codes remove one of 
these two symbols at all times. With the time-variant MTR 
coclc, hOWeVCP, it is possible to have both symbols present in 
the signal constellation at every other time interval. The 
structure of the 3D detectors would have to be modified to 
accommodate the change in the code constraint. 

To design signal space detectors which utilize the new 
code, let us consider the FDTYDF tree of depth two. In Fig. 
6(a) and (b), assuming 2k-3 = +1, the detection tree is shown 
when the root is at an odd or even time interval, respectively. 
Here, without any loss of generality, it is assumed that the 
tribits are only allowed to start at even time intkrvals. Notice 

that in Fig. 6(a), as in the previous case, either path 2 or 5 is 
disallowed since it violates the code constraint. For example, 
branch 5 is pruned since it points to tribit pattern {+l, -1, +1, 
-1) which starts at an odd time interval.. Therefore, at odd 
times, the situation is identical to the MTR=2 case. On the 
other hand, when the root is an even time interval as in Fig. 
6(b), both branches 2 and 5 are legal. 

To realize the coding gain for an FDTS/DF(2) detector 
with a time-variant MTR code, one can remove the illegal 
path at odd times and restore it at even times. This would 
prevent shifted tribit errors from occurring since the 
erroneous tribit has to start at a forbidden time interval. But 
the presence of both paths 2 and S increases the chance of 
the erroneous section of the tree to be selected. In fact, as the 
density increases, these errors start to wipe out the code-rate 
benefit of the time-variant MTR code. 

Let us extend the branches 2 and S one step further as 
shown in Fig. 6. This does not affect the situation in Fig, 6(a) 
since the extended branches of path 2 are allowed whereas 
those of 5 are disallowed. However, in Fig. 6(b), the top 
branch for path 2 denoted as 2A, is allowed while the bottom 
branch (2B) is disallowed since it corresponds to a tribit 
which start at an odd position. Similarly, only the bottom 
branch of path 5 (e.g., 5B) is allowed. The two symbols 2A 
and 5B correspond to error events of the form f{2, -2,2,2}. 
Therefore, the distance between the two should be 
considerably greater than the minimum Euclidean ce. 
If the distances from the 4-dimensional observation vector to 
these two symbols are used to select the closer symbol, then 
either path 2 or 5 could be completely pruned from the tree. 
Removal of one of the two symbols (or paths) would then 
make the signal constellation resemble those shown in Fig. 3. 

To come up with a boundary decision for the selection of 
either path 2A or SB, let us first write the sample at time k+l 
as: 

Y k + l  = ak+l + hak + f i a k - 1  (12) 

5B are given by (+ l+f , - f , ,+ l - f ,+ f , , - l+ f , ,+ l )  and 
(-1 - fi + f2 ,- 1 + fi - f2 ,1- fi ,- 1) , respectively. The 
new boundary plane P bisects the projection of these points 
in the ~ ~ + ~ y ' ' ~ - ,  surface. Assuming that sample yk+l is 
available at time k,  the equation of the planc can be obtained 
by writing the distance of the point y' k-2 ) from the 
tWQ points as given below: 
( Y k + l  - (1 + f, - f 2  

In the Signal space ( Y k + l  Y Y k  ,? k-1 , ? ' k - 2  symbols 2.4 and 

(13) 
+ (Y' l k - 2  -v = 

( ( Y k + l  - ('l - fi * 7 2  >>' * (y  ' k-2 * lIh 

The decision due to plane P impacts the symbol 
constellation at even times (i.e., when k-3 is even), since it 
removes either symbol 2 or 5. One way to alleviate the 
computational delay due to this boundary is to come up with 
the decision one time interval early. Toward this end, let us 
write Equation (13) one bit interval early. This gives: 
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Figure 6 FDTS/DF tree: (a) root is an odd time interval; (b) root at an even time interval 

Computation of y1+2 at time k, requires the availability of 
the sequence (fik-l,tk-2 ,..., for feedback cancellation, 
where N is the length of the feedback filter. However, c ? ~ - ~  
and ' k - z  decisions ;=e not yet available at time k. (Recall 
that the output of FI)TS/DF(2) at time k is i?k-2 .) We will, 
hence, define a new parameter zk where the IS1 due to the 
feedback taps f3 and f4 are not yet subtracted, i.e., 

(15) 
For each symbol, the values of 6k-l and 4 - 2  can be taken 

from its own path. For example, the LHS of Equation (13) 
denotes the distance from symbol 2A, for which 
6k-1 = -1 and 6k-2 = +1 as seen in Fig. 6(b). On the other 
hand, for symbol 5B (i.e., RHS of Equation (13)), L ? ~ - ~  = +1 
and 6k-2 =-1. The: operation above is similar to local 
feedback cancellation in channels such as reduced state 
sequence estimator (RSSE) [9]. Similarly, local feedback is 
used for the value of 6k-2 when y:-l is transformed back to 

yk-l . Substituting for Y k + 2  in Equation (14) and using local 

feedback values foI 6k-l and 6k-2 yield the following 
planer equation: 

Zk+2 == Yk+Z + f3ak-1 + f4 'k-2 

(-l+(fi +f3 - m l ( l + f i ) ) Z k + 2  -Yk-1 +fiL = o  
Since the distance between symbols 2A and 5B is much 

greater than the iminimum Euclidean distance, the 
multiplicative factor of z ~ + ~  can be set at -1 with negligible 
impact on performance. Therefore, slicer plane P is given by 

As mentioned before, with the decision due to plane P 
available at even tirnes, the symbol constellation is made 
similar to those in Fig, 3 and the modified 3D-SSD detector 
can now be constructed. While the equations for all four 
planes, A, B, c and D remam unchanged, the conditions 
under which planes C and D are applied need to be 
modified. The constellation of Fig. 3(a) and the boundary 

sgn(-zk+Z - Yk-1 + f 2  'k-3 ) 

plane C apply when 6k-3 = -1 with the root at an odd time 
interval or when P=-lwith the root at an even time 
interval. On the other hand, the constellation of Fig. 3(b) and 
the plane D are applicable when 'k-3 = +1 at odd times or 
when P = +1 at even times. This is summarized below: 
C: sgn(y;'-, - yk - I), iik-3 = -1 (odd) or P = -1 (even) i D:sgn(y;'-, - Yk + l),6k-3 = +I (odd) or P = +I (even) 

The two planes can be combined to give plane E' as shown 
below: 

yk-2 - Y k  - AE' + ' k - 3  7 (k - 3) odd 

y k - 2  - Y k  - p ,  (k - 3) even 
E : {  

where AE' = -&c?~-~ - f Z C k - 4 ,  which again could be 
implemented as an FIR filter or a two-input multiplexer. The 
fiial decision is again given by Equation (1 1). Fig. 7 shows 
the architecture of the modified 3D-SSD detector for a time- 
variant MTR code. 

detectors of rates 6/7 and 819 are compared. The code-rate 
gain of the time-variant MTR code is seen by the lower S N R  

In Fig. 8, the performance of 3D-110 and 3D-SSD 

AA 

Fig. 7: JD-SSD detector for use with the time-variant MTR code 

A 
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