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1 Introduction 
Various detection schemes for a linear channel corrupted with additive white Gaussian noise 
(A WGN) were studied. Except where noted, the simulations and analysis were performed using 
an actual magnetoresistive (MR) head response. The focus of the research was on the use of 
fixed-delay tree search with decision feedback (FDTS/DF) with (O,k) run length limited (RLL) 
codes. The performance of FDTS/DF is compared to a partial response maximum likelihood 
(PRML) detector and the optimum detector, maximum likelihood sequence detection (MLSD). 
Alternate formulations of the FDTS detector, based on a signal space representation, are 
presented. Finally, a new coding technique, which can be used either to reduce detector 
complexity or improve margin, is discussed. 

2 Channel Model 
The channel model used for all .the work presented is linear with additive white gaussian 

no_ise. A block diagram for the channel/detector is shown in Figure 1. The write current samples 
are a,..., hn is the sampled, filtered step response, nk are the AWGN samples, en is the forward 
.equalizer, and bn is the feedback filter. For a PRML detector, then bn block is not included. The 
value 7 is the delay of the detector and the depth of a FDTS structure. 

ak 
---'ll)lo• I 1-D n 

Figure 1. Channel model and detector block diagram 

X k .---------. 
--detector 
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The sampled transition response is shown in Figure 2. The magnitude spectrum of the reponse, 
prior to processing by the anti-aliasing low pass filter, is shown in Figure 3. The equalizers were 
optimized at each SNR point before measuring the bit error rate (BER). ·The optimization 
criterion was minimum mean square enor (MMSE). The effects of equalizer length were not 
considered. A sufficiently large number of taps ( 41 for the forward equalizer and 21 for the 
feedback filter) was used so that the filter lengths would not degrade the detector performance. 

3 Detector Distance Properties 
The performance of a detection scheme is dominated by the pair of symbols that are 

closest to each other in Euclidean distance. For an error to occur, the amount of noise that must 
be added is half of this distance. Because the noise amplitude is assumed to be Gaussian 
distributed, a _small increase in distance can greatly reduce the probability of an error. 
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Figure 2. Sampled, filtered transition response Figure 3. Spectrum of an unfiltered transition 

3.1 Maximum Likelihood Sequence Detection 

3 

-

, 

10 

Maximum Likelihood Sequence Detection (MLSD) yields the optimum detector 
performance for a linear channel with AWGN. Although implementing an unconstrained MLSD 
in a commercial disk drive is not economically feasible, it is useful as an absolute performance 

. bound against which other detection schemes may be compared. The distance between the two 
closest sequences is denoted by dmiw The performance of the MLSD detector is approximately 

P MLSo(e) " K ·Q [ ~:'] 
(1) 

where Q(-) is the complementary distribution function for a Gaussian distribution, a is the square 
root of the noise power at the output of the forward equalizer, and K as a constant independent 
of d"';,,-

The minimum distance can be bounded with_ the following [1] 

MIN t [ t b/k-J] 2 ':$; d~0 :::; MIN f [ t b1ek-J] 2 

{ }L k=O J=O { }L k=O J=O ~o ~o 

(2) 

where {bn; n=l, .. . ,J} are the feedback filter coefficients and ba=I. The term b0=1 is a result of 
training the equalizers for a DFE; i.e., for ideal operation, the samples at the input to a DFE are 
±ha, The error sequence of length L+l, {ek} is taken to be all possible error sequences where 
ea= ±2, and all other ek are O or ±2. This assumes that the desired data sequence is taken from 
ak = ±1 so that the differences are in {±2,0}. These upper and lower bounds represent non
increasing and non-decreasing functions, respectively, of the error length L. These bounds wi11 
converge as L • co. The bounds, as a function of L, for the case where the user density is 
Du = 2.5 are shown in Figure 4. 
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Figure 4. Bounding of dmin for D u = 2.5 
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Figure 5. FDTS/DF Minimum Distance (/3,.,n) 

4 

As shown, the upper bound rapidly converges to dm;11 while the lower bound approaches 
more slowly. The rapid convergence of the upper bound is explained by noting that for L ~ 2, 
the minimum distance error sequence determined by the upper bound was e = ±( -2, + 2,-2). Thus, 
when L = 2, the upper bound will be evaluated for this minimum distance event. Assuming that 
an event with a smaller distance does not exist beyond the range of L that was examined, there 
will be no decrease in the upper bound, because the minimum error event will already have been 
accounted for. It has been shown that at high densities, the minimum distance error sequence is 
of the form em;11 = ±(-2,+2,-2), a result which agrees with Figure 4 (2]. 

3.2 Fixed Delay Tree Search 
A measure of performance similar to dm;

11 
exists for FDTS/DF. In the case of the tree 

search, the quantity of interest is the distance between the pair of conflicting symbols with the 
smallest Euclidean distance. This value, termed fimin is determined by [3] 

(3) 

Notice that this is the same as the lower bound in (2). Thus, the minimum distance in FDTS/DF 
is a non-decreasing function of the depth r. Note that because fim,,, is the lower bound for d

111
;
11

, 

the performance ofFDTS/DF must converge to the MLSD bound. This distance (in dB) from dmin 

is shown as a function of Tin Figure 5. The only question remaining is how large the tree depth 
should be. This criterion is still dominated by the need to balance complexity against 
performance, but the distance properties provide some assistance in choosing a depth. For . . 
example, there is less incentive to increase the complexity from depth r= 1 to r-2, but increasing 
from r-2 to ;=3 results in a noticeable improvement for this particular channel. 
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4 Coding to Improve Signal Margin 
The bit error rate (BER) performance of optimal and suboptimal sequence estimators in 

an additive white Gaussian noise (A WGN) channel is dominated by the Euclidean distance 
between the two closest, conflicting sequences. For MLSD, it h·as been shown that at high data 
densities, the error rate performance is dominated by the error sequence e = ±(-2,+2,-2), where 
e is the difference between two valid sequences. An examination of the error sequences that 
correspond to /3,,,;n for FDTS/DF show that the most likely error sequence consists of three or 
more consecutive non-zero values in the error sequence. The Euclidean distance between the 
various conflicting sequences in the tree search indicates that eliminating error sequences 
containing ±( ... ,-2,+f,·2, ... ) will yield a significant improvement in distance. 

4.1 Coding Objective 
Figure 6 shows the two pairs of 

conflicting patterns that can cause the error 
sequence e = ±(-2,+2,-2). The sequences shown 
are non-return-to-zero (NRZ) sequences, which 
correspond to the write current waveform in a 
magnetic recording system. One or both of the 
conflicting patterns can be eliminated by requiring 
that the valid sequences contain no more than two 
consecutive transitions. A transition corresponds 
to a change in the level of the NRZ sequence. 

4.2 Maximum Transition Run Coding 

0, 0, 0, -2,+2,-2, 0, 0, 0 

--------n-......-..-_____,_____ 
Figure 6. Sequence~ that cause e=±(-2,+2,-2). 

In order to increase the minimum sequence distance, a new class of codes, designated 
maximum transition run (MTR) codes, is introduce. These codes limit the number of consecutive 
transitions that can occur in a recorded sequence. As noted before, eliminating three or more 
consecutive transitions results in a significant increase in minimum distance. Therefore, the use 
of MTR=2;k codes is proposed for use in magnetic recording. The k constraint is the same as the 
k constraint used in RLL coding. The RLL d constraint for the MTR codes is d=O. If the written 
data is considered as an NRZI (non-return-to-zero inversion) sequence, where a 1 corresponds 
.to a change in the level of the corresponding NRZ sequence, and a O signifies no change, the 
MTR=2 constraint means that no more than two consecutive 1 'scan occur. For the remainder of 
this report, data and code words are assumed to be an NRZI representation. 

The properties of a MTR=2 code are discussed in the context of code design. The 
characteristics of several codes that could be readily applied to data storage are examined. The 
discussion will focus on block codes, in which there is a one-to-one mapping between an m-bit 
block of user bits and an n-bit codeword. More complex and efficient codes can be developed 
by using a state machine as the encoder. While the design techniques for these codes is beyond 
the scope of this paper, they can be applied to develop codes which incorporate the MTR 
constraint. 
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