
1344

Abstract - This paper provides a tutorial introduction to
E E 6 i i i g codes for magnetic disk storage devices and a review
of progress in code construction algorithms. Topics covered
include: a brief description of typical magnetic recording
channels; motivation for use of recording codes; methods of
selecting codes to maximize data density and reliability; and
techniques for code design and implementation.

1. INTRODUCTIQN

magnetic disk storage to increase linear density and improve
Recording codes have been uscd with great success in

performance. This paper attempts to provide, in a limited space,
a tutorial introduction to these codes.

and detection in a typical magnetic storage channel, as well as
Section 2 briefly reviews the basic principles of recording

the motivation for the use of codes.
Section 3 focuses on recording codes for magnetic disk

storage. The recording codes in most widespread use fall into
the class of run-length-limited (RLL) or (d,k) constrained codes.

(d,k! codes. First, one must choose the parameters (d,k) which
Two major problems arise in the context of general RLL

maximize data density and reliability. In Section 4, we address
this issue of recording code performance evaluation and
parameter selection.

The second major problem is the design and
implementation of (d,k) codes. Section 5 is devoted to a review

advances in the development of general algorithms for the
of code construction techniques, with an emphasis on recent

construction of sliding block RLL codes.

2. THE DIGITAL MAGNETIC RECORDING CHANNEL

Most magnetic disk storage devices in use today employ
saturation recording to place the data on the disk, followed by
peak detection during the readback step to recover the
information. Figure 1 illustrates schematically the essential
elements of the process. The data are recorded on the magnetic
medium by orienting magnets along a concentric track, as shown
at the top left of the figure. The magnets are oriented either in
the direction of motion of the head around the t r y k , o r in the
opposite direction (at least in conventional horizontal"
recording). The remaining portions of the figure show the
relationship of the pattern of magnetization to the recorded bits,
as dictated by the modulation scheme (known as NRZI
precoding) which converts the bit stream to a 2-level write
current signal for the recordiy head. The symbols "I" in the
bit stream are recorded as transitions" or changes in the
polarity of the magnets along the track. During the readback
process, the inductive read head transforms the sequence of
transitions into a stream of pulses of alternating polarity. The
clocking circuit (VPO, or variable-frequency oscillator) uses
these pulses to maintain a synchronized timing window for the
detector, which locates the pulse peaks in time. The information
can then be reconstructed by placing a recovered bi t "1" in any
window in which a peak was detected, and a bit "0" otherwise.

Trzck:
Magnetic

nata:

write
Current. * O . l . l . @ .

Vo!tage.
Readback

Detected
Data: . o . 1 . 1 . 0

Fig. 1. Digital magnetic recording channel

Manuscript received:
P. H. Siegel
IBM Research Lab, K62/282
5600 CottIe Road
San Jose, CA 95193, U.S.A.

Thermal noise generated by the electronic circuits and noise
The recording channel has imperfections, however.

arising from magnetic properties of the disk medium can corrupt
the readback signal, leading to spurious peaks as well as shifted
positions of the genuine peaks. To compensate for these effects,
at least in part, enhancements t o peak detection, such as the
addition of a threshold (clip level) and the tracking of peak
polarities, have been introduced. Another major problem is the
intersymbol interference (ISI) of neighboring pulses, illustrated
in the figure. Magnetic transitions, or recorded symbols "1,"
which arc written too close to one another have an interfering
effect during readback that can both reduce the amplitude of the
pulse as well as shift the peak position. On the other hand, if
the transitions are written too far apart, the clock recovery
circuit will not be receiving adequate information t o maintain
synchronization with the recorded bits.

use of data coding techniques. Two distinct kinds of codes are
These detection error mechanisms are combatted by the

typically used. A recording code is used to guarantee that the
recorded bit sequence does not suffer from $e problems
described above, namely runs of symbols 0" between
consecutive symbols "1" which are either too short or too long.
Recording codes are also referred to as modulation codes. Even
with an appropriate recording code, detection errors may still
occur as a result of channel noise, producing an unacceptable
error rate at the desired data density. The second kind of code,
an error-correcting (also called error-control) code (ECC), uses
redundant bits which have been added t o the original user data
to detect, locate, and correct all remaining errors with very high
probability of success.

channel is shown in Figure 2. In typical high end applications,
The configuration of these codes in the magnetic recording

the recording code reduces the bit error rate (BER) to
approximately 1 detection error in 10 billion bits. In addition,
practical recording codes limit error propagation in the decoding
process. This is crucial, because the ECC typically used has the
capability of correcting only a small number of multi-bit bursts
of errors per track.

Fig. 2. Configuration of codes

For the remainder of this paper, we focus on the aspects of
recording code selection and design.

3. RUN-LENGTH-LIMITED (RLL) CODES
FOR MAGNETIC STORAGE

Many popular recording codes for peak detection channels fall

in their general form, were pioneered by P. Franaszek [l] in the
into the class of run-length-limited (RLL) codes. These codes,

late 1960's. Since then, a considerable body of engineering and
mathematical literature has been written on the subject. RLL
codes are characterized by two parameters (d ,k) , which
represent, respectively, the minimum and Caximum number of

code strings. The parameter d controls high frequency content
symbols "0" between consecutive symbols 1" in the allowable

in the associated write current signals, and so reduces the effects
of intersymbol interference. The parameter k controls low
frequency content, and ensures frequent information for the
clock synchronization loop.

well as some high-end drives, today incorporate a code known as
For example, most flexible and low-end rigid disk files, as

Modified Frequency Modulation (MFM). It also goes by other
names, such as Delay Modulation or Miller code. MFM is an
RLL code with (d,k)=(1,3).

construction of. a simple, efficient correspondence, or code
The problem faced by the coding theorist is the

mapping, between the arbitrary binary strings that a user might
want to store on a magnetic disk and the (d,k) constrained code
strings which the peak detector ca,p more easily recover
correctly. We now give the term efficient" quantitative
meaning by introducing the third important code parameter, the
code rate.

strings could be accomplished as follows. Pick a codeword
'The conversion of arbitrary strings t o constrained (d,k)

0018-9464/85/0900-1344$01.0001985 IEEE

 UMN EXHIBIT 2026
LSI Corp. et al. v. Regents of Univ. of Minn.

IPR2017-01068

Page 1 of 6 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1345

length n. List all the strings of length n which satisfy the (d,k)
constraint. If there are at least 2m such strings, assign a unique
codeword to each of the 2m possible binary input words of
length m. This kind of code mapping is commonly referred to
as a block code. The ratio, m/n, of input word length m to
codeword length n is called the code rate. Since there are only
2" unconstrained binary strings of length n, there will be less
than this number of constrained,codewords. Therefore, the
rate must satisfy m/n<l. In fact , there is a maximum
achievable rate, called the Shannon capacity C, which we now
discuss.

In 1948, Shannon proved that, as the codeword length
grows, the number of constrained codewords approaches 2Cn
from below, for some constant C which depends on the code
constraints. This result implies that the rate m/n of any code
mapping for that constraint must satisfy m/n<C. Roughly
speaking, a code is called efficient if the rate m/n is close to C.
Shannon's proof also showed that a' block code is possible a t
any rate m/n<C, provided long enough codewords are used.
We remark that practica1 applications usually require code
mappings involving shorter codewords. Section 5 discusses
techniques which have been developed to construct practical
code mappings, including codes with rate equal to the capacity
C when C is a rational fraction.

One can employ a finite-state transition diagram (FSTD)
in order to conveniently represent the infinitude of binary
strings satisfying the' (d,k) constraint. This graph
representation for constrained channel strings dates back to
Shannon's seminal paper [2], and it was exploited by Franaszek
in his work on RLL codes. Figure 3 shows an FSTD for the
(1,3) constraint. It consists of a graph with 4 nodes, called
states, and directed edges between them, called state
transitions, represented by arrows.. The edges are labeled with
channel bits. Paths through the graph correspond precisely to
the binary strings satisfying the (1,3) constraint. A similar
FSTD having k+l states can be used to describe any (d,k)
constraint, as the reader can easily verify.

(d,k) Capacity Practical
C Rate

(1,3) 0.5515
(0,1) 0.6942 1/2, 2/3

(1,7) 0.679
1 /2

(2,7) 0.5172
213
1 /2

Fig. 3 . (1,3) FSTD Fig. 4. Code Capacities

directly related to the structure of the FSTD. We define the
The capacity C of the RLL (d,k) constrained channel is

state-transition matrix T = (t.-) associated to the (d,k) FSTD
with states 1, ..., k + l as followk!:

t . . = x, if there are x edges from 11 state i to state j . (1)
=0, otherwise .

For example, for the (d,k)=(1,3) case:
0 1 0 0

T ' 1 0 0 1
1 0 1 0

1 0 0 0
The capacity C, in units of user bits per channel bit, was shown
by Shannon to be:

c = log, h
where X is the largest positive eigenvalue of T , that is the largest
root of. f(t), the characteristic polynomial of T. For the (d,k)
constraint, the polynomial f(t) is f(t)=tk+l-tk-d-...-t-l. The
roots can be easily found by computer calculation. In the (1,3)
case, we find A=1.465.., so C=O.5515 ...

In practice, one chooses for the rate a rational number
m/n<C. To help keep the codeword length small, the integers m
and n are often selected to be small. Thus, for the (1,3)
constraint, it would be natural to look for a code mapping at
rate 1/2, which uses codewords of length 2 bits. Figure 4 gives
a list of some (d,k) constraints of historical and current interest,
along with Shannon capacity C, and choices of practical code
rates. We note here that the rate 1/2 for (d,k)=(O,l) is
included for historical reasons which will be clarified in section
5. For now, it serves to emphasize that the rates of possibIe
code mappings must only satisfy m/n<C.

(d,k) constraint and code rate determines the code bit
For a given user bit frequency, or data rate, the choice of

frequency and the power spectrum of the write current signals

write current signals that would be obtained from a (d,k) code
produced by the code. Figure 5 shows the power spectra of

that is 100% efficient, for the (d,k) parameters in Figure 4.
0

5 -
-

ti -lo

B
-15

-20
0 02 0.4 O B 08 1 0

ldala bll trequancy = ?,
Fleg"e"CY

Fig. 5 . RLL code spectra

4. CODE PERFORMANCE EVALUATION AND SELECTION

We are now in a position to evaluate, to some extent, the
relative abilities of RLL (d,k) codes to prevent detection errors
in peak detection channels.

specified data rate with a particular head and dizk combination
One can get a clue as to the best (d,k) code to use at a

head/disk transfer function best. This comparison can be
by seeing which code spectrum in Figure 5 matches" the

impact on the peak detection process. To start, we do a
strengthened by taking a closer look a t code patterns and their

comparison which will explain the prevalence of MFM today.
When peak detection was introduced along with a
variable-frequency oscillator (VFO) clocking circuit, a coding
technique was needed to give very frequent clock recovery
information to the VFO. It is known as Frequency Modulation

and Manchester code. The code was at rate 1/2, and the code
(FM), or Double Frequency, and is related to Phase Encoding

mapping rules were simple. To encode, write 2 bits for each
data bit, the first always being "1," the second being the data
bit. Decoding involves simply grouping the detected bits into
pairs, and dropping the first bit of each pair. Using RLL code
nomenclature, FM is a rate 1/2 (0,l) RLL code. This is the
reason that rate 1/2 for (d,k)=CO,l) was included in Figure 4.

code, meaning that the associated write signals have zero
It should be mentioned that FM is also a DC-balanced

average power at DC. In fact, at any point in time, the number

differs from the number in which it is negative by a t most 1.
of preceding clock intervals in which the signal is positive

This DC-balanced property is not required, however, for most
With this additional constraint, the FM code is 100% efficient.

magnetic disk storage applications.

synchronization possible. Figure 6 shows uncoded data and
In FM, the k=l parameter made accurate clock

rate 1/2 (0,l) bit patterns which correspond to the same linear
user bit density. The minimum allowable magnetic transition
spacing is indicated by the solid bar at left above each pattern.
The detection window in which the peak must be sensed is
indicated by the dotted bar at right above each pattern. We

half, and simultaneously reduces the minimum transition
see that the FM code cuts the size of the detection window in

spacing by a factor of two. The drastic increase in
intersymbol interference certainly negated t o some extent the
potential benefits obtained by the introduction of peak sensing
and the VFO.

Data: . 1 . 1 . 0 . 1 .
- +-----I

H
FM'

+--i
. 1 . 1 . 1 . 1 . 0 . 1 . 1 . 1 .

H k---i
MFM: . 1 . 0 . 1 . 0 . 0 . 0 . 1 . 0 . - k---i
1/2(2,7): . 1 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . ' -
2/3(1,7): . 1 . 0 . 1 . 0 . 0 . 0 .

p---,

Fig. 6 . RLL code patterns
Modified Frequency Modulation (MFM) was developed,

as the name suggests, to improve upon the FM recording code.
The observation was made that not all of the redundant bits
need to be "1". Inserting a "1" in the first.position of each
code bit pair only when the current data bit and previous data
bit are "0," and inserting "0" otherwise, produced a rate 1/2
(1,3) code. The k=3 parameter turned out to be still adequate

Page 2 of 6 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1346

for clock recovery, and the d = l represented a doubling of the
minimum transition spacing compared to FM. Figure 6 shows
the comparison of "worst case" rate 1/2 (0,l) and rate 1/2
(1,3) bit patterns. At a specified linear user bit density, one
would anticipate considerable improvement in detector
performance from MFM. MFM became an industry standard in
flexible and "Winchester"-technology drives.

More recently, other RLL (d,k) constraints have been
introduced. For example, ISS used a rate 1 / 2 (2 , l l) code
called 3PM [3] in its 8434 disk drive and a rate 2/3 (1,7) code
in its 8470 drive [4]. Also, IBM utilized a rate 1/2 (2,7) code
[SI in its 3370-3380 family of high-end drives.

codes instead of MFM. In comparing 1/2 (2,7) to MFM, at
Figure 6 gives heuristic Justification of the use of these

fixed linear density, we see that the ' worst case" intersymbol
interference for the (2,7) code gives a minimum transition
spacing which is 50% larger than that of MFM. The detection
window size remains unchanged. Provided that the VFO can
handle a k=7 parameter, we conclude that use of the (2,7) code
leads t o a considerable improvement in detector performance.
Similarly, in comparing the 2/3 (1,7) code to MFM, we find

well as a 33% larger detection window. Again, we can
that the (1,7) has 33% larger minimum transition spacing, as

conclude that the error rate can be reduced by use of (1,7)
instead of MFM.

The code comparison method breaks down when we t ry to
choose between the 1/2 (2,7) and the 2/3 (1,7) codes. The
2/3(1,7) code has a 33% larger detection window than the
1/2(2,7), but the minimum transition spacing is llo/o.less. The
optimal choice depends on the specific signal and noise
characteristics of the head-disk combination and other channel
components, as well as additional signal processing options
such as readback equalization and write precompensation.
More sophisticated performance evaluation tools are required,
and several studies have been devoted to the development of
such tools and their application to code selection. See, for
example, Huber [6]. Using the peak detection channel model
reported in [7], error-rate curves were computed for FM,
MFM, and (2,7) codes to illustrate the progress achieved via

thin-film head, particulate medium with no significant disk
improved coding. These calculations assumed conventional

defects, low-pass filtering, and no write precompensation. The
results are shown in Figure 7. In addition, Figure 7 shows a
projected range of improved performance that can be achieved
by use of (2,7) or (1,7) codes in conjunction with write

are consistent with simulated and experimental results given in
precompensation and readback equalization. These projections

reported that a data rate increase of 10% was achieved in an
several published studies. For example, Jacoby and Kost [4]

equalized channel by use of a rate 2/3 (1,7) code in place of a
rate 1/2 (2,7) code.

.- + x 0 - .-
Q

Q
m

a -10
2

2
w"

I

a
0
-I -20

4 a 12 16 20

Linear Density (KBPI)

Fig. 7. RLL code performance calculation

since 1966 has increased linear density by a factor of
These calculations indicate that recording code progress

approximately 2.5. This represents a significant contribution
to the overall factor of increase due to improvements in

drives in [SI.
storage technology, for example, as reported for IBM disk

5. RECORDING CODE CONSTRUCTION
AND IMPLEMENTATION

Once the optimal code parameters'are selected, based on
modeling or experimentation, it is necessary t o devise encoding

implemented in simple logic circuits or look-up tables. This
and decoding rules for an efficient code which can be

section addresses the problem of code construction and
implementation.

To illustrate some of the techniques and algorithms that
have evolved in the construction of practical, efficient
recording codes, we develop a sequence of examples. We first
will describe practical code properties in the context of MFM

code. Then, we will examine some of the methods developed to
design (d,k) codes, emphasizing (2,7) and (1,7) codes. The
sequence state coding methods of Franaszek [l] and the
look-ahead techniques of Patel [9], Jacoby [3], Franaszek [lo],
Cohn and Jacoby [ll], Jacoby and Kost [4], and Lempel and
Cohn [12] will be discussed.

Finally, ,we focus on the recent sliding block code
construction algorithm of Adler, Coppersmith, Hassner [13],
based on work of Marcus [14]. This technique, derived from

represents a theoretical breakthrough in code construction,
the branch of mathematics known as symbolic dynamics,

algorithm provides an explicit recipe, justified by mathematical
with significant practical implications. For the first time, the

proofs, for construction of simple, efficient RLL codes with
limited error propagation. The method incorporates many of
the key ideas which appear in the work of Franaszek, Patel,
Jacoby, Cohn and Lempel, generalizing them and making
precise the construction steps and the scope of their
applicability.

Properties of Practical Code Mappings
We now discuss some properties that practical code mappings
possess, using MFM to illustrate them. The essential
properties are:

- ------ - _-- _-

1) high efficiency,
2) simple encoder and decoder implementations, and
3) limited error propagation.

The MFM code, as defined earlier, is a rate 1/2 (1,3)
code. It has high efficiency, 0.5/0.5515, or approximately 91%.
The encoder is characterized by two encoding rules. The first
rule, which we call rul: A, is used to encode a data bit if the
previous data bit ,yy 0". The second rule B, is used if the
previous bit was 1 , Both rules take the form of a block
code, mapping 1 bit to 2 bits. The MFM encoder can be
represented in table form, as shown in Figure 8.

State A B
Data

0
1

10/A OO/A
01/B 01/B

Code Data

NO 0
N1 1

Fig. 8. Encoder and decoder tables for MFM
The columns labeled A and B describe the block codes for the
two rules. Each entry in these columns also indicates the next
encoder state, that is, the rule which i s t o be used t o encode
the next bit.

The MFM encoder is an example of a finite-state machine
(FSM), with fixed length inputs and outputs. A FSM is simply
a set of encoding rules which indicate how t o map input words
to output words, and also define which encoding rule to use
after each encoding operation. A FSM also has a graphical

discussion of code construction techniques. The nodes (states)
representation which will play an important role in the later

in the graph correspond to columns in the encoder table, and
the graph edges have labels "x/y" where x is an input word,
and y 1s the corresponding codeword. The labeled edges
emanating from a state define the encoding rule, and the state
in which an edge terminates indicates the state, or encoding
rule, to use next. The FSM graph for MFM is shown in
Figure 9.

because it is quite easily implemented as a sequential logic
The FSM encoder structure is particularly convenient

network or ROM-based look-up table. Each encoder cycle
encodes a single data bit into 2 code bits, which are a function
of the data bit and the contents of a 1-bit state indicator
register, and then updates the state indicator.

2-bit blocks and dropping the redundant first bit in each block.
Decoding is accomplished by grouping the code string into

The decoding :able is shown in Figure 8 also. The symbol "N"
represents a not care" bit position in which the a5tual bit
Zalue does not affect decoding. For example, both 10" and
00" decode to "0". This block decoder ensures that error

propagation is no more than 1 user bit.

which decodes a codeword by looking at a window
The MFM decoder is an example of a sliding blo;k decode:[

containing the codeword and a finite number of preceeding and
following codewords in the string. In the MFM case, the
window only contains the codeword being decoded. One can

d o n g the codestring one codeword a t a time, producing at each
think of such a decoder in terms of a sliding window that shifts

shift a decoded data word, depending only on the window
contents. This structure ensures finite error propagation, since an
erroneous codeword can only affect the decoding decisions

decoder is also conveniently implemented in a logic network,
while it is contained in the sliding window. A sliding block

with the sliding block embodied in a shift register. Each MFM
Page 3 of 6 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1347

decoding cycle shifts 2 code bits into the register and generates
a decoded data bit.

01 00

Fig. 9. MFM encoder Fig. 10. G2 for (1,3) Fig. 11. Subgraph H

-- Secpence ----- State C o d a
Franaszek [l] introduced sequence state methods into the

investigation of efficient constrained code construction. The
essential idea is t o build a FSM encoder in which the states
(encoding rules) correspond to the states in a FSTD
representation of the constraints. The codewords produced by
a particular encoding rule in the FSM must be generated by
following paths through the FSTD which start at the
corresponding state.

We illustrate the sequence state methods by rederiving
the FSM encoder for the MFM code. We begin with the FSTD
for the (1,3) constraint, shown in Figure 3. Denote this graph
by G. We want the FSM encoding rules t o map 1 bit to 2 bits,

which is 2 bits long. Therefore, an edge in the FSM graph
so an edge in the FSM graph should have a codeword label

must correspond to a sequence of 2 edges in the FSTD, each of
which had a 1 bit codeword label. With this in mind, we now
de ine the graph called the square of the FSTD G, and denoted
G J , as a candidate for the underlying graph of the FSM
encoder. This is the FSTD which has the same states as G, but
in which, each edge corresponds t o a consecutive pair of edges
in G, and the edge label is the corresponding sequence of 2 edge
labels from G. The FSTD G2 for thi case is shown in Figure
10. Note that if each state in G 1 had at least 2 edges
emanating from it, we could construct an FSM encoder by
simply assigning the input words "0" and "1" to two distinct
edges from each state, discarding any excess edges.

Here, though, G2 does not have this property. This can
be seen f om Figure 10. It can also be seen by noting that the
matrix TI, the matrix square of the state-transition matrix T
for FSTD G, is the state-transition matrix for the FSTD G2.
This matrix is:

1 0 1 0
2 1 1 0 1

0 1 0 0
1 1 0 0 T =

The entry in (row i, column j) can be seen to count the total
number of edges from state i to state j in G2. The row sum for
each row must be a t least 2 if each state has at least 2 outgoing
edges. Clearly the row sum for row 4 is only 1.

G2 which does have the desired number of outgoing edges from
However, we can observe that there is a subgraph H of

each state. Namely, we eliminate state 4 and all edges which
enter or leave it Alternatively, we note that the submatrix
obtained from Ti by eliminating the last row and column has
row sums exactly 2. Input labels can now be assigned to the
edges in the subgraph H to yield a FSM encoder structure,
shown in Figure 11. States 2 and 3 have the property that
their outgoing edges are identical in terms of output labels and
next states. In other words, they describe the same encoding
rule. Tpey may be merged, therefore, into a single aggregate
state, 2 . The outgoing edges from 2' are those common t o
states 2 and 3, while the incoming edges are simply redirected
to 2' from states 2 and 3. If we relabel state 1 as state B and
s ta te 2' as state A, the result ing FSM is exactly the FSM
shown in Figure 9.

For the RLL (2,7) constraint, the Shannon capacity is
given by C=0.5172 ... If we try to construct a FSM encoder
which encodes 1 bit into 2 bits, as we did with MFM above, we
find that there is no subgraph of the square of the standard
(2,7) FSTD with at least 2 outgoing edges from each state. We
know from Shannon's result that a code is possible at rate 1 2,
SO one strategy is to take higher powers of the graph, say G4m,
and try to derive from it a FSM encoder in which one encodes
m input bits at a time into 2m code bits. A computer
calculation of powers of the matrix T shows that the smallest
value of m for which this is possible is m=17 In the resulting

The table form of t e encoder would require a table of
FSM encoder, each state would require 2 l 7 outgoing edges.

encoding rules, each 2 19 x34 bits in size!

D a t i Code

001 0
001 1 A 000100

100100
001000
00100100
00001 000

Fig. 12. 'Variable-length (2.7) code

efficient (d,k) codes, with h i t e error propagation. The
In general, this techni ue can be used to construct

drawback, as seen in the (2,7) example, is that the encoder and
decoder implementations can still be very complex, involving
long codewords and otentially large error propagation.

Franaszek [5] round a considerably simpler code mapping
by utilizing FSM structures with variable-length input words
and codewords. Space limitations preclude a detailed
discussion of the technique, but we will describe the 1/2 (2,7)
code he constructed, as well as properties of the variable-length
FSM codes generated by the method.

The variable-length FSM encoder for the 1/2 (2.7) code
reduces t o a single state, yielding a variable-length block code
as shown in Fi ure 12. The codewords form a prefix-free list,
that is, no wor8 is a prefix of another. This ensures that any
concatenation of codewords has a unique decomposition into a
string of codewords. In additign, Franaszek selected the
codewords so that the pat terns 1000" and "0100" delimit
codeword boundaries. These two properties ensure
decodability with finite error propagation. The corresponding
data word list is also prefix-free, and additionally has the
property of being fuU. This means that every semi-infinite
binary data string has a unique decomposition into input

note that the actual implementation of a (2,7) encoder based
words, guaranteeing encodability of data. It is interesting to

code description into an equivalent fixed-length FSM encoder
on this variable-length code involved the translation of this

mapping 1 data bi t to 2 code bits during each encoding
operation. The number of states used required a 4-bit state
indicator memory. The decoder implementation took the form
of a sliding block decoder, decoding 2 code bits into 1 data bit
during each decoding operation. The sliding window was a
shift register of 8 code bits. The error propagation was
therefore no more than 4 data bits. [15].

method produces efficient (d,k) codes with rate m/n<C and
In general,' the variable-length sequence state coding

finite error propagation. The variable-length FSM encoder can
be .translated into a fixed-length FSM structure with an
associated sliding block decoder, just as was done for the (2,7)
code, by introducing additional states. The codeword length in
such a fixed-length FSM description can still grow very large,
although this did not occur in the (2,7) case. The codeword
length will typically be smaller than would be obtained by
using fixed-length sequence state methods, however.

block code. Other applications of variable length coding
Franaszek also constructed a 2/3 (1.8) variable length

techniques to RLL codes may be found in [16], where a rate
2/3, (1,7) variable-length code having 2 states is presented.
Look-Ahead __- Coding Technicpus ---_

Another class of techniques found in the work of several
authors, including Pate1 [9], Jacoby [3], Franaszek [lo], Cohn
and Jacoby [ll], Lempel and Cohn [12], and Jacoby and Kost

has been used t o produce several practical, efficient codes.
[41, is called future-dependent or look-ahead (LA) coding, and

overcome the codeword length restrictions encountered in the
One objective of LA codes, as described in [12], i s to

sequence state coding methods. For any code rate m/n<C, one

bits, and a decoder with finite error propagation. The tradeoffs
would like a fixed-length FSM encoder which maps m bits to n

maximum error propagation could then be better evaluated.
between codeword length, implementation complexity, and

The idea is t o design an encoder (often with structure
similar t o a FSM derived from the graph Gn, where G is the
FSTD for the constraints) in which the enc,oding rules allow
several alternative encodings for given input data words. The
alternative chosen to encode the input word depends on
"look-ahead" a t a finite number of upcoming input words.

There are several important examples of practical
look-ahead codes. Jacoby [3] developed a rate 3/6 (2 , l l) code
called 3PM, which was later modified into a rate 3/6 (2,7)
code by Jacoby and Cohn [ll]. Franaszek [17] ublished a rate
2/3 RLL (1,7) code and Jacoby and Kost[49 also recently

Page 4 of 6 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1348

published a very elegant rate 2/3 RLL (1,7) code, invented by
Cohn, Jacoby, and Bates [18].

describe the Cohn, Jacoby, and Bates code in more detail. The
To illustrate the look-ahead encoding technique, we

encoder takes the form of two tables, shown in Figure 13. The
Basic Encoding table provides a mapping from 2-bit input
words to 3-bit codewords which satisfy the (1,7) constraint. If
this table was used for encoding, however, certain sequences of
2-bit input patterns would produce code strings which violate
the (1,7) constraint. For example, 00.00 would encode t o
101.101. Exactly four such violation patterns occur. To
handle these, a Violation Substitution table provides
alternative encodings that should be used when a violation
pattern is detected by look-ahead at the upcoming 2-bit input
word. The decoder has a maximum error propagation of 5 data
bits.

- Basic encoding table - Violation substitution table mi Data Code

0 0.0 0 1 0 1.0 0 0
1 0 0 1 0 0.0 0 0 0 0.0 1

0 0 1
0 1 0.0 0 0 1 0.0 1 0 1 0
0 0 1.0 0 0 1 0.0 0

Fig. 13. Look-ahead (1,7) code

Just as in the case of the variable-length codes described above,
sequential implementations of these codes can be obtained by
the use of an equivalent fixed-length FSM encoder and a sliding
block decoder. For example, a FSM implementation of the
encoder for the Cohn, Jacoby, and Bates (1,7) code is shown in
Figure 14 [18].

~ ~ A l B ~ C ~ D ~ V ~

10llV 100IA 0011V 010IA 000:A

01

000/D 010ID 001ID 100ID 101ID 11

OOOlC 0 1 0 K 001lC 100lC 101lC 10

OOOIB 010/B O l O / V 10OlB 1oo/v

Fig. 14. (1,7) code FSM

coding. First, there is the introduction of an approximate
Several key ideas appear in the context of look-ahead

eigenvector inequality to guide the code construction [12]. If we
are interested in a code at rate m/n, then an approximate
eigenvector v is a non-negative integer vector satisfying the
inequality:

T"v 2 2 m ~
where, as before, T is the state-transition matrix for the RLL
constraint. The existence of such an eigenvector is guaranteed
by the Perron-Frobenius theory of non-negative matrices [19].

words to edges in G". If the matrix T" does not have a This vector can be used to guide the assignment of input

submatrix with row sums at least 2m, then some component of
v will be larger than 1 and encoder look-ahead is required. The
amount of look-ahead required t o encode the input label of an
edge is related to the eigenvector component of the state in
which the edoe terminates. This input assignment process is
illustrated in 7121. The literature on the subJect describes the
construction technique primarily by means of examples. A
systematic procedure for designing look-ahead (d,k) codes with
guaranteed finite error propagation has not yet been published.

Patel [9] also utilized a look-ahead approach in his design
of the Zero-Modulation (ZM) code, a DC-free code with RLL
(1,3) constraints and Shannon capacity C=1/2. Patel
introduced another ve3y important idea in his construction. He
modified the FSTD G by splitting and merging some of the states
to obtain a representation of the constraint by a new FSTD
whose edges could more easily be labeled to yield a look-ahead
encoder. We will discuss state-splitting and state-merging in
more detail in the next section.

Sliding ___ Block Code - Algorithm
The sliding block code algorithm of Adler, Coppersmith,

and Hassner [131, based on work of Marcus 1141, used
techniques developed independently from recording technology
in the branch of abstract mathematics known as symbolic
dynamics. The application of these ideas to the construction of
recording codes was inspired by Patel's paper on ZM [9]. The
ideas of "approximate eigenvector" and "state-splitting and
state-merging," seen in look-ahead coding examples, play an
important role in the algorithm. Instead of using the
approximate eigenvector v to guide the assignment of m-bit
input words to the edges of the FSTD G" to enable look-ahead
encoding at rate m/n, the algorithm uses the vector v to guide
the construction of a new FSTD that underlies a FSM encoder.
The eigenvector component for each state s in G" is called its
weighl, vs. The algorithm produces the new FSTD, which we
call H, by iteratively splitting each state s into vs states and
specifying labeled state transitions among the new collection of
states. The state-splitting procedure ensures that the resulting
FSTD H generates the same set of constrained code strings as
G", but, in addition, each state has at least 2m outgoing edges.
The assignment of distinct m-bit input words to 2m outgoing
edges at each state of H then provides a FSM encoder which
maps m-bit input words t o n-bit codewords. Moreover, the
state-splitting algorithm in [131 guarantees that the decoder for
this code will have a finite sliding block structure, ensuring
limited error propagation. We will give an example shortly,
but the reader is encouraged t o see [13] for details.

The key advance achieved by the algorithm is that it is
systematic and is supported by a rigorous mathematical proof.
The procedure successfully constructs a code at any rate m/n
5 C, where C is the Shannon capacity of the RLL constraint.
Note especially that the construction of codes with rate
m/n=C is equaIIy well handled by the algorithm. Computer
programs have been written which apply the algorithm to
automatically generate practical, efficient RLL (d,k) codes.

(0,l) sliding block code. The FSTD, called G, and its third
To illustrate the ideas, we construct a rate 2/3, RLL

power G3 are shown in Figures 15 and 16.

1

01 1
110

w -
111 111

Fig. 15. (0,l) FSTD G Fig. 16. G3~for (0,l)

An eigenvector inequality is given by:

T3v = [i ;] [f] 2 22[?] = 2 2 v .

This approximate eigenvector v=(2 1) indicates that state 1
will be split into 2 states, while state 2 will not P, spli$ The
two states into which state 1 is split are called 1 and 1 . The

are assigned to the two offspring" states. In addition, all
outgoing edges of state 1 ?;e partitioned into two groups which

edges which entered state 1 are redirected to both offspring
states in the split FSTD. The splitting rule requires that the
sum of the weights of the terminal states of edges in a gro
must be an integer multiple of the approximate eigenvalue, 2 %? ,
edges into groups [011,110,010] and [101,111], both of which
with the possible exception of one group; we split the

have total weight exactly 4. Note that there can be more than
one choice of edge partitioning which satisfies the splitting

generates the same set of strings as C$, but has at least 4
rule. The resulting FSTD, called H, is s own in Figure 17. It

outgoing edges from each state. By discarding the loop at state
2, we can label the edges a t each state with 2-bit input words
to get a FSM encoder, for example, as shown in Figure 18.
States l2 and 2 represent the same encoding rule, so they can

to further simplify the FSM encoder to include only two states.
be merged, as was done in the case of the MFM construction,

The algorithm guarantees that, regardless of the input word
assignment and subsequent state-mergings, the decoder will
require a sliding window of no more than 7 code bits, involving
one bit of look-behind to resolve the state in G3 and one 3-bit

Page 5 of 6 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

