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Design of a Rate 6/7 Maximum Transition Run Code 
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Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455 

Abstract-Maximum transition run (MTR) codes provide 
significant minimum distance gains when used with sequence 
detectors operating at high linear densities. A method for 
reducing the RLL k constraint associated with MTR block codes 
is presented. A block decodable, rate 4/5 MTR code with k=4 
illustrates the technique. This reduction of k is combined with 
sliding-block decoding to develop a 97.8% efficient rate 6/7 
MTR code with k=8. 

I. INTRODUCTION 

ODULATION codes are used to eliminate troublesome M patterns or to introduce certain desirable characteristics in the 
recorded sequences [l]. An important case of the former is 
suppression of minimum distance error events, which dominate the 
performance of sequence detectors. At low densities, the minimum 
distance error is a single bit error, which does not allow for an 
improvement via the elimination of input patterns. However, as 
linear densities in the magnetic recording channel approach 2.5 bits 
per PWso, the event changes. Assuming the NRZ input symbols 
(write current levels) are {-l,+l}, the error pattern ek = k(2, -2,2) 
dominates. Examination of the input patterns reveals that at least 
one pattern in each error generating pair contains three or more 
transitions. Therefore, a code that eliminates these error prone 
patterns by limiting the maximum number of consecutive transitions 
to two can improve the performance of near-optimal detectors. 

The class of codes known as maximum transition run (MTR) 
codes limits the number of consecutive transitions to j=2, and yields 
a coding gain [2][3]. The usual RLL k constraint is retained for 
timing recovery, leading to an encapsulation of the code parameters 
as MTR(j;k), where j is the maximum number of consecutive 
transitions. Prior to write precompensation, transitions allowed by 
the MTR code have a constant phase relative to the write clock. This 
is in contrast to the ternary 3PM code in which a pair of closely 
spaced transitions are used as a third symbol by shifting the pair half 
of the bit window to place the zero crossing at the same position in 
the bit window as the peak of an isolated pulse [4]. The codes 
developed in this paper are all MTR(2;k) types. Although the MTR 
code provides a concise set of constraints to yield the desired coding 
gain, similar distance gains may be obtained by other constraints 
such as those developed for E 2PRML [5] .  

II. RATE 415 CODE DESIGN FOR REDUCED k CONSTRAINT 

One design methodology for MTR block codes is to maximize the 
code rate and then minimize the RLL k constraint. In doing so, 
however, it is possible to arrive at codes with reasonable rates but 
large values for k. To reduce k, a simple method for designing a 
two-state encoder for use with block decoding is proposed. With a 
block code, long periods of nontransitions generally occur when a 
codeword that ends with a string of zeros is concatenated with one 
that beings with a string of zeros. These long runs can be broken by 
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inserting ones at the boundary. The key is to use codewords with a 
pair of ones at the boundary when the adjacent codeword has a zero 
next to the pair of ones. Because these words are not allowed by the 
block encoder, they can be decoded unambiguously. 

To illustrate, this method is applied to the rate 4/5MTR(2;8) 
block code described by the mapping in Table I. If the encoder state 
z is defined as the trailing bit of the previous codeword, then the 
following conditional mappings can be employed: 

and 

The vector x = (xlx 2...x,) represents the m-bit data word, and 
y = ( y , y ,  ...y,) is the n-bit codeword. Equations (1) and (2) 
implement the substitution rule 

(3) 

where the comma indicates the boundary between two codewords. 
The results is a rate 4/5MTR(2;6) code that requires a two state 
encoder and block decoder. By looking forward to the next data 
word, the encoder can determine if the following codeword will 
begin with a zero. In that case, the substitution 

(4) 

is applied to further reduce k. As shown in Fig. 1, the encoder is a 
two-state encoder that uses the present data word x and the next 
data word w to produce block decodable 4/5MTR(2;4) codewords. 

.... 0,000.. - .... 0,110.. 

.. 000,o .... - .. 011,o .... 

ture time ---t 
... ... 

1-encoder window 4 U 

Fig. 1. Block diagram for the 415 MTR(2;4) encoder/decoder. 

The encoder block is described by the Boolean logic functions 

and the corresponding decoder by 

x 4  = YIY2Y4X3 + Y4Y5 

XI = Y3 YsX4 + Y3Y4X3 + Y]Y2 . 
-- - -  
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Table I. Data to codeword maminn for a rate 4/5MTR(2;8) code. 

0000-10000 0100~00100 1000*01000 1100*01100 
0001++00001 010 l~00101  1001*0l001 1101*01101 
0010~000l0 0110*00110 1010*01010 l l l O * l O l O O  
0011-10001 0lll*lOllO 1011*10010 llll*lOlOl 

Multiplication in the logic equations is equivalent to a Boolean 
AND, “+” denotes the OR operation, and an overbar indicates 
inversion. Logic equations given in this paper are minimized with 
respect to their complexity rather than timing requirements. As a 
result, some output variables are functions of other outputs as in (4) 
where x1 depends on x4. Evaluation of the functions from top to 
bottom in the given ordering is sufficient to guarantee that the 
necessary variables are valid at any given point. Again, note that 
although the encoder has two states (determined by the last codebit), 
the decoder can be realized as a block decoder because the 
substituted codewords are uniquely mapped to data words. 

ILI. RATE 617 CODE DESIGN 

A rate 617 code is possible in block form, if the inputloutput 
block sizes are quadrupled to 24/28; however, the large block sizes 
would result in an undesirably large logic circuit. Instead, a 617 
state-dependent code requiring a sliding block decoder with a 
modest window size is developed. The procedure described here is 
specific to MTR code design and is not appropriate for general code 
design. By focusing solely on the MTR parameters, this method can 
exploit codeword properties intrinsic to the MTR constraints. 

A. Codeword Selection 
To begin, the set of n=7 bit codewords that would be valid for an 

MTR j=2 block code are determined. (At this point, the RLL k 
constraint is ignored). For n=7, there are 57 valid words, including 
the all-zeros word; these are referred to as the basic set. For m=6, 
2m = 64 codewords are required. To satisfy this requirement, an 
extended set is formed by combining “1 10” with the set of length 
n=4 MTR block codewords. In hexadecimal form, the extended set 
is {60, 61, 62,64, 65,66,68, 69, 6A}. These additional words bring 
the codeword count to 66,2 more than are required. The extended 
set will not violate the MTR constraint if the preceding codeword 
ends in a zero. However, a method for preventing a violation when 
a one precedes an extended codeword is required; otherwise, three 
consecutive ones could occur. By converting the trailing three bits 
of the preceding word to “01 1 ,” the presence of a substitution is 
indicated. For the problem at hand, two substitutions are needed. 
These substitutions are referred to as Type I and Type 11 and are 
described by 

.... 001,110 .... - .... 011,001 .... (7) 

and 

.... 101,110 .... - .... 011,010 .... (8) 

respectively. These substitutions allow the decoder to determine the 
type by looking forward three bits into the next codeword. 

B. Bounding and reduction of the k constraint. 
From the basic and extended sets of codewords, a rate 6/7 

MTR(2;-) code could be constructed. Because there are two extra 
codewords, the all zeros codeword is discarded, which bounds the 
maximum run of zeros to k=12 (generated by the concatenation of 
1000000,0000001). Reduction of the k constraint is accomplished 

by employing the method of section II. For the 6/7 code, a single 
rule is required. This Type III substitution is described by 

(9) 

Because the “01 1” pattern is followed by three consecutive zeros, 
it cannot be confused with ihe Type I and I1 substitutions. The 
resulting worst case zero-runs occur with the pattern pairs 
‘‘1000000,001 ....” and “ .... 100,0000001.” Thus, the Type III 
substitution reduces k to give a rate 617 MTR(2;8) code. 

.... 000,000 .... - .... 011,000 .... . 

C. Codeword mapping 
In a ROM based lookup table, any mapping of data words to 

codewords would be acceptable; however, the complexity of the 
corresponding Boolean logic equations will depend on the chosen 
mapping. The approach here is to generate a reasonable mapping; 
to find an optimal solution would require definition of the criterion 
for optimality, which could be area, speed, or some other metric. A 
divide-and-conquer approach in which the codeword set is 
partitioned into disjoint subsets containing a number of elements 
equal to a power of two makes the problem more tractable. Eight 
sets of eight codewords were used in the mapping chosen for this 
paper. These partitions are illustrated in Fig. 2 where a dot 
represents a valid codeword with a hexadecimal value equal to the 
sum of the row and column labels. The partitions are labeled 
alphabetically in the order in which they will be used. Partitions A, 
B, C, E, F and G were chosen so that the three most significant bits 
in the codeword map to the three most significant bits in the data 
word. Within these partitions, the codewords are ordered by the four 
least significant bits as { 8,1,2,9,4,5,6,A} so that the bits in seven of 
the codewords can be mapped directly to the data word. Similarly, 
the codewords in partitions D and H were ordered in an ad hoc 
manner that by inspection would yield a reasonable mapping. The 
basic code mapping (without substitutions) is provided in Table 11. 

Fig. 2. Partitioning of the n=7 codeword set assuming no substitutions. 

Table U. Data to codeword map for a rate 6/7 code without substitutions. 

0oooo0*0001000 010000*0101ooo 100OOOHlOOlooo 100000*1101000 
000001 ”00ooo01 01ooo1*01ooo01 loo001 - 1 m 1  loo001 * 110ooo1 
oo0010*OoooolO ol00l0-0loool0 loool0*lml0  100010*11ooo10 
000011”0001001 010011-0101001 1ooo11*1001001 100011“1101001 
000100*oo00100 010100-0100100 lOOl~*1000100 100100-1100100 
000101-0000101 010101*0100101 100101*1000l01 100101-1100101 
0001 1 0t*0000110 1001 10- 1 1001 10 
ooo111“0001010 010111*0101010 100111-1001010 100111*1101010 
001000-0011000 01 1ooo*0110001 lOlooo*l0l lo00 111ooo-o001100 
001001*0010001 011001*0010000 101001-101o001 111001“ooo1101 
001010-0010010 011010-0100ooo 101010-1010010 111010*0101100 
00101 1~0011001 011011-011oooo 101011-1011001 11101 1-0101101 
001 100“0010100 011 1OO”lOOOOOO l01100-1010100 11 1 lOO“lOOl100 
001101*0010l01 011101*1010000 101101-1010101 111101*1001101 
001 110-0010110 01 11 1 0 * 1 1 m  101 110*1010110 111 110*0110100 
001111-0011010 011111-0110010 101111*1011010 111111-0110101 

01 0 1 10-01 001 10 1 001 10- 1000 1 10 
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Based on the mapping in Table 11, the encoder can be 
implemented as a finite state machine using the present and future 
data word as input. The corresponding decoder uses a 13-bit wide 
window that encompasses the present codeword and the three 
adjacent bits from both the preceding and next codewords. 
Representative block diagrams for these two components are shown 
in Fig. 3. On the encoder side, x and w are the present and future 
data words, respectively. The state variables z and s are delayed 
versions of the trailing bit from the codeword and the auxiliary 
variable U. The present codeword at the decoder is denoted y with 
z and v being the past and present codewords, respectively. 

The encoder block implements the set of Boolean logic equations 

Fig. 3, Block diagram for the 6,7 MTR(2;8) encoder/decoder, 

M1X code. This does not imply that a code with less complexity or 
described by 

k = w 1 w 2 w 3 w 4 w s + w 1 w 2 w 3  
m = w ,  w2 w3 w4ws w6 + w,  w2 w3 
- - - 

D. Eficiency and Pe@ormance 

a smaller RLL k constraint c&d not be constructed, Although-not 
shown here, a 96% efficient rate 5/6MTR(2;6) code was also 
constructed using the method presented in this section. 

Simulations were performed to quantify the performance gain of 
tbeMcodeoverarate16/17RU-(0,,6/6)ccde[q.SNRin~~4is lOlog,,(l/a~ ) 
where the amplitude of the Lorentzian isolated pulse has been 
normalized to 1 and 0: is the variance of the additive white Gaussian 
noise. At a user bit density of 2.5 bitsPWS0, the MTR coded 
E ’PRML and FDTS/DF r=2 detectors show 1dB improvement over 
the same systems using an RLL code. 

I 1  n\ . 
1 E-01 

1 E-02 

1 E-03 

1 E-04 

1 E-05 

1 E-06 
I 

17 19 21 23 25 27 
SNR (dB) 

Fig. 4. Performance with a Lorentzian pulse at 2.5 user bits/PWSO. 

IV. CONCLUSION 

A state-dependent encoding method for reducing the RLL k 
constraint in systems employing block decoding was presented. This 
technique was used to aid in the development of a rate 6/7 MTR(2;8) 
code. With an efficiency of 97.8%, this code is close to the 
maximum theoretical code rate but can be implemented with 
reasonable complexity. 

(1 1) 
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