Design of a Rate 6/7 Maximum Transition Run Code

Barrett Brickner and Jaekyun Moon
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

Maximum transition run (MTR) codes provide significant minimum distance gains when used with sequence detectors operating at high linear densities. A method for reducing the RLL k constraint associated with MTR block codes is presented. A block decodable, rate $4 / 5$ MTR code with $k=4$ illustrates the technique. This reduction of k is combined with sliding-block decoding to develop a 97.8% efficient rate $6 / 7$ MTR code with $k=8$.

I. Introduction

MODULATION codes are used to eliminate troublesome patterns or to introduce certain desirable characteristics in the recorded sequences [1]. An important case of the former is suppression of minimum distance error events, which dominate the performance of sequence detectors. At low densities, the minimum distance error is a single bit error, which does not allow for an improvement via the elimination of input patterns. However, as linear densities in the magnetic recording channel approach 2.5 bits per $P W_{50}$, the event changes. Assuming the NRZ input symbols (write current levels) are $\{-1,+1\}$, the error pattern $e_{k}= \pm(2,-2,2)$ dominates. Examination of the input patterns reveals that at least one pattern in each error generating pair contains three or more transitions. Therefore, a code that eliminates these error prone patterns by limiting the maximum number of consecutive transitions to two can improve the performance of near-optimal detectors.

The class of codes known as maximum transition run (MTR) codes limits the number of consecutive transitions to $j=2$, and yields a coding gain [2][3]. The usual RLL k constraint is retained for timing recovery, leading to an encapsulation of the code parameters as $\operatorname{MTR}(j ; k)$, where j is the maximum number of consecutive transitions. Prior to write precompensation, transitions allowed by the MTR code have a constant phase relative to the write clock. This is in contrast to the ternary 3PM code in which a pair of closely spaced transitions are used as a third symbol by shifting the pair half of the bit window to place the zero crossing at the same position in the bit window as the peak of an isolated pulse [4]. The codes developed in this paper are all MTR ($2 ; k$) types. Although the MTR code provides a concise set of constraints to yield the desired coding gain, similar distance gains may be obtained by other constraints such as those developed for E^{2} PRML [5].

II. Rate 4/5 Code Design For Reduced k Constraint

One design methodology for MTR block codes is to maximize the code rate and then minimize the RLL k constraint. In doing so, however, it is possible to arrive at codes with reasonable rates but large values for k. To reduce k, a simple method for designing a two-state encoder for use with block decoding is proposed. With a block code, long periods of nontransitions generally occur when a codeword that ends with a string of zeros is concatenated with one that beings with a string of zeros. These long runs can be broken by
inserting ones at the boundary. The key is to use codewords with a pair of ones at the boundary when the adjacent codeword has a zero next to the pair of ones. Because these words are not allowed by the block encoder, they can be decoded unambiguously.

To illustrate, this method is applied to the rate $4 / 5 \mathrm{MTR}(2 ; 8)$ block code described by the mapping in Table I. If the encoder state z is defined as the trailing bit of the previous codeword, then the following conditional mappings can be employed:

$$
\left.y\right|_{x=0001}=\left\{\begin{array}{l}
11001, \text { if } z=0 \tag{1}\\
00001, \text { if } z=1
\end{array}\right.
$$

and

$$
\left.y\right|_{x=0010}=\left\{\begin{array}{l}
11010, \text { if } z=0 \tag{2}\\
00010, \text { if } z=1 .
\end{array}\right.
$$

The vector $\boldsymbol{x}=\left(x_{1} x_{2} \ldots x_{m}\right)$ represents the m-bit data word, and $y=\left(y_{1} y_{2} \ldots y_{n}\right)$ is the n-bit codeword. Equations (1) and (2) implement the substitution rule

$$
\begin{equation*}
\text { ...0,000.. } \rightarrow \text {....0,110.. } \tag{3}
\end{equation*}
$$

where the comma indicates the boundary between two codewords. The results is a rate $4 / 5 \mathrm{MTR}(2 ; 6)$ code that requires a two state encoder and block decoder. By looking forward to the next data word, the encoder can determine if the following codeword will begin with a zero. In that case, the substitution

$$
\begin{equation*}
\text { ..000,0.... } \rightarrow \text {.. } 011,0 \ldots . \tag{4}
\end{equation*}
$$

is applied to further reduce k. As shown in Fig. 1, the encoder is a two-state encoder that uses the present data word \boldsymbol{x} and the next data word w to produce block decodable 4/5MTR($2 ; 4$) codewords.

Fig. 1. Block diagram for the $4 / 5$ MTR(2;4) encoder/decoder.
The encoder block is described by the Boolean logic functions

$$
\begin{align*}
& k=w_{1} w_{2} w_{3}+w_{3} w_{4}+\overline{w_{1}} \overline{w_{2}} \\
& y_{4}=\overline{x_{2}} \overline{x_{4}} \bar{k}+\overline{x_{2}} x_{3} \overline{x_{4}}+x_{1} \overline{x_{2}} x_{3}+\overline{x_{1}} x_{2} x_{3} \\
& y_{1}=\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}}+\overline{x_{1}} \overline{x_{2}} \bar{z}+x_{3} \overline{y_{4}}+x_{3} x_{4} \tag{5}\\
& y_{2}=x_{3} \overline{x_{4}} y_{1} y_{4}+\overline{x_{3}} x_{4} y_{1}+x_{1} \overline{y_{1}} \\
& y_{3}=x_{2} ; \quad y_{5}=x_{4} \bar{y}_{4}+\overline{x_{3}} y_{4}
\end{align*}
$$

and the corresponding decoder by

$$
\begin{align*}
& x_{2}=y_{3} \\
& x_{3}=y_{1} \overline{y_{2}} \overline{y_{4}} y_{5}+y_{4} \overline{y_{5}}+y_{1} y_{3} \tag{6}\\
& x_{4}=y_{1} y_{2} y_{4} x_{3}+\overline{y_{4}} y_{5} \\
& x_{1}=\overline{y_{3}} y_{5} x_{4}+y_{3} y_{4} x_{3}+\overline{y_{1}} y_{2} .
\end{align*}
$$

[^0]Table I. Data to codeword mapping for a rate $4 / 5 \mathrm{MTR}(2 ; 8)$ code

$0000 \leftrightarrow 10000$	$0100 \leftrightarrow 00100$	$1000 \leftrightarrow 01000$	$1100 \leftrightarrow 01100$
$0001 \leftrightarrow 00001$	$0101 \leftrightarrow 00101$	$1001 \leftrightarrow 01001$	$1101 \leftrightarrow 01101$
$0010 \leftrightarrow 00010$	$0110 \leftrightarrow 00110$	$1010 \leftrightarrow 01010$	$1110 \leftrightarrow 10100$
$0011 \leftrightarrow 10001$	$0111 \leftrightarrow 10110$	$1011 \leftrightarrow 10010$	$1111 \leftrightarrow 10101$

Multiplication in the logic equations is equivalent to a Boolean $A N D$, " + " denotes the $O R$ operation, and an overbar indicates inversion. Logic equations given in this paper are minimized with respect to their complexity rather than timing requirements. As a result, some output variables are functions of other outputs as in (4) where x_{1} depends on x_{4}. Evaluation of the functions from top to bottom in the given ordering is sufficient to guarantee that the necessary variables are valid at any given point. Again, note that although the encoder has two states (determined by the last codebit), the decoder can be realized as a block decoder because the substituted codewords are uniquely mapped to data words.

III. Rate 6/7 Code Design

A rate $6 / 7$ code is possible in block form, if the input/output block sizes are quadrupled to $24 / 28$; however, the large block sizes would result in an undesirably large logic circuit. Instead, a $6 / 7$ state-dependent code requiring a sliding block decoder with a modest window size is developed. The procedure described here is specific to MTR code design and is not appropriate for general code design. By focusing solely on the MTR parameters, this method can exploit codeword properties intrinsic to the MTR constraints.

A. Codeword Selection

To begin, the set of $n=7$ bit codewords that would be valid for an MTR $j=2$ block code are determined. (At this point, the RLL k constraint is ignored). For $n=7$, there are 57 valid words, including the all-zeros word; these are referred to as the basic set. For $m=6$, $2^{m}=64$ codewords are required. To satisfy this requirement, an extended set is formed by combining " 110 " with the set of length $n=4$ MTR block codewords. In hexadecimal form, the extended set is $\{60,61,62,64,65,66,68,69,6 \mathrm{~A}\}$. These additional words bring the codeword count to 66,2 more than are required. The extended set will not violate the MTR constraint if the preceding codeword ends in a zero. However, a method for preventing a violation when a one precedes an extended codeword is required; otherwise, three consecutive ones could occur. By converting the trailing three bits of the preceding word to " 011 ," the presence of a substitution is indicated. For the problem at hand, two substitutions are needed. These substitutions are referred to as Type I and Type II and are described by

$$
\begin{equation*}
\ldots .001,110 \ldots011,001 \ldots . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\ldots .101,110 \ldots011,010 \ldots \tag{8}
\end{equation*}
$$

respectively. These substitutions allow the decoder to determine the type by looking forward three bits into the next codeword.

B. Bounding and reduction of the k constraint.

From the basic and extended sets of codewords, a rate $6 / 7$ $\operatorname{MTR}(2 ; \infty)$ code could be constructed. Because there are two extra codewords, the all zeros codeword is discarded, which bounds the maximum run of zeros to $k=12$ (generated by the concatenation of 1000000,0000001). Reduction of the k constraint is accomplished
by employing the method of section II. For the $6 / 7$ code, a single rule is required. This Type III substitution is described by

$$
\begin{equation*}
. . .000,000 \ldots \rightarrow011,000 \ldots . \tag{9}
\end{equation*}
$$

Because the " 011 " pattern is followed by three consecutive zeros, it cannot be confused with the Type I and II substitutions. The resulting worst case zero-runs occur with the pattern pairs " $1000000,001 \ldots$. " and "....100,0000001." Thus, the Type III substitution reduces k to give a rate $6 / 7 \operatorname{MTR}(2 ; 8)$ code.

C. Codeword mapping

In a ROM based lookup table, any mapping of data words to codewords would be acceptable; however, the complexity of the corresponding Boolean logic equations will depend on the chosen mapping. The approach here is to generate a reasonable mapping; to find an optimal solution would require definition of the criterion for optimality, which could be area, speed, or some other metric. A divide-and-conquer approach in which the codeword set is partitioned into disjoint subsets containing a number of elements equal to a power of two makes the problem more tractable. Eight sets of eight codewords were used in the mapping chosen for this paper. These partitions are illustrated in Fig. 2 where a dot represents a valid codeword with a hexadecimal value equal to the sum of the row and column labels. The partitions are labeled alphabetically in the order in which they will be used. Partitions A, B, C, E, F and G were chosen so that the three most significant bits in the codeword map to the three most significant bits in the data word. Within these partitions, the codewords are ordered by the four least significant bits as $\{8,1,2,9,4,5,6, \mathrm{~A}\}$ so that the bits in seven of the codewords can be mapped directly to the data word. Similarly, the codewords in partitions D and H were ordered in an ad hoc manner that by inspection would yield a reasonable mapping. The basic code mapping (without substitutions) is provided in Table II.

Fig. 2. Partitioning of the $n=7$ codeword set assuming no substitutions.

Table II. Data to codeword map for a rate $6 / 7$ code without substitutions.

$000000 \leftrightarrow 0001000$	$010000 \leftrightarrow 0101000$	$100000 \leftrightarrow 1001000$	$100000 \leftrightarrow 1101000$
$000001 \leftrightarrow 000001$	$010001 \leftrightarrow 0100001$	$100001 \leftrightarrow 1000001$	$100001 \leftrightarrow 1100001$
$000010 \leftrightarrow 0000010$	$010010 \leftrightarrow 0100010$	$100010 \leftrightarrow 1000010$	$100010 \leftrightarrow 1100010$
$000011 \leftrightarrow 0001001$	$010011 \leftrightarrow 0101001$	$100011 \leftrightarrow 1001001$	$100011 \leftrightarrow 1101001$
$000100 \leftrightarrow 000100$	$010100 \leftrightarrow 0100100$	$100100 \leftrightarrow 1000100$	$100100 \leftrightarrow 1100100$
$000101 \leftrightarrow 000101$	$010101 \leftrightarrow 0100101$	$100101 \leftrightarrow 1000101$	$100101 \leftrightarrow 1100101$
$000010 \leftrightarrow 000110$	$010110 \leftrightarrow 0100110$	$100110 \leftrightarrow 1000110$	$100110 \leftrightarrow 100110$
$000111 \leftrightarrow 001010$	$010111 \leftrightarrow 001010$	$100111 \leftrightarrow 1001010$	$100111 \leftrightarrow 1101010$
$001000 \leftrightarrow 0011000$	$011000 \leftrightarrow 0110001$	$101000 \leftrightarrow 1011000$	$111000 \leftrightarrow 001100$
$001001 \leftrightarrow 0010001$	$01001 \leftrightarrow 0010000$	$101001 \leftrightarrow 1010001$	$111001 \leftrightarrow 0001101$
$001010 \leftrightarrow 0010010$	$011010 \leftrightarrow 0100000$	$101010 \leftrightarrow 1010010$	$11010 \leftrightarrow 0101100$
$001011 \leftrightarrow 0011001$	$011011 \leftrightarrow 0110000$	$101011 \leftrightarrow 1011001$	$11011 \leftrightarrow 0101101$
$001100 \leftrightarrow 0010100$	$011100 \leftrightarrow 1000000$	$101100 \leftrightarrow 1010100$	$11100 \leftrightarrow 1001100$
$001101 \leftrightarrow 0010101$	$011101 \leftrightarrow 1010000$	$101101 \leftrightarrow 1010101$	$111101 \leftrightarrow 1001101$
$001110 \leftrightarrow 0010110$	$011110 \leftrightarrow 100000$	$101110 \leftrightarrow 1010110$	$111110 \leftrightarrow 0110100$
$001111 \leftrightarrow 0011010$	$011111 \leftrightarrow 0110010$	$101111 \leftrightarrow 1011010$	$111111 \leftrightarrow 0110101$

Based on the mapping in Table II, the encoder can be implemented as a finite state machine using the present and future data word as input. The corresponding decoder uses a 13 -bit wide window that encompasses the present codeword and the three adjacent bits from both the preceding and next codewords. Representative block diagrams for these two components are shown in Fig. 3. On the encoder side, \boldsymbol{x} and \boldsymbol{w} are the present and future data words, respectively. The state variables z and s are delayed versions of the trailing bit from the codeword and the auxiliary variable u. The present codeword at the decoder is denoted \boldsymbol{y} with z and v being the past and present codewords, respectively.

The encoder block implements the set of Boolean logic equations described by

$$
\begin{align*}
k & =w_{1} w_{2} w_{3} \overline{w_{4}} \overline{w_{5}}+\overline{w_{1}} \overline{w_{2}} \overline{w_{3}} \\
m & =\overline{w_{1}} w_{2} w_{3} w_{4} w_{5} \overline{w_{6}}+w_{1} w_{2} \overline{w_{3}} \\
p_{1} & =\overline{x_{3}}+\overline{x_{2}} \\
p_{2} & =\overline{x_{4}} \overline{x_{5}}+x_{6} \\
p_{3} & =p_{1}+\overline{x_{1}} \\
p_{4} & =\overline{x_{5}}+\overline{x_{4}} \\
y_{3} & =x_{1} x_{2} \overline{x_{3}} z s+x_{3} z s \overline{p_{4}}+x_{1} x_{3} \overline{p_{4}}+\overline{x_{1}} x_{3} p_{2}+\overline{x_{2}} x_{3} \\
p_{5} & =x_{3} y_{3} \tag{10}\\
u & =x_{6} m \overline{p_{3}}+x_{4} x_{6} m \\
y_{1} & =x_{4} \bar{z} p_{5}+x_{4} \bar{x}_{5} \overline{p_{1}}+x_{1} \overline{x_{3}} \bar{z}+x_{1} \overline{x_{2}} \\
y_{2} & =\overline{x_{4}} \overline{x_{6}} y_{3} \overline{p_{1}}+x_{5} x_{6} \overline{p_{1}}+x_{2} \overline{x_{3}} \overline{y_{3}}+x_{5} p_{5}+y_{3} \overline{p_{3}} \\
y_{4} & =\overline{x_{6} p_{1} p_{2}}+x_{5} p_{1} p_{2}+x_{1} p_{5} \\
y_{5} & =x_{4} \overline{y_{4}} \overline{u_{1}}+\bar{u} \overline{p_{3}} \\
y_{7} & =k p_{2} p_{4} p_{3}+\overline{x_{1}} k \overline{p_{1}} \overline{p_{2}}+\overline{x_{1}} \overline{x_{6}} \overline{p_{1}} p_{2}+x_{6} p_{1} p_{4}+x_{6} \overline{p_{3}} \\
y_{6} & =\overline{x_{1}} x_{6} y_{7} \overline{p_{1}}+\overline{y_{7}} p_{2} p_{4}+x_{5} p_{1} \bar{p}_{2}+\overline{x_{6}} y_{7} p_{1}+y_{7} \overline{p_{2}}+m y_{7}
\end{align*}
$$

and the decoder implements

$$
\begin{align*}
& m_{1}=\overline{z_{5}} z_{6} z_{7}\left(y_{2}+y_{3}\right) \\
& m_{2}=\bar{y}_{5} y_{6} y_{7}\left(v_{2}+v_{3}\right) \\
& q_{1}=m_{2}+\bar{y}_{6} \\
& q_{2}=y_{6} \overline{y_{7}} \\
& q_{3}=y_{7} m_{2} \overline{v_{2}}+y_{5} \\
& q_{4}=\overline{y_{4}} y_{5} \overline{y_{6}} \bar{y}_{7}+y_{4} q_{3} \\
& x_{2}=\overline{y_{4}} y_{7} \overline{q_{1}}+q_{4}+m_{1}+y_{2} \tag{11}\\
& q_{5}=\overline{x_{2}}+m_{1}+\overline{y_{3}} \\
& x_{6}=y_{7} q_{5} q_{1}+y_{6} \overline{v_{2}} \overline{q_{5}}+\overline{y_{5}} \overline{y_{7}} \overline{q_{5}}+y_{4} q_{2}+\overline{q_{5}} \overline{q_{1}}+y_{5} y_{7} \\
& x_{3}=\overline{y_{4}} y_{7} \overline{x_{6}}+y_{3} \bar{m}_{1}+q_{4} \\
& q_{6}=\overline{x_{3}}+\overline{x_{2}} \\
& x_{1}=y_{7} m_{2} x_{6} \overline{q_{6}}+y_{5} \overline{q_{6}}+y_{1} q_{6}+m_{1} \overline{x_{3}} \\
& x_{4}=x_{6} q_{2}+\overline{y_{4}} q_{3}+y_{1} \overline{q_{6}}+m_{1} x_{3} \\
& x_{5}=y_{2} q_{5} \overline{q_{6}}+y_{2} x_{6} \bar{q}_{6}+y_{4} x_{6} q_{6}+m_{1} \overline{q_{6}}+y_{5} \overline{q_{5}}+q_{2} .
\end{align*}
$$

D. Efficiency and Performance

Although the rate of codes employing the MTR $j=2$ constraint is limited to the capacity $C=0.8791$, the RLL $k=8$ constraint reduces the capacity to $C=0.8760$. Thus, the efficiency of the rate $6 / 7$ code described here is $E f f=$ rate/capacity $=98.6 \%$. By comparison, the rate $4 / 5 \mathrm{MTR}(2 ; 4)$ code is 95.5% efficient. A rate of $7 / 8$ is permitted under the MTR constraint; however, such a code would have to be 99.5% efficient even before incorporating the k constraint. Therefore, a rate $6 / 7$ code is likely to be the highest rate, practical

Fig. 3. Block diagram for the $6 / 7$ MTR(2;8) encoder/decoder.
MTR code. This does not imply that a code with less complexity or a smaller RLL k constraint could not be constructed. Although not shown here, a 96% efficient rate $5 / 6 \mathrm{MTR}(2 ; 6)$ code was also constructed using the method presented in this section.

Simulations were performed to quantify the performance gain of the 67 code overarate $16 / 17 \mathrm{RL} L(0,6 / 6)$ code [6]. SNRinFig. 4 is $10 \log _{10}\left(1 / \sigma_{n}^{2}\right)$ where the amplitude of the Lorentzian isolated pulse has been normalized to 1 and σ_{n}^{2} is the variance of the additive white Gaussian noise. At a user bit density of 2.5 bits/PW50, the MTR coded E^{2} PRML and FDTS/DF $\tau=2$ detectors show 1 dB improvement over the same systems using an RLL code.

Fig. 4. Performance with a Lorentzian pulse at 2.5 user bits/PW50.

IV. CONCLUSION

A state-dependent encoding method for reducing the RLL k constraint in systems employing block decoding was presented. This technique was used to aid in the development of a rate $6 / 7$ MTR(2;8) code. With an efficiency of 97.8%, this code is close to the maximum theoretical code rate but can be implemented with reasonable complexity.

References

[1] P. H. Siegel and J. K. Wolf, "Modulation coding for information storage," IEEE Commun. Mag., vol. 29, no. 12, pp. 68-86, Dec. 1991.
[2] J. Moon and B. Brickner, "Maximum transition run codes for data storage systems," IEEE Trans. Magn., vol. 32, no. 5, pp. 3992-3994, Sept. 1996.
[3] J. Moon and B. Brickner, "Method and apparatus for implementing maximum transition run codes," U.S. Patent Pending No. 60/014,954, filed April 5, 1996.
[4] G. V. Jacoby, "Ternary 3PM magnetic recording code and system," IEEE Trans. Magn., vol. 17, no. 6, pp. 3326-3328, Nov. 1981.
[5] R. Karabed and P. H. Siegel, "Coding for higher order partial response channels," SPIE vol. 2605, pp. 115-126, Oct. 1995.
[6] K. P. Tsang, "Method and apparatus for implementing run length limited codes in partial response channels," U.S. Patent 5,537,112, July 16,1996.

[^0]: Manuscript received January 31, 1997.
 This work was supported in part by Seagate Technology

