
GOOGLE 10091

United States Patent

US006574612B1

(12) (10) Patent No.: US 6,574,612 B1
Baratti et al. (45) Date of Patent: Jun. 3, 2003

(54) LICENSE MANAGEMENT SYSTEM GB 2236604 A * 10/1991

(75) Inventors: Paolo Baratti, Rome (IT); Paolo OTHER PUBLICATIONS
Squartini, Rome(IT) Software License Management in a Network Environment;

. . . . French A. H.et al,; 1988.*

(73) Assignee: eeeseriea.anaMEE UNIX Review vol. 6, No. 9, Sep. 1988, M Olson et al.,OEPOESMON:2EMOnSs (US) “Concurrent access licensing”, pp. 67-72, and also DIA-
(*) Notice: Subject to any disclaimer, the term of this LOG unecession No. OL257918.

patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days.

Primary [E’xaminer—Pierre E. Elisca
(21) Appl. No.: 09/342,555 (74) Aitorney, Agent, or Firm—Edward H. Duttield

(22) Filed: Jun. 29, 1999 (57) ABSTRACT

(30) Foreign Application Priority Data A method and system for providing flexibility to a license

b management system. A license management system permitsFeb. 19, 1999 (GB) cecescessesssssssesssssseesssessesssssesses SUES “the, concurrent use wEn copiesmi.a solimare proeram over a
(SL) nt. C17 cesssesssnsnssseseserereretene GO06F 17/60 network comprising a plurality of client workstations, each
(52) US. Ch ccc. .. 705/59; 713/167 client workstation having a copy of the software program
(58) Field of Searchcscsssuseeeeeen 70971, 35,51, tusidlled thereon requiring. am authervalien Hom igueron a

705/59, 55: 702/35; 380/201 380 702, plurality of S license servers each time the software program
_ 077 283: 713165 167 is used. For security reasons, the license management sys-

a , tem requires that at least the integer majority of the plurality
(56) References Cited of license servers is active at any time. The method and

system allow to change the number of license servers, but
U.S. PATENT DOCUMENTS impose the following limit: taken s1 and s2 respectively as

5.671.412 A * 9/1997 Christiano 395/615 the minimum and the maximum numberofservers that may
6.047242 A * 4/2000 Benson eeeeccccc70235 belong to the cluster, the sum of the integer majority of sl
6.343.280 B2 * 1/2002 Clark cecccccscsccssssesseseeees 705/55 and of the integer majority of s2 must be strictly greater than

s2.
FOREIGN PATENT DOCUMENTS

GB 2 236 604 A A991ee GO6F/1/00 13 Claims, 7 Drawing Sheets

401

101 at D im
CLUSTER 10=

XX XXX
MEMBERS =

SERVER A
SERVER B
SERVER C

LICENSE INFO=
PRODUCT 12

SERVER
A

CLUSTER ID=
XXXXX

MEMBERS=
SERVER A
SERVER B
SERVER C
SERVER D
SERVER E

LICENSE INFO =
PRODUCT 110

LAN SPLIT (2LANS INSTEAD OF 1)
1 CLUSTER WITH 2 SERVERS OUT

OF 3. 1 PRODUCT n LICENSES

1 CLUSTER WITH 3 SERVERS OUT

OF 5. 1 PRODUCT n LICENSES
TOTAL LICENSES = 2n

SERVER

CLUSTER ID= CUED (Os
LxHH ota

. MEMBERS=
MEMBERS=| SERVER A

SERVER A SERVER B
SERVER B SERVER C
SERVER C SERVER D

LICENSE INFO=| SERVER E
PRODUCT tn LICENSE INFO=

PRODUCT 10

 CLUSTER ID=
XXXXX

MEMBERS=
SERVER A
SERVER B
SERVER C
SERVER D
SERVER £

LICENSE INFO=
PRODUCT in

GOOGLE 1009

2

U.S. Patent Jun.3, 2003 Sheet 1 of 7 US 6,574,612 B1

3

U.S. Patent Jun.3, 2003 Sheet 2 of 7 US 6,574,612 B1

START

READ LICENSE DATABASE
IN MEMORY

WAIT FOR NEXT

CLIENT REQUEST

207

201

203
205

IS
CLIENT REQUEST

A LICENSE

215

IS

CLIENT REQUEST
A LICENSE

4

U.S. Patent Jun.3, 2003 Sheet 3 of 7 US 6,574,612 B1

301

FIND AVAILABLE LICENSE SERVERS

SEND LICENSE REQUEST
TO NEXT SERVER

WAIT FOR REPLY FROM SERVER

 YES

IS
ANOTHER

SERVER

AVAILABLE
?

 IS
LICENSE

GRANTED

317 NO

RUN APPLICATION

SEND LICENSE
RELEASE TO SERVER

WAIT FOR REPLY FROM SERVER

FIG. 3

5

U.S. Patent Jun.3, 2003 Sheet 4 of 7 US 6,574,612 B1

EXAMPLE OF LICENSE DATABASE

401

CLUSTER INFO

CLUSTER 1D

MEMBERS=

SERVER

SERVER

SERVER

SERVER

LICENSE INFO

PRODUCT 1 na LICENSES

PRODUCT 2 m LICENSES

PRODUCT 3 { LICENSES

FIG. 4

6

US 6,574,612 B1Sheet 5 of 7Jun.3, 2003U.S. Patent

ULL3NdOddVY3AuaS=SYIGWIWXXXXX=Qi¥3lsni)
L047

ULLINQOYd=O4NI3SN3910JY3AN3S@Y3AN3SVY3Au3S

=SHIGW3WXXXXX=Q1Y31SnDq
Y3AY3S

LOL

L047

SISNIIITY==LINTOYdL(Z=ALIMOPWW)SYSAMIS€HLIMY3LSN13ULLINDOYd=O03NI3SN39NJY3AN3S@Y3AN3SVYSAYaS=SYJGWIWXXXXX=Q)Y31SN1)Vv
Y3AY3S

LOL

7

US 6,574,612 B1Sheet 6 of 7Jun. 3, 2003U.S. Patent

ULLNGdYd=Q3Ni3SN3IN3Y3AN3S0Y3AN3SJY3AN3S@Y3AUNISVY3A43S=SYIdWIWXXXXX=Q)aaisny)
3Y3AN3S

L0%ULLNdddd=QJNI3SN3IN13Y3AN3S0Y3AN3S2Y3AN3S@SANS

VY3IAY3S=SY3GW3WXXXXX=Q1Y3Isn13>}
YSAy3S

LOL

uyLonNdodYdJY3AN3S@Y3ANISVY3AN3S=SY39WIWXXXXX=Q)Y¥3lsn)

ULLACOYd=Q4NI3SN39113Y3AN3SQY3Au3SJ¥3AN3S@Y3ANISVY3AN3S=SUI0WIWXXKXX=Q]43ISNT)

qY3AN3S
LOL

S3SN3II18LINGONdL(€=ALIMOFVW)(O300VZ)SYSAN3SSHLIM¥31SN1)

Y3AN3S==
LOS

NV]

ULLNdONd=O3NI3SN39N013Y3AN3SQY3AY3SJY3AY3S@Y3ANIS¥Y3AN3S=SY3WIWXXXXX=Q)yaisnidW
Y3AN3S

LOL

8

US 6,574,612 B1Sheet 7 of 7Jun. 3, 2003U.S. Patent

utLondddd=QJNI3SN30103Y3AN3SGY3AN3S2Y3AN3S@Y3AN3SVY3AN3S=SY3GWIWXXXXX=Q)Y3aisni

L047

SOSNV1

ULLNddud=Q4NISSN39N1JY3AN3SOY3AN3SJY3AN3S@Y3AYSSVY3AN3S=SY3OWINXXXXX=O!¥3lsni)

L04

Y3Ad3S
OL

Y3AY3S

ULLINDOddJY3AN3S@Y3AY3SVY3Au3S=SYIGW3IWXAXXKXK=Q]¥31SN1) =Q4NI3SN3910
Y3AY3S

ULLangodd=O4NI3SN3IN13Y3Au3SQY3AN3SJY3AN3S@Y3ANISVY3AN3S=SYI8WIWXXXXX=Q)¥31sni)

 U2=S3ISNSIITTWLOLSISNIIITYLINGONdLS40LNOSY3AKSS€HLIMY3LSN1bS3SN337&LINGOYd|‘EJOINOSY3AYSS2HLIMYSLSNT)L(LdOOVSLSNISNV1Z)LIldSNVIyol

qY3AN3S

 ULLINGOY%d=O4NI3SN3317JY3AY3S@Y3AN3SVY3Au3s=SUIBWIWXXXXX=QIY¥slsn3

 VY3AY3S
LOL

9

US 6,574,612 Bl
1

LICENSE MANAGEMENTSYSTEM

FIELD OF THE INVENTION

The present invention relates to license management
systems and particularly to a method and system for pro-
viding flexibility to a license management system.

BACKGROUND OF THE INVENTION

The licensing of computer software was. traditionally
accomplished by providing a copy of the software and a
license for each computer which was authorized to use the
software. The software could be generally used only on that
computer, unless it was deleted from that computer and
transferred to another one together with the license. With the
advent of wide spread computer networks a moreefficient
solution was required. A license management system allows
a user to install a copy of a soltware program on N nodes of
a network, but acquire only a limited number n licenses,
where at any time, only the maximum number n copies of
that program can be simultaneously run on the network.
When all the available licenses are allocated, additional
users requesting the use of that software must wait for a
license to become available. This kind of license manage-
ment system has a number of advantages for both the
software vendor and the user, because it allows the user ta
purchaseall and only the licenses really needed and, on the
other hand, allows the vendorto fight software piracy.

An example of a state of the art license management
system available on the market, is the License Use Man-
agement product of International Business Machines Cor-
poration.

In a typical network of interconnected computers with a
license managementsystem,as illustrated in FIG.1, one or
more of the nodes 101 act as license servers, while a
plurality of nodes 103 act as clients of the license servers.
The service provided bya license server 101 to its client 103
is that of granting or denying permission to run a given
software program, according to the availability of a license
record in the license server data base, and to the terms and
conditions encoded in the license record itself. The license

server usually creates and stores license records in the
license data base upon processing license certificate files,
whichare provided bythe software vendor and complement
the software program to which theyare related. This license
data base must be locked in some wayto the specific
instance of the license server (hardware+software) to pre-
vent malicious users from copying the license data base to
another license server machine and multiplying by two the
numberoflicensesforall the software products contained in
the license data base. License certificate files may contain
some encryption or checksum information that allow the
license server to verify their authenticity and integrity.

The fact that a license management system is monitoring
the use of a given software program should be as transparent
as possible to the users of that software program whereasit
should be evident and beneficial to the administrator of

licenses for that and other software programs. This consid-
eration places a strong requirement on the license manage-
ment system in terms of reliability and performance. The
ideal license management system should be one which never
causes software program failures because of its outage nor
becomes a bottleneck for the software programs that it
monitors.

In a license management system, “availability” is a mea-
sure of the degree to which the system can process and

10

15

25

30

35

40

45

50

55

60

65

2

satisfy incoming requests (either granting or denying per-
mission to run) within the time limits set by the served
environment. High availability systems attempt to provide a
continuous service within a particular operational window
by minimising causes of failure and minimising recovery
time when failures occur. Usually this requires a large
degree of redundancy in system components, so that the
continued operation of the entire system is protected from
failure of any single component. The ultimate objective is to
eliminate all single points of failure in the system. This can
be accomplished by having redundant components or
systems, and “availability management technology”that can
automate the transfer of services to those redundant com-

ponents when a failure occurs. Availability is a crucial
feature of license management systems, since an outage of
one or more license servers of a license management system
can prevent many users from running their critical
applications, due to a failure to acquire a license. An obvious
solution to ensure good availability would be to use well
knownclustering techniques. In the network data processing
field, a cluster is a set of independent processors (nodes),
connected over the network. A cluster constitutes a sort of

“black box” which provides certain services to end users.
Like any ideal black box system, the end users do not need
to know which node in the cluster they are connecting to.
However, commonclustering techniques, aimed at increas-
ing the overall availability of the system through server
redundancy, cannot be applied in a straightforward way to
license management systems because of the secure nature of
the license serving environment. A redundantlicense server
cannot simply take over the amount of licenses, served by
another failing server; it must also ensure that, in no
circumstances, the total number of licenses concurrently
served can exceed the total number of available licenses,
stored into the license authorization record.

Solutions to this problem, based on a method called
“majority” or “quorum”, are known, in which a certain
numberof license servers are configured to work coopera-
tively. As long as the majority of those servers is up and
running and communicating with each other, all licenses are
available, whereas as soon as the numberofactive license
servers becomesless than the majority, all of the servers stop
serving licenses. All existing solutions do not allow flex-
ibility in the numberoflicense servers that participate in the
cluster. This numberis either fixed by the licensing system
vendor or can be chosen upfront by the user when config-
uring the system, butit is not possible to increase or decrease
the number of license servers in the cluster, during the
life-cycle of the cluster itself. Having the possibility of
adding and removinglicense servers to and from a clusteris
an important feature to ensure the required flexibility for
adapting the system capacity to the changing demandsofthe
application environment.

In theoryflexibility could be provided, for example, by
binding the license authorization key to a software based,
random generated, binary identifier that can be securely
stored into the license server’s data base instead of binding
them (the license key) to some specific license server
hardware-based identifier. The same software-based binary
identifier can be shared byall license servers participating in
the cluster. However providing sucha flexibility without any
limitations on the way license servers can be added or
removed from the cluster breaks the security of the license
management system.

It is an object of the present invention to alleviate the
above drawbacks of the priorart.

SUMMARY OF THE INVENTION

According to the present invention, we provide, in a
network comprising a plurality of client workstations having

10

US 6,574,612 Bl
3

a software program installed thereon, and a cluster compris-
ing an initial plurality of S license servers, a license man-
agement system for allowing the concurrent use of a maxi-
mum number n of copies of the software program, each
client workstation requiring an authorisation from one of the
license servers for using the software program,the license
management system requiring thatat least the integer major-
ity of the plurality of license servers in the cluster is active
at any time, the license management system comprising:

meansfor allowing an increase or decrease in the number
of license servers;

meansfor limiting the number of the plurality of license
servers with respect to the initial number S so that the
integer majority of the minimum numbers1 of servers
io the cluster plus the integer majority of the maximum
number s2 of servers in the cluster is strictly greater
than the maximum numbers2 of servers in the cluster.

Furthermore, according to the present invention, we pro-
vide a method for providing flexibility to a license manage-
ment system, the license managementsystem permitting the -
concurrent use of n copies of a software program over a
network comprising a plurality of client workstations, each
client workstation having a copy of the software program
installed thereon requiring an authorisation from one of a
plurality of S license servers each time the software program
is used, the license management system requiring that at
least the integer majority of the plurality of license servers
is active at any time, the method comprising the step of:

allowing an increase or decrease in the numberof license
Servers;

limiting the numberof the plurality of license servers with
respect to the initial number S so that the integer
majority of the minimum numbers1 ofserversplus the
integer majority of the maximum numbers2 of servers
is strictly greater than the maximum number s2 ofservers.

Also according to the present invention we provide a
computer program product stored on a computer readable
medium for allowing, in a network comprising a plurality of
client workstations having a software program installed
thereon, and an initial plurality of S license servers, the
concurrent use of a maximum number n of copies of the
software program, each client workstation requiring an
authorisation from one of the license servers before using
the software program, the computer program product requir-
ing that at least the integer majority of the plurality of license
serversis active at any time, the computer program product
comprising:

computer readable program code means for allowing an
increase or decrease in the numberoflicense servers;

computer readable program code meansfor limiting the
numberof the plurality of license servers with respect
to the initial number S so that the integer majorityof the
minimum numbers1 ofservers plus the integer major-
ity of the maximum number s2 of servers is strictly
greater than the maximum numbers2 ofservers.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention will now be

described in detail by way of examples, with reference to
accompanying figures, where:

FIG. 1 shows schematically an example of a license
management system;

FIGS. 2 and 3 are diagrams showing the functioning of a
license management system;

10

15

25

30

35

40

45

50

55

60

65

10

4

FIG. 4 is an example of a license data base according to
a preferred embodiment of the present invention;

FIGS. 5A-5C are an example of malicious use of the
possibility of increasing the numberofservers in the cluster.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

As mentioned above, FIG. 1 represents a typical network
(e.g. a Local Area Network) using a license management
system which could implement the present invention. Serv-
ers 101 may be, for example IBM RISC System/6000
43P-140 produced by International Business Machines Cor-
poration. Client nodes 103 could be any personal computer
or workstation available on the market, e.g. IBM Personal
Computer 300 GL produced by International Business
Machines Corporation.

With reference to FIG. 2 and FIG. 3 the method of a

license managementsystem is described. FIG.2 is a diagram
of the method of functioning of a server according to a
preferred embodimentof the present invention. The process
starts at step 201 and goesstraight to step 203 where the
information about the software product to be licensed and
the number of available licenses are read into the server

memory. This information is usually provided by the soft-
ware vendor andis usually protected against counterfeiting.
When a request is received from a client (step 205) the
server checks whether it is a request for a license (207). If
this is the case and a license is available (209), the server
creates a new license instance record (211) and decrements
by one the number of available licenses. The server then
sends a reply to the client (221) authorising the client to use
the software product. Otherwise, if no more licenses are
available the reply sent to the client (221) will be that the
software product cannot be used. Going back to step 207,it
may be the case that the client is requesting to release a
license (215) after having used the software product. The
server then deletes the correspondentlicense instance record
(217) and increments the numberof available licenses (219).
With reference to FIG. 3 the functioning of a client wishing
to use a software product is represented. When an available
licenseserver is found (303) a license requestis issued to the
server (305, 307). If the license is granted by the server then
the client can use the software product (311), otherwiseit is
checked whether another server is available and control

either goes back to step 305 or terminates the process. When
the client finishes using the software application, a message
is sent to the server which granted the license to release the
license (313, 315).

Those skilled in the art will appreciate that a number of
different method implementing similar license management
procedures can be used instead of the one described above.

FIG. 4shows an example oflicense data base 401, which,
according to a preferred embodiment of the present
invention, should be stored on each server 101. The infor-
mation contained in this data base is:

the cluster ID;

the total number of servers belonging to the cluster;

the secure ID (possibly hardware-based) of each license
server that has ever participated to the cluster;

the software products managed by the system;
the number of available licenses for each product.

Those skilled in the art will appreciate that a method to lock
the above described data base to the server hardware and to

ensure the security of the data base itself is needed. Fur-
thermore those skilled in the art will appreciate that the

11

US 6,574,612 Bl
5

above information could be organised in a number of
different way according to well known programming, tech-
niques.

The network represented in FIG. 5a has three servers 101
serving a number n of licenses for software product 1 to a
plurality of N clients 103. Each server 101 has a data base
file 401 containing all the information described above.
From the client point of viewit does not make any difference
whether a license is granted by server A, B or C. Any server
101 of the cluster can provide a license to any client 103.
With such a system the failure of one of the servers would
not be a problem, because the other two can do the service
for all the clients. One of the servers could be inactive and

act just as a backup server in case of failure of one of the
other two. The limitation with such a configurationis that the
majority of the servers (in this case two over three) must be
always active, otherwise the system interrupts its services.
Without this strict limitation the security of the system
cannot be granted, because a malicious user could detach a
server from the cluster, create another cluster and make
believe to both clusters that they are still working in a three
server cluster with, respectively one and two servers non-
active. In this way the numberof the possible licenses would
be doubled. This protection mechanism is the “majority”
requirement, well known by those skilled in the art.

Anon limiting example of the system represented in FIG.
5a may be the following: a cluster of three servers serving
20 licences to 50 clients: the majority of the servers is two
in this case, so at least two servers must be alwaysactive.
Each of the server A and B manages 10 licenses each
responding to the requests of the 50 clients, while server C
stays non active. If one of the two active serversfails, then
the server C takes over the licenses managed by that server
and the service can continue without interruption and the
majority rule is respected. Those skilled in the art will
appreciate that a numberof different implementations can be
realised instead of the one described above, depending also
from the requirements of the network.

As mentioned above, a desirable feature of a license
management system is the flexibility of adding or deleting
servers to the server cluster, in case circumstances change.
In the system described in FIG. 5a the number of servers
could be casily increased as shownin FIG. 5b. In this new
configuration the data bases 401 in each server 101 have
been updated to reflect the new situation. Each server
“knows” that there are five servers belonging to the cluster
and thatat Icast three servers must always be contemporarily
active to ensure the security of the system.

However a system which allowed a change of configu-
ration as the one described with reference to FIGS. 5a and

55 would be unsafe, and would not guarantce the respect of
the maximum numberoflicenses available with consequent
damage for the software vendor who authorised the use of
only n concurrent licenses. A malicious user could bypass
the security check and act as illustrated in FIG. 5c. The
malicious user could make a backup copy of the data base
401 of FIG. 5a when the cluster included three servers. Then
the number of servers are increased to five to arrive in the

configuration of FIG. 5b, already described. At this pointthe
malicious user splits the LAN 501 in two smaller ones not
communicating with each other: one sub-LAN 505 includ-
ing the three servers C, D and E; and a second sub-LAN 503
including the other two servers A and B. The sub-LAN 505
would continue its service because the Majority requirement
is respected; each server believes that two servers are not
active for some reason but, since the majority of servers is
still available the service can be continued regularly by
serving the n available licenses in the sub-LAN 505. The
sub-LAN 503 would be interrupted, because the expected
minimum number of three active server is not respected.
However the malicious user restores the licensing

10

15

25

30

35

40

45

50

55

60

65

11

6

environment, by substituting the data bases in sub-LAN 503
with the backup copies he made when the network wasin the
original configuration of FIG. 5a. At this point the two
servers A and B erroneously believe they are in a cluster of
three servers with two of them (the Majority) active and they
serve all the n licenses in the sub-LAN 503. In this way the
malicious user has duplicated the number of available
licenses causing a loss to the software vendor.

According to a preferred embodiment of the present
invention this unwanted security exposure is avoided, while
still allowing flexibility, by imposing a limitation in the
number of servers that can be added or removed by the
original configuration.

If we take S as the initial numberof licence servers, s1 and
s2 respectively as the minimum and the maximum number
of servers that may belongto the cluster, the limitation is the
following: the sum of the integer majority of s1 and of the
integer majority of s2 must be strictly greater than s2. In
other words the following rule must be fulfilled:

M(s1)+M(s2)>52;

with sl<=S and s2>=S and

where M(x) is the integer majority of x
If the initial numberS is odd the aboverule is satisfied by

limiting to 1 the number of servers that can be added or
removed to the cluster.

If the initial numberS is even therule is satisfied if either
maximum 2 servers are addedto the cluster OR 2 servers are

removed from the cluster. These two conditions are mutually
exclusive: this means that the system administrator can
chose either to increase the initial server number by one or
two, or to decrease the initial number by one or two. Once
the choice is done the initial number will be the minimum or

the maximum limit respectively. As an example, once a
server is removed from such a cluster, the initial number S
becomes the maximum possible number of servers in the
cluster and the only possible changes are to remove another
server or to reintroduce the removed one. In a similar way
if the first change to the numberof servers in the cluster is
an addition of anotherserver, the initial number S becomes
the minimum possible number of servers in the cluster and
the only possible further changes are another additionor the
removal of the initially added server.

EXAMPLE1
Odd Initial NumberS of Servers

In the case of the example described above, where the
initial number S of servers in the cluster was 3, the maxi-
mum numberofserver that can be added to or removed from

the cluster respecting the rule above is 1. In other words s1,
as defined above, would be equal 2 and s2 would be equal
4 and the above rule would be satisfied, since:

M(2)+M(4)>4; >243>4.

EXAMPLE2
Even Initial Number S of Servers

If the initial numberS of servers in the cluster was 8 there

are two possible solution satisfying the rule: sl=6, s2=8 or
sl=8, s2=10, since:

M(6)+M(8)>8445>8

OR

M(8)+M(10)>10+5+6>10.

According to a preferred embodiment of the present
invention, once a licence server has been added to the
cluster, its unique identification is stored in the license data

12

US 6,574,612 Bl
7

base of each server in the cluster and can never be deleted,
unless the whole cluster and its identifier is deleted; this is
to ensure that license servers cannot be replaced in the
cluster. The license servers can only be added within the
limits defined by the above rule and then deactivated to
reduce the number of membersofthe cluster whose majority
is to be up and running in orderfor the cluster to work. Once
the limit specified above has been reached, no new server
can be added to the cluster, but previously deactivated
servers must be used. Allowing removal of license servers
from the cluster or substitution would break the security of
the cluster itself; for the same reason the unique ID ofthe
license servers that initially form the cluster must be speci-
fied at cluster creation time. Whenaserver is removed from

the cluster (de-activated) this information is not lost,
because the server is just marked as no longer active in the
cluster. In this way, once the maximum numberofserversis
reached the whole set of servers that can everbe part of the
cluster is definitely determined.

According to a preferred embodiment, to further increase
the safety of the cluster, a minimum possible set mustalso -
be permanently determined. This minimum set is composed
of the servers belonging to the cluster the first time the
cluster reaches the minimum possible numberof servers s1;
thereafter, these core servers cannot be de-activated any
longer. Further changes in the cluster configuration can be
done only by operating on the previously de-activated
servers. Thus, let us suppose an initial cluster of 5 servers A,
B, C, D and E. Server E is then de-activated (i.e. removed
from the cluster). A, B, C and D must permanently belong
to the cluster and cannot be removed any more. Previously
de-activated server E and new serverF can be addedto the

cluster and all future changes can only relate to E and F
without touching the core set A, B, C and D.

Whatis claimedis:

1. In a network comprising a plurality of license servers,
a license management system for allowing a concurrent use
of a maximum numbern of copies of a software program,
each client workstation requiring an authorisation from one
of the license servers for using the software program, the
license managementsystem requiring that at least an integer
majority of the plurality of license servers in the cluster is
active at any time, the license management system compris-
ing:

meansfor allowing an increase or decrease in the number
of license servers;

means for limiting the number of the plurality of license
servers with respect to an initial numberS so that the
integer majority of a minimum numbers1 ofservers in
the cluster plus the integer majority of the maximum
number s2 of servers in the cluster is strictly greater
than the maximum numbers2 of servers in the cluster

is strictly greater than the maximum number s2 of
servers in the cluster; and

wherein n, sl, s2 are positive integers.
2. The license management system of claim 1 wherein

each license server is able to authorise the use of a portion
of said maximum number n of concurrent copies of software
program.

3. The license management system of claim 1 further
comprising:

means for allocating to each server a unique ID, the
maximum numberof the IDs the system can allocate
being s2;

means for locking the unique ID on each server;
meansfor storing on each license server the ID of every

other license server.

10

15

25

35

40

45

50

55

60

12

8

4. The license management system of claim 3 further
comprising:

means for tracking license servers which are removed;

meansfor preventing an addition of new servers once the
maximum numberof IDsthat can be allocated has been
reached.

5. The license management system of claim 4 further
comprising:

means for identifying as core servers those servers
belonging to the cluster, whenever the minimum num-
ber s1 is reached for the first time;

meansfor preventing a deletion of any of the core servers
from the cluster.

6. A method for providing flexibility to a license man-
agement system, the license management system permitting
a concurrent use of n copics of a software program over a
network comprising a plurality of client workstations, each
client workstation having a copy of the software program
installed thereon requiring an authorisation from one of a
plurality of S license servers each time the software program
is used, the license management system requiring that at
least a integer majority of the plurality of license servers is
active at any time, the method comprising the step of:

allowing an increase or decrease in the numberoflicense
Servers;

limiting the numberofthe plurality of license servers with
respect to an initial number S so that the integer
majority of a minimum numbers1 ofservers plus the
integer majority of a maximum numbers2 ofservers is
strictly greater than the maximum number s2 ofserv-
ers; and

wherein n, sl, s2 are positive integers.
7. The method of claim 6 further comprising the steps of:

allocating to each server a unique ID, the maximum
numberof the IDs the system can allocate being s2;

locking the unique ID on each server;

storing on eachlicense server the ID of every other licenseserver.

8. The method of claim 7 further comprising the steps of:

tracking license servers which are removed;

preventing an addition of new servers once the maximum
number of IDs that can be allocated has been reached.

9. The method of claim 8 further comprising the steps of:

identifying as core servers those servers belonging to the
cluster, whenever the minimum numbersl is reached
for the first time;

preventing a deletion of any of the core servers from the
cluster.

10. A computer program product stored on a computer
readable medium for allowing, in a network comprising a
plurality of client workstations having a software program
installed thereon, and aninitial plurality of S license servers,
a concurrent use of a maximum numbernof copies of the
software program, each client workstation requiring an
authorisation from one of the license servers before using
the software program, the computer program product requir-
ing that at least an integer majority of the plurality of license
servers is active at any time, the computer program product
comprising:

computer readable program code meansfor allowing an
increase or decrease in the numberoflicense servers;

computer readable program code meansfor limiting the
numberof the plurality of license servers with respect
to the initial numberS so that the integer majority of a

13

US 6,574,612 Bl
9

minimum numbers1 ofservers plus the integer major-
ity of the maximum number s2 of servers is strictly
greater than the maximum number s2 of servers; and

wherein, sl, s2 are positive integers.
11. The computer program product of claim 10 further

comprising:

computer readable program code meansfor allocating to
each server a unique ID, the maximum numberofthe
IDsthat can allocated being s2;

computer readable program code means for locking the
unique ID on each server;

computer readable program code means for storing on
each license server the ID of every otherlicense server.

12. The computer program product of claim 11 further
comprising:

13

10

computer program code meansfor tracking license serv-
ers which are removed;

computer program code meansfor preventing an addition
of newservers once the maximum numberof IDs that
can be allocated has been reached.

13. The computer program product of claim 12 further
comprising:

computer program code means for identifying as core
servers those servers belonging to the cluster, whenever
the minimum numbersl] is reached for the first time;

computer program code meansfor preventing a deletion
of any of the core servers from the cluster.

